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Introduction

Context of the work

Structural health monitoring (SHM) has gained an increasing attention in the engineering and
scientific communities because an unpredicted structural failure may happen catastrophic,
economic and human loss. The monitoring of structures has become an important issue,
especially in the mechanical, aerospace, automotive and civil structures, while subject to
noise and vibration.

There are two kinds of evaluation that are performed such as destructive and non-
destructive tests. Destructive tests affect the condition of structure and non-destructive
tests do not affect its functionality and it is used to evaluate the properties of a system with-
out causing damage. More researchers have been focussing on the latter approach due to
the continuous serviceability of the structure, since it is crucial to maintain the safety and
integrity of structures. Currently, performance monitoring of large engineering structures is
mainly done on-site by engineers and technicians, who need to have a very specific expertise
and knowledge of past hazard events. In the meantime, the number of ageing structures
is growing worldwide. Structures are often difficult to reach (e.g. bridges in remote areas,
or offshore structures), so inspections are limited. Moreover, visual inspections offer only
limited knowledge, not least because only reachable components can be inspected. They
are also costly in terms of labor and operation shutdowns. The long term perspective is to
replace the inefficient manual inspection procedure by automated robust on-site monitoring
with permanently installed sensors.

A promising technique is vibration-based SHM, where structures are equipped e.g. with
acceleration sensors that can permanently record structural vibrations data due to ambient
excitation. In the last decade, sensor and data acquisition technology have evolved rapidly
and have become affordable, allowing a large-scale instrumentation of important structures
like bridges, buildings or offshore structures in particular for long term vibration-based mon-
itoring. Thanks to these advances in sensing systems, there is a huge potential to realize
an automated and online structural assessment from sensor data, leading to a safe, reliable
and cost-efficient structural integrity management. The detection of changes in systems from
output-only measured signals is a multidisciplinary research area in the fields of mathematical
modeling, automatic control, statistics and signal processing. During the last decades, system
identification methods found a special interest in structural engineering for the identification
of vibration modes and mode shapes of structures under ambient excitation. Sensors installed



8 Introduction

on the structure collect data and then the modal parameters (i.e. natural frequencies, mode
shapes and damping ratios) can be estimated e.g. using methods from stochastic system real-
ization theory for linear systems. Those parameters are meaningful for the monitoring of the
structure. Moreover, during the last years, huge advances has been made in the development
of Operational Modal Analysis, allowing the reliable modal identification of the structures
from ambient vibration measurements.

There are two ways to damage assessment that one is fully characterizing the structure
with system identification and then comparing the system identification results, and another
one is based on damage assessment techniques. Usually, vibration-based structural diagnosis
is divided into five subtasks of increasing difficulty: damage detection (level 1), damage
localization (level 2), identification of damage type (level 3), quantification of the damage
extent (level 4) and prediction of the remaining service life (level 5). When performing these
tasks in a cascade fashion, the full structural diagnosis problem is amenable to a solution.

Methods for damage detection have reached some maturity, e.g. with data-driven al-
gorithms adapted from pattern classification and statistical process control. While damage
detection can operate purely data-driven, by comparing the current dataset to a reference,
damage localization requires some link between the data and the physical properties of the
structure, which is often given by a finite element (FE) model of the structure. Physical
changes in the structure due to damage induce changes in the modal characteristics of the
structure, which can be monitored through output-only vibration measurements. Changes in
these parameters indicate damage in a structure, and damage localization is possible when
analyzing these changes together with a finite element model of the structure. Damage quan-
tification corresponds to estimating the changes of physical parameter in the faulty elements.
For an example, the components of the parameters can be the stiffness of a mass-chain sys-
tem, Young modulus of beam elements or it can be basically any quantity linked to damage-
sensitive properties of the system. However, vibration-based damage localization methods are
not very well developed so far, and compared to this, methods for damage quantification are
the least developed in the literature. In particular, they lack applicability in practice for au-
tomated SHM solutions. Among the promising techniques, the Stochastic Dynamic Damage
Locating Vector (SDDLV) and the Influence Lines Damage Location (ILDL) approach have
interesting capabilities because they are theoretically sound method in combining both finite
element information and modal parameters estimated from output data. This motivates the
adaption of the existing damage localization methods in this thesis, and then extend it for
damage quantification in a sensitivity-based approach.

The purpose of this thesis is to develop methods for damage localization and quantification
from output-only measurements which are needed for the damage assessment for the SHM
systems in practice.

Proposed methods
The following methods are developed in the contribution of this thesis:

(1) Statistical damage localization with stochastic load vectors using multiple
mode sets: The Stochastic Dynamic Damage Location Vector (SDDLV) method is an
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output-only damage localization method based on a Finite Element (FE) model of the
structure and modal parameters from output-only measurements in the damage and
reference state of the system. A vector is obtained in the null space of the changes in
the transfer matrix between both states and then applied as virtual load vector to the
model. The damage location is related to this resulting stress where it is close to zero.
Then, a statistical evaluation of the computed stress is necessary to make a decision if
stress is (close to) zero or not, in order to decide if the respective structural element is
damaged or not. In previous works [MDBM15] an important theoretical limitation was
that the number of modes used could not be higher than number of sensors located on
the structure. This is a shortcoming in particular when only few sensors are available, it
would be desirable not to discard information from the identification procedure. Here,
the SDDLV method has been extended with a joint statistical approach for multiple
mode sets, overcoming the restriction on the number of modes. Another problem is
that the performance of the method can change considerably depending of the Laplace
variable where the transfer function is evaluated. Particular attention is given to this
choice and how to optimize it. Therefore, robustness of the damage localization is
obtained by taking into account all available information in a joint statistical evaluation.

Statistical based decision making for damage localization with influence
lines: The Influence Line Damage Location (ILDL) method is complementary to the
SDDLV approach. This approach was developed in [Ber14] as a deterministic approach.
The objective is to extend it as a stochastic method and investigate its relation to SD-
DLV. A vector is obtained in the image of the changes in the transfer matrix between
healthy and damaged states, instead of null space. It is expected that the image is
differently affected by noise than the null space. Then, damage is located at elements
where the subspace angle between the image and the influence line computed from the
FE model is zero. In previous works [MDBM13], the uncertainty quantification was
tempted, where the deterministic aggregation was done for s = 0. Here, the damage
indicator of the ILDL is considered for arbitrary s and then reconsidered to allow an
adequate uncertainty quantification and statistical evaluation for damage localization.
In such a way, the ILDL approach is extended with a statistical framework.

Transfer matrix sensitivity-based output-only statistical damage localization
and quantification: While SDDLV and ILDL exploit directly properties of the null
space or image of the transfer matrix, a sensitivity-based approach [DMZ16] is devel-
oped in this Chapter, which allows moreover damage quantification. An approach is
considered that operates on the transfer matrix difference that is statistically evaluated
using the transfer matrix sensitivity with respect to parameters from a FE model. The
problems of damage localization and quantification are indeed divided into two sepa-
rate problems. First, the damaged elements are detected in statistical tests, and then,
the damage is quantified only for the damaged elements. Statistical fault isolation and
estimation techniques are then used to perform damage localization and quantification
in the so-called sensitivity and minmax approaches.

These approaches are derived in depth, and theoretical properties are proven in the con-
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tribution chapters. They are validated on structural vibration data in both numerical and
real applications.

Outline of the thesis

This thesis is presented in four parts and contains thirteen chapters.
Part I contains preliminaries:

e Chapter 1 presents an overview of state of the art from the literature related to vibration
models, system identification, damage detection, localization, and quantification.

e Chapter 2 presents the background on the deterministic damage localization approaches
on which this thesis is based, namely the SDDLV and ILDL approaches.

e Chapter 3 explains the background of the statistical signal processing methods used in
this thesis. This concerns in particular the subspace-based system identification and
uncertainty quantification.

e Chapter 4 presents the statistical approaches for damage localization and quantification,
namely a previous statistical framework for SDDLV and ILDL on one side, and a generic
sensitivity-based statistical framework for fault isolation and quantification on the other
side.

Parts II deals with the theoretical developments:

e Chapter 5 presents the theoretical development of the SDDLV approach using multiple
mode sets in a statistical framework. In particular, the effect of removing the limiting
restriction on the number of modes is discussed.

e Chapter 6, the ILDL approach is extended with a statistical framework. The damage
indicator of the ILDL is considered to allow an adequate uncertainty quantification,
before deriving its statistical evaluation for damage localization.

e Chapter 7 presents the theoretical development of the transfer matrix-based residual
in a statistical sensitivity-based damage localization and quantification approach. An
approach is considered [DMZ16] that operates on a data-driven residual vector that is
statistically evaluated using sensitivities with respect to parameters from a FE model.
Furthermore, the proposed approach is extended considering a joint statistical evalua-
tion of multiple mode sets.

Part III is devoted to the numerical investigation of the developed damage localization and
quantification methods:

e Chapter 8 introduces the performance indicators for the developed methods and
presents the numerical models used in this thesis.
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e Chapter 9 deals with the applications of the proposed methods of SDDLV using multiple
mode sets from Chapter 5. A simple mass-spring chain and a more complex 3D cube
beam model are considered as numerical applications. These numerical applications are
idealized test cases for the validation of the new developments of this approach, allowing
in particular a statistical performance evaluation based on Monte-Carlo simulations. In
addition, the damage localization with the SDDLV approach is applied on a beam model
for crack propagation as well as the influence of mesh sizes is investigated.

e Chapter 10 presents the application of the statistical evaluation of ILDL approach from
Chapter 6. A mass-spring chain model is considered as a numerical simulation for
validating the method.

e Chapter 11 deals with the applications of transfer matrix sensitivity-based residual for
statistical damage localization and quantification method from Chapter 7. The new
approach is validated in numerical simulations of a mass-spring chain and a 2D beam
model, where the outcomes for multiple mode sets are compared with only using a
single mode set.

e Chapter 12 presents the numerical implementation of the damage localization methods
by using Abaqus software for the application of realistic FE models. In Chapters 9, 10,
and 11, the localization methods are applied on different numerical simulations, where
the FE models are generated using Matlab code. The goal of this chapter is to integrate
realistic FE models for more complex structures using Abaqus-Python script for the
applicability of the damage localization and quantification methods described in this
thesis.

Part IV investigates to real applications of structures for both damage localization and quan-
tification:

e Chapter 13 presents the real case applications on lab structures. In this Chapter,
the proposed methods from Chapter 5 and 7 are successfully applied on several real
structures for damage localization and quantification. The vibration data of these
structures was obtained through numerous collaborations:

— A cantilever beam, provided by Briiel & Kjeer, Denmark.
— A cantilever beam - by IFSTTAR/COSYS-SII, Bouguenais, France.
— A four-story steel frame structure, the Yellow Frame at the University of British

Columbia, Canada.

Finally, the thesis concludes with an assessment of the developed methods and presents
the perspectives for future research.
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Notation
Symbols
AT Transposed matrix of A
AH Transposed conjugated complex matrix of A
A1 Inverse of A
Af Pseudoinverse of A
o Definition
i Imaginary unit, i2 = —1
R(a), S(a) Real and imaginary part of variable a
A* a* Complex conjugate
vec A Column-wise vectorization of matrix A
A®B Kronecker product of matrices or vectors A and B
X Estimate of variable X
E(X) Expected value of variable X
N(M,V)  Normal distribution with mean M and (co-)variance V'
N, R, C Set of natural, real, complex numbers
I, Identity matrix of size m x m
Om,n Matrix of size m X n containing zeros
Variables
M Mass matrix
K Stiffness matrix
C Damping matrix
n System order
r Number of sensors
(vef) Number of reference sensors
Ae, Ay State transition matrix for continuous and discrete-time system
C.,Cy Observation matrix
Tk System state at index k
Yk System output at index k
H Hankel matrix of output covariances
J Jacobian matrix
o Observability matrix
or, ot Matrices, where the last resp. first block row (usually containing r rows) of

O are deleted
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by Covariance matrix

N Number of samples
Abbreviations

DOF Degree of freedom

FE model Finite Element model

OMA Operational modal analysis

SHM Structural health monitoring

SSI Stochastic subspace identification

SVD Singular value decomposition

List of investigated damage localization methods

SDDLV Stochastic Damage Locating Vector

S-SDDLV Statistical Stochastic Damage Locating Vector
ILDL Influence Lines Damage Location

S-ILDL Statistical Influence Lines Damage Location

R1v-ILDL Rank 1 for residual vectors with degenerate normal distribution for ILDL
R1v-S-ILDL  Rank 1 for residual vectors with degenerate normal distribution for S-ILDL
Rle-ILDL Rank 1 for element-wise tests of residual vector for ILDL

Rle-S-ILDL  Rank 1 for element-wise tests of residual vector for S-ILDL

R*-S-ILDL Arbitrary Rank for S-ILDL
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Chapter ]_

State of the art

1.1 Introduction

The present work focusses on vibration-based damage localization and quantification from
output-only measurements for Structural Health Monitoring (SHM). Currently, performance
monitoring of large engineering structures is mainly done on-site by engineers and technicians,
who need to have a very specific expertise and knowledge of past hazard events. In the
meantime, the number of ageing structures is growing worldwide. Even when manpower is
available, the inspection task is not easy. Structures are often difficult to reach (e.g. bridges in
remote areas, or offshore structures), so inspections are limited. Moreover, visual inspections
offer only limited knowledge, not least because only reachable components can be inspected.
They are also costly in terms of labor and operation shutdowns. The long term perspective is
to replace the inefficient manual inspection procedure by automated robust on-site monitoring
with permanently installed sensors. This will allow the engineer to monitor the structures
from a centralized facility using robust tools with scientific foundation.

SHM methods have gained an increasing interest of determining the system health since
last decades, i.e. the occurrence and characterization of damage in civil, mechanical or aero-
nautical structures using dynamic response measurements from an array of sensors. Sensors
installed on the structure collect data and then the modal parameters (natural frequencies,
mode shapes and damping ratios) can be estimated. Those parameters are meaningful for
the monitoring of the structure. In the last decade, sensor and data acquisition technology
has evolved rapidly and has become affordable, allowing a large-scale instrumentation of im-
portant structures like bridges, buildings or offshore constructions in particular for long term
vibration-based monitoring [BFGO6].

Thanks to these advances in sensing systems, there is a huge potential to realize an
automated and online structural assessment from sensor data, leading to a safe, reliable
and cost efficient structural integrity management [FWO07]. Moreover, during the last years,
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huge advances has been made in the development of Operational Modal Analysis, allowing
the reliable modal identification of the structures from ambient vibration measurements.
Automatic inspection techniques are of enormous value for structures with poor accessibility
or in high risk environments such as offshore constructions, large engineering structures or
nuclear power plants. Maintenance operations can be optimized and costly downtime kept to
a minimum, while the structural safety is increased. Vibration data that is recorded on-site
on a structure contains some information about the current condition of the structure.

This thesis related to vibration-based damage localization and quantification in the field of
structural health monitoring from the measured data, where the vibration models for modal
analysis and the system identification are taken into account as a prerequisite. Therefore,
in the following, some contributions from the literature related to vibration models, system
identification, and then damage assessment techniques are presented in general which are
crucial for the performance monitoring of the SHM systems.

1.2 Vibration models

Typically, experimental identification of structural dynamics models is based on the modal
analysis approach which is fundamental in vibration-based monitoring of large civil structures.
During the last decades, the experimental verification of design values particularly the modal
parameters (eigenfrequencies, damping ratios, mode shapes, and modal scaling factors) have
found a special interest under real operation conditions. It is usually performed for the
purpose of obtaining accurate experimental estimates of modal parameters, which then can
be correlated to the corresponding values numerically estimated from a finite element model
of a structure. It is also frequently used for quality control and structural health monitoring
purposes. As the modal information is derived from structural response (outputs) while
the structure is in operation, this procedure is typically called Operational Modal Analysis
(OMA) or Output-only Modal Analysis.

An overview for the application of modal testing and analysis can be found in the literature
[Ewi84, MS97, HLS98, Ewi00, BRAT15]. In [HVdA99], the industrial applications of modal
testing and analysis of structures is carried-out e.g. family car during road tests, commercial
aicraft and the identification of the modes of a concrete bridge under operational conditions.
In addition, modal testing of spacecraft during launch [Jam03], modal parameters of wind
turbines at different rotation rates [CJ10], and modal testing of engines during startup and
shutdown [CSC11], and many more.

First at all, it is important to pay attention that models are always idealization of real
dynamic systems that necessarily contains simplifications. The ones adopted throughout this
work assume linear time-invariant behaviour of the described system.

Finite element model

Assume that the behavior of a mechanical structure with viscous damping can be described
by a linear time-invariant (LTI) dynamic system

MX(t) + CX(t) + KX(t) = f(t) (1.1)
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where M, C, K € R¥4 are the mass, damping and stiffness matrices, respectively, ¢ indicates
continuous time and X € R? denotes the displacements at the d degrees of freedom (DOF) of
the structure. The external force f(t) is not measurable and is modeled as stationary white
noise. When measuring accelerations, velocities or displacements at some degrees of freedom
of the structure, this measurements yield,

y(t) = CalX(t) + CuX(t) + CaX () + n(t) (1.2)

where C,, C,,, and Cy are the matrices indicating at which degrees of freedom acceleration,
velocity and displacement measurements are taken, and 7(t) is the measurement noise.

Continuous-time state-space model

Let the dynamic system (1.1) be observed at r coordinates. Furthermore, defining x(t) =
[X(t) X(t)]T which contains the displacement and velocity of the dynamic system, this then
leads to the corresponding continuous-time state-space model

{ () = Aea(t) + Bof(t) 13
y(t) = ch(t) + Dcf(t) + 77(75)

with the state vector z(t) € R", the output vector y(t) € R", the state transition matrix
0 I 0

-M'K -M~'C -

output matrix C, = [Cd -c,M 'K C,-C,M —10] € R™™ and the direct transmission

A, = € R™ ™ the input influence matrix B, = e R4 the

matrix D, = [CaM—l} € R™% where n = 2d is the system order and r is the number of
sensor outputs.

The input f(¢) (1.3) is not known deterministically but some statistical characteristics are
assumed. In particular it is assumed that f is white, stationary, and square integrable. More-
over, experimental data includes measurement noise. Thus, the corresponding continuous-
time state-space model in (1.3) writes as

{ #(t) = Aga(t) + v(t) (1.4)
y(t) = Cex(t) + w(t)

with the state noise v(t) = B.f(t) and output noise w(t) = D.f(t) + n(t).

Once the model has been constructed, the modal parameters of the dynamic system can
be extracted from the state matrix A, [Pee00]. However, only the system matrices A, and C.
are relevant from output-only system identification, and the non-identified matrices B, and
D, are only relevant in the derivation of estimates related to the transfer matrix.

Discrete-time state-space model

In a vibration test, the analog signals are recorded by the transducers, and then converted
to digital data by an analog to digital converter so that, they can be stored and processed
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by a computer for analysis. Since the available information of the dynamic system is discrete
in time in practice, a discrete-time state-space model of the previously presented model is
more adequate to fit experimental data. Therefore, it is characterized based on the respective
stochastic discrete-time state-space model

Tpy1 = Agrr + v (1.5)
Y = Caxp + wy,

which results from sampling system (1.4) at time steps ¢ = k7 where 7 is the time step.

T
The state vector z = {X(kq-)T X(lm—)T} € R", the measured outputs y, € R", the state

transition matrix
Ay =exp(A.T) € R™™, (1.6)

and the observation matrix Cy = C. where n = 2m is the model order, r is the total
number of measured outputs. Once a discrete-time state-space model has been identified from
experimental data, it is possible to estimate the modal parameters of the tested structure.
The state noise v and output noise wy are unmeasured and assumed to be centered and
square integrable.

In the following Section, some contributions from the literature related to system identi-
fication are presented in the context of OMA, which take into account the above features.

1.3 System identification

Identification is the process of developing a mathematical model for a physical system by use
of experimental data [Gra75, Lju87, Jua94, Lju99] from measured input and output data.
It emerged in the 1960s in the control community. A historical overview of the develop-
ment of system identification is given in [Gev06]. Some of the important contributions for
identification theory in the control community is provided by Ho and Kalman’s work on
the state-space realization problem [HK66], Astrom and Bohlin’s work on maximum likeli-
hood methods [AB65], Akaike’s work on stochastic realization theory [Aka74, Aka75], Ljung’s
prediction-error framework [Lju78, LC79] and many more.

In the previous section, the discrete-time state-space model is presented in (1.5) for a
stochastic process. In system identification, the problem is to find the system matrices A and
C from the outputs y; and the assumptions on the statistical properties of the driving forces.

The subspace-based system identification algorithms for stochastic inputs has been
emerged in the 1970s. The Stochastic subspace identification (SSI) methods are an effi-
cient tool for system identification of mechanical systems in OMA where modal parameters
are estimated from measured vibrational data of a structure. In [Kun78], Kung presented
the Balanced Realization Algorithm. In 1985, Benveniste and Fuchs [BF85] proved that the
Balanced Realization method for linear system eigenstructure identification is consistent un-
der (unmeasured) non-stationary excitation. In [VODMO96], Van Overschee and De Moor
presented their own formalism and popularized subspace methods in their data-driven form.
The Balanced Realization method using a block Hankel matrix of output correlations was also
popularized as covariance-driven stochastic subspace identification by Peeters and De Roeck
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in [PDR99]. Since then, the family of subspace algorithms is increasing in size and popularity
[Lar83, VODM94, Ver94, Vib95], mostly for its capacity to deal with problems of large scale
under realistic excitation assumptions. In [MAL96, VODMDS97, Pin02, CGPV06, Ak¢l0],
the subspace algorithms for frequency response data are derived. In [BMO07], many sub-
space algorithms from literature are put in a common framework and their consistency for
eigenstructure identification under non-stationary noise conditions is proven.

The application of system identification to vibrating structures presented a new research
domain in the field of structural engineering, known as modal analysis [Ewi84, POB*91,
MS97, HLS98]. Thus, the identified model is the modal model including of eigenfrequencies,
damping ratios and mode shapes. Often, the state-space model is used in connection with a
system identification method to identify the modal model. For the modal analysis of vibrating
structures, the emerging need for reliable identification methods where noise and large system
orders of structures under realistic excitation have to be considered, gave another impulse
in the development of system identification methods. Experimental Modal Analysis (EMA),
where only deterministic inputs are considered, moved to Operational Modal Analysis (OMA)
and Operational Modal Analysis with eXogenous inputs (OMAX), where stochastic inputs
and combined stochastic-deterministic inputs are considered, respectively [RDROS].

A similar identification approach to subspace identification is the Eigensystem Realization
Algorithm (ERA), which was introduced by Juang and Pappa [JP85]. Originally designed for
modal analysis using impulse response functions, it was adapted to output-only measurements
in [JICL95] and became known as Natural Excitation Technique (NExT-ERA). The latter is
closely related to covariance-driven subspace identification. Recently, in [DM12], the authors
derived a fast multi-order computation of system matrices with the stochastic subspace-based
identification algorithms, and applied to practical test cases where so-called stabilization
diagrams are used that contain the system identification results at multiple model orders.

There are also classical identification methods from the structural engineering community,
such as Peak Picking method. This is the simplest approach to determine modal parameters,
where the eigenvalues are identified as the peaks of a spectrum plot [BG63, BP93]. However,
in this method, close modes cannot be distinguished and the accuracy is limited to the
frequency resolution. In [STABS8S|, the Complex Mode Indicator Function (CMIF) method
for modal analysis using frequency response functions was introduced. It is based on a
singular value decomposition of the frequency response functions (FRF) at each spectral
line. Then, a peak in the CMIF indicates the location on the frequency axis that is nearest
to the eigenvalue within the accuracy of the frequency resolution. An additional second
stage procedure is needed for scaled mode shapes and an accurate eigenvalue estimation. An
output-only advancement is the Frequency Domain Decomposition (FDD) method [BVAO1,
BZAO01], where the power spectral density (PSD) functions are used instead of FRFs. Close
modes can be identified, but user interaction is required to identify modes from the peaks in
the singular values corresponding to the spectral lines.

A non-iterative maximum likelihood approach for frequency-domain identification is the
Least-Squares Complex Frequency-domain (LSCF) method [GVV98, VAAGVVO01]. The
method is a common-denominator transfer function model to measured FRFs in a least
squares sense and is the frequency-domain counterpart to the Least Squares Complex Expo-
nential (LSCE) algorithm [BAZMT79]. In [GVV 103, PVAAGLO04], it was extended to polyref-
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erence LSCF, also known as PolyMAX, by fitting a right matrix fraction model on the FRFs.
This results in more accurate modal models than LSCF in the multiple inputs case. These are
fast and accurate methods and produce very clear stabilization diagrams, where the damping
ratios of the modes might be underestimated [CGV105]. These methods can also be applied
to output-only data [GVCT03]. In [DDSG10], an output-only modal analysis approach us-
ing transmissibilities under different loading conditions was developed, where the unknown
ambient excitation can be arbitrary as long as the modes of interest are excited.

1.4 Context of structural health monitoring

It is clear from the previous discussion that there is a need for a reliable and continuous
assessment of the integrity of the structures. Vibration-based structural health monitoring
techniques have been actively developed in the last decades [FDNO1, CF04, FQ11], for exam-
ple for the monitoring of bridges, buildings or offshore structures. Generally, there are two
kinds of evaluation are performed such as destructive and non-destructive tests. Destruc-
tive tests include sampling of the structure, which may affect the condition of structure and
non-destructive tests do not involve with any action that can damage the structure or affect
its functionality. More researchers have been focussing on the latter approach due to the
continuous serviceability of the structure.

Physical changes in the structure due to damage induce changes in the modal character-
istics of the structure, which can be monitored through output-only vibration measurements.
Currently available methods only cover a small part of monitoring-based structural diagnosis,
which can be divided into five subtasks of increasing difficulty [FWO07]:

e Level 1: Detection of damage

Level 2: Localization of damage

Level 3: Identification of damage type

Level 4: Quantification of the damage extent

Level 5: Prediction of the remaining service life.

When performing these tasks in a cascade fashion, the full structural diagnosis problem is
amenable to a solution. However, only methods for level 1 have reached (at least limited)
maturity for real applications so far, e.g. with data-driven algorithms adapted from the fields
of pattern classification and statistical process control. The levels 2-5 of structural diagnosis
are much more challenging. One reason for the complexity of these tasks is the requirement
of additional information on the monitored structure besides mere measurements, such as
large-scale finite element or structural performance models.

In the following, the damage identification methods such as damage detection, localization
and quantification approaches are described from the literature of SHM community.
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1.4.1 Damage detection methods

The first step of structural diagnosis consists in the detection of damage, before the localiza-
tion analysis can be performed. Typically, data-driven methods are used for damage detection
using only the recorded response of the structure and these methods are generally simpler
to be used than the model-based methods, since there is no need of creating and adjusting a
model to the structure.

In the late 1970s, the damage detection in structures was proposed by Adams et al.
[ACPST78], and was expanded by Crawley & Admas [CAT9], where the frequency shifts were
used in detecting damage. Salawu [Sal97] also presented an excellent review on the use of
modal frequency changes for damage assessment.

A common damage detection method is to compare measurement data to a reference based
on statistical hypothesis testing [FWO07]. This strategy is to repeatedly estimate current
modal parameters by means of system identification, and to compare the result to some
reference modal parameters [RMLT10, MCC12]. This approach is generic, since it only needs
the information from a healthy state of the structure for comparison with the new data,
but no a priori information or model of the damaged state is required. An alarm is raised
if a corresponding statistical distance measure exceeds a threshold, indicating a significant
change within the monitored structure. Other methods are based on model-data matching,
where measurement data are directly confronted to a reference model, without resorting to
repeated system identification. For instance, such methods include non-parametric change
detection based on novelty detection [WMF00, YDBGO4], whiteness tests on Kalman filter
innovations [Berl3] or other damage-sensitive features [CF04]. Belonging to this method
class, the local approach for change detection [BBM87] with subspace-based techniques has a
solid theoretical foundation. This approach [DMH14, DHMR14] have led to a mature damage
detection method that can be applied to monitor civil structures. Its recent integration into
commercial SHM software [ART].

1.4.2 Damage localization methods

Many endeavours to solve the damage localization problem, so far, are based on updat-
ing finite element (FE) models, while other approaches use information on the geometry
and physical properties of the investigated structure together with measurements to analyse
changes in the structure without updating models. Model-based methods update the param-
eters of an FE model of the healthy structure based on the measurements from the damaged
system, and damage is located in the regions of the model where parameters are modified
[BXHXO01, SDRL15b]. In these methods, there is a need in processing the data and then
updating the model based on it. This will delay the identification procedure and makes these
methods less appealing for real-time damage detection. However, the model will enhance the
damage localization resolution and it helps in evaluating the damage severity.

Using output-only measured data from the damaged structure, these methods try to de-
termine the updated system matrices that reproduce the dynamic response from the data by
solving an optimization problem based on the structural equations of motion. Comparing the
updated matrices with the original ones provides a damage detection, and this can be used
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to determine the damage location and extent [BXHXO01]. While these model updating-based
approaches are in principle applicable to arbitrary structures, they are often too poorly con-
ditioned to be successful in practice. Real structures may have a large number of structural
parameters and the model of the structure may contain a large number of degrees of freedom.
The connection of those parameters to the sensor-based information for model updating often
turns out to be an ill-posed problem, since the number of identified parameters from mea-
surements are usually small in comparison to the number of model parameters [Fri07]. In this
case, the size of the finite element model is much bigger than the dimension of the parameters
that can be estimated from sparsely instrumented in-situ SHM systems. In order to circum-
vent this problem, [BBA14] developed an approach based on selective sensitivities, where a
large-scale parameter identification is transferred to a series of reduced order problems with
a high parameter sensitivity. This is achieved by exciting the structure with specific loading
configurations, each being sensitive to a specific set of parameters. However, this approach
is only feasible for relatively small structures, since otherwise the load application is difficult
to realize requiring an output-only analysis. An alternative are Bayesian methods such as
[YK11, SDRL15a], where structural parameters that are sensitive to the data obtain higher
priorities in the updating scheme. A further problem for updating is the requirement of a
very accurate FE model of the reference state, otherwise changes due to damage are hidden
by model errors. Moreover, user interaction by an experienced engineer is often needed in the
updating process, and modal identification is necessary in the damaged state, which both pre-
vent an automation of updating-based methods for SHM. For example, damage localization
methods based on FE model updating focus on changes in natural frequencies [CAT9], other
modal parameters [JR05] and residual functions [JR06], or use a damage function for describ-
ing the damage pattern [TMDRO02, UTDR06, UTGO05]. Details are stated in the following
section.

Alternative damage localization methods with a theoretical background combine prop-
erties of the data-driven and model-based approaches. They are based on data-driven fea-
tures from measurements of the reference and damaged states, which are confronted to a FE
model of the investigated structure to define damage indicators for the elements of the FE
model, without updating its parameters [LCD16]. In these methods there is no need to
update the model continuously and it is only created in the reference state (undamaged
condition) of the structure. For example, localization can be performed by sensitivity-
based methods on a parametrized residual vector that is computed from measurements
[BMG04, BBMT08, DMZ16], or by interrogating changes in the flexibility of a structure
[Ber02, Berl0, Berl4], or by statistical methods [DMBM13, MDBM15] through extracting
the localization information based on the FE model.

Since the amount of literature related to damage diagnosis is quite large, the identification
of damage in a structure can be performed by employing different properties of a system. In
the following, the damage identification methods are classified as

e Natural frequency based methods
e Mode shape based methods (mode shape or modal curvature)

e Modal strain energy
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Flexibility methods

Neural network

Genetic algorithm

Wavelet based methods

1.4.2.1 Natural frequency based methods

In many researches [ACPS78, Gud82, KS86, SLL88, HT91, Sal97], structural natural fre-
quency has been found to indicate structural damage.

In [CAT9], Cawley and Adams proposed a damage localization method based on FE model
updating focus on changes in natural frequencies in a 2D plane structure. Lee and Chung
[LCO0] also present a method of finding the structural damage size and location using natural
frequencies. In this method, the first four natural frequencies are used and the approximate
crack location is obtained using Armon’s Rank-ordering method. Based on the result of the
crack position range, an appropriate FE model is adopted and the crack size is determined
by the FE model. Kim et al. [KRCS03] have also presented a methodology to locate and
quantify the damage in structures using a few natural frequencies. The authors addressed
a damage-localisation algorithm to locate damage from changes in natural frequencies and
a damage-sizing algorithm to estimate crack-size from natural frequency perturbation are
formulated. In addition [Kul03], the author used the change of the natural frequency as a
basis to indentify the existance of the damage in a real bridge structure. In [CF04], the
authors addressed that most of the success in use of natural frequencies in damage detection
was obtained for single damage in small and simple laboratory structures. In [GNWT'17],
crack identification is performed based on the analysis of frequency changes in multi-span
beams to determine whether the structure is healthy or not. To accurately identify the
cracks characteristics for multi-span beam structure, a mathematical model is established,
which can predict frequency changes for any boundary conditions, the intermediate supports
being hinges.

Based on the natural frequencies, the damage identification is not much accurate due to
the low sensitivity of frequency shifts to the damage and for damage, it requires either very
precise measurements or large levels of damage. However, the natural frequencies identified
in a structure have less statistical variance due to the noise than other modal parameters
[FJI97, DFGI7]. The other problem that the damage is usually localized in a specific point
of structure that affects more on the higher modeshapes and resonant frequencies of the struc-
ture. However, the measurement of natural frequency cannot provide enough information for
structural damage detection. Usually, this method can only ascertain existence of the large
damage, but may not be able to give the damage location because the structural damage in
different location may cause the same frequency change.

1.4.2.2 Modeshapes based methods (modeshape and their curvature)

The mode shapes describe the configurations or the pattern in which a structure will naturally
displace when excited at the natural frequency. Typically, displacement patterns are of
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primary concern. A normal mode of a vibrating system is a pattern of motion in which
all parts of the system move sinusoidally with the same frequency and with a fixed phase
relation.

Many techniques have been developed over the years based on mode shapes or modal cur-
vature to detect damage. The modeshapes are compared between two states of the structure
to detect damage. In [AB82], Allemang and Brown proposed the Modal Assurance Criterion
(MAC), which detects mode shape changes over the structure by taking the orthogonality of
eigenvectors. Kim et al. [KJL92] presents the MAC in the development of the Coordinate
Modal Assurance Criterion (COMAC) method, which utilizes modal node displacement to
detect and locate damage. The application of MAC and COMAC in bridge structures can
be found [SW95] where these methods could detect most structural changes and locations,
but also identified false positives. This was also observed to beam like structures [SCRLO06],
the authors showed that COMAC was prone to indicating false damage detections.

Pandey et al. [PBS91] first proposed the mode shape monitoring theory to focus on
modal curvatures, which are mode shapes’ second derivative is known as the Modal Curvature
Method (MCM). It utilises the relationship between curvature and flexural stiffness. Since the
curvatures are locally sensitive to damage, the authors extend the idea for locating damage
by comparing the undamaged mode shapes with the damaged mode shapes. To detect the
damage other than the artificial errors from the model construction, a good quality FE model
is required that could accurately depict the structure but is often difficult to achieve. Non-
model-based damage detection methods, also named as damage index methods, are relatively
straightforward. The changes of modal parameters between the undamaged and damaged
states of the structure are directly used, or correlated with other relevant information, to
develop the damage indicators for localizing damage in the structure [WLO04].

The curvature method has some drawbacks. It requires many sensors to define higher
modes and its performance is dependent on the number of modes considered. Moreover, to
calculate curvatures inherently attains errors due to the application of the central difference
approximation method to displacement mode shapes using vibration data. In [YRKO17b], a
simple Fourier spectral-based method is proposed to calculate the modal curvature of beams
instead of the traditional central difference method and damages in beam-like structures are
localized. Zhou et all. [ZWD"17] is proposed a numerical method based on the transfer
matrix and mode curvature techniques to detect the damage locations and severities of a
drilling riser. Some authors are also addresed the development and application of the curva-
ture method which can be found in [JRWC17, XZ17, FAP17, YRKO17a], and interested for
the SHM systems.

Zhang and Aktan stated in [ZA98] that the change in the curvature of the uniform load
surface (ULS) can be used in order to locate damage. They comparatively studied the
modal flexibility and its derivative, called uniform load surface, for their truncation effect
and sensitivity to experimental errosrs. The authors observed that the method has less
truncation effect and less sensitive to experimental errors. In [WL04], Wu and Law describe
a damage localization method based on changes in ULS curvature where it requires only the
frequencies and mode shapes of the first few modes of the plate before and after damage.

Some researchers found that the modal flexibility can be a more sensitive parameter than
natural frequencies or mode shapes for structural damage detection. Therefore, the change of
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flexibility instead of the change of stiffness is proposed in [PB94] to locate damage of a beam
structure. In [WLO04], a theoretical sensitivity study is presented comparing the use of natural
frequencies, mode shapes, and model flexibility for structural damage detection. In [LRZ02],
the authors pointed out that Pandeys method is difficult to locate multiple damages, and
they recommended the modal flexibility curvature for multiple damage localization due to its
high sensitivity to closely distributed structural damages.

1.4.2.3 Modal strain energy

Modal strain energy has been widely used to quantify the participation of each element in
particular vibrating mode and in the selection of a candidate set of elements for damage
localization [LK94]. The change of modal strain energy in each structural element before
and after the occurrence of damage can also be used for damage localization. An overview
of methods is found in [FQ11, JMRC17]. For example, some are based on the change of
modal strain energy in connection with a FE model [SK96], requiring as many sensors as
degrees of freedom, which is impossible on real structures. In connection with sensitivities
from a FE model, changes in the identified frequencies [MWC98] or mode shapes [SLZ00]
between the healthy and damaged structure are correlated, which, however, is only feasible for
one damaged structural element. Moreover, these methods require a modal identification in
the damaged state, which prevents its automation for continuous monitoring, and statistical
estimation errors are not taken into account.

In [SLZ98], the ratio of change in the modal strain energy is proposed to detect the damage
location. This parameter is based on the estimation of the change of modal strain energy
in each element after the occurrence of damage. Information required in the identification
are the measured mode shapes and elemental stiffness matrix only without knowledge of the
complete stiffness and mass matrices of the structure. A priori, no other information about
the structure is required.

As in most other studies, the damaged strain energy mode shapes were compared to the
undamaged strain energy mode shapes [YKK99, HWLS06, Sey12]. Statistical methods were
employed to jointly analyze information from several mode shapes and to locate damage. In
[CDF99], a detailed theoretical explanation is provided on application of the strain energy
method to plate-like structures. In [SK05], the author addressed the practical issue of deter-
mining the optimal sampling interval that was set to minimize the effects of measurement
noise and truncation errors from the calculation of the curvature and strain energy mode
shapes, thus providing maximum sensitivity to damage and accuracy of damage localization.

In [VDHHDT™"16], a modal strain energy based method and an improved differential
evolution (IDE) algorithm are used for damage identification in laminated composite plates,
while in [LZL"17] a novel method proposes based on grouping modal strain energy to de-
tect structural damages of offshore platforms. In [TTCARI17| presents a vibration-based
technique, using only the first vibration mode, for predicting damage and its location and
severity in steel beams where the modal strain energy based damage index was capable of
detecting, locating and quantifying damage for single damage scenarios and for multiple dam-
age scenarios, Artificial Neural Network incorporating damage index as the input layer was
used.
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1.4.2.4 Flexibility methods

Another category of methods use the changes in the flexibility matrix instead of the change
of stiffness matrix for damage detection, location and quantification. The flexibility matrix
is based on a function of the mode shape and the reciprocal of natural frequency when the
structural vibration modes satisfy the normalisation condition. Thus, the effect of high-
frequency components in flexibility matrix will rapidly decrease with the increase of natural
frequency. Therefore, the flexibility matrix is achieved by only measuring several low-order
modes and frequencies in practice and they have higher contribution in the final constructed
dynamic flexibility matrix.

Over the last decades, several approaches were investigated for damage assessment based
on flexibility that can be found in literature. Pandey and Biswas [PB94] have shown that
changes in the flexibility matrix can indicate the presence and location of damage, where the
flexibility matrix is estimated from modal parameters of only a few lower frequency modes.
Aoki and Byon [ABO1] pay attention on localized flexibility properties that can be deduced
from the experimentally determined global flexibility matrix, and present the underlying the-
ory that can be viewed as a generalized flexibility formulation in three different generalized
coordinates, namely, localized or substructural displacement-basis, elemental deformation-
basis and element strain-basis. Yan and Golinval [YGO05] proposed a damage diagnosis tech-
nique based on changes in dynamically measured flexibility and stiffness of structures, where
mass-normalized mode shapes are needed. The flexibility matrices were obtained based on
estimated modal parameters by the covariance-driven stochastic subspace identification tech-
nique. Damage can be localized from the comparison of these matrices between a reference
and damaged state. The merits and the limitations of the technique were tested by the nu-
merical models of a cantilever beam and a three span bridge as well as experiments in the
laboratory with an aircraft mock-up. Perera et al.[PRMO07] compared experimental and ana-
lytical flexibility matrices based on the flexibility matrices obtained from modal parameters
in a model updating approach. The proposed algorithm is illustrated for simulated beams
and then by experimental data from the vibration tests of a beam. It has been verified that
the proposed procedure is very promising for locating and quantifying damaged elements and
considerably improves predictions based only on modal flexibility parameters.

Shih et al. [STCO09] proposed a multi-criteria approach for damage assessment of beam
and plate structures. It includes flexibility matrix, changes in eigenfrequencies and a modal
strain energy based damage index. In [NS13], Montazer and Seyedpoor presented a method
for damage identification based on the concepts of flexibility and strain energy of a structure.
One year later [MS14], the authors introduced a new damage index, called strain change based
on flexibility index (SCBFI) to locate damaged elements of truss systems. The principle
of SCBFT is based on considering strain changes in structural elements, between healthy
and damaged states. Numerical results indicate that the method can provide a reliable
tool to accurately identify the multiple-structural damage for truss structures. Reynders
and De Roeck [RDR10] presented a method for vibration-based damage localization and
quantification, based on quasi-static flexibility. This is a so-called local flexibility method
detecting local stiffness variations based on measured modal parameters. This approach for
damage assessment was validated in both simulated and laboratory tests.
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Assuming that damage occurs, Bernal [Berl0] presents a damage localization technique
using both finite element information and modal parameters, namely the Stochastic Dynamic
Damage Location Vector (SDDLV) approach. This is a theoretically sound method that
evaluates the transfer matrix difference between reference and damaged states of a structure,
without updating the FE model. This approach has evolved over the years from being
restricted to input/output deterministic systems to handle output-only stochastic systems
[Ber02, Ber06, Ber07, Ber10]. In [DMBM13], the deterministic SDDLV approach has been
extended with a statistical framework for deciding if an element is damaged, taking into
account the uncertainties in the measurement data. Further robustness has been achieved
through a statistical aggregation of results for different parameters of the method [MDBM15].
A complementary approach to the SDDLV is the Influence Lines Damage Localization (ILDL)
[Ber14], where the damage location is determined from the subspace angle of each position
in the structure by computing the column space of the change in flexibility and a known
FE model. Using measurement data of the structure in both reference and damaged states
together with a FE model leads to a reduced dependence on the model precision, which is
also promising for real applications. However, this approach requires a modal identification
in the damaged state.

This thesis is focused in the works of Bernal [Ber10, Ber14], described above, as the basis
for the damage localization development, and the statistical evaluation works as the basis of
the PhD thesis of Luciano Marin [Marl3].

1.4.2.5 Neural networks

Recent studies have introduced artificial neural networks (ANN) to identify damage in a
system. In general, the method is used in different application such as artificial intelligence,
machine learning, pattern recognition, mathematics, and also vibration-based damage detec-
tion analysis [MH99, WZ01, GZ08§].

Yun et al. [YYBO1] used the natural frequencies and mode shapes as input data for a
neural network to detect damage in the joints of framed structures. Using a noise-injection
learning algorithm, the neural network was trained to reduce the effects of experimental
noise. The authors addressed that the algorithm could estimate damage with reasonable
accuracy, while the performance strongly depended on the level of experimental noise. A
disadvantage of using mode shape displacements is that the mode shape identification requires
many measurement locations. In [WBO01], a neural network is used to locate and classify faults
and a number of different methods are applied to determine an optimal sensor distribution.
In [SS03], the authors developed an ANN combining global (changes in natural frequencies)
and local (curvature mode shapes) vibration data as inputs for an ANN for location and
severity prediction of damage in a beam-like structures. There, artificial random noise has
been generated numerically and added to noise-free data during the training of a trained feed-
forward backpropagation ANN. In [MKMBO08|, a neural network-based system identification
approach is presented for the estimation of the damage percentage of joints for truss bridge
structures. The technique that was employed to overcome the issues associated with many
unknown parameters in a large structural system is the substructural identification. Another
localization approach was developed by Gonzalez and Zapico [GZ08] where the inputs of the
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ANN are the first flexural modes (frequencies and mode shapes) at each principal direction
of the structure and the outputs are the spatial variables (mass and stiffness). In [SMV10],
the authors present a subspace-based damage localization using artificial neural network and
the effectiveness of this algorithm is studied experimentally by localizing single edge cracks in
a thin aluminum plate. In [Lill], the structural damage localization on a simple composite
plate specimen is identified using probabilistic neural networks.

Hakim et Razak. [HR14] presents and reviews the technical literature for past two decades
on structural damage detection using artificial neural network’s with modal parameters such
as natural frequencies and mode shapes as inputs. Further in [HRR15], ANNs based dam-
age identification techniques were developed and tested for damage localization in I-beam
structures using dynamic parameters. There, experimental modal analysis and numerical
simulations were applied to generate dynamic parameters of the first five flexural modes of
structures. Recently, in [AAKT17], presents a structural damage detection system using 1D
Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both fea-
ture extraction and classification blocks into a single and compact learning body. The method
performs vibration-based damage detection and localization of the damage in real-time.

1.4.2.6 Genetic algorithms

In the last two decades [Gol89, Hol92, OKCO02, GS08], genetic algorithms (GAs) have been
developed as promising intelligent search technique for diverse applications in civil engineer-
ing and structural identification [CPH03, KCLO03]. Friswell and Penny [FP97] stated that GA
have been seen as a promising choice for the solution of hard problems in damage identifica-
tion. The great advantage in using GA is the ability in finding global minimum on a difficult
optimization problem where there are many local minima as happens in damage location.

Sazonov et al. [SKGHO3] used the GA to produce a sufficiently optimized amplitude
characteristic filter to extract damage information from the strain energy mode shapes. There,
a FE model was used to generate training data set with the known location. In [OKC02],
they used genetic algorithm in order to find the change in the lumped masses in a plate
structure based on its fundamental frequencies. Perera et al. [PT06] used structural damage
detection via modal data with genetic algorithms. The authors proposed a nonclassical
optimization approach involving the use of genetic algorithms to localize damaged areas of
the structure. In addition, in [PRMO07], the authors developed a model updating method
based on GA to locate damage and estimate its severity. Gomes and Silva [GS08] developed
a method using GA and a modal sensitivity to identify and evaluate damage cases in a
parametric numerical finite element model, where GA is used as an optimization tool. It
was summarized that the quantification of the damage could not be obtained accurately.
In [PCMO09], the authors present a vibration-based damage detection in a uniform strength
beam using genetic algorithm.

In [SBBRPF11], a methodology based on genetic algorithms for the crack detection on
damaged structural elements was presented where the crack model takes into account the
existence of contact between the interfaces of the crack. In [MKGA13], application of ge-
netic algorithm is presented in crack detection of beam-like structures using a new cracked
Euler-Bernoulli beam element. In [SIBA15], the authors used the genetic algorithm (GA) for
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detecting and locating damage in beam structures. In their study, identification of damage
is formulated as an optimization problem using three objective functions (change of natu-
ral frequencies, Modal Assurance Criterion and natural frequency). Kim et al. [KKL14]
proposed a simple and efficient two-stage optimization procedure to identify the sites and
the extent of several damages, and it was tested for numerical case study in truss struc-
tures. In [FAMGA16], an algorithm was proposed to detect the damage location using multi-
objective genetic algorithm (MOGA) along with modified multi-objective genetic algorithm
(MMOGA), and tested for steel beam structure. In this approach natural frequencies are
considered as the main dynamic parameters to detect the damage.

1.4.2.7 Wavelets based analysis

Recently, the wavelet transform can be used for damage detection and location by analyz-
ing the signals. The literature review of the research that has been conducted on damage
detection by wavelet analysis is given in [KM04, YCWY07, Katl5]. The spectrum graph
obtained using wavelet analysis can indicate the damage existence directly. In [RV05], the
authors proposed a wavelet based approach for structural damage detection in beams, plate
and delamination detection of composite plates. The main idea used is the breaking down of
the dynamic signal of a structural response into a series of local basis function called wavelets
to detect the special characteristics of the structure using scaling and transformation prop-
erty of wavelets. In [LW98], the damage is detected on a cracked beam by changes wavelet
coeflicient.

For damage detection and localization in structures, the applicability of various wavelets
has been studied [QWZAO01, DLT03, GM03, OS04]. In [HKLL02, DLT03], the authors ad-
dressed that the effectiveness of wavelets for damage localization is limited by the measure-
ments precision and the sampling distances. They used the dynamic mode shapes extracted
from the acceleration measurements. In [Zab05], the energy components of the wavelet de-
compositions of impulse response functions and the transmissibility functions is used for
damage localization on 724 Bridge. In [RWO06], the estimated mode shapes of the beam
structure are analysed by one and two dimensional continuous wavelet transform, where the
location of the damage is indicated by a peak in the spatial variation of the transformed
response.

In [LDDO7], the combination method of empirical mode decomposition (EMD) and
wavelet analysis is presented for the detection of changes in the structural response data
in which the results demonstrated that the combination method of EMD and continuous
wavelet transform can be used to identify the time more sharply and effectively at which
structural damage occurs than by using the wavelet transform method alone. Fan and Qiao
[FQO9], a 2-D continuous wavelet transform-based damage detection algorithm using Der-
gauss2d wavelet is presented where an isosurface of 2-D wavelet coefficients is generated
to find the location and approximate shape (or area) of the damage, demonstrated by an-
alyzing the numerical and experimental mode shapes of a cantilevered plate. Wei et all
[CSQLSHYL17] developed a flexibility-based approach, utilizing the damage locating vectors
(DLVs) method, for monitoring the seismic isolation system on a structure. This approach
was established through a state-space ARX model to describe the measured responses and
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the modal parameters were estimated by applying continuous Cauchy wavelet transform to
the time series ARX model. Then they were used to identify the DLVs via the singular value
decomposition of the flexibility change of structures before and after damage.

In [SCB17], the damage detection and localization algorithm is presented where the dam-
age detection algorithm used wavelet coefficients to detect anomalies in mode shapes of the
beam. In order to obtain a good estimate of the wavelet coefficients and minimize the effects
of experimental uncertainties, the measurements were repeated several times for each state
of damage. Chen et all [YO17] presents a new damage indicator and a damage estimator
based on multiple mode biorthogonal wavelet coefficients are designed to locate and evaluate
the internal defects. In [Rak17], the author presents the application of the discrete dyadic
wavelet transform (DDWT) that has a fast transform algorithm to detect and localize the
response signal features due to cracks in mechanical and civil structures.

Beside this, numerous authors combined the wavelet-based algorithms with artificial neu-
ral networks (ANN) for improvement the detection and localization ability. Yam et al.
[YYJO03] combined wavelet-based algorithm with ANN to improve the damage identification
in sandwich structures, Rucka and Wilde [RWO06] proposed a combination of wavelet trans-
form with ANN for the improvement of damage identification ability for structural damage,
while Hein and Feklistova [HF11] used such a combination for estimation of damage indices,
which describe the delamination occurrence in composite structures.

1.4.3 Damage quantification methods

Compared to detection and localization, methods for damage quantification are the least
developed in the literature [FQ11]. Quantification may be carried out together with damage
localization in the context of updating FE model parameters [BXHXO01, Fri07], but inherits
the problem of possible ill-posedness in this case. However, if damage is located first (using
any damage localization method) and a precise FE model is available, model updating may be
a feasible solution to damage quantification. Further methods include e.g. pattern recognition
techniques based on classification principles [AA16]. Alternatively, solving the localization
problem first to identify the subset of changed parameters, and estimating their change in a
separate second step for damage quantification, yields in general better conditioned methods,
for example as is in [Ber14].

In [DMZ16], both damage localization and quantification have been investigated in a
sensitivity-based approach based on the local approach using output-only data. A damage-
sensitive parameterization of the system is used, referring e.g. to the element stiffnesses in
a finite element model. Through sensitivity analysis with respect to this parameterization,
damage is first localized by statistical tests, and then damage is quantified only for the
localized element. If a parameter is assumed to be changed, i.e. damage is located in the
respective element, then damage can finally be quantified based on an estimation of the
parameter change. A similar sensitivity-based statistical framework has been shown recently
for damage localization using a subspace residual in PhD thesis [All17], where it has been
applied in a real test case of a four-story steel frame structure, the Yellow Frame at the
University of British Columbia.
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1.5 Conclusion

In this chapter, different methods for damage detection, localization and quantification were
presented from the literature. In the following chapters, the deterministic damage localization
approaches and the statistical damage localization methods with their application to struc-
tural vibration analysis are investigated. In chapters 2-4, the background of these methods
from existing literature is explained in detail, before developing the new methods in Chapters
5-7 and their applications to vibration analysis are demonstrated in chapters 8-13.
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Chapter 2

Background of deterministic
damage localization approaches

2.1 Introduction

Vibration based damage localization has become an important issue for Structural Health
Monitoring (SHM) such as aerospace, automotive, bridges, buildings, and offshore structures.
Sensors installed on the structure collect data and then the modal parameters (damping ra-
tios, natural frequencies and mode shapes) can be estimated. Those parameters are mean-
ingful for the monitoring of the structure and damage localization is possible, when linking
these changes in a Finite Element (FE) model of the structure.

Several damage localization methods have been described in the state of art from the
literature [Ber02, Ber10, Berl4]. Belonging to the latter category, both the Stochastic Dy-
namic Damage Locating Vector (SDDLV) [Ber10] and the Influence Line Damage Localization
(ILDL) [Berl14] approach is a vibration-based damage localization technique using both finite
element information and estimated modal parameters from output data. From estimates of
the system matrices in both reference and damaged states, the null space of the difference
between the respective transfer matrices is obtained. Then, in the SDDLV, damage is related
to a residual derived from this null space and located where the residual is close to zero. This
is a theoretically sound method that evaluates the transfer matrix difference between refer-
ence and damaged states of a structure, without updating the FE model. A complementary
approach to the SDDLV is the Influence Lines Damage Localization (ILDL) [Ber14]. There,
damage location is determined from the subspace angle of each position in the structure by
computing the column space of the change in flexibility and a known FE model.

In this chapter, the theoretical background of the SDDLV and ILDL approaches is de-
scribed in details in Sections 2.2 and 2.3 based on [Ber10] and [Ber14].
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2.2 The Stochastic Dynamic Damage Location Vector (SD-
DLV) approach

The Stochastic Dynamic Damage Locating Vector (SDDLV) approach is an output-only dam-
age localization method based on interrogating changes 0G(s) in the transfer matrix G(s) of
a system in both undamaged and damaged states [Ber10]. These changes dG are linked to
physical properties of the structure. The structural failure is indicated by losses of stiffness
and the consequent damage is confined to some part or a region of the structure, affecting
the flexibility of the system, which is linked to dG. A vector is obtained in the null space
of 6G(s) from system identification results using output-only measurements corresponding
to both states. Then this load vector is applied to the Finite Element (FE) model of the
structure for the computation of a stress field over the structure. The stresses are measures
of internal reactions to external forces applied on a deformable body. Damage localization
is related to this stress field where the computed stress is zero or close to zero in practice
[Ber02, Ber06, Ber07, Ber10]. The property of the vectors in the null space that is relevant
for damage localization is the fact that these vectors, when treated as loads on the system,
lead to stress fields that it creates in the undamaged system is null over the damaged region.
Therefore, the basic idea is that the intersection of the null stress regions corresponding to
the load distributions defined by the null space of §G can be used to localize the damage.

In the following section, the deterministic computation of the stress field and the aggre-
gation of results is summarized.

