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Abstract : Numerical and modeling methods for multi-level Large-Eddy Simulations of turbulent
flows in complex geometries

Large-Eddy Simulation (LES) has become a major tool for the analysis of highly turbulent flows
in complex geometries. However, due to the steadily increase of computational resources, the amount
of data generated by well-resolved numerical simulations is such that it has become very challenging
to manage them with traditional data processing tools. In Computational Fluid Dynamics (CFD), this
emerging problematic leads to the same "Big Data" challenges as in the computer science field. Some
techniques have already been developed such as data partitioning and ordering or parallel processing but
still remain insufficient for modern numerical simulations. Hence, the objective of this work is to propose
new processing formalisms to circumvent the data volume issue for the future 2020 exa-scale computing
objectives. To this aim, a massively parallel co-processing method, suited for complex geometries, was
developed in order to extract large-scale features in turbulent flows. The principle of the method is to
introduce a series of coarser nested grids to reduce the amount of data while keeping the large scales of
interest. Data is transferred from one grid level to another using high-order filters and accurate interpo-
lation techniques. This method enabled to apply modal decomposition techniques to a billion-cell LES
of a 3D turbulent turbine blade, thus demonstrating its effectiveness. The capability of performing cal-
culations on several embedded grid levels was then used to devise the multi-resolution LES (MR-LES).
The aim of the method is to evaluate the modeling and numerical errors during an LES by conducting
the same simulation on two different mesh resolutions, simultaneously. This error estimation is highly
valuable as it allows to generate optimal grids through the building of an objective grid quality measure.
MR-LES intents to limit the computational cost of the simulation while minimizing the sub-grid scale
modeling errors. This novel framework was applied successfully to the simulation of a turbulent flow
around a 3D cylinder.

Keywords : LES - Unstructured grid - Multi-level approach - High-order filters - Dynamic Mode De-
composition

Résumé : Modélisation et méthodes numériques pour la simulation aux grandes échelles
multi-niveaux des écoulements turbulents dans des géométries complexes

La simulation aux grandes échelles est devenue un outil d’analyse incontournable pour l’étude des
écoulements turbulents dans des géométries complexes. Cependant, à cause de l’augmentation constante
des ressources de calcul, le traitement des grandes quantités de données générées par les simulations hau-
tement résolues est devenu un véritable défi qu’il n’est plus possible de relever avec des outils tradition-
nels. En mécanique des fluides numérique, cette problématique émergente soulève les mêmes questions
que celles communément rencontrées en informatique avec des données massives. A ce sujet, certaines
méthodes ont déjà été développées telles que le partitionnement et l’ordonnancement des données ou bien
encore le traitement en parallèle mais restent insuffisantes pour les simulations numériques modernes.
Ainsi, l’objectif de cette thèse est de proposer de nouveaux formalismes permettant de contourner le pro-
blème de volume de données en vue des futurs calculs exaflopiques que l’informatique devrait atteindre
en 2020. A cette fin, une méthode massivement parallèle de co-traitement, adaptée au formalisme non-
structuré, a été développée afin d’extraire les grandes structures des écoulements turbulents. Son principe
consiste à introduire une série de grilles de plus en plus grossières réduisant ainsi la quantité de données
à traiter tout en gardant intactes les structures cohérentes d’intérêt. Les données sont transférées d’une
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grille à une autre grâce à l’utilisation de filtres et de méthodes d’interpolation d’ordre élevé. L’efficacité
de cette méthodologie a pu être démontrée en appliquant des techniques de décomposition modale lors
de la simulation 3D d’une pale de turbine turbulente sur une grille de plusieurs milliards d’éléments. En
outre, cette capacité à pouvoir gérer plusieurs niveaux de grilles au sein d’une simulation a été utilisée
par la suite pour la mise en place de calculs basés sur une stratégie multi-niveaux. L’objectif de cette
méthode est d’évaluer au cours du calcul les erreurs numériques et celles liées à la modélisation en simu-
lant simultanément la même configuration pour deux résolutions différentes. Cette estimation de l’erreur
est précieuse car elle permet de générer des grilles optimisées à travers la construction d’une mesure
objective de la qualité des grilles. Ainsi, cette méthodologie de multi-résolution tente de limiter le coût
de calcul de la simulation en minimisant les erreurs de modélisation en sous-maille, et a été appliquée
avec succès à la simulation d’un écoulement turbulent autour d’un cylindre.

Mots-clés : Simulation aux grandes échelles - Grille non structurée - Approche Multi-niveau - Filtres
d’ordre élevé - Décomposition en modes dynamiques
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Nomenclature

Dimensionless numbers

Symbol Description

M Mach number

Re Reynolds number

Ret Turbulent Reynolds number

St Strouhal number

Sw Swirl number

Roman letters

Symbol Description Unit

ak Real scalar temporal evolution of the kth mode [-]

A Koopman operator [-]

c Sound velocity characteristic scale [m.s−1]

Cp Specific heat capacity [J.kg−1.K−1]

Cs Smagorinsky constant [-]

Cω Wale constant [-]

D Laplacian operator [m−2]

D′ Weighted Laplacian operator [-]

Dα Complex square diagonal matrix of the mode amplitude [-]

E Enstrophy or energy spectrum [m.s−2] / [m2.s−2]

f Real vector function [-]

Fk,i Diffusive fluxes of the species k in the i direction [kg.m−2.s−1]

G Convolution kernel

G∆ Convolution kernel function associated to the filter size ∆

G Green function

Gθ Axial flux of the azimuthal momentum [N.m3]

Gz Axial flux of the axial momentum [N.m2]

hs Sensible enthalpy [J.kg−1]
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I Interpolant

I Identity matrix [-]

J Functional

k Wavenumber [m−1]

kc Cut-off wave number [m−1]

K Kinetic energy [m2.s−2]

K Kinetic energy of the mean flow [m2.s−2]

kt Turbulent local kinetic energy [m2.s−2]

l, Microscopic characteristic length scale [m]

l0, lEI , lDI , lt, ld Turbulent characteristic length scales [m]

lm Mean free path [m]

L Macroscopic characteristic length scale [m]

L Resolved turbulent stress tensor [kg.m−1.s−2]

L2 Euclidian norm

Mq Statistical moment of order q

M Matrix

N Real or integer number Number [-]

ptot, p, p2, p0 Total, static, dynamic and thermodynamic pressure [Pa]

P Probability density function or production energy spectrum [-] / [m2.s−3]

P Probability

Q Q-criterion [s−2]

Qc Mesh quality criterion

Qi Diffusive fluxes in the i direction [J.m−2.s−1]

Q̇ Heat source term [J.m−3.s−1]

R Reynolds tensor [m2.s−2]

S The viscous stress tensor or Companion matrix [s−1]

SD Deviation part of the viscous stress tensor [s−1]

S̃ Schmid modified time shifted operator [-]

t Time [s]

T Temperature [K]

T , TEI , TDI Turbulent energy transfer rate [m2.s−3]

u Characteristic velocity scale [m.s−1]

uθ Tangential velocity [m.s−1]

u0, ut, ud, uK Turbulent characteristic velocity scales [m.s−1]

u Velocity field or left eigenvector [m.s−1] / [m.s−1]

U Matrix of the right Singular Value Decomposition eigenvectors [m.s−1]
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v Velocity field or right eigenvector [m.s−1]

V,Vn
1 ,V

n+1
2 Data snapshots matrix [m.s−1]

Vand Vandermonde matrix

xp Mesh node [-]

Yk The mass fraction of the species k [-]

w Right eigenvector [-]

W Matrix of the left Singular Value Decomposition eigenvectors [-]

Z Orthogonal square matrix [-]

Greek letters

Symbol Description Unit

α Thermal diffusivity, length scale ratio or mode amplitude [m2.s−1] / [-] / [-]

∆ Filter size [m]

δij Kronecker symbol

δm Size of the molecules [m]

∆x Local mesh size [m]

ε Dissipation rate or error measurement [m2.s−3] / [-]

ηK Kolmogorov length scale [m]

ηk Complex roots

γ Isentropic coefficient [-]

Γ,Γ1,Γ2 Circulation and metrics [m2.s−1] / [-]

λk Eigenvalues

λln Amplitude growth rate [s−1]

Λ Square diagonal matrix of the eigenvalues [-]

µ Dynamic viscosity [kg.m−1.s−1]

µq Centered statistical moments

ν Kinematic viscosity [m2.s−1]

νe, νt Effective and turbulent kinematic viscosity [m2.s−1]

ω Pulsation or modulus of the rotational vector [rad] / [s−1]

ω̇k Chemical source term of the species k [kg.m−3.s−1]

ω̇T Chemical source term for energy-enthalpy [J.m−3.s−1]

Ω Rotation rate tensor [s−1]

ω Vorticity vector [s−1]

φ Scalar function

φdiMi
Discrete representation of φ on mesh Mi
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ϕ Scalar function

φk Spatial DMD/POD mode

Φ Fourier transform of the Reynolds tensor or spatial matrix modes [m2.s−2] /

κ Condition number

σ Singular value or standard deviation

σ Constraint tensor or covariance matrix [kg.m−1.s−2] /

Σ Singular Values matrix

τ Characteristic time scale of local refinement ratio [s] / [-]

τ0, τt, τd, τK Turbulent vortex turnover time scales [s]

τ Viscous tensor [kg.m−1.s−2]

θ̇ Angular velocity [s−1]

ρ Density [kg.m−3]

Mathematical operators

Symbol Description

F Filtering operator

I interpolation operator

(, ) Canonical scalar product

||.||2, ||.||F L2 and Frobenius norms

〈φ〉 Statistical averaging

〈φ〉x Spatial averaging

〈φ〉t Temporal averaging

φ Spatial filtering operator

φ̃ Estimation operator

φ̂ Fourier transform operator

φ′ Deviation from the mean φ′ = φ− 〈φ〉
φ′′ Fluctuations φ′′ = φ− φ
φ? Dimensionless variable defined as φ? = φ/φr

φ∗ Conjugate operator

φT Transpose operator

φH Adjoint operator

φ−1 Inverse operator

φ+ Pseudo inverse operator

∇ Gradient operator
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∇· Divergence operator

∇× Curl operator

∆ Laplacian operator

⊗ Tensorial product

(∗) Convolution product

Abbreviations

Symbol Description

API Application Programming Interface

CFD Computational Fluid Dynamics

CFL Courant Friedrichs Lewy

CPU Central Processing Unit

DMD Dynamic Mode Decomposition

DNS Direct Numerical Simulation

GMRES Generalized Minimum Residual Method

HOF High Order Filtering

LES Large Eddy Simulation

MGHOF Multi-Grid High Order Filtering

MPI Message Passing Interface

MR-LES Multi Resolution LES

OpenMP Open-Multi-Processing

PCG Preconditioned Conjugated Gradient

PDE Partial Differential Equation

PDF Probability Density Function

POD Proper Orthogonal Decomposition

PVC Precessing Vortex Core

RANS Reynolds-Averaged Navier-Stokes

RCT Reduced Computational Time

RHS Right-Hand Side

RMS Root Mean Square

SGS Sub-Grid Scale

SVD Singular Value Decomposition

TKE Turbulent Kinetic Energy

WCT Wall Clock Time

YALES2 Yet Another LES Solver : LES/DNS solver developed at CORIA laboratory
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1.1 Thesis context

1.1.1 Massively parallel Computational Fluid Dynamic

Computational Fluid Dynamics (CFD) refers to one branch of fluid mechanics that uses numerical
methods in order to solve and study fluid flow configurations. It is a very common approach that has
become a major design tool in a large variety of industrial fields such as aeronautics and aerospace, naval
and rail transportation, automobile, energy and meteorology and so on... Furthermore, depending on the
computational resources but also on the chosen resolution, CFD enables to access to the three dimen-
sional instantaneous fields everywhere in the computational domain for all computed variables. Under
the assumption that the physical processes are correctly captured, this approach enables to minimize the
number of necessary experimental studies that are complementary approaches and difficult to set up.
Moreover, thanks to this approach, the time and cost of the development processes and the design of
high technology products have been reduced over the past decades. Therefore, CFD overcomes both the
constraints on the design time and also on the search of new efficient solutions in a context where the
objectives can be contradictory. Nowadays, one of the major challenge of CFD is to be able to improve
the predictivity of the simulation at a limited Central Processing Unit (CPU) cost. This may be achieved
with numerical and modeling improvements and with better understanding of the physical processes.
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Moreover, thanks to the exponential growth of the computational power through the improvement of
computer performances, the fidelity of CFD simulations has been drastically enhanced by increasing the
mesh resolution or the physical time simulated but also by adding more physical phenomena. Nowadays,
CFD simulations with meshes up to several billion cells are currently performed, in research laborato-
ries and even in some industrial groups, on massively parallel machines using thousands of processors.
Hence, the analysis of these billion-cell simulations is very challenging as it requires to handle a large
amount of computed data that cannot be achieved using traditional data processing tools. Therefore, "Big
Data" post-processing tools and methods such as data partitioning, data ordering, parallel processing are
strongly related to the algorithms implemented in parallel Navier-Stokes solvers. However, the constant
increase of data volume necessitates to develop new formalisms to efficiently post-process and analyze
these billion-cell CFD simulations.

1.1.2 The "Big Data" challenge

Since the beginning of the new millennium, a new in vogue word called "Big Data" has emerged in the
daily life but also in science. This notion refers to the vast amount of data generated and available that
can no longer be stored on computer hard drive. Indeed, from genome sequencing machines, that enable
to read a human’s chromosomal DNA in half an hour leading to 1.5 Gigabytes of data, to the particle
accelerator Large Hadron Collider at CERN that produces close to 100 Terabytes every day, the advent
of the data age has become a reality in modern science.

In the field of computer science, the "Big Data" concept is closely related to the impressive increase
of computational power that may be highlighted thanks to the the well-known Moore’s law illustrated
in Fig. 1.1. Gordon Moore, co-founder of Fairchild Semiconductor and of Intel, [143], observed in 1965
that the number of components per integrated circuit doubles every year, then he predicted that this rate
would continue over at least one decade. In 1975, Moore revised his prediction to every two years [142].
However, David House took into account both the increase of transistors and their efficiency and thus
predicted the widely known period of 18 months.

However, even if the availability of a large amount of data may open some new interesting scientific
horizons and possibilities, which seems in appearance seductive, "Big Data" concept also has downsides.
Indeed, scientists may be saturated with available data and then have to face an endless ocean of informa-
tion that cannot be straightforwardly processed and may become therefore useless. As a matter of fact,
large amount of data may contain "bad data" as outliers, irrelevant or useless data and, as a consequence,
having intelligent insights on these dataset generate new challenges for the entire computer science field.
Moreover, due to the high dimensionality of the datasets, the understanding of the underlying phenomena
may thus become more challenging and tougher. The main "Big Data" challenges can thus be defined as:
analysis, sharing, storage, transfer, and visualization.

Finally, the Big Data problematic and challenges may be alleviated through the development of new
statistical and computational methods, especially in the field of computer science. These new methods
and frameworks have to post-process in a efficient manner the large amount of data but also to extract
the relevant information from the mass.
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FIGURE 1.1: 50 years of Moore’s law: Plot of CPU transistor counts against dates of introduction

1.2 Industrial and scientific context

1.2.1 The ELCI project

This thesis is supported by the ELCI project (Environnement Logiciel pour le Calcul Intensif) and is
part of the PIA (Plan d’Investissement d’Avenir), a research investment program of the French State for
research and innovative projects. Hence, ELCI is a French software project that brings together academic
and industrial partners in order to design and provide a software environment for the next generation of
HPC systems but also to improve numerical simulations and computer science methods for the 2020

exascale computing objectives. These challenges can be sum-up as follows : larger scalability, higher
resiliency, greater security, improved modularity, with better abstraction and interactivity for application
cases. For this purpose, this project will work along four work packages:

1 Execution environment : Future supercomputers will offer heterogeneous architectures, a gro-
wing number of computing cores, an increasingly complex memory hierarchy, denser packaging,
more integrated high-speed networks. Then, software also has to evolve by incorporating new
features such as optimizing the computer topology, maximizing the memory capacity, improving
communications between the system and the middleware components, and also to benefit from
equipment performance.

2 Libraries and research simulation codes : This work package deals with the design of a pre-,
co-, and post-treatment tool chain for well refined high-order CFD calculations over the next
few years. First, modern computing platforms and algorithms will be further developed to fully
exploit all the available computational power, to leverage CPU and memory costs and to enhance
parallel efficiency for both shared and distributed memories. At the solver level, solutions to
extract and visualize quantities on-the-fly during code execution will be evaluated. Also, in order
to obtain a high fidelity representation of all the physics of a phenomenon, efficient scalable
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parallel methods to couple different simulation codes will be sought.
3 Programming environment (models and tools) : Due to the evolution of hardware architectures,

it is becoming mandatory to implement multiple levels of parallelism to fully exploit compu-
ting resources. This work package studies multiple parallel programming models (hybrid MPI +
OpenMP, PGAS) with different abstraction layers but also standard programming and emerging
models.

4 Numerical simulation use cases: The last work package intents to validate the tools developed in
the previous work packages using industrial test cases within massive computing environments.
Grid adaptation, co-processing, multi-physics performance will all be validated on the following
configurations : 1) Realistic compressor with the objective to perform co-processing, grid adap-
tation on a multi-stage compressor that includes technological effects. 2) A single jet for aero-
acoustic studies to directly perform the post-processing during the simulation in co-processing
mode. 3) A multi-physics test case represented by a cooled turbine with multi-physics coupling,
grid adaptation, co-post-processing and performance efficiency.

Finally, this project gathers some industrial and academic partners summarized as follows : AL-
GO’TECH, BULL, CEA, CENAERO, CERFACS, CORIA, INRIA, KITWARE, ONERA, SAFRAN,
UNIVERSITE de VERSAILLES. The present thesis attempts to overcome some of the previous chal-
lenges presented in work-packages two and four.

1.2.2 Thesis objectives

As presented above in the ELCI project, this thesis aims at developing new numerical tools and me-
thodologies in order to manage future well-resolved simulations for the next generation of HPC systems.
This task has been decomposed into two main objectives that are presented hereafter:

• The first objective deals with the development of new efficient and massively parallel co-processing
algorithms. Indeed, as large amount of data produced by current CFD simulations cannot be writ-
ten and stored on hard drives, one solution to circumvent this issue may be to apply several pro-
cessings on the data while the simulation is running and after that, to only dump small quantities
of interest. Some important and useful applications such as the large-scale extraction and co-
herent features visualization may benefit of some improvements through the application of these
methods. In order to achieve this, the framework proposed in this study is based on a multi-level
strategy using selective high-order filters with interpolation steps. This work will attempt to open
the way to new processing formalisms for CFD simulations.
• The second objective refers to prospective attempts to hierarchical CFD simulations. This new

approach deals with taking advantage of running several simulations at the same time on different
levels of grid and then to compare the computed fields. Hence, from these fields, a local error
measurement that includes all errors - both modeling and numerical errors - can be built and
therefore allows to compute a criterion that characterizes the quality of the mesh. Finally, thanks
to this objective metric, the application of mesh adaptation can be achieved in order to optimize
the cell size of the grid for the considered flow configurations.
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1.3 Manuscript content

During this thesis, a multi-grid framework for the large-scale features has been developed leading to
the extraction and visualization of coherent structures on coarse levels of grid. Some challenging appli-
cations such as a 3D turbulent plane jet and a 3D turbulent low-Mach turbine blade have been on-the-fly
processed thanks to this framework. Moreover, modal decomposition methods have also been developed
and applied, leading to the identification of the most dominant modes of turbulent flows configurations.
These methods could not have been used on such refined simulations without the application of the
previous large-scale features extraction framework that drastically reduces the amount of data. Finally,
based on this multi-grid framework, a multi-resolution approach has been developed in order to perform
at the same time several simulations with different levels of grid. Thanks to this formalism an objective
mesh adaptation criterion has been built leading to the application of the mesh adaptation formalism so
that to optimize the CFD meshes. The content of this study is presented hereafter.

Chapter 1: Introduction This chapter introduces the global scientific context with the associated chal-
lenges that have to be overcome. A description of the thesis objectives is then provided.

Chapter 2: Coherent structure identification in turbulent flows The second part is dedicated to the
state-of-art and literature survey of coherent structures identification in turbulent flows. Some definitions
and the most widely used properties will first be presented with a short overview of classical identifica-
tion technics. Then the restricted notion of vortical coherent structures will be also defined.

Chapter 3 : Governing equations and modeling of turbulent incompressible flows In this chapter,
some mathematical background on the incompressible flows and on the turbulence modeling is presen-
ted. Moreover, the CFD code YALES2 used during this thesis is also introduced with an overview of the
most noticeable tools and the presentation of some of the main numerical methods and solvers.

Chapter 4: The Multi-Grid High-Order Filtering framework (MGHOF) for extracting large-scale
structures in turbulent flows The fourth chapter of this study deals with the design and implemen-
tation of the Multi-Grid High-Order Filtering framework (MGHOF) that enables to on-the-fly extract
coherent structures from billion-cells LES. This formalism uses several steps of both high-order filtering
and interpolation methods in order to transfer these data on coarse levels of grid. After being introduced,
this framework will be applied to a 3D turbulent jet plan with the extraction of the well-known Kelvin-
Helmholtz vortex shedding but also on a much more challenging configuration that corresponds to a
billion-cells LES of a 3D turbulent flow over a turbine blade.

Chapter 5 : Application of the MGHOF framework to modal decomposition methods This chap-
ter uses the previous MGHOF framework to generate a large amount of snapshots that are required for
the application of the Dynamic Mode Decomposition (DMD) formalism on the billion-cells LES of the
3D turbulent turbine blade. Identifying the most dynamically dominant features in such configuration is
particularly challenging due to the large amount of data that have to be analyzed but also due to the flow
complexity of this configuration.

Chapter 6 : Multi-Resolution LES framework (MR-LES) This final chapter presents the Multi-
Resolution LES framework that is based on performing several LES at the same time with information
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exchanges through the application of the MGHOF formalism. Thanks to this approach, both modeling
and numerical errors can be estimated, leading to build an objective grid quality criterion that enables to
locally determine if the grid has to be refined or coarsened. Then, optimization of the LES grid can be
achieved by performing several steps of mesh adaptation.

Chapter 7: Conclusions and perspectives Finally, this chapter provides a general conclusion for the
developed processing methods and suggests perspectives in regards to the improvement of co-processing
methodologies for future exascale computing simulations.

1.4 Publications

1.4.1 Peer-Reviewed international journals

• N. Legrand, G. Lartigue, V. Moureau, A multi-grid framework for the extraction of large-scale
vortices in Large-Eddy Simulation, Journal of Computational Physics, Volume 349, Pages 528-
560 (15 November 2017).

1.4.2 International conferences

• N. Legrand, G. Lartigue, V. Moureau, A geometric multi-grid framework for the extraction of
large-scale vortices in turbulent flows. Application to the massively parallel LES of a low-Mach
number turbine blade, in 11th International ERCOFTAC Symposium on Engineering Turbulence
Modelling and Measurements, Italy (2016).
• N. Legrand, G. Lartigue, V. Moureau, Multi-grid framework and Dynamic Mode Decomposition

for the extraction of large-scale vortices in turbulent flows. Application to the massively parallel
LES of a low-mach turbine blade, in 11th International ERCOFTAC Workshop on Direct and
Large-Eddy Simulation, Italy (2017).
• N. Legrand, G. Lartigue, V. Moureau, Adaptative multi-resolution Large-Eddy Simulation with

control of modeling and numerical errors, in the American Institute of Aeronautics and Astro-
nautics SciTech Forum, USA (2018).
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Chapter 2

Coherent structures identification in
turbulent flows

This section attempts to present a global overview of the concept of coherent structures in turbulent
flows. This notion has been widely studied during the last decades and still appears to be one of the
foundation stone to gain insight into the understanding of turbulent mechanisms. After being introduced,
some common definitions for coherent structures are recalled followed by some information about their
topology and morphology in canonical flow configurations. Then, among the broad diversity of methodo-
logies that have been developed, some classical methods are briefly introduced. Particular highlights are
dedicated to methods based on vorticity and velocity gradient tensor formalism. Moreover, the restric-
tion of the concept of coherent features to vortical structures is exposed followed by the presentation of
various identification criteria. Finally, the last section introduces new large-scale extraction frameworks
that enable to circumvent the difficulties and limitations in CFD due to the modern computer science.
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2.1 Introduction

Turbulent flows have always fascinated physicists, engineers and mathematicians because of the beauty
of their manifestations but also as they are ubiquitous chaotically features present in Nature. Indeed, tur-
bulence is a very widespread phenomenon that can be commonly observed in daily situations such as
in atmospheric circulation, oceanic mixing layer, fast flowing rivers, billowing clouds in storms, smoke
and many other examples. Contrary to the laminar flow regime, that deals with fluid flowing in parallel
layers without disruption between them as Batchelor [11] mentioned, turbulent flows are characterized
by sudden changes in the pressure and velocity fields.

In the early years 1508-1513, Leonardo da Vinci was very interested by this subject and he illustra-
ted the fluid patterns produced by flowing water behind obstacles as the sketch presented in Fig. 2.1
refers. Here, the velocity streamlines have been drawn representing wakes that are formed, referring to
counter-rotating vortices. Almost four centuries later, the Irish pioneer Osborne Reynolds experimentally
studied the pipe transition from laminar to turbulent leading to the creation of the Reynolds number de-
fined as Re = ul

ν , with u the characteristic velocity of the fluid, l the characteristic length scale of the
configuration and ν referring to the kinematic viscosity of the fluid. Important insights have emerged in
the first part of the twentieth century notably with the concept of energy transfer from the large scales
of the turbulence to the smallest ones as Richardson [163] first introduced in 1920, but also thanks to
the isotropy and similarity hypotheses of Kolmogorov [110, 111] in 1941 that models the wavenumber
spectrum in the turbulence inertial subrange. These concepts will be presented in the next chapter, where
some mathematical background on turbulence will be further developed.

FIGURE 2.1: Seated man and studies and notes on the movement of water from [47]

Over the last decades, turbulent flows have been widely studied leading to the emergence of perfor-
mant industrial applications such as aircraft engines, energy production processes, automobiles, wind
turbines... Indeed, turbulence enables to improve all transfer types - momentum, mass and energy - com-
pared to a laminar situation and may lead to an increase of the efficiency of the application. Moreover,
Fig. 2.2 presents another practical example that highlights the knowledge of turbulent flows still remains
primordial. Here, turbulent structures are generated in the wake of a landing plane. As these features can
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disturb other planes on the ground, it is thus mandatory to wait until they have been dissipated before
another plane lands off.

FIGURE 2.2: Vortices produced by plane take-off from [31]

Despite turbulent flows are extremely complex - as they are characterized by the interaction of many
degrees of freedom over a large range of spatial structures with heterogeneous turnover time scales -
they can be modeled thanks to the Navier–Stokes formalism assuming certain fluid continuum condi-
tions. Some mathematical background is still missing concerning the existence and the uniqueness of
three dimensional solutions [190, 59], but practical applications by solving these equations associated to
boundary and initial conditions enable to access detailed solutions with a large amount of data concerning
the physics of the flow. However, despite the amount of information, numerical simulations sometimes do
not really bring deep understanding of the underlying processes as they may be hidden by the chaotically
smallest scales of the flow.

The analysis of turbulence can thus be considered by reducing its degrees of complexity through a
simplistic and lower dimensional representation in order to access to its fundamental mechanisms. This
can be achieved with the recent discovery by experimental fluid mechanicians of coherent features in
some fully developed turbulent flows that paved the way to a better understanding of the underlying
turbulent physical phenomena. Indeed, Métais and Lesieur [119] noted in 1991 that the emergence of
coherent structures in turbulent flows is one of the most important insight in fluid mechanism over the
last 25 years. Even if this discovery is difficult to attribute, the article of Brown et Roshko [24] in 1974,
dealing with the large-scales organization in mixing zones, appears to be a truly breakthrough in the
scientific community. The previous sketch of Leonard da Vinci in Fig. 2.1, highlighting an example of
counter-rotating vortices, can thus be seen in term of coherent structures as they are steady in space and
time with approximately constant characteristic length scale.

In this chapter, the presentation of coherent structures is first introduced attempting to define them in a
proper manner through the characterization of their origins and their topological/morphological aspects
in several canonical flows configurations. In a second time, the notion of vortical coherent structures is
developed with the presentation of several extraction methods based on the vortical and velocity gradient
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tensor formalism. Finally, the presentation of the difficulties and limitations in the large-scale features
extraction and visualization due to the modern computer sciences are presented with some examples of
novel coherent features extraction frameworks.

2.2 Zoology of coherent structures in turbulent flows

2.2.1 Definition of coherent structures

The concept of coherent structures in turbulent flows has been first introduced by Prandtl in 1925 [158],
who experimentally tried to describe turbulent motions with his mixing-length theory by introducing the
concept of "Flüssigkeitballen" entities. The underlying hypothesis was that these "Ballen" were respon-
sible of the transport of momentum across the flow and appear thus to be the first coherent features of
the history of turbulence. Few decades later, in 1974 and 1984, Bradshaw [22] and Landahl [114] tried
respectively to explain and justify Prandtl’s coherent features concept.

However, the notion of coherent structure is very difficult to define. The infinite number of turbulent
flow configurations leads to an impressive variety of coherent structures and identifying them with a ge-
neral and mathematical definition is not straightforward. Furthermore, as coherent features are embedded
and hidden inside the large range of chaotically structures generated by turbulence, it is therefore very
challenging to identify and extract them. Moreover, this identification strongly depends on the choice of
the coherent structures characteristics, of the identification method and of the selected criteria. All these
difficulties lead to a very challenging tasks.

First, the notion of coherence can appear as being in contradiction to its classical meaning in physics.
Indeed, this term was historically introduced in connection with Thomas Young’s double-slit experiment
in optics but is now used in various fields that involve waves, for instance acoustic or electro-dynamics,
neuroscience or quantum mechanics. In physics, coherence is an ideal property of waves - constant phase
difference, same frequency and waveform - that enables stationary interference. According to the Funk
and Wagnalls Standard Dictionary, coherence is defined as a ". . . relation of coincidence between two
sets of waves, which will produce interference phenomena... ". Then, spatial coherence describes the
correlation between lateral or longitudinal waves at different points in space while temporal coherence
describes correlation between waves at different instants in time. More generally, coherence refers to all
properties of the correlation between physical quantities of a single wave, or between several waves or
wave packets.

In the case of coherent structures in turbulence, this notion refers to a discernible correlation, in other
words an element of turbulent motion that sets apart from the stochastic background of turbulence with
recurrent and quasi-periodic behaviors associated to a preferential size and frequency for a given spatial
location. Fiedler [64] derived some criteria that help to define what coherent structures are:

(a) Their largest scale can be compared to the lateral flow dimension
(b) They are indirectly related to the boundary conditions
(c) They refer to a recurrent pattern with a life span at least the average flow-through time of a

structure
(d) They are at best quasi-periodic and their structure possesses high degree of organization
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(e) They have similarities with laminar-turbulent transition structures.

Various complementary definitions of coherent structures have been proposed in the previous decades.
Delville et al. [57] proposed a comprehensive overview of this concept, from which some of them are
recalled hereafter:

Definition from Lesieur et al. [119]:
"Suppose that, at a given time t0 there exists a vorticity concentration within a domain Dt0 ⊂ R3.
Let Dt be the image of Dt0 at t ≥ t0. Dt is a Coherent Structure (coherent vortex) if : i) Dt retains
a recognizable pattern for time delays greater (typically 5 times) than the turnover time (τ0). ii) Dt is
unpredictable (i.e. extremely sensitive to small perturbations of initial conditions)."

Definition from Hussain et al. [90, 91]:
"A Coherent Structure is defined as a flow module with instantaneous phase-correlated vorticity"

Definition from Berkooz et al. [17]:
Coherent structures are defined as "organized spatial features which repeatedly appear (often in flows
dominated by local shear) and undergo a characteristic temporal life cycle."

The choice of the coherent structure definition may also depend on the type of available data. On the
one hand, unsteady numerical approaches - such as LES or DNS - give access to a large amount of data
leading to sufficiently resolved information in both time and space dimensions. Hence, this do not affect
the retained choice of the coherent structure definition and also the selection of the detection method.
However, in that case the huge quantity of generated data may turn out to be a drawback concerning
the analysis and understanding of coherent features behavior. On the other hand, available information
generated from experiments is poorly resolved in time and space - unless high-speed diagnostics are used
-, the definition choice depends thus on the available and accessible data.

2.2.2 Origins and morphological/topological description

The origin of coherent structures is related to a general phenomenon called synergetics that can be
observed in inorganic as well as in organic Nature and which constitutes a scientific discipline of the
theoretical physics field [83]. Indeed, the birth of coherent features comes from the spontaneous forma-
tion of organized fluid structures out of the turbulence chaos. Hence, Chaos Theory, referring as one
specific ramification of the synergetics field, enables to explain the formation of coherent structures as a
self-organization phenomenon and is one possible basis in order to describe turbulent flows [139].

According to Ruelle and Takens [168], turbulence might be the manifestation in the physical space of
a strange attractor in the phase space and thus coherent structures might be interpreted in a same way as
Sreenivasan and Meneveau [185] showed. In the study of dynamical systems, a strange attractor refers
to an attractor with a fractal structure corresponding to a space where the dynamical system irreversibly
evolutes without perturbations. This formalism is commonly used to study the behavior of large chaotic
dynamical systems. However, this theory is beyond the scope of this work, more details can be found in
the previous reference papers.
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Moreover, due to the strong similarities with the flow transitions from laminar to turbulent state, co-
herent features can also be seen as flow instabilities and then as unstable modes of a basic laminar mean
flow as Gaster et al. [71] showed with the linear inviscid stability theory applied to a turbulent mixing
layer configuration. However, even if the results are significant, Fiedler [64] noticed that applying invis-
cid stability theory on mean profiles does not have physical significance for turbulent flows.

Concerning simple flow configurations, the morphology of coherent structures can be reduced to a
combination of elementary elements that are presented in Fig. 2.3 as:

• Line vortex : A vortex line or vorticity line is a line which is everywhere tangent to the local
vorticity vector. Vortex lines are defined by the relation:

dx

ωx
=

dy

ωy
=

dz

ωz
, (2.1)

where ω = (ωx, ωy, ωz) is the vorticity vector in cartesian coordinates.
• Ring vortex : A : vortex ring, also called a toroidal vortex, is a torus-shaped vortex, that is a

region where the fluid mostly spins around an imaginary axis line that forms a closed loop.
• Hairpin vortex : Hairpin vortices are found on top of bulges on wall bounded turbulent flows,

wrapping along the wall in hairpin shaped loops.
• Helical vortex: Vortex with helical streamlines.

FIGURE 2.3: Morphological and topological elements for the description of coherent structures [64]

Using the theory of critical points of Poincaré [155], Perry and Fairly [152] and others [153, 40] in-
troduced tools that enable to describe the topology of coherent structures. Indeed, Fig. 2.3 shows that
coherent structures can be characterized as combinations of stable or unstable nodes, saddles and foci
elements. The next sub-section attempts to briefly present some well-known coherent structures in cano-
nical flow configurations.
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2.2.3 Coherent structures identification methods

Before trying to detect coherent features from turbulent flows, it is mandatory to understand how to
access to their physical behaviors. Indeed, all detection methods necessitate relevant data that have to cha-
racterize the underlying physical phenomena and thus the properties of coherent features. The following
sub-section aims at presenting three classical approaches for gathering the needed flow information.

2.2.3.1 How to access to coherent structures relevant informations

Visualizations method First, the most simple method in order to access to coherent structures deals
with the visualization of events using tracers with negligible molecular viscosity and same density for in-
compressible flows and Schlieren for compressible flows as the one obtained by Brown and Roshko [24].
On the one hand, tracers as dye or smoke strongly depend on the location of the seeding so that the tra-
cer follows the vorticity, leading therefore to the visualization of streak-lines pictures. Moreover, those
streak-lines have been shown to be equivalent to lines of constant vorticity for negligible fluid visco-
sity as Michalke [138] presented for transition region of a laminar mixing layer. However, some studies
have demonstrated that the interpretation of these results is not always straightforward as the dynamics
of coherent structures temporally changes [84] or if the seeding location is changed [39]. On the other
hand, Schlieren technique, based on the deflection of light by a refractive index gradient that may di-
rectly be linked to the flow density gradient, provides integrated information that blot out small scale
features while emphasizing two-dimensional coherent structures, contrarily to the smoke visualization
which provides more local small-scale informations.

Velocity measurements The detection of coherent structures can also be experimentally managed with
quantitative methods that enable to determine the velocity field.

Hot Wire Anemometry is based on the measurement of the heat transfer from a heated wire to the
relatively cold surrounding fluid. Then, as the heat transfer is a function of the velocity field, a relation-
ship between the velocity and the electrical output of the system can be established. This intrusive low
cost method enables to access to a time-continuous signal with the chosen time sampling. However, this
approach is very sensitive to external perturbations encountered in non-ideal applications such as dust or
noise.

The Particle Image Velocimetry (PIV) is an optical method of flow visualization. It enables to access
to instantaneous velocity measurements with fluid properties. The basic principle deals with the seeding
of small particles with very low Stokes number. Then a laser illuminates these particles leading to two-
dimensional or even three-dimensional velocity field measurements. This method can be combined with
other detection methods that will be presented hereafter.

Scalar measurements such as temperature or pressure can also be considered as relevant. Antonia
et al [4] successfully demonstrated the use of the temperature as a passive scalar in order to detect
coherent features. Moreover, the pressure field have turned useful for most flow control in aeroacoustic
configurations.
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Numerical simulations (RANS, LES & DNS) Finally, Reynolds-Averaged Navier-Stokes, Large-
Eddy Simulations or Direct Numerical Simulation enable to access to the three-dimensional fields of all
variables of interest leading to a good spatial and time discretization of the information. Some attempts
in a turbulent jet configuration has been made by Long et al. [126].

2.2.3.2 Detection methods

One of the major difficulties, when attempting to detect coherent structures in turbulent flows, comes
from the scale separation that cannot easily be achieved with variables such as pressure or velocity fields
and its derivates.

In the years 1945-1960, most of the studies about coherent structures were experimental and based
on local Eulerian measures with hot wire anemometry techniques associated to classical probabilistic
approaches of the turbulent agitation. Then, as explained Townsend [194], from those experimental in-
formation and properties, the structure and the location of coherent structures were deducted in order to
validate the observation.

Since the 1960s, the developments in the optical, electronic and computer science fields allowed to
extract from the turbulent chaos structural organized elements. A complete overview of those metho-
dologies has been proposed by Bonnet and Delville [19]. Furthermore, contrarily to the previous case,
the structure and location of coherent features are available leading to attempt to deduct their physical
properties and their impact on the turbulent flows.

Moreover, from Delville et al. [57] overview, such detection methods can be classified into two ca-
tegories presented in Fig. 2.4. All these methods, combined with morphological information, enable to
understand the dynamics of coherent structures and their contributions and interactions with the turbulent
transport processes. First, conditional approaches enable to access to the main characteristics of coherent
features by detecting their presence when a chosen condition/criterion is fulfilled. This methodology
is quite subjective as it requires some information on the flow characteristics in order to define a rele-
vant threshold condition. Second, non-conditional approaches are more objective as they deal with the
determination of statistical information, as space-time correlations, in order to access to the characteris-
tics of the coherent structures. Some of these detection methods are briefly introduced in the following
paragraphs.

After 1980, the signal processing and the time-frequency analysis of the fluid information from both
experiments and numerical simulations appeared, leading to more selective analysis of the available data.
Some of those methods are presented hereafter.

The Fourier transform : The Fourier transform has been introduced by Joseph Fourier in his study
of heat transfer [65], where Gaussian functions appear to be solutions of the heat equation. This tool
represents an original signal in the frequency domain and is called spectrum for physical phenomena.
Moreover, the Fourier decomposition can be seen as being the natural tool in order to provide optimal
flow representation for homogeneous or periodic flow fields [131]. For time-varying signals, a low-
pass filtering procedure should be applied to avoid aliasing effects due to Shannon-Nyquist’s sampling
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FIGURE 2.4: Classification of detection methods from Delville et al. [57]

theorem. However, homogeneous or periodic conditions is rarely fulfilled in turbulent flows which shows
the limitation of this method.

