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Glossary 
 

𝐴 - Without index: Rotation matrix 

 

With index: Amplitude (indices: 1 - perpendicular; 2 - parallel to 

interaction plane) 

𝑎 - Ellipsoid semi-minor axis 

𝑏 - Ellipsoid semi-minor axis 

𝑐 - Ellipsoid semi-major axis 

𝐷 - Divergence factor 

𝑬⃗⃗  - Electric field 

𝑭⃗⃗  - Force 

𝑯⃗⃗⃗  - Magnetic field 

𝐼 - Intensity 

𝒌̂ - Directional unit vector of ray 

𝑘 - Part A: Aspect ratio of spheroidal particles 

 

Part B: Wavenumber 

𝒌⃗⃗  - Wave vector 

𝑙 - Rayleigh length 

𝑛 - Refractive index 

𝒏̂ - Unit vector normal to the dioptric surface 

𝑃 - Power of laser beam (indices: ↑ - up beam; ↓ - down beam; 𝑡𝑜𝑡 – total 

power; 𝑙𝑒𝑣 – levitation power) 

𝑝 - Order of ray 

𝑅0 - Radius of mother spheres used to make ellipsoids 

𝑅 - Principal curvature radii of wavefront (indices: 1 - perpendicular; 2 - 

parallel to interaction plane) 

𝑟 - Without index: Distance travelled by ray 

 

With index: Fresnel coefficient of reflection (indices: 1 for perpendicular; 

2 for parallel polarisation with respect to the interaction plane) 
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𝑆 - Complex amplitude 

𝑇 - Transmissivity 

𝑡 - Fresnel coefficient of transmission (indices: 1 for perpendicular; 2 for 

parallel polarisation with respect to the interaction plane) 

𝑢 - Analogue of x axis for the Gaussian beam 

𝑣 - Analogue of y axis for the Gaussian beam 

𝑤 - Analogue of z axis for the Gaussian beam 

𝑥 - Part A: x coordinate of laser coordinate system 

 

Part B: x coordinate of particle coordinate system 

𝑦 - Part A: y coordinate of laser coordinate system 

 

Part B: y coordinate of particle coordinate system 

𝑧 - Part A: z coordinate of laser coordinate system 

 

Part B: z coordinate of particle coordinate system 

𝛼 - Incident angle of ray 

𝛽 - Refracted angle of ray 

𝜀 - Part A: Laser beam power ratio 

 

Part B: Product of Fresnel coefficients (indices: 1 for perpendicular; 2 

for parallel polarisation with respect to the interaction plane) 

𝜃 - Part A: Angle between the long axis of the particle and the beam axis 

(polar angle) 

 

Part B: Angle of rays with respect to the positive 𝑧-axis 

𝜆 - Wavelength of light 

𝜌 - Part A: Density 

 

Part B: Principal curvature radii of dioptric surface (indices: 1 - 

perpendicular; 2 - parallel to interaction plane) 

𝛕̂ - Tangential unit vector (with respect to surface) 

𝜙 - Azimuth angle of the particle system 
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𝜑 - Phase 

𝜔 - Laser beam radius (indices: 0 – beam waist; 𝑙 – local beam radius) 
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Abbreviations 
 

AO  Acousto-optic deflector 

GLMT - Generalised Lorenz-Mie theory 

GO - Geometrical optics 

LMT - Lorenz-Mie theory 

MLFMA - Multilevel Fast Multipole Algorithm 

OL - Optical levitator 

OT - Optical tweezers 

PS - Polystyrene 

RO - Ray optics 

VCRM - Vectorial Complex Ray Model 
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Résumé 
 

Ce travail de thèse est une contribution au projet national AMOCOPS, financé par l’ANR. Le 

thème central du projet est la diffusion de lumière par des particules de formes complexes et 

de grandes tailles (plusieurs dizaines de µm au moins), domaine où les méthodes de 

simulation numérique existantes trouvent leurs limites d’applicabilité. 

 

Nous abordons le problème par le biais des effets mécaniques de la lumière, autrement dit 

les forces et couples créés par la pression de radiation. Etant la conséquence du transfert 

d’impulsion entre l’onde et la matière, ces effets sont directement liés à la diffusion de lumière. 

La thèse comprend une partie expérimentale –majoritaire- concernant les réponses 

mécaniques de particules de polystyrène de forme ellipsoïdale et d’allongement variable sous 

illumination par un ou deux faisceaux laser. Les cas de faisceaux faiblement focalisés 

(lévitation optique) et d’un faisceau très fortement focalisé (pincette optique) sont examinés 

successivement. Nous caractérisons différents types d’équilibre statique, certains d’entre eux 

non décrits auparavant, obtenus dans les deux géométries.  Par ailleurs nous confirmons 

l’existence de réponses purement dynamiques, où la particule oscille en permanence. Trois 

nouveaux modes sont observés, deux dans la géométrie lévitation optique et un autre sous 

pincette optique. Cette étude nous permet de distinguer les oscillations dites de Simpson-

Hanna dans le régime linéaire de celles non linéaires mises en évidence avant nous par 

Mihiretie et al. 

 

Les résultats de nos expériences sont comparés à ceux obtenus par les simulations de J.C. 

Loudet, sur la base de la simple optique géométrique (OG) et limitées à 2 dimensions (2d). 

Nous montrons que ces simulations permettent de reproduire qualitativement et comprendre 

physiquement la plupart des comportements observés dans nos expériences. La principale 

limitation de ces calculs tient à ce que l’OG ignore le caractère ondulatoire de la lumière. Pour 

faire mieux et aller vers des simulations fiables quantitativement, il faut développer un modèle 

alliant optique géométrique et optique ondulatoire. C’est la fonction du modèle VCRM 

(Vectorial Complex Ray Model) développé récemment par K.F. Ren en 2d. Le but du projet 

Amocops est de mettre au point la version 3d de la méthode et de la valider sur la base 

d’expériences comme celles que nous avons conduites. La deuxième partie de la thèse est 

consacrée à la méthode VCRM. Nous en exposons les principes, et nous présentons 

quelques résultats des travaux en cours avec une version intermédiaire entre 2d et 3d, dite 

« 2d+ ». Quelques illustrations sont proposées sur des exemples impliquant des sphères et 

ellipsoïdes de grandes tailles. 
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Abstract 
 

This work is a contribution to the “AMOCOPS” project, funded by Agence Nationale 

de la Recherche. AMOCOPS is dedicated to the development of new computation 

schemes to simulate the light scattering patterns of large complexly shaped particles. 

Particle sizes are of the order of several 10s of micrometres, which is at the limit, or 

beyond the capabilities of currently available computation techniques. 

 

Our work indirectly deals with light scattering through the corresponding mechanical 

effects of light. Light scattering is the source of momentum transfer between light and 

matter, and therefore of the forces and torques acting on the exposed particles. The 

majority of Part A of this thesis is about the mechanical responses of ellipsoidal 

polystyrene particles of varying aspect ratios, under illumination by one or two laser 

beams. We investigate the case of weakly focused beams (optical levitation), and that 

of a single large aperture beam (optical tweezers). Different types of static equilibria, 

some of which are new, are observed and characterized in both geometries. We 

confirm the existence of dynamic states, whereby the particle permanently oscillates 

within the laser beam(s). Three new oscillation modes are observed, two of them in 

the conditions of optical levitation, and another one in the optical tweezer geometry. 

The study allows us to make a distinction between noise-driven oscillations in the 

linear regime, of the type predicted by Simpson and Hanna, and nonlinear oscillations 

such as those evidenced prior to this work, by Mihiretie et al. 

 

Results from our experiments are compared to simulations by J.C. Loudet, using 

simple ray-optics (RO) in two dimensions (2D). We show that results from 2D-RO 

qualitatively match most of our observations, and allow us to physically understand 

the main mechanisms at work in the observed phenomena. The simulations cannot 

be quantitatively exact, due to the 2D limitation, and because RO essentially ignores 

the wave nature of light. In Part B of the manuscript, we present the principles of the 

Vectorial Complex Ray Model (VCRM), which was recently developed by K.F. Ren in 

2d. The goal of AMOCOPS is to develop a full 3D version of VCRM, able to simulate 

light scattering by particles of any shape with a smooth surface. We explain the basics 

of the model, as well as the “2D+” version, which is an extension of the basic 2D-
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VCRM. A few illustrative examples of light scattering patterns computed with 2d+-

VCRM for large-sizes spheres and ellipsoids are presented. 
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General introduction 
 

The work reported in this dissertation is part of a large project called “Advanced Methods for 

Optical Characterization of Complex Particle Systems”, or AMOCOPS for short, led by 

Professor Kuan Fang Ren (CORIA, Rouen). AMOCOPS has research teams in Rouen, Lyon, 

Marseille and Bordeaux, and is funded by Agence Nationale de la Recherche (ANR). 

 

The project deals with the optical properties of droplets, as well as particles of “complex” 

shape, whose size is beyond a few wavelengths of visible light, up to tens of micrometres. 

Complex-shaped particles (CSPs) can be found everywhere: fluid mechanics (multiphase 

flows, sprays, aerosols etc.), atmospheric physics, chemical engineering and the life sciences 

are just some examples. Attempts to characterize particles in flows exploit their far-field light 

scattering properties, which can be characterized by various experimental techniques (laser 

diffraction spectrometry, phase Doppler interferometry and particle imaging are standard). The 

intensity of the scattered light is taken into account in different directions and across a given 

time period to deduce the characteristics of the particles present inside the probed volume of 

a system. If the particles are sufficiently similar in size, shape, constitution, and are not too 

large (less than 100 µm, say), then essential characteristics can be determined from the 

scattered light through approximate inversion procedures. These procedures are based on 

theoretical models for light scattering that are used to calculate the characteristics of light 

scattered by a given type of particle, or an ensemble of such particles. 

 

In general, the modelling of the interaction between light and particles is a difficult problem. 

Many theories have been developed to deal with scattering, absorption and radiation pressure. 

Rigorous methods are limited to particles with simple shapes (spheres and cylinders) due to 

theoretical or computational barriers; however, there are numerical methods capable of 

dealing with CSPs. These include the T-matrix, the Discrete Dipole Approximation (DDA), the 

Method of Moments (MoM) and the Finite Difference Time Domain (FDTD) techniques [1], 

which allow the calculation of the scattering properties of arbitrarily shaped particles, although 

there are still some limitations related to size, shape and processing power. There is currently 

no single perfect method to encompass all particle shapes and sizes within a few tens of 

microns, but more relevantly, there is no accurate method to perform the calculations for 

particles larger than a few tens of microns. The ultimate goal of the AMOCOPS project is to 

develop a novel model which relies on the combination of both, rays and waves, and is then 

easily applicable to the calculation of scattering diagrams for large CSPs, including above a 

few tens of microns. 
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Ray tracing, or Geometrical Optics (GO), is flexible when it comes to particle shapes. 

However, it may completely, or partially, neglect the contribution of wave effects and many 

internal reflections to the overall scattered field. Recently, Ren et al. [2, 3, 4, 5, 6] have 

successfully introduced wave properties to the geometrical optics model, and developed a 

mathematical formalism that allows the consideration of wavefront curvature as well as the 

phase shift due to focal lines. This approach is called the Vectorial Complex Ray Model 

(VCRM), and it permits the precise computation of the scattering of an incident wave by a 

large CSP with a smooth surface. Prior to this thesis, a two-dimensional version of VCRM has 

been developed to deal with the scattering of a plane wave by elliptical cylinders and ellipsoidal 

particles [2, 3, 4]. To include diffraction effects, Ren et al. have proposed methods based on 

the Heisenberg uncertainty principle, and introduced near-critical-angle scattering effects in 

the model. AMOCOPS aims to offer a full three-dimensional version based on the above 

considerations, which can be generally be called the Ray Theory of Waves. 

 

In parallel to the development of VCRM, the AMOCOPS project is also concerned in large part 

with experimental work. Some of the experiments, are directly aimed at measuring light 

scattering intensities of well-defined CSPs in controlled conditions [5]. Furthermore, light 

scattering is a source of the so-called “radiation pressure”, and of the mechanical effects of 

light in general, which are the direct manifestation of the momentum carried by 

electromagnetic waves. In essence, scattering by a particle has the effect of changing the 

direction of momentum carried by the light, which is the source of the force that acts upon the 

particle in order to preserve the conservation of momentum. Whenever the particle is non-

spherical, the momentum transfer translates as both, force and torque, which can make the 

particle move and rotate. In general, the effect of radiation pressure is negligible on the scale 

of macroscopic objects and classical light sources, but can be quite significant in the case of 

a focused laser beam illuminating the cross-section of a micrometre-sized particle. 

 

Investigating the mechanical effects of light is the central aspect of the experimental part of 

the work performed throughout this thesis. To this end, experiments have been carried out in 

CRPP (Bordeaux) with ellipsoidal particles that are exposed to one, or two, laser beams. The 

goal of these experiments was to gather data on the light induced forces and torques that are 

obtained when a single particle is manipulated using, most commonly, an optical levitator, or 

in a few cases, optical tweezers. This work is reported in Part A of this dissertation and consists 

of various experimental results procured with spheroids a few tens of microns in length. Their 

responses, either static or dynamical, are described. As will be seen, static configurations are 

directly exploitable for quantitative comparison with the predictions of existing models, such 

as one based on MoM, and a classical, two-dimensional ray-optics (2D RO) model. Beyond 
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the static states, a great deal of attention is also devoted to the dynamical states, which are 

light-driven oscillations of the particles. Existing theories are able to account for a large part of 

the observed phenomena. 2D RO predicts the polar angle oscillations seen in many 

experiments, but is very approximate, and limited to two dimensions, which means it misses 

the three-dimensional motions. MLFMA (the MoM based model) has the potential to provide 

very accurate force and torque maps in three dimensions, and therefore account for all of the 

phenomena, but it is very computationally expensive. 

 

Part B is about VCRM, proposed here as an inexpensive, yet still accurate tool, better suited 

for some practical purposes. The model is still far from a real three-dimensional version; 

however, an intermediate version is reported, which takes into consideration some three-

dimensional features, whilst staying within a two-dimensional framework. This is achieved by 

including the curvature of the ellipsoid perpendicular to the scattering plane, with the scattering 

plane being a plane of symmetry of the ellipsoid, and therefore setting up the scenario as two-

dimensional. Both, a plane wave and a Gaussian beam are incorporated into the model as 

sources of light, as well as wavefront curvature and phase, which takes into account the Gouy 

phase (applicable to the Gaussian beam), the phase shift due to focal lines and the shift 

resulting from total reflection. The model also utilises vectors as a means of directing the rays, 

thus making it easier for the evolution into a full three-dimensional version to occur, as well as 

making the calculations more efficient. Moreover, in order to have some comparison between 

experiment and theory, the linear forces acting on the particles are calculated using the VCRM 

framework. This will be discussed in much greater detail in Part B. 
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Part A  

 

Behaviours of spheroidal micro-particles in one- and 

two-beam trap configurations 

 





A-1. Introduction 

 

Laser beams powered by a few milliwatts are known to produce forces in the piconewton 

range, well above the threshold necessary to levitate and manipulate a micrometre sized 

dielectric particle [7]. Ever since the invention of optical tweezers (OT) [8], which are based 

on a single large aperture beam, considerable savoir-faire and theoretical knowledge have 

been accumulated in the art of trapping and manipulating particles with light [9]. 

 

However, research has been predominantly focused on the simplest kind of particles, namely 

spheres. Trapping of non-spherical particles is both, very different, and less mastered, than 

that of spheres [10]. Currently, a lot of physicists and engineers show interest in the trapping 

and manipulating of elongated particles, in great part due to the proliferating applications of 

nanotubes and nanorods in biophysics, microfluidics, microelectronics and photonics [11, 12, 

13, 14]. For example, a goal pursued by engineers is to assemble micron-sized structures and 

mechanisms made of these particles, a challenge that necessitates optical trapping, not just 

for the positional and orientational control over individual rods, but also because of its 

nonintrusive nature [13, 15]. 

 

A collection of recent theoretical and numerical studies, thoroughly reviewed in [16], explored 

the trapping properties of rods [17, 18], cylinders [19, 20, 21, 22], as well as prolate and oblate 

ellipsoids [23, 24, 25, 26]. Both attraction and repulsion from the beam axis have been 

predicted, along with stable tilted orientations in the case of cylinders. 

 

In biology, double-beam fibre-based optical traps have been used to characterize the 

deformability of red blood cells and fibroblasts [27]. The method yields information on the 

elasticity of cells, and could be the basis of a high throughput medical diagnosis tool. Inverting 

data into quantitative elasticity parameters, however, demands theoretical knowledge of the 

radiation pressure forces acting on the deformed cells. 

 

Calculating the forces and torques exerted by light on a particle is closely related to calculating 

the way in which this particle scatters light. This matter is very well documented for spherical 

particles. For instance, K.F. Ren has used Generalized Lorenz-Mie theory (GLMT) to predict 

the radiation pressure forces of a Gaussian beam on a spherical particle, and developed user- 

friendly software capable of determining this for different types of spheres and beams [28]. A 

number of theoretical works have been dedicated to the prediction of radiation pressure [29, 

30, 31, 32, 33, 34], and finding the equilibrium configurations of cylinders [11, 19, 20, 21] and 
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ellipsoids [24] inside single beam traps. These, however, are limited to very small particles. 

As aforementioned, there is a definite need to go beyond the current achievements. In reality, 

the above examples involving rods and deformed cells still lack the quantitative predictions 

necessary for the simulations to be considered fully operational. 

 

The work of this thesis is focused on the ellipsoidal particle case. Recently, Mihiretie et al. 

carried out systematic experiments using an optical levitator to trap ellipsoid-shaped particles 

made from polystyrene spheres [35, 36, 37]. Various configurations of the levitation were 

studied, with different values of the particle aspect ratio (defined as 𝑘1 =
𝑐

𝑎
 and 𝑘2 =

𝑐

𝑏
, with 

𝑐 > 𝑎 > 𝑏, where 𝑎, 𝑏 and 𝑐 are the semi-principal axes of the ellipsoid, of which 𝑐 is the 

longest). Particles with 𝑘1,2 ≤ 3 near the beam-waist (𝜔0 ≅ 1.3μm) of the levitation beam were 

found to align their semi-major axis along the beam axis, a configuration that allows for a 

straightforward and accurate measurement of the levitation power, 𝑃𝑙𝑒𝑣, and then of the axial 

radiation pressure force, 𝐹𝑙𝑒𝑣. The particles in these experiments were up to several tens of 

microns in length, beyond the limits of current computational methods. 

 

 

Figure 1: These are images from above (the top row) and from the side (the bottom row) of particles with a different 

aspect ratio inside the optical levitator setup. They are suspended in water, which is inside a quartz cuvette. Photos 

show the regimes observed with a low-aspect ratio ellipsoid (A) and a more elongated particle (B). The power of 

the laser in the sample is 17mW. The dotted line on top marks the instantaneous plane of polar angle 𝜃 oscillation 

(𝛱𝑜𝑠𝑐). The particles are in contact with the ceiling (water-quartz interface) of the sample cell. The reflection on the 

interface creates a mirror image of the particle, hence the impression that there are two particles in the side view 

images. The oscillation of (B) is readily visible, as it breaks the alignment between the particle and its mirror image. 

The photos of top row show the particles in relation to the beam axis, depicted as a white X. 

It is noteworthy that these experiments, as well as others with rod-like particles, have revealed 

that optical trapping of non-spherical particles does not simply summarize into either stable 

(immobile), or unstable (rejection from the laser beam) states [11, 12, 38, 10]. The experiments 
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performed by Mihiretie et al. [35, 36, 37] showed that ellipsoidal particles either come to rest 

along the beam axis, or go through a characteristic tumbling motion, with a transition between 

both regimes that depends on the aspect ratio of the particles and the beam waist radius. The 

motions, shown in Figure 1, consist of oscillations in the polar angle, 𝜃, which is the angle 

between the particle symmetry axis and the laser beam axis, coupled with a back and forth 

translational motion of the particle centre, all of which occurs along the oscillation plane, Π𝑜𝑠𝑐. 

As was shown by Mihiretie et al., the polar angle oscillations can be understood through a 

simple ray optics model [39]. This was limited to two dimensions, as it only considered the 

interaction of light with an elliptical body inside a plane. Remarkably, it was able to capture the 

main physical aspects of the situation and reproduce the same bifurcation between the static 

and oscillating states as was obtained experimentally. It helped with the understanding of the 

origin of the tumbling phenomenon, which can be explained with the structure of the force and 

torque functions. 

 

However, whilst the 2D RO model has been very helpful in providing physical insight into the 

origin of the polar angle oscillations, its relation to the experimentally observed phenomena is 

only qualitative. The model does not include diffraction, interference between the light rays, 

and ignores the three-dimensional nature of the real system. An improved version of the model 

is necessary, together with more quantitative data from the experimental side. Further data 

are necessary, as they may serve to further — and more accurately — validate numerical 

simulations. The general goal of the experiments carried out during this thesis was to extend 

Mihiretie’s work on ellipsoid-shaped particles in several different ways: 

 

❖ The provision of accurate measurements of levitation powers in the basic 

configuration, which consists of the particle standing vertically and coaxially with a 

single laser beam that propagates in opposition to the direction of gravity. Values of 

𝑃𝑙𝑒𝑣 can be calculated directly using existing models (GLMT for spheres, RO and 

MLFMA [40] for ellipsoids) and compared to measured experimental values.  

 

❖ The extension of the single-beam levitation scheme to a two-beam geometry. In this 

case, the particle is manipulated by a couple of coaxial confocal contra-propagating 

beams, whose powers can be controlled independently. As we will see, the 2-beam 

geometry leads to non-trivial static configurations of the ellipsoidal particles. These are 

especially interesting, because they subtly combine optical forces and torques in an 

overall asymmetric particle equilibrium. Because the configuration is static, 

hydrodynamic forces and torques do not exist, and hence make the equilibrium 

equations simpler to deal with. 
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❖ The systematic observation of dynamical states, whereby a particle permanently 

moves in either the one-beam, or the two-beam geometry. As will be reported, two new 

types of oscillatory regimes are observed when ellipsoidal particles are exposed to 

two-beam illumination. These depend on the power ratio between the two beams, as 

well as the aspect ratio of the particles. 

 

❖ To test three-dimensional trapping of long ellipsoids with an optical tweezer (OT) setup. 

This case differs from the levitation experiments mainly because of the use of a single 

very large aperture beam, as opposed to a moderately focused small aperture one, as 

is the case in the optical levitator. It is of interest to study the influence of the beam 

aperture up to that provided by high magnification microscope objectives. Three-

dimensional trapping is effective, as we will see, and a different type of particle motion 

can be produced, resulting from the combined action of thermal agitation and optical 

torque. 

 

Below, in Section A-2, the optical setups and related experimental procedures will be 

described. This includes the optical levitator (OL), as well as the optical tweezers (OT). 

 

In Section A-3, the main experimental observations will be reported, starting with the a priori 

simple case of spherical particles in the OL, which is dealt with in some detail, mainly to test 

our understanding of the equilibrium of such a particle in a one- and two-beam geometry. As 

will be seen, there is still much to learn, even with spheres. Next, the behaviour of ellipsoids 

in the OL is addressed, both for static and dynamical states concerning one and two-beam 

configurations. The many types of responses obtained with the two-beam arrangement of the 

OL are gathered into a single diagram, where the particle aspect ratio, 𝑘, and the beam power 

ratio, 𝜀 (defined as 𝜀 =
𝑃↓

𝑃↑
), play the role of control parameters. This is found in Section A-3.4. 

Section A-3.5 is devoted to the experiments performed with the OT for spherical and ellipsoidal 

particles. The stability of 3D trapping is studied, as well as the interference of the sample cell 

with the particle trapping. A new type of oscillation, occurring when the particle is in contact to 

the bottom of the sample cell, is described and proven to be different from the oscillations 

seen in the OL experiments. Finally, the gathered data are discussed in Section A-5, where 

the emphasis is on distinguishing between the different types of dynamical regimes observed 

in the OL and OT geometries, with an insistence on the difference between the nonlinear OL 

oscillations, and what are believed to be noise-driven incoherent OT oscillations. 