2.2.1 Dynamic modeling of structure

The behavior of a mechanical structure can be described by a linear time-invariant (LTT)
dynamic system

MX(t) +CX(t) + KX(t) = f(t) (2.1)

where M, C, K € R%? are the mass, damping and stiffness matrices, respectively, ¢ indicates
continuous time and X € R? denotes the displacements at the d degrees of freedom (DOF)
of the structure. The external force f(t) is not measurable and modeled as white noise. Let
the dynamic system (2.1) be observed at r coordinates. Since f(t) is unmeasured (1.1), it
can be substituted with a fictive force e(t) € R" acting only in the measured coordinates and
that regenerates the measured output. Furthermore, defining x = [X X ], this leads to the
corresponding continuous-time state-space model

{ (t) = Acx(t) + Bee(t) (2.2)
y(t) = Coa(t) + Deelt)

with state vector x € R", output vector y € R", the state transition matrix A, € R™*"
and output matrix C, € R"*", where n = 2d is the system order and r is the number of
outputs. Since the input of the system is replaced by the fictive force e € R", the input
influence matrix and direct transmission matrix are of size B, € R"™ " and D. € R"™*"
respectively. However, only the system matrices A, and C, are relevant from output-only
system identification, and the non-identified matrices B, and D, will only be needed in the



2.2 The Stochastic Dynamic Damage Location Vector (SDDLV) approach 37

derivation of estimates related to the transfer matrix. From Stochastic Subspace Identification
(SSI) [VODM96, PDR99, DM12], estimates A, and C. can be obtained from output only
measurements, details are given in Chapter 3.

Since y(t) is the output vector of the model in (2.2), it can be measured from displacements
y(t), velocities y(t) or accelerations §j(t) sensors. Hence, it can be simplified for the respective
displacements (disp), velocity (vel) or acceleration (acc) as

y(t) = Cg”p:c, (2.3)
§(t) = Cla, (2.4
j(t) = C¥“x + D e, (2.5)

where the CZP , Ov¢ and C9° € R™ " are the ouput mapping matrices. By differentiating
(2.3) and combining with (2.2) corresponds to

y(t) = CI*Pi(t) = CIP(Ac(t) + Bee(t)), (2.6)
and then, the following expression is obtained by comparing with (2.4)
Ct = P A, (2.7)
Similarly, by taking differentiation of (2.4), and replacing #(t) as
() = Ceir(t) = CP Ac( Ao (t) + Bee(t)), (2.8)

and then follows with (2.5)
Coc = CIPA2. (2.9)

Now, taking a Laplace transform of (2.2) and (2.3) and combining the results, the force-
displacement transfer matrix of the system (2.2) can be obtained as

G(s) = C¥sP(sI — A)"'B. € C™*", (2.10)

Likewise, the transfer matrix of the system (2.2) can be obtained for velocity measurements
after taking a Lapalce transform of (2.2) and (2.4), and combining the resutls as

G(s) = CHP AT (s] — A.) "' B. € T, (2.11)

and finally, for acceleration measurements, the transfer matrix of the system (2.2) can be
obtained by taking a Laplace tranform of (2.2) and (2.5) ,

G(S) — CgisPAC_2(SI o AC)—lBC c CrxT (2.12)
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2.2.2 Computation of damage indicator

The damage indicator is based on the transfer matrix difference 0G(s) between reference
and damaged states. However, depending on the output measurements y, the transfer ma-
trix of the system (2.2) derived in (2.10)-(2.12) for the respective ouptut measurements of
displacement, velocity or acceleration writes as

G(s) = CeA*(sI = Ao)"'B. € C, (2.13)

where C, is defined for C4*P Cvé or C%¢ and z = 0,1, or 2 respectively. Matrix B, can
be replaced by using the relationships [Ber06, Ber10]. Differentiating (2.3) and (2.4), the
following derivation can be found as

y(t) = C*Pi(t),
i(t) = Celi(t),
and then, combining the result with 4(¢) in (2.2) and (2.5) corresponds as
Cra(t) = CI*P(Acx(t) + Bee(t)), (2.14)

and
CY(Acx(t) + Bee(t)) = C%x + Dee. (2.15)

Now comparing the term B, from expression (2.14) separately, and then combination with
(2.7) and (2.9) follows

cdsrp, =0, (2.16a)
CATIB, =0, (2.16b)
C*A2B,. = 0. 2.16¢)

(
Similarly, comparing the term B. from expression (2.15) and then following (2.7) and (2.9),
we can write as

CYB. = D,, (2.17a)
c%PA B. = D, (2.17b)
C*A;'B. = D,. (2.17¢)

Following expression (2.16) and (2.17), we can conclude as
C.AZ*B. =0, (2.18)
C.A"*B.= D, (2.19)

recall that C. is defined for cdisp , O or C%¢ and z = 0,1, or 2 for the respective ouptut
measurements of displacement, velocity or acceleration, and formulating the least-squares
problem with (2.18) and (2.19)

CL AL
C.A"
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which has a solution for B, under the condition that the system order satisfies n < 2r, i.e.
the number m of identified modes satisfies m < r. Then it follows,

c.a-2]

CeA”

1
0

B, =

(&3]

where T denotes the Moore-Penrose pseudoinverse. With the property of (A=%) = A% and
based on the relation of AS?(sI — A.)"1AZ = (sI — A.)~! , the expression of (2.13) can be
simplified as [Ber06, Ber10)]

where t
C.A.

Ce

In (2.20), s is the Laplace variable in the complex plane, I is the identity matrix of size r x r,
0 is the zero matrix of size r x r, and T denotes the Moore-Penrose pseudoinverse.

The computation of R(s) in equation (2.20) holds at the same time for displacement,
velocity and acceleration measurements [MDBM15]. The difference between the transfer ma-
trices in both damaged (variables with tilde) and healthy states is 6G(s) = G(s) — G(s).
Damage is considered as changes in the stiffness of system (2.1), while mass remains un-
changed. Then, assuming 6D, = D. — D, = 0 (corresponding to no mass change) and D,
being invertible, the matrices §G(s) and 6R(s)” = R(s)T — R(s)T have the same null space
[Ber10]. The desired load vector v(s) is obtained from the null space of the JR(s)? from
Singular Value Decomposition (SVD)

— O (s] — A1
R(s) = Ce(sI — A,) 0

I] . (2.20)

1 0

6R(s)" = UV = [0, Uy -
2

o (2:21)

where U, %,V € C™", ¥y ~ 0 and  indicates the conjugate transpose. Let niy, be the
dimension of the image U; and (r — njy,) be the dimension of the null space Vs, where njy
depends on the kind and number of damaged elements [Ber02]. For damage localization, the
property of the vectors in V5 is meaningful and it is applied as a loads on the system that
yields zero stress fileds over the damaged elements. For example, in a mass-chain system,
assume number of damage element is 1 at d DoF's system including r sensors coordinates. In
this case, the dimension of the image U; is 1 and hence (r — 1) are the column of the null
space vectors Va. The load vector v(s) in the null space of §R(s)T can be chosen as any linear
combination of the vectors in Vs, particularly as the vector corresponding to the smallest
singular value. Note that only output data is necessary for the computation of an estimate
of v(s).

To compute stress field, load vector v(s) is applied to the FE model of the structure
(see details in subsection 2.2.3). Let [ be the number of all stresses that are computed at
the elements of the structure. The displacements at all Degrees Of Freedoms (DOFs) are
computed from the load vector v(s) at the sensor coordinates and then, stresses are computed
at all the elements of the FE model from the displacements. This stress is obtained through
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a linear relation to v(s) by the matrix Lyogqer(s) € C**" from FE model of the structure
[Ber10, DMBM13] and for a chosen s satisfies

S(8) = Lmodel(s)v(s). (2.22)

Theoretically, the stress vectors S(s) indicate damage [Ber02, Ber10] where entries in S(s)
close to zero indicate potentially damaged elements. However, these stresses are not exactly
zero but small in practice because of modal truncation, model errors and uncertainties from
measurements. While the load vector v(s) is only defined at the sensor coordinates, the
damage can be located at any element of the structure because the stress vector computed
from load vector v(s) covers the full domain.

2.2.3 Linear relation between load and stress

After Laplace transformation of the mechanical model in (2.1) the model-based transfer
matrix can be written as

Gmodel(s) = (Ms* + Cs + K)™1, (2.23)

which relates loads to the displacements of the d Degrees of Freedom (DoF's) of the structure.
Define P € R¥*" is the sensor mapping matrix that containing zeros and ones from where
the row and the column of an entry 1 relate to a sensor position and its corresponding to the
degree of freedom (DOF) of the model. Let, Z(s) is the displacement vector which has been
obtained after applying load vector v(s) to the model at the sensor coordinate P with (2.23)
as

Z(s) = Gmodel(s) x P x v(s). (2.24)

After applying displacements Z(s) at all DoF's, generates the internal stresses S(s) to all
elements of the model such as

S1
Sis)=1 1+ |, (2.25)

where m be the number of element and number of stresses/element depends on kind of the
structure. These stresses gives a linear relation with displacements such as S(s) = QZ(s),
where @) is a matrix that is not explicitly computed. Then matrix L,,oq4¢; is defined as

Linodei(s) = Q x Gmodel(s) x P (2.26)

and satisfies with (2.22) and (2.24) and links to the computed loads to the desired stress field
by S(s) = Limodeiv(s). Now, describing the computation of Li,e4e in practice. Define a unit
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load vector as

Vi = 1 ERTXI,

0

where i-th element is 1. Then compute the nodal displacements as described in (2.24) for
each of the unit load vector v;, i = 1, ..., and then, the resulting stresses s(s); are computed
for each of the elements of the FE model from the displacements. This stress satisfies a
linear relation to wv;(s) by the matrix Lyoge(s) € C**" from FE model of the structure
[Ber10, DMBM13| with

S5(8)i = Linodel(s)vi- (2.27)

Due to this relationship, by applying a unit load vector to the model, the computed stress
at the end must be i-th column of the desired matrix Ly,oger, and then Ly,oqe(s) will be the
column of the stress resultants S(s);. Finally, the complete L,,,q4¢; of the structure can be
obtained from [S(s)1, ..., S(s),] of unit load vector v;, i = 1,...,7.

2.2.4 Multiple stress vector and aggregation for robustness

Due to truncation and model errors, it is recommended to compute the load vector v(s) and
the resulting stress S(s) for several s-values s,,, w = 1,...,k, and to aggregate results. To
minimize error, the s-values should be chosen in the vicinity of the identified poles of the
system but not too close to them [Ber10]. After identification of the system matrices in both
states, the computations of (2.21)-(2.22) are repeated for each s,, to get the respective stress
vectors S(s,). For multiple s-values, a deterministic stress aggregation is obtained for each
element ¢ as

Se =" [Si(sw)l (2.28)
w=1

2.2.5 Example

As a basic sample, the SDDLV approach has been applied on a simple structure of three
elements as shown in Figure 2.1. The stiffness parameters are ky = ko = k3 = 1, and the
mass of all elements is 1 in suitable units.



42 Chapter 2

Node 1 Node 2 Node 3 Node 4
i)

= o
Element 1 Element 2 Element 3
Figure 2.1 — Finite element model with 3 DOFs

The stiffness matrix of the healthy structure can be obtained as follows,

(2.29)

where E,S,L is 1 in suitable units. Considering the damage model of Mazars [MPC89,
MBRO0], the stiffness matrix of the damaged structure can be obtained as K4 = (1 — D) K},
where D is the damage parameter of the Mazars model D € [0,1] in which 0 indicates the
safe structure and 1 indicates fully damaged structure. In this sample, damage is simulated
at element 2 with factor D = 0.5 and then the stiffness matrix K; of the damaged structure
can be obtained as follows,

1 -1 0 0
_ES|-1 15 -05 0
Lo -05 15 -1

o 0 -1 1

K (2.30)

Since the structure is clamped at node 1, the reduced stiffness matrices of the healthy and
the damaged states are formulated from (2.29) and (2.30) as follows

2 -1
ES 0
K = - -1 2 -1 (2.31)
0 -1 1
and
1.5 —0.
ES 5} 05 O
Kq= < |-05 L5 -1 (2.32)
0 -1 1

In the following, the theoretical stress is computed from the exact modes of the FE model
that are related to modal truncation, and the main purpose is to illustrate the difficulties in
the stress computation for damage localization.
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Considering all modes: All three modes of the structure can be identified from the
model of the structure. Using these modes, the transfer matrix difference (2.21) is computed
for s = 0 from the flexibility matrices in both healthy and damaged states of the structure,

-1 -1
SR=K;'—K;' =

oS O O
— = O
— = O

The desired load vector v(s) is obtained in the null space of 0 R from Singular Value Decom-
position (SVD)

0 0.2820 —0.9594| |12 0 O 0 0.0573  0.9984
SR=USVT = | _07071 —0.6784 —0.1994| |0 0 0| |—0.7071 —0.7059 0.0405
—0.7071 0.6784  0.1994 0 0 0f L-0.7071 0.7059 —0.0405

(2.33)
Note that U, 3,V € C"™*", £y ~ 0 and 7 indicates the conjugate transpose. Since the number
of damaged element is 1, the dimension of the image U; € 3 x 1 and the dimension of the null
space V3 € 3 x 2. The load vector v(s) in the null space of DF(s) can be chosen as any linear
combination of the vectors in V5(s), particularly as the vector corresponding to the smallest
singular values.
Following Section 2.2.3, the Ly,oqe(s) is obtained after applying unit load vectors to the
FE model at all sensor coordinates,

Lnodet = (234)

o O =
S~
= =

In order to get the stress field, the computed null space vectors vy(s) can be considered
as the desired load vector v(s) and then, it is applied to the L;,,q4¢;. Note that stress close to
zero indicates the damaged element. To apply the first column vector of the null space V5 to
the Ly,oder, vields

1 1 1] [0.0573 0.0573
S(s)=10 1 1| [-0.7059| = | 0 |- (2.35)
0 0 1] [ 0.7059 0.7059

and similarly, using the last column vector of the null space V3, yields

1 1 1] [ 0.9984 0.9984
S(s)=10 1 1| | 0.0405 | = 0o |- (2.36)
0 0 1] [-0.0405 —0.0405

From results, it is seen that the damage is correctly located at element 2 for any linear
combination of the null space vectors in V5.
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For modal truncation, when number of modes < number of sensors: For modal
truncation, considering two identified modes out of three from the model. Using two identified
modes, first, the transfer matrix (2.20) is computed at s = 0 in both healthy and damaged
states where the system matrices A. and C, are obtained based on modal basis. Then, the
transfer matrix difference (2.21) is obtained as follows

0.0432 —0.0117 —0.0246
SR(s)= |—0.0117 0.9343  1.0861
—0.0246 1.0861  0.9226

Similar to previous section, the desired load vector v(s) is obtained in the null space of R
from Singular Value Decomposition (SVD)

0.013 0.045 0.998 2.014 0 0 0.013 —0.045 0.998
SR=UXVH = —0.708 —-0.704 0.041 0 0.158 0 —0.708 0.704 0.041
—0.705 0.708 —0.023 0 0 0.043] |—0.705 —0.708 —0.023

(2.37)

For the computation of stress, initially, the first column vector of the null space vectors V5 is
applied to the model,

1 1 1| [-0.0457 0.0503
S(s)=10 1 1| | 0.7041 | = [0.0046 | - (2.38)
0 0 1] |—0.7087 0.7087

and then the last column vector of the null space vector V5 is applied to the model which
yields,

1 1 1] [ 0.9989 1.0171
S(s)=10 1 1| | 0.0415 | = [0.0182] - (2.39)
0 0 1] [—0.0232 0.0232

For modal truncation m < r, it is seen that the smallest stress value corresponds to the
damaged element 2.

For modal truncation, when number of modes = number of sensors: In this
case, two sensors are located at elements 1 and 2, and therefore, only two identified modes
out of three from the model could be used as the number modes cannot be bigger than the
number of sensors, m < r. Based on this criterion, the transfer matrix (2.20) is computed
at s = 0 in both states where the system matrices A, and C. are obtained based on modal
basis. Then, the transfer matrix difference (2.21) is obtained as follows

R [1:0392 —0.7954
1.3157  0.8609 |



2.3 The Influence Line Damage Localization (ILDL) approach 45

Then, the Ly,,qe; computes from Section 2.2.3 after applying unit load vectors to the FE
model at sensor coordinates 1 and 2,

11
Lmodel =10 1 (2‘40)
0 0

Similarly, in order to compute the stress field for damage localization, the load vector in
the null space of 0R is applied to the L,,ode1, vields

0.8620

—0.5069

0.3552
]— 0.5069 | - (2.41)

1 1
S(s)=10 1 [
0 0

For modal truncation when the number modes are equal to the output sensors, it is seen that
the damage position cannot be correctly indicated anymore, which is due to modal truncation
error.

2.3 The Influence Line Damage Localization (ILDL) approach

The Influence Line Damage Localization (ILDL) is an output-only damage localization
method based on a Finite Element (FE) model of the structure and modal parameters from
output-only measurements in the damaged and healthy states. In [Berl4], it is shown that
the image of the change in flexibility F = 0G(0) between damaged and reference states of
a structure is a basis for the influence lines of stress resultants at the damaged locations.
Damage is thus located at elements where the subspace angle between the image and the
influence line computed from the FE model is zero (or small when §F' is approximated). This
localization approach is complementary to the SDDLV and shows its advantages especially
with noisy output-only data from real experiments due to the use of different features for the
localization.

An Influence Line (IL) is a plot of a quantity ¢ as a function of the position of a unit
load acting (at each position) in a predefined direction. For the ILDL this quantity ¢ is the
internal stress resultant S; of an element j, e.g. the axial force in a truss bar, or the moment
at some point in a beam. A classical result in structural analysis theory is the fact that the
influence line for quantity ¢ is equal to the deformed shape that the structure takes when the
ability of the structure to resist quantity ¢ is removed and a unit discontinuity that is work
compatible with ¢ is introduced [MDBM13].

It is shown in [Ber14] that if a structure is loaded by some arbitrary static distribution
and damage appears, while the load remains constant, then the change in the deformation
field, given some assumptions on the nature of the damage, will be identical to that due to
the action of a stress resultant acting on a discontinuity at the damage location. From this
result it is concluded that the change in the deformation field due to the damage has the
shape of the IL for the stress resultant at the location of the damage, and the deformation
field is in the span of the IL’s for multiple damage locations. For example, in a beam, the
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influence line is always the internal stress resultants (i.e. axial force and moments) S; of an
element ¢ due to apply unit load at the sensors coordinates.

The image of the change in flexibility matrix 0 F' = G (0) between damaged and reference
states (variables with and without tilde) is the span for all possible differences in the deforma-
tion field due to damage on the strucure, and thus the image of 0 F' is identical to the span of
the influence lines associated with all the damaged locations. Hence, for the implementation
of ILDL, the flexibility matrix 6 F' and the influence lines are required to evaluate for any
load in the sensor coordinates on the structure.

Therefore, for damage localization, the influence lines of stress resultants are computed
at the sensor coordinates for all elements from a FE model of a reference state and then, the
image of § F' is obtained from output-only measurement data in both states. The localization
is performed by checking each element of the FE model if its respective IL lies in the image
of 0F. The ILDL does not directly specify the location of the damage. Instead, it provides
a scheme for decision, given any postulated damage position, if it is correct or not. This
localization approach is complementary to the SDDLV approach, since the image and the
null space are complementary subspaces. The damage location information in the null space
is also contained in the image of § F.

In the following Section, the model parameters and the principles of ILDL are presented
in details.

2.3.1 Modelling of the structure, parameters and flexibility matrix

As similar to subsection 2.2.1, the characteristics of a mechanical structure is assumed to
be described by a linear time-invariant (LTI) dynamical system (2.1) and the corresponding
continuous-time state-space model are given in details (2.2).

Following (2.20), the transfer matrix G(s) of the system is obtained at s = 0 with [Ber14]
where the flexibility matrix F' is equal to the transfer matrix at s = 0,

t
C.A.

F =G(0) = R(0)D., where R=C,(s[—A,)"" -

I
. ] (2.42)

for the restriction of the system order n < 2r, I is the identity matrix of size r, 0 is the zero
matrix, and T denotes the Moore-Penrose pseudoinverse.

The difference in the flexibility between damaged (variables with tilde) and reference state
(variables without tilde) is §F = F—F. Since the direct transmission matrix is only a function
of the mass and invariant for damage due to stiffness changes, the 6D, = ﬁc — D, =0 due to
no mass change and D,. being invertible [Ber10], it follows that §F = §RD (with R = R—R).
Hence, the image of § F is the same as the image of §R. The J R is computed from the output
only data in the damage and reference states. After Singular Value Decomposition (SVD) of
OR, it follows

1 0

SR =UsVT = [U1 UQ} -
2

[V1 VQ] ’ , (2.43)

where U, X, V € C™" and Y9 = 0 or closely zero in practice. Let ¢ be the rank of the R € R"*"
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and Uy = [uq,...us] € C™*! be the image of R in the SVD. Note that U; correspond to the
nonzero singular values 31, and Us corresponds to zero singular values Xs.

2.3.2 Computation of influence lines and damage localization

Let v € R" be any load vector at the sensor coordinates of the structure. From such a load,
stress resultants can be computed from a FE model. Note that [ be the number of all stresses
that are computed at the elements of the structure. The relation between loads v and the
vector of stress resultants S at the desired elements is linear (2.2.3) and can be expressed
by a matrix Loder € R hased on the FE model of the structure [DMBM13], satisfying
i
Iy
S = Lyodev, where Li,oqe =
i
In the ILDL approach, the influence line (IL) of each stress resultant S; (in vector S) is
evaluated. IL of this stress resultant is function of the position of a unit load. Such way,
applying the respective unit loads at the sensor coordinates to obtain the influence for an
element j that corresponds to an entry S; such as S; = lev. So, applying v as the unit loads
corresponding to the different sensor positions yields the entries of [;, hence it is clear that
l; is actually the influence line.
For damage localization, the ILDL approach consists of checking if the IL [; is contained
in the subspace Uy. Note that I; and Uy are computed based on FE model of the reference
state and output-only measurements data, respectively. In [Berl4], the subspace angle (at

s = 0) is computed as
T
¢j = cos™! (HUl lj”) . (2.44)
1511

Therefore, damage is located at the elements where the subspace angle ¢; between image U;
of the flexibility matrix d R and the influence line /; of the FE model of the reference structure
is zero or small in practice.

A slightly different damage indicator was proposed in [MDBM13, Mar13] for the purpose
of uncertainty quantification since the subspace angle (2.44) is not derivable at ¢; = 0. There,
the indicator

el
v = ) (2.45)
RICIE
was used, where Uy = [u1 ... u] € C™*! ¢t < r is an orthogonal matrix and 7; = 1 indicates

the perfect fit for the damage localization.
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Chapter 3

Stochastic system identification and
uncertainty quantification

3.1 Introduction

The Stochastic subspace identification has become very popular for the identification of
linear time-invariant (LTI) systems from output only measurements taken from a system.
In the past literature [BF85, VODM96, PDR99, BM07], an overview of subspace identi-
fication methods has been described. The subspace methods established a special inter-
est in the field of aeronautical, civil and mechanical engineering during the last decade for
modal analysis, particularly the identification of the modal parameters (frequency, damap-
ing, and mode shapes) of structures. Therefore, in the context of vibration monitoring
[HVdA99, MBG03, MGB03, MBB*06, BMCC10, DHMR14, MDBM15, DMZ16], the identi-
fication of an LTI system from output-only measurements is a basic requirement that allows
particularly Finite Element Model updating and Structural Health Monitoring.

In Operational Modal Analysis, the identified modes does not contain only true modes of
the structure but also spurious modes appear because of non-white noise and non-stationary
excitation, low signal-to-noise ratio, or a bad selection of the model order. Using the sta-
bilization diagram, the true system modes remain quite constant at different model orders
while spurious modes change. However, when estimating the modal parameters for different
system orders, the structural modes are assumed to stabilize when the model order increases
and thus can be distinguished from these spurious noise modes in the well-known stabilization
diagram procedure [PDRO1, Bak11].

When estimated from a limited number of data samples using Stochastic Subspace Iden-
tification (SSI), not the “true” parameters of the system matrices are obtained, but estimates
are naturally subject to variance errors depending on the data and the estimation method
because of unknown noise inputs, measurement noise and finite data length. The uncer-
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tainties in the estimates are penalizing the quality and precision of the damage localization
results. The uncertainty analysis of the estimates from stochastic subspace identification are
stated in the literature [RPDR08, DRDRKO08, DLM13, DM13]. Measurements from aircraft
load calibration are also subjected to uncertainties. In [GGB*13b, GGB*13a], the authors
proposed that these uncertainties need to be taken into account to analyse impacts of uncer-
tainties on the calibration. In this Chapter, the Stochastic subspace indentification algorithm
is introduced from the background of literature and then, a variance analysis are described
based on a sensitivity approach.

This chapter is organized as follows. In Section 3.2, the subspace identification algorithm
is presented, and in Section 3.3, the derivations of the sensitivity for the estimated system
matrices are explained.

3.2 The Stochastic Subspace Identification (SSI) algorithm

Consider the LTI systems described by a discrete-time state-space model from (1.5)

Tpt1 = Agxy + vg (3.1)
yr = Caxp + wy,

where the state x € R", the output vector y € R", A; = exp(A.7), Cq = C,, T is the time
step, and v, and wy are the unobserved process and measurement noise, respectively. The
parameter n defines the system order and r is the number of sensors output.

Throughout this work, the system matrices A and Cy are only interested to identify
from the output-only measurements data, yi. In Operational Modal Analysis, no observed
inputs are available (B = 0, D = 0) and the identification of system is done using the output-
only data (yi). When some inputs (ej) are observed, the deterministic-stochastic subspace
identification algorithms can be used. In the literature [PDR99, BM07, DM12], there are
exists several algorithm for Stochastic Subspace Identication (SSI). For the identification of
the system matrices A. and C, of (2.2) and its eigenstructure, the following general framework
has been described. Initially, we identify estimates of the system matrices ﬁd and éd at
different model orders from the measurements using covariance-driven subspace identification.
Using noisy system, these model orders require to be relatively high and additionally noise
modes appear in the results. From these results r identified mode pairs are selected in a
so-called stabilization diagram, so that the condition of the system order n < 2r is satisfied.
After rejecting the noise modes, finally the corresponding eigenvalues of the continuous-time
system and the mode shapes are used to get the desired estimates /TC and 60.

3.2.1 System identification

A sensor subset of so-called reference sensors or projection channels can be used to reduce

the computational burden and to improve identification [PDR99], denoted by y,(:ef). Let the
theoretical cross-covariance between the state and the reference outputs be G = E(:ckﬂy,(;ef)T)
and the output covariance be R; = E(yky,g_e?T) = CdAil_lg , then the block Hankel matrix is
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formulated as

R Ry ... Ry
= 2T T Hank(Ry). (3.2)
Rpt1 Rpt2 o Rpiq
It has the factorization property H = OC into the matrices of observability and controllability
Cuy
CaAd _
O = : and C == |:g Adg . Ag lg:| )
Cq Al

respectively. From O, the observation matrix Cy is obtained in its first block row. Using the
shift-invariance property of O, the matrix A, is obtained based on least squares solution

Ay =0Tod, (3.3)

where the last and the first block row has been eliminated in OT and OY, and T denotes the
Moore-Penrose pseudoinverse.

Using measurement data, the output covariance estimates Ri=1 /N Zk 1 yky(ref) , =

1,...,p+q, are computed to get the estimation of the Hankel matrix H= Hank(T\’, ) in (3.2).
From singular value decomposition (SVD) of 7—[ the observability matrix O is estimated and
the system matrices Ad and Cd are obtained as above.

3.2.2 Modes
For the discrete-time system, the eigenvalues A\y; and mode shapes ¢; are obtained from the
system matrices Agy and Cy for each mode [, [ =1,...,m as

det(Ag — Aaul) =0, Agpr = Aaid1, 1 = Cagy. (3.4)

The respective eigenvalues of system matrix A, (1.6) in the continuous-time system are re-
trieved as

1
)\c,l = ; log()\d,l) (3.5)
and the natural frequencies f; and damping ratios & yield
|A —R(Aey1)
= — = : 3.6
fi=520 & e (3.6)

In practice, the set of identified modes does not contain only true modes of the structure
but also spurious modes because of non-white noise and non-stationary excitation, low signal-
to-noise ratio, or a bad selection of the model order. In the stabilization diagram, the true
system modes remain quite constant at different model orders while spurious modes change.
Therefore, when estimating the modal parameters for different system orders, the structural
modes can be distinguished from these spurious noise modes in the well-known stabilization
diagram procedure.
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3.2.3 Final system matrices

Let m be the number of mode pairs selected from the stabilization diagram, where number
of modes m < r to satisfy the restriction n < 2r = 2m. Let the identified modes are (., 1)
and (E, ©;), L = 1,...,m. Then, the system matrices can be written in the modal basis
as A, = diag(\L, ..., A" AL A and C. = [@1 ... ©m @y ... P) and defined up to a
change of basis (T~'A.T,C.T). Finally, the system matrices in the real-valued modal basis
can be written as

R(Ae)  S(Ae)

“othg mny) O [R® 2w, (3.7)

where A, = diag(Al,...,A™) and ® = [¢' ... ©™], obtained from the chosen modes.

C

3.3 Uncertainty quantification

In order to analyze the statistical uncertainty of identified parameters, it is essential to assess
the quality of the estimates from the measurements. There are different kinds of uncertainty
that can be considered, such as aleatory uncertainty that cannot be reduced, e.g. variability
in a production process, and epistemic uncertainty that can be reduced by collecting more
measurements [DKD09]. Throughout this thesis, epistemic uncertainty is considered that
could indeed be reduced by analyzing longer datasets of vibration measurements. Note that
the considered uncertainty is not linked to any uncertain parameters of a model, but stems
directly from an estimation problem using finite and noisy measurements. In detail, the un-
certainty of estimates based on a finite set of measurements yi, £ = 1, ..., N modelled in (3.1)
is due to measurement noise (related to wy) and unknown excitation inputs (related to vy and
wy). We analyze the resulting variance errors. Thus, when estimated from a limited number
of data samples using Stochastic Subspace Identification (SSI), not the “true” parameters
of the system matrices are obtained, but estimates are naturally subject to variance errors
depending on the data and the estimation method because of unknown noise inputs, measure-
ment noise and finite data length. The uncertainty analysis of the estimates from stochastic
subspace identification are stated in the literature [RPDR08, DRDRKO08, DLM13, DM13].

In this section, the variance analysis of the system matrices is done by a sensitivity
analysis, starting from the covariance of the Hankel matrix. The expressions of the covariances
of the Hankel matrix and observability matrix have been derived in [PGS07, RPDRO0S8] and
are recalled here for the sake of clarity.

3.3.1 Definitions of covariance computation

Define a covariance estimate 3y = cov(vec(H)) of the Hankel matrix H from where vec(-)
indicates the column stacking vectorization operator. Estimates of Sy can be directly com-
puted from the dataset by separating the available data length into several blocks of length.
Let, the total data length NV; turned into ng blocks of length Aj,. The Hankel matrix HE) =

Hank(f%l(-k)) is computed on the output-correlations Rl(k) =1/Ny Zl;/;/i 1N, yky,(ﬁ?T on
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each block, while the Hankel matrix on the entire dataset yields H = n%, oy H®) | Finally,

the covariance Yy is estimated by the sample covariance

Tp

Sy = kz:lv (A~ ) vec (A% — 7).

~

Let g(H) be a vector valued function of the parameter and its covariance can be obtained
with Taylor approximation as

g(H) = g(H) + Tyvec(H — H) + O(|[vec(H — H)||?)
and then, it can be simplified as
cov(g(H)) = TynEnud . (3.8)

where J, 3 = 0g(H)/0vec(H) is the sensitivity of the function g. Since the output covari-
ances and the Hankel matrix are asymptotically Gaussian variables [Han70] (when number
of measurements is large), the statistical delta method [CB02] ensures that expression (3.8)
is asymptotically exact. The required sensitivity can be obtained analytically through a
first-order perturbation Ag of the function g, which yields

ANg = Tguvec(AH). (3.9)

With this strategy, the covariance ¥ of an estimate of Hankel matrix H can be propagated
to any function of H, particularly to the modal parameters and to the stress estimate S(s).

Note that some of the matrices and vectors in the derivation of the damage localization
approach are complex-valued variables. The following notation will be used. Define ® is
the Kronecker product with the property of vec(AXB) = (BT ® A)vec(X). I, defines the
identity matrix of size a x a, and 0,5 defines the zero matrix of size a x b. Let e; € R%is the
j-th unit vector such as column j of I,. For any matrix X € R?*® [DM13], the permutation

. def .
matrix Pop < |, @l I, 0ed ... I, ®eb| € R®*% is defined as

vee(XT) = P, vee(X). (3.10)

Finally, to deal with their uncertainties, define an equivalent real-valued notation for any

matrix @) as
| def RQ) —3(Q) Lo R(@Q) 3.11
on ls@) w@ | ¢ [%(Q)]’ .

where R(-) and () denote the real and imaginary parts, respectively.

3.3.2 Sensitivities on singular values and singular vectors

For real and complex values, the pertubation propagation to the singular values and vectors
are described in [DM13].
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For real case [DMBM13, Lemma.6], consider X € R**?. Let o; > 0, u; and v; be the i-th
singular value, left and right singular vector of the real matrix X € R**?_ and AX is a small
perturbation on X. For the same X, then

Ao; = (v; ® uy) T vee(AX), [Aui = BgCivec(AX),
AUZ'_
where
_ . T — gy T
B — I, (=X/o; Ci=1/0; vt @ (I — ujug’)
(—XT)/O'Z' Ib _(UZ’T X (Ib — UiUiT)),Pmb

where I, is identity matrix of size a x a and P,y is the permutation matrix as defined in
(3.10).

For complex case [DMBM13, Lemma.7], consider X € C**®. Let o; > 0, u; and v; be
the i-th singular value, left and right singular vector of complex matrix X € C**? for rank t.
After SVD of X,

T T
X =UxVH = Z O'Z"L_Lz"l_)l-H = Zai(eid”'ui)(ei@vi)H.
i=1 i=1
Let H be the Hermitian and ¢; be chosen such that the imaginary part of the first entry of

€% g; and define the respective singular vectors by u; = e%iq; and v; = €%;. The sensitivity
of the singular vector yields as follows

[A(Ui)re = B! Civec(AX)se,
A(Ui)re
Where B; & T2 (=Xre/0i (Iar — Bl 40)s
(—XT)Re/0:) I, ’
T _ . 5. . T
((ui" ® Ip)re — (Vi)re((U; @ Vi )re)” ) P2
Py def Pap 0 .
0 _Pa,b

It is noted that the multiplication by (4, — E;f:f;?)r Jrl) sets the column in B; to zero that
corresponds to the imaginary part of the first entry of v;.

3.3.3 Covariance estimation of the identified system matrices

For uncertainty computation, the covariance of the identified system matrices are necessary.
In this section, the covariance estimation of the system matrices Ay and Cy using the covari-
ance of the subspace matrix, H is recalled from [RPDR08, DM13]. The covariance estimation
of the system matrices is derived in the following steps. Intially, a perturbation AH of the
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subspace matrix (3.2) is propagated to a perturbation AQ of the observability matrix. Then,
a perturbation AQ is propagated to perturbations A Ay and ACy; on system matrices Ag and
Cy4. Finally, the covariances of the vectorized system matrices are computed. To obtain AQO,
the sensitivities of the singular values and vectors in (3.2) are necessary, details are stated in
Section 3.3.2 with [PGS07, DMBM13].

In [RPDROS], the sensitivity of the observability matrix O is derived and the perturbation
ANO=UA 21/2 + AUlE}/Z. Then, a perturbation AH of the subspace matrix is propagated
to a perturbation AQ of the observability matrix as

vec(AO) = Jo nvec(AH),
where

(v @up)¥ BiCy
def —1/2 . 1/2 .
j@,?—[ = %(In X Ulzl / )84 : + (El/ ® I(p—i—l)r O(p+1)rxqr ) . , (312)
(Un & un)T B;[Lcn

. def —~n?n
with Sy = 370"
in Section 3.3.2.

The system matrix A is obtained from O (3.3) and Cj is obtained from the first block row
of O in Section 3.2.1. Then, a perturbation AQ in O is propagated to the system matrices

Ay and Cy where the respective sensitivities are obtained through [RPDROS]

p and Jo 3 € RP+)rnx(p+1)raro - Note that B; and C; is already stated

vec(AAg) = Ja,0vec(AO), vec(ACy) = Jc,ovec(AO),

where

e T T _
Tayo 2 (I, 2 0118,) — (AT 2 0115)) + (0118, — ATOT S5) @ (O OV )Pty

ef
Jc,0 Lo [Ir Onp,«] ;
(3.13)

with jAd o€ Rrﬂx(p—f—l)rn and de o€ Rrx(p+1l)rn
By using the product rule, the sensitivity of A; = otfol = (OTT(’)T)_I(’)TT(’ﬂ and
the Kronecker algebra leads to the assertion. Note that Ja,0 = A1 and Jg, 0 = A2 in

[RPDRO8]. Then, the covariances of the estimated system matrices (Aq4, Cy) are obtained
from (3.12) and (3.13) as

T T
£ df cov( vec(Aq) ) _ [jAd,O] TonSndd [jAd,O] _ [jAd,H] S, JAd,H]
0:Ca vec(Cq) Jog0] N Tou0 Joum Jeut
(3.14)

where f]y is the covariance of the subspace matrix in Section 3.3.1.
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3.3.4 Covariance estimation of the modal parameters

In [RPDROS], the derivation of the sensitivity for the eigenvalues and eigenvectors of a matrix
and subsequently for the modal parameters are described, details are derived in [GVL96,
PGS07].

Assume that A\g;, ¢;, and x; be the [-th eigenvalue, left and right eigenvector of Ay with

Agdr = A 101, X Ad = Aaix;, (3.15)

where * defines the complex conjugate transponse. Then, a perturbation AA of A is propa-
gated to A\g; and ¢,

A)\d,l = jAd’ZAdVGC(AAd), A(ﬁl = ,,7¢17Advec(AAd),

where
def T def T d1xS
jAd,l:Ad = ﬁ((bl X7 ) Tpi, a0 = (Adidn — A)T(¢l ® (In — Xl?(bll))a (3.16)
with i, 4, € CU7 and Jy,,a, € C7°
The relationship between discrete and continuous time system is given in (3.5). Now, the
continuous eigenvalue is recalled as

def
Aeg = log(Aap) /T,

where 7 is time step. Then, a perturbation A\g; in A\g; is propagated to A.,

DAet = Tn.y, 43D 0,

where
def R(T; —S3(T;
Dreada = e 0( dar) S D) (3.17)
] ‘S(j)\d,l) §R(~7>\d,z)
Therefore, the natural frequency f; and the damping ratio (; is recalled from (3.5)-(3.6),
assume that the element ¢ of the mode shape ¢; is scaled to unity that ¢; = (ngf’ll)t. Then,
its sensitivity is derived as a perturbation AAy, ACy is propagated to ¢y,
vec(AAy)
ANy = T gy, 44.C
praad vec(ACy)
where ot
(&}
j@lvAdvcd = m(h - [Or,t—l 2 Or,r—t]) [Cdj@,Ad ¢ZT®IT . (3-18)

with J,, 4,0, € C¥074mm),
Finally, the covariances estimation of the modal parameters (i.e. eigenvalues and mode-
shapes) can be computed from (3.14), (3.16), (3.17) and (3.18) as

i:/\c,l = (jAc,lj/\d,lvAd)Rei:Ad <(‘7)\c,k jAd,l»Ad)Re>T’

N . T (3.19)
Z@Z:Adycd = (\7<Pl7Adacd)reEAdacd ((jkad,Cd)re)
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3.3.5 Covariance of system matrices A, and C. from subspace identification

For the covariance computation of A, and C, in (3.7), a perturbation AH of the Hankel matrix
in (3.2) is propagated to a perturbation AX.; and Ag; in the selected modes [ = 1,...,m,
yielding

A)\c,l = jAc,lyH VGC(AH), Agol = j@hq{ VeC(A/H),

where the sensitivities Jy_, » € C™" and ToH € C™*" with h = (p + 1)rqro has been
derived in the combination of (3.17), (3.16), (3.18), (3.13), and (3.12), respectively, detailed
in [RPDRO8, DM13]. Now, plugging these expressions into (3.7) and vectorizing the system
matrices corresponds to

vec(AA:) = Ja, nvec(AH), vec(AC,) = Jo. n vec(AH), (3.20)
where ) i} _ i} L
R(Tnes 1) R(Tr, ) Ey
R R Enm
Ja.n =D C\(jAc’m’H) s Joem = 0(‘7“)"“%) , b= ;
S(Tream) S(Tpr,m) Py
| S(Tremtt) Rivesen] | Fm |

and the selection matrix P is defined in the following the matrices

m, mT m, mT
B |5 Orm.m P Omm  €]'€]
J = » 4= :
Om,m —e;-”e;-nT eg"e;”T Om,m

Therefore, the covariance of the system matrices can be computed from (3.20) as

T
Sac, < cov _ | S| 5, [TAH] (3.21)
Jc.H

Jcem
3.3.6 Sensitivity of the transfer matrix R(s)

vec(A,)
vec(C.)

In this section, the sensitivity Jg(s),(4.,c.) of the matrix R(s) (2.20) with respect to the
system matrices A, and C, (3.7) is recalled from [MDBM15], which is needed for the stress
computation in (2.21)-(2.22). In the following, the sensitivity computation of R(s) in (2.20)
is derived. Define
L= [I
0

such that R(s) = Z(s)H'L. Using the product rule, a perturbation AR(s) of R(s) yields as

C.A.

Z(s) = Cu(sI —A.)"', H=
(s) ( ) c.

)

AR(s) = [AZ(s)|HTL + Z(s)[A(HT)]L. (3.22)
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Now both terms AZ(s) and A(HT) are developed as functions of AA, and AC,, which are
already stated in Section (3.3.3).

With the property A(X 1) = —~X1[AX]X !, the first term yields
AZ(s)

[AC,)(sT — Ae) ™! — Cu(sT — A)HA(ST — AL)](sI — A) ™!
[AC.](sI — A.) ™Y + Z(s)[AAL(sT — A.) L.

(3.23)
For the second term, a perturbation A(HT) of the pseudoinverse H yields

vec(A(HT)) = Jyvec(AH), (3.24)
where the sensitivity Jp+ is derived in [DMBM13, Lemma 8]. Denotes the selection matrices
S Y@L 0,.,], 5 ¥ I,®[0,, I]such that

vec(A(C:A,))

vec(AH) = [SlT SQT} vec(AC,)

= STvec(A(C.A.)) + S5 vec(AC,),
and then follows with (4.7)

vec(A(HY)) = Ty STvec(A(C.AL)) + Tit ST vec(AC,),

where A(C.A.) = [AC.JA. + C.[AA.]. By combining this result with (4.5) and (4.6) yields

vec(AA.)
vec(AR(s)) = [jR(s),Ac JR(S),CJ vee(AC,) )
where
Trespa. S (M(s)T @ Z(5)) + (LT © Z(5)) T ST (In ® Co),
ef
TR(s),Ce L

(M(s)" @ 1) + (LT @ Z(s)) Tyt (ST (AL @ 1) + 55 ) ,
with M (s) & (sI — A.)"'H'L. After stacking the real and imaginary parts of vec(AR(s)T),
it follows from (3.10) and (3.11)

AA,)
vec(AR(s)T)) = Tr(s vec(AA, , 3.25
(vec(AR(s)")) = Tg(s),AcC. vee(ACL) (3.25)
where
T, _ PT,T’ 0r2,r2 §}%(\73(5),140) §R(~7R(s),06)]
R(8)7A01Cc - o~ o :
07‘2,7‘2 PT‘,T \g(jR(s),Ac) ‘S(jR(s),CC)
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Statistical damage localization and
quantification

4.1 Introduction

This Chapter presents the statistical damage localization and quantification based on the
previous works [MDBM15, Mar13] and [DMZ16]. Firstly, the statistical damage localization
method with the SDDLV approach is described. A full description of the SDDLYV is available
in Chapter 2 in Section 2.2. Particularly, the Stochastic Dynamic Damage Location Vector
(SDDLV) method is an output-only damage localization method based on a Finite Element
(FE) model of the structure and modal parameters from output-only measurements in the
reference and damaged states of the system. A vector is obtained in the null space of the
changes in the transfer matrix between both states and then applied as a load vector to the
model. The damage location is related to this stress where it is close to zero. In [MDBM15,
Mar13], the SDDLV method was extended with a statistical framework, where the robustness
of the localization information was proposed by aggregating results at different s-values in
the Laplace domain where the number of modes used could not be higher than number of
sensors located on the structure.

Using noisy measurement data, the computed stresses are naturally afflicted with uncer-
tainties. Then, a statistical evaluation of the computed stress is necessary to make a decision
if stress is (close to) zero or not, in order to decide if the respective structural element is
damaged or not. At the same time it allows a joint evaluation of the stress vectors computed
on different s-values in statistical tests. For such an evaluation, the modal parameter covari-
ance is propagated to the obtained stress vectors in a sensitivity-based approach. Robustness
of the damage location is obtained by taking into account the information from multiple s-
values in a joint statistical evaluation. Finally, all stress values corresponding to an element
are being tested for damage in a hypothesis test where the computed stresses are evaluated
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with their joint covariance.

Secondly, a sensitivity-based approach has been described for damage localization and
quantification which operates on a data-driven residual vector that is statistically evaluated
using information from a finite element (FE) model [DMZ16]. We consider the case of output-
only vibration measurements of a structure subject to ambient excitation. Damages are
considered as changes in the structural stiffness. The problems of damage localization and
quantification are classified into two separate problems. First, the damaged elements are
detected in statistical tests, and second, the damage is quantified only for the damaged
elements.

This chapter is proposed as follows. In Section 4.2, the statistical damage localization ap-
proach with SDDLV is described based on [MDBM15] and a statistical framework is presented
for both damage localization and quantification in Section 4.3 based on [DMZ16].

4.2 Statistical damage localization approach with SDDLV

The Stochastic Dynamic Damage Locating Vector (SDDLV) method is an output-only dam-
age localization method based on both a Finite Element (FE) model of the structure and
modal parameters estimated from output-only measurements in the damage and reference
states of the system. A vector is obtained in the null space of the changes in the transfer
matrix from both states at the sensor positions for some s-values in the Laplace domain and
then applied as a load vector to the model. The damage location is related to this stress
where it is close to zero. In [MDBM15, Mar13], the damage localization method is extended
with a statistical framework, where the robustness of the localization information is proposed
by aggregating results at different s-values in the Laplace domain. Then the uncertainty in
the output-only measurements is propagated to the stress estimates at different values of the
Laplace variable and these estimates are aggregated based on statistical principles.

In the following, the SDDLV approach is introduced as an output-only method for damage
localization in Section 4.2.1 and then, the robust statistical approach for the aggregation of
damage localization results is derived in Section 4.2.2 based on [MDBM15].

4.2.1 The SDDLV approach

In Section 2.2, the SDDLV approach is described in details. There, the transfer function
G(s) € C™" of the system (2.1) at the sensor coordinates can be derived as from Section 2.2

where t
C’CA'C

Ce
under the condition that the system order satisfies n < 2r, i.e. the number m of identified
modes satisfies m < r. Note that R(s) can be computed from output-only system identifi-

cation, e.g. using stochastics subspace identification methods in Section 3.2. The difference
between the transfer matrices in both damaged (variables with tilde) and healthy states is

— C(s] — A1
R(s) = C.(sI — A,) 0

I] , (4.1)
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6G(s) = G(s) — G(s). The matrices 6G(s) and 6R(s)T = R(s)T — R(s)” have the same
null space [Ber10]. The desired load vector v(s) € C" is obtained from the null space of the
SR(s)T using a Singular Value Decomposition (SVD)

1 0

6R(s)" = USV = |y Uy -
2

v VQ]H (4.2)

where U, %,V € C™", ¥y ~ 0 and  indicates the conjugate transpose. Let ni, be the
dimension of the image Uy and (r — njy,) be the dimension of the null space Vs, where njy
depends on the kind and number of damaged elements. The load vector v(s) in the null space
of §R(s)” can be chosen as any linear combination of the vectors in Vs, particularly as the
vector corresponding to the smallest singular value. Thus it can be estimated entirely on
measurements in healthy and damaged states.

Finally, the load v(s) is applied to the FE model of the healthy structure to compute stress
field at all structural elements, stacked in vector S(s), which yields a linear relationship and
can be expressed by a matrix L,ode1(s) € Clxr (2.2.3) based on the FE model of the structure,
satisfying

S(8) = Limodel(s)v(s). (4.3)

The stress vector S(s) indicates potential damage for elements with corresponding entries in
S(s) that are close to zero. When estimated, these stresses are not exactly zero but small in
practice because of modal truncation, model errors and variance errors from measurements.
Note that while the load vector v(s) is only defined at the sensor coordinates, the damage
can be located at any element of the structure because the stress vector computed from load
vector v(s) covers the full domain.

In the following, the deterministic aggregation (2.28) has been replaced by a statistical
aggregation based on [MDBM15], where the intrinsic uncertainty of the stress estimation
from finite measurement data is taken into account.

4.2.2 Uncertainty quantification and robust statistical approach

In the SDDLV approach, estimates of the modal parameters and then estimates of system
matrices A, and C,. are obtained in the damaged and undamaged states using SSI, derived in
Section 3.2. Their identification is subject to variance errors because of unknown excitation,
measurement noise and limited data length. The uncertainties in the estimates are penalizing
the quality and precision of the damage localization results. For making decisions about
damaged elements of the structure, these uncertainties need to be taken into account to
decide whether stress of an element is significantly close to zero or not. In [DM]%MB], the
uncertainty propagation from system identification results generally to the stress S(s,,) for a
single value of the Laplace variable s,, was analyzed. In addition [MDBM15], the expressions
for the uncertainty propagation to the stress vector S(s,) derived at multiple values s,
w=1,...,K.

In this section, the aggregation of the results and the joint evaluation of the different stress
results is derived for each structural element in a statistical test. For the purpose of variance
analysis, the definitions of the covariance computation is derived in Section 3.3.1. Therefore,
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in the following, the sensitivity and covariance computation is derived for the theoretical
values (e.g. H, Ac, Ccy S(sw)). Then estimates of the sensitivities and covariances are
obtained by plugging in the estimates obtained from the data (e.g. H, Ac, Ce, S(sw)).

4.2.2.1 Covariance of system matrices A, and C. from subspace identification

In this section, the covariance of the system matrices A. and C, is computed for each selected
mode | = 1,...,m, starting from the identified eigenvalues \.; and mode shapes ¢;. Based
on the SSI approach, their perturbation is linked to the Hankel matrix H by

A)\CJ = j)\cth.[veC(AfH),
A(,Ol = ‘ZPZJ{VGC(A/H),
where the sensitivity matrices Jy,, # € CHh and J,, % € C™" with h = dim(vec(H)) are
detailed in Section 3.3.4. The system matrices A. and C. are assembled from the eigenvalues

and mode shapes for each mode [ as derived in Section 3.2.3. Then the sensitivities of the
vectorized system matrices yield accordingly

vec(AA:) = Ta, nvec(AH), (4.4a)
vec(AC:) = Jc, mvec(AH), (4.4b)

where the sensitivities Ja.3 and Jc,  are obtained from the eigenvalue and mode shape
sensitivities Jy_,» and J,, % as derived

R(Tnei 1) R(Tp1.m) Ey
R R E
Jaen =P (\(jAC’m’H) y JCen = C\(j@m’H) =
S(Iream) S(T1,m) Fy
L %(jAc,myH) i | %(jSOmyH) i L Fm i
and the selection matrix P is obtained with the following matrices
et Oman | g | Omn el
Er = e R Al s '
Omm  —€mpem emem Omm

4.2.2.2 Sensitivity of the transfer matrix R(s)

In this section, the sensitivity Jr(s) (a.,c.) of the matrix R(s) (2.20) with respect to the
system matrices A, and C, (3.7) is recalled from [MDBMI15], which is needed for the stress
computation in (2.21)-(2.22). In the following, the sensitivity computation of R(s) in (2.20)
is derived. Define

Z(s)=Cu(sI —A)"Y, H= Ced , L= H ,

[
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such that R(s) = Z(s)H'L. Using the product rule, a perturbation AR(s) of R(s) yields as
AR(s) = [AZ(s)|HTL + Z(s)[A(HT)]L. (4.5)

Now both terms AZ(s) and A(HT) are developed as functions of AA. and AC,, which are
already stated in Section (3.3.3).
With the property A(X 1) = —~ X 1AX]X !, the first term yields

AZ(s) = [AC(sI — A)™! — Cu(sI — A)THA(ST — AL (s — A.) ™!
= [AC(sI — A) ™'+ Z(s)[AA](s] — A) L. (4.6)

For the second term, a perturbation A(HT) of the pseudoinverse H yields
vec(A(HY)) = Tyivec(AH), (4.7)

where the sensitivity Jp+ is derived in [DMBM13, Lemma 8]. Denotes the selection matrices

g, df I, @[l 0Op,], S def I, ® [0, I,] such that

vec(A(CLAL))

= STvec(A(CLAL)) + STvec(AC,),
vec(AC,) i vec(A( )) + 83 vec(AC,)

vec(AH) = [slT SQT}

and then follows with (4.7)
vec(A(HT)) = Ty SEvec(A(CLAL)) + Tyt ST vec(AC,),

where A(C.A.) = [AC]A; + C.[AA.]. By combining this result with (4.5) and (4.6) yields

vec(AA,
vec(AR(s)) = [jR(s),Ac jR(s),CC] vecEAC; )
where
Trea. = (M(5)T ® Z(5)) + (LT ® Z(5)) Ty1 ST (In ® Co),

Trispc. = (M@)' @ 1) + (LT ® Z(s)) Tur (ST (Ae @ 1) + 83 ),

with M (s) o (sI — A.)"'H'L. After stacking the real and imaginary parts of vec(AR(s)7),

it follows from (3.10) and (3.11)

AA,)
vec(AR(s)1)) = Tr(s vee(Ade s 4.8
(vec(AR(s)")) = TR(s),A.C. vec(AC,) (4.8)
where
j — [PT7T 07‘277‘2] [éR(jR(s)’Ac) %(jR(S)ch)]
R(s),Ac,Cc = &~ & '
0,,27,,2 Pr,r J(jR(s),AC) J(jR(s),Cc)
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4.2.2.3 Sensitivity of the stress vector S(s)

For stress variance computation, the sensitivity Jp(s),(a.,c.) of the transfer matrix R(s) in
(4.1) with respect to the system matrices A, and C. is derived from Section 4.2.2.2. Then, the
covariance of the matrices R(s) and R(s) are computed in the healthy and damaged states
of the structure for a chosen s-value.

Now, the uncertainty of the system matrices is propagated to matrix R(s) (4.1) for both
healthy and damaged states, then to the load vector v(s) in the null space of JR(s)! =
R(s)T — R(s)T and finally to the stress vector S(s). It holds that

™ vec(AA,)
el SR e = T 1. Lec<m> | o
Av(s)re = jv(s),(iR(s)T (VGC(A(;R(S)T))“H (49b)
AS(S)re = ('Cmodel(s))Re AU(S)re7 (4.9C)

where the respective sensitivity matrices have been derived in detail in Section 4.2.2.2. The
sensitivity J,(s) sr(s)r of the load vector v(s) with respect to SR(s)T is computed with
[DMBM13, Proposition 4]. Combining (4.4) and (4.9), it follows

AS(8)re = jS(s),éR(s)T (UeC(A‘SR(S)T(S)))re’

where Jg(s) sr(s)T &t (Limodei(s)) g Ju(s),0R(s)T- Together with (4.9), it follows

AS(8)re = jS(s)75R(S)TJR(S)’(AC’OC) [ 2222223 - js(s),aR(s)TJR(s),(Ac,Cc) [ Zzzgi?{;
= Ts(0).(Au.Co) T (A0, Go) 7VCOH) = T5(5),(A0,C0) T(Ae. ) Ve AH)
(4.10)
where
js(s),(Ac,C‘c) &t T5(5),6R()T T R(s),(A,Co) j(ficv(jc)»ﬂ = [ jC:C: ]

def def | Ja,,
and jS(s),(AmCC) = jS(s),(SR(s)TjR(S)v(Ac,Cc)7 j(Ac,Cc),'H = [ AcH ] .

