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Doctoral dissertation Organization

This manuscript is organized in two parts, each part further divided into two chapters.

The first part deals with the motivation driving this work, as well as its state of the art, while the second part presents the work done during this thesis. The state of the art addresses two "issues", each "issue" presented in a different chapter. The first chapter deals with the necessity to go towards adaptive circuits as a way of achieving energy efficiency, especially for wireless sensor network IoT applications. However, integrating several adaptive blocks in the same SoC can be quite challenging, as explained in the first chapter of this thesis. Especially in the local and global control loops of adaptive circuits, reconfiguration signals have to be transferred and managed in an efficient way. Thus, the second chapter gives an overview of communication networks and Network-on-Chip, their architecture and structure, and how communication is usually handled on-chip. It also discusses its limitations in the perspective of our application.

The third chapter introduces the first communication network implemented for the purpose of digital adaptive block's reconfiguration. The chapter presents the structure of 10 Adaptive Voltage and Frequency Scaling 11 Near Threshold Computing 12 Minimum Energy Point 13 Ultra Low Voltage

* React: circuit reconfiguration depending on the decide block decision and results. * Work: The principal function of the circuit. In a typical circuit without Sense&React, the work is the circuit.

Although it might seem similar to monitoring, it is quite different as the monitoring system doesn't have a decide block, and thus cannot adapt, only react. This decide block
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General Introduction

Context and Motivation

The rise and popularity of the Internet of Things (IoT) and the opportunities it affords are tremendous. As the name suggests, IoT is a way of connecting devices to the internet, allowing easy access to the data picked up by this device. It has application in almost every domain, be it automotive [START_REF] Jóźwiak | Advanced mobile and wearable systems[END_REF], smart cities [START_REF] Hancke | The role of advanced sensing in smart cities[END_REF], wearable [START_REF] Athavale | Biosignal monitoring using wearables: Observations and opportunities[END_REF], agriculture [START_REF] Suresh Neethirajan | Recent advancement in biosensors technology for animal and livestock health management[END_REF] [START_REF] Haider | Energy-efficient wireless sensor networks for precision agriculture: A review[END_REF], health [START_REF] Avila | Applications based on service-oriented architecture (soa) in the field of home healthcare[END_REF], and several other industries [START_REF] Xu | Internet of things in industries: A survey[END_REF]. It is expected that by 2020, over 26 billion connected objects will be in circulation [START_REF] Morgan | A simple explanation of 'the internet of things[END_REF], some estimating that it can reach 50 billion devices (Figure 1).

Figure 1: IoT Growth predictions [START_REF] Columbus | Roundup of internet of things forecasts and market estimates[END_REF] The backbone of this development is wireless sensor networks (WSN) and sensor devices. A WSN is an array of sensor nodes spread across a particular area. Each node of the network is capable of sensing, computing and communicating, effectively creating a a network of interconnected devices. The data from this devices is gathered, analyzed, and subsequent actions are taken. Although IoT devices are available thanks to the miniaturization and technological scaling down, they still have to overcome several challenges summarized in figure 2, chief among them is communication, security and energy efficiency. Each IoT device, or smart device, needs to connect to the internet, however, due to the small size of the device, it is limited in the bandwidth it can use, its packet size and how secure the data or the data transfer are. Also, many applications require an autonomous system, therefore making energy efficiency one of the most important challenges of IoT platforms.
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There are several ways to ensure energy efficiency in a WSN node, such as the implementation of an Energy Management Unit (EMU) with an energy scavenging system [START_REF] Wolf | The physics of event-driven iot systems[END_REF] [START_REF] Tentzeris | Energy harvesting and scavenging [scanning the issue[END_REF], a well controlled duty cycle, and even dedicated hardware for IoT [START_REF] Pizzotti | A long-distance rf-powered sensor node with adaptive power management for iot applications[END_REF]. However, depending on the application, the energy scavenging system needs to be adjusted, while the sleep mode of the duty cycle is subject to leakage power, making energy efficiency harder to attain. One possible solution to the energy efficiency problem is to use adaptive blocks.

Moreover, the IoT market is expected to be very fragmented, due to the diversity of the applications. Also, the IoT device needs to be low cost, and to achieve that, high volume manufacturing is necessary, which is not possible if each IoT device is specialized in one application only. Thus, an IoT circuit has to cover several applications with different needs. Adaptive or reconfigurable blocks are also an effective solution for that.

These blocks are digital or analog circuits capable of adjusting their performances to their environment, the application and the energy budget, making them a good candidate to solve the energy efficiency budget by trading performances for energy. However, most of these blocks function in a Sense&React fashion through a local and global control loop, a local one to adjust their own parameters, and a global one to achieve adaptability and
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General Introduction 3 energy efficiency across the chip. Moreover, adaptive blocks can be both analog and digital, and so can the control signals or the Sense&React data. As such, the way to handle the transfer of control signals needs to be taken into consideration to obtain optimal energy efficiency in a system integrating several adaptive blocks, as is the case of a WSN node.

Objective

The use of adaptive blocks in wireless sensor network nodes for IoT applications is an interesting prospect, as these blocks can adjust and adapt their performances depending on the energy budget, the environment or the application. They can respond effectively to any variations that the circuit can be subjected to, either intrinsic or environmental, but their integration is also challenging. These adaptive blocks are controlled by both local and global control loops, since they need to be aware of both their status, but also other blocks' status, in order to achieve a maximum energy efficiency. This leads to a necessity of information sharing and control signal transferring that is efficient and compatible with many blocks. The objective of this work is to deal with the transfer of control signals to and from these adaptive blocks, in a way that is both energy efficient and performing, by implementing a dedicated communication network that can answer these needs, and allow for a plug&play approach.
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General Introduction 4 the chosen communication network: its general architecture, topology, frame used and the reasons behind these choices. A First chip has been designed and fabricated: measurement results in latency, throughput and energy are also given. A second possible hybrid implementation is also presented. The fourth chapter tackles the problematic of how to efficiently transfer analog sense data into the network from the adaptive blocks to a microcontroller. It presents a new structure of the mixed-signal communication network, as well as improvements and adjustments to the first version.

In the end, several conclusions are presented, as well as perspectives for future work.

Chapter 1

Evolution towards adaptive systems 1.1 Introduction

In today's market, low power and energy efficiency is an important factor in circuit design. A circuit that is extremely performing but can only run for a few minutes is not a viable circuit and represents a challenge for the community. Also, with the advent and expansion of the IoT applications, solving the power consumption issue has become more urgent, as many of these devices are autonomous and need to sustain their operations on batteries alone. Moreover, IoT applications are very diverse, covering a wide range, and requiring multi-application dedicated circuits.

There are many reasons why energy efficiency is lost in a circuit, technological and design problems, streaming from PVT1 variations affecting the circuit, to designing with margins, which leads to energy inefficiency for the sake of making sure that the circuit is always functioning. One solution is to design circuits which take into account these variations, and are not designed with margins. Instead, these adaptive circuits can adapt their performances depending on the application, the environment and the effect of the PVT variations.

In this section, I will present the most common types of variations affecting a circuit and its consequences, as well as the offered solutions to deal with these problems. Section 1.2 presents the major power loss sources in an integrated circuits. Section 1.3 presents all the variations affecting an integrated circuits, both intrinsic and environmental. In section 1.4 technological solutions proposed to overcome these problems and achieve energy efficiency are introduced. In section 1.5, the architectural and design solutions are presented, with a focus on adaptation as a viable solution.

Sources of energy efficiency loss in an integrated circuit

Typical integrated circuits in the industry are made with CMOS2 technology, where the devices used are a pair of complementary MOSFET3 , a PMOS (p-type) and an NMOS (n-type) A MOS device, regardless of whether it is a PMOS or NMOS has the same structure, only the majority carriers differ. The MOS has four terminals, a Source, a Drain, a Gate and a Substrate. The current flows from Source to Drain (in the case of an NMOS) through the channel, and the amount of current is controlled by the Gate voltage.
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In digital design, the MOS is used as a switch, controlled by the Gate Voltage Vg in CMOS logic, its Vdd and Gnd are acting as high and low levels respectively. Because the CMOS technology is controlled through voltage rather than current, and the channel is isolated from the Gate, the power consumption is rather low compared to other technologies such as the bipolar. However, it still has some consumption sources, which can be categorized as dynamic and static, due to the activity of the device and the technology imperfection. The dynamic component is caused by the switching activity of the device, with a Short Circuit Power (Psc) caused by the non-zero rise/fall time and a Switching Power (Psw) due to the charging and discharging of the output capacitances. The static component is due to technological limitations, creating a leakage current and thus a static power P L . Equations 1.1 and 1.2 gives the average power of a circuit as a function of these three components, with α representing the activity of the circuit, f the frequency, I SCmax the short circuit current peak, ∆ t is the switching time, C L and I L the load capacitance and the leakage current respectively: P Average = P SC + P SW + P L (1.1)

P Average = α 1 2 ∆ t I SCmax V DD f + αC L V 2 DD f + V DD I L (1.2)
From this equation, we can deduce several methods to reduce the power consumption or increase the energy efficiency. The first and most obvious one is to decrease the supply voltage V DD , especially as it will decrease quadratically the dynamic power. However, the dynamic power is also dependent on the operating frequency f of the circuit and its activity α. It becomes then necessary to find a voltage/frequency trade-off point where the ∆ t is minimized. At the technological level, the capacity C L can be minimized by decreasing the gate area, or using lowK dielectrics in the metal interconnects, but the first one would increase the leakage current I L . Also, with the downscaling of transistors, the I L is increasing and the leakage power is becoming a major power loss source. A play on the threshold voltage V T H is also possible, since increasing it reduces the leakage power, but decreasing it boosts the performances.

Moreover, design with margins for worst case scenarios also affects the circuit energy efficiency, as this forces the circuit to work at a V DD higher than necessary and for longer times than necessary, in order to make sure that even at worst case scenario, the circuit will be working. However, as the circuit is rarely operating in worst case scenario condition, this is a big waste of energy and energy efficiency.

Because the power consumption and energy efficiency depend on both the design and the technology, variations affecting the technology or design strategies can play an important role in affecting them. In the following sections, the variations affecting the circuit as well as the technological and design solutions used to both reduce the power and improve the performances are described.

Variations affecting the performances and power consumption of an integrated circuit

The problem of variations affecting a circuit rose at the same time as the creation of the first circuit, with W. Shockley presenting a paper untitled Problems related to p-n junctions in silicon. These variations lead to changes in the characteristics and performances of the circuit, as well as affecting its power and energy efficiency. The variations can be both intrinsic and environmental. The intrinsic ones stream mainly from Process Variations
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(PV), and lead to a necessity of adaptation both at technological level and at design level. The environmental changes are caused by the environment in which the circuit is placed, as well as the load it handles and the type of application it is geared towards. All these variations can drastically change the characteristics of the circuit and especially its performances.

Process variations

Process variation is the changes affecting an integrated circuit during the manufacturing process. The variation can happen at transistor level (transistor channel length, width, oxide thickness) that translate at circuit level, with analog circuits more affected than digital circuits because of mismatch. There are many sources of process variations, and as the technological downscaling continues, these variations become more important and affect the operation of the circuit [START_REF] Borkar | Design challenges of technology scaling[END_REF], as they are not affected by the scaling at the same rate. In this section, we will detail the types of process variations and how they affect the operation, yield and performance of a circuit.

Variation at die level

Intra-die variations, also called within die variations, are the differences affecting the transistors of the same die, causing changes in their parameters and disrupting their functioning. The level of variation can change from die to die, wafer to wafer and lot to lot, which makes it harder to identify and control these changes. The variation can come from any step of the manufacturing process. Some are identified and recurrent, such as the aberrations in the stepper lens during lithography process, and a careful adjustments in the process or design can limit their effect or correct them. Others are sporadic and cannot be easily identified or countered, for example, the random dopant placement in the MOS channel [START_REF] Bowman | Impact of extrinsic and intrinsic parameter fluctuations on cmos circuit performance[END_REF]. The within-die variations cause changes of the electrical characteristics across the chip, which notably affects the threshold voltage and leads to an exponential impact on timing and leakage [START_REF] Orshansky | Design for Manufacturability and Statistical Design: A Constructive Approach[END_REF].

Inter-die variations, also called die-to-die, are the variation affecting all elements of the chip in the same manner. For example, the resist thickness across the wafer can differ randomly from wafer to wafer, but is consistent in a single wafer. Die-to-die fluctuations used to represent the biggest concern in the microelectronics community, however, as the technological downscaling continued and the wavelength of light used in the optical lithography process exceeded the channel length, intra-die fluctuations became significant, and the concern shifted towards them, as they severly affected the performance and functionality of complex circuits [START_REF] Bowman | Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration[END_REF].

Both the intra-die and inter-die variations result from fluctuations during specific processes. The variations affecting the die or the chip can have different impact on the same parameter, as is shown in figure 1.1 and they can be further divided into device variation and interconnect variations.

Device level variations

Device level variation is the parameter fluctuations at transistor level. They can be either due to die-to-die or within-die variations, and can be divided in three categories: geometry, material parameters and electrical parameters variations.

The device geometry variations come from the fluctuations in the oxide thickness level and from changes affecting the width (W) and length (L)of the device. The variations
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Figure 1.1: Path delay standard deviation to mean ratio for D2D and WID variations versus path type for different gates [START_REF] Bowman | Impact of die-to-die and within-die parameter variations on the clock frequency and throughput of multi-core processors[END_REF] affecting the oxide thickness are mainly die-to-die variations, while the W,L variations can be within-die and die-to-die variations, caused primarily by the lithography and the etching process. They cause behavioral changes to the device and affect its performance [START_REF] Sun | Extraction of geometry-related interconnect variation based on parasitic capacitance data[END_REF].

Material parameter variations come from process that are hard to control precisely, whether because of the intrinsic behavior of the material, or because a slight change in one process parameter can have a big impact. Such is the case with doping process or the deposition and anneal process. During the doping process, the dopants intrinsic characteristics as well as the changes in energy or implant dose contribute to the material's parameter variations, which impacts the matching of NMOS and PMOS transistors.

The Electrical Parameter Variations are a direct result of the geometry and material parameters variations. The most important electrical parameter affected is the threshold voltage (Vth). It is dependent mostly on the oxide thickness, the temperature and the dopants. 
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Interconnect geometry variations

The other type of variations affecting the circuit, is the interconnect variations, which can in turn be divided into geometrical variations and material's parameters variations.

Geometrical variations can come from line width and space fluctuations, metal and dielectric thickness variations and contact and vias size variations. These variations are caused mainly by lithography, etching and deposition processes as is shown in figure 1.2 or 1.3. These geometrical variation affect the resistance of the interconnect, whether the line resistance or contacts and vias resistance, but also affect its capacitance like the line to line coupling.

The material's parameter variations such as the metal resistivity and dielectric constant fluctuations can also have some affect on the device interconnect. For example, after a deposition or annealing process, variation in grain structure or poly and metal lines are observed, and they can lead to line resistance variations. However, the processes involved are generally well controlled and the variations are more die-to-die variations. 

Conclusion

Process variations translate into circuit variations [START_REF] Khan | Die-to-die and within-die fabrication variation of 65nm cmos technology pmos transistors[END_REF][42], like path delay variations, which are a big research subject [START_REF] Eisele | The impact of intra-die device parameter variations on path delays and on the design for yield of low voltage digital circuits[END_REF], since they affect the clock distribution and the integrity of the signal. However, variations affecting the signals and the circuit can also come from sources other than process, and are discussed in the following section.

Environmental variations

Environmental variations are variations affecting a circuit once it is manufactured. Since the circuit must be able to handle and perform at the worst case scenario, these variations need to be taken into account. They can be related to the temperature, the voltage fluctuations, the load of the circuit, the medium in which the circuit is placed, the application or the dynamic variations the circuit is subject to, and have a direct impact on the expected performances of the circuit. There are several causes of environmental variations, which will be presented in the following sections.

Voltage variations

The voltage variations have a severe impact on the path delay of a CMOS logic gate.

Voltage variations are due mainly to the current flow in parasitic resistances and induc-
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Evolution towards adaptive systems 11 tances in the power grid and the package, which leads to IR drop and to di/dt noise [START_REF] Budnik | An active suppression circuit for the reduction of di/dt event supply voltage variation[END_REF]. These effect, also called power noise, are fast changing and can lead to voltage drops but also to voltage overshoots if there is any resonance. Figure 1.4 shows this effect and its impact on gate delay. Other sources of voltage variation can be caused by the ripple of the voltage regulators, whether from the voltage reference or from the DC-DC regulators or the battery voltage. 

Thermal variations

Thermal variations are one of the variations with the most impact on the chip. It can come from the outside temperature or by the circuit's self heating. Typically, a circuit is characterized and capable of working up to 120°Celsius, and beyond that, special materials for high temperatures need to be used to insure that the circuit can still function.

Concerning the self-heating, as the power dissipates, the temperature of the chip rises inconsistently, and depending on the activity of the chip, the thermal profile can be extremely different and lead to hot-spots, which are region of high-activity which dissipate the most power. The new phenomena of dark silicon, where parts of the silicon chip have to remain powered-off because the thermal budget, is a notable example of how the temperature affects the circuitry and can affect many performance.

Indeed, an increase in the chip temperature can lead to the circuit slowing down, caused by a decrease in carrier's mobility and an increase in the interconnect resistance [START_REF] Blaauw | Statistical timing analysis: From basic principles to state of the art[END_REF]. Figure 1.5 shows the dependence of the gates path delay to the temperature. It is worth noting that in some technologies and for low voltage supply, an inverted phenomenon happens, where the threshold voltage decreases with increased temperature, which leads to the circuit running faster with increased temperatures [START_REF] Wirnshofer | Variation-Aware Adaptive Voltage Scaling for Digital CMOS Circuits[END_REF]. 
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Circuit's aging

Although aging can be considered a process variation, it is categozized as an environmental variation as it happens after manufacturing. The aging problem has become more pronounced with the downscaling of transistor nodes, leading to fast transistor wear out due mainly to Hot Carrier Injection (HCI) and Bias Temperature Instability (BTI) [START_REF] Altieri | Tracking bti and hci effects at circuit-level in adaptive systems[END_REF]. Both phenomenons affect carriers which get into the dielectric layer and increase the threshold voltage Vth, reducing the switching speed of the device. In the case of HCI, carriers are accelerated by the lateral field and injected into the gate dielectric. The trapped charges reduce the current drivability of the device. For BTI, the carriers are moved by the vertical field, which are high when the device is in the linear region under a high Vgs and low Vds. 

Circuit's environment

The medium in which the circuit is placed can also affect its performances. Whether it is the medium's temperature, or the propagation channel in the case of wireless applications, e.g. the propagation channel especially is a medium which is susceptible to multiple problems that can be quite energy consuming to counter, especially shadowing which cause fluctuations in the received signal power, due to material blockades which attenuate the signal intensity. This lead the sender and the receiver to spend much power into sending a high powered signal, that can be integrally reconstituted on the receiver side. Figure 1.8 shows the effect of distance and shadowing on the power of a transceiver. 
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Dynamic variations due to the application

Dynamic variations are also considered environmental variations, but they concern mainly the application that the circuit is used for. Differences in computation loads, standards and working mode are generally the main variations a circuit faces. For a circuit, the computation load is not always the same, especially if the same circuit is versatile and can be used for different application. In order to make sure that the circuit is capable of handling all types of computation loads, it is designed for the worst case scenario, and as such its supply voltage is fixed depending on the worst case scenario which in turn increases the power consumption when not necessary, but also accelerates the aging process.

Moreover, the variation can be caused not by the application, but by its characteristic, as is the case with the RF applications were several standards are used, and as such demand from the circuit to accommodate both the application load, but the application standard as well. The circuit may need to change its characteristics and support several working mode, which again can be a great source for power loss.

Variations affecting a Wireless Sensor Network Node (WSNN)

Since this work targets mainly WSNN and IoT 4 applications, it is necessary to also take into account the specific variations that a wireless sensor node is faced with.

Wireless sensor nodes specifications

Wireless Sensor Networks (WSN) are networks of distributed sensors used to monitor environmental conditions such as motion and temperature [START_REF] Akyildiz | A survey on sensor networks[END_REF] [START_REF] Chong | Sensor networks: evolution, opportunities, and challenges[END_REF] and can extend to other measuring and monitoring endeavors. The collected data is then sent through this network until it reaches a sink, where it can be analyzed. A node in a WSN combines sensing,
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The sensor or actuator in the sensing unit can be any type of sensor, and a WSNN can have either one type of sensors or a complex mix of different sensors, depending on the application. Because sensed values are analog, there needs to be an analog-to-digital converter (ADC) or some sort of convertion interface to allow the sensors to communicate with the rest of the circuit. The digital collected data is then sent to the computation unit, which then analyses and evaluates the data. If the data is to be sent to the sink (a message), then the transeiver sends it to the nearest neighbor WSNN in the network (or depending on the communication algorithm used), which upon receiving it, transfers it in turn to the next WSNN until it reaches the sink. However, this scenario represents the ideal case. A more frequent and easier to implement scenario is the one where the sink is central node and the wireless sensor network nodes are directly connected to it. Nevertheless, which ever the scenario, a node in a WSN has two jobs, the first is to monitor the environment, and the second is to transfer the data through the network. Once one of these is finished, the node goes to sleep, and wakes up only at scheduled times to either check if it has to pass along a message, or to collect environmental data. This duty cycling allows the node to be more power efficient, especially in the case of autonomous WSN placed in remote [START_REF] Dasgupta | Application of wireless sensor network in remote monitoring: Water-level sensing and temperature sensing, and their application in agriculture[END_REF] or difficult to access areas [START_REF] Lara | On real-time performance evaluation of volcano-monitoring systems with wireless sensor networks[END_REF]. 

Variations and energy efficiency in a WSNN

The variations affecting a WSN are variable and depend on the type of WSN or its application. We can however generalize some of them. The first type of variations are PVT variations, which affect all circuits. Since some of the WSN applications are in remote areas or in harsh environments [START_REF] Lara | On real-time performance evaluation of volcano-monitoring systems with wireless sensor networks[END_REF], these variations can have a big impact on the node's operation.

The second type of variations affecting a WSN are the applications variations. The first level of variations occur when there are different sensors on the same node, each with its own energy needs. An imager may consume a hundred times more than a simple temperature sensor. The node needs to adapt its energy expenditure depending on the type of application. The second level of variation is within the application itself. Taking the example of an imager, we may need to simply detect the presence of something in the place being monitored, or we may need facial recognition as well. The difference in accuracy can have an important impact on the energy as shown in figure 1.10. Moreover, as the demand for more efficient IoT systems grows, there needs to be circuits capable of covering many WSN applications, especially the ones used in the Internet of Things (IoT) at a low cost and capable of handling different energy needs.
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Figure 1.10: Energy needs of IoT application [START_REF] Beigne | Utbb fdsoi technology flexibility for ultra low power internet-of-things applications[END_REF] On top of the variations, energy efficicency in a WSNN is compromised due to the nature of the WSN, and the duty cycling, where the node is woken up and put back to sleep at scheduled intervals (figure 1.11). If there is no information to pass along, then the energy for waking up the node is lost. On the other hand, if data is sent during the sleep time of the node, it cannot be received and is lost. The sink will request this data again, prompting another operation, which is wasteful. The duty cycling has to adapt to the network and be as efficient as possible. The introduction of more efficient communication algorithms for WSN [START_REF] Al-Karaki | Routing techniques in wireless sensor networks: a survey[END_REF][52] as well as the increase of wake up radios [START_REF] Thirunarayanan | Enabling highly energy efficient wsn through pll-free, fast wakeup radios[END_REF][54] integration may be a viable solution to this problem. 

Conclusion

The variations affecting the circuit described above are becoming increasingly present in complex and modern circuits. Several solutions are proposed to avoid them. One of the most promising method is based on the assumption that by monitoring these variations, we can adapt the circuit to perform at its best instead of working with a rigid set of constraints and margins.

In the following sections, technological and architectural design proposal are presented, focusing mainly on proposals geared towards adaptation, as it not only answers the variations problem, but does it in an energy efficient way.