  



  

 

 27 

Numerical results, obtained with GLMT, RO and MLFMA, are discussed in Sections A-4 and 

B-2. In Section A-3, these three methods are used for comparison with the experimental data 

of the levitation powers of polystyrene spheres and ellipsoids, in the simple vertical coaxial 

configuration with a single laser beam. We then move to the case of the off centred, tilted, 

static configurations, and the polar angle oscillatory regimes. The problem of dynamical states 

has the added complexity of fluid mechanics, since the dissipation due to the fluid viscosity 

must be incorporated into the equations of motion. This combination of optical and fluid 

dynamics is examined with the simple 2D RO model proposed by Loudet et al. [39], which is 

currently the only method available for the simulation of time-dependent responses. Based on 

the results of the 2D RO simulations, a (𝑘, 𝜀) state diagram is produced and compared to its 

aforementioned experimental counterpart. As will be seen, 2D RO still performs fairly well, in 

so far as the theoretical and experimental diagrams have some definite similarities. 

 

These results are commented on in Section A-5.  The section is ended with the distinction that 

must be made between sustained large amplitude oscillations and the noise-driven motions 

of similar appearance. 

 

Part A is then finished with a summary of the main results, and a conclusion, in Section A-6. 

 

 





A-2. Experimental hardware and methods 

 

A-2.1. Particle fabrication and characteristics 

 

The ellipsoidal particles were fabricated from polystyrene (PS) “mother” spheres, each with a 

radius of 𝑅0, following the mechanical stretching procedure used by Mihiretie et al., as well as 

others [37, 41, 42]. Prolate ellipsoids with semi-principal axes 𝑎, 𝑏 and 𝑐 (Figure 2) were 

obtained by uniaxial stretching, and since all of the used particles were spheroids, whereby 

𝑎 = 𝑏, they can be characterized by a single aspect ratio, 𝑘 =
𝑐

𝑎
, ranging from 𝑘 = 1 (sphere) 

up to 𝑘 = 𝑘𝑚𝑎𝑥 ≫ 1. In principle, stretching preserves the particle volume: 

 

 𝑉0 =
4

3
𝜋𝑅0

3 A.1  

 

The length of the spheroid can then be given by: 

 

 2𝑐 = 2𝑘
2
3𝑅0 A.2  

 

The optical levitator is operated with 50x objectives (see Section A-2.2), hence “large” particles 

were used. These were made from 𝑅0 ≈ 5μm mother spheres, and had aspect ratios up to 

𝑘𝑚𝑎𝑥 ≈ 4.5. Therefore, the longest particles had a length of 2𝑐𝑚𝑎𝑥 ≈ 30μm. On the other hand, 

since the optical tweezers (see Section A-2.3) use a large aperture, high magnification (100x) 

objective, smaller spheres were used for the stretching procedure, where 𝑅0 ≈ 3μm. Tests 

were made with aspect ratios up to 𝑘𝑚𝑎𝑥 ≈ 7, with a corresponding length, 2𝑐𝑚𝑎𝑥 ≈ 20μm. 

 

Further details of the ellipsoid fabrication can be looked up in [37, 41, 42]. Once stretched, the 

particles were dispersed in ultra-pure water (from a Millipore Milli-Q purification system) at 

very low concentrations, such that only one particle was visible within the microscope field of 

view at any given time, in order to reduce the chance of unwanted particles interfering with the 

beam during an experiment. 

 

It is assumed that the volume of the ellipsoids is the same as that of the corresponding mother 

spheres, as we see no reason why stretching would modify the density, or the composition, of 

the particle’s material, polystyrene. 
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This may be checked by using sedimentation experiments. The density of a spherical particle 

with known parameters can be experimentally determined from its sedimentation velocity: 

 

 𝑣𝑠𝑒𝑑 =
2∆𝜌𝑔𝑅2

9𝜂
 A.3  

 

where 𝜂 is the fluid viscosity (~10−3Pa ∙ s), ∆𝜌 is the difference in density between the particle 

and the fluid medium (0.05gcm−3 for polystyrene in water), and 𝑔 is the acceleration due to 

gravity. Optical levitation is the ideal tool for studying the sedimentation dynamics of single 

particles. A particle is initially lifted up, close to the ceiling of the cuvette, and then the laser is 

switched off, letting the particle fall freely. A large sphere, for example with a radius of 𝑅0 ≈

5μm, then falls down roughly vertically, with minor disturbance caused by Brownian motion. 

Measuring the sedimentation velocity, 𝑣𝑠𝑒𝑑, is straightforward, and obtaining the value for the 

density follows. 

 

 

Figure 2: An example of the geometry of a prolate ellipsoid with semi-axes 𝑎, 𝑏 and 𝑐, in our (𝑥, 𝑦, 𝑧) coordinate 

system 

A number of sedimentation tests were also performed using spheroidal particles (see 

Appendix - Sedimentation of spheroids in viscous fluid for further details). In short, these 

experiments revealed that the free-falling trajectories of spheroidal particles are more complex 

than expected. According to theory, a spheroid-shaped particle is expected to keep its initial 

tilt angle (𝜃0) during the full sedimentation process [43, 44], meaning that one can then 

measure the corresponding sedimentation velocity, 𝑣𝑠𝑒𝑑(𝜃0), and deduce the value of the 

particle density in the same way as for a sphere. Surprisingly, however, it was observed that 

each of the tested particles would change its orientation during sedimentation, in strong 

contradiction with the expected behaviour. This occurred in a similar way for both, the 1mm 
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and 2mm thick cuvettes used for optical levitation, as well as with the 0.1mm thick cells used 

for the optical tweezers. Sedimentation velocities could only be measured in short intervals, 

where the particle tilt was approximately constant. Due to this limitation, measured velocities 

were less accurate than those obtained with spheres; however, the differences between the 

obtained density values and the expected value, 1.05gcm−3, were negligible. Although this 

issue deserves a more thorough study, it is assumed here that all the ellipsoids have the same 

volume and density as that of their mother spheres. As will be seen, this assumption is 

compatible with the experimental results. 

 

A-2.2. Two-beam optical levitator setup 

 

The concept of an optical levitator, in its most minimalist state, simply amounts to a single 

vertical laser beam, propagating in the opposite direction to gravity [7]. The beam is 

moderately focused, with a beam waist radius, 𝜔0, of a few micrometres, which is a similar 

size to that of the polystyrene spheres used in the experiments. The corresponding Rayleigh 

length: 

 

 𝑙 =
𝜋𝜔0

2

𝜆
 A.4  

 

with 𝜆 as the wavelength of light, is at least of the order of several tens of micrometres, 

meaning that the beam is an approximate cylinder on the scale of the particle. Such a beam, 

generated with a few milliwatts of power, is strong enough to levitate a PS or glass particle in 

water. Whenever the index of refraction of the particle (in this case 𝑛𝑃𝑆 = 1.59 for PS) is larger 

than that of the surrounding medium (𝑛𝑤 = 1.33 for water), then the particle gets trapped at 

the beam axis, but is free to move along it (see Figure 3). Thus, the configuration can only 

achieve two-dimensional trapping, and only within a plane perpendicular to the beam axis. 

Vertical equilibrium can also be achieved by tuning the laser power, 𝑃, such that the optical 

force is just enough to balance the buoyant weight of the particle. The optimal value then 

corresponds to the levitation power, 𝑃𝑙𝑒𝑣. Note that this configuration does not realise three-

dimensional trapping because increasing 𝑃 makes the particle move upward, instead of 

locking its position along the beam axis. 

 

As was shown by Mihiretie et al. [35, 36, 37], levitation, as well as two-dimensional trapping, 

was similarly achieved with low aspect ratio ellipsoids (with 𝑘 < 3 and 𝜔0 = 1.3μm), which stay 

vertical along the beam axis. Conversely, higher aspect ratio ellipsoids were observed to 
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undergo permanent polar angle oscillations along a plane passing through the beam axis (see 

Figure 3 (c)). 

 

 

Figure 3: This is a depiction of single beam levitation with a sphere (a) and a short ellipsoid (b). A longer ellipsoid 

(c) does not stay static across the beam, but is observed to oscillate, both in tilt and position, relative to the laser 

beam axis. 

The main parts of the setup are sketched in Figure 4. It is essentially an optical levitator, based 

on a pair of vertical counter-propagating Gaussian laser beams arranged in a triangular 

geometry. Both beams are generated from a single beam by means of a polarizing beam 

splitter cube (BS) [45, 46, 47]. The source is a Coherent Genesis continuous wave laser, with 

a vacuum wavelength, 𝜆0 = 514nm. 

 

Each beam goes through a long working-distance microscope objective and is focused down 

to a small spot inside a 1mm thick quartz cuvette (QC). In most experiments, a couple of Zeiss 

objectives (Zeiss Epiplan 50x, NA = 0.5) were used. The cuvette contains a highly diluted 

water suspension of the ellipsoids to be manipulated, and is mounted on an (𝑥, 𝑦, 𝑧) translation 

stage. Thus, the sample can be moved relative to the beams in any direction. Both objectives 

can also be independently moved in 𝑥, 𝑦 and 𝑧 too. Motions in 𝑥 and 𝑦 are driven by four 

piezoelectric actuators (Aerotech 101 Zeta Drive), allowing for sub-micrometre accuracy. 

 

Combining the BS with a half-wave plate lets us control the power ratio of the “up” and “down” 

beams, whereby we can use either one on its own, or any combination of both. The total 

power, 𝑃𝑡𝑜𝑡, inside the sample is defined as: 

 

 𝑃𝑡𝑜𝑡 = 𝑃↑ + 𝑃↓ A.5  
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where 𝑃↑ and 𝑃↓ are respectively the powers of the up and down-beams. Changing the 

orientation of the half-wave plate (λ/2 in Figure 4) allows us to tune the power ratio, 𝜀. When 

𝜀 = 0, all the power is directed to the up-beam, which corresponds to the basic one-beam 

levitation scheme.  The value of 𝜀 is given by cos2 𝜉, where 𝜉 is the angle by which the half-

wave plate is rotated, starting from the position which gives full power to the up-beam. The 

two-beam levitation scheme requires that 𝜀 > 0, meaning that a fraction of the power is given 

to the down-beam. In the experiments with ellipsoids, we used values of 𝜀 up to about 1.5, a 

situation where more power is fed to the downward beam than to the upward one. This 

situation may seem paradoxical, but is not in reality whenever the particle (an ellipsoid) is tilted 

and off-cantered. 

 

While the power ratio is determined by the orientation of the half-wave plate, measuring the 

absolute value of the power inside the sample cell requires using a power-meter and a 

calibration procedure. A small fraction (~10%) of the beam close to the laser source is 

siphoned off by a beam-splitter into a thermoelectric sensor (Ophir 12A-SH-V1 ROHS). We 

thus obtain the value of the power reaching the Ophir detector, 𝑃𝑂𝑝ℎ𝑖𝑟. A second power-meter, 

with a slim sensor probe (Coherent OP2), is used to measure the power between ML1 and 

ML2. The latter value is corrected for the losses due to the quartz cuvette full of water, which 

has a total transmission of 𝑇𝑐𝑢𝑣𝑒 = 0.9465, meaning that the sample experiences a fraction of 

√𝑇𝑐𝑢𝑣𝑒 = 0.9729 of the light entering the cuvette. We then compare the measured powers of 

the Coherent OP2, 𝑃𝑂𝑃2, to those of the Ophir power meter, 𝑃𝑂𝑝ℎ𝑖𝑟, when all the power is 

directed either to the up-beam, or to the down-beam, respectively. Repeating this for different 

beam powers gives the corresponding proportionality constants for 𝑃↑ and 𝑃↓. We can 

therefore know the values of the beam powers passing through the sample during routine 

operation based on the values of 𝑃𝑂𝑝ℎ𝑖𝑟 and 𝜉. 
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Figure 4: (a) Optical setup. The setup functions as a two-beam levitator, including a classical microscope (TL is the 

tube lens) with bright field illumination (WL is the white light Koehler source). M1,2 are dichroic mirrors, BS is the 

polarizing beam splitter, λ/2 is the half-wave (514 nm) plate. The beam waist of the laser, 𝜔0, is located within the 

focal plane common to the microscope objectives, ML1 and ML2 (confocal scheme). It can be varied by changing 

the lens, L, and/or ML1 and ML2. The sample (QC) is located between ML1 and ML2. Optical images are recorded 

by a Charge Coupled Device (CCD) camera fitted with a set of filters (F). The green arrows show the direction of 

the beams. (b) Levitation in bulk water. (c) Levitation at the water-quartz interface. The curved arrows in (b) and 

(c) indicate the oscillatory behaviour of the ellipsoid, which depends on the values of both the aspect ratio, 𝑘, and 

the power ratio, 𝜀. Distances are not to scale in the interest of clarity. 

The two beams are supposed to be co-axial and confocal, meaning that the corresponding 

beam waists and cross-sections in the observation plane are superposed. This is achieved 

through a systematic alignment procedure. In the last step of the procedure, we use a beam 

profilometer (Thorlabs BP209-VIS) (see Figure 5). This device works with a couple of slits that 

scan across a magnified image of the beam waist cross-section. Both beam cross-sections 

can be detected simultaneously by tuning the power ratio to 𝜀~1. A defect in superposition 

clearly shows up as two distinct peaks in the intensity profile. This can then be easily 

eliminated using the piezo-actuators. A narrow beam waist (for example 𝜔0 = 1.6μm) gives 

sharp peaks, which can be superposed with sub-micrometre precision. Conversely, a large 

beam waist gives smoother peaks, naturally resulting in a larger uncertainty in superposition. 

Overall, the error in this process is a roughly constant, at about 15% of the beam waist radius, 

𝜔0. 

 

In our experiments, 𝑃𝑡𝑜𝑡 typically ranged from 1mW to 30mW. The levitation of the mother 

spheres typically required 𝑃↑ ≈ 1.2mW, a value which may be taken as a reference power. For 
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most dynamic state systematic experiments, a range of 8mW ≤ 𝑃𝑡𝑜𝑡 ≤ 20mW was used. The 

beam waist radius, 𝜔0, can be chosen to be between 1.3μm and about 9μm with appropriate 

combinations of the lenses L and ML1,2, of focal lengths 𝑓𝐿 and 𝑓𝑀𝐿 respectively. The lens L is 

located between the laser source and the beam-splitter, at distance 𝑓𝐿 from the rear aperture 

diaphragm of ML1,2. The value of 𝑓𝐿 is chosen based on the following reasoning using standard 

formulas for the transformation of Gaussian beams [48]. Let 𝜔𝐿 be the beam waist radius of 

the beam delivered by the laser source (in this case, 𝜔𝐿 ≈ 0.95𝑚𝑚). L focuses the beam down 

to: 

 

 𝜔1 =
𝜆𝑓𝐿
𝜋𝜔𝐿

 A.6  

 

inside the rear focal planes of ML1,2. The beam waist inside the sample plane is then given by: 

 

 𝜔0 =
𝜆𝑓𝑀𝐿
𝜋𝜔1

= (
𝑓𝑀𝐿
𝑓𝐿
)𝜔𝐿 A.7  

 

The Zeiss 50x objectives have focal lengths, 𝑓𝑀𝐿 = 3.29mm. With these objectives in 

operation, we expect a lens of focal length 𝑓𝐿 = 2m to produce 𝜔0 ≈ 1.6μm, and one with 𝑓𝐿 =

1m to produce 𝜔0 ≈ 3.1μm. These predicted values were verified using the beam profilometer. 

The obtained beam waist radii were 𝜔0 = 1.7μm and 𝜔0 = 3.6μm, with the corresponding 

Rayleigh lengths in water equal to 𝑙 ≈ 21μm and 𝑙 ≈ 105μm, respectively. Most of the 

experiments performed with the optical levitator were done with these two beam waist values. 

 

In addition to their role of focusing the laser beams, the long-working-distance objectives 

(ML1,2) are used as a condenser and for imaging, respectively. The sample is illuminated by a 

white light source (WL), in a classical Koehler configuration. Images are built onto the sensor 

of a digital camera (Edmund Optics, EO-1312M) by means of a tube lens (TL) of focal length 

𝑓𝑇𝐿 = 300mm. In principle, the green laser light is supposed to be totally reflected by the mirror, 

M2. In reality, a small fraction can pass through, which is enough to saturate the camera. This 

green light can be partially, or totally blocked by a set of different filters (F) positioned before 

the camera. By choosing an adequate filter, we can see a faint image of the beam cross-

section on the live video produced by the camera, and use it for the tuning and alignment 

necessary for an experiment. 
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Video images can be recorded by means of the Ueye software (IDS Imaging Development), 

or with a home-made, modified version of Ueye (created by Pascal Merzeau). The latter 

version includes a very useful feature, whereby the values of the main experimental 

parameters (the video frame rate and beam powers) are recorded and displayed at the bottom 

of each video. Video images and films are later analysed using ImageJ software (National 

Institute of Health, USA). To determine the particle trajectories, as well as other parameters, 

we used lab-made particle-trackers developed and provided by colleagues of CRPP (Patrick 

Snabre, Jeremy Vrignon, Pascal Merzeau). 

 

 

Figure 5: a) The beam cross-section in the observation plane (inside QC, from Figure 4) is imaged by the lens, Lp, 

onto the profilometer, Prof. ML3 is a very long-working-distance objective used to image the levitated particle 

through the side wall of the cuvette. b) The two beams are misaligned, which is signalled by the two-peak structure 

shown in the intensity profile obtained using the Thorlabs BP209-VIS, with each peak representing either the up, 

or the down beam. c) The aligned beams, which is shown by the symmetrical Gaussian structure of the intensity 

profile, which is obtained after the necessary corrections. 

ML2 provides images of the sample viewed from the top. In many experiments, however, we 

observe the levitated particle both from the top and from the side, using ML2 for the top view, 

and a third, long working-distance objective, ML3 (Mitutoyo 50x, Working Distance = 23mm), 
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positioned to see particles through the side wall of the sample cuvette. Because the particle 

is generally positioned deeply inside the cuvette, and because the side wall strongly reduces 

the aperture of the imaging system in the vertical direction, images are of poor quality. 

Nevertheless, they are still exploitable enough to reveal the oscillations of ellipsoidal particles. 

 

A-2.3. Single beam optical tweezer setup 

 

The optical tweezer setup that was used in the work of this thesis is a commercial product 

provided by Elliot Scientific (United Kingdom). It is based on the well-known principles of 

optical trapping by a single tightly focused beam, see [8, 49]. 

 

The core of the setup consists of a laser source (IPG Photonics, YLR-10-LP, 𝜆0 = 1070nm, 

𝑃𝑚𝑎𝑥 ≈ 10W), an optical arm (Elliot E3541) and an inverted microscope (Olympus IX73). The 

microscope turret is comprised of three objectives (20x, 40x and 100x). The 100x objective 

(Olympus UPlanFL N 100x, 𝑁𝐴 = 1.3) is used with its lens immersed in oil and has a very 

large numerical aperture, 𝑁𝐴 = 1.30. Only this objective can produce a tight enough focus for 

the beam to be able to achieve three-dimensional trapping of small particles. It also includes 

an iris diaphragm which allows the reduction of the aperture down to 𝑁𝐴 = 0.6. This function 

useful for studying the stability of 3D trapping as a function of the beam aperture, as will be 

reported in Section A-3.5.3. A homemade scale was added onto the objective to indicate 

intermediate values of the aperture, between the extremes of 0.6 and 1.3. The calibration of 

this scale is studied in Appendix - Numerical aperture calibration. 

 

The laser beam is guided through a single mode fibre which ends with a connector, so that it 

may propagate into the optical arm (Figure 5). The source is linearly polarized, and the 

direction of the polarisation can be tuned by utilising a half-wave plate (HWP). 

 

The optical arm yields a wide laser beam, overfilling the aperture diaphragm (AD) at the bottom 

of the objective. Ideally, the laser intensity distribution should be uniform within the objective 

pupil. This is not possible in reality, without losing most of the power. In practice, overfilling 

means that the Gaussian beam cross-section is partially cut by the objective pupil. 

Consequently, the effective numerical aperture of the trapping beam is less than that of the 

objective (see the Appendix -Numerical aperture calibration). 

 

Figure 5 shows the basic configuration, where the beam is coaxial with the objective axis. In 

this case, the beam is simply focused at point F, the front focus of the objective. Inside the 
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optical arm, the beam passes through an acousto-optic deflector (AO), the function of which 

is to deflect the beam by an angle, 𝜁, and to make it rotate around F’, the rear focal point of 

the objective. As a consequence, the beam still gets focused in the front focal plane, but at 

distance, 𝑓𝑀𝐿 ∙ 𝜁, from the axis. This function allows us to move the optical trap centre within 

the observation plane very easily, simply by dragging the computer mouse. 

 

However, a drawback of this feature is that the diffraction efficiency is poor (~1%), meaning 

that most of the laser power is lost. Moreover, the AO does not maintain the linear polarisation 

of the beam. Generally, the AO makes it so that the beam reaching the microscope objective 

is elliptically polarized. Whenever a linear polarisation is required, the setup has to be operated 

without the AO. In this case, we lose the ability to move the trap inside the observation plane, 

but the polarisation is well defined. As mentioned previously, by moving the half-wave plate, 

the polarisation can be oriented either perpendicular to the microscope symmetry plane, or 

parallel to it, which is necessary to be able to check the effect of polarisation on the particles. 

 

Because of the poor diffraction efficiency of the AO, the laser power reaching the microscope 

objective, 𝑃𝑀𝑂, is much smaller when the AO is in operation, than when it is not. To reduce 

this difference, a neutral density filter (Schott NG4 glass, with a transparency of 0.11) was 

added to the beam path, specifically between the M1 and M2 mirrors (see Figure 7), when 

operating the optical tweezers without the AO. Therefore, the experiments are respectively 

labeled as “AOoff-NGin”, or “AOin-NGoff”, depending on whether the AO is in operation with 

no neutral density filter, or vice versa. The value, 𝑃𝑀𝑂, was measured as a function of the laser 

power at its source, 𝑃, by means of a Coherent FieldMax II power meter. This was done by 

removing the microscope objective and placing the power meter head above the microscope 

nosepiece. During the course of this calibration, it was noticed that the power of the beam 

diffracted by the AO was very sensitive to small changes in the beam direction, which is 

controlled with the mouse. Since the angular position of the AO can be finely tuned within the 

optical arm, by means of four small screws, the diffraction efficiency could be optimized 

through a systematic procedure; however, due to the delicate nature of this kind of procedure, 

and since there was always enough power in all our experiments (even with the ~1% 

diffraction efficiency), the optimization was not attempted as it was deemed unnecessary. 

Results of the measurement are indicated below: 

 

 𝑃𝐴𝑂𝑜𝑓𝑓−𝑁𝐺𝑖𝑛 = 72.15 × 10
−3𝑃 A.8  

 

 𝑃𝐴𝑂𝑖𝑛−𝑁𝐺𝑜𝑓𝑓 = 7.0 × 10−3𝑃 A.9  
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Figure 6: Diagram of the optical tweezer setup. OF is the optical fibre, BS is the beam-splitter, AD is the aperture 

diaphragm, QC is the quartz cuvette and F and F’ are the front and rear foci of the microscope objective (100x), 

respectively. A film of immersion oil (not shown) bridges the gap between the objective and the lower side of the 

QC. 

 

 

Figure 7: a) Sketch and b) photo of the Elliot optical arm (E3542). The sketch, a), is the unfolded representation of 

the composition of the optical arm. M1,2,3,4 mark the positions of the mirrors along the optical path. As shown by the 

blue line, the role of lens L1 is to conjugate the position of AO with the aperture diaphragm (AD) of the objective. 

The path followed by the laser beam is represented in red. The L1,2 pair of lenses function as a telescope to control 

the width of the laser beam inside the microscope. Mirrors, M1,2, have tuning screws to centre and direct the beam 

through the acousto-optic deflector. The end of the arm (the black tip in b)) is connected to the microscope through 

a video port. By tuning the screws of M3,4, the beam may be centred within the microscope. 
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In addition to moving the position of the trap, the acousto-optic deflector can also be used in 

time-sharing mode to generate an array of traps. If the transit time between successive 

positions is short enough on the scale of the particle dynamics, then time sharing allows the 

formation of multiple effective traps. 