As the system matrices are computed on two different datasets from the damage and undam-
aged sates, hence they are statistically independent [DMBM13, Theorem. 5].

4.2.2.4 Statistical aggregation and evaluation of stress results at multiple s-
values

Since the computation of the stress S(s,) at multiple Laplace variables s,, w = 1,...,k
increases the information content about damaged or healthy element on structure, a joint
evaluation of these stresses increases the robustness of the statistical approach in [DMBM13],
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where only one Laplace variable s was considered. The joint statistical evaluation requires
the covariance computation of the stacked (real-valued) stress results.

S(Sl)re
g %ef : , (4.11)
S(Sn)re
and its uncertainty follows from (4.10) as
T5(1),(AeCe) T (AesCe) T TS(51),(AerCe) T (AerCo) 1
AS(s) = : vec(AH) — : vec(AH) .
Ts(50).(Ae.Ce) (Ao Co) A TS (55, (AesCe) T(Ae,Ce)

(4.12)
Note that vector S contains the stress information for different s-values at all elements of
the structure. Following from (3.8) and (4.12), the covariance Xg et cov(vec(S)) of the total
stress yields

~ ~ T
jS(sl) (AC,CC ~7 ) H jS(sl) (AC,CC ~7 ) H
Ts(50),(AesCo) (Ao, Co) A Ts(50),(AesCo) T (Ao, Co) A (4.13)
T
TS (51),(AcsCe) T (Ac,Co) H T5(51),(Ae,Ce) T (Ae,Ce) M
. o .
TS(50),(AeC) T (Ae,Co) H TS(50),(AesC) T (Ae,Co) H

since the datasets from reference and damaged states can be regarded as statistically indepen-
dent. The covariance expression (4.13) leads to a statistical approach for damage localization
using multiple s-values based on a statistical test for each element ¢ of the structure. In this
approach, all stress components corresponding to a structural element ¢ are collected in a
subvector S; of S. Accordingly, the respective parts of the covariance matrix Xg (4.13) that
correspond to element ¢ are collected in 3, such that ¥; = cov(S;). Then, vector S; is tested
for being zero in a hypothesis test. Since an estimate of the stress vector S; is asymptotically
Gaussian distributed, a joint statistical evaluation of the computed stresses is derived in a
X2—test as

= SI'sts, (4.14)

for each structural element ¢t. Since stress over damaged elements is zero in theory, potential
damage is located in elements t corresponding to the lowest values of x7 among all elements.
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4.3 Sensitivity-based statistical damage localization and
quantification

4.3.1 Framework

Assume that measurements are collected from stochastic system depending on the parameter
of the system and typically, parameter changes affect measurements output. For damage
localization and quantification we assume that damage is linked to stiffness changes. Let
6 € Rlrar be a parameter vector that describes the monitored system in the current state,
and 6y € R its value in the reference system. In a hypothesis test, assume that

reference system, Hy : =0
faulty system, Hy : 6£6.

Each components of the parametric vector 6 corresponds to the physical properties of one
element of the FE model. Then, each element is tested for damage localization using sensi-
tivity and minmax approaches, while the quantification of the damage extents corresponds
to estimating the changes of § in the damaged elements. For an example, the components of
0 can be the stiffnesses of a mass-chain system, Young modulus of beam elements or it can
be basically any quantity linked to damage-sensitive properties of the system. For testing of
the system in the reference or faulty states, the faulty system is analyzed in the Gaussian
framework of residuals.

In [DMZ16], a statistical framework has been set up for Gaussian residual vectors
parametrized by 6 with the purpose to decide which parts of § have changed (for dam-
age localization) and then to estimate this change (for damage quantification). The Gaussian
residual vector ¢ € R" is computed from the measurements of the system and needs to satisfy
the following properties

¢ { N(0,%)  for hypothesis Hy (4.15)
N(TJ6,%) for hypothesis Hy,

with constant mean Jd from where 6 = VN (0 —6y) € Rlrar is the unknown change in
parameter vector for §#£0 in the hypothesis Hy, N is the data length used for the computation
of ¢, the sensitivity matrix J € R"**%ar has full column rank and the residual covariance
matrix ¥ € R"" is positive definite. It is assumed that the sensitivity and covariance
matrices J and X are known or estimated somehow in practice. In detail, the following
problems are considered in this framework:

e Fault detection indicates to change detection in 6, corresponds to deciding if ¢ # 0;
e Fault isolation indicates which components of the § are non-zero in the faulty system

e Fault quantification estimates the changes 6 between 6 and 6 in the faulty components
of the system
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Therefore, an appropriate subspace-based residual vector [BAB00] has been derived based
on output measurements Yy = {y}r=1, .~ of system (1.5) as

(00, Yn) & VN vece(S(00)T Hpi1.q), (4.16)

where ﬁp+17q is an estimate computed on Yy of the block Hankel matrix (3.2)

R Ra ... Ry
e R R ... R
Hpr1,4 « .2 .3 ) q:+1 = Hank(R,),
Rpr1 Rpt2 - Rpig

containing R; = E(ygy] ;) is the output correlations, and S(6p) is the left null space of
Hp+1,4 from the reference system.

Based on the expression (4.15), the considered problems can be solved in a standard
Gaussian framework with statistical tests and parameter estimation methods, as described
in the following sections.

4.3.2 Basic damage detection tests

In the literature, many methods have been proposed for statistical damage detection and
localization in the framework of such a Gaussian residual vector ¢ [BN93, Bas97]. In the
following, the appropriate generalized likelihood ratio (GLR) tests is recalled.

4.3.2.1 Damage detection: global test

Based on residual vector ¢ in (4.15), the global test is intended to make a decision between
6 =0 and 0 # 0. The GLR test applied to this problem corrsponds to the test statistic
[Bas97]

tatobal = (TSN (FTE71T) T TR, (4.17)

which follows a x? distribution of [ degrees of freedom and the non-centrality parameter 67 F4,
where F = 775717 is the Fisher information matrix. To make a decision between Hy and
Hy, the test variable tgopa1 is compared to a threshold for damage detection. Generally, the
threshold is chosen so that the probability of false alarms is below some chosen level. In
theory, the choice of threshold can be made according to the x2 distribution of talobal from
the healthy system.

4.3.3 Damage localization: sensitivity and minmax tests

From the previous section, the sensitivity J and covariance expression Y. are known that are
estimated based on the parametric Gaussian residual vector containing the faulty components
of the system. Recall that 6 be the parameters of the structure. In the statistical tests, the
damage localization corresponds to which components of the 6 = § — 6y are non-zero (i.e.
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0#0) and the damage quantification corresponds to estimate the changes of ¢ in the damaged
elements.

For making decision about damage localization, it has to be known which components of
¢ are non-zero by testing each components of § separately. Assuming that different partitions
of the vector ¢ into 2 subvectors,

5= [5'1] : (4.18)

where one of the sub-vectors are tested. For damage localization, §, = 0 is tested against
8a70. Following (4.18), the sensitivity J and the Fisher information matrix F = J7%~17
are analogously derived as follows

Faa Fab
Fyo  Fip

VAN AN SO VRN

, (4.19)
%Tzflja %Tziljb

I =73 F=

details are given in [Bas97, DMZ16]. In the following subsections, the sensitivity and minmax
tests have taken into account for damage localization.

4.3.3.1 Sensitivity test

In this approach, for damage localization, assuming that d, = 0 for testing the components
of 6, = 0 against 0,70, where ( ~ N(Ja04,%). The generalized likelihood ratio (GLR) test
follows as

toens = (L2 VT (TS 7)) tal w1, (4.20)

which is called sensitivity test, and details are stated in [Bas97, DMZ16]. The test statistic
tsens is the x? distribution of dim(8,) with non-centrality parameter 61 F,,0,. For making
decision about faulty components, the test variable is compared to a threshold. Generally, a
threshold is chosen for a given probability of false alarms according to the x? distribution of
the nominal system.

If the assumption §, = 0 does not satisfy, the non-centrality parameter of ¢, yields from
the properties of ¢ ~ N(ng_lja)fl/ngE_lc as

0L Fuabo + 26T Fopby + 0f FyaFaa L Foup0y. (4.21)
Since ¢ ~ N(J6,%) and J6 = Jaba + T0b,
C~ N(FY26, + Frpl 2 Fuoy, )

following the properties of (4.19). From this normal distribution with the non-centrality
parameter of (4.21), the statistical x? distribution yields as tsepns = C*C.
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4.3.3.2 Minmax test

Rather than assuming the components of §, = 0, the variable §, is substituted by its least
favorable value for making a decision about J,, which leads to the minmax test [Bas97] as
presented in the following. For the different subvectors of §, and d;, the partial residuals are

Ca=JI87¢ (4.22a)
and ¢, = JI 271, (4.22b)

respectively. For the faulty components, the §, = 0 is tested against d,7#0 based on residual
vector ( and the GLR test statistic writes as

tmm = C;Fz;kilq;’ (4‘23)

where the robust residual (; = (, — Faan_bIQ and F) = Fpq — Fabeleba. The mean of the
robust residual ¢ is sensitive to changes d, but blind to d, = 0, which holds the distributed
Gaussian properties of (& ~ N (F}d,, FF), details are given in [DMZ16]. Note that ¢, is
called the minmax test. For making a decision about faulty components, the test variables is
compared to a threshold level, which is obtained for a given probability of fasle alarms from
the x? distribution of the the nomial system.

4.3.4 Damage quantification: sensitivity and minmax estimates

In the previous sections, a decision is made for the faulty system between 6, = 0 and §,7#0
for the components of § based on the sensitivity and the minmax tests. In both tests, the test
variables is compared to a threshold level to make a decision about faulty components when
047#0. When the respective test exceeds a threshold and it is decided that the component
is faulty, 0,70, the question about actual value of §, arises. In this section, estimates of
the change § = 6 — 6y are derived based on the properties of the sensitivity and minmax
approaches, respectively.

4.3.4.1 Sensitivity approach

In the sensitivity approach, an estimate of the d, can be derived from the residual vector ¢
for the damage quantification. Together with (4.19) and (4.20), the following expression can
be derived

KA K AN A e (4.24)

where 655 ~ N (04, Fi71) for the assumption 8, = 0, details are given in [DMZ16].

4.3.4.2 Minmax approach

Similarly, an estimate of the §, can be derived based on minmax approach in the previous
section follows
g™ = Fy G, (4.25)

with §™™ ~ N (84, F*~1), where details are given in [DMZ16].
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In the following, the summary of the statistical damage localization approach for SD-
DLV and the sensitivity-based approach have been presented shortly in Figures 4.1 and 4.2,

respectively.

Model ‘
_ (FE model of the healthy state) |

Lmod el ‘
(Mapping load to stress)

— St(5) = Lmodet(S)V(S) ‘4—

Vibration measurements
. (healthy and damaged states)

' Load vector v(s) computed in
the null space of 6G(s)

Stress computation

Statistical evaluation

Smallest value indicates

2 = 5,751, ‘
Xe £t | damaged element

Figure 4.1 — Statistical damage localization for SDDLV (5-SDDLV) using different s-values.
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Figure 4.2 — Sensitivity-based statistical fault detection, isolation and quantification approach.
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Chapter 5

Statistical damage localization with
stochastic load vectors using
multiple mode sets

5.1 Introduction

This Chapter presents the statistical damage localization with stochastic load vector using
multiple mode sets based on the SDDLV approach (Chapter 2, Section 2.2) which is a vibra-
tion based damage localization technique using both finite element information and modal
parameters estimated from output data. The estimates of the modal parameters are subject
to variance errors (see Chapter 3, Section 3.3). Based on that uncertainty information, a sta-
tistical extension of the SDDLV method was developed in [DMBM13, MDBM15] for deciding
if an element is damaged using one or different s-values (see Chapter 4 in Section 4.2).

In [DMBM13, MDBM15], the number of modes used in the computation could not be
bigger than the number of sensors located on the structure. This is a restriction when
there are more modes describing on the structure than the available sensors. Here, the
SDDLV method is developed with a joint statistical evaluation using multiple mode sets. It
overcomes this limitation. It is demonstrated that the computation of stress for multiple
mode sets increases the information content about the damaged or non-damaged elements
of the structure. Finally, all stress values corresponding to each element are being tested
for damage in a hypothesis test where the computed stresses are evaluated with their joint
covariance. To derive such a test, the computation of the covariance of the resulting stress
is necessary. Following Chapter 3 [DM13], the necessary covariance scheme is developed and
extended for a joint statistical evaluation using multiple mode sets for the same or different
Laplace variables.

This chapter is organized as follows. In Section 5.2, the SDDLV method is presented as
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a vibration-based damage localization method and the removal of the limiting restriction on
the number of modes is discussed using multiple mode sets in Section 5.3. In Section 5.4, the
statistical damage localization approach is derived using these multiple mode sets. Finally,
the new approach is applied on numerical simulations and experimental data to evaluate the
performance of the approach in Chapter 9 and 13.

5.2 The SDDLV approach

The SDDLV approach is already described in details in Chapter 2. In this Chapter, to obtain
the robustness of the damage localization results, the stress field is computed for multiple
mode sets instead of using one limited mode set [MDBM15] for same or different one-Laplace
variable s of the transfer matrix and then results are aggregated in a sensible way.

In this section, the deterministic computation of the stress field and the aggregation of
the results is summarized shortly, before deriving its statistical evaluation in Section 5.4.

5.2.1 Modeling

The characteristics of a mechanical structure (2.1) and the corresponding continuous-time
state-space model is recalled from (2.2)

{ (t) = Acx(t) + Bee(t) (5.1)
y(t) = Cex(t) + Dee(t)

with state vector x € R", output vector y € R”, the state transition matrix A, € R™" and
output matrix C. € R™*" where n = 2d is the system order and r is the number of outputs.
Since the input of the system is replaced by the fictive force e € R", the input influence
matrix and direct transmission matrix are of size B. € R™"*" and D, € R"™*" respectively.

However, only the system matrices A, and C, are relevant from output-only system iden-
tification, and the non-identified matrices B. and D. will only be needed in the derivation
of estimates related to the transfer matrix. From Stochastic Subspace Identification (SSI),
modal parameter estimates and subsequently the estimates gc and éc can be obtained from
output only measurements, details are given in Section 3.2.3.

5.2.2 Computation of damage indicator

The damage indicator is based on the transfer matrix difference §G(s) between reference and
damaged states. From Section 2.2, the transfer matrix of the model from (5.1) is obtained as

G(s) = R(s)De,

where

_I.

R(s) = Cu(sI — A.)™!
c c CC 0

In (5.2), recall that s is the Laplace variable in the complex plane, I is the identity matrix of

size r x 7, 0 is the zero matrix of size r x r, and T denotes the Moore-Penrose pseudoinverse.

CLA, 1] | 52)




5.2 The SDDLV approach 75

Note that R(s) can be computed from output-only system identification, e.g. using stochastic
subspace identification methods in Section 3.2, while matrices B and D cannot be identified
for the computation of G(s).

The difference between the transfer matrices in both damaged (variables with tilde) and
healthy states is 6G(s) = G(s) — G(s). Assume that damage is due to changes in stiffness
and mass is constant, then the matrices 6G(s) and 6R(s)T = R(s)T — R(s)” have the same
null space. The desired load vector v(s) is obtained from the null space of the §R(s)” from
Singular Value Decomposition (SVD)

1 0

ol n " (5.3)

oR(s)" = UV = [0y 1)

where U, %,V € C™", ¥y ~ 0 and ¥ indicates the conjugate transpose. Let ni, be the
dimension of the image U; and (r — niyy) be the dimension of the null space Va, where nijy,
depends on the kind and number of damaged elements. The load vector v(s) in the null space
of R(s)” can be chosen as any linear combination of the vectors in Vs, particularly as the
vector corresponding to the smallest singular value. Note that only output data is necessary
for the computation of an estimate of v(s). Finally, the load v(s) is applied to the FE model
of the healthy structure to compute stress field at all structural elements, stacked in vector
S(s), which yields a linear relationship and can be expressed by a matrix L,ege(s) € C*"
based on the FE model of the structure, satisfying

S(8) = Lmodel(s)v(s). (5.4)

The stress vector S(s) indicates potential damage for elements with corresponding entries in
S(s) that are close to zero. When estimated, these stresses are not exactly zero but small in
practice because of modal truncation, model errors and variance errors from measurements.

5.2.3 Stress aggregation for robustness

Due to truncation and model errors, it is recommended to compute the load vector v(s) and
the resulting stress S(s) for several s-values s, w = 1,...,k, and to aggregate results. To
minimize error, the s-values should be chosen in the vicinity of the identified poles of the
system but not too close to them [Ber10]. After identification of the system matrices in both
states, the computations of (5.3)-(5.4) are repeated for each s, to get the respective stress
vectors S(s,). For multiple s-values, a deterministic stress aggregation is obtained for each
element ¢ as

Sp =" [Si(sw)l (5.5)

In the previous works [MDBM15] (see Chapter 4, Section 4.2), this deterministic aggregation
has been replaced by a statistical aggregation, where the intrinsic uncertainty of the stress
estimation from finite measurement data is taken into account.

In the following, we address the restriction on the number of modes in the computation
of the load vector by using multiple mode sets. The resulting stress from each mode set will
be statistically aggregated for damage localization.
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5.3 Multiple mode sets for SDDLV

In practice, there may be more modes available from identification than number of sensors on
the structure. It will be meaningful to utilize this information completely from the identifi-
cation procedure. In the SDDLV [Ber10], it was not possible to use all modes in this case for
the stress computation due to the theoretical restriction n < 2r, where n = 2m is the system
order and r is the number of sensors. Note that m is the number of conjugated complex
mode pairs identified from datasets where m has to satisfy the constraint m < r.

This constraint is due to the fact that system matrix B, in (5.1) cannot be estimated from
output-only measurements for the computation of the transfer matrix. Under this constraint,
expression (5.2) is available, which allows the computation of the load vector in the null space
of 6G(s) from output-only measurements.

In order to remove the restriction m < r on the number of modes, the computation of
stress from different mode sets is investigated in the following, where the current restriction
is satisfied for the number of modes in each mode set. This allows considering more than r
modes in the analysis. By taking into account more of the identified modes, it is expected
that the information content for damage localization should increase. Load vectors and the
respective stress are computed for each mode set, using one or several s-values.

Denote M = {(Xi, i) : i = 1,...,n} the set of all identified modes. To take all these
modes into account, we propose to use subsets M;, j = 1,...,n,, containing m,; modes
each, where the condition m; < r is satisfied for each mode set, and M = U?il M;. Tt is
recommended to group modes with neighbouring frequencies together for each mode set in
order to reduce truncation errors when evaluating the respective transfer matrices associated
to each mode set. Then, the new method of this paper takes into account the identified data
from all mode sets as follows.

The modal parameters of the structure are identified from SSI using measurement data
of the healthy and damaged state. From the modal parameters corresponding to each mode
set M, the system matrices Al and €Y are assembled in the healthy and damaged states
as detailed in Section 3.2.3. Then, the computation of the load vector v/(s) is carried out
separately for each mode set, i.e. the “transfer matrix” resultant R’(s) is computed from
both states as in (5.2) and the load vector v7(s) is obtained in the null space of R’(s) from
the SVD as in (5.3). The stress vectors S7(s) = Lyodei(5)v7(s) are computed for each mode
set and s-value, together with their uncertainty. Finally, damage localization is performed
based on a joint statistical evaluation of the computed stresses.

5.4 Uncertainty propagation and covariance computation of
damage localization residuals

For the damage localization algorithm, estimates of the modal parameters are needed in the
damaged and undamaged states using SSI, detailed in Section 3.2. For each mode set, they
are the starting point of the computations of the load vectors and associated stresses for
damage localization. Their identification is subject to variance errors because of unknown
excitation, measurement noise and limited data length. The uncertainties in the estimates are
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penalizing the quality and precision of the damage localization results. For making decisions
about damaged elements of the structure, these uncertainties need to be taken into account
to decide whether stress of an element is significantly close to zero or not. In previous works
(Chapter 4, Section 4.2.2), the uncertainty of the stress vector S(s) in (5.4) was quantified
for a single mode set at one or several s-values.

In this section, the uncertainty computation of the stress vector S7(s) is derived for
different mode sets M, j = 1,...,n,, for any choice of s, and the joint evaluation of the
different stress results is described for each structural element in a statistical test.

5.4.1 Definitions of covariance computation

The definitions of covariance computation is stated in Section 3.3.1 and recalled here for the
sake of clarity. Let Xy be the covariance of vec(#), where vec(-) defines the column stacking
vectorization operator. This covariance can easily be estimated from the measurement data,
details are given in Section 3.3.1.

Let g(H) be a vector valued function of the parameter and its covariance can be obtained
with Taylor approximation as

~

9(H) = g(H) + Ty uvec(H — H) + O(||vec(H — H)|P*),
and then, it can be simplified as
cov(g(H)) = TyuSnT . (5.6)

where J, 3 = 0g(H)/Ovec(H) is the sensitivity of the function g. Since the output covari-
ances and the Hankel matrix are asymptotically Gaussian variables [Han70] (when number
of measurements is large), the statistical delta method [CB02] ensures that expression (5.6)
is asymptotically exact. The required sensitivity can be obtained analytically through a
first-order perturbation Ag of the function g, which yields

ANg = Tgnvec(AH). (5.7)

With this strategy, the covariance Y4 of an estimate of Hankel matrix H can be propagated
to any function of #H, particularly to the modal parameters and to the stress estimate S(s).

Note that some of the matrices and vectors in the derivation of the damage localization
approach are complex-valued variables. To deal with their uncertainties, define an equivalent
real-valued notation for any matrix ) as

def

QRe = %(Q)

3(Q)

Y

Q) RQ@)

R(Q) —%(Q)] 0

where R(-) and () denote the real and imaginary parts, respectively.

For multiple mode sets Mj, j = 1,...,ng, the sensitivities of the stress estimate Si(s) are
derived with respect to estimates Ag, CJ and subsequently to the Hankel matrix H in both
the damaged and healthy states. Then, the covariance of S7(s) can be obtained as in (5.6).
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5.4.2 Sensitivity of the system matrices A. and C. from subspace identifi-
cation

In this section, the covariance of the system matrices Al and CY is computed for each mode
set M, starting from the identified eigenvalues )\i ; and mode shapes go{ ,L=1,...,m;, for
each mode set. Based on the SSI approach, their perturbation is linked to the Hankel matrix
by
J o
AX 1 =J,

C

4 vec(AH),

i
c,l?
Agpg = j@{7HVeC(AH)
where the sensitivity matrices J,; 4, € C™>P and Tyiqy € C™" with h = dim(vec(H)) are

c,l? I

detailed in Section 3.3.4. The system matrices A{ and Cg are assembled from the eigenvalues
and mode shapes for each mode set M, as derived in Section 3.2.3. Then the sensitivities of
the vectorized system matrices yield accordingly
vec(AA)) = jﬁcﬂvec(AH), (5.8a)
vec(ACY) = jécﬂvec(A’H), (5.8b)

where the sensitivities J jc 4 and jéc 4 are obtained from the eigenvalue and mode shape

sensitivities 7. N M and j@{ PRl derived

%(inl,H) %(j@g’y) [ E 1
. RTy )| R(T ) 5
Tau="P o e T = & ot P = R
"(j/\il,H) \5(«7%%) F
S ) %(‘7@%]-,%) L Fmy

and the selection matrix P is obtained with the following matrices

1T 1T

B = €m;Cm;  Omym; L= Omjm; €, €m,
0 —eh, e |’ el el 0 '

mj,m; m; “m; mjom; mj,m;

5.4.3 Sensitivity of the stress vector 57(s)

For stress variance computation, the sensitivity Jp(s),4.,c.) of the matrix R(s) in (5.2) with
respect to the system matrices A, and C. was derived in Section 4.2.2.2. For each mode
set, the covariance of the matrices R(s) and R(s) are computed in the healthy and damaged
states of the structure for a chosen s-value. Now, the uncertainty of the system matrices is
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propagated to matrix R’(s) in (5.2) for both healthy and damaged states, then to the load
vector in the null space of 6R7(s)T = R7(s)T — RI(s)” and finally to the stress vector S7(s).
It holds that

) ) AAj)
AR ()T),e = T vec(A A .
vec(AR?(S)" )re jR(S)T7(AC7CC) [vec(ACg) ; (5.9a)
DV (8)re = T s(syr (VO (DTRI (5)) e, (5.9b)
ASj(s)re = (Lmodel(5))Re Avj(s)re, (5.9¢)

where the respective sensitivity matrices have been derived in detail in Section 4.2.2.2. The
sensitivity jj(s) SR(s)T of the load vector v(s) with respect to dR(s)? is computed with

[DMBM13, Proposition 4]. Combining (5.8) and (5.9), it holds
ASj(s)re = jg(s)’gR(s)T (vec(A(SR(S)T(S)))ge,
where j;(s),éR(s)T def (Lm(’dd(s))Rejg(s),éR(s)T' For a joint evaluation of the stress for multiple

mode sets, the uncertainty of the stress needs to be related to a common factor, which is the
uncertainty of the Hankel matrix. Following above expression,

J _ i j vec(AAL) i j vec(AAD)
NS (8)e = T5t).5r6)™ T () (Au.Cr) [ vec(ACH) T5(9).6R()TIR(s),(AesCe) vee(ACH)
_ 77 73 Y j j
= T509)(AuG) T (40,6 7V EAH) = Tse) (a0 T (4,00 Ve AH)
(5.10)
where
= def 7 j . def | JTain
js(s)v(A67éc) - jS(S)’JR(S)TJR(S),(AC,C’C)’ ‘7(140,06),7:[ - [ \7~' ]
CIH

def i . ) dof jALH
N jg(s)’éR(s)T‘71{3(8)7(Ac,0c)’ ‘7(]Ac,cc),H - [ 4 ] .

As the system matrices are computed on two different datasets from the damage and undam-
aged sates, hence they are statistically independent [DMBM13, Theorem. 5.

Since the computation of stress using multiple mode sets M; increases the information
content about damaged or healthy element on structure, a joint stress evaluation has been
proposed to increase the robustness of the damage localization method. The joint statistical
evaluation needs to compute the covariance of the stress results with respect to multiple mode
sets including real and imaginary parts of the stress value. Assume that the stress vector
SJ(s) is evaluated at a possibly different s-value s = s7 for each mode set M, j =1,...,n,.
After stacking the real and imaginary parts of the stress vectors, the total stress vector is
derived as

and T3, (a..c.)

St(s)e
: (5.11)
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and its uncertainty follows from (5.10) as

1 1
j AF,CC jA(‘,C[‘) H ‘751‘(51),(AC,CC)"7(£43,CC),’H
AS(s) = : vec(AH) — : vec(AH) .
j SS”S) Ac,Cc ‘7/;:,0@) 7-[ js(ssns)v(AaCc)\ZAgc,Cc),H

(5.12)
Note that vector S contains the stress information for all mode sets at all elements of the
structure.

5.5 Statistical evaluation for SDDLV (S-SDDLV) using Mul-
tiple mode sets

5.5.1 Joint statistical evaluation of stress

Following from (5.6) and (5.12), the covariance g def cov(vec(S)) of the total stress yields

- - T
1 1
‘7 1)(AL,C ‘7 Co)H jS(sl)(AL,C *7 Ce)H
Ts(sne) (A )Y (A G0 T Ts(sre) (Aot (Aot (5.13)
T
js AC,C )j(lAc,C’c),H jsl(sl),(Ac,Cc)j(lAc,cc),H
ZH .
\7 S(sms),( AC7C)‘7(TXC,CC),H j(sne AC,C)‘7&SC,C’C),H

since the datasets from reference and damaged states can be regarded as statistically inde-
pendent. The covariance expression (5.13) leads to a new statistical approach for damage
localization using multiple mode sets based on a statistical test for each element ¢ of the
structure. In this approach, all stress components corresponding to a structural element ¢
are collected in a subvector Sy of S, containing the information of all mode sets. Accordingly,
the respective parts of the covariance matrix g in (5.13) that correspond to element ¢ are
collected in ¥, such that 3; = cov(S;). Then, vector S; is tested for being zero in a hypoth-
esis test. Since an estimate of the stress vector S is asymptotically Gaussian distributed, a
joint statistical evaluation of the computed stresses is derived in a y?-test as

= SI'vts, (5.14)
for each structural element ¢. Since stress over damaged elements is zero in theory, potential
damage is located in elements t corresponding to the lowest values of x? among all elements.
5.5.2 Joint stress evaluation for different s-values

In the previous section, the computation of stress (5.11) was derived using only one Laplace
variable for each mode set, while there is a possibility to use several Laplace variables. The
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computation of stress S (S{U) can be easily generalized for several s-values for each mode set
M, denoted by si,, where w =1, ..., k7 and k7 is the number of s-values used for mode set
M. After stacking the real and imaginary parts of the stress vectors for multiple s-values
and mode sets, the joint stress vector writes analogously as

S = : : (5.15)
57 (51 )re

Sns( /{"S)

re |

Then covariance of the stress (5.15) with respect to different s-values can be derived together
with (5.13) for mode sets M, j =1,...,n,, as

~ ; . T
1 1 1 1
‘7 S(sh),( AC,CC)j(AC,C’C),’l:l js@%),(&,@ﬂ(&,&),ﬁ
1 1 71 1
‘75(3 ', (AC,CC)j(AC,C‘C),?:L jS(sil),(Ac,éc)%Ac,C’c),ﬂ
Ys(s) = ; ) : +
Tgtemm) (in jAZO)H Tstare) (e jffc,cw
| Tstmniocndticonl  [Tstmincndlicoml
- - - - (5.16)
1 1 1 1
~7 )(AC,C (400 jS(s}),(AC,CC)‘ZAc,CC),H
1 1 1
Ts(1 )40 Taeco) 2t T s 1A (Ao
. EH .
j‘gl(ss?s)v(ACch)‘j(as&CC)vH jg(s ) (Amc )‘7(Acacc) H
| TSm0 Ae0) T (A )1 S5, (AeCe) T (A Co) 1|

Analogously to the previous section, the covariance expression (5.16) leads to a new statistical
aggregation scheme for multiple mode sets using several s-values. For each structural element
t, the corresponding stress subvector S; of S in (5.15) is selected together with its covariance
components 3; of ¥ in (5.16). The stress vector S; is tested for being zero in a statistical
hypothesis test as in (5.14) for each structural element ¢.
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5.6 Conclusions

In this chapter, the damage localization with the SDDLV approach has been extended con-
sidering multiple mode sets based on a joint statistical evaluation that takes into account
the information from all identified modes of the structure. The stress computation using
multiple mode sets increases the information content about the damaged or non-damaged
elements of the structure, compared to evaluation from a limited number of modes due to a
previous constraint of the approach on the number of modes. With the new approach, this
constraint is lifted, which allows damage localization with fewer sensors at the same time.
While the stress evaluation for each mode set is naturally subject to modal truncation errors
that depend on the choice of the Laplace variable s, the joint statistical evaluation for several
mode sets seems to mitigate these errors.

The method has been successfully applied to vibration measurements on both numerical
and real applications in Chapter 9 and 13 respectively, where damage was correctly localized

with a small number of sensors, while the previous approach with a limited number of modes
failed.
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Chapter 6

Statistical based decision making
for damage localization with
influence lines

6.1 Introduction

This Chapter presents the statistical evaluation with influence lines damage location (ILDL)
approach which is complementary to the SDDLV approach. In ILDL approach, the image
of the flexibility matrix between reference and damaged states of a structure is a basis for
the influence line (IL) of the stress resultants at damaged locations. Damage is thus located
at the elements where the subspace angle between image of the flexibility matrix and the
influence line of the FE model of the structure is zero or small in practice [Berl4]. Since
the image and the null space are complementary subspaces, the information on the damage
location in the null space is also contained in the image of dG. In theory, the null space and
the image contain the same complementary information from §G, though in practice only an
estimate of this matrix is available.

Since an estimate of the image is computed from noisy measurement data, it is naturally
afflicted with uncertainties. Hence, a statistical evaluation of the subspace angle is necessary
for making a decision about damaged or healthy elements. For such an evaluation, the modal
parameter covariance is propagated to the obtained subspace angles in a sensitivity-based
approach. Finally, all computed values corresponding to an element are being tested for
damage in a hypothesis test where the computed subspace angles are evaluated with their
individual covariance.

In previous works [Ber14], empirical thresholds are used in the ILDL approach (at s = 0)
for deciding at which elements damage is located (i.e. where subspace angles are close to
zero). In addition [MDBM13], the ILDL approach was extended in a statistical approach
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for s = 0, where the uncertainty quantification was tempted on the damage indicator, the
subspace angle. However, it can be shown that it has a non-Gaussian distribution at the
damaged element, while the image of G is asymptotically Gaussian and thus its theoretical
validation is questionable due to this issue. This motivates a revision of the approach and
the following extension of the ILDL approach.

In this chapter, a statistical framework is developed and demonstrated in a numerical
application, where its advantages are shown comparing to a deterministic ILDL evaluation
for damage localization. This Chapter is organized as follows. In Section 6.2, the ILDL
approach is presented for damage localization on structures from output-only measurements
data. In Section 6.2.2, the computation of the ILDL approach is generalized to s # 0 and
the difficulties for the distribution of the damage indicator is described in Section 6.2.3, and
then the damage indicator of the ILDL is reconsidered to allow an adequate uncertainty
quantification, before deriving its statistical evaluation of damage localization in Section 6.3.
Finally, the statistical evaluation of the ILDL approach has been demonstrated on a numerical
application in Chapter 10.

6.2 The ILDL approach

The ILDL approach is described in details in Section 2.3 (Chapter 2). In the following,
the modeling of the structure, the deterministic computation of the damage localization
residuals, the generalization of the ILDL approach for arbitrary s-value and the difficulties
of the damage localization indicator are summarized shortly, before deriving its statistical
evaluation in Section 6.3.

6.2.1 Damage indicator with influence lines

The characteristics of a mechanical structure (2.1) and the corresponding continuous-time
state-space model is recalled from (2.2)

{ (t) = Aca(t) + Beelt) (6.1)
y(t) = Cex(t) + Dee(t)

with state vector z € R™, output vector y € R", the state transition matrix A. € R™*" and
output matrix C, € R™*", where n = 2d is the system order and r is the number of outputs.
Since the input of the system is replaced by the fictive force e € R", the input influence
matrix and direct transmission matrix are of size B, € R™" and D, € R"*" respectively.
From Section 2.3.1, the transfer matrix G(s) of system is obtained at s = 0 with [Berl4]

1
0 e

f
C:A.

G(0) = R(0)D., where R(0) = C.(sI —A.)™" -

for the restriction of the system order n < 2r. Note that R(0) can be computed from output-
only system identification, e.g. using stochastic subspace identification methods in Section
3.2, while matrices B and D cannot be identified for the computation of G(0).
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The difference in the transfer matrices between damaged (variables with tilde) and ref-
erence state (variables without tilde) is 6G(0) = G(0) — G(0). Since the direct transmission
matrix is only a function of the mass and invariant for damage due to stiffness changes, the
6D, = D, — D, = 0 due to no mass change and D, being invertible [Ber10], it follows that
6G(0) = SR(0)D (with §R(0) = R(0) — R(0)). Hence, the image of §G(0) is the same as
the image of JR(0). The 0R(0) is computed from the output only data in the damage and
reference states. After Singular Value Decomposition (SVD) of §R(0), it follows

1 0

oyl n n) (63)

5R(0) =USVT = [0y 1)

where U, 3,V € C"" and ¥2 ~ 0 or closely zero in practice. Let ¢ be the rank of the
SR(0) € R™" and Uy = [uq,...us] € R™* be the image of R in the SVD. Note that U;
correspond to the nonzero singular values X1, and Us corresponds to zero singular values 3s.

For the ILDL approach, the influence line of each stress resultant S is evaluated at the
sensor coordinates. Such way, to apply the respective unit loads at the sensor coordinates to
get the influence for an element j that corresponds to an entry S; in vector S. It is noted
that the row vector ZJT of Lyoder (see Section 2.2.3) is the influence line (IL) of the stress
resultant for element j, which is denoted by the column vector /;.

For damage localization, the ILDL approach consists of checking if the IL /; is contained
in the subspace U;. Note that I; and U; are computed based on FE model of the reference
state and output-only measurements data, respectively. The quantity used in [Berl4] that
measures how well /; fits into the image U; is the subspace angle

(ot
¢j = cos < ] ) (6.4)

where ¢; = 0 indicates the perfect fit. If j is the damaged element, ¢; will be close to zero.
Therefore, damage is located at the elements where the subspace angle ¢; between image Uy
of the flexibility matrix R and the influence line /; of the FE model of the reference structure
is zero or small in practice.

For uncertainty quantification, the subspace angle is not derivable at ¢; = 0. Then the
following damage indicator was proposed in [Marl3, MDBM13] as

oy 6.5
7T (0:)
where 7; = 1 indicates the perfect fit for the damage localization.

In the following, first, the computation of the ILDL approach is generalized for any
arbitrary s-value (s # 0) in subsection 6.2.2 and the difficulties for the distribution of the
damage indicator are described in subsection 6.2.3, and finally the damage indicator ~;(s) of
the ILDL is reconsidered to allow an adequate uncertainty quantification, before deriving its
statistical evaluation for damage localization.
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6.2.2 Generalization to arbitrary s

As recalled in the previous section, the ILDL approach has been derived for s = 0 from where
the transfer matrix difference (6.3) is recalled as follows

1 0

- [Vl VQ}H. (6.6)

SR(0) = [0 1)

For damage localization, the ILDL approach consists of checking if the IL [; is contained in
the subspace Uy. This is the case, if and only if

1, = U1 (6.7)

The computation above can also be generalized to s # 0 from (6.6) by showing that the
SDDLV [Ber10], which is defined for arbitrary s, yields an equivalent criterion as (6.7) for the
damaged elements. Following [Ber10], for any arbitrary s-value, the transfer matrix difference
is recalled here from (2.21)

6R(s)T = USVT = |0, 1)

R 1 R

where Ul =V, f]g =V, f/l = U; and ‘72 = Uy in comparison to (6.6), but now for arbitrary
s. In SDDLV approach, damage locating vector in the null space of 5R(3)T is applied to
the finite element (FE) model of the structure for the computation of a stress field over the

structure. For arbitrary s, matrix L;,o4e; is complex-valued, and the influence lines are found
H
i

'

in its rows as Lyodel = . A damaged element j yields zero stress

and follows 3 )
Va(s)Vy (s)l5(s) = 0.

Since I = fflf/'lH + VQVQH , the above expression can be replaced as
(I = Vi(s)Vi(s)M)l(s) = 0.
Replacing now U; = Vi, it follows

(I —hU)i(s) =0 (6.9a)
or, 1;(s) = U1U1;(s) (6.9b)

This expression is purely based on the SDDLV properties for a damaged element j, holding
for arbitrary s. It also means that the influence line of a damaged element j is contained in
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the image of the transfer matrix difference for arbitrary s, analogous to ILDL property (6.7)
that was previously derived for s = 0. In such a way, the damage localization with the ILDL
approach is generalized for any arbitrary choice of s-value, where the IL lies on the image Uy
in the SVD.

In previous works [MDBM13], a statistical evaluation of ~;(s) was done (for s = 0). The
range of ; is bounded between 0 < 7; < 1, and in theory 7; = 1 at the damaged element,
at the border of the range. While U is asymptotically Gaussian, the distribution of v; is
thus clearly non-Gaussian. In this context, the uncertainty quantification was tempted in
[MDBM13] but its theoretical validation is questionable due to this issue. This motivates the
following extension of the ILDL approach.

6.2.3 Difficulties for the distribution of damage indicator ~;(s)

With U; being an asymptotically Gaussian estimate, the following problems are encountered
to characterize the distribution of damage indicator, ~;:

e The range of v; (2.45) is bounded between 0 < 7; < 1, and in theory v; = 1 at the
damaged element, at the border of the range. While U; is asymptotically Gaussian,
the distribution of «; is thus clearly non-Gaussian. In this context, the uncertainty
quantification was tempted in [MDBM13] but its theoretical validation is questionable
due to this issue.

e Even for the simplest case when u has only one column (a Gaussian vector), the distri-
bution of v; is difficult to handle. There are expressions for the distribution for the case
where u is centered and its covariance is of shape 01, leading to a uniform distribution
on the sphere, which is not our case. In this case, the distribution of v; is known when
u has two components (i.e. 2 sensors) - “projected normal distribution” [MJ00]. The
probability density function (pdf) of this distribution is already quite complicated, and
a more general case has not been found.

Due to this issue, we reconsider the damage indicator of the ILDL to allow an adequate
uncertainty quantification. We can reformulate in the following way:

For the case when U; has more than one column, it is checked that /; is a linear combination
of the columns of U; with the subspace angle:

WL
=2 o o=
i J

If this relation is satisfied, a? = 1 which is actually the same as 7;. This is what we want
to test with the subspace angle, (y; = 1). Then, we could equivalently test

> 8- i -
Hl H 141l

But the same problems for characterizing the distribution of this residual remain: one of the

Hy.
terms Tﬁjlﬁ may be at the border of the range between —1 and 1, the distribution of these
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scalar products are difficult to characterize and the dependence between the terms containing
u;’s is even more difficult. So, the above equation can be simplified as

I; = U U1

as shown in (6.9). Since U UM projects into the subspace spanned by Uy, we indeed check
with this equation if /; lies in the subspace spanned by U;. We hence can test

(I - thuihi; =o.

This expression is asymptotically Gaussian and it is not at a border for the damaged element
at 0. The following two cases are considered

Case-1:

For rank(0R) =t = 1, to make a test that checks directly if u; = i“;—f_'.
J

Case-2:

For general case, consider an arbitrary rank of dR. Then make a such test that checks
(I - U =0.

In the following Section 6.3, first the uncertainty quantification of the respective damage
indicator is computed and then, a statistical damage localization approach has been proposed.

6.3 Uncertainty computation of damage localization residuals

For the damage localization approach, estimates of the modal parameters are obtained in the
damaged and undamaged states using SSI, detailed in Section 3.2. Due to unknown excita-
tion, measurement noise and limited data length, their identification is subject to variance
errors. The uncertainties in the estimates are penalizing the quality and precision of the
damage localization results. For making decisions about damaged elements of the structure,
these uncertainties need to be taken into account to decide whether the damaged element
or not. Therefore, the uncertainty of the estimation of the system matrix is propagated to
the uncertainty of the damage localization residuals that derives based on a sensitivity-based
approach.

Note that the derivation of the covariance computation has already stated in Section 3.3.1
and recalled here for simplicity. Let Af be a first-order perturbation of function f(H), then
it follows

ANf = Tpnvec(AH), cov(f(H)) = jf,HiHj;;H

Note that Jry = Of(H)/Ovec(H) is the sensitivity of f with respect to H in the above
derivation.

The following notation and properties will be used. ® denotes the Kronecker product,
having the property vec(AXB) = (BT ® A)vec(X). I, denotes the identity matrix of size
axa, and O, denotes the zero matrix of size axb. €} € R* denotes the j-th unit vector (being
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column j of I,). The permutation matrix P, def

[Ia®el{ Ia®eg Ia®eg € Rabxab
is defined with the property

vec(XT) = P, vec(X) (6.10)

for any matrix X € R%*®. Note that some of the matrices are complex-valued variables in
0R(s) in section 6.3.1. To deal with uncertainties of the complex-valued matrices, we define
an equivalent real-valued notation for any matrix @Q as follows

of IR(Q) —S(Q) der |R(Q)
Qre & , Qre = 6.11
s RQ 3(Q) (o1
With this notation, it holds
(Ab)re - ARebre7 (AHb)re = (ARe)Tbre (612)

for matrix A € C**? and vector b € Cb. Details are given in Chapter 3.

6.3.1 Covariance of the system matrices and /R

The identification of the system matrix has computed from datasets using subspace identifi-
cation procedure, details are given in Section 3.2.3. The covariance of the identified system
matrices for the damage and undamaged states are derived as follows

T T
Sac, = Ta. 1 S TAeH i = Ji.n Ji.a (6.13)
Jc.H Jc.m o Je.m Je. 7

In thw follgwing section, for real and complex cases, the covariance of the transfer matrices
R(s) and R(s) are computed in the healthy and damaged states for a chosen s-value, and
details are stated in Section 4.2.2.2.

Real case: s =0, R € R"™*"
Consider the real case where 0R € R"™". For healthy state, the sensitivity of R(s) € R™*"
with respect to the system matrix A. and C. is derived as follows

vec(AA,)

vee(AC,) | (6.14)

vec(AR(s)) = TR(s), Ac,Ce [

with Trs),a.,0. = [TRs),4. TR(s),c.] € Rr*x(n*+n7) where all details are derived in Section

4.2.2.2. Similarly, for damaged case, the sensitivity of R(s) with respect to the system matrix
A. and C. is derived as

, (6.15)
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where Jg 4 6 = [J 7). A Ths) el € R7*x(n*+n7) - The system matrices are computed
from the damage and undamaged sates on different independent measurements. So, combin-
ing this results with (6.3), the following covariance expression of JR(s) is obtained as

Ssa(s) = cov(OR(5)) = Tn), a0 CeEaeCeT sy Ao T Tit(s), 400 oo Ty Ao (6-16)

Complex case: dR € C"™*"
Consider the complex case where 6 R € C"*". For healthy state, the sensitivity of R(s) € C"™*"
with respect to the system matrix A, and C. is derived as follows

vec(AA,)

’UGC(AR(S)) = ‘71%(5)7(‘46’06) U@C(AC )

(6.17)

with jR (AeiCo) [j}%(s) A J}%(S) Cc] € Crix(m?+nr) - After stacking the real and imaginary
parts of vec(AR( )), it follows from (6.11)

vec(AA.)

vec(AC,) (6.18)

VGC(AR<3>)re = jR(S),(AuCC)

where

TR(s),(Ac,Ce) =

%(\.71%(3),140) %(jfcz(s),cc)]
S$(Tkea) Sk )

Similarly, for damaged case, the sensitivity of R(s) with respect to the system matrix A, and
C. is derived as
vec(AA,)

vec(AR(s)) = T vee(AC,)

R(s)(Ae,Co) (6.19)

where j ¢ ), (AesCe) [J < (s, Ae j < ] € Crix(n*+nr) - After stacking the real and imaginary
parts of vec(A]:E( )), then it follows from (6.11)

) AA,
VGC(AR(S))re = jR(s),(Améc) YIZZEAC' ; (620)
where
. o (jc A) %(jcs)c)
R(3)7(A,;7C(;) (jc A ) %(jc S) Cc)

Since the system matrices are computed from the damage and undamaged states on different
statistically independent measurements, the covariance of JR(s) follows with (6.3)

Ssr(s) = COV(OR(5)) = Tn(s) (40,00 PAcCe (TR(5), (4000 T T () (erC)Z b (Tie), (Aesii))
(6.21)
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6.4 Case-1: Statistical tests for rank 1

In this case, u; being the first left singular vectors constitutes the image of the transfer
matrix 0R. The Influence Line (IL) /; is computed from the Finite Element(FE) model of
the structure. In the ILDL it is checked if the IL I; lies in the image of 0R, i.e. in the span
of w1 in the rank 1-case. Estimates of u; vectors are random variables. The uncertainties
in the data are afflicted to the damage localization results. To distinguish between random
variables that are estimated from data and their expected values, we use the notation with
"7 for the estimates.

In the following, the uncertainty expressions are first derived for the case when u; is real-
valued, i.e. for the case when s = 0. In a second step, the results are generalized to the case
where u1 is complex-valued for arbitrary s.

6.4.1 Real case, rank 1

Consider the case s = 0 where 6R € R" " is a rank 1 matrix. The SVD of its estimates

-l o] 79[

In this case, we can check directly if the influence line [; corresponds to the image u; of the
change in flexibility. Since the singular vectors are defined up to a sign change, we need to

check if
def .

Vi— = U1 = Li/|ll;][ =0, (6.22)
or if ot
v+ = /|1 =0, (6.23)

for each element j.
In the following, we start with an analysis of the statistical properties of ;.

6.4.1.1 Statistical properties of image estimate

The asymptotic covariance associated to d R yields
VNvec(SR — 6R) - N(0, Ssr),

where 6 R is estimated on N data samples. Consider an estimate 4 of u;. Application of the
delta method yields with Section 3.3

VN (i —up) -5 N(0,2y,), (6.24)
where, since JR has rank 1, [LLMOS]
Zul = ju1,6R E(;R j’uji,éR € RTXT7 jul,éR = 0'1_11){ & (Ir — ululT) S ]RTXTZ.

Proposition 6.1 The rank of Jy, sr is v — 1, and it holds in particular ulTjuM;R =0.
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Proof: 1t holds
Juror = o7 0] @ U] = Us(oy o] @ UF), (6.25)

thus ul Ty, sr = 0 and rank(Jy, sr) <7 — 1.
On the other side, let w be a vector in the left null space of 7, sg, thus

w! (v @ (I, —uul)) = vl @ (w! — wluul) =0.

Since vy # 0 it follows
w = uyud w,

and plugging in w = au; + Us for some scalar a and vector 3 € R"™1, it follows w = au;
since u1 and Uy are orthogonal. Hence, u; is the only vector in the left null space of 7, sg,
so the rank of 7, sg is r — 1. O

Corollary 6.2 The image vector uy s in the null space of ¥y, , as well as in the null space
f
of X, -

Proof: Since ¥, = juh(gREgRjuThéR, the relation ¥, ,u; = 0 follows directly from
Proposition 6.1.
It follows with (6.25)

Y, = Us(o7 0! @ UT)Ssr(o7 vy @ Up)UY, (6.26)
and since Us has orthogonal columns (and U] orthogonal rows),
St = Us (07 "of @ UD)Ssp(or v @ Un)) UF, (6.27)

thus Ellul =0.
Ll

Since Jy, sr is not full row rank, ¥, is rank deficient. Assuming that ¥ is positive
definite and thus full rank, the rank of 3, is » — 1, following Proposition 6.1. Hence, the
normal distribution (6.24) is degenerate and special care needs to be taken for its evaluation
in a hypothesis test in the following sections. Two versions are presented in the following.
First, the degenerate distribution is directly taken into account in evaluating (6.22) and (6.23),
and second, the degenerate distribution of these vectors is circumvented by comparing their
elements separately.

6.4.1.2 Version 1: residual vectors with degenerate normal distribution for Sta-
tistical ILDL (R1v-S-ILDL)

Based on (6.22) and (6.23), define the asymptotical Gaussian residuals from the estimates of
Ui,

G- VNG — 1/111;1]) (6.28)
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and e
G VN G+ 15/ 111 (6.29)

for each element j.
If j is the damaged element, /; is in the image of dR. Thus, either (;_ or (j; converge to

a Gaussian variable with zero mean in this case, yielding either
d
G- — N(0,3y,) (6.30)

or

Civ —5 N(0,30,), (6.31)

following from (6.24).
If j is not the damaged element, the CLT’s

VN (in = 1/l = (un = 1/ |[L]]) ~2 N0, S, (6.32)

and
VN (a1 + L/l — (ua + L/ 11511)) =5 N (0,2,) (6.33)

hold, so the respective residuals can be approximated for a sufficiently large, fixed N by
G- RN (Hj— Xuy), (6.34)
where y1;— = v/N(u1 —1;/||l;]]), and
G+ RN (145 Xy ), (6.35)

where 1 = VN (u1 +1/||L;]])-

Based on distributions (6.30)—(6.31) and (6.34)—(6.35), it can be tested if element j is
damaged or not with a generalized likelihood ratio test. Since ¥, is rank deficient, the
respective test statistics write as

tio =2 G, (6.36)

and
tir =2 Gy (6.37)

respectively. With [RM71, Thm. 7.3] it follows that ¢;_ and t;; are asymptotically x>
distributed with rank(%,,) = r — 1 degrees of freedom.

Consider now the non-centrality parameter of ¢;_. Both cases u; = [;/||/;|| and u; #
1;/]|1;]] can be considered at the same time for the evaluation of the non-centrality parameter,
since the mean of (6.34) for the latter case is indeed zero for uy = 1;/||l5||, as in (6.30).
Following [RM71, Thm. 7.3], the non-centrality parameter of ¢;_ is §;_ = ,u;{ ELluj,, where
p1 = V' N(uy — 1;/||l;]]) is the mean of the underlying Gaussian vector. From Corollary 6.2,
Ellul =0, it follows

N

8 =
SRR

DN (6.38)
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Note that in the case, where j is actually the damaged element, either u; = [;/||l;|| or
w1 = —1;/||l;]| holds, and since Sl u1 = 0 it follows ELIZJ- = 0 in both cases. Hence, 0, =0
for either case when j is the damaged element.

Analogously, consider the non-centrality parameter of ¢;;. Both cases u; = —[;/||l;|| and

u1 # —1;/]|l;]| can be considered at the same time, since the mean of (6.35) for the latter case
is indeed zero for u; = —1;/||l][, as in (6.31). Following [RM71, Thm. 7.3], the non-centrality
parameter of t;y is d;1 = ,LLJTJFZLl,ujJr, where ;. = V/N(ui + 1;/||l;||) is the mean of the
underlying Gaussian vector. From Corollary 6.2 it follows

N .
0jp = Hle?lj I (6.39)
Note that when j is actually the damaged element and either u; = I;/||l;]| or u1 = —1;/||1;]|

holds, it follows d;4+ = 0 for either case.

From these properties, specifically from (6.38) and (6.39), it follows that both test statis-
tics (6.36) and (6.37) are actually equivalent. Their non-centrality parameter d;_ = §;4 is
zero when j is the damaged element, and

def N
R A [

EDNNA (6.40)

when j is undamaged.

Remark 6.3 Consistent estimates of the tests are achieved by replacing ¥, by its estimate,
T & T S
tj— = ijzllfj—a ti+ = Cj+zllcj‘+-

When i‘ul is obtained from the same realization ty that is used in the computation of the
residuals, it actually holds t;— = t;4 due to Corollary 6.2, besides the asymptotic equivalence
of both tests. In this case, the test variables boil down to

N T/\
tj=tjp = ==l 5 1.
1451

Note that this is still a random variable due to the random nature of estimate iul, and is
asymptotically x? distributed as described above.

6.4.1.3 Version 2: element-wise tests of residual vector for Statistical ILDL
(R1le-S-ILDL)

In this section, the damage localization indicators are derived for real case for rank 1, to

check if ﬁ =y or HTJH = —uy element-wise.
J J
As the singular vectors are defined up to a sign change, the following expression is recalled
from (6.22)-(6.23) as

def
Vi = ur =1/ |[1]]



6.4 Case-1: Statistical tests for rank 1 95

and et
(S}
Vit = ur + i/ [[1]]
for each element j. In the following, version-1 is modified separately as an element-wise tests
of the residual vector, such as

V-
Vj—
and
1
7;.+ = S (6.42)
Vi+

In damaged case, the expected values of all these components are zero for one of both vectors.
The deterministic evaluation of this indicator is proposed as follows. We consider the max-
imum value of {7j_} and {7} } for the positive and negative'direction Qf the image vectors
u1, then take the minimum value between the maximum of {7;_} and {~}, } for each element
j.

So, compute

Y = max{yj_, -+, 75-} and A = maz{yjg, - 54
and then take the least value between them as
damage indicator = min{~;2*", 771" }. (6.43)

Statistical tests for damage indicator

Following (6.2), all components in (}_ (6.28) and CJZ:+ (6.29), i = 1---r corresponding to an
element j are evaluated in a statistical test separately with (6.3)

to=¢o S, = (G5, (6.44)
and

it TSyt s et 253 (6.45)

j+ = Cj+ u1<j+ = (<j+) / nE :

where flzl is ¢-th diagonal element of iul. Similar to previous expression (6.43), consider
the maximum value of t;@ and t; , for each element j respectively since v, € R™! and
Yi+ € RTXla

e = max{t}f, et}
and

mar __ 1 r
tj+ - max{tj-i—v T 7tj+}
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and then take the least value between them as a damage indicator for
statistical test = min{t]™*" ¢7\""}. (6.46)

In the damaged case, the expected values of all components of either ;_ or 7, are zero for
one of both vectors, so we pick-out the maximum value for each of y2-values. To choose in
the worst case scenarios for each of those vectors which the damaged case should be zero,
and we then take the minimal value from them (2% and #1%%).