Technological solutions to counter variation

Several technological propositions to overcome the problems of variability and energy efficiency were proposed, some at process level while other at device level. At process level, a constant improvement of the processes through modeling [START_REF] Blaauw | Statistical timing analysis: From basic principles to state of the art[END_REF] and technique enhancement [START_REF] Borkar | Designing reliable systems from unreliable components: the challenges of transistor variability and degradation[END_REF], as well as a better understanding of the physics is always occurring. At device levels, several candidates to replace the traditional MOSFET device has been proposed, chief among them the thin film technology on which is based the UTBB FDSOI 5 technology
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and the FINFET 6 [START_REF] Zimpeck | Finfet cells with different transistor sizing techniques against pvt variations[END_REF].

The FINFET is a 3D structure, of which a first version was persent by Berkeley professor Chenming Hu and his team [START_REF] Hisamoto | Finfet-a self-aligned double-gate mosfet scalable to 20 nm[END_REF] in 2000. Its gate is elevated and forms a fin (hence the name) nearly surrounding the device as shown in figure 1.12. In this architecture, the channel is extremely thin and the gate is used to control the leakage. The device can have several gates instead of one, as is the case with Intel and their tri-gate FINFET [START_REF] Chau | Trigate devices and methods of fabrication[END_REF]. Although this technology is very promising and has already been used in several chips from Intel [START_REF]Intel corporation. Intel 22nm 3-d tri-gate transistor technology[END_REF], GlobalFoundries [START_REF]14lpp 14nm finfet technology[END_REF] and AMD [START_REF] Amd | Amd demonstrates revolutionary 14nm finfet polaris gpu architecture[END_REF], it is still not mainstream and faces many challenges.

Another interesting device is the UTBB FDSOI , which thanks to its Back Biasing, can control and change its characteristics, and allow a more adaptive use of the device. In this work, we chose to use the UTBB FDSOI 28nm technology, as it offers the best compromise between power and performance. 

FDSOI technology for adaptation and targeted applications

UTBB FDSOI was introduced by LETI and STMicroelectronics as one of the most advanced technological answers to mitigate the effect of variability on a circuit and to achieve better energy efficiency and control over the circuit. This technology provides several options for controlling the speed and the leakage of a device thanks to the Back-Biasing (BB) technique. It offers the possibility of dynamically increasing the speed of the device through Forward Back Biasing (FBB), and as such increase the performances, or using the Reverse Back Biasing (RBB) to decrease the leakage current. In the following section, an overview of the UTBB FDSOI technology is given, most of which were reported in [START_REF] Berthier | UTBB FDSOI suitability for IoT applications: Investigations at device, design and architectural levels[END_REF], [START_REF] Beigne | Ultra-wide voltage range designs in fully-depleted silicon-on-insulator fets[END_REF] and [START_REF] Beigne | Utbb fdsoi technology flexibility for ultra low power internet-of-things applications[END_REF].

Introduction to the UTBB FDSOI technology

As its name indicates, the UTBB FDSOI 28nm technology is characterized by a Siliconinsulator-silicon layer instead of the traditional silicon substrate used, as shown in figure 1.13. The inclusion of the Ultra Thin Buried Oxide (BOX) allows for a better control of the channel, as it separates it from the substrate, allowing for a better Drain/Source-to-Substrate parasitic capacitance and body factor. The channel is thus created in a thin dopant-free silicon layer, and with the raising of the drain and source, the access resistances is also reduced.
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Source In addition, a back plane (n-type for N-wells and p-type for p-well) is also created under the BOX, in order to improve the Short Channel effect and adjust the threshold voltage (Vth). By using the Back Biasing voltage Vbb, which can range from -3V to 3V, the Vth and the leakage current can be adjusted and fine tuned to the application and achieve the best performance/power trade-off, which is not possible when using the bulk technology.

Finally, to electrically isolate the devices, Shallow Trench Isolation (STI) are implemented. Figure 1.14 shows a cross-section of a CMOS device as well as the body biasing range. In terms of frequency and energy, the UTBB FDSOI proved to be more efficient than bulk when using either the FBB or RBB. Figure 1.15(a) shows the considerable speed gain achieved through Forward Back Biasing. Depending on the Vbb used, the gain in frequency can increase by 40%. The same is also achievable when using Reverse Back Biasing, although on the opposite scale, where the leakage current can be decreased by as much as 5 times at a standard standby voltage (Vdd) of 0.6V as shown in figure 1.15(b). Both performance results are extracted from electrical simulations of the critical path of an ARM64.

In the case of sensor nodes, back biasing will allow to achieve a boost in performances
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Evolution towards adaptive systems 18 during activity periods when necessary, especially when an energy/performance trade-off is necessary to adapt to variations due to applications. In idle mode, back biasing will help decrease leakage power.

UTBB FDSOI technology in Near Threshold

Another interesting characteristic of the FDSOI technology is its low Minimum Energy Point (MEP), which is the operating voltage for which the total energy consumed per operation is minimized. In this case, The MEP is situated in the [0.2V, 0.4V] range for both LVT 7 and RVT 8 devices, as shown in figure 1. [START_REF] Benini | Networks on Chips. Systems on Silicon[END_REF]. The figure also shows us how this MEP changes when applying Back Biasing. We can observe that although the total energy for both devices is close, the static energy for LVT and RVT is different, and when applying a Back Biasing Voltage, these curves behave differently, where the LVT curves goes up while the RVT curve goes down. The ZBB (Zero Back Biasing) point represents the initial curve in the absence of all back biasing. These results are from electrical simulations of ring oscillators. Moreover, when comparing leakage and delay of 8bits full adders in different technologies (FDSOI 28nm, FINFET 14nm and bulk 28nm) at different MEPs (figure 1.17), it is clear that the RVT FDSOI technology has the lowest energy levels, even if the delay is considerable compared to the FINFET 14nm technology. The bulk 28nm technology shows the worst results for both the delay and the leakage. 
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Poly Biasing in UTBB FDSOI

Another interesting feature of the FDSOI technology is the option for increasing the Poly Biasing of LVT devices, where the gate length is customized to achieve the best energy/delay compromise. Figure 1.18 shows the MEP for different poly biasing (PB0= no increase, PB4= 4nm gate enlargement, PB16= 16nm gate enlargement) as well as a regular RVT device, as the poly biasing is only applied to LVT devices. We can observe a 15% decrease in energy per operation for the same frequency (500MHz). The PB16 technology is better energy-wise than the RVT.
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It is however difficult to integrate both RVT and LVT due to the wells isolation. A cointegration of different poly biasing LVT devices is however possible, and most interesting for IoT and sensor nodes applications. Although RVT is better in case long periods of sleep mode are expected, as RVT reduces the leakage. 

Architectural solutions for performance and energy efficiency

While the technological innovations to deal with the variations affecting a circuit help resolve the problem of the leakage power, which is predominant in advanced nodes, it needs to be coupled with architectural solutions, that can also address the environmental variations as well as regulate the dynamic power consumption. As mentioned in section 1.2, there are several parameters that can be changed to reduce the power consumption, or deal with the variations.

Voltage supply and frequency adjustments

One obvious way to decrease the power consumption in any circuit but especially in WSN nodes is to duty cycle it, where the node wakes up when requested and processes the data, and upon finishing, goes back to a sleeping mode. During the sleep mode or idle mode, the circuit blocks are disconnected and no longer consume power. There are several ways to implement an idle mode, depending on the application and the hardware available. The first one is done by clock gating, where the clock of a block or a frequency domain is disabled, which then stops the sequential elements from switching, and thus eliminate the internal activity α, suppressing any dynamic power. Once clock gating is implemented, only the leakage power remains, and similarly, it is possible to
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power gate any block in order to remove the leakage power. Power gating is done by locally turning off the supply voltage of any block, and reducing the leakage power to almost zero, with the exception of the transistor used for power gating. Figure 1.19 shows how clock gating and power gating can be implemented. DVFS is a commonly used technique for power reduction, where the frequency of a block is decreased, to allow for a voltage reduction following the P Dynamic = CF V 2 law, with α the switching activity. There are several algorithms and methods to detect which frequency/voltage couple is best are used, however, they can be being quite expensive hardware and even energy-wise. Moreover, a strict DVFS is not easy to implement, as the voltage regulators are notoriously difficult and expensive to implement, especially the DC/DC blocks. Two techniques can be implemented to resolve this problem: V dd -hopping or V dd -dithering. V dd -hopping is a strategy where the supply voltage is stabilized at a certain point and remains constant for a certain frequency f clk range. Once the frequency is decided, the corresponding supply voltage is applied, and changes as the frequency changes as shown in figure 1.21.a. The problem in this case is that the frequency/voltage couple is not optimal as the f clk moves from the left edge towards the right. To compensate for that, V dddithering can be used instead of V dd -hopping. Instead of sticking to one voltage value over a certain f clk range, the supply voltage is stabilized at an optimal point of the interval, depending on the switching ratio, which corresponds to the time spent at low V dd and Cmep Evolution towards adaptive systems 22 high V dd as shown in figure 1.21.b. This allows the implemented scheme to follow the ideal DVFS curve. One step above DVFS is AVFS 10 , which is similar to DVFS, but can adapt to to variations. While in DVFS the voltage/frequency point is pre-determined depending on the application, AVFS eliminates margins entirely, it adapts to the variations, and changes the frequency/voltage couple accordingly at runtime.

Ultimately, the choice between which power reduction technique to use depends on the application and the power budget. Clock gating is a simple logical operation, that doesn't need any set up time, while power gating operation necessitate an additional amount time when turn on and off, introducing more latency into the circuit and power loss. When powering down, it is necessary to back up the values in the registers and the data in the memory, and when powering up, a set up time to reestablish the correct voltage level is needed. DVFS and AVFS on the other hand demands important additional circuitry and can be quite hard to implement. In this regard, it is the application, the reaction time wanted and the grain(fine-grain or coarse-grain) of the hardware that determines which technique to use. In a majority of circuit, a fine-grain power domain is used, allowing small blocks to be turned on and off when needed.

Another DVFS technique used to adapt the performances of the circuit that doesn't require additional circuitry, is to adapt the supply voltage value to the application, by choosing in which working range to supply the circuit. As the transistor has three main working ranges: the nominal, the ULV and the NTC 11 , we can chose in which range to supply it in order to obtain the best energy efficiency possible. To reduce the power consumption, is it possible to supply the circuit at its MEP 12 in the ULV 13 range of the transistor as shown in figure 1.22. The MEP is obtained when the sum of the dynamic and static energy is at a minimum. The MEP also acts as an energy indicator, when the energy is below this point, the static energy is more important than the dynamic energy and vice-versa. As shown in figure 1.22, the frequency at the MEP voltage V M EP can be divided by 25. When supplying the circuit at NTC, the frequency is only divided by 5 and the energy by 4. So by wisely choosing in which range to supply the circuit, it is possible to change it performances significantly.

However, to supply the circuit below the nominal level opens the door to other problems. The more the supply voltage is reduced, the more the I on current will be sensitive to
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the variations of the threshold voltage ∆V T H , which will need to be countered by increasing the gate area, as the ∆V T H is inversely proportional to the square of the gate area. Timing problems also abound when the supply voltage is lowered, since the flip-flops and latches no longer have a proper hold time, and the clock skew is increased. Moreover, in order to implement multiple power domains, it is necessary to use level shifters, and these are notoriously affected by all PVT variations.

It is however worth noting that these problems only affect synchronous circuit, while asynchronous circuit are robust towards supply voltage variations, which makes it a good candidate for ULV and NTC applications. 1.5.2 Architectural solutions for energy efficiency

Digital solutions and functions

Other than changing the supply voltage and the circuit frequency, it is possible to play on the architecture of the circuit itself, or the software running on top in order to lower the power and energy consumption.

There are several techniques used to achieve this effect. The first one is to simply dedicate different hardware to different application as shown in figure 1.23 and as is the case in the TI CC2650 system, where a Low Power (LP) and High Power (HP) processor coexist. The LP processor deals with the common tasks, while the HP processor is only used when complex computing is needed or for unexpected tasks. In this case, the HP processor can remain on an idle mode until awakened, while the LP processor deals with the mundane tasks and can also be switched to an idle mode, or can awaken the HP processor. While the HP processor is not energy efficient, this partitioning allows for more flexibility and to adapt to different applications while still achieving a maximum of energy efficiency. It is also possible to use hardware accelerators and dedicated instructions to deport parts of the code that is routinely executed by dedicated hardware via an external module, such as AES 14 , CRC 15 or an RNG 16 as is the case of the STM32L0 [START_REF]Ultra-low-power 32-bit MCU ARM-based Cortex-M0+, up to 192KB Flash, 20KB SRAM, 6KB EEPROM[END_REF] or via dedicated DSP instructions like the MAC 17 or the SIMD 18 , used extensively for filtering or in FFT 19 . These solutions considerably improve the energy efficiency of the system and are even developed today in general processors like the ARM Cortex-M4 with the ARMV7-M instruction set [START_REF] Arm | ARMv7-M Architecture Reference Manual[END_REF].

It is possible to use other techniques such as load balancing, task mapping or even adequate computing to achieve better energy efficiency. The choice rests solely on the applications targeted and the cost, as these techniques can be quite costly.

Analog and radio-frequency functions

Another reason to try to achieve energy efficiency through other methods rather than decreasing the supply voltage is analog blocks, as they respond poorly to decreased supply voltage. This is especially important as sensor nodes incorporate RF circuitry, which can consumes up to 70% of the node's power [START_REF] Bachir | Mac essentials for wireless sensor networks[END_REF], especially in recievers where the frequency synthesis and the amplification path consume more than 60% of the total power consumption [START_REF] Raja | A 18 mw tx, 22 mw rx transceiver for 2[END_REF]. A first alternative is to implement a wake-up radio, which is a secondary radio capable of monitoring the channel and instruct the main radio to turn off when there is no activity detected. The goal would be to first eliminate the power lost due to the transiever idle listening, and then to minimize the energy expenditure for the common tasks. Extensive duty cycling can be used to resolve the first problem, however, it can lead to the loss of data when in sleep mode. Other methods proposed range from zero margin implementation, self-healing [START_REF] Agwa | Ersut: A self-healing architecture for mitigating pvt variations without pipeline flushing[END_REF] or adaptive radio [START_REF] Mu | Adaptive radio and transmission power selection for internet of things[END_REF] [START_REF] Pons | Rf power gating: A low-power technique for adaptive radios[END_REF]. The problem in most cases is that the performance degradation is not worth the energy saving, as is the case with the ATMEL AT86RF233 which can tune its sensitivity by 50%, but only achieves a 20% in power reduction [START_REF] Belleville | Adaptive architectures, circuits and technology solutions for future iot systems[END_REF]. 14 

Advanced Encryption Standard
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In the case of imagers for example, the way to reduce the power consumption comes through the compression and decrease in the transferred data. By only selecting and sending relevant data based on the sensor's criteria, it is possible to reduce the power consumption of the circuit. Another method for power reduction is to play on the signal quality [START_REF] Posch | A qvga 143 db dynamic range frame-free pwm image sensor with lossless pixel-level video compression and time-domain cds[END_REF] [START_REF] Sicard | Trade-off between the number of bits per pixel and motion detection quality for ultra-low power imaging applications[END_REF]. These methods are however costly and more complex to implement.

The methods used to reduce power in analog blocks are as diverse as the analog blocks themselves, as one solution that works for one analog circuit will not work for a hundred others, and as such, the research is still continuing.

Block's adaptation for energy efficiency

Another way of viewing things is to react to the application, the environment or the energy budget instead of making them the constraints. In a typical circuit, and in order to enforce a strict QoS 20 , margins are put in place to respond to the worst case scenario. However, these margins cause significant power and energy efficiency loss, as the circuit is not always, if ever, confronted to the worst case scenario. The ideal would be to have a system that can react according depending on the scenario. When on a best case scenario, the circuit would be able to adjust its performances in order to spend the less power possible, while an increase in power consumption would be seen as necessary in case of a worst case scenario. By eliminating these margins, it is possible to achieve the best performance/power consumption trade-off. There are several techniques to do that.

Dynamic adaptation

Concerning the dynamic adaptation techniques used in almost all the circuits discussed below, two main ones are predominant: the automatic control which is well known and used in the majority of circuit, and the newly expanded field of machine learning. In the first case, the circuit operates under certain assumptions and for certain values. When these values change, the circuit performances evolve to adapt to the new parameters. Depending on the parameters, their changes and the feedback loops used, the circuit already knows how to react, and only reacts when these parameters change. In the case of machine learning however, the circuit's tasks and responses are not pre-programmed, and the circuit is expected to learn to adapt to the application and environment, which needs complex dedicated computing infrastructures and time to learn.

While the first technique is widely used and recognized, it is not always energy effective, as it allows for certain margins. In the case of machine learning, as it learns, it adapts more quickly and efficiently, however, it may need too many resources before achieving significant results. In most blocks, control loops are integrated to achieve the necessary adaptativity.

Monitoring

The first and most used technique for adaptation is circuit monitoring. Monitoring can have many purposes, from thermal monitoring [START_REF] Mcgowen | Power and temperature control on a 90-nm itanium family processor[END_REF] in order not to damage the circuit, to fault monitoring [START_REF] Bouajila | A low-overhead monitoring ring interconnect for mpsoc parameter optimization[END_REF] and PVT monitoring [START_REF] Zhang | A built-in-test circuit for functional verification pvt variations monitoring of cmos rf circuits[END_REF] to compensate for errors in the circuit and to adjust the circuit parameters when affected by PVT variations. Monitoring the circuit's parameters allows the circuit to not only correct the issues at hand, but also to adjust its performances and respond to the workload accordingly. When using thermal monitors in Cmep Evolution towards adaptive systems 26 a CMP 21 for example, upon the heating of a part of the circuit, the tasks can be shifted around to other cores in order to relieve the heated core. When using PVT monitoring, the degradation caused by the variation can be compensated once detected, either by an increase in supply voltage or a slowing of the clock.

The monitoring in a circuit can be expended to affect all types of parameters, but it especially targets the critical parameters such as delay paths for slack monitoring as shown in figure 1.24 presented in [START_REF] Rebaud | Onchip timing slack monitoring[END_REF]. However, monitoring a circuit can be quite expensive, as it requires additional hardware. The monitors used can be either a simple collection of logic gates or can extend to form a monitoring network with several sensors [START_REF] Mcgowen | Power and temperature control on a 90-nm itanium family processor[END_REF]. An example of the first case is the Razor flip-flop [START_REF] Ernst | Razor: circuit-level correction of timing errors for low-power operation[END_REF], where a shadow latch and a comparator are added to a normal flip-flop to detect any delay, while [START_REF] Kursun | Variation-aware thermal characterization and management of multi-core architectures[END_REF] gives us an example of how a thermal sensor network can be implemented in a CMP in order to track the thermal changes in the circuit and respond effectively. The choice of which and how many monitors to use is dependent on the circuit, its application, and how fine-grained the detection needs to be. 

Adaptive blocks

Going even further than monitoring a circuit, adaptive blocks are logic, analog or RF blocks that can change and adapt their performances through a careful automation loop, depending on the application, the environment or the energy budget thanks to a Sense&React strategy. The Sense&React strategy is based on 4 principles: sense, decide, react and work and they can be implemented as follow:

* Sense: measurement and extraction of the relevant data from the application or the environment.

* Decide: analysis of the sensed data, leading to which parameter to modify or not according to the circuit's constraints.
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implies a certain intelligence of the circuit, and a capacity for decision making that is not enforced by prior pre-programmed tasks as is the case of a simple control loop, which only affect local parameters. This intelligence concept in the Decide block opens the possibility of having both a global and local optimization criteria. Even if the local optimization of the block is the goal, ultimately, it is the energy of the global circuit we want to optimize.

In a typical adaptive system or block, we have two layers: the local layer and the global layer as shown in figure 1.25. In the local layer, a local control is implemented, managing a so called domain, which will make it possible to avoid propagating unnecessary information at (higher) levels where they are not needed. These loops can thus be faster. In the global layer, a global control system is implemented which takes into account data coming from upper levels. This duality allows us to deal with global optimization while taking into account blocks that are ingrained in several control loops.

We will therefore find sensors (black squares in Figure 1.25) implemented near the device but also sensors for extracting information from the environment, the state of the battery, or on the user requirements. A high-level control block will allow to incorporate the data coming from the distributed sensors within the complete system and will integrate the algorithms used to guide each of the local control loops that have an impact on the overall performance or consumption. In order to implement these Sense&React blocks, several consideration have to be taken into account. At circuit level, an architectural innovation is needed to incorporate all the sensor and the algorithm for the global and local control. Finally, it is necessary to establish a correct data communication and transfer methodology, in order to efficiently allow the exchange of control and sense data. It is towards this final perspective that this work is turned.
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Conclusion

In this section, we discussed the potential variations affecting a circuit, and the possible ways to counter them. First, the process variations caused by the manufacturing process were presented, then the environmental variations caused by the activity of the circuit or its environment were considered. These variations affect the performance of the circuit, it's power consumption and energy efficiency. This effect is especially felt by WSN nodes, as WSN can be autonomous and their energy efficiency has to be high in order to be placed in remote area and operated autonomously.

Several methods are used to deal with the impact of variations on a circuit. The solutions can be technological, architectural or at system level. The technological solutions are further improvement in the manufacturing process to avoid or at least compensate for any fluctuations, as well as the development of new technologies such as the FDSOI technology which will be used in this work. The architectural solutions are diverse and depend on the circuit and on the application.

One of the most promising solutions is the integration of adaptive blocks in the circuit. Adaptive blocks are circuits capable of adapting their performances to their environment, the available energy budget or the on-going application. This allows the circuit to only spend what is necessary, without any loss dues to margins. This solution is based on a Sense&React architecture where the circuits parameters are monitored, and depending on the value of these parameters, the performances of the circuit are changed accordingly. To achieve that, local and sometimes global control loops are used, and an effective communication system is needed to efficiently transfer the configuration data and the control signals.

This work targets such on-chip communication system for reconfiguration purposes. The following chapter presents the state of the art on communication networks and their characteristics.

Chapter 2

State of the art of on-chip communication networks 2.1 Introduction

This chapter presents a state of the art of communication networks, its structures and architectures, as well as an overview of the alternative use of communication network, such as service networks. Throughout this chapter, a comprehensive overview of on-chip communication network will be given, as well as the common topologies used, arbitration scheme and implementations. The network's structure will also be discussed, and an examination of framing and clocking strategies as well as data transfer mode will be conducted. Several types of on-chip networks will be discussed, from the dominant industrial networks to the newly developed Networks on Chips and dedicated networks.

A communication network role is to transfer data throughout a circuit, from senders to receivers. The way the transfer is conducted and how much impact it has on the chip depends on the architecture of the chosen interconnect connecting the chip's components. Moreover, as circuits grew more complex, on-chip communication networks took many other roles. The size of the circuit, the need to test it or to dynamically adapt it imposed new structural changes to the communication network and a new branch of communication networks was created: dedicated network. These networks don't transfer functional data, but deal with testing and configuration data only, freeing the functional communication network bandwidth and easing communication bottelneck. By dedicating a network to transversal tasks such as testing and transfering measurement data and configuration commands, the circuit as a whole is improved [START_REF] Mcgowen | Power and temperature control on a 90-nm itanium family processor[END_REF].

The work presented in this manuscript focuses mainly on dedicated networks used in Sense&React circuits, to transport control data for reconfiguration and transport back measured data. A part of this chapter will focus on dedicated network used in adaptive or reconfigurable circuits. The first two sections (section 2.2 and 2.3) present a state of the art of the usual on-chip communication networks, as well as the standard topologies and framing strategies used for their implementation. A small overview of Networks-on-Chips will also be given. The third section (section 2.4) introduces the principle of dedicated networks and their uses, especially for reconfiguration purposes.