 

The Elliot optical tweezer apparatus includes two video cameras, as well as dedicated 

software with user friendly graphic interfaces. During standard operation, both of these 

cameras are connected to a single video port, which is located at the bottom of the microscope 

body. The cameras share the light coming from the experiment using a beam splitter residing 

in a two-port connecting box. They are also fixed for optimum focusing of the microscope 

image, meaning that they show details of the front focal plane of the microscope objective, 

which is labelled as F in Figure 6. 

 

The first camera (Basler), from now on dubbed, “CAM0”, is used to observe the sample, and 

the position of the trap(s). The infrared spot of the laser can be made visible by bringing one 

of the interfaces (quartz-water at the bottom, or water-glass at the top) in the focus of the 

microscope. The spot must have the characteristic aspect of an Airy diffraction pattern. A non-

symmetrical spot means that a better tuning of the optical arm elements is necessary. 

 

The second camera (Dalsa Genie), “CAM1”, captures images that are used by the Elliot 

particle tracking software. This tool has been designed to find and track the position of a 

spherical particle over time. When no external force is acting on the trapped particle, 

fluctuations in the particle position are due only to the thermal agitation (Brownian motion). In 

this case, the particle moves randomly around the centre of the laser spot. The software 

interface then provides histograms of the particle position, the time correlation function of the 

position, and the corresponding power spectrum. These data are used to calculate the trap 

stiffness within the horizontal, 𝑥𝑦 plane. A detailed description of the statistical analysis tools 

required for this can be found in the article by Gibson et al. [50], as well as the cited papers 

therein. 

 

Despite having two cameras dedicated to observing the beam focal plane of the OT setup, it 

was also necessary to observe above or below that plane. This was not possible with CAM0 

or CAM1, because their positions were fixed. The solution to this problem was to use the 

second video port of the microscope, which is located below the eyepieces, so that the camera 

could be moved to various distances from the tube lens, each corresponding to planes of 

different altitudes with respect to the beam waist plane, located, in theory, at F in Figure 6. 

The Basler camera was used to achieve this configuration, and was relabelled “CAM2”. The 
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images from this camera could now be focused above or below the beam waist plane freely. 

The values of the altitude shift were determined through a dedicated calibration procedure that 

allowed the range of 5μm above or below the laser focus to be accurately read using a 

homemade scale. 

 

To change the altitude of the beam waist plane of the laser, the objective could be moved 

using the focusing knob of the microscope. This allowed the vertical movement of the 

observation plane within the sample cell, the altitude of which shall be denoted as, 𝑧𝐹. While 

in theory the laser focus should be located at F in Figure 6, in reality it is slightly above it, by 

about 2μm, meaning that 𝑧𝑙𝑎𝑠𝑒𝑟 𝑓𝑜𝑐𝑢𝑠 − 𝑧𝐹 ≈ 2μm. The focusing knob moves both 

simultaneously at the same rate, and is connected to a rotary encoder that enables the altitude 

to be known to within a 0.1μm uncertainty. 

 

As will be explained in Section A-3.5, the altitude of the beam focus above the bottom interface 

(𝑧𝑙𝑎𝑠𝑒𝑟 𝑓𝑜𝑐𝑢𝑠 − 𝑧0) of the cuvette is critical in determining the behaviour of a trapped ellipsoidal 

particle. Therefore, to be able to know this value, software developed by P. Merzeau enabled 

the displaying of the altitude at the bottom of each video frame, making it possible to know 𝑧𝐹 

at each point during the experiment. 𝑧𝐹 is measured with respect to an arbitrary original altitude 

chosen by the experimenter, due to the way the rotary encoder works. 

 

Contrary to the optical levitator setup, where a large space is available for the sample between 

the microscope objectives, optical trapping by a large aperture beam is restricted to a very 

short working distance of about 0.3mm for a 100x objective. Because of this limitation, the 

sample cell has to be very thin. It is made of a microscope cover slip, approximately 0.17mm 

in thickness, and of a 1mm thick cover glass above it. These are separated by 0.1mm. There 

were frequent problems with the polystyrene particles sticking to the glass, so the glass cover 

slip was substituted for a quartz one, which prevented the sticking, at least for a short while 

(~1 hour). Initially, this was cleaned with sulfochromic acid and rinsed with pure water prior to 

the cell assembly; however, this did not always make it so that the particles did not stick. It 

was found that a simple rinse with methanol, ethanol and pure water was enough, and in fact 

a better way to prevent sticking. We tested different materials for the spacer, and estimated 

that glass did not perform better than a simple mylar sheet. The latter was simply rinsed with 

water before assembly. 
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The sample cell was moved horizontally, in the 𝑥𝑦 plane, using a motorised platform 

(Marzhauser Sensotech), which can be controlled by the experimenter with a joystick, the 

velocity of which can be tuned to be from nms−1 to cms−1. 

 



A-3. Experimental results 

 

We start this section with a report on the optical levitation of spherical particles (Section A-

3.1). As we will see, the spherical case is not as simple as it might be thought of a priori. 

Knowledge of the difficulties and limitations of measuring levitation forces with spheres is 

necessary before trying to deal with the more complicated problem of ellipsoids. In Section A-

3.2.2, we report how the two-beam configuration adds unforeseen complexity to the static 

cases (where there is some Brownian motion, but no sustained oscillations) obtained with 

spheroidal particles. 

 

Following this, Section A-3.3 is dedicated to the dynamical responses of spheroidal particles 

when they are illuminated by either one, or two beams. In this case, dynamical means that a 

particle constantly moves under the action of the laser beam(s). The different types of 

behaviours observed in one, and two-beam geometries within the optical levitator, both static 

and dynamic, are summarized in a state diagram in Section A-3.4. 

 

Finally, Section A-3.5 is about the responses of ellipsoids in the OT geometry. As we will see, 

the very large aperture beam in that case provides stable, static three-dimensional trapping in 

the bulk of the water. However, bi-stable configurations and polar angle oscillations are 

observed when the particle is in contact to a cell boundary. 

 

Our main observations are summarized in the conclusion, which is presented in Section A-6. 

The difference between nonlinear oscillations, observed in one- and two-beam levitation 

geometries, and noise-driven motion, including that observed with the optical tweezers, is also 

elaborated in this section. 

 

A-3.1. Static equilibria of spheres 

 

Levitation of a sphere is straightforward in practice. The experimenter first selects a particle at 

the cell bottom, and by moving the cell horizontally, brings it on the laser spot. Applying a few 

milliwatts of power is enough to make the particle lift up quickly.  Equilibrium is reached by 

reducing the power to the value, 𝑃𝑙𝑒𝑣, where the vertical radiation pressure force provided by 

the beam, 𝐹𝑧, exactly balances the buoyant weight of the particle, 𝑚̃𝑔. In principle, 𝐹𝑧 is 

proportional to the beam power: 

 

 𝐹𝑧 = 𝑓𝑧𝑃 A.10  
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where, 

 

 𝑓𝑧 =
𝑑𝐹𝑧
𝑑𝑃

 A.11  

 

The condition for equilibrium then reads: 

 

 𝑚̃𝑔 = 𝑓𝑧 ∙ 𝑃𝑙𝑒𝑣 A.12  

 

Here, 𝑚̃𝑔 is known, given the particle density, 𝜌𝑝, and its radius, 𝑅0: 

 

 𝑚̃𝑔 =
4𝜋

3
(𝜌𝑝 − 𝜌𝑤)𝑅0

3𝑔 A.13  

 

with 𝜌𝑤 as the density of water (𝜌𝑤 = 1gcm
−3), and 𝑔 as the acceleration due to gravity. The 

term, 𝜌𝑝 − 𝜌𝑤, which is the difference in density between the particle and the surrounding 

medium (in this case water), will from now on be denoted as, ∆𝜌. 

 

In this part of the thesis, the results concerning the levitation of silica and PS spheres will be 

shown, as well as compared to GLMT calculations of 𝑓𝑧. This kind of comparison can be made 

because of the assumptions associated with Equations A.12 and A.13, namely: 

 

❖ The only forces acting on the particle during equilibrium are from radiation pressure, 

𝐹𝑧, and from gravity, 𝑚̃𝑔. This supposes that there is no absorption of the laser light 

from the water, or from the particles, meaning that the possibility of thermally induced 

flows, which have the potential to perturb the equilibrium of the particle, are ignored. 

❖ The optical force, 𝐹𝑧, is simply proportional to the laser power, so any nonlinear optical 

effects are not considered. 

 

Firstly, the silica sphere experiments are addressed. These were used as a way to ensure that 

the procedures being done adhered to expectations, and were therefore safe to perform on 

the polystyrene particles. Silica spheres are known to be very smooth and highly transparent. 

Due to their high density, with ∆𝜌~1gcm−3, and comparatively low refractive index, 𝑛𝑠𝑖𝑙𝑖𝑐𝑎 ≈

1.46, these particles require a lot more power to be manipulated than their polystyrene 

counterparts. It is presumed that the silica spheres are not very sensitive to small disturbances 

such as Brownian motion, or parasitic flows within the water medium. On the contrary, PS 
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spheres are much less dense, with ∆𝜌 ≈ 0.05gcm−3, and of the particles in the experiments, 

the biggest PS particles were in fact lighter than the much smaller silica spheres. The 

assumption is that PS particles would therefore be more sensitive to perturbations caused by 

the surrounding water medium, and it has also been measured that they may also be slightly 

absorbing [45]. These were also some points to verify. 

 

A-3.1.1. Silica spheres 

 

The silica spheres used here were provided by Bangs Laboratoires, with reference SS05003. 

The suspension was slightly polydisperse, with 𝑅0 ≈ 2.37 ± 10μm. 

 

The goal of the experiments with spheres is to measure the levitation power, 𝑃𝑙𝑒𝑣, required to 

maintain the particle in equilibrium with gravity whilst in the bulk of a medium, which in this 

case is water. Specifically, the configuration that is mainly looked for is that of Figure 8 a), 

when the particle centre is within the beam waist of the laser, which is located at 𝑧 = 0. In 

principle, this is the condition where the particle image should be sharpest and most focused. 

In reality, however, the OL setup does not provide a high-quality image of the particle due to 

the Zeiss X50 Epiplan objective not being corrected for imaging through a thick refractive 

medium, which in this case amounts to about 1mm of water and 1mm of quartz. This leads to 

the particle having slightly blurred boundaries on the video images, making it difficult to locate 

the altitude of the beam waist using the best focused image of the particle to an uncertainty 

lower than a few micrometres. The particle may therefore be either above or below the desired 

position, causing a potentially large error in the measurement of 𝑃𝑙𝑒𝑣. 

 

The error in 𝑃𝑙𝑒𝑣 is due to the dependence of the beam diameter, 2𝜔(𝑧), on the distance from 

the beam waist plane along the beam axis, 𝑧, as is illustrated in Figure 8. In Figure 8 a), the 

beam is narrow compared to the particle size, and so goes through the particle centre. Within 

a ray-optics description of this situation, where the density of rays describes the intensity of 

the beam, most rays are only weakly refracted. Consequently, the momentum transfer, and 

therefore the levitation force, is low. In Figure 8 b), the beam that the particle is exposed to is 

wider; hence, keeping with the aforementioned optics approximation, many more rays hit the 

particle away from its symmetry axis, and are then strongly refracted. Momentum transfer then 

becomes more efficient, and 𝑓𝑧 increases, making 𝑃𝑙𝑒𝑣 smaller in the configurations of Figure 

8 b) and c), than that in a). This dependence of 𝑓𝑧 on 𝑧 was realised and explained in the early 

works of Ashkin and Roosen during the 1970s. Using a ray optics approximated representation 

of a Gaussian laser beam, Roosen [51] found that the maximum 𝑓𝑧 for dielectric spheres 
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occurs when 
𝑅0

𝜔(𝑧)
≈ 1, meaning that the momentum transfer is most efficient when the beam 

and particle radii are approximately the same. This is highlighted in Figure 9. The computation 

was performed with the GLMT software, ABSphere [28], for the case of a small silica sphere 

such as the ones which that were used in the OL experiments, with 𝑅0 = 2.37μm, and a laser 

with the small beam waist of 𝜔0 ≈ 1.7μm. The refractive index was taken to be 𝑛𝑠𝑖𝑙𝑖𝑐𝑎 = 1.46, 

as given by [52]. GLMT takes into account the wave nature of light and is close to the exact 

solution of the problem. A brief description of this model will be given in Section B-2.2. 

 

Figure 9 a) shows that the levitation force is minimal near the beam waist plane, with 𝑓𝑧,𝑚𝑖𝑛 ≈

0.0554pNmW−1 at 𝑧𝑚𝑖𝑛 ≈ 3.6μm. The levitation becomes much more efficient away from this 

value of 𝑧, with the maximum being, 𝑓𝑧,𝑚𝑎𝑥1 ≈ 0.134pNmW
−1, which occurs when the particle 

is far below the beam waist, at 𝑧𝑚𝑎𝑥1 ≈ −34μm. Another maximum, of a slightly lower 

amplitude, 𝑓𝑧,𝑚𝑎𝑥2 ≈ 0.102pNmW
−1, occurs on the opposite side of the beam waist, at 𝑧𝑚𝑎𝑥2 ≈

37μm.  

 

 

Figure 8: Levitation of a dielectric spherical particle can be achieved when it is situated at different beam altitudes, 

with respect to the beam waist. a) The levitation power is maximal when 𝑧 ≈ 0, and it is lower for the configurations 

in b) and c). 
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Figure 9: a) The axial optical force component, 𝑓𝑧, calculated with ABSphere for a spherical silica particle of the 

same specifications as those used in the experiments. The particle is taken to be on-axis (𝑥 = 𝑦 = 0). The solid 

red line represents the variation of the vertical force against the particle altitude, while the black dotted line shows 

the 
𝑅0

𝜔(𝑧)
 ratio at a given altitude. b) The effect of particle off-centring in the 𝑥-axis on 𝑓𝑧 and 𝑓𝑥, when 𝑧 = 0. 

Calculation parameters: 𝑅0 = 2.37μm, 𝜔0 = 1.70μm, 𝑛𝑠𝑖𝑙𝑖𝑐𝑎 = 1.46. 

In the silica particle example of Figure 9 the levitation at the beam waist plane is far from 

efficient, because 𝜔0 is a lot smaller than 𝑅0, with 
𝑅0

𝜔(𝑧)
= 1.39 at 𝑧 = 0. The beam radius varies 

with 𝑧 according to: 

 

 𝜔(𝑧) = 𝜔0√1 + (
𝑧

𝑙
)
2

 A.14  

 

where 𝑙 is the Rayleigh length of Equation A.4, which in the case of Figure 9 is 23.5μm. The 

black dotted line in Figure 9 a) shows the variation of 
𝑅0

𝜔(𝑧)
 along the beam axis, in 𝑧, with the 

corresponding axial force represented by the solid red line. It can be seen that both maxima 

of 𝑓𝑧 occur when 
𝑅0

𝜔(𝑧)
≈ 0.8, not far from the expected result of 𝑅0~𝜔(𝑧). The fact that the 

maxima calculated by GLMT have different amplitudes is not something predicted by the 

simple analysis based on the 
𝑅0

𝜔(𝑧)
 ratio. In fact, the observed asymmetry is due to the local 

wave curvature, which is positive for 𝑧 < 0 (when the beam is converging) and negative for 

𝑧 > 0 (when the beam is diverging). 𝑓𝑧 is minimal close to the beam waist, when 𝑧 ≈ 3.6μm, 

which is presumed to also be caused by the wave curvature. 
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Figure 9 b) shows the variation of the axial and transverse components of the optical force 

when the particle is located at the beam waist plane, with 𝑧 = 0, but is off-centred along the 

𝑥-axis. It should be noted that the slope of the red curve, representing 𝑓𝑥, indicates that the 

particle gets stably trapped onto the laser axis, as is expected. The axial force, 𝑓𝑧, is largest 

when the shift along 𝑥 is approximately 2μm, but due to the effect of the transverse force, 𝑓𝑥, 

the particle should predominantly reside in the on-axis configuration, at 𝑥 = 0. The effective 

axial force amplitude is therefore that for 𝑥 ≈ 0μm, which is 𝑓𝑧 ≈ 0.0554pNmW
−1. Everything 

discussed so far concerning 𝑓𝑥, also holds true for its 𝑦-axis counterpart, 𝑓𝑦.  

 

Theoretical values of the levitation power were obtained using Equations A.12 and A.13, with 

𝑅0 = 2.37μm and 𝜌𝑝
𝑆𝑖 = 1.91gcm−3, which was determined as the average from sedimentation 

experiments that utilised the different particle sedimentation velocities, as well as 

approximated values of 𝑅0 based on microscope images.  From this information, the deduced 

particle buoyant weight was 𝑚̃𝑔 = 0.498pN. Therefore, the calculated levitation power values, 

𝑃𝑙𝑒𝑣, corresponding to the extrema of 𝑓𝑧 are: 𝑃𝑙𝑒𝑣(𝑧 ≈ 0) = 9.0mW, 𝑃𝑙𝑒𝑣(𝑧𝑚𝑎𝑥1) = 3.72mW and 

𝑃𝑙𝑒𝑣(𝑧𝑚𝑎𝑥2) = 4.89mW. 

 

The existence of such extrema was experimentally verified. During the experiments, the 

particles were observed both from the top and from the side. The side view is very useful, 

since it tells us whether the particle is moving up or down, with a resolution of around 1μm. 

 

The experiments proceed by first levitating the particle near bulk, and bringing it to the beam 

waist plane, or at least what is thought to be the beam waist based on the sharpness of the 

top view image of the particle. Then, the power is decreased until the particle is stable along 

𝑧. Next, the power continues to be slowly decreased until the lowest possible power of a stable 

levitation state is found. This will be denoted as, 𝑃𝑙𝑒𝑣
𝑚𝑖𝑛, which is essentially equivalent to the 

theoretical value, 𝑃𝑙𝑒𝑣(𝑧𝑚𝑎𝑥1).  Decreasing the laser power lower than 𝑃𝑙𝑒𝑣
𝑚𝑖𝑛 makes the particle 

fall indefinitely. Once, 𝑃𝑙𝑒𝑣
𝑚𝑖𝑛 has been recorder, the particle is lifted once more, with the power 

being gradually increased. The particle moves through a series of intermediate equilibrium 

positions in 𝑧, with this finishing at the maximum possible power able to maintain a stable 

levitation, 𝑃𝑙𝑒𝑣
𝑚𝑎𝑥. Anything above that power sends the particle upward indefinitely. In principle, 

the altitude corresponding to 𝑃𝑙𝑒𝑣
𝑚𝑎𝑥 is the beam waist plane, 𝑧 = 0. In general, it was observed 

that the respective top view image at this power was not exactly that which produces the 

optimal sharpness of the particle. In fact, the sharpest image was obtained with the particle a 
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few micrometres below the presumed beam waist plane. The results of experiments performed 

with five different particles have been gathered in Table 1. 

 

𝑃𝑙𝑒𝑣
𝑚𝑖𝑛 (mW) 5.30 5.03 4.35 3.70 3.20 

𝑃𝑙𝑒𝑣
𝑚𝑎𝑥  (mW) 10.6 9.34 7.08 8.20 8.18 

𝑣𝑠𝑒𝑑  (μms
−1) 12.00 11.55 11.57 10.44 10.75 

 

Table 1: The maximum and minimum value of the levitation power for silica spheres, and their corresponding 

sedimentation velocities. The beam waist radius is 𝜔0 ≈ 1.7μm. 

The third row in Table 1 gives the sedimentation velocity of each particle. As was mentioned 

in Section A-2.1, optical levitation can be used as a convenient tool to perform sedimentation 

experiments by bringing the particle somewhere within the bulk of the water and dropping it. 

The particle then slowly falls, with a constant sedimentation velocity given by Equation A.3, 

where 𝜂 is the shear viscosity of water (which is ≈ 10−3Pas when 𝑇 = 20°C). The sedimentation 

velocity, 𝑣𝑠𝑒𝑑, can be measured by tracking the descent of the particle with an uncertainty of 

less than 1%. If ∆𝜌 is known, 𝑅0 can be deduced with a better accuracy than from the 

microscope image of the particle. Conversely, one can measure ∆𝜌 if 𝑅0 is known with 

sufficient accuracy. 

 

The values in Table 1 have been obtained with particles of different sizes. It may therefore 

seem natural to gather the data into a graph of 𝑃𝑙𝑒𝑣 against 𝑅0, and then calculate the GLMT 

counterpart for comparison. However, as aforementioned, the values of 𝑅0 are not known with 

sufficient accuracy. Instead of its size, each particle can be more accurately represented by 

its sedimentation velocity. From Equations A.3, A.12 and A.13, it can be seen that both, 𝑃𝑙𝑒𝑣  

and 𝑣𝑠𝑒𝑑, are proportional to ∆𝜌. Therefore, a more accurate graph may be one of 𝑃𝑙𝑒𝑣 against 

𝑣𝑠𝑒𝑑. Thusly, if there is disagreement between the experimental and GLMT values of 𝑃𝑙𝑒𝑣, this 

cannot be related to the density, because changing the value of ∆𝜌 cannot change the ratio 

between the experimental and GLMT levitation powers for a given 𝑣𝑠𝑒𝑑. This leaves only the 

complex refractive index of the particle as an adjustable parameter in the GLMT calculation. 



Experimental results 

50  

 

 

Figure 10: A graph comparing the theoretical and experimental levitation powers for silica spheres The GLMT 

values of the levitation power are represented by the coloured lines, and the experimental counterparts are shown 

by the crosses. The temperature corresponding to each coloured curve is indicated on the graph. Calculation 

parameter: 𝑛𝑠𝑖𝑙𝑖𝑐𝑎 = 1.46 (with the imaginary part being 0), 𝜔0 = 1.65μm, and 𝜂 = 1.020, 0.933, 0.820mPas for 𝑇 =

20, 24, 30°C, respectively. 

The aforementioned graph has been plotted in Figure 10 to compare the GLMT and 

experimental values of the levitation powers. Due to the sensitivity of the viscosity of water to 

the temperature (
𝑑𝜂

𝑑𝑇
~0.02mPasK−1), it must be specified in the simulation. This dependence 

has a measurable influence on the sedimentation velocities of the particles, as can clearly be 

seen in Figure 10. Note that the undulations along each curve are a symptom of the wave 

nature of light, since coherent light creates interference within the volume and along the 

surface of the particle, which then has visible consequences on the momentum transfer. 

 

The sample temperature of each experiment is not specified accurately, since the cuvette was 

not temperature controlled. Therefore, the temperature was taken to be approximately that of 

the laboratory, which usually varied between 24°C and 30°C, depending on the meteorological 

conditions and the activities inside the experiment room. 

 

Figure 10 indicates that the GLMT values of 𝑃𝑙𝑒𝑣 reasonably match the experimental ones 

within each given temperature interval. This agreement supports the previously made 

assumptions that nothing other than radiation pressure and gravity is responsible for the 

particle equilibrium, and that 𝐹𝑧 is proportional to the laser power. 
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Using reasoning initially proposed by [53, 54], if both the up and the down beams are exactly 

superposed, then the geometry is symmetrical along the 𝑧-axis. This means that at the beam 

waist plane, the equation for the levitational equilibrium of a spherical particle is: 

 

 𝑚̃𝑔 = 𝑓𝑧=0(𝑃↑ − 𝑃↓) A.15  

 

This equation holds true no matter what total power, 𝑃𝑡𝑜𝑡 = 𝑃↑ + 𝑃↓, is applied to the particle. 

 

The total power was therefore increased to much higher values for two-beam experiments, 

than it was for levitations using only a single beam. It was then necessary to verify if the particle 

remains stably levitated when 𝑃↑ − 𝑃↓ = 𝑃𝑙𝑒𝑣, where 𝑃𝑙𝑒𝑣 is the levitation power obtained with 

only the up-beam in operation. 