The wavelet transform : The wavelet transform method, described in details by Farge [62] and Va-
silyev [179] is based on a time-frequency analysis. Wavelet decomposition aims at finding, in a signal,
structures that resemble a reference function (mother wavelet), and a set of functions (child wavelets)
obtained by shifting and scaling this mother wavelet. The data resulting of the correlation of these func-
tions with the signal (wavelet coefficients) provides spatial and temporal information. The advantage
of wavelet transform over classical Fourier transform is its ability to represent functions that have dis-
continuities and sharp peaks, and to accurately reconstruct non-periodic signals. Orthogonal wavelet
decomposition has been used to process turbulent flows and only keep the Gaussian part of the turbulent
flow field [63, 178].

The Adjoint method: Adjoint methods are linear approaches that have been designed in order to per-
form sensitivity analysis for Partial Derivative Equation (PDE) for a wide range of application domains
including hydrodynamic stability. It enables to identify regions of the flow that produce oscillations or
instabilities and regions that are most sensitive to external forcing. This can be achieved by linearizing
the Navier–Stokes equations around a base flow, enabling to build an operator that characterizes the evo-
lution of small perturbations in the flow. Then, computing the eigenvalues of this operator gives access
to the frequency and the growth rate of the perturbations and the eigenfunctions give their spatial shapes.
More information and some applications can be found in [33] and [187].

Filtering approach: Spatial filters are based on the extraction of turbulent scales at a given size [146,
120]. Performing the scale separation may not be straightforward for numerical simulations as it requires
to extract features from a large amount of data that can be shared across a large number of processors
in a parallel environment. Moreover, filters necessitate a sharp cutoff frequency - that means a good
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selectivity behavior - in order to keep untouched the useful information while removing the other part.

Various high-order filters have been proposed in the past as explicit filters up to order 16 derived by
Shapiro [182, 181] in the 70s. These low pass non-recursive filters have been used in the meteorological
field and enable to remove small scale features without affecting physical structures. Recursive filters
with high selectivity have also been widely studied [26, 87, 151]. In the 90s, Raymond et al. [160,
159] designed implicit high-order filters for the analysis of weather data. Their implicit formulation is
particularly interesting as it enables to obtain high-order filters from low-order finite-difference schemes
on compact stencils and also enables to overcome the boundary conditions issues.

Chapter 4 will present in details the key concepts and the mathematical background of spatial low-pass
filters through the development of a multi-grid framework based on several steps of high-order filtering
and interpolation methods in order to extract large-scale features from highly turbulent flows.

Modal decomposition methods The visualization of coherent structures can be achieved thanks to
modal decomposition methods that enable to extract the dominant modes of the flow. These methods are
particularly interesting when attempting to analyze the dynamics of the large-scale features. However,
they require the storage of a large amount of data and thus cannot be applied on billion cells LES si-
mulations without sub-sampling. Moreover, it is generally mandatory to apply some temporal or spatial
filtering before applying modal decomposition methods in order to remove high-frequency motions and
aliasing issues.

Chapter 5 will present in details the mathematical background of modal decomposition methods such
as Proper Orthogonal Decomposition (POD) [17] and Dynamic Mode Decomposition (DMD) [167] with
applications in LES of flows over 2D laminar cylinder and 3D turbulent turbine blade.

Vortex identification in turbulent flows: Finally, considering the definition of Hussain et al. [90, 91],
coherent structures are strongly related to regions of high vorticity in the flow. Even if there is no universal
threshold defining a high level of vorticity, this criterion seems to be relevant and is commonly used in
various applications. However, some shortcomings have to be highlighted : in shear zones close to the
boundary, the strain due to the viscosity locally produces high level of vorticity without the presence of
vortices. In that particular case, other criteria can be used such as the Q-criterion.

The next section presents with more detail the concepts and methods associated to that class of iden-
tification methods, which are based on vortical property and on velocity gradient tensor formalism.

2.3 Vortical coherent structures in turbulent flows

Coherent structures are usually identified and located by considering the core of vortices. Strawn et
al. [186] defined the vortex core as the local maximum of the vorticity modulus which therefore links
coherent structures to vortical features. In this section, the definition of vortical coherent structures is first
presented using the vorticity concept that is introduced in a second time. Finally, some vortex detection
criteria are briefly exposed.
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2.3.1 Vortical coherent structures

Based on the definitions of Lesieur [117] and Hussain [91], vortical coherent structures have been
defined by Chassaing [34] considering three main properties that are presented hereafter:

(i) Physical structure property: Vortical coherent structures correspond to a mass of fluid which
is located in a connected fluid domain D0 at time t0.

(ii) Vorticity intensity property : Vortical coherent structures correspond to a zone where the
local concentration of vorticity is higher compared to the narrowing fluid. This intensity can be
measured thanks to a characteristic vorticity scale or with the modulus of the rotational vector
noted ω.

(iii) Physical coherence property: Vortical coherent structures are able to keep those two previous
properties for long time scales compared to their turnover time scales. Indeed, due to the visco-
sity effects, the structural coherence of the vortices tends to be dissipated. This property can be
expressed with to the following inequality:

ωl2

νe
� 1 , (2.2)

where l refers to the characteristic length scale of the vortex, νe to the effective kinematic visco-
sity scale in the fluid and τ = l2/νe the vortex turnover time scale.

2.3.2 Vortex definition and classification

Vortices can be defined as fluid zones where the flow is principally considered as being rotating around
an axis. Here, a vortex on the z-axis that evolves in the plane (r, θ) is considered, then the velocity can
be decomposed into axial, tangential and azimuthal components. However, most of the time the radial
component can be neglected leading to ur = 0. The description of vortices in term of radial profile for the
tangential velocity enables to distinguish two main classical models for eddy flows that will be presented
just after the notion of vorticity.

The vorticity: Usually noted ω, the vorticity vector is a main concept in the description of the dyna-
mics of vortices. The vorticity field is defined as the curl of the fluid velocity which is mathematically
formulated as follows:

ω = ∇× u , (2.3)

where∇ is the vectorial differential operator defined as∇ =
Ä
∂
∂x ,

∂
∂y ,

∂
∂z

ä
and u the velocity field of the

fluid.

This physical quantity measures the local rotation rate in the fluid and can therefore be interpreted
as the angular velocity seen by a rough ball at that particular point. Moreover, zero values of vorticity
modulus refer to fluid zones without vortices, while positive values are located in the center of vortices.

Even if the dynamics of stream-wise vortices can accurately be represented - through their high vorti-
city modulus - in free shear flows [41], for wall-bounded flows however, the no-slip boundary conditions
at the wall produce a mean shear that is generally much higher than the vorticity modulus of the near-
wall vortices. In this case, other criteria that circumvent this issue should be used instead. In addition, the
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realistic behavior of the velocity field in vortices can be a function of the radius r - distance to the vortex
core -, the two main classical models of vortex dynamics are presented below:

Rotational vortices : The term "rotational vortices" characterizes the rigid rotation behavior. Indeed,
if the angular velocity θ̇ around the z axis is constant in the vortex plane, then the tangential velocity
linearly increases with the axis distance:

uθ(r) = θ̇r . (2.4)

The vector field associated to the solid rotation cancels in the center of vortices, leading to a constant
vorticity oriented along the z axis with a norm twice equal to θ̇. The circulation Γ of a circle along radius
r, that corresponds to the curvilinear integral of the velocity, can therefore be written as

Γ(r) =

∮

C(r)
u.dl = 2πθ̇r2 . (2.5)

Irrotational vortices: When no external forces are applied, vortices naturally evolve toward an irrota-
tional flow configuration that refers to fluid zones where the tangential velocity is inversely proportional
to the radius r. These irrotational vortices are also called free vortices. In that case, the angular velocity is
not equal to zero around the vortex axis but the vorticity cancels for each point. Moreover, the circulation
Γ of a circle of radius r is constant and independent of the axis distance. The tangential velocity can thus
be written as

uθ(r) =
Γ

2πr
. (2.6)

More realistic models: The velocity fields of both previous vortex models have been plotted in Fig. 2.5
where the dimensionless velocity u? is plotted as a function of the radius r of the vortex:

u?(r) =
uθ(r)

um
um =

Γ

2πR
(2.7)

However, in the case of irrotational vortices, the velocity profile increases toward infinity for points
located close to the vortex core. This asymptotical behavior does not allow to model and describe in
a realistic manner vortices and therefore, this model can not be used in practice. Most of the time, the
area in the center of irrotational vortices is characterized by a rotational zone with a velocity profile that
decreases toward zero on the z axis.

More complex vortex models have been proposed by Rankine and Lamb-Oseen and are presented
hereafter:

- Rankine vortices: Rankine vortex modeling, plotted in Fig. 2.5, deals with a combination of the
two vortex models previously presented. The velocity profile is defined as follows:

uθ(r) = um
r

R
if r ≤ R (2.8)

uθ(r) = um
R

r
if r > R , (2.9)
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FIGURE 2.5: Tangential velocity models in a vortex

where R refers to the radius of the vortex core. The flow is associated to a rigid rotation in the
core (r < R) and irrotational out of the core (r > R).

- Lamb-Oseen vortices: Lamb-Oseen vortex modeling, plotted in Fig. 2.5, deals with a rotational
vortex associated to viscous effects. The velocity profile is defined as follows:

uθ(r, t) = um
R

r

ñ
1− exp

Ç
− r2

4νt

åô
. (2.10)

This model assumes cylindrical symmetry and refers to an exact solution of the governing Na-
vier–Stokes equations. It converges to rotational vortices for low radius r and to irrotational
vortices for very large radius.

Relation with the pressure As explained in Guedot thesis [81], the velocity field generates a variation
of the dynamic pressure in a vortex. Then, under certain hypothesis and using the formula derived by
Galley [69], the axial momentum conservation in the plane (r, θ) can be expressed as

ρ
u2
θ

r
=

dp
dr
. (2.11)

This relation can be combined with the velocity profiles of the Rankine vortex model in order to study
the variations of the pressure. Then, the radial profile of pressure in a Rankine vortex can be written as
follows:

p(r) = p∞ −
ρu2

m

2

Ç
2− r2

R2

å
for r ≤ R (2.12)

p(r) = p∞ −
ρu2

m

2

R2

r2
for r > R . (2.13)
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First, in the vortex core, the pressure evolves with the square of the axial distance r, moreover, around
the vortex core where zones are irrotational, the pressure is inversely proportional to the square of the
radius r. In the vortex core, the depression profile, defined as ∆p = p(r) − p∞, is represented on the
Fig. 2.6. Various vortex detection methods in turbulent flows are based on the pressure difference in the
vortex core.

FIGURE 2.6: Analytical radial profile of low pressure region in a Rankine vortex

In a similar manner, the axial variation of the pressure for a Rankine vortex can be characterized with
the following expression [127]:

dp
dz
∝ 2ρ

R3

Γ2

(2π)2

dR
dz

= 2ρu2
m

1

R

dR
dz

. (2.14)

The vortex contribution to the variation of pressure is positive when the radius of the vortex increases
along the z axis. In that case, the pressure grows up along this axis and its gradient can handle a break
point in the flow, leading to the creation of a recirculation zone in the vortex core. This well-known
phenomenon is called vortex breakdown and appears when the Swirl number reaches critical values. This
dimensionless number compares the axial and tangential components of the flows [82] and is defined as

Sw =
Gθ
RGz

, (2.15)

where R refers to a characteristic radial dimension of the flow, Gθ and Gz the axial flux of the azimuthal
momentum and the axial flux of the axial momentum respectively, that are defined as follows:

Gθ =

∫ R

0
ρuθuz2πr

2dr , (2.16)

Gz =

∫ R

0
(ρu2

z + p)2πrdr . (2.17)
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Swirl flows are characterized by high tangential velocities that generate radial acceleration leading to
a pressure drop at the rotation axis and a radial expansion of the flow - that also decreases the tangen-
tial velocity in the axial direction - which generate an opposite pressure gradient in the axial direction.
When this pressure gradient becomes too important, then the kinetic energy in the axial direction is no
more sufficient and recirculation zones appear. This coupling phenomenon between the axial and radial
components of the velocity field has been widely experimentally, theoretically and numerically studied.

2.3.3 Vortex identifiers

Vorticity analysis has been for a long time the only available vortex detection method. As previously
mentioned, this simple criterion is based on the gradient of the velocity field and thus does not distinguish
vortices from shear layers. Then, other more sophisticated criteria have been developed, some of them
are presented hereafter.

The minimum of pressure

Assuming that vortices creates a dynamic pressure that is lower in the vortex core regions, vortical co-
herent structures can thus be identified through the instantaneous total pressure field ptot = p+ pdynamic
with p the static pressure and pdynamic = ρuTu/2 the dynamic pressure, or thanks to cavitation pro-
cesses [12] that deal with the formation of vapor cavities in liquids due to rapid changes of pressure.
Using the previous properties (i) to (iii) that characterize coherent vortical structures, the vorticity can
be related to the pressure field, which allows to link the coherent features identification to the search of
local minima of pressure:

∂u

∂t
+ ω × u = −1

ρ
∇ptot . (2.18)

This equation refers to the equilibrium between the centrifugal effects and the pressure gradient for a
fluid particle close to a vortex. Assuming the definition of physical coherence (iii) and under the local
Galilean invariance property, the ratio between the second and the first terms on the left side in Eq. 2.18
can be approximated as τω where τ is the vortex characteristic turnover time scale defined as τ = l2/νe
and ω the vorticity concentration as the modulus of the rotational. Therefore, the previous equation may
be reduced to the following form

ω × u = −1

ρ
∇ptot , (2.19)

that can also be obtained thanks to Eq. 2.18 under stationary flow condition.

Hence, in order to counterbalance the centrifugal effects, the dynamic pressure decreases inside a
vortex tube in accordance to Bernoulli’s principle. This criterion has been proved being better than the
previous vorticity modulus as showed Comte et al. [41] and Robinson [165] with iso-surfaces of pressure
while detecting coherent features in a turbulent boundary layer.
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However, the use of this criterion may sometimes be problematic as Kida and Miura discussed [105].
Indeed, a minimum of pressure is not a necessary and sufficient condition for the presence of a vor-
tex [96]. This minimum of pressure can be generated by an instationary instability without vortices or
can be masked by the viscosity in shear zones near the boundary as it cannot distinguish between pure
shearing motions and the swirling motion of a vortex. Moreover, the pressure is an intensive variable
which only enables to identify the most intense vortices and fails while attempting to identify others that
are disturbed by the dominant structures. As mentioned Dubief et al. [60], it is noticeable that the choice
of the pressure threshold is not straightforward as it depends on the dynamic pressure surrounding the lo-
cal structure. If the concentration of vortical structures is high, this criterion may not detect all the details
of the vortical organization. Finally, variations in fluid pressure without the presence of vortices may be
due to other factors - for instance Venturi effects that occur when a fluid is flowing through a constricted
section - and make the vortex representation through iso-surface of pressure difficult highlighting the
limits of this criterion.

The Q-criterion

The Q-criterion proposed by Hunt et al [89] for incompressible flows is based on the second inva-
riant of the velocity gradient tensor ∇u. This criterion has been chosen in this work as it gathers some
properties from both vorticity and minimum of pressure criteria. The Q-criterion is expressed as follows:

Q =
1

2
(||Ω||2F − ||S||2F ) , (2.20)

where Ω refers to the anti-symmetric rotation rate tensor and S to the symmetric shear rate tensor of the
velocity gradient tensor as

Ωij =
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Hence, this criterion enables to measure a local equilibrium between two different types of flows : a
rigid rotation and a pure deformation flow that are presented in Fig. 2.7. The competition between the
rotation and the strain rate allows to interpret positive values of Q-criterion as a local excess of rotation
and then to the presence of a vortical structure. Negative values are therefore associated to shear zones
where energy dissipation is the predominant phenomenon. Iso-surfaces of the Q-criterion associated with
a positive threshold enables thus to represent the vortex envelopes. Here again, the choice of the thre-
shold has to be carefully determined. Moreover, shear zones as boundary layers are associated to negative
values of Q-criterion.

Assuming the definition (ii), the Q-criterion can directly be linked to the vorticity modulus ω as

Q =
1

4
(ω2 − 2||S||2F ) . (2.23)
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FIGURE 2.7: Flow configurations from [88] with the velocity fields (left) and the streamlines (right): (a)
shear flow, (b) pure deformation and (c) solid rotation

This formulation expresses that in a vortex core, the Q-criterion is expected to be positive as the
vorticity increases. Moreover, as Dubief et al. [60] explained, it can also be related to the Laplacian of
the pressure field for inviscid and incompressible flows as follows:

Q =
1

2ρ
∇2p . (2.24)

Hence, maxima of pressure occur for negative Q-criterion values while minima of pressure refer to
positive values of the identifier. Jeong and Hussain [96] stated that a minimum of pressure does not ne-
cessary implies a region of positive values of Q-criterion, however Q > 0 is a necessary condition to
a low-pressure tube [60]. Moreover, large negative values of the Q-criterion can also be associated to
negative curvatures of the pressure with the presence of a local maximum and large positive values of
Q-criterion can be associated to positive curvatures of the pressure leading to the presence of a local
minimum. More details about the curvature effects are developed in Chapter 4.
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The ∆ criterion

Vortical structures can also be defined by considering the eigenvalues of the velocity gradient tensor
∇u. Indeed, Dallmann [49], Vollmers et al. [201] and Chong et al. [37] showed that complex eigenvalues
of∇u, noted λk, refer to spiraling streamline patterns. Fluid regions where eigenvalues may be complex
imply local rotation of ω and can then be characterized through the inviscid vorticity equation presented
hereafter:

Dω

Dt
= ω.∇u . (2.25)

The eigenvalues of velocity gradient tensor are governed by the characteristic equation defined as

λ3 − Pλ2 +Qλ−R = 0 , (2.26)

where Q refers to the second invariant of the velocity tensor∇u and P,R to the first and third invariants
defined with G = ∇u as follows:

P = tr (G) , Q =
1

2

Ä
tr (G)2 − tr(G2)

ä
, R = det (G) , (2.27)

where P = 0 for incompressible flows.

Equation. 2.26 can have either three real eigenvalues or one real associated with two complex conju-
gated ones. Moreover, complex eigenvalues are associated to a local rotation rate and also to spiralling
streamlines, indicating the presence of a vortex. Those values are linked to a positive value of the discri-
minant ∆, see Eq. 2.28. Considering incompressible flows, positive values of the ∆ criterion can then be
expressed through the Cardan method for cubic equations as follows:

∆ =

Å
Q

3

ã3

+

Å
R

2

ã2

. (2.28)

Iso-surfaces of positive values of the discriminant indicate the presence of a vortex with an extremum
of ∆ in the center of its core.

The λ2 criterion

This criterion proposed by Jeong and Hussain [96] is based on the search of a minimum of pressure
across the vortex. Hence, it enables to link the pressure minima to vortices. This criterion comes from
the vorticity transport and the strain-rate transport equations that can be derived by taking the gradient
of the Navier-Stokes equations and then decomposing it into symmetric and antisymmetric parts. Using
the same previous notation, the symmetric part can be written as follows:

DSij
Dt

− ν ∂
2Sij
∂x2

k

+ ΩikΩkj + SikSkj = −1

ρ

∂2p

∂xi∂xj
, (2.29)

where the right-hand side term ∂2p
∂xi∂xj

refers to the Hessian of the pressure and contains informations on
the pressure extrema. Indeed, the study of the eigenvalues of this matrix enables to determine if there is
an extremum or a node of pressure at a given location. Hence, as Eq. 2.29 shows, the minima of pressure
in a plane across a vortex appear when two eigenvalues of the tensor∇∇p are positive [109].
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The λ2 criterion for incompressible flows can be built by removing the unsteady irrotational straining
DSij
Dt and the viscous effects ν ∂

2Sij
∂x2
k

from the above equation leading to a vortex presence when two

eigenvalues of the tensor S2 + Ω2 are negative. Since this tensor is symmetric, it possesses only real
eigenvalues that can be ordered in the following form:

λ1 ≥ λ2 > λ3 (2.30)

Then, the vortex-identification criterion can be defined as λ2 < 0 for incompressible flows. As for the
Q-criterion, the chosen value for the threshold appears to be the key main parameter in order to identify
coherent features. Moreover, in two-dimensional flows, these two criteria are analytically equivalent [44].
Finally, the λ2 criterion has been extended with different thresholds in order to correctly capture vortices
in the presence of strong shear that can occur in boundary layer or near walls [97].

2.4 Limitations and introduction to new identification approaches

2.4.1 Vortex identifiers limitations

Recently, various limitations of the previous identification criteria have been pointed out and some new
general requirements have been formulated such as the validity for compressible and variable-density
flows, non-local properties, the determination of the local intensity of the swirling motion and so on...
A review is beyond the scope of this thesis but Václav [109] proposed a complete overview of those
limitations with the presentation of several variations of these classical criteria.

In the context of this work, the limitation that may strongly be highlighted deals with the use of these
criteria with highly-resolved turbulent simulations. As presented in the introduction, due to the constant
increase of the computational resources, the quantity of data generated by numerical simulations has
become so large that it has drastically complicated the visualization of coherent features from fully
turbulent flows using these criteria. For instance, while the Q-criterion successfully extracts the largest
vortices in laminar flows or in LES with coarse meshes, its fails at identifying the large scale dynamics
in very refined simulations. As Guedot presented in this thesis [81], this criterion is no more sufficient
to extract large-scales from well-refined simulations as shows Fig. 2.8. Here, the large-scale coherent
features, that can distinctly be seen on the first left column, are hidden by the smallest scales as the mesh
resolution increases.

This issue comes from the scaling of the Q-criterion, which is larger for small vortices than for energy
carrying eddies in an isotropic homogeneous turbulence. This can be shown using a simple vortex theory
such as the Lamb Oseen vortex. In this case, the velocity in the circumferential direction θ is defined as
uθ(r, t) = Γ/(2πr)

(
1− exp(−r2/r2

c )
)

where Γ is the circulation and rc the radius of the vortex core.
The maximum of the Q-criterion is found at the center of the vortex as the shear component vanishes
with Qmax ∼ Γ2/r4

c . The enstrophy E , i.e. the integral of the squared vorticity, for this vortex is equal to
Γ2/(2πr2

c ). In the inertial range of homogeneous isotropic turbulence, enstrophy scales as k1/3, which
implies that the Q-criterion maximum scales as k7/3. With this scaling, small vortices have higher values
of Q-criterion than large scales. Then, in highly-resolved LES, the small vortices might completely mask
large vortices when plotting Q-criterion iso-surfaces.
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FIGURE 2.8: Q-criterion iso-contour Q = 0.32 × 108s−2 on 4 meshes 1.7 million cells (first column),
14 million cells (second columns), 41 million cells (third column) and 110 million cells (fourth column)
from Guedot thesis. [81]

As a consequence, classical vortex identifiers can no more be used in such refined simulations without
relevant processing procedure. Hence, the study of large-scale features through vortex identifier in well-
resolved turbulent flows has to be performed once the dataset has been reduced thanks to performant
extraction tools.

2.4.2 Extraction tools for large amount of data

Besides the large amount of data generated by highly-resolved simulations, it is mandatory to effi-
ciently analyze this huge mass of information and to select the most relevant features. Therefore, some
classical post-processing tools in CFD field that attempt to circumvent these issues are here briefly pre-
sented:

• Selective Sampling : This tool deals with the extraction and the writing on the computer hard-
drive of a localized part of the available data. Hence, it is possible to only recover local informa-
tion such as on a point, a line, a plane or an iso-surface etc ... This method allows to drastically
reduced the amount of data that have to be stored. However, this basic extraction tool is not
able to circumvent the vortex criterion scaling issue. For instance, iso-surfaces of vorticity from
billion-cell DNS of three-dimensional homogeneous isotropic turbulent flow [101] result in ex-
tremely noisy and complex pictures of the flow that are hardly exploitable for the analysis of the
turbulence dynamics
• Level-Set: Level-Set methodologies are powerful numerical methods created in order to provide

an implicit and dynamic representation of surfaces [180]. These methods may be applied in va-
rious domains of the fluid mechanics, such as spray flows highlighted here with Fig. 2.9, but also
in the field of computer assisted animations or for image processing applications. However, this
method can only be used for two-phase flows and thus is not applicable to large-scale features
representation.
• High-Order Filter (HOF): Another method that enables to extract the large-scale features from

a flow consists in applying efficient low-pass filters. In that case, the filters require high se-
lectivity to damp the smallest structures while keeping the largest one intact. As presented in
Fig. 2.10, Guedot [81] developed during her thesis an unstructured high-order filtering process
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FIGURE 2.9: Geometry of the injector and simulated liquid sheet for the Triple Disk Injector on a 1.6
billion tetrahedral cells grid from [135]

that successfully extracts the Precessing Vortex Core [156] (PVC) in a very challenging swirl
flow configuration. As the present work strongly refers to the filtering notion, it will be further
detailed in Chapter 4.

FIGURE 2.10: Unfiltered Q-criterion iso-surface (left) and filtered Q-criterion with the HOF filters (right)
coming from the 878 million-cell LES from Guedot Thesis [81]

• Modal decomposition methods : The large-scale visualization and extraction may be achieved
thanks to the application of modal decomposition methods such as POD [167] or DMD [175].
Such methodologies have been developed and used during this thesis and will be presented in
details in Chapter 5.

Finally, the combination of selective sampling and high-order filters or the application of modal de-
composition methods can both circumvent vortex identifiers scaling issue and dataset reduction. Ho-
wever, the application of these extraction tools on billion-cell simulations are extremely expensive and
therefore cannot be performed in a reasonable way in such simulations. Hence, the main idea of this work
is to combine these methods with multi-level approaches that may provide important cost reduction.
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FIGURE 2.11: Selected dynamic modes of a harmonically forced axisymmetric jet from [176]

2.4.3 Multi-level approaches

Since the past decades, interesting new coherent feature processing methods have been developed
in order to visualize and to extract large-scale features for highly resolved turbulent LES. Based on a
multi-scale filtering approach, Bürger et al. [25] attempt to illustrate basic mechanisms of the inertial
range turbulence by showing small structures advected by larger ones, while being sheared and twisted
by the previous ones. This procedure is based on several filtering steps of the instantaneous velocity field
using a box filter. On the one hand, the instantaneous velocity field is first filtered at scale l1, then the
computation of iso-surfaces of the Q-criterion associated to the threshold Q > q1 enables to delimit the
fluid domain D1. On the other hand, the instantaneous velocity field is filtered again at a different scale
l2 < l1 that refers to another fluid domain D2 where Q > q2. Using semi-transparent representation of
the domains D1 and D2, the proposed methodology enables thus to visualize vortices within vortices as
Fig. 2.12 shows. The transparent grey features refer to the large-scales vorticity while the green and red
features deal with the small-scale vorticity in alignment and off-alignment respectively.

FIGURE 2.12: Vortices within vortices from [25]
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However, it is noticeable that the filtering process of this methodology is based on second-order box
filters. These filters are not suitable for large-scale extraction of coherent features as they also damp
the lowest frequencies present in the flow. This is due to their very low selectivity that produces a very
smooth cutoff frequency while sharpness is of paramount importance in that case.

Finally, this work aims at presenting an improvement to these formalisms with the proposal of two
multi-level frameworks for the on-the-fly co-processing of highly resolved simulations. On the one hand,
the proposed MGHOF framework combines the multi-level approach with velocity-gradient tensor for-
malism and high-order filters in order to extract and visualize the large-scale features from well-resolved
simulations with a drastically reduction of the CPU cost. Thanks to this approach, modal decomposition
methods can thus be applied on a reduced dataset leading to the identification of the most dominant dy-
namically modes in turbulent flows. On the other hand, the second proposed framework, called MR-LES,
is also based on the multi-level formalism as it performs several simulations at different scale resolutions
simultaneously in order to generate optimized grid for the simulation. Hence, these methodologies at-
tempt to bring deep insights to overcome Big Data issues in highly refined numerical simulations. This
manuscript presents in chapter 4, 5 and 6 the development of these new multi-level approaches for the
next generation of post-processing tools.
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Chapter 3

Governing equations and modeling of
turbulent incompressible flows

This third chapter presents the fundamental mathematical background of fluid dynamics. The gene-
ral concepts and hypothesis of the Navier-Stokes formalism are exposed in a brief introduction. Then,
the first main section of this chapter deals with the numerical modeling for turbulent flows. The balance
equations for mass, momentum, species and energy are presented, followed by an introduction to the
fundamental mechanisms of turbulence such as the Richardson’s energy cascade concept and Kolmogo-
rov’s hypothesis. Moreover, the most common numerical methods for the simulation of turbulent flows
are also presented with a focus on the LES filtered equations and on the sub-grid scale closure models.
Finally, the second and last section presents the CFD YALES2 code and some of the main tools and
strategies adopted with some highlights on the numerical schemes and solvers used during this thesis.
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3.1 Numerical modeling for the turbulent flows

3.1.1 Equations of conservation

In a continuous medium, the fluid dynamics is governed by the Navier-Stokes equations which can
rigorously be deducted from the statistical mechanics and from fundamental principles such as the mass,
momentum, species and energy conservation equations. This derivation is not straightforward and can
be found in [18, 74] or [86]. All these equations are expressed hereafter using the conservative form and
Einstein’s notation.

• The mass conservation is described through the continuity equation defined as follows:

∂ρ

∂t
+
∂ρui
∂xi

= 0 . (3.1)

• The momentum conservation is expressed as

∂ρuj
∂t

+
∂ρuiuj
∂xi

= − ∂p

∂xj
+
∂τij
∂xi

, (3.2)

where τij refers to the viscous tensor that may be expressed for Newtonian fluids as

τij = µ

Ç
∂ui
∂xj

+
∂uj
∂xi

å
− 2

3
µ
∂uk
∂xk

δij , (3.3)

with µ the dynamic viscosity of the mixture and δij the Kronecker symbol.

The addition of the pressure contribution to the viscous stress tensor is used to define the
constraint tensor σ stress expressed as follows:

σij = τij − pδij . (3.4)

Then, the strain viscous tensor S and its deviatoric part SD are defined as follows:

Sij =
1

2

Ç
∂ui
∂xj

+
∂uj
∂xi

å
and SDij = Sij −

1

3
Skkδij . (3.5)

Finally, the previous momentum balance equation 3.2 can thus be written as

∂ρuj
∂t

+
∂ρuiuj
∂xi

= − ∂p

∂xj
+

∂

∂xi

î
2µSDij

ó
. (3.6)

• The species conservation refers to the mass conservation applied to each chemical species and
can thus be formulated as

∂ρYk
∂t

+
∂ρuiYk
∂xi

=
∂Fk,i
∂xi

+ ω̇k , (3.7)

with Yk the mass fraction of the species, Fk,i the diffusive flux of the species in the i direction
and ω̇k the species chemical source term.
• The energy conservation may be presented through different expressions depending on the

considered variable. Here, the specific sensible enthalpy noted hs has been chosen as all com-
putations in this thesis have been done under constant pressure assumption. It can be defined
through the specific heat capacity Cp as follows:
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hs(T ) =

∫ T

T 0
Cp(θ)dθ . (3.8)

Then, the energy conservation of the mass sensible enthalpy can be written as

∂ρhs
∂t

+
∂ρuihs
∂xi

=
Dp

Dt
+
∂Qi
∂xi

+ τij
∂ui
∂xj

+ Q̇+ ω̇T , (3.9)

where Qi refers to the diffusive flux in the i direction, ω̇T to the chemical source term, Q̇ to the
heat source term and finally the operatorD./Dt = ∂./∂t+ui∂./∂xi as the particulate derivative.
More details can be found in [156].

3.1.2 Introduction to turbulence

3.1.2.1 Laminar versus turbulent flows

In 1883, the pioneer Osborne Reynolds [161] was the first to identify two different states of fluid.
Indeed, in flows characterized by low velocities, the small perturbations are immediately damped due to
the molecular viscosity which tends to maintain the organized property of the fluid. In that case, the flow
is called laminar and is characterized by regular parallel fluid particle trajectories. When the velocity
increases, the fluid viscosity and can no longer dissipate these perturbations which are amplified by
several instability mechanisms. Hence, the flow evolves from the laminar flow regime to the turbulent
state, which is characterized by chaotic, aleatory and intermittent behaviors associated to a large range of
temporal scales and 3D spatial structures. However, the same set of equations - the Navier-Stokes model
- can be used to describe both laminar and turbulent flow regimes and the transition between these two
states can be explained regarding the non-linearity aspects of these equations.

The turbulent behavior of the flows may be quantified by comparing the inertial forces, that tend to
disrupt the flow and create new turbulent scales, to the viscous forces that set against the fluid movement
and dissipate the structures. The dimensionless Reynolds number enables to quantify the competition
between these phenomena and is defined hereafter:

Re =
uL

ν
. (3.10)

In this expression, u refers to the characteristic velocity scale of the flow, L to a characteristic length of
the configuration and ν represents the kinematic viscosity of the fluid. Hence, small Reynolds numbers
are associated to laminar flows while large ones correspond to turbulent flows. The next sub-sections
introduce the mathematical background and concepts of turbulent flows and a complete overview of the
subject can be found in the seminal book of Pope [157].

3.1.2.2 The Richardson’s energy cascade

The energy cascade concept of Richardson can be summarized with the following statement : turbu-
lence is composed of eddies of different sizes. Here, the notion of eddies refers to a coherent turbulent
motions localized within a region of size l, that can also contains smallest eddies. The velocity scale
associated to these eddies noted u(l) enables to define their turnover timescale as τ(l) ≡ l/u(l).
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The energy cascade infers that the large eddies are unstable and, at the end of their turnover timescales,
will break up into various smaller eddies while transferring their energies to them. The same process also
happens to these smallest eddies that turn into more smaller ones. Therefore, the successive energy trans-
fer from the largest scales to the smallest ones illustrates the energy cascade concept of Richardson. This
process occurs until the molecular viscosity of the fluid becomes stronger than the inertial forces at the
smallest scales of the flow, dissipating the kinetic energy. In 1922, Richardson [162], parodying a poem
of Jonathan Swift, intrinsically describes the vortex interactions of the turbulence as

Big whirls have little whirls
that feed on their velocity,
And little whirls have lesser whirls
and so on to viscosity,
(in the molecular sense).

Although the dissipation may be seen as the final step of the energy cascade, this dissipation rate is
however determined by the first step of the cascade through the energy transfer from the largest eddies.
Indeed, these so-called energetic eddies, defined with the characteristic length,velocity and timescale l0,
u0, τ0 respectively, have a kinetic energy of order u2

0 that dissipates at rate τ0 leading to the estimation
of the dissipation rate ε ≡ u2

0/τ0 = u3
0/l0 that is independent of the kinematic viscosity ν of the fluid.

3.1.2.3 Kolmogorov hypothesis

Although the Richardson’s cascade gives some understanding of the turbulent process, some questions
remain unanswered such as the size of the smallest eddies that dissipate the kinetic energy but also the
evolution of the velocity u(l) and timescale τ(l) as the eddy characteristic length scale l decreases.
The theory advanced by Kolmogorov [111] attempts to answer these questions and is based on three
hypotheses that are exposed hereafter using the notation of Pope [157]:

Local isotropy hypothesis : "At sufficiently high Reynolds number, the small-scale turbulent motions
(l << l0) are statistically isotropic."

This first hypothesis deals with the isotropy of the small-scale motions and means that, in general
directional biases, such as boundary conditions or information about the geometry responsible of the
anisotropic behavior of largest eddies, are lost in the energy cascade and do not affect the smallest scales
anymore, leading to universal statistics and thus isotropic behavior. The length scale that demarcates
the anisotropic and isotropic scales is both noted lEI or lt, also known as the integral scale, and may
be evaluated as lEI ≈ 1

6 l0. The anisotropic range is called the energy-containing range. As the most
important processes of the energy cascade are the transfer of energy and the dissipation, this universal
state of the smallest scale motions may depend on the rate at which the scales receive energy from the
large scales noted TEI but also on the dissipation rate ε through the kinematic viscosity ν that is assumed
to be nearly equal ε ≈ TEI . This can be stated as follows:

First similarity hypothesis: "In every turbulent flow at sufficiently high Reynolds number, the statistics
of the small-scale motions (l < lEI ) have an universal form that is uniquely determined by ν and ε."
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Considering the isotropic scales with l < lEI , their states are characterized as an universal equilibrium
range as their timescales τ(l) = l/u(l) are small in comparison to τ0 = l0/u(l0). Indeed, the smallest
eddies can quickly be adapted to maintain the dynamics equilibrium with the energy-transfer rate TEI
coming from the largest eddies. The Kolmogorov scales that characterize the smallest dissipative eddies
can thus be defined by only using the dissipation rate ε and the kinematic viscosity ν as

ηK ≡ (ν3/ε)1/4 ,

uK ≡ (εν)1/4 ,

τK ≡ (ν/ε)1/2 .

(3.11)

The Reynolds number based on the Kolmogorov scales can be defined as being equal to unity as at
this scale, the inertial motions forces are balanced by the molecular viscous effects.

ReK =
ηKuK
ν
≈ 1 . (3.12)

Moreover, the dissipation rate can thus be reformulated using the Kolmogorov scales [157] as

ε =
νu2

K

η2
K

=
ν

τ2
K

, (3.13)

with (uK/ηK) = 1/τK a good approximation of the velocity gradients for dissipative eddies.

When the Reynolds number increases, the ratio ηK/l0 becomes smaller and some range of scales l are
small compared to the largest eddies l0 and very large compared to the Kolmogorov scale ηK , therefore
very little affected by the dissipative effects. The state of these scales is characterized as follows:

Second similarity hypothesis : "In every turbulent flow at sufficiently high Reynolds number, the sta-
tistics of the motions of scale l in the range l0 >> l >> ηK have a universal form that is uniquely
determined by ε independent of ν."

Here, the length scale lDI , also noted ld, is introduced to split the universal equilibrium range l < lEI
into two sub-ranges that are the inertial sub-range for lEI > l > lDI and the dissipation range l < lDI .
This new scale, also known as the Taylor scale, can be evaluated as lDI = 60ηK . Then, in the inertial
subrange, the motions are characterized by inertial forces with negligible viscous effects when in the
dissipation range they are characterized by preponderant viscous effects.

FIGURE 3.1: Energy cascade at very high Reynolds number from [157]
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Finally, all the previously presented concepts can be found in Fig. 3.1.

3.1.2.4 Statistical description of the turbulence

As the turbulence is an unsteady, chaotical and random phenomenon, the deterministic behavior of the
Navier-Stokes equations may appear unsuitable for modeling it. These characteristics can easily be ex-
plained through the systematic presence of perturbations on the boundary conditions for turbulent flows.
Indeed, the roughness of the wall materials, impurities, inhomogeneous temperature in the fluid and
many others effects may be factors that locally disrupt the flow. Moreover, the Navier-Stokes equations
reveals to be very sensitive to these perturbations and the non-linearity of these equations may conduct,
for very similar initial conditions, to very different solutions. Hence, small perturbations in the flow may
have huge effects and consequences especially for high Reynolds number flow fields. In other words, the
Navier-Stokes equations lead to stable solutions for laminar flows but may lead to unstable solutions for
turbulent flows.