On-Chip communication network Structures

Originaly, communication networks were mostly based on metal wires (links) connecting the circuit's blocks, and allowing the transfer of data between said blocks. As technology advanced and the nodes decreased, the integration of a bigger number of transistors in a circuit was possible, which led to an increased complexity of the wiring scheme between
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blocks, as well as parasitic problems [START_REF] Ho | The future of wires[END_REF]. As shown in table 2.1, the speed of the wires remained steady while the speed of the logic has decreased dramatically. The communication network can no longer keep up with the performance required from the applications, even as the interconnect become most sophisticated (figure 2.2). Figure 2.2: Gate delay evolution with decreasing process nodes [START_REF] Benini | Networks on Chips. Systems on Silicon[END_REF] In order to solve these problems, and design an efficient network, defining a suitable structure for networks was necessary, starting with the framing, topology design and protocol. A communication network's frame refers to the way the data is grouped to be sent through the network, and can also include other type of data, such as synchronization or error checking code. The topology of the network is the way its nodes are organized in respect to one another and the way they are connected. Finally, the protocol of the network is the way data is sent though the network, whether using circuit switching like in most BUS-based networks or packet switching in Network-on-Chips, and defines how each block interacts with the others. Of course, other components are necessary to design a communication network, however, these are the most important in regards to the structure
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of a communication network. In the following section, both bus-based and Network-on-Chip architectures will be presented, as well as their main components and a comparison between the two approaches

BUS-based architecture

The bus-based architecture is the most common architecture used for communication networks in circuits. It is simple, easy to integrate and scale, and offers a good area/performance trade-off [START_REF] Loghi | Analyzing on-chip communication in a mpsoc environment[END_REF]. In itself, a bus is a collection of wires, connecting several blocks together in a circuit, called nodes. The communication between blocks is controlled through a hierarchical distribution of slaves and masters. A Master node can initiate all communications (transfer of read or write data) with other nodes, which is usually the prerogative of the processing blocks of the circuit, such as the Central processing Units (CPU) or the Graphic processing Units (GPU). On the other hand, a slave node can only respond to a master request for communication, and cannot start any transfer of data with other blocks without being solicited first as is the case for memories and register blocks in general. It is possible for a node to be both a master and a slave, as is the case with Direct Memory Access (DMAs), some sensors and general Input/Output blocks.

The BUS-based architecture is made of several signal lines, the main ones used are the address bus, the data bus and the control bus as shown in figure 2.3. Each of these buses is responsible for a specific transfer. The address bus is responsible for transferring the addresses of the network's blocks. This bus can be either shared or separated for read/write operations.

Processor Sensor1 Sensor2

Memory DMA The data bus is responsible for handling the read/write data, and carrying it from a sender to a receiver. Same as the address bus, the data bus can be shared or separated for read/write operations. The most important parameter of the data bus is its width, which is critical for efficient data transfer. In case the data width is too small, the master may need to perform several read/write operations before all relevant data is sent, which is highly inefficient. If the data width is too big, it might generate an overall increase of latency and throughput, and might even cause deadlocks.

Address bus Data bus Control bus

Finally, the control bus deals with the requests and acknowledgments. It is through the control bus that read/write requests are carried out, and receive acknowledgments are sent. It is also used to specify the parameter of the transfer, such as the transfer mode (which will be discussed in section 2.3.3).
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Network on Chip (NoC) architecture

As the complexity of SoCs increased and the technological nodes sizes decreased, it became possible to integrate many more intellectual properties (IP) on a single chip. The continued downscaling created several problems. This affected communication networks severely, where the delay of the wires increased compared to the delay of the transistor. This pattern is also true for power, where the interconnection power is dominating the logic power consumption. Because of that, part of the emerging memory and computational problems can be traced back to interconnection problems, as it takes more time to reach memories, and to transfer data from source to destination. Moreover, the problems encountered by bus communication networks became more dominating with the technology downscaling, in addition to increased noise level, affecting the data transfer reliability and causing data to be delayed or corrupted.

Furthermore, as SoCs complexity grew, and the integration of several different IPs with dedicated power and frequency domains, the problem of clock distribution also arised. The need to efficiently synchronize complex chips, and the emergence of Globally Asynchronous Locally Synchronous (GALS) architectures [START_REF] Krstic | Globally asynchronous, locally synchronous circuits: Overview and outlook[END_REF][82], prompted the need for a suitable interconnect network, which can deal with several frequency domains.

It is obvious that typical communication networks are unable to correctly and efficiently serve as transfer medium in complex chips, and created/cause a bottleneck. This points to the need to design new SoCs centered around the communication network, and work with instead of despite the interconnection network, and recognize the need for a new interconnect structure, capable of bypassing the problems caused by the technological downscaling.

The Network-on-Chip (NoC) paradigm has emerged as a response to all these problems and more, offering an efficient communication interconnect capable of transferring data with low latency and high throughput, high bandwidth to support increasingly complex Software applications, high reliability, energy efficiency and offering IP reuse possibilities. Because of performance requirements, need for IP reuse and scalability, a NoC is usually implemented in a two dimentionnal (2D) mesh [START_REF] Benini | Networks on chips: a new soc paradigm[END_REF][84] as shown in figure 2.4. The chip is divided in tiles, each tile connected to the network through routers which will be discussed in section 2.3.2. This structured topology allows for controlled links, and the shared resources allow an efficient use of the network's interconnect, as the links are free to be used by other nodes. 
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BUS-based architecture and NoCs share several components, which can be added or removed depending on the network's type and architecture. These components are arbiters (section 2.3.1), bridges(section 3.3.3), decoders or interfaces(section 2.3.2), repeaters and routers depending on the chosen structure. Both architectures are complemented by the definition of the network topology, which dictates how the network's nodes are arranged (section 3.3.3), the framing strategy (section 2.2.4) and the data transfer mode (section 2.3.3). They constitute the protocol that direct the network. In the following sections, all the network components will be discussed and analyzed.

Network's types of topologies

A network's topology refers to the disposition of communicating blocks (nodes) regarding each other. Several types of topologies can be used to implement a bus-based communication network. The network topology plays an important role in the performance and efficiency of the network. The physical placement of the nodes, their proximity to each other and their accessibility determine how the signal propagation will occur, and in which order the nodes will be connected. As such, the latency, throughput and deadlock of a network are affected differently depending on the chosen topology. The choice of a topology is determined by the circuits desired performances. A network can have either one type of topology, or a hybrid of two or more topologies. The following paragraph details the most popular topologies used in communication architectures.

* Shared Bus: The shared bus topology is the most common topology used in circuits.

As the name indicates, all the circuit's nodes are connected to the same bus (they share the same bus) as shown in figure 2.3. This topology is easy to implement and quite simple, thus its wide spread use. However, it is not easily scalable. A large number of nodes limits the bandwidth, which is due to the fact that only a single data can be transmitted at a time using this topology. Moreover, the more nodes there is, the more electrical loading problems occur [START_REF] Dally | Computer architecture is all about interconnect[END_REF], which impacts negatively the frequency and the power. For bigger networks, derived topologies are used.

* Split bus: a topology implemented by connecting two shared buses together through a tri-state buffer (figure 2.5), which expands the shared bus topology while keeping the complexity relatively low.

* Hierarchical Bus: also called bridge bus, it is a more sophisticated and complex variant of the split bus topology. The hierarchical topology connects several shared buses together through bridges as shown in figure 2.6. A bridge acts as a slave for one shared bus and as a master the other. This allows concurrent data transfers to happen on each bus, and ease the deadlock. The bridge component is quite complex, as different buses can have different clock frequencies, and it is up to the bridge to handle the frequency conversion and the data buffering. It is a very popular topology, as it is used in several SoCs such as the ARM microprocessor PrimeXsys [START_REF]Arm11 primexsys platform[END_REF]. This topology is useful if the number of blocks in the network is small, or if a special connection between two nodes only is needed. Otherwise, the connections become too cumbersome, and the network not efficient. Also, if one block of the network stops working, the point-to-point connection stops working, which affects the data flow in the network.
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* Crossbar or Matrix topology: In a crossbar topology (figure 2.8), every Master node is connected to every other slave node in a point-to-point connection, used in systems where a parallel data transfer is intensively required. It is a very complex and expensive network, but it provides high performances, since it has a low latency and high data throughput [START_REF] Ma | A parallel low latency bus on chip for packet processing mpsoc[END_REF]. However, it is not easily scalable, and extremely difficult to arbitrate, as each slave needs separate arbitration. Furthermore, the power consumption is considerable compared to other topologies. A more easily implemented topology is the partially crossbar topology, a hybrid topology of shared buses and point-to-point connections. Even if this topology reduces the parallel data transfer, the power consumption is decreased, as is the area of the network and congestion problems. The data flow can be either clockwise or counter-clockwise, the choice depending on target distance and bus availability. The IBM cell [START_REF] Kretschmann | Ibm cell processor[END_REF] using this topology has two clockwise and two counter clockwise data bus. The ring topology is an area effective topology, however, it suffers from a high latency and is difficult to scale.

* Daisy chain: A variant of the ring topology, the daisy chain topology has its node in a serial architecture. It can be either circular (ring) if the two ends are connected or linear (figure 2.11). It is easily scalable, but has high latency. The IBM DCR bus uses a daisy chain topology to connect the various registers together [START_REF]Device Control Register Bus 3.5 Architecture Specifications[END_REF].

* Star: A star topology is characterized by a central node, connected with other nodes through a point-to-point connection (figure 2.12). All communication between nodes go through the central node, and in case this node fails, the network is disabled. It has a low latency, but is not easily scalable.

The list above presents the usual topologies used in bus-based on-chip networks also known as shared medium network, as the nodes share the same interconnect for communication. Below, topologies suitable for NoCs will be discussed, with an emphasis on direct and indirect networks. Direct networks refer to networks where each node is connected to other nodes with a point-to-point connection through a router as is the case for the mesh topology. Indirect networks on the other hand have nodes connected to switches, with
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each switch in turn connected to other switches through a point-to-point interconnection, in a butterfly topology for example. A mix of the two approach is possible and gives a hybrid network.

* Mesh topology: In a mesh topology (figure 2.13), each node acts as a possible relay for data. All node can actively transmit data, regardless of whether it is a slave or master node. This enables the data to have path-diversity, as there are many paths to take to reach a certain node. It displays an average latency, that is not as low as a crossbar topology, but is generally higher than a simple bus topology. This topology has the advantage of being regular, with nodes placed at equal distance, which insures an easy on-chip layout. It is the primary candidate for Network-on-Chip topologies (section 2.2.2). The Tilera 100-core CMP [START_REF] Tilera | Tile Processor Architecture Overview for the TILE-GX series[END_REF] is an example of SoC using a mesh topology for high throughput, low latency applications.

* Torus: The torus is a mesh topology where the end nodes meet, as shown in figure 2.14, correcting the edge sensitivity to placement of the mesh topology and offering a higher path diversity. Nonetheless, it disturbs the regularity of a mesh topology, making the links unequal in lengths and harder to layout on-chip.

* Tree: the tree topology is a planar, hierarchical topology which is used for local traffic distribution where each node is connected to other nodes (figure 2.10). It is cost effective and easy to layout, but the root node can become a bottleneck. A variant of the tree topology is the fat tree topology which corrects the problem [START_REF] Leiserson | Fat-trees: Universal networks for hardware-efficient supercomputing[END_REF]. The list above presents the usual topologies used in on-chip networks. There are of course many more topologies, such as the hypercube topology, the butterfly topology and countless other multistage logarithmic networks where switching elements are connected to each other in stages, hence the name. Table 2.1 summarizes the topologies presented above and their particularities. Once the network topology chosen, the communication and data flow protocol needs to be determined. In the following section, the flow control and the framing strategy are discussed.

Master1 Slave1 Master3 Slave4 Master3 Slave2 Slave3 Master2 Slave5 Slave6 Slave7 Slave8
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Routing, framing and signaling strategy

The flow control describes how the data is transferred through a network. There are two main ways to transfer the data through a network: circuit switching (CS) and packet switching (PS).

Circuit switching is the practice of setting up the route, and then sending the data through this specific link. By establishing a predetermined route, the data can be sent efficiently, which makes up for a higher bandwidth and low latency. The data can be sent serially, in parallel or a mix of the two. An example of serial circuit switching is the I2C network, which sends the request to communicate. Once the request is acknowledged and the targeted node is identified, then the master sends data and receives data through the same established link, and frees it once the transfer is done as shown in figure 2.15. The constraint here is setting up and bringing down the link, which can slow down the communication. Moreover, the link is monopolized by the current master, and cannot be used until the end of the transfer. Nevertheless, it remains the most commun type of network flow control for on-chip communication. Packet switching on the other hand sends data in packets, routing each packet individually, and making use of any free links it finds. By splitting the data to be transferred in packets, it allows the interconnect to use its free links extensively. It can be potentially slower than circuit switching, since the switching is dynamically controlled, but it has proven to be highly efficient in circuits, and is the most used type of flow control in Network-on-Chip [START_REF] Dally | Route packets, not wires: on-chip interconnection networks[END_REF] [START_REF] Benini | Networks on Chips. Systems on Silicon[END_REF]. Depending on which type of flow control is used, the data format can be changed. In case of circuit switching, the format used (also called frame) is as follow: * Request: Usually in the form of the address of the targeted node or a grant request to an arbiter, the request is used to pinpoint with which node to establish the communication link. Once the slave node has identified itself (after the arbiter has granted the master access to the bus), it sends an acknowledgment to the master node, thus setting up the communication link between master and slave.

* Body: The body of the frame consists of the data to be transferred, where some control data can be added. For example, the read/write request, error code and other types of data.
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* Closing: Once the data transfer is done, the master sends a control sequence to the slave to signify that the communication was successful and that the link can be "broken down". The slave acknowledges the end of the communication, and a new communication link can then be set up. In case of packet switching, the data or message is split into packets, each packet with the format shown in figure 2.16, and is as follow: * Header: The header is at the beginning of each packet, contains the routing and control information and describes the type of flit (flow control digit). The flit can be a head, a body or a tail. The head signifies that it is the start of a new data packet, the body is the continuation of the data, and can come after a head flit or another body flit. Finally, the tail type signals the end of the transferred data. Data can be sent through several packets by sending a head, then body flits and finally a tail flit. Note that it is not necessary to send a body flit, as it is possible for a flit to be both a head and a tail at the same time. The other control information enclosed in the header are the routing information, the size of the data, classes of data (priority based) and other control information which will be further described in section 2.2.2.

Master Slave

* Payload: The payload is the part of the packet that carries the data. Depending on the circuit and the network, it can be further dived in sections.

* Error code: the error code section is generally at the end and consists of a checking code to make sure that the data was correctly sent. For a regular NoC, a proposed packet in [START_REF] Dally | Route packets, not wires: on-chip interconnection networks[END_REF] is split as follow:
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* Type: usually a 2 bits flit, it defines the type of packet: head, tail, body or idle.

* Size: a 4 bits flit that encodes the size of the data in the data field. The encoding is done logarithmically, from 0 (1 bit = 2 0 ) to 8 (256 bits = 2 8 ). This allows the network to not dissipate any energy from unused bits.

* Virtual channels: a virtual channel refers to a specific class of service (priority, injection rate). This flit specifies which virtual channel to use for routing, and is encoded in 8 bits. This allows packets with different priorities or injection rates to be sent in parallel, and interrupted when needed.

* route: flit specifying the route of the packet, encoded in 16 bits.

* Ready: a signal encoded in 8 bits indicating the state of the network and its capacity to accept new flits.

As can be seen, the approaches of both flow control are opposite. In the packet switching flow control, the header allows the message to carve its own way through the network, since all routing information are included, which allows better routing strategy and parallelization, because the data can use any free link it comes across. In a circuit switching control flow, the link is set and a transfer needs to be finished before another one can start, since the links are shared, and if the link is not free, the communication cannot be established. Also, in CS, each establishment and breaking down of the link is a significant portion of the transfer, while in PS, there is no setting up or breaking down time. However, there is an overhead associated with PS, which tends to limit its usage to complex communication networks.
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Communication protocol

In addition to data flow, the communication protocol also needs to be determined as the network can be either serial as is the case in an I2C communication network [START_REF]I2C. I2c bus[END_REF], or parallel like in the majority or industrial communication IPs. In a serial network, the data is sent bit by bit through a single wire line while in a parallel network, the data is sent through several parallel wires. The serial network affects positively the size and area footprint of the network, as only a single wire is used for the bus, however, the network is slow with a high latency and a low throughput. The parallel network is low latency and high throughput, but the area it occupies is significant, and it faces contention problems.

The choice of the communication protocol is a trade-off between performance and area footprint. In small networks, a serial communication protocol can achieve a high latency, while in larger networks, a parallel protocol may be better.

Design choices of a communication network 2.3.1 Arbitration

A network can carry several nodes, these nodes can be master nodes, slave nodes or both.

When a network has more than one master node, it needs to decide how the access to the bus can be attributed, and how to handle simultaneous access requests. Arbitration schemes are implemented in the network to prevent a master node from monopolizing the bus by itself. Arbitration concern both CS and PS networks. Several arbitration schemes exist, and the following is a list of the most popular ones:

* Random: As the name suggests, the access to the bus is decided randomly. This tactic is usually implemented when there is a low number of master nodes, with no different priorities.

* Round-Robin: In a round-robin arbitration scheme, each master node is allowed access to the bus, and once the data transfer has finished, the master will "go around" and wait for its turn again. It is a scheduling algorithm that can be implemented either as access for a limited time or a limited data. This arbitration is fair and doesn't starve any master nodes. However, if the master nodes have different injection rates or different priority classes, the round-robin arbitration can be inefficient. There are several variant of the round-robin arbitration, chiefly the working round-robin and the weighted round robin.

* Static and Dynamic Priority: In the static priority scheme, each master is given a priority class, and depending on its static priority, the master is given or denied access to the bus when two or more masters request access to the bus. This scheme is very efficient for critical data stream, but can cause starvation to low priority master nodes as high priority nodes are always serviced first. In order not to starve low priority nodes, dynamic priority arbitration is used, where the priority of each node is dynamically adjusted. Although extremely efficient, it leads to higher implementation cost, as the logic to track the traffic and analyze it is important.

* TDMA: TDMA stands for Time Division Multiple Access, where access to the bus is dependent on the transfer requirements. Each node is assigned a time slot corresponding to their needs. If a high data transfer is required, then a higher bandwidth is allocated. This scheme is used as an improvement to the Static Priority
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Arbiter/ Decoder scheme, as the low needs nodes don't starve. However, if not correctly parameterized (choice of time slot length and number), it can lead to inefficient arbitration, since each time a node doesn't send data, its allotted time is lost. To counter this problem, a hybrid TDMA/round-robin arbitration scheme is used. If a node cannot send data, then it is sent back to queue up, and the next node is given access. This two-level arbitration leads to an efficient bus access, however, it has a significant added cost, as the logic to implement two-level arbitration is important.

Each arbitration scheme is used depending on the network application. For a network where resource sharing and allocation is needed, a round-robin arbitration is more efficient. In a network where several classes of priorities coexist, a static or dynamic scheme is better, while a TDMA will mostly be used in a Chip MultiProcessors (CMP) network. Arbitration can be either distributed or centralized as shown in figure 2.17. In a centralized arbitration scheme (figure 2.17.a), every master sends its request to an arbiter, which then decides to which nodes the access is granted. It requires more wiring, but is easily scalable. On the other hand, distributed arbitration (figure 2.17.b) uses less signal wires, but requires more hardware duplication and more area footprint, as every master node has its own arbiter.

Slave interface

The network's interface (also called decoder) is the block connecting the slave node to the network and can be either distributed or shared by several slaves. It has a complementary role to the arbiter. When a transfer request is sent from the master node, the interface determines which slave node it targets, and is responsible for sending the acknowledgement back to the master node. Each bus has a specific decoder, the main point is to be able to decipher the address of the node, and respond accordingly. Once the decoder receives a communication request in the form of the address of the node, it decodes it accordingly, and compares it to the address of the node it is connected to (in case of a distributed structure), then if the addresses match, the decoder sends an acknowledgement back to the master to create the communication link and transfer the data. In case the address don't match, the decoder goes back to an idle state, waiting for the next communication. For a centralized decoder, the decoder deciphers the address, then sends a request signal to the corresponding node, establishing the connection.

In the case of a NoC, each node is usually connected to the network through a switch which can also act as a router and is used to route the data. As mentioned in section 2.2.4, packet switching is used in NoCs to transfer the data, making use of its structure to efficiently route a packet. The network's interface receives the packet, and if not used, sends it back to the network using the same structure. The router accompanying this packet usually has a
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five input controller and five output controller, each for a specific direction (east, west, north, south) and one for the tile. The routers architecture is simple, and is positioned at the edge of each tile, according to the direction it serves, as shown in figure 2.18. The input/output tile is typically next to the west port, however, it can change depending on the architecture of the network.

Because the router determines the cost of communication (the cost of each hop), routing algorithm and flow control have to be extremely energy and area efficient. Adding to that the need for clock synchronization, the cost of a router can become heavy. To that, the structure of the router is important, and as is the use of the virtual channel, which serve as channels dedicated to certain priority classes. Figure 2.18 shows the typical architecture of a router and the placement of the arbiters and buffers.

In order to achieve cost and area efficiency, buffering (which takes most of the area) needs to be decoupled from the virtual channels, while the latter should be a shared resource between different data stream to maximize its use [START_REF] Dally | Route packets, not wires: on-chip interconnection networks[END_REF]. Also by intelligently using the virtual channels, it is possible to have both pre-scheduled traffic and dynamic traffic on the network. While dynamic traffic (from processor to memory for example) is unpredictable, it is possible to be handled by the same network that handles predictable traffic. Architectures exploring reconfigurable NoCs have also been studied [START_REF] Stensgaard | Renoc: A network-on-chip architecture with reconfigurable topology[END_REF], improving the NoC system. 
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Transfer Mode

The transfer mode refers to the way the communication data is sent through the network.

There are several transfer modes, each with its advantages and disadvantages, and they are shared by both CS and PS networks. Most of the information in this section are taken from [START_REF] Pasricha | On-Chip Communication Architectures: System on Chip Interconnect[END_REF] In the following, a list of the most usual transfer modes is given: Each transfer mode is used for specific applications. If the network is simple, a single non-pipelined topology can be sufficient, while the implementation of a pipeline can be added if supported by the hardware. In case fast parallel transfer is needed, an out-of-order transfer can be more efficient, provided that the area overhead is not significant.

Clocked and self-timed strategies

Once all elements of a communication network has been discussed, it becomes necessary to chose how to implement the network, by choosing the correct clocking strategy. The clocking of the network cadences and defines when and how the network's signal are sent and received.

In typical circuits, the control is done through a centralized clock signal, enabling the circuit to treat the data at the rising or falling edge of the clock signal. The same is true for the communication network. On a rising (or falling) edge of the clock signal, the arbiter reads the request signals and responds accordingly, as shown in figure 2.25. On the next cycle, the masters read the answer of the arbiter and the chosen master starts sending data. Usually, the address is sent in a cycle, followed by the data in the next cycle. Depending on the size of the network or the data, this transfer can take several clock cycles. As seen above, the chosen transfer mode also affect how data is sent. Nevertheless, the controlling signal remains the clock in all occurrences, and the majority of the communication networks discussed in this chapter uses a reference clock for controlling the data transfer.

It is however possible to disregard this centralized control signal and use a local control signal, as is the case when using asynchronous logic. In this case, once the bus is ready (data and address are ready), it sends a request to the arbiter. If the arbiter is free, it acknowledges the request, and allows the data to be sent. The arbiter is in a busy state until the data is all sent, then it is free again to respond to the next request (figure 2.26). This local control allows to efficiently respond to all request, provided a correct arbitration is in place.
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In asynchronous logic, communication is done through a local handshaking protocol between a sender and a receiver [START_REF] Sparso | Principles of Asynchronous Circuit Design: A Systems Perspective[END_REF] (see section 3.2), conditioned by the event happening or not. In case of an event, the sender requests the right to send data to the receiver, and once granted, the communication link is established and the data can be sent from sender to receiver. This is extremely similar to how a bus-based communication network is set up. Several asynchronous interconnects have already been designed notably the Marble communication network, which uses a 1-to-4 asynchronous encoding to send data.

Moreover, with the increase in GALS circuits, where each tile is considered a separate frequency domain, the development of Asynchronous NoCs seemed warranted. It allows for easy frequency synchronization between tiles [START_REF] Yakovlev | Advances in asynchronous logic: From principles to gals noc, recent industry applications, and commercial cad tools[END_REF], as well as a reduction of power consumption due to the event-driven nature of asynchronous logic and has proved to be efficient as far as interconnects go.