 

In practice, 𝑃𝑡𝑜𝑡 was increased in sizeable increments, whilst making sure that the power 

repartition of the two opposing lasers was adjusted such that the difference between them 

stayed constant, at approximately the value of 𝑃𝑙𝑒𝑣. The particle was then monitored to make 

sure that it remained in levitation at around the altitude of the beam waist, 𝑧 ≈ 0. The results 

for three silica particles, with a beam waist of 𝜔0 ≈ 1.7μm, are gathered in Figure 11, where 

the difference in powers, 𝑃↑ − 𝑃↓, has been plotted against the total power, 𝑃↑ + 𝑃↓. If all 

assumptions about the model are correct, the graph should show a horizontal straight 

line, and as can be seen from Figure 11, this is indeed the outcome, within the 

experimental uncertainty. 

 

It is worthwhile discussing the uncertainty within this series of seemingly basic experiments. 

This kind of configuration can become severely biased as a result of asymmetry in the two-

beam setup. The asymmetry may be due to a lack of accuracy in the beam superposition, or 

for the particle to be too far above or below the beam waist plane, or both. Another potential 

source of asymmetry is an error in the power calibration, which would result in different values 

for the calibration coefficients for the up and down beams, leading to the wrong beam powers 

being recorded. Another reason for the wrong beam powers to be recorded would be an offset 

in the half-wave plate (λ/2 in Figure 4) that has not been accounted for. Whatever the cause, 

or causes for it may be, an asymmetrical system would become apparent with an erroneous 

slope in graphs such as the one in Figure 11. For example, a finite positive slope of the graph 

is a clear indication of asymmetry, while on the other hand, a negative slope may be due to 

both an asymmetry, or to heating of the particle due to absorption [54]. 
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Figure 11: The power difference against the total power during a two-beam levitation experiment for three different 

silica particles. 

In perfect conditions, this kind of experiment is in fact useful in the detection of a source of 

absorption, either by the material constituting the particle, or by the fluid around it. If a non-

negligible fraction of the laser power is absorbed, the energy dissipates as heat, which is then 

transferred to the fluid, creating convective flow. This corresponds to a hydrodynamic drag 

force 𝐹ℎ𝑦𝑑𝑟𝑜, which acts on the particle, and is involved in the case of particle equilibrium 

alongside 𝐹𝑧 and 𝑚̃𝑔. The negative slope this causes in graphs such as the one in Figure 11 

may be so large, that 𝑃↑ − 𝑃↓ may become negative at high total power [54]. In that case, the 

particle is levitated even if more power is partitioned to the down beam than in the up beam, 

culminating in quite a counter intuitive scenario. 

 

In conclusion, the measured levitation powers of silica spheres are close to the predictions 

made using the GLMT simulation. Experiments with both, the one and two-beam 

configurations confirmed that the radiation pressure force is simply proportional to the laser 

power. These tests do not detect any absorption by the particles, meaning that the refractive 

index, 𝑛𝑠𝑖𝑙𝑖𝑐𝑎, is purely real. 

 

A-3.1.2. Polystyrene spheres 

 

The other type of spheres that were used for levitation experiments in the OL were larger (≈

5μm) PS particles provided by Polysciences. The polydispersity of the size was around 10%, 

according to the manufacturer. The particles were made of a copolymer consisting of 

polystyrene and divinylbenzene (used for cross-linking). The technical data sheet provided 

alongside the particles indicates that the particle density is, 𝜌𝑝
𝑃𝑆 = 1.05gcm−3, with a refractive 

index of 𝑛𝑃𝑆 = 1.59. 
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Levitation experiments were carried out with two values of the beam waist radius, 𝜔0 ≈ 1.7μm 

and 𝜔0 ≈ 3.6μm. 

 

 

Figure 12: GLMT simulation of a levitated PS sphere in water, with the particle taken to be on the beam axis, (𝑥 =

𝑦 = 0). a) The red line signifies the variation of the vertical force with the particle altitude (𝑧 = 0 when the particle 

centre is at the beam waist plane). The black dotted line represents the 
𝑅0

𝜔(𝑧)
 ratio. b) The effect of particle off-

centring on the vertical and horizontal forces when 𝑧 = 0. Calculation parameters: 𝑅0 = 5μm and 𝜔0 = 1.70μm. 

The GLMT results for the small beam waist (𝜔0 ≈ 1.7μm) are displayed in Figure 12. The 

aforementioned values of the density and refractive index were used for the calculation, with 

the particle buoyant weight, for a sphere of radius 𝑅0 ≈ 5μm, as 𝑚̃𝑔 ≈ 0.2568pN. 

 

Unsurprisingly, the trends are similar to those obtained with silica spheres. The levitation force 

goes through a minimum, 𝑓𝑧,𝑚𝑖𝑛 ≈ 0.090pNmW
−1, near the beam waist plane, at 𝑧𝑚𝑖𝑛 ≈ 9μm. 

Again, the levitation becomes much more efficient at some distance from the beam waist 

plane. In this case, the greater maximum, 𝑓𝑧,𝑚𝑎𝑥1 ≈ 0.323pNmW
−1, occurs when the particle 

is at 𝑧𝑚𝑎𝑥1 ≈ −81μm, with the second maximum, of slightly lower amplitude, occurring at 

𝑧𝑚𝑎𝑥2 ≈ 85μm, with a levitation force of 𝑓𝑧,𝑚𝑎𝑥2 ≈ 0.271pNmW
−1. 

 

Both of these maxima coincide with 
𝑅0

𝜔(𝑧)
≈ 0.8, similarly to the silica spheres. It is worth 

emphasising that both, 𝑧𝑚𝑎𝑥1 and 𝑧𝑚𝑎𝑥2 are very large distances, at least on the scale of a 

particle, and are both well beyond the plausible error in localising the beam waist plane, which 

is ±20μm at worst. However, the variation in 𝑓𝑧 within this interval is not negligible, 0.090 ≤

𝑓𝑧 ≤ 0.117pNmW
−1. Consequently, the effective levitation power recorded by the 
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experimenter should be slightly lower than the theoretical one, with 𝑃𝑙𝑒𝑣 = 2.85mW when 𝑧 ≈

0. 

 

The theoretical GLMT results from the previous paragraph were obtained by taking a particle 

radius of 𝑅0 = 5μm; however, in reality the suspension was somewhat polydisperse. To 

illustrate the effect that polydispersity may have on the levitation power, Figure 13 shows the 

beam waist (𝑧 = 0) levitation powers for particles with radii ranging from 4 to 6μm, which is a 

far larger size range than exists in the particles used in the experiments. The graph shows 

characteristic undulations of the same nature as those previously noted with the silica 

particles. As can be seen from the graph, a small difference in 𝑅0 may result in a significant 

difference in 𝑃𝑙𝑒𝑣. For example, for 𝑅0 = 4.95μm, 𝑃𝑙𝑒𝑣 = 2.16mW, yet when 𝑅0 = 4.96μm, 

𝑃𝑙𝑒𝑣 = 2.80mW. Consequently, a strict comparison with GLMT values would make sense only 

if the particle radii can be determined within around ±0.01μm, which is quite elusive. 

 

Based on Figure 13, an overall uncertainty of the predicted value of 𝑃𝑙𝑒𝑣 can be estimated. By 

combining the effect of interference, and that of the potential 𝑧 shift of ±20μm, it can be stated 

that for 𝑧 ≈ 0, 𝑃𝑙𝑒𝑣 = 2.4 ± 0.4mW at worst. 

 

 

Figure 13: GLMT levitation powers against different PS particle radii for 𝑧 = 0μm (the black curve), and for 𝑧 =

−20μm (the red line), with 𝜔0 = 1.70μm. 

Figure 12 b) indicates that lateral off-centring increases 𝑓𝑧, which is expected whenever the 

particle radius is larger than the local beam radius. However, both for the PS and the silica 

spheres, off-axis excursions are very small, ≪ 1μm. Therefore, the effect of Brownian off-axis 

fluctuations should be negligible, and as such, does not modify the estimated levitation power. 
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Figure 14 shows the experimental results of the PS particles that were levitated with a beam 

waist of 𝜔0 ≈ 1.7μm, as compared to the results obtained using GLMT. Much like its silica 

counterpart, this graph also indicates the levitation power against the sedimentation velocity, 

with the additional variable of temperature. Clearly, experimental values for the levitation 

power at the beam waist are lower than the theoretical predictions, with the differences often 

being larger than the estimate of the uncertainty previously calculated for the predicted values. 

 

 

Figure 14: The theoretical (the coloured lines) and experimental (the crosses) values of the levitation power for PS 

particles, with temperature values indicated on the graph. Calculation parameters: 𝑛𝑃𝑆 = 1.59 (with the imaginary 

part being 0), 𝜔0 = 1.70μm, and 𝜂 = 1.020, 0.933, 0.820mPas for 𝑇 = 20, 24, 30°C, respectively. 

Similar experiments were carried out using a wider beam waist, namely 𝜔0 ≈ 3.6μm. Since 

increasing the beam waist brings it closer to the radii of the PS particles, this has the effect of 

improving the levitation efficiency. Therefore, the levitation power is expected to be to be lower 

than that with the smaller beam waist of 𝜔0 ≈ 1.7μm, which is in fact something that is 

confirmed by the GLMT calculations, as can be seen in Figure 15. 
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Figure 15: The GLMT levitation force calculation for a 𝑅0 = 5μm PS sphere in water, with 𝜔0 ≈ 1.7μm, for the on-

axis case of 𝑥 = 𝑦 = 0. a) The red line shows the variation of the vertical force against the particle altitude, with 

𝑧 = 0 being the altitude when the particle centre is at the beam waist plane. b) The effect of lateral off-centring of 

the particle on the vertical and horizontal levitation forces, when 𝑧 = 0. 

Due to the large value of the beam waist radius, the Rayleigh length is very large, with 𝑙 ≈

97μm. Consequently, both maxima of the levitation force are very far from the beam waist 

plane, completely away from the previously mentioned ±20μm interval along 𝑧, and much 

bigger than the size of the particle. Following the same reasoning as for the smaller beam 

waist radius of 𝜔0 = 1.70μm, the predicted levitation power for 𝜔0 = 3.6μm can be estimated 

as 𝑃𝑙𝑒𝑣 = 1.40 ± 0.1mW for a PS sphere of radius 𝑅0 ≈ 5μm, at 𝑧 ≈ 0μm. 

 

Figure 16 shows the experimental values obtained with the beam waist radius of 𝜔0 ≈ 3.6μm 

alongside the equivalent GLMT predictions, to make a graph of 𝑃𝑙𝑒𝑣 against 𝑣𝑠𝑒𝑑. As before, 

temperature has also been included as a factor, and the graph shows that the experimental 

levitation powers match the 𝑇 = 30°C branch reasonably well, with this actually being the room 

temperature of the laboratory at the time. 
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Figure 16: The theoretical GLTM (the coloured lines) and experimental (the crosses) values of the levitation power 

for PS particles of radius, 𝑅0 ≈ 5μm, with the temperature values indicated in the graph. Calculation parameters: 

𝑛𝑃𝑆 = 1.59 (with the imaginary component being 0), 𝜔0 = 3.60μm and 𝜂 = 1.020, 0.933, 0.820mPas for 𝑇 =

20, 24, 30°C, respectively. 

 

A-3.2. Static equilibria of spheroids 

 

A-3.2.1. Single-beam levitation 

 

When performing single-beam levitation experiments, only the up-beam is used. The spheroid 

particles are shaped from polystyrene spheres of radius, 𝑅0 ≈ 5μm, as explained in Section 

A-2.1. 

 

The first steps of the levitation experiment are the same as those for spheres. It starts with the 

capture of a particle that has sedimented at the bottom of the cuvette. Levitation of low-𝑘 

spheroids is fairly simple. Once exposed to the up-beam, the particle lines up its longest axis 

with the axis of the beam, and starts its ascension (provided the power of the laser is greater 

than the levitation power, 𝑃𝑙𝑒𝑣). The particle may be elevated continuously until it makes 

contact with the cuvette ceiling, where it remains vertical. On the contrary, levitating high-𝑘 

spheroids is more delicate, since these particles do not keep to the beam axis, and instead 

permanently oscillate around it. This is discussed in Section A-3.3.1. 

 

As discussed above, there are no oscillations for low-𝑘 spheroids (𝑘 ≲ 4) when using the beam 

waist radii, 𝜔0 ≈ 1.7μm and 𝜔0 ≈ 3.6μm, with only one beam. This means that the levitation 



Experimental results 

58  

power for such spheroids can be measured. In the experiments that were performed, the 

altitude of the quartz cell was tuned so that the observation plane is within the bulk of the 

water, roughly midway between the cell bottom and ceiling. The particles are then manipulated 

around this altitude, where each is levitated until it is as focused as possible. In such 

conditions, the particle centre is approximately at the beam waist plane. Equilibrium is 

achieved when the radiation pressure force from the beam exactly balances the buoyant 

weight of the particle. All the other forces are balanced due to symmetry, and the particle stays 

locked onto the beam, with its longest axis lying vertically along that of the laser (see Figure 3 

b)). This system is not strictly immobile, due to thermal agitation, and shows some Brownian 

motion in the form of random changes in position and orientation. However, these motions 

have small amplitudes compared to the particle and beam sizes (≪ 1μm displacement and <

5° tilt). 

 

The vertical equilibrium is unstable, but can be easily maintained through the application of 

small corrections to the laser power. The value of the experimental levitation power, 𝑃𝑙𝑒𝑣, can 

then be easily read out, and the experiments repeated for other particles with 𝑘 ≲ 4. The 

results have been compiled in Figure 17 for particles of increasing aspect ratio — specifically 

for the range 1 ≤ 𝑘 ≲ 4. 

 

 

Figure 17: The levitation power, 𝑃𝑙𝑒𝑣, as a function of the particle aspect ratio, 𝑘, (obtained with the up-beam only 

configuration) is shown here, with a comparison between experimental and theoretical data obtained for two 

different beam waist values: (a) 𝜔0 ≈ 1.7𝜇𝑚 and (b) 𝜔0 ≈ 3.6𝜇𝑚. The theoretical data was derived using GMLT, 

MLFMA and RO (see Sections A-4 and B-2 for details). We see that the variations of 𝑃𝑙𝑒𝑣 with respect to 𝑘 are not 

smooth, as well as the fact that 𝑃𝑙𝑒𝑣 decreases significantly for 𝑘 ≳ 2.5. 

In the case where 𝜔0 ≈ 3.6μm, 𝑃𝑙𝑒𝑣 clearly increases at first, as the particle stops resembling 

a sphere (𝑘 > 1), but then steeply drops when 𝑘 ≳ 2.5. The levitation power goes through a 

minimum at 𝑘 ∼ 3.5. A similar drop in 𝑃𝑙𝑒𝑣 can be noticed with the more focused beam, where 
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𝜔0 ≈ 1.7μm; however, there is no clear variation in the first segment of the graph (1 ≤ 𝑘 ≲

2.5). 

 

In addition to the experimental data, Figure 17 also shows computed values of 𝑃𝑙𝑒𝑣 based on 

different theoretical models. These results will be elaborated upon in Section A-5. As a 

preliminary comment, we see that both the experimental and computed values are scattered, 

but do show the same tendency. 

 

A-3.2.2. Two-beam static equilibria 

 

Optical manipulation of high-𝑘 spheroids is delicate when using a small beam waist relative to 

the particle size, as has been previously mentioned. This is because such particles escape 

the beam laterally when exposed to the laser, after which they come back across the beam, 

and repeat this motion indefinitely to form an oscillatory pattern. Levitating a high-𝑘 spheroid 

to the ceiling of the cuvette requires frequent feedback from the experimenter in order to keep 

the particle close to the beam axis. The down-beam is usually switched on when the particle 

is in contact to the top water-quartz interface (Figure 4 c)). We then observe the particle 

behaviour as the power ratio is varied, whilst the total power remains constant. In some of the 

experiments, the down-beam was turned on as the particle was being levitated in the bulk 

(away from the sample boundaries (Figure 4 b))). In this case, stabilising the particle height 

demands a delicate balance between 𝑃↑ and 𝑃↓. Therefore, for practical convenience, most of 

the experiments were conducted in contact to the ceiling of the cuvette (Figure 4 c)), since this 

allows a greater range of laser power ratios to be explored without the problem of the particle 

moving away from the focus. Previous experiments have shown that having the particle in 

contact to the interface does not qualitatively affect its observed behaviour [35, 36, 37]. 

 

Using both beams in the levitator setup detailed in Section A-2.2, it is possible to maintain a 

particle of any of the tested aspect ratios in static equilibrium. However, this kind of equilibrium 

markedly differs from that encountered in the one-beam levitation case (Section A-3.2.1), 

which can only be achieved with low-𝑘 spheroids. It was found, unexpectedly, that when the 

second (down) beam is introduced to the system, both low- and high-k particles can be stably 

trapped in a tilted and off-centred position with respect to the beam axis, as sketched in Figure 

18 a). Such states occur both at the water-quartz interface and in bulk water, although, as 

aforementioned, most experiments were carried out in the former of those cases. For given 

values of 𝑘 and 𝑃𝑡𝑜𝑡, the off-centring distance with respect to the beam axis, ∆𝑟, increases as 

the power ratio, 𝜀, becomes higher, while the tilt angle, 𝜃, remains roughly constant (see Figure 
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18 b)). There are still some differences between low- and high-𝑘 particles when they are in 

this state. High-𝑘 particles always have their top tip centred on the beam axis, with the other 

tip pointing away, whilst low-𝑘 particles display the opposite behaviour, as shown in Figure 19. 

These non-trivial configurations actually occur for a range of particle aspect and beam power 

ratios, as will be seen in Section A-3.4. They emerge as one of the salient new features of our 

study, and are very useful for modelling purposes due to equilibrium being reached despite 

the lack of symmetry. 

 

 

Figure 18: (a) A schematic illustration of a static oblique configuration characterized by the tilt angle, 𝜃, and the off-

centering distance, ∆𝑟. (b) The graph is showing ∆𝑟 as an increasing function of the power ratio, 𝜀, while 𝜃 remains 

roughly constant. Parameters: 𝑘 = 3.3, 𝑃𝑡𝑜𝑡 = 4𝑚𝑊, 𝜔0 ≈ 1.7𝜇𝑚. 

 

 

Figure 19: Optical microscopy images and corresponding schematics showing the static, tilted and off-centred 

configuration observed in the two-beam levitation experiments, for two different particle aspect ratios. (a) Top view 

of a high-𝑘 spheroid (left) and corresponding side view sketch (right). 𝑘 = 4.2, 𝜀 = 0.17, 𝑃𝑡𝑜𝑡 = 20.5𝑚𝑊, 𝜔0 ≈

1.7μm. (b) Top view of a low-𝑘 spheroid (left) and corresponding side view sketch (right). 𝑘 = 3.3, 𝜀 = 0.42, 𝑃𝑡𝑜𝑡 =

8.2𝑚𝑊, 𝜔0 ≈ 1.7μm. The green arrows depict the up and down-beams. 

Intuitively, one might suspect that such configurations would be the result of an inaccurate 

superposition of the beam axes. However, the beams were aligned very carefully, and these 

static states were reproducible, and robust, with or without slight changes in the relative 

positioning of the two beams. Moreover, the fact that the simulations (see Section A-4.2) 

clearly predict the existence of such static scenarios leaves few doubts that what is observed 

in the experiments indeed corresponds to the ideal case of perfectly coaxial beams. 
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A-3.3. Dynamic states of spheroids 

 

A-3.3.1. Polar angle oscillations 

 

Polar angle (PA) oscillations correspond to the sustained oscillations observed in [35, 36, 37] 

for particles with aspect ratios 𝑘 > 3, or 𝑘 < 0.33, in one-beam levitation experiments where 

𝜔0 = 1.3μm. The particles permanently tumble relative to the beam, performing a kind of 

“dance” consisting of back and forth translational and orientational motions (see Figure 20). 

The oscillation only involves the polar, or tilt angle, 𝜃, which is measured with respect to the 

𝑧-axis in a spherical coordinate system. These oscillations are general, meaning that they may 

occur when the particle is in bulk, or in contact to an interface, and can be both periodic and 

nonperiodic, depending on the shape parameters of the particle and its position along the 

beam axis [37]. They are direct evidence of the non-conservative nature of radiation pressure 

(RP) forces [55, 56]. When the motion is periodic, Mihiretie et al. showed that the frequency 

of oscillations, 𝑓, is proportional to the laser power, 𝑃𝑡𝑜𝑡, and inversely proportional to the 

medium viscosity, 𝜂 , forming the relation [37]: 

 

 𝑓~
𝑃𝑡𝑜𝑡
𝜂

 A.16  

 

This behaviour is expected if the oscillation is driven by RP forces that are balanced by Stokes 

drag forces. 

 

Our observations reveal that PA oscillations also exist in two-beam experiments; however, 

only within some very low power ratio ranges. Firstly, it should be noted that the beam waist 

radius in the present experiments, 𝜔0 ≈ 1.7μm, differs from that used in the one-beam 

geometry of Mihiretie et al., 𝜔0 = 1.3μm [35, 37]. The consequence of this change is that, for 

prolate spheroids, the critical aspect ratio, 𝑘𝑐, above which PA oscillations occur, is shifted to 

higher values. Whilst 𝑘𝑐 ≈ 3 when 𝜔0 = 1.3μm, this changes to 𝑘𝑐 ≈ 3.7 for the beam waist 

𝜔0 ≈ 1.7μm. This means that PA oscillations disappear when the ratio, 
𝜔0

𝑎
, becomes too large. 

This phenomenon was reproduced and explained with simple 2d RO simulations by Loudet et 

al. [39]. 

 

In a typical two-beam experiment, a high-𝑘 ellipsoid (with 𝑘 > 𝑘𝑐) is first levitated by the up-

beam all the way to the ceiling of the cuvette. As the particle oscillates, the second, down-
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beam is switched on, whereby its power is progressively increased throughout the experiment. 

The outcome of this is a slowing down of the particle dynamics. Interestingly, if a high enough 

value of 𝜀 is reached, the particle will eventually become immobilized, and adopt one of the 

oblique configurations mentioned in Section A-3.2.2. Otherwise stated, the PA oscillations are 

“killed” above some power ratio threshold, 𝜀𝑐, that depends on 𝑘 (typically, 0.1 < 𝜀𝑐 < 0.5). 

This is illustrated on the overview bifurcation diagram that we shall describe below (see 

Section A-3.4). 

 

Although the above two-beam experiments were focused only on prolate spheroids, similar 

behaviour may be expected from their oblate counterparts (𝑘 < 1), which also exhibit PA 

oscillations during one-beam levitations [37]. Hence, the two-beam configuration permits the 

stoppage of PA oscillations for high ellipticity particles, be they prolate or oblate. Our 

observations confirm previous predictions based on RO calculations that will be presented in 

a later section. 

 

 

Figure 20: Polar angle oscillations of spheroid at the ceiling of the cuvette. This sequence is only half of the 

oscillation, as the other half is a mirror of the first. The particle passes through the single beam (the green spot) 

and repeats that motion back and forth until the power is changed. Experimental parameters: 𝑘 = 4.55, 𝑃𝑡𝑜𝑡 = 𝑃↑ =

5.83𝑚𝑊, 𝜔0 ≈ 1.8. 

Off-centred PA oscillations (see Figure 21) are a distinct variant of the standard PA 

oscillations. This type of motion has not been observed prior to this work, as far as we know. 

The dynamics are still planar, except they only occur on one side of the beam axis. Much like 

the standard PA motions, the frequency of the oscillation is reduced as the power ratio, 𝜀, is 

increased. However, contrary to standard PA oscillations, the time average configuration of 

the particle is not aligned with the beam axis, and as 𝜀 is increased, so does the amplitude of 

the movements, which instead remains constant in the standard PA case. It should also be 

noted that since these states always occur after an off-centred, tilted equilibrium state, they 

also adhere to the rule of having their top tip pointing away from the beam axis (on average), 

while their bottom tip points toward it (on average). This is the case, since so far, only particles 

below 𝑘𝑐 have been observed to perform such dynamics.  
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Figure 21: Sequence of off-centred PA oscillations observed in the two-beam geometry. The particle performs 

sustained oscillations within a plane, both in translation and rotation, but only on one side of the beam axis. (a) 

Time sequence of top-view optical images. Experimental parameters: 𝑘 = 3.6, 𝜀 = 0.63, 𝑃𝑡𝑜𝑡 = 8.7mW, 𝜔0 ≈ 1.7μm. 