6.4.2 Complex case, rank 1

The results of the previous section are now generalized to the case where s is arbitrary and
uq is complex-valued. Consider the case where R € C"™*" is a rank 1 matrix, with SVD

sn=[u ] |70 |,

Since u1 is a complex-valued vector from the SVD of § R, it is defined up to some phase angle
¢. Thus, testing if influence line /; corresponds to the estimated image 1, we need to check
if

v S we? — /|l = 0 (6.47)

for any element j and phase angle ¢.

6.4.2.1 Statistical properties of image estimate

The asymptotic covariance associated to an estimate of R yields
VNvec(5R — 6R)e 5 N(0, Sop)

where S55 € R2*2  Since R has rank 1, it follows from [LLMOS]

Auy = Ty, spvec(AOR), T sr = o vl @ (I, —uudl) € crxr’
and thus, in real terms,

A(un)re = Juy s8Vec(D0R)res  Tursr = (TS, sr)Re € RZ*7,
Consider an estimate 4 of u;. Application of the delta method yields, hence,
VN (i1 — u1)re 5 N(0,80y)y Suy = Juy 68S5rT L 57 (6.48)

Analogous to Proposition 6.1 and Corollary 6.2, it follows:

Proposition 6.4 The rank of Ty or 18T — 1, and it holds in particular ull 1.0

equivalently (u1)LJu, sr = 0. The image vector (uy)re is in the null space of Sy, , as well as

r =0 and

in the null space of ELI.
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Hence, the normal distribution (6.48) is degenerate and special care needs to be taken
for its evaluation in a hypothesis test in the following sections, where in addition the non-
uniqueness due to any phase angle ¢ needs to be considered. Analogously, two versions are
presented in the following. First, the degenerate distribution is directly taken into account
in evaluating (6.47), and second, the degenerate distribution of these vectors is circumvented
by comparing their elements separately.

6.4.2.2 Version 1: residual vectors with degenerate normal distribution for Sta-
tistical ILDL (R1v-S-ILDL)

Based on (6.47), define the asymptotical real-valued Gaussian residual from the estimate of

uy,
def

G E VN1 — L/l )re (6.49)
for any ¢. Analogously to the results in (6.30), (6.32), (6.34) and (6.36), it follows that the
test statistic

def
t; = ¢ INe (6.50)

is x? distributed. It follows with Proposition 6.4 that its non-centrality parameter is

N
0j = ﬁ(lﬁZ;ELl(lj)re,
114511

independently of ¢. Hence, the residual (6.49) can be written with any phase angle ¢, in
particular with ¢ = 0, since the resulting test statistic (6.50) is independent from it.

Analogously to Remark 6.3, when estimating the covariance ¥,, with the estimate 1
that is also used in the test statistic, its computation boils down to

N ~
tj = Hl"g(l])z;zju(l])re (651)
J

due to Proposition 6.4.

6.4.2.3 Version 2: element-wise tests of residual vector for Statistical ILDL
(R1le-S-ILDL)

In this case, the following expression is recalled from (6.47) to check if

def ;
v = we? = 1i/||l;|] =0

for any element j and phase angle ¢. In the following, version 1 is modified separately as an
element-wise tests of the residual vector, such as
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In damaged case, the expected values of all these components are zero for the appropriately
chosen phase angle ¢. To ensure the correct phase angle in the damaged case, so that
v; can actually become zero, ¢ needs to be chosen such that I;/||l;]| = uie'®. It follows
utll;/||l;]] = €, so ¢ can be computed as
H H
¢ = arctan(I(uy L;/[[15]])/R(ui 1 /11L11))-
For a deterministic evaluation, we consider the maximum value of 'yji for each element j.
Since v; € R"*1, consider the maximum value of 7;- for each element j respectively,
max

W =max{yj, o 5k (6.52)

Statistical tests for damage indicator

Following (6.2), all components in C; (6.49), i = 1---r corresponding to an element j are
evaluated in a statistical test with (6.50)

th =S = (/S (6.53)

where ﬁzl is +-th diagonal element of f]ul. Similar to previous expression (6.52), consider the

maximum value of t;- for each element j as a statistical test since 7; € R,
1
0 = maz{t;, -, t;} (6.54)

This statistical expression is meaningful, since in the damaged case the expected values of
all components of 7; are zero, so we pick-out the maximum value for each of x2-values. To
choose in the worst case scenarios for each of those vectors which the damaged case should
be zero.

6.5 Case-2: Arbitrary rank case with damage indicator, ~; =
(I — U,U,™)i; for Statistical ILDL (R*-S-ILDL)

For general case, the damage localization indicator can be defined as follows
v = (I = U U™, (6.55)

recall that U; is the image of the JR(s) and [; is the Influence Line (IL) computed from the
Finite Element (FE) model of the structure.
For real case, the damage indicator (6.55) can be expressed as

Vi = Lry — UlUlT)lj> (6.56)

where [ is the identity matrix of size r x r, Uy € R"*! is the image of the §R(0) € R"™*" and
lj e R™<1,

Let ¢t be the rank of dR(s). In the following sections, the uncertainty propagation to
the damage localization results (6.56) are computed for the respective real U; € R™*! and
complex matrices U; € C"*¢.
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6.5.1 Real case

Consider the real case where 6 R € R™*". Now, the covariance propagation to U7 in the image
of R(s) € R™*" is computed based on the the following expression

vec(AUL) = Jy,vec(AR(s)), (6.57)
where the sensitivity Ji, is derived in Proposition 2.

Proposition 6.5 For real case, consider R(s) € R"™™". Let o; > 0, u; and v; be the i-th
singular value, left and right singular vector of the real matriz §R(s) € R"*". The sensitivity
of Uy in the image of 6R(s) € R"™™" is derived with [DMBM13, Lemma.6]

I (=0R)/oi]

(—6RT)/o; I,

UiT ® (Ir — uiuiT)

Ju, = 1/0;
. / (w;T @ (I, — viv; 1)) Py

: (6.58)

where I, is identity matriz of size r x r and Py, is the permutation matriz defined in (6.10).

Applying the product rule in (6.56), a first-order perturbation AU; is propagated to a
perturbation, v;, yields

Av; = vee(=UL AU 1; — IAUTUTL).

With the property of vec(AX B) = (BT ® A)vec(X) for any matrix X, the above expression
can be written as

Avj = (—le ® Ul)vec(AUlT) — ((Ulle)T ® Ivec(AU)

From (6.10), it follows that vec(AU;T) = P,.(vec(AU;)). Hence, the covariance of y; can be
formulated as follows

Ay = Ty, (vec(Aly)). (6.59)

with sensitivity J,, = (—le @ U1)Prt — leUl ® I . The system matrices are obtained
on different statistically independent measurements from healthy and damaged states. So,
combining this results with (6.16), the following covariance expression yields

Sy, = cov(5) = T, Tvr Tr(s) BaeCe Ty Tt Ty + T Ton T X d,, 60T ey T Ty - (6.60)

Statistical evaluation of X?—test for v, :

All components in (6.56) corresponding to an element j are being tested for a hypothesis test
where all computed values depends on their covariance. For each element j, a scaler X? test
is derived as

X =551 (6.61)

Finally, if tested element is being 0 then it’s potentially damaged element.
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6.5.2 Complex case

For complex case, let U; € C"™! is a singular vector in the image of JR(s) € C™" with
t = rank(0R(s)). Then damage localization indicator (6.55) can be rewritten together with
(6.11) as follows

’y]C‘re = (121”,27‘ - U]-ReUlReT)ljre (662)

In order to compute, the variance of damage localization residual, the covariance of the image
u are needed, which is a singular vector in the image of JR(s) € C™*". After stacking the
real and imaginary parts of vec(AJdR), it follows from (6.10) and (6.11)

vec(AUty,, ) = Juy, (vec(AGR(S)))re- (6.63)

Where the sensitivity leR is derived in Proposition 3.

Proposition 6.6 For complex case, 0R(s) € C"™*". Let o; > 0, u; and v; be the i-th singular
value, left and right singular vector of complex matrix OR € C™*" for rank t. After SVD of
R,

SR(s)=UxVT = Zazuz = Z i(e%u;) (e %) . (6.64)
=1
Let H be the Hermitian and ¢; be chosen such that the imaginary part of the first entry
of €9:0; and define the respective singular vectors by u; = e%iu; and v; = €%v;. Where
w; = [ug,...us] € C™t be the image of SR(s) € C™" in the SVD. The sensitivity of Uy,. are
derived for complex case as follows with [DMBM13, Lemma.7]

Ju,, = Bfc, (6.65)
Where BT = b (Z0B)Re/ o1 (Lar — E§:ﬂ 3r41)s
(—0RT)Re/0i) Iy ’

I

C d_ef 1/ [ (viT ® Ir)Re - (ui)re(('ﬁi & Ui)re)T
((uzT & Ir)Re - ('Ui)re((ﬂi & Ui)re)T)Pl

Py def Prr 0
0 737‘,1”
def IQrt
e
leRe = It ® O’I",T _IT‘,T‘ lere .
r,r Or,r

Applying the product rule in (6.55), a first-order perturbation of vec(AUj,) is propagated
to a perturbation on Av;,, yields

Ay, = vee(=UiL AULL 1, — IAULT ULT 15).
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With the property of vec(AX B) = (BT @ A)vec(X) for any matrix X, the above expression
can be written as

T
A, = (—ljreT ® UlRe)vec(AUlReT) — ((UlRelere) ® Ivec(AU1,,)

From (6.10), it follows that vec(AU;, T) = Pay ot (vec(AUy,,)). Then, the covariance of 7j,
can be simplified as

A’ere = jerC(UeC(AUlRe))a (666)

with T, = (—ljreT Q@ Uiy, ) Pora2t — ljmTUlRe ® Iop 2, Combining this results with (6.21), the
following covariance expression is obtained

_ c N _ c c T +T T
ZFY; - COU(’ere) - j’yjre leRe jR(S),AC,CCEAmCC(jR(S),AC,Cc) leRe ‘7’7te

. (6.67)
+‘7'7jre le Re jR(S),Ac,CN’C ZAQC’C (jR($)1AC7éC) le Re jryj

re’

since the system matrices are obtained on different statistically independent measurements
data from healthy and damaged states.

Statistical evaluation of X?—test for ~5:

After stacking the real and imaginary parts of 7 in (6.56) for a chosen s-value, it follows as

7 = | 126 |- (6.68)

Then, all components in 75 corresponding to an element j are being tested for a hypothesis
test where all computed values depends on their covariance. For each element j, a scaler X?
test is derived.

Let 75 € R?" be the selection matrix that identifies all entries computed for an element j
in the subspace angle 77 and n; be the number of the internal stresses for an element that
depends on kind of the structure. For an element j, the covariance of the vector 7; is taken
from EW;(S) as

- =T
Zj = ’sz'y;(s)’yj‘ (669)
Since an estimate of the stress vector 7; is asymptotically Gaussian distributed, it is tested

in the statistical evaluation of the ngg—test. Finally, if tested element is being 0 then it’s
J
potentially damaged

X% =77 2719 (6.70)

6.6 Comparison between SDDLV and ILDL approach

e Both methods (SDDLV and ILDL) are a vibration-based damage localization approach
that is based on a finite element (FE) model of the structure and modal parameters
estimated from output-only measurements in the damaged and reference states of the
system.
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e In ILDL approach, a vector is obtained in the image U; of the changes in the transfer
matrix between healthy and damaged states. Damage is located at elements where the
subspace angle between the image and the influence line computed from the FE model
is zero. The ILDL approach is complementary to the SDDLV approach, where loads in
the kernel V5 of §G are applied to a FE model to compute the stress field. Therefore,
damage localization is related to this stress where it is zero or close to zero in practice.

e In the implementation of the SDDLV, usually only one vector in the null space is
considered, namely the vector associated to the smallest singular value, which does not
require a decision on the rank of §G. In the ILDL, all vectors in the image need to be
considered, which requires a decision on the rank. Thus, in the implementation, both
methods are not equivalent, since usually not all null space vectors are considered in
the SDDLV, but all image vectors in the ILDL. A detailed investigation of this effect
should be part of future works.

e While the SDDLV does not demand the effective dimension of the null space, this
dimension is required in its statistical evaluation. Specific guidelines for the rank appear
in [Ber10]. In the ILDL, the statistical tests for the arbitrary rank case are equivalent
to the SDDLV when considering all null space vectors.

e Finally, the results of both methods could be combined as they are built upon the same
principles but in two different ways. Hence, uncertainties may have a different impact
on the evaluation in both methods. This issue should be analyzed in more detail in
future work, where it could be indeed beneficial to combine both evaluations.

6.7 Conclusions

In this chapter, the ILDL approach has been extended with a statistical framework with
considering uncertainties. In previous works, evaluation was done for s = 0, where the uncer-
tainty quantification was tempted. Here, the damage indicator of the ILDL is reconsidered
to allow an uncertainty quantification, before deriving its statistical evaluation of damage
localization. For such an evaluation, the modal parameter covariance is propagated to the
obtained subspace in a sensitivity-based approach. Finally, all computed values corresponding
to an element are being tested for damage in a hypothesis test where the computed subspace
is evaluated with their individual covariance. The proposed approach has been demonstrated
on a numerical application in Chapter 10.



Chapter 7

Transfer matrix-based output-only
statistical damage localization and
quantification

7.1 Introduction

This chapter deals with vibration-based damage localization and quantification from output-
only measurements. Based on the SDDLV and ILDL methods only the localization is pos-
sible using output-only data, but not quantification. The problems of damage localization
and quantification are divided into two separate problems. First, the damaged elements
are detected in statistical tests, and then, the damage is quantified only for the damaged
elements. To achieve both localization and quantification, a Gaussian framework has been
described in Chapter 4, where localization is performed by statistical tests on a data-driven
residual with respect to different parameters from a FE model, and finally quantification is
performed by estimating the parameter change corresponding to the damaged element(s).
So far, this framework has only been applied to a subspace-based residual [DMZ16]. In the
current work, we want to benefit from the strong theoretical properties of the transfer-matrix
difference based SDDLV and ILDL methods, with the goal to combine them with the exisit-
ing Gaussian framework to perform also damage quantification. Therefore, a new transfer
matrix-based residual is proposed that is based on the SDDLV approach. The challenges are
first to show the adequacy of this residual for the existing Gaussian framework, namely its
asymptotic Gaussian distributions in undamaged and damaged states. Second, it needs to be
linked with parameters from the FE model and respective sensitivities need to be computed
analytically. Third, its covariance needs to be evaluated, which is based in part on Chapter
5. The statistical tests for fault isolation and estimation for fault quantification are then used
to perform damage localization and quantification in the so-called sensitivity and minmax
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approaches.

This chapter is proposed as follows. In Section 7.3, the parametrized Gaussian residual
vector is defined for each mode sets and the sensitivities of the residual ( is derived. In
Section 7.4 and 7.5, the damage localization and quantification framework is detailed, re-
spectively, and then applied on both numerical and real case applications in Chapter 11 and
13, respectively.

7.2 Framework of damage localization and quantification

In Chapter 4, the details are given for statistical damage localization and quantification.
Let 8 € R? be a parameter vector that describes the monitored system in the current state,
and 0y € RP its value in the reference system. For damage localization and quantification we
assume that damage is linked to stiffness changes. In this case, assume that 6 is the collection
of p stiffness parameters of the elements of the structure, where 6y is obtained from a finite
element model. For example, the components of 6 can be the stiffnesses of a mass-spring
chain system, Young modulus of beam elements or it can be basically any quantity linked to
damage-sensitive properties of the system.

In Chapter 4, a statistical framework has been set up for Gaussian residual vectors
parametrized by 6 with the purpose to decide which parts of 6 have changed (for dam-
age localization) and then to estimate this change (for damage quantification). The Gaussian
residual vector ¢ € R" is computed from the measurements of the system and needs to satisfy

N(0,%)  in ref tat
¢ { (0,%)  in reference state (7.1)

N(J§,%2) in damaged state,

with § = VN (0 — ) € R! is the unknown change in parameter vector, N is the data length
used for the computation of ¢, the sensitivity matrix J € R"*! has full column rank and the
residual covariance matrix ¥ € RP*" is positive definite.

Before introducing the statistical tests and estimators for damage localization and quan-
tification, the damage residual functions are recalled from Section 2.2.

7.3 Transfer matrix Gaussian-residual vector

The parametrized Gaussian-residual needs to fulfill the properties of { ~ N (J§,%) with
mean J90 and covariance ¥ of the residual under H; for a faulty system. Inspired by the
SDDLV approach in Section 2.2, where the null space of the transfer matrix difference
between reference and damaged states is evaluated based on mechanical properties. Here a
similar residual is defined and evaluated it in the statistical framework above.

The transfer matrix of the model is recalled from (2.20) as
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where :
C.A,

s) = s—c_l
R(s) = Ce(sI — Ac) c.

I
i -

In (7.2), I is the identity matrix of size r x 7, 0 is the zero matrix of size r x r, and T
denotes the Moore-Penrose pseudoinverse. Matrix R(s) can be estimated from output-only
measurements. Denote matrices in the damaged state with tilde, and matrices in the reference
state without tilde. Assume that damage is due to changes in stiffness and mass is constant.
Then D, = D, and the matrix differences G(s) — G(s) and R(s)T — R(s)T are identical up
to the multiplication by an invertible matrix.

Considering the transfer matrix for a mode set j, assume that R(f) = R’(s) and R(fy) =
RI(s) for a particular mode set j and Laplace-variable s can be any arbitrary value. Then,
the transfer matrix differences can be defined as

SR (s) = vec(R(0) — R(6p))re, (7.3)

which contains estimate parameter changes of the system and strictly related to 6. Recall
that vec() defines the column stacking vectorization operator. Now, consider the Taylor
expansion of vec(R’(s)7),e corresponding to 6 and vec(R?(s)? ) corresponding to #y can be
defined as

vec(R(0))re = vec(R(00))re + Tre(0 — 6o), (7.4)
where Jrg = %{Efg;)m oo is the sensitivity matrix. Then, it follows
=bo
VNvec(R(0) — R(60))re = TroVN (6 — ), (7.5)
and thus
VNvec(R(6) — R(60))re = TR0 0. (7.6)

Therefore, the Gaussian-residual vector can be defined as
¢ ©V/Nvee(B (s)T — RI(5) e, (7.7)

which satisfies the distribution properties of (7.1) with constant mean 7, R(s),00 and covariance
Y. Note that asymptotic normality follows from the estimation of the modal parameters
from subspace identification that are used in the computation of R(s) and R(s), as detailed
in Section 3.2.

In the following, the sensitivity of the residuals are derived for each mode set M, j =
1,...,ns with respect to the physical parameter of the system subsequently the covariance
expression are also derived based on the residuals.

7.3.1 Sensitivity of the residual
The sensitivity of the residual vec(R’(s)) with respect to the modal parameters is derived in
Section 4.2.2.2. To obtain the required sensitivity matrix J. 1]«2(5) o> the derivative of the modal

parameters ()\gc ) go{ ) with respect to the structural parameters is computed for each mode
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set M, starting from the eigenvalues )\il and mode shapes gp{ ,1=1,...,m;j, for each mode
set j. . ' ' ‘ '
Denote Ao = [X]|..Xm;] and @7 = [@]...¢M;] the collection of eigenvalues and mode

shapes of mode set j. This yields

J _ 7] J
Tr)10 = TR(s),000)Y o) 0 (7.8)

Considering the first derivative, it holds

i _ | ovec(RI(s)) Ovec(R? (s))
LlfR(s),()\c,go) - O(Ac)re | ovec(¢)re :| )

where both parts are directly obtained from (3.7).

The eigenvalues and mode shapes ()\(0,1)790{ ) are linked to the changes of the physical
parametrization of the system due to stiffness loss. For the sensitivity analysis, the partial
derivative of the modal parameters can be derived with respect to the system parameter 6.
Following [HLS98], the partial derivatives of the eigenvalues \; and mode shapes ¢; with
respect to a parameter 6 change are derived through,

N 1 ,0K(0)
00, a b 00 o (7.9)
O = 1 1 ,0K(0)
and 80k_ Z a; /\Z’—Ald)i 89k ¢Z<Pz
=117l
<A1 1  ,0K(0)
L . * 1
+;a’; N—n" e, O (7.10)

where
a; = 2\t Mg + ¢f Cy;

“” denotes the complex conjugate and “H” the conjugate transpose, and ¢; are the eigen-
vectors of system (2.1) at all DOFs. Note that ¢; is equal to the components of ¢; at the
sensor DOF's. Assembling the real and imaginary parts of (7.9) and (7.10) for [ =1,...,m;
in the rows and for £ = 1,...,p in the columns leads to the Jacobian matrix. Plugging
this derivative into (7.8) yields the desired derivative of the transfer matrix resultant to the
structural parameters,

B(Ac)rc
] (7.11)

J — a0
‘7()‘7(1)))9 - [8vec(¢)re
00

7.3.2 Covariance of the residual

The covariance of the residual vectors ¢ in (7.7) is obtained in both reference and damaged
states of the structure for a chosen s-value. The uncertainty of the residual is related to the
uncertainty of the Hankel matrix in both states. Hence, the covariance propagation to the
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residuals ¢ in both states is computed based on the following relation together with (7.6) and
(7.7), similar to Section 5.4.3

j e vec(AAL) j vec(AAD)
(vee A C(s)re = T o7 (4.0 vee(acd)| T TR@T C | oo ncl)
=J} 7l i j (7.12)
— jR(S)T,(AC,C'C) (AC,O )H ~VeC(AH) \7 (AC,C' )%AC,CC),HVGC(AH)
= Ty iVec(OH) = Ty 2vec(AH),
where 72 - i Vil with 7 def | Jaix i jﬂ B
Rs)HA YR (A, Co)Y (Ae,Co) H (Ae,C) A jéj . R H =

jé(s)T (Ae.C ‘T(A ) 4, With ‘7(];% COH def [ Tain ] have been derived in Section 5.4.2,

and the respective sensitivity matrices are detailed in Section 5.4.3. Following (7.12), the
covariance expression of the residuals are defined, E]C(s) = cov((’(s)) as follows

j vec(AAe)| j vec(AAe)| T
( ) jR(s (AC,OC) [VQC(ACg) \7 A é +‘7R(s (AC7CC) [V@C(Acg) j (AC,C)
_ A j j j
= Taea> jR(s)H + Trs) 11T j(s)m
(7.13)

7.3.3 Joint evaluation of the residuals

Assume that the residual vector ¢/(s) is evaluated at a possibly different s-value s = s/ from
(7.7) for each mode set M, j = 1,...,n,. After stacking the real and imaginary parts of the
residual vectors, the total residual vector is derived as

Vec(ﬁil(sl)T — RY(sH)T) e
¢= : , (7.14)
Vec(R”S (s")T — R (5™)T),e

and its uncertainty follows from (7.12) as

71
Thsn | TR
ANGES : vec(AH) — : vec(AH) (7.15)
‘7]’;53"@ jR STLS
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Note that vector ¢ contains the information for all mode sets at all elements of the structure.
Together with (5.8) and (7.13), the covariance % dof cov(() of the total residual ¢ yields

~ - T
1 1 1
jfz(sl) H jfz(slm jﬁ(sl),ﬂ jR(sl),"H
jns jns ‘7}?55"8 ), H jIT{L(Ss"S ), H

R(s™s) H R(sms)

since the datasets from healthy and damaged states can be regarded as statistically indepen-
dent. This covariance expression is derived based on the parameterized Gaussian residual
vector (. Similarly, for the multiple mode sets, the sensitivity of the residuals (7.8) with
respect to the parameter 6 are stacked together as

Tr(shy,
J = : : (7.17)
jR(s”S

From the above derivation, the sensitivity J and covariance expression Y are known that
are estimated based on the parametric Gaussian residual vector containing the faulty com-

1
jR(sl) 0
ponents of the system. In the Gaussian framework, the properties of ¢ ~ N ( : 9,%)
\7 Sng) ]
1
jR(sl) 0
are satisfied with constant mean ( : ) and covariance ¥. Based on this residual
‘7]7:;55”3 ),0

distribution, the damage localization corresponds to which components of the § are non-zero
and the damage quantification corresponds to estimate the changes é of the damaged ele-
ments can be performed in the framework of the statistical tests with the sensitivity and
minmax approaches described in the Section (7.4) .

7.3.4 Joint evaluation of the residuals using Multiple mode sets for differ-
ent s-values

In the previous section, the residuals (7.14) was derived using only one Laplace variable for
each mode set, while there is a possibility to use several Laplace variables. Therefore, the
computation of the residuals in (7.7) can be easily generalized for several Laplace variables
(s-values) such as

¢" = vee(R(s1,)" — R (s1,) e

for each mode set M; denoted by s%,, where w = 1,...,x? and &/ is the number of s-values
used for mode set M;. After stacking the real and imaginary parts of the residuals vectors
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for multiple s-values and mode sets, the joint evaluation of the residuals vector is written as

analogously

| vec(R" (s )T = R (s725.) e |

vee(R'(s1)" = R (s1)")re
Vec(Rl(sil)T — Rl(sil)T)re

VeC(Rns (S?S )T — R" (S?S )T)re

(7.18)

Then covariance of the residuals (7.18) with respect to different s-values can be derived
together with (7.16) for mode sets M;, j =1,...,n,, as

where

7 =T T
2= T 171 msy T IR =1 TR(s), 1

~l r 1
jR(s}),H Tr(sh
71 1

jé(sil),y jR(sil),H
: v JR(s)H = :

jé(ss;zs )H jR(gs’fs ) H

Thisme )l | Tr(sms.,

(7.19)

Analogously to the previous section, the covariance expression (7.19) is derived based on
the residuals vector in a statistical aggregation scheme for multiple mode sets using several
s-values. Then, Gaussian distribution of the residual as follows

[ 1
jR(s%),@

1
jR(sil ),0
5,%)

J, gf(sys),e

| TR{("5.00)
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with mean ( : 9) of the non-centrality parameter and covariance ¥ of the residual.

R(S(snS ),0

In the fo]_lowing section, the statistical tests and estimators for damage localization and
quantification are presented, it is recalled here shortly from Section 4.3.3 and 4.3.4 in Chapter

4.

7.4 Damage localization

From the previous section, the sensitivity J and covariance expression ¥ are known that are
estimated based on the parametric Gaussian residual vector containing the faulty components
of the system. Recall that 6 be the parameters of the structure. In the statistical tests, the
damage localization corresponds to which components of the § = § — 6 are non-zero (i.e.
0#0) and the damage quantification corresponds to estimate the changes of ¢ in the damaged
elements.

For making decision about damage localization, it has to be known which components of
¢ are non-zero by testing each components of § separately. Assuming that different partitions
of the vector ¢ into 2 subvectors,

— 6a
- 8] -

where one of the sub-vectors are tested. For damage localization, 6, = 0 is tested against
847#0. Following (7.20), the sensitivity J and the Fisher information matrix F = J7%~ 17
are analogously derived as follows

Faa Fab
Fro  Fpp

NEDYREN AN FD VRN

: (7.21)
%Tz—lja %Tz_ljb

T =7 3] F =

details are given in Section 4.3.3. In the following section, the sensitivity and minmax tests
have taken into account for damage localization and quantification.

7.4.1 Senstivity test

Assuming that &, = 0 for testing d§, = 0 against §,7#0, where ( ~ N (Ju04, ). The generalized
likelihood ratio(GLR) tests are follows as

tsens = CTz_ljg(jaTz_lja)_ljaTZ_1C7 (722)
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which is called sensitivity test. The test statistic tsens is x2 distributed with non-centrality
parameter 5:{Faa5a. For making decision about the damage location, the test variable is
compared to a threshold. Generally, the threshold is chosen for a given probability of false
alarms according to the x2 distribution of the nominal system.

7.4.2 Minmax test

Instead of assuming the components of &, = 0, the variable §, is substituted by its least
favorable value for making a decision about §,, which leads to the minmax test as follows.
Define the partial residuals

(o =JTIE7C (7.23a)
G =T 27, (7.23b)

and the robust residual
C; = Ca - FaanZIQ
whose mean is sensitive to changes J, but not to d,. Testing d, = 0 against 6,70 with the
GLR test yields
lmm = C;F;_1£;7 (7-24)
where F} = Fy, — Fabeleba. The test statistic t,m, is x? distributed with non-centrality
parameter 01 F*6,.

7.5 Damage quantification

In the previous sections, a decision is made for the faulty system between 6, = 0 and §,7#0
in the components of § based on the sensitivity and the minmax tests. In both tests, the test
variables is compared to a threshold level to make a decision about faulty components when
047#0. In the following section, estimates of the change § = 6 — 6y are derived based on the
properties of the sensitivity and minmax approaches, respectively.

7.5.1 Quantification based on senstivity test

In the sensitivity approach, an estimate of the d, can be derived from the residual vector ¢
for the damage quantification. Together with (7.21) and (7.22), the following expression can
be derived

Sgens _ (jaTzflja)_ljaTZ*lg (7.25)
where 65" ~ N (04, Fi2!) for the assumption &, = 0.

7.5.2 Quantification based on minmax test

Similarly, an estimate of the §, can be derived based on minmax approach in the previous
section follows
og™ = Fy ¢, (7.26)

with 6™ ~ N (8,4, F*~1), where details are given in Section 4.3.4.
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7.6 Comparison to SDDLV

e In SDDLV, recall that both a Finite Element (FE) model of the structure and modal
parameters estimated from output-only measurements in the damage and reference
states of the system is required for vibration-based damage localization. A vector is
obtained in the null space of the changes in the transfer matrix from both states and
then applied as a load vector to the model. Damage localization is related to this stress
field where the computed stress is zero or close to zero in practice. On the other hand,
the sensitivity approach based on a data-driven residual vector that is statistically
evaluated using information from a FE model. In this approach, the parameterized
Gaussian residual vector is generated in both states from the measurements data in the
context of SDDLV.

e The SDDLV approach is derived only to damage localization while both localization
and quantification is possible in the sensitivity and minmax approaches.

e The SDDLV performs good for large damage extents because of the significant changes
of the transfer matrix differences between healthy and damaged states with compared
to small damage extents, while the sensitivity and minmax approaches are not good for
large damage extents due to increasing error of the system parameter changes.

e In the SDDLV, the Laplace variable s has a strong influence with compared to the
sensitivity and minmax approach. This is due to the fact that the SDDLV approach
is based on the physical properties of the transfer matrix difference, and the choice of
s is directly related to bias of the transfer matrix. With this bias, the null space of
the transfer matrix difference may not be the “true” null space anymore that leads to
zero stress at damaged elements, even if the modal parameters are correctly estimated.
On the other hand, the sensitivity-based approaches require only the derivative of the
transfer matrix, which is accurate when the modal parameters are correctly estimated
(and when damage is small), independently of s.

e The statistical evaluation of the SDDLV approach and the Gaussian framework for
damage localization and quantification in this chapter both rely on an asymptotical
Gaussian vector, which are the stress vector for the SDDLV and the residual vector
based on the transfer matrix difference, respectively. In both cases it is therefore as-
sumed that these quantities can be approximated reasonably by a Gaussian vector when
computed on finite data, which means that enough data should be available.

7.7 Conclusions

In this chapter, the transfer matrix-based residual was presented in a statistical output-only
damage localization and quantification approach in a Gaussian framework based on the sen-
sitivity and minmax tests. The residual is obtained in the context of SDDLV that is based
on the transfer matrix difference between the reference and damaged states. It has an inter-
esting property and relations to the SDDLV damage localization approach. Furthermore, it
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has been extended considering a joint statistical evaluation of multiple mode sets for same or
different Laplace variables. The robustness of the damage localization and quantification has
been obtained by taking into account the information from all identified modes of the struc-
ture. The computation of the test values using multiple mode sets increases the information
contents of the damaged or non-damaged elements of the structure. Finally, the method is
applied on both numerical and real case applications in Chapters 11, 12, and 13, respectively.

7.8 Dissemination

Parts of this chapter have been published or are submitted to:
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ization and quantification. In 7th International Operational Modal Analysis
Conference (IOMAC’2017), May 10-12, 2017, Ingolstadt, Germany.

[BADTSA] M.D.H. Bhuyan, S. Allahdadian, M. Déhler, Y. Lecieux, L. Mevel, F. Schoefs,
and C. Ventura. Transfer matrices-based output-only statistical damage lo-
calization and quantification. In 11th International Workshop on Structural
Health Monitoring (IWSHM), September 12-14, 2017, Stanford, CA, USA.
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Chapter 8

Methodology for numerical
applications

8.1 Introduction

This Chapter describes the methodology for damage localization based on the contribution
chapters for the application of the methods in numerical case studies in the following chap-
ters. In the contribution of thesis, three statistical damage localization methods have been
proposed such as i) statistical damage localization with stochastic load vectors using mul-
tiple mode sets (SDDLV), ii) the statistical damage localization of influence lines damage
localization (ILDL), and iii) the transfer-matrix based residuals for both localization and
quantification using multiple mode sets. Note that details of these methods are stated in the
contribution Chapters 5, 6 and 7.

In this Chapter, the presentation of the performance indicators for the developed methods
and the presentation of the numerical models used for the application chapters 9, 10 and 11
is described. Based on the numerical models presented in this chapter, several case studies
have been carried-out to analyze the performance of the methods, such as dependence of
s-value and sensitivity to the mesh sizes for different applications. Furthermore, in Chapters
9 and 10, the methods are validated with respect to the distributions before going to apply
statistical damage localization approach.

In the applications, the proposed damage localization methods have been applied on
several numerical simulations depending on the complexity of the structures. There are five
case studies for numerical applications, though not all of them are studied for each method.

First, the proposed method using multiple mode sets from Chapter 5 is validated on
numerical simulations. A simple mass-spring chain and a more complex 3D cube beam
model have been considered as numerical applications. Then, the damage localization with
the SDDLV approach has been applied on a 2D beam model with different size of cracks.
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Finally, the SDDLV has been investigated on a 2D beam model assuming large and small
damaged zone, depending on different mesh size. To obtain these results from simulated or
measured data, the modes of the system are estimated using a stabilization diagram procedure
with SSI [DM12] in both reference and damaged states. They are estimated together with
their covariance [DM13]. Then, the system matrices and their covariance are assembled from
the modes.

Secondly, the statistical damage localization of the ILDL approach from Chapter 6 has
been validated by a numerical simulation of a mass-spring chain system.

Thirdly, the transfer-matrix based approach (see Chapter 7) has been applied on two
numerical simulations of a mass-spring chain and 2D beam model for damage localization
and quantification.

Finally, the numerical implementation of these methods has been presented in Chapter
12 by using Abaqus software for the application of realistic FE models for more complex
structures.

This chapter is formulated as follows. In Section 8.2, the presentation of the performance
indicators are defined for the damage localization methods. Then different numerical models
are presented in details in Section 8.3, and an overview of the different methods are stated
in Section 8.4.

8.2 Performance evaluation criteria

8.2.1 Performance evaluation of damage localization

To analyze the performance of the proposed damage localization method, the success rate (or
probability) of correct damage localization is evaluated for several sets of simulated measure-
ment data. Each dataset is an independent realization and defines a Monte-Carlo experiment.
In order to indicate if an element is potentially damaged or not, the x? value has to be com-
puted for each structural element. For each Monte-Carlo realization, damage localization is
seen as successful when the lowest x? value among all elements is indeed at the damaged
element. This only holds for the SDDLV and ILDL, not for the sensitivity-based method
where the maximum Y7 value is important. For damage localization with single damage,
there is no need to use threshold because we can simply look the minimum or maximum
value depending on the methods. Here, we want to validate the methods for single damage
and want to get the performance evaluation in that way. This success rate of correct damage
localization is analogous to the probability of detection or power of the test in the context
of hypothesis testing. Here, it is numerically evaluated as the percentage of datasets, among
all Monte Carlo experiments for which the y? value at the damaged element is the smallest
x? value for SDDLV and ILDL, and maximum x? value for sensitivity-based method. The
success rate depends on the chosen s-value(s) and the damage element, and serves as the
performance indicator of the method not only - this is a general performance indicator of the
method for a given structural discretization.

Note that the generation of several datasets allows the evaluation of the success rate,
while in reality usually only one dataset is available.
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In order to evaluate the influence of the s-values on the success rate of damage localization,
each dataset in the Monte-Carlo simulations is evaluated for a set of s-values with different
real and imaginary parts in order to obtain the success rate in dependence of s. The range of
s-values has been chosen in the vicinity of the identified poles to reduce the effects of modal
truncation in the transfer matrix [Berl0]. The resulting success rate as a function of s is
presented in 3D bar diagrams, where it is plotted on the z-axis in dependence of the real and
imaginary parts of s on the x and y-axis, respectively.

For simplicity, an example is shown in Figure 8.1 for each element of the structure,
where the performance evaluation of the proposed method is illustrated. First, the statistical
evaluation with the y?-test is obtained at one s-value using one experiment from the estimated
modal parameters in both healthy and damaged states. Recall that the damage localization
is inferred by the stress value closest to zero. In the statistical evaluation of the y?-test, the
damage localization is found correctly at the smallest x? values at damage element 8. Second,
the success rate of correct damage localization is evaluated for Monte-Carlo experiments,
where it is numerically obtained as the percentage of the simulated datasets, among all
Monte-Carlo experiments for which the x? value at the damaged element is the smallest one.
The success rate (z-axis) depends on the chosen s-values (z and y-axis) and serves as the
performance indicator of the method. The range of the performance indicator is between
0 to 100%. Note that 0 and 100 indicates the bad and best performance of the method,
respectively.
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approach
3 Vibration measurcmen s stress ; 7
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- !
i indicates 0 =~ | | ¥
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e one s -

Vibration measurements

Healthy state

Statistical y

Damaged state

Figure 8.1 — Performance evaluation (or success rate) of damage localization in dependence of s-values (x and
y-axis) with Re(s), Im(s).

Besides the presentation of the success rate of the statistical damage localization using sev-
eral datasets from Monte-Carlo simulations, the statistical localization approach is compared
to the underlying stress computation based on modal parameters from the model (theoretical
stress) or from estimated (without statistical evaluation). The theoretical stress evaluation
allows to assess the achievable localization accuracy under modal truncation, which is al-
ways present in practice. Comparing the localization results from stress estimation and its
statistical evaluation allows to evaluate the importance of taking into account the statistical
estimation errors in the new method.
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8.2.2 Probability of Good and Wrong Localization (PGL and PW L)

For the performance evaluation in the previous section, damage localization was seen as
successful when the lowest X% value among all elements is indeed at the damaged element
for the SDDLV and ILDL, or a highest x? value for the transfer matrix sensitivty-based
approach, respectively.

However, in practice damage can locate at the neighbour elements from the damaged
zone. We introduced here a detection threshold in terms of distance from the true damage.
Therefore, for the evaluation of the damage localization with the SDDLV approach, we pro-
posed the Probability of Good or Wrong Localization (PGL and PW L) as a function of the
detection threshold, defect size and Laplace variables [RS03, DBAPS17]. The evaluation of
PGL or PWL depends on the threshold (th), defect size (z) and Laplace variable (LV).
Mathematically, it can be defined as follows,

PGL(th,z,LV) = P(0 < d(z) < th|z,th, LV) (8.1a)
and PW L(th,z,LV) = P(d(z) > thlx,th,LV), (8.1b)

where the value of th can be considered as the required detection threshold for the localization
of the damaged element. In this study, the PGL or PWL is evaluated for several sets of
simulated measurement data in order to evaluate the performance of the localization method.
Each dataset is an independent realization and defines a Monte-Carlo experiment.

5

Figure 8.2 — Probability of Good or Wrong Localization (PGL or PW L) in terms of distance.
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To evaluate the PGL or PW L, the following criteria can be considered for each Monte-
Carlo realization:

e First, recognized the element with the smallest y?-value. If this element is one of the
actually damaged ones, assume distance,d = 0. If not, then compute the distance from
the damaged zone, where distance,d =| middle of the recognized damaged element—
middle of the damaged zone | —% X width of the damaged zone.

e Set a threshold from the damaged zone: 0, 1cm, 2cm, 3cm, 4 cm,...etc. For example,
in Section 8.3.3 in Figure 8.8(a), damage is located at element 13 for a damaged zone
of 4cm. In order to evaluate PGL or PW L, we set a detection threshold in terms of
distance from the true damaged zone.
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e If the damaged element within the range of threshold, evaluate PGL.

For each Monte-Carlo realization, damage localization is seen as successful when the lowest
X? value is located within the range of threshold level. The success rate corresponds to
the probability of good localization (PGL) and it is possible to determine zones where the
PGL is larger for several sets of simulated measurement data. Numerically, it is obtained
as the percentage of datasets. The PGL depends on the chosen s-value(s) and serves as the
performance indicator of the method in terms of distance.

General estimate for a given range of predicted defect size

Consider a damage model or the performance model of the structure which indicates certain
damage distribution of the service life. There is a probability distribution of the damage. For
discretization of the damage, this probability distribution is continuous in terms of defect size
where the probability distribution is given by performance model or damaged model. Then,
for each of those damage sizes using model, we can evaluate the probability of good damage
localization. From both information, we can give an assessment of the probability of good
damage localization and the distribution of damage in the service life.

Therefore, the general estimate of a given range of predicted defect size is derived from a
given structure. It is obtained based on the probability of damage distribution of a predicted
defect size with mean and standard deviation, and the performance evaluation of the PGL
(8.1) from simulated datasets. Mathematically, the probability of the damage distribution
density (PDD) can be obtained as follows

PDD(th, LV) = / P(0 < d(X) < thlz, th, LV) fu(x) dz, (8.2)

where f;(x) is the probability of damage distribution of a defect size (x), and note that th is
threshold from the damaged zone and LV is the Laplace variable. This expression gives the
density of the damage distribution for a predicted defect size.

8.3 Numerical models

In this section, different numerical models are presented for the proposed methods of damage
localization and quantification. A simple mass-spring chain, beam model, crack beam, and a
more complex 3D cube beam model have been considered as numerical applications. These
numerical applications are idealized test cases for the validation of the new developments of
the proposed methods.

For example, the behavior of a mechanical structure is described for a linear time-invariant
(LTT) dynamic system in (2.1). We can formulate the derivation for an eigenvalue problem.
In the absence of excitation, the expression (2.1) rewrittes and reduces to

Mii(t) + Ci(t) + Ku(t) = 0 (8.3)

where u, u and i are the displacement, velocity and accelerations, respectively. A general

solution of this system is as follows where wg is a simple root of the equation,

u = geliwot), (8.4)
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Where wy = 27 f and f = wy/27 represents the natural frequency of the harmonic response
of the system and ¢ eigenmode associated vibration. Replacing the expression of u in the
equation (8.3), we can get that the natural frequency f from the following equation:

(—wgM +iweC + K) ¢ =0 (8.5)
If there is no damping, the above equation can be rewritten as follows,
K¢ =wiMé. (8.6)

This is the characteristic equation of a generalized eigenvalue problem.

In the following, first, the numerical model of the structure is presented in details. Second,
the stiffness and mass matrix of the healthy and damaged states of the structure are described.
Finally, the modes of the system are estimated from simulated data using a stabilization
diagram procedure with SSI [DM12, DM13], together with their covariance. Then, the system
matrices and their covariance are assembled from the modes. Notice that damage is assumed
to be related to stiffness loss, either stiffness reduction or crack. Note that there is uncertainty
on measurements from sensors simulated by a white noise.

8.3.1 Mass-spring chain system

In a first numerical application, the damage localization method has been applied on a mass-
spring chain system with six DOFs as shown in Figure 8.3. This system is a good candidate
for a first application since the mechanical properties are feasible and no numerical approx-
imations are required. The stiffness parameters are defined by the terms k;, and the mass
of all elements is 1 in suitable units. Damping is defined such that each mode has a damp-
ing ratio of 2%. Damage is simulated by decreasing the stiffness of spring 4 by 10% of its
original value. For damaged and undamaged states, the acceleration data length for each
set is N = 50,000. Data were generated from collocated white noise excitation using three
sensors at elements 2, 4 and 6 with a sampling frequency of 50 Hz, and in addition, white
measurement noise with 5% magnitude of the outputs was added.

Kk

k k k k k
Wmlwmzwmgwmwmsmme

— o—— —

Figure 8.3 — Mass-spring chain (with modal damping) -using three sensors at elements 2, 4 and 6.

In the following, the physical stiffness and mass matrix of an element in both healthy and
damaged states are described. The damage is assumed to be stiffness loss, while the mass is
unchanged in both states.

For 1D element of a Mass-spring chain system, the displacement vectors can be written
as follows

U = [u; 1]
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where u; and u; are translational displacements at node ¢ and j respectively, details are
given in the literature of structural mechanics [Kri95, Bat, JNJ04]. The bar means that
the displacement forces are written in the local axis. The stiffness matrix K" for one finite
element can be derived as follows

ES
K'===
L

ki —k

) 8.7
B (8.7

where E, S, L are 1 in suitable units. Considering the damage model of Mazars [MPC89,
MBRI0], the stiffness matrix of the damaged structure can be obtained as K¢ = (1 — D)K",
where D is the damage parameter of the Mazars model D € [0, 1] in which 0 indicates the
safe structure and 1 indicates fully damaged structure.

In the following, the global stiffness matrix of the model in Figure 8.3 for 6 DoF's can be
obtained after assembling the stiffness matrix (8.7) for each of the element in the global axis.

Total stiffness and mass matrix of healthy structure

The stiffness parameters are defined as k; = k3 = ks = 4000, ko = k4 = kg = 2000, and the
mass of all elements is 1 in suitable units in Figure 8.3. Then, the stiffness matrix of the
healthy structure can be obtained as follows,

kit ke —ky 0O 0 0 0
—ko ko4 ks —k3 0 0 0
Kh— 0 —ks ks+ ks —ky4 0 (88)
0 0 —ky ka+ ks —ks 0
0 0 0 —ks ks + ke —kg
|0 0 0 0 —ke k¢ |
The mass matrix M" is written as
lmi 0 0 0 0 0]
0my O 0O 0 O
b — 0 0 mg 0 0 O ’ (8.9)
0 0 0 mg O O
0 0 0 0 ms O
|0 0 0 0 0 mg|

where the mass of all elements is 1 in suitable units.

Total stiffness matrix of damaged structure

Considering the damage model of Mazars [MPC89, MBRI0], the stiffness matrix of the dam-
aged structure can be obtained as K¢ = (1 — D)K", where D is the damage parameter of the
Mazars model D € [0, 1] in which 0 indicates the safe structure and 1 indicates fully damaged
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structure. In this model, damage is simulated by decreasing the stiffness of spring 4 by 10%
of its original value, with factor D = 0.1. Hence, damage is assumed to be related to stiffness
loss in spring 4. In the following, the stiffness matrix K% of the damaged structure can be
obtained as follows,

k4 ke —ho 0 0 0 0
ko ko ks ks 0 0 0
i | 0 =k kstki-Dski Diki—k 0 0 (510)
0 0 Dwky—ky koi—Dsxks+ks —ks 0
0 0 0 —ks ks + kg —kg
0 0 0 0 —ke ko |

Modal analysis and uncertainties

All six modes of the structure (see Table 8.1) can be identified using stabilization diagram
from the simulated measurements of the structure with subspace-based system identification
as described in details in Chapter 3. Then, the system matrices A. and C. in both healthy
and damaged states (3.2.3) are filled and their uncertainties are obtained from the same
dataset as described in Section 3.3.

Using three sensors in this example, only a limited set of three modes could be used for
localization in previous works [Ber10, DMBM13, MDBM15] as the number of modes cannot
be bigger than the number of sensors. For the proposed method in chapter 5 and 7, all modes
can be considered by using two mode sets M; and My of three modes each.

Table 8.1 — Eigenfrequencies f. and Eigenvalues \. of mass-spring chain model.

Healthy state Damaged state
Mode | Modal freq. Figenvalues Modal freq. FEigenvalues Mode set

1 2.0324 —0.255 + 12.76i 2.0106 —0.253 4 12.631
2 5.9472 —0.747 4 37.361 5.8563 —0.736 + 36.781 My
3 9.2755 —1.16 + 58.261 9.1583 —1.15 4 57.531
4 12.3762 —1.55 4 77.74i 12.3281 —1.54 + 77.44i
5 15.6246 —1.96 4 98.15i 15.6224 —1.96 + 98.13i Ma
6 16.9628 —2.13 4+ 106.61 16.7983 —2.11 4 105.51

8.3.2 Beam model with 5 elements

In this application, the proposed damage localization method from chapter 7 has been applied
to a 2D Beam model as shown in Figure 8.4 for both damage localization and quantification.
The structure is modeled with 5 beam elements of total length 1m. The beam elements
in the model are circular with the external diameter of 0.02m. The mass density, Young
modulus (E) and Poisson ratio (v) are 7800 kg.m =3, 207 GPa and 0.3, respectively. The
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total number of Degrees Of Freedom (DOFs) of the structure are 15. For the damaged and
undamaged states, the acceleration data length of each set is NV = 25,000 is generated from
collocated white noise excitation using three sensors in the y-direction at node 1, 4 and 5
with a sampling frequency of 3125 Hz, 1% damping ratio and 5% white noise was added to
the output data.

Sensor Sensor Sensor y

4 | I 11
i 0 o 0 D g X

1 2 3 4 5 4

Figure 8.4 — 2D Beam model with 5 elements (15 DOFs) -using three sensors at nodes 1, 4, and 5 in y-direction

For the damage localization method, an FE model of the healthy structure and estimated
modal parameters needed from simulated data in both healthy and damaged states. In the
following, the physical stiffness and mass matrix of an element in both healthy and damaged
states are described. The damage is assumed to be stiffness loss, while the mass is unchanged
in both states.

Stiffness and mass matrix of healthy element

In a 2D beam element, each node has three degrees of freedom such as two translational
displacements in the x and y-axis, and one rotational displacement along the z-axis. Figure
8.5 shows a beam element in the x-y plane, oriented along its local x-axis called z. The bar
means that the displacement and nodal forces are written in the local axis.

The element in Figure 8.5 has six degrees of freedom which corresponds to the following
displacement vector,

U= [am ayi ézz 'arj ayj e_zj]ta

where g, U,; and tg;, U,; are translational, and 0.; and ézj are rotational displacements at
node ¢ and j respectively, details are given in the literature of structural mechanics [Kri95,
Bat, JNJ04]. Taking into account both flexural and traction-compression stiffness K" for one
beam finite element can be derived as follows,

B0 0 B0
0 12E1, 6E1, 0 _12FI, 6EL
L3 L2 L3 L?
0 6EI, 4E1, 0 __6FEI, 2E1,
K" = L z Lz L (8.11)
EA EA ’
-7 0 oz 0 0
0 _126L. _6EL. (y 12EL _GEL
L3 L2 L3 L2
6EI, 2E1, 0 __6FEIL, 4E1,
L? L L2 L2
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The mass matrix M" is written as

140 0 0 70 0 0

0 156 220 0 54 —13L
pAL | 0 22L 4L? 0 13L -3L?

Mh:T , (8.12)
20170 o0 0 140 0 0

0 54 13L 0 156 —22L

0 —13L —3L* 0 —22L 4L* |

where F is the Young modulus, A is the cross-section area, L is the length of the element
with L;; = \/(x; — i) + (y; — ¥i), L. is the moment of inertia along the z-axis, and p is the
mass density. Therefore, the global stiffness and mass matrix of the 2D beam model in Figure
8.4 can be obtained after assembling the stiffness and mass matrix (8.11)-(8.12) in the global
axis for each of the element.

Figure 8.5 — Beam element in the x-y plane (6 DOFs)

Stiffness matrix of the damaged element

For damaged case, considering the damage model of Mazars [MPC89, MBR90], the stiffness
matrix of the damaged structure is obtained as K¢ = (1 — D)K", where D is the damaged
parameter of the Mazars model D € [0, 1]. Recall that 0 for the safe structure and 1 for fully
damaged structure. In this model, damage is simulated by decreasing the stiffness at element
3 by 10% of its original value, with factor D = 0.1 (see Table 8.2).
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Modal analysis and uncertainties

As similar to the previous example, 6 modes (see Table 8.2) can be identified using stabiliza-
tion diagram from the simulated measurements of the structure with subspace-based system
identification as described in details in Chapter 3. Then, the system matrices A, and C, in
both healthy and damaged states (3.2.3) are filled and their uncertainties are obtained from
the same dataset as described in Section 3.3.

In this example using three sensors, only a limited set of three modes could be used
for localization in previous works [Berl0, DMBM13, MDBM15] as the number of modes
cannot be bigger than the number of sensors. For the proposed method in chapter 7 for both
localization and quantification, we consider the first 6 modes (see Table 8.2), split into two
mode sets M and M of three modes each.

Table 8.2 — Eigenfrequencies f. and Eigenvalues \. of beam model.

Healthy state Damaged state
Mode | Modal freq. Eigenvalues Modal freq. Eigenvalues Mode set

1 14.4140 —1.81131 4 90.5477i 13.7573 —1.80163 + 90.06371

2 90.3750 —11.3568 + 567.728i 77.8136 —11.1269 + 556.234i My
3 253.834 —31.8977 + 1594.57i 244.832 —31.7679 + 1588.08i J

4 501.446 —63.0132 + 3150.04i 494.534 —62.1450 4 3106.62i

5 832.276 —104.586 + 5228.29i 823.621 —103.499 + 5173.92i Moy
6 1382.64 —173.747 + 8685.641 1369.44 —172.089 4 8602.74i

8.3.3 Beam model for different mesh size

In this study, we present the same structure with various mesh sizes with compared to previous
example in Section 8.3.2. This case is important because it governs the accuracy of the
numerical solutions and the accuracy of the localization. Note that the material properties
and dimensions of the beam are also similar to previous example. The damaged element in
the model is simulated by multiplying all the rigidity by a factor (1 — D).

To analyze the performance of the method, the following things are considered for the
same dimension and material properties of the beam.

e Case 1: For a large damage zone of 20 cm, the damage localization method has been
applied on a rough and fine mesh of 25 and 100 beam elements in Figure 8.7(a) and
8.7(b), respectively. It implies that in the first case 5 elements are damaged while in
the second one 20 elements are damaged.

e Case 2: For a small damage zone of 4 cm, the damage localization method has been
applied on a rough and fine mesh of 25 and 100 beam elements in Figure 8.7 and 8.8,
respectively. It implies that in the first one 1 element is damaged while in the second
one 4 elements are damaged.
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e Case 3: For a small damage zone of 4 cm, the load vectors computed from estimated
data of 100 beam elements (fine mesh) and then applied to the L,,oq4¢ of 25 elements
(rough mesh). In this case, 1 element is damaged.

The aim of this study to assess the influences of the mesh size because we supposed that
it influences on the modal truncation.

For both damaged and undamaged states, the acceleration data length for each set is
taken N = 200,000 in order to obtain good estimated modal parameters. Data were generated
from collocated white noise excitation using 5 sensors in the y-direction at 0.2m, 0.4 m, 0.6 m,
0.8m and 1.0m from the fixed end with a sampling frequency of 20 kHz which is sufficient
to estimate the modal parameters, 1% damping ratio, and 5% white noise were also added
to the output data. Then output datasets were decimated into lower sampling rate for the
accuracy of subspace identification.

As similar to the previous example in Section 8.3.2, the global mass and stiffness matrix
for both healthy and damaged states are obtained after assembling the mass and stiffness
matrix for each finite element beam.

In order to analyze the stiffness matrix for rough and fine mesh of beam model, for
simplicity, here a simple truss element has been considered in both healthy and damaged
states.

Example 1:

A truss element of length 2L is shown in Figure 8.6(a).