GALS system emerged as a response to the increase of integration, and the need to co-host both digital and analog block in the same platform, with decreased noise and efficient handling of multi-frequency domains. By separating every block depending on its frequency or voltage needs, it is possible to counter several problems due to the aggressive IP implementation [START_REF] Bjerregaard | A router architecture for connection-oriented service guarantees in the mango clockless network-on-chip[END_REF].

The structure of an ANoC is similar to that of a regular NoC, however, the components are implemented with asynchronous logic (as shown in figure 2.27), which is based on local control through handshaking protocols instead of a global control in the form of a clock (see section 3.2). GALS architectures are especially well suited for ANoC, since the clock synchronization between the different frequency isles can be done efficiently through a handshaking protocol, and the asynchronous router can handle different frequencies without problem. Circuits such as ALPIN [START_REF] Thonnart | An asynchronous low-power innovative network-on-chip including design-for-test capabilities[END_REF] and Nexus [START_REF] Lines | Nexus: an asynchronous crossbar interconnect for synchronous systemon-chip designs[END_REF] have proved that ANoCs can be energy efficient candidates to handle the problems of intense integration. However, the main problem in implementing asynchronous networks is the lack of design tools and the need to learn a new design methodology, different from the mainstream one. Whether a synchronous (clocked) communication network or an asynchronous one is
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to be implemented, the choice of topology, arbitration and transfer mode remains the same. Depending on the clocking strategy however, modification of the physical implementation is necessary. In the following paragraph, a simple overview of the bus physical implementation is given.

Low level physical circuit implementation

The physical implementation of a communication network depends on its components and characteristics. However, a simple physical implementation can still be given to illustrate the principle. In essence, a network is composed of wires, interconnected through interfaces connected to the network's nodes.

* AND-OR based: the AND-OR implementation as shown in figure 2.28 is the simplest implementation when the data and address bus is not separated. It allows to access the correct slave through the control from the arbiter. Thanks to the AND gate, only the selected arbiter or decoder can respond, while the OR gate allows to broadcast the message to all nodes.

* Tri-state based: Similar to the AND-OR implementation, the tri-state approach uses a tri-state buffer to control which block can drive the communication bus as show in figure 2.29. Only one block at a time can drive the bus, all other blocks are disconnected.

* MUX based: On the other hand, a multiplexed approach (figure 2.30) can be used when separate read/write channels are present, allowing for a faster data transfer and the possibility for parallel communication. The implementation of the communication network is dependent on its topology, clocking strategy and the chosen transfer mode, as each choice adds a layer of intricacy and needs added logic. However, as technology moved into deep-submicron territory, several problems related to the increased integration and the complexity of the SoC have emerged. The following paragraph explains the more common problems faced by interconnection networks.

Bus and NoC comparison

In [START_REF] Pasricha | On-Chip Communication Architectures: System on Chip Interconnect[END_REF], a comparison between a NoC and a shared bus interconnect is given, and can be seen in table 2.2. As can be seen, the NoC architecture is very advantageous, especially for MultiProcessor SoC (MPSoC). Concerning the bandwidth and the the speed, thanks to the non-blocking switching in NoCs, several concurrent transactions can occur, while the shared bus only allows a transaction at a time, which makes resource utilization more efficient in NoC interconnects. NoCs are also more reliable and are extremely scalable, allowing the nodes to be added in the circuit with a minimum of impact. Most interestingly, the impact of NoCs on clocking strategy: as they don't require the use of a global synchronized clock, contrary to a shared bus interconnect, this allows for high-speed data transfer. However, latency wise, the NoC is prone to more latency as network contention can lead to packet latency. And most importantly, standardization of bus based designs has allowed for the successful use of many bus-based interconnect, which is not the case for NoC interconnect. Nevertheless, the use of NoCs has provided much needed design
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perspective change, which in turn allowed the use of much complex circuits. It also opened the road for more research and architectural initiative. 

Conclusion

The research in the subject of communication networks and Network-on-Chip is still important and ongoing. As the complexity of SoCs increases, and new performance requirements are needed, the role of communication networks in a SoC has become primordial. The choice of the right implementation method (bus-based or NoC), the topology and data transfer mode is important to achieve a cost and energy effective interconnect. Moreover, over the years, the function of communication networks has evolved to integrated other functions, such as testing and monitoring. As architectural breakthroughs were achieved, interconnects function expanded and they no longer only serve as data transfer medium, but also have other roles in a chip, which will be discussed in the next section.

Dedicated Communication Networks

Traditional networks are geared towards data transfer. They have been optimized and analyzed indefinitely to provide the best communication architecture for a given circuit. However, as the complexity of System-on-Chip increased, so did the demand on the communication network performances. As seen on the section above, NoCs (regular, asynchronous, 3D or optical) have enjoyed an increased interest. It is also worth noting that
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this complexity lead to the use of communication interconnects in other ways. Communication network had now other roles than simply transferring data. They are being used in two main ways: a testing medium and as part of a monitoring and configuration infrastructure.

Communication networks for test and debug

The first unorthodox use of communication networks other than for data transfer was as a testing structure. As SoCs grew more complicated, the need to debug and post-silicon test them increased as well. In order to achieve that, specialized architectures are needed, which were achieved through the use of modified interconnects. In this section, we will be discussing two testing networks. The first one is the Joint Test Action Group (JTAG), which is the most used implementation for testing an integrated circuit. The second Communication infrastructure we will discuss is the CoreSight™architecture, which is a debug structure by ARM.

The JTAG scan chain is IEEE standard developed in the early eighties as a way of testing electrical boards. Through the years, it evolved to encompass all circuits especially integrated circuit as a powerful debug tool.

The JTAG is a complementary component added to the chip and accessed through a test access port (TAP). It usually has a daisy chain topology, where the nodes are linearly connected, however specific vendors may change the design, and depending on the design, the number of ports may also change. Nevertheless, we can usually have the five ports as shown in figure 2 Usually, a variation of these ports is accessible or implemented. In one possible implementation, only two ports are necessary, the TMSC (which refers to the TDI) and the system clock referred to as TMCK. Since the protocol is serial, the TDI port is the only wire needed to send the data through the network. JTAG enjoys a great success and has been implemented in most industrial circuit as a reliable debug tool.
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However, JTAG suffers from some drawbacks. One of the biggest drawbacks of the JTAG is the need for the TCK to run at the lowest clock of the circuit, slowing access to the chain's devices. Moreover, if one part of the circuit is in an idle state with its frequency reduced, then the JTAG's TCK is also reduced to match this frequency, extensively slowing down the access. Furthermore, when a device is powered down, the JTAG controller stops sometimes, causing devices throughout the chain to be inaccessible.

For these reasons, some vendors propose an complement to the JTAG, especially in the case of complex SoCs, as is the case with ARM and its CoreSight ™structure. Core-Sight™is a trace and debug architecture which uses a memory-mapped interfaces instead of JTAG to give access to the control registers [START_REF]Arm CoreSight SoC[END_REF]. The debug part of the CoreSight deals with monitoring and changing the values inside the register of the processor and its peripherals. The trace part is dedicated to the compilation of execution trace and system information for analysis. Both features are used at different stages of the design flow to insure a bug free design. The CoreSight uses a Debug Access Port (DAP) to connect with external debug tools, as well as an Embedded Cross Triggering (ECT) functionality, which allows debug signals to be transferred through the SoC. The the interconnect through which these signals are send is called a Cross Trigger Matrix (CTM), which distributes debug signals to interfaces throughout the SoC called Cross Trigger Interface (CTI). These CTI can then decide which signals are of interest, and then in turn produce controle signal to debug theit respective blocks. An overview of the described architecture is given in figure 2.32. However, structures like the CoreSight are geared towards applications which are extremely specific and for more complex SoCs.

Communication networks for configuration

Another inconventional way of using communication networks is as monitoring media. At its base, a communication network needs to be able to efficiently connect all the nodes in a network and transfer data between these nodes, which makes it an ideal candidate to integrate a monitoring network in a chip. A monitoring network needs to access configuration or sense parameters, which is data acquired through a sensor (monitor) from a certain node and which specify state data. For example, the thermal parameters are important to handle in chip multiprocessors (CMPs), as it is important to be able to determine when a core is heating, and so delegate the tasks to another nodes to ease the burden of the core [START_REF] Long | Thermal monitoring mechanisms for chip multiprocessors[END_REF]. By placing adequate sensors on the core, it is possible to monitor its thermal profil, and act when necessary. This type of architecture is usually referred to as a Sense&React architecture. It is mostly used in AVFS structures [START_REF] Beigne | Fine-grain dvfs and avfs techniques for complex soc design: An overview of architec-tural solutions through technology nodes[END_REF], where it is important to monitor the frequency and the voltage throughout the chip to be able to accurately dynamically change the frequency and the voltage. Another important intity to monitor in a chip is the NoC used. With the increased implementation of NoCs in complex SoCs, it is important to be able to track whether the NoC is operating correctly or not, as it represent a hot spot in a SoC [START_REF] Chundi | Hotspot monitoring and temperature estimation with miniature on-chip temperature sensors[END_REF].

There are many types of on-chip monitoring targeting performance, voltage, frequency and power. The most common types are thermal monitoring, soft error monitoring, and delay path monitoring. A monitor infrastructure is composed of several sensors used as monitoring artifacts, a dedicated interconnection network and processor. The dedicated processor is sometimes referred to as a Monitor Executive Processor (MEP). The topology of the monitoring infrastructure is extremely important to consider, as a random placement and routing of the monitors can result in important area overhead as well as difficult data transfer. A considerable number of monitoring infrastructures have been proposed over the years, dealing mainly with thermal monitoring, with several works linked to the use of interconnects as monitoring medium in complex SoC. As early as 2005, industrial CMPs such as the Intel Montecito, the AMD Opteron (over ten thermal sensor) and the IBM Cell have integrated some sort of monitoring structure. In [START_REF] Mcgowen | Power and temperature control on a 90-nm itanium family processor[END_REF], Intel has showed that the integration of a monitoring infrastructure has beneficial impact on the circuit's performances, as it was possible to control the processor's power consumption using voltage and temperature monitors. In [START_REF] Sylvester | Elastic: An adaptive self-healing architecture for unpredictable silicon[END_REF] and [START_REF] Park | A fast, accurate and simple critical path monitor for improving energy-delay product in dvs systems[END_REF], path delay monitors are used to improve performance by tracking the cycle time of the microcontroller. Furthermore, an inherent need for monitoring when using DVFS or AVFS is present. The use of DVFS and AVFS structure and Sense&React architectures was discussed in section 1.5.
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In literature, we can find several papers dealing with the interconnection part of the problem. The choice of a correct interconnect network for these monitors is essential. In [START_REF] Ciordas | A monitoring-aware networkon-chip design flow[END_REF], a design flow for monitoring-aware NoC is proposed, where the placement of the monitors is optimized. However, this flow requires to know before-hand the targeted application at design stage, which is not always possible. In [START_REF] Bouajila | A lowoverhead monitoring ring interconnect for mpsoc parameter optimization[END_REF] their approach remains at simulation level. One of the most interesting networks dealing with the architecture of the interconnect used in a monitoring infrastructure is [START_REF] Datta | Low-power, process-variation tolerant on-chip thermal monitoring using track and hold based thermal sensors[END_REF] [START_REF] Zhao | A dedicated monitoring infrastructure for multicore processors[END_REF], where a possible infrastructure was thoroughly analyzed. In this paper, they propose a centralized Monitoring NoC (MNoC), with a dedicated Monitor Executive Processor (MEP) and the possibility to use priority channels to transfer priority data. The MNoC is composed of a MEP, several routers connecting a set of thermal monitors using a static routing protocol and has a mesh topology as shown in figure 2.34. The MNoC was simulated in an 8 cores chip, and showed a clear impact, as it helps to reduce power. The separation of the monitoring network from the intrinsic network also proved to be beneficial. Another Monitor architecture similar to the MNoC was proposed in [START_REF] Phanibhushana | Towards efficient on-chip sensor interconnect architecture for multi-core processors[END_REF], where a low overhead fault-tolerant tree network is used as shown in figure 2.33.b. The network features a 45% reduction of router area when a 15% packet loss is accepted. Finally, the CoreConnect interconnect by IBM introduced the DRC, which is a daisy chained network used not for monitoring but for registers reconfiguration in the circuit.

All these aproaches show us the validaty of implementing a dedicated network in a chip. Furthermore, studies have shown that dedicating a monitoring interconnect separated from
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the data interconnect is beneficial, and provides energy efficient transfer of the monitoring data, especially when using hierarchical monitoring networks. However, the majority of these works focus on monitoring infrastructures in CMPs, while our work deals with reconfiguration in a small sensor node circuit. Nevertheless, the use of a dedicated network is validated. We decided to use the same principle, and implement a separate dedicated network for reconfiguration purposes which will be described in the following chapter.

Conclusion

In this chapter, communication networks structures and architectures were presented. The topology, flow control strategies, routing and arbitration and other components of an onchip interconnect have been discussed and analyzed. Networks-on-chips have also been discussed, and all the technological and architectural advances made in the subject were discussed. The subject of the alternative use of communication networks for test medium or dedicated structures for monitoring and reconfiguration goals was also discussed.

The first part of this chapter dealt with the fundamental structure of a communication network, such as topology and arbitration. As seen, the choice of a correct topology, coupled with the correct arbitration scheme, transfer mode, framing and clocking strategy can be vital for a chip. With the continued technological scaling down, coupled with the need to accommodate faster applications, a fundamental change to the structure of the on-chip interconnect happened as well as how chip design is viewed. As chips become more complex, the design strategy shifted from component based, where the blocks have a more important consideration, to a communication based design, where the on-chip communication network is central. The NoC paradigm has proved to be extremely beneficial to CMP 1 design.

In the second part of this chapter, the alternative use of communication networks has been explored, such as the JTAG for on-chip testing applications, or the monitoring NoCs for monitoring and reconfiguration applications.

This chapter allowed us to sift through all the possible physical implementation of the communication network as well as chose the correct structure for the network. Even though monitoring NoCs and JTAG seem partly aligned with our goal, the scaling down of the first, and the impracticality of the second when dealing with analog blocks pushed us to propose our own solution.

Thus, the objective of this work is to design a low energy and low complexity asynchronous service network for reconfiguration of adaptive blocks. In the next chapter, the network's foundations are detailed, and the physical implementation of the related circuit is discussed as well as the results and the subsequent changes and improvements.

Chapter 3

Proposed asynchronous dedicated communication network for digital reconfiguration 3.1 Introduction

The aim of this PhD work is to design an energy efficient communication network capable of transmitting reconfiguration data with a minimum of complexity in regards to the area and the protocol, allowing for an easy deployment strategy. To this effect, three main objectives need to be met: 1. To minimize the area overhead introduced by the network's components, especially the interfaces connecting the network to the adaptive blocks.

2. To lower the network's wire number to minimize the parasitic effect and the impact of a new network on the circuit as a whole.

3. To achieve a plug&play functionality by making the network's interfaces as versatile and easy to connect as possible.

The first point is a necessity in order to be able to fine tune small adaptive blocks such as FLLs or PLLS. For that, the complexity of the network needs to be decreased as much as possible, which will in turn reduce the area.

The second point can be achieved by selecting the correct frames, topology and communication protocol (serial or parallel). In this case, an area/speed trade off must be made to choose an appropriate structure.

The third point is a mix of the second point and the choice of a correct architecture and implementation. In order to achieve a quick and easy deployment, a Plug&Play architecture is needed, where the interfaces are capable of communicating with any adaptive block. Also, any problems related to the change in power or frequency domains shouldn't be allowed to affect significantly the components of the network, and to that end, an asynchronous network is suitable, as asynchronous logic is more robust to supply voltage changes.

In this chapter, the structure and architecture of the communication network is presented and an explanation of the motivation behind the choices that were made is given. The chapter is split into five sections. The first section 3.2 presents the basics of the asynchronous logic design. The second section 3.3 introduces the network structure and protocol. The third section 3.4 presents the architecture of the asynchronous communication network as well as two implementations of the network. The fourth section 3.5 explains how the asynchronous communication network was implemented, the design flow
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used and the test strategy. The fifth section 3.6 deals with the testing of the circuit, both post back-end and in silicon. A final conclusion summarizing all the above point closes the chapter.

Asynchronous QDI logic

This section is dedicated to the understanding of asynchronous design methodology and how it relates to the proposed circuit. An overview of the asynchronous QDI design will be given, as well as other types of design, with examples of uses, centering around the Muller gate which is one of the fundamental logic gates in asynchronous design. Examples of SystemVerilog coding of asynchronous modules using Tiempo Library will also be provided.

A final overview will be given on how to implement and work with an asynchronoussynchronous design environment.

Asynchronous logic basics

In a mainstream synchronous digital circuit, the control is done through a global signal, the clock, which allows the circuit to do its tasks at the rising edge (or falling edge) of this signal, and thus insures synchronization of all the signals in the circuit [START_REF] Rabaey | Digital Integrated Circuits[END_REF]. This is possible thanks to two notions about time: the first one is that time is common to all components of the circuit, and the same clock signal should reach all components at the exact time. The second one is that time is discreet and can only have a finite number of values (two values in a typical digital circuit). This insures that the circuit will function even at worst case scenarios. However, in asynchronous logic, there is no global control signal, only local control. This local control is achieved through the use of a handshake protocol between an asynchronous sender block and an asynchronous receiver bloc [START_REF] Fant | Logically Determined Design: Clockless System Design with NULL Convention Logic[END_REF].

The asynchronous sender and receiver blocks are connected through a channel capable of transmitting the data without affecting it as shown in figure 3.1, which allows the data to flow from the sender to the receiver without being processed. A channel can either be pull or push. A pull channel pulls the data from the sender to the receiver, while a push channel pushes the data from the sender towards the receiver.

A handshaking protocol is controlled by two signals: the Request signal and the Acknowledge signal. These two signals control the flow of data and asynchronous events, and thus implement the handshaking protocol. This protocol is known as a 2-phase protocol (Figure 3.2). In order to add robustness and reliability to the circuit, a 4 phase protocol can be implemented, by introducing an invalid value after the valid values as illustrated in figure 3.3, and requiring a specific data encoding. This allows the communication to proceed regardless of delays in the circuit. It goes as follow: * The sender checks to see if the receiver is busy or free. If busy, it will wait until the receiver is free, then send the data. If free, it will send the data immediately.

* The receiver is then put in a busy state and is unable to receive new data.

* The sender follows the valid data by "invalid data", which will signal that the communication has ended.

* Once the receiver finishes, it switches back to a ready state and can once again receive new data.

The handshaking protocol allows the data to flow at the necessary pace needed to process the data for each computing block without imposing a worst-case timing on them and ensures that the data is all processed and no loss has occurred [START_REF] Myers | Asynchronous Circuit Design[END_REF]. Because it needs to detect a transition and not a change in value, the 2-phase protocol is more complex and requires more hardware than the 4-phase protocol. For this reason, we chose to use the 4-phase protocol to design the circuits presented in this manuscript.

Quasi Delay Insensitive (QDI) asynchronous circuits

Several classes of asynchronous circuits exist, defined by their time encoding. They can be either delay insensitive, self-timed or speed-independant [START_REF] Sparso | Principles of Asynchronous Circuit Design: A Systems Perspective[END_REF]. In this manuscript, we will focus on the delay insensitive type, especially the Quasi Delay Insensitive logic (QDI), since the hypothesis of a true delay-insensitive circuit are hard to maintaint [START_REF] Martin | The limitations to delay-insensitivity in asynchronous circuits[END_REF]. The delay insensitive class consideres that the gate and wire delays are unknown bounded positives [START_REF] Steven | High-performance asynchronous pipelines: An overview[END_REF]. The quasi delay insensitive (QDI) subclass adds the notion of isochronic forks. A fork is a wire connecting one sender to several receivers. The fork is isochronic when the delays between the sender and each receiver are identical. This hypothesis is necessary to be able to design QDI asynchronous circuits using standard logic gates [START_REF] Martin | Synthesis of asynchronous VLSI circuits[END_REF].
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Asynchronous QDI circuit implementation

Data encoding

To be able to implement a handshaking protocol and detect the transition in data (two successive values with the same value cannot be detected), it is necessary to be able to send a Request from the sender and receive an Acknowledgment from the receiver.

The two main ways we can effectively encode data in a handshaking protocol are bundled data and dual-rail. In a bundled data protocol, the data is sent unchanged, and two wires are added, one carrying the Request signal and the other one the Acknowledge signal as shown in figure 3.4. A temporal hypothesis is also added [START_REF] Sutherland | [END_REF]. Bundle data encoding enables us to use mostly synchronous logic, which is easier for new asynchronous designers to understand and work with.

In a dual rail protocol, the coding is delay insensitive, and the data carries the Request signal in its encoding as shown in figure 3.5. The encoding can either be 3-state (figure 3.6) or 4-state (figure 3.7). In a 3-state encoding, two wires are used to encode the data: the first encodes the "0" bit, and the second encodes the "1" bit. If the data received is a "0" bit, then the first wire (first rail) switches to 1 and the second wire (second rail) remains at "0". For the "1" bit, the first wire remains at "0" and the second wire switches to "1". To change states, it is necessary to go through the "00" state, which is the invalid state, because the "11" state is forbidden. As such, the 3-state encoding is used in a 4-phase protocol. In a 4-state encoding, the data is encoded into a even state and an odd state. For each emitted data , the parity changes. Because we don't need to go through the "00" state, this encoding is appropriate for a 2-phase protocol. Another interesting encoding technique is the multi-rail m-of-n encoding, where multiple bits can be encoded in a channel [START_REF] Bainbridge | Delay insensitive system-on-chip interconnect using 1-of-4 data encoding[END_REF].

Sender Receiver

Finally, a single rail encoding for events is possible. Because it doesn't carry data but information of an event happening, we only need one wire to encode it. The signal remains at zero in the absence of an event, and switches to one when an event occurs.

Hardware implementation

To enforce and implement the handshaking protocol, a specific gate is used: the Muller gate (figure 3.8). This gate is a logic gate that changes its output to match the inputs only when the inputs have similar values, allowing the synchronization of the input signals.

A 2-input Muller gate has two stacked PMOS over two stacked NMOS as shown in figure 3.8. To keep the value of the output, a flip-flop with a weak inverter gate is used. The truth table of the Muller gate is also shown in 3.8, where it is visible that the output changes only when the two inputs are the same. The symbol of a Muller gate is also given. To implement an asynchronous circuit, the half buffer (Figure 3.9) or full buffer (two connected half buffers) structures are used. The event half buffer is mainly used to propagate an event not carrying data in an asynchronous circuit, while a binary half buffer 3.10 is used to propagate events carrying data (binary data). As shown in Figure 3.9, a half buffer is composed of two inputs and two outputs. The first input (IN) corresponds to the incoming event, and the second input (IN_ack) is the acknowledgement that is expected from the following receiver block. The output (OUT)of the Muller gate is connected to an inverter gate which generates the acknowledgement OUT_ack, to be sent to the previous sender block. At reset, both IN and IN_ack are at "0". Once the reset is set, the acknowledgement bit is set to "1" (There is no communication in the circuit, all acknowledgement signals are at "1"). When IN rises, both inputs are at "1", which sets the output OUT at "1" and the OUT_ack at "0", signaling that the data has been correctly received, and that no further data can be accepted. The IN_ack wire will remain at "1" until the data finishes being processed. This insures that even if the input IN goes back to "0" or incurs a glitch, the output doesn't change values. When the data is processed, the IN_ack is switched to "0", then once the IN input goes back to "0", both inputs of the half buffer are at the same value, which switches the output OUT to "0" an the output OUT_ack to "1", signaling that the data has been correctly sent. The half buffer will need to wait for the IN_ack signal to go back to "1" to be able to send any data. Figure 3.11 shows how an event can be propagated in a domino effect in an asynchronous circuit using a series of half buffer gates.
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In case of a binary half buffer, the propagation is similar because only one rail can be active at a time, which insures the correct generation of the acknowledgement signal.