(b) Schematic side-view illustration of the asymmetrical particle motion. (c) Evolution of the maximum tilt angle, 

𝜃𝑚𝑎𝑥, achieved by 3 different particles as a function of the power ratio. Dashed lines are simply guides for the eye. 

 

A-3.3.2. Azimuthal angle oscillations 

 

This type of motion constitutes a new kind of dynamical state, also not reported in previous 

works. Azimuthal angle (AA) oscillations only occur for particular two-beam configurations, 

and have been observed both at the cuvette top boundary, as well as in bulk (which requires 

a very delicate power balance to achieve). They consist of periodic oscillations of the azimuthal 

angle, 𝜙, in reference to a 3d spherical coordinate system, where the particle follows a conical-

type trajectory around a pivot point. The motion is shown using top view images in Figure 22. 

The ellipsoid is tilted with respect to, and oscillating around, the beam axis, while its top tip is 

in contact to the ceiling near the pivot point. The particle pivots in a periodic manner, with 

angular excursions in 𝜙 between 0 and 180°, depending on 𝜀. As far as can be seen from the 

limited resolution of the video images, the pivot point hops to a slightly different position when 

the motion reverses, meaning that the particle does not follow exactly the same path when 

coming back to the initial azimuth angle. The qualitative trend observed so far is that, the 

higher the power ratio, 𝜀, the greater the excursion in 𝜙 will be during the oscillation. The tilt 

angle, 𝜃, remains the same throughout the rotation, and typically ranges from ≈ 5° to ≈ 20°. 
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The bifurcation diagram in Figure 24 marks the domains of existence of AA oscillations (yellow 

circles) within the (𝑘, 𝜀) plane. They appear for 3 < 𝑘 < 3.3 and 4.2 < 𝑘 < 4.5 when 𝜀 > 0.2, 

both above and below the critical aspect ratio, 𝑘𝑐 ≈ 3.7. Much like the off-centred PA 

oscillations, AA oscillations occur directly after an off-centred and tilted equilibrium state. 

Hence, they exhibit the same kind of configurations for high aspect and low aspect particles 

in terms of their tip orientation. If the ellipsoid has a high 𝑘, its top tip will point toward the 

beam, and vice versa, if 𝑘 is low, then the top tip of the particle will point away from the beam 

axis. 

 

It is worthwhile to note that seemingly similar rotations, both at a boundary and in bulk, were 

reported by Neves et al. for optically trapped polymer nanofibers [11]. This study will be 

commented on in the discussion part. 

 

 

Figure 22: Sequence showing azimuthal angle (AA) oscillations. Again, this is just the first half of the oscillation, 

whereby the second half is a mirror of the first. The particle pivots around the beam axis of the two coaxial beams 

(the green spot), resulting in sustained oscillations of the azimuthal angle, 𝜙. Experimental parameters: 𝑘 = 4.2, 

𝜀 = 0.32, 𝑃𝑡𝑜𝑡 = 20.48mW, 𝜔0 ≈ 1.8μm. 

 

A-3.4. Bifurcation diagram 

 

The different kinds of oscillations described in the previous sections can be represented as 

limit cycles inside the configuration space, which is three-dimensional (see Figure 23). The 

first dimension is the distance between the particle centre and the beam axis, ∆𝑟, the second 

is the tilt (or polar) angle, 𝜃, and finally, the third is the azimuthal angle, 𝜙. 𝜙 defines the 

position of the plane containing both the beam axis and the particle centre. 

 

The blue cycle, corresponding to standard PA oscillations, is centred about the origin (∆𝑟 = 0, 

𝜃 = 0, 𝜙 = 0) and occurs within the 𝜙 = 0 plane. In reality, the plane of oscillation would 

gradually drift in azimuth in some of the experiments. As these drifts were slow on the scale 

of the oscillation period, they can be interpreted as the cycle slowly moving up and down, 

parallel to the 𝜙 axis. 
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The cycle with a dashed line in represents an off-centred PA oscillation. Graphically, it is 

similar to the standard PA cycle, except that it is centred on one side of the beam axis, which 

corresponds to a finite value of ∆𝑟. 

 

AA oscillations are simply represented as a vertical brown line in Figure 23. This is due to the 

approximation that ∆𝑟 and 𝜃 are about constant within a period of the motion. This 

representation is quite rough as a result of the poor resolution of the optical images. In fact, 

tiny changes in ∆𝑟 and 𝜃 can be detected, but not measured with accuracy, meaning that the 

trajectory in the diagram is not quite a line, but a limit cycle spanning a small but finite area. 

 

 

Figure 23: Limit cycles corresponding to the different types of particle oscillations that occur in two-beam 

experiments. Solid blue line: standard polar angle (PA) oscillation. The shape of the cycle is based on the former 

work by Mihiretie et al. [35, 36, 37]. Dashed blue line: off-centred PA oscillation. The brown line is a simplistic 

representation of the conical motion performed during azimuthal angle (AA) oscillations. 

All types of static and dynamical regimes encountered in the two-beam levitation experiments 

have been gathered in a bifurcation diagram that has been plotted in the (𝑘, 𝜀) plane (see 

Figure 24). At this point, it is worth recalling that all the data points in the bifurcation diagram 

were obtained using prolate spheroids in the “contact” configuration (an example is shown in 

Figure 19), and with 𝜔0 ≈ 1.7μm. 

 

The black crosses correspond to a stable static state at the origin (𝑥 = 𝑦 = 𝑧 = 0, 𝜃 = 0). The 

ellipsoid stands vertically, centred on the beam axis, with its long axis parallel to that of the 

beam. This only occurs during one-beam experiments, when 𝜀 = 0, and the aspect ratio of the 

spheroids is below the critical threshold (in this case 𝑘 < 𝑘𝑐 ≈ 3.7), as shown previously [35, 

36, 37]. 

 

The solid black circles represent static, oblique configurations, where the particle is tilted and 

off-centred with respect to the beam axis. These states require the two-beam geometry and 

cover a large part of the diagram. 
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The standard PA and AA oscillations are marked by empty blue and yellow) circles, 

respectively. The former exist in both the one- and two-beam configuration, whereas the latter 

only occur for certain power ratios involving both beams. 

 

The green squares symbolize the off-centred PA oscillations. Note that the particles which 

undergo such motions do not oscillate under one-beam exposure, and are below the critical 

aspect ratio for the beam waist 𝜔0 ≈ 1.7μm (𝑘 < 3.7). As has already been explained, the 

particle performs sustained oscillations within a fixed plane, performing both translational and 

orientational motions. However, unlike standard PA oscillations, the particle remains only on 

one side of the beam axis, thereby creating an asymmetrical situation (see Figure 23). 

Preliminary measurements show that the tilt amplitude is an increasing function of 𝜀 (see 

Figure 21c)). 

 

Finally, the orange squares correspond to irregular dynamical regimes, where the particle 

seemingly performs violent and unpredictable motions around the beam axis. They occur 

above a threshold power ratio. Similar irregular dynamics have already been pointed out in 

one-beam levitation experiments [37]. 

 

It should be noted that for each of the data series (vertical sequences of points – each 

corresponding to same particle with a given aspect ratio) plotted in Figure 24, the total power 

inside the sample was kept constant, and the difference in power was always maintained to 

be high enough so as to prevent the particle from falling. Additionally, no qualitative difference 

in dynamics was observed when using either a high, or a low total power – the power ratio is 

what determines the particle states. The only noticeable change was the frequency of the 

sustained oscillations, which is proportional to the total power [35, 36, 37]. 

 

Perhaps the most salient conclusion that may be drawn from Figure 24 is that the power ratio, 

𝜀, in addition to the aspect ratio, 𝑘, may serve as another bifurcation parameter between static 

and dynamical regimes. This is of direct practical interest, and it constitutes another important 

new feature obtained from the two-beam levitation experiments. 
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Figure 24: Experimental bifurcation diagram summarising all the static and dynamical regimes obtained in both 

one- and two-beam manipulations, as a function of the beam power ratio, 𝜀, and the particle aspect ratio, 𝑘. The 

blue circles represent standard polar angle (PA) oscillations. The yellow circles show the azimuthal angle (AA) 

oscillations. The black crosses correspond to particles with a stable, fixed point at the origin, with their long axis 

parallel to the beam. The orange squares are ‘unstable’ scenarios, where the particle performs seemingly random 

and sporadic motions. The green squares locate the off-centered PA oscillations, and finally, the black spots 

represent the static, tilted and off-centered states. The red area highlights these static, oblique particle 

configurations on the diagram. The beam waist radius for all experiments shown here is 𝜔0 = 1.7μm. 

 

A-3.5. Single beam three-dimensional trapping 

 

This section is dedicated to experiments carried out with the Elliot-Olympus IX73 optical 

tweezer setup (see Section A-2.3 for technical details). To recapitulate briefly, the setup uses 

a single laser beam, directed upwards through the microscope objective. This objective then 

has the two-fold function of focusing the laser, and building the image of the sample (see 

Figure 6). 

 

The system was built to work as a 3D optical trap only when a very large numerical aperture 

(𝑁𝐴) objective is in place (in this case 100x, oil immersion, 𝑁𝐴 = 1.30). According to the 

Rayleigh criterion, the 100x objective provides “extreme focusing”, meaning that it can focus 

the laser beam down to a spot which is less than a wavelength in diameter (in this case 𝜆0 =

1070nm). Intermediate aperture objectives, such as 20x (𝑁𝐴 = 0.45) and 40x (𝑁𝐴 = 0.60) only 
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provide “intermediate focusing” (IF), with the beam waist diameter being slightly larger than 

the wavelength. 

 

A-3.5.1. Comparison between the optical tweezers and the optical levitator 

 

It is instructive to compare the beam characteristics corresponding to the different objectives 

used in the Elliot setup with those of the optical levitator (OL). Note that beam cross-section 

in the OL setup is not cut by any aperture, hence it remains close to Gaussian everywhere, 

including within the sample cell. The beam characteristics are the beam waist radius, 𝜔0, the 

far field diffraction angle: 

 

 𝜃∞ =
𝜆

𝜋𝜔0
 A.17  

 

and the Rayleigh length (see Equation A.4), 𝑙, where: 

 

 𝜆 =
𝜆0
𝑛

 A.18  

 

with 𝑛 as the refractive index of the medium through which the beam is propagating. In the 

case of the Elliot-Olympus setup, where the infrared beam is supposed to overfill the objective 

aperture diaphragm, the beam cross-section in the sample cell becomes close to an Airy spot, 

rather than being Gaussian. For the purpose of a rough comparison between the OT and OL 

beam parameters, we may take the beam aperture angle: 

 

 𝑢 = sin−1 (
𝑁𝐴

𝑛
) A.19  

 

to be the equivalent of 𝜃∞ for the OT beam. The beam waist radius is then deduced by using 

𝑢 = 𝜃∞ in a rearranged from of Equation A.17. For simplicity, the transition from oil to water is 

ignored, and it is supposed that 𝑛 = 1.50, the refractive index of oil. Calculated values of the 

beam parameters are displayed in Table 2. 
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Table 2: Shape parameters of the Gaussian beam in the case of the optical levitator (OL), as well as equivalent 

parameter values for the Elliot-Olympus IX73 setup. 

Clearly, the optical levitator may be seen as very weakly focusing when compared to the 

optical tweezer configuration with the 100x objective.  Note that the Rayleigh length varies 

from very large, down to very small on the scale of a typical spheroid length (respectively for 

the different particle sizes used in the OT and OL setups). In the conditions of the first row of 

the table, the particle essentially experiences a cylindrical laser beam. These circumstances 

mean that the optical forces do not vary by much when the particle moves up or down, parallel 

to the laser axis. Conversely, the 100x OT configuration generates a very strong axial gradient 

of intensity, which is required for 3D trapping. Optical forces are very sensitive to whether the 

particle centre is upstream or downstream of the beam focus. 

 

A-3.5.2. 3D Trapping of polystyrene spheres and spheroids 

 

3D optical trapping with the OT/100X setup was first attempted with spherical PS particles with 

diameters between 1µm and 10µm. Trapping in bulk water was verified using the whole range 

of particle sizes (1µm to 10µm). Horizontal (𝑥, 𝑦) trapping locked the particle onto the laser 

axis very strongly, with the presence of small Brownian excursions (see Figure 25). Axial 

trapping, however, was delicate, especially with medium sized (2µm to 4µm) particles. It was 

found to be necessary to first bring the laser focus above the particle, meaning that the 

scattering and gradient forces would act in the same direction in order to achieve trapping. 

The particle would then be raised to the beam waist and come into focus on the video images. 

This would result in the particle finally being trapped in the 𝑧 direction, to complete the three-

dimensional trap. However, it was observed that axial trapping was weak in general, even 

when the laser was at high power (> 1W). It was not a rare occurrence for the procedure to 

fail, or for the particle to escape the observation plane after a few seconds. Some quantitative 

information about the trapping stiffness could be obtained using the Elliott tracking software, 

although the tracking is limited to excursions in the (𝑥, 𝑦) plane, from which only the horizontal 

 𝜔0 (μm) 𝜃∞ (rad) 𝑙 (μm) 

OL / 3.6μm 3.6 0.034 105 

OL / 1.6μm 1.6 0.077 21 

Elliot / 20x 0.76 0.30 2.54 

Elliot / 40x 0.55 0.41 1.33 

Elliot / 100x 0.22 1.05 0.21 
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trap stiffness constants, 𝜅𝑥 and 𝜅𝑦, can be calculated (see Figure 25). Even though no 

quantitative information about the 𝑧-direction is available through the software, in general, the 

practical conclusion is that 𝜅𝑧 ≪ 𝜅𝑥~𝜅𝑦 for the tested PS particles. 

 

 

Figure 25: 3D trapping of a spherical PS particle. Experimental parameters: 𝑅0 = 1μm, 𝑃 = 2.3W, 100x objective. 

(a) Snapshot of the trapped particle (frame rate 50 fps) in bulk water. The red spot indicates the (𝑥, 𝑦) position of 

the particle as determined by Elliot’s tracking software. (b) Cloud of (𝑥, 𝑦) particle positions (105 points) and the 

corresponding histograms. Standard deviation ≈ 35nm. Note that the cloud is anisotropic, as might be expected 

due to the laser polarisation [57]. The corresponding trap stiffness constants are 𝜅𝑥 ≈ 3.2μNm
−1 and 𝜅𝑦 ≈

3.8μNm−1. (c) Time fluctuations of the position – evidence of the Brownian motion of the particle (time unit: 1μs). 

For the optical trapping of spheroidal particles, the typical particle diameter of the mother 

spheres was between 3μm and 4.5μm, although some experiments were performed with larger 

sizes. 

  

Surprisingly, the 3D trapping of high-𝑘 particles was easier to accomplish and more robust 

than that of spheres. The procedure is the same as the one described above, meaning that it 

starts by bringing the laser focus above the particle, which is then followed by the trapping. 

Once exposed to the laser, the spheroid lines up its long axis with the axis of the beam and 

lifts up to an equilibrium position, where it is locked in place. An example of this is shown in 

Figure 26. 3D trapping was successful with particles ranging from large (2𝑐~25μm) to small 

(2𝑐~4μm). Generally, the particle self-equilibrated with its centre below the laser focus. This 

conclusion is based on simple experiments such as that shown in Figure 26. Figure 26 b) 

shows the image of a trapped ellipsoid in bulk water, which is located on the border of the 

focal plane of the objective, as seen by the camera, CAM2 (when 𝛿𝑧,𝐶𝐴𝑀2 = 0μm). The particle 

is clearly out of focus, as signified by the characteristic rings in the image. In Figure 26 c), the 
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observation plane has been moved ≈ 2μm below the focal plane (𝛿𝑧,𝐶𝐴𝑀2 = −2μm), hence the 

enhanced focusing of the particle in the image. 

 

 

Figure 26: Example of the 3D trapping of an ellipsoid. (a) Image of the particle floating horizontally above the quartz-

water (QW) interface. The scale bar is 5μm in length. The particle parameters are: 𝑐 = 4.15μm, 𝑎~1μm, with 𝑘 ≈

4.2. (b) Photo of the optically trapped particle in bulk water (image from camera CAM2, with 𝛿𝑧,𝐶𝐴𝑀2 = 0μm). (c) 

Image of the particle in better focus, obtained with the 𝛿𝑧,𝐶𝐴𝑀2 ≈ −2μm configuration.  

An alternative way to show that the centre of the trapped particle is below the laser focus is 

shown in Figure 27. Here, CAM1 is used, since it only yields images from the objective focal 

plane. Due to the hydrodynamic drag, when the microscope focus (and hence the laser focus) 

is adjusted suddenly by ≈ −5μm, the particle cannot immediately accompany the laser focus 

shift to reach its equilibrium configuration. Consequently, the observation plane temporarily 

moves down, along the particle body. A much sharper image of the particle is then obtained, 

as shown in Figure 27. 

 

A third procedure consists of (slowly) moving down the objective until the particle touches the 

bottom boundary of the sample cell (the QW interface), as depicted in Figure 28. In this case, 

the microscope is brought down at a rate of < 1μms−1, so that the particle can follow the 

motion of the laser focus inside the water medium. 

 

The altitude of the laser focus, 𝑧𝑙𝑎𝑠𝑒𝑟 𝑓𝑜𝑐𝑢𝑠, can be read continuously throughout the recorded 

video sequence. Note that the reading, 𝑧𝑟𝑒𝑎𝑑, must be referred to with respect to an origin, 

which is taken as the altitude, 𝑧𝑄𝑊, where a well-defined Airy spot from the laser is visible on 

the QW interface (see Figure 80 in the Appendix). Moreover, the difference, 𝑧𝑡𝑜𝑢𝑐ℎ − 𝑧𝑄𝑊, 

must be corrected due to the refraction through oil and water. The value, 𝑧𝑙𝑎𝑠𝑒𝑟 𝑓𝑜𝑐𝑢𝑠, is then 

given by: 

 

 𝑧𝑙𝑎𝑠𝑒𝑟 𝑓𝑜𝑐𝑢𝑠 =
𝑛𝑤
𝑛𝑜𝑖𝑙

(𝑧𝑟𝑒𝑎𝑑 − 𝑧𝑄𝑊) A.20  
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with the refractive index of water being taken as, 𝑛𝑤 = 1.33. In the above formula, it is 

supposed that the index-matching between oil and quartz is perfect. Since the oil is made to 

have the same refractive index as glass (𝑛𝑜𝑖𝑙 ≅ 𝑛𝑔𝑙𝑎𝑠𝑠 ≅ 1.50), it does not have exactly the 

same refractive index as the quartz coverslip. However, since the difference is not so large, 

the assumption is maintained, since it provides much in terms of simplicity. 

 

 

Figure 27: (a) Standard image of the trapped particle. (b) The altitude of the objective has been suddenly decreased 

by 𝛿𝑧~ − 5μm. A transient, well focused image of the particle is captured by the camera, CAM1, before the particle 

has a chance to react to the shift. The particle parameters are: 𝑐 = 4.1μm, 𝑎~1.1μm and 𝑘 ≈ 3.8. 

 

 

Figure 28: Driving the particle down until contact with the cell bottom boundary (QW) is made. The red lines 

represent the focused laser beam. 

The image of the particle does not change so long as the bottom tip is in bulk water. A 

discontinuity in the sequence of images can be detected when the particle touches the 

interface, at 𝑧𝑙𝑎𝑠𝑒𝑟 𝑓𝑜𝑐𝑢𝑠 = 𝑧𝑡𝑜𝑢𝑐ℎ. The effect is shown in Figure 29. Figure 29 a) is a standard 

image of the trapped particle in bulk water, as observed by CAM2. To improve the detection 

of the particle collision with QW, the camera is shifted by 𝛿𝑧,𝐶𝐴𝑀2 ≈ +2μm, which gives a 

strongly defocused image, as shown in Figure 29 b). The advantage of defocusing the image 

resides in the easily visible large ring that can be seen in Figure 29 b) c) and d). The diameter 

of this ring is approximately constant when the particle is in bulk water, but suddenly decreases 

once 𝑧𝑙𝑎𝑠𝑒𝑟 𝑓𝑜𝑐𝑢𝑠 = 𝑧𝑡𝑜𝑢𝑐ℎ. The evolution of the ring diameter is shown in Figure 30. 
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Figure 29: Sequence showing the particle being trapped in bulk water, then taken down to the QW boundary. (a) 

Shows an image of the particle in bulk water. (b, c, d) Correspond to 𝑧𝑙𝑎𝑠𝑒𝑟 𝑓𝑜𝑐𝑢𝑠 = 14.2μm, 6.24μm and 5.0μm, 

respectively. The contrast of the rings has been increased by image subtraction in order to aid the reader. The 

particle parameters are: 𝑐 = 5.25μm, 𝑎 ≈ 1μm and 𝑘 ≈ 5.3. 

 

 

Figure 30: The evolution of the diameter of the outermost ring (see Figure 29 b) c) and d)) as a function of the 

objective altitude, 𝑧𝑟𝑒𝑎𝑑. Contact with QW is made at 𝑧𝑟𝑒𝑎𝑑 = 12.8μm. The particle is the same as that in Figure 29. 

The point at which the particle makes contact with the QW interface is easily identified as the 

kink in the graph, from which it can be deduced that 𝑧𝑡𝑜𝑢𝑐ℎ = 7.47μm, with a (+0.7μm, −0.6μm) 

uncertainty. In this case, the value, 𝑧𝑡𝑜𝑢𝑐ℎ, indicates the position of the laser focus within the 

3D-trap configuration (see T in Figure 28). Since 𝑐 = 5.25μm in this case, it can be concluded 

that the laser focus is located between the particle centre, C, and its top tip. This procedure 

was repeated with many particles of different sizes, resulting in the same outcome every time. 

To illustrate this point, a few of the results have been gathered in Table 3. 

 

𝑐 (μm) 2.6 5.2 4.4 4.1 5.3 10.4 11.8 

𝑘 2.0 6.4 4.9 3.8 5.3 3.3 3.4 

𝑧𝑡𝑜𝑢𝑐ℎ (μm) 4.0 5.7 5.6 5.1 7.5 13.2 12.5 

 

Table 3: Results of QW contact experiments with particles of different sizes and aspect ratios. The 100x objective 

is used at 𝑁𝐴 = 1.30, which is the maximum. 
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The uncertainties on 𝑧𝑡𝑜𝑢𝑐ℎ are approximately ±1μm. Consequently, it is not possible to 

accurately locate the position of the laser focus on the scale of the particle semi-axes; 

however, the conclusion that T is above C, as indicated in Figure 28, is both solid and general.   

 

A-3.5.3. Influence of the objective aperture 

 

The results from the previous Section, A-3.5.2, have been obtained with the 100x objective 

being operated at maximum aperture, 𝑁𝐴𝑚𝑎𝑥 = 1.30. Optical trapping is very stable in such 

conditions, as has been discussed. However, it is expected that if the aperture is diminished 

beyond some critical value, 𝑁𝐴𝑐𝑟𝑖𝑡, the trap stability would decrease and the particle would 

escape the trap. The general observation that was made by progressively closing the objective 

iris diaphragm is that it has the effect of slightly moving the trapped particle up. This is 

illustrated by the photos shown in Figure 31. Figure 31 a) shows a standard image of the 

trapped particle when 𝑁𝐴 = 𝑁𝐴𝑚𝑎𝑥 = 1.30. In Figure 31 b), the aperture has been reduced to 

𝑁𝐴 ≈ 1.1 (this value was determined using the method described in the Appendix - Numerical 

aperture calibration). Clearly, when 𝑁𝐴 ≈ 1.1, the image is more focused, which means that 

the particle centre has moved up, close to the altitude of optimal focus. 