Because of the random behavior of the flow variables that have to be computed, represented here by ϕ,
it is not possible to build a mathematical model allowing to predict them. Therefore, a numerical model
has to provide a statistical description of ϕ through the prediction of its Probability Density Function
(PDF) [34] noted P . The probability of the random variable ϕ being lower or equal to ϕ1, noted P(ϕ ≤
ϕ1), is defined as follows:

P(ϕ ≤ ϕ1) =

∫ ϕ1

−∞
P(x)dx . (3.14)

Moreover, the PDF P of a variable ϕ is perfectly determined if all statistic moments are known. The
statistic moment of order q can be defined as

Mq(ϕ) = 〈ϕq〉 =

∫ +∞

−∞
xqP(x)dx . (3.15)

The first order moment corresponds to the average value of the random variable:

〈ϕ〉 =

∫ +∞

−∞
xP(x)dx . (3.16)

Hence, the fluctuations of ϕ, noted ϕ′, refers to the deviation from the average and is written as

ϕ′ = ϕ− 〈ϕ〉 with 〈ϕ′〉 = 0 . (3.17)

In this decomposition, called Reynolds average, the fluctuation part ϕ′ refers to the turbulent motions.
It can also be interesting to know the statistical moments of the fluctuation ϕ′, also called centered
statistical moments:

µq(ϕ) = 〈ϕ′q〉 =

∫ +∞

−∞
(x− 〈ϕ〉)qP(x)dx . (3.18)
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The centered moment of zero-th order µ0 is equal to unity and the one of first order µ1 equal to zero.
The variance of ϕ can also be seen as the centered second-order moment and is expressed as follows:

var(ϕ) = µ2(ϕ) = 〈ϕ′2〉 =

∫ +∞

−∞
(x− 〈ϕ〉)2P(x)dx . (3.19)

The Root Mean Square (RMS) of ϕ, as the square root of the variance, is more widely used in the LES
context.

Applying the Reynolds decomposition on the momentum balance equation 3.2 leads to the Reynolds
Averaged Navier-Stokes Equations (RANS) as

∂〈ui〉
∂t

+
∂

∂xj
(〈uiuj〉) +

∂

∂xj
(〈u′iu′j〉) = −1

ρ

∂〈p〉
∂xi

+ ν
∂2〈ui〉
∂x2

j

, (3.20)

using the incompressible constraint that can also be expressed for the averaged and fluctuating parts as
∇ · 〈u〉 = 0 and ∇ · u′ = 0, and with the following properties detailed in Chassaing [34]

〈u.∇u〉 = 〈u〉.∇〈u〉+ 〈u′.∇u〉 ,
〈u′.∇u〉 ≡ 〈u′.∇u′〉 ,
〈u′.∇u′〉 = 〈∇ · (u′ ⊗ u′)〉 .

(3.21)

This equation models the dynamics of the averaged motions and possesses the same contribution as
the instantaneous momentum balance plus an extra term that refers to the centered second-order moment
of the velocity∇ · (〈u′ ⊗ u′〉) also known as the Reynolds tensor.

Hence, the momentum balance of the velocity fluctuating part can be expressed by taking the diffe-
rence between the instantaneous momentum balance in Eq. 3.2 with the averaged one in Eq. 3.20 as

∂u′i
∂t

+
∂

∂xj
(uiuj − 〈uiuj〉)−

∂

∂xj
(〈u′iu′j〉) = −1

ρ

∂p′

∂xi
+ ν

∂2u′i
∂x2

j

. (3.22)

From this equation, the next section will develop the turbulent kinetic energy balance equation.

3.1.2.5 Kinetic energy balance equation

For incompressible non reactive flows, the energetic properties of the fluid can be resumed through
the local kinetic energy as

K =
1

2
u.u . (3.23)

Applying the Reynolds decomposition of the velocity field, this energy can thus be expressed as 〈K〉 =

K + 〈kt〉 with

K =
1

2
〈u〉.〈u〉 , 〈kt〉 =

1

2
〈u′.u′〉 , kt =

1

2
u′.u′ , (3.24)

where K refers to the average of the kinetic energy, 〈kt〉 to the turbulent kinetic energy of the averaged
flow and kt the turbulent kinetic energy of the instantaneous velocity field.
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The transport equation of the averaged turbulent kinetic energy 〈kt〉 can therefore be deduced from
Eq. 3.22 and can be written as follow:

∂〈kt〉
∂t

+ 〈ul〉
∂〈kt〉
∂xl︸ ︷︷ ︸

A

= −〈u′iu′l〉
∂〈ui〉
∂xl︸ ︷︷ ︸

P

− ∂

∂xl

Å
1

2
〈u′iu′ju′l〉+

1

ρ
〈u′lp′〉

ã
︸ ︷︷ ︸

DT

− ν〈∂u
′
i

∂xl

∂u′i
∂xl
〉

︸ ︷︷ ︸
ε

+ ν
∂2〈kt〉
∂x2

l︸ ︷︷ ︸
Dν

,

(3.25)
where A refers to the advection terms, P to the production term, DT to the turbulent diffusion, ε to the
dissipation associated to the molecular viscosity and finally Dν to the viscous diffusion. Moreover, DT

and Dν may be seen as a spatial redistribution of the kinetic energy between the different parts of the
fluid.

In the case of Homogeneous Isotropic Turbulent flows (HIT), the averaged turbulent kinetic energy
balance equation in Eq. 3.25 can be simplified as follows:

∂〈kt〉
∂t

= − ν〈∂u
′
i

∂xl

∂u′i
∂xl
〉

︸ ︷︷ ︸
ε

. (3.26)

More details concerning the definitions of the homogeneity and isotropy properties can be found in
the literature as the one of Taylor [189], Craya [43] or Lesieur [118].

3.1.2.6 Spectral view of the energy cascade

The analysis of the spectral view of the Richardson’s energy cascade deals with the determination of
the turbulent kinetic energy distribution among the different sizes of eddies. Some mathematical tools can
be used in order to estimate this distribution. Indeed, the turbulent kinetic energy contained in the eddy
of characteristic length r can be achieved through the introduction of the Reynolds tensor that indicates
how much the velocity fluctuations are correlated for points separated by the distance r :

Rij(r,x, t) = 〈u′i(x, t)u′j(x + r, t)〉 . (3.27)

Under homogeneous and isotropic assumptions and considering the wavenumber k that refers to the
length scale l defined as k = 2π/l, the Fourier transform of this tensor can be expressed as

Φij(k, t) =
1

(2π)3

∫

R3
e−ik.rRij(r, t)dr , (3.28)

and corresponds to the contribution of the wavenumber k to the turbulent kinetic energy.

In order to avoid directional considerations but also to only consider scalar wavenumber k, the tur-
bulent kinetic energy spectrum is defined by integrating the trace of the Φij(k, t) tensor on the k radius
sphere in the Fourier space as

E(k, t) =

∫

R3

1

2
Φii(k, t)δ(|k| − k)dk . (3.29)
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Then, the term E(k, t)dk corresponds to the energetic contribution of the scales that have a wave-
number modulus included into the range k ≤ |k| ≤ k+dk. The production of the turbulent kinetic energy
is maximal in k = 2π/lt with lt the integral scale. The previous property coming fom the Kolmogorov
theory can be applied on this integral scale leading to the following relations:

Ret =
ltut
ν

, lt =
u3
t

ε
,

lt
ηK

= O
(
Re

3/4
t

)
. (3.30)

Moreover, in the inertial range, the energy spectrum is defined by the following relation

E(k) = Cε2/3k−5/3 , (3.31)

where C is an universal constant.

The turbulent kinetic energy is damped into thermal energy in the dissipation range as Fig. 3.2 shows.
The previous definition of the energy spectrum presented in Eq. 3.29 associated to the momentum ba-
lance equation in Eq. 3.2 enables to establish the evolution of the turbulent kinetic energy in the Fourier
space [85] as

∂E(k, t)

∂t
= P(k, t)− ∂

∂k
T (k, t)− 2νk2E(k, t) , (3.32)

with the energy production at the largest scale for the first term on the left, the energy transfer rate
from the largest to the smallest scales for the second term and finally the viscous dissipation that can be
expressed as a function of the energy spectrum E .

FIGURE 3.2: Turbulent kinetic energy spectrum inspired from [136]

Batchelor [10] defined in 1953 the integral scale for HIT flows lt based on the integration of the energy
spectrum E(k) as:

3

2
u2
t =

∫ ∞

0
E(k, t)dk , (3.33)
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and

lt =
π

2u2
t

∫ ∞

0

E(k, t)

k
dk . (3.34)

Finally, once the main turbulent concepts have been introduced, the next section focuses on the dif-
ferent computation approaches for turbulent flows.

3.1.3 RANS, LES and DNS approaches for turbulent flows

As previously mentioned, the Navier-Stokes equations enable to represent both laminar and turbulent
flows dynamics. The resolution of these equations can be achieved thanks to various numerical methods.
The three different classical approaches developed to perform CFD of turbulent flows appearing in Fig.
3.3 are briefly summarized as follow:

FIGURE 3.3: Illustration of the turbulent energetic spectrum along the energetic cascade from [95]. The
solved and modeled scales are given for RANS, LES and DNS formalisms

• Direct Numerical Simulation (DNS): The DNS approach consists in directly solving the dis-
cretized form of the Navier-Stokes equations under the assumption that all spatial turbulent struc-
tures are well resolved, guarantying that the discretized terms are as close as possible to the conti-
nuous terms. In that case, there are only discretization errors and no modeling errors. However,
this approach appears to be extremely costly for highly turbulent flows, even for non-reacting
flows, and therefore it is generally only possible to perform such simulations for academics stu-
dies without limited computational resources. As DNS cannot systematically be applied, other
formalisms have to be chosen by adding physical models that avoid to resolve all the spatial
scales of the turbulence and thus decreasing the CPU cost of the simulation.
• Reynolds Averaged Navier-Stokes (RANS): This approach deals with the solving of the Navier-

Stokes equations through the application of a time-average operator. Hence, this formalism en-
ables to access to the stationary fields only as it computes the mean flow field while completely
modeling the fluctuating parts of the flow. Therefore, none of the scales of the turbulent spectrum
are resolved. Moreover, because of the non-linearity of the Navier-Stokes equations, unresolved
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terms appear in the time-averaged equations and thus their closures necessitate turbulence mo-
dels. The RANS approach is very widespread and attractive in industries as it does not require
refined meshes but also thanks to very short restitution times. Moreover, this approach allows to
exploit the geometric symmetries of the configurations and therefore, to only perform 2D simu-
lations and to benefit of the spatial symmetries of the mean flow field which is not the case for
other formalisms.
• Large-Eddy Simulation (LES) : Finally, the LES formalism can be considered as a trade-off

between the high computational cost of the DNS approach and the entire modeling of turbulent
scales in the RANS approach. Indeed, it consists in applying a spatial filtering operator on the
Navier-Stokes equations in order to resolve only the largest scales of the flow. Some criteria en-
able to estimate the needed resolution of the LES approach [157, 198]. Contrary to the RANS
approach, it does not rely on the computation of a mean flow field but rather on a filtered instanta-
neous field, where smallest scales have been removed. In that case, unclosed filtered terms, which
represent the effects of the smallest scales on the largest one, have to be modeled. Moreover, as
these small structures are assumed to be isotropic, universal and dissipative, they are well suited
to this modeling. Finally, LES enables to decrease the CPU cost of turbulent flow simulations
compared to DNS and can be applied for various industrial complex configurations.

All simulations performed in this work has been done through the LES formalism which is presented
more in details hereafter.

3.1.4 Filtered LES equations

The LES formalism implies the scale separation between the resolved and modeled structures through
a low-pass filtering operation applied on the Navier-Stokes equations. Considering a scalar φ(t,x), this
filtering process relies on a spatial convolution product that is defined as

φ(x, t) =

∫

R3
φ(y, t)G∆(y − x)dy , (3.35)

where φ is the filtered scalar and G∆ the filtering kernel associated to the filter size ∆. Moreover, the
filter operator has to be normalized so that,

∫

R3
G∆(x)dx = 1 , (3.36)

and must verify the commutativity property with both spatial and temporal derivation operators [156] as

∂φ

∂t
=
∂φ

∂t

∂φ

∂xi
=

∂φ

∂xi
. (3.37)

The filtering notion will be further developed in Chapter 4. Then, the φ variable may be decomposed
into two parts : a first part that involves scales larger than ∆ noted φ and a second that refers to the
sub-grid fluctuating part, involving scales smaller than ∆ noted φ′′ :

φ(t,x) = φ(t,x) + φ′′(t,x) . (3.38)
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As the flow density may locally varies, the Favre filter, that corresponds to a filter weighted by the
density, has also to be introduced as

φ̃ =
ρφ

ρ
. (3.39)

The Favre filtering process can thus be applied onto the equations 3.1, 3.2, 3.7, 3.9 leading to the
instantaneous filtered balance equations defined as follows:

• Filtered mass conservation
∂ρ

∂t
+
∂ρũi
∂xi

= 0 . (3.40)

• Filtered momentum conservation

∂ρũj
∂t

+
∂ρ‹uiũj
∂xi

= − ∂

∂xi
[ρ(fiuiuj − ‹uiũj)]︸ ︷︷ ︸

(1)

− ∂p

∂xj
+
∂τ ij
∂xi

. (3.41)

• Filtered species conservation

∂ρỸk
∂t

+
∂ρ‹uiỸk
∂xi

= − ∂

∂xi
[ρ(fluiYk − ‹uiỸk)]︸ ︷︷ ︸

(2)

− ∂

∂xi
(−ρVk,iYk)︸ ︷︷ ︸

(3)

+ ω̇k︸︷︷︸
(4)

. (3.42)

• Filtered energy conservation

∂ρh̃s
∂t

+
∂ρ‹uih̃s
∂xi

= − ∂

∂xi
[ρ(fiuihs − ‹uih̃s)]︸ ︷︷ ︸

(5)

+
Dp

Dt
+

∂

∂xi
(−ρVhhs)︸ ︷︷ ︸

(6)

+ ω̇T︸︷︷︸
(7)

. (3.43)

These filtered conservative equations possess unresolved terms (1)-(7) and each of them have to be
closed:

• The sub-grid Reynolds stress tensor (1) necessitates the introduction of a turbulent model for
the momentum transport of the unresolved velocity fluctuations to reproduce the energy transfer
between the resolved and modeled scales. The Boussinesq approach [20], that is further deve-
loped in the next sub-section, has been used during this thesis. Hence, the turbulent fluxes are
models through a similar expression to the laminar definition 3.3 but in that case using a turbu-
lent viscosity µt = ρνt as

τ ij = µt

Ç
∂ũi
∂xj

+
∂ũj
∂xi

å
− 2

3
µt
∂ũk
∂xk

δij . (3.44)

Other models will be presented in the next sub-section.
• The sub-grid species (2) and enthalpy fluxes (5) may be modeled in a similar manner as the

sub-grid Reynolds stress tensor [140].
• The filtered laminar diffusive fluxes of species (3) and enthalpy (6) that are more detailed in

the thesis of Bénard [15].
• The filtered species chemical rate (4) and enthalpy source term (7), respectively noted ω̇k and
ω̇T , are the critical points regarding the modeling of the turbulent combustion, more information
can be found in [156] or in the thesis of Gruselle [79] and Bénard [15].



Governing equations and modeling of turbulent incompressible flows 63

3.1.5 Sub-grid scale modeling of turbulence

Based on the fluctuations of the velocity moments, that refer to the accuracy of the statistical flow
representation, several turbulent sub-grid scale models exist in the literature. The number of moments
taken into account may thus be the first criterion to classify them. Hence, we can segregate these models
into two categories : the first-order moment models based on the averaged values and the second-order
moment models that also take the second-order moment into account. Moreover, another criterion that
deserves to be quoted is the number of additional equations introduced by the different model classes.
During this thesis, only first-order algebraic sub-grid-scale models - without additional equation - have
been used and thus only this category is presented hereafter.

3.1.5.1 Boussinesq hypothesis

All the closure models for the momentum balance equation are built upon a turbulent viscosity ba-
sed on the Boussinesq eddy viscosity assumption [20, 21]. Indeed, Boussinesq introduced in 1877 the
concept of the turbulent viscosity with a similar relation to the one of Newton for the molecular viscosity
constraints. In Eq. 3.41, the filtered viscous tensor τ ij is expressed as

τ ij = 2µS̃Dij with S̃ij =
1

2

Ç
∂ũi
∂xj

+
∂ũj
∂xi

å
. (3.45)

As the filtered momentum conservation equation 3.41 showed, the unclosed term ρ(fiuiuj − ‹uiũj) can
therefore be modeled in the same way than the viscous tensor using a turbulent viscosity νt as

ρ(fiuiuj − ‹uiũj) = 2µtS̃
D
ij . (3.46)

Using the new formulation of the unclosed term, the filtered momentum conservation equation 3.41
can thus be expressed using the two different viscosities.

∂ρũj
∂t

+
∂ρũiũj
∂xi

= − ∂p

∂xj
+

∂

∂xi

î
2(µ+ µt)S̃

D
ij

ó
. (3.47)

Finally, it can be highlighted that, thanks to the Boussinesq assumption, all first order algebraic sub-
grid scale models have only to model the turbulent dynamic viscosity µt.

3.1.5.2 Smagorinsky model

The LES formalism implies that the largest scales of the flow are computed while the small sub-grid
scales are modeled. As these smallest scales tend to have a more isotropic behavior, it may possible to
characterize them with an universal relation which is simpler than standard Reynolds stress model. The
classical Smagorinsky [184] SGS model based on the Boussinesq eddy viscosity assumption involves
the equilibrium between the production and dissipation rate of the kinetic energy at the LES filter size
∆. Hence, turbulence can thus be considered at this scale as a pure dissipative phenomenon. The eddy
viscosity is expressed as

νt = (Cs∆)2|S̃| with |S̃| =
»

2S̃ijS̃ij , (3.48)



Governing equations and modeling of turbulent incompressible flows 64

where Cs is the Smagorinsky constant, ∆ is the LES filter size proportional to the grid size ∆x and |S̃|
is the magnitude of the filtered strain-rate tensor.

However, the choice of the constant Cs depends on the flow configuration. Lilly [122] proposed a
constant value of Cs ' 0.23 for homogeneous isotropic turbulence with cutoff in the inertial subrange
and ∆ = ∆x. However, this SGS model is also known to cause an excess of dissipation in mean shear
flows and to also have some difficulties at predicting the turbulence transition. Finally, very popular for
its simplicity, the Smagorinsky SGS model is generally used with a value of Cs in the range [0.1 ;0.23].

3.1.5.3 Dynamic Smagorinsky model

The major drawback of the SGS stress models based on the eddy viscosity assumption is that they can-
not model different turbulent configurations, such as shear flows or transitional regimes, with one univer-
sal constant parametrization. Therefore, Germano [72] and Lilly [123] proposed an improved version of
the previous Smagorinsky model that attempts to overcome this issue. In this approach, the Smagorinsky
constant Cs is locally determined through a dynamic procedure. Indeed, the main idea is based on that
the sub-grid scales characteristics can be deduced from smallest resolved scales. In order to achieved this
idea, another filtering operator noted here .̂ is introduced and the resolved instantaneous velocity field
is filtered with a width ∆′ larger than ∆. The sub-grid scale stress term τ ′ij = ρ(fiuiuj − ‹uiũj) and the

sub-grid scale stress term based on the two times filtered velocity τ ′′ij = ρ(‘fiuiuj − “‹uî̃uj) may be written
according to the Smagorinsky model as:

τ ′ij = 2ρ(Cs∆)2|S̃|.S̃ij ,

τ ′′ij = 2ρ(Cs∆
′)2|̂̃S|. ̂̃Sij .

(3.49)

The resolved turbulent stress between the two filtering sizes ∆′ and ∆, called Germano identity, can
be expressed by taking the difference between the two previous sub-grid scale stress tensors as

Lij = τ̂ ′ij − τ ′′ij = ρ
Ä̂̃ui ̂̃uj − ‘̃uiũjä . (3.50)

Combining the previous equations 3.49 and 3.50 and contracting with S̃ij , the Smagorinsky constant
can thus be computed from the two filtered velocity fields as follows:

LijS̃ij = −2ρC2
s

Å
∆2|S̃|.S̃ijS̃ij −∆′2|̂̃S|. ̂̃SijS̃ij

ã
. (3.51)

Implicitly, this model implies similarity between the SGS stresses at the two different scales ∆ and
∆′. Therefore, the sub-grid scales characteristics, through the turbulent viscosity, are based on the same
characteristics than those on the range [∆; ∆′]. However, the quantity in parentheses can have zero values
leading to indeterminate or ill-conditioned Cs constant.

The dynamic Smagorinsky model is relevant for a large range of applications but is costly and complex
to apply as it requires explicit filtering operators. Moreover, the computation of the local constant values
may locally lead to negative values, which implies a negative turbulent viscosity that corresponds to
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energy transfers from the small structures to the largest ones also called backscatter [27]. A specific
treatment has to be applied in order to avoid this phenomenon as it may produce numerical problems.

Finally, based on the same multi-level idea, other dynamic procedures have been proposed as the
one of Veynante et al. [199] that automatically determines flame wrinkling factors from known resolved
fields in large eddy simulations of turbulent premixed combustion. In the same way, chapter 6 presents
the Multi-Resolution LES framework (MRLES) that enables to dynamically optimize meshes based on
performing several LES simultaneously on different grid levels that communicate through velocity fields
exchanges. Thanks to this approach, both modeling and numerical errors can be estimated and then used
in order to build a grid quality criterion that locally determine if the grid has to be coarsened or refined.

3.1.5.4 WALE model

The Wall-Adapting Local Eddy-viscosity (WALE) model developed by Nicoud and Ducros [148]
proposes to obtain realistic turbulent viscosity near solid walls and to predict accurately the transition to
turbulence. Here, the turbulent viscosity is computed thanks to the following relation:

νt = (C2
ω∆)2

(sdijs
d
ij)

3/2

(S̃ijS̃ij)5/2 + (sdijs
d
ij)

5/4
, (3.52)

where the constant Cω is equal to 0.5 and the tensor sd is defined as

sdij =
1

2
(h̃ij + h̃ji)−

1

3
h̃kkδij with h̃ij = G̃ikG̃kj and G̃ij =

∂ũi
∂xj

. (3.53)

This formulation can be compared to the previously presented Smagorinsky formalism. The main
advantages are the following:

• The spatial operator can take into account the rotation and strain rates. Hence, all the vortex
structures that dissipate kinetic energy are therefore detected by the model.
• The turbulent viscosity tends naturally to zero in near-wall zones.
• The model imposes νt = 0 in shear flows, then the transition to turbulence can be faithfully

computed with the birth of unstable linear modes.

3.1.5.5 ILES approach

First of all, it is noticeable that in the LES formalism, the use of an artificial viscosity of the same
magnitude order or larger than the turbulent viscosity but also the use of numerical schemes that produce
high numerical diffusion errors should strongly be avoided. However, the Implicit LES (ILES) concept
is based on the assumption that the sub-grid scale models have a dissipative contribution which can
be replicated with discretized numerical schemes (ILES) or with numerical schemes with additional
artificial dissipation terms in the Monotonicaly Integrated LES formalism (MILES).

Indeed, convective numerical schemes such as low-order or "upwind" schemes generate a significant
numerical viscosity in the LES computation. Moreover, the use of the Jameson viscosity [94] leads to
second- and fourth-order dissipation terms. The fourth-order contributions operates as a sub-grid scale
model [171] as the highest frequencies associated to the smallest scales are damped.
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Concerning the turbulence modeling, this approach consists in the use of no turbulence model and is
therefore called "NO-MODEL". Even if, this method is particularly attractive and cheap because of its
simplicity, it has to be applied with caution as no real control on the dissipation is introduced.

3.2 Presentation of the LES solver YALES2

This section attempts to present the CFD code YALES2 and gives a global overview of all the nume-
rical tools and strategies that have been implemented in order to circumvent the challenges when solving
the reactive Navier-Stokes equations on massive meshes.

3.2.1 General presentation and challenges

In this thesis, all numerical simulations have been performed using the finite-volume CFD code
YALES2 [145], a low-Mach number Large-Eddy Simulation (LES) and Direct Numerical Simulation
(DNS) solver based on unstructured meshes. This code solves the low-Mach number Navier-Stokes equa-
tions in two and three dimensions for turbulent reactive flows using a time-staggered projection method
for constant [38] or variable density flows [154]. YALES2 enables to manage all type of elements through
dual control volumes for the intregration of the transport equation, an example of the control volume is
provided in Fig 3.4. Finally, YALES2 is specifically tailored to solve these low-Mach number equations
on massively parallel machines with billion-cell meshes [144].

FIGURE 3.4: Control volume based on a mesh node in YALES2: xp representing the mesh node and xp
the barycenter of the control volume

One of the major difficulty when computing turbulent reactive flows, such as combustion in rocket
engines, comes from the resolution of very heterogeneous spatial and temporal characteristics scales.
Indeed, the reactive Navier-Stokes equations takes into account several physical phenomena - convection,
diffusion and reaction - that all are associated to characteristic time and length scales which are not
necessary at the same magnitude order.

First, the temporal aspect of this problem may be highlighted through the example of the convec-
tive characteristic timescale, which is typically of the order 10−5 to 10−7 s, comparing to the reaction
timescale of order 10−9 up to 10−12 s for hydrocarbon chemistry.
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The Reynolds number represents the ratio between the convective and diffusive characteristic times-
cales. In turbulent flows - that correspond to high Reynolds number -, as the range of scales of the
turbulent spectrum increases, these two timescales are very different and therefore lead to an increase of
the cost of the Navier-Stokes equations resolution as the time integration is based on a smaller time step
in order to guarantee the accuracy and the stability of the numerical schemes.

Moreover, concerning the spatial characteristic scales, numerical simulations have to ensure some of
the following aspects:

• The computational domain has to be able to resolve the largest scales of the flow.
• The mesh has to be fine enough in order to resolve the smallest turbulent scales of the flow for

the DNS formalism or until the cutoff frequency for the LES methodology.
• The mesh has to resolve the internal structure of the flame for reactive flows.

However, all these constraints require a large amount of elements in order to represent well all the
spatial structures in the flows. Considering a cubic computational domain defined by the edge length L
which is discretized byN points in each space direction, the homogeneous cell size can thus be defined as
L/N . In the case of an Homogeneous Isotropic Turbulence (HIT), the turbulent scales can reasonably be
considered as resolved if the integral scale lt is smaller than the computational domain characteristic scale
L with at least lt = L/8 and if the smallest local mesh size, here ∆x = L/N is of the same magnitude
order as the Kolmogorov scale ηK , which imposes the following relation on the discretization:

N ≈ lt
ηK

. (3.54)

As previously mentioned, the ratio between the integral length scale and the Kolmogorov scale is
approximately the same order as Re3/4, the total cell number Ntot in the computational domain needed
to resolve all the scales therefore satisfies:

Ntot = N3 ≈ Re9/4 . (3.55)

For instance, a Reynolds number of 10′000 requires a spatial grid discretization about 109 elements.
Moreover, it is common in research but also in industrial fields to simulate configurations operating
at much higher Reynolds number. Such billion cells numerical simulations may lead to a prohibitive
computational cost.

Finally, the multi-species chemistry introduces stiff partial differential system of equations that are not
straightforward to solve. Moreover, the large amount of reactive source terms that have to be compu-
ted requires in particular exponential operations which are very expensive to compute. Moreover, some
configurations necessitate to take into account the resolution of others phenomena such as the injection,
atomization, dispersion or the evaporation for two-phase flows or the fluid-solid interactions.

In the next sections, the main numerical strategies and tools of YALES2 that enable to perform billion-
cell simulations are presented.
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3.2.2 Main tools and strategies

The steadily increase of computational resources supports the development of the CFD field as it
enables to improve the fidelity of the numerical simulations by increasing the mesh resolution, the simu-
lated physical time or by adding more physical phenomena in the computation. Here are presented some
of the main tools and strategies that have been developed in the CFD code YALES2 in order to perform
high-performance computing.

3.2.2.1 Parallel computing

Parallel computing deals with computations in which multiple processing elements are carried out si-
multaneously [3]. It can be decomposed into several forms as bit-level, instruction-level, data and task
parallelism. In high-performance computing, parallelism has been employed for many years in order
to solve large problems such as the Navier-Stokes resolution on highly refined grid. It has recently be-
come the dominant paradigm in computer architecture, through the multi-core processors form [6], as the
power consumption of computers - associated to the heat release - renewed interest in the recent years.
Indeed, Asanovic wisdom has been changed from "power is free, but transistors are expensive" to "power
is expensive, but transistors are free". Furthermore, parallelism can be accomplished by splitting com-
plex problems into independent sub-problems that each processing element solves at the same time. The
interest in parallel computing lies in its ability to reduce the restitution time, to perform more advanced
simulations and also to operate the parallelism on modern processors with multi-core or multi-threading
formalisms. Most of the supercomputing machines are distributed-memory machines. There are compo-
sed of an ensemble of nodes in which the memory is shared. Moreover, mastering both communication
and synchronization between the different sub-tasks is one of the greatest challenge in order to access
to good parallel performances. Here are presented two main parallel formalisms, the Message Passing
Interface and the Open-Multi-Processing, and Fig. 3.5 highlights their differences in term of parallel
architecture and memory distribution.

FIGURE 3.5: Node parallelism concepts of MPI and OpenMP from [32]

Message Passing Interface (MPI) : This is a standardized and portable message-passing standard
syntax and semantic designed in 1993-1994 by a group of researchers from both academia and industry
that defines a library of routines allowing to coordinate processes using the paradigm of the message
exchanges. Here, a message is constituted of data packages that transit from the sender process to the
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receiver one. It also contains the identifier of the sender, the type of the data, the length of the data and
the identifier of the receiver process. These exchanged messages are managed by an environment that
can be compared to the regular post, phone operator or to electronic mailbox. Moreover, messages are
sent to specific addresses and the receiver process has to be able to interpret the addressed messages.
The programming model of the message passing formalism can thus be summarized with the following
points:

• The program is written in a classical programming language such as Fortran C or C++.
• All variables are private and reside in the local memory of each process.
• Each process eventually execute different parts of the program.
• Data are exchanged between two or more processors through a programmed calls to specific

routines.

More information can be found in the following materials [78, 45].

Open-Multi-Processing (OpenMP) : This is an Application Programming Interface (API) that sup-
ports multi-platform shared memory multi-processing programming and consists of a set of compiler
directives, library routines, and environment variables that influence run-time behavior. An OpenMP
program is executed by one process that activates light-weight processes also called threads at the entry
of a parallel region. Then, each thread executes a task comprised of a group of instructions. During the
execution of a task by a thread, a variable can be read and/or updated in memory. It can be defined either
in the stack - local memory space - of a thread referring to its private variable or in a shared-memory
space accessible by all threads referring as a shared variable. Moreover, an OpenMP program is an alter-
nation of parallel regions and sequential regions that are always executed by the "master" thread, the one
whose rank equals zero. A parallel region can be executed by many threads at once by sharing the work
contained in these regions. This work-sharing mainly consists in three different methods:

• Executing a loop by dividing up the iterations between the threads (parallel loop).
• Executing many code sections but only one per thread (parallel section).
• Executing many occurrences of the same procedure by different threads (orphaning).

More information can be found in the following materials [48, 92].

3.2.2.2 Two-level domain decomposition and parallelism

Domain decomposition methods are one of the classical approaches in CFD in order to manage this
large amount of generated data. It enables to solve a boundary value problem by splitting it into sub-
domains where smaller boundary value problems are solved. As these sub-domains are independent, the
domain decomposition formalism is suitable for parallel computing as each processor will only solve
its own sub-domain boundary value problem. Once each sub-domain problem has been solved, it is
mandatory to synchronize each solution of the adjacent sub-domain in order to access to the global
solution. This spatial inter-dependance can be taken into account through communications with Message
Passing Interface (MPI) instructions between processors which exchange information for each group
of cells at the interface. Furthermore, the mesh partitioning into sub-domain has to ensure that the load
balancing on each processor is the most homogeneous as possible. In the Eulerian point of view, the most
common manner to guarantee this constraint consists in partitioning the mesh into sub-domains with
the same quantity of work, that means with the same number of elements or pairs of nodes depending
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on the problem. In YALES2, this mesh partitioning task is performed thanks to the external libraries
METIS [103] and SCOTCH [36] and even this decomposition may appear straightforward on structured
meshes, it is generally not the case on unstructured grids.

Moreover, the YALES2 code possesses one particularity with the double domain decomposition for-
malism [145]. Indeed, each sub-domain obtained through the first level of mesh partitioning is decompo-
sed into several groups of cells. This principle is represented in Fig. 3.6 where the computational domain
is split into the processors with black borders but also into smaller groups of elements with the grey
borders. The size of the cell groups is defined in agreement with the size of the processors. This double
mesh decomposition also enables to optimize the performances of the Poisson solver as the cell groups
are used as a coarse mesh for the two-level linear solvers as the deflated PCG [134, 135]. The low fre-
quencies that are more difficult to converge can therefore be solved more efficiently on this coarse level.
This solver is based on two different types of communication: i) external communications through MPI
instructions that correspond to the first level of partitioning ; ii) internal communications that enable to
exchange information between the different cell groups on the same processor. Finally, Fig. 3.6 (right)
illustrates this formalism with the data exchanges between the cell groups, the communicators and the
boundary conditions.

FIGURE 3.6: Representation of the YALES2 double domain decomposition (left) and communication
sketch between the communicators and and processors (right)

3.2.2.3 Low-Mach number approach

Depending on the application, the density field can not always be considered as constant. Indeed,
several physical factors can lead to density variations in the flow: the compressibility effects, the varia-
tions of temperature called thermal expansion and finally the composition variations in fluid mixtures
containing components with different molar mass. For compressibility effects, the entire compressible
reactive equations presented in section 3.1.1 have to be solved. However, these equations necessitate very
small time step, limited by the acoustic Courant Friedrichs Lewy (CFL) criterion, leading to much more
expensive CPU costs.

However, since the Mach number M is defined as the ratio between the velocity of the flow u and
the one of the sound in the same medium c, the low Mach flow regime is defined for Mach number
inferior to 0.3. This regime is very common and can be encountered in various applications. Moreover,
Klainerman and Majda [107] show that compressible flows converge to incompressible flows as the Mach
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number tends to zero. Therefore, a small Mach number as M << 1 implies that the pressure in the
computational domain becomes rapidly homogeneous. In that case, the acoustic waves propagate much
faster than the entropic waves and thus the pressure fluctuations relatively little affect the thermodynamic
properties. Hence, as the compressibility effects can be neglected, the thermodynamic pressure can then
be considered as constant in space but variable in time. Moreover, the variations of the density ρ are yet
only dependent on the dilatation effects due to the temperature and mixture fluctuations. In that case, the
incompressible hypothesis can be considered as relevant and can therefore simplify the Navier-Stokes
equations with a different treatment concerning their resolution. Finally, this simplification enables to
have much larger time step as the limiting acoustic constraint vanishes.

Majda and Sethian [133] proposed an intermediate formalism for the reactive Navier-Stokes equations
that is in between the incompressible formulation with constant density and the compressible formula-
tion. These equations can be written as

∂ρ?

∂t
+∇ · (ρ?u?) = 0 ,

∂ρ?u?

∂t
+∇ · (ρ?u? ⊗ u?) = − 1

M2
r

∇p? ,

∂ρ?E?

∂t
+∇ · (ρ?u?E?) = −∇ · (p?u?) ,

p? = ρ?(γ − 1)

Ç
E? − M2

r

2
u?
å
,

(3.56)

where γ refers to the isentropic coefficient.

Second, the asymptotic development of each dimensionless variablesϕ? = ϕ/ϕr can be written thanks
to Taylor series expansion as

ϕ? = ϕ?0 +Mrϕ
?
1 +M2

rϕ
?
2 +O(M3

r ) with Mr =
ur
cr
, (3.57)

where ϕ refers to the variables characterizing the system such as the velocity, the pressure, the density,
the energy and the index r corresponds to the reference values.

The pressure can therefore be decomposed into two parts: the thermodynamic pressure noted p0 that is
supposed to be constant in space and the dynamic pressure noted p2 which is variable in space and time.
Considering an open system, the thermodynamic pressure p0 is also considered as constant in space and
time and the perfect gas equation may be written as

p0 = ρ0r0T0 , (3.58)

where r0 refers to the universal gas constant.

3.2.2.4 Numerical schemes and solvers

First, the CFD code YALES2 features several numerical schemes for the explicit time advancement of
the temporal integration : the classical Runge-Kutta schemes of third- and fourth-order are available as
well as a more recent one called TFV4A that has been proposed by Kraushaar [112] and that combines
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both Runge-Kutta and Lax-Wendroff methods. Concerning the spatial integration, second and fourth-
order schemes have been implemented. This notion will not be further developed but more information
can be found in Vantieghem’s thesis [197].

Even if a lot of solvers, dedicated to different physical phenomena, have been implemented in YALES2,
only two classical solvers have been used during this thesis for solving the Low Mach Number Navier-
Stokes equations:

• The Incompressible solver (ICS) : The application domain of this solver is limited to isothermal
simulations without chemical reactions and the density is considered as constant.
• The Variable density solver (VDS): Here the variations of pressure, temperature and density due

to the acoustic waves are considered as negligible. The temperature and density fields are strongly
coupled through Eq. 3.58.

3.2.3 Incompressible constant density solver (ICS)

3.2.3.1 Incompressible Navier-Stokes equations

For incompressible flows, the previously introduced Navier-Stokes equations can be simplified as the
fluid density is constant in time and space. The incompressible solver of YALES2 resolves the velocity
balance equation written as

∇ · u = 0 ,

∂u

∂t
+∇ · (u⊗ u) = −1

ρ
∇p+

1

ρ
∇ · τ .

(3.59)

This solver has been used for the LES of the 3D turbulent plane jet and several other test cases. The
previous simplified equation is advanced in time thanks to the modified projection-correction method
presented hereafter.

3.2.3.2 Resolution method

The resolution of the Navier-Stokes equations for incompressible flows is based on the projection
method proposed by Chorin [38] modified by Kim and Moin [106]. It is noticeable that this formalism
resolves the instantaneous velocity field at each time step (associated to integer indices such as n, n+ 1,
etc...) when the density, the pressure and other scalar fields are resolved on staggered time step (associated
to non integer indices such as n+1/2, n+3/2, etc...). The main steps of this methodology are presented
hereafter:

The classical projection method, that is often used for the simulation of incompressible flows, relies on
the Helmholtz-Hodge decomposition under relatively smooth assumption. At each time step, the velocity
field can be decomposed into an irrotational part and a solenoidal part as

u = Πi(u) + Πs(u) , (3.60)

where Πi(u) refers to irrotational component and Πs(u) to the solenoidal component of instantaneous
velocity field with respectively the following properties ∇ × Πi(u) = 0 and ∇ · Πs(u) = 0. These
projection operators are defined as
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Πi = ∇∆−1∇· ,
Πs = −∇×∆−1∇× ,

(3.61)

and some important relationships can be highlighted:

ΠiΠi = Πi ΠsΠi = 0 ∇ ·Πi = ∇· ,
ΠsΠs = Πs ΠiΠs = 0 ∇×Πs = ∇× .

(3.62)

The irrotational component derives from a potential scalar and can thus be written as Πi(u) = ∇ϕ.
The application of the divergence operator∇· enables to expressed the previous relation as follows:

∇ · u = ∇ · [Πi(u) + Πs(u)] = ∇ ·Πi(u) = ∇2ϕ . (3.63)

Hence, the incompressible Euler equations can thus be projected using these previous operators lea-
ding to two projected velocity balance equations:

• The irrotational velocity balance:

Πi(∇ · (u⊗ u)) = −1

ρ
Πi(∇p) . (3.64)

Applying the divergence operator ∇· on this incompressible Euler equation enables to link the
Q-criterion to the pressure Laplacian as:

− 2Q = −1

ρ
∆p . (3.65)

• The solenoidal velocity balance:

∂Πs(u)

∂t
+ Πs(∇ · (u⊗ u)) = 0 . (3.66)

Applying the rotational operator ∇× on this equation enables to find the vorticity ω = ∇ × u

equation as
∂ω

∂t
+ u.∇ω = ω.∇u . (3.67)

Thanks to this decomposition, the velocity balance equation can therefore be solved in two steps:
1 Prediction step: A first estimation of the velocity field for the time n+ 1, noted u?, is obtained

by advancing the velocity equation without the contribution of the pressure gradient as it does
not contribute to the solenoidal part but to the irrotational part of the velocity field.

u? − un

∆t
= −∇ · (u?un) +

1

ρ
∇ · τn . (3.68)

2 Correction step: Once the prediction has been done, leading to u?, the velocity field is corrected
by taking into account the pressure gradient:

un+1 − u?