High level implementation of asynchronous circuits

Because asynchronous design is quite new while the synchronous design is very established, there are not many languages and tools capable of describing and synthesizing asynchronous logic, however, several teams have managed to produce high level modeling languages and synthesis tools for asynchronous circuits. Most modeling languages are based on CSP 1 language [113] [START_REF] Brookes | A theory of communicating sequential processes[END_REF]. Seeing as asynchronous circuits use a handshaking protocol and are concurrent, CSP language is best to describe them. Most notable is the
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Balsa [START_REF] Edwards | Balsa: An asynchronous hardware synthesis language[END_REF] language and the CHP 2 language [START_REF] Martin | Synthesis of asynchronous VLSI circuits[END_REF].

For this work, we used the Tiempo [116] Asynchronous Circuit Compiler (ACC) tool, and described the design using the SystemVerilog language [START_REF] Rich | The evolution of systemverilog[END_REF] [START_REF]Tiempo. Introduction to SystemVerilog Asynchronous Modeling[END_REF].

Below is an example of how to write a module using SystemVerilog which can then be synthesized using ACC, in this case a 2-input 8bits ADDER. A module starts by describing the input and output channels using the push_channel_bitx designation, without forgetting the reset wire. Following that, the process which will describe the circuit functionality is started, enclosed in a always begin end structure. The input channel are read, then the data is computed, which is written to the output channels, taking care to close the input channels immediately after. The Request and Acknowledgment are transparent in the code, which makes it easy for new designer to write. Using the ACC tool, the code can be synthesized into a QDI circuit and a function is obtained. The fork/join structure allows us to concurrently open, close or write several channels at the same time. To read a channel, it needs to be opened first using the BeginRead statement, and at the end, needs to be close during the EndRead statement. If a channel is not closed, the acknowledgement is not sent and the transmission is blocked.

Conclusion

Asynchronous QDI logic is particularly suitable for the work done here, since Wireless Sensor Network (WSN) nodes have an event driven behavior. By using QDI asynchronous logic, we can insure an immediate wake-up upon event, and an automatic sleep mode compatible with the WSNN duty cycle. Moreover, as WSN are spread into changing and unpredictable environments, and adhere to strict low energy and energy harvesting constraints, using asynchronous logic which is robust to changing or low level supply voltages is better and has reduced power supply regulation constraints.

The communication network presented in this manuscript will be implemented using QDI asynchronous logic, designed whith SystemVerilog and synthesized using the ACC tool. Through asynchronous logic, all timing problems due to the crossing of power or frequency domains will be handled, especially problems such as clock skew [START_REF] Chakraborty | Efficient self-timed interfaces for crossing clock domains[END_REF]. It will also enable us to have a fast wake-up and an automatic stand-by mode without implementing gated clock logic. In the next section, the network's structure will be presented.

Dedicated asynchronous communication network

Network's micro architecture

In this section, the network's structure is discussed and a final frame and topology is presented. The network's architecture and implementation details will be given in section 3.4.

In order to define the architecture of the network, it was necessary to first determine all the network's applications. The network needs to receive configuration or control data from a microcontroller, and distribute them to a the targeted adaptive block. It will also need to transfer state or sensed data from the adaptive blocks to the microcontroller. Additionally, the network needs to be able to handle priority levels, as some reconfiguration might need to occur urgently. Furthermore, in an effort to reduce the complexity of the network, and avoid added parasitics and area overhead, the network is implemented in a serial communication scheme. This choice of implementation also imposes a reduced frame structure, since each added bit will create more latency.
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Taking into account these constraints, we chose to design a network with a dedicated controller capable of transferring data from the microcontroller (µC) to the adaptive blocks and vice versa, through the network's interfaces as shown in figure 3.12. This choice is further explained in section 3.4. But first, the frame structure and the topology chosen are explained in the section below. From now on, the network's dedicated controller will be referred to the Serial Interface Controller (SIC). 

Network framing choice

As previously discussed in section 2.2.4, a suitable frame needs to have all the addresses of the block, the Read/Write bits and the data to write inside the block's registers. Usually, it is also necessary to add Start and Stop sequences, acknowledgement bits, as well as a frame check sequence at the end of the frame. However, the asynchronous protocol insures no Start or Stop sequences are needed, as the first data sent starts the protocol, and after the last data is received, the network goes into idle mode, without additional instructions. The same is also true for the acknowledgement bits as the asynchronous design inherently implements the acknowledgement. To limit the area overhead, it was decided that no error detecting code will be added, as the QDI asynchronous logic is robust and reliable.

The information the network needs to send through is:

* The address of the adaptive block to which reconfigurable data will be transferred.

* The address of the adaptive block's registers to write into or read from.

* The Read/Write bit to notify which operation is conducted.

* The data to write in the registers in case of a write operation.

In addition to that, two more functionalities are to be implemented and taken into account, to insure that the network can operate as efficiently as possible. The first function is a priority handling function, allowing the network to respond to priority data and manage them, in case important reconfiguration needs to happen urgently. The second function is a bypass. When still busy with previous configuration data, a network's interface can refrain from accepting new data, which will then be tagged with a bypass flag, and sent to the network again, allowing for unprocessed data to go through and back at the SIC to be sent again at later time, as not to lose this reconfigurable data.
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To determine the appropriate frame to use and how to deal with the priority, three different scenarios are implemented, and the architecture of the network's blocks is changed accordingly each time. The three scenarios are the following.

1. The frame doesn't transfer the priority bit, and a separate wire will carry the priority data to the interfaces without going through the SIC.

2. The frame doesn't transfer the priority bit, instead a priority channel will trigger a priority flag in the SIC, tagging the coming data as priority.

3. The frame transfers the priority bit, and the priority channel triggers the priority flag in the SIC.

Since the network's topology will impact the three scenarios the same way, we chose to use a typical bus topology (with one channel to send data and another one to receive it). The network is made of a SIC and interfaces that receive data and send it to simple registers. The frame used is given in table 3.1, and for the third scenario, a priority bit will be added at the beginning of this frame. In scenario one and three, the SIC shows the smallest area, since it will only have to treat incoming flits, without dealing with flushing the network and checking the priority channel every time, which is the case for the second scenario. In the first two scenarios, the area of the interface is the same, while the area of the third scenario is 10% less.

In the first scenario, the SIC is not impacted while the network's interfaces are. They will need to make sure no overlapping of data is possible, and implement a standby mode so as to pause the processing of regular configuration data, in case a priority data arrives. Although it is relatively easy to implement a standby mode using asynchronous logic, it still has a hardware cost. Furthermore, because a separate channel is used to send the priority data to the interfaces, each interface will need its own priority channel, which will create a star topology on top of the topology which we will choose. This can cause parasitics problems and prove cumbersome. In the second scenario, the SIC has to check the priority channel every time before processing any bit of the incoming flit. If the priority channel has registered an event, the SIC puts on hold any data to be sent and sends the priority data. The need to constantly probe the priority channel to catch the correct flit and the subsequent flushing of the network increases the area of the SIC. Moreover, the constant probing is not energy or time efficient. The third scenario adds one priority bit to the frame. Thanks to the event-type priority wire, a priority flag can be raised at any time,
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without the need for constant probing. The Priority signal will allow us to know that a priority frame is incoming, and the priority bit will enable us to detect the corresponding frame. For this network, the third scenario is the most suitable, as it allows more flexibility than the second scenario, and less wiring complexity than the first scenario.

To implement the bypass functionality, a bypass bit will also be added to the frame. This bit will tag the frame as being a bypassed frame or not. More implementation of the bypass is given in section 3.4. // The network deals with four types of frames, which are the following: * Microcontroller configuration frame: frame to send the data from the microcontroller to the SIC (Table 3.3).

* Configuration frame: frame to send the reconfiguration data in the network (Table 3.4).

* Sense frame: frame to send the data from the adaptive block to the network (Table 3.5).

* Microcontroller Sense frame: Frame to send the data from the SIC to the microcontroller (Table 3.5). The two first frames are similar, and so are the last two frames. The difference between the first two frames is mainly due to the bypass bit and priority bit. At SIC level, the bypass bit is added to the configuration frame while the priority bit is removed before being sent to the adaptive blocks. The last two frames are exactly similar, however, the first is sent serially through the network, while the last is sent in parallel to the microcontroller.

Network's topology

From section 3.3.3 and section 2.2.1, it is obvious that the usual topology used in integrated communication networks is the bus topology. The bus topology offers many trade-offs in terms of area, power consumption and complexity. However, for a serial network, where the data will have to circle back and avoid complex deployment, the daisy chain topology is a better alternative.

To verify which topology is more suitable, two networks were designed: a bus network (figure 3.13) and a daisy chained network (figure 3.14). We looked at the wiring scheme as well as the area of the SIC and the network's interfaces. To obtain a fair comparison, the same frame was used for both topologies. As seen in Table .3.6, both the SIC and network's interface area are decreased when a daisy chained topology is used, which is mainly due to the asynchronous logic used. In a daisy chain topology, the output of one interface is the input of the other, creating a seamless flow of data between the interfaces and mimicking the handshaking flow. In a bus topology, the SIC always acts as the main sender, and the other interfaces as receivers, which constraints the network, and forces it to behave as an I2C network [START_REF]I2C. I2c bus[END_REF], where it has to send the address of the block first, wait for an acknowledgement from the corresponding interface, then send the data to the correct interface. Also, because of the asynchronous protocol, data need to be duplicated to be sent to several blocks at a time, in order to guaranty a correct number of asynchronous token in the network.

Furthermore, the implementation of a bypass functionality is more cumbersome with a bus topology than in a daisy chain topology. In a daisy chain topology, the data only needs to circle back to the SIC, while in a bus topology, either a dedicated channel to the bypassed data needs to be added, or a merging block to merge the bypassed data with the data read from the adaptive blocks, also called sense data. Even though a bus topology would have less latency issues, the difference in latency is negligeable. The address of the block has to be read first and compared before any decision can be made in both cases. Thus, and for the reasons stated above, the network topology will be a daisy chain.
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Network block implementation

Asynchronous communication network general architecture

After a choice of frame and topology has been decided upon, it is necessary to focus on the architecture of the network's components. As stated in section 3.3.1, the network has two main components, the Serial Interface Controller and the network's interfaces which are connected to the adaptive blocks. In the sections below, two different implementations are proposed, a purely serial implementation and a hybrid implementation, which has a semi serial implementation. Both the SIC and interfaces have been changed to accommodate the differences between the serial and hybrid network.

Serial Asynchronous Service Network (ASN)

Serial Interface Controller (SIC) architecture

This section presents the architecture of the Serial Interface Controller used in a serial network. The SIC has two main roles: a conversion role and a store&send role.

The SIC communicates with the microcontroller and the interfaces, and as such, it needs to deal with two different types of frames. It receives both parallel data and serial data. On one hand, the microcontroller sends the SIC parallel data, the SIC converts it to serial data and sends it through the network. On the other hand, the interfaces send the SIC serial data and again, a conversion is necessary to change the data from serial to parallel to send it to the microcontroller. In effect, the SIC acts as the conversion point to allow the microcontroller and the interfaces to communicate effectively. The SIC is a central node that has been designed to act as a meeting point for the information transferred between the interfaces and the microcontroller.

The second important reason for the design of the SIC is the implementation of the bypass function. Because the reconfiguration data can be sent at both runtime and idle, it is necessary to take into account the possibility that an adaptive block can be solicited by both the data network and the reconfiguration network. In case the interface connected to an adaptive block wasn't able to send the reconfiguration data, this data is kept in the interface register until the adaptive block is free again and can receive data from the reconfigurable network. However, if in the meantime another reconfigurable data needs to be sent, then the network is at an impasse. In order not to overwrite the data already present in the interface, the new data is routed back to the SIC, to be sent at a later time. Thanks to the daisy chain topology and the framing strategy that we chose, the bypass data can continue through the network and back to the SIC, without any need of changing the interfaces or adding more wires to accommodate the bypass data. As such, it is visible why the SIC is necessary in our network and plays an essential role.

The Finite State Machine (FSM) that best describes the working of the SIC is shown in figure 3.16. Depending on the frame it receives, the SIC behaves as follow:

The frame is coming from the microcontroller: The microcontroller sends two things to the SIC, the reconfiguration data framed as shown in table 3.3, and a priority signal which sets a priority flag in the SIC (Pr). When the SIC receives the configuration data, it checks the priority flag to see if it is expecting any priority data (Pr =0). If no, the SIC checks that it is not sending any bypassed data back to the network and then converts the data and sends it to the network. However, if the priority flag is raised to "1" (Pr=1), then the SIC checks the priority bit of the incoming data (Pr_bit). If the first bit of the data which correspond to the priority bit is at "1" (Pr_bit =1), then data is a priority and can go through the network. However, if the priority bit is at "0"(Pr_bit =0), then the data is disregarded, and the SIC awaits the next data from the microcontroller. Once the priority data is successfully passed to the network, the SIC sets the priority flag back to "0"(Pr=0). Note that the priority flag is set to "1" (Pr =1) when a priority event is detected once the priority wire is triggered.

The frame is coming from the interfaces: There are two possible types of data that comes from the interfaces. The first type is the bypassed data. This data couldn't be sent to the appropriate interface, and has to be sent again. The SIC stores the data in its registers, checks if any data is being currently sent and then sends the bypassed data back to the interfaces. The second type of data is the read data from the adaptive blocks. This data needs to be converted to a parallel data and sent to the microcontroller. The SIC was implemented using SystemVerilog and the Tiempo ACC tool. Regarding the actual design of the SIC and its implementation, we can distinguish that the SIC is composed of three blocks. The first is a parallel to serial converter (CONV_P2S) which receives the parallel data from the microcontroller, adds the bypass bit to the frame,
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then sends it to the network serially. The second block is the serial to parallel converter (CONV_S2P) which receives serial data from the network (the result of a read operation), converts it to a parallel data and sends it to the microcontroller. The third block is the Store&Send block, which receives the bypassed serial data from the network, and sends it back to the network. As can be seen in figure 3.15, the SIC has three input channels: two to receive data from the interface (one for the read data and the other for the bypassed data) and one for the data coming from the microcontroller. The parallel data received from the microcontroller simply replicates the frame structures without the bypass bit, which is added at SIC level.

Network's interface architecture

Connected to the SIC are the network interfaces. The daisy chain topology that we chose for the network as well as the bypass function dictated the implementation of the interfaces.

For the network, the SIC acts as a master and the interfaces as slaves. They cannot initiate any communication with the SIC. The adaptive block also have the same restriction, they cannot initiate any communication with the interfaces unless solicited. As the SIC is the central node of the daisy chain network, it sends data to a first interface and receives data from a final interface. Throughout the network, the interfaces are connected to their respective adaptive block and to two other interfaces (which is not the case for the first and last interface). As a reminder, the frame we are sending through the network is shown in table 3.7 as well as the frame received in table 3.8. The interface makes the following operations, also shown in figure 3.17:

* The interface receives the incoming data directly from the SIC or another interface.

* The interface checks the bypass_bit. If it is set at "1", then it simply passes the data along to the next interface without treating it.

* If the bypass_bit is at "0", then the interface reads the next four bits corresponding to the address of the intended interface (ADDR_BLOC) and its own bypass_flag. The bypass_flag is raised to "1" when an interface data transfer to the adaptive block is not completed. In order not to destroy this data by overwriting it, a bypass flag is raised, which tells the interface not to accept the next data heading for it. Once the interface sends the data to the adaptive block, the flag is lowered to "0" and the interface is again in a wait state.
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* If the bypass_flag is at "1" and ADDR_BLOC corresponds to the address of the interface, then the interface sends the configuration data back in the network after switching the bypass_bit to "1", after that, it goes back to the wait mode. If the bypass_flag is at "0", and ADDR_BLOC do not correspond to the address of the current interface, then the data is sent to the next interface, this time without changing the bypass_bit to "1", after which it goes back to the wait mode.

* If the bypass_flag is at "0", and ADDR_BLOC do correspond to the address of the current interface, then the interface reads the remaining data and raises the by-pass_flag to "1". When finished, the interface sends a Request signal to the adaptive block to start the transfer of data. Once the adaptive block responds and the transfer of data has taken place, the interface switches the bypass_flag to "0". * In case the operation is a read operation, the interface stores the ADDR_REG, and once it receives the data from the adaptive block, it forms a new frame, made from the address of the interface, the ADDR_REG and the data from the adaptive block (as described in section 3.3.2 and table 3.8), and sends it to the SIC.

Wait

Incoming_data

Check bp_bit

Check addr Next interface

Bp=1 Bp=0

Store & Send

Bp_flag=0 && ADDR == ADDR != || (Bp_flag=0 && ADDR == ) Because of the asynchronous logic used, the interface wakes up the moment it receives the first bit, and goes into wait mode when the data have all been consumed or passed along. This allows the interface to be self regulating and more efficient, as it wakes up only when needed, and goes back to a wait mode without any additional logic. However, because the data is sent serially and not in parallel, the interface needs a marker to know which bit it is currently treating. For that, a 6 bits counter was implemented to allow the interface to know exactly which bit it is working with. Because the data the interface receives is 46 bits, the counter can only be six bits. The introduction of the counter in the architecture considerably slows down the interface, because for each bit read, the interface
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needs to wait for the counter to increment, as well as the acknowledgement from it once it finishes incrementing its value . This introduces a bigger latency, however, the alternative was to sequentially treat the data, which is not possible. Each incoming bit is considered as an event by the interface, which corresponds to the asynchronous logic, while sequentially reading the same channel inside one process doesn't. It is possible to sequentially read the same channel inside one process, however, synchronizer gates need to be added, which causes a major area overhead. The Interface architecture is shown in Figure 3.18 and has less than 1800 gates. The Interface has a first input channel connected to the network to receive the configuration data DATA_IN. A second input channel is connected to the adaptive blocks to receive data after a read operation DATA_R_IN, and a third input is connected to the previous Interface to pass along the read data through the network P_BLOC_IN (Figure 3.18 and 3.19). The Interface is composed of five main blocks: a counter, a comparator block that compares the address of the interface and the bypass bit, a register block to keep the data which also works as a serial to parallel converter in order to convert the data sent to the adaptive block, and finally a framer to re-frame the data coming from the adaptive block and a merge block to properly implement the daisy chain topology and pass along the data coming from the previous interface. Once all the data to send to the interface is received, whether for a Write or Read operation, a Request signal is sent to the adaptive block (req_out) to start the transfer. Once it is granted, all the data is sent simultaneously. The interface then waits for an Acknowledgment from the adaptive block to signal that all data has been received (ack_in). In the case of a Read operation, the interface keeps the addr_out corresponding to the register address of the adaptive block in memory at the framer level. When the interface

Cmep Proposed asynchronous dedicated communication network for digital reconfiguration 73

receives data from the adaptive block, it converts it to serial data, and sends it back to the SIC with the address of the corresponding block and register framed as shown in table 3.5. Since the adaptive blocks can be either asynchronous or synchronous, an asynchronousto-synchronous interface is needed when the adaptive blocks are synchronous. The asynchronousto-synchronous interface converts the dual rail encoding coming from the interface to a single rail encoding (Fig. 3.21) and the single rail encoding to a double rail encoding for the data coming from the adaptive block (Fig. 3

.22). It also synchronizes the exchange of data using C-Muller gates and acknowledgement signals (Ack_w and Ack_r).

To convert the dual rail protocol to a single rail protocol, the block shown in figure 3.22 is used. It is easy to implement, and doesn't need many gates. The C-gate allows to sample the output at the correct time, since the Ack_w signal is coming from the adaptive block, and controls when the data can be transferred to the adaptive block. The same is true for Ack_r signal, which is also coming from the adaptive bloc, and allows the interface to read the correct data when the adaptive block sends it. 

IN[0] IN[1] OUT C Ack_r IN[0] IN[1] OUT 0 0 0 1 0 0 0 1 1

Hybrid asynchronous dedicated network

Thanks to the daisy chain topology and the serial communication used in the network, the complexity of the network is low. However, the purely serial implementation introduces more latency. In order to see if the latency can be reduced significantly while keeping the complexity of the network low, it was decided that a hybrid network will also be implemented and compared to the serial network.

Cmep

The hybrid network is a trade-off between a serial network and a parallel one. Instead of sending the data serially, the frame was split into 6 flits, and these flits were then sent serially. It should allow a decrease in latency by at least 80%, since we no longer send 46 bits, but instead only the equivalent of 6 bits. However, because of this new structure, the architectures of the interface and the SIC had to be slightly modified to accommodate the new frame. 

End of flit

The new frame structure is shown in table 3.9, explained. The first flit is a control flit, which contains the address of the intended interface(ADDR_BLOC), the bypass data and the priority bit. The second flit contains the address of the register to write or read from (ADDR_REG ) as well as the Read/Write bit, which in this case acts also as an end of frame (EoF) bit. If the operation is a read operation, then the Read/Write bit is set to "1", which indicates that the interface has received all the data, else it is at "0", which means that there is more incoming data. The third through sixth flit are data flits. The data to write into an interface is 32bits, and in this case, we chose to split it into four 8bits flits, and add an end of frame bit after each flit. This allows us to have a consistent flit size of 9bit for the configuration data, but also, allows us to send or receive data by blocks of 8. Thus, we can adapt the network to different kinds of data, and are no longer obliged to send systematically 32bits of data, it could be 8bits, 16bits, 24bits or 32bits now. n order to keep the network at a small size, It was decided that for the data we receive back from the adaptive block, we would continue using a serial transmission mode. However, mirroring the data sent, the adaptive blocks needed to be able to send 8bits, 16bits, 24bits or 32bits of data. To accomplish that, instead of sending the data serially over 1bit, a 2bits channel was used. The bit corresponded to the actual data, while the second bit transported the end of frame bit. This new frame is shown in table 3.10. 
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Hybrid network's SIC

The functionality of the SIC doesn't change since it is the same network, however, some of its blocks have to be changed to work with the new frame structure. The CONV_P2S bloc, which is responsible for converting the parallel data coming from the microcontroller, has now to convert parallel data, to semi parallel only. Once it receives the microcontroller's data, it splits it into blocs of 9 bits (called flits) and sends them serially to the network. The CONV_S2P block's architecture also needs to change. The block now receives a 2bits channel instead of a 1bit channel, and needs to read the data until it reaches the end of frame bit. It then converts the data to parallel data and sends it to the microcontroller. The Store&Send block has inputs and outputs changed so that it receives and sends flits instead of bits.

Hybrid network's interface

The architecture of the interfaces needs some slight adjustments to work with the new frame structure as well. The inputs and outputs of the interface connected to the network need to be changed, to accommodate the new frame. The input DATA_IN and output BP_OUT are changed to a 9bits channel, as well as the input P_BLOC_IN, and the output DATA_OUT which are changed to a 2bits channel (figure 3.23). As mentioned above, the DATA_OUT channel that transports the data sent by the adaptive block, is changed into a 2bit channel, to allow the adaptive blocks to send 8bits, 16bits, 24bits or 32bits. The functionality of the interface is not affected, however, it is worth noting that the counter used to know which bit is being dealt with has been changed to a 3bits counter, which not only decreases the area, but also the latency. of the interfaces is also lower as is the latency, which will be discussed in the following section.

Design of the test circuit

General architecture

Both the serial and hybrid network's components were written in SystemVerilog, and the Tiempo ACC tool was used for the synthesis of the circuits. Since after implementing the circuits, we wanted to be able to easily test their performance (latency, throughput) as well as the power consumption, we decided to add some features to both the interface and the SIC as well as adding a characterization block, to facilitate the measurements.

Blocks description

Two blocks were designed and added to the asynchronous network for testing purposes: a Network Performance Characterization (NPC) and an Input interface. The input interface acts as a multiplexer, it sends the regular configuration data directly to the SIC, while it sends the test data to the NPC. The NPC serves as a traffic generator for when we need to measure the latency and throughput of the network. The NPC is an FSM with a start condition. To accommodate the new setup, we added a bit to the frame we send from the microcontroller that will specify which operation we want to conduct (measurement or normal). Four bits were additionally added to the measurement frame. These four bits specify which type of measurement we wish to conduct (throughput, latency read, latency write). Moreover, to be able to make the measurement, a test module (TM) was added, comprised of two counters and a frequency generator. The two counters are a fast counter that can go up to 2GHz and a normal counter running at 100MHz, while the frequency locked loop (FLL) provides the reference frequency for the fast counter. The frequency of the slow counter is generated outside the circuit and serves also as a reference frequency for the FLL. Since the TM is synchronous, an asynchronous_to_synchronous interface was added between the TM and the NPC.