 

 

Figure 31: Showing the effect of partially closing the aperture diaphragm during the trapping of a particle in 

equilibrium. (a) Image of the particle slightly out of focus when trapped in equilibrium with the objective at maximum 

numerical aperture, 𝑁𝐴 = 𝑁𝐴𝑚𝑎𝑥 = 1.30. (b) Sharper image of the particle with a reduced numerical aperture, 𝑁𝐴 ≈

1.1, whilst still trapped and in equilibrium, signifying a shift in altitude relative to the beam focus. The particle is the 

same as that in Figure 29 and Figure 30. 

Figure 32 shows the results of a quantitative study concerning the particle shift in altitude with 

respect to variations in the numerical aperture. The manipulated particle was the same as that 

in Figure 29, Figure 30 and Figure 31 and was observed with the camera, CAM2, as the 100x 

iris diaphragm was progressively closed. For each discrete size of the diaphragm, the position 

of the camera was adjusted to achieve the best particle image focusing, with the 

corresponding difference in altitude between this image and the beam focus being recorded 

as, 𝛿𝑧,𝐶𝐴𝑀2. 3D trapping could be maintained down to approximately 𝑁𝐴 ≈ 0.85, which may be 

taken as the value, 𝑁𝐴𝑐𝑟𝑖𝑡, for this particle. As can be seen in Figure 32 a), the value of 𝛿𝑧,𝐶𝐴𝑀2 
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increases from ~− 2.2μm to ~ − 0.5μm, meaning that the particle was shifted up by ~1.7μm 

between 𝑁𝐴𝑚𝑎𝑥 and 𝑁𝐴𝑐𝑟𝑖𝑡. Thus, reducing the aperture has the effect of shifting the particle 

centre up to a position closer to the laser focus, as has been illustrated in Figure 32 b). It was 

also observed that the Brownian fluctuations of the particle became very large when 

approaching 𝑁𝐴𝑐𝑟𝑖𝑡. These large fluctuations signal that the particle is close to escaping from 

the optical trap. Conversely, when the trap is operated at 𝑁𝐴𝑚𝑎𝑥, the Brownian fluctuations 

are almost imperceptible, indicating that the trap has a very high stiffness. 

 

 

Figure 32: (a) Focus correction of the CAM2 image of the trapped particle, against the 100x objective numerical 

aperture. The red line is simply there to help with visualisation. (b) Sketch of the trapped spheroid, at 𝑁𝐴𝑚𝑎𝑥 (left) 

and reduced 𝑁𝐴 (right). The laser beam is represented by the red lines. Angles are not to scale, for clarity. The 

particle is the same as that in Figure 29, Figure 30 and Figure 31. 

A-3.5.4. The dependence of trap equilibrium on laser power  

 

When the setup is in the configuration, AOoff-NGin, as is the case in most of our experiments, 

the optical forces that can be exerted on the polystyrene particles are on the scale of 

piconewtons. A particle such as the one used in Section A-3.5.3, has a buoyancy corrected 

weight of ~0.01pN. In view of the very small Brownian fluctuations exhibited by trapped 

particles at 𝑁𝐴𝑚𝑎𝑥, it is presumed that forces resulting from the thermal agitation of water 

molecules do not significantly influence the particle equilibrium. Therefore, it can be 

considered that only the optical forces are involved when the particle is trapped.  If nothing in 

the system absorbs light with the wavelength of the laser (𝜆0 = 1070nm), it is expected that 

the optical forces will simply be proportional to the laser power (𝑃). Consequently, the trapping 

configuration should not depend on 𝑃. Note that “nothing” means that neither the particle, or 

the surrounding water and cell walls, are absorptive. Otherwise stated, the assumption being 

made is that the temperature of the system remains constant, and equal to room temperature, 

regardless of how high, or low, the laser power may be. 
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Figure 33 shows the results of an experiment carried out with the same particle as that in 

Section A-3.5.3; however, instead of changing the objective aperture, which is now constantly 

𝑁𝐴𝑚𝑎𝑥, the laser power is varied, with the particle still being observed by CAM2. The shift in 

CAM2, 𝛿𝑧,𝐶𝐴𝑀2, is once again utilised in order to determine the particle altitude. This 

experiment clearly indicates that increasing 𝑃 shifts the particle to a lower altitude, meaning 

that the laser focus moves closer to the top tip of the particle, as illustrated in Figure 33 b). 

The amplitude of this shift is ≈ 1.3μm, and is far from negligible on the scale of the particle. 

 

 

Figure 33: (a) The dependence of the trapping configuration on the laser power. The red line is simply there as a 

guide. 𝑃100𝑥 is the power of the laser beam in the plane of the objective pupil. (b) A sketch of the trapped ellipsoid 

at low (left) and high power (right). The laser beam is depicted by the red lines. The particle that is used is the 

same as that in A-3.5.3, with the numerical aperture as 𝑁𝐴 = 𝑁𝐴𝑚𝑎𝑥 = 1.30. 

The conclusion to be drawn from these results is that there is a source of nonlinearity in the 

system, the effect of which becomes visible at high powers. It is not clear whether the 

sensitivity of the equilibrium to 𝑃 is due to some absorption by at least one of the constitutive 

elements of the system, or due to a change of the polystyrene refractive index because of the 

very intense light in the focal zone. It should be noted that this effect is only evident for 𝑃100𝑥 ≥

50mW, with most of the experiments having been carried out at a lower power, well within the 

range where the linear relationship between the optical forces and 𝑃 can be assumed safely. 

 

A-3.5.5. The stability of spheroid trapping in 3D 

 

The stability of the optical trap can be tested by moving the sample cell around the particle, or 

equivalently, moving the particle inside the water medium of the sample cell. In both cases, 

the hydrodynamic force and torque due to the motion of the particle relative to the fluid, perturb 

its efforts to attain equilibrium in the laser beam. To test the lateral stability of the trap, the cell 

was moved horizontally (in the 𝑥, 𝑦 plane) using the motorised microscope platform. The 

velocity of the platform was progressively increased up to the point where the particle escapes 

the trap. A similar test could be performed using the 100x objective, whilst altering the altitude 
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at various velocities to create a vertical flow, in order to determine the stability along the 𝑧-

axis. However, the latter option is not practical because of the very short working distance of 

the objective, which does not allow enough time to reach a constant state. Therefore, an 

alternative method was used, which consisted of keeping the particle against the bottom 

boundary (QW), whilst lowering the laser focus, so that the upward force from the interface 

pushes the particle above the natural equilibrium point of the 3D-trapping, and the behaviour 

of the particle can be explored with the laser focus below 𝑧𝑡𝑜𝑢𝑐ℎ (see Figure 28). This will be 

referred to as the “∆𝑧+ stability test”. 

 

Firstly, the response of the particle to horizontal flow will be dealt with, after which, the ∆𝑧+ 

stability test will be addressed. 

  

A-3.5.6. The response of a trapped particle to Stokes flow  

 

Moving the cell horizontally (in the 𝑥 or 𝑦 directions), whilst observing the behaviour of a 

trapped particle, is a typical way to find the lateral stiffness of an optical trap, and has been 

used by many authors with spheres [58]. In the reference frame of the particle, the lateral 

motion is the same as having a uniform Stokes flow coming from that direction. The procedure 

progressively increases the velocity of the motion until the sphere escapes the trap laterally. 

Then, combining the knowledge of the flow velocity with the Stokes formula for hydrodynamic 

drag on a sphere gives an estimate of the maximum lateral force exerted by the laser beam 

on the particle. This experiment was also carried out with some ellipsoids, to learn something 

about how that kind of particle would behave under such circumstances. As will be seen, the 

response of the elongated particles is much more complex than that of spheres, as a result of 

the coupling of translation and rotation. 

 

 

Figure 34: The escape of an ellipsoid from a 3D optical trap using a Stokes flow. The direction of flow is indicated 

by the white arrow. The time is indicated below each image, in milliseconds. Experimental parameters: 𝑐 = 6.4μm, 

𝑎 ≈ 1.1μm, 𝑘 ≈ 5.8, 𝑃100𝑥 = 22mW, with the velocity of the motion (or flow) as 𝑣𝑓𝑙𝑜𝑤 = 40μms
−1 and a video frame 

rate of 211fps. 

Figure 34 shows a sequence of images taken from a video that captured a case of flow-

induced particle trap escape. The experimental parameters are listed in the figure caption. 
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The flow velocity, 𝑣𝑓𝑙𝑜𝑤 = 40μms
−1, is very close to the threshold value, 𝑣𝑒𝑠𝑐, beyond which 

the particle escapes the trap. When 𝑣𝑓𝑙𝑜𝑤 < 𝑣𝑒𝑠𝑐, the ellipsoid is simply pushed towards the 

direction of the flow, and is slightly tilted, as shown in the first two images of the Figure 34 

sequence. The particle then remains in this asymmetrical configuration for as long as 𝑣𝑓𝑙𝑜𝑤 is 

constant.  

  

This configuration, however, becomes destabilised when 𝑣𝑓𝑙𝑜𝑤 ≥ 𝑣𝑒𝑠𝑐. In order to interpret the 

images in Figure 34, the particle altitude must be ascertained. This was done by taking 

advantage of the blurred contours that exist in the images at different altitudes. The sequence 

shown in Figure 35 can be used as a guide to approximate what parts of the ellipsoid in Figure 

34 are above the laser focus in each image. Figure 35 was made simply by bringing the particle 

in contact to the top boundary of the sample cell, against the glass cover slip, where it was 

stuck in place, and completely flat along the surface. This was possible because unlike with 

quartz, which comprises the cell bottom, polystyrene particles usually stick on a glass interface 

about a minute after contact has been made. The images in Figure 35 were captured with 

CAM2, whereby the leftmost frame has the optimal focusing, and is taken as the reference 

altitude of 0μm. The other frames show the observation plane some micrometres below the 

particle, meaning that 𝛿𝑧,𝐶𝐴𝑀2 < 0. Thusly, a series of blurred contours corresponding to a 

specific altitude are generated, which enables a tentatively altitude measurement to be 

performed with different parts of the images in Figure 34. 

 

 

Figure 35: A series of video images showing the same ellipsoid as that in Figure 34 stuck to the water-glass 

interface (top boundary) of the sample cell. The numbers indicate the position of the observation plane below the 

particle in micrometres, and scale bar shown in the first frame spans 5μm. 

The conclusion of this analysis is shown in Figure 36. The ellipsoid is initially vertical (Figure 

36 a)), with the focus of the laser located between its centre and upper tip, as was shown 

before. Firstly, the flow pushes the particle laterally (Figure 36 b)), much in the same way as 

it would a sphere. The off-centring of the particle then creates a torque, which makes the 

particle rotate (Figure 36 c)). In Figure 36 d) and e), the tilted particle advances upward, before 

finally being expelled above the laser focus (Figure 36 f)). Even though this is only a qualitative 

scenario, it is still valuable as a guide for simulations. In principle, it should be possible to 

reproduce this effect based on adequate approximations for the calculation of optical and 

hydrodynamic forces and torques. It is possible to compare this sequence with a simulation 
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that takes into consideration the particle off-centring, 𝑟, and its tilt, 𝜃, which, if matching the 

experimental results, should form a curved trajectory when plotted on a graph. Reproducing 

this, however, even just qualitatively, would be a great testament to the accuracy of the 

simulation. 

 

 

Figure 36: The proposed scenario for the response of the ellipsoid to a Stokes flow, finishing with the expulsion of 

the particle from the trap. The rightmost arrow indicates the direction of the flow. The red dashed and dotted lines 

mark the position of the laser beam axis in each frame, with the solid lines marking the laser focus. See text for 

comments. 

A-3.5.7. The vertical stability of the 3D trap 

 

The ∆𝑧+ stability test starts with the particle in the same position as that sketched in Figure 

28, with the laser focus initially located at point T. The focus is then slowly moved down so 

that the particle makes contact with the cell bottom (QW interface). Once contact is made 

(𝑧𝑙𝑎𝑠𝑒𝑟 𝑓𝑜𝑐𝑢𝑠 = 𝑧𝑡𝑜𝑢𝑐ℎ), the focus continues to be moved down. This makes it possible to use 

the reaction force of the interface in order to move the focus vertically down, towards the 

bottom tip of the particle. In all cases it was observed that the ellipsoid would stay trapped 

along the beam axis over a large range in the 𝑧 direction, down to a position with the laser 

focus below the particle centre. This altitude will be denoted as 𝑧𝐴 from now on, and is 

represented pictorially as A in Figure 37. If the laser focus is brought below 𝑧𝐴, the 

configuration fluctuates, with the particle alternating between a vertical and a tilted position 

with respect to the beam axis. This phenomenon ceases to exist once the laser focus is taken 

beyond point B in Figure 37, which is marked as the altitude 𝑧𝐵, and is located below 𝑧𝐴. It is 

only in the altitude range 𝑧𝐵 < 𝑧𝑙𝑎𝑠𝑒𝑟 𝑓𝑜𝑐𝑢𝑠 < 𝑧𝐴 that the aforementioned fluctuations exist. Once 

the beam focus is below 𝑧𝐵, the particle is ejected laterally from the laser beam, which is 

shown in Figure 38, along with the relevant parameters of the experiment. 
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Figure 37: The ∆𝑧+ stability test. The ellipsoid remains trapped along the laser axis when the laser focus is located 

between points T and A. The interval between points A and B is the domain where fluctuations in the tilt and position 

of the particle exist. Point B is the lower limit of 3D optical trapping. The distance between A and B has been 

exaggerated in favour of clarity. 

 

 

Figure 38: Ejection of the particle from the optical trap one the laser focus reaches point B (see Figure 37). 

Experimental parameters: 𝑐 = 5.25μm, 𝑎 ≈ 1μm, 𝑘 ≈ 5.3, 𝑧𝑡𝑜𝑢𝑐ℎ = 7.5μm, 𝑧𝐴 = 2.45μm and 𝑧𝐵 = 2.25μm, with the 

scale bar in the first (leftmost) frame representing 2μm. 

 

A-3.5.8. Fluctuations near the bottom boundary 

 

Here, the fluctuations of the ellipsoidal particles are addressed. During experiments around 

the bottom boundary, it was observed that when the laser focus was moved below point A 

(see Figure 37), the particle, rather strikingly, switches between two positions, one being along 

the beam axis, and the other with the particle tilted with respect to that axis. The typical tilt 

angles are significant enough to be noticed clearly, usually within the range of ~20° to ~30° 

(see Figure 39). 
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Figure 39: The oscillations of an ellipsoid in contact to the cell floor. The laser beam is elliptically polarized, with 

the setup being in the AOin-NGoff configuration. The position of the laser axis is marked by the black cross, and 

the number below each photo indicates the time in milliseconds. The sequence shows that the tilt does not change 

in sign, meaning that the ellipsoid always favours one side of the laser axis. Experimental parameters: 𝑃100𝑥 =

5mW, 𝑐 = 5.15μm, 𝑘 ≈ 6.4. 

A spectral analysis of the videos that recorded this behaviour showed that the particle 

oscillates with a characteristic frequency 𝑓𝑜𝑠𝑐, and that this frequency increases with the laser 

power in an approximately linear fashion. During these experiments, it was observed that the 

particles would always tilt in the same direction (and hence have the same plane of oscillation) 

regardless of the beam polarisation and power, or the location of the particle on the QW 

interface. It was soon concluded that the source of this asymmetry had to lie in the intensity 

distribution of the beam cross-section. This was as a result of a small misalignment of the 

beam axis relative to that of the objective. Large errors in alignment are easily detected by 

looking at the Airy spot on the QW or WG interfaces; however, very small errors are not so 

easy to spot. In the case of the observed fluctuations, the particle acts as a very sensitive 

detector of the beam cross-section symmetry, and may be used to refine the centring of the 

beam on the objective pupil quite accurately. Hence, the large amplitude particle oscillations 

and the related cross-sectional anisotropy are able to be suppressed through small 

adjustments in the M3 mirror (see Figure 7), as the laser axis aligns itself with that of the 

objective. Figure 40 a) shows the particle lying along the beam axis after corrections have 

been made, whereas Figure 40 b) to e) displays the consequences that small misalignments 

in different directions can have on the particle. 

 

 

Figure 40: The effect of beam misalignment on particle oscillations. (a) Optimizing the alignment results in the 

particle being, on average, aligned and centred with respect to the beam axis. (b, c, d, e) The beam has been 

intentionally misaligned, resulting in the particle undergoing large amplitude oscillations in a direction which can be 

chosen by adjusting the sign and amplitude of the applied correction accordingly. Only images of high tilt are shown 

for the misaligned configurations. Experimental parameters: 𝑐 = 5.25μm, 𝑎 ≈ 1μm, 𝑘 ≈ 5.3 and 𝑃100𝑥 = 35mW. 
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Once the appropriate correction has been made, the particle is approximately centred on, and 

aligned with, the beam axis, yet still exhibits fluctuations. These fluctuations, which are of the 

order of 0.5μm, are still large enough to be easily visible, and for the concept of their domain 

of existence to be between points A and B in Figure 37 to hold. In the region between points 

T and A, the particle remains firmly locked on to the beam axis, with no fluctuations, other than 

small Brownian motions. 

 

Figure 41 to Figure 44 show preliminary results of a quantitative analysis of the fluctuations. 

The goal was to gather enough information to compare these fluctuations with the polar angle 

oscillations seen in optical levitation experiments, and check whether they are of the same 

nature. In principle, the corrections made to the alignment have left only the beam polarisation 

as a possible cause of anisotropy, and hence fluctuations. Therefore, the next course of action 

was to see whether the fluctuations were sensitive to the polarisation of the beam, and to find 

out if they were essentially random excursions, or real oscillations. As will be shown, the 

analysis indicated that the particle does in fact “oscillate” with a finite frequency, in spite of 

strong noise. 

 

The video analysis of the oscillations was performed by in-house software developed by P. 

Merzeau (see Appendix - Spheroid tilt-tracking software). In short, the program sorts pixels of 

every image in binary form as either bright or dark, with the distinction between the two being 

set either by the user, or automatically using a well-marked two-mode histogram of grey levels. 

The program then determines the centre of each family of pixels, and each image yields two 

points, namely + and −, which look like a dipole superposed onto the particle. The separation 

between these two points is null when the particle stands vertically, and its image is round; 

however, this changes once the particle is tilted. This distance, 𝑑±, is an increasing function 

of the particle tilt angle, 𝜃. It is not necessary to know the shape of this function precisely, 

since it depends on the particle characteristics, illumination conditions, and camera 

parameters in a manner that is very complex. It is assumed that 𝑑±, which will be referred to 

as the “tilt signal” hereafter, is proportional to the angle in the limit, 𝜃 → 0, which is sufficient 

to make quantitative comparisons between different videos of the same particle. An example 

of a tilt signal as a function of time is shown in Figure 41. 
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Figure 41: The polar angle fluctuations of a particle at the QW bottom boundary, with the laser focus in the domain 

between points A and B (see Figure 37). (a) The tilt signal against time. (b) The corresponding power spectral 

density. Experimental parameters: 𝑐 = 5.25μm, 𝑎 ≈ 1μm, 𝑘 ≈ 5.3 and 𝑃100𝑥 = 50mW, with a video frame rate of 

211fps. 

The spectral analysis reveals a distinct maximum in the Fourier spectrum at 𝑓𝑜𝑠𝑐 ≈ 9.5Hz, 

which can be seen in Figure 41 b), in spite of the rather chaotic aspect of the tilt signal. The 

analysis indicated that the frequency varies in an approximately linear fashion with respect to 

the laser power, as is shown by the graph in Figure 42. However, it is not a simple 

proportionality, as is evident by the linear fit of the experimental points. The extrapolation of 

the graph to the frequency of zero indicates that the oscillatory character of the fluctuations 

only exists if the power is larger than the threshold value of about 12mW. 

 

 

Figure 42: The characteristic frequency of the polar angle oscillations against laser power. The particle is the same 

as that in Figure 41. 

The sensitivity of the oscillations to the polarisation of the laser is demonstrated in Figure 43. 

The graphs show the points best representing the mean (𝑥, 𝑦) coordinates of the particle 

during fluctuations, which are defined as the barycentre of the dark pixels from the 

aforementioned binary pixel separation. This choice was deemed to be satisfactory, as far as 

could be discerned by the human eye (see Appendix - Spheroid tilt-tracking software). As can 

be seen in Figure 43, the clouds of points have a characteristic two-lobe structure. The graph 

indicates that the ellipsoid indeed switches between two configurations, which differ by a small 

shift, usually less than 1μm, in the position of the particle. When the direction of the linear 
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polarisation is turned by 90°, the cloud structure definitely changes, proving that the 

oscillations are directly influenced by the state of polarisation of the light. 

 

 

Figure 43: Analysing the sensitivity of the particle fluctuations to the polarisation of the laser beam. The setup was 

operated in the AOoff-NGin configuration. 𝑥 and 𝑦 represent the positions of the particle cross-section, with the two 

cases, a) and b), having been separated along the 𝑥-axis for clarity. The direction of the linear polarisation is 

indicated by the black arrow (parallel and perpendicular to the microscope symmetry plane in a) and b), 

respectively). Experimental parameters: the particle is the same as that in Figure 41 and Figure 42, with 𝑃100𝑥 =

22mW. 

The same method of positional analysis was used to study how the amplitude of the 

oscillations varies as a function of the laser power. The results are displayed in Figure 44. 

Despite the large scattering of the data points, it is possible to see that increasing the power 

has the effect of diminishing the amplitude of the oscillations. 

 

 

Figure 44: The amplitude of the particle oscillations against the power of the laser. The clouds of points have been 

separated along the 𝑥-axis for clarity. Laser power is as follows, for the cases from left to right, 𝑃100𝑥 =

22, 29, 50, 65, 94 and 108mW. 

The two main trends of the oscillations are that both their frequency and amplitude show a 

dependence on the total power of the laser, 𝑃100𝑥. More specifically, the frequency, 𝑓𝑜𝑠𝑐, is not 



Experimental results  

 

 85 

simply proportional to 𝑃100𝑥, and the amplitude of the oscillatory motions is a decreasing 

function of 𝑃100𝑥. Both of these trends show that these oscillations are not of same nature as 

those seen in the optical levitation experiments evidenced in Section A-3.3.1, as well as [35, 

36, 37], and that thermal noise plays an essential role in the phenomenon. Any model of the 

oscillations should include both optical and thermal (Langevin) forces. These points will be 

addressed further in the discussion Section, A-5. 

 





A-4. Numerical simulations 

 

The models used as comparisons for the experimental results of the levitation powers are 

classical Geometrical Optics (GO), Generalised Lorenz-Mie Theory (GLMT) and Multilevel 

Fast Multipole Algorithm (MLFMA). Here, GLMT and MLFMA are the rigorous methods, based 

on Maxwell’s equations, whilst GO is an approximation which represents light as a collection 

of rays. 

 

GLMT results for the levitation powers were obtained for spheres only, using the ABSphere 

software developed by Kuan Fang Ren [28]. While GLMT calculations for spheroids have been 

attempted over the years by many people [59], more recently, the modelling of radiation 

pressure forces using GLMT was theorised for spheroids of low aspect ratio, 𝑘 ≤ 2, by Xu et 

al. [31]. We will not make use of this model, as particles with an aspect ratio 1 < 𝑘 ≤ 2 are 

extremely rare in the samples used here. There will be a short overview of GLMT in Section 

B-2.2. 

 

MLFMA is described well in [40, 60], and so will not be elaborated on in any detail. The model 

will serve as a rigorous comparison for the levitation powers of all aspect ratio spheroids. 

 

This section is devoted to the results obtained with 2D GO simulations made by J.C. Loudet 

(JCL). In this method, representation of a laser beam has been simplified greatly by 

approximating it as a collection of rays. Therefore, the wave nature of light is ignored, with 

only the intensities of the rays being considered, and the effects of diffraction disregarded. 

Due to these simplifying assumptions, the method cannot produce quantitatively exact results. 