Node 1 Node 2 Node 1 Node 2 Node 3

2L L L

(a) Truss model with one element, 2L (b) Truss model with two elements, 2L
Figure 8.6 — Truss model of same length
The stiffness matrix of the healthy structure in Figure 8.6(a) is made of one finite element,

o BS
127 57

1 -1
» 1], (8.13)

where E, S, L are 1 in suitable units. Considering the damage model of Mazars, the stiffness
matrix of the damaged structure is obtained as K¢ = (1 — D)K" with factor D = 0.5, where
D is the damage parameter of the Mazars model D € [0,1]. This follows as,

1 -1
N 1]. (8.14)

ES

Ki, = 57 1=D) [

1 -1
-1 1

_ S
4L
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Example 2:

The same structure, discretized into 2 elements for each length of L is shown in Figure
8.6(b). Similar to previous example, the stiffness matrix for each of the healthy element can
be derived as follows,
1 -1
] . (8.15)

ES

L -1 1

Considering the damage model of Mazars, the stiffness matrix, K¢ = (1 — D)K" of the
damaged structure is obtained with factor D = 0.5. Total stiffness is written as follows by
assembling the stiffness matrix for each finite element beam,

Kis=—1]-1 2 —1]. (8.16)

and the associated super finite element of the healthy model is obtained considering only the
external nodes of the model
K {ls =

2L |1 1

1 _1] . (8.17)

The stiffness matrix for each of the damaged element can be derived as follows,

ES -
K{,=K{y===(1-D) -1 (8.18)
k) ) _1 1

Therefore, in the following, the total stiffness matrix is obtained by assembling the stiffness
matrix for each finite element beam,

K{y==—(1-D)|-1 2 -1, (8.19)

and the associated super finite element of the damaged model can be written as

ES 1 -1
K{s = 5 (1=D) [_1 ) ] . (8.20)

From the above discussion, it is seen that the equivalent stiffness matrix are same. Between
the same structure discretized with 25 or 100 elements - for case study 2 and 3 - the only
change is the number of elements. Since the stiffness is unchanged, the interpretation of the
results in numerical experiments performed on the rough and fine mesh will allow to discuss
the sensitivity of the method to mesh size.
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Modal analysis and uncertainties

As similar to the previous example, 5 well estimated modes (see Table 8.3) are identified using
stabilization diagram from the simulated measurements of the structure with subspace-based
system identification as described in details in Chapter 3 where the computation of the
analytical beam frequency is stated in Section 13.2.2. Then, the system matrices A. and C.
(3.2.3) are filled in both healthy and damaged states and their uncertainties are obtained
from the same dataset as described in Section 3.3.

:' Damaged zone, 20cm M :' Damaged zone, 20cm M
N 4 N N N 4 N N

B

(a) 25 elements (rough mesh) (b) 100 elements (fine mesh)

Figure 8.7 — 2D Beam model on x-y plane, damaged is located between 0.41-0.60 m (large damaged zone) from
the fixed end -using 5 sesnsors

, Damaged zone, 4cm R y Damaged zone, ml R
:' | I /( | | L :' /( I I | S
15 I 610 T ] T 1620 1 2125 | z 120 | 2140 | %2 T 61-80 I 81100 |
Sensors Sensors
(a) 25 elements (rough mesh) (b) 100 elements (fine mesh)

Figure 8.8 — 2D Beam model on x-y plane, damaged is located between 0.49-0.52m (small damaged zone) from
the fixed end -using 5 sesnsors

Table 8.3 — Eigenfrequencies, f. and eigenvalues, \. of beam model for 25 elements.

Healthy state Damaged state
Mode | Ana. freq Model freq. FEigenvalues Model freq. FEigenvalues
1 14.41 14.41 —1.8113 4 90.5477i 13.75 —1.8016 4 90.06371
2 90.32 90.32 —11.356 + 567.728i 77.78 —11.126 + 556.234i
3 252.87 252.93 —31.897 + 1594.570i 244.02 —31.767 + 1588.081i
4 495.63 495.65 —63.013 + 3150.049i 454.25 —62.145 + 3106.6291
5 819.31 819.38 —104.586 + 5228.298i 755.41 —103.499 + 5173.9291

8.3.4 Beam model with crack

In the recent years, the formulation of crack beam finite element has gained an increasing
attention of many researchers. To study of a cracked beam, several methods e.g. analytical
and numerical methods are developed in the literature [Sek83, PD87, SP92, SR99, ZF01,
ZK04]. For a cracked beam element, the main problem in using the finite element method is
how to get the stiffness matrix approximately. In [ZK04] described a method to obtain the
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stiffness matrix of a cracked beam element, considering same matrix size and no additonal
DOFs. The formulation we choose is theoretically tracable, and validated through numerical
study. Additionally, this work has been cited and used in many other works. It allow to
consider a physical damage related to the size of a crack and not only a global decreasing of
a stiffness matrix.

In this application, the damage localization approach with SDDLV has been applied to a
2D circular beam for crack localization as shown in Figure 8.9. Note that material properties
of the beam, length and mesh size of the model are similar to previous example in Section
8.3.2. Here the diameter of the beam is 0.03m and increasing the damage with respect to
crack depth. For damaged and undamaged states, the acceleration data length for each set is
N = 100,000. Data were generated from collocated white noise excitation using 5 sensors at
y-direction of the beam model with a sampling frequency of 20 kHz, 2% damping ratio and
5% white noise were also added to the output data.

S U N N O Y

Figure 8.9 — 2D Circular beam model with 5 elements (15 DOFs) -using five sensors at nodes 1, 2, 3, 4, and 5 in
y-direction

A-A
0 1
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Figure 8.10 — A circular cross-sectional crack beam element [ZK04]

In the proposed method, an FE model of the healthy structure and estimated modal
parameters are needed from simulated data in both healthy and damaged states. In Section
8.3.2, the stiffness and mass matrix of a healthy beam element are described. For damaged
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case, the stiffness matrix of a cracked beam element can be obtained in the following.

Stiffness matrix of a cracked beam element

A typical cracked beam element with a circular cross-section is illustrated in Figure 8.10.
In the figure, the node ¢ is assumed fixed, while the node j is subjected to axial force P,
shearing force P» and bending moment P3 and the respective generalized displacements are
defined as §1, 02, and ds. In Figure 8.10, a presents the crack depth and L. denotes the
distance between the crack location and the end node j. The beam element has length L.,
cross-sectional area A and bending rigidity /. The geometrical dimensions are as follows,

/ D2 D
E=gryZop-2 (8.21)
b(a) = v/ Da — a?, (8.22)
K () = /D* — 412, (8.23)

dam =2 a) (8:24)

where D is diameter of the beam and ¢ is the crack depth. The additional strain energy
subject to the existance of the crack can be expressed as follows,

dam
- / GdA = / [ / Gde'Jdn, (8.25)
Ac JO

where A, is the effective cracked area and G is the strain energy release rate function. It can
be expressed as [TPI00]
G=[Kn+Kr+ K]3)2 + KIQIQ], (8.26)

where E' = E/(1 — y2) is related for plane strain problem and E' = E for plane stress
problem. K, Ko, K3, and K%IQ are the stress intensity factors due to loads P, P», and
P3 as follows

4P 32P, L 1 - e
Kp=— —s VT F1 , Kpp = %\/wg Fg(f—,), (8.27)

_ 32P, n 4P
= 3 VT F2 , Kipp = —— —5 VT FU (8.28)

where £ is the crack depth and Fi, Fs, and Fir are the correction factors for stress intensity
factors with

tg(ms/2) 0.752 + 2.02s + 0.199(1 — sin(rs/2))*

B =19 cos(rs)2)

(s =¢&/h), (8.29)

tg(ms/2) 0.923 4+ 0.199(1 — sin(ms/2))*
(ms/2) cos(ms/2)

Fy(s) = (s =&/h), (8.30)
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1.122 — 0.561s + 0.085s2 + 0.180s3
- (s =¢&/h), (8.31)

where ¢ is the crack depth during the process of penetrating from 0 to a/D. Note that a is
the final crack depth. Following Paris equation,

O
=P

Fri(s) =

5; (i=1,2,3). (8.32)

Then, the elements of the overall additional flexibility matrix ¢;; can be obtained as

06 OPme
T 9P, T apoP,

(i=1,2,3). (8.33)

Following the expressions (8.27)-(8.31), the strain release energy can be obtained from (8.26).
Now, with the combination (8.25) and (8.33), and assuming that all K are independent of 7,
then c¢;; can be obtained as

| /
(2 rg Bt

(Da—a?) JO mD?

b o2 V/(Da—a?)  p+/(D2/4—12)—(D/2—a
C”‘E'@Piapj/_ /

32P, L 1 - 32 - £ 16P, D .
T VARG + T Ve Ba()lP e Fr (€ R . (i =1,2,3)
(8.34)

From (8.34), the elements of the overall additional flexibility matrix ¢;; can be obtained. In
order to get the stiffness matrix of the crack beam element, first the total flexibilty matrix
Clot is obtained with (8.34) and then taking inverse of it. Following [ZK04, SP92, Sek83],
the stiffness matrix K. of a cracked beam element can be obtained through the equilibrium
conditions,

K.= LC, LT, (8.35)
where _ -
-1 0 0
0 -1 L
0 I 1 a4 T Cl1 —C12 —C13
— — 3 2
L= ) 0 ¢ 0 , Ctot = —co1 ?jT'j + coo QLﬁ +co3| - (8.36)
2
o 1 0 —c31 g tes B+
0 0 i

Modal analysis and uncertainties

Similar to the previous example, all estimated modes were chosen using a stabilization di-
agram procedure [DM12] from the simulated measurements of the structure with subspace-
based system identification as described in details in Chapter 3. Then, the system matrices
Ac and C, (3.2.3) in both healthy and damaged states, together with their uncertainties are
obtained from the same dataset as described in Section 3.3. We here consider the first 5
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modes for localization with SDDLV, see Table 8.4. For damaged case, assuming that 0.01 m
is the crack depth.

Table 8.4 — Eigenfrequencies f. and eigenvalues \. of a crack beam model.

Healthy state Damaged state
Mode | Modal freq. Eigenvalues Modal freq. Eigenvalues
1 21.56 —2.71 +135.491 21.48 —2.574 + 128.12i
2 135.23 —16.994 + 849.53i 130.97 —16.45 + 822.78i
3 379.83 —47.73 + 2386.101 372.35 —46.79 + 2339.11i
4 750.35 —94.29 + 4713.64i 741.78 —93.21 + 4659.84i
5 1245.39 —156.50 + 7823.48i 1236.49 —155.38 + 7767.54i

8.3.5 3D Cube beam model

In this application, the damage localization approach has been tested on a 3D cube beam
model as shown in Figure 8.11, considering a more complex structure than in the previous
example. The structure is modeled with 9 beam elements of length 10.2m (except for the
diagonal one). The elements are modeled as pipes with an internal and external diameter of
1.08m and 1.12m, respectively. The Young modulus (E), Poisson ratio and mass density of
the beam are 210 GPa, 0.3 and 7800 kg.m ™3, respectively. The bottom of the elements 1, 3,
5 and 7 is fixed to the support. The total number of DOFs of the structure is 24. Damage is
introduced in element 8 by multiplying all the rigidity by a factor (1 — D).

d
Sensors
10 - Ce 6 8
9 °b
4 2
Pt
Sensors
z
5 7 3
1
0
10
10
y X
0 0

Figure 8.11 — 3D Cube model with beam elements (24 DOFs)
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For both healthy and damaged states, acceleration datasets of length N = 200,000 are
simulated from collocated white noise excitation at four accelerometers in the x — y-direction
at nodes a and d, at a sampling frequency of 350 Hz which is sufficient to estimate the modal
parameters. White measurement noise with 5% magnitude of the simulated outputs was
added.

To get the damage localization results, an FE model of the healthy structure and estimated
modal parameters are needed from simulated data in both healthy and damaged states.
Therefore, the stiffness and mass matrix of a healthy and damaged beam element are stated
in the following.

Figure 8.12 — 3D Beam element

Stiffness and mass matrix of a healthy element

In 3D beam element, each node has six degrees of freedom such as three translational and
three rotational displacements in the x, y, and z-axis. Figure 8.12 shows a beam element
in the x-y-z plane. This element has twelve degrees of freedom corresponds to the following
displacement vector,

e - o ¢
Ue = [um Uyj Uzg Ozi Qyi 0. Ugg Uyj Uzj ezj 6.yj 02]] )

where g, Uyi, U and 0, éyi, 0.; are translational and rotational displacements at node i
respectively. Similalry, for node j, uyj, iy;, U.; and 0., 0y;, 0.; are the respectives transla-
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tional and rotational displacements. Details are given in the literature of structural mechanics
[Bat, Kri95, JNJ04].

Taking into account both flexural and traction-compression
finite element can be derived as follows,

stiffness K" for one beam

24 0o 0 0 0 -Z4 0 0 0 0
o LB o 0 o S o LB 0 0 S
0 0 12[{5;@ 0 _ 62:72[3, 0 0 0 B 12LE:‘))Iy 0 _ 62:72[3, 0
0 0 o <= 0 0 0 0 o ¢ 9 0
o o % o £ o o o %k o X
gh_ | 0 0 0 0 2L o -SEL 0 0 2EL
—EA g 0 0 0 o £ 0 0 0 0 0
0o LB 9 0 0o %L o 2B 0 0 %L
o o B oo Lo o o BEL o %L
0 0 o -¢= 90 0 0 0 o = 90 0
0 0o %o Zh o 0 0 FL o T
0 %L 0 0 0o 2L o -SEE 0 0 4L
(8.37)
The mass matrix M" is written as
(140 0 0 0 0O 0 70 0 0 0 0 0
0 156 0 0 0 22 0 54 0 0 0 -13L
0 56 0 -2 0 0 0 54 0 —13L O
0 0 0 oit/A 0O 0O 0O 0O 0 70It/A 0 0
0 0 -22L 0 AL 0 0 0 -—-13L 0 =3L? 0
h_ PAL| 0 220 0 0 0 4L 0 13L 0 0 0 —3L?
- 420 |70 0 0 0 0 0 140L 0 0 0 0 0
0 54 0 0 0 13L 0 156 0 0 0 -22L
0 0 54 0 -13L 0 0 0 156 0 220 0
0o 0 0 7It/A 0 0 0 0 0 140It/A 0 0
0 0 13L 0 3.2 0 0 0 220 0 AL 0
| 0 —13L 0 0 0 —3L* 0 —22L 0 0 0 4L? |
(8.38)

where p is the mass density, A is the cross-section area, L is the length of the element, F is
the Young modulus, I, I, and I, are the moment of inertia in the x, y, and z-axis, and It
is the torsional moment of inertia. Finally, the global mass and stiffness matrix of the 3D
beam model in Figure 8.11 can be obtained after assembling the mass and stiffness matrix
for each of the element.
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Stiffness matrix of damaged element

For damaged case, considering the damage model of Mazars, the stiffness matrix of the
damaged structure is obtained as K% = (1 — D)K", where D is the damage parameter of
the Mazars model D € [0,1]. In this application, damage is introduced in element 8 by
multiplying all the rigidity by a factor with D = 0.5.

Modal analysis and uncertainties

In this example, 13 modes can be well identified using stabilization diagram from the simu-
lated measurements of the structure with subspace-based system identification as described
in details in Chapter 3. Then, the system matrices A, and C. (3.2.3) in both healthy and
damaged states, together with their uncertainties are obtained from the same dataset as de-
scribed in Section 3.3. Using four sensors in this example, only a limited set of four modes
could be used for localization in previous works [Ber10, DMBM13, MDBM15] as the number
of modes cannot be bigger than the number of sensors. For localization we consider the first
12 modes (see Table 8.5), split into three mode sets M;, Mo and M3 of four modes each
for the proposed method in chapter 5. In Figure 8.13, the first four mode shapes of the cube
structure are illustrated.

Table 8.5 — Eigenvalues A, of cube.

Mode Healthy state Damaged state Mode set

1 —0.938+46.90i —0.910 + 45.46i
2  —-113456.700 —1.12+ 56.201 M,
3 —1524+76.031 —1.44+71.99i
4 =345+ 172.51  —3.37 4 169.0i
5 —=7.494374.71  —6.80+ 340.4i
6 —8.184409.31 —7.474 373.61 M,
7 —=9.414470.81 —8.69 + 435.91
8 —991+4495.4i —9.544477.2i
9 —11.0+4552.61 —10.54 527.4i
10 —11.34566.71  —11.3 + 564.21 M
11 —11.8+4591.4i —11.7+ 586.2i
12 -12.34615.11  —12.1 + 606.01
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Mode 1, frequency 7.4665 Hz Mode 2, frequency 9.0272 Hz
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Figure 8.13 — First four mode shapes of the cube structure (healthy state).

8.4 Overview for different methods

Based on the contribution Chapters (5, 6 and 7), different damage localization methods have
been applied on both numerical and real applications. In Chapter 9, 10, and 11, the following
numerical applications has been considered:

In chapter 9, first the damage localization method has been applied on numerical simula-
tions based on contribution chapter 5. A simple mass-spring chain and a more complex 3D
cube beam model has been cosidered as numerical applications. These numerical applications
are idealized test cases for the validation of the new developments of this chapter using Mul-
tiple mode sets approach, allowing in particular a statistical performance evaluation based
on Monte-Carlo simulations. For each application, the outcome of the damage localization
results using multiple mode sets are compared with the ones using only one of the single
mode sets separately. Secondly, the damage localization wih SDDLV has been applied on a
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2D beam model with crack. Finally, the SDDLV has been investigated on a 2D beam model
assuming large and small damaged zone depending on different mesh size i.e. rough and fine
mesh.

In chapter 10, the damage localization method has been validated on a numerical appli-
cation of Mass-spring chain based on the contribution chaper 6 that deals with the statistical
evaluation of ILDL. Monte-Carlo simulations have been demonstrated for evaluating the suc-
cess rate of correct damage localization at different s-values.

In chapter 11, the damage localization method has been applied on two different numeri-
cal simulations such as mass-spring chain and 2D beam model based on contribution chapter
7 that presents the transfer-matrix based residuals for damage localization and quantifica-
tion using Multiple mode sets in the context of SDDLV. Monte-Carlo simulations have been
carried-out for evaluating the performance of the damage localization and quantification for
single and multiple mode sets at different s-values.

Then in chapter 12 the numerical implementation of the damage localization methods is
presented by using Abaqus software. In Chapters 9, 10, and 11, the localization methods are
applied on different numerical simulations where the FE model are generated using Matlab
code more challenging to make an accurate FE model for bigger structure. Therefore, the
purpose of this chapter is to compute the FE model of a structure in practice, generally for
any kind of structure using Abaqus-Python script for the feasibility of the damage localization
and quantification methods described in this thesis. Finally, both methods from chapter 5
and 7 are tested for localization and quantification on a 2D cantilever beam model.

The overview of the different methods is shown shortly in Table 8.6.

Table 8.6 — Overview for different methods (numerical applications)

Contribution chapter Methods Numerical applications
5 SDDLV using Multiple mode sets | Mass-spring chain and 3D cube model
SDDLV Beam model with crack
SDDLV Beam model for different mesh size
ILDL Mass-spring chain
Transfer-matrix based residual Mass-spring chain and beam model

8.5 Discussion

In this Chapter, the performance evaluation criteria of the damage localization methods are
presented based on the probability of successful damage localization and the probability of
good or wrong localization (PGL or PW L) in terms of the detection threshold, defect size
and Laplace variables. The descriptions of the numerical models are illustrated for different
damage localization methods. Finally, an overview of different methods and applications has
been presented.
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Chapter 9

SDDLV with single and multiple
mode sets

9.1 Introduction

In this Chapter, the damage localization algorithm from Chapter 5 is applied on numerical
simulations. A simple mass-spring chain, a 3D cube model, a crack beam and a beam model
depending on mesh size have been considered as numerical applications, which allow Monte-
Carlo simulations for the validation of the method.

For mass-spring chain and 3D cube model, the outcome of the damage localization results
using multiple mode sets are compared with the ones using only one of the single mode
sets separately. To obtain these results from simulated or measured data, the modes of
the system are estimated using a stabilization diagram procedure with SSI [DM12] in both
reference and damaged states. They are estimated together with their covariance [DM13].
Then, the system matrices and their covariance are assembled from the modes. For each
single mode set, the stress vector and its uncertainty are computed. Finally, the estimated
stress at the multiple (or single) mode sets and at multiple (or single) s-values is evaluated
and statistically aggregated for each structural element with the new method using multiple
approach. Comparisons to the deterministic aggregation are based on (5.5). Recall that
stress values close to zero indicate potentially damaged elements.

Assessing the performance of the method is a requirement for showing the benefits of
this approach. A proper criterion for the evaluation of the success rate is proposed based
on Monte Carlo simulations. The SDDLV approach is strongly dependent on the choice of
the Laplace variable s where the transfer function is evaluated. Performance can be highly
different in the classical SDDLV approach depending on the choice of the Laplace variable.
Accommodating multiple s variables has been treated in [MDBM15]. Still, the choice of
the Laplace variable is a complicated part of the procedure, even if past guidelines push for
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choosing this variable around the identified modes in the complex plane. That is why, in
this section, Monte Carlo simulations have been done for many s variables in the complex
plane and results are evaluated on 2D grids. Performance of the proposed approach is tested
against the requirement that such choice should not be critical.

This Chapter is formulated as follows. In Section 9.2, the distribution of the load vector
and stress field is validated before going to apply statistical damage localization approach.
In Section 9.3, the new approach using Multiple mode sets has been applied on two different
numerical applications, a mass-spring chain, and a 3D cube model. In Section 9.4, the
damage localization with the SDDLV approach has been applied on a beam model for crack
propagation. In Section 9.5, it has been applied on beam model influence of mesh size and
in Section 9.6, the performance evaluation of the method has been investigated based on the
PGL interms of distance. Finally, the conclusion of the work is presented in Section 9.7.

9.2 Distribution of load vectors and stresses

In SDDLV, a vector is obtained in the null space of the changes in the transfer matrix from
both states and then applied as a load vector to the model that yields stress field. Recall that
the damage localization is related to this stress where it is close to zero. Due to random input
noise, the estimated load vectors are random values for each simulated datasets. Therefore, it
is important to analysis the distribution of the random variables in Monte-Carlo experiments.

The load vector v in the null space of JR(s)? can be chosen as any linear combination
of the vectors in V5. Particularly, the vector corresponding to the smallest singular value is
taken as the desired load vector. Hence, the last singular vector vs = v(:,r) has considered
as the desired load vector v which is obtained froln a model or from an estimated data. From
a simulated data sets, one gets the estimated V5 of the null space. First, the theoretical
load vector vy = v(:,r) from model has projected to the estimated null space vectors 172 To
find an estimate vector ¥, within all null space vectors in V5, it is essential to calculate the
linear combination of the vectors in 172 Note that the theoretical load vector vy is expected
approximately equal to the estimated load vector Us from simulated data. The estimated
load vector 7, is written as

r—t
b= aw;, (9.1)
=1

where r — t is the dimension of the null space vectors, v; = ‘72(:, i) is the null space vectors
of JR(s)T, and «; is the scaler coefficient of the vector. The scaler coefficient «; is calculated
using orthogonal projection of vg vector into v; = 172( :,1) of the null space vectors. The scaler
coefficient «; can be obtained as

(9.2)

In Monte-carlo experiments, the following things are considered to analyze the probability
distribution of load vectors and stresses,

e The distribution of the estimated load vectors are observed for each of the element, and
a comparison is made between the probability density of the estimated load vectors and
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the theoretical load vector that computed from a model. Then an analysis has been
performed to see the difference between the mean of the estimated load vectors and
theoretical load vectors.

e For the validation of stress covariance computation, the probability distribution of the
stress values is computed for damaged and undamaged elements from Monte Carlo
simulations with compared to theoretical stress values. Then, the difference between
the mean of the estimated stress and theoretical stress vectors are illustrated. It is seen
that the estimated stress is asymptotically Gaussian distributed.

e Validation of covariance computation: to compare Monte-Carlo standard deviation, &
of the estimated stress with the mean of the computed standard deviation, o.

e Finally, a continuous Monte Carlo experiments have been performed to observe the
convergence of the estimated ones to theoretical parameters. That’s why the mean
of the estimated load vectors and stress values have been considered in a progressive
Monte-Carlo Simulations. Therefore, we observed that after some experiments the
estimated value has converged to the theoretical value.

For an example, a mass-spring chain of six DOF as shown in Figure 9.1. The stiffness
parameters are k1 = kg = ks = 4000, ko = k4 = kg = 2000, and the mass of all elements
is 1 in suitable units. Damping is defined such that each mode has a damping ratio of 2%.
Damage is simulated by decreasing the stiffness of spring 3 by 10% of its original value. For
damaged and undamaged states, the acceleration data length for each set is N = 50,000.
Data were generated from collocated white noise excitation using six sensors at each element
with a sampling frequency of 50 Hz, and white measurement noise with 5% magnitude of
the outputs was added. All six modes of the structure can be identified from the simulated
measurements when using SSI. In the simulation results, a comparison between theoretical
and estimated modal parameters has explained for Monte-Carlo experiments of 1000 datasets.

k k

k k k k
Wmlmmzmmsmmmmsmme

Figure 9.1 — Mass-spring chain (with modal damping), six sensors.

9.2.1 Validation of load vectors and stresses

Since the number of damaged element is one, the rank of §R(s)? is 1. The null space vectors
Vs are spanned by the last 5 column vectors and the null space of R(s)” is equal to zero.
Each column vector of ‘72 can be used as the desired load vector but the last column vector has
chosen for better accuracy because it gives the lowest singular value. For each experiment, the
estimated load vectors are random variables. The theoretical load vector v is projected to the
estimated null space vectors V, and the estimated load vector 3(s) is the linear combination
of the vectors V, where estimated load vectors 3(s) are close to v(s).
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In Figure 9.2, a comparison is shown between the probability distribution of the estimated
load vectors and theoretical load vectors that obtained from the model. Note that the most
density of the estimated load vectors is closest to the theoretical value. In Figure 9.3, the

700 - - 800 ~ 2007
| - [ .
600 ¢ * Theo| | 700 ¢ % Thea| |
800 ¢ 150
w 500 @ 0
5 5 g
= 500 ¢
£ 400} £ £
@ o -
3 3 400 g 100
we 300} P P
= =} 300+ =}
2 2 2
2004
200 ¢ S0 1
100 ¢ 1 100}
ol | e . ok . |
0.58 0.50 08 L1N:3) 082 0.83 084 024 022 -02 0.18 018 0.14 01 0.15 0.2 0.25 03 0.38
Load vector at element 1 Load vector at element 2 Load vector at element 3
250 v 200 T 250 L 1
[ —es | [ . =8
| ® Theo | ® Theo| % Theo
200 ' 200 ¢ ) i
150 ¢
@ @ @
E ] ©
& H H
E 150} E E 150}
% % %
=3 100 3
o o L
B 100 B ‘S 100}
o o o
= =z =
S0
50+ 50+
ol | ol ] ol |
025 02 £15 0.1 005 o D65 0.6 055 -0.5 045 <04 0.35 04 0.45 05 0.55 06
Load vector at element 4 Load veclor at element 5 Load veclor at element &

Figure 9.2 — Load vector at each of the element between estimated and theoretical value [bar’ indicates the
distribution of estimated value and 'x’ for theoretical value |.

mean of the estimated load vector for Monte-Carlo experiments and its standard deviation
as shown and compoared to the theoretical value. Note that the standard deviation indicates
how far away the estimated random variables can lie from the mean values.

Now, the estimated load vectors v(s) are applied to the model in order to get the stress
field. In Figure 9.4, the distribution of the stress value at each of the elements from Monte-
Carlo experiments and the theoretical stress values are illustrated. The stresses close to
zero correspond to potentially damaged elements. Here, most of the distribution of stresses
at 3rd element are close to zero but some of them are not close to zero. Therefore, it is
difficult to make a decision about damaged element of the structure. Then, the mean of
the estimated stress in Monte-Carlo experiments and its standard deviation is computed for
each experiment. In Figure 9.5, a comparison between the mean of the computed standard
deviation of the stress (estimated) for all experiment and the std. deviation of the estimate
stress value (true) is shown. It is seen that the difference between these parameters is not so
small due to white noise and uncertainties in the datasets.
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Finally, a progressive Monte-Carlo experiment has performed to analyze the convergence
of the estimated value to theoretical value. The mean of the estimated load vectors and stress
values has considered for continuous Monte experiments where the mean is taken from the
results of the experiments ¢ = 1,..,1000. The mean of the quantity of the estimated load
vectors and stress values are shown in Figure 9.6 and Figure 9.7, respectively. We observed
that after some experiments the estimated value has converged to the theoretical value.
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Figure 9.7 — Progressive Monte Carlo simulations for mean of the estimated stress values at each of the elements
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From this section, it can be summarized that estimated stress is asymptotically Gaussian
distributed as shown in Figure 9.4. There are false positives (i.e. stress of some healthy
elements around 0) and false negatives (i.e. stress correctly centered at 0 at damaged element
3), but with values possibly far away from 0. In Figure 9.7, we also observed that after some
experiments the estimated value has nearly converged to the theoretical value. In reality the
whole distribution is not available, just one value. Therefore, statistical evaluation x?7 test is
essential based on stress and its covariance to avoid false detection.

9.3 Validation of SDDLYV for single and multiple mode sets

9.3.1 Numerical application 1: mass-spring chain system

In a first numerical application, the damage localization method has been applied on a mass-
spring chain system with six DOFs using three sensors as shown in Figure 8.3 in Section
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8.3.1.

In the following, the localization results at all structural elements are presented for single
mode set M; and multiple mode set M; at one s-value, before evaluating the success rate
of correct damage localization for single and multiple mode sets at different s-values.

9.3.1.1 Localization of results in all elements at one s-value

In this section, the stress computation and its statistical evaluation for damage localization
results for each element of the mass-spring chain are shown in Figure 9.8 for mode set M
and Figure 9.9 for multiple mode set M; at one s-value. Note that 5% measurements noise
is added in the simulated datasets. The s-value was chosen in the vicinity of mode set M
as s = —2+ 51li and My as s = —2 4+ 90i. Recall that the damage localization is inferred by
the stress value closest to zero.

In Figure 9.8(a), the theoretical stress values are computed from the modal parameters
corresponding to M in the healthy and damaged states. The effect of modal truncation
leads to stress that is not exactly zero in damaged element 4, but that is close to zero and the
smallest compared to the stress at the other elements. When computing the stress from modal
parameter estimated from simulated datasets in Figure 9.8(b), the damage localization cannot
be correctly indicated anymore, which is probably due to variance errors in the estimation
from noisy data. Considering the variance of the modal parameters in the method, the
damage localization is correctly found since the smallest x? value is at element 4 in Figure
9.8(c). It can be seen that x7 in Figure 9.8(c) shows similar results as the theoretical result
in Figure 9.8(a).

In Figure 9.9, all stress values are computed using joint evaluation of multiple mode sets
from the single mode sets M; and Mj in the healthy and damaged states. In this case, the
estimated modal parameters can identify the damage localization in Figure 9.9(b) compared
to Figure 9.8(b). However, when taking into account the uncertainties in the statistical
evaluation of the y?-test, the damage localization is found at the smallest x7 values at damage
element 4 in both of Figure 9.8(c) and Figure 9.9(c).
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Figure 9.8 — Localization results at all elements of mass-spring chain using single mode set M using stress
computation and statistical evaluation at s* = —2 + 51i. Damage is at element 4.



9.3 Validation of SDDLV for single and multiple mode sets 149

4 x10°% 10°

w

o
IS
=)
S

)

2
t

n
2
w

- o N«
@
S
S

I
o

Estimate stress
N
8
3

Theoretic stress
- e
Statistical test, x’
=)
3

o
o
ed
o

o
o

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Element number, t Element number, t Element number, t

(a) SDDLV for theoretical stress ~ (b) SDDLV for estimated stress (c) S-SDDLV (statistical test)

Figure 9.9 — Localization results with new statistical method using multiple mode sets: stress computation and
statistical evaluation at s* = —2 + 51i, s> = —2 4 90i -using three sensor. Damage is at element 4.

In this section, the localization of results has been demonstrated for one data set at
one s-value only. In the next section, the success rate of the damage localization has been
investigated using single mode set. Recall that success rate of the damage localization is
defined as the number of occurrences of the smallest stress values in the damage element,
while all s-values are evaluated for each of the 500 datasets.

9.3.1.2 Success rate of the damage localization using single mode set

In the last section, the damage localization results was illustrated only for one dataset and
one s-value, now we are going to evaluate the performance of the damage localization for
theoretical, estimated and statistical test based either on single mode set M; or Ms in
dependence of the chosen s-value, before going to the joint evaluation of the multiple mode
sets in the next section.

For the evaluation of the success rate of correct damage localization at element 4, using
either mode set M1 or Ms, 500 datasets of vibration data were generated for the Monte Carlo
evaluation. Then, the modes of these datasets and their uncertainties were identified using
SSI, both in reference and damaged states. Finally, the success rate was determined based
on the computation of the stress estimated in (5.5) and x? test values in (5.14), using either
the modes from M7 or Msy, for different s-values. The s-values were chosen in the vicinity
of the modes (see Table 8.1) on a global grid with Re(s) € [-3,1] and Im(s) € [0, 130].

In Figures 9.10, 9.12, 9.14 and 9.11, 9.13, 9.15, the success rates of the damage localization
(z-axis) are shown in dependence of the real and imaginary part of the chosen s-values (z
and y-axis) for mode sets M; and My, respectively. Indeed it can be seen that damage
localization for both mode sets is satisfactory only for s-values in the vicinity of the modes
of the respective mode sets.

For mode set My, corresponding to the first three modes, it can be seen in Figure 9.11
that success of damage localization from the exact modal parameters is obtained only in the
interval [1,63] on the imaginary line. The same happens for the estimated stress from the
simulated datasets as shown in Figure 9.13, where the success rate of the damage localization
is around 60% only due to modal truncation and estimation errors. Figure 9.14 shows that the
success rate is satisfactory only in the interval of the Laplace variables with Im(s) € [20, 64],
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where it reaches up to 90% and much higher than estimated in Figure 9.12. Beyond this
interval, it is almost close to zero and the damage localization cannot be indicated due to
the modal truncation error, which is significant outside the interval containing the identified
modes (see Table 8.1). Note that the considered modes in this example are in the interval
[1,62] on the imaginary line (see Table 8.1).

Similarly, for mode set My corresponding to the last three modes of the structure, it can
be seen in Figure 9.11 that success of damage localization from the exact modal parameters
is obtained only in the interval [77,117] on the imaginary line. The same happens for the
estimated stress from the simulated datasets as shown in Figure 9.13, where the success rate
of the damage localization is around 60% only due to modal truncation and estimation errors.
It can be seen in Figure 9.15 that the success rate of damage localization is satisfying with
up to 85% when Im(s) belongs to the interval [102,128]. This area corresponds only to the
last two identified modes in Msy. While lower performance at s-values around the modes of
M can be expected due to significant modal truncation errors, the success rate at s-values
near the fourth mode of the structure is also very low. Hence, choosing the s-value in the
vicinity of the identified poles does not necessarily give perfect results.

Success rate
Success rate

Re(s) Re(s)

Figure 9.10 — Success of the SDDLV from theoretical Figure 9.11 — Success rate of the SDDLV from theo-
modal parameters using single mode set M1 in depen- retical modal parameters using single mode set My in
dence of s. dependence of s.
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Figure 9.12 — Success rates of the SDDLV from esti- T
mated modal parameters using single mode set My in s = ®

dependence of s.
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9.3.1.3 Success rate of the damage localization using multiple mode sets

In the previous section, the success rate of the damage localization using a single mode set
was not successful everywhere in the s-plane mainly because of modal truncation errors.
Even considering the s-value in the vicinity of the identified modes, where modal truncation
errors should be low, was not sufficient to achieve a reasonable success rate (e.g. > 85%) for
all choices of s, especially for My in Figure 9.15. It cannot be known beforehand which s-
values lead to good results in real experiments, however, the only reasonable assumption is to
choose them in the vicinity of the identified modes. This motivates the use of the additional
information in multiple mode sets instead of using a single mode set alone, expecting better
results for the entire s-plane. Therefore, the computation of stress for damage localization
has been obtained by taking into account the information using multiple mode sets instead of
using single mode set. Considering the statistical uncertainties of the modal parameters using
multiple mode sets for the subsequent stress evaluation can improve the situation significantly.
In the meanwhile, the theoretical stress from modal parameters and estimated stress from
data sets are also weighted by taking norm of all stress.

For the new approach using multiple mode sets, first the s-values are chosen similarly
for mode set M; and My with Re(s!), Re(s?) = 1, Im(s!),Im(s?) € [0,130] and then, the
s-values are chosen separately for each mode set M; and My, such that they are in the
vicinity of the identified modes of the respective mode set. This means that the s-value s* for
mode set M is chosen with Im(s!) € [0,64], and s? for mode set My with Im(s) € [66, 128],
while the real parts are both in the interval Re(s!), Re(s?) € [-3,1].

The impact of the choice of s-values s, s' and s when treating the multiple mode sets
has been investigated same or differently for the respective mode sets. The following three
cases are now considered:

Case 1: combination of M; and M with the same s-values from the entire range in the
vicinity of modes.

In this case, the damage localization results are obtained using multiple mode sets in the
combination of single mode set M; and My for the chosen s-value with Re(s'), Re(s?) = 1
and Im(s'),Im(s?) € [0,130]. In Figure 9.16, it is shown that the performance of the damage
localization from the theoretical modal parameters are significant with compared to the single
mode sets in Figure 9.10 and 9.11 in the interval of Im(s') € [0,62],Im(s?) € [77,130].
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On other hands, it is seen in Figure 9.17 that the success rates of the damage localization
from the estimated stress are also improved but not satisfactory at all (i.e. < 85%) due
to modal truncation and estimation errors. Then, it can be seen in Figure 9.18 that the
statistical combination of the results from the single mode sets significantly improves the
damage localization performance nearly everywhere in the s-plane. Figure 9.18 shows that
overall success rates are satisfactory in the range of the s-values compared to the respective
single mode sets, even though the performance for the chosen s' and s? was not satisfied at
everywhere in the s-plane for mode set M; and Ms, respectively.

Success rale
Success rate (%)

Im(s) Im(s)

Figure 9.16 — Case 1: success of the SDDLV from the- Figure 9.17 — Case 1: success rates of the SDDLV from
oretical modal parameters using multiple mode sets M estimated modal parameters using multiple mode sets
and M>, in dependence of s with Tm(s'),Im(s*) € M, and Mo, in dependence of s with Im(s'),Im(s?) €
[0, 130]. [0,130].

Success rate (%)

Figure 9.18 — Case 1: success rates of the S-SDDLV using multiple mode sets M1 and Mo, in dependence of s
with Im(s"), Im(s?) € [0, 130].
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In the interval Im(s') € [0, 60], Im(s?) € [90,120] the maximum success rate is achieved,
which is slightly lower than 80% for single mode set M; in Figure 9.14, but significantly
higher than for single set My at the respective s-value in Figure 9.15.

Notice that combining the information from multiple mode sets strongly mitigates the
risk of accidentally choosing s-values with poor performance in the single mode sets. The
overall results with the multiple mode sets are as good or better than the ones in both single
mode set cases.

Case 2: combination of M; and My with different s-values
e s! from the entire range in the vicinity of M, and
e 52 with Im(s?) = 83, where it gave a poor performance using My only (see Figure 9.15).

In this case, Figure 9.19 shows that the performance of the damage localization from the
theoretic modal parameters are good with compared to the single mode sets in Figure 9.10
and 9.11, while the performance of the damage localization from estimated stress is average in
Figure 9.20 with compared to Figures 9.12 and 9.13 due to modal truncation and estimation
errors. Then, Figure 9.21 shows that reasonable success rates (> 85% ) are achieved in a large
range of s-values compared to the respective single mode sets, even though the performance
for the chosen s was poor in mode set Ms. In the interval Im(s!) € [20,62], the maximum
success rate is achieved, which is slightly lower than 80% for single mode set M; in Figure
9.14, but significantly higher than for single set My at the respective s-value in Figure 9.15.
In the less optimal region with Im(s') € [0, 20], the success rate using the multiple mode sets
is much higher than in the respective regions using the single mode sets.
Case 3: combination of M; and My with selected s-values

e s! from the entire range in the vicinity of My, and

e 52 with Im(s?) = 106, where it gave a good performance using My only (see Fig-
ure 9.15).

In this case, the performance of the damage localization in Figure 9.22 and 9.23 from the
theoretical and estimated stress is satisfactory with compared to single mode sets. Then,
it can be seen in Figure 9.24 that the success rate of the damage localization with the new
method has significantly improved the situation everywhere in the s-plane, compared to all
previous results, with success rates between 85% and 99%.

From cases 1, 2 and 3, it can be concluded that the treatment of all available modes with
the statistical multiple mode set strategy of this paper improves the damage localization
performance, compared to the consideration of using a limited number of modes in a single
mode set in the previous approach [Berl0, DMBM13, MDBM15]. Choices of the respective
s-values should be within the vicinity of the respective mode sets. The effect of s-values with
poor performance are mitigated, and a significant improvement on the localization success
rate is made through the statistical combination of results in the approach.
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estimated modal parameters using multiple mode sets

M and M, in dependence of s' and s* with Im(s') €
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9.3.2 Damage localization subject to different noise level

In this section, Monte-Carlo experiments of 100 datasets have been demonstrated in order to
see the influence of the damage localization results at different noise level, starting from 5%
to 200%. In Figures 9.25 and 9.26, the results are shown for estimated stress and statistical
X2-tests, respectively. Note that the s-values, Re(s) = —[0.5,3] and Im(s) € [1,61] are chosen
in the vicinity of the first mode sets M, corresponding to first three modes.

Summarizing the results, it is found that the success of the damage localization seems to
decrease linearly with respect to increasing noise level for both estimated stress (see Figure
9.25) and statistical evaluation of y?-test (see Figure 9.26). Note that when taking into
account the uncertainties from the measurements, the statistical tests improves the results in
comparison to estimates.
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Figure 9.25 — Success rates of damage localization from Figure 9.26 — Success rates of damage localization from
estimated stress at different noise level for s-values, statistical x2-tests at different noise level for s-values,
Re(s) = —[0.5, 3] and Im(s) € [1,61] Re(s) = —[0.5, 3] and Im(s) € [1,61]

9.3.3 Numerical application 2: 3D cube beam model

In a second numerical application, the damage localization approach has been demonstrated
on a 3D cube beam model as shown in Figure 8.11 in Section 8.3.5, considering a more
complex structure than in the previous example.

9.3.3.1 Localization of results in all elements at one s-value

The localization results at all elements are computed using one dataset in both damaged and
healthy states. For a single mode set, the computation of all stresses is done at s; = —14 26i.
In Figure 9.27(a)-9.27(c), all stress values corresponding to all elements are presented, while
the smallest stress value is correctly located in the damaged element at bar 8. Considering
uncertainties, the damage localization is correctly found at the smallest x? values at element
8 in Figure 9.27(c).
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Figure 9.27 — Localization using a single mode set: stress computation and statistical evaluation at s; = —1 + 26i
-four sensors, 5% output noise, 50% stiffness reduction at bar 8.

Recall that there is always a possibility to use the same or different s-values for the
computation of stress with the proposed method. As in the previous example, we analyze
the success rate for localization with the mode sets separately in dependence of the chosen
s-value, before jointly evaluating it based on all three mode sets with the new method from
this paper. Monte Carlo simulations are carried out using 100 simulated datasets in healthy
and reference states to determine the success rate, where for each dataset the modes and
their uncertainties are identified using SSI. The entire s-value range in the vicinity of the
modes (see Table 8.5) is Re(s) € [—12, —7] U [-4, —1] and Im(s) € [0, 650].

In the next section, the success rate of the damage localization results has been computed
using the single mode sets separately in Monte-Carlo simulation for 100 datasets. Then, the
success rate of the damage localization is illustrated with the new proposed method for the
joint statistical evaluation of the multiple mode sets.

9.3.3.2 Success rate of the damage localization using a single mode set

We evaluate the success rates of the statistical damage localization for based either on single
mode set Mj, Mgy or M3 in dependence of the chosen s-value, before going to the joint
evaluation of the multiple mode sets in the next section.

The s-values were chosen within the global range described above to see the influence of
the different s-values also beyond the range of each individual mode set. In Figures 9.30, 9.33
and 9.36, the success rates of correct damage localization (z-axis) are shown in dependence
of the real and imaginary part of the chosen s-values (z and y-axis) for mode sets Mj, My
and Ms, respectively. Indeed it can be seen that damage localization for both mode sets is
satisfactory only for s-values in the vicinity of the modes of the respective mode sets.

For mode set M, corresponding to the first four modes in the region Im(s) € [0,175],
the success rate of the damage localization results are shown in Figure 9.28-9.30 from the
theoretical stress, estimated stress and statistical evaluation of x7-test. Figure 9.30 shows
that the success rate is satisfactory only in the interval of the Laplace variables with Im(s) €
[0,81] U [120,201], where it reaches up to 100%. Beyond this interval, it is close to zero
and the damage localization cannot be indicated due to the modal truncation error, which
is significant outside the interval containing the identified modes (see Table 8.5). However,
there is also a region within the vicinity of the modes of M, where the success rate is close
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to zero. Notice that the considered modes in this example are in the interval [1,175] on the
imaginary line.

For mode set Ma, the success rate of the damage localization results from theoretical
stress, estimated stress and statistical evaluation of y?-test are shown in Figure 9.31-9.33.
The four modes in mode set My are within the region Im(s) € [300,475], and it can be seen in
Figure 9.33 that the success rate of damage localization is satisfying (> 85%) in the interval
Im(s) € [300,445], covering nearly the entire region. Possibly, the success rate in the last
part of the region is low due to the proximity of mode set Mg and the resulting truncation
€rrors.

Finally, for mode set M3, the results are shown in Figure 9.34-9.36 for the theoretical
stress, estimated stress and statistical evaluation of x?-test. It can be seen in Figure 9.36 that
the success rate of damage localization for the statistical y7-test is satisfactory in comparison
to Figure 9.35, where the modes are in the interval Im(s) € [450,625]. The success rate is
good (> 70%) for Im(s) € [500, 580], covering only a part of the region corresponding to Ms.

Similarly as in the previous example, this shows that choosing the s-value in the vicinity of
the identified poles does not necessarily give perfect results. This motivates the combination
of results of different mode sets for more robustness and less dependence on the particular
choice of s.

Success by
Succass rate (%)

Re{s)

)
g
=

Figure 9.28 — Success of the SDDLV from theoretical Figure 9.29 — Success rates of the SDDLV from esti-
modal parameters using single mode set M1, in depen- mated modal parameters using single mode set M1, in
dence of s. dependence of s.
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Figure 9.31 — Success of the SDDLV from theoretical
modal parameters using single mode set Mz, in depen-
dence of s.

Figure 9.30 — Success rates of the S-SDDLV using single
mode set M1, in dependence of s.
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Figure 9.34 — Success of the SDDLV from theoretical Figure 9.35 — Success rates of the SDDLV from esti-
modal parameters using single mode set M3, in depen- mated modal parameters using single mode set M3, in
dence of s. dependence of s.
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Figure 9.36 — Success rates of the S-SDDLV using single
mode set M3, in dependence of s.

9.3.3.3 Success rate of the damage localization using multiple mode sets

For the new statistical approach using multiple mode sets, the s-values are chosen separately
for each mode set M1, Mo and M3, such that they are in the vicinity of the identified modes

of the respective mode set. Therefore, the range of the respective s-values s', s and s? is



9.3 Validation of SDDLV for single and multiple mode sets 159

chosen with Re(s') € [-4,—1], Im(s') € [0,175], Re(s?) € [-10, 7], Im(s?) € [300,475],
Re(s®) € [~12, 9], Im(s?) € [450, 625].

The impact of the choice of s-values s', s> and s? in the respective mode sets has been in-
vestigated for the joint evaluation of the stress, where the evaluation for each triplet (s!, 52, s3)
is carried out with s', s? and s covering the above range of s-values used in the respective
mode sets.
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s2 and s3. mode sets M1, Mz and M3 with s in the vicinity of the
respective modes, compared to the success rate using
jointly the multiple mode sets.

The results are shown in Figure 9.37-9.39 for the theoretical stress, estimated stress and
statistical evaluation of y?-test using multiple mode sets. The resulting success rate of the
joint evaluation is shown in Figure 9.39, where it can be seen that the success rate is nearly
at 100% everywhere in the s-plane and significantly improves the results with compared to
estimated in Figure 9.38. A comparison to the success rates from the single mode sets in the
respective range of s-values is made in Figure 9.40 for fixed real parts Re(s') = —3, Re(s?) =
—9 and Re(s%) = —11, where it can be clearly seen that the statistical combination of the
results from the single mode sets significantly improves the damage localization performance
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nearly everywhere in the s-plane. In particular, the choice of s-values in the vicinity of the
identified modes always yields very good success rates in the joint evaluation of the multiple
mode sets, while this was not always the case using the single mode sets separately.

9.3.4 Result analysis

Summarizing the results, it is found that that the statistical evaluation in general improves
the damage localization performance. For example, the statistical evaluation with the y?-
test in Figure 9.39 gives good performance with respect to Figures 9.37 and 9.38, where the
success of the damage localization is poor in some part of the s-plane in both theoretical and
estimated stress. Only in one example the chi2-test showed a slightly decreased performance,
namely in Figure 9.18 with respect to theoretical and estimated stress in Figures 9.16 and 9.17,
but only for few s-values in the complex plane. Notice that in both theoretical and estimated
stress, the damage localization criteria (5.5) is strictly followed by taking into account the
norm of all stress values/element (including the real and imaginary part of stress). In the
statistical evaluation of y7-test (5.14) the covariance is propagated to the estimated stress,
and this covariance depends on the limited sampled data containing the measurements noise.
In general, taking into account the statistical uncertainties of damage indicators in their
evaluation should increase the performance of damage assessment. They provide an additional
information and quantify the confidence we can have in the estimation of a damage indicator.
Thus, they provide a natural weighting of a damage indicator in order to evaluate significance.
When aggregating damage indicators corresponding to the same element, e.g. for different
s-values, different mode sets, or different kinds of stress, their uncertainties provide a natural
weighting to combine them. It can be assumed that badly estimated damage indicators
have a higher uncertainty than well estimated ones, and e.g. s-values with a low damage
localization performance in a mode set lead are linked to a badly estimated damage indicator
with relatively high uncertainty. When combining them from different mode sets or different
s-values, those badly estimated indicators with high uncertainty will have a low weight, while
well-estimated indicators having low uncertainty will have a strong weight. When aggregating
several indicators based on different s-value and/or mode sets, those with a low uncertainty
will have a strong weight. Since these are the ones which are a priori well estimated and have
a good performance in the respective mode set for the respective s-value, the aggregation
benefits particularly from the indicators with a good performance, while indicators with a bad
performance are mitigated. This statistical aggregation hence should in general lead to better
results than a deterministic aggregation, where just the norm is taken of the indicators for the
same element, providing them with the same weight. Even the deterministic aggregation in
the theoretical case where no variance errors are present may then show less performance than
the statistical aggregation, due to the same weighting of different values in the theoretical
case vs. a different more adapted weighting when taking into account the uncertainties.
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9.4 Beam model with crack

In this numerical application, the damage localization with SDDLV has been applied on a
2D circular beam of 15 DOFs for crack localization using five sensors as shown in Figure 8.9
in Section 8.3.4.

As in the previous example, the localization results are demonstrated in all elements at
one s-value for one dataset and then we analyze the success rate for localization with the 5
modes in dependence of the chosen s-value. Monte Carlo simulations are carried out using
100 simulated datasets in healthy and damaged states to determine the success rate, where
in each dataset the modes and their uncertainties are identified using SSI. The entire s-value
range in the vicinity of the modes is Re(s) € [—260, —2] and Im(s) € [0,10000].

9.4.1 Localization of results in all elements at one s-value

The localization results at all elements are computed using one of the Monte-Carlo datasets
in both healthy and damaged states. Recall that the damage localization is inferred by the
stress value closest to zero. Using these 5 modes, the computation of all stresses is done at
s1 = —1 4 510i. In Figure 9.41(a), all stress values corresponding to healthy and damaged
elements are presented, while the smallest stress value is correctly located in the damaged
element at bar 1. Considering uncertainties, the crack localization is correctly found at the
smallest x? values at element 1 in Figure 9.41(c). It can be seen that x7 in Figure 9.41(c)
shows similar results as the theoretical result in Figure 9.41(a).
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(a) SDDLV for theoretic stress (b) SDDLV for estimated stress (c) S-SDDLV (statistical test)

Figure 9.41 — Localization results: stress computation and statistical evaluation at s1 = —1 + 510i -using five
sensors [Y-direction at each node], 5% output noise, 0.01m crack depth at bar 1.

In Figure 9.42, the crack localization results are shown from the true modal parameters
in dependence of the real and imaginary part of the chosen s-values (z and y-axis). However,
there is also a region within the vicinity of the modes, where the success rate is zero due to
the modal truncation error and may be the close choice of s-value. Figure 9.43 shows that
the success rates of the crack localization are poor from estimated modal parameters and the
crack localization cannot be indicated because of modal truncation and variation errors.

However, when considering the uncertainties in the statistical evaluation, the performance
of the crack localization good in Figure 9.44 compared to Figure 9.43. Possibly, the success
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rate in the last part of the s-plane region is low where the s-value is far away from the modes
and the resulting truncation errors.

9.4.2 Success rate of the crack localization at element 1

In this section, the success rates of the crack localization are evaluated using the first 5
identified modes in dependence of the real and imaginary part of the chosen s-values (z and
y-axes). The s-values were chosen within the global range described above to see the influence
of the different s-values also beyond the range of each mode. In Figure 9.42, 9.43, 9.44, the
crack localization results are illustrated from theoretical, estimated and statistical x?-test
respectively. All these computations are done at Laplace variables, Re(s) € [—260, —2] and
Im(s) € [0,10000] which are located in the vicinity of the identified poles (see Table 8.4).

Success rate

Figure 9.42 — Success of the SDDLV from theoretical modal parameters in dependence of s (crack depth 0.01m)

Success rate(%)

Figure 9.43 — Success rates of the SDDLV from estimated modal parameters in dependence of s (crack depth
0.01m)
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Figure 9.44 — Success rates of the S-SDDLV in dependence of s for crack at element 1 (crack depth 0.01m)

In the following, the success rates of the crack localization are obtained at element 1 with
respect to different crack depth.

9.4.3 Success rate Vs. crack depth

In the previous section, the outcome of the crack localization results is investigated at element
1 for a fixed crack depth of 0.01 m in dependence of the real and imaginary part of the chosen
s-values (z and y-axes) for the identified modes.

In this section, the success rate of the crack localization is obtained by increasing the
depth of crack from starting 0.0001 m to 0.012 m with a step size of 0.0005 m. For each crack
level, a Monte-Carlo experiments of 100 datasets has been demonstrated in order to see the
success rate of the crack localization. In Figure 9.45(a) assuming crack at element 1, the
success rate of the crack localization is obtained for a fixed s-value, s; = —16 4+ 1252i by
increasing the crack depth. In Figure 9.45(b), the mean of the success rate (%) of the crack
localization has also shown for the choice of s-values, Re(s) = —16 and Im(s) € [100, 3437]
with respect to increasing the crack level.

From Figures 9.45, it is seen that the success rate of the crack localization has increased,
while the depth of crack level increases. For very low damage, since we have 5 elements, the
success rates for damage should be 1/5 or 20% at beginning. Therefore, Figure 9.45(a) shows
that the minimum success rate starts around 20% while in the beginning the success rates
around 30%, possibly it is caused due to the small crack size, noise, or lack of accuracy of
the identification problems in the Monte-Carlo experiments.
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Figure 9.45 — Crack at element 1: success rate Vs. crack level (increasing) with a/D -using five sensors [Y-direction
at each node], 5% output noise, note that a is the crack depth and D is the diameter of the beam.

9.5 2D Beam model: Influence of mesh size

In this section, the damage localization method has been applied on a 2D beam model in the
influence of different mesh size as detailed in Section 8.3.3. To analyze the performance of
the method, the following cases are considered for the same configuration of sensors

e Case 1: For a large damage zone of 20 cm, the damage localization method has been
applied on a rough and fine mesh of 25 and 100 beam elements respectively.

e Case 2: For a small damage zone of 4 cm, the damage localization method has been
applied on a rough and fine mesh of 25 and 100 beam elements respectively.

e Case 3: For a small damage zone of 4 cm, the load vectors computed from estimated
data of 100 beam elements (fine mesh) and then applied to the L,,,4¢ of 25 elements
(rough mesh).