∆t
= −1

ρ
∇pn+1/2 . (3.69)
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The computation of the corrected velocity, noted here un+1, necessitates the knowledge of pn+1/2

which can be determined by solving the Poisson equation. This equation can be obtained by
taking the divergence operator of Eq 3.69 and integrating the zero divergence constraint for un+1.

∇ · u? = ∇ ·Πi(u
?) =

∆t

ρ
∆pn+1/2 . (3.70)

However, the advancement of the velocity equation that is implemented in the CFD code YALES2 [13]
slightly differs from Chorin’s approach:

1 Prediction step: In that case, the prediction step is done by considering the contribution of the
pressure gradient at the time n − 1/2 that is generally a relative good approximation of pn+1/2.
This approach leads to a better estimation of the predicted velocity u? that therefore enables to
reduce the numerical errors due to the splitting of the temporal advancement.

u? − un

∆t
= −∇ · (u? ⊗ un)− 1

ρ
∇pn−1/2 +

1

ρ
∇ · τn . (3.71)

2 Correction step: Then, the correction step can therefore be written as

un+1 − u?

∆t
= −1

ρ
∇(pn+1/2 − pn−1/2) , (3.72)

which leads to a Poisson equation of the following form:

∆(pn+1/2 − pn−1/2) =
ρ

∆t
∇ · u? . (3.73)

Finally, the resolution of the Poisson equation is the key point of the methodology and it necessitates
efficient linear solvers in order to guarantee good performances for massively parallel computations. This
point will be further developed in the next section.

3.2.4 Poisson equation solving

The Poisson equation for the pressure presented in the previous section are equations that can be
expressed on the form

∆ϕ = RHS , (3.74)

with RHS meaning right-hand side.

This equation deals with the resolution of a linear system in which the discretized values of the pressure
field at each computational nodes in the domain are unknown variables. Therefore, solving this system
requires efficient linear solvers as it has to be done for each time step and may represent an important part
of the CPU cost of the simulation. Indeed, these solvers are based on iterative numerical methods and
the iteration number in order to reach a sufficiently accurate estimation of the solution may be important,
depending on the algorithms but also on the characteristics of the discrete Laplacian operator. Moreo-
ver, each iteration of the linear solver requires some communications between the processors that can
represent a non negligible part of the total simulation time. This proportion can reach 80% if no special
considerations are taken into account for the method implementation [135]. Therefore, the optimization
of the Poisson equation resolution is one of the major challenges for the simulation of incompressible
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flows, more detailed information can be found in Malandain’s thesis [134]. Finally, several algorithms are
available in the CFD code YALES2: The Preconditioned Conjugate Gradient (PCG) [196], the Deflated
PCG [147] but also the BICGSTAB scheme [196].
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Chapter 4

The Multi-Grid High-Order Filtering
framework (MGHOF) for extracting
large-scale structures in turbulent flows

The methodology presented here is a geometric Multi-Grid High-Order Filtering (MGHOF) frame-
work for the on-line analysis of high- fidelity simulations. This approach relies on high-order implicit fil-
ters and enables the extraction of large-scale features from LES on massive and distributed unstructured
grids at a reduced cost. The MGHOF framework is first described and validated, then the methodology
is applied to a 3D turbulent jet plane and to the analysis a 3D low-Mach number turbine blade with
various mesh sizes, ranging from a few million to a few billion tetrahedra.
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4.1 Introduction

To circumvent the Q-criterion scaling issue, it is mandatory to develop numerical techniques capable
of separating the different coherent structures such as spatial low-pass filters. Performing this scale sepa-
ration is quite challenging as it requires to extract features from a large amount of data distributed across
a large number of processors in a parallel environment. Moreover, such a low-pass filter necessitates a
good selectivity in order to leave the large scales unaffected while damping all the smallest scales. Per-
forming the scale separation in complex geometries with unstructured grids is also challenging as the
stencil of differential operators is generally limited to the closest neighboring control volumes. Finally,
in these geometries, the filter kernel degeneracy at the boundaries is also an important issue.

The present geometric multi-grid high-order filtering (MGHOF) framework has been designed to cir-
cumvent all these issues and to enable an efficient extraction of large scale features in turbulent flows. It
relies on a hierarchy of grids, where the highly-resolved LES data are successively filtered and interpo-
lated on coarser grids. On these coarser grids, the data volume is dramatically reduced. The application
of modal decomposition methods such as Proper Orthogonal Decomposition (POD) [183, 17, 131], or
Dynamic Mode Decomposition (DMD) [167, 175] becomes tractable on the coarsest grids, as these me-
thods require the storage of large amount of snapshots, which is presently intractable for billion-cell
simulations without sub-sampling.

This chapter is organized in five parts. First, the high-order implicit filters are presented and analyzed
in terms of CPU cost. The MGHOF framework is then exposed. The validation and the choice of the
main parameters of the MGHOF are discussed in a third part. Then, the performances of the MGHOF
framework are assessed for a 3D turbulent jet plane, where the large-scale dynamics is exhibited. Finally,
this framework is applied to the LES of a low-Mach number turbine blade with meshes up to 2.2 billion
cells to highlight its ability to extract the large-scale vortices on-line at a limited CPU cost.

4.2 Presentation of the spatial filtering process

4.2.1 Definition

Considering a scalar function φ(x, t) defined on the whole computational domain, the general filte-
ring operation has been introduced by Leonard [116] and is defined as follows:

φ(x, t) =

∫

Ω
G(r,x)φ(x− r, t)dr , (4.1)

where Ω refers to the entire flow domain and G the filter function satisfying the following normalized
property as

∫

Ω
G(r,x)dr = 1. (4.2)

In the particular case of an homogeneous filter function G, meaning independent of x, on an infinite
one dimensional domain, the filtering operation deals with a convolution product defined as

φ(x, t) =

∫ +∞

−∞
G∆(r)φ(x− r, t)dr, (4.3)

where G∆ is the convolution kernel associated to a filter size ∆.
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The most usual 1D-filters have been summarized by Pope [157] and are presented in Tab 4.1. Here,
the Gaussian and box filters have second-order moment defined as M2 = ∆2

24 . Other filters have the
same value of the transfer function at the characteristic cut-off wavenumber kc = 2π/∆ dealing with“G(kc) = exp(−π2/24).

Name Filter function Transfert function

General G(r) “G ≡ ∫∞−∞ exp(ikr)G(r)dr

Box 1
∆H

Ä
|12 − r

∆ |
ä sin( 1

2
k∆)

1
2
k∆

Gaussian
Ä

6
π∆2

ä1/2
exp
Ä
−6r2

∆2

ä
exp
Ä
−k2∆2

24

ä
Sine Cardinal sin(πr/∆)

πr H(1− k
kc

)

Cauchy a
π∆[(r/∆)2+a2]

, a = π
24 exp(−a∆|k|)

Pao - exp
(
−π2/3

24 (∆|k|)4/3
)

TABLE 4.1: Usual one-dimensional filters in the physical and Fourier space

In the spectral space, the Fourier transform of the filtered data φ(x) noted φ̂(k) can be expressed as the
product of the Gaussian kernel in the Fourier space “G∆(k) with the Fourier transform of the data φ̂(k):

φ̂(k) = “G∆(k)φ̂(k). (4.4)

Moreover, the convolution kernel “G∆(k) enables to represent the damping of each monochromatic
wave of the signal as a function of the wave-number k. Figure 4.1 represents the convolution kernels in
both physical and Fourier space for the most usual filters, ie the Box, Gaussian and Cardinal Sine filter.
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FIGURE 4.1: Most common filters in the physical space (left) and in the Fourier space (right)
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Practically, the convolution may be achieved by applying a space discretization of the kernel over the
mesh and with classical integration methods. Moreover, the convolution product can also be performed
through the Taylor series expansion of the φ variable, leading to express the filtered variable φ as a sum
of moments [104, 144, 170]:

φ(x, t) =
∞∑

j=0

1

j!

∂jφ

∂xj
(y − x, t)j . (4.5)

Then, the filtered variable can therefore be written with the following form:

φ(x, t) =

∫ +∞

−∞

∞∑

j=0

1

j!

∂jφ

∂xj
(y − x, t)jG∆(y − x)dy . (4.6)

Using the following variable change z = y − x, the filtering expression becomes

φ(x, t) =
∞∑

j=0

∂jφ

∂xj
Mj avec Mj =

1

j!

∫ ∞

−∞
zjG∆(z)dz . (4.7)

Then, as Eq 4.7 indicates that the previous Taylor expansion only exists if the kernel G∆ decreases
toward infinity faster than any power of z. Hence, only filters that sufficiently decrease in the physical
space can be defined through this expression. For instance, the Taylor series expansion of the Cardinal
Sine filter can not be performed through its moments.

Concerning the Gaussian filters, all moments Mj can be analytically computed and, thanks to the
symmetric property, all the odd moments are thus equal to zero as the even moments are defined in the
following manner:

M2n =

Ç
∆2

24

ån
1

n!
. (4.8)

Finally, the Cardinal Sine filter, as it not sufficiently fast converges toward zero at infinity, can not be
defined in the previous usual sense. Moreover, this filter can be seen as the limit, for n → ∞, of filters
having their first moments equal to zero and then corresponds to an infinite order filter, also called the
ideal low-pass filter.

4.2.2 Relation between selectivity and filter order

The selectivity refers to the ability of spatial low-pass filters to damp the smallest scales while not
affecting the largest ones. As the Cardinal Sine filter theoretically leads to a infinite filter order, it has the
sharpest transition at the cut-off frequency and therefore the best selectivity. Moreover, Gaussian filters
remove signifiant parts of the information before the cut-off frequency and are also not able to completely
damp the sub-filter scale information. Those characteristics should absolutely be avoided or minimized
when applying filtering procedures for the large-scale extraction.
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The design of selective low-pass filters requires a unitary damping function at the neighborhood of
the zero frequency allowing to guarantee that the largest flow features associated to the smallest wave-
numbers are not affected by the filtering process. This property can be mathematically transposed in term
of constraints on the successive derivates of the damping function [200] as

∂2jG(k)

∂k2j

∣∣∣∣
k=0

= 0 with j = 1, 2, ... (4.9)

Developing the filtered scalar φ with the moment formulation and then applying the Fourier transform
leads to the following expression:

φ̂(k) =
∞∑

j=0

(−1)jk2jφ̂(k)M2j . (4.10)

Then, taking the ratio between the filtered and unfiltered scalar, the previously introduced damping
function in the Fourier space “G can thus be written as“G(k) =

∞∑

j=0

(−1)jk2jM2j . (4.11)

Finally, the successive derivates ∂2nĜ(k)
∂k2n can be expressed with the following form:

∂2n“G(k)

∂k2n
= (−1)n(2n)!M2n +

∞∑

j=n+1

(2j)!

(2j − 2n)!
(−1)jk2j−2nM2j . (4.12)

Moreover, for a zero wave-number k = 0:

∂2n“G(k)

∂k2n

∣∣∣∣
k=0

= (−1)n(2n)!M2n . (4.13)

The previous equation enables to link the successive derivates at k = 0 to the moments of the filter and
thus highlights the correspondence between the zero values of the 2n-th moment of the filtering kernel
with the zero value of 2n-th derivates of the Fourier transform of the filtering kernel at the neighborhood
of k = 0. Hence, selective low-pass filters necessitate a sharp slope near the cut-off frequency allowing
to provide an efficient scale separation but also a flat slope at the origin so that to keep the large scales
unaffected by the filtering process. As Eq. 4.13 showed, this flatness is directly related to the filter order.

On the one hand, as the first non-zero moment of the Taylor series expansion of the Gaussian filter is
the second-order moment, this kernel can thus be defined as a second-order filter and is not ideally suited
to perform the large-scale separation. On the other hand, the ideal low-pass filter being of infinite order,
therefore has all its derivatives equal to zero for k = 0 and allows to perform a perfect scale separation
thanks to its discontinuous behavior at the cut-off frequency. High-order filters have a high number of
zero derivates for k = 0 allowing to keep the largest scales unaffected but also high selectivity behavior
at the cut-off frequency. They are thus well suited for the scale separation.
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4.2.3 High Order implicit Filter (HOF)

4.2.3.1 Presentation of the High-order filters

The High Order implicit sine Filters (HOF) designed by Raymond and Gardner [160] are considered
in this study as they are defined from compact finite-difference operators. A filter of order 2p on a one-
dimensional domain is obtained by solving the following linear system:

[I + (βD)p]φ = φ with β = −ε∆x2 , (4.14)

where φ and φ respectively represent the unfiltered and filtered variables, ∆x the homogeneous mesh
size, ε a parameter associated to the cut-off wave-number, and D the second derivative operator defined
as

(Dφ)j =
φj+1 − 2φj + φj−1

∆x2
. (4.15)

Considering a monochromatic signal φk(x) = A exp(ikx) and defining the cut-off wave-number
kc = 2π/∆, where ∆ is the filter width such that the amplitudeA is damped by 50% at kc, one can write
the Fourier transform of φk and φk as

φ̂k(k) = Aδ(k), (4.16)

and

φ̂k(k) = A“G2p(k), (4.17)

where δ(k) is the Dirac function and where the filter kernel “G2p is expressed as“G2p(k) =

Ç
1 +

sin2p(k∆x/2)

sin2p(kc∆x/2)

å−1

. (4.18)

The maximal attenuation of the Raymond’s filters can thus be characterized when the wave number k
in Eq. 4.18 tends to the wave number related to the local mesh size defined as 2π/∆x:“G2p

max =

Ç
1 +

1

sin2p(kc∆x/2)

å−1

. (4.19)

In Fig. 4.2, the damping function in the Fourier space of the Raymond filters is compared to a classical
Gaussian filter with an adjusted width to have 50% damping at the cut-off frequency. At the order 8 and
above, the HOF filters are clearly more selective than the usual Gaussian filter, which is second-order.

The approximated filter kernels in the physical space of the HOF can be computed by filtering a one-
dimensional discrete Dirac function, defined as zero everywhere except at the origin where the value is
set to 1/∆x,

ψ(x) =





1/∆x, |x| < ∆x/2

0, |x| > ∆x/2.

(4.20)
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Ĝ
(k

)
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FIGURE 4.2: Comparison of the damping functions in the spectral space for a Gaussian filter and HOF

In Fig. 4.3, the HOF kernels have been compared to the analytic convolution kernel of the Gaussian
and cardinal sine filters. It can be noticed that the HOF kernel converges to the cardinal sine kernel as the
order increases.
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FIGURE 4.3: Comparison of the filter kernel in the physical space for Gaussian and cardinal sine filters
and HOF

Moreover, using the Taylor series expansion, the filter kernel “G(k) at k = 0 can therefore be approxi-
mated as
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“G2p(k) =
“A(k)“A(k)

=

Ç
1 +

sin2p(k∆x/2)

sin2p(kc∆x/2)

å−1

= 1− k2p (∆x/2)2p

sin2p(kc∆x/2)
+ o(k2p).

(4.21)

Applying a term by term identification with Eq. 4.11 leads to the following form“G2p(k) =M0 + (−1)pk2pM2p + o(k2p), (4.22)

with the first moment equal to one ensuring the normalization property of the filter as

M0 = 1 with “G(0) = 1, (4.23)

and

M2p = (−1)p+1 (∆x/2)2p

sin2p(kc∆x/2)
. (4.24)

As the first momentM0 is equal to 1, the normalization property is guarantied:

M0 =

∫ +∞

−∞
G(z)dz = 1. (4.25)

Finally, it is noticeable that the selectivity of the filter increases with the order 2p of the filter.

Recently, Guedot et al. [80] adapted those filters to unstructured grids dealing with the resolution of a
linear system expressed as Aφ = φ. Here, the matrix A is defined as A = (I + D′p) where the matrix
D′ consists of a weighted Laplacian operator (D′φ) = (∇ · β∇)φ. The inversion of this linear system
relies on factorization and successive solving of each sub-system [80] and will be briefly detailed below.
Both the precision and the performance of this method have been assessed for complex flows in realistic
geometries.

4.2.3.2 High-order filters formalism on 3D unstructured grids

Recently, the high-order filters of Raymond have been generalized to 3D unstructured grids with non-
uniform grid spacing by Guedot et al. [80] and implemented in the YALES2 CFD code [145]. The
proposed methodology attempts to be the most versatile in terms of domain discretization and element
type for a finite volume solver using unstructured grid.

First, the second-order derivative operator D is defined as a node-centered Laplacian operator with
periodic boundary conditions. Considering the variable φ at the node i, its Laplacian, in the finite volume
formalism, deals with the divergence of the gradient, applied to the nodal volume of node i. This operator
can therefore be defined as the sum, over the faces of the control volume Vi, of the fluxes equal to∇φ as

(Dφi) =
1

Vi

∑

j∈Pi

(φj − φi)
∆ij

nij .dAij , (4.26)
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where Vi refers to the control volume of the dual mesh element Vi, Ni is the set of the adjacent nodes
of i, dAij is the normal vector of the face of Vi attributed to the pair (i, j), nij is a vector parallel to
the direction between the two nodes of the pair (i, j), and ∆ij is the distance between i and j as Fig 4.4
refers.

FIGURE 4.4: Node-centered Laplacian computation in YALES2

The discrete conservative properties of the filters are ensured by expressing the β coefficient in a node-
centered form and by directly including it in the Laplacian operator itself leading to a modified operator
D′ defined as follows:

(D′φi) = (∇ · β∇)φi '
1

Vi

∑

j∈Ni
(φj − φi)

∆ij

(−4) sin2(kc∆ij/2)
nij .dAij . (4.27)

At this point, the high-order filtering operation can thus be written as

(I−D′p)φ = φ , (4.28)

where D′ is the modified symmetric Laplacian operator with periodic boundary conditions.

Moreover, the computation of the filtered variable necessitates to inverse the following linear system:

AX = b with





A = (I + D′p)
X = φ

b = φ

. (4.29)

Here, the matrix A isNn×Nn withNn referring to the number of nodes of the grid. The performances
of the linear system have been verified for complex flows in realistic geometries and the algorithm used
for the linear system resolution has been optimized by Malandain et al [135]. However, the convergence
of the Preconditioned Conjugate Gradient (PCG) can be improved by replacing the quantity computed
by the solver, the filtered variable φ, by the difference between the filtered variable and the unfiltered
fields as

(I + D′p)(φ− φ) = −D′pφ . (4.30)
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Then, as the filtering operation with those selective low-pass filters does not affect the largest scales of
the flow, the variable φ−φ does not contain any low wave-number components. These low frequencies
are the most costly to converge with a PCG algorithm. Finally, the linear system can be expressed as

AX = b with





A = (I + D′p)
X = φ− φ
b = −D′pφ

. (4.31)

On unstructured grids and for a fixed value of the α = ∆/∆x parameter, the local mesh size ∆x is
non-homogenous in space leading to a non-homogeneous filter size ∆. In that case, the extraction of
coherent structures of a given length can not be correctly achieved as is requires a filter size ∆ expressed
as the actual physical size of the filter and not as the ratio ∆/∆x. However, on meshes with highly
heterogeneous mesh size, the filter size ∆ may locally becomes smaller than the largest cells leading to
troubles in the linear solver convergence. This shortcoming can easily be overcome by limiting the filter
size to prevent it from being lower than twice the local mesh size. Moreover, It makes no sense to filter
with a filter size smaller than the grid resolution.

4.2.3.3 Factorization of the linear system and real equivalent formulation

For cost reasons that will be developed later, the linear system previously presented has to be factorized
in order to be suitable for meshes of several billion cells. Indeed, the solving of the linear system can be
improved with better convergence properties and more robustness thanks to the complex factorization of
the linear system. This can be achieved by expressing the matrix A as the product of p complex matrices
as

A = I + D′p =
p∏

k=1

ï
D′ − I exp

Å
i2kπ + π

p

ãò
=

p∏

k=1

(−1) exp

Å
i2kπ + π

p

ã ï
− exp

Å
− i2kπ + π

p

ã
D′ + I

ò
= (−1)n(−1)n−1(−1)

p∏

k=1

(
αkD

′ + I
)

= (−1)2p
p∏

k=1

(
I + αkD

′)

=
p∏

k=1

(
I + αkD

′) =

p/2∏

k=1

(I + ηkD
′)(I + η∗kD

′) .

(4.32)

with αk and ηk the real and complex roots of minus one, respectively.

This operation enables to reduce the system order of 2p to p second-order systems with sparse matrices
easier to inverse. Moreover, each N ×N complex symmetric matrix is then transformed into 2N × 2N

real symmetric matrix thanks to real equivalent formulation presented hereafter and are inverted using a
PCG algorithm [67]. Hence, p linear systems are inverted instead of one leading to reduce the stencil of
the operators for each system. However, matrices are twice larger in both directions.
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4.2.3.4 Equivalent real formulation of a complex-valued linear system

Each complex linear system can be expressed with an equivalent real formulation [53]. Considering a
complex-valued linear system as

Cω = d , (4.33)

with C an m × n known complex matrix, d is a known complex column vector, and ω is an unknown
complex column vector solution. This system can be expressed by decomposing the previous operators
with their real and the imaginary terms as

(A + iB)(x + iy) = b + ic. (4.34)

Then, this formulation gives respectively four possible 2-by-2 block formulations of the previous pro-
blem Eq. 4.33 noted from K1 to K4 :

K1 formulation
Ç

A −B

B A

åÇ
x

y

å
=

Ç
b

c

å
, (4.35)

K2 formulation
Ç

A B

B −A

åÇ
x

−y

å
=

Ç
b

c

å
, (4.36)

K3 formulation
Ç

B A

A −B

åÇ
x

y

å
=

Ç
c

b

å
, (4.37)

K4 formulation
Ç

B −A

A B

åÇ
x

−y

å
=

Ç
c

b

å
. (4.38)

Here, it is noticeable that the K4 formulation refers to the same formulation as K1 with the following
form

iC∗ω∗ = id∗. (4.39)

Similarly, it is straightforward to find the same relation with the K3 and K2 formulations. Moreover,
Day and Heroux [53] presented the spectral properties of all those configurations and, due to the eigenva-
lues configuration of Krylov methods, the convergence of the K1 configuration presents better property
than K2 when applying iterative generalized minimum residual method (GMRES). Finally, if C is an
Hermitian matrix, then K1 is symmetric and the convergence rate of the real formulation is identical to
the one of the initial complex linear system formalism.

Hence, in the case of the HOF filters, assuming the K1 real matrix formulation for solving the linear
system and using the fact that the unknown column vector and right-hand side vector are real-valued, the
final equivalent real formulation for the HOF is the following:Ç

Re(I + ηkD
′) −Im(I + ηkD

′)
Im(I + ηkD

′) Re(I + ηkD
′)

åÇ
Re(φ− φ)

0

å
=

Ç
Re(−D′pφ)

0

å
. (4.40)

After introducing the resolution of the HOF linear system, some aspects on the filtering cost are then
developed.
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4.2.4 Modeling the cost of the HOF filters

4.2.4.1 Relationship between the filtering cost and the condition number of the linear system

Applying those filters on fine unstructured LES grids might prove costly as their CPU cost depends
non-linearly on various parameters. This cost can be related to the condition number of the matrix A,
noted κ(A), which is the classical estimator of the convergence speed when solving symmetric positive
definite linear systems Ax = b with conjugated gradient approaches [76, 196]. This condition number
can be expressed with the L2 norm ||A||2 [196] or using the eigenvalues λk of matrix A [42] as follows:

κ(A) = ||A||2||A−1||2 =
max |λk|
min |λk|

. (4.41)

In the particular case of the HOF, the condition number of the matrix A = I + D′p introduced in
Eq. 4.14, is expressed by Guedot et al. [80] as:

κ(A) = 1 +
1

sin2p (kc∆x/2)
= 1 +

1

sin2p (π∆x/∆)
. (4.42)

This convergence speed estimator thus depends on the filter order 2p, that has to be large enough to
guarantee a high selectivity, but also on the ratio between the filter size ∆ and the cell size of the grid ∆x.
Then, when considering the extraction of large-scale features, the filter size ∆ becomes large compared
to ∆x, leading therefore to a drastically increase of the CPU cost of the filtering process as the condition
number scales as κ(A) ≈ α2p with α = ∆/∆x. Guedot et al. [80] introduced a complex factorization of
the linear system, which enables to solve several second-order linear systems instead of one of order 2p:

Aφ = (I + D′p)φ =

p/2∏

k=1

(I + ηkD
′)(I + η∗kD

′)φ = φ , (4.43)

with ηk the opposite conjugate complex roots of minus one and η∗k its conjugate. The eigenvalues of
each sub-system (I+ηkD

′) can be derived from the analytical expression of the n-dimensional modified
Laplacian operator D′ eigenvalues [100] as follows:

ληk,j = 1 + ηk
sin2

Ä
jπ
N

ä
sin2

(π
α

) . (4.44)

Thanks to the complex factorization of the matrix A, the condition number of each sub-system κηk
can therefore be drastically reduced as only second-order linear systems are solved during the filtering
procedure, and the following inequality holds:

κηk = κ(I + ηkD
′) =

max |ληk,j |
min |ληk,j |

<< κ(A). (4.45)

Equation 4.43 and Eq. 4.44 show that the eigenvalues of each sub-system ληk,j depend on the global
filter order 2p through the values of the complex roots ηk. Figure 4.5 (left) shows the modulus of the
complex eigenvalues ληk,j , noted |ληk,j |, for the different complex roots ηk with 2p = 12 and α = 12.
These complex roots have thus an impact on the condition number of each second order sub-system κηk
and on the linear system inversion cost. This effect is presented in Fig. 4.5 (right) for various orders with
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a fixed filter size ratio α = 12. It is noticeable that the condition number of the sub-systems increases
as the complex roots ηk tend to the complex number value of minus one ηk = −1. Indeed, this can be
explained by the fact that the limit sub-system can be interpreted as an anti-diffusive system which is
numerically harder to solve than a diffusive system that would correspond to ηk = 1.
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FIGURE 4.5: Eigenvalues modulus |ληk | as a function of the complex roots ηk (left) and condition number
κηk of each sub-system as a function of ηk (right)

Luenberger [128] demonstrated that for a symmetric definite positive system Ax = b, the error
reduction per iteration using the A-norm, defined as ||x− xn||A = ||en||A =

»
eTnAen, is proportional

to
√
κ−1√
κ+1

. The same type of error reduction factor at iteration n can be defined based on the residual :

εAn = ||rn||A
||r0||A . Using the previous result, Van der Vorst [196] stated that the number of iteration Niter so

that the residual reduction based on the A-norm falls below a given criterion εAcrit is given by Niter ≈
− log(εAcrit)

√
κ where κ is the condition number of A.

However, this convergence criterion based on the A-norm is not used in this work as it does not ensure
that the residual is sufficiently small everywhere, which can be detrimental to the large-scale feature
extraction. Here, the classical residual reduction ε∞n based on the infinite norm L∞ has been preferred as
it enables to guarantee a better accuracy on the computation of the filtered variableφ. It is then mandatory
to find a relation, similar to the one proposed by Van der Vorst, that links the number of iteration Nηk

iter

to the condition number κηk for the L∞ convergence criterion. Even if there is no theoretical result on
the infinite-norm based convergence criterion, such a relation can be found empirically and is detailed
below.

A one-dimensional signal composed of several sine functions with different frequencies is filtered
with parameters α = 12 and order 2p = 12. The complex factorization of the linear system imposes
the solving of six second-order sub-systems, which correspond to the opposite conjugate of the sixth
complex roots of minus one ηk. Figure 4.6 presents the logarithm of the residuals, noted log(ε∞n ) with
ε∞n = ||rn||∞

||r0||∞ , against the number of iterations of the conjugated gradient algorithm. From this figure,
the linear dependency between the number of iteration for solving one sub-system Nηk

iter and log(ε∞crit) is
observed for several values of the conditions number κηk as Tab. 4.2 shows. This linear relation Nηk

iter ≈
−β log(ε∞crit) enables to propose a first order approximation of the iteration count as
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Nηk
iter = −γ log(ε∞crit)κηk , (4.46)

where γ is a constant.
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FIGURE 4.6: Residuals logarithm convergence against the iteration count

η1 η2 η3 η4 = η∗3 η5 = η∗2 η6 = η∗1

β 3.60× 10−2 4.83× 10−2 1.58× 10−2 1.60× 10−2 4.34× 10−2 3.59× 10−2

κηk 15.80 14.96 28.14 28.14 14.96 15.80

TABLE 4.2: Slope β and κηk computation for α = 12 and 2p = 12

Finally, under the reasonable assumption that the cost of one iteration of the conjugated gradient
algorithm is constant during the computation, it is then clear that the cost of the complex factorization
filtering operation is proportional to the sum of the cost from each sub-system through Nηk

iter. The next
section further refines the estimation of the filtering cost for the factorized linear system.

4.2.4.2 Estimation of the filtering cost

Even if the complex factorization allows to improve the linear system resolution, the filtering opera-
tion still remains expensive for large scales extraction in refined LES. Thus, a precise modeling of the
condition number κηk is required to estimate their cost and to build a more efficient strategy.

In order to evaluate this cost, a 2563 homogeneous isotropic turbulence is generated on a Cartesian grid
from the synthetic energy spectrum of Pope [157]. Here, l0 refers to the energetic length scale defined
as l0 = K3/2/ε, where K is the turbulent kinetic energy and ε is the turbulent kinetic energy dissipation
rate as ε = ν3/η4 with η the Kolmogorov length scale. The model constants β,Ce and Cη are presented
in Tab. 4.3 and the relevant physical properties of the turbulent flow in Tab. 4.4 .
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Energetic length [m] l0 1.5× 10−3

Dissipation length [m] ld 8× 106

Kinematic viscosity [m2/s] ν 1.517× 10−5

β 5.2
Ce

√
6.78Model constants

Cη 0.4

TABLE 4.3: HIT parameters for the Pope synthetic spectrum

Number of grid points N 2563

Computational domain size [m] L 1× 10−2

Grid resolution L/N [m] ∆x 3.9× 10−5

Integral length [m] lt 8.16× 10−4

Taylor scale [m] λ 1.4× 10−4

Kolmogorov scale [m] ηK 8× 10−6

Number of integral scales L/lt 12.3

Turbulent Reynolds number Ret 477

Taylor Reynolds number Reλ 84.6

Kinematic viscosity [m2/s] ν 1.517× 10−5

Turbulent kinetic energy [m2/s2] K 117.8

Turbulent dissipation rate [m2/s3] ε 8.52× 105

TABLE 4.4: Characteristics of the HIT flow
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On a parallel machine with nc CPU cores, and from the Wall-Clock Time (WCT) or elapsed time of
the simulation, one can build a Reduced Computational Time RCT = WCT.nc/ncv, where ncv is the
number of control volumes of the mesh. With a perfect scalability of the method, this reduced time for a
single iteration of a conjugate gradient algorithm should be constant when the mesh size and the number
of cores used are modified.

As the RCT of the filtering process is proportional to the number of iterations for solving the factorized
linear system, the cost of the global filtering operation, noted RCT

AΠcplx , can therefore be expressed as

RCT
AΠcplx =

p/2∑

k=1

î
RCTηk + RCTη?k

ó
≈ RCTiter

p/2∑

k=1

[
Nηk

iter + N
η?k
iter

]
(4.47)

' −RCTiterγ log(ε∞crit)

p/2∑

k=1

î
κηk

+ κη?
k

ó
, (4.48)

with RCTηk the cost for solving one second-order sub-system and RCTiter, the cost for solving one
iteration. It can be shown (see 7.2.2) that α the condition number of each sub-system scales as κηk ≈ α2

(for α sufficiently large). The analytical sub-system condition numbers are plotted in Fig. 4.7 for a large
range of α. Hence, the modeling for the reduced cost of the complex factorization RCT

AΠcplx can be
expressed as

RCT
AΠcplx ∝ pα2 . (4.49)
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FIGURE 4.7: Analytical condition number of each sub-system as a function of α2 for 2p = 12

This scaling is far better than the one of the global system for which RCTA ∝ α2p. Moreover, these
results highlight the linear dependency on the filter order (Fig. 4.8 left) and the quadratic dependency
on the filter size ratio (Fig. 4.8 right), all other parameters being fixed. It should be noticed that some
parameter combinations are not represented in Fig. 4.8 : for these sets of parameter values, the solving
failed even when using the complex factorization. These failures are due to the too stringent values of
the condition number κηk .
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FIGURE 4.8: Evolution of the RCT
AΠcplx against the filter order 2p (left) and filter size parameter α

(right)

As a result, the most efficient way to significantly reduce the filtering cost is to propose a framework
that enables to decrease the filter size ratio α before applying the filtering procedure. Having a multi-step
strategy, where the filtering operation is performed several times with a small α ratio rather than in a
single step with a large α ratio, should be more efficient. Those successive filtering operations could be
applied on the same fine grid if an sharp cut-off low-pass filter was used, but filtering on a large amount
of control volumes still remains expensive. Hence, the cost of the filtering operation can be drastically
reduced by transferring the data of interest to intermediate coarser grid levels several times, each time
with a smaller dimensionless filter size α. Moreover, the number of control volumes in the intermediate
grids is much smaller and the wall clock time needed to perform the filtering on these intermediate grids
is greatly reduced.

As an example, Tab. 4.5 shows the variation of the filtering cost for various number of filtering steps
with fixed values of α = ∆/∆x = 40 and filter order 2p = 12. At each step, α is halved, which
corresponds to divide ∆x by a factor of two keeping the same filter size ∆. The final cost of the filtering
operation is noted RCTtot and is defined as RCTtot = nstep ·RCTstep with nstep the number of filtering
steps and RCTstep the cost of one step.

Steps ∆/∆x log(κ) RCTstep RCTtot

1 40 13.264 1.951× 10−2 1.951× 10−2

2 20 9.668 4.929× 10−3 9.857× 10−3

3 10 6.120 1.284× 10−3 3.852× 10−3

4 5 2.770 3.729× 10−4 1.492× 10−3

TABLE 4.5: Influence of the filtering cost for various intermediate step with ∆/∆x = 40 and 2p = 12

Hence, the cost of the filtering operation can be drastically reduced with a multi-step strategy, which
would enable to reduce the filtering cost by an order of magnitude when using three intermediate steps.
It should be remarked that this multi-step filtering strategy involves the transfer of data of interest from a
grid to a coarser one, which may also have a cost, and this point will be discussed in details hereafter.
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4.3 Multi-grid framework

4.3.1 Framework presentation

The multi-grid strategy that has been developed is called the Multi-Grid High-Order Filtering frame-
work (MGHOF). It allows to apply on-the-fly high-order filtering in high-resolution LES at a reasonable
cost. As illustrated in Fig. 4.9, the framework relies on two main components: iterative coarsening steps
and a final high-order filtering step.
Coarsening step : It is composed of several successive transfers on coarser intermediate grids. Each
step combines high-order filtering followed by accurate interpolation onto the coarser grid. The aim is
twofold : i) each step allows to decrease the filter size ratio α as the mesh size ∆x increases, reducing
the CPU cost of the large-scale feature extraction and ii) decreasing the size of the extracted data set.
The filtering operation before the interpolation is necessary to avoid any aliasing during the interpolation
step.
Filtering step: After having transferred the data of interest onto the coarsest grid, where the large-scale
vortices will be analyzed, the filtering process can be performed. On this last level, the grid should have
a local mesh size close to the chosen filter size for the large-scale extraction ∆ ≈ ∆x.

FIGURE 4.9: Presentation of the MGHOF framework : a) The classical filtering procedure and b) the
n-steps MGHOF procedure

As stated above, in order to avoid aliasing during the interpolation steps, when the data is transferred
from a refined grid to a coarser one, an additional filtering operation has to be performed before interpo-
lation. The filter size has to be large enough to avoid aliasing but small enough to keep the large scales
of interest unaffected. This filter size has thus to be related to the local mesh size of the destination grid
as ∆ = α∆x, where α is the filter size ratio, which has to be determined. The complete coarsening step
algorithm for transferring data from a fine grid Mf to a coarser one Mc is described hereafter:
Step 1 : Considering the finest grid Mf , the local mesh size of the coarse grid Mc, called ∆xMc , is
interpolated onto Mf as ∆x

IMc
Mf

= IMc→Mf
[∆xMc ]. Transferring from a coarse to a fine grid, there

is no need to filter the data to avoid aliasing as the local mesh size field contains only low frequencies
that are fully resolved on the fine grid. This local mesh size is defined here as ∆x = |Vnode|1/d with
Vnode the control volume around a node and d the number of space dimensions. The accuracy of this
approximation depends on the shape of the control volume. It performs well when using dual control
volumes in tetrahedral based meshes, which is the case here.
Step 2 : After this first interpolation step, the filter size on Mf , called ∆Mf

, is built using the cell size

estimation of Mc as ∆Mf
= α∆x

IMc
Mf

. The field of interest φMf
on Mf , can therefore be filtered at this
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FIGURE 4.10: MGHOF framework for large-scales extraction.

filter size leading to φMf
= F

î
φMf

ó
∆Mf

with α ≈ 2 according to the sampling theorem of Nyquist-

Shannon.
Step 3 : Once the filtering operation on Mf is done, φMf

can be interpolated onto Mc as φ
IMf
Mc

=

IMf→Mc

î
φMf

ó
.

This procedure can be repeated several times until obtaining a satisfying coarse grid. Two successive
grids may have an arbitrary size ratio. However, considering a size ratio of two in each direction, i.e. with
a control volume count divided by 8 on the coarser grid, enables to keep small values of the dimensionless
filter size α = ∆/∆x and as a result, it ensures good performances of the whole filtering procedure.

4.3.1.1 Grid interpolation method

Each coarsening step requires two interpolations. In the MGHOF, two different interpolation methods
have been selected : i) linear interpolation, ii) the high-order interpolation method of Delèze [56, 55].
These two methods are designed for simplicial elements, i.e. triangles in 2D and tetrahedra in 3D. For
a given number of dimensions, a simplex is a convex hull with the minimum number of vertices (equal
to the number of dimensions plus one). The interpolation kernel of Delèze builds a local finite-element
basis in each element based in 3D on 44 continuous and piecewise third-order polynomials, and piecewise
rational functions. This basis requires 16 parameters in 3D, i.e. 4 parameters per vertex, which correspond
to any data and its gradient. The resulting finite-element representation is C1 everywhere and C2 almost
everywhere. It is particularly interesting for the present problem as any interpolated scalar and its first
derivative are ensured to be continuous across the elements.

Both linear and high-order interpolation methods can only be applied to simplicial elements. These
methods are therefore combined to a generic, direct and compact algorithm proposed by Dompierre et
al. [93] to subdivide non-tetrahedral elements into tetrahedra in 3D, which does not necessitate neighbo-
ring information. This decomposition is based on the use of a unique and constant vertex identifier with
a total order relationship that allows splitting quadrilateral faces into triangles in a consistent manner.
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4.3.2 Implementation in a massively parallel environment

The MGHOF relies on the filtering and interpolation of a large amount of data across grids with
different resolutions. In order to be as generic as possible, it is assumed that the MGHOF grids have their
own partitioning and distribution on the MPI ranks within the same MPI communicator, i.e. with the same
number of ranks. As such, each rank does not necessarily possess the same part of the computational
domain of each grid and therefore, the interpolation process on one rank may require information stored
on another rank. This is illustrated in Fig. 4.11: some parallel copies of mesh blocks have to be performed
in order to interpolate the fine grid part of the computational domain stored on processor #n onto the
coarse grid located on processors #1, #2 or #3. This configuration highlights that the interpolation
step requires the sending and receiving of a lot of information across the processors. Two choices can
be made to perform this data movement : i) to move the coarse grid data, or ii) to move the fine grid
data. To minimize the data exchanges and storage requirements, the first choice is the best. Based on
this principle, the MGHOF framework only transfers cell groups of the coarse grid from one rank to
another as illustrated in Fig. 4.12. In this figure, the MPI data exchanges are two-sided: when a data field
is interpolated from the coarse grid to the refined grid, the coarse grid ghost cells have to be populated
by the original cells and in the opposite case, the data in the ghost cells have to be copied back to the
original cells.