However, physically meaningful trends can be obtained, as will be seen. Perhaps most 

interestingly, the simplicity of this method allows for the calculation of full optical force and 

torque maps, as well as to tackle dynamical problems such as light-driven particle oscillations. 

 

I was not involved in the development of the GO model, or in its coding; however, I closely 

interacted with JCL for the duration of this PhD, and hence am aware of how it works. This 

simulation helped in orienting the experiments and vice versa. For instance, the two-beam 

levitation experiments were mainly inspired by results from the simulations that predicted the 

existence of oblique, off-centred, static configurations of the particles. Conversely, the 

observations made with the optical tweezer setup have been the starting point of a new version 

of the simulation that deals with the case of a single, large aperture beam. In the following 

subsections, results that are of direct relevance to the performed experiments are reported, 
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since they are deemed to be of interest to the reader. Firstly, in Section A-4.2, the case of two 

small-aperture beams is dealt with (simulating the OL), followed by Section A-4.3, which 

addresses the simulations performed with a tightly focused beam, equivalent to that of the OT 

setup. 

 

The simulation is based on a simple ray-optics model of a Gaussian laser beam interacting 

with a particle. Moreover, the model is limited to 2D, with the particle boundary being a simple 

ellipse, whereby the rays propagate inside a plane containing that ellipse. As a detailed 

description of the approach can be found in [37, 39], only a brief outline will be given here. 

 

A-4.1. 2D RO forces and torques 

 

To calculate the particle response to the laser beam in the experiments, we must determine 

what forces and torques affect the particle as a result of the radiation pressure, as well as 

include some hydrodynamic components to account for the drag of the medium. 

 

Due to the relative simplicity of the model, and some rough assumptions, it is not adequate to 

presume that the results obtained with it are quantitatively accurate; however, it can provide a 

qualitative explanation for some of the experimental phenomena that are observed. It can also 

prove that only radiation pressure is responsible for these observations. 

 

As previously mentioned, the development of the code was performed by Jean-Christophe 

Loudet, and is detailed in [39], so this will be a cursory description. 

 

 

Figure 45: The long axis of the ellipsoid making an angle, 𝜃, with respect to the 𝑧-axis. 60 reflections inside the 

ellipsoid are shown here for illustration. The laser beam has a Gaussian intensity profile along 𝑥. 

The model involves the approximation of a Gaussian beam using rays. This is done by having 

a set of 𝑁 rays, all propagating parallel to, and in the direction of, the positive 𝑧-axis, with their 
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intensities following a Gaussian distribution along the 𝑥-axis, as per Figure 45. This being a 

two-dimensional analysis, and the fact that the interaction plane is also the symmetrical plane 

of the particle, we can assume that the rays do not diverge into the third dimension. It is worth 

noting that for each computation, 𝑁 is checked to make sure that it is large enough, meaning 

that a high enough number of rays are incident upon the particle, so that there is good detail 

obtained, yet adding more rays than that does not significantly impact the force and torque 

values. This amounts to optimising the efficiency of the simulation. 

 

The calculations of the force and torque due to the radiation pressure are performed in the 

same way as in [55], [61], [25] and [62]. Every ray interacts with the particle surface at certain 

points, 𝑀𝑗, where every such scattering event has a force contribution of 𝒇⃗ 𝒋, which is 

proportional to 
𝑛1𝑃

𝑐
, where 𝑛1 is the refractive index of the medium outside the particle, 𝑃 is the 

initial power of the ray and 𝑐 is the speed of light in a vacuum. For the 𝑖-th ray, the total vector 

force contribution (the summation of all 𝒇⃗ 𝒋 associated with that ray) for all scattering events is: 

 

 𝒇⃗ 𝒊 =
𝑛1𝑃

𝑐
[𝒊̂𝟎 − 𝑅0𝒓̂𝟎 − 𝑇0∑𝑇𝑗 (∏𝑅𝑘

𝑗−1

𝑘=1

) 𝒕̂𝒋

∞

𝑗=1

] A.21  

 

Here,  𝒊̂𝟎 is the directional unit vector of the incident ray, 𝒓̂𝟎 is the directional unit vector of the 

first reflected ray, 𝒕̂𝒋 is the directional unit vector of the transmitted ray after 𝑗 interactions and 

𝑇𝑗 and 𝑅𝑗 are the respective transmissivity and reflectance at interaction 𝑗, derived the same 

way as in Section B-2.3.1. Hence, the effect of polarisation is taken care of by the Fresnel 

coefficients. 

 

The torque obtained from each scattering event, 𝑗, for a given ray, is the expected: 

 

 𝝉⃗ 𝒋 = 𝒓⃗ 𝒋 × 𝒇⃗ 𝒋 A.22  

 

where 𝒓⃗ 𝒋 is the vector joining the point 𝑀𝑗 with the particle centre. 

 

So, the final total force and torque, respectively, acting on the particle can be expressed as: 
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 𝑭⃗⃗ = ∑𝒇⃗ 𝒊

𝑁

𝑖

 A.23  

 

 𝜞⃗⃗ =∑𝝉⃗ 𝒊

𝑁

𝑖

 A.24  

 

𝝉⃗ 𝒊 is the total torque for a given ray (the summation of all 𝝉⃗ 𝒋 for that ray), and is analogous to 

𝒇⃗ 𝒊. 

 

The ray tracing in this model is standard [63], and ceases to apply to a ray once its initial power 

decreases by a factor of 103. Accounting for rays with an even greater decrease in power does 

not alter the results significantly. 

 

These calculations are performed for different configurations of the ellipsoid, with |𝑥| ≤ 𝑥𝑚𝑎𝑥 

and |𝜃| ≤ 𝜃𝑚𝑎𝑥, where 𝑥 is the distance between the particle centre and the origin of the 

coordinate system, and 𝜃 is the angle subtended by the semi-major axis of the particle and 

the positive 𝑧-axis, as shown in Figure 45. It is noteworthy to state that the algorithm does not 

restrict the particle to small excursions only, and lets it move almost completely out of the 

beam if necessary.  

 

Thus, we can obtain force and torque maps for particles with many aspect ratios and for 

numerous configurations of 𝑥 and 𝜃. 

 

However, to present a more complete analysis of the situation, hydrodynamic friction forces 

are also included, both for translation, 𝑭⃗⃗ 𝑯𝒙, and rotation, 𝜞⃗⃗ 𝑯𝜽, as well as a buoyancy corrected 

gravitational force, 𝑚̃𝑔, which points in the negative 𝑧 direction. Inertia forces are negligible 

due to the low Reynolds number associated with the modelled particles in water. So, to a first 

approximation, 𝑭⃗⃗ 𝑯𝒙 and  𝜞⃗⃗ 𝑯𝜽 reduce to their Stokes limit: 

 

 𝑭⃗⃗ 𝑯𝒙 = −𝛾𝑥𝑥̇𝐱̂ A.25  

 

 𝜞⃗⃗ 𝑯𝜽 = 𝛾𝜃𝜃̇𝐲̂ A.26  

 

where 𝛾𝑥 and 𝛾𝜃 are the translational and rotational friction coefficients along 𝐱̂ and around 𝐲̂, 

respectively, and the dot represents a time derivative. Also, it is assumed in the above 
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equations that the translational and rotational frictions are decoupled. The configuration near 

the top or bottom boundary of the container, where the particle maintains about the same 

altitude, can be modelled with the addition of a contact force, 𝑭⃗⃗ 𝒄. Assuming that this contact 

does not influence the hydrodynamic friction greatly, 𝑭⃗⃗ 𝒄 can be considered to be a vertical 

force, acting in the 𝐳̂ direction. This means that any dynamics that may be revealed using this 

method are general, and would occur in bulk as well as near a boundary. At the ceiling, 𝑭⃗⃗ 𝒄 is 

equal in magnitude to the radiation pressure force acting along 𝐳̂, 𝑭⃗⃗ 𝒛, and creates 

circumstances which are consistent with experimental procedure [64, 37]. A specific 

lubrication term, such as that discussed in [38], may be used to enhance the model near the 

boundaries, however it is not essential here.  

 

To obtain the equations of motion, the net forces and torques acting on the particle amount to 

zero, so when the particle is free in bulk, and not confined by a boundary, they can be 

expressed in the limit of a small tilt angle (𝜃 ≪
𝜋

2
) as: 

 

 𝑭⃗⃗ ∙ 𝐱̂ = 𝛾𝑥𝑥̇ A.27  

 

 𝑭⃗⃗ ∙ 𝐳̂ = 𝑚̃𝑔 + 𝛾𝑧𝑧̇ A.28  

 

 𝜞⃗⃗ ∙ 𝐲̂ = −𝛾𝜃𝜃̇ A.29  

 

where 𝛾𝑧 is the translational friction coefficient in the 𝐳̂ direction. 

 

However, we are mainly interested in the ceiling configuration due to the experiments that 

were carried out. Therefore, whilst we may keep Equation A.27 the same, Equations A.28 and 

A.29 can be collapsed into: 

 

 𝜞⃗⃗ ∙ 𝐲̂ + 𝑅̃𝜃𝑭⃗⃗ ∙ 𝐳̂ = −𝛾𝜃𝜃̇ A.30  

 

Here, 𝑅̃ is a length, specifically 𝑅̃ = 𝑅𝑘−
4

3(𝑘2 − 1), and the term, 𝑅̃𝜃𝑭⃗⃗ ∙ 𝐳̂, is the torque 

produced by the combination of the radiation pressure force and the contact of the particle to 

the top boundary. 

 

Equations A.27 and A.30 are then numerically integrated with a fourth order Runge-Kutta 

algorithm. 
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The friction coefficients used here are those derived for three-dimensional prolate ellipsoids. 

These are, 𝛾𝑥 = 6𝜋𝜂𝑎𝐺𝑎, 𝛾𝑧 = 6𝜋𝜂𝑐𝐺𝑐 and 𝛾𝜃 = 6𝜂𝑉𝐺𝜃, where 𝑉 is the volume of the particle, 

𝜂 is the viscosity of the medium, 𝑎 and 𝑐 are the semi-minor and semi-major axes of the 

ellipsoid, respectively, and 𝐺𝑎, 𝐺𝑐 and 𝐺𝜃 are geometrical factors dependant on the particle 

aspect ratio, which are derived from Perrin’s equations [65, 43]. 

 

Although this model is rather approximate, and two-dimensional, it has enough rigour to arrive 

at qualitative agreement with experimental data. 

 

A-4.2. Two-beam levitation 

 

As in most two-beam experiments, it is considered that the ellipsoid is in the “contact” 

configuration sketched in Figure 4 c). In this case, the vertical component of 𝑭⃗⃗ , 𝐹𝑧, is exactly 

balanced by the reaction force exerted by the boundary that the particle is in contact with. 

Gravity is neglected, because the buoyant weight of the particle becomes ≪ 𝐹𝑧 whenever the 

laser power ≫ 𝑃𝑙𝑒𝑣. It is also supposed that changes in the optical forces and torques which 

may be due to the proximity of the cell boundary are negligible. These assumptions greatly 

simplify the problem, and are justified by the fact that the particles were observed to oscillate 

in very similar ways in bulk water and in contact to the cell ceiling [37]. 

 

For a given position of the particle centre, 𝑥, and orientation, 𝜃, of the ellipsoid with respect to 

the beam axis, 𝑧, the computed values of 𝑭⃗⃗  and 𝜞⃗⃗  are fed into the equations of motion (written 

in the limit of small particle tilt angles, where 𝜃 ≪
𝜋

2
), which are then further integrated to access 

the particle dynamics. In the model, the horizontal components of RP forces and torques are 

balanced by the corresponding Stokes drag terms, as in Equations A.27 and A.30. 

 

When simulating one-beam operation, this simple model performs fairly well at reproducing 

the observed bifurcation between static states and limit cycles, as the aspect ratio, 𝑘, 

increases [37, 39]. 

 

As for the two-beam configuration, it was first predicted by this model that the permanent one-

beam PA oscillations could be suppressed through the addition of a second, counter-

propagating beam with the same power, meaning 𝜀 = 1 [39]. In this symmetrical configuration, 

the computed phase portrait of a high-𝑘 ellipsoid no longer exhibits limit cycles, but rather two 

pairs of stable focal points located away from the origin. These correspond to non-trivial, 
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oblique configurations of the ellipsoid. In these cases, the particle is tilted, with its centre 

slightly off the laser beam axis, as described in Section A-3.2.2 (see Figure 18 a) and Figure 

19) [64]. These preliminary results have recently been extended to other values of 𝜀 and 𝑘, 

and may be used to build multidimensional bifurcation diagrams, such as the one presented 

in Figure 46. For a given beam waist, this diagram summarises all the static and dynamical 

regimes in the (𝑘, 𝜀) plane for ellipsoids in the “contact” configuration of Figure 4 c). This 

graphic may be divided into three regions. The grey and red regions, containing the black 

crosses and black solid circles, respectively, correspond to the non-oscillating states, whereas 

the sustained PA oscillations, marked by the empty blue circles, can be found inside the blue 

contour. The black crosses in the grey area indicate that the origin point, (𝑥 = 0, 𝜃 = 0), is the 

only stable attractor in the phase portrait. This is not so in the red area, where the origin is a 

saddle point, meaning that it is unstable. Instead, a variable number of fixed points (either 

stable nodes or stable focus points) are located away from the origin, corresponding to the 

aforementioned oblique particle configurations. Some of these configurations coexist 

alongside limit cycles, within the blue contour (these are marked with a superposition of black 

solid circles and empty blue ones). The standard number of fixed points in the red and blue 

areas is four, unless labelled otherwise in the diagram (with the small digits near the solid 

black circles). 

 

The computed bifurcation diagram of Figure 46 in fact shows good qualitative agreement with 

its experimental counterpart, Figure 24. Noteworthily, the simulation actually predicts that PA 

oscillations can be “killed” above some threshold value of 𝜀, which is in turn dependent on 𝑘, 

exactly as has been observed experimentally (see Figure 24). As an illustration of the 

agreement on the latter point concerning the 𝜀-dependent damping of the oscillations, the plot 

in Figure 47 confirms that the period of oscillations of a 𝑘 = 4.1 ellipsoid is a drastically 

increasing function of 𝜀. When 𝜀 > 0.4, the ellipsoid eventually stalls and adopts one of the off-

centred and tilted configurations mentioned above. Therefore, just like in the experiments, the 

simulations show that 𝜀 is in fact another bifurcation parameter in the two-beam scheme. This 

leads to the second major experimental finding that is also obtained in the simulations, namely 

the existence of static, tilted, off-centred configurations of the ellipsoid. Such static 

configurations can occur with the ellipsoid exhibiting either static, or oscillatory behaviour while 

𝜀 is very low (𝜀 < 0.1). Once again, this is solidly verified in the experiments. 
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Figure 46: A bifurcation dagram computed by 2D RO in the (𝑘, 𝜀) plane for the two-beam configuration of Figure 4 

c). The grey region with black drosses shows the points where the stable configuration for the ellipsoid is at the 

origin and along the beam axis, (𝑥 = 0, 𝜃 = 0). The red area marks the region where the ellipsoids no longer 

oscillate, and only off-centred fixed points are present. In this area, the origin (𝑥 = 0, 𝜃 = 0) is a saddle point, and 

is therefore unstable. The region encompassed by the blue contour corresponds to a coexistence of limit cycles 

and fixed points. The digits on the diagram indicate the number of fixed points (4 if no number is shown), which 

can be either stable nodes or stable focus points (see Figure 49 and Figure 50). The beam waist radius used was 

𝜔0 = 1.3μm. 

 

 

Figure 47: The 2D RO computation of the oscillation period, 𝑇, as a function of the power ratio, 𝜀. As can be seen, 

𝑇 increases steeply with 𝜀. When 𝜀 > 0.4, the ellipsoid no longer oscillates and adopts one of the oblique 

configurations mentioned in the text. The dashed line is simply a guide for the eye. Calculation parameters: 𝑘 =

4.1, 𝜔0 = 1.3μm, and the polarisation is perpendicular to the interaction plane (see [39]). 
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Trapping an ellipsoid in an asymmetrical configuration like those in Figure 18 a) and Figure 

19 may seem unlikely; however, to justify this outcome, let us consider the 2D space, (𝑥, 𝜃) 

used in the RO simulations. For given values of 𝑥 and 𝜃, the up-beam exerts a certain force, 

𝐹↑(𝑥, 𝜃), and torque, 𝛤↑(𝑥, 𝜃), on the particle. In general, the down-beam exerts a different 

force, 𝐹↓(𝑥, 𝜃), and torque, 𝛤↓(𝑥, 𝜃), because it “sees” a different particle configuration. The 

symmetry considerations outlined in [39] show that: 

 

 𝐹↓(𝑥, 𝜃) = −𝐹↑(−𝑥, 𝜃) A.31  

 

and 

 

 𝛤↓(𝑥, 𝜃) = 𝛤↑(−𝑥, 𝜃) A.32  

 

Hence, a fixed point, (𝑥0, 𝜃0), or in other words, a static configuration of the ellipsoid, must 

satisfy: 

 

 𝐹↑(𝑥0, 𝜃0) = −𝐹↑(𝑥0, 𝜃0) = 𝐹↑(−𝑥0, 𝜃0) A.33  

 

and 

 

 𝛤↑(𝑥0, 𝜃0) = −𝛤↓(𝑥0, 𝜃0) = −𝛤↑(−𝑥0, 𝜃0) A.34  

 

For non-spherical particles, it is possible to find several sets of points, (𝑥0, 𝜃0), located away 

from the origin and satisfying the above equalities. This depends on the system parameters, 

namely the power ratio, 𝜀,  and the aspect ratio, 𝑘. The simulation offers a convenient way to 

directly visualise the positions of any fixed points that have been found during the procedure. 

This is illustrated on the force and torque maps in Figure 48. They were computed for 𝑘 = 4.1 

and 𝜀 = 1, a situation where only static oblique states are present (see Figure 46). On these 

maps, a binary colour coding has been used for the total force, 𝐹(2) = 𝐹↑ + 𝐹↓, and the total 

torque, 𝛤(2) = 𝛤↑ + 𝛤↓, meaning that only their signs are kept (+1 or −1), and not their 

amplitude. In this way, the regions where 𝐹(2) and 𝛤(2) change sign and pass through zero 

are easily resolved, since they appear as sharp boundaries between the two domains. Phase 

trajectories (the white curves in Figure 48) ending in stable focus points have been 

superimposed onto these plots. It can be seen that all of these focal points of stability are 

located only on the sharp borders corresponding to a configuration where, 𝐹(2) = 0 and 𝛤(2) =

0 are simultaneously satisfied. It has been checked, and can be seen in Figure 46, that this 
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occurs for a great deal of other fixed points, both for particles of different aspect ratios, and 

across many values of the laser power ratio. 

 

 

Figure 48: A force map (left) and a torque map (right) calculated using 2D RO for a particle of aspect ratio, 𝑘 = 4.1, 

with a laser power ratio of, 𝜀 = 1, and beam waists of radius, 𝜔0 = 1.3μm, within a two-beam configuration. The 

blue regions represent negative amplitudes of the force and torque, with the grey region signifying the positive 

amplitudes. The white trajectories lead to focus points of stability for the particle (marked by the red arrows), where 

equilibrium is reached and the forces and torques are balanced. These always occur on the boundary between 

sign transitions for both the force and the torque. The 𝑥 and 𝑦 axes contain the phase space of the simulation, 

showing the location of the particle centre along the 𝑥-axis, and the angle between the long axis of the ellipse and 

the positive 𝑧-axis, respectively. 

Even though the simulation is successful in (qualitatively) reproducing some essential trends 

that were also observed experimentally, it still has severe limitations. For example, when 

compared to the experimentally obtained bifurcation diagram of Figure 24, the simulations 

miss the existence of AA oscillations (yellow circles), the off-centred PA oscillations (green 

squares), as well as the irregular motions. This is not surprising, since the AA oscillations, and 

the irregular motions actually correspond to 3D phenomena, and so cannot be accounted for 

with a 2D description. 

 

Another source of disagreement concerns the stability of the origin point. For low enough 

values of 𝑘, the experiments reveal that the origin can be a stable fixed point only if 𝜀 = 0. 

Otherwise stated, the particle stands vertically and is centred, only if no power is fed to the 

down beam. Conversely, simulations predict that the latter configuration persists even when 

𝜀 > 0, for particles where 𝑘 < 3 (see Figure 46). 
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Figure 49: 2D RO simulations of a phase portrait in the two-beam geometry, which exhibits a coexistence between 

a limit cycle and two pairs of symmetric stable points marked by arrows. The origin point is a saddle point, meaning 

that it is unstable. The pair of points labeled (1, 1′) correspond to stable nodes, whereas points (2, 2′) are stable 

focus points. For each type of point, the approximate position and orientation of the particle are sketched to the 

right of the plot. Only a few phase trajectories, corresponding to different initial conditions, are shown, for clarity. 

Calculation parameters: 𝜀 = 0.3, 𝑘 = 4.1 and 𝜔0 = 1.3μm. 

The computed phase portrait in Figure 49 shows that static and dynamical regimes may in 

fact coexist. In this particular example, the limit cycle encompasses a pair of stable node 

points, while a pair of stable focus points is located outside of it. Depending on the initial 

conditions, the particle dynamics converge toward one of the co-existing attractors. Such 

coexistence between static and dynamical regimes is not something that is observed in 

experiments (see Figure 24). Other phase portraits, such as that of Figure 50, exhibit several 

pairs of stable focus points, which are generally obtained for high 𝑘 and 𝜀 (see Figure 46 for 

more examples like this). 
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Figure 50: Another example of 2D RO simulations of a phase portrait obtained in the two-beam geometry, this time 

for 𝑘 = 4.4 and 𝜀 = 0.7. As in Figure 49, several pairs of symmetric stable points (marked by arrows) coexist with 

a saddle point at the origin. These pairs are: (1, 1′), (2, 2′) and (3, 3′). The limit cycle evidenced in Figure 49 no 

longer exists with the present set of parameters. As in Figure 49, the sketches to the right illustrate the 

approximated oblique configuration of the particle in each case. Only a few phase trajectories are displayed for 

clarity. The beam waist radius remains as, 𝜔0 = 1.3μm. 

So far, general configurations of the particle (meaning non-zero tilt, as well as off-centring) 

have only been studied in two dimensions. 3D calculations have begun only for the simplest 

configuration, where 𝑟 = 0 and 𝜃 = 0, for particle which are vertically oriented and centred on 

the laser axis, as is the case in one-beam levitation experiments for 𝑘 < 𝑘𝑐. In this case, each 

incident ray remains within the same plane of incidence, and the calculation is just a 

straightforward generalization of the 2D case. Nevertheless, this “simple” calculation is still 

useful for a quantitative comparison with experimental values of the levitation power. As can 

be seen from the diagrams in Figure 17, 𝑃𝑙𝑒𝑣 values calculated this way are in line with the 

general tendency as 𝑘 increases. 

 

A-4.3. Single tightly focused beam (optical tweezers) 

 

Here, the case of a tightly focused beam (equivalent to the optical tweezer geometry) will be 

addressed. The scenario has been sketched in Figure 51. The point denotes as 𝐹𝑉 is where 

the rays would converge if there were no quartz coverslip in the way, and the ray path was 

submerged in water after the rays leave the oil that immerses the objective. This point is a 

virtual focus, hence the “𝑉” subscript. Because of the refraction at the QW interface, rays within 

the water converge to focal points located below the virtual focus, 𝐹𝑉. In the paraxial 

approximation, one considers rays whose incidence angle is vanishingly small. These rays 
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converge to the paraxial focus, which is denoted as 𝐹𝑃𝐴𝑅 in Figure 51. Real rays, 

corresponding to finite values of the incidence angle, converge to foci located below 𝐹𝑃𝐴𝑅. The 

point, 𝐹𝑙𝑜𝑤, corresponds to the maximum incidence angle, which is the same as the aperture, 

𝑢, of the objective. The fact that the rays do not converge to a single focus, but instead to a 

series of foci between 𝐹𝑃𝐴𝑅 and 𝐹𝑙𝑜𝑤, is the manifestation of the spherical aberration caused 

by the interface. 