The NPC can make four types of measurements:

1. A throughput measurement: it measures the maximum rate at which the network can process data.

2. A latency write measurement: it measures the latency for configuration data to be sent and written inside an interface when it is a write operation.

3. A latency read measurement: it measures the latency for configuration data to be sent and written inside an interface when it is a read operation.

4. A latency read respond measurement: it measures the latency for configuration data to be sent and written inside an interface when it is a read operation as well as the time it takes to get the data read back to the SIC.

These four operations are necessary to measure the performances of the network, and having results as accurate as possible is necessary, which is why we use a slow and a fast counter. The slow counter can be used for the throughput, while the fast counter can be used for the latency. For each interface in the network, the NPC can accurately measure the latency. It is connected to each interface with an event type signal, which once triggered, tells the interface not to send the data to the adaptive block, but instead, Cmep Proposed asynchronous dedicated communication network for digital reconfiguration 77 * The NPC checks which state corresponds to the control data received and prepares to send the the data to the network. It also sends an event type signal to both the interface concerned with the measurement in case of a latency measurement and to the SIC to specify that the return data doesn't need to be sent back to the microcontroller.

* The microcontroller instructs either one of the counters to start the counting, which also triggers a START event type signal to the NPC which sends the data to the SIC and towards the network.

* When the operation is conducted, the NPC and the counter receive a STOP signal from either the interface or the SIC, depending on the type of measurement. The value written inside the counter corresponds to the measurement done.

To validate and test the network, it was decided that the adaptive blocks to use were digital FLLs [START_REF] Miro-Panades | A fine-grain variation-aware dynamic rmV dd-hopping avfs architecture on a 32 nm gals mpsoc[END_REF]. FLLs are used in many circuits to generate a stable clock, and are also used in DVFS and AVFS digital architectures for power management. FLL's main advantages are a fast frequency reconfiguration and a very low area. Since frequency is one of the main parameters we can change to reconfigure a circuit, we chose the FLL as to have a realistic circuit. Thus, for our circuit, we chose to reconfigure 4 FLLs and extrapolate the results to a greater number.

For test purposes, an SPI [START_REF]Spi specification[END_REF] as well as a FIFO GALS [START_REF] Krstic | Globally asynchronous, locally synchronous circuits: Overview and outlook[END_REF] used in GALS circuits [START_REF] Krstic | Globally asynchronous, locally synchronous circuits: Overview and outlook[END_REF] was added. The FIFO serves as an asynchronous-to-synchronous interface between the SIC and the microcontroller. The addition of the SPI and the FIFO GALS was due to the fact that the asynchronous network was part of a chip with other circuits in it, and it made it easier for the whole circuit to be tested. Figure 3.24 shows the final architecture of the circuit

Design flow

In this section, the design flow and the tools used to implement the circuit are introduced and explained. The asynchronous network's components functional netlist is written in SystemVerilog, and simulated using the synopsys tool Questasim [122]. The network is then synthesized using the Tiempo Asynchronous Circuit Compiler (ACC), which provided us with a gate description of the asynchronous QDI circuit as well as the necessary files to make timing simulations. In parallel, the synchronous netlists of the asynchronousto-synchronous interfaces are also designed and synthesized using the Design Compiler tool by Synopsys. Then, the asynchronous and the synchronous parts are assembled, and afterwards, a physical implementation is possible, using the SoCEncounter Kit tool by Cadence. After the Place&Route, post back-end simulations with parasitics extractions are then possible to validate the functionality of the circuit. Finally, the power analysis was done using the PrimeTime PX software by Synopsys. If at anytime during the design flow the correct results are not obtained then it is necessary to redo all the previous steps until the expected result is reached. The design flow used to implement the circuit is shown in figure 3. [START_REF] Jóźwiak | Advanced mobile and wearable systems[END_REF].

In order to only have the power consumption of the asynchronous network, it was de- cided that the asynchronous network itself would be placed in one power domain, while the test blocks will be placed in another power domain. Figure 3.26 shows all the components of the circuit, as well as the power domain they are placed in.
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Circuit description post Place&Route

Both the serial and hybrid circuit were physically implemented, however, only the serial network was fabricated. This choice was mainly due to schedule reasons. The technology used was a 28nm FDSOI technology, as it represents the state of the art for low power platforms [START_REF] Beigne | Utbb fdsoi technology flexibility for ultra low power internet-of-things applications[END_REF]. Figure 3.27 shows the final Place&Route of the circuit, as well as the placement of each block. As can be seen, each interface is connected to an FLL serving as an adaptive block. The SIC and the test blocks can also be seen at one edge of the circuit. We chose to implement the circuit in a rectangular shape, to mimic a real network and thus achieve as much accuracy as possible results wise.

Tests and characterization

Test setup

Two types of tests were conducted and will be presented in this section. The first is the post back-end simulations with parasitics extractions for both the serial and hybrid network, as well as power simulations. For both tests, we are working with low supply voltage at 0.6V. It is the case for both the serial and the hybrid networks. We were able to simulate both the timing performances of the circuit using the integrated testing platform, as well as estimate the power consumption thanks to the PrimeTime PX software. The post back-end simulations are reported in table 3.13, for both the serial and hybrid network. Each block of the network has its performances presented: latency, power consumption and leakage. The network's throughput is also reported, as well as the wire count.

The second type of test conducted were the silicon measurement. A test board was made and is shown in figure 3.28.a. The test board was kept simple, to avoid any problems. The ASN and a second circuit were both implemented in the same chip, and as such, the test board also includes the input and output ports to connect to the board. The chip was driven through the SPI interface port. The clock reference of the circuit which also serves as a reference to the FLLS is at 100MHz.

The board has two main supply voltage inputs (VDD and VVDe), as well as separate supply voltage for the asynchronous network. Since the chip has another circuit in addition of the ASN, supply voltage dedicated to this circuit is also included, as is a dedicated supply voltage for the FLLs.

As mentioned above, the asynchronous network and the test module are in two different power domains, so that the power consumption of the Asynchronous Service Network (ASN) can be precisely determined, without interference from the test module. There is however no level shifter between the two power domains, and as such, they need to be supplied by the same voltage. As can be seen, the supply voltage is variable so that we can test the ASN for different supply voltage. The chip is mounted on a QFN56 socket (figure 3.28.a) [123]. To be able to drive the chip, an FPGA was used [START_REF] Chu | FPGA Prototyping By Verilog Examples: Xilinx Spartan-3 Version[END_REF] (figure 3.28.b), connected to the test board through the SPI interface. The FPGA board was also connected to a computer which was driving it. The drivers to program the FPGA used were written in Python [125], as it is an easy and fast language. At this stage, only the timing performances of the circuit are reported in table 3.12.

Test results

Serial network test result

Thanks to the Network Performance Characterization block, we were able to accurately determine the latency and throughput of the network. Table 3.12 reports the implementation results regarding the latency and the throughput, both post back-end and on silicon. The latency to reach each one of the four interfaces takes into account the SIC latency as well as the link and the time it takes to bypass a previous interface. The post back-end simulation results and silicon measurements are close. Table 3.13 gives more detailed partition of the latency, but only for post back-end simulations. As can be seen, the latency of the Interface is important, and is due to two main reasons. The first one is technology related: the high Vt (low leakage) cells used impact negatively the latency. The second reason is architecture related: a counter is integrated in each Interface. When the interface receives the serial data, it doesn't know how many bits to expect, and which bit corresponds to what. To help with that, a counter was added to the interface to count the incoming bits. Because the counter is asynchronous, between each bit, we need to wait for the counter to increment, then sends the acknowledgement, which increases the latency. However, the throughput simulated in this case is 37Mbits/s, which is more than enough for the targeted applications. Moreover, since the majority of the latency in our implementation comes from the counter, the latency is reduced considerably for smaller frames (smaller frames means smaller counter). For a 26 bits frame (4 bits address register and 16 bits data), we can reduce the latency by a third.

To estimate how much a reconfiguration costs, we need to take into account the contribution of the SIC and every Interface the frame has to go through before it reaches its correct destination. As can be seen in Table 3.13, the energy per bit used by the SIC
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Table 3.12: Serial implementation performance results post back-end and on silicon @ 0.6V remains the same for every reconfiguration; we only need 0.03pJ/bit every time we need to configure a FLL. The Interfaces contribute in two ways: when a frame simply goes through an Interface, or when it is the Interface of the intended FLL. In both cases, the contribution is of 0.92pJ/bit from each Interface. In this case, because the latency is very important, the energy per bit used is also high. However, when configuration requires less bits, we estimate that the energy per bit used is lowered by half with a smaller counter. Thus, for small frame size and to have a minimum of metal wire impact, a completely asynchronous serial network is good. However, for larger frames, another configuration network was devised as discussed below. 

Hybrid network test result

As mentioned in section 3.4.3, the second implementation has for aim to avoid the increase in latency created by the counter in the serial implementation. Table 3.14 presents the hybrid frame as a reminder. The frame is split into six flits, each flit composed of 8 bits of data and one bit which indicates the end of frame (eof). Each part is then sent in parallel throughout the network. In case of a read operation, only two flits are sent by the SIC, since the read/write bit acts as the eof bit. For a write operation, up to 6 flits can be sent, depending on the data size (8/16/24/32 bits). In this implementation, instead of having a one bit channel for the configuration data connecting each Interface, a nine bits channel is used, which translates to nineteen wires in total (eighteen to encode the data in a double rail QDI logic and one for the acknowledgement). A 2 bits channel (5 wires) is this time used to send the sense data. The first bit contains the actual sense data, and the second bit serves as an end of frame bit: When at '1', the SIC will know that he has reached the end of the frame, otherwise, it needs to continue receiving data. In total, the number of wires in this network is 24.
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Proposed asynchronous dedicated communication network for digital reconfiguration 83 Again, 46 bits of data were sent through the network. As can be seen in Table 3.13, the second implementation's energy consumption is extremely low, as is the latency. This is due to the fact that we no longer need a counter. The parallelization, coupled with the use of a End of Frame bit resulted in a decrease in latency, which also positively impacted the energy per bit used. We also calculated a throughput of 98.7Mflits/s (0.88Gbits/s), which is quite good, especially at 0.6V.

As mentioned below, the decrease of latency favorably impacted the energy per bit needed. We only need 0.04pJ/bit for each Interface for a write operation. In case of a read operation, the energy per bit needed is the same, but distributed differently. In total, the energy per bit needed for one Interface, the SIC and one link is of 0.07pJ/bit. Because of differences in power supply, technology node and architecture used, it is difficult to compare the obtained results with the state of the art, both for synchronous and asynchronous networks. Most asynchronous networks are used in GALS architectures, and use a parallel implementation rather than a serial one. Concerning synchronous networks, the problem is mainly due the frequency used, which is not always the optimal frequency for a bus. However, it is still possible to conduct a comparison as shown in table 3.15. The NEXUS interconnect is a crossbar network used in a GALS architecture [START_REF] Lines | Nexus: an asynchronous crossbar interconnect for synchronous systemon-chip designs[END_REF] while MARBLE is used in a microprocessor (AMULET3i) to connect the CPU core and DMA controller to the peripherals and memories [START_REF] Garside | Amulet3i-an asynchronous system-on-chip[END_REF]. The Device Control Register (DCR) is a synchronous bus from the main CoreConnect Bus used for register configuration, and the JTAG is a serial test bus. Both the DCR and JTAG have a daisy chained topology.

As can be seen from table 3.15, the difference in supply voltage and implementation technology is very large, as are the results in latency and energy. The choice of using both 28nm FDSOI technology and a supply voltage of 0,6V has obviously positively impacted the energy and leakage of our system, especially for the hybrid implementation, as they are extremely low compared with the other networks. For the DCR and JTAG, the metrics depend on the system in which they are used (a PowerPC for DCR or ARM architecture for JTAG for example), but it is possible to guess at what they are, as the DCR needs at least two clock cycles for a read/write operation at nominal voltage, and the JTAG needs one clock cycle. For a 100MHz frequency and at nominal voltage, the latency for the DCR is of 20ns minimum, and 10ns for the JTAG. In our case, we use a 0.6V voltage supply and as such, the latency is more important than at nominal voltage. We still achieve a good latency, especially for the hybrid version. 

Conclusion

In this chapter, a first architecture of a dedicated asynchronous communication network has been presented. The choice of the dedicated network's structure and components have been analyzed and explained, as well as the network's architecture. In addition to that, an overview of the asynchronous logic was also given. The frame of the network is extremely compact thanks to the asynchronous architecture, as we no longer need Start, Stop and Acknowledgment bits. Additionally, since the QDI logic used to implement the circuit is reliable, no error checking code has been added, which shortens the frame even more. It was only necessary to implement two additional bits in order to incorporate the priority function and the bypass function. Concerning the Topology, two different topologies were studied, a bus topology and a daisy chain topology, and in the end, the daisy chain topology was chosen since it worked seamlessly with the asynchronous implementation.

Two version of the asynchronous network were designed an implemented. A first version was completely serial, while a second version was a hybrid of both a serial and parallel network. The serial asynchronous network proved to have less complex interconnections with only 5 wires to deal with compared with twenty-four wires for the hybrid version. However, the timing performances of the hybrid version were marginally better, with a throughput of 0.88Gbits/s compared to 37Mbits/s, which was expected, since a partially parallel circuit has less latency, which also leads to less energy spent.

Nevertheless, both circuits proved to be extremely low power, with only 1pJ/bit for the serial implementation and 0.07pJ/bit for the hybrid one. Both network are suitable to interface complex blocks such as FLLs, which need large frames and a least 32 bits of data. The choice of either implementation would depend on a trade off between timing and circuit wiring complexity. Still, both network are inadequate for smaller and simpler blocks, which only require small configuration bits. Moreover, the need to also address analog adaptive blocks is also present, which was not discussed in this section.

The following chapter will present a new possible implementation of the asynchronous service network, geared towards less complex adaptive blocks, but also capable of dealing with analog adaptive blocks.

Chapter 4 Evolution towards a low complexity service network compatible with analog functions 4.1 Introduction

In the previous chapter, two versions of a first communication service network were presented, along with the post backend simulation results and chip measurements. The interconnects are designed using asynchronous logic, in a 28nm FDSOI technology. Those first results are good, with a 1pJ/bit for the serial network, and 0,07pJ/bit for the hybrid one. However, the proposed solution is more suitable to quite complex circuits and large adaptive blocks, like the FLL, because of its complexity. The interface area is mainly due to the network being serial and communicating with blocks that send and receive parallel data. As such, we need to implement in the interface both a serial-to-parallel converter and a parallel-to-serial converter. Not only did it increase the size of the interface, but it also contributed to the latency increase.

In this chapter, we devise a new proposal, aiming at controlling smaller adaptive mixed signal circuits. The first objective is to decrease the network's complexity. The second goal is to determine how to use the communication network to transfer analog data, from the adaptive block to the microcontroller.

Thus the work presented below has been driven by the need to simplify the digital interface and reduce its area, and to add the possibility of transferring analog data through the network without congesting the network with analog-to-digital converters. The first part will present the new architecture of the digital communication network, while the second part will discuss the efficient transfer of analog data using the same communication network.

Simplified digital network

The new simplified digital network is designed to be more area effective, and for that, some architectural changes to the network were needed. In the first version, the area increase was mainly due to parallel-to-serial and serial-to-parallel data conversion. In the hybrid version, the area was decreased by nearly 40%, as the conversion was done in blocks. While the network needs to remain serial in order to have less wire, a more effective way to handle the conversion is possible. Concerning the latency, the main contribution comes from the counter used in the interface to know which bit is being treated. The latency it creates coupled with the serial nature of the network resulted in a far higher interface latency than expected.
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In order to deal with these issues, a new architecture was devised for the network components as well as a new choice of framing which will be discussed in the following section.

New network structure

The new network has to answer to the same constraints as the first version, with the added ones of being smaller, and also service analog blocks. In order to implement the new network, we chose to keep a serial implementation, as it proved to be best in order to keep the wire count low and the deployment easy. It was also decided to keep using a daisy chain topology as it also allows us to send the serial data efficiently and implement a bypass topology as explained in section 3.4.2.1. However, instead of using a separate channel for the data sent to the interface and the data received, it was decided to mutualize the same channel, and to have only one channel to go through the network.

The main difference between the version in section 3.3 and this one is the frame used to send data from the SIC to the interfaces and the way to handle data. As mentioned previously, the serial implementation and the need to know which bit is treated at interface level increases the area significantly, as we need a serial to parallel converter at interface level and a counter. To deal with the two problems, the new frame is divided in three sections as shown in table 4.1. The first section (control flit) has 6 bits: 4 for the address of the targeted adaptive block, 1 as a read/write bit and one for the SIC to differentiate between a bypassed data and a read data, since it was decided that only one channel will be used for both read and write data. The second and third section are the address of the register (address section) and the data (data section) respectively and are divided by chunks of 5 bits. For each of these sections, 4 bits represent the data while the fifth bit tells the interface whether to expect more data or not. As we only address register on 8bits, the address section can contain up to 10 bits, while the data section can contain 40bits (32bits of data). The new frame resembles the frame of the hybrid network, however it is still sent serially. This new frame allows us to transfer data to and from less complex blocks that may only need 8bits of data or 4bits of address register. With this new frame, the interface knows to read 5bits (6bits in the case of the control flit), and check the final bit in order to know whether to expect further data or to stop. This means that there is no longer the necessity of having a counter to pinpoint the end of the message to the interface. Moreover, as the data is treated by chunks of 4bits, the serial-to-parallel conversion is done more efficiently, as it is 4bits that are converted each time instead of one at a time. Since the same channel is used for both the data sent to and received from the interfaces, the frame remains the same for the data read from the adaptive blocks and sent to the microcontroller through the SIC.
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The frame of the data sent from and to the microcontroller has not changed, and is shown in table 4.2 and 4.3 respectively. In order for this new frame to be effective, the architecture of the SIC and the interface had to be changed, especially in the case of the interface. In the following section, the details of these changes will be discussed.

Network architecture and its components

New SIC architecture

Since the frame of the data to and from the microcontroller hasn't changed, and the SIC still had the same functions as before, it was only necessary to change the way the SIC sends and receives the data from the network. While the SIC still needs to send the data received from the microcontroller serially to the interfaces, it now needs to also add the End of Frame (EoF) bit after each 4 bits. To accomplish that, the parallel-to-serial converter at SIC level was slightly modified. In the same way, the SIC now has to remove the EoF bit from the data it receives from the interfaces to be sent to the microcontroller. The serial-to-parallel converter used for that was also altered to enable this function. However, now the data first reaches the check_data block, which checks whether the data is a bypass or a read data, and reacts accordingly as shown in figure 4.1. All in all, the alterations affecting the SIC were quite minimal, as its general structure remains the same. Thus it will not be commented further. 

New interface architecture

In the case of the interface connected to the adaptive block, it needed a complete overhaul. As mentioned previously, the counter is no longer needed and the interface can know upon receiving the EoF bit how to react.
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The FSM governing the working of the interface is given in figure 4.2. As can be seen, the interface first receives the control flit. It reads the 6 bits corresponding to the adress_interface, the RW bit and the Bypass_Read bit (Bypass_R bit), compares its own address to that. If they match, then the interface will read the five bits of the next flit, and check if the EoF bit is at "0" or at "1". When at "0", it signifies that the data is at its end, if it is at "1", the data is still incoming. Because the next data to arrive corresponds to the address of the register, the interface simultaneously checks the EoF bit of the incoming data and the RW bit. If the RW bit is at "0", which means that the operation is a write operation, then the EoF bit of the address_reg signals to us when the data corresponding to the address of the register is totally received, and when to start to receive the data to send to the adaptive block. If the RW bit is at "1", then the EoF bit also signals the end of the message. In case of a write operation, the end of the message is signaled when the EoF bit in the DATA is at "0". If the addresses don't match, then the data is read to check the EoF bit and simply bypassed to the next interface. from the Bloc_Comp as it was easier to implement two different blocks that receive specific sizes of data, rather than try to make one block receive 6bits (for the control flit) then 5bits for the other flits.

Control_flit_present

* Logic_Comp: this block handles all the logic operation needed to insure that the data read is the correct one and how and when to stop. To be able to read a specific number of bits and then wait for further instruction, the handshaking protocol had to be used efficiently. In order to read n bits, n full buffers (FB) were put in series, where the acknowledgement signal of the last buffer is forced to remain at "1", which forces the acknowledgment of the second half buffer into "0", and as such, no data can be received as shown in figure 4.4, since the invalid state is never crossed and so the handshaking protocol cannot occur. Once the data occurs, the first buffer reads it and passes it along to the second, which does the same until it reaches the last FB. Because the acknowledgement is invalid, the data cannot be sent, and as such, it is kept in memory in the FB. And since the FB hasn't sent the data, it cannot accept a new one, so the acknowledgement of the previous FB is put down. This creates a domino effect, as the pipeline slowly fills, and the acknowledgments go down until the first FB receives the nth data, and at that moment, the whole pipeline is full as shown in figure 4 This pipeline is used in both the Bloc_Comp block and the Bloc_Send_bp. In the first case, six full buffers are used, and once the control flit composed of 6bits is read, a signal is triggered which starts the comparison of the address_interface with the address of the block, and the checking of the BP bit. If the addresses match, then the data in the pipeline is consumed and the Bloc_Send_bp receives the next flits. The Bloc_Send_bp has a pipeline of 5 FBs, and receives 5bits flits. Once the pipeline is full, i.e. all the bits are read, the block checks the EoF bit and decides what to do, then empties the pipeline by raising the acknowledgement signal and allowing the handshaking protocol to proceed and sends the data where it is supposed to go. If the addresses don't match, then the acknowledgement is raised and the data is sent to the next interface. The Bloc_Comp still receives the following flits, just to check the EoF bit and then passes it to the next interface. It was easier to use the same block for both the bypass data and the intended data as they have similar functions and the EoF bit has to be checked.

The use of the handshaking protocol in such a way allowed us to bypass the necessity of having a counter, and reduces the area significantly. Although the new interface was not physically layouted for lack of time, by counting the number of gates in both versions of the interfaces and comparing it, it is obvious that the new interface is smaller by at least a quarter as shown in table 4.4. Moreover, the new interface only uses simple gates, while in the first version, synchronization gates and registers with a doubled area were used. It
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can be safely said that the interface area has been reduced by a third at least. Concerning the latency, the new interface is much faster than the first version, as the latency is 85% better. The new digital communication network has proved to be an improvement over the first version. In the next section, the network will be expended to deal with analog data, as the way to read analog data and send it through the network is presented and explained.

Distributed analog-to-digital conversion

Since a wireless sensor network node has both analog and digital blocks, and that some information that the microcontroller needs to be kept apprised of is analog, it was also necessary to address how we can transfer analog data throughout the network.

First of all, it was decided that the analog data will only be transferred from the adaptive blocks towards the microcontroller using the asynchronous communication network, and not the other way around. Secondly, a choice of data to be transferred had to be made, and it was decided that the type of analog signals to be treated would be mainly DC signals such as reference voltages or current.

The circuit has then to transfer reference signals back to the microcontroller as to keep it updated on the state of the adaptive block. However, as we seek to keep the complexity of the network low and be able to access relatively low complexity blocks such as amplifiers and Analog-to-Digital (ADC) and Digital-to-Analog Converters (DAC), we cannot simply put an ADC in front of each block and convert the analog signal to a digital one that can then be carried through the ASN. Instead, we chose to split the conversion operation in two conversions: one local conversion at block level, which will transform the analog signal into a time coding, and the second conversion at SIC level to convert the time coded signal into a digital signal. This is possible thanks to the asynchronous nature of the network, as the asynchronous network will guaranty the keep the time constant between two pulses.

In the following paragraphs, the basics of the analog-to-digital conversion via time will be discussed, and the proposed changes to the network presented and analyzed.