FIGURE 4.11: Mesh partitionning issues between processor n of the refined grid and the coarse grid

The parallelization strategy described below tries to minimize the data duplication and transfers and
thus guarantees that the algorithm scales up on massively parallel machines. As shown in Fig. 4.11, all
processors are subdivided into cell groups to have a better granularity especially to check if grid blocks
overlap or not. Then, only cell groups, whose bounding box intersects with processor #n bounding box,
are sent. All the data transfers are optimized with a packing/unpacking process that enables to minimize
the number of messages. The different steps of the implementation are detailed hereafter:
Bounding box intersections and information transfer : The full list of the bounding boxes of all cell
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FIGURE 4.12: Data exchanges in the MGHOF framework between two ranks with overlapping coarse
and fine grid domains.

groups of the coarse grid is assembled onto all the processors. Then, each processor checks if foreign
cell groups intersect with the processor boundaries or not. After this verification, each processor returns
to the originating one the list of cell groups they need for the interpolation.
Cell group transfer and data duplication: When the needed information has been returned, each pro-
cessor successively sends to the other the cell groups they asked for and receives those it needs. The
received cell groups are stored as ghost cell groups on the refined grid. All these point-to-point commu-
nications are non-blocking and performed simultaneously. The receive operations are posted before the
send communications to avoid buffering when possible.
Interpolation step: Here, each processor interpolates the intersecting part between the ghost cell groups
and their area of the refined grid. This interpolation step is efficiently performed with a fast grid-to-grid
algorithm derived from the vectorized advancing-front vicinity method proposed by Löhner [125].
Reverse cell group transfer and building of the interpolated field: After being interpolated, the ghost
cell groups are sent back to their originating processor, and the interpolated field on the coarse grid can
be built.

This strategy has been successfully tested up to 2048 cores but it should scale on a larger number
of processors as it involves only non-blocking point-to-point communications with a limited number of
processors.

4.3.3 Calibration of the MGHOF parameters

This section presents the calibration of the MGHOF framework parameters in a simple configuration.
A parametric study is then performed in order to determine the relevant values of three main parameters:
filter order 2p, filter size ratio α, and interpolation order.

4.3.3.1 Numerical experiment

First, a manufactured function ψ defined as a sum of monochromatic sine waves is generated on a fine
periodic mesh Mf of size L.

ψ(x) =
N∑

k=1

sin

Å
2πkx

L

ã
. (4.50)
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N is chosen so that the fine grid Mf satisfies the sampling theorem of Nyquist-Shannon: the highest
frequency is discretized with at least two points per period, and can adequately represent the function
ψ in terms of energy in the spectral domain. The function ψMf

was interpolated with different filtering
parameters on a coarser mesh Mc, which cannot correctly represent all these frequencies as ∆xMc ∼
2∆xMf

. So, aliasing occurs unless a filtering operation is performed. This interpolation step is noted

IMf→Mc and is applied to the ψ function or to the filtered ψ function noted ψ2p
α = F [ψ]2pα with the filter

parameters 2p and α. The energy spectrum of the manufactured function Eψ(k) can be expressed as

Eψ(k) = ψ̂?,T (k)ψ̂(k) , (4.51)

where ψ̂(k) is the Fourier transform of ψ and ψ̂?,T (k) is its transpose and conjugate, respectively.

The filtering operation in the spectral space is a simple multiplication by the Fourier transform of the
filter kernel. As a result, the energy spectrum of the filtered function before interpolation is

Eψ(k) = “G2(k)Eψ(k) . (4.52)

The important quantity in the MGHOF framework is rather the energy spectrum based on ψ̂(k) after
it has been interpolated on the coarse mesh, which is denoted EI

ψ
. The ratio of this spectrum with the

original spectrum Eψ leads to the energy transfer function defined as

Tψ(k) = EI
ψ

(k)/Eψ(k) . (4.53)

When Tψ is less than unity, the combined filtering and interpolation operations damp the signal, while
a value larger than unity indicates aliasing. As the Raymond filters were parametrized to have a damping
function equal to 50% at the cut-off frequency, the energy spectrum is damped by 25% at the same
frequency.

4.3.3.2 Influence of the filter size

First, second-order Raymond filters are considered. This case is interesting because the box and Gaus-
sian filters, that are widely used for data analysis, are also second-order filters. The transfer function for
various values of α = ∆/∆xMc , where ∆xMc is the size of the coarse grid, is presented in Fig. 4.13.
When no filtering is applied before interpolation, aliasing has a major impact on the transfer function.
The amplitude of the under-resolved frequencies may be multiplied by factors exceeding 3.5. When fil-
tering is applied, aliasing effects are removed for the highest values of the filter size (α > 3), however
the lower frequencies are highly damped. Second-order filters are therefore not suitable for the MGHOF.

4.3.3.3 Influence of the filter order

Figure 4.14 presents the variation of the filter order keeping the dimensionless filter size α = 2. The
increase of the filter order allows to substantially remove the aliasing and to obtain a selectivity, which
becomes comparable to a cardinal sine filter. For a filter order equal to 12, the aliasing is roughly kept
under 10%, which guarantees a proper selection of the low frequencies.
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FIGURE 4.13: Influence of the filter size on the energy transfer function with HOF of order 2

FIGURE 4.14: Influence of the filter order with a filter size α = 2

4.3.3.4 Influence of the interpolation order

Finally, the influence of the interpolation method is presented in Fig. 4.15 for a filter order 2p = 12

and two different filter size ratios. First, considering the filter size α = 2, the high-order interpolation
seems to be more sensitive to aliasing than linear interpolation. Also, the value of α = 2.5 allows to
remove all aliasing effects and both interpolation methods give similar results. The optimal value of the
filter size seems to be between α = 2 and α = 2.5.

4.3.3.5 Definition of quality criteria for the HOF

To further investigate the performances of the MGHOF steps, a quality metric Γ1 is introduced in
order to evaluate the amount of frequencies on Mc, which have been damped by less than 90%. Those
frequencies, after being filtered and interpolated, are considered as unaltered on Mc. The quantity of
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FIGURE 4.15: Influence of the interpolation order with filter size α = 2 and α = 2.5 and HOF of order
12. High-order interpolation (HOI) is compared to linear interpolation (linear).

unaltered frequencies is then compared to all the frequencies that can be represented on grid Mc accor-
ding to the Nyquist-Shannon theorem. The quality metric Γ1 is defined as Γ1 = kc,90%/kc,Mc where
kc,90% is the cut-off wave-number where the damping rate reaches 90% ie Ĝ2p(kc,90%) = 0.9 and
kc,Mf

= 2π/2∆xMc , the cut-off wave-number of the coarse mesh Mc. Γ1 characterizes the ability
of the coarsening step to preserve the frequencies which can be represented on Mc. Table 4.6 shows the
variation of Γ1 with the filter order 2p and the filter size ratio α. The percentage of unaltered frequencies
increases when the filter order increases but decreases when a larger filter size is used. From these results,
it is mandatory to minimize the filter size when using high filter orders.

α 2.0 2.5 3.0 3.5 4.0 4.5 5.0

n = 2 0.30 0.25 0.21 0.18 0.16 0.15 0.13
n = 4 0.54 0.44 0.37 0.32 0.28 0.25 0.23
n = 8 0.72 0.59 0.50 0.43 0.38 0.33 0.30
n = 12 0.80 0.65 0.55 0.47 0.41 0.37 0.33
n = 16 0.85 0.68 0.57 0.49 0.43 0.39 0.35

TABLE 4.6: Γ1 metric as a function of the filter order and width

Another quality metric Γ2 can be introduced in order to quantify more precisely the impact of the
interpolation order on the framework. It characterizes the ability of the framework to preserve the largest
scales after filtering and interpolation, in other words to quantify the difference between the energy
spectrum Eψ and EI

ψ
. For more clarity, the filtered and interpolated function IMf→Mc

[
ψ

2p
α

]
is here noted

ψMc . nc refers to the number of wave numbers smaller than the wave number associated to the filter
size nc = L/∆ and nc,Mc refers to the number of wave numbers smaller than the one associated to the
Nyquist-Shannon limit on Mc nc,Mc = L/(2∆xMc). Then, the metric Γ2 can be defined as
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Γ2 =
1

nc

nc∑

i=1

Å
nc,Mc

i

ã2 ∣∣∣∣ψ̂Mf

Å
2πi

L

ã
− ψ̂Mc

Å
2πi

L

ã∣∣∣∣ . (4.54)

where ψ̂Mf
and ψ̂Mc are the Fourier transform of ψMf

and ψMc . The weighting factor (nc,Mc/i)
2 allows

to give more weight to the large scales in the metric calculation as they are the most important for the
considered analysis. The results for both interpolation methods are presented in Tab. 4.7 and Tab. 4.8.

α 2.0 2.5 3.0 3.5 4.0 4.5 5.0

n = 2 2.33e-02 1.36e-02 8.42e-03 5.18e-03 3.82e-03 2.64e-03 2.12e-03
n = 4 1.57e-02 6.69e-03 3.35e-03 1.84e-03 1.43e-03 1.03e-03 9.28e-04
n = 6 9.32e-03 2.91e-03 1.32e-03 7.42e-04 3.94e-04 1.45e-04 1.08e-04
n = 8 5.37e-03 1.35e-03 6.83e-04 2.28e-04 9.56e-05 4.87e-05 3.52e-05
n = 10 3.09e-03 7.38e-04 3.62e-04 1.11e-04 5.23e-05 3.22e-05 2.36e-05
n = 12 1.82e-03 4.99e-04 2.13e-04 7.58e-05 4.89e-05 3.16e-05 2.34e-05
n = 14 1.12e-03 4.02e-04 1.44e-04 7.26e-05 4.81e-05 3.14e-05 2.33e-05
n = 16 7.29e-04 3.56e-04 1.14e-04 7.16e-05 4.78e-05 3.14e-05 2.33e-05

TABLE 4.7: Γ2 metric for the linear interpolation as a function of the filter order and width

α 2.0 2.5 3.0 3.5 4.0 4.5 5.0

n = 2 2.72e-02 1.59e-02 9.84e-03 6.04e-03 4.38e-03 2.97e-03 2.31e-03
n = 4 1.78e-02 7.47e-03 3.63e-03 1.93e-03 1.44e-03 1.01e-03 9.03e-04
n = 6 1.03e-02 3.05e-03 1.28e-03 6.65e-04 3.28e-04 1.03e-04 7.33e-05
n = 8 5.77e-03 1.26e-03 5.48e-04 1.36e-04 3.66e-05 1.09e-05 8.86e-06
n = 10 3.17e-03 5.63e-04 2.14e-04 2.97e-05 1.02e-05 5.69e-06 4.03e-06
n = 12 1.73e-03 2.89e-04 8.00e-05 1.56e-05 9.97e-06 5.84e-06 4.04e-06
n = 14 9.39e-04 1.86e-04 3.93e-05 1.52e-05 9.68e-06 5.93e-06 4.09e-06
n = 16 5.08e-04 1.51e-04 2.54e-05 1.47e-05 9.58e-06 6.86e-06 3.93e-06

TABLE 4.8: Γ2 metric for the high-order interpolation as a function of the filter order and width

The metric Γ2 allows to highlight and quantify the benefit of using a high-order interpolation method
instead of the linear one. For small and medium values of the filter order (2p ≤ 10) the linear interpo-
lation seems to be more efficient keeping the largest scales unaltered by aliasing and for all filter sizes
considered. For higher filter order, the high-order interpolation seems to be better than the linear interpo-
lation whatever the filter size is. This can be explained by the fact that the high-order interpolation seems
to be more sensitive to aliasing effects and when those effects are sufficiently removed with adequate
filter parameters, the gain of the high-order interpolation method is clear.

4.3.3.6 Choice of the parameter set

From the numerical experiments presented before, a good compromise between selectivity, aliasing
and CPU cost is obtained for a filter order 12 (2p = 12) and a filter size twice larger than the coarse grid
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cell size on which the data are interpolated (α = 2). These parameters are used at each coarsening step
of the MGHOF. The interpolation order does not have a noticeable impact for the chosen parameters and
only linear interpolation will be considered. This parameter set is used in all the following sections.

4.4 Applications

4.4.1 Application to the analysis of a turbulent plane jet

In this section, the MGHOF framework is applied to a turbulent plane jet [46] in order to validate the
methodology and the chosen parameters on a realistic configuration. The turbulent plane jet features a
large range of vortices: Kelvin-Helmholtz vortices are generated close to the inlet slot, which cascade into
fully developed turbulence downstream depending on the Reynolds number. The goal of this section is to
extract coherent structures of the flow and to compare the cost of the methodology with state-of-the-art
visualization techniques based on filtering.

4.4.1.1 Configuration

As the simulation of a turbulent plane jet deals with the spatial growth of coherent vortices, the inflow
and outflow boundary conditions have to be set carefully. Slip wall condition have been set on the top and
bottom walls while periodic conditions have been imposed in the lateral walls. Moreover, as presented
in Fig. 4.16, the dimensions of the computational domain along the three space directions Lx×Ly ×Lz
are expressed from the inlet slot width h as 12.4h× 12.0h× 2.9h.

FIGURE 4.16: Turbulent jet plane configuration

The inlet velocity profile is an hyperbolic tangent profile [191] expressed as

ux(x = 0, y, z) =
uj + uc

2
+
uj − uc

2
tanh

Ç
h

4θ

Ç
1− 2|y|

h

åå
, (4.55)

where uj = 1.091m.s−1 is the velocity at the jet centerline, uc = 0.091m.s−1 is the co-flow velocity,
and θ is the momentum thickness which was set to h/30. This configuration has been simulated with a
Reynolds number defined as Reh = ∆uh

ν = 66 × 103 with ∆u = uj − uc. Velocity fluctuations with
maximum intensity of 5% have been introduced in order to destabilize the flow more rapidly. Large-Eddy
Simulation is performed using the dynamic Smagorinsky model [72].
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4.4.1.2 Large-scale extraction with the MGHOF

The MGHOF framework may be used in different manners to extract the large coherent structures.
However, it will be shown that computing the Q-criterion and then filtering it with the MGHOF may
introduce numerical artifacts when the mesh resolution on the final visualization grid is not sufficient.
Indeed, the filter kernel of the HOF is close to a cardinal sine function and therefore may introduce
negative values when filtering a positive signal. This effect can be illustrated by considering a two-
dimensional Gaussian vortex based on the stream function ψ = u0 exp(−(x2 + y2)/r2

c ) with 2rc the
vortex core length. Here, the core length is chosen close to the cut-off frequency of the grid to maximize
the numerical artifacts. Then, two different approaches may be chosen to extract the large scales : i)
applying directly the MGHOF on Qu leading to Qu, ii) filtering the velocity field noted u and then
computing the Q-criterion Qu from this filtered velocity field. Figure 4.17 shows the raw Q-criterion for
this vortex and the differences between these two different approaches. Filtering the Q-criterion (Qu)
generates several local extrema while decreasing significantly the Q-criterion maximum compared to the
alternative method (Qu). These artifacts are maximized when the mesh is coarse. As a consequence, it
is preferable to filter the velocity field during the coarsening steps. However, it may be desirable to filter
the Q-criterion on the final mesh to make sure of the scale separation for the visualization or analysis of
the flow. The whole strategy is illustrated in Fig. 4.18. As recommended, the velocity field is transferred
from the high-fidelity grid to the coarsest grid before computing the Q-criterion and filtering it. This
strategy is used to analyze the turbulent plane jet. It will be further adapted for the turbine blade case.
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FIGURE 4.17: Q-criterion of a Gaussian vortex for various filtering approaches

4.4.1.3 Application of the framework

An initial coarse grid M0, with 5 million tetrahedra is first generated. The cell size distribution of this
mesh is displayed on Fig.4.19. Applying respectively one and two homogeneous refinement levels onM0

allows to obtain intermediate grids M1, with 39 million tetrahedra, and M2 with 312 million tetrahedra,
that are used for the convergence and the computation of the LES. The grid M2 has therefore a spatial
resolution with a cell size close to ∆x ≈ 0.02h. The mesh properties are summarized in Tab. 4.9.



The Multi-Grid High-Order Filtering framework (MGHOF) for extracting large-scale structures
in turbulent flows 104

FIGURE 4.18: Principle of the MGHOF framework for the Q-criterion
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FIGURE 4.19: Normalized local mesh size of M0 : ∆xM0/h

Mesh
Tetrahedra

count (×106)
Average of
∆xM/h [-]

M0 5 9.02× 10−2

M1 39 4.46× 10−2

M2 312 2.23× 10−2

TABLE 4.9: Cells count and size for the 3 grids M0, M1 and M2

The ability of the MGHOF framework to identify the coherent flow features is assessed by comparing
it to a single high-order filtering procedure. The quality and the accuracy of the large-scale extraction but
also the cost of the procedure are the main points of interest. The different considered approaches are
presented below:
Classical Filter Operation (CFO): The Q-criterion on the finest meshM2, where the LES is performed,
has been directly filtered at order 2p = 12 and with the filter size ∆0.275h = 0.275h. This operation is
presented in Fig. 4.20 and is composed of two steps:
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Qu : QM2 = Q [uM2 ]

F∆ : QM2
= F [QM2 ]2p=12

∆=0.275h .

(4.56)

FIGURE 4.20: Classical Filtering operation (CFO)

1 Step Multi-Grid Framework (1SMGF): The one-step MGHOF framework is applied to the instan-
taneous velocity field from M2 to M1 with the following parameters 2p = 12 and α = 2. Then, the
Q-criterion is computed on M1, noted QM1 , using the filtered and interpolated instantaneous velocity
field uM1 . A last level of filtering, with order 2p = 12 and filter size ∆ = 0.275h, is then applied
on QM1 , i.e. the calculated Q-criterion on M1. Those operations are presented in Fig. 4.21 and can be
summarized as:





MGHOF : uM1 = IM2→M1 [uM2 ]2p=12
α=2

Qu : QM1 = Q [uM1 ]

F∆ : QM1
= F [QM1 ]2p=12

∆=0.275h .

(4.57)

FIGURE 4.21: 1 Step Multi-Grid Framework (1SMGF)

2-Steps Multi-Grid Framework (2SMGF) : The two-steps MGHOF framework is applied to the ins-
tantaneous velocity field, from M2 to M1 a first time and then from M1 to M0, with the following
parameters 2p = 12 and α = 2. The Q-criterion is then computed on M0, noted QM0 , using the filte-
red and interpolated instantaneous velocity field uM0 . A last level of filtering with order 2p = 12 and
filter size ∆ = 0.275h is then applied on QM0 to compute QM0

(the filtered Q-criterion on M0). Those
operations are presented in Fig. 4.22 and detailed hereafter:





MGHOF : uM0 = IM2→M1→M0 [u]2p=12
α=2

Qu : QM0 = Q [uM0 ]

F∆ : QM0
= F [QM0 ]2p=12

∆=0.275h .

(4.58)

4.4.1.4 Results

The following simulations have been performed on the Curie super-computer from CEA in France on
512 processors. The large-scale extraction results are presented in Fig. 4.23 with a chosen Q-criterion
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FIGURE 4.22: 2 Steps Multi-Grid Framework (2SMGF)

iso-surface of Q = 2 s−2. First, the Q-criterion calculated on M2, noted QM2 and presented in Fig. 4.23
(a) is compared to the filtered Q-criterion resulting from the three filtering procedures on M2, M1 and
M0 respectively noted: QM2

in Fig.4.23 (b), QM1
in Fig. 4.23 (c) and QM0

in Fig. 4.23 (d).

On M2, the Q-criterion clearly shows an initial region where the Kelvin-Helmholtz vortices are for-
med, then these coherent structures cascade to small-scale turbulence. The first filtering approach (CFO)
allows to damp all the small scales of the flow, especially in the fully turbulent area : this result will
be used as a reference for the other methods. The one-step transfer on M1 (1SMGF) allows to extract
Q-criterion iso-surfaces which are very similar to the reference ones : this highlights the ability of the
framework to keep the large scales intact after both interpolation and filtering steps. However, the two-
steps extraction on M0 (2SMGF) does not successfully represent all the coherent structures of the flow
and noticeably damp the smallest scales: the mesh M0 is simply too coarse to represent them. The same
analysis can also be conducted in Fig. 4.24, which represents a slice of the Q-criterion fields presented
in Fig. 4.23.

FIGURE 4.23: Q criterion iso-surface (2s−2) colored by the instantaneous velocity field on M2 : (a) QM2 ,
(b) QM2

, (c) QM1
and (d) QM0

Finally, the performances of all the filtering approaches have been compared by measuring the Re-
duced Computational Time defined as RCT = WCT.nc/ncv, which has been previously introduced.
For all the filtering approaches, the convergence criteria, based on the residual infinite norm ||rk||∞ =

||A(x − xk)|| of the kth iteration, has been set to 1.0 × 10−10. The Wall-Clock Time of the last fil-
tering step F [QMi ]

2p=12
∆0.275h

with i = 1, ..3, noted WCTF∆ and which depends on each filtering ap-
proach, is then converted in Reduced Computational Time, noted RCTF∆ , based on the core count
of the simulation and the control volumes number of the finest mesh M2. The RCT of the MGHOF
framework, noted RCTMGHOF, has also been taken into account in the total cost of the procedure :
RCTtot = RCTMGHOF + RCTF∆ .

Table 4.10 presents the performances of the three approaches. First, the RCTF∆ is drastically decrea-
sed when applying one or two steps of the MGHOF framework (1SMGF and 2SMGF) compared to the
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FIGURE 4.24: Comparison of the raw and filtered Q-criterion in a crossing plane

Filtering Final filtering WCTF∆ RCTF∆ RCTMGHOF RCTtot

approach mesh [s]
î
s.nc
ncv

ó î
s.nc
ncv

ó î
s.nc
ncv

ó
CFO M2 570.8 9.32× 10−4 0 9.32× 10−4

1SMGF M1 6.5 1.05× 10−5 2.78× 10−4 2.88× 10−4

2SMGF M0 0.3 6.04× 10−7 2.96× 10−4 2.96× 10−4

TABLE 4.10: Performance of the filtering approaches

classical filtering operation (CFO). Indeed, the final filtering operation is accelerated as the grid contains
respectively 8 and 64 less tetrahedra on M1 and on M0. Moreover the filter width when compared to
the grid size, ∆0.275h/∆x, decreases by a factor 2 and 4, respectively. However, the cost of the MGHOF
framework has to be added to the cost of the filtering operation in order to evaluate the gain of the me-
thodology in this configuration. For the CFO approach, the cost of the RCTMGHOF is equal to zero as
no intermediate grid has been used. Moreover, the total Reduced Computational Time RCTtot for both
1SMGF and 2SMGF approaches have been decreased by a factor 3 compared to the CFO approach.
The RCTtot of the 2SMGF is higher than the one of 1SMGF as the cost of the MGHOF framework
RCTMGHOF increases. This is due to the selected filter size ∆ = 0.275h which is too close to the local
mesh size of M1 in order to gain more efficiency by adding another intermediate coarse grid. Thus, for
this filter width and mesh size, the 2SMGF has a higher cost than the 1SMGF, which appears to be the
best approach in terms of cost but also in terms of large-scale resolution.

4.4.1.5 Conclusion for the turbulent plane jet

As a conclusion, the MGHOF framework allows to identify accurately the Kelvin-Helmholtz vortices
and the turbulent large scales of the turbulent plane jet with a CPU cost that has been largely decreased,
compared to the direct filtering approach. In this configuration, the best filtering strategy is 1SMGF,
which is cheaper and more accurate than the 2SMGF. It enables the extraction of the coherent structures
on a medium size grid to facilitate the visualization and the post-processing. In this particular case, the
potential of the method is not fully exploited as the local mesh size is spatially homogeneous. The next
section presents the MGHOF application in a billion-cell LES with highly heterogeneous cell sizes.
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4.4.2 Application of the MGHOF to the massively parallel LES of a turbine blade

The MGHOF framework is here applied to the LES of the turbulent flow around a low-Mach number
turbine blade from the AITEB2 European project [61]. Identifying the coherent structures in such a
complex configuration is quite challenging as it requires to extract on-the-fly features among a broad
range of scales and from a very large amount of data.

4.4.2.1 Description of the blade

The T7.2 blade has been experimentally studied by Helge Ladisch [113] and is operated at a Reynolds
number of 150,000 based on the chord length and the outlet velocity. At the inlet, the velocity consists of
a constant flow with ux = 20.4 m.s−1 and uy = 15.4 m.s−1 plus homogeneous isotropic turbulence with
an intensity of 5.6%. In the experiment, the blade is liquid cooled while the incoming flow is hot. These
temperature fluctuations are taken into account in the simulation by transporting a reduced temperature
Z, which is equal to 1 at the inlet and 0 at the blade wall. Density and viscosity are computed from
this reduced temperature using the ideal gas law and the Sutherland model, respectively. The dynamic
Smagorinsky model [72] is chosen to model sub-grid transport. Wall-resolved LES with no-slip walls is
considered here. As a result, the meshes have to be fine enough to capture the turbine blade boundary
layer.

The main geometrical parameters are presented in Fig. 4.25: Dmax refers to the maximal blade thick-
ness, C to the chord length, Cax to the axial chord length, P is the pitch distance (blade spacing), Γ to
the pitch angle, DTE/P to the trailing edge thickness, and P/C to the pitch to chord ratio.

Parameters Unity Values

Dmax mm 16.53
C mm 73.93
Cax mm 67
Γ ◦ 63.5

DTE/P [-] 0.035
P/C [-] 0.772

FIGURE 4.25: Geometrical parameters of the T7.2 blade

An original coarse mesh with 35 million cells, called M0, is presented in Fig. 4.26. One and two
levels of homogeneous grid refinement are then applied on M0 in order to build M1 and M2 with 280

million and 2.2 billion tetrahedra respectively. The LES is performed on M2 while M1 and M0 are
intermediate coarser grids used for the large-scale extraction via the MGHOF framework. Moreover,
some LES have also been performed on M0 and M1 to assess the mesh convergence. Table 4.11 presents
the main properties of the grids.
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FIGURE 4.26: T7.2 mesh M0 with 35M cells mesh

Mesh
Tetrahedra

count (×106)
Minimum

∆xM [µm]
Maximum
y+[-]

M0 35 30 ≈ 19

M1 280 15 ≈ 12

M2 2200 7.5 ≈ 7

TABLE 4.11: Different meshes used for the MGHOF framework

To assess the grid resolution, Fig. 4.27 presents the profiles of mean y+ for the three different grids
with s the curvilinear coordinate. On the finest grid, the first grid point is in the viscous sub-layer. The
Nusselt number for the finest grid is also presented. Two different methods are used to compute the
local Nusselt number based on the chord : i) based on the resolved temperature gradient, ii) based on
the total flux at the wall (or residual). The second therefore includes any sub-grid contribution of the
models but also from the Dirichlet boundary condition on the temperature. The fact that the two Nusselt
number profiles are close and agree well with the experimental data indicates that heat exchanges are
well resolved for this mesh resolution.

In this type of configuration, the large amount of data but also the mesh size heterogeneity may lead to
a drastic increase of the cost of the filtering process. Indeed, the local mesh size ∆x has to be very fine at
the leading and trailing edges in order to capture all the flow features while ∆x is much bigger in areas
far from the blade. As the filtering cost has a quadratic dependency on α = ∆/∆x, the smallest local
mesh size on the computational domain will therefore be very stringent concerning the convergence and
the cost of the filtering process.

4.4.2.2 Large-scale extraction with the MGHOF framework in complex geometry

Before presenting the large-scale extraction strategy, an important aspect has to be taken into account
in this configuration: the influence of the blade curvature on the Q-criterion computation and its impact
on the visualization of coherent structures.
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FIGURE 4.27: Mesh resolution based on y+ for the three different grids (left) and Nusselt number on the
finer mesh (right)

Curvature effects have a direct impact on the mean velocity field that can disturb the visualization
of coherent features when using the Q-criterion as vortex identifier. Figure 4.28 (left) presents the Q-
criterion based on the mean velocity field on the mesh M2 noted Q〈uM2

〉 with 〈.〉 denoting the temporal
averaging. Artificial negative Q-criterion values are produced by the curvature on the leading and trailing
edges. Layers of positive and negative values are also present at the suction side of the blade. Those
artifacts may therefore prevent the extraction of coherent vortices in these regions. An analytic derivation
is proposed to quantify this error.

FIGURE 4.28: Q〈uM2
〉 field on the M2 mesh (left) and notations for the estimation of the blade curvature

effect on the Q-criterion (left)

First, at the leading edge (LE) and at the trailing edge (TE), due to the presence of stagnation points,
the streamlines may approximately derive from a quadratic stream function Γ(x, y) = a

2 (y2−x2) where
a is a non-zero real number, which depends on the local profile curvature. The velocity field denoted uLE
and uTE , respectively, can then be expressed in local Cartesian coordinates as u(x, y) = ∂Γ

∂y ex − ∂Γ
∂xey.

With this hypothesis, it is straightforward to express the Q-criterion as Q = −a2. Thus, the Q-criterion
is always negative, which is consistent with the negative Q-criterion zones observed on the leading and
trailing edges of the blade.
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Second, the flow along the suction side (SS) is parallel to the blade and can be represented in local
polar coordinates by the following velocity field uSS(r, θ) = U(r)eθ as shown in Fig. 4.28 (right).
Following the same methodology, it is found that Q = U/r × U ′(r). This expression explains what is
observed on the suction side in Fig. 4.28. The axial velocity profile reaches a maximum at the boundary
layer limit and thus the Q-criterion is positive inside the boundary layer and negative outside. These mean
values of the Q-criterion due to the blade curvature are able to affect the large-scale vortex extraction and
visualization in these area. To avoid this effect, the mean part of the Q-criterion field is substracted from
the instantaneous field onM0. Moreover, some nodes of the mesh can not be interpolated in concave area
- for instance under the suction side of the blade - as they are not located in any of the elements of the
source grid. These particular points can being interpolated with the "closest node" method interpolation.

As previously presented, the MGHOF framework is applied during the LES computation of the 3D
turbulent blade on the 2.2 billion cell mesh M2 with the following parameters α = 2 and 2p = 12. This
on-the-fly co-processing methodology is applied to the instantaneous scalar field z and velocity field u on
M2. Once the data has been transferred from M2 to the last coarsening level M0 leading to uM0 as refers
Eq. 4.59, the instantaneous Q-criterion can thus be computed on M0 using this filtered and interpolated
field uM0 :





MGHOF : uM0 = IM2→M1→M0

î
u2p=12
α=2

ó
Qu : QuM0

= Q [uM0 ] .





MGHOF : 〈uM0〉 = IM2→M1→M0

[
〈u〉2p=12

α=2

]

Qu : Q〈uM0
〉 = Q [〈uM0〉] .

(4.59)

The same procedure is applied to the mean velocity field of M2 denoted 〈u〉. Then, the two final
Q-criterion fields are substracted in order to remove the curvature effects on the mean flow field, as
previously discussed:QuM0

−〈uM0
〉 = QuM0

−Q〈uM0
〉. The full methodology is represented in Fig. 4.29.

FIGURE 4.29: MGHOF framework for the T7.2 blade applied to the velocity field u

Finally, the last filtering level, here denoted F∆, can then be applied to QuM0
−〈uM0

〉 leading to
QuM0

−〈uM0
〉 defined as

F∆ : QuM0
−〈uM0

〉 → QuM0
−〈uM0

〉 = F
î
QuM0

−〈uM0
〉
ó2p=12

∆
. (4.60)
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4.4.2.3 Results

The MGHOF framework is here applied to instantaneous and mean velocity fields from the M2 mesh.
This mesh features 2.2 billion cells and has refined boundary layers. This case is therefore very challen-
ging for the large-scale feature extraction.

A few parameters have to be defined for the MGHOF. First, the filter size ∆, that has to be imposed for
the last filtering level, denoted F∆, has been set up to ∆ = 0.75 mm, i.e. roughly one tenth of the chord.
The aim is to characterize the large-scale vortices close to the boundary layer. Second, this formalism
has been applied 50 times during a flow-through time of the simulation using a constant time sampling
equal to ∆T = 0.05 ms. Finally, this simulation has been performed with 2048 processors of the Curie
super-computer. Applying the MGHOF co-processing framework with those parameters only increases
the simulation cost of 5%, which is reasonable.

Before performing the large-scale dynamics extraction, Figs. 4.30 and 4.31 present the comparison of
the instantaneous non-dimensional temperature and velocity fields computed on the LES grid M2 to the
filtered and interpolated fields of the same data on M0. It can be noticed that the extracted fields on M0

contain all the large-scale features of M2 but they are slightly smoother due to the filtering. Only the
highest frequencies corresponding to the smallest scales of the flow that can not be represented on M0

have been damped.

FIGURE 4.30: Comparison between the instantaneous field of the non-dimensional temperature z on M2

(top) and zM0on M0 (bottom)
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FIGURE 4.31: Comparison between the instantaneous velocity magnitude field u onM2 (top) and uM0on
M0 (bottom)

The large-scale vortex extraction is presented in Figs. 4.32 and 4.33. On the one hand, the figure on
top shows the unfiltered Q-criterion values on the fine grid M2 previously introduced as QuM2

. Here,
due to the high level of turbulence, the large vortices are masked by the smallest ones. On the other hand,
as shown in the bottom figure, the two steps of the on-the-fly MGHOF framework from M2 to M1 and
from M1 to M0 allows to overcome the Q-criterion scaling issue by removing the smallest vortices of
the flow. Indeed, in the recirculation zone at the pressure side and in the wake, the unresolved scales on
M0 disappear due to the filtering. At the leading edge and above the suction side, where large vortices
coming from the free-stream turbulence interact with the blade, the largest scales fromM2 are unaffected
thanks to the high selectivity of the filters. The wake is also more visible with the MGHOF as all small
turbulent scales are removed.

In order to illustrate the performances of the MGHOF framework, the cost of the previous classical
filtering operation (CFO) presented in Section 4.4 is compared to the application of the one- and two-
steps MGHOF framework, respectively noted 1SMGF and 2SMGF. For the T7.2 blade application, the
CFO consists in performing the filtering directly on the 2.2 billion-cell mesh M2, while 1SMGF refers
to the transfer from M2 to M1 and 2SMGF from M2 to M1 then from M1 to M0 before filtering. As
previously mentioned, the reduced computational time is noted RCTF∆ for the final filtering step and
RCTMGHOF for the MGHOF data coarsening. The total cost of the procedure is defined as RCTtot =

RCTMGHOF + RCTF∆ . The CPU comparison between these approaches can be found in Tab. 4.12.
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Filtering Final filtering WCTF∆ RCTF∆ RCTMGHOF RCTtot

approach mesh [s]
î
s.nc
ncv

ó î
s.nc
ncv

ó î
s.nc
ncv

ó
CFO M2 11179.15 1.04× 10−2 0 1.04× 10−2

1SMGF M1 6.32 5.88× 10−6 1.64× 10−4 1.70× 10−4

2SMGF M0 6.29 5.86× 10−6 1.65× 10−4 1.71× 10−4

TABLE 4.12: Performance of the filtering approaches for the T7.2 configuration

These performances highlight the fact that the 1SMGF and 2SMGF approaches enable to drastically
decrease the CPU cost of the filtering process. Indeed, both approaches lead to a speed-up of more than 60
compared to the CFO approach. It may be noted that the final filtering step has a negligible contribution
to the total cost when the MGHOF is used. Remarkably, the data coarsening has the same cost for
1SMGF and 2SMGF, which indicates that the data transfer from M1 to M0 is negligible compared to
the data transfer from M2 to M1. For the same total cost, the 2SMGF approach enables a far better data
compression rate.

Although the MGHOF framework successfully extracts coherent features from a highly resolved LES,
more physical analysis and flow understanding can be gained by combining it with mode decomposition
methods that allows to access to more quantitative information about the dynamically important flow
structures.

4.5 Conclusions

In this chapter, the Multi-Grid High Order Filtering framework (MGHOF) for on-the-fly co-processing
of highly-resolved LES is proposed. This approach enables to extract and identify coherent features from
3D turbulent flows in complex geometries. It transfers the large-scale dynamics onto coarser levels of
grid that allows to drastically decrease the amount of data to post-process. Moreover, the successive
coarsening steps based on high-order filtering and interpolation allow to overcome the Q-criterion scaling
issue which is particularly annoying for the large scales visualization.

The MGHOF framework has been applied in several complex configurations. First, a 3D turbulent
planar jet configuration has been considered in order to extract the Kelvin-Helmholtz vortices and the
coherent structures of this turbulent flow. Then, the LES of a 3D turbulent low-Mach turbine blade confi-
guration with a mesh of 2.2 billion tetrahedra has been co-processed, allowing to successfully extract,
through the Q-criterion, the dynamically dominant features. This methodology opens new processing
possibilities that allow to understand more precisely the interactions between coherent structures coming
from the free stream turbulence with those created by the blade.
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FIGURE 4.32: Side view of the iso-contour of Q-criterion = 2.0 × 106 s−2 for QuM2
(top) and

QuM0
−〈uM0

〉 (bottom)

FIGURE 4.33: Top view of the iso-contour of Q-criterion = 2.0×106 s−2 forQuM2
(top) andQuM0

−〈uM0
〉

(bottom)



Chapter 5

Application of the MGHOF framework to
modal decomposition methods

This chapter introduces modal decomposition methods such as Proper Orthogonal decomposition
(POD) and Dynamic Mode Decomposition (DMD). These approaches enable to identify and to extract
the most dominant features from both laminar and turbulent flows. This chapter first presents the main
theoretical concepts and mathematical background of the modal approximation methods. Then, the DMD
formalism is developed in detail with the presentation of an analytical formulation for solving the mini-
mization problem related to DMD modes amplitudes. Finally, once the methodology has been validated
on a laminar 2D cylinder configuration, the modal analysis of the billion-cell LES of a 3D turbulent
blade is achieved by applying both the MGHOF framework and the DMD formalism.
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5.1 Introduction

Despite the complexity of turbulence processes, turbulent flows can be pragmatically studied through
approaches that reduce the flow dynamics to a reasonable number of parameters thanks to the existence
of organized fluid elements. Hence, building reduced order models for unsteady turbulent configurations
can be achieved by identifying and selecting the most dominant modes that usually refer to coherent
features. The flow dynamics can be reconstructed by superposing selected modes associated to their
own coefficients that characterize their temporal evolution. Modal extraction methods for coherent struc-
tures from both experiments and numerical simulations have have made considerable progress in the
recent decades. Some of the most famous modal decomposition formalisms are mentioned : The Pro-
per Orthogonal Decomposition (POD) modes [183, 17, 131], the global stability analysis [7, 8] and the
balanced modes (BOD) [141, 166] have provided useful and interesting insights concerning the flow dy-
namics. More recently, Rowley and Schmid proposed a most efficient feature extraction method called
the Dynamic Mode Decomposition (DMD) [167, 175] with several more advanced variations as the op-
timized DMD [35] based on combinatory search of the most relevant modes, Low-rank DMD and sparse
DMD [99] and the sparsity-promoting DMD [98].

POD and DMD methodologies are both snapshot-based post-processing algorithms that can be applied
on collected data from both experiments or numerical simulations and enable to build a low-rank subset
of modes that approximates the dynamical system [5]. Indeed, the spectral analysis first extracts the
dynamic information while identifying certain modes that are considered having dominant behaviors in
the flow. On the one hand, the spatial orthogonality constraint assumed for the POD formalism enables
to decompose the flow onto a spatial orthogonal set of modes that contains multi-frequency components
and that maximizes the energy content representation of the flow. On the other hand, the DMD approach
derived from the linear Koopman analysis [115, 137] and is based on non-orthogonal monochromatic
modes to capture the most dominant features in the flow.

Furthermore, identifying the most important frequencies in flows may not alway straightforwardly
be achieved through the application of the POD formalism as computed modes are associated to multi-
frequency phenomena contrary to the DMD approach that deals with monochromatic modes. Due to the
spatial orthogonality property, however, the temporal behavior of the POD modes can simply be com-
puted by projecting the dataset onto the subset of modes which is not the case with the DMD approach
where a minimization problem has to be solved. Finally, even if the identification of the dominant co-
herent features is usually straightforward for canonical simple laminar configurations, it becomes very
challenging for highly turbulent flows, where all the resolved frequencies are exited by the background
noise and where perturbations from transient and multiple basic modes are strongly present.