 

 

Figure 51: Optical tweezers geometry. The beam focal points, 𝐹𝑉, 𝐹𝑃𝐴𝑅 and 𝐹𝑙𝑜𝑤, as well as the particle 

configuration, are shown. In principle, the particle self-aligns on the beam symmetry axis when entering the optical 

trap. The sketch shows the particle separate from the beam axis, for clarity. 

Figure 52 shows a quantitative version of Figure 51 which has been obtained numerically 

using ray tracing, supposing that 𝑢 = 60°. The set of refracted rays generates a zone of high 

intensity inside a curvilinear boundary. This zone is known as the “spherical aberration 

caustic”. 

 

 

Figure 52: The spherical aberration caustic obtained with numerical ray-tracing. Calculation parameters: 𝑛𝑞𝑢𝑎𝑟𝑡𝑧 =

1.52, 𝑛𝑤 = 1.336 and the aperture angle, 𝑢 = 60°. 
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Let the altitude of the QW interface be the origin of the 𝑧-axis. The altitude, 𝑧𝐹𝑃𝐴𝑅, of 𝐹𝑃𝐴𝑅, is 

related to the altitude, 𝑧𝐹𝑉 , of 𝐹𝑉, by: 

 

 𝑧𝐹𝑃𝐴𝑅 =
𝑛𝑤
𝑛𝑜𝑖𝑙

𝑧𝐹𝑉  A.35  

 

with the refractive index of oil assumed to be the same as that of the quartz coverslip, as has 

been done before in Section A-3.5, meaning that 𝑛𝑞𝑢𝑎𝑟𝑡𝑧 = 𝑛𝑜𝑖𝑙 = 1.52. 

 

The numerical simulation allows the calculation of the forces and torques acting on the particle 

in the configurations which were experimentally explored in Section A-3.5. During 

experiments, the 3D-trapping of particles in bulk water was realised. This constituted in the 

particle being held vertically and centred on the beam axis, with its bottom tip at some distance, 

𝑑, above QW. A part of the study was dedicated to the case where 𝑑 = 0, meaning that the 

particle was in contact with the QW interface. In this case, the reaction force from the interface 

was used to keep the particle at a constant altitude, whilst the position of the beam focus was 

moved vertically. It was shown that the particle could be maintained in alignment with the 

beam axis when the focus (𝐹𝑃𝐴𝑅, strictly speaking) is between points T and B, in Figure 37. T 

corresponds to the equilibrium configuration for the trapped particle in bulk water, while B is 

the lower limit of the trapping stability. 

 

Analysis of the experimental data led to the general conclusion that the particle centre, C, was 

slightly below 𝐹𝑃𝐴𝑅, no matter what the value of 𝑑 was, so long as it was positive. This 

conclusion may seem paradoxical in view of available results from previous calculations, either 

for spheres [55, 66], or for ellipsoids [56], which lead to the opposite prediction, namely that C 

should be above 𝐹𝑃𝐴𝑅. In other words, the major part of the particle body should be 

downstream the laser focus. However, the latter prediction only holds in the ideal situation, 

when spherical aberration is neglected. The influence of spherical aberration on the trapping 

configuration of a sphere was explored by Fällman & Axner [67, 68]. These authors found that 

the aberration had the effect of slightly shifting the particle position downwards. The latter 

conclusion may be reached from intuition. As can be seen from Figure 51 and Figure 52, the 

presence of the caustic has the effect of creating a continuous set of foci, the average position 

of which is definitely below 𝐹𝑃𝐴𝑅, resulting with the particle experiencing an effective focus 

located below 𝐹𝑃𝐴𝑅 as well. Consequently, the equilibrium position of C, the particle centre, is 

then shifted slightly downward, possibly below 𝐹𝑃𝐴𝑅. 
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Figure 53 and Figure 54 show the results from recent simulations made by J.C. Loudet. The 

simulation was first performed for spheres, to confirm the results of the literature, after which 

it was extended to the case of ellipsoids, for comparison with the gathered experimental data 

shown in Section A-3.5. The graphs show the variation of the vertical trapping force efficiency, 

𝑄𝑧, as the altitude of the particle changes with respect to the beam focus. 𝑄𝑧 is related to the 

vertical optical force, 𝐹𝑧, by: 

 

 𝑄𝑧 =
𝑐

𝑛𝑜𝑖𝑙𝑃
𝐹𝑧 A.36  

 

The variable, 𝑧, is defined as the difference in altitude between the particle centre, 𝑧𝐶, and of 

the virtual focus, 𝑧𝐹𝑉 : 

 

 𝑧 = 𝑧𝐶 − 𝑧𝐹𝑉  A.37  

 

In Figure 53 and Figure 54, the altitude will be dealt without dimensions, using the ratio, 
𝑧

𝑅
, 

where 𝑅 is the radius of the mother spheres, which in the case of these calculations is, 𝑅 =

5μm. 

 

 

Figure 53: The vertical component of the optical force trapping efficiency, 𝑄𝑧, against the altitude of the particle, 

obtained for a simple sphere. The altitude is measured without dimensions, using 
𝑧

𝑅
, where 𝑧 is the difference in 

altitude between the particle centre and the virtual focus, 𝐹𝑉, with 𝑅 being the radius of the sphere, in this case, 

𝑅 = 5μm. The different colors correspond to different values of 𝑑, the distance of the particle bottom from the glass 

coverslip, CG. This is measured with respect to the radius of the sphere. 
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Figure 54: The vertical component of the optical force trapping efficiency, 𝑄𝑧, against the altitude of the particle, 

obtained for an ellipsoid with 𝑘 = 4. The altitude is measured without dimensions, using 
𝑧

𝑅
, where 𝑧 is the difference 

in altitude between the particle centre and the virtual focus, 𝐹𝑉, with 𝑅 being the radius of the mother sphere, in this 

case, 𝑅 = 5μm. The different colors correspond to different values of 𝑑, the distance of the particle bottom from the 

glass coverslip, CG. This is measured with respect to the radius of the mother sphere. 

The simulation predicts that the particle, be it a sphere, or a prolate ellipsoid, gets stably 

trapped at the position where the 𝑄𝑧 curve crosses 0 with a negative slope, with the altitude 

at that point being denoted as 𝑧𝑒𝑞 = 𝑧𝐶 − 𝑧𝐹𝑉
𝑒𝑞

. It can be seen that 𝑧𝑒𝑞 is positive when the 

particle is close to 𝑑 = 0, in the absence of spherical aberration, but becomes negative as 𝑑 

increases. Therefore, the general conclusion is that the trapping configuration is quite sensitive 

to spherical aberration. To compare the computed results with the experimental observations, 

𝑧 must be converted into a variable involving the paraxial focus, meaning 𝑧𝐶 − 𝑧𝑃𝐴𝑅. Based on 

Equation A.35, it is found that: 

 

 𝑧𝐶 − 𝑧𝐹𝑃𝐴𝑅 = (1 −
𝑛𝑤
𝑛𝑜𝑖𝑙

) (𝑐 + 𝑑) +
𝑛𝑤
𝑛𝑜𝑖𝑙

(𝑧𝐶 − 𝑧𝐹𝑉) A.38  

 

where 𝑐, the semi-major axis of the ellipsoid, is related to the mother sphere of radius, 𝑅, by 

𝑐 = 𝑘
2

3𝑅. Equation A.38  may then be written in the dimensionless form as: 

 

 
𝑧𝐶 − 𝑧𝐹𝑃𝐴𝑅

𝑅
= (1 −

𝑛𝑤
𝑛𝑜𝑖𝑙

) (𝑘
2
3 +

𝑑

𝑅
) +

𝑛𝑤
𝑛𝑜𝑖𝑙

𝑧

𝑅
 A.39  
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In order to compare the simulation results to the experimental observations, configurations 

where the particle centre is located below the paraxial focus were needed. This means that 

the equilibrium state had to satisfy the condition, 𝑧𝐶 − 𝑧𝐹𝑃𝐴𝑅 < 0. This translates as: 

 

 
𝑧

𝑅
< (1 −

𝑛𝑜𝑖𝑙
𝑛𝑤

) (𝑘
2
3 +

𝑑

𝑅
) A.40  

 

By reading the graph in Figure 54, the values relevant to Table 4 may be found: 

 

𝑑

𝑅
 

0.1 0.25 0.5 1 2 5 10 

(1 −
𝑛𝑜𝑖𝑙
𝑛𝑤

) (𝑘
2
3 +

𝑑

𝑅
) 

−0.36 −0.38 −0.41 −0.48 −0.62 −1.04 −1.72 

𝑧

𝑅
 0.03 −0.08 −0.18 −0.38 −0.68 −1.38 −2.28 

 

Table 4: Results from the simulation for a 𝑘 = 4 ellipsoid. The position of the particle centre relative to the virtual 

focus, as the distance of the particle from the bottom boundary of the cell increases. 

It can be seen that condition A.40 is satisfied when 
𝑑

𝑅
≥ 2. In the experiments, particles 

stretched from mother spheres with 𝑅 = 1.5μm were used. The latter condition then translates 

as 𝑑 ≥ 𝑑𝑚𝑖𝑛 ≈ 3μm, a rather short distance compared to the particle length, where 2𝑐 ≈

7.6μm. Therefore, the simulation predicts that the centre of the particle is upstream of the 

paraxial focus, as observed in the experiments; however, only when the particle is trapped in 

bulk water, with a minimum of 3μm between itself and the QW interface. 

 

The simulation then correctly reproduces the trend observed in experimentally, except for the 

case when the particle is very close to the QW interface. Clearly, spherical aberration makes 

the particle centre shift down to a position below the paraxial focus, when 𝑑 is large enough. 

In principle, the aberration becomes too small in the 𝑑 → 0 limit for the inversion occur, 

contrary to what the observations suggest. The reason for this discrepancy is currently 

unknown. It may be due to the intrinsic limitation of the ray-optics model, which is questionable 

whenever the characteristic lengths are not large compared to the wavelength (as is the case 

for 𝑑𝑚𝑖𝑛). 

 

Stability along 𝑧 is maintained, so long as the slope, 
𝑑𝑄𝑧

𝑑𝑧
 is negative. This condition remains 

satisfied when the position of 𝐹𝑉 (and simultaneously 𝐹𝑃𝐴𝑅) is slightly lowered, as was done in 
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the experiments (see Figure 37). If, for example, the curve corresponding to 
𝑑

𝑅
= 0.1 is chosen 

from Figure 54, then the altitude at which the sign of its slope changes is 
(𝑧𝐶−𝑧𝑉

𝑅𝐸𝑉)

𝑅
≅ 1.5. With 

𝑅 = 1.5μm, and using Equation A.38, the position of the associated paraxial focus may be 

deduced, which in this case would be, 𝑧𝐶 − 𝑧𝑃𝐴𝑅
𝑅𝐸𝑉 ≅ 1.62μm, and so, 𝑧𝑃𝐴𝑅

𝑅𝐸𝑉 ≅ 2.16μm for an 

ellipsoid with 𝑘 = 4. Noteworthily, this prediction has reasonable agreement with the 

experimental findings for the positions of points A and B in Figure 37. During the experiments, 

𝑧𝑃𝐴𝑅(𝐴) ≅ 2.45μm and 𝑧𝑃𝐴𝑅(𝐵) ≅ 2.25μm were found for an ellipsoid with an aspect ratio 

slightly larger than 𝑘 = 4. The prediction of the simulation for the lower limit of stability (in this 

case, B from Figure 37) then conforms to what is observed in reality. 

  

Currently, the simulations are limited to the calculation of profiles describing the vertical 

component of the optical force. Simulating the oscillations described in the experimental 

section is a much more demanding task, as it involves computing full force and torque maps 

in (𝑥, 𝑧) and solving the dynamical equations. This is in progress, and will be the subject of a 

future publication. 

 

 



A-5. Discussion 

 

A-5.1. Manipulation of spheres using the optical levitator 

 

Levitation of PS spheres was achieved with powers slightly lower than those predicted by 

GLMT. The mismatch is almost imperceptible with the large beam waist of 𝜔0 ≈ 3.6μm, as can 

be seen in Figure 16; however, it is evident with the more focused beam, 𝜔0 ≈ 1.7μm, as 

shown in Figure 14. The reason of the discrepancy may be looked for within the parameter 

values of the simulation. Changing the value of the density would not change the 
𝑃𝑙𝑒𝑣
𝑒𝑥𝑝

𝑃𝑙𝑒𝑣
𝐺𝐿𝑀𝑇 ratio 

in the graphs showing 𝑃𝑙𝑒𝑣 against 𝑣𝑠𝑒𝑑, as was explained in that section. The only option left 

is to alter the refractive index. An instinctive and simple assumption may be that the material 

of the particles is slightly absorbing, thereby interacting with a fraction of the incident photons 

in that way. Since absorbed photons completely transfer their momentum to the particle, 

absorption is more efficient than refraction in producing a levitation force. As shown in Figure 

55, agreement is easily obtained by introducing a finite value of the imaginary part of the 

refractive index. Here, the imaginary part of the refractive index of polystyrene has been set 

to 𝑛𝑃𝑆
𝐼𝑚 = 6.7 × 10−5. Choosing this value brings the theoretical curves on top of the group of 

experimental points for both values of the beam waist radius (see Figure 55). It was found that 

any values within the range of 4.02 × 10−5 ≤ 𝑛𝑃𝑆
𝐼𝑚 ≤ 6.7 × 10−5 provide an adequate 

correction.  A finite non-zero value of 𝑛𝑃𝑆
𝐼𝑚 corresponds to an absorption length given by: 

 

 𝑙𝑎𝑏𝑠 =
𝜆0

2𝜋𝑛𝑃𝑆
𝐼𝑚 A.41  

 

When 𝑛𝑃𝑆
𝐼𝑚 = 6.7 × 10−5, Equation A.41 gives 𝑙𝑎𝑏𝑠 ≈ 1.22mm, meaning that more than 50% of 

the laser power is absorbed when passing through a 1mm layer of the particle material. Such 

a high loss is clearly unrealistic when dealing with polystyrene alone; however, this cannot be 

ruled out in the case of the particle material, since it is not pure polystyrene. It should be noted 

that if this was indeed the absorption length of the particle material, then only ≈ 1% of the 

power would be attenuated. The transparency of PS spheres was checked by drying a small 

sample of them, then submerging the particles in a high refractive index liquid (𝑛 ≈ 1.57, 

provided by Cargille) to see if all the light passed through. The particles looked almost invisible 

within this liquid, and displayed no attenuation effects, so therefore do not absorb. 
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Figure 55: The effect of introducing absorption. Calculation parameters: 𝑛𝑃𝑆
𝐼𝑚 = 6.7 × 10−5, 𝑅0 = 5μm, a) 𝜔0 =

1.70μm and b) 𝜔0 = 3.60μm. 

The possible small absorption is presumably not enough for the particle to heat up and 

generate a convection flow strong enough to compete with the optical levitation forces. Indeed, 

there seems to be no such manifestation, as far as can be gathered from the 𝑃↑ − 𝑃↓ against  

𝑃↑ + 𝑃↓ graph (see Figure 56). The test does not show any definite negative slope that could 

be interpreted as laser-induced heating and convection. 
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Figure 56: Power difference against total power experimental results performed with PS particles of radius 𝑅0 ≈

5μm. 

 

A-5.2. Manipulation of ellipsoids using an optical levitator and optical tweezers 

 

In this thesis work, we have reported observations of the mechanical responses of polystyrene 

spheroidal particles to laser light, first in a two-beam levitation setup and then in the classical 

optical tweezer geometry. Water was the continuous medium around the particles in both 

cases. 

 

A-5.2.1. The optical levitation experiments 

 

These experiments were designed as an extension of the work of Mihiretie on the response 

of ellipsoids to a single moderately focused laser beam [35, 36, 37]. The responses of such 

particles to the standard configuration of two counter-propagating beams was systematically 

explored. It was found that particle responses could be sorted as either static or dynamical 

states, depending on the ellipsoid aspect ratio, 𝑘, and on the power repartition between the 

two beams, 𝜀. The many observed responses could therefore be gathered into a general state 

diagram (see Figure 24), with 𝑘 and 𝜀 as the control parameters. 

 

The polar-angle oscillation mode (PA), discovered by Mihiretie et al., was confirmed and 

generalised to continuous values of 𝜀. Moreover, two new modes of oscillation were also 

evidenced. These are the off-centred PA and the conical azimuthal motion (AA). 
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The possibility to “kill” PA oscillations, which had been predicted by 2D RO simulations by J.C. 

Loudet [39], has been experimentally proven within large intervals of both 𝑘 and 𝜀 values. The 

configuration of the ellipsoid in such condition is non-trivial, as the particle not only rests off 

the beam axis, but is also tilted, meaning that it has finite values of ∆𝑟 and 𝜃. This case is 

especially interesting as a validation method for theoretical simulations, due to the unique 

combination of forces and torques necessary to produce such a static state. 

 

AA oscillations seen with our ellipsoids may be similar to motions observed by Neves et al. 

with nanofibers [11]. These authors used a standard OT geometry with a linearly polarized 

Gaussian beam (𝜆 = 800nm), carrying neither spin, nor orbital angular momentum. The 

nanofibers had subwavelength diameters, with lengths in the range, 10 − 100μm, and could 

be trapped either at the sample boundary (water-quartz interface), or in bulk water. In both 

cases, the particles were seen to rotate at a constant rate around the trapping point, provided 

a high enough tilt angle existed between the nanofiber axis and that of the beam axis. Based 

on T-matrix calculations, Neves et al. verified that the observed motions could be driven by 

optical torques in the configuration of their experiment. However, and as far as we know, no 

theory was proposed to explain how the particle self-orients and positions itself across the 

laser beam to produce a geometry that leads to continuous rotation. In our case, we evidenced 

AA oscillations, meaning that the motion seemingly reverses, with the particle moving back 

and forth between two boundary azimuthal positions. The mechanism that causes this reversal 

is not known yet. 

 

A-5.2.2. The experiments with optical tweezers 

 

These experiments were aimed at observing the behaviours of ellipsoids in a tightly focused 

beam (contrary to the weakly focused case of the previously discussed OL), with an aperture 

large enough to produce three-dimensional trapping. Indeed, 3D trapping was easily achieved 

with all particles, no matter the aspect ratio. Every particle was trapped vertically in an on-axis 

configuration. The position of the particle could be characterised within the laser beam focal 

zone, and it was possible to test the stability of the trap equilibrium when the focus was moved 

along the symmetry axis of the particle. It was found that the particles were trapped with the 

laser focus located between the centre and the top extremity of the particle. Otherwise stated, 

more than half of the particle body was located upstream of the laser focus. This finding 

adheres to observations made by Neves et al., in their experiments with polymer nanofibers 

[11], as well as by Toe et al., with indium phosphide nanowires [69]. Both cited articles show 

sketches with the laser focus located above the centre of the trapped rods. However, 
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simulations using the Discrete-Dipole-approximation (DDA) [56] led to the opposite 

conclusion, that a trapped ellipsoid should have its centre downstream the laser focus.  The 

discrepancy between the observed and calculated configurations may arise from the fact that 

the oil-water interface in the real system modifies the structure of the laser beam focal zone 

by producing spherical aberration [67], as well as losses through reflection. This is discussed 

in detail in Section A-4.3. 

 

A-5.2.3. Nonlinear versus noise-driven oscillations 

 

Rather intriguingly, with the OT setup, each tested particle was observed to undergo polar 

angle oscillations whenever the laser focus was brought within a narrow region close to the 

bottom tip of the particle (between A and B in Figure 37). Such oscillations, as is argued below, 

are different from those seen in the levitation experiments. 

 

Standard PA oscillations of the type reported in Section A-3.3.1, denoted from now on as 

𝑃𝐴𝑜𝑠𝑐
𝑙𝑒𝑣 , are periodic, corresponding to a sharp peak in the Fourier spectrum [37]. Mihiretie et 

al. showed that the frequency of 𝑃𝐴𝑜𝑠𝑐
𝑙𝑒𝑣  is proportional to the laser power, so 𝑓𝑜𝑠𝑐 ∝ 𝑃, while 

their amplitude is virtually unaffected by it. 

 

Conversely to 𝑃𝐴𝑜𝑠𝑐
𝑙𝑒𝑣 , oscillations within the 3D trap of the optical tweezers, 𝑃𝐴𝑜𝑠𝑐

𝑂𝑇 , are very 

noisy, with the corresponding broad peak in the power density spectrum that comes with that 

kind of motion (see Figure 41). The frequency of 𝑃𝐴𝑜𝑠𝑐
𝑂𝑇  increases with 𝑃, but the relation is not 

a simple proportionality. There seems to be a lower limit in 𝑃, below which the particle does 

not oscillate (see Figure 42). Another difference resides in the amplitude of the oscillations. 

While the amplitude of 𝑃𝐴𝑜𝑠𝑐
𝑙𝑒𝑣  is independent of 𝑃, that of 𝑃𝐴𝑜𝑠𝑐

𝑂𝑇  decreases with it (see Figure 

44), further suggesting that 𝑃𝐴𝑜𝑠𝑐
𝑂𝑇  is noise-driven. 

 

A model has been proposed by Mihiretie et al. to explain the existence of PA oscillations in 

the levitation experiments [39]. This model is two-dimensional, meaning that the coordinates 

describing the particle motion are reduced to 𝑥 (the distance of the particle centre to the laser 

beam axis), 𝑧 (the vertical motion of the particle centre), and 𝜃 (the tilt of the longest axis of 

the ellipsoid with respect to the positive 𝑧-axis). The particle is then assumed to be in 

frictionless contact with the ceiling of the cell, and gravity is neglected (with the latter 

assumption being valid whenever 𝑃 ≫ 𝑃𝑙𝑒𝑣, as is the case in most of the experiments). 

Moreover, the model is limited to small values of 𝜃, a further simplification which allows the 

vertical motion of the particle centre to be neglected, meaning that 𝑧 ≈ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Based on 
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these assumptions, the equations for the particle motion can be expressed by Equations A.27 

and A.30, for the optical force and torque, respectively. 

 

Properties of the frequency and amplitude of the oscillations are best found by writing the 

above equations, A.27 and A.30, in terms of dimensionless quantities, which are defined as 

follows: 

 

 𝑥̅ =
𝑥

𝑅0
 A.42  

 

 𝑧̅ =
𝑧

𝑅0
 A.43  

 

 𝐹̅𝑖 =
𝐹𝑖𝑐

𝑃
 A.44  

 

 𝛤̅ =
𝛤𝑐

𝑃𝑅0
 A.45  

 

 𝛾̅𝑥 =
𝛾𝑥
𝜂𝑅0

 A.46  

 

 𝛾̅𝑧 =
𝛾𝑧
𝜂𝑅0

 A.47  

 

 𝛾̅𝜃 =
𝛾𝜃

𝜂𝑅0
3 A.48  

 

 𝑡̅ =
𝑡

𝜏
 A.49  

 

with the characteristic time, 𝜏, being: 

 

 𝜏 = 𝜂𝑅2
𝑐

𝑃
 A.50  

 

Equations A.27 and A.30 can now be expressed as: 

 

 𝐹̅𝑥 = 𝛾̅𝑥
𝑑𝑥̅

𝑑𝑡̅
 A.51  
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 𝛤̅ + 𝑅̅𝜃𝐹̅𝑧 = −𝛾̅𝜃
𝑑𝜃

𝑑𝑡̅
 A.52  

 

From the structure of Equation A.50, one can deduce that the solution can be expressed as: 

 

 𝑥̅ = 𝑋(𝑡̅) A.53  

 

 𝜃 = 𝛩(𝑡̅) A.54  

 

Equations A.53 and A.54 prove that the amplitude of the oscillations does not depend on the 

laser power. The latter parameter only intervenes through the characteristic time, 𝜏. Increasing 

𝑃 only amounts to decreasing the period of the oscillations, which is proportional to 
𝜂𝑅2

𝑃
. 

 

Equations A.27 and A.30 can be generalised into a compact form that is written: 

 

 𝜱(𝒒) = 𝜍𝒒̇ A.55  

 

Here, 𝒒 = (𝑥, 𝜃) is what defines the configuration of the particle, and