In all cases, the success rates of the damage localizations are evaluated only with the
identified modes in dependence of the chosen s-value. Monte Carlo simulations are carried
out using 100 simulated datasets in healthy and damaged states to determine the success
rate, where in each dataset the modes and their uncertainties are identified using SSI.

9.5.1 Case 1: Beam model with 25 elements (rough mesh), large damaged
zone of 20 cm

In this case, the damage localization method has been applied to a 2D beam model of 25
elements (rough mesh) as shown in Figure 8.7(a). The total number of Degrees Of Freedom
(DOFs) of the structure is 75. The damage elements are considered as 11-15. The damaged
element in the model is simulated by decreasing Young and Shear modulus by 50 % of their
original value.
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In the application, the outcome of the damage localization results is investigated in depen-
dence of the real and imaginary part of the chosen s-values (z and y-axis) for the identified
modes (see Table 8.3). Recall that stress values close to zero indicate potentially damaged
elements. Then, real and imaginary parts of the stress vector and their joint covariance are
computed. For each element ¢, the stress values are aggregated statistically in the y?-test.
The entire s-value range in the vicinity of the modes (see Table 8.3) is Re(s) € [-50, —1] and
Im(s) € [0,5500]. We remind that the performance of the method is illustrated in a 3D-bar
diagram where x-y axes indicate real-imaginary parts of s-value and z-axis corresponds to the
success rate of damage localization.

In the next section, the success rate of the damage localization results has been evaluated
using these 5 identified modes only. Monte-Carlo simulations are carried out using 100
simulated datasets in both healthy and damaged states to determine the success rate, where
in each dataset the modes and their uncertainties are identified using SSI.

9.5.1.1 Success rate of the damage localization at elements 11-15

The success rates of the damage localization are evaluated based on identified modes in
dependence of the chosen s-value. The s-values were chosen within the global range described
above to see the influence of the different s-values. In Figures 9.46, 9.47 and 9.48 the success
rates of the damage localization are shown from theoretical, estimated and statistical x?-test
respectively, in dependence of the real and imaginary part of the chosen s-values (z and
y-axis) for the identified modes (see Table 8.3).

8801

Success rate

Figure 9.46 — Success of the SDDLV from theoretical modal parameters in dependence of s - using five sensors,
5% output noise, 50% stiffness reduction at elements 11-15 for large damaged zone 20 cm.
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Figure 9.47 — Success rates of the SDDLV from estimated modal parameters in dependence of s - using five sensors,
5% output noise, 50% stiffness reduction at elements 11-15 for large damaged zone 20 cm.
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Figure 9.48 — Success rates of the S-SDDLV in dependence of s - using five sensors, 5% output noise, 50% stiffness
reduction at elements 11-15 for large damaged zone 20 cm.

From results, it can be summarized that there are some differences in Figures 9.46, 9.47
and 9.48 for the theoretical stress, estimated stress and the statistical x?-test, respectively.
In Figure 9.46, the theoretical stress is unable to indicate the damage localization in some
part of the s-values, particularly due to the modal truncation errors and choice of s-value
in the close of the mode. Same happens in Figure 9.47, where the success rates of the
damage localization from estimated modal parameters are not satisfactory at all because of
modal truncation and estimation errors. When considering the uncertainties in the statistical

evaluation, the success rates of the damage localization are improved significantly in Figure
9.48 in comparison with Figure 9.47.

9.5.2 Case 1: Beam model with 100 elements (fine mesh), large damaged
zone 20 cm

In this case, 2D Beam model with 25 elements (rough mesh) in Figure 8.7(a) has been
discretized into 100 elements (fine mesh) as shown in Figure 8.7(b). The total number of
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Degrees Of Freedom (DOF) of the structure is 300. Note that the area of damaged zone

is same as previously (section 9.5.1) and the damage elements are located here at elements
41-60 (same position).

Similar to previous example, the success rate of the damage localization is analyzed
here with the identified modes in dependence of the chosen s-value, Re(s) € [—50, —1] and
Im(s) € [0,9000]. Monte Carlo simulations are carried out using 100 simulated datasets

to determine the success rate, where in each dataset the modes and their uncertainties are
identified using SSI.

9.5.2.1 Success rate of the damage localization at elements 41-60

In this section, the damage localization results are illustrated using fine mesh of 100 beam
elements in Figure 9.49 from statistical y?-test. All the computations are done in dependence
of s-values which are located in the vicinity of the identified poles. It is seen that the success
rates of the damage localization in the statistical x7-test in Figure 9.49 are less in comparison
to Figure 9.48 due to large modal truncation error.

Note that for the same configuration of sensors and damaged zone, the performance of

the localization results is good using rough mesh with compared to fine mesh, because of
large modal truncation error.

8801

Success rate(%)

Figure 9.49 — Success rates of the S-SDDLV in dependence of s - using five sensors, 5% output noise, 50% stiffness
reduction at elements 41-60 for large damaged zone 20 cm.

In the next Section, the success rates of the damage localization are evaluated by consid-
ering a small damaged zone (i.e. 4cm) instead of large damaged zone (i.e. 20cm) on both
25 (rough mesh) and 100 elements (fine mesh) respectively.
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9.5.3 Case 2: Beam model with 100 elements (fine mesh), damaged ele-
ments 49-52 and damaged zone 4 cm

In the previous example, it was seen that the performance evaluation of the damage localiza-
tion method was satisfied for a large damaged zone on both rough and fine mesh of 2D beam
model.

In this section, the localization method has been demonstrated on a 2D beam model
of 100 elements (fine mesh) as shown in Figure 8.8(b), assuming a small damaged zone of
4 cm which is located between 0.49-0.52m from the fixed support. Note that the damaged
elements in the model are simulated by decreasing Young and Shear modulus by 50 % of its
original value. The total number of Degrees Of Freedom (DOF) of the structure is 300. In
order to compute stress field for the damage localization, the load vectors v(s) are computed
from the datasets of fine mesh with 100 beam elements and then applied to the L,,oq¢; of 100
beam elements. As previous example, the success rate for localization is analyzed within the
identified modes in dependence of the chosen s-value, Re(s) € [—50, —1] and Im(s) € [0, 9000].
In the next Section, Monte Carlo simulations are carried out using 100 simulated datasets to
determine the success rate of the statistical evaluation of y?-test, where in each dataset the
modes and their uncertainties are identified using SSI.

8801

Success rate(%)

Figure 9.50 — Success rates of the S-SDDLV in dependence of s - using five sensors, 5% output noise, 50% stiffness
reduction at elements 49-52 for small damaged zone 4 cm.

9.5.3.1 Success rate of the damage localization at elements 49-52

In Figure 9.50, the success rates of the damage localization are shown from statistical x?-test
in dependence of the real and imaginary part of the chosen s-values (x and y-axis) for the
identified modes. From the results, it is seen that the performance of the localization results

are not satistfied for small damaged area of 4cm and the resulting large modal truncation
errors.
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In the following, the success rates of the localization results are evaluated using a rough
mesh of 25 beam elements.

9.5.4 Case 3: Beam model from fine to rough mesh, damaged zone 4 cm

In this case, the localization method has been demonstrated on a 2D beam model of 25
elements (rough mesh) as shown in Figure 8.8(a). Similar to the previous example, assuming
that the damaged zone is small and the sensor configurations are also same. Therefore,
the load vectors are computed from datasets of fine mesh with 100 beam elements, and then
applied to Ly,oqe; 0f 25 beam elements (rough mesh) as shown in Figure 8.8(a). The damaged
is located at element 13. As the previous example, the success rates of the damage localization
in the y?-test are evaluated for Monte-Carlo experiments of 100 datasets.

9.5.4.1 Success rate of the damage localization at element 13

In the previous example, it is seen that the performances of the damage localization results
are not satisfied. Hence, the load vectors are computed from the estimated data of 100 beam
elements and then it is applied to Lyger 0f 25 beam elements (rough mesh) in order to get
the stress field. Recall that stress values close to zero indicate potentially damaged elements.

The damage localization results are illustrated in Figure 9.51 from statistical x?-test in
dependence of the real and imaginary part of the chosen s-values (z and y-axes). From the
results, it is seen that the performance of the localization results are improved slightly by
using the L, 04er of 25 elements in Figure 9.51 instead of fine mesh in Figure 9.50. For a small
damaged zone, note that the performance of the method is not satisfied on both rough and
fine mesh, possibly due to small damage residuals in the transfer matrix differences between
healthy and damaged states in (6.3).
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Figure 9.51 — Success rates of the S-SDDLV in dependence of s - using five sensors, 5% output noise, 50% stiffness
reduction at element 13 for small damaged zone 4 cm.



170 Chapter 9

Summarizing the results to all cases, it is found that the rough mesh gives better results
compared to fine mesh in this example. Recall that in this method, the transfer matrix (5.2)
is computed from the estimated modal parameters, satisfying the condition that number of
modes could not be higher than number sensors. Therefore, the modal truncation error is
very large in the fine mesh model compared to rough mesh, though fine mesh improves the
accuracy of the modes. Hence, the performance of the method is poor in this example.

9.5.5 Performance evaluation depending on the mesh

In this section, the localization results are computed depending on the influence of mesh. For
the performance evaluation, the load vectors are computed using 100 simulated datasets of a
2D beam model with 100 elements (see Figure 8.8(b)) in both healthy and damaged states,
and then it is applied to the L;,oq4e; of different mesh (e.g. 5, 10, 20, 30, 40, 50, and 100)
in order to get the stress field. The damaged zone is located in the elements between 47-54
(8cm) in the fine model, and they are generated by decreasing 50% stiffness of its original
value. Note that the estimated load vectors and the damaged zone are same in this study,
only the L,oqe is different that is computed depending on the mesh of the FE models. The
the Laplace variables Re(s) = —[1,50] and Im(s) € [4000,5000] are chosen in the vicinity of
modes. Therefore, the evaluation of the performance depends on the threshold (th), defect
size (x), mesh, and Laplace variables (s-values).
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Figure 9.52 — Mean of the success rates with respect to [ /gure 9.53 — Error in the fifth mode between the an-
mesh with a threshold (th) 6 cm, defect size (47-54cm), alytical (fa) and model frequency (fum.).
s-values Re(s) = —[1, 50], Im(s) € [4000, 5000].

A detection threshold (th) of 6cm (8.1) has been considered within the vicinity of the
damaged zone for the localization of the damaged element since the L,,oq¢ is different and
damaged zone is located in the same place. It means that the successful damage localization
are guaranteed within 41-60 cm to accommodate the highest mesh size for 5 beam elements.
In Figure 9.52, the mean of the success rates (y-axis) are illustrated in Monte-Carlo experi-
ments with respect to different mesh (x-axis) for the respective estimated and the statistical
evaluation with the x?-tests, where in each experiment the modes and their uncertainties
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are identified using SSI. From the results, it is seen that the success rates of the damage
localization remain in the interval between 68% and 75% for a detection threshold of 6 cm
from the damaged zone of 8 cm. It seems that there is hardly any influence of the mesh size
in the results. On the other hand, Figure 9.53 shows that error is decreasing with respect to
increasing the mesh size.

9.6 Probability of Good Localization (PGL) in terms of dis-
tance

In the previous examples, for a rough and fine model of a 2D beam, it has been seen that the
performances of the damage localization are not satisfied everywhere in the s-plane mainly
because of modal truncation errors and small damaged zone i.e. defect size. Even considering
the s-value in the vicinity of the identified modes where modal truncation errors should be
low, was not sufficient to achieve a reasonable success rate (> 85%) for all choices of s. Notice
that in the 25 beam elements, the accuracy of the localization is reasonable (> 85%) for defect
size of 0.2m in the statistical evaluation in comparison with estimated results, and the total
computation time takes only 11.110874 seconds for each experiment.

In practice damage can locate at the neighbour elements from the damaged zone. This
motivates the use of the Probability of Good Localization (PGL) in terms of the detection
threshold (th) (8.1) within the vicinity of the damaged zone. The value of th can be con-
sidered as the required detection threshold for the localization of the damaged element. The
evaluation of PGL depends on the threshold (th), defect size (z), mesh, and Laplace variable
(LV). In this study, the PGL is evaluated for several sets of simulated measurement data in
order to evaluate the performance of the localization method. Each dataset is an independent
realization and defines a Monte-Carlo experiment.

In the following two cases are investigated, where PGLs are evaluated on both fine and
rough model of a 2D beam in Monte-Carlo experiments. Monte Carlo experiments are carried
out using 100 simulated datasets to determine the PG L from estimated stress and statistical
evaluation of y?-test, where in each dataset the modes and their uncertainties are identified
using SSI.

Case-1: In order to compute the stress field for the damage localization, the load vectors
are computed from estimated datasets of the fine model, and then applied to L;,qe; of the
structure where the Ly,o4¢ is obtained from 2D beam model with 100 elements (fine mesh)
as shown in Figure 8.8(b). The computation of PGL (8.1) is obtained depending on the
detection threshold (th), Laplace variable (LV'), and different defect size (z).

Figures 9.54(a) and 9.54(b) presents the PGL from the estimated and statistical evalua-
tion of x7-test respectively for a particular choice of Laplace variable (LV), s = —1 + 4000i.
Note that defect sizes are assumed starting from 4 to 20 cm with a step size of 2cm and the
detection threshold is defined from 0-8 cm from the damaged zone. For each defect size, the
PG Ls are evaluated in Monte-Carlo experiments of 100 simulated datasets.

The results indicate that it is possible to determine zones where the PGL is larger for
several sets of simulated measurement data. The PGL remains around 85 % in the statistical
tests when the defect sizes are considered more than 14 cm. The worse detections are located
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between the defect sizes of 4-10cm and the PGL is less than 35%. However, it is observed
that the PGL is larger in Figure 9.54(b) to compare to Figure 9.54(a) for the larger defect
size and improves highly except 0 to 2cm when the threshold is increased.

Case-2: As similiar to previous case 1, the damage localization algorithm has been
applied on a 2D beam model of 25 elements (rough mesh) as shown in Figure 8.8(b), while
the load vectors are computed from estimated datasets of the fine model. To get the stress
field, these load vectors are applied to Ly,ode; Of rough model.
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Defect size (in cm) 4 0 Threshold (in cm) Defect size (in cm) Threshald {in em)

(a) PGL from estimated stress (b) PGL from x?-test

Figure 9.54 — Case-1: PGL from fine model of 100 beam elements -using five sensors, threshold (0-8cm), defect
size (4-20cm), Laplace variable s = —1 + 4000i, 5% output noise.

-test (%)

2
|

PGL from estimates (%)
PGL from

B
Defect size (in cm) 4 0 Threshold (in cm) Defect size (in cm) Threshald {in em)

(a) PGL from estimated stress (b) PGL from x3-test

Figure 9.55 — Case-2: PGL from rough model of 25 beam elements -using five sensors, threshold (0-8cm), defect
size (4-20cm), Laplace variable s = —1 + 4000i, 5% output noise.

In Figures 9.55(a) and 9.55(b), the PGLs are shown for the respective estimated stress
and statistical evaluation of y?-test. Note that the choice of s-value, defect size, datasets and
threshold are similar to the previous example. For each defect size, the success rates of the
PGL are evaluated in Monte-Carlo experiments of 100 simulated datasets.
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From the results, it is possible to determine zones where the PGL is larger for simulated
measurements data. The results indicate that the PGLs are slightly increased to around 90
% in the statistical tests with compared to fine model when the defect sizes are considered
more than 12 cm. Similar to the previous example, the worse detections are located for the
defect sizes of 4 to 10cm. Notice that when considering the uncertainties in the statistical
tests, the PGL gives better performance in Figure 9.55(b) than compare to 9.55(a) due to
modal truncation and the variance errors.
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Figure 9.56 — General estimate of a given range of a predicted defect size (i.e.. = 12 and o = 1) with threshold
(th) 4cm, defect size (0-20cm), Laplace variable s = —1 + 40001, 5% output noise.

It can be concluded that in the statistical tests (see Figures 9.54(b) and 9.55(b)) there is
an improvement of the PGL for small defect sizes with respect to increasing threshold, while
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there is no significant improvement for larger defect sizes (14-20 cm), though the performance
of the PGL is greater than 80% in both cases. The localization is lower due to the large modal
truncation errors.

9.6.1 General estimate for a given range of predicted defect size:

In this study, the density of the damage distribution for a predicted defect size is estimated.
From (8.2), the general estimate for a given range of predicted defect size is derived for a
given structure. It is obtained based on the probability of damage distribution of a predicted
defect size with mean (u), standard deviation (¢), and the PGL (8.1) from simulated datasets
with mesh size of 100 beam elements (see Figure 8.8(b)).

Figure 9.56(a) presents the probability of damage distribution for a defect size of 12 cm
with mean (u) and standard devaiation (o) of 12 and 1 respectively. In Figure 9.56(b), the
PGLs are evaluated from simulated datasets of defect size from 0 to 20 cm with a threshold
of 4cm from the damaged area. Then the density of the damage distribution for a predicted
defect size is shown in Figure 9.56(c).

9.7 Discussion

In this chapter, first, the proposed damage localization algorithm using Multiple mode sets
has been tested on a simple mass-spring chain and a more complex 3D cube model. Using
multiple mode sets approach, the robustness of damage localization has been obtained by a
joint statistical evaluation taking into account the information from all modes of the structure.
The stress computation using multiple mode sets increases the information content of the
damaged or non-damaged elements of the structure. In the applications, several experiments
have been carried out to evaluate the success of the damage localization in dependence of the
s-value, where all stress values corresponding to an element are being tested for damage in a
hypothesis test. From results, it is seen that the proposed method has increased the success
rate of the correct damage localization significantly almost everywhere in the complex s-plane
compared to using a single mode set.

Second, the SDDLV method has been applied on a 2D beam model for crack propagation.
From results, it is seen that the performance of the method is not satisfied at all due to the
effect of modal truncation error and the resulting variance errors. Notice that the success
rates of the damage localization in the statistical test are good to compare to estimated stress.
Furthermore, the success rates of the crack localization have increased, while the depth of the
crack level increases. For a small level of crack depth, the performance of the method is poor.
Possibly it happens due to the small transfer matrix differences between the healthy and
damaged states due to small crack. Third, the SDDLV approach has been applied on a 2D
beam model depending on the influence of mesh size. For a large damaged zone, the method
has been applied on a rough and fine model. From results, it is seen that the performance of
the method in the statistical tests is satisfactory for rough mesh in comparison to fine mesh
model due to large damaged area and less modal truncation error in the rough model. On
the other hand, the success rates of the damage localization are not satisfactory at all for a
small damage zone of fine mesh model due to the effect of large modal truncation and the
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small damaged residuals in the transfer matrix differences between the healthy and damaged
states. Further investigation has been carried-out, where the load vectors are computed from
the datasets of fine model for a small damaged zone and then, applied to the L;,.qe; of rough
model. In this case, from the simualtion results, it is seen that the performance of the damage
localization method is slightly improved to compare to fine mesh model.

Finally, the performance of the method has been evaluated based on the probability
of good localization (PGL) from the damaged zone, since the performances of the correct
damage localization are not satisfied with both fine and rough model of a 2D beam for a small
damage zone. The PGL depends on Laplace variable, the defect size and the threshold in
terms of distance from the damaged area. The results indicate that it is possible to determine
zones where the PGL is larger for several sets of simulated measurement data. It is observed
that the PGL gives good performance in the statistical tests with compared to estimated for
a large defect size and increases when the threshold level is increased.
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Chapter ]_ O

Statistical damage localization with
the ILDL approach

10.1 Introduction

In this Chapter, the contribution of the statistical damage localization of the ILDL approach
(see chapter 6) is validated on a numerical application. Recall that the ILDL approach is an
output-only damage localization method based on an FE model of the reference structure and
modal parameters estimated from output-only measurements in the damaged and healthy
states. A vector is obtained in the image of the changes in the transfer matrix between
healthy and damaged states. Then, the damage is located at elements where the subspace
angle between the image and the influence line computed from the FE model is zero. This
localization approach is complementary to the SDDLV approach [MDBM13].

In previous works [MDBM13], the deterministic aggregation of the damage indicator in
ILDL was done for s = 0, where the uncertainty quantification was tempted. In Section
6, we reconsider the damage indicator of the ILDL to allow an approximate uncertainty
quantification, before deriving its statistical evaluation of damage localization.

This chapter is formulated as follows. In Section 10.2, the distribution of the image
vectors and damage localization indicators are validated before going to apply statistical
damage localization approach. In Section 10.3, the new approach is applied to a numerical
application of a mass-spring chain system, and finally, the conclusion of the work is presented
in Section 10.4.

10.2 Distribution of images and damage indicators for ILDL

In ILDL, the estimated image vectors are random values due to random input noise from
each simulated datasets. Therefore, it is important to analysis the distribution of the random
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variables in Monte-Carlo experiments. For Monte Carlo simulations, the estimated U; vectors
are random variables due to random input noise and hence difficulties are arises in the element
of influence line’s due to both positive and negative direction of U; vectors. To analyze of
the influence line (IL), it is important to ensure that one chosen non-zero element of the
singular vector is always positive in different simulations. That’s why the negative sign at
the non-zero element of the singular vectors U; are multiplied with -1 factor to make it same
direction. First, the distribution of singular vectors U; are observed where the probability
density of the image vectors are closest to the theoretical value. Then, the mean values of the
U; vectors are considered for influence lines. Second, the distribution of the subspace angles
is analyzed in Monte-Carlo experiments. Finally, a progressive Monte Carlo simulations have
taken into consideration to see the performance of the experiment for the convergence of the
estimated to theoretical modal parameters.

In Monte-Carlo experiments, the following things are considered to analyze the probability
distribution of image vectors and the damage localization indicators (i.e. subspace angles),

e The distribution of the estimated image vectors are observed for each of the element of
the model, and a comparison is made between the probability density of the estimated
image vectors and the theoretical image vector that computed from model. Then an
analysis has been performed to see the difference between the mean of the estimated
image and theoretical image vectors.

e Validation of subspace angles and covariance computation: the probability distribution
of the generalized damage localization indicators (i.e. subspace angles) are computed
for all healthy and damaged elements from Monte Carlo simulations in comparison to
theoretical damage indicators.

e Finally, subsequent Monte Carlo experiments have been performed to analyze the con-
vergence of the estimated ones to theoretic ones. In such way, the mean of the estimated
image and damage localization residuals have been considered in a progressive Monte-
Carlo Simulations. Therefore, we observed that after some experiments the estimated
value has converged to the theoretical value.

For an example, a mass-spring chain of six DOF as shown in Figure 10.1. The stiffness
parameters are k1 = k3 = ks = 4000, ko = k4 = kg = 2000, and the mass of all elements
is 1 in suitable units. Damping is defined such that each mode has a damping ratio of 2%.
Damage is simulated by decreasing the stiffness of spring 3 by 10% of its original value. For
damaged and undamaged states, the acceleration data length for each set is NV = 50,000.
Data were generated from collocated white noise excitation using six sensors at each element
with a sampling frequency of 50 Hz, and white measurement noise with 5% magnitude of
the outputs was added. All six modes of the structure can be identified from the simulated
measurements when using SSI. In the simulation results, a comparison between theoretical
and estimated modal parameters has explained for 1000 experiments.
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Figure 10.1 — Mass-spring chain (with modal damping) -using six sensors.

10.2.1 Distribution of images and damage residuals

For the computation of generalized damage residuals ;, the vectors (U;) has been applied
to all theoretical Influence lines (IL) which are obtained from FE model. In ILDL, the left
singular vector U; is the image of JR(s). Since the number of damaged element is one in
Figure 10.1, the rank of R(s)T is 1 and the image U; is a single column vector due to one
damaged element in the mass-spring system. For Monte Carlo simulation, the singular vector
U, is estimated for each experiment and the direction of these vectors are not unique. For
the analysis of influence lines and to make uniqueness, the negative value of the non-zero
element of the singular vectors U; are multiplied with -1 factor to make it same direction.

In Figure 10.2, a comparison is shown between the probability distribution of the esti-
mated image vectors and theoretical image vectors that obtained from the model. It is seen
that most densities of the estimated image vectors are approximately equal to the theoretic
value.

In Figure 10.3, the mean of the estimated image vectors from Monte-Carlo experiments
and its standard deviation are shown and then, compared to the theoretical value.
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In Figure 10.4, the distribution of the damage indicators at each of the elements from
Monte-Carlo experiments and the theoretical stress values are illustrated. Note that the
damage indicators close to 1 correspond to potentially damaged elements. Here, most of
the distribution of damage indicators in the healthy elements are closest to theoretical value
while the distribution in the damaged element are confined to border 1, means that clearly
non-Gaussian distribution.

Finally, progressive Monte-Carlo experiments have been performed to analyze the conver-
gence of the estimated value to theoretical value. The mean of the estimated image vectors
and the corresponding damage indicators has considered for continuous Monte experiments
where the mean is taken from the results of the experiments ¢ = 1, .., 1000. The mean of the
quantity of the estimated image vectors and subspace angles are shown in Figure 10.5 and
Figure 10.6, respectively. We observed that after some experiments the estimated value has
converged to the theoretical value.

10.3 Numerical application: Mass-spring chain system

In a numerical application, the statistical damage localization method of ILDL has been
applied on a mass-spring chain system with six DOFs as shown in Figure 10.1. The stiffness
parameters are k1 = k3 = ks = 4000, ko = k4 = kg = 2000, and the mass of all elements
is 1 in suitable units. Damping is defined such that each mode has a damping ratio of 2%.
Damage is simulated by decreasing the stiffness of spring 4 by 10% of its original value. For
damaged and undamaged states, the acceleration data length for each set is N = 50,000.
Data were generated from collocated white noise excitation using three sensors at elements
2, 4, 6 with a sampling frequency of 50 Hz, and white measurement noise with 5% magnitude
of the outputs was added.

All six modes of the structure (see Table 10.1) can be identified by SSI from the simulated
measurements using threee sensors. Hence, the identified modes split into two mode sets such
as My and My of three modes each.

Table 10.1 — Eigenvalues \. of mass-spring chain.

Mode  Healthy state Damaged state Mode set
1 —0.255+412.761 —0.253 + 12.63i
2 —0.747+ 37.361 —0.736 +36.781 ¢ M
3 —1.16+58.261 —1.15457.53i
4 =155+ 77.741 —1.544 77.44i
5
6

—1.96 +98.151 —1.96+98.13i p M2
—2.13+106.61 —2.11 + 105.5i

The performance evaluation criteria of the damage localization method have already de-
tailed in Section 8.2.1. In order to evaluate the influence of the s-values on the success rate
of damage localization, each dataset in the Monte-Carlo simulations is evaluated for a set of
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s-values with different real and imaginary parts in order to obtain the success rate in depen-
dence of s. The range of s-values has been chosen in the vicinity of the identified poles to
reduce the effects of modal truncation in the transfer matrix estimates [Ber10]. The resulting
success rate as a function of s is presented in 3D bar diagrams, where it is plotted on the
z-axis in dependence of the real and imaginary parts of s on the x and y-axis.

10.3.1 Complex case for rank 1

For complex case rank 1, two versions are tested based on the theory development in Section
6.4.2.2 and 6.4.2.3. In the following, first, the degenerate distribution is directly taken into
account in evaluating (6.47), and second, the degenerate distribution of these vectors is
circumvented based on (6.52) by comparing their elements separately.

In the following, the localization results at all structural elements are presented for single
mode set M at one s-value for both version 1 and 2, before evaluating the success rate of
correct damage localization for single mode sets at different s-values. Monte-Carlo simulations
are carried out using 500 simulated datasets in healthy and damaged states to determine the
success rate, where in each dataset the modes and their uncertainties are identified using SSI.
The entire s-value range in the vicinity of the modes is Re(s) € [-3, —1] and Im(s) € [1,130].

Localization of results in all elements at one s-value for version 1 (R1v-S-ILDL)
and 2 (R1le-S-ILDL)

In this section, to illustrate the stress computation and its statistical evaluation for damage
localization results for each element of the mass-spring chain are shown in Figure 10.7 for
version 1 and Figure 10.8 for version 2 using single mode set M; at one s-value. The s-
value was chosen in the vicinity of mode set M; as s = —1 + 41i. Recall that the damage
localization is inferred by the stress value closest to zero.

In Figure 10.7(a) for version 1 (see Section 6.4.2.2), the theoretical stress values are com-
puted from the exact modal parameters corresponding to Mj in the healthy and damaged
states. The effect of modal truncation leads to stress that is not exactly zero in damaged
element 4, but that is close to zero and the smallest compared to the stress at the other ele-
ments. When computing the stress from modal parameter estimated from simulated datasets
in Figure 10.7(b), the damage localization is indicated at element 4 but not similar to the-
oretic results, which is probably due to variance errors in the estimation from noisy data.
Considering the variance of the modal parameters in the method, the damage localization is
correctly found since the smallest X? value is at element 4 in Figure 10.7(c). Note that X? in
Figure 10.7(c) shows almost similar results as the theoretical result in Figure 10.7(a).

Similarly, in Figure 10.8, all stress values are computed for version 2 (Section 6.4.2.3) from
the single mode sets M in the healthy and damaged states. In this case, the theoretical,
estimated and the statistical tests can identify the damage localization in Figure 10.8(a),
10.8(b) and 10.8(c), respectivley.
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Figure 10.7 — Version 1: RI1v-ILDL (residual vectors with degenerate normal distribution) - Localization results at
all elements of mass-spring chain using single mode set M1 using stress computation and statistical evaluation at
s = —1+441i. Damage is at element 4.
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Figure 10.8 — Version 2: Rle-ILDL (element-wise tests of residual vector) - Localization results at all elements of
mass-spring chain using single mode set M1 using stress computation and statistical evaluation at s = —1 + 41i.
Damage is at element 4.

10.3.1.1 Version 1: R1v-S-ILDL (residual vectors with degenerate normal dis-
tribution for S-ILDL)

In the last section, the damage localization results was illustrated only for one dataset and
one s-value, now we are going to evaluate the performance of the damage localization for
theoretical, estimated and statistical test based either on single mode set M; or My in
dependence of the chosen s-value.

Success rate of the damage localization using single mode set

For the performance evaluation of correct damage localization at element 4, using either
mode set M7 or My, 500 datasets of vibration data of accelerometers were generated for
the Monte Carlo evaluation. Then, the modes of these datasets and their uncertainties were
identified using SSI, both in reference and damaged states. Finally, the success rate was
determined based on the computation of the stress estimated in (6.47) and x7 test values
in (6.50), using either the modes from M; or Ma, for different s-values. The s-values were
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chosen in the vicinity of the modes (see Table 8.1) on a global grid with Re(s) € [—3,1] and
Im(s) € [1,130].

In Figures 10.9, 10.11, 10.13 and Figures 10.10, 10.12, 10.14, the success rates of the
damage localization (z-axis) are shown in dependence of the real and imaginary part of the
chosen s-values (x and y-axis) for mode sets M7 and Ma, respectively. Indeed it can be seen
that damage localization for both mode sets is satisfactory only for s-values in the vicinity
of the modes of the respective mode sets.

For mode set M1, corresponding to the first three modes, it can be seen in Figure 10.9
that success of damage localization from the exact modal parameters is obtained only in
the interval [1,64] on the imaginary line. Same happens for the estimated stress from the
simulated datasets as shown in Figure 10.11 where the success rate of the damage localization
is around 100% only in the interval [26,64] on the imaginary line, and the remaining part
of the s-plane the success rates are not satisfied due to modal truncation and estimation
errors. Figure 10.13 shows that the success rate is satisfactory only in the interval of the
Laplace variables with Im(s) € [24,48], where it reaches up to 100% and not similar to
estimated in Figure 10.17. Beyond this interval, it is almost close to zero and the damage
localization cannot be indicated due to the modal truncation error, which is significant outside
the interval containing the identified modes (see Table 8.1). Note that the considered modes
in this example are in the interval [1,62] on the imaginary line (see Tablel).

Similarly, for mode set Mo corresponding to the last three modes of the structure, it can
be seen in Figure 10.10 that success of damage localization from the exact modal parameters
is obtained only in the interval [102,120] on the imaginary line. As similar to the estimated
stress from the simulated datasets as shown in Figure 10.12; the success rate of damage
localization is satisfying with up to 90% in Figure 10.14, when Im(s) belongs to the interval
[104,128]. This area corresponds only to the last two identified modes in My. While the
lower performance at s-values around first mode of My, the success rate at s-values near
the fourth mode of the structure is also very low due to significant modal truncation errors.
Hence, choosing the s-value in the vicinity of the identified poles does not necessarily give
satisfactory results.

Success rate
Success rate

Re(s) - Re(s)

Figure 10.9 — Version 1: Success of the RIv-ILDL from Figure 10.10 — Version 1: Success of the R1v-ILDL from
theoretical modal parameters using single mode set M, theoretical modal parameters using single mode set M3
in dependence of s. in dependence of s.



186 Chapter 10

Success rate(%)
Success rate(%)

Re(s)

Figure 10.11 — Version 1: Success rates of the RIv-ILDL Figure 10.12 — Version 1: Success rates of the RIv-ILDL
from estimated modal parameters using single mode set from estimated modal parameters using single mode set
M in dependence of s. Mo in dependence of s.

Success rate(%)

Success rate(%)

Figure 10.13 — Version 1: Success rates of the R1v-S- Figure 10.14 — Version 1: Success rates of the R1v-S-
ILDL using single mode set M in dependence of s ILDL using single mode set M3 in dependence of s

10.3.1.2 Version 2: Rle-S-ILDL (element-wise tests of residual vector for S-
ILDL)

In the last section, the damage localization results was illustrated for theoretical, estimated
and statistical test where the degenerate distribution is directly taken into account in evalu-
ating (6.47) in dependence of the chosen s-value. In the following, the success rates of damage

localization results was obtained by element-wise tests of residual vector (6.52) using single
modeset.

Success rate of the damage localization using single modeset

As similar to previous section (i.e. Version 1), the success rates of the damage localization
(z-axis) are shown in Figures 10.15, 10.17, 10.19 and Figures 10.16, 10.18, 10.20 for the
theoretic, estimates and statistical tests in dependence of the real and imaginary part of the
chosen s-values (z and y-axis) for mode sets M; and May, respectively.
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For mode set M1, it can be seen that the results are almost similar compared to Version
1 for the theoretical, estimates and statistical test in Figures 10.15, 10.17, and 10.19, respec-

tively. Note that the results are slighlty improved in the statistical evaluation in Figure 10.19
with compared to Figure 10.13.

Similarly, for mode set Mg, it can be seen in Figures 10.16, 10.18, and 10.20 that success
of damage localization from the exact modal parameters, the simulated datasets and the
statistical tests are also nearly similar with compared to Version 1 for mode sets M.

Success rate
Success rate

Re(s) - Re(s)

Figure 10.15 — Veersion 2: Success of the Rle-ILDL from Figure 10.16 — Version 2: Success of the R1le-ILDL from
theoretical modal parameters using single mode set M theoretical modal parameters using single mode set M
in dependence of s. in dependence of s.

Success rate(%)
Success rate(%)

Re(s) - Re(s)

) ) Figure 10.18 — Version 2: Success rates of the Rle-ILDL
Figure 10.17 — Version 2: Success rates of the R1e-ILDL  from estimated modal parameters using single mode set

from estimated modal parameters using single mode set A, in dependence of .
M in dependence of s.
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Success rate(%)
Success rate(%)

Re(s) -3 Re(s)

Figure 10.19 — Version 2: Success rates of the Rle-S- Figure 10.20 — Version 2: Success rates of the Rle-S-
ILDL using single mode set M in dependence of s ILDL using single mode set Ma in dependence of s

Summarizing the results, for version 1 and 2, it can be concluded that the success rates
of damage localization for both mode sets M; and My is satisfactory only for s-values in
the vicinity of the modes of the respective mode sets. Beyond this range, it is almost close
to zero and the damage localization cannot be indicated due to the modal truncation error,
which is significant outside the interval containing the identified modes.

10.3.1.3 Considering all modes for Version 1 (R1v-S-ILDL) and 2 (Rle-S-ILDL)

In this case, the success rates of the damage localization are evaluated considering all modes
i.e. without modal truncation error, and vibration datasets Of 100 were generated using
all sensors for the Monte Carlo evaluation. Then, the modes of these datasets and their
uncertainties were identified using SSI, both in reference and damaged states. Finally, for
version 1 and 2, the success rate was determined based on the computation of the stress
estimated in (6.47) and (6.52), and the x7 test values in (6.50) and (6.54), using all modes,
for different s-values. The s-values were chosen in the vicinity of the modes (see Table 8.1)
on a global grid with Re(s) € [-3,1] and Im(s) € [1,130].

In this case, consiering all modes, it can be seen that the success of the damage localization
(z-axis) are shown satisfactory results in Figures 10.21, 10.23, 10.25 and Figures 10.22, 10.24,
10.26 in dependence of the real and imaginary part of the chosen s-values (z and y-axis) for
version 1 and 2, respectively.

For both version 1 and 2, it can be summarized that the success of damage localization
from the exact modal parameters is same in Figures 10.21 and 10.26, respectively since there
is no modal truncation error. While the estimated stress from the simulated datasets in
Figures 10.23 and 10.24, the success rates of the damage localization are satisfied but not
perfectly similar to theoretical results, perhaps due to the estimation errors. However, the
statistical evaluation in Figures 10.25 and 10.26 shows that the success rate is not satisfactory
only in the interval of the Laplace variables with Im(s) € [94, 100], which looks similar to
estimated in Figures 10.23 and 10.24, respectively.
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Success rate
Success rate
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Re(s)

Figure 10.21 — Version 1: Success of the R1v-ILDL from Figure 10.22 — Version 2: Success of the R1e-ILDL from
theoretical modal parameters using all modes in depen-

theoretical modal parameters using all modes in depen-
dence of s.

dence of s.

Success rate(%)
Success rate(%)

Figure 10.23 — Version 1: Success rates of the R1v- Figure 10.24 — Version 2: Success rates of the Rle-
ILDL from estimated modal parameters using all modes ILDL from estimated modal parameters using all modes
in dependence of s. in dependence of s.

Success rate(%)
Success rate(%)

Re(s) Re(s)

Figure 10.25 — Version 1: Success rates of the R1v-S- Figure 10.26 — Version 2: Success rates of the Rle-S-
ILDL using all modes in dependence of s ILDL using all modes in dependence of s
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10.3.1.4 Comparison to SDDLV

In this section, a comparison is made for the performance evaluation between SDDLV and
ILDL methods based on the application of a mass-spring chain system in Section 9.3.1.2
and 10.3.1.1, respectively. Note that for performance evaluation of the methods, Monte-
Carlo experiments are carried-out using 500 simulated datasets in both healthy and damaged
states to determine the success rate, where in each dataset the modes and their uncertainties
are identified using SSI. Recall that success rate of the damage localization is defined as the
number of occurrences of the smallest stress values in the damage element, while all s-values
are evaluated for each of the 500 datasets. Then both methods can be summarized as follows,

e For modal truncation, using single mode set M1, corresponding to the first 3 modes, it
is seen that the success rates of the damage localization in the statistical test reaches
up to 90% and much higher than estimated for the SDDLV approach for a particular
choice of s-values (see section 9.3.1.2). While in the ILDL approach the success rates of
the damage localization for both statistical and estimated stress are around 100% for
version 1 and 2 (see section 10.3.1.1 and 10.3.1.2), respectively.

e For single mode set Mo, corresponding to the last 3 modes, the result shows that the
success of the damage localization in the statistical test reaches up to 80% in the vicinity
of the last two modes which is slightly higher compared to estimated for both SDDLV
and ILDL.

e Compared to single mode sets between M; and Mo, it can be concluded that the
performance of the methods (i.e. SDDLV and ILDL) is much stronger for M; than
M. While the success rate of the damage localization using a single mode set was not
successful everywhere in the s-plane mainly because of modal truncation errors. Even
considering the s-value in the vicinity of the identified modes, where modal truncation
errors should be low, was not sufficient to achieve a reasonable success rate for all
choices of s, especially for Mo in Figure 9.15 for SDDLV, and in Figure 10.14 and 10.20
for ILDL, respectively.

e While lower performance at s-values around the modes of M can be expected due to
significant modal truncation errors, the success rate at s-values near the fourth mode
of the structure is also very low. Hence, choosing the s-value in the vicinity of the
identified poles does not necessarily give perfect results.

e In overall, the result shows that for modal truncation the statistical evaluation of the
ILDL approach gives better performance than SDDLV approach.

10.4 Discussion

In this chapter, the statistical evaluation of the ILDL approach is validated on a numerical
application. In previous works, this deterministic aggregation was done for s = 0, where the
uncertainty quantification was tempted. Here, the damage indicator of the ILDL is considered
to allow an uncertainty quantification for its statistical evaluation of damage localization. For
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such an evaluation, the modal parameter covariance is propagated to the obtained damage
indicators in a sensitivity-based approach. Finally, all computed values corresponding to
an element are being tested for damage in a hypothesis test where the computed subspace
angles are evaluated with their individual covariance. From the results, it is seen that the
success rates of the damage localization in the statistical tests are satisfactory with respect
to theoretical or estimated value for rank 1.
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Chapter ]_ ]_

Transfer matrix-based output-only
statistical damage localization and
quantification

11.1 Introduction

In this chapter, the transfer-matrix based residuals for damage localization and quantification
method from Chapter 7 have been applied on numerical simulations. A mass-spring chain
and a 2D beam model have been considered as numerical applications. In Section 11.2, the
performance evaluation criteria of the new method is defined, and then it has been applied
on two different numerical applications to evaluate the performance of the proposed method
using Multiple mode sets, where the results are compared with a single mode set experiment.
Finally, the conclusion of the work is presented in Section 11.6.

11.2 Performance evaluation for both damage localization and
quantification

To analyze the performance of the proposed method (see Chapter 7) using multiple mode
sets, the results are compared with a single mode set experiment. Let § = [§!--- 6P] is the
parameters of an FE model of the structure.

For the damage localization, each of the components 6, i = 1--- p are tested with
the sensitivity and minmax approaches. For the faulty system, the component of §, =
0 is tested against J,7#0 based on the sensitivity and the minmax tests. Then the test
variables are compared to a threshold level to make a decision about faulty components when
047#0. Estimates of the changes ¢ are computed with the respective approaches described in
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Section (7.5). Successful damage localization means that the highest tsens and t,, value
at the damaged element. In the numerical applications, several datasets are generated by
Monte-Carlo simulations to evaluate the success rate of the fault isolation. The success rate
corresponds to the probability of detection for damage localization and it is defined as the
number of occurrences of the highest values of tse,s and tp,.,, at damaged elements. For the
damage quantification, the results are shown for several damage cases and extents, while
each quantified value is estimated by taking a mean of the Monte-Carlo simulations with
their standard deviations.

In order to see the influence of all s-values s, a grid map in the complex s-plane has been
proposed.The range of s-values has been chosen in the vicinity of the identified poles. For
each of the Monte-Carlo datasets, the highest values of tge,s and t,,,, at damaged elements
are evaluated for all s-values in order to see the influence of different s-values. Then perfor-
mance evaluation of the method is illustrated with a 3D-bar diagram where x-y axes indicate
real-imaginary parts of s-value and z-axis corresponds to the success rate of the damage
localization.

In the following, the transfer matrix based residual for damage localization and quan-
tification have been applied on two numerical applications, first a mass-spring chain and
second, a 2D beam model with 5 elements. The damaged element in the model is simulated
by decreasing stiffness of its original value. In both approaches, the acceleration data length
was generated from collocated white noise excitation for damaged and undamaged states and
white measurement noise with 5% magnitude of the standard deviation of each output was
added.

For testing, all parameters such as sensitivity 7, residual ( and covariance X are estimated
from the reference datasets and the information from reference model of the structure. For
damage localization, if the test value of tgens and ty,,, for a parameter 6 exceeds a threshold,
the respective structural element is damaged. Note that maximum values at the damaged
element indicate potentially faulty components. For the quantification of the damage extent,
estimated value of the changes parameter § are derived from 6% (7.25) and 67" (7.26),
respectively.

11.3 Numerical application 1: Mass-spring chain

In the first numerical application, a damped mass-spring chain system is considered for the
damage localization and quantification as shown in Figure 8.3 (see Section 8.3.1). In this
example, all 6 modes (see Table 8.1) can be identified from the model of the structure using
SSI. For the proposed method using multiple mode sets in Chapter 7, the identified modes
are split into two mode sets namely M7 and My of 3 modes each.

In the following, the localization results at all structural elements are presented for dif-
ferent mode set at one s-value, before evaluating the success rate of the correct damage
localization in Monte-Carlo experiments for single and multiple mode sets at different s-
values.
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11.3.1 Localization results at all elements for one dataset

For the localization test statistics (i.e. sensitivity and minmax tests) at all elements are
computed using one of the Monte-Carlo datasets in both damaged and healthy states, where
the damaged element is simulated by decreasing stiffness by 10% of its original value. Recall
that the highest value indicates the success of damage localization. For the mode set My,
the localization results are shown in Figure 11.1 at s; = —1+45i and it is seen that damaged
element is located at bar 4, while the sensitivity test reacts more strongly in the healthy
elements for 6, = 0 than minmax tests. In Figure 11.2 for the mode set Ms, both tests are
identified the damage element. Considering multiple mode sets, the damage localization is
correctly found at element 4 in Figure 11.3. From the results, it is seen that the minmax
test behave perfectly while the healthy elements at 1 and 2 in the sensitivity test react for
the violation of 6, = 0. Note that the localization results using multiple mode sets M, in
Figure 11.3 is more accurate compared to Figure 11.1 and 11.2.

(a) Sensitivity tests (b) Minmax tests

Figure 11.1 — Localization using a single mode set, Mi: Sensitivity tests (left) and minmax tests (right) at
s1 = —1 + 25i - three sensors, 5% output noise, 10% stiffness reduction at bar 4.

(a) Sensitivity tests (b) Minmax tests

Figure 11.2 — Localization using a single mode set, My: Sensitivity tests (left) and minmax tests (right) at
s9 = —1 4 101i - three sensors, 5% output noise, 10% stiffness reduction at bar 4.
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(a) Sensitivity tests (b) Minmax tests

Figure 11.3 — Localization using multiple mode set: Sensitivity tests (left) and minmax tests (right) at s =
[—1 + 25i; —1 + 101i] - three sensors, 5% output noise, 10% stiffness reduction at bar 4.

11.3.2 Success rate of the damage localization using single mode set

In the previous section, based on the sensitivity and minmax tests, the localization results
have been demonstrated at all elements of the structure using one datasets. In this section,
the damage localization results are only illustrated in dependence of the chosen s-value for
both single mode sets M; and Ms, comprising the first and last three modes respectively,
before going to illustrate the joint evaluation of the multiple mode sets in the next section.

For the mode set M; and Mo, the success rate of the damage localization is evaluated
at element 4. Note that 100 datasets were generated for the Monte-Carlo simulations and
estimate modes of these datasets with their uncertainties were identified using SSI for both
in the reference and damaged states. Therefore, the success rate was determined based on
the computation of the tgens and tp,,-tests in (7.22) and (7.24) at different s-values for the
respective modes M; or Ms. The s-values was chosen in the vicinity of the modes (see Table
8.1) on a global grid with Re(s) € [-3,1] and Im(s) € [0,130]. In Figures 11.4 and 11.5, the
success rates of the damage localization are shown in the z-axis in dependence of the chosen
s-values where x and y-axis corresponds to real and imaginary part of the s-values in the
vicinity of an identified poles.

For the first 3 modes, the results are shown in Figure 11.4 for the sensitivity and minmax
tests. It is seen in Figure 11.4(a) that the success rate of the damage localization is better
only in the interval of the Laplace variables with Im(s) € [0, 34] than Im(s) € [35,130], while
the damage localization results from minmax tests in Figure 11.4(b) gives better performance
compared to the sensitivity tests in Figure 11.4(a).

For the last 3 modes, it can be seen in Figure 11.5 that the performance of damage
localization is almost similar at everywhere in the Laplace variables. Note that the success
rates of the damage localization using the mode set My in Figure 11.5(a) is around 65%,
which is good enough compare to Figure 11.4(a). So, choosing the s-value in the vicinity of
the identified poles is not necessary for both sensitivity and minmax tests.
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60

Imis)

(a) Sensitivity tests (b) Minmax tests

Figure 11.4 — Success rate of statistical damage localization using single mode set M1, in dependence of s. - three
sensors, 5% output noise, 10% stiffness reduction at bar 4.
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(a) Sensitivity tests (b) Minmax tests

Figure 11.5 — Success rate of statistical damage localization using single mode set M3, in dependence of s. - three
sensors, 5% output noise, 10% stiffness reduction at bar 4.

So, in the next section, we propose the new statistical approach using multiple mode sets
to increase the success rate of the damage localization at almost everywhere in the s-plane.

11.3.3 Success rate of the damage localization using multiple mode sets

In the previous section, the results was presented in the s-plane in dependence of s-values
and the success rate of the damage localization was not satisfactory in the s-plane because
of modal the truncation and estimation errors. In the tests, it has seen that the success rate
of the damage localization is not sufficient in Figure 11.4(a) and 11.5(a), and Figure 11.4(b)
and 11.5(b) for the respective mode sets M; and Msy. This motivates the use of multiple
mode sets instead of using a single mode set alone.
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Therefore, the localization results are computed by taking into account the information
using multiple mode sets instead of using a single mode set. The joint evaluation of the
residual is obtained from (7.14) and its joint covariance is derived in (7.16) for the multiple
mode sets.
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Figure 11.6 — Success rates of statistical damage localization of single mode sets M1 and M3z with s in the vicinity
of the modes, compared to the success rate using jointly the multiple mode sets. - using three sensors, 5% output
noise, 2% damping, 10% stiffness reduction at bar 4.
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Figure 11.7 — Success rates of statistical damage localization of single mode sets M1 and M2 with s in the vicinity
of the modes, compared to the success rate using jointly the multiple mode sets. - using three sensors, 5% output
noise, 0.2% damping, 10% stiffness reduction at bar 4.

For the joint statistical approach using multiple mode sets, the s-values is chosen in
the vicinity of the modes. The s-value s! is chosen for the mode set M; with Im(s!) €
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[0,130], and s? with Im(s?) € [0,130] for mode set Ma, while the real parts are defined as
Re(s!), Re(s?) € [-3,1].

A comparison is made in Figure 11.6(a) and 11.6(b) with sensitivity and minmax tests
in order to see the improvement of the proposed method, where the success rates of the
damage localization using multiple mode sets are obtained from the single mode sets. From
the sensitivity tests, it can be seen in Figure 11.6(a) that the statistical combination of the
result improves the damage localization performance from the single mode set M and M at
almost everywhere in the s-plane. While the statistical combination of the results in Figure
11.6(b) from the minmax test significantly improves the performance compare to M; and
M. Notice that the joint evaluation of the multiple mode sets from minmax tests gives good
results compared to sensitivity test.

11.3.4 Damage quantification results at all elements using one dataset

In the previews section, the test values of the sensitivity and minmax test corresponding only
to the decision if the respective element is damaged or not by comparing them to a threshold
value. They are not linked to the quantification of the damage extent, which is estimated
separately in this section.
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(a) Sensitivity tests (b) Minmax tests

Figure 11.8 — Damage extents using multiple mode set: Sensitivity tests (left) and minmax tests (right) at s =
[—1 + 25i; —1 + 101i] - three sensors, 5% output noise, 2% damping ratio, 10% stiffness reduction at bar 4.

The damage extent at all elements is computed using one of the Monte-Carlo datasets in
both damaged and healthy states. Using multiple mode sets M, the results of the damage
extent are shown in Figure 11.8 for the sensitivity and minmax approaches. For the quan-
tification of the damage extent, the values of Ssens and Smm were estimated, leading to the
parameter change of 10.3% and 10.1% for the respective sensitivity and minmax approaches
with the transfer matrix-based method. In the sensitivity test of Figure 11.8(a), the quan-
tified value of the damage extent is well estimated at only damaged element 4 while the
healthy element at 1 is overestimated due to the violation of d, = 0. For the minmax test
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in Figure 11.8(b), the quantified value of the damage extent is slightly underestimated at
damaged element 4 but the healthy elements have lower values than the sensitivity tests.

11.3.5 Quantification of damage extents using multiple mode sets

In this section, the quantification results are shown for different damage cases and extents,
where each quantified value of the damage extent is evaluated by taking mean from the 100
estimates together with their standard deviations.

Recall that the damage extents is estimated from the derivation of 536”5 (7.25) and Sg”bm
(7.26) for the respective sensitivity and minmax tests in dependence of the choice of s-values.
For the mode set M, the s-value s! is chosen with Im(s!) € [0, 130] and for mode set Mo, s?
is chosen with Im(s?) € [0, 130] while the real part is fixed with Re(s!) = Re(s?) = —1. The
results of the damage extent using multiple mode sets are evaluated from the single mode
sets.

In the sensitivity tests, it can be seen in Figure 11.9(a) that the quantified stiffness
decrease using multiple mode sets has slightly improved the performance of damage extents
from the single mode set My but underestimated from My at almost everywhere in the
s-plane. While in Figure 11.9(b) from the minmax tests, the quantified damage extent of
multiple mode sets is well-estimated and significantly improves the performance compared to
M (overestimated) and May(largely overestimated). Notice that the joint evaluation of the
multiple mode sets from minmax tests gives good result compare to sensitivity tests.
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(a) Sensitivity tests (b) Minmax tests

Figure 11.9 — Quantification of damage extents from single mode sets M1 and M in dependence of s in the
vicinity of the modes, compared to the multiple mode sets. - using three sensors, 5% output noise, 2% damping,
10% stiffness reduction at element 4.
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Figure 11.10 — Quantification of damage extents from single mode sets My and My in dependence of s in the
vicinity of the modes, compared to the multiple mode sets. - using three sensors, 5% output noise, 0.2% damping,
10% stiffness reduction at element 4.

11.3.6 Damage quantification for several damage extents and datasets

Based on 100 simulated datasets, respectively for different damage extents between 5% and
30% damage in element 4, the mean and standard deviation of the estimated damage extent
have been calculated. The results are shown in Figure 11.11(a) and 11.11(b) for several
damage cases in both the sensitivity and the minmax approaches for the transfer matrix-
based approach using all modes and multiple mode sets, respectively.

In Figure 11.11(a), the quantification results are obtained without modal truncation error
but containing estimation errors, and it can be seen that the damage extents are always
underestimated in both approaches and the error increases for large damage extent compared
to true value. In Figure 11.11(b), the joint statistical results of the multiple mode sets are
obtained from the single mode sets M; and My using three sensors only, and it can be seen
that the damage extents are slightly underestimated for both approaches. Finally, it can be
summarized that the results are not satisfactory without modal truncation error in Figure
11.11(a), while the multiple mode sets give significantly good results in Figure 11.11(b).

Summarizing the results, it is seen that considering all modes, the quantification of the
damage extents is not satisfactory, though it only contains estimation error but no truncation
errors. On the other hand, using multiple mode sets, it can be seen that the damage is
sometimes underestimated and sometimes overestimated, but always — at least roughly — in
the order of the expected values. This approach shows large uncertainties, while the mean
values seem to be more accurate using multiple mode sets. It is seen that results with the
sensitivity approach are slightly more accurate than with the minmax approach. Therefore,
further investigation of the reasons behind this phenomenon are part of the future research.
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Figure 11.11 — Quantification of different damage extents from (a) all modes using all sensors for the chosen
s = —1425i (left) and (b) multiple mode sets using three sensors for the chosen s = [—1 + 25i; —1 + 101i] (right)
- 5% output noise, 2% damping ratio, damaged at element 4.

11.4 Numerical application 2: Cantilever beam model

In a second study, a 2D Beam model has been demonstrated (see Section 8.3.2 in Figure 8.2)
for the damage localization and quantification. In this example, 6 modes can be identified
from the model of the structure using SSI (see Table 8.2), split into two mode sets M; and My
of three modes each for the proposed method using Multiple mode sets in Chapter 7. Recall
that a subset of 3 modes could be used in the previous works [Ber10, DMBM13, MDBM15]
as the number of modes could not be bigger than the number of output sensors.