In this chapter, the main theoretical concepts of the modal approximation methods will first be in-
troduced with a brief highlight on the particular case of the POD methodology and its shortcomings.
In a second time, the mathematical background of the implemented DMD algorithms in the CFD code
YALES2 will be presented in details with some aspects about the modes selection criteria. Finally, two
applications of the DMD formalism are exposed : First, the classical 2D laminar cylinder is developed
in order to validate the implemented algorithms. Second, a very challenging configuration where the
DMD formalism is combined with the large-scales extraction MGHOF framework in order to identify
the dominant features of the billion-cell LES of the T7.2 configuration.
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5.2 Presentation of the modal decomposition methods

5.2.1 Approximation method

Both POD and DMD methodologies are related to approximation methods [164] that deal with the
following problem : Considering a vector real function f that has a temporal and space dependency as
f(x, t), this function can be approximated by a finite sum of a product of univariate functions such as

f(x, t) ≈
n∑

k=1

ak(t)φk(x) . (5.1)

As the number of terms n of the sum converges to infinity, this relation tends to more accurately
approximate the f function. However, this decomposition is not unique and thus, it is mandatory to find
the best one for a specific norm choice and with a constant number of modes n. In the CFD field, the
L2 norm is generally chosen as it corresponds to flows with finite kinetic energy as L2(u) = ||u||2.
Hence, the unicity problematic can be achieved by considering a least square minimization problem that
determines the set of coefficients and functions {(a1,φ1), ..., (an,φn)} in the following manner:

min
Φ,a

nt∑

i=1

||f(x, ti)−
n∑

k=1

ak(ti)φk(x)||22 with n ≤ nt , (5.2)

where nt refers to the temporal discretization of the f function.

Finally, the solution of this minimization problem is given by the truncated Singular Value Decompo-
sition (SVD) of order n that is developed in the following section.

5.2.2 Introduction to the Singular Value Decomposition (SVD)

The Singular value Decomposition SVD, introduced by Golub [75], is the generalization of the eigen-
decomposition for real or complex positive semidefinite normal matrices - positive eigenvalues with
MHM = MMH - and enables to factorize them. This method has many useful applications in signal
processing, its theorem is formulated as follows:

Theorem : Singular Value Decomposition Considering a real or complex m × n matrix M, there
exists a factorization, called a singular value decomposition of M, that can be expressed as

M = UΣWH , (5.3)

where
• U is a m×m, real or complex unitary matrix.
• Σ is a rectangular diagonal matrix m× n with positive semi-definite σi on the diagonal with the

following properties ΣTΣ = In and ΣΣT = Im.
• W is a n × n, real or complex unitary matrix and WH its conjugate and transpose matrix, also

called Hermitian matrix.
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As unitary matrix, U and W have the following property:

UHU = Im ,

WHW = In .
(5.4)

Moreover, the SVD can be used in several practical applications in order to compute the pseudo inverse
of the M matrix defined as follows:

M+ = WΣ+UH , (5.5)

where Σ+ is the pseudo inverse of Σ defined as:

Σ+
ii =

®
1/Σii if Σii 6= 0

0 else
. (5.6)

The singular values of M and MH are the diagonal coefficients σi with i ∈ min(m,n) of the matrix
Σ and the convention for ordering them is the descending order. The rank of the M matrix is equal to the
number of non-zero singular values. As σi are non-negative real numbers, then the column vectors of U

and W, ui and wi respectively, are called the left and right eigenvectors of the singular value σi as they
satisfied the following property:

Mwi = σiui and MHui = σiwi . (5.7)

Then, the columns of the matrix U = {u1,u2, ...,um} and W = {w1,w2, ...,wn} but also the rows
of the adjoint matrix UH and WH form orthonormal bases. Those vectors are respectively called the
left-singular and right-singular vectors of M and some properties can be deducted:

• The left-singular vectors of M are a set of orthonormal eigenvectors of MMH .
• The right-singular vectors of M are a set of orthonormal eigenvectors of MHM.
• The non-zero singular values of M are the square roots of the non-zero eigenvalues of both

MHM and MMH .

Indeed, as the direct computation of the SVD singular values and left/right eigenvectors is not straight-
forward, it is more relevant to compute them by solving an equivalent eigenvalue problem on the square
matrix MHM. The SVD application on this matrix can thus be expressed as

MHM =
Ä
WΣUH

ä Ä
UΣWH

ä
= WΣ2WH .

(5.8)

Moreover, as MHM is hermitian ie MHM = [MHM]H , its diagonalization on an orthogonal basis
leads to:

MHM = ZΛZ−1 = ZΛZH , (5.9)

where Z is an n× n unitary matrix.
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Finally, Eq. 5.8 and 5.9 imply that Σ2 = Λ and W = Z and the pair (W,Σ2) refers to the eigenvalue
decomposition of MHM. Assuming the same procedure, the pair (U,Σ2) also refers to the eigenvalue
decomposition of MMH .

However, in the case where m << n the MHM eigenvalue problem is drastically less expensive to
solve than the MMH eigenvalue problem. Then, these two approaches are strongly related to different
SVD versions called the "classical SVD" and the "snapshot SVD" which are presented in the next sub-
section. Before that, the computation cost of the SVD methodology can in a first time be moderated by
applying its reduced version.

Reduced SVD Generally, it is not useful to compute the full SVD. Instead, it is often sufficient but
also faster and more efficient for the data storage to compute a reduced version of the SVD. Here, three
different approaches of the reduced SVD are briefly presented:

• Thin SVD: M̃n ≡ UnΣnW
H . The nth first column vectors of the U matrix, corresponding to

all the row vectors of WH , are computed. Other columns are not taken into account for the thin
SVD allowing to drastically decrease the computer cost of the methodology if n << m. Then,
the dimension of the matrices are defined as m× n for U, n× n for Σ and WH .
• Compact SVD: M̃r ≡ UrΣrW

H
r . The rth column vectors of the U matrix, corresponding to the

rth row vectors of WH associated to non-zero singular values σi are computed. However, this is
only computationally less expensive compared to the thin SVD if r << n. Then, the dimension
of the matrices are defined as m× r for U, r × r for Σ and for r × n for WH .
• Truncated SVD: M̃r ≡ UrΣrW

H
r . The rth first column vectors of the U matrix, corresponding

to the rth first row vectors of WH , are computed. However, this is only computationally less
expensive compared to the thin SVD if r << n. Then, the dimension of the matrices are defined
as m× r for U, r × r for Σ and for r × n for WH .

In this thesis, the truncated SVD formalism enables to approximate the M matrix with a truncated
matrix M̃ for a specific rank r with r < min(n,m), this is the low-rank approximation theorem presented
as follow:

Theorem : Low-rank approximation The best k-rank approximation M̃k of the matrix M is given
by zeroing out the m − k trailing singular values of M. The minimal error is given by the Euclidean
Frobenius norm of the singular values that have been removed by the process as:

||M− M̃k||F =
√

tr
î
(M− M̃k)H(M− M̃k)

ó
=
»
σ2
k+1 + ...+ σ2

m . (5.10)

5.2.3 Snapshot SVD

The SVD formalism is very useful for the spectral analysis of turbulent flows. It allows to decompose
the data matrix, noted here V, into spatial modes associated to their amplitudes and temporal dynamics.
This matrix can be filled with instantaneous data fields from numerical simulations such as velocity,
pressure, vorticity, passive tracers and so on... or from experiments through tomo-PIV, stereo-PIV, LDV,
hot-wire signals smoke visualization, Schlieren images and other. The previous SVD decomposition of
the real snapshot matrix V leads to the following form:
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V = UΣWT . (5.11)

Applying the SVD to a flow field allows to interpret the significance of the previous U, Σ and W

operators. Hence, the U matrix represents all the modes present in the flow while the Σ matrix refers to
the spectrum amplitude of the modes and the W matrix contains the dynamics of the modes.

The discretized data series are stored into the data matrix V, from initial time t0 to a final one tn with
a chosen time increment that has to be relevant regarding to the physics of the flow. Given a series of
n + 1 temporal snapshots of a discrete vector field v, the data matrix is filled by columns for each time
step ∆t which has to be constant in order to guarantee equispaced snapshots. This is the only assumption
of the methodology. Two time-shifted m× n data matrix Vn

1 and Vn+1
2 can be formed as

Vn
1 = {v1,v2, ...,vn} , (5.12)

and

Vn+1
2 = {v2,v3, ...,vn+1} , (5.13)

with m referring to the number of freedom degrees of the spatial discrete definition of the flow field vi.

Hence, thanks to these spatial and temporal discretizations, the SVD complexity is thus reduced in
term of operators dimension. Moreover, instead of the full SVD decomposition, it is more convenient
for computational cost reasons to apply the truncated SVD, noted ‹Vn

1 , and then to build a low-rank
representation of the data matrix V. Once again, in that case m refers to the dimension of the discrete
vector field and n to the number of temporal snapshots stored. The truncated SVD of the data matrix Ṽn

1 ,
is the best n-rank approximation of the matrices Vn

1 and thus of V.‹Vn
1 = UnΣnW

T ≈ Vn
1 (5.14)

This methodology for filling the data matrix Vn
1 is called the "snapshot method" introduced by Si-

rovitch [183] which differs from to the "classical method" introduced by Lumley [129]. In CFD, the
"snapshot method" is always preferred as it drastically decreases the storage and the CPU cost of the
SVD computation. Indeed, as the number of time sampling is negligible in front of the number of points
for the spatial discrete definition of the fields, it is therefore obvious to fill the data matrix by columns for
the temporal discretization. On the one hand, the "snapshot method" considers a spatial average over the
whole computational domain Ω defined as 〈.〉x =

∫
Ω .dx, on the other hand "classical method" consi-

ders a time average over the whole accumulation time period T defined as 〈.〉t =
∫
T .dt. Hence, with

the "snapshot method", the modes do not depend on time, the snapshots are considered as linearly inde-
pendent. Some sketches illustrating the SVD formalism based on the "snapshot method" are presented
hereafter in Fig. 5.1 and Fig.5.2:

Notation: Henceforth, the truncated SVD ‹Vn
1 is noted for convenience Vn

1 as it simplifies the writing
in the further developments.
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FIGURE 5.1: SVD with snapshot method as spectral analysis approach from [174]

FIGURE 5.2: Truncated SVD with snapshot method as model reduction approach from [174]

Moreover, as the SVD decomposition is not unique, it is mandatory to add an additional constraint on
the U or W matrices. Hence, each constraint choice produces different modes and associated dynamics.
For instance, a spatial orthogonality constraint on the modes decouples the columns of the matrix U and
leads to the well-known Proper Orthogonal Decomposition (POD) method. Similarly, a monochromatic
constraint on the mode frequency decouples the columns of the W matrix and refers to the Dynamic
Mode Decomposition (DMD) method. Finally, those two approaches, which are particular constrained
versions of the SVD, are further developed in the following sections.

5.2.4 Proper Orthogonal Decomposition (POD)

The Proper Orthogonal Decomposition (POD) or Karhunen-Loève expansion [102, 124] comes from
the probability theory and has been historically introduced in the turbulence field by Lumley [129, 130]
in order to objectively attempt to extract the coherent features from flows.
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The POD allows to determine an orthogonal basis that is optimal in the sense of the energy representa-
tion. In other words, this means that it is not possible to find another cardinal basis that better represents
the energy contained in the flow. This can be achieved by diagonalizing the matrix U which represents
the spatial uncorrelated POD modes. Through the Σ matrix, the singular values σi thus represent the
energy content of these modes and the temporal correlation matrix V refers to their temporal evolution.
The spatial orthogonality constraint imposed on the computed modes can be expressed as

(φk1 ,φk2) =

∫

R
φk1(x)φk2(x)dx = δk1,k2 , (5.15)

where (.) the canonical scalar product and δk1,k2 is the Kronecker symbol.

In the case where the φk functions form an orthonormal basis, the temporal function in Eq. 5.1 a(t) =

[a1(t), ..., an(t)]T can therefore be computed as a simple projection of the function f(x, t) = V on the
orthogonal basis as follows:

ak(ti) = (vi,φk) for i ∈ [1, n] . (5.16)

In that case, assuming that the number of selected modes for the truncated SVD is equal to the number
of time sampling snapshots nt = n, the minimization problem in Eq 5.2 can be written by substituting
the previous expression of ak(ti) which leads to:

min
φ

n∑

i=1

||vi(x)−
n∑

k=1

(vi,φk)φk(x)||22 . (5.17)

Hence, as the POD approach consists in extracting the most energetically dominant modes from the
flow, the algorithm searches modes which have the highest contribution in term of the least square mean
when projecting them onto the data snapshot matrix Vn

1 . This can be mathematically formulated through
the following optimization problem:

max
Ψ

〈(Vn
1 ,Ψ)2〉
||Ψ||22

=
〈(Vn

1 ,Φ)2〉
||Φ||22

, (5.18)

with

(φk,φk) = ||φk||22 = 1 , (5.19)

where (, ) and ||.||2 are the canonical scalar product and the L2 norm, 〈.〉 an average operator depending
on how the data matrix is filled. It refers to the spatial average 〈.〉x for the "snapshot method" formalism.

Moreover, as the kinetic energy of the mode φk is expressed as (ak, a
∗
k), the POD decomposition

guaranties that it is not possible to find another basis that enables to represent more kinetic energy of the
flow for a fixed number of modes n.
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The major advantages of this approach come from the fact that POD is a non-parametric method that
enables sub-domain and local analysis but also because of the relative simplicity of its implementation.
Although the POD method seems to be very attractive and elegant while identifying coherent features,
some well-known drawbacks have nevertheless to be highlighted:

• The choice of the energy measure for ranking the flow structures is not always the most relevant.
Indeed, Noack et al. [149] presented the existence of highly relevant dynamic modes with zero-
energy contribution to the flow.
• The averaging process when filling the data matrix for the SVD produces a second-order statistics

as a basis for the decomposition, implying the loss of some valuable phase information which can
disturb the classification of the modes.
• The spatial orthogonality constraint may be too stringent and also not being always physically

relevant because the modes are not monochromatic and due to the loss of the temporal evolution
of the dynamics.

Another modal decomposition method also based on the SVD formalism with temporal orthogonality
constraint is presented in the next section.

5.3 Dynamic Mode Decomposition (DMD)

5.3.1 Presentation

As previously mentioned, the DMD algorithm guaranties that the computed modes are monochromatic
and ranked according to their dynamics. The dynamic modes take the form

f(x, t) = a(t)φ(x) with a(t) = α exp(iωt) , (5.20)

with φ(x) a normalized DMD mode, α its amplitude and exp(iωt) its temporal behavior and amplifica-
tion.

Thanks to the temporal orthogonality constraint of the DMD approach, the matrix WT , that comes
from the SVD decomposition of the matrix Vn

1 , can be written as a Vandermonde matrix:

WT =




1 z1 z2
1 . . . zn−1

1

1 z2 z2
2 . . . zn−1

2
...

...
...

...
1 zn z2

n . . . zn−1
n



, (5.21)

where the WT matrix is filled with unknown frequencies zk = exp(iωk∆T ).

5.3.1.1 The Koopman analysis of non-linear dynamical systems

As defined above, the data matrix Vn
1 contains by columns the temporal snapshots of the data field

of interest. Under the assumption of an ordered sequence of data separated by a constant time sampling
∆T , in the first approximation then, a linear mapping called the Koopman operator [115, 137] A links
two consecutive snapshots as

vi+1 = Avi . (5.22)
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This mapping can be considered as being constant over the whole time sampling range for the DMD
application. The sequence of flow field snapshots vi can therefore be represented as a Krylov sequence [77,
195]:

Vn
1 = {v1,v2, ...,vn} = {v1,Av1, ...,A

n−1v1} . (5.23)

The Koopman operator A based on Vn
1 contains all the dynamic processes and thus refers to the time-

evolution operator of the system, here the Navier-Stokes equations. It is mandatory to extract the dynamic
characteristics from this operator as eigenvalues, eigenvectors, energies and mode amplifications.

Assuming a sufficient number of snapshots n in order to capture the dominant features of the un-
derlying physical processes, the last snapshot vn+1 can be considered as dependent on the previous
snapshots that are linearly independent. Then, vn+1 can be written as a linear combination as

vn+1 = a1v1 + a2v2 + ...+ anvn + r , (5.24)

which can also be expressed in the following matrix form

vn+1 = Vn
1 a + r , (5.25)

with aT = (a1, a2, ..., an) the vector referring to the linear coefficients and r the residual vector. Then,
Ruhe [169] introduced in the previous relations the S operator as:

AVn
1 = Vn+1

2 = Vn
1 S + Eps ≈ Vn

1 S . (5.26)

The above formula is thus expressing that the last snapshot can be expressed approximately as a linear
combination of all the previous ones. The m × n residual matrix Eps = {ε1, ε2, ..., εn} = reTn with
en ∈ Rn as the nth unit vector is the error between the Dynamic Mode Decomposition Vn

1 S and the
data matrix Vn+1

2 . The matrix S is defined as as a n× n companion matrix of the form:

S =




0 a1

1 0 a2

. . . . . .
...

1 0 an−1

1 an



. (5.27)

Moreover, thanks to the structure of the matrix S, it can be decomposed into two distinct parts:

S = S0 + E , (5.28)

with S0 is a n× n companion matrix that represents a time-shift between two successive snapshots as

S0 =




0 0

1 0 0
. . . . . .

...
1 0 0

1 0



. (5.29)
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This states that the jth column of Vn+1
2 is equal to the j + 1th column of Vn

1 , except for the last one.
E is also n× n matrix which entries are all zero, except for the last column:

E =




0 0 · · · 0 a1

0 0 · · · 0 a2
...

. . .
...

...
0 · · · · · · 0 aN−1

0 · · · · · · 0 aN



. (5.30)

The unknown coefficients are the ai for i ∈ [1, n] which are the linear representation of the snapshot
vn+1 in term of the previous sample Vn

1 . Moreover, the eigenvalues of the S companion matrix are
approximations of the eigenvalues of the Koopman operator A. The matrix S can therefore be interpreted
as the projection of A on the snapshots base Vn

1 .

In order to extract the dynamic characteristics of the Koopman operator A, Greenbaum [77] and
Trefethen [195] proposed to applied the Arnoldi method, dealing with a reduction of the matrix A onto
an Hessenberg matrix H, that approximates the eigenvalues of A thanks to a QR decomposition. This
can be achieved by applying successive projections onto Krylov subspaces but in that case, the Koopman
operator A has to be known which is not the case for our applications. In practice, this method is not
convenient for stability reason and more details can be found in [175].

Finally, the DMD method allows to estimate the Koopman eigenvalues and modes. Two distinct me-
thods are implemented in the CFD code YALES2. The first one is called "Full Rank", as it based on the
assumption that Vn

1 matrix is full-rank. The second is called "Generalized". For both methods, the first
step is to compute the Singular Value Decomposition (SVD) of Vn

1 .

5.3.1.2 The Full-Rank DMD

The first introduced DMD algorithm deals with a naive approach of the formalism as the matrix S is
not necessarily invertible which can imply an ill-conditioned algorithm. Starting with the data matrices
Vn

1 and Vn+1
2 , the error between those matrices Eps can be expressed as:

Eps = Vn+1
2 −Vn

1 S

= Vn+1
2 −Vn

1 [S0 + E]

= −Vn
1 E +

î
Vn+1

2 −Vn
1 S0

ó
,

(5.31)

or, keeping only the last column, which is the only one with non-zero values:

εn = −Vn
1 E:,n + vn+1 . (5.32)

In this equation, εn is equal to zero only if vn+1 is in the image of Vn
1 . If not, we can still try to find

a vector E?
:,n such that εn ⊥ Vn

1 E?
:n ; this will minimize εn in the least-square (L2) sense. This vector

E?
:,n is known as a pseudo solution of the initial problem and can be found by performing the truncated

SVD of Vn
1 noted Vn

1 = UnΣnW
T . This pseudo-solution is given by:
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Vn
1 E?

:,n ≈ vn+1

UnΣnW
TE?

:,n ≈ vn+1

E?
:,n ≈WΣn

+UT
nvn+1 ,

(5.33)

so that:

S = S0 + WΣn
+Un

T
Ä
Vn+1

2 −Vn
1 S0

ä
. (5.34)

Another solution would have been to compute S directly as:

S = WΣn
+Un

TVn+1
2 . (5.35)

However, in this case, if Vn
1 has not a maximal rank, then Σn

+Σn 6= In and S will not have the form
S = S0 + E.

Moreover, the complex eigenvalues λT = (λ1, λ2, ..., λn), called the Ritz values, and the right and
left eigenvectors of S, X = {x1,x2, ...,xn} and Y = {y1,y2, ...,yn} respectively, are computed with
the classical eigenvalues problem defined as:

Sxj = λjxj ,

yjS = λjyj .
(5.36)

As S is real, eigenvalues are either real or form pairs of complex-conjugates. The vectors xj and yj
are chosen with the following properties:

xHj xj = 1 ,

yjy
H
j = 1 ,

yixj = δij .

(5.37)

Now, the matrix Λ has to be introduced. This is a n × n square matrix filled with zero except on the
diagonal that contains the eigenvalues λi of the S operator. Λ can therefore be built by projecting the S

operator onto the left and right eigenvectors as Eq 5.36 mentioned.

Finally, the DMD modes Φ = {φ1,φ2, ...,φn} are defined as the projection of the data matrix Vn
1

onto the right eigenvectors basis:

φj = Vn
1 xj , (5.38)

or in matrix form

Φ = Vn
1 X , (5.39)

and the evolution between two consecutive snapshots is given by

Vn+1
2 xj = λjV

n
1 xj . (5.40)
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Then, using the matrix form Λ for the eigenvalues, a relation between the data matrices Vn
1 and Vn+1

2

can be found as follows:

Vn+1
2 X = ΛVn

1 X i.e Vn+1
2 = Vn

1 XΛY . (5.41)

Finally, the (k + 1)th with k ∈ [1, n − 1] snapshots of the data matrix Vn
1 can thus be written as a

combination of all the DMD modes with their own temporal evolution:

vk+1 = vkXΛY

= [vk−1XΛY] [XΛY]

= vk−1XΛ2Y

= ...

= v1XΛkY

=
î
eT1 Vn

1

ó î
XΛkY

ó
= [Vn

1 X] Λk
î
eT1 Y

ó
= ΦΛkY:,1 ,

(5.42)

where eT1 simply refers to the unit vector in the first direction eT1 = (1, 0, . . . , 0).

Here, Y:,1 represents the first column of Y, which is not the first left eigenvector but rather the first
component of every left eignevector. The amplitudes of the modes, noted here diag(Dα) = (α1, α2, ..., αn)

where Dα is a diagonal matrix, are thus contained in the first column of Y :

αj = Yj,1 . (5.43)

Hence, the reconstruction formulation of a snapshot using the DMD modes can be expressed as

vk+1 =
n∑

i=1

αiφiΛ
k
i . (5.44)

Finally, the reconstruction of the "Full-rank" DMD does not guarantee the scaling of the reconstructed
data field comparing of the real field. Indeed, as the amplitudes refer to the first components of each ei-
genvectors αi = Yj,1, the information about the scaling is lost as each eigenvector has been normalized.
Moreover, in this configuration, the sign of the complex amplitude of the mode may therefore not be
the right one, as the eigenvectors can have opposite sign. However, the "Generalized" DMD, which also
overcome the ill-conditioned problem when S is not invertible, enables to compute the modes amplitudes
keeping the right sign and scaling of the modes that allows to reconstruct the field of interest.

5.3.1.3 The Generalized DMD

Here is presented the generalized DMD algorithm proposed by Schmid [175] based on a modified time
shifting operator S̃ defined as

S̃ ≡ Un
TVn+1

2 WΣn
−1 , (5.45)

which can also be written in the following form when the Vn
1 matrix is full-rank:
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S̃ ≡ Un
TVn+1

2 WΣn
−1 = Un

TAUn . (5.46)

The eigenvalues diag(Λ) = (λ1, λ2, ..., λn) and right-eigenvectors ‹X = {x̃1, x̃2, ..., x̃n} of the time
shifting operator S̃ can thus be computed by solving the following eigenvalues problem defined as

S̃x̃j = λjx̃j , (5.47)

where x̃j is normalized such as x̃Hj x̃j = 1.

The generalized DMD modes ‹φj of the snapshot sequence are defined as‹φj = Unx̃j . (5.48)

Then, multiplying Eq. (5.45) on the right-hand side by Un
TUn and ΣnWT gives

S̃Un
TUnΣnWT = Un

TVn+1
2 WΣn

−1ΣnWT = Un
TVn+1

2 , (5.49)

and

S̃Un
TVn

1 = Un
TVn+1

2 . (5.50)

Multiplying by the eigenvector x̃j on the left-hand side

x̃jS̃Un
TVn

1 = λjx̃jUn
TVn

1 = x̃jUn
TVn+1

2 , (5.51)

which leads to ‹φjVn+1
2 = λj‹φjVn

1 . (5.52)

In this equation, it is clear that the complex eigenvalue λj controls the time evolution of the snapshot
sequence. Hence, the n+ 1 snapshot can be expressed as linear combination of DMD modes associated
to their amplitudes αi in the following manner:

ṽn+1 =
n∑

i=1

αiλ
k
i
‹φi(x) . (5.53)

This is equivalent to the matrix formulation:

Vn
1 = ΦDαVand = [φ1 φ2 ... φn]




α1

α2

. . .
αn







1 λ1 · · · λn−1
1

1 λ2 · · · λn−1
2

...
...

. . .
...

1 λn · · · λn−1
n




(5.54)

The complex eigenvalues λi of the time shifting operator S̃ contain all the information concerning the
frequencies and growth/decay rates of the modes. With these eigenvalues, the Vandermonde matrix Vand

can therefore be built and contains all the temporal evolution of the modes dynamics φi in discrete time.
At this point, the unknown factors for the reconstruction of the flow field are the complex components of
the amplitude vector diag(Dα) = α = [α1 ... αn]T with αi ∈ Cn.
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5.3.2 Mode selection

The temporal reconstruction can be achieved by trying to minimized the number of modes n that
appears in the summation of Eq 5.53. In order to rank and select the modes, several criteria have to be
considered. However, this selection can often be seen as a trade-off between the dynamic contribution and
the damping behavior of each mode. Even if the the identification and the selection of the dominant flow
features is generally straightforward for canonical simple configurations, it becomes more challenging
and very difficult in highly turbulent flows where perturbations coming from transient modes and multiple
frequencies are strongly present.

Hence, here are presented several criteria with their advantages and shortcomings that enable to iden-
tify and select the dominant features for DMD computations:

• Mode frequency and growth/decay rate: Those two criteria can directly be computed from the
DMD algorithm by considering Eq 5.53 with the following logarithm mapping transformation:

vk+1 =
n∑

j=1

αjλ
k
j
‹φj(x)

=
n∑

j=1

αj |λj |kei arg(λj)k‹φj(x)

=
n∑

j=1

αje
k ln |λj |ei arg(λj)k‹φj(x)

=
n∑

j=1

αje
k∆Tλln

j eik∆Tωj ‹φj(x) ,

(5.55)

where ωj =
arg(λj)

∆T refers to the pulsation and λln
j =

ln |λj |
∆T to the amplitude growth/decay rate

of the mode φj .

Several aspects can be considered with those criteria. First, the frequency of the modes allows
to identify them while the amplitude growth or decay rate enables to verify their convergence.
Indeed, a converged mode is characterized by a value of λln

j close to zero, this means that the
eigenvalue λj of the S operator, called the Ritz eigenvalue, is close to the unit circle. In addition,
the sign of λln

j enables to determine the temporal stability of the mode. On the one hand, if the
sign is negative, the mode is stable and will be damped as the time increases. On the other hand,
a positive sign of λln

j deals with unstable modes as they will grow exponentially as the time
increases. Finally, if λln

j = 0, then the mode amplitude is constant in time which is often the case
for the modes associated to the data mean fields.
• Norm of the mode: The modes can be ranked by their norms ||φj ||2 [167], however this method

may not be effective as some modes with a large norm and with a strong damping behavior may
be highlighted.

||φj ||2 = ||Unxj ||2 . (5.56)

• Mode amplitude: Contrary to the POD approach, where mode amplitudes are computed through
a simple scalar product as seen in Eq 5.16, it is not straightforward to compute them in the DMD
formalism as modes do not have the spatial orthogonal property. Then, many different ways have
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been developed to compute these amplitudes in the DMD formalism, some of them are presented
hereafter:

- Projecting the data sequence onto the identified dynamic modes [177] allows to determine
their significances. However, this approach does not take into account the growth/decay behavior
of the modes. Similarly, the projection of the first snapshot onto the modes may be preferred but
modes with a strong damping behavior may still be highlighted.

- Optimized modes amplitude over the whole dataset has been proposed by Jovanovic et
al. [99]. This approach allows to guarantee the scaling of the mode for the field reconstruction.
However, in that case, transient modes with large amplitude will also be included in the optimi-
zation process leading thus to non-negligible amplitudes.
• Energy contribution : The computation of the mode energy has been introduced by Tissot et

al. [192] and allows to take into account both of the previous main aspects for the mode selection.
On the one hand, it integrates the mode contribution over the whole dataset allowing to emphasize
the non transient but dynamically dominant modes. On the other hand, it also combines the
growth/decay behavior of the mode that is contained into the eigenvalues. Here is presented the
development of the mode energy contribution with the assumption that all modes have been
normalized such as ||φj ||2 = 1.

Ei =
1

T

∫ T

0
||αiφiλt/∆Ti ||22dt

= ||αiφi||22
1

T

∫ T

0
||λt/∆Ti ||22dt

= |αi|2.||φi||22
1

T

∫ T

0
||etλln

i eiωit||22dt

= |αi|2
1

T

∫ T

0
e2tλln

i dt

= |αi|2
1

T

[
e2tλln

i

2λln
i

]T

0

= |αi|2
[
e2Tλln

i − 1

2Tλln
i

]
.

(5.57)

Finally, the mode energy seems to be the most relevant criterion in order to select the dominant subset
of modes. However, this criterion necessitates the computation of the mode amplitudes. The methodology
proposed by Jovanovic et al. [99] has been chosen for this computation and is further developed in the
next sub-section.

5.3.3 Minimization problem for the computation of the modes amplitude

Due to the temporal orthogonal property of the DMD formalism, the mode amplitude still has to be
determined after applying this methodology. In order to find those coefficients presented in Eq 5.54, an
optimization problem proposed by Jovanovic et al. [99] using the Frobenius norm ||.||F has to be solved
as

minimize
α

||Vn
1 −ΦDαVand||2F . (5.58)
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This minimization problem can be expressed in another form using the SVD decomposition and the
definition of Φ = Un

‹X. Then it leads to the following convex optimization problem defined as

minimize
α

J(α) = minimize
α

||ΣnWH − ‹XDαVand||2F . (5.59)

This problem is easier to solve because of the reduced dimensions of the matrices. Moreover, the
functional J(α) may also be written as

J(α) = ||A||2F =
(»

tr(AHA)
)2

=
∑

i

∑

j

|aij |2 , (5.60)

with A = ΣnWH − ‹XDαVand and aij = (ΣnW∗)ij − (‹XDαVand)ij = σiwji −
∑

k xikαkλkj.

In order to solve this minimization problem, here is proposed to analytically express the derivative of
the functional, noted ∂J(α)

∂αn
with n ∈ [1, n], and to apply a gradient base descent method.

∂J(α)

∂αn
=
∑

i

∑

j

∂
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.

Here, the functional derivates for the convex optimization problem are reformulated from the complex
vector space to the real vector space:
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(5.61)

Then, the complex number xikαkλkj is introduced. This number can be split into real and imaginary
parts as:

xikαkλkj = (xrik + ixiik)(α
r
k + iαik)(λ

r
kj + iλikj)

= (xrikα
r
k + ixrikα

i
k + ixiikα

r
k − xiikαik)(λrkj + iλikj)

= (xrikα
r
kλ

r
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+ i(xrikα
i
kλ

r
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r
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r
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r
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i
kj − xiikαikλikj) ,

and therefore the real and imaginary parts can be expressed as

Re(xikαkλkj) = xrikα
r
kλ

r
kj − xiikαikλrkj − xrikαikλikj − xiikαrkλikj ,
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r
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r
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r
kλ

i
kj − xiikαikλikj .

(5.62)

Using the previous expression of xikαkλkj , the second derivatives Dr
1 and Di

1 can thus be expressed
as follows:
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(5.63)

Using the previous expression of xikαkλkj , the second derivatives Dr
2 and Di

2 can thus be expressed
as follows:
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(5.64)

and
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Di
2 =

∂

∂αin

[∑

k

|xikαkλkj |2
]

=
∂

∂αin

[∑

k

Re2(xikαkλkj) + Im2(xikαkλkj)

]

= 2Re(xinαnλnj)
∂

∂αi
n

[Re(xinαnλnj)]

+ 2Im(xinαnλnj)
∂

∂αi
n

[Im(xinαnλnj)] .

(5.65)

Hence, the derivates are easily expressed as

∂

∂αrn
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r
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Finally, the expressions of the functional derivatives are:
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(5.70)

Another important criterion that has to be highlighted is the loss function introduced by Jovanovic et
al. [98] and which is defined as

Πloss :=

√
J(α)

J(0)
=
||Vn

1 −ΦDαVand||F
||Vn

1 ||F
. (5.71)

The loss function enables to estimate the quality of the vector solutionα of the minimization problem
previously introduced.

Finally, the computation of the modes amplitude also enables to reconstruct the field of interest conser-
ving the modes scaling intact [176]. More advanced methodology has been introduced for extracting a
subset of dominant modes, Chen et al. [35] introduced a non-convex optimization problem associated
to combinatorial search. Moreover, Jovanovic et al. [99, 98] proposed the low rank, sparse and sparsity-
promoting DMD and Sayadi et al. [172] a corrected mode amplitude computation method that tries to
overcome the selection of dominant but transient features.
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5.4 DMD algorithm applications

This section presents the application of the DMD methodology on realistic configurations in order to
extract the coherent features from unsteady flows. First, the classical 2D laminar cylinder configuration
has been studied with the extraction of the well-known Bénard-von Karman alleys. Second, the challen-
ging 2.2 billion cells LES of the T7.2 configuration, presented in the previous chapter, has been on-the-fly
post-processed thanks to the MGHOF framework leading to the generation of hundreds of snapshots that
have been analyzed through DMD.

5.4.1 Application to the 2D cylinder flow

This section introduces the dynamics extraction for the classical 2D laminar cylinder configuration
thanks to DMD. This test case is ideal as it produces stable and periodic features called the Bénard-von
Karman alleys for some values of the Reynolds number.

5.4.1.1 Presentation of the configuration

This configuration is governed by a single dimensionless parameter, the Reynolds number, defined
as Re = u∞d/ν with u∞ the characteristic free-stream velocity scale, d the cylinder diameter and ν
the kinematic viscosity of the fluid. When the Reynolds number is below a critical value defined as
Rec ' 46, the flow field is asymptotically steady and two-dimensional. However, the flow becomes
unstable for higher Reynolds numbers through a Poincaré–Andronov–Hopf bifurcation [150] - a critical
point where a system’s stability turns to a periodic solution - leading to the well-known Bénard-von
Karman vortex street. Henry Bénard [14] was the pioneer who studied the experimental aspect of this
phenomenon when von Karman [202] was interested in the theoretical considerations. This oscillatory
flow is characterized with asymptotically time-periodic and two-dimensional behavior until a Reynolds
number value of 188, where the flow becomes turbulent and three-dimensional [9].

Here, the 2D computational domain has been defined with the following geometrical dimensions
Lx × Ly = 0.6 m × 0.3 m and with a cylinder width d = 0.01 m. On the inlet, the initial velocity
field has been imposed to ux = 0.15 m.s−1 and uy = 0.0 m.s−1 leading to a Reynolds number of 99

considering air flow with a kinematic viscosity equal ν = 1.517× 10−5 [m2.s−1] and a Strouhal number
of St ≈ 0.165 [23]. The LES of this configuration has been performed with 10 processors on an un-
structured grid composed of 25′000 cells as Fig 5.3 presents. Once the flow field convergence is reached,
the snapshots have been accumulated through the MGHOF framework with a time sampling defined as
∆T = 0.05 s ≈ τ/8 with τ the vortex shedding based on the Strouhal number. Finally, the generalized
DMD methodology has been performed on this configuration with the 130 snapshots on 10 processors,
corresponding to 8 snapshots per vortex shedding.

5.4.1.2 DMD application on the velocity field

In a first time, the DMD formalism has been applied to the velocity field. As the selection of a sub-
set of DMD dominant features depends both on the eigenvalues and on the mode energy, the graphical
representation of those quantities has to be introduced before going further and deeper in the analysis of
the DMD results.
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Inlet Outlet

Lower wall

Upper wall

FIGURE 5.3: Sketch of the 2D cylinder configuration

Figure 5.4 presents the location of the mode eigenvalues λj relative to the unitary circle. As previously
mentioned, the Vandermonde matrix Vand, filled with λki , contains the temporal evolution of the dynamic
mode φi, and thus the mode damping for each snapshot. Indeed, the ith mode eigenvalue at the power k,
noted λki , refers to the attenuation of the ith DMD mode φi for the (k+1)th snapshot. As a consequence,
Fig. 5.4 (left) shows the mode attenuation for the second snapshot and Fig. 5.4 (right) presents the mode
attenuation for the last snapshot n. Stable modes are associated to modulus eigenvalues equal or lower
than one as previously explained and conjugate modes can be easily identified thanks to the horizontal
axial symmetry.

Considering Fig. 5.4 (left), it is noticeable that some frequencies, colored in red circles, stand apart
from the others as they seem to be well converged and thus located on the unit circle. First, the point
located at coordinate (1.0, 0.0) refers to the real constant mode and represents the mean flow field. This
mode is therefore not damped as the time increases because of its unitary modulus. Others are complex
conjugated modes that evolve in time. Moreover, they all seem to be multiples of one lower frequency:
they are all harmonics. This can be easily shown with the constant angle between each of them on the
unit circle and their frequency.

Looking at Fig. 5.4 (right) allows to quantify the stability and the damping of the DMD modes. Here,
it is noticeable that all the red circled modes are still located very close to the unit circle. Therefore, they
can be considered as permanent compared to other transient modes. Even if some of them are out the
unit circle, they can be considered as quasi-stable and thus relevant for the dynamics of the flow.

Another representation of Fig. 5.4 (left) is presented in Fig. 5.5 which consists in a log-mapped trans-
formation of the mode eigenvalues as λln

j =
lnλj
∆T . In that case, the x-coordinate represents the pulsation

of the mode, noted ωj , with a vertical symmetry axis. Then, every mode except the constant one, is as-
sociated to its conjugate with an opposite frequency. Moreover, unstable modes are here represented by
positive value of λln

j while most stable modes are located close to the zero x-axis which correspond to



Application of the MGHOF framework to modal decomposition methods 137

−1.0 −0.5 0.0 0.5 1.0

Re(λj)

−1.0

−0.5

0.0

0.5

1.0

Im
(λ

j)

−1.0 −0.5 0.0 0.5 1.0

Re(λn−1
j )

−1.0

−0.5

0.0

0.5

1.0

Im
(λ

n
−

1
j

)

FIGURE 5.4: Eigenvalues λj (left) and λn−1
j (right)
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FIGURE 5.5: Log-mapped transformation of the eigenvalues λln
j

the red circled modes as previously mentioned.