Conversion Principles

Analog-to-Digital Converters (ADC) are used in all type of circuits, but with the development of mixed signal circuits and SoC, their utility has increased, especially in sensing systems such as WSN or monitoring applications. In this case, the input signal is most likely analog, and needs to be converted to a digital value to be processed by the circuit digital components, as it is easier to process digital data [START_REF] El-Bayoumi | A new 16-bit low-power pvtcalibrated time-based differential analog-to-digital converter (adc) circuit in cmos 65nm technology[END_REF]. Because analog signal processing is hard, shifting the burden of data processing to the digital part is a good way to gain in efficiency. But this success has put more constraints on ADCs, especially power constraints, since many application (like IoT) require a tight power management. This means that ADCs need to trade carefully between accuracy and power. The scaling of devices has also negatively affected ADCs, since analog devices react worse to power scaling than digital ones.
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A typical analog-to-digital conversion is based on a sample&process step. The analog signal is sampled at certain times (depending on the ADC's frequency), and this value is then processed to provide the digital equivalent. Depending on the ADC's architecture, resolution and speed, the conversion method can differ. Table 4.5 gives an overview of the typical ADCs used in circuits, their complexity, resolution, speed and power consumption. As can be seen, the usual trade-off is between resolution and speed/complexity. A more complex architecture may be faster, but it would require more power. For this work, keeping a low complexity, low power consumption while maintaining a medium resolution is more important than speed, and as such, the best ADC we may use for our architecture is a recirculating ADC or a Serial ADC. However, the use of an ADC for each block to transfer analog values back to the microcontroller is too costly. In order to avoid putting an ADC at each interface, and to benefit from the distributed architecture of our network, it was decided to split the analog-to-digital conversion into two parts, a first analog-to-time conversion done locally at each interface, and a second time-to-digital conversion at SIC level. This would allow us to mutualize a part of the conversion, and reduce the interface size. Also, by using time as an intermediate, we can take advantage of the asynchronous nature of the communication network, as it would be easier to carry time pulses in an asynchronous network. To do this, we first looked at typical time based ADCs, and secondly at regular ADCs which operation can easily be split in two distinct parts, with an intermediate analog to time conversion.

Time based analog-to-digital converters are converters that first convert the analog data into time signals using an analog-to-time converter (ATC), and then use a time-to-digital converters TDA to converter time signals into digital data. They are used for instance in Ultra Wide Band (UWB) receivers applications, since they allow for high resolution at low power for a large band [128][129]. A typical architecture for the ATC is a starved inverter, where the delay of the inverter is proportional to the input signal V IN . However, the TDC associated with this architecture is not suitable for a distributed network, as it may not guaranty the integrety of the signals.

Similar to the time based ADC but still different are ADCs which have an intermediate time or pulse conversion step in the analog-to-digital conversion process. The two ADC types that would correspond to this but also to our constraints are a Sigma-Delta ADC or a Serial ADC as they are both relatively low power and low complexity, their operation can be split into two distinctive parts, and the signal is converted during an intermediate
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phase into pulses.

In the case of the Sigma-Delta ADC, the first part is an oversampling operation done by a sigma-delta modulator, which transforms the analog signal into a high-speed, singlebit, modulated pulse wave [START_REF]How delta-sigma adcs work[END_REF]. Next, this data is converted into high resolution digital data by the digital filter and a decimator as shown in figure 4.6. Similarly, the serial ADC (figure 4.7) has a first part which samples the data and transforms it into pulses, and a second part which translate these pulses into digital data [START_REF] Pan | A/d converter fundamentals and trends[END_REF]. By using one of these two architectures, we can split the area of the ADC used for each block, by only using the analog-to-pulse conversion part at interface level and for each block, and using the same digital part for the final conversion for all blocks.

∆Σ Modulator

Digital Filter Decimator Because the serial ADC pulse-to-digital conversion requires only a counter, while for the sigma-delta a filter as well as a decimator are needed, and as we are also targeting a low resolution (6 to 8 bits), we chose to implement the serial ADC in this work. In the next section, we will present the new architecture of the network, as well as the converter's implementation and its use. 

Architecture of the new mixed-signal network

As mentioned above, we have decided to split the conversion into a local and global conversion. The local conversion would be done at the level of the adaptive block, while the global conversion would occur at SIC level as shown in figure 4.8. The SIC sends digital control signal to the targeted adaptive block to start the conversion. The analogto-time converter is now part of the interface and converts the analog signal to pulses. The pulses will then be sent to the SIC, where the time-to-digital converter will convert them into digital asynchronous data. In order to do that, a change to the network is necessary, especially the architectures of the SIC and the network's interface. The block responsible for the counting and data conversion is the Count&Convert block in the SIC as shown in figure 4.9 which represents the new architecture of the SIC. This block is composed of an 8 bits counter, with an asynchronous wrapper which transforms the event_type signals to asynchronous data and synchronous data to asynchronous one as shown in figure 4.10. The SIC receives the pulses from the network via two event_type signals B P U LSE and E P U LSE . The first pulse ( Begin Pulse B P U LSE ) is the the pulse indicating the beginning of a conversion and tells the SIC to start the counter, while the second pulse (End Pulse E P U LSE ) tells it to stop as shown in diagram 4.11. The result of the counting is then transformed into digital data which is then sent to the microcontroller.

Because there is only one B P U LSE and one E P U LSE channel for all the interfaces due to the daisy chained topology of the network, only one conversion can happen at a time. As such, when the SIC receives a data request from the microcontroller, on top of everything else described in section 4.2.2.1, it needs now to check whether the data is analog or digital which happens at the level of the CHECK_ANALOG block. If the data is digital, then the SIC operates as previously described. However, if the requested data is analog, the SIC must check and see if an analog conversion hasn't already been launched. If that is the case, the SIC puts on hold the data and waits for the conversion to end, before sending the new data through the network. If there is no conversion happening in the network, then the SIC stores the address of the intended interface and raises a flag signifying that a conversion is happening. This flag is only lowered once the SIC receives the two pulses and converts them into digital data. Once that is done, the SIC affixes the address of the targeted adaptive block to the newly converted data and sends it to the microcontroller. It is worth noting that if any new data arrives from the microcontroller, and it is digital data, then the SIC sends it through the network even if a conversion is currently happening.

Mixed network's Interface

In order to perform the local conversion, an analog-to-time conversion scheme needs to be implemented, and the interface needs to adjust accordingly and so has the frame. To keep the interface as unchanged as possible, only one bit is added, indicating whether the frame coming from the microcontroller needs to read/write a digital data, or instead needs to read an analog signal. The control flit shown in table 4.6 has now 7bits instead of six. In case an analog read is needed, the Address register flit can carry the instructions as to which signal needs to be converted. The architecture of the analog-to-time converter to be used has to be compatible with the network, and as such, it was decided that an asynchronous converter will be used, as it is one of the only ones not needing a clock to function. The analog converter used is shown in figure 4.12. The converter resembles an integrated ADC [START_REF] Fusayasu | A fast integrating adc using precise time-to-digital conversion[END_REF]. It is made of an integrator, coupled with a comparator. At the start of the conversion, the signal F P U LSE sends a first pulse to signal the beginning of the conversion, and the signal V IN is integrated until it reaches the value of V REF . Once it reaches this value, the comparator switches from "0" to "1", stopping the conversion and the signal E P U LSE sends a second pulse to signal its end as shown in figure 4.13. The time between the two pulses is proportional to the signal V IN . By using a counter at the SIC level, this time can be computed and transformed into a digital signal. Although it is possible to use only one channel to send the first and second pulse, we chose to send the first pulse through a first channel called B P U LSE and the second pulse through the E P U LSE channel. That is to avoid any problems that may occur if an Cmep Evolution towards a low complexity service network compatible with analog functions 97 acknowledgment signal is stalled. If the first pulse is not acknowledged, then it remains at "1" until the acknowledgment occurs, and then a second pulse can be sent. This can lead to an error in conversion, since the time between the first and second pulse can be corrupted. However, because it is a differential path, it can be subjected to a differential derivation.
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Since it was decided to keep the same topology, and the same serial structure, the E P U LSE channel is shared by all the analog interfaces. The counter is placed at SIC level and receives the first and second pulse from an interface, and compute the value of the signal.

The new network interface with both the digital part and analog part is depicted in figure 4.14, only an A/D bit was added. The digital part has only slightly changed from the description in section 4.2.2.2. The custom interface block is optional and used in case the adaptive block cannot receive the Request signal or send an acknowledgment signal, or if there is a need to convert the asynchronous data into synchronous one and vice-versa. 

Adaptive bloc

Results

In order to validate the new network, especially the conversion part, it was necessary to check if the functionality is correctly achieved and how the network itself affects the conversion.

Both the integrator and the integrator are ideal, taken for the 28nm FDSOI library. The circuit was designed using the Cadence tool and the Eldo simulator for the electrical simulation. The simulation was done at 25°C at a typical corner, with no back biasing.

Circuit's functionality

The first step was to insure the functionality of the conversion circuit. First we analyzed the results of the delay time between B P U LSE and E P U LSE signals for different values of V IN and V DD ranging from 0.8V to 1.5V for V IN and 0.6V to 1V for V DD , with a 0.1V step for both. We observe that the delay time doesn't differ when V DD changes, which is due to the differential conversion.

Cmep

Evolution towards a low complexity service network compatible with analog functions 98

Voltage variation impact

Once the functionality was validated, it was next necessary to check the impact of the network's variations on the conversion. The main variations the network would be subjected to are PVT variations, as environmental variations won't affect the conversion. Taking into account that the process variations can be handled at the design step and eventually compensated by a calibration step, and since a WSN node is a small SoC with no expected hot spots formation or great temperature gradient, the only variation that would affect in any significant way the conversion is a voltage variation. Thus, it is necessary to study its impact. To that effect, two types of analysis will be conducted: the impact of the number of stages on a conversion, and the effect of static and dynamic voltage variations.

For the first analysis, the conversion was done at different network depths, from 1 to 8 interfaces in the network. With each added interface, a delay is added to the However, because of the differential conversion used, and because B P U LSE and E P U LSE have mirroring paths, the accumulated delay is canceled out, and in the end, we still have the same delay time between B P U LSE and E P U LSE without any additional delay added. Moreover, because there is only one counter which is placed at SIC level, it is not affected by the network's depth. The simulations were done with a V DD and V IN of 0.6V.

Finally, we needed to determine the impact static and dynamic voltage variation on the network. However, it is hard to quantify it, as it depend on the supply voltage, the network's depth and other noise sources. In order to represent it and analyze its impact on the circuit, two types of simulations were conducted: the first was a static simulation, where the supply voltage of the network was locally increased/decreased by 100mV, while in the second round of simulations, a dynamic supply noise in the form of a sinusoidal signal of different values (50mV, 75mV, 100mV) of amplitude was added to the V DD signal. In
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both cases, the voltage variation was injected to one of the stages of the network. In this case, in a 4 interfaces network, the supply noise was applied at the second interface level. When applying the noise to both the B P U LSE and E P U LSE paths, the delay time doesn't change, as the noise affects both paths in a similar way. However, when the noise is applied to only one of the paths, either the one taken by B P U LSE or E P U LSE , the delay time changes depending on the value of the noise injected, and its phase with respect to the transmitted pulses. It is clear that if the differential path is destabilized, then the value of the conversion cannot be assured. Further analysis are needed to study in depth those phenomenons.

Conclusion

In this section, a new communication network architecture was presented. This network is geared towards simpler and less complex digital adaptive blocks, but also targets analog adaptive blocks which were not previously discussed. The new network has two parts, a digital serial interconnect, with less area and latency than the one presented in section 3.3, and an analog part in order to transfer analog values from the adaptive blocks to the microcontroller.

The digital network has a similar architecture to the one presented in section 3.3.1, with a serial daisy chain topology, and a central SIC and distributed interfaces. The main difference is the framing strategy and the subsequent architecture of the interfaces and the SIC to correspond to the new frame. This new frame allows us to target smaller blocks as well as more complex blocks. While the SIC architecture did not change much, the interface architecture had to be completely redesigned, which led to a one third reduction in the interface area and more than 85% latency reduction (not the final number).

The analog part of the network serves to transfer sense data to the microcontroller. To implement it, a serial ADC was split into two blocks, an analog-to-pulse converter block which is placed in every interface, and a centralized pulse-to-digital converter in the form of a counter in the SIC. This distributed architecture benefits from the already existent architecture of the network as well as the asynchronous nature of the network.

General Conclusion and Perspectives

Contributions and Conclusion

The popularity of IoT has put considerable constraints on the sensor devices used whether single or in Wireless Sensor Networks (WSN). In order to keep up to the market demands, the sensor device has to be as energy efficient as possible while providing satisfying performances. To achieve that, several techniques are used, chief among them is the use of adaptive blocks to achieve optimum energy efficiency. Adaptive blocks are circuits capable of reacting to variation and thus adapt their performances depending on the environment, the application and the energy budget.

However, integrating several adaptive blocks in a single System-on-Chip (SoC) comes with many challenges, especially concerning on-chip communication between different blocks. The adaptive blocks relay on both local and global control loops to operate and be as energy efficient as possible. As such, transferring control signals between adaptive blocks and microcontroller has to be thought of accordingly. Moreover, WSN nodes are mixed-signal SoCs, and as such, any communication network has to take that into account.

In this work, we present an on-chip communication network dedicated to the transfer of control and reconfiguration signals to the adaptive blocks. The proposed network is asynchronous and will be responsible for transferring digital reconfiguration data to and from a microcontroller towards adaptive blocks, and transferring analog signals and values to the microcontroller from the adaptive blocks.

To that effect, a first asynchronous serial network was implemented using the Tiempo ACC tool, with a daisy chained topology chosen for its reduced wire count and ease of network deployment. The network has a central node called a Serial Interface Controller (SIC) acting as a bridge between the network's interfaces and the WSNN's microcontroller, and responsible for all the serial/parallel data conversion. Additionally, a test module was added to the network in order to accurately determine the circuit's latency, throughput and power consumption. This first network was then manufactured in a 28nm FDSOI technology, using Frequency Locked Loops (FLL) as adaptive blocks. An 1pJ/bit energy per bit was achieved, while the latency of a single stage of the network was 20ns/bit, due mainly to its serial nature.

In order to decrease the latency, and achieve better energy per bit, a hybrid network was proposed, resulting in a 0.07 pJ/bit of energy and a 1ns/bit latency. Although this result was good, a hybrid implementation is harder to deploy and has four times more wires.

Since the previous proposal was mainly suitable for medium complexity digital circuits and blocks, we proposed a new serial architecture aiming at controlling mixed-signal circuits, typically smaller blocks and allowing the transfer of analog signals. As a result, the interface area was reduced by a third, and the latency by 85%.

Additionally, an analog part was added to the new serial architecture, in order to transfer the analog data from the adaptive blocks to the microcontroller. In order to take advantage of the network's topology and decrease the interfaces area, we chose to implement a distributed analog-to-digital converter, with a local analog-to-pulse converter at interface level, and a centralized pulse-to-digital converter at SIC level. We also chose to use a differential conversion method, which proved to be beneficial, as it allows us to bypass several problems due to the network's generated noise which can negatively affect the conversion.

The mixed-signal dedicated communication network presented in the end is capable of efficiently transferring both digital and analog data while achieving a low latency, low area overhead and low energy.

Perspectives

This work allowed us to explore the possibility of adding a dedicated network into a SoC for the purpose of reconfigurating adaptive blocks and easing the transfer of control signals across a chip integrating several adaptive blocks. While the proposed mixed-signal asynchronous communication network proved to be energy efficient and achieved its purpose, many improvements and perspectives can still be had.

The architecture of the dedicated asynchronous communication network is a result of many choices already discussed in section 3.3. However, improvements to either the SIC or the interfaces is still possible, especially concerning the way data is converted from serial to analog and vice-versa at SIC level. As seen in section 4.2.2.2, by capitalizing on the asynchronous nature of the network, area and latency improvements can be achieved.

Concerning the analog part of the mixed-signal dedicated network, we chose to use a serial ADC and split its function in two parts, however, it is possible to consider other candidates, chief among them is the sigma-delta converter, which can also be split to accommodate the architecture of the network. In this case, the modulator, which is often quite simple, can be placed at interface level, while the decimator can be shared by the interfaces and implemented in the SIC. However, it may require a specific frame for stopping the modulation. Moreover, other possible architectures based on the same distributed conversion can be used such as Pulse Width Modulation (PWM). Furthermore, any type of integrated circuits capable of conversion can be used. For instance, we considered implementing a synchronous oscillator [START_REF] Uzunoglu | The synchronous oscillator: a synchronization and tracking network[END_REF] as a conversion circuit, however, for lack of time, this solution was not pursued. Furthermore, it would be worth looking into the calibration of the analog-to-digital converter used in this network, and how it could be inserted in the distributed network.

One important perspective would be to see how the network would hold up when integrated in a WSN node, and how the performances achieved would translate once confronted with a complete circuit. While the implementation and test strategy tried to mimic a WSN node, the final performance results of the circuit would not be determined until integrated in a real node.

Beyond that, it would be interesting to see how effective the circuit is actually, and if it was warranted to add a dedicated network to a WSN node. We can expect that if the duty cycle for reconfiguration is short, then the asynchronous network is worth adding. Moreover, it is possible to imagine integrating this network in any type of SoC with several adaptive blocks, as energy efficiency is not an issue found in WSN only. The dedicated network is versatile and the hybrid version presented in section 3.4.3 can for example be used in more complex SoCs which can accommodate the large wire number. In this case, the possibility of using the network not only for reconfiguration but also for testing could be investigated.

The presented work is only a glimpse of how to integrate a dedicated network, it can always be improved upon and used in different manners.

Résumé général des travaux

Contexte et motivation L'essor et la popularité de l'Internet des Objets (Internet of Things : IoT) et les opportunités qu'il ore sont énormes. Comme son nom l'indique, l'IoT est un moyen de connecter des dispositifs à l'Internet, permettant ainsi un accès facile aux données collectées par ce dispositif. L'IoT a une application dans presque tous les domaines, qu'il s'agisse d'automobile [START_REF] Jóźwiak | Advanced mobile and wearable systems[END_REF], de villes intelligentes [START_REF] Hancke | The role of advanced sensing in smart cities[END_REF], de portables [START_REF] Athavale | Biosignal monitoring using wearables: Observations and opportunities[END_REF], d'agriculture [START_REF] Suresh Neethirajan | Recent advancement in biosensors technology for animal and livestock health management[END_REF][29], de santé [START_REF] Avila | Applications based on service-oriented architecture (soa) in the field of home healthcare[END_REF] et de plusieurs autres industries [START_REF] Xu | Internet of things in industries: A survey[END_REF]. On prévoit que d'ici 2020, plus de 26 milliards d'objets connectés seront en circulation [START_REF] Morgan | A simple explanation of 'the internet of things[END_REF], certains estimant qu'on pourrait atteindre 50 milliards d'appareils.

L'Internet des Objets est essentiellement basée sur les réseaux de capteurs sans l (WSN) et les dispositifs de détection. Un WSN est un ensemble de n÷uds de capteurs répartis sur une zone particulière. Chaque n÷ud du réseau est capable de détecter, de calculer et de communiquer, en créant ecacement un réseau de dispositifs interconnectés. Les données de ces appareils sont collectées, analysées et des actions sont ensuite prise dépendant de cette analyse. Bien que les appareils IoT soient très accessibles grâce à la miniaturisation technologique, ils doivent encore surmonter plusieurs dés, les plus importants étant la communication, la sécurité et l'ecacité énergétique.

En eet, chaque périphérique IoT, ou périphérique intelligent, doit se connecter à Internet. En outre, de nombreuses applications nécessitent un système autonome, ce qui fait de l'ecacité énergétique l'un des dés les plus importants des plates-formes IoT.

Il existe plusieurs façons d'assurer l'ecacité énergétique dans un n÷ud WSN, comme la mise en ÷uvre d'une unité de gestion de l'énergie (EMU) avec un système de balayage d'énergie [START_REF] Wolf | The physics of event-driven iot systems[END_REF] [34], un cycle de fonctionnement bien contrôlé et même un matériel dédié. Cependant, en fonction de l'application, le système de récupération d'énergie doit être adapté, et le mode de veille a une puissance de fuite résiduelle ce qui rend l'ecacité énergétique plus dicile à atteindre. Une solution possible au problème de l'ecacité énergétique consiste à utiliser des blocs adaptatifs.

De plus, le marché de l'IoT devrait être très fragmenté, en raison de la diversité des applications. En outre, le dispositif IoT doit être à faible coût, et pour atteindre cet objectif, une fabrication à grand volume est nécessaire, ce qui n'est pas possible si chaque dispositif IoT est spécialisé dans une seule application. Ainsi, un circuit IoT doit couvrir plusieurs applications avec des besoins diérents. Les blocs adaptatifs ou recongurables sont également une solution ecace pour cela.

Ces blocs sont des circuits numériques ou analogiques capables d'ajuster leurs performances à leur environnement, l'application et le budget énergétique, ce qui en fait de bons candidats pour améliorer l'ecacité énergétique en échangeant des performances contre de l'énergie. La plupart de ces blocs fonctionnent dans une architecture de type Sense&React à travers deux boucles de contrôle, une locale et une globale : une boucle locale pour ajuster leurs propres paramètres, et une globale pour réaliser l'adaptabilité et l'efcacité énergétique à travers la puce. De plus, les blocs adaptatifs peuvent être à la fois analogiques et numériques, de même que les signaux de contrôle ou les données Sense&React. En tant que tel, la manière de gérer le transfert des signaux de contrôle doit être prise en compte pour obtenir une ecacité énergétique optimale dans un système intégrant plusieurs blocs adaptatifs, comme c'est le cas d'un noeud WSN. Objectif L'utilisation de blocs adaptatifs dans les n÷uds de réseau de capteurs sans l pour les applications IoT est une perspective intéressante, car ces blocs peuvent ajuster et adapter leurs performances en fonction du budget énergétique, de l'environnement ou de l'application. Ils peuvent répondre efcacement à toutes les variations que le circuit peut subir, qu'elles soient intrinsèques ou environnementales, mais leur intégration est également dicile. Ces blocs adaptatifs sont contrôlés par des boucles de contrôle locales et globales, car ils doivent être conscients à la fois de leur statut, mais aussi de l'état des autres blocs, an d'atteindre une ecacité énergétique maximale. Ceci conduit à une nécessité de partage d'information et de transfert de signaux de commande ecace et compatible avec de nombreux blocs. L'ob-jectif de ce travail est de traiter le transfert de signaux de commande vers et depuis ces blocs adaptatifs, d'une manière à la fois ecace et performante, en mettant en place un réseau de communication dédié capable de répondre à ces besoins et permettant une approche plug&play.

Organisation du manuscrit de thèse

Ce manuscrit est organisé en deux parties, chaque partie étant divisée en deux chapitres. La première partie traite de la motivation qui pousse ce travail, ainsi que de son état de l'art, tandis que la deuxième partie présente le travail eectué pendant cette thèse. L'état de l'art aborde deux problèmes, chaque problème présenté dans un chapitre diérent. Le premier chapitre traite de la nécessité d'aller vers des circuits adaptatifs comme moyen d'atteindre l'ecacité énergétique, en particulier pour les applications IoT de réseau de capteurs sans l. Cependant, intégrer plusieurs blocs adaptatifs dans le même SoC peut être assez diciles, comme expliqué dans le premier chapitre de cette thèse. Surtout dans les boucles de contrôle locales et globales des circuits adaptatifs, les signaux de reconguration doivent être transférés et gérés de manière ecace. Ainsi, le deuxième chapitre donne un aperçu des réseaux de communication et de réseau-sur-puce (Network-on-Chip), leurs architectures et structures, et comment la communication est généralement traitée sur puce. Le chapitre discute aussi de leurs limites dans la perspective de notre application. Le troisième chapitre présente le premier réseau de communication mis en place dans le but de la reconguration de blocs adaptatifs numériques. Le chapitre présente la structure du réseau de communication choisi : son architecture générale, sa topologie, la trame utilisée et les raisons derrière ces choix. Une première puce a été conçue et fabriquée : les mesures et résultats en latence, débit et énergie sont également donnés. Un deuxième circuit hybride est également présentée. Le quatrième chapitre aborde la problématique de la transmission ecace de signaux analogiques dans le réseau depuis des blocs adaptatifs vers un microcontrôleur. Il présente une nouvelle structure du réseau de communication à signaux mixtes, ainsi que des améliorations et des ajustements à la première version.

Finalement, plusieurs conclusions sont présentées, ainsi que des perspectives pour les travaux futurs.