Similar to the previous example, first the damage localization and quantification results
are shown in the next section using the first 5 identified modes from table 8.2. Then, the
success rate of the damage localization results has been computed using the single mode sets
separately in Monte-Carlo simulation for 100 datasets and the success rate of the damage
localization is illustrated with the proposed method of transfer matrix based residuals for the
joint statistical evaluation of the multiple mode sets.

11.4.1 Damage localization and quantification for one dataset

Analogously as in the previous application, damage localization results are shown for one
test case at all elements. The damaged element is simulated by decreasing 20% stiffness of
its original value. From the sensitivity and minmax tests in Figure 11.12, it is seen that the
damaged element is correctly located at element 3. In comparison to the mass-spring chain,
the reaction of the sensitivity test is much stronger now at the undamaged elements, while
the minmax test performs very well. From the results, it can be concluded that the healthy
elements of the sensitivity tests react for the violation of §, = 0 while the minmax approach
gives good results.
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For the damage quantification, the values 58%5, Smm and Sem were estimated, leading
to an estimated parameter change of 22.8%, 18.6% and 11.2651% in the damaged element.
For the sensitivity-based evaluation of the residual ¢ ~ N(J4,X), it is essential to take
its uncertainty into account, which ensures an adequate weighting of its components. Note
that the dimension of the residual is much larger than the dimension of §, especially when
aggregating different mode sets and/or s-values. In the statistical tests in Figures 11.12(a)
and 11.12(b), the damaged element is correctly located. However, when solving the inverse
problem directly as § = JT¢ the uncertainty of the residual is not taken into account and the
resulting solution in Figure 11.12(c) is obviously wrong, since not only the third component
of ¢ is non-zero. This again underlines the necessity of taking the uncertainties into account
in the evaluation of the damage indicators.

(a) Sensitivity tests (b) Minmax tests (c) Estimates value

Figure 11.12 — Localization results: (a) sensitivity tests and (b) minmax tests and (c) estimates value at s =
—1+ 200i - five sensors and five modes, 5% output noise, 20% stiffness reduction at bar 3.

11.4.2 Success rate of the damage localization using a single mode set

In this section, the damage localization results are illustrated in dependence of the chosen
s-value for both single mode sets M; and Ms, corresponding the first and last three modes
respectively, before going to illustrate the joint evaluation of the multiple mode sets in the
next section.

In this example, 100 datasets were generated for the Monte Carlo simulations. The well-
estimated modes of these datasets with their uncertainties were identified using SSI in both
reference and damaged states. Therefore, the success rate of the damage localization was
computed from tsens and t,.,-tests for the chosen s-value of the respective modes My or
M. The s-values was chosen in the vicinity of the entire modes (see Table 8.2) on a global
grid in the interval with Re(s) € [—1,50] and Im(s) € [0,9000]. In Figures 11.13 and 11.14,
the success rates of the damage localization are shown in the z-axis in dependence of the
chosen s-values where x and y-axis corresponds to real and imaginary part of the s-values for
mode set M7 and Mo, respectively.

Using a mode set M, the results are shown in Figure 11.13 for the sensitivity and minmax
tests. In both tests, it is seen that the performance of the damage localization is satisfactory
at everywhere in the Laplace variables.

For the mode set My, it can be seen in Figure 11.14 that the performance of damage
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localization results is not satisfactory in the s-plane. Notice that the success rates of the
damage localization using the mode set My in Figure 11.14 are around 50%, which is less
enough in comparison to Figure 11.13.

Success rte (%)
Success rte (%)

(a) Sensitivity tests (b) Minmax tests

Figure 11.13 — Success rate of statistical damage localization using single mode set M, in dependence of s. -
three sensors, 5% output noise, 1% damping ratio, 10% stiffness reduction at element 3.
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y

Figure 11.14 — Success rate of statistical damage localization using single mode set Ms, in dependence of s. -
three sensors, 5% output noise, 1% damping ratio, 10% stiffness reduction at element 3.

In the next section, the new statistical approach using multiple mode sets has been pro-
posed to increase the success rate of the damage localization at almost everywhere in the
s-plane.
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11.4.3 Success rate of the damage localization using multiple mode sets

In the previous section based on sensitivity and minmax tests, the success rate of the damage
localization was only satisfactory for mode set M7 but not for My because of modal the
truncation and estimation errors. This motivates the use of multiple mode sets instead of
using a single mode set alone. The joint evaluation of the residual is obtained from (7.14)
and its joint covariance is derived in (7.16) for the multiple mode sets.
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Figure 11.15 — Success rate of statistical damage localization of single mode sets M1 and M with s in the vicinity
of the modes, compared to the success rate using jointly the multiple mode sets. - using three sensors, 5% output
noise, 1% damping ratio, 10% stiffness reduction at element 3.
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Figure 11.16 — Success rate of statistical damage localization of single mode sets M1 and M2 with s in the vicinity
of the modes, compared to the success rate using jointly the multiple mode sets. - using three sensors, 5% output
noise, 2% damping ratio, 10% stiffness reduction at element 3.

For multiple mode sets, the same s-values are chosen in the vicinity of the modes such as
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st for mode set M; with Im(s!) € [0,9000], and s? for mode set Mo with Im(s?) € [0,9000]
while the real part is fixed with Re(s!), Re(s?) = —1.

In Figure 11.15(a) and 11.15(b), the results are shown for the respective sensitivity and
minmax tests, where the success rates of the damage localization of multiple mode sets are
computed from the single mode sets. For the sensitivity and minmax tests, it can be seen
in Figure 11.15 that the joint statistical evaluation using multiple mode sets improves the
damage localization performance significantly at almost everywhere in the s-plane to compare
to the single mode set M7 and M .

11.4.4 Damage extents using multiple mode sets

In the previous section, the test value in the sensitivity and minmax tests corresponds only
for the decision if the respective element is damaged or not by comparing them to a threshold.
In this section, the estimate of the changes parameter is computed for the quantification of
the damage extents in both tests in dependence of the chosen s-values in the vicinity of the
modes. Similar to the previous section, the same settings of the s-value is chosen for mode
set M1 and s2. The results of the damage extents are shown in Figure 11.17 by taking mean
from the 100 estimates together with their standard deviations.

In Figure 11.17(a) with sensitivity tests, it can be seen that the quantified value of the
damage extent is well-estimated from the statistical evaluation of multiple as well as single
mode sets. While in the minmax tests, it can be seen in Figure 11.17(b) that the quantification
results is slightly overestimated for mode set M; in comparison to multiple mode sets. From
both tests, it has been seen that the damage extents with the sensitivity approach give a
better result than minmax tests. Indeed, the damage quantification with multiple mode sets
gives satisfactory result in comparison to single mode sets.

Guantified stifiness decrease (%)
A%, -

(s jimis®))

(a) Sensitivity tests (b) Minmax tests

Figure 11.17 — Quantification of damage extents from single mode sets M1 and M3 in dependence of s in the
vicinity of the modes, compared to the multiple mode sets. - using three sensors, 5% output noise, Damping 1%,
10% stiffness reduction at element 3.
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Figure 11.18 — Quantification of damage extents from single mode sets My and My in dependence of s in the
vicinity of the modes, compared to the multiple mode sets. - using three sensors, 5% output noise, Damping 2%,
10% stiffness reduction at element 3.

11.4.5 Damage quantification for several damage extents and datasets

Based again on 100 simulated datasets, respectively for different damage extents between 5%
and 30% damage in element 3, the mean and standard deviation of the estimated damage
extent have been calculated. The results are shown in Figure 11.19(a) and 11.19(b) for several
damage cases in both the sensitivity and the minmax approaches for the transfer matrix-based
approach using five modes and multiple mode sets, respectively.

In the transfer matrix-based approach, the sensitivity approach overestimates and the
minmax approach underestimates the damage extents. Figures 11.19(a) and 11.19(b) show
that the error increases for large damage extents which can be expected since the sensitivity
matrix is computed in the reference state and is thus not accurate anymore for large changes.
In Figure 11.19(a), further error sources are modal truncation since only five out of 15 modes
are taken into account in the sensitivity computation.

In Figure 11.19(b), the joint statistical results of the multiple mode sets are obtained from
the single mode sets M and My using three sensors only, and it can be seen that the damage
extents are well-estimated for both approaches, only for large damage cases are overestimated.
Finally, in comparison to Figure 11.19(a) and 11.19(b), it can be summarized that the multiple
approach gives satisfactory results for both sensitivity and minmax approaches.
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Figure 11.19 — Quantification of different damage extents from (a) five modes using five sensors at s = —1 + 200i
(left) and (b) multiple mode sets using three sensors at s = [—1 + 200i; —1 4 2600i] (right) - 5% output noise, 1%
damping ratio, damaged at element 3.

11.5 Comparison of the localization results based on the three
methods

In this section, the localization results are recalled from the previous experiments in a Mass-
spring chain system (see Figure 8.3) in order to make a comparison among the three methods
e.g. the statistical evaluation of SDDLV, ILDL, and the transfer matrix sensitivity-based
approach. For mode sets M, corresponding to the first three modes, the results are illus-
trated in Figures 11.20, 11.21, and 11.22 for the respective methods. Note that all results
are computed using the same simulated datasets (500) in both healthy and damaged states
for the Monte-Carlo evaluation, and the s-values were chosen in the vicinity of the modes
(see Table 8.1) on a global grid with Re(s) € [—3,1] and Im(s) € [0,130]. Similar to previous
results, the success rates of the damage localization (z-axis) are shown in dependence of the
real and imaginary part of the chosen s-values (x and y-axes).

In the SDDLV approach, Figure 11.20 shows that the success rate in the statistical evalu-
ation is satisfactory only in the interval of the Laplace variables with Im(s) € [20, 64], where
it reaches up to 90%. Beyond this interval, it is almost close to zero and the damage local-
ization cannot be indicated due to the modal truncation error, which is significant outside
the interval containing the identified modes (see Table 8.1).

Using the ILDL approach, the success rates of the damage localization (z-axis) are shown
in Figure 11.21 in the element-wise tests of the residual vector for the statistical ILDL (Rle-
S-ILDL). Note that the results are slightly improved in Figure 11.21 with compared to Figure
11.20, possibly it may happen because the image U; of the flexibility matrix d R in the ILDL
approach is differently affected by noise than the null space.

For the transfer matrix sensitivity-based approach, the localization results are illustrated
in Figures 11.22(a) and 11.22(b) for the respective sensitivity and minmax tests. It is seen
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in Figure 11.22(a) that the success rate of the damage localization is satisfactory only in
the interval of the Laplace variables with Im(s) € [0,34] than Im(s) € [35,130], while the
localization results from minmax test gives good performance compared to the sensitivity
tests.

Success rate (%)
Success rate(%)

Res) 3 Re(s)

Figure 11.20 — Success rates of the S-SDDLV using single  Figure 11.21 — Success rates of the Rle-S-ILDL using
mode set M in dependence of s single mode set M in dependence of s
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Figure 11.22 — Success rates of the statistical damage localization using single mode set M, in dependence of s.

Summarizing the results, it can be concluded that both SDDLV and ILDL (see Figures
11.20 and 11.21), the Laplace variable s has a strong influence with compared to the sensitivity
and minmax approach. This is due to the fact that the SDDLV and ILDL approach is based on
the physical properties of the transfer matrix difference, and the choice of s is directly related
to the bias of the transfer matrix. On the other hand, the sensitivity-based approaches require
only the derivative of the transfer matrix, which is accurate when the modal parameters are
correctly estimated (and when damage is small), independently of s.
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11.6 Discussion

In this chapter, the transfer-matrix based residual was presented in a statistical output-
only damage localization and quantification approach in a Gaussian framework based on the
sensitivity and minmax tests. The residual is obtained in the context of SDDLV that is based
on the transfer matrix difference between the reference and damaged states. In addition, it
has been extended considering a joint statistical evaluation of multiple mode sets for same
or different Laplace variables. The robustness of the damage localization and quantification
has been obtained by taking into account the information from all modes of the structure.

In the applications, several experiments have been demonstrated in Monte-Carlo simula-
tions to evaluate the success of the damage localization in dependence of the s-value, where
each of the parameters corresponding to an element is tested for being non-zero in a Gen-
eralized Likelihood Ratio (GLR) test. Damage quantification corresponds to the estimates
value of the changes parameter in the damaged elements. From results, it has been seen that
the proposed method using multiple mode sets has increased the performance of the damage
localization and quantification of the damage extents at almost everywhere in the complex
s-plane compared to using a single mode set.

In comparison to SDDLV approach, the sensitivity and minmax tests are not good for
large damage extents due to increasing error of the system parameter changes, while the
SDDLV performs well for large damage extents because of the significant changes in the
transfer matrix differences between the healthy and damaged states. In the SDDLV, the
Laplace variable s has a strong influence with compared to the sensitivity and minmax tests.
Still, the performance in this framework was not as good without modal truncation. Further
investigations of the reasons behind this phenomenon are part of future research.
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Numerical Implementation

12.1 Introduction

In this Chapter, the numerical implementation of the damage localization methods is pre-
sented by using Abaqus software. In the previous Chapters 9, 10, and 11, the localization
methods are applied on different numerical applications, where the FE model are generated
using Matlab code which is more challenging to make an accurate FE model for bigger struc-
ture. Therefore, the purpose of this chapter is to compute the FE model of a structure in
practice, generally for any kind of structure using Abaqus-Python script for the feasibility of
the damage localization and quantification methods described in this thesis.

This chapter is organized as follows. In Section 12.2, an FE model of a healthy structure
is described in step by step using Abaqus input file and then, mass and stiffness matrix of the
healthy and damaged states are obtained from output database. Using Abaqus-Python script,
the L,n0der of the structure is computed by a for loop in Section 12.5.1 as well as the sensitivity
of modal parameters are derived with respect to the structural parameters to stiffness changes
in Section 12.5.2. For instance, a script file is presented for model database as well as output
database in Section 13.5 for the computation of L,,,qe; of the SDDLV approach. Finally,
both methods from chapter 5 and 7 are tested for localization and quantification on a 2D
cantilever beam model.

12.2 Simulation with Commercial Software@Abaqus

In Abaqus, all models are called input files. The input file is the means of communication
between the preprocessor, usually Abaqus/CAE, and the analysis product, Abaqus/Standard
or Abaqus/Explicit. It contains a complete description of the numerical model. An input file
has two sections; Model and History. The Model section contains all the information about
the model and comes before the history section. The History section provides information
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about model.

In the following section, the simulation procedure will be discussed step by step. First,
a script file has written of a healthy structure using Abaqus input file and then, mass and
stiffness matrix of the healthy and damaged structures are obtained from Abaqus output
database. Using Abaqus-Python script, the L,,,q4¢; of the structure is computed by a for loop
in Section 12.5.1 as well as the sensitivity of modal parameters are derived with respect to
the structural parameters to stiffness changes in Section 12.5.2.

12.3 Writing a script with Abaqus

A script file is written in the following in order to get the FE model of a structure. In Abaqus
input file, the following things are considered in step by step.

e First, the node of the FE model of the structure can be defined as follows

*NODE , NSET=BEAMS
1, 0.

b 3

b

b b

.2
.4,
.6
.8

b b

3 O W N
= O O O O
O O O O O O

b *

The first digit corresponds to the number of the node and the next two correspond
to the coordinates of the node, x and y, respectively. The columns are separated by
a comma. Numbers must be followed by a period. For decimal numbers, it must be
written with a point.

e Second, the number of element of FE model can be written as follows

*ELEMENT, TYPE=B23, ELSET=BEAMS
1,1,2
2,2,3
3,3,4
4,4,5
5,5,6

The first digit corresponds to the number of the element, where the next two correspond
to the numbers of the nodes that linked to this element. The columns are separated by
a comma.

e Third, the parameters of the section is defined as follows. Assume that the beam section
is circular cross-section and hence, need to define the diameter of this one.

*PARAMETER
R=0.015
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e Four, the beam section is defined as circular cross-section and the type of the material
is defined as steel as follows,

*BEAM SECTION,SECTION=CIRC,ELSET=BEAMS, MATERIAL=STEEL
<R>

e Five, the material properties of the beam section are defined as follows,

*MATERIAL, NAME =STEEL
*ELASTIC

206e9, 0.3

*DENSITY

7800

Since the type of material is steel, the properties of this material are given by Young
Modulus, Poisson ratio and its density.

e Six, anode group is created as follows. This command is very useful, when the geometry
of the structure is large or complex.

*NSET, NSET=CLAMP, GENERATE
1,1,1

This creates a node groups that have the same boundary conditions.
e Finally, the static and dynamic study can be performed.

In such a way, the Abaqus input file is organized and we are able to carry-out a study of any
kind of structure using Abaqus software. In this study, we will perform the dynamic studies
(modal analysis).

Compiling a script

In order to compile a script, first, open the Abaqus command prompt window, then enter
” Abaqus job interactive” and write the name of the script file. By default, the file must be
in the "Temp” folder of local disk. This operation will generate several files after compiling
the script including a .odb file, which allows visualizing the output result with the CAE
interface. The .dat file allows to understand possible error messages during the compilation
and displays the different values requested by the user.

Modal analysis

Using the following command, the modal analysis of the structure can be performed

*STEP
*FREQUENCY, EIGENSOLVER=LANCZ0S
15,0,,
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Boundary condition

This function is used to prescribe boundary conditions at nodes or to specify the driven nodes
in a submodeling analysis. In the following, the first digit corresponds to the number of the
node and the next two correspond to the coordinates of the node, DOFs and displacement,
respectively.

*BOUNDARY
1, 1, 0
1, 2, 0
1, 6, O

Stiffness and mass matrix of the healthy structure

In order to get the stiffness and mass matrix of a structure, the following function is placed
at the end of the script. The matrix is generated using the ”substructure matrix output”
function is written as follows:

*SUBSTRUCTURE MATRIX OUTPUT, OUTPUT FILE
*SUBSTRUCTURE MATRIX OUTPUT, OUTPUT FILE

USER DEFINED, FILE NAME
USER DEFINED, FILE NAME

K, STIFFNESS = YES
M, MASS = YES

From history output requests, the mass and stiffness matrix of the healthy structure has been
imported as a text file. The file name of the matrix will be stored in the defining folder.

12.4 Damaged structure

In order to obtain the FE model of the damaged structure, the following properties of the
structure will be reformulated to get the stiffness matrix of the damaged structure. Assume
that damage is related to stiffness loss. Let element 3 is damaged, where it is generated by
decreasing Young Modulus (E) of its original value which corresponds to the stiffness loss.
The following things are reconsidered.

e The number of element is defined as follows, where the healthy and damaged elements
of the structure are named as BEAMSAFE and BEAMDAMGE, respectively

*ELEMENT, TYPE=B23

1,1,2

2,2,3

3,3,4

4.,4,5

5,5,6

*Elset, elset=BEAMSAFE
1,2,4,5

*Elset, elset=BEAMDAMAGE
3



12.4 Damaged structure 215

e The beam section of the model is defined as follows, where the BEAMSAFE corresponds
to the healthy elements and BEAMDAMAGE corresponds to the damaged element as
well as the material properties are redefined.

*BEAM SECTION,SECTION=CIRC,ELSET=BEAMSAFE, MATERIAL=STEEL

<Radius>

*BEAM SECTION,SECTION=CIRC,ELSET=BEAMDAMAGE, MATERIAL=STEEL_DAMAGE
<Radius>

e The material properties of the beam section is defined according to healthy and damaged
elements of the model. There are two possibilities, such as damage can be generated
by decreasing Young modulus of its original value, or stiffness matrix of the damaged
model can be imported using Abaqus input file. For the healthy and damaged case, the
following properties are given as

*MATERIAL, NAME =STEEL
*ELASTIC

2.07e11, 0.3

*DENSITY

7800

*MATERIAL, NAME =STEEL_DAMAGE
*ELASTIC

1.035e11, 0.3

*DENSITY

7800

Stiffness and mass matrix of the damaged structure

As similar to the previous section, the same command is used to get the stiffness and mass
matrix of the damaged structure,

*SUBSTRUCTURE MATRIX OUTPUT, OUTPUT FILE
*SUBSTRUCTURE MATRIX OUTPUT, OUTPUT FILE

USER DEFINED, FILE NAME
USER DEFINED, FILE NAME

K_d, STIFFNESS = YI
M, MASS = YES

From the history output file, the mass and stiffness matrix of the damaged structure is
obtained as a .text file. The file name of the matrix will be stored in the destination folder.
Since the damage is generated by decreasing Young modulus, the stiffness of the structure is
only changed, while the mass is unchanged.

Stiffness and mass matrix of the free boundary of the structure

For the modal analysis and computation of the L,,,q¢; of the structure, it is required to export

the global mass and stiffness matrices of the structure at all nodes and degrees of freedom.
Therefore, the mass and stiffness matrix are exported for the safe structure where the

matrices are stored in the destination folder namely as M.mtx and K.mtx. There, the format
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of the matrices are not in the proper order and given only for the lower triangular part of the
matrices. Then it is essential to rewrite the matrix (e.g. K.xIs or matlab) to get the global
mass and stiffness matrix. The following steps are considered

e Export the mass and stiffness matrices as a .text file from the history output file, and
then rewrite the format in order to get the global mass and stiffness matrix.

e Finally, delete the entries in the rows and columns for the fixed node (i.e. DoF's per
fixed node) from the global mass and stiffness matrices.

Using these information we can perform the modal analysis and compute the L,,o4e; Of
the structure from the mass and stiffness matrices of the safe structure. In the following,
the L,0qe; of the structure is described for the SDDLV and ILDL approaches using Abaqus-
Python script.

12.5 FE model with Abaqus-Python script

In the previous section, the FE model of a structure is described using Abaqus input file as
well as the mass and stiffness matrix of the structure is shown how to get it. This information
is essential in order to design an adequate FE model for a simple or very complex structures.
For the damage localization methods in Chapters 5-7, an FE model is required and here it is
obtained using Abaqus-Python script, where the mass and stiffness matrix of the structure
are obtained from the previous sections. Note that the script is given in the Appendix 13.5.

12.5.1 L,,,4 of the structure for SDDLV or ILDL approach

For the damage localization with SDDLV or ILDL approach in Chapters 5-6, the L,,oqe; Of
the structure is described in Section 2.2.3. In the previous chapters 9-11, the L,,oqe; Of the
structure was obtained using Matlab Code, where it is more challenging to obtain an accurate
FE model. Therefore, in this section, the Lj,oqe; (2.2.3) of the structure is computed using
Abaqus-Python Script.

e First, an FE model of the healthy structure is made with Abaqus input file or GUI,
details are given in Section 12.3. After compiling the script, the mass (M), stiffness (K)
and damping (C') matrices of the model are obtained from Abaqus output database.

e Secondly, Goder (2.23) is obtained in Matlab from M, C, and K matrices for a selected
Laplace variable (s-value), and

e thirdly, the displacement vectors Z(s) (2.24) are computed at all DOFs after applying
a unit load to the model at each sensor coordinates.

e Fourthly, in order to get the stress field, the displacement vectors are applied as the
Boundary Condition (BC) of the model at all DOF's that yield stress field.
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e Finally, a job is created and submitted for analysis in Abaqus-Python using a for loop.
From Abaqus field-output requests, the output generated stress (i.e. Section Force
(SF) and Section Moment (SM)) at all DOFs are saved in a text file for each sensor
coordinate. Note that L;,,q4e; be the column of these stress resultants S(s);. In such a
way, Lmoder Of the structure is computed using Abaqus-Python script as illustrated in
Figure 12.1.

Therefore, the load vector is applied to Ly,0qer tO get the stress resultants, and for each
element, these stress values are statistically aggregated in the y?-test (5.14). Recall that
stress value close to zero indicates potentially damaged elements in the SDDLV approach.

For the simplicity, a script file of a 2D beam model of length 1 m with a circular cross-
section has been presented in the Appendix for the computation of L,,.qe;. There, first a
script is written for Model Database (.mdb) and then Output Database (.odb) in Section
13.5 and 13.5, respectively.

12.5.2 Sensitivity-based FE model with Abaqus-Python script

In the contribution chapter 7 for the damage localization and quantification, the sensitivity
analysis of the modal parameters with respect to structural parameters are required in order
to obtain the sensitivity matrix Jr g (7.8). Here, the derivative of the modal parameters with
respect to the structural parameters to the stiffness of each element is computed using the
finite difference approach. The assumed perturbation factor is 0.1%. The sensitivity analysis
was performed using a Python script as follows.

Generally, sensitivity analysis depends on the selection of parameters. For example, the
structural parameters can be elements of mass and stiffness matrices. In this study, assume
that damage is related to stiffness loss and hence, the beams Young modulus (E) is chosen
as an updating parameter. Assume a structural system consists of ¢ elements, then the
sensitivity matrix can be obtained as follows.

e First, the FE model of the structure is made and then the eigenfrequencies f.; and
modeshapes ¢, [ = 1,...,m are numerically generated for the initial FE model with
Abaqus-Python script.

e Second, for each element, the sensitivities of the eigenstructure (frequencies and mode
shapes) to the physical parameters (chosen in here as the stiffness of each element)
are calculated. A perturbation (rf) 0.1% of stiffness (considering reduction of Young
mouduls) change is introduced at j**, j = 1,...,t element of the FE model. Then the
corresponding eigenfrequencies f(*c,l) and modeshapes ¢; are numerically computed for
the modified FE model.

e Third, using finite difference approach, the difference in eigenfrequencies and mode-
shapes between the intial and modified FE models, df; and dy; is obtained by
dfy = (ff — fi) and dp; = (] — 1), respectively. Then, each component of the j
column of the sensitivity matrix is computed dividing the change in each eigenfrequency
and modeshape by the perturbation factor rf.
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Start

M, K and C matrices of the
healthy structure are obtained
from Abaqus output database

Abaqus inp. file

Compute, Gmodel=(Ms?+Cs+K) ™!
for a choice of s-value
Matlab code

Displacements are computed at all DOFs
from unit load at the sensor coordinates
Matlab code

Stress computation using for loop
(depends on the number of sensors)

Abaqus-Python code

Displacements at all DOFs are applied as
Boundary Condition (BC) of the model

Creates job and submits for anal-
ysis, FieldOutputRequests is used
to find the Stress (SF and SM)

[ Generated stresses are saved in a text file J

—

[ Ly0der i1s the column of these stresses

Satisfied?
For loop on the number of sensors
Yes
[ Post-processing operation ]
Matlab
[ Position of damage element ]

Figure 12.1 — Implementation of the method using commercial software Abaqus
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e Finally, the sensitivities of the eigenstructure are obtained by repeating the above pro-
cedure for all ¢ elements using a for loop and then, the result is saved as a text file.

12.6 Numerical application: 2D Cantilever beam

In this study, a 2D Beam model has been considered (see Figure 12.2) for both damage
localization and quantification from chapter 5 and 7. Using Abaqus software, the structure
is modeled with 5 beam elements of total length 1 m. The beam elements are circular with
an external diameter of 0.02m. The mass density, Young modulus (E) and Poisson ratio
are 7800 kg.m ™3, 207 GPa and 0.3, respectively. The total number of degrees of freedom
of the structure is 15. Damping is defined such that the damping ratio of all modes is 1%.
Damaged is modeled in element 3 by decreasing 20% Young modulus. For the damaged and
undamaged states, the acceleration data length is N = 25,000, generated from collocated
white noise excitation using five sensors in the Y-direction at each node with a sampling
frequency of 2000 Hz, and 5% white noise was added to the output data. For the transfer
matrix-based approaches, the first five modes of the structure were identified with subspace
identification, as shown in Table 12.1 and the respective modes are illustrated in Figure 12.3.

by

Figure 12.2 — 2D Beam model with 5 elements (15 DOFs) -using Abaqus/CAD Student Edition 6.14-2

Table 12.1 — Eigenvalues \. of beam model.

Mode Healthy state Damaged state
1 —0.9057+90.5613i  —0.8949 + 89.4815i
2 —5.6785+567.81691  —5.4319 + 543.164i
3 —15.950 + 1594.9491 —15.805 + 1580.434i
4 —31.526 + 3152.450i —30.623 + 3062.156i
5 —52.454 + 5245.2291 —51.261 + 5125.834i

12.6.1 FE model with Abaqus-Python script

A finite element model of the structure is required to obtain Ly,qe (5.4) for the stress
computation in the SDDLV approach, and to obtain the sensitivity of the modal parameters
with respect to the structural parameters for the computation of the sensitivity Jp(s) ¢ (7-8).
Assume that damage is located at element 3. Stress is computed for all elements in the
SDDLV approach, and parameter  is defined as Young modulus of each element in the
sensitivity approach. All elements of the FE model are tested.
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Figure 12.3 — First few modes of the 2D Cantilever beam using Abaqus/CAD Student Edition 6.14-2

In the following, the FE model of the structure for the SDDLV and sensitivity approaches
is described based on Abaqus-Python script in Section 12.5.

Lyyoder for SDDLV approach

Following Section 12.5.1, the Lyoqe1(s) € C**7 of the structure is implemented using Abaqus-
Python script for the damage localization with SDDLV approach (see Chapter 5). Where I,
be the number of all stresses that are computed at the elements of the structure and r is the
number of outputs. Then, modal parameters estimated from output-only measurements in
the reference and damaged states of the system. A vector is obtained in the null space of the
changes in the transfer matrix computed in both states and then applied as a load vector to
the Ly,oqe; model of the structure. The damage localization is related to this stress where it
is close to zero.

Sensitivity analysis based on FE model

In the sensitivity approach for both damage localization and quantification (see Chapter 7),
to obtain the required sensitivity matrix Jp(s) ¢ (7.8), the derivative of the modal parameters
(f(CJ), 1), L =1,...,m. with respect to the structural parameters is computed for each mode
m, following Section 12.5.2. Let 6§ = [@'--- 6P] is the parameters of an FE model of the
structure. For the damage localization, each of the components 6%, i = 1--- p are tested
with the sensitivity and minmax tests. For the faulty system, the component of é, = 0 is
tested against 0,70 based on the sensitivity and the minmax tests. Then the test variables
are compared to a threshold level to make a decision about faulty components when §,7£0.
Estimates of the changes § are computed with the respective approaches described in Section
(7.5). In this approach, the highest tsepns and ¢y, value indicates the damaged elements.
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In both approaches, the transfer matrix difference and its covariance are computed based
on the identified five modes for a particular choice of Laplace variable s, comprising one
variable s in the vicinity of the identified modes. Note that test values close to zero indicate
potentially damaged elements in the SDDLV approach, and high values indicate the damaged
elements in the sensitivity-based approaches.

12.6.2 SDDLV approach: localization results at all elements

The localization results at all elements are computed using one datasets in both healthy and
damaged states. Recall that the damage position is inferred by the stress value closest to
zero. The computation of all stresses is done at s; = —1 4 200i for the theoretical, estimated
and statistical evaluation of y?-tests in Figures 12.4(a), 12.4(b) and 12.4(c), respectively. In
Figures 12.4(a)-12.4(c), all stress values corresponding to healthy and damaged elements are
presented, while the smallest stress value is correctly located in the damaged element at 3.

10000 F . ] sF— . .

| | al ]

5000 ¢ ! -3t {

g 4000 ! 2t |
;

2000 + ! 1} !

ok . - — - ol . | — L .

1 H 3 4 5 1 2 3 4 5

2 test

Statistical

3 4 1 2 3 4 5 3
Elament number, t Element numbar, t Elemant number, t

(a) SDDLV for theoretic stress (b) SDDLV for estimated stress  (c) S-SDDLV (Statistical x;-test)

Figure 12.4 — SDDLV-based damage localization: stress computation and statistical evaluation at s = —1 + 2001
-using five sensors, 5% output noise, 20% stiffness reduction at bar 3.

12.6.3 Sensitivity-based approach: damage localization and quantification

Analogously as in the previous application, damage localization results are shown for one test
case at all elements. Recall that high value indicates the damaged elements in the sensitivity
and minmax approaches. From the sensitivity and minmax tests in Figure 12.5, it is seen
that the damaged element is correctly located at element 3. The reaction of the sensitivity
test is much stronger at the undamaged elements, while the minmax test performs very well.
From the results, it can be concluded that the healthy elements of the sensitivity tests react
for the violation of &, = 0 while the minmax approach gives good results.

For the damage quantification, the values 3sens, Smm and Sesti were estimated, leading to
an estimated parameter change of 23.17%, 20.10% and 13.99% in the damaged element for
the transfer matrix-based approach.
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Figure 12.5 — Localization results: (a) sensitivity tests, (b) minmax tests and (c) estimates value at s = —1 + 2001

- five sensors and five modes, 5% output noise, 20% stiffness reduction at bar 3.

12.7 Discussion

In this Chapter, the damage localization methods are numerically implemented with Abaqus
Software. From the localization results, it is seen that two transfer matrix based methods have
been successfully identified the damaged element on a numerical application. In addition,
the sensitivity-based approach allows the quantification of damage. From the quantification
results, it can be concluded that the minmax approach gives almost perfect results with
compared to sensitivity test.
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Real data applications

13.1 Introduction

In this Chapter, the damage localization methods are validated on real applications of struc-
tures. This chapter is formulated as follows. In Section 13.2 and 13.3, the new approach
using multiple mode sets is validated on two different cantilever beam on a lab experiment.
In Section 13.4, the damage localization with SDDLV and the new development of transfer-
matrix based damage localization and quantification is applied on a Four-story Yellow Frame
structure, and the conclusion of the work is presented in Section 13.5.

13.2 Case study 1: Cantilever beam 1

In a lab experiment, damage tests were conducted on a cantilever beam that is made of plastic,
as shown in Figure 13.1. This experiment was performed by Briiel & Kjeer in Denmark. Its
dimensions are 0.5m x 0.08 m x 0.0l m and it is fixed on one side. Damage was introduced
by drilling holes, located at 0.08 m from the fixed end. The beam was excited horizontally
by a shaker under white noise excitation and the response was monitored by 18 horizontal
and 9 vertical accelerometers. For both the healthy and damaged states, acceleration data of
length N = 295,936 with a sampling frequency of 8192 Hz were recorded.

This experimental setup has been used previously as a validation case for the SDDLV
method [MDBMI15]. In this previous work, the localization was performed using all the
available horizontal sensors. Consequently, using all the signals it was possible to identify
natural frequencies and modes shape in bending and torsion.

The objective of the present study is to localize the damage with a minimum number
of sensors to highlight the advantage of using the proposed multiple mode sets method.
Furthermore, it is intended to demonstrate the method based on a very simple finite element
model of the structure.
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Therefore, we consider only three “virtual sensors” located in the center of the structure
instead of the full data from the horizontal accelerometers (see Figure 13.1). The measure-
ments of these three sensors at 0.167m, 0.333 m and 0.5 m from the fixed end are obtained as
the mean of the measured accelerations at the top and bottom of the beam. This means that
we are voluntarily excluding the torsional modes. We are able to identify five bending modes
in the plane & — z, which will show to be sufficient for a precise damage localization in the
following when considering all five modes in two mode sets with the method from chapter 5.

Figure 13.1 — Experimental setup of the beam.

13.2.1 Modal analysis and uncertainties

After downsampling and decimation of the data by factor 4, five well-estimated bending
modes were obtained in the healthy and the three damaged states from the measurement
data using SSI, together with their uncertainties. The identified frequencies are shown in
Table 13.1 for each mode. Since only three sensors are used, the identified modes are split
into two mode sets M7 and Ms containing two and three modes, respectively.

Table 13.1 — Identified frequencies (in Hz) of beam.

Mode healthy 1 hole 3 holes 5 holes Mode set
1653 1641  16.20  15.83 }Ml

81.06 81.44  81.52  81.47

326.9 3229 3263  327.2

529.4 5284  527.1  523.9 Mo

831.3 831.8 8315  826.1

T = W NN =

13.2.2 Finite element model

The model needs to be as simple as is practicable but it has to correctly represent the behavior
of the structure. The value of the material data (e.g. Young modulus, Poisson ratio and
density) are not given in the paper presenting the experimental setup [MDBM15]. We only
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know that the beam is made of PVC. Consequently, we have some uncertainties in the model.
Therefore, a case study has been carried-out in order to design an approximate FE model.
First, a 3D fine mesh beam model (see Figure 13.2) is considered as a reference value and
the corresponding modes of the structure are illustrated in Figure 13.4. The Young modulus
(E), Poisson ratio and mass density of the beam are chosen as 5 GPa, 0.4 and 1100 kg.m 3,
respectively.

For further study, a finite element simulation with 72 shell elements (S4R5) has been
performed using ABAQUS/CAD Software, the model is illustrated in Figure 13.3. The mesh
density of the model is identical to the previous work [MDBM15]. The computed values are
given in the Table 13.2. In addition, a simple 2D beam model with 9 elements has been
performed using Matlab code as shown in Figure 13.5. In the following, the comparison of
the eigenfrequencies among 3D beam, shell model, 2D beam, and the analytical frequencies
are mentioned together in Table 13.2 .

Figure 13.2 — Geometry of the model Figure 13.3 — FE shell model with 72 elements

Table 13.2 — Identified frequencies (in Hz) of beam.

Mode no. | 3D  structure | Shell Model | Analytical freq | 2D Beam model | Experiment
(reference) (in plane y-z) | (in plane y-z)

1 15.048 14.012 13.8 13.77 16.53

2 94.056 88.201 86.3 86.33 81.06

3 108.764 105.08 -

4 172.764 162.58 - - 173.3

5 262.938 250.34 241.7 241.8 326.9

6 514.431 501.39 473.7 474.2 529.4

7 525.003 495.0 - - -

8 611.989 601.0 - - -

9 848.118 852.73 783.1 785.00 831.3
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(a) Mode 1 for 15.048 Hz (Bending plane y-z) (b) Mode 2 for 94.056 Hz (Bending plane y-z)
) Mode 3 for 108.764 Hz (Bending plane x-y ) Mode 4 for 172.764 Hz (Torsion)
1 \/\ | /\/\
(e) Mode 5 for 262.938 Hz (Bending plane y-z) (f) Mode 6 for 514.431 Hz (Bending plane y-z)
) Mode 7 for 525.003 Hz (Torsion) ) Mode 8 for 611.989 Hz (Bending plane x-y

(i) Mode 9 for 848.118 Hz (Bending plane y-z)

Figure 13.4 — Mode shapes of 3D beam model

Analytical beam model

For a clamped beam, the eigenfrequencies for bending modes in plane y-z are given by the
formula below:

Ay =1.875, Ay =4.694 forn>3:A=(2n—1)1/2

wlef

EI ET EI
_ 2 — Cy —
wy = 4.694 ”pSL4_3'516”pSL4 forn>3:w=((2n—1)r/2) SIA"

The corresponding values of the analytical beam model are given in the Table 13.2. The
analytical beam model gives the same values as a very fine 2D beam finite element model.
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In addition, the bending modes in the plane x-y are not identified here. The bending mode
3 in plan x-y as well as torsional mode 4 in the 3D finite element simulation are missing. So,
each mode shape has to be carefully control to allow comparison. However, the shell finite
element model gives acceptable results and allows finding the same modes than the 3D one
but with some inversions. As you can notice, there is still a gap between the reference value
of eigenfrequency (3D model) and the shell model. It suggest that the structure is not really
a plate (the ratio width/thickness is equal to 8). Nevertheless, the results obtained with the
shell model are better than those obtained using the beam model.

Therefore, in this particular example, a simple 2D beam model gives the correct mode
shapes for the bending modes in the plane x — z, so it can represent the first five bending
modes in the plane x — z of the structure. Considering all the modes, it matches to the modes
1-2-5-6-9 of a 3D model used as reference. Nevertheless the ratio length/width of the structure
is equal to 6. It is not strictly speaking a beam (ratio of 10). This leads to a systematic, but
acceptable, model error of about 8% considering the gap between the reference values of the
eigenfrequencies obtained with a very fine mesh 3D model and the ones obtained with the
analytical beam model.

Even the 3D or shell model are better to simulate the structure, they count a large number
of elements. Its leads to truncation errors when computes model, and previously, it has been
investigated that the performance of method is not satisfactory for large modal truncation
errors (see section 9.5.3). So, a simple model could give results for identification. A trade-
off between model size, i.e. the number of DOFs, and model precision must be considered
for the computation of the stress for damage localization. The stress resultants and their
uncertainties are computed for each structural element. Using only three sensors it seems to
be reasonable to demand a localization precision within a discretization of nine elements of
the beam. Additionally, such a coarse mesh of nine elements is good enough to compute the
first five bending modes in the plane x — z. It is finally the model that we have chosen in
this study, as depicted in Figure 13.5.

y L.

T 2 T3 ’|' 4 s 6 I 7 8 9 T
Sensor (1) Sensor (2) Sensor (3)

Figure 13.5 — Model of the beam with 3 sensors.

~

The mass and stiffness matrices are computed using Matlab code according to the formu-
lation presented in Chapter 8 for 2D beam model in Section 8.3.2.

The computed stress resultants for each structural element are the real and imaginary

F, 0
parts of the three internal forces 7, = 0 M, - The damage is situated at element 2 in
V., O

this model, being located at 0.08 m from the fixed end.
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13.2.3 Localization results at all elements

The performance of the proposed damage localization method using multiple mode sets is
compared to the separate single mode set evaluation for the three different damage scenarios.

The localization results are computed at all elements from the experimental datasets in
both damaged and healthy states. The computation of the stress and its uncertainties for
the statistical evaluation in the y?-tests is carried out for two different sets of s-values, each
in the vicinity of the respective mode sets. First, one s-value is chosen for each mode set
with s’ = —10 + 90i for mode set M; and s> = —10 + 3200i for mode set Ms. Second, two

s-values are chosen for joint evaluation for each mode set as in (5.15)—(5.16): s} = —10+ 90,
s3 = —10 + 100i for My, and s3 = —10 + 3200i, s3 = —10 + 3300i for Ms. Third, three
s-values are chosen for joint evaluation for each mode set: s} = —10 4+ 90i, s3 = —10 + 100i,

s3 = —10+ 200i for My, and s? = —10 + 2100i, s3 = —10 + 3200i, s3 = —10 + 3300i for Mo.
To easily compare the ratios of the stress or associated y7-values between the undamaged
and damaged elements in the different test cases, the computed values are normalized in the
figures such that the smallest value of the nine elements is 1.

The estimated stress and its statistical evaluation is shown in detail for the first damage
case of 1 hole. In Figures 13.6 and 13.7, the results are shown for considering the single mode
sets M1 and Msy. Neither the estimated stress nor its statistical evaluation can correctly
indicate the damage at element 2.

When using the joint statistical evaluation of both mode sets with the method of this
paper, the results using one s-value in Figure 13.8(b) indicate the damaged element within
the adjacent elements of the damaged one, being close to correct damage localization. By
adding information through two and three more s-values in the same setting, the damaged
element can be correctly indicated in Figure 13.8(d) and 13.8(f). In this case, notice that the
estimated stress can not identify the damage localization correctly due to modal truncation
and estimation error.

Then, the localization results with the proposed method of this paper are presented in
Figures 13.9 and 13.10 for the further damage severities of three and five holes, showing
the estimated stress and statistical evaluation of the multiple mode sets using one, two or
three s-values for each mode set. Using one s-value in Figures 13.9(a)-13.9(b) and 13.10(a)—
13.10(b), the damage can be localized in the region of the damaged and its adjacent elements
for both estimated stress and statistical evaluation, and the x?-value for the damaged element
2 is slightly lower than for the neighboring elements. Using two or three s-values in Figures
13.9(¢)-13.9(d) and 13.10(e)-13.10(f), it can be seen that the damage can be more clearly
localized in element 2 with the joint statistical evaluation, while the damage localization
based on the estimated stress can be localized in the region of the damaged and its adjacent
elements due to modal truncation and variance errors.
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T2 3 7 8 9
(a) Estimated stress (b) Statistical evaluation in y7-tests
Figure 13.6 — Localization results for all elements using single mode set M at s* = —10 4 90i. Damage case: 1
hole.
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(a) Estimated stress (b) Statistical evaluation in y3-tests
Figure 13.7 — Localization results for all elements using single mode set My at s> = —10 4 3200i. Damage case:

1 hole.
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Figure 13.8 — Localization results with new method using both mode sets. Damage case: 1 hole.



13.2 Case study 1: Cantilever beam 1

233

3F

2

o

o

1 2 3 4 5 3 T 8 9

(a) Estimated stress, 1 s-value

35

=

5

o

5

=

5

o

3 2 3 4 5 [ 7 8
1 2 3 4 5 6 7 8

(c) Estimated stress, 2 s-value

(e) Estimated stress, 3 s-value

35

2

=

o

o

2

o

1 E 3 4 5 [l 7 [ a

(b) Statistical xi-tests, 1 s-value

El 2 3 a 5 [ 7 a 9

(d) Statistical y3-tests, 2 s-value

1 2 3 4 5 & 7 L L]

(f) Statistical x7-tests, 3 s-value

Figure 13.9 — Localization results with new method using both mode sets. Damage case: 3 hole.
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Figure 13.10 — Localization results with new method using both mode sets. Damage case: 5 hole.
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Summarizing the results in this experiment, it can be seen that neither the estimated stress
from the SDDLV approach nor its statistical evaluation is sufficient for damage localization
in the classical formulation using one mode set, which is probably due to significant modal
truncation errors when using only limited modal information. The statistical evaluation with
the proposed method takes all the modal information into account and correctly indicated
the damage locations in this example, based on measurements from only three sensors and
five identified modes, together with a coarse FE model of the structure.

13.3 Case study 2: Cantilever beam 2

13.3.1 Experimental setup

The proposed damage localization algorithm using multiple mode sets has been applied on
vibrational data of a cantilever beam as shown in Figure 13.11. The beam length is 1 m and
is embedded on 5cm at its lower end.
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(a) Experimental setup for the beam in healthy state (b) Damaged beam.

Figure 13.11 — Experimental setup of a cantilever beam

The excitation for the tests was provided by an hydraulic shaker. A broadband ran-
dom acceleration signal was induced via a vibrating table at the bottom of the structure.
Response of the beam was measured in the transverse direction with three accelerometer
sensors 0.1, 0.5 and 0.9 m of the vibrating table, i.e. 0.05, 0.45 and 0.85m of the embedding),
at a sampling frequency of 2000 Hz and 20,000 samples. Data are recorded and stored with
a PEGASE platform, which is a smart wireless sensor systems performing real-time moni-
toring [LCDLP16]. With the practical difficulties to access structures, to collect data and
then perform off-line and remote computation, this platform offer an advantage compared to
classical measurement systems.

A damage was performed by introducing a cut along the length of the beam, at 0.2 m to the
vibrating table (i.e. 0.15m to the embedding), as depicted in Figure 13.11(b). Experimental
data for the healthy state were recorded similarly as for the healthy structure.
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13.3.2 Finite element model

The underlying healthy finite element model is required for the method and assumed to be
known. The structure of 0.95 m length is equally divided into 100 three-dimensional beam
elements (6 degrees of freedom per node) as shown in Figure 13.12. The density and elastic
modulus of the beam are 7800 kg/m? and 2.1 x 10! Pa, respectively, and the area of cross-
section is (0.03041 x 0.00514) m2. The damage position corresponds to elements 16-17 of the
model.

1 o2 o3 o4 / .99 100

I 0.00514 m

+ -

0.03041 m

Figure 13.12 — FE model of the beam.

The mass and stiffness matrices are computed using Matlab code according to the for-
mulation presented in Chapter 8 for 3D beam model in Section 8.3.5. The modes of the
structure are illustrated in Figure 13.13.

Table 13.3 — Identified frequencies (in Hz) of beam.

Mode no. | Analytical freq | 3D Beam model | Experiment
1 4.77 4.77 4.51
2 29.91 29.91 28.46
3 83.76 83.76 80.56
4 164.15 164.15 156.68
5 271.35 271.35 259.56
6 405.35 405.35 384.51
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Figure 13.13 — Mode shapes of the beam model (healthy state)

13.3.3 Modal analysis and uncertainties

After downsampling and decimation of the data by factor 2, six well-estimated bending modes
were obtained in the healthy and damaged states from the measurement data using subspace
identification, together with their covariance. The identified eigenvalues are shown in Table
13.4 for each mode. Then the set of identified modes is split into three mode sets M1, Mo
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and Ms containing two modes each, respectively.

Table 13.4 — Eigenvalues \; of beam.

Mode j Healthy state Damaged state Mode set

1 —0.55 + 28.4i —1.10 + 26.1i M,
2  —042417891 —0.46 +178.31
3  —0.154506.2i —0.15+ 505.3i My
4  —1.324984.51 —13.54 + 975.51
5 —0.71+1630.91 —0.48 4 1605.51 M
6 —2.35+2416.00 —1.33 4 2387.51

13.3.4 Damage localization results

The localization results are computed at all elements from the experimental datasets in
both healthy and damaged states. The computation of the stress and its covariance for the
statistical evaluation in (5.15) is carried out for three different mode sets, each with s-values
in the vicinity of the respective mode sets. First, one s-value is chosen for each set with
s} = —1+ 190i for mode set My, s3 = —1 + 500i for My and s} = —1 + 1700i for Ms.
In a second step, an additional s-value is chosen for joint evaluation for each mode set as
s% = —1+200i for My, s3 = —1+4 950i for My and s3 = —1+2500i for M3. To compare the
ratios of the test statistics between the healthy and damaged elements, the computed values
are normalized in the figures such that the smallest value is 1.

(a) Estimated stress S from data (b) Test statistic s;

Figure 13.14 — Localization results for all elements using single mode set M, at s} = —1 + 190i (experimental
data).
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(a) 1 s-value (b) 2 s-values

Figure 13.15 — Test statistic s; based on multiple mode sets M1, M2 and M3 (experimental data).

In Figures 13.14(a) and 13.14(b), the stress S} (s}) is obtained for all 100 elements ¢ for the
single mode sets M and the respective test statistic is shown. It can be seen that neither the
estimated stress nor its statistical evaluation can correctly indicate the damage at elements
16-17, which is possibly due to the modal truncation error. However, when using the joint
statistical evaluation based on multiple mode sets, it is seen that damage can be localized
correctly at elements 16-17 in Figures 13.15(a)-13.15(b). The use of one more s-value in
Figure 13.15(b) increases the ratio to the undamaged elements compared to Figure 13.15(a),
leading to a clearer localization. For the situation of multiple damages, a threshold link needs
to be investigated in the future work to avoid false alarm.

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Figure 13.16 — Test statistic s; using single mode set  Figure 13.17 — Test statistic s, based on multiple mode
M; at st = —1 4 190i (simulated data). sets M1, Ma and M3, with 2 s-values each (simulated
data).
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13.3.5 Comparison to simulated data

Based on the above FE model, vibration data at the three sensor positions has been simulated
from white noise excitation in both reference and damaged states, where the Young and
shear modulus were reduced by 50% in elements 16 and 17 in the damaged case. White
measurement noise with 5% magnitude of the simulated outputs was added. The simulated
data is of length 10,000 at sampling frequency 1000 Hz after decimation, as in the previous
section. From the data, the first six modes are identified and split into three mode sets as
above.

The statistical evaluation using only the first mode set (as in Figure 13.14(b)) is shown
in Figure 13.16, where the damage cannot be localized. Results using all mode sets with 2
s-values for each mode set (as in Figure 13.15(b)) are shown in Figure 13.17, where the lowest
values of the test statistic are correctly found at the damaged elements.

13.4 Case study 3: 3D Yellow frame

In the application, both localization approaches and the quantification have been demon-
strated on a four-story steel frame structure, the Yellow Frame, at the University of British
Columbia, which was artificially damaged by removing of braces of the structure. The struc-
ture is described in detail in [ADVM17, All17]. The photo of the Yellow Frame structure
and its schematic plan are shown in Figure 13.20. It is supposed to show a linear vibration
behavior.

This structure is 3.6m high and is composed of 2 spans in each direction with the total
length of 2.5m. Each floor of the structure is carrying dead loads applied to the structure
by using 4 steel plates distributed on each level. The dimensions of the steel plates are
1.5 x 0.65m. The weight of the steel plates for the first three floors is 17.8kN per floor and for
the fourth floor the weight is 13.34kN. The frame is constructed from hot rolled 300W steel
members. The beams are S75x 11 sections and the columns are B100 x 9 sections [ADVM17].
Four 50mm square steel tubes are used to provide in-plane stability to the diaphragm of each
floor. For the lateral stability, four pairs of threaded steel rods (with diameter of 12mm) are
used as braces on each side of the structure in each floor. These braces are all pretensioned
by using a torque wrench. The torque moment is equal for all the braces in order to assure
the same pretension force consistently throughout the structure.

In this application, the damage scenario is modeled by removing of braces at the south
side of the structure on the first floor and compared to the the healthy state of the structure
which is fully braced. This structure is instrumented by 15 sensors of which three are located
on the base of the structure. Twelve sensors are located on the structure, three at the
north, south and west side in each floor (Figure 13.20(b)). For damaged and undamaged
states, acceleration data containing 219,900 and 550,000 samples, respectively, at a sampling
frequency of 1000Hz were recorded.
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Figure 13.18 — Yellow Frame structure.

13.4.1 Modal analysis and uncertainties

From the measurement data after downsampling and decimation of the data by factor 5, seven
well-estimated modes were obtained in the healthy and damaged states using SSI, together
with their uncertainties. The identified frequencies are shown in Table 13.5.

Table 13.5 — Identified frequencies (in Hz) of yellow frame.

Mode healthy damaged
1 8.1105 5.7870
2 8.7068 7.9668
3 15.5415  14.0054
4 21.4059  19.9419
5
6
7

23.7863  23.7015
31.1606  30.6360
46.4579  46.2184

13.4.2 Finite element model with Abaqus-Python

The finite element model of the Yellow frame is made by using Abaqus/CAE Student Edition
6.14-2 as depicted in Figure 13.19 (see details in Chapter 12). In this model, the properties
of the sections of elements of the Yellow frame is used in modeling the beams, braces, and
columns. The plates with mass are modeled as lumped mass in the four corners of each plate
on the structure. Since these plates are bolted and connected with pretensioned rods to their
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surrounding beams (in friction), their contribution to the stiffness of structure for ambient
vibration is not negligible. Therefore these plates are also modeled as two parallel beams.
The base of the structure is modeled as fixed connection to the ground. The connections of
beams and columns are also modeled as fixed connection and the braces are connected as
moment free hinge connections to the structure. Since each group of two braces on each floor
at each span is only under axial force, they are modeled as one element with cross section
area equal to the total area of both braces (see Figure 13.20). Localizing damage in one brace
element indicates the possibility of damage in both of these parallel braces.

Since damage is located in the braces, we are only tested the braces element of the
structure. Localizing damage in one brace element indicates the possibility of damage in
both of these parallel braces.

Sensitivity of the modal parameters: In the transfer-matrix based residual, to
obtain the required sensitivity matrix Jrg (7.8), the derivative of the modal parameters
with respect to the structural parameters is needed. Using Abaqus-Python Script in Section
12.5.2, first the FE model of the healthy structure is made and then, the sensitivities of the
eigenstructure (frequencies and mode shapes) to the physical parameters (chosen in here as
the stiffness of each brace) are calculated. For damage localization and quantification, the
stress fields and their covariances are computed for the same or different choice of Laplace
variables, s-values. Then, for each brace element, theses stress values are statistically aggre-
gated in the x7-test. Note that highest value indicates the damaged elements in the sensitivity
and minmax approaches.

Ly0qer Of the structure:  For the damage localization with SDDLV approach, the
Linoder (2.2.3) of the structure are computed here with Abaqus-Python Script as depicted in
Figure 12.1 and detailed in Section 12.5.1. First, the FE model of the healthy structure of
Yellow Frame is made with Abaqus input file or GUI. Then the mass (M), stiffness (K) and
damping (C) matrices of the model are obtained from Abaqus output database. In Matlab,
Godel (2.23) is computed from M, C, and K matrices for a selected Laplace domain (s-value),
and the displacement vectors Z(s) (2.24) are computed at all DOFs after applying unit load
to the model at each sensor coordinates.