The other relevant criteria when selecting a sub-set of DMD dominant features are the modulus of
the mode amplitude, previously obtained by solving the minimization problem, but also the energy of
the modes that both combines mode amplitude and convergence. As Fig. 5.6 (left) presents, the modulus
of the amplitudes enable to distinguish which modes are the most dynamically relevant features of the
flow. However, adding the mode eigenvalues enables to build the integrated energy of each mode which
is presented in Fig. 5.6 (right). This criterion is more accurate as it penalizes transient modes that will
be strongly damped as the time increases. Then, it is noticeable that the most converged modes, the red
circled ones, are also dominant in term of energy that confirms the sub-set selection.
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FIGURE 5.6: Mode amplitudes αj (left) and Mode energy Ej (right)

The spatial selected DMD modes are presented in Fig. 5.7. Here, the frequencies of the selected do-
minant modes can be compared to experimental results through the Strouhal number defined as

St =
d

τU
, (5.72)

where τ is a period of a vortex shedding.

The experimental Strouhal number for Reynold number case Re = 100 is around St ≈ 0.165 [23].
This value refers to an experimental frequency of νexp ≈ 2.48 [Hz] for the vortex shedding which is
very close to the frequency of the mode 31 with ν = 2.55 [Hz]. The selected modes 68 and 100 are
harmonics of this frequency. However, even if the mode 128 does not have the adequate frequency to be
an harmonic, it can be considered has an approximated harmonic o the frequency ν = 10.20 Hz as the
time sampling ∆T = 0.05 s does not allow to correctly capture frequencies higher than 10 Hz.

Finally, thanks to this sub-set of modes, the instantaneous velocity flow field has been reconstructed by
only considering the 4 selected modes with the mean flow. As Fig. 5.8 shows, the reconstructed flow field,
noted ũDMD, is directly compared to the computed field from the LES, noted uLES , for two different
times, respectively t = 0 and t = 19∆T . The reconstructed flow field looks very similar to the LES field
and highlights the ability of DMD to identify and extract the dynamics in such simple configuration.

5.4.1.3 DMD application on the scalar

In a second time, DMD has been applied to the scalar field whose boundary conditions have been set
to unity at the inlet and to zero on the cylinder wall. First, as previously presented, the selection of the
most converged modes can be achieved with Fig. 5.9 and Fig. 5.10. The analysis of the amplitude and the
energy of the modes in Fig. 5.11 allows to highlight the same frequencies as the ones on the velocity field.
However, one transient mode, characterized with the frequency ν = 1.76 [Hz], seems also to stand apart.
Comparing the amplitude and the averaged energy of this mode enables to highlight the penalization due
to its transient behavior. The energy of this mode still remains high but despite this value, it has not been
selected because of its high damping. The sub-set of relevant modes are presented in Fig. 5.12 and the
transient dynamically important mode is presented in Fig. 5.13.
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FIGURE 5.7: Dominant DMD modes for the velocity field

FIGURE 5.8: Reconstruction of the velocity field with four modes and the mean
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FIGURE 5.9: Eigenvalues λj (left) and λN−1
j (right)
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FIGURE 5.10: Log-mapped transformation of the eigenvalues λln
j

Moreover, the scalar flow field has also been reconstructed using the sub-set of selected DMD modes
as Fig. 5.14 shows. Once again, the reconstructed flow field is very close to the one computed.

To conclude, the application of DMD is very efficient to identify and extract coherent flow features.
The 2D laminar cylinder is not a challenging configuration for the considered Reynolds number. Indeed,
no turbulence is generated and the Bénard-von Karman alleys are periodic features. Moreover, capturing
the physics of the flow does not necessitates well refined meshes. In the following sub-section, a much
more challenging configuration is considered.

5.4.2 Combining the MGHOF with Dynamic Mode Decomposition

This last section demonstrates that the MGHOF enables to perform advanced analysis of large-scale
dynamics from massive high-fidelity simulations.
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FIGURE 5.11: Mode amplitudes αj (left) and Mode energy Ej (right)
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FIGURE 5.12: Dominant DMD modes for the scalar field

In this section, DMD is applied to the LES of the T7.2 blade with the M2 mesh (2.2 billion elements)
through the MGHOF framework, in order to identify the dynamically dominant features of the flow. The



Application of the MGHOF framework to modal decomposition methods 142
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FIGURE 5.13: Dominant unconverged DMD modes for the scalar field

FIGURE 5.14: Reconstruction of the scalar field with four modes and the mean

T7.2 configuration has been previously presented in section 4.4.2.1.

5.4.2.1 Dominant features extraction

Here, the DMD methodology is applied to the passive scalar zM0 and velocity field uM0 extracted from
the LES grid M2 to M0 with n = 200 snapshots obtained with a constant time sampling ∆T = 0.05 ms.
These snapshots have been directly generated by applying 200 times the MGHOF framework with the
calibrated parameters. The coherent features computed on the mesh with 2.2 billions cells can therefore
be analyzed with DMD overcoming the storage issue that would arise if one would apply DMD directly
on the fine LES mesh.

In order to assess the quality of the DMD and more particularly its ability to reproduce the flow
dynamics, the loss function, previously introduced, is computed. This function enables to estimate the
quality of the DMD solution. For n = 200 snapshots and ∆T = 0.05 ms, the loss function for the scalar
zM0 is Πloss = 0.34%. Moreover, by adding twice more snapshots leading to n = 400, the loss function
for the scalar is slightly reduced to Πloss = 0.12%. Concerning the velocity field, the loss function is
almost equal to zero for n = 200 snapshots and increases when adding more snapshots. Hence, the
results presented hereafter have been computed with n = 200 snapshots for both scalar and velocity
field, which ensures a good approximation of the flow dynamics over the whole sampling time.

Then, the energy of the DMD modes against the pulsation is presented in Fig. 5.15 for the passive
scalar (left) and for the velocity (right). Selecting the dominant modes from their energy is very difficult
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in this type of flow. Indeed, a mode can be dominant during the first snapshots leading to a large energy
but not dominant over the whole sampling time. This type of transient mode is not of interest here. The
mode energy has to be complemented by an analysis of the mode eigenvalues λi and amplitude growth
rate λln

j =
ln |λj |
∆T presented in Fig. 5.16 and 5.17. If the eigenvalue lies on the unit circle and if the

amplitude growth rate is sufficiently large, the mode is not damped and contributes to the dynamics over
the full sampling time.
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FIGURE 5.15: Energy of the modes for the passive scalar zM0 (left) and the velocity field uM0 (right)

Based on the three latter criteria, relevant DMD modes have been extracted. These modes are represen-
ted with red dots in Figs. 5.15 to 5.17. More advanced DMD methodologies could be applied to select the
dominant modes as the optimized DMD [35] based on combinatory search, low-rank DMD and sparse
DMD [99] or the sparsity-promoting DMD [98], in order to access to more relevant modes.

−1.0 −0.5 0.0 0.5 1.0

Re(λj)

−1.0

−0.5

0.0

0.5

1.0

Im
(λ

j)

−1.0 −0.5 0.0 0.5 1.0

Re(λj)

−1.0

−0.5

0.0

0.5

1.0

Im
(λ

j)

FIGURE 5.16: DMD eigenvalues λj for the passive scalar zM0 (left) and the velocity field uM0 (right)

The real parts of the selected dominant modes for the passive scalar and the velocity fields are pre-
sented in Fig. 5.18 and Fig. 5.19 with their detailed properties in Tab. 5.1 and Tab. 5.2. These fields are
complemented with 3D visualizations of the modes in Figs. 5.20 to 5.23. For both scalar and velocity



Application of the MGHOF framework to modal decomposition methods 144

−80000 −60000 −40000 −20000 0 20000 40000 60000 80000

ωj [rad.s−1]

−1000

−800

−600

−400

−200

λ
ln j

[s
−

1
]

−80000 −60000 −40000 −20000 0 20000 40000 60000 80000

ωj [rad.s−1]

−1000

−800

−600

−400

−200

λ
ln j

[s
−

1
]

FIGURE 5.17: DMD amplitude growth rate λln
j for the passive scalar zM0 (left) and the velocity field

uM¯0 (right)

Mode ωi [rad.s−1] |λi| [−] Ei [−]

φ1 0.0 1.0 2225.17

φ10 3.718× 103 9.94× 10−1 14.24

φ30 9.527× 103 9.93× 10−1 9.04

φ44 1.420× 104 9.93× 10−1 5.84

φ94 2.948× 104 9.90× 10−1 4.20

φ144 4.537× 104 9.92× 10−1 3.99

φ196 6.108× 104 9.90× 10−1 3.68

TABLE 5.1: Properties of the selected DMD modes for the passive scalar zM0

Mode ωi [rad.s−1] |λi| [−] Ei [−]

φ1 0.0 1.0 80694.33

φ2 8.45× 102 9.93× 10−1 3734.18

φ25 8.094× 103 9.91× 10−1 2101.21

φ80 2.532× 104 9.90× 10−1 1415.55

φ92 2.952× 104 9.91× 10−1 1207.12

φ135 4.210× 104 9.90× 10−1 1226.53

φ155 4.863× 104 9.91× 10−1 1138.00

TABLE 5.2: Properties of the selected DMD modes for the velocity field uM0

DMD, the constant mode, noted φ1 and characterized by a frequency equal to zero, represents the mean
flow field.

The scalar modes exhibit different types of coherent structures that are mostly located in the boundary
layer or in the recirculation zone on the pressure side. These structures depend on the position on the
blade: in the laminar boundary layer on the suction side, very elongated structures with a size close to a
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FIGURE 5.18: Constant mode φ1 (first line) and real parts of the next selected DMD modes for the scalar
zM0

mid-chord are present. Other types of elongated structures are present at the trailing edge on both sides.
In the recirculation zone on the pressure side, the structures are more isotropic.

The velocity modes are more complex to analyze. In this configuration, homogeneous isotropic turbu-
lence with an intensity of nearly 6% is injected upstream of the blade. Some of the spectral content of
this turbulence may interact with the blade. This phenomenon is visible in the upstream content of the
different velocity modes, especially those at low frequency. While the recirculation zone on the pressure
side has a strong response for the low-frequency modes with large-scale and elongated vortices visible
in Fig. 5.22, the wake of the blade responds to higher frequencies. More interestingly, the turbulent
boundary layer on the pressure and suction side have also different responses.

When comparing the scalar and velocity modes, it appears that most of the modes are independent,
which would suggest that the temperature and velocity fluctuations are decoupled. The only exception is
the mode 92 for the velocity, which is very close to the mode 94 for the scalar. This analysis should be
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supplemented by a study of the cross correlation of these modes, which is out of the scope of the present
work.

5.5 Conclusions

The MGHOF framework enables to accumulate a large number of snapshots on coarse grids in order
to apply modal decomposition techniques such as POD or DMD. Indeed, the extraction of large scales on
coarse grids by removing all the highest flow frequencies overcomes the storage issue of those methodo-
logies. The application of the DMD method successfully identifies the dynamically dominant modes in
billion cells LES and enables to better understand the dynamics of the flow. Many other types of analysis
would benefit from such accurate and efficient coarsening technique.
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FIGURE 5.19: Real parts of the selected DMD modes for the velocity field uM0 with component x of the
mode (left) and component y (right)
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FIGURE 5.20: Iso-contours of the mode modulus for the scalar zM0 (perspective view)

FIGURE 5.21: Iso-contours of the mode modulus for the scalar zM0 (top view)
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FIGURE 5.22: Iso-contours of Q-criterion for the velocity DMD modes (perspective view)

FIGURE 5.23: Iso-contours of Q-criterion for the velocity DMD modes (top view)



Chapter 6

Multiple-Resolution Large-Eddy
Simulation framework (MR-LES)

This chapter presents the Multiple-Resolution Large-Eddy Simulation (MR-LES) framework that
aims at the on-the-fly generation of optimized meshes based on physical characteristics of the flow. In-
deed, mesh quality appears to be one of the major user-dependent parameter while performing LES.
Therefore, user-independent LES necessitate to control the quality of the meshes by optimizing them
through objective criteria. Hence, the proposed MR-LES methodology is based on the multi-level for-
malism and deals with evaluation of both numerical and modeling errors through the computation of
simultaneous LES at different resolutions. Here, the first section introduces the MR-LES framework
with error quantification. Then, a parametric study to both numerical and modeling errors while varying
the main user-dependent parameters is performed. Finally, the application of the MR-LES framework on
a flow around a 3D turbulent cylinder is presented.
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6.1 Introduction

Due to the steady increase of computational resources that are exploited by modern CFD codes, highly
resolved LES with several hundred millions to few billions cells are now commonly performed to simu-
late realistic systems in complex geometries. However, the analysis of the large amount of data produ-
ced by these simulations requires new tools and processing formalisms. As previously mentioned, the
classical LES formalism implies a scale separation as the largest scales are resolved while the smallest
scales are modeled. This scale separation based on the filtering of the Navier-Stokes equations introduces
sub-filter terms that have to be modeled through sub-grid scale (SGS) closures. This filtering results in
combined numerical and modeling errors, which both depend on the grid resolution. Their dissociation
and segregation is therefore very difficult to achieve. Moreover, as LES tends to DNS - meaning that all
the range of turbulent scales are resolved -, the influence of the SGS modeling error becomes negligible
while numerical errors decrease. Hence, the mesh convergence appears to be the major issue for numeri-
cal simulations. Therefore, it is mandatory to attempt to evaluate the grid quality of the LES computation
through several criteria that enable to determine if the grid has to be locally refined or coarsened. In-
deed, such indicator would enable to perform LES for complex geometries with adequate and optimized
meshes that limit the computational cost of the simulation while guaranteeing the validity of the SGS
closures.

From the literature, several studies attempted to characterize the LES accuracy through the uncertain-
ties quantification of the numerical and modeling errors and their combination [188, 28]. Other methods
based on the evaluation of the integral length scale [2] or on the Kolmogorov scale [70] from RANS simu-
lations are interesting but strongly depend on the accuracy of the model. Klein et al. [108, 66] proposed
a strategy that attempts to evaluate the error contributions with a systematic grid and to model variations
through the assumption that numerical and modeling errors scale as a power of the grid spacing. Also,
Celik et al. [30, 29] rigorously consider the numerical and modeling errors thanks to the Index of Quality
LESIQ. However, this criterion appears to be very expensive and not very suitable to unstructured grids.
Moreover, several criteria have been developed only based on one LES computation. These interesting
quantities that can be considered are the SGS and molecular viscosity ratio [30], the ratio between the
modeled and molecular dissipation [73] or the two points correlations [51]. Bénard et al. [16] proposed
two different criteria to assess the quality of the mesh and to adapt it locally. The first criterion minimizes
the discretization of the gradient of the mean part of the LES resolved field, whereas the second one en-
sures explicit resolution of the turbulent scales based on the Pope criterion on the turbulent kinetic energy
which considers that the LES is well-resolved when the ratio between the resolved and the total kinetic
energy is at least 80%. Daviller et al. [52] have devised a quality criterion based on the kinetic energy
dissipation in order to improve the evaluation of pressure losses in aeronautical injection systems. More
recently, Toosi et al. [193] derived a mesh quality criterion for anisotropic grid adaptation dedicated to
LES. This criterion enables to improve the mesh in wall-bounded flows. Moreover, Alauzet developed
optimal mesh adaptation criteria by running several times the same simulations [68].

Hierarchical methods that embed simulations at different resolution levels, also known as multi-
resolution mapping methods, have been designed to significantly increase the data access speed. Here,
the same idea in the context of Large-Eddy simulations is developed. Indeed, simultaneously performing
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LES on several levels of grid with some synchronization process may bring interesting information about
the local numerical and modeling errors. This principle is in some sense similar to Germano’s model [72],
who proposed a dynamic sub-grid scale (SGS) model that enables to dynamically parametrize the coef-
ficient of the eddy viscosity sub-grid-scale stress model. Indeed, this idea is based on a scale similarity
between two LES resolutions. While the finest mesh resolution is used to discretize the Navier-Stokes
equations, the second one refers to a coarser test filter used to calibrate the SGS model.

Relying on this multi-scale principle, this chapter presents the Multi-Resolution LES (MR-LES) fra-
mework that proposes to perform simultaneous LES in parallel to locally measure both modeling and
numerical errors. From these error measurements, a grid quality criterion can therefore be built and used
to dynamically adapt the mesh during the simulation. This methodology enables to generate adequate
and optimized meshes for well-refined LES in complex geometries and thus intents to limit the com-
putational cost of the simulations while minimizing the SGS modeling errors. Hence, this chapter first
attempts to define the different errors when comparing several LES at different grid resolutions. Then,
the different steps of the MR-LES framework are presented in detail. Once it has been introduced, a pa-
rametric analysis of the main parameters of the MR-LES framework is provided using an Homogeneous
Isotropic Turbulence configuration driven by a linear forcing term. Finally, the application of the MR-
LES framework is validated on a 3D turbulent cylinder configuration with the generation of an optimized
mesh through several applications of mesh adaptation algorithms.

6.2 Multi-Resolution LES framework

6.2.1 Error quantification from simultaneous LES at different resolutions

First of all, the proposed framework is based on performing simultaneously several LES at different
scales and then to compare their computed fields so that to access to local divergence information. Hence,
it is mandatory to estimate and quantify the errors produced by the discretization process on the grid,
called numerical errors, and those coming from the SGS models, denoted as modeling errors.

The discretization of a continuous variable φ onto two LES grids, M1 for LES1 and M2 for LES2

associated to their local cell sizes ∆xM1 and ∆xM2 respectively, leads to the discrete variables φd1

M1

and φd2

M2
. These variables refer to discrete representations of the filtered LES variables and may thus be

written as

φ
d1

M1
= φM1

+ ∆xp1

M1
+O(∆xp1+1

M1
)

φ
d2

M2
= φM2

+ ∆xp2

M2
+O(∆xp2+1

M2
) ,

(6.1)

where φM2
and φM2

are the continuous filtered LES representation of the variable φ for LES1 and LES2

associated to the LES filter sizes ∆1 ≈ ∆xM1 and ∆2 ≈ ∆xM2 . Their respective exponents p1 and p2,
that have to be determined, correspond both to the truncation and modeling errors.

Considering an interpolation operator noted I, the transfer of φd1

M1
from M1 to M2 leads to the follo-

wing quantity φd2

M1→M2
and can thus be defined as
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φ
d2

M1→M2
= IM1→M2

[
φ
d1

M1

]

= φ
d1

M1
+ εI ,

(6.2)

with εI the error due to the transfer from M1 to M2 with the Interpolant I.

If the interpolation process is applied through the previously presented MGHOF framework, the inter-
polation error εI can therefore be written as

εI = εMGHOF = ∆xpinterM2
+O(∆x

(pinter+1)
M2

) + εF (2p, α) . (6.3)

This error can be decomposed into two parts: First the filtering error noted εF , depending on the filter
parameters 2p and α, and second the interpolation error that depends on the cell size of the LES grid M2

at power pinter referring to the order of the chosen methodology.

Finally, the difference between the discretized computed field on M2 and the interpolated field from
M1 to M2 can thus be expressed in terms of errors:

φ
d2

M2
− φd2

M1→M2
= φM2

+ ∆xp2

M2
+O(∆xp2+1

M2
)−
Ä
φM1

+ ∆xp1

M1
+O(∆xp1+1

M1
) + εI

ä
=
Ä
φM2
− φM1

ä
+
Ä
∆xp2

M2
+O(∆xp2+1

M2
)−∆xp1

M1
−O(∆xp1+1

M1
)
ä

+ εI

= εmodeling + εnumerical + εI .

(6.4)

Assuming that the error due to the transfer from M1 to M2 is negligible compared to the numerical
and modeling errors, especially when using higher-order interpolation techniques, and assuming both
LES exponents being equal such as p1 = p2 = p, the previous expression can be approximated at order
p as

φ
d2

M2
− φd2

M1→M2
≈
Ä
φM2
− φM1

ä
+
Ä
∆xpM2

−∆xpM1

ä
≈ εmodeling + εnumerical .

(6.5)

This measure can be very useful when attempting to locally optimize the mesh quality. Indeed, it may
give access to relevant information while aiming at refining the grid where the smallest scales are located
and coarsening it in other areas, leading to significantly improvements to the reliability of the simulation
at a limited CPU cost. Moreover, the comparison of the LES computed fields at different resolutions may
also give information concerning the mesh convergence. The following section will further develop this
notion through the presentation of the Multi-Resolution LES (MR-LES) framework.

6.2.2 Presentation of the MR-LES framework

For convenient reason, the MR-LES framework is presented here by only considering two LES that
run at the same time on different levels of grid. It is noticeable that these grids do not necessarily possess
the same mesh partitioning for the same number of processors and parallel environment. Considering a
refined LES noted LES1 and a coarse one LES2, the two associated grids M1 and M2 are characterized
by their local cell sizes ∆xM1 and ∆xM2 , respectively. Here, the refined LES1 is considered as being
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the reference one and thus its grid M1 has to be optimized. Moreover, if M1 is obtained through one
level of homogeneous refinement from M2, it is noticeable that adding the LES2 computation - which
contains 8 times less elements than LES1 - will only increase the CPU cost of the simulation by a factor
1
16 . The entire procedure of the MR-LES framework is depicted in Fig 6.1 and is detailed hereafter.

FIGURE 6.1: Sketch of the MR-LES framework algorithm

Velocity field interpolation from the refined LES to the coarse one and building of the error cri-
terion : The first step of the MR-LES framework deals with the interpolation of the velocity field
computed on the refined LES1 onto the coarse LES2. This operation is based on the previously pre-
sented MGHOF framework that combines both high-order filters and a high-order interpolation method.
These data exchanges from M1 to M2 can thus be summarized as follows:

uM1→M2(t,x) = IM1→M2

î
F [uM1(t,x)]2pα

ó
. (6.6)

The first time this operation is performed, the velocity field of the coarse LES on M2, noted uM2 , has
to be initialized using this interpolated field such as:

uM2(t,x) = uM1→M2(t,x) . (6.7)

Then, the instantaneous velocity error on M2, noted εM2(t,x), can be built by taking the difference
between the velocity field computed on the coarse grid M2 and the interpolated velocity field coming
from the refined one M1 as

εM2(t,x) = |uM2(t,x)− uM1→M2(t,x)| . (6.8)

This interpolation step from M1 to M2 followed by the computation of the velocity error is applied
several times with a constant time sampling noted ∆Ttransfer. Then, the error fields εM2(tk,x) for
k ∈ [1, Ntransfer] are time averaged on M2 in order to build the mean velocity error defined as:
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〈εM2〉t(x) =
1

Ttransfer

Ntransfer∑

k=1

∆TtransferεM2(tk,x)

=
1

Ntransfer

Ntransfer∑

k=1

εM2(tk,x) .

(6.9)

However, in order to avoid that the coarse LES on M2 diverges too much from the refined one on M1,
the velocity field on M2 has to be regularly restarted with another interpolated field coming from LES1

as previously mentioned with uM2 = uM1→M2 . The divergence between the two computations LES1

and LES2 through 〈εM2〉t is due to the accumulation of both numerical and modeling errors and has to
be avoided. Therefore, the update of the coarse LES2 has to be regularly applied. Hence, the average of
all these errors 〈εM2〉t enables to compute on M2 the global mesh quality criterion QcM2 as:

QcM2(x) =
1

Nupdate

Nupdate∑

k=1

〈εM2〉tk(x) . (6.10)

Finally, the computation of the grid quality criterion QcM2 requires the application of the MR-LES
framework N = NtransferNupdate times leading to a total time sampling defined as ∆TMR−LES =

N∆Ttransfer.

Building of the refinement ratio and of the metric on the coarse LES: As the previous criterion is
not fully determined - it possesses an intrinsic degree of freedom through an adjustable parameter refer-
ring as the error level -, it therefore needs an additional adjustable parameter to close its intrinsic degree
of freedom, namely the error level. This error level has to be constant in the whole computational domain
for realistic LES in order to keep an acceptable cell count. The adaptation strategy developed by Bénard
et al [16], that enables to control the cell count variation, has been applied on the previously defined Qc
grid quality criterion. This formalism allows to evaluate the velocity divergence on the adapted mesh,
here of LES2 noted QcM2,a, through the computation of Qc on the initial mesh, noted QcM2,i, thanks to
Eq 6.10. This strategy is briefly summarized hereafter:

Considering an isotropic LES mesh with a constant local mesh size ∆x, the number of nodes in a
volume V can thus be defined as N = ρV with ρ the local node density. Moreover, the control volume
around a node can approximatively be expressed as γ∆x3 with γ = 1.15 a constant that refers to the
dual volume ratio between a tetrahedron and a cube. The total node number can thus be expressed as
N = V/(γ∆x3) leading to the local node count density defined as ρ = 1/(γ∆x3).

On the initial computational domain D, the total number of nodes noted Ni may be estimated by
integrating the initial node count density ρi over the whole domain as

Ni =

∫

D
ρidV . (6.11)

Concerning the number of nodes of the adapted mesh, noted Na, it may be estimated by using the
node count density of the initial mesh ρi through the introduction of the local refinement ratio τ defined
as the cell size ratio between the initial and adapted meshes τ = ∆xi/∆xa :
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Na =

∫

D
ρadV =

∫

D
τ3ρidV . (6.12)

Moreover, the node number ratio between the adapted and the initial mesh can thus be expressed as
follows:

Na

Ni
=

Å∫
D
τ3ρidV

ãÅ∫
D
ρi

ã−1

(6.13)

=

Ç∫
D

τ3

∆x3
i

dV

åÇ∫
D

1

∆x3
i

dV

å−1

. (6.14)

Considering the grid quality criterion Qc that aims at homogenizing the averaged velocity error, the
local refinement ratio τ may be written as

τ(x) =
»
Qci(x)/Qca , (6.15)

withQci andQca the evaluation of the velocity divergence on the initial and adapted meshes respectively.
The node number ratio can therefore be written as

Na

Ni
=

(∫

D

Qc
3/2
i

∆3
iQc

3/2
a

dV

)Ç∫
D

1

∆x3
i

dV

å−1

. (6.16)

As the homogeneity of the global velocity error is obtained for a constant value of Qca over the full
computational domain for a fixed node count ratio Na/Ni, the quantity QcM2,a can be expressed as
follows:

Qca =

Å
Na

Ni

ã− 2
3

(∫

D

Qc
3/2
i

∆x3
i

dV

)2/3Ç∫
D

1

∆x3
i

dV

å−2/3

. (6.17)

However, the mesh adaptation library is a volume algorithm and implicitly necessitates an unity refi-
nement ratio on the boundaries. Therefore, the computed refinement ratio τ differs from the target one.
Moreover, it has also to guarantee an additional global constraint referring to the total node count of the
adapted mesh such as NA ≈ Ni even if the the initial isotropic mesh assumption is not fulfilled. There-
fore, the computation of the local refinement ratio τ is achieved through an iterative process as it needs
to be adjusted over the whole computational domain to satisfy these constraints. A rescaling coefficient
is then iteratively computed from Eq. 6.14 and is expressed as follows:

α =

Å
Na

Ni

ã−1
Ç∫
D

τ3

∆x3
i

dV

åÇ∫
D

1

∆x3
i

dV

å−1

. (6.18)

This coefficient enables to link two successive refinement ratio during the iterative method as α =

(τn+1/τn)3 that converges towards unity. An error tolerance of 1% on the node count is imposed for this
configuration.
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Moreover, the calculation of the local refinement ratio may imply drastic changes in the local cell size
that may be too stringent for the mesh adaptation algorithms. Hence, it has been rescaled in order not to
change the size of an edge more than a certain threshold in % of his initial length, leading to a range of
refinement values of [τmin = 1/τmax, τmax]. This transform operation still guaranties the conservation
of the number of elements obtained by the iterative method.

As this procedure is applied for the coarse LES onM2, the new target local cell size of the grid ∆xM2,a

can therefore be expressed as

∆xM2,a = ∆xM2,iτM2 . (6.19)

Interpolation of the refinement ratio from the coarse LES to the refined one and building of the
metric on the refined LES : After being computed on the coarse grid M2, the refinement ratio τM2

has to be transferred onto the refined grid M1 in order to build the new target local cell size ∆xM1,a in a
similar manner. These operations can be summarized as follows:

τM2→M1 = IM2→M1

î
F [τM2 ]2pα

ó
(6.20)

∆xM1,a = ∆xM1,iτM2→M1 . (6.21)

Application of the dynamic grid adaptation on both LES: Once the local target cell sizes, ∆xM2,a

and ∆xM1,a respectively, have been computed on the coarse and refined LES, the mesh adaptation can
be applied on both LES levels. Moreover, as these refinement ratios are quite similar, the meshes can be
adapted keeping a constant local mesh size ratio before and after the mesh adaptation as

∆xM2,i

∆xM1,i
≈ ∆xM2,a

∆xM1,a
. (6.22)

This property enables to compare, as the time increases, the evolution of the computed error level, and
therefore to try to minimize it through successive mesh adaptations.

Finally, the mesh adaptation module used in the YALES2 library is based on the MMG3D library [58,
50], which is a sequential anisotropic mesh adaptation for tetrahedral elements. This module relies on
local mesh modifications such as edge flipping, edge collapsing, node relocation, and vertex insertion
driven by isotropic or anisotropic metric specifications. The entire procedure of the MR-LES framework
can be found in Fig 6.2.

6.3 Parametric study to the numerical and modeling errors

The previously presented MR-LES framework possesses several parameters that have to be tuned in
order to build a relevant grid quality criterion. First, one of them refers to the frequency of transfers
between the two LES and is characterized by the time sampling period ∆Ttransfer. Moreover, another
characteristic time scale of interest is the frequency of the updates of the coarse LES with new fields



Multiple-Resolution Large-Eddy Simulation framework (MR-LES) 159

FIGURE 6.2: MR-LES framework for the cell size optimization

coming from the refined one, previously noted ∆Tupdate = Ntransfer∆Ttransfer. Thanks to this expres-
sion, it can be driven through Ntransfer that refers to the number of transfers between the LES before
update. Finally, the local cell grid ratio between the two LES is considered as being the last main para-
meter of the MR-LES framework. Indeed, it is mandatory to use adequate meshes in order to compare
the computed fields on both levels. For instance, if the secondary LES is too coarse, it can therefore not
represent in a sufficiently manner the flow dynamics and thus lead to a grid quality metric Qc that can
not be exploited.

6.3.1 Initialization with HIT

As these MR-LES main parameters are very difficult to define a priori, this section presents a pa-
rametric study to the numerical and modeling errors. First, an 2563 homogeneous isotropic turbulence
is generated on the reference LES1, with a Cartesian grid M1 from the synthetic energy spectrum of
Pope [157]. Here, the l0 and ld spatial scales refer to the energetic and Taylor length scales, respectively.
However, the reference simulation LES1 has to be well-resolved in order to minimize modeling errors.
Hence, the following set of HIT parameters has been chosen in order to resolve almost all turbulent scales
leading to consider this reference LES1 as a DNS rather than a LES. The HIT model constants β, Ce
and CηK are presented in Tab. 6.1 and the relevant physical properties of the turbulent flow in Tab. 6.2.

The energetic length l0 has been imposed to l0 = 2.296 × 10−3 m in order to guarantee an integral

scale lt equal to lt = 1.25×10−3 m through the relation lt
l0

=
Ä

2
3

ä3/2
. Indeed, the characteristic length of

the computational domain L has to contain a sufficient number of the integral scale for realistic statistical
convergence. Moreover, the DNS approach imposes the Kolmogorov scale to be close to the cell size of
the grid defined as ∆xM1 = 3.9× 10−5 m. Therefore it has been set to ηK = 2.0× 10−5 m which leads
to the Taylor scale ld, corresponding to the most dissipative structures, of ld = 3.074× 10−4 m through
the following expression ld ≈

»
10ν ktε .
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Energetic length [m] l0 2.296× 10−3

Dissipation length [m] ld 3.074× 10−4

Kinematic viscosity [m2/s] ν 1.517× 10−5

β 5.2
Ce

√
6.78Model constants

CηK 0.4

TABLE 6.1: HIT parameters for the Pope synthetic spectrum

Number of grid points N 2563

Computational domain size [m] L 1.0× 10−2

Grid resolution L/N [m] ∆x 3.9× 10−5

Integral length [m] lt 1.25× 10−3

Kolmogorov scale [m] ηK 2.0× 10−5

Number of integral scales L/lt 8

Turbulent Reynolds number Ret 247.97

Taylor Reynolds number Reλ 60.99

Kinematic viscosity [m2/s] ν 1.517× 10−5

Turbulent kinetic energy [m2/s2] K 13.59

Turbulent dissipation rate [m2/s3] ε 21819

TABLE 6.2: Characteristics of the HIT flow

6.3.2 Introduction to linear forcing

As turbulent scales are dissipated due to viscous effects, it is thus necessary to apply a linear forcing
source term noted f in the momentum balance equation in order to set some of the turbulence proper-
ties and then to maintain the vortices production. This imposed volume force is based on the return to
the mean velocity field as Schlüter et al. [173] used, which prevents the flow from diverging by ad-
ding a source term. A complete overview of the linear forcing volume methods can be found in Laage
thesis [54]. Neglecting the body forces, the momentum balance equation can therefore be written as

∂u

∂t
+∇ · (u⊗ u) = ∇ · (σ) + f , (6.23)

with

f = A(u− 〈u〉x) , (6.24)

and where 〈.〉x refers to the spatial average operator defined as 〈.〉x = 1
V

∫
.dV . Moreover, Eq. 6.24

directly refers to the isotropic linear forcing method of Lundgren [132] developed for isotropic turbulent
flows in equilibrium. The A parameter is defined as follows:

A =
ε

3u2
t

, (6.25)

where ut refers to the characteristic velocity at the integral scale lt and is defined as ut =
»

1
3u′u′.
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Turbulent Reynolds number Ret 247.97

Integral scale [m] lt 1.25× 10−3

Kinematic viscosity [m2/s] ν 1.517× 10−5

TABLE 6.3: Input parameters of the linear forcing process

Recalling the previous turbulent expressions Ret = ltut
ν and lt =

u3
t
ε , it is then straightforward to

expressed the A parameter as follows:

A =
νRet
3l2t

. (6.26)

However, one of the major property of homogeneous isotropic turbulence is that the spatial integrated
velocity mean field 〈u〉x is almost equal to zero and thus negligible in front of the instantaneous velocity
field 〈u〉x ' 0 << u. As a consequence, the linear forcing term can be approximated as f = A(u −
〈u〉x) ≈ Au.

Hence, using the Reynolds averaging decomposition noted u = 〈u〉 + u′ and the averaged turbulent
kinetic balance equation, Lundgren [132] expressed this equation with the linear forcing term as:

∂〈kt〉
∂t

= −ε+ 2A〈kt〉 , (6.27)

with the 〈kt〉 = 1
2〈u′u′〉 the statistical averaged turbulent kinetic energy and ε the turbulent dissipation

rate that is defined as ε = ν〈∂u
′
i

∂xl

∂u′i
∂xl
〉. It can be noticed that for homogeneous flows, the statistical

averaged turbulent kinetic energy 〈kt〉 is equivalent through ergodicity assumption to the time averaged
of the global turbulent kinetic energy noted K as

K = 〈〈kt〉x〉t ≡ 〈〈kt〉x〉 ≡ 〈kt〉 with
®
〈kt〉x = 1

V

∫
ktdV

〈kt〉t = 1
T

∫
T ktdt

. (6.28)

Finally, Eq. 6.27 shows that for stationary HIT flows, the variation of the global kinetic energy is zero
which leads to an equation that directly links the dissipation to the linear forcing term. Hence, as a source
of kinetic energy, the forcing term contributes to maintain the turbulent characteristics of the flow. The
dissipation rate can thus be written as follows:

ε = 2A〈kt〉 . (6.29)

Hence, the choice of the linear forcing input parameters have to be in agreement with the previously
initialized HIT field. Indeed, using the previous expression of the linear forcing coefficient A, expressed
as a function of the turbulent Reynolds number Ret and the integral scale lt and kinematic viscosity ν, it
has been set to A = 802.5 s−1. This imposed linear forcing input parameters can be found in Tab. 6.3

Moreover, this turbulent forced flow has to be converged before applying the MR-LES framework.
This has been done by simulating 0.05 s of physical time which correspond to around 80 times the
characteristic turn-over time scale of the turbulence. On the one hand, Fig. 6.3 (left) represents the spatial
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averaged of the turbulent kinetic energy on the computational domain 〈kt〉x with its temporal average
noted as K ≡ 〈〈kt〉x〉t = 29.56 s−1 for the statistical steady state of the flow t ∈ [0.015; 0.05] s. On the
other hand, Fig. 6.3 (right) deals with the averaged energy E and dissipation spectra D of the flow. These
spectra have been computed by averaging the instantaneous spectra each time step ∆T = 5.0 × 10−4 s

for t ∈ [0.015; 0.05] s.
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FIGURE 6.3: Characteristics of the converged linearly forced flow with the kinetic energy (left) and the
time averaged energy and dissipation spectra (right)

Thus, the characteristics of the converged linearly forced turbulent flow can be computed thanks to
the averaged energetic spectrum and the averaged turbulent kinetic energy. First of all, the characteristic
integral velocity scale can be deducted from the average turbulent kinetic energy as K = 3

2u
2
t leading to

ut = 4.44 m.s−1. Moreover, this can be validated by considering the following relations of Batchelor [10]
for the HIT flows:

3

2
u2
t =

∫ ∞

0
E(k, t)dk , (6.30)

and

lt =
π

2u2
t

∫ ∞

0

E(k, t)

k
dk . (6.31)

Thanks to the numerical integration method of the energy spectrum, the integral scale is computed to
lt = 1.318×10−3 m and the integral velocity scale to ut = 4.03 m.s−1. The difference with the previous
value comes from the finite temporal discretization of the energy spectrum averaging process.

Once, these variables have been computed, it is straightforward to access to the entire characteristics
of the turbulence thanks to the following usual relations:

Ret =
ltut
ν
, ε = 2〈kt〉A, l0 = lt

Å
3

2

ã2/3

, ld =

 
10ν〈kt〉

ε
, ηK =

Ç
ν3

ε

å1/4

and τt =
〈kt〉
ε
, (6.32)

where τt refers to the turnover time scale of the integral length. These flow characteristics are summarized
in Tab. 6.4.
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Linear forcing constant [s−1] A 802.5

Turbulent kinetic energy [m2/s2] K 29.56

Integral velocity scale [m/s] ut 4.44

Turbulent Reynolds number [-] Ret 294.3

Dissipation rate [m2/s3] ε 47438

Largest scale [m] l0 1.318× 10−3

Integral length [m] lt 1.006× 10−3

Taylor length [m] ld 3.074× 10−4

Kolmogorov length [m] ηK 1.647× 10−5

Integral turnover scales [s] τt 6.231× 10−4

TABLE 6.4: Characteristics of the linear forcing

Finally, Fig. 6.4 presents the instantaneous velocity field (left) and iso-surface of the Q-criterion colo-
red by the velocity magnitude (right) of the considered HIT.

FIGURE 6.4: Instantaneous velocity field (left) and Q-criterion colored by the velocity magnitude of the
resulting turbulent flow with the linear forcing source term

6.3.3 Error quantification

At this point, the well-resolved LES1 is converged and can thus be used for the parametric study of the
MR-LES framework. Considering another LES, noted LES2, on a coarse Cartesian grid M2 with 643,
1283 or 1923 elements, the error quantification can be performed through the comparison of computed
fields from both LES levels and to measure their divergence. It should be noticed that the same governing
equations have to be solved on the two levels to have meaningful comparison. Thus, the linear forcing
term also has to be applied with the same previous parameters on the coarse LES2 in order to guarantee
the same flows characteristics on both grid-levels.

Once again, the MR-LES formalism implies that the flow configuration simultaneously runs on both
LES grid-levels which communicate through velocity field transfers from the reference LES1 to the co-
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arse LES2. Selecting the optimal set of user-dependent parameters (Ttransfer, Ntransfer,∆xM2
) enables

to access to a relevant error measurement Qc that characterizes the differences due to their respective
spatial discretizations. From these main parameters, several dimensionless numbers can be defined as
follows:

- Tupdate
τt

as the ratio between the update frequency and the turnover time scale of the most ener-
getic features in the flow also known as the integral length scale. Indeed, the frequency at which
the coarse LES is updated Tupdate = NTransferTtransfer has to be carefully chosen. On the one
hand, if this frequency is small compared to the integral turnover time scale τt, the update will
often be applied compared to the characteristic time scale of turbulence leading to a very high
CPU cost of the methodology. On the other hand, based on the Shannon-Nyquist sampling theo-
rem, if this frequency is much higher, the interpolation and numerical errors are dominant in the
measurement εM2 . Hence, the metric can no longer be applied in order to adapt the grids as it
does not spatially represent the modeling errors anymore.