Contribution et conclusion

Dans ce travail, nous présentons un réseau de communication sur puce dédié au transfert de signaux de contrôle et de reconguration aux blocs adaptatifs. Le réseau proposé est asynchrone et sera chargé de transférer des données de reconguration numérique vers et depuis un microcontrôleur vers des blocs adaptatifs, et de transférer des signaux et des valeurs analogiques au microcontrôleur à partir des blocs adaptatifs.

A cet eet, un premier réseau série asynchrone a été implémenté à l'aide de l'outil ACC de Tiempo, avec une topologie chainée choisie pour son nombre de ls réduit et la facilité de déploiement du réseau. Le réseau a un noeud central appelé contrôleur d'interface série (SIC) agissant comme un pont entre les interfaces du réseau et le microcontrôleur du noeud de capteur, et responsable de toutes les conversions de données série/parallèle. De plus, un module de test a été ajouté au réseau an de déterminer avec précision la latence, le débit et la consommation d'énergie du circuit. Ce premier réseau a ensuite été fabriqué dans une technologie FDSOI 28nm, en utilisant des boucles à verrouillage de fréquence (FLL) comme blocs adaptatifs. Une énergie de 1pJ/bit par bit a été obtenue, tandis que la latence d'une seule couche du réseau était de 20ns/bit, principalement en raison de sa nature série.

An de diminuer la latence, d'obtenir une meilleure énergie par bit et d'augmenter la éxibilité du réseau, un réseau hybride a été proposé, ce qui a permis d'obtenir une énergie de 0,07pJ/bit et une latence de 1ns/bit. Bien que ce résultat soit bon, une implémentation hybride est plus dicile à déployer et possède quatre fois plus de ls.

Comme la proposition précédente était principalement adaptée aux circuits et blocs numériques de complexité moyenne, nous avons proposé une nouvelle architecture en série visant à contrôler les circuits à signaux mixtes, généralement des blocs plus petits et permettant le transfert de signaux analogiques. En conséquence, la zone d'interface a été réduite d'un tiers et la latence de 85%. De plus, une partie analogique a été ajoutée à la nouvelle architecture série, an de transférer les données analogiques des blocs adaptatifs vers le microcontrôleur. An de tirer parti de la topologie du réseau et de réduire la surface des interfaces, nous avons choisi de mettre en ÷uvre un convertisseur analogique-numérique distribué, avec un convertisseur analogique-impulsionnel local au niveau de l'interface, et un convertisseur impulsion-numérique centralisé au niveau SIC. Nous avons également choisi d'utiliser une méthode de conversion diérentielle, qui s'est avérée bénéque, car elle nous permet de contourner plusieurs problèmes dus au bruit généré par le réseau, ce qui peut aecter négativement la conversion.

Le réseau de communication dédié à signaux mixtes présenté à la n est capable de transférer ecacement à la fois des données numériques et analogiques tout en ayant une faible latence, un faible surdébit et une faible consommation d'énergie.

Perspectives

Ce travail nous a permis d'explorer la possibilité d'ajouter un réseau dédié dans un SoC dans le but de recongurer des blocs adaptatifs et de faciliter le transfert de signaux de contrôle à travers une puce intégrant plusieurs blocs adaptatifs. Alors que le réseau de communication asynchrone à signaux mixtes proposé s'est avéré économe en énergie et a atteint son objectif, de nombreuses améliorations et perspectives peuvent encore être obtenues. L'architecture du réseau de communication asynchrone dédié est le résultat de nombreux choix déjà abordés dans la section 3.3. Cependant, des améliorations au SIC ou aux interfaces sont toujours possibles, en particulier en ce qui concerne la façon dont les données sont converties de série en analogique et inversement au niveau du SIC. Comme nous l'avons vu dans la section 4.2.2.2, en capitalisant sur la nature asynchrone du réseau, des améliorations de surface et de latence peuvent être obtenues.

En ce qui concerne la partie analogique du réseau dédié à signaux mixtes, nous avons choisi d'utiliser un ADC série et de diviser sa fonction en deux parties, mais il est possible de considérer d'autres candidats, tel que le convertisseur sigma-delta qui peut aussi être divisé pour s'adapter à l'architecture du réseau. Dans ce cas, le modulateur, qui est souvent assez simple, peut être placé au niveau de l'interface, tandis que le décimateur peut être partagé par les interfaces et implémenté dans le SIC. Cependant, il peut nécessiter une trame spécique pour arrêter la modulation. De plus, d'autres architectures possibles basées sur la même conversion distribuée peuvent être utilisées telles que Pulse Width Modulation (PWM). De plus, tout type de circuit intégré capable de conversion peut être utilisé. Par exemple, nous avons envisagé de mettre en ÷uvre un oscillateur synchrone comme circuit de conversion, mais faute de temps, cette solution n'a pas été retenue. En outre, il serait intéressant de se pencher sur l'étalonnage du convertisseur analogique-numérique utilisé dans ce réseau et sur la façon dont il pourrait être inséré dans le réseau distribué.

Une perspective importante serait de voir comment le réseau se comporterait lorsqu'il est intégré dans un n÷ud de capteur, et quelles seraient les performances obtenues dans un n÷ud réel.

Au-delà de cela, il serait intéressant de voir à quel point le circuit est réellement ecace, et s'il était justié d'ajouter un réseau dédié à un n÷ud de capteur. Nous pouvons nous attendre à ce que si le cycle de fonctionne-ment pour la reconguration est court, alors le réseau asynchrone vaut la peine d'être ajouté. De plus, il est possible d'imaginer l'intégration de ce réseau dans n'importe quel type de SoC avec plusieurs blocs adaptatifs, car l'ecacité énergétique n'est pas un problème que l'on trouve uniquement dans les réseaux de n÷uds de capteur. Le réseau dédié est polyvalent et la version hybride peut par exemple être utilisée dans des SoC plus complexes pouvant accueillir un grand nombre de ls. Dans ce cas, la possibilité d'utiliser le réseau non seulement pour la reconguration, mais aussi pour le test pourrait être étudiée.

ABSTRACT

Wireless sensor network (WSN) have experienced an incredible success these past years, especially due to the Internet of Thing (IoT) paradigm, which opened the door to much more interesting applications. The wireless sensor network nodes (WSNN) are used in nearly all smart houses applications, as a network of wearables or as entertainment devices. This keen interest in WSN is not without consequences, as many of these applications require from the node to be autonomous and thus energy efficient. The topic of energy efficiency for the WSN is rich and many teams are proposing as many solutions as there are applications. One of the most promising solutions is the integration of adaptive blocks in the node, which can adapt their performances and thus their energy expenditure according to the application, environment or the energy budget. This would allow any type of WSNN to operate at an optimum energy point and achieve the highest energy efficiency possible. However, this solution has its own issues. The work presented in this thesis deals with the control of these adaptive blocks. The aim of this work is to efficiently transfer the control data and the sense&react data throughout the node to and from the corresponding adaptive blocks. The nature of WSNN itself imposes the use of a communication network capable of a fast and independent wake and sleep mode, while the nature of the data dictate the need for a complementary communication network, as the data can be either analog or digital, and as such, a typical network is not capable of handling it without the help of secondary conversion blocks. In this manuscript, a first asynchronous communication network is proposed to deal with the issue at hand, mainly the transfer of configuration data throughout a network, in an event-driven fashion, hence the use of the QDI asynchronous logic. This network is digital only and two versions were designed, a serial and a hybrid one, and the serial version was implemented in silicon. Both proved to be energy efficient, as the serial network only needs 1pJ/bit, while the hybrid one consumes 0,07pJ/bit at 0.6V in a 28nm FDSOI technology. In the second part of this work, an improvement targeting simpler and mixed-signals circuits was carried out, including the design and analysis of a network capable of efficiently transferring analog data.

RÉSUMÉ

Les réseaux de capteurs sans fils (WSN) ont connu un succès important ces dernières années, en particulier grâce à l'émergence de l'Internet des Objets (IoT), qui a permis des applications beaucoup plus intéressantes. Les réseaux de capteurs sont utilisés dans presque toutes les applications de maisons et villes intelligentes et des objets connectés personnels. Beaucoup de ces applications nécessitent que les noeuds de capteurs constituant le réseau soient autonomes et donc efficaces en énergie. Le thème de l'efficacité énergétique pour les WSN est riche et adressé par de nombreuses équipes de recherches. L'une des solutions les plus prometteuses est l'intégration de blocs adaptatifs dans le noeud, qui peuvent ajuster leurs performances et leurs dépenses énergétiques selon les besoins de l'application, son environnement ou l'énergie disponible. L'objectif est de permettre à un noeud de fonctionner à un point d'énergie optimal et d'atteindre l'efficacité énergétique la plus élevée possible. Le travail présenté dans cette thèse traite du contrôle de ces blocs adaptatifs. Un noeud de WSN doit être capable de se réveiller et de se remettre en veille rapidement ce qui impose l'utilisation d'un réseau de contrôle efficace. Les données de contrôle peuvent être analogiques ou numériques. Ceci entraîne le besoin d'un réseau de communication complémentaire au réseau qui sert à transmettre les données numériques. Dans ce travail, un premier réseau de communication asynchrone est proposé pour adresser ce besoin de transfert de données de configuration dans un noeud. Cette communication basée sur événement utilise la logique asynchrone QDI. Ce premier réseau est numérique et deux versions ont été conçues, une série et une hybride. La version série a été implémentée en silicium et testée. Les deux se sont avérées efficaces en énergie ; le réseau série n'utilise que 1pJ/bit, tandis que l'hybride consomme 0,07pJ/bit à 0.6V en technologie FDSOI de 28nm. Dans la deuxième partie de ce travail, une amélioration visant des circuits plus simples et mixtes a été réalisée, incluant la conception et l'analyse d'un réseau capable de transférer efficacement des données analogiques.
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Table 2 .

 2 

			1: Network topologies	
	Topology	complexity	Area	latency	scalability
	Shared bus	low	average	average	low
	Split bus	average	average	average	average
	Hierarchical bus	high	high	fast	high
	Point-to-point	low	low	fast	low
	Crossbar bus	high	high	high	high
	Ring	low	low	average	average
	Tree	low	low	average	average
	Daisy chain	low	low	average	average
	Star	low	low	average	low
	Mesh	average	high	average	high
	Torus	average	high	high	high
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	Header	Type	Size	Class	Routing data	…
		Head Body	2 𝑛	Priority levels		
		Tail				
	Payload	Data		Framing	Stack	…
	Error code	Generated error code			

Figure 2.16: Packet switching frame
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  Considered the simplest way of sending data, the single non-pipelined transfer mode sends the address and control data first, then transfers the data in the subsequent cycles. It is a straightforward transfer mode, where everything is done sequentially as shown in figure2.[START_REF] Bouajila | A lowoverhead monitoring ring interconnect for mpsoc parameter optimization[END_REF]. This transfer mode can only be implemented when separate address and data bus are present. The address and the data are sent concurrently (or with a clock cycle difference). This allows the bus to respond more efficiently to the masters' request and is faster overall than the single non-pipelined transfer mode. This transfer mode is illustrated in figure2.20. In this case, the bus requests the right to send multiple address/data combination at the same time in a burst (figure 2.22). Once the arbiter acknowledges the request, the bus can send as much data as needed. It is useful to reduce the transfer latency, however, it can only be implemented if the address and data bus are separate. In a split transfer, the transaction is split after the master has sent a request to the slave (figure 2.23). As it may take some time to prepare the data, the slave cuts the communication and frees the bus to be used by other masters. Once the slave is ready, it requests the access to the bus from the arbiter to send the data. The above). It allows a parallel data transfer, however, it is necessary to add an ID to each transaction so the master can reorder the received data. This imposes extra logic and signals in the master node, as well as the slaves and arbiters. The data is broadcasted to every component of the bus. This type of transfer mode is essentially used for cache coherence protocol, where it is necessary for all components to update their library.
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						Req_bus_M1			
	Req_burst					Req_bus_M2			
	Address Ack_arbiter	Addr1	Addr2	Addr3		Ack_arbiter Address	Ack_M1	Addr1	Ack_M2	Addr2
	Data		Data1	Data2	Data3	Slave1				Data1
						Slave2				Data2
	Figure 2.22: Burst transfer mode					
						Clk			
	Clk								
						Req_bus_M1			
	Req_bus								
						Req_bus_M2			
	Ack_arbiter								
	Address					Ack_arbiter	Ack_M1	Ack_M2	
						Address			Addr1	Addr2
	Data								
						Data				Data1	Data2
	Figure 2.19: Single non-pipelined transfer mode	Figure 2.20: Single pipelined transfer mode
		Figure 2.21: Single non-pipelined and single pipelined transfer mode

* Single non-pipelined: * Pipelined : * Non-pipelined burst: The burst mode is a transfer mode where a single master sends multiple data on one transaction. By performing a burst transfer, the time spent requesting access to the arbiter is cut short. * Pipelined burst: * Split: split transfer allows the use of idle cycles and optimize data transfer time, however, it requires extra logic and signals to be implemented in the slaves and arbiters to support this mode. * Out-of-order: As the name indicate, the out-of-order transfer allows masters to send data to several slaves without waiting for the transaction to finish (see split Cmep State * Broadcast:

Table 2 .

 2 2: NoC and bus based architecture comparison

		NoC based Design	BUS-based design
	Bandwidth and speed	• Non-blocked switching guarantees multiple concur-rent transactions • Pipelined links: higher throughput and clock speed • Degraded electrical performances with every added • A transaction blocks other transactions in a shared bus
			unit (increase of parasitic capacitance)
		• Regular repetition of similar wire segments, easier	
		to model for DSM	
	Resource utiliza-	• statistically multiplexing shared link resources	• Single occupation of bus by the current master
	tion		
		• Early error detection by link-level and packet-basis	• More penalty by end-to-error control
	Reliability	error control	
		• Error reliable signaling thanks to shorter switch-to	• Increase error with increased wire length
		switch	
		• Possibility of a re-route when path fault path de-	• Fault path is a bus system failure
		tected	
	Arbitration	• Smaller and faster distributed arbiters • Distributed arbiters make only local decision	• Bus speed "encombered" by shared arbiter • Centralized arbiters make better traffic decision
	Transaction	• Point-to-point connection consumes the less	• More energy for broadcasting
	energy		
	Modularity and	• Reinstantiation of switches and links	• Bus deign is specific, and not reusable
	complexity		
	Scalability	• Aggregated bandwidth scales with network size	• Decrease in Bus-based bandwidth with scaling up
	Clocking	• No globally synchronized clock, enables high speed	• Need for a global clock
		clocking	
		• Internal packet contention causes packet latency	
	Latency	• Repeated arbitration on each switch may cause	Wire speed based
		cumulative latency	
		• Additional latency caused by packetization, syn-	
		chronization and interfacing	
	Area overhead	• Additional area needed by switches/routers and	• less buffer and area used
		buffers	
	Standardization	• No NoC-oriented standard	• Widely used standard IPs (AMBA, CoreConnect...)
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					BusImatrix		
				CrossITriggerIMatrixI(CTM)		
	JTAGI port	ARMI processor		ARMI processor		DSP	
			CrossI		CrossI		CrossI
			TriggerI		TriggerI		TriggerI	HTM
	DAP	ETM	InterfaceI (CTI)	ETM	InterfaceI (CTI)	ETM DSP	InterfaceI (CTI)
				DebugIAPB		
				TraceIbusI(ATB)		
					Trace	
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								ITM
					Replicator	
								Replicator
					EmbeddedI	TraceIPortI	
					TraceIBufferI (ETB)	InterfaceIUnitI (TPIU)	SerialIWireI OutputI
								(SWO)
						TraceIport	

Figure 2.32: Coresight components (DAP, ETM, CTM, CTI)

[START_REF]Arm CoreSight SoC[END_REF] 

  Once the receiver has the data, it sends an acknowledgement back to the sender and is then put in a busy state and is unable to receive new data
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	Data		Data i		Data i+1	Data		valid	invalid
	Ack					Ack				
	Phase	1	2	1	2	Phase	1	2	3	4
		transmission i transmission i+1			transmission i	
		Figure 3.2: 2 phase protocol		Figure 3.3: 4 phase protocol
		Acknowledgement			Acknowledgement			Acknowledgement
					Asynchronous		Asynchronous			
					Sender		receiver			
		Request/Data			Request/Data			Request/Data
		Figure 3.1: Communication setup in an asynchronous handshake protocol
	A handshaking protocol operates as follows:				

* The receiver is in a listening state, waiting for new events from the sender. An event is a change of state of the channel.

* The sender checks to see if the receiver is busy or free. If busy, it will wait until the receiver is free, then send the data. If free, it will send the data immediately. * * Once the receiver sends the data to the next receiver, it is put in a free state and can once again receive new data

Table 3 . 1 :

 31 Structure of the frame sentThe areas of the SIC and interfaces for each scenario are compared,and the results are reported in Table3.2 :

	Bp	addr_bloc addr_reg	rw	data
	1 bit	4 bits	8 bits	1 bit 32 bits

Table 3 .

 3 

		2: Frame comparison	
	Scenario	Interface area(µm 2 ) SIC area (µm 2 )
	scenario 1	1050	1300
	scenario 2	1050	1800
	Scenario 3	930	1320

Table 3 .

 3 

3: Microcontroller configuration frame

Pr addr_bloc addr_reg rw data

Table 3 .

 3 

	4: Configuration frame
	Bp addr_bloc addr_reg rw data
	Table 3.5: Sense frame
	addr_bloc addr_reg data

Table 3 .

 3 

		6: Topology comparison	
	Topology	Interface area(µm 2 ) SIC area (µm 2 )
	Bus	1100	1800
	Daisy chain	930	1320

Table 3 .

 3 

				7: Data sent to the adaptive block	
	0 1 2 3	4	5 6 7 8 9 10 11 12 13 14-45
	Bypass bit	Address Interface	Address Register	RW bit	DATA

Table 3 .

 3 

		8: Frame of the data sent from the adaptive block
	0 1 2	3	4 5 6 7 8 9 10 11 12-43
	Address Interface	Address Register	DATA

Table 3 . 9 :

 39 Frame of the data sent to the adaptive block

Table 3 .

 3 10: Frame of the data received from the adaptive block

	43 -36	35 -28	27 -20	19 -12	11 -4	3 -0
	DATA[31:24] DATA[23:16] DATA[15:8] DATA[7:0] Addr Register Addr Interface
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		Simulations	SystemVerilog Design	Synthesis ACC	Async/Sync
			Asynchronous sources .sv	(Asynchronous Circuit Compiler)	Interface
								.v
		Simulations	RTL Design Circuit Synchronous sources .v .vhd	Async. Netlist	.sdc	.sdf
		Simulations				.v	
				Synthesis			Synthesis
				Design Compiler			Design Compiler
							Propage
							Contraintes
		Simulations Simulations	Sync. Netlist .v .v Sync. Netlist	.sdc .sdc	.sdf .sdf	Async. Macro .v Netlist	.sdc	.upf
	Simulations	Questasim	Physical implementation (Floorplan, Placement, Clock tree, Routing, SignOff) SoCEncounter Kit
			.sdf	Circuit Netlist	Activity extraction	.vcd	.gds	Final Circuit
		Simulations		.v			
						Stimulis	
					Power Analysis	
					PrimeTime PX	
		Performances		Power Reports	Hierachical power Leakage Dynamic	Power .fsdb wave
					Cell power	
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 3 [START_REF] Pinckney | Low-power near-threshold design: Techniques to improve energy efficiency energy-efficient near-threshold design has been proposed to increase energy efficiency across a wid[END_REF]: Serial and hybrid implementation performance results

			Serial implem hybrid implem
	SIC	energy latency	0.03 pJ/bit 0.11 ns/bit	0.01 pJ/bit 0.09 ns/bit
		leakage	282.5 nW	300nW
	Interface	energy latency	0.92 pJ/bit 17 ns/bit	0.04 pJ/bit 0.90 ns/bit
		leakage	217nW	73.6nW
	Link	energy latency	0.04 pJ/bit 0.70 ns/bit	0.02 pJ/bit 0.10 ns/bit
		leakage	6nW	35.1nW
	nbr of wires	6	24

Table 3 .

 3 

			14: Hybrid frame structure
	1st flit		2nd flit	3rd -6th flit
	addr_bloc eof	addr_reg rw	data	eof
	8 bits	1 bit 8 bits	1 bit 8 bits 1 bit

Table 3 .

 3 

			15: Comparison with other networks		
		ASN (serial) ASN (hybrid)	Nexus	MARBLE	DCR	JTAG
	Technology 28nm FDSOI 28nm FDSOI 130nm TSMC	350nm	X	X
	Data size	32	8/16/24/32	variable	32	32	variable
	Energy	1 pJ/bit	0,07 pJ/bit	10,4 pJ/bit	X	X	X
	leakage	1,18 microW	772 nW	few mW	X	X	X
	Latency	20 ns/bit	1ns/bit	2ns/flit	17,4ns/flit 20ns/flit 10ns/bit

Table 4 .

 4 

								1: Data sent to the adaptive block							
	Control flit Address register								DATA							
	Addr_Interface	RW bit	Bypass_R bit	Addr_Reg1	EoF bit	Addr_Reg2	EoF bit	DATA_1	EoF bit	DATA_2	EoF bit	DATA_3	EoF bit	DATA_4	EoF bit	DATA_5	EoF bit	DATA_6	EoF bit	DATA_7	EoF bit	DATA_8	EoF bit
	4bits	1bits	1bits	4bits	1bits	4bits	1bits	4bits	1bits	4bits	1bits	4bits	1bits	4bits	1bits	4bits	1bits	4bits	1bits	4bits	1bits	4bits	1bits

Table 4 .

 4 

	2: Microcontroller configuration frame
	Pr addr_bloc addr_reg rw data
	Table 4.3: Sense frame: data sent to the microcontroller
	addr_bloc addr_reg data

  .5.

	I I_ack	FB3	X X_ack	FB2	Y Y_ack	FB3	Z Z_ack
	I						
	I_ack					FB1 can't receive data
	X						bit3
	X_ack					FB2 can't receive data
	Y				bit2		
	Y_ack			FB3 can't receive data	
	Z			bit1			
	Z_ack						

Table 4 .

 4 4: Performances comparison between the new version and the first serial version

		First serial version New version
	Number of gates	1890	1300
	Latency	20ns/bit	3ns/bit

Table 4 .

 4 5: Types of typical ADCs[START_REF] Bashir | Analog-to-digital converters: A comparative study and performance analysis[END_REF][24][START_REF] Cline | Noise, Speed, and Power Tradeoffs in Pipelined Analog to Digital Converters[END_REF] 

	Type	Complexity Resolution	Speed	Power
	Flash ADC	High	Medium	Fast	High
	Two-Step Flash ADC	Medium	Medium	High	Medium
	Folding ADC	Low	Medium	Medium Medium
	Subranging ADC	Low	Medium	Low	Medium
	Pipelined ADC	Medium	Medium	Medium	High
	Successive approximation ADC	Low	High	Low	Low
	Recirculating ADC	Low	Medium	Medium	Low
	Sigma-Delta ADC	Medium	Very high Medium Medium
	Serial ADC	Low	High	Low	Medium
	Level-crossing or asynchronous ADC	Medium	Medium	High	Medium

Table 4 .

 4 6: Data sent to the adaptive block

	Control flit	Address register
	Addr_Interface	RW bit	Bypass_R bit	A/D bit	Addr_Reg1	EoF bit	Addr_Reg2	EoF bit
	4bits	1bits	1bits	1bits	4bits	1bits	4bits	1bits

  B P U LSE and E P U LSE signals as shown in figure 4.15.

	B_pulse at 1st stage B_pulse at 2nd stage B_pulse at 3rd stage B_pulse at 4th stage B_pulse at 5th stage B_pulse at 6th stage

Process, Voltage and Temperature

Complementary Metal-Oxide-Semiconductor

Metal Oxide Semiconductor Field Effect Transistors

Low Vth

Contributions

The contributions presented in this manuscript are as follow: * Study, analysis and implementation of both a serial and hybrid asynchronous communication network for reconfiguration of digital adaptive blocks.

Part I

State of the Art and Motivation

Part II

Integrated Asynchronous Communication Networks for

Circuit Reconfiguration