In order to get the stress field, the displacement vectors are applied at the Boundary
Condition (BC) of the model for each sensor position that yields stress field. The job is
created for each sensor and submitted for analysis in Abaqus-Python. From Abaqus field-
output requests, the output generated stress i.e. 0,30 at all elements are saved in a text
file for each load vector. Note that L,,,qe; be the column of these stress resultants S(s);. In
such a way, Ly,ode; Of the structure is computed using Abaqus-Python script as illustrated in
Figure 12.1. Finally, the load vector is applied to L,n04er t0 get the stress resultants, and for
each brace element, theses stress values are statistically aggregated in the y?-test. Note that
stress value close to zero indicates potentially damaged elements in the SDDLV approach.
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Figure 13.20 — Braces for Yellow Frame structure.
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13.4.3 SDDLYV approach: localization

The localization results are computed at all brace elements from the experimental datasets in
both damaged and healthy states. The computation of the stress and its uncertainties for the
statistical evaluation in the y?-tests is carried out for two different sets of s-values, each in
the vicinity of the respective identified poles. First, one s-value is chosen with s; = —1 4 30i
and second, two s-values are chosen as s; = —1 + 30i and sy = —1 + 76i for joint evaluation.
To compare the ratios of the stress values between the healthy and damaged elements, the
computed values are normalized in the figures such that the smallest value of the 32 brace
elements is 1.
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Figure 13.21 — Localization results for brace elements: stress computation and statistical evaluation at 1s-value
(—1+30i) and 2s-values (—1 + 30i, —1 4 761) - using 12 sensors, measurement noise, removing braces at 2 and 4.

The estimated stress and its statistical evaluation is shown in Figures 13.21(a)-13.21(d)
with considering 1s and 2s-values. It is seen that the estimated stress is unable to indicate the
damage at elements 2 and 4 due to measurement noise and variance errors, while the statistical
test indicates the damage elements at 2 and 4. However, by adding information through one
more s-values in the same setting, the damaged elements can be correctly indicated in the
joint evaluation of the statistical test in Figure 13.21(d).
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13.4.4 Sensitivity-based approach: localization and quantification

The localization test statistics at all brace elements are computed using real dataset in both
damaged and healthy states for one and three choices of s-values, where the damaged element
is created by removing the braces at bar 2 and 4. Note that the highest value of the test
indicates damage localization. The damage indicators are shown in Figures 13.22 for each
tested element of the transfer-matrix based residuals. In all cases, it is seen that the test
statistic at the damaged elements has the highest value, correctly localizing the damage at
elements 2 and 4. Particularly in Figures 13.22(a) and 13.22(b) it can be seen that the
sensitivity and minmax test reacts strongly at the undamaged elements using for 1s-value.
By choosing 3s-values, in Figures 13.22(c) it can be seen that the sensitivity tests reacts still
at the undamaged elements due to the violation of §, = 0. There is also some light reaction
in the undamaged elements in Figures 13.22(d) in the minmax tests. Notice that choosing
three s-values, the performance is much better in Figures 13.22(c)-13.22(d).

x10° ‘ ‘ ‘ ‘ ‘ %107

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Number of elements Number of elements
(a) Sensitivity tests, 1s-value (b) Minmax test, 1s-value
<10 ‘ ‘ ‘ ‘ ‘ x107

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Number of elements Number of elements
(c) Sensitivity tests, 3s-value (d) Minmax test, 3s-value

Figure 13.22 — Transfer matrix based localization: Sensitivity and minmax tests at at 1s-value (—1 + 76i) and
3s-values (—1 4 10i, —1 4 2501, —1 + 2801) - using 12 sensors, measurement noise, removing braces at bar 2 and 4.
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For the quantification of the damage extent, the values of §%ens and MM were estimated
with their standard deviation (o) for the respective sensitivity and minmax approaches, and
compared to the direct computation from §=1J ¢ as shown in Table 13.6. Since the braces
are removed, the stiffness loss should be 100%. The minmax approach gets closer to this
value than the sensitivity approach, as expected, however the overall quantification accuracy
is not entirely satisfying, and the standard deviations on the estimates of the damage extent
seem to be too low. Further work is needed to obtain more precise damage quantification
estimates.

Table 13.6 — Quantification of damage extents (in '%’)

Type element 2 element 4 element 2 element 4

s-value 1s 3s

~

Osenst0sens | 48.16£0.79 48.65+0.78 | 70.92+0.79  70.00+0.79
SminmECTminm | 86.01£0.02  94.1840.02 | 77.12+0.02  102.2240.02

A

4] 49.14 54.83 8.21 3.83

13.5 Discussion

In this chapter, the damage localization methods are demonstrated on different kinds of real
case applications. First, the new approach using multiple mode sets has been applied on a
damaged cantilever beam. From results, it is seen that the proposed method using multiple
mode sets was able to correctly localize the damage in an experimental application on a
damaged cantilever beam with a small number of sensors and using a coarse FE model. This
leads to significant improvement of the localization results with the proposed method and less
dependence on the particular choice of the s-values, which contributes to the applicability of
the method in practice in SHM systems.

In the second real application, the method has been successfully applied to another vibra-
tion measurements of a damaged cantilever beam, where damage was also correctly localized
with a small number of sensors, while the previous approach with a limited number of modes
failed.

In the third real applications, two transfer matrix based localization methods have been
compared and achieved similar success on a big real structure. The sensitivity based approach
allows in addition the quantification of damage. The first quantification results are encour-
aging, however, further understanding and work is needed to obtain more precise damage
quantification estimates.
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This thesis presents vibration-based damage localization and quantification methods from
output-only measurements for SHM systems. Particularly, a focus has been on improv-
ing the existing methods by considering the intrinsic uncertainty of the measurement data
by covariance propagation in hypothesis tests, and using all possibly available information
through multiple mode sets approach. Then, the applicability of methods was improved with
fewer sensors and less dependence on the particular choice of the s-values when considering
all available modes with the statistical multiple mode set strategy. In practice, the perfor-
mance of these methods has been evaluated in various numerical and lab case studies, and
further implementation was carried out for realistic applications with FE models in commer-
cial software. A detailed explanation of each developed method was given in the respective
contribution chapters. These developed methods can be summarized as follows:

In Chapter 5, the first theoretical contribution of this thesis is described, where the
damage localization with the SDDLV approach has been extended considering multiple mode
sets based on a joint statistical evaluation that takes into account the information from all
identified modes of the structure. The stress computation using multiple mode sets increases
the information content of the damaged or non-damaged elements of the structure, compared
to evaluation from a limited number of modes due to a previous constraint of the approach
on the number of modes. With the new approach using multiple mode sets, this constraint is
lifted, which allows damage localization with fewer sensors at the same time. While the stress
evaluation for each mode set is naturally subject to modal truncation errors that depend on
the choice of the Laplace variable s, the joint statistical evaluation for several mode sets
seems to mitigate these errors. Indeed, the simulation results in the numerical applications
show that the effect of s-values with poor performance in single mode sets is mitigated when
treating all available modes with the statistical multiple mode set strategy. This leads to
significant improvement of the localization success rate with the proposed method and less
dependence on the particular choice of the s-values, which contributes to the applicability
of the method in practice in SHM systems. Finally, the proposed method using multiple
approach has been applied in real applications to vibration measurements on two damaged
cantilever beams. For both real applications, the proposed method was able to correctly
localize the damage with a small number of sensors and using a coarse and fine FE model,
respectively, while the previous approach with a limited number of modes failed.

In addition, the SDDLV approach has been applied on a 2D beam model with cracks.
From results, it is seen that the overall performance of the method is not always satisfactory
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due to the effect of large modal truncation and variance errors. However, the success rates
of the damage localization in the statistical test are good compared to estimated stress.
Furthermore, the success rates of the crack localization have increased, while the depth of
the crack increases. It is observed that the performance of the damage localization was poor
due to a small crack with compared to large crack and possibly, it happens due to the small
transfer matrix difference between the healthy and damage states.

For further study, the damage localization with the SDDLV approach has been applied
on a 2D beam model depending on mesh size. From results, it is seen that the performance
of the method in the statistical tests is satisfactory for rough mesh in comparison to fine
mesh model for large damaged area. While the success rates of the damage localization are
not satisfactory at all for a small damage zone of fine mesh model due to the effect of large
modal truncation and the small damage residuals in the transfer matrix differences between
the healthy and damaged states. Furthermore, the results indicate that it is possible to
determine zones where the probability of good localization (PGL) is larger for several sets of
simulated measurement data.

In Chapter 6, the second contribution of this thesis is elaborated where the complementary
ILDL approach has been extended with a statistical framework considering uncertainties. In
previous works, this deterministic aggregation was only done for s = 0 where the uncertainty
quantification was tempted. Here, the damage indicator of the ILDL is reconsidered to allow
an uncertainty quantification, before deriving its statistical evaluation for damage localiza-
tion for both rank 1 or arbitrary case. For rank 1, first the residual vectors with degenerate
distribution, and then element-wise tests of the residual vectors are evaluated. For such an
evaluation, the modal parameter covariance is propagated to the obtained damage indicators
in a sensitivity-based approach. All computed values corresponding to an element are being
tested for damage localization in a hypothesis test. This approach has been validated on a
mass-spring chain system. From the results, it is seen that the performance of the method
is satisfactory when considering modal truncation or all modes of the structure. Further-
more, parallels to the SDDLV approach have been laid out, and future investigation on the
equivalence between both methods should be part of future research.

The last theoretical contribution of this thesis is described in Chapter 7, where the trans-
fer matrix-based residual was presented in a statistical sensitivity-based output-only damage
localization and quantification approach. The residual is obtained in the context of SDDLV
that is based on the transfer matrix difference between the reference and damaged states.
The related residual vector is statistically evaluated using the transfer matrix sensitivity with
respect to structural parameters from a finite element model. Furthermore, a joint statistical
evaluation of multiple mode sets approach for same or different Laplace variables has been
considered for more robustness. The computation of the test values using multiple mode
sets increases the information contents of the damaged or healthy elements of the structure.
The proposed approach has been applied first on a mass-spring chain and then on a 2D beam
model. In the applications, several experiments have been demonstrated in Monte-Carlo sim-
ulations to evaluate the success of the damage localization in dependence of the s-value, where
each of the parameters corresponding to an element is tested for being non-zero in a Gen-
eralized Likelihood Ratio (GLR) test. Damage quantification corresponds to the estimates
value of the changes parameter in the damaged elements. In both applications, it has been
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seen that the proposed method using multiple mode sets has increased the performance of
the damage localization and quantification of the damage extents compared to using a single
mode set. Besides numerical applications, this approach has also been tested on a real Yellow
Frame structure, where it was able to correctly localize the damage. The sensitivity-based
approach allows in addition the quantification of damage. The first quantification results
are encouraging, however, further understanding and work is needed to obtain more precise
damage quantification estimates.

It can be concluded that several challenges were addressed in this thesis for improving the
existing methods, and the proposed methods are better to locate and quantify damages under
real test conditions. Therefore, the developments in this thesis contribute to the applicability
of vibration-based damage localization and quantification in practice.

Recommendations for future works

In order to further improve the applicability on real structures, several recommendations were
identified in this research. For future works, the following things can be considered:

e The SDDLV-based approach using multiple mode sets has been validated in both nu-
merical simulations and on lab experiments where the results are shown promising. So,
the next step should be tested on applications in the field such as real bridges and
buildings.

e In this thesis, the statistical evaluation of the ILDL approach has been validated in a
numerical application for rank 1 where the simulated results are promising compared
to the SDDLV approach. Therefore, this approach should be investigated for arbitrary
rank and real case applications in the future work.

e In the transfer-matrix sensitivity based approach for damage localization and quan-
tification, the localization was promising, while it was not entirely satisfactory for the
quantification of damage extents. Therefore, further understanding and work is needed
to obtain more precise damage quantification estimates.

e In this work, no threshold was developed for the SDDLV method, ILDL or sensitivity-
based methods which was not necessary for the validation of the methods and the
derivation of them. The situation of multiple damages and the threshold link needs to
be investigated in the future work.

e The methods in this thesis have been developed for damages that are described by
stiffness reductions. They should be extended to localization and quantification of
mass changes in the same framework.

e The effect of environmental nuisances like temperature changes in combination with
methods needs to be investigated. These factors are important and need to be consid-
ered for real test conditions. Therefore, future works should include a detailed analysis
of the performance of the localization method under these conditions in combination
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with methods that remove the environmental variability on modal parameters, in order
to further improve the applicability on structures in the field.

e For the practicability of this methods, the other factors such as the accuracy of FE
model, optimal sensor placement, measurement length on both healthy and damaged
states, and the accuracy of identification needs to be investigated carefully.



Appendix

A1l: Script file for model database (mdb)

Let me walk through the code and point out to which part each line of the script belongs.
Complete understanding of these lines will come with experience and exercise. However, to
work in a Python environment, include these lines will import some of the Abaqus modulus
used in this script file.

from part import *

from material import *

from section import *

from assembly import *

from step import *

from interaction import *
from load import *

from mesh import *

from optimization import *
from job import *

from sketch import *

from visualization import *
from connectorBehavior import *

With these following lines the sketch and part of the structure is created.

### Geometry of the Structure ###
mdb.models[’Model-1’].ConstrainedSketch(name=’__profile__’, sheetSize=2.0)
mdb.models[’Model-1’].sketches[’__profile__’].Spot(point=(0.0, 0.0))
mdb.models[’Model-1] .sketches[’__profile__’].Spot(point=(1.0, 0.0))
mdb.models[’Model-1’].sketches[’__profile__’].Line(point1=(0.0, 0.0),
point2=(1.0, 0.0))
mdb.models[’Model-1’] .sketches[’__profile__’] .HorizontalConstraint (
addUndoState=False, entity=
mdb.models[’Model-1’] .sketches[’__profile__’].geometry[2])
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mdb.models[’Model-1’] .Part(dimensionality=TWO_D_PLANAR, name=’Part-1’, type=
DEFORMABLE_BODY)

mdb.models[’Model-1’] .parts[’Part-1’] .BaseWire (sketch=
mdb.models[’Model-1’] .sketches[’__profile__’])

del mdb.models[’Model-1’].sketches[’__profile__’]

mdb.models[’Model-1’] .parts[’Part-1’].Set (edges=
mdb.models[’Model-1’] .parts[’Part-1’] .edges.getSequenceFromMask((’ [#1 ]°,
), ), name=’Beams’)

Material, profile of the section and section assignment are done with the following lines below.

### Material Properties ###

mdb.models[’Model-1’] .Material (name=’Material-1’)

mdb.models[’Model-1’] .materials[’Material-1’] .Density(table=((7800.0, ), ))

mdb.models[’Model-1’] .materials[’Material-1’] .Elastic(table=((206000000000.0,
0.3), )

mdb.models[’Model-1’].CircularProfile(name=’Profile-1’, r=0.015)

mdb.models[’Model-1’] .BeamSection(consistentMassMatrix=False, integration=
DURING_ANALYSIS, material=’Material-1’, name=’Section-1’, poissonRatio=
0.0, profile=’Profile-1’, temperatureVar=LINEAR)

mdb.models[’Model-1’] .parts[’Part-1’].SectionAssignment (offset=0.0,
offsetField=’’, offsetType=MIDDLE_SURFACE, region=
mdb.models[’Model-1’] .parts[’Part-1’].sets[’Beams’], sectionName=
’Section-1’, thicknessAssignment=FROM_SECTION)

The assembly process is given below. Note that the word root Assembly is used and you
don’t have to give a name of the assembly. This is of course due to the fact that there is only
one assembly.

mdb.models[’Model-1’] .rootAssembly.DatumCsysByDefault (CARTESIAN)
mdb.models[’Model-1’] .rootAssembly.Instance(dependent=0N, name=’Part-1-1’,
part=mdb.models[’Model-1’].parts[’Part-1’])

These following lines will create Step, mesh control, element type and mesh.

### Step, mesh control, element type ###
mdb.models[’Model-1’].StaticStep(name=’Step-1’, previous=’Initial’)
mdb.models[’Model-1’] .parts[’Part-1’].seedEdgeByNumber (constraint=FINER,
edges=mdb.models[’Model-1’] .parts[’Part-1’].edges.getSequenceFromMask
(C#11°, ), ), number=5)
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mdb.models[’Model-1’] .parts[’Part-1’].setElementType (elemTypes=(ElemType
(elemCode=B23, elemLibrary=STANDARD), ), regions=(mdb.models[’Model-1’].
parts[’Part-1’].edges.getSequenceFromMask ((’ [#1 1, ), ), ))
mdb.models[’Model-1’] .parts[’Part-1’] .generateMesh()

The set and getSequenceFromMask are created with the following lines. The getSequence-
FromMask is a numbering system used in Abaqus. Then orientation of the Beam section and
field Output Requests are also generated here.

mdb.models[’Model-1] .parts[’Part-1’].Set (name=’NodeFixed’, nodes=
mdb.models[’Model-1’] .parts[’Part-1’] .nodes.getSequenceFromMask (mask=
(°#11°, ), N

mdb.models[’Model-1’] .parts[’Part-1’].Set (name=’Node2’, nodes=
mdb.models[’Model-1’] .parts[’Part-1’] .nodes.getSequenceFromMask (mask=
(217, ), )

mdb.models[’Model-1’] .parts[’Part-1’].Set(name=’Node3’, nodes=
mdb.models[’Model-1’] .parts[’Part-1’] .nodes.getSequenceFromMask (mask=
(#4 1, ), )N

mdb.models[’Model-1’] .parts[’Part-1’].Set (name=’Node4’, nodes=
mdb.models[’Model-1’] .parts[’Part-1’] .nodes.getSequenceFromMask (mask=
(8 1%, ), )

mdb.models[’Model-1’] .parts[’Part-1’].Set(name=’Node5’, nodes=
mdb.models[’Model-1’] .parts[’Part-1’] .nodes.getSequenceFromMask (mask=
(’[#10 17, ), ))

mdb.models[’Model-1’] .parts[’Part-1’].Set(name=’Node6’, nodes=
mdb.models[’Model-1’] .parts[’Part-1’] .nodes.getSequenceFromMask (mask=
(’[#20 17, ), )

mdb.models[’Model-1’] .rootAssembly.regenerate()

mdb.models[’Model-1’] .parts[’Part-1’] .assignBeamSectionOrientation(method=
N1_COSINES, n1=(0.0, 0.0, -1.0), region=
mdb.models[’Model-1’] .parts[’Part-1’] .sets[’Beams’])
del mdb.models[’Model-1’] .historyOutputRequests[’H-Output-1’]
mdb.models[’Model-1’].fieldOutputRequests[’F-0Output-1’].setValues(variables=
(’s’, ’U’, °SF’))

A2: Script file for output database (odb)

In this section, job is created and submitted for analysis using Output Data base model(.odb)

# Get ABAQUS interface
from abaqus import *
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from abaqusConstants import *
#from sys import path
#path=>...’

#open (path)

In this section, the following displacement vectors Z(s) are computed after applying a unit
load to the model at sensor coordinates. Here, each row of the Z indicates the displacement
at all DOFs that are computed from the unit load at the sensor coordinate for a Laplace
domain(s=0). Finally, the displacement vectors are applied at the Boundary Condition (BC)
of the model within a for loop. Then the job is created for each loop and submitted for
analysis. From field output requests, the output generated stress (Section Force (SF) and
Section Moment(SM)) at all DOFs are saved as a text file for each sensor coordinate and
Linoder be the column of these stress resultants S(s);. In such a way, we can generate Ly, odel
of the structure using Abaqus-Python script.

sortie = open(’stress_IntegrationPoint.txt’, ’w’)
sortiel = open(’stress_Centroidal.txt’, ’w’)
SF_sSM=[]

sensors_braces = [[.1,0,0],[.3,0,0],[.5,0,0],[.7,0,0],[.9,0,0]]
number_elements = [[1],[2],[3],[4],[5]]
StressResultant_SF = [[0.12345 for x in range(len(sensors_braces))]

for y in range(3*len(number_elements))]

StressResultant_SM = [[0.12345 for x in range(len(sensors_braces))]

for y in range(3*len(number_elements))]

## \texit{For loop}:

k=0

ans=[]

for j in range(len(Al)):
£=Z[j]
mdb.models[’Model-1’] .DisplacementBC(amplitude=UNSET, createStepName=
’Step-1’, distributionType=UNIFORM, fieldName=’’, fixed=0FF, localCsys=

None, name=’BC-1’, region=mdb.models[’Model-1’].rootAssembly.instances
[’Part-1-1’] .sets[’Nodel’], ul=f[0], u2=f[1], ur3=f[2])

mdb.models[’Model-1’] .DisplacementBC(amplitude=UNSET, createStepName=
’Step-1’, distributionType=UNIFORM, fieldName=’’, fixed=0FF, localCsys=
None, name=’BC-2’, region= mdb.models[’Model-1’].rootAssembly.instances
[’Part-1-1’] .sets[’Node2’], ul=f[3], u2=f[4], ur3=f[5])

mdb.models [’Model-1’] .DisplacementBC(amplitude=UNSET, createStepName=
’Step-1’, distributionType=UNIFORM, fieldName=’’, fixed=0FF, localCsys=
None, name=’BC-3’, region=mdb.models[’Model-1’].rootAssembly.instances
[’Part-1-1’] .sets[’Node3’], ul=f[6], u2=f[7], ur3=£f[8])
mdb.models[’Model-1’] .DisplacementBC (amplitude=UNSET, createStepName=
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’Step-1’, distributionType=UNIFORM, fieldName=’’, fixed=0FF, localCsys=
None, name=’BC-4’, region=mdb.models[’Model-1’].rootAssembly.instances
[’Part-1-1’] .sets[’Node4’], ul=f[9], u2=f[10], ur3=f[11])
mdb.models[’Model-1’] .DisplacementBC(amplitude=UNSET, createStepName=
’Step-1’, distributionType=UNIFORM, fieldName=’’, fixed=0FF, localCsys=
None,name=’BC-5’, region=mdb.models[’Model-1’].rootAssembly.instances
[’Part-1-1’].sets[’Node5’], ul=f[12], u2=£f[13], ur3=f[14])
mdb.models[’Model-1’] .DisplacementBC(amplitude=UNSET, createStepName=
’Step-1’, distributionType=UNIFORM, fieldName=’’, fixed=0FF, localCsys=
None, name=’BC-6’, region=mdb.models[’Model-1’].rootAssembly.instances
[’Part-1-1’] .sets[’Node6’], ul=f[15], u2=f[16], ur3=f[17])

mdb. Job(atTime=None, contactPrint=0FF, description=’’, echoPrint=0FF,
explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=0FF,
memory=90, memoryUnits=PERCENTAGE, model=’Model-1’, modelPrint=0FF,
name=’Job-1’, nodalOutputPrecision=SINGLE, queue=None, resultsFormat=
ODB, scratch=’’, type=ANALYSIS, userSubroutine=’’, waitHours=0,
waitMinutes=0)

## Job Submit
mdb. jobs [’ Job-1’] .submit (consistencyChecking=0FF)
mdb. jobs[’Job-1’] .waitForCompletion()

## Save Output as text file (stress.txt)
stress=session.open0db(r’Job-1.0db’) .steps[’Step-1’].frames[1].
fieldOutputs[’SF’]
stressl=session.open0db(r’Job-1.0db’).steps[’Step-1’].frames[1].
fieldOutputs[’SM’]
for SF, SM in zip(stress.values, stressl.values):

sortie.write(’%.10e\t\t %.10e\t\t’ % (SF.data[0], SM.data[0]))

for jj in range(0,len(stress.values)):
StressResultant_SF[jjl[k] = (stress.values[jj].data[0])
for kk in range(0,len(stressl.values)):
StressResultant_SM[kk] [k] = (stressl.values[kk].data[0])
k+=1
mdb.models[’Model-1’] .rootAssembly.regenerate()

## save output results in the text file
file_output = open("StressResultant_SF.txt",’w’)
for jjk in StressResultant_SF:
file_output.write("%s\n" % jjk)
file_output.close()

file_output = open("StressResultant_SM.txt",’w’)
for jjkk in StressResultant_SM:
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file_output.write("%s\n" % jjkk)
file_output.close()

sortie.close()
sortiel.close()



Résumé en Francais

Introduction

Contexte de la thése

La surveillance de santé structurelle (SHM) a bénéficié d’une attention croissante dans
I’ingénierie et les communautés scientifiques, car une défaillance structurelle imprévisible peut
produire une perte catastrophique, économique et humaine. Il existe deux types d’évaluation,
par tests destructifs et non destructifs. Plus de chercheurs se sont concentrés sur cette derniere
approche en raison de I'utilité continue de rester opérationnel pour la structure, Il est donc
essentiel de maintenir la sécurité et 'intégrité des structures.

Une technique prometteuse est la surveillance de santé structurelle (SHM) a base de
mesures de vibrations, ou les structures sont équipées, par exemple avec des capteurs
d’accélération qui peuvent enregistrer en permanence des données de vibrations structurelles
en présence d’excitation ambiante, puis les parametres modaux (c’est-a-dire les fréquences
naturelles, les formes de mode et les amortissement) peuvent étre estimés par exemple en util-
isant des méthodes de la théorie stochastique de la réalisation du systeme pour les systemes
linéaires. Ces parametres sont significatifs pour la surveillance de la structure. Grace a ces
progres dans les systemes de détection. Il existe deux approches pour ’évaluation que 1’on
caractérise pleinement la structure avec I'identification du systéme, puis la comparaison des
résultats de I'identification du systéme et une autre est basée sur des techniques d’évaluation
des dégats. Habituellement, le diagnostic structurel basé sur les vibrations est divisé en
cing sous-taches de difficulté croissante: détection des dommages (niveau 1), localisation des
dégats (niveau 2), identification du type de dégats (niveau 3), quantification de I’étendue des
dégats (niveau 4) et prédiction de la durée de vie restante (niveau 5). Lors de Iexécution
de ces taches en cascade, le probleme de diagnostic structurel complet est susceptible d’étre
résolu. Les méthodes de détection des dommages ont atteint une maturité, par exemple
avec des algorithmes basés données, adaptés de la classification et du controle statistique
des processus. Bien que la détection des dommages puisse fonctionner uniquement sur les
données, en comparant ’ensemble de données actuel avec une référence, la localisation des
dommages nécessite un lien entre les données et les propriétés physiques de la structure,
ce qui est souvent donné par un modele d’éléments finis (FE) structure. La quantification
des dommages correspond a l’estimation des changements des parametres physiques dans les
éléments défectueux. Parmi les techniques prometteuses, le vecteur stochastique Dynamic
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Damage Locating Vector (SDDLV) et Influence Lines Damage Location (ILDL) possede des
capacités intéressantes puisqu’elles sont théoriquement des méthods robustes pour combiner a
la fois les informations d’éléments finis et les parametres modaux estimés a partir des données
de sortie. Cela motive I'adaptation des méthodes existantes de localisation des dégats dans
cette these, puis ’évaluation pour la quantification des dommages dans une approche basée
sensibilité.

Le but de cette these est de développer des méthodes de localisation et de quantification
des dégats a partir des mesures de sortie uniquement pour 1’évaluation des dégats pour les
systemes SHM en pratique.

Méthodes proposées

Les méthodes suivantes sont développées dans la contribution de cette these:

(1) Localisation statistique de dégats avec des vecteurs de charge stochastiques
utilisant plusieurs jeux de modes: La méthode de vecteur stochastique Dynamic
Damage Location (SDDLV) & été étendue avec une approche statistique présont pour
plusieurs ensembles de modes, surmontant la restriction sur le nombre de modes dans les
travaux précédents [MDBM15]. En outre, la performance de la méthode peut varier con-
sidérablement en fonction de la variable Laplace ou la fonction de transfert est évaluée.
Une attention particuliere est accordée a ce choix et a 'optimiser. Par conséquent, la
robustesse de la localisation des dommages est obtenue en tenant compte de toutes les
informations disponibles dans I’évaluation statistique conjointe.

(2) Prise de décision statistique pour la localisation des dégéats avec des lignes
d’influence: La méthode Influence Line Damage Location (ILDL) est complémentaire
a Papproche SDDLV. Cette approche a été développée dans [Berl4] comme une ap-
proche déterministe. L’objectif est de ’étendre comme une méthode stochastique et
d’étudier sa relation avec SDDLV. Par conséquent, I’approche ILDL est étendue avec
un cadre statistique.

(3) Détermination de la densité de la matrice de transfert, basée sur la sen-
sibilité, localisation et quantification des dommages statistiques: Alors que
SDDLV et ILDL exploitent directement les propriétés de ’espace null ou de I'image de
la matrice de transfert, une approche basée sur la sensibilité [DMZ16] est développée
dans ce chapitre, ce qui permet en outre la quantification des dégats. On considere une
approche qui fonctionne sur la différence de matrices de transfert qui est statistiquement
évaluée en utilisant la sensibilité de matrice de transfert par rapport aux parametres
d’un modele FE.

Ces approches sont dérivées en profondeur, et les propriétés théoriques sont prouvées dans
les chapitres de contribution. Ils sont validés sur des données de vibration structurelle dans
des applications numériques et réelles.
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Chapitre 1 — L’état de I’art

Les techniques de surveillance de la santé structurale basées sur les vibrations ont été active-
ment développées au cours des dernieres décennies [FDNO1, CF04, FQ11], par exemple pour
la surveillance des ponts, des bétiments ou des structures offshore. Les méthodes actuellement
disponibles ne couvrent qu’une petite partie du diagnostic structurel basé sur la surveillance,
qui peut étre divisé en cing sous-taches de difficulté croissante [FWO07]:

e Niveau 1: Détection des dégats

e Niveau 2: Localisation des dégats

e Niveau 3: Identification du type de dommage

e Niveau 4: Quantification de I’étendue des dégats
e Niveau 5: Prévision de la durée de vie restante.

Cependant, seules les méthodes pour le niveau 1 ont atteint la maturité pour des applications
réelles jusqu’a présent, par exemple avec des algorithmes basés sur les données, adaptés des
champs de classification et du controle statistique des processus. Les niveaux 2 a 5 du
diagnostic structurel sont beaucoup plus difficiles a réaliser.

Bernal [Berl0] présente une technique de localisation des dégats en utilisant & la fois
des informations d’éléments finis et des parametres modaux, a savoir ’approche Stochastic
Dynamic Damage Location Vector (SDDLV). Cette approche a évolué au cours des années
des systemes déterministes d’entrée / sortie aux systémes stochastiques uniquement de sortie
[Ber02, Ber(06, Ber07, Ber10]. Dans [DMBM13], I'approche SDDLV déterministe a été étendue
avec un cadre statistique pour décider si un élément est endommagé, en tenant compte des
incertitudes dans les données de mesure. Une robustesse supplémentaire a été obtenue grace a
une agrégation statistique des résultats pour différents parametres de la méthode [MDBM15].
Une approche complémentaire du SDDLV est la Influence Lines Damage Localization (ILDL)
[Ber14], ou 'emplacement du dommage est déterminé a partir de I’angle de sous-espace de
chaque position de la structure en calculant ’espace colonne du changement de flexibilité et
d’un Modele FE connu.

Cette approche nécessite une identification modale dans les états sains et endom-
magés.Cette these est axée sur les travaux de Bernal [Ber10, Ber14], décrits ci-dessus, comme
base pour le développement de la localisation des dommages, et a partir du 1’évaluation
statistique développés dans la these de doctorat de Luciano Marin [Marl3].

Chapitre 2, 3, et 4 — Théorie de fond

Plusieurs méthodes de localisation des dégats ont été décrites dans I'état de 'art a partir
de la littérature [Ber02, Berl0, Berl4]. Appartenant a cette derniere catégorie, I’approche
Stochastic Dynamic Damage Locating Vector (SDDLV) [Berl10] et Influence Line Damage
Localization (ILDL) [Ber14] est une technique de localisation des dégats basée sur les vibra-
tions en utilisant a la fois des informations d’éléments finis et des parametres modaux estimés
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a partir des données de sortie. A partir des estimations des matrices du systeme dans les
états de référence et endommagés, ’espace nul de la différence entre les matrices de transfert
respectives est obtenu. Ensuite, dans le SDDLV, les dommages sont liés a un résidu dérivé
de cet espace nul et situés ou le résidu est proche de zéro. Une approche complémentaire du
SDDLV est la Influence Lines Damage Localization (ILDL) [Berl4]. Ensuite, une approche
basée sur la sensibilité a été décrite pour la localisation et la quantification des dommages
qui fonctionnent sur un vecteur résiduel basé sur les données qui est statistiquement évalué
a l'aide d’informations & partir d’'un modele d’éléments finis (FE) [DMZ16].

Supposons que le comportement d’une structure mécanique peut étre décrit par un
systeme dynamique linéaire (LTT)

MX(t) +CX(t) + KX(t) = f(t)

ou M, C, K € R¥™? sont les matrices de masse, d’amortissement et de rigidité, respective-
ment. La force externe f(t) n’est pas mesurable et modélisée comme un bruit blanc. Puisque
f(t) n’est pas mesuré, il peut étre remplace par une force fictive e(t) € R" n’agissant que sur
les coordonnées mesurées et qui régénere la sortie mesurée. Cela conduit au modele d’espace
d’état en temps continu correspondant.

{ i(t) = Aca(t) + Bee(t)
y(t) = Cex(t) + Dee(t)

avec vecteur d’état x € R"™, vecteur de sortie y € R", la matrice de transition d’état A, € R™*"™
et matrice de sortie C, € R™*"™ ou n = 2d est 'ordre du systéme et r est le nombre de sorties.
A partir de I'identification sous-espace stochastique (SSI) [VODM96, PDR99, DM12], A, et
(1 peuvent étre obtenu a partir des mesures de sortie seulement.

Chapitre 5 —Localisation des dégats statistiques avec des
vecteurs de charge stochastiques utilisant des jeux de modes
multiples

Ce chapitre présente la localisation des dommages statistiques avec le vecteur de charge
stochastique en utilisant des jeux de mode multiples basés sur I’approche SDDLV du chapitre
2, qui est une technique de localisation des dommages basée sur les vibrations en utilisant
a la fois des informations d’éléments finis et des parametres modaux estimés a partir des
données de sortie. Les estimations des parametres modaux sont sujettes a des erreurs de
variance. Sur la base de cette information sur I'incertitude, une extension statistique de la
méthode SDDLV a été développée dans [DMBM13, MDBM15] pour décider si un élément est
endommagé en utilisant une ou plusieurs valeurs s.

Dans [DMBM13, MDBM15], le nombre de modes utilisés dans le calcul ne peut pas étre
supérieur au nombre de capteurs situés sur la structure. Il s’agit d’une restriction lorsqu’il
existe plus de modes décrivant la structure que des capteurs disponibles. Ici, la méthode SD-
DLV est développée avec une évaluation statistique conjointe utilisant des ensembles de mode
multiples. Elle surmonte cette limitation. Il est démontré que le calcul du stress pour les
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ensembles de mode multiples augmente le contenu de l'information sur les éléments endom-
magés ou non endommagés de la structure. Enfin, toutes les valeurs de stress correspondant
a chaque élément sont testées pour détecter les dommages dans un test d’hypotheses ou les
contraintes calculées sont évaluées avec leur covariance jointe. Pour dériver un tel test, le cal-
cul de la covariance du stress résultant est nécessaire. Apres le chapitre 3 [DM13], le schéma
de covariance nécessaire est développé et étendu pour une évaluation statistique conjointe en
utilisant plusieurs ensembles de modes pour les mémes variables ou différentes variables de
Laplace.

Chapitre 6 —Prise de décision statistique pour la localisation
des dégats avec des lignes d’influence

Ce chapitre présente I’évaluation statistique avec une approche pour la localisation des dom-
mages par les lignes d’influence (ILDL) qui est complémentaire de ’approche SDDLV. Dans
I’approche ILDL, I'image de la matrice de flexibilité entre les états de référence et endom-
magés d’une structure est une base pour la ligne d’influence (IL) des résultats de contraintes
dans les emplacements endommagés. Le dommage est donc situé aux éléments ou ’angle de
sous-espace entre I'image de la matrice de flexibilité et la ligne d’influence du modele FE de
la structure est nul ou petit en pratique [Berl4].

Une évaluation statistique de l’angle de sous-espace est nécessaire pour prendre une
décision concernant les éléments endommagés ou en bonne santé. Pour une telle évaluation,
la covariance des parametres modaux est propagée aux angles sous-espace obtenus dans
une approche basée sur la sensibilité. Ensuite, toutes les valeurs calculées correspondant
a un élément sont testées pour détecter les dommages dans un test d’hypotheses ou les an-
gles de sous-espace calculés sont évalués avec leur covariance individuelle. Dans les travaux
précédents [MDBM13], I'approche ILDL a été étendue dans une approche statistique pour
s = 0, ou la quantification de I'incertitude a été tentée sur 'indicateur de dommage, ’angle de
sous-espace. Ici, l'indicateur de dommage de 'ILDL est considéré pour un s arbitraire puis
reconsidéré pour permettre une quantification adéquate de l'incertitude et une évaluation
statistique pour la localisation des dégats. De cette maniere, 'approche ILDL est étendue
avec un cadre statistique.

Chapitre 7 —Transfert de la localisation et de la quantification
des dégats statistiques basés sur la matrice de transfert

On considere une approche qui fonctionne sur un vecteur résiduel basé sur les données qui est
statistiquement évalué en utilisant des informations a partir d'un modele FE [DMZ16]. Les
problémes de localisation et de quantification des dégats sont divisés en deux probléemes dis-
tincts. Tout d’abord, les éléments endommagés sont détectés dans les tests statistiques, puis
les dommages ne sont quantifiés que pour les éléments endommagés. Dans ce contexte, un
nouveau vecteur résiduel a été proposé qui est basé sur la différence de matrice de transfert en-
tre états sains et endommagés, comme dans I’approche SDDLV [Ber10, DMBM13, MDBM15].
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Les tests statistiques pour l'isolement des fautes et I’estimation pour la quantification des
défauts sont ensuite utilisés pour effectuer la localisation et la quantification des dégats dans
les approches soi-disant sensibilité et minmax.

Chapitre 8 —-Méthodologie pour les applications numériques

Ce chapitre présente les indicateurs de performance pour les méthodes développées et les
modéles numériques utilisés pour les chapitres d’application 9, 10 et 11 sont décrit.
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2
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Statistical y

Damaged state

Figure 1 — Evaluation de la performance (ou taux de réussite) de la localisation des dommages en fonction de la
valeur de s (v et y-axes) avec Re(s), Im(s).

Pour plus de simplicité, un exemple est illustré dans la Figure 1 pour chaque élément de
la structure, ou I’évaluation de la performance de la méthode proposée est illustrée. Tout
seule, évaluation statistique avec le test x? est obtenue & une seule valeur s en utilisant une
expérience a partir des paramétres modaux estimés dans les états sains et endommagés. Rap-
pelons que la localisation des dommages est déduite par la valeur de contrainte la plus proche
de zéro. Dans I’évaluation statistique, la localisation des dommages se trouve correctement
aux plus petites valeurs de x7 & I’élément de dommage. Deuxiemement, le taux de réussite
de la localisation correcte des dommages est évalué pour les expériences de Monte-Carlo. Le
taux de réussite (z -axis) dépend des valeurs s choisies (x et y -axes) et sert d’indicateur de
performance de la méthode.

Chapitre 9 —SDDLV avec des jeux de mode unique et multiple

Dans ce chapitre, ’algorithme de localisation des dommages du chapitre 5 est appliqué sur
une chaine de masse-ressort et le modele de cube 3D dans la Figure 2 et 6 qui permettent
des simulations de Monte-Carlo pour la validation de la méthode. Figure 6 les résultat des
résultats de localisation des dommages en utilisant des ensembles de mode multiples sont
comparé a ceux utilisant uniquement un seul des ensembles de mode séparément.
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Figure 2 — Chaine de masse-ressort (avec amortissement modal) - utilisation de trois capteurs aux éléments 2, 4 et
6.

Pour la chaine de masse-ressort, 6 modes peuvent etre identifiés a partir du modele de la
structure en utilisant SSI (see Table 8.2), puis divisé en deux ensembles de modes M et My
de trois modes chacun pour la méthode proposée en utilisant plusieurs jeux de modes. Les
résultats de la localisation des dommages a tous les éléments de la chalne de masse-ressort
sont montrés dans la Figure 3 pour ’ensemble modes unique M en utilisant une valeur s,
s = —2+51i. Rappelons que les valeurs de contraintes proches de zéro indiquent des éléments
potentiellement endommagés. On peut voir que x7 dans la Figure 3(c) montre des résultats
similaires a ceux du résultat théorique dans la Figure 3(a), alors que la localisation des dégats
ne peut pas étre correcte indiqué pour le stress estimé dans la figure 3(b) probablement en
raison d’erreurs de variance dans ’estimation a partir de données bruités.

Dans les Figures 4 et 5, les performances ou les taux de réussite de la localisation des
dégats (z -axis) sont affichés pour les ensembles de modes unique et multiple en fonction du
aux réel et 'imaginaire pour une partie des valeurs choisies de s (x et y -axes). Ensuite, on
peut voir dans la Figure 5 que le taux de réussite de la localisation des dégats avec la nouvelle
méthode a considérablement amélioré la situation partout dans le plan s, par rapport aux
résultats de la Figure 4, avec des taux de réussite entre 85% et 99%.

Pour le modele de cube 3D dans la Figure 6, les 12 premiers modes sont identifiés a
partir des ensembles de données et divisés en trois jeux de modes Mi, My and M3. En-
suite, une comparaison avec les taux de réussite a partir des ensembles de modes unique
dans la fourchette respective de s-values est faite dans la Figure 7 pour les parties réelles
fixes Re(s') = —3, Re(s?) = —9 et Re(s®) = —11, ou l'on voit clairement que la combinai-
son statistique des résultats des ensembles de modes unique améliore considérablement la
localisation des dégats et ca performance presque partout dans le plan s.
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(a) SDDLV pour le stress théorique (b) SDDLV pour le stress estimé (c) S-SDDLV (test statistique)

Figure 3 — Les résultats de localisation a tous les éléments de la chaine de masse-printemps en utilisant un ensemble
de modes unique M, en utilisant le calcul du stress et I'évaluation statistique & s* = —2 + 51i. Le dommage est

a I'élément 4.
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Figure 5 — Les taux de réussite du S-SDDLV a [l'aide de
multiples modes définissent M1 et Ms, en fonction de
s et 5% avec Im(s') € [0, 64],Im(s?) = 106.
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Figure 7 — Les taux de réussite du SDDLV dans les en-
Figure 6 — Modéle Cube 3D avec éléments de poutre (24 gemples de modes unique M1, Mo et M3 avec s dans
DOFs) le voisinage des modes respectifs, par rapport au taux
de réussite en utilisant conjointement les jeux de modes
multiples.

Chapitre 10 —Localisation des dégats statistiques avec
P’approche ILDL

L’approche statistique de 'ILDL a été appliquée sur un systeéme de chaine a masse-ressort
avec six DOF, comme le montre la Figure 2 a ’aide de 6 capteurs. Pour le cas complexe cas
1, deux versions sont testées en fonction du développement théorique du chapitre 6. Tout
d’abord, la distribution dégénérée des vecteurs résiduels est directement prise en compte et,
d’autre part, les tests élémentaires des vecteurs résiduels sont évalués séparément.

Pour I’évaluation de la performance de la méthode, les simulations de Monte-Carlo sont
réalisées a l'aide de 100 ensembles de données simulées dans des états sains et endommagés
pour déterminer le taux de réussite, o, dans chaque jeu de données, les modes et leurs
incertitudes sont identifiés a ’aide de SSI. Dans les Figures 8 et 9, les taux de réussite des
résultats de localisation sont présentés (axe z) pour la version 1 (R1v-S-ILDL ) et 2 (Rle-
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S-ILDL) compte tenu de tous les modes de la structure en fonction de différentes valeurs s
(xy-axes). La plage entiere des valeurs de s dans le voisinage des modes est Re(s) € [—3, —1]
et Im(s) € [1,130].

Success rate(%)
Success rate(%)

Re(s) o Re(s)

Figure 8 — Version 1: taux de réussite du R1v-S-ILDL Figure 9 — Version 2: taux de réussite de la R1e-S-ILDL
en utilisant tous les modes en fonction des valeurs s, en utilisant tous les modes en fonction des valeurs s,
Re(s) € [-3,—1] et Im(s) € [1,130]. Re(s) € [-3,—1] et Im(s) € [1,130].

Chapitre 11 —Transfert de la localisation et de la quantification
des dégats statistiques basés sur la matrice de transfert

Dans cette étude, un modele 2D Beam a été considéré dans la Figure 10 pour la localisation
et la quantification des dégats. La structure est modélisée avec 5 éléments de poutre de
longueur totale 1m. Les dommages sont simulés en diminuant la rigidité de I’élément 3 de
20 %. Dans cet exemple, 6 modes peuvent étre identifiés & partir du modéle de la structure
en utilisant SSI (voir Table 8.2), diviser en deux jeux de modes M; and M3 de trois modes
chacun pour la méthode proposée en utilisant plusieurs jeux de modes.

Les résultats de localisation des dommages sont indiqués pour un cas de test sur tous
les éléments de la Figure 11 pour les tests de sensibilité et minmax. On voit que 1’élément
endommagé est correctement situé a I’élément 3. La réaction du test de sensibilité est beau-
coup plus forte aux éléments non endommagés, tandis que le test minmax fonctionne tres
bien. Pour la quantification des dégats, les valeurs Ssens and 5mm ont été estimées, ce qui a
entrainé un changement de paramétre estimé de 22.8% et 18.6%, respectivement.

Figure 10 — Modéle 2D Poutre avec 5 éléments (15 DOFs)
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Figure 11 — Résultats de localisation: (a) tests de sensibilité, (b) tests minmax et (c) estimation valeur 3 s =
—1+ 200i - en utilisant 5 capteurs et 5 modes, 5% bruit de sortie, 20% réduction de la rigidité 3 I'élément 3.
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(a) 5 modes utilisant 5 capteurs (b) Ensembles de mode multiples utilisant 3 capteurs
Figure 12 — Quantification de différents dégats & partir de (a) 5 modes utilisant 5 capteurs 3 s = —1 + 200i (3

gauche) et (b) jeux de mode multiples utilisant 3 capteurs a s = [—1 + 200i; —1 4 2600i] (droite) - 5% de bruit de
sortie, 1% rapport d'amortissement, endommagé 3 I'élément 3.

Sur la base de 100 jeux de données simulées, respectivement pour différents degrés
d’endommagement entre 5% et 30% du dommage dans I’élément 3, les résultats de la quan-
tification des dommages sont représentés sur les Figures 12(a) et 12(b). L’approche de la sen-
sibilité surestime et 'approche minmax sous-estime 1’étendue des dégats. Les deux chiffres
montrent que 'erreur augmente pour les grandes étendues de dégat qui peuvent étre at-
tendues puisque la matrice de sensibilité est calculée dans I’état de référence et n’est donc
plus précise pour les changements importants. D’autres sources d’erreurs sont la troncature
modale.
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Chapitre 12 -Implémentation numérique

Ce chapitre présente I'implémentation numérique de la localisation des dégats et des méthodes
de quantification en utilisant le logiciel Abaqus. Les deux méthodes des chapitres 5 et 7 sont
testés pour la localisation et la quantification d’un modele de poutre en porte a faux comme
le montre la Figure 13.

by

Figure 13 — Modéle 2D Poutre avec 5 éléments (15 DOFs) -en utilisant Abaqus/CAD Student Edition 6.14-2

Approche SDDLV: résultats de localisation a tous les éléments

Les résultats de la localisation a tous les éléments sont calculés a 'aide d’un des jeux de
données dans les deux états sains et endommagés. Le calcul de toutes les contraintes se fait a
51 = —14200i pour I’évaluation théorique, estimée et statistique de y?-tests en chiffres 14(a),
14(b) et 14(c), respectivement. Toutes les valeurs de stress correspondant a des éléments sains
et endommagés sont présentés, tandis que la valeur de plus petite contrainte est correctement

située pour I’élément endommagé 3.
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(a) SDDLV pour le stress théorique (b) SDDLV pour le stress estimé (c) S-SDDLV (Statistique x;-test)

Figure 14 — localisation des dégits a base de SDDLV: calcul des contraintes et une évaluation statistique s1 =
—1+ 200i-en utilisant des modes 5 et 5 capteurs, 5% de bruit de sortie, 20% de réduction de la rigidité 3 I'element
3.

Approche basée sensibilité: localisation des dégats et la quantification

les résultats de la localisation des dommages sont présentés pour un cas d’essai a tous les
éléments. Rappelons qu'un valeur élevée indique les éléments endommagés dans la sensibilité
et les approches minmax. Des tests sensibilité et des tests minmax dans la Figure 15, on
voit que I’élément endommagé est correctement placé a I’élément 3. La réaction du test de
sensibilité est beaucoup plus forte au niveau des éléments en bon état, alors que les minmax

A~ ~

réagissent tres bien. Pour la quantification des dommages, les valeurs dsens, Omm €t Oests
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ont été estimés, ce qui conduit & un changement de parametre estimé de 23.17%, 20.10% et
13.99% dans ’élément endommagé.
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Figure 15 — Approche basée sensibilité résultats de localisation: (a) tests de sensibilité, (b) tests minmax et (c)
estimation valeur 3 s = —1 + 200i - en utilisant 5 capteurs et 5 modes, 5% bruit de sortie, 20% réduction de la
rigidité a I'element 3.

Chapitre 13 —Applications réelles

Les méthodes de localisation et de quantification ont été appliquées sur une structure de
cadre en acier de quatre étages, le “Yellow Frame” (Figure 16), a 1'Université de British
Columbia. La structure est décrite en détail dans [ADVM17, All17]. Il est censé montrer
un comportement de vibration linéaire. Douze capteurs sont situés sur la structure, trois
au nord, au sud et & l'ouest dans chaque étage (Figure 16(b)). Pour les états endommagés
et non endommagés, des données d’accélération contenant 219,900 and 550,000 échantillon,
respectivement, a une fréquence d’échantillonnage de 1000Hz ont été enregistrés. Les dégats
sont introduits en supprimant les élements numéro 2 et 4 du co6té sud de la structure au
premier étage.

Approche SDDLV: localisation

Les résultats de localisation sont calculés a tous les éléments de renfort a partir des ensembles
de données expérimentaux dans des états endommagés et en bonne santé. Le calcul du stress
et ses incertitudes pour I’évaluation statistique sont présentés dans les Figures 17(a)-17(b)
en considérant la valeur de s; = —1 + 76i a proximité des poéles identifiés. Pour comparer les
rapports des valeurs de stress entre les éléments sains et endommagés, les valeurs calculées
sont normalisées dans les figures de telle sorte que la plus petite valeur des 32 éléments de
renfort soit 1. On constate que le stress estimé est incapable d’indiquer le dommage aux les
éléments 2 et 4 en raison des erreurs de bruit de mesure et de variance, tandis que le test
statistique indique de dégats les éléments aux 2 et 4.
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Figure 16 — Structure de Yellow Frame.
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Figure 17 — Résultats de localisation des dégats basés sur SDDLV pour les éléments de renfort: calcul du stress et
évaluation statistique au valeur s = (—1 + 30i) -utilisant douze capteurs, mesure du bruit, enlevant les renforts a
I'élement 2 et 4.

Approche basée sur la sensibilité a la matrice de transfert: localisation et
quantification

Les indicateurs de dégats sont présentés dans les Figures 18(a) et 18(b) pour chaque élément
testé en utilisant trois choix de valeurs s de Laplace. On voit que la statistique de test
aux éléments endommagés a la valeur la plus élevée, localisant correctement les dégats aux
éléments 2 et 4. Les tests de sensibilité réagissent aux éléments non endommagés, et il y a
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également une légere réaction dans les éléments non endommagés dans ¢a Figure 18(b) pour
les tests minmax.

Pour la quantification de ’étendue des dégats, les valeurs de §5€ns et MM ont été estimées
pour les approches de sensibilité et minmax respectives, et sont présentées dans ’onglet Table
1. Comme les renforts sont enlevées, la perte de rigidité devrait étre de 100%. L’approche
minmax s’approche de cette valeur mieux que ’approche de sensibilité, mais la précision
globale de la quantification n’est pas entierement satisfaisante.

x107 i i i i i %107

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Number of elements Number of elements

(a) tests de sensibilité, 3s-value (b) tests minmax, 3s-value

Figure 18 — Résultats de localisation de la matrice de transfert pour les éléments de renfort: Essais de sensibilité
et minmax pour 3 valeurs de s de (—1+ 101, —1 + 2501, —1 + 280i) -utilisation de douze capteurs, mesure du bruit,
enlévement des renforts a I'élement 2 et 4.

Table 1 — Quantification des étendues de dégats (in '%’)

Type | élément 2 élément 4 | élément 2 élément 4

s-value 1s 3s

~

Osens 48.1571 48.6543 70.9265 70.0090
Ominm 86.0142 94.1883 77.1299  102.2274

0 49.1438 54.8310 8.2173 3.8317

Conclusions

Cette these présente des méthodes de localisation et de quantification des dégats basés sur
les vibrations a partir des mesures donnée de sortie pour les systemes la surveillance de
santé structurelle (SHM). En particulier, 'accent a été mis sur I'amélioration des méthodes
existantes en considérant l’incertitude intrinseque des données de mesure par propagation de
la covariance dans les tests d’hypotheses et en utilisant toutes les informations éventuellement
disponibles grace a une approche de jeux de données multiples. Ensuite, I’applicabilité des
méthodes a été améliorée avec moins de capteurs et moins de dépendance vis-a-vis du choix
particulier des valeurs de s lorsque 1’on considére tous les modes disponibles avec la stratégie
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statistique définie en modes multiple. Dans la pratique, la performance de ces méthodes a
été évaluée dans diverses études de cas numériques et de laboratoire, et une mise en ceuvre
supplémentaire a été réalisée pour des applications réalistes avec des modeles FE dans des
logiciels commerciaux. Les méthodes proposées sont préférables pour localiser et quantifier
les dommages dans des conditions de test réelles. Par conséquent, les développements de
cette these contribuent & ’applicabilité de la localisation et de la quantification des dégats
basés sur les vibrations.
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Résumé

La localisation de dégats basée sur les mesures de vibrations est devenue un axe de recherche
important pour la surveillance de la santé structurale (SHM). En particulier, la Stochastic
Dynamic Damage Locating Vector (SDDLV) est une méthode de localisation des dégats basée
sur le couplage entre un modele aux éléments finis (FE) de la structure et des parametres
modaux estimés a partir des mesures dynamiques en excitation ambiante dans les états struc-
turaux sain et endommagé, interrogant les changements dans la matrice de transfert. Dans
la premiere contribution, la méthode SDDLV est étendue avec une approche statistique con-
jointe utilisant plusieur ensembles de modes, surmontant la limitation théorique sur le nombre
minimal de parametres. Un autre probleme traité est la performance de la méthode en fonc-
tion du choix de la variable de Laplace ou la fonction de transfert est évaluée. Une attention
particuliere est accordée a ce choix et a son optimisation. Dans la deuxiéme contribution,
lapproche Influence Line Damage Location (ILDL), complémentaire & I'approche SDDLV
est étendue avec un cadre statistique. Dans la derniere contribution, une approche de sensi-
bilité pour les petits dommages est développée en fonction de la différence dees matrices de
transfert, permettant la localisation des dommages par des tests statistiques dans un cadre
gaussien, et en plus la quantification des dommages dans une deuxieme étape. Enfin, les
méthodes proposées sont validées sur des simulations numériques et leurs performances sont
testées dans de nombreuses études de cas sur des expériences de laboratoire.

Abstract

Vibration-based damage localization has become an important issue for Structural Health
Monitoring (SHM). Particularly, the Stochastic Dynamic Damage Locating Vector (SDDLV)
method is an output-only damage localization method based on both a Finite Element (FE)
model of the structure and modal parameters estimated from output-only measurements in
the reference and damaged states of the system, interrogating changes in the transfer matrix.
Firstly, the SDDLV method has been extended with a joint statistical approach for multiple
mode sets, overcoming the theoretical limitation on the number of modes in previous works.
Another problem is that the performance of the method can change considerably depending
on the Laplace variable where the transfer function is evaluated. Particular attention is
given to this choice and how to optimize it. Secondly, the Influence Line Damage Location
(ILDL) approach which is complementary to the SDDLV approach has been extended with a
statistical framework. Thirdly, a sensitivity approach for small damages has been developed
based on the transfer matrix difference, allowing damage localization through statistical tests
in a Gaussian framework, and in addition the quantification of the damage in a second step.
Finally, the proposed methods are validated on numerical simulations and their performances
are tested extensively in numerous case studies on lab experiments.
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