- lt
∆xM2

as the ratio between the integral scale and the local mesh size of the coarse gridM2. Indeed,
the coarse LES has to be fine enough in order to be able to accurately represent the integral length
scale of the flow. Then, the local mesh size ∆xM2 has to be small enough compared to the integral
scale in order to discretize well these structures. However, if ∆xM2 tends to the local mesh size
of the refined LES, running LES2 therefore costs as much as the refined LES1, which leads to
very high cost for the proposed methodology. A trade-off between the CPU cost and a sufficient
resolution of the coarse LES has to be handled.

- α =
∆xM2
∆xM1

as the ratio between the local mesh size of the coarse gridM2 and the refined oneM1.
It enables to characterize the level of coarsening for the second LES. If this ratio is close to unity,
the cost of simultaneous LES doubles, whereas it becomes negligible as this ratio increases.
However, as the coarse LES has to be fine enough to be able to correctly represent the most
energetic structures of the flow, this ratio has to be very close to unity. Similarly to the previous
dimensionless number, a trade-off between the CPU cost and spatial resolution has to be handled.

Finally, in order to quantify these errors, a kinetic energy based on spatial averaged of the error
〈εM2〉t(x) defined in Eq. 6.8 is considered and defined as

〈k〈εM2
〉t〉x = 〈1

2
〈εM2〉2t 〉x =

1

V

Nnode∑

k=1

1

2
〈εM2〉2t (x)Vk , (6.33)

where Nnode refers in that case to the total number of node of a M2 grid.

The next sub-section presents the results of the parametric analysis on the 3D Homogeneous Isotropic
turbulence configuration.

6.3.4 Results

This parametric study has been performed by considering several set of parameters (Ttransfer, Ntransfer)

associated to various levels of grid resolution for the coarse LES2. The different ranges of the parameter
values can be found in Tab. 6.5 presented hereafter:

First, remarks can be formulated just by taking a look at the ratio between the local cell size of both
LES grids, and comparing them with the integral scale of the linearly forced turbulent flow. From Tab. 6.6,
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LES2 resolution Ntransfer Ttransfer/τt

[643, 1283, 1923] [1− 5] [0.001− 0.16]

TABLE 6.5: Range of the parametric study parameters

it can be noticed that both 1923 and 1283 meshes of LES2 seem to be sufficiently refined in order
to accurately represent the integral length scale. This enables to guarantee that these features are well
captured with approximately 20 and 13 points per direction in each structure, respectively. However, the
643 grid of LES2 seems to have an insufficient spatial discretization that may not allow to correctly
represent the integral length scale with only 6 points per direction within this characteristic scale. This
analysis will be further developed with quantified results on the error measurement for various set of
parameters.

LES2 resolution lt/∆xM2 α = ∆xM2/∆xM1

1923 19.84 1.33

1283 12.90 2

643 6.45 4

TABLE 6.6: Characteristic length scale analysis

As the integral scale corresponds to the most energetic structures in the flow, the influence of the local
cell size ratio between the two LES, α = ∆xM2/∆xM1 , may be determined by analyzing its impact
on the turbulent kinetic energy while applying the MR-LES framework. Indeed, Fig. 6.5 presents the
evolution of the spatial average of the instantaneous turbulent kinetic energy 〈kt〉x on both LES levels
with different mesh discretizations for LES2. Here, the MR-LES framework has been applied with the
following parameters Ntransfer = 1, Ttransfer = 1.0 × 10−4 s ≈ 0.16τt and Nupdate = 5 without
mesh adaptation activation but with only velocity field transfers from the refined LES1 to the coarse
LES2. Hence, it can clearly be noticed that these interpolations produce discontinuities in the kinetic
balance equation on the coarse LES. These discontinuities are due to the imposed velocity field that does
not correspond to a physical Navier-Stokes solution on the discretized grid of the coarse LES. Also, the
coarser the mesh of the LES2 is, the more pronounced is the discontinuity. For both curves, the spatial
average of the turbulent kinetic energy 〈kt〉x is lower than the one on the reference LES1 as some small
scales motions have been removed through both filtering and interpolation steps.

From Fig.6.5, each discontinuity on the turbulent kinetic energy is followed by a strong damping effect
resulting from the introduction of high frequencies at the cut-off of the grid due to the imperfect filtering
procedure. Hence, it is interesting to characterize this damping effect by a characteristic time scale. In
order to achieve this, the integral of the energy spectrum defined as E(t) =

∫+∞
0 E(k, t)dk is introduced

and its temporal evolution for the refined LES2 is expressed as follows:

dE(t)

dt
=

∫ +∞

0

∂E(k, t)

∂t
dk =

∫ +∞

0
P(k, t)dk−

∫ +∞

0

∂

∂k
T (k, t)dk− 2ν

∫ +∞

0
k2E(k, t)dk . (6.34)



Multiple-Resolution Large-Eddy Simulation framework (MR-LES) 166

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

t/τt [−]

26

27

28

29

30

31

32

33

〈k
t〉 x

[m
2
.s
−

2
]

LES1 2563

LES2 1923

LES2 1283

LES2 643

FIGURE 6.5: Evolution of the spatially averaged turbulent kinetic energy on both LES level

However, when the coarse LES2 is updated by imposing a velocity field, the temporal evolution of
the integral of the energy spectrum differs from Eq. 6.34. In that case, an supplementary term defined as
δE(t) =

∫+∞
0 δE(k, t)dk is added to the previous equation. This perturbation refers to the damping term

P (t) that is added on the right hand side of Eq. 6.34 leading to the evolution of the perturbed integral
energy spectrum on LES2 defined as

d
dt

[E(t) + δE(t)] =

∫ +∞

0
P(k, t)dk −

∫ +∞

0

∂

∂k
T (k, t)dk − 2ν

∫ +∞

0
k2E(k, t)dk + P (t) . (6.35)

Under the assumption that this damping term can be modeled through a diffusive effect, the evolution
of the perturbation δE(t) can therefore be written as follows:

dδE(t)

dt
= P (t) = −2(ν + νt)

∫ +∞

0
k2δE(k, t)dk , (6.36)

with ν the viscosity of the fluid and νt the one due to the turbulent model.

As this perturbation comes from high frequencies at the cut-off of the grid - filters cannot perfectly
perform the scale separation before interpolating -, the energetic distribution δE(k, t) of δE(t) in the
Fourier space can be modeled as a Dirac function located at the cut-off frequency of the LES2 and
defined through its wavenumber kc,M2 = π/∆xM2 . Hence, the previous equation can be simplified as

dδE(t)

dt
≈ −2(ν + νt)

π2

∆x2
M2

∫ +∞

0
δE(k, t)dk ,

≈ −2(ν + νt)
π2

∆x2
M2

δE(t) .

(6.37)

Finally, solving the previous differential equation enables to expressed δE(t) through an exponential
solution such as
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1

δE(t)

dδE(t)

dt
= −2(ν + νt)

π2

∆x2
M2

, (6.38)

where τδE =

ï
2(ν + νt)

π2

∆x2
M2

ò−1

is the characteristic time scale of the damping.

As Tab. 6.7 shows the characteristic times τδE that correspond to the exponential damping after each
update of LES2. It may be seen as a time scale which dissipates the excess energy at the cutoff frequency
that has not been damped by the filtering process and thus as a relaxation time to return to an equilibrium
state. It is noticeable that it depends on the discretization of the coarse LES. Indeed, as the energy at
the cutoff frequency depends on the local cell size, the more refined the LES2 is, the smaller are the
characteristic time scales. These estimated time scales are comparable to those observed in Fig. 6.5 even
if the estimation is very crude. Indeed, the response after the update of the turbulence model or of the
non-linear terms in the filtered Navier-Stokes equation prevents having a more precise estimate.

LES2 resolution τδE [s] τδE/τt [−]

1923 6.83× 10−6 1.10× 10−2

1283 1.13× 10−5 1.81× 10−2

643 1.68× 10−5 2.70× 10−2

TABLE 6.7: Characteristic time scales of the exponential decreases in the kinetic energy

The numerical schemes and the turbulence models are thus impacted by this time discontinuity and
therefore need some relaxation time in order to return to an TKE equilibrium state. In Fig. 6.6, one step
of the MR-LES transfer from LES1 to LES2 has been applied at t = 0 in order to characterize the
return to the equilibrium of the spatial average of the turbulent kinetic energy. Here, it is noticeable that
the energetic content of the flow is more impacted when LES2 gets coarser, due to more pronounced
perturbations. The coarse 1923 LES2 seems to be relatively unaffected by the imposed velocity field and
rapidly gets to its equilibrium state before the effects of the divergence begin to be visible for t/τ > 3.
However, even for long time values, the evolution of the averaged kinematic energy is still coherent with
the reference one of LES1. For the 1283 LES2, the same remarks can still be formulated with higher
perturbations level but the behavior of the curves differs for t/τ > 4.5 and can not be compared anymore.
Finally, concerning the coarsest LES2 with 643 elements, here the perturbations are so high that even
for short values t/τ , the averaged kinematic energy is totally different compared to the reference flow.

Then, after these few remarks concerning the impact of the update on the kinetic energy, here are
presented the results of the sensitive study. Figs. 6.7, 6.8 presents the evolution of the error 〈k〈εM2

〉t〉x
during the MR-LES applications from LES1 with 2563 elements to LES2 with 1923 elements. In that
case, the local cell sizes on both level are relatively similar which supposes a strong correlation between
computed solution fields.

On the one hand, Fig. 6.7 shows the evolution of the error 〈k〈εM2
〉t〉x as a function of the time transfer

Ttransfer for different values of transfer number Ntransfer before updating the LES2. It is noticeable
that the curves have different behaviors depending on the range of values of Ttransfer/τ . First, for time
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FIGURE 6.7: Measure of the divergence between LES1 and LES2 with 1923 elements with several
MR-LES parameters

transfer values defined as Ttransfer/τ > 0.02, the error 〈k〈εM2
〉t〉x growths up as Ttransfer increases

whatever the value of Ntransfer is. This phenomenon is due to the accumulation of both numerical and
modeling errors that make the two computed solutions diverge on both LES levels. Moreover, conside-
ring the range of time transfer values with Ttransfer/τ < 0.02, all curves increase until a certain local
maximum before becoming negligible compared to the exponential divergence. Hence, this increase of
the error corresponds to an off-equilibrium state that develops after the interpolated field from the re-
ference LES1 is imposed on the coarse LES2. Indeed, as previously mentioned, the kinetic balance
equation is not guarantied as the imposed velocity field is not a realization in LES2 as it is disturbed
by high frequencies that cannot be resolved on M2. The coarse LES2 needs some relaxation time in
order to return to an energy equilibrium state, removing some high frequencies that may be produced
through the grid transfer. On the other hand, Fig. 6.8 shows the same results as a function of the update
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FIGURE 6.8: Measure of the divergence between LES1 and LES2 with 1923 elements with several
MR-LES parameters

time between the two LES, Tupdate = NtransferTtransfer, which enables to represent the evolution of
the error. For convenient reasons error measurements corresponding to the smallest ratio Ttransfer/τ
have been removed. Then, the return to the equilibrium state is here highlighted through the decreasing
error until a local minimum that is clearly visible for Tupdate/τ ≈ 0.15. Finally, the major remark here
concerns the optimal set of parameters in order to minimize the error measurement 〈k〈εM2

〉t〉x. The va-
lues of Tupdate/τ close to unity seem to be not relevant as the error exponentially increases, low values
seem to be more appropriate.

Similarly, Figs. 6.9, 6.10 present the same error evolution with a grid discretization of 1283 for the
coarse LES2. This corresponds to a homogeneous coarsening step compared to the 2563 LES1. Once
again, the behavior of 〈k〈εM2

〉t〉x can be split into two parts as Fig. 6.9 shows. As previously mentio-
ned, the first increase of the error refers to the TKE off-equilibrium state of LES2 while imposing the
interpolated velocity field from LES1. After that, for higher value of Ttransfer, the divergence between
the two LES occurs and takes precedence over the relaxation to a stabilized equilibrium state. Fig. 6.10
shows the same temporal evolutions as the ones seen previously in Fig. 6.8. Here, the local minimum is
located for Tupdate/τ ≈ 0.07 but is however less prominent. Again, the characteristic time scale of the
flow, referring here as the turnover time of the integral scale, has to be sufficiently discretized in time in
order to minimize the error. Finally, it is also noticeable that the minimum of the error is higher compared
to the 1923 LES2 case and has been shifted to smaller values of Tupdate/τ . These remarks corroborate
the previous observations.

Finally, Figs. 6.11, 6.12 presents the evolution of the error 〈k〈εM2
〉t〉x from LES1 with 2563 elements

to a coarseLES2 with only 643 elements that corresponds to two homogeneous coarsening steps. Contra-
rily to the previous configurations, here Fig. 6.11 shows different behaviors concerning the evolution of
the error as the time transfer Ttransfer increases. In that case, the exponential divergence between the
two LES occurs for very short time transfers, which leads to the conclusion that the coarse LES2 is
not able to return to a stabilized equilibrium state before the error strongly increases. This phenomenon
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MR-LES parameters

has already been mentioned for Fig. 6.6 and confirms that 643 LES2 is here too coarse for quantifying
numerical and modeling errors before the LES diverge. Hence, as shows Fig. 6.12, no optimal set of
parameters can be found in such situation.

These results enable to conclude concerning the evolution of the errors while applying the MR-LES
framework and allow to propose a model that is presented hereafter : As Fig. 6.13 illustrates, the evo-
lution of 〈k〈εM2

〉t〉x can be decomposed into two parts. The first one deals with an off-equilibrium state
due to the instantaneous velocity field coming from LES1 that is imposed on LES2. This filtered and
interpolated field is not a solution of the filtered Navier-Stokes equations on the grid of the coarse LES2.
Then, this solution does not satisfy locally the TKE equation because of resolved high frequencies at
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the cut-off of the grid that have to be dissipated by the numerical scheme or by the fluid viscosity. This
off-equilibrium state for the TKE have been previously highlighted in Fig. 6.5 and Fig. 6.6 with dis-
continuities in the spatial average of the turbulent kinetic energy. This phenomenon is also associated to
a relaxation time so that the coarse LES returns to an TKE equilibrium state as Tab. 6.7 showed. The
second one deals with the chaotically divergence between the two LES levels that occurs and amplifies
as the time increase from an update or synchronization event. Hence, a relevant error quantification for
both numerical and modeling error can be seen as a trade-off between the off-equilibrium state of the
coarse LES and the exponential divergence between the two-level.
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FIGURE 6.13: Analysis of the error evolution as the time between the two LES increases

From the numerical experiments presented before, a good compromise in order to access to a relevant
quantification of both numerical and modeling errors is found for update time Tupdate small compared
to the characteristic time scale of the most dynamically relevant features in the flow associated to a
small local cell size ratio between the LES levels. Decomposing this update time with several transfer
Ntransfer > 1 enables to homogenize the error in the off-equilibrium area. Moreover, for cost reason,
the cell size ratio α between the grids of both LES has been set to α = 2. These rules of thumb enable
to guarantee that the divergence between the two levels is not yet dominant and thus to the best possible
error measurement between the two grid resolutions.

6.4 MR-LES application to the 3D turbulent cylinder

In this section, the MR-LES framework is applied to the simulation of a turbulent flow around a
3D cylinder in order to validate the methodology on a realistic configuration. It features time-periodic
structures called the Bénard-von Karman alleys at the trailing edge of the cylinder. Depending on the
Reynolds number, these features may have two or three dimensional behavior. The objective is to build an
optimized grid through an objective criterion based on the flow dynamics. Here, the MR-LES framework
is combined to mesh adaptation.

6.4.1 Configuration

The computational domain of this configuration is defined with the following dimensions Lx × Ly ×
Lz = 60d×30d×5dwith d = 1.0×10−2 m. The behavior of the flow is governed by a single dimension-
less parameter which is the Reynolds number based on the cylinder diameter defined as Re = u∞d/ν
with u∞ the characteristic free-stream velocity, d the cylinder diameter and ν = 1.517 × 10−5 m2.s−1

the kinematic viscosity of the fluid. This parameter has been set to 10, 000 that approximately leads to
a Strouhal number of St = d/τu∞ ≈ 0.2 as mentioned in [1, 121], where τ refers to the characteristic
time scale associated to the coherent feature generation and d/u∞ to the fluid flow time around the cylin-



Multiple-Resolution Large-Eddy Simulation framework (MR-LES) 173

der. Concerning the boundary conditions, a turbulence injection with a fluctuating velocity characteristic
scale u′/u∞ ≈ 0.20 and the most energetic length-scale le/d = 5 has been imposed at the inlet. This
corresponds to a very high turbulent intensity closed to 20%. Moreover, slip walls and periodic boundary
conditions have also been imposed on the y and z plans respectively. A sketch of this configuration can
be found in Fig. 6.14.

FIGURE 6.14: 3D turbulent cylinder configuration

6.4.2 Parameters of MR-LES

The application of the MR-LES framework necessitates to run simultaneously several LES at different
scale resolutions. On the one hand, the coarse LES, noted LES2, is here associated to the grid M2 that
contains almost 0.5 million elements. The mesh topology of this grid can be found in Fig. 6.15 that
presents a slice in the z plane. It is noticeable that this unstructured grid is highly heterogeneous where
the smallest elements are located around the cylinder while largest ones are spread out in the rest of
the computational domain. This grid has been generated by a commercial meshing software and is very
common for such type of geometry. However, as it has not been based on the physical characteristics of
the flow, it can therefore certainly be optimized just by moving nodes to relevant areas without adding
more elements. On the other hand, the reference or refined LES, noted LES1, is here associated to the
same grid with one level of homogeneous mesh refinement - reducing the edges of the grid M2 by a
factor of two in each direction - that generates the grid M1 with 4 millions elements.

FIGURE 6.15: Crinkle slice in the z plane of the coarse grid M init
2 .
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Moreover, special attention should be paid to the turbulent injection at the inlet of both LES. Indeed,
the MR-LES framework imposes to have exactly the same boundary conditions on each level. This
turbulence injection is generated by imposing at the inlet a velocity field plane from a 323 HIT box
with periodic boundary conditions that moves at the mean flow velocity. The same injection can thus be
guaranteed through the application of the same plane for a given moment on both LES levels. Hence,
this imposed inlet velocity field is the same on both LES level neglecting the difference due to the
interpolation on the inlet boundary condition. Fig. 6.16 presents the magnitude of the instantaneous
velocity field computed on the refined LES1 noted uM1 (left) and transferred to the coarse LES2 (right)
noted uM1→M2 with the same imposed turbulent injection at the inlet.

FIGURE 6.16: Instantaneous velocity field on M1 (left) and interpolated velocity field from LES1 to
LES2 on M2 (right) in the z plane of the 3D cylinder case with turbulence injection

As in the previous section for the linearly forced HIT, the MR-LES main parameters have to be chosen
carefully by taking into account the characteristic time scale of the flow. Here, an additional characteristic
time scale can be introduced as a vortex shedding period, that is more relevant than the turnover time of
the integral length scale which is heterogeneous in the computational domain. It can be defined through
the definition of the Strouhal number as τ = d

St.u∞
≈ 3.3×10−3 s. Then, the transfer frequency between

the two LES fields has to be small compared to this characteristic time. Moreover, as previously showed
in the parametric study, averaging the error before updating the coarse LES - Ntransfer > 1 - enables
to homogenize the field. Several updates also need to be applied before applying the mesh adaptation
process in order to have a better convergence for the Qc criterion. Finally, the chosen set of parameters
can be found in Tab. 6.8.

α Ntransfer Ttransfer/τ Nupdate

2 4 0.076 5

TABLE 6.8: Chosen parameters of the MR-LES framework application

The application of the MR-LES framework enables to build the errorQcM2 on the coarse LES2 that is
used in order to compute the local refinement rate τM2 as previously mentioned. An example of this error
can be found in Fig. 6.17. It characterizes the differences between the two instantaneous velocity field on
both LES levels with their initial mesh M ini

1 and M ini
2 . Here, the error is high in the cylinder wake and
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low in the rest of the computational domain. This field has been directly used to built the objective local
cell size and to perform the first mesh adaptation step.

FIGURE 6.17: Qc metric in the z plane computed before the first step of mesh adaptation.

The results of the successive mesh adaptation steps are presented in the next sub-section.

6.4.3 Convergence to an optimized grid

The converge of the MR-LES framework towards an optimized grid with stabilized characteristics has
yet to be demonstrated. For this reason, the framework has been applied several times until the adapted
mesh metric has been stabilized. Hence, twelve adaptation steps have been performed on both initial
meshes M init

1 and M ini
2 with 3′927′512 and 490′939 elements for LES1 and LES2, respectively. The

characteristics of these twelve adapted meshes are presented in Tab. 6.9 and 6.10. On both grid levels, the
conservation of the number of element has been achieved through a threshold constraint set to 1% while
applying the mesh adaptation. This constraint has been well respected for the coarse LES2. However,
for the reference LES1, some differences between the number of elements can be found. Even if these
deviations are close to 10% for certain adaptation step, it can be considered as being almost constant
without having a significant impact on the ability of the MR-LES framework to optimize the initial grid.
These differences come from the mesh adaptation algorithm that has some difficulties to respect the
imposed metric due to strong local gradients on the refinement ratio field that introduces errors during
the interpolation process of the mesh adaptation.

Madapt1 Madapt2 Madapt3 Madapt4 Madapt5 Madapt6

Elements LES1 4′142′609 4′199′983 4′361′130 4′441′121 4′445′060 4′452′837

Elements LES2 493′549 493′701 505′704 510′501 508′195 506′605

TABLE 6.9: Characteristics of the meshes from adaptation 1 to 6

Furthermore, the convergence of the MR-LES framework can be found in Figs. 6.18, 6.19 that re-
present the probability density function of the local cell size of the grids of LES1 and LES2 through the
successive application of mesh adaptation steps. Here, the distribution of the local mesh size converges to
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Madapt7 Madapt8 Madapt9 Madapt10 Madapt11 Madapt12

Elements LES1 4′432′940 4′412′075 4′401′395 4′391′917 4′376′558 4′354′301

Elements LES2 500′838 497′824 495′033 492′723 490′795 487′745

TABLE 6.10: Characteristics of the meshes from adaptation 7 to 12

a certain distribution as the number of mesh adaptation steps increases. It is noticeable that the quantity
of smallest cells grows up as well as the quantity of the largest cells. Moreover, the extremal values of
the local cell size increases as the smallest cells become smaller and the largest ones become larger. As
the distribution seems to be almost stabilized for the last mesh adaptation, the MR-LES converges thus
to optimal meshes on both LES levels.
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6.4.4 Results

All these previously presented mesh adaptation steps have been based on the computation of the error
field QcM2 that has been thereafter used in order to compute the local refinement ratio τM2 . As this
field corresponds to the ratio between the local cell size of the unadapted grid over the adapted one
τ = ∆xi/∆xa, the target local cell size ∆xa is thus determined and then given as an input to the mesh
adaptation algorithm. Furthermore, all these fields enable to characterize and quantify the optimizations
applied on the grids, they are presented hereafter in Figs. 6.20, 6.21, 6.22.

First, Fig. 6.20 presents the refinement ratio field associated to mesh adaptation steps 1, 2, 4, 6, 10 and
12. As expected, this indicator highlights for all steps a high refinement ratio in the wake of the cylinder
and a high coarsening rate at the leading edge of the cylinder. The intensity of these processes decrease,
with an area that tends to diminish, as the number of applied mesh adaptation grows up. This phenome-
non illustrates the convergence of the MR-LES framework. Moreover, other areas of the computational
domain are associated to a lower coarsening rate. Furthermore, for the adaptation 1, some spots of high
values of refinement ratio can also be identified in the computational domain. As this phenomenon is
only visible for the first step of the mesh adaptation, it may be associated to areas where the initial mesh
was unadapted and presented some defaults. Finally, it is noticeable that all boundaries are associated to
an unitary refinement ratio. This condition has been imposed as the present mesh adaptation algorithm is
a volume algorithm and thus do not changes nodes on the boundaries, keeping the ratio τ = ∆xi/∆xa
to unity.

Some of the grids generated by the mesh adaptation can be found in Fig. 6.21 that presents optimized
meshes associated to adaptation steps 1, 2, 4, 6, 10 and 12. Here, the evolution of the local cell size is
clearly visible with strong coarsening around the cylinder except at the trailing edge and in the wake of
the cylinder that concentrates almost the totality of the smallest cells. Also, a positive local mesh size
gradient can be shown when the fluid comes closer to the outlet boundary condition. Such local cell size
near the outlet may certainly dissipates the smallest scales of the flow. However, this is not important as
both injected turbulent structures and vortex shedding of the cylinder have already been dissipated before
arriving in this region. Finally, another representation of this local cell size evolution can be highlighted
in Fig .6.22.

The quality of the adapted meshes Madapt
1 can thus be compared to the quality of the initial one

M ini
1 . This can be achieved through the comparison of the probability density function of the skewness

as Fig. 6.23 shows. Here, the evolution of this function has been plotted for different steps of mesh
adaptation. It is noticeable that the initial grid M ini

1 - that has been generated by a commercial meshing
software - possesses some elements with a poor cell quality that is associated to skewness values higher
than 0.8 and 0.95 respectivelly. The maximal value encountered here is about 0.95. However, all adapted
meshes possess almost only excellent and good cell quality that correspond to skewness values lower
than 0.5 whatever the number of adaptation it concerns. The maximal skewness encountered for these
adapted meshes is around 0.6 which is much better compared to the initial mesh.

Once the optimized mesh Madapt12
1 has been generated, it is interesting to compare the flow field

computed on the initial mesh M ini
1 with the one computed on Madapt12

1 . This comparison is presented in
Fig. 6.24 and highlights the effects on the mesh optimization on the flow dynamics captured by the two
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FIGURE 6.20: Several slices in the z plane of the refinement ratio on the coarse LES τM2 used for the
four mesh adaptations

LES. First, both simulations show similar turbulent injection with some slight differences on the smallest
scales. However, the dynamics at the trailing edge of the cylinder strongly defers. Moreover, due to the
large cell sizes on the optimized mesh near the outlet, the flow is strongly dissipated. Figure 6.25 shows
more precisely the difference concerning the interaction between the imposed turbulence injection and
the vortex shedding produce by the cylinder. It can be noticed that the adapted grid seems to capture
more dynamics and some small structures in the recirculation zone can also be highlighted.

From Fig. 6.26, the mean and root mean square velocity fields computed on M ini
1 and Madapt12

1 can
be compared. These fields appear being highly similar, but it is noticeable that the mean profile in the
wake of the cylinder seems to be more stabilized for the optimized grid Madapt12

1 . Moreover, in the same
area, high values of the root mean square field are located in a thiner region compared to M ini

1 .

Finally, some consideration has to be furnished concerning the CPU cost while running on this optimi-
zed grid. Even if the number of elements is almost constant, the CPU time has been increased by 21.7 %

as the smallest cell size of the optimize grid is smaller than the one on the initial mesh M ini
1 . Indeed, the

convective time step ∆tconv is about 7.47 × 10−6 s on the initial M ini
1 grid and about 6.14 × 10−6 s on

the Madapt12
1 .
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FIGURE 6.21: Several Crinkle slices in the z plane for the four mesh adaptation of the coarse grid M2

6.5 Conclusions

In this last chapter, the MR-LES framework for processing of LES is proposed. This approach en-
ables to generate optimized grids based on the characteristics of the flow. It uses several LES levels that
communicate through transfers of the computed velocity field in order to estimate locally where the LES
have to be refined or coarsened. From this error measurement, a metric that refers to a local cell size is
built. Then, the application of several steps of mesh adaptation enables to converge to a stabilized and
optimized mesh.

The 3D turbulent cylinder has been successfully post-processed thanks to the MR-LES framework
application leading to the generation of an optimized grid for this configuration while keeping the num-
ber of elements constant. Even if a high turbulent rate has been introduced on the inlet boundary, the
framework well reacted by only refining the interesting areas behind the cylinder. The convergence of
the methodology has also been highlighted through the stabilization of the probability density function
of the local cell size of the adapted meshes. Hence, the converged optimized grid increases the CPU cost
of the simulation of 22 % compared to the initial mesh but enable to capture more physics on the trailing
edge of the cylinder and in its wake.
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FIGURE 6.22: Slices in the z plane representing the local mesh size on the adapted meshes from the first
to the fourth steps of mesh adaptation.
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FIGURE 6.24: Comparison of the instantaneous velocity field computed on M ini
1 (left) and on Madapt12

1

(right) for the t = 4.6× 10−2 s.

FIGURE 6.25: Comparison of the instantaneous velocity field around the cylinder computed on M ini
1

(left) and on Madapt12
1 (right) for the t = 4.6× 10−2 s.

FIGURE 6.26: Comparison of velocity mean and root mean square field on M ini
1 (left) and on Madapt12

1

(right).
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7.1 Conclusions on multi-level approaches

Modern massively parallel supercomputers are highly hierarchical. On the one hand, the memory hie-
rarchy in computer architecture is separated into different layers - associated to different response times
- that can be distinguished by their performances and technologies. On the other hand, the CPU power is
shared between hundreds to thousands of nodes, each containing several processors that in turn contain
many cores. Therefore, the execution of high-performance numerical simulations with such machines
requires the adaptation of CFD codes through the development of new algorithms which can exploit
efficiently this hierarchical parallelism. Hence, this thesis aims at developing new multi-level co- and
post-processing frameworks for the analysis of high-resolution LES of turbulent flows. In such numeri-
cal simulations, the dynamics of the flow is driven by the presence of coherent features that concentrate an
important part of the kinetic energy of the flow. However, due to the large amount of generated data, these
large-scale vortices are masked by the smallest scales and thus require to be correctly post-processed -
that can be achieved through the multi-grid framework - before attempting to access to relevant informa-
tion. In addition, the second proposed formalism - based on several levels of LES - attempts to answer
the question of the simulation dependency on the user mesh generation. In fact, most of the time, mesh
generation is mainly based on a topological point a view that is supplemented by the user’s knowledge
of flow dynamics. However, assuming that the user has a perfect knowledge of this dynamics, he still
has to estimate the appropriate local cell size, which is unknown, making the convergence study difficult.
This procedure leads to non-optimized meshes for a fixed number of cells and may therefore degrade
the quality and the predictability of the simulation. Hence, combined with traditional "Big Data" post-
processing tools and methods - such as data partitioning, data ordering and parallel processing -, this
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thesis work introduces two frameworks based on the multi-level formalism that both attempt to alleviate
these classical CFD issues.

7.1.1 Large-scale features extraction framework

The Multi-Grid High-Order Filtering framework (MGHOF) for on-the-fly co-processing of highly-
resolved LES has been proposed. This approach enables to extract and identify coherent features from
3D fully turbulent flows in complex geometries. It transfers the large-scale dynamics onto coarser levels
of grid that allows to drastically decrease the amount of data to analyze. Moreover, the successive co-
arsening steps based on high-order filters and interpolation methods enable to overcome the Q-criterion
scaling issue - large-scale coherent features are masked by the smallest scales - which is particularly
disturbing for the large scales visualization.

First and foremost, a parametric study has been performed in order to find the set of relevant MGHOF
parameters that enable to avoid aliasing effects while transferring fields from refined to coarse grids.
These parameters have also to ensure that resolved scales on the coarse grids are almost untouched by
the filtering operation. Hence, a trade-off between the CPU cost of filters and their selectivity has been
made by considering 12th-order Raymond’s filters with a filter size equal to twice the local mesh size
of the grid as ∆ = 2∆x. Then, this methodology has been applied in several complex configurations,
each time extracting successfully the large-scale features from turbulent flows with a significant CPU
cost reduction compared to classical approaches.

The first configuration referred to the LES of a 3D turbulent planar jet that aims at extracting the
Kelvin-Helmholtz vortices and coherent structures from the turbulent background noise. Thanks to the
MGHOF framework, the Q-criterion computed on a 312 million-cell LES has been successfully transfer-
red onto a 39 million-cell grid reducing the CPU cost by a factor three compared to the classical filtering
procedure. This configuration highlighted the ability of the MGHOF framework to extract large-scale
features in realistic turbulent flow configurations.

Thereafter, a more challenging 2.2 billion-cell LES of a turbulent low-Mach flow over a 3D turbine
blade has been on-the-fly co-processed, allowing to successfully extract on a 35 million-cell grid, through
the Q-criterion, the dynamically dominant features. In this configuration, the difficulties encountered
referred to the high heterogeneity of the grid cell size and to the curvature effects on the Q-criterion
produced by the geometry of the blade. However, an adapted strategy has been set up and the MGHOF
framework application successfully extracted the large-scale motions of the flow with CPU cost redu-
ced by a factor 60 compared to the classical filtering procedure. This cost reduction makes accessible
the visualization of large coherent features from billion-cell simulations - which was previously not
conceivable - and also enables to store hundreds of solutions that can now be analyzed through modal
decomposition methods.

Hence, the MGHOF framework accumulated a large number of snapshots for the previous 2.2 billion-
cell LES onto a coarse grid with 35 million-cell elements. These solution fields have been successfully
analyzed thanks to the DMD modal decomposition method identifying the dynamically dominant modes
and thus giving access to more quantitative information about the important flow structures. For instance,
this analysis highlighted the presence of very elongated structures with a size close to a mid-chord that



Conclusions and perspectives 184

are present in the laminar boundary layer on the suction side that are due to the interaction of free-stream
turbulence with the blade.

Finally, the MGHOF framework opens new processing possibilities that allow to understand more
precisely turbulent complex flows. Many other types of analysis would benefit from such accurate and
efficient coarsening multi-level method. This framework has been implemented in a specific module of
the CFD code YALES2 as well as the convex optimization of the DMD mode amplitude that has been
solved here through the derivation of analytical expressions proposed in this thesis.

7.1.2 Multi-Resolution LES formalism

The Multi-Resolution LES framework (MR-LES) aims at generating adequate and optimized meshes
for LES in complex geometries and thus intents to limit the computational cost of the simulations
while minimizing the SGS modeling errors. This methodology uses several LES levels that commu-
nicate through velocity field transfers from a refined level to a coarse one. Comparing these computed
fields enables to measure the divergence between LES levels and thus to estimate where the solution is
mesh dependent and where they have to be locally refined or coarsened. Hence, using this metric, the
optimization of LES grids can be achieved through the application of several steps of mesh adaptation
until the framework converges to grids with a stabilized cell size.

First, a parametric analysis to the main parameters of the MR-LES framework has been provided using
an Homogeneous Isotropic Turbulence configuration driven by a linear forcing term. From this numerical
study, accessing to a relevant error modeling can be achieved through adequate synchronization time
compared to the characteristic time scale of the most dynamically features in the flow and also with a
small local cell size ratio between LES levels. These parameters guarantee that the divergence between
the two levels is small enough and thus enables to access to the best possible error measurement between
the LES-levels.

Then, this methodology has been validated for a turbulent flow over a 3D cylinder. This configuration
has been successfully co-processed through the application of the MR-LES framework leading to the
generation of an optimized and converged grid keeping the number of elements almost constant. Even
if a high turbulent intensity has been imposed at the inlet boundary, the framework well reacted by only
refining areas of interest i.e. mainly the wake of the cylinder. The convergence of the methodology has
also been highlighted through the stabilization of the probability density function of the local cell size of
the adapted meshes. Hence, the converged optimized grid only increases the CPU cost of the simulation
by 22% compared to the initial mesh and enables to capture more physics on the trailing edge of the
cylinder and in its wake.

7.2 Perspectives

Based on these developed multi-level methodologies, some perspectives and promising new research
areas for both turbulence modeling and mesh adaptation improvements are formulated below.
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7.2.1 Turbulence analysis with multi-level methods

Multi-level methods open new processing possibilities in the analysis of turbulent flows. First, it could
provide important insights into the understanding of the interaction between free-stream turbulence and
obstacles such as cylinders, blades and so on... In addition, the MR-LES framework could be applied
by considering data exchanges based on other variables of interest than the velocity field. From this
new evaluation of local errors between the LES levels, a more adapted and efficient measurement of the
grid quality could eventually be built improving the mesh adaptation steps and thus reducing the CPU
cost of the methodology. The application of the MR-LES framework on more complex configurations
- for instance, LES with several hundred million elements - has yet to be executed but would be very
interesting to perform. Furthermore, the application of the MR-LES framework to turbulent reactive
flows would also be very challenging. In that case, a relevant criterion allowing to determine where
the flame wrinkling or the flame thickness is under-resolved has to be built, this may be achieved by
comparing the field of chemical source term between LES levels.

Moreover, the analysis of the cross correlation of DMD modes in turbulent flows has to be further
developed. For the previous T7.2 configuration, this could determine if velocity and scalar fluctuations
are decoupled or not. Moreover, advanced modal decomposition methods also have to be implemented
in order to extract more efficiently the dominant coherent features from highly refined flows. Indeed,
it would be interesting to develop criteria that penalize the transient modes of the flow - that contain a
high energy content but that are damped very quickly - in order to avoid selecting them in the sub-set
of relevant modes. Moreover, a desirable tradeoff between the number of selected modes and the qua-
lity of approximation may be achieved through the development of news modal decomposition method
formalisms.

7.2.2 Mesh adaptation improvements

Due to the steadily increase of the computational resources and to the improvements of resolution
algorithms, the parallel mesh adaptation appears to be an innovative topic that will certainly gain mo-
mentum in the coming years. The proposed strategy through the MR-LES framework is a first attempt to
an automatic mesh adaptation method, that aims at generating an optimized mesh keeping the number of
elements constant. However, some technical advancements still have to be developed before reaching a
mature and efficient strategy.

First, the adaptation of surfaces is required in order to modify the mesh on boundary conditions or
for two-dimensional computations. In that case, it is mandatory to implement a surface mesh adaptation
algorithm that becomes a challenging numerical problem. Furthermore, the interpolation process of data
from the initial grid to the adapted one has to be improved in order to avoid numerical errors. This
could be achieved through the implementation of the same high-order interpolation methods - linear
interpolation is presently used - as the one used in the MGHOF framework. Finally, the application of
such formalism can only be profitable if the CPU cost for generating the optimized meshes is inferior
compared to the CPU cost while calculating on a more refined mesh and some efforts are still needed to
reach this performance objective.
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Finally, it would be interesting to determine if the MR-LES framework and more generally mesh adap-
tation processes always converge to the same final and stabilized mesh for different initial input meshes.
In other words, the underlying issue may be formulated as: Does the adaptation process depends on the
initial mesh ? If it does not, the numerical simulation could therefore be independent of the user. Mo-
reover, the MR-LES framework could also facilitate the mesh convergence study by taking into account
more than two LES levels.
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Appendix

Estimation of the Condition number of each filtering sub-system and its scaling This section pre-
sents the derivation of the scaling of the condition number of each sub-system previously introduced in
chapter 4 as κηk . First, the definition of the sub-system eigenvalues is recalled

ληk,j = 1 + ηk
sin2
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ä
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) . (7.1)

Using the property |ηk| = 1, the modulus of these eigenvalues are computed as follow :
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Then the search of extrema of the modulus can be achieved by finding the values for which the gradient
is null, i.e. by solving the following equation
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Thus, three different cases can be distinguished :
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The extrema of the modulus can therefore be analytically expressed as
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2.
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3.
|ληk,j3 | =

»
1− Re2(ηk) (7.7)

The condition number of a linear system is the ratio of the maximum and minimum eigenvalue
modulus. The maximum eigenvalue is always the first given above. The minimum eigenvalue can be the
second or the third. Thus, two cases have to be distinguished in order to determine the condition number
of each sub-system :

• Re(ηk) ≥ 0⇒ κηk
=

√
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In both cases, the condition number of each sub-system scales with α2 for high values of α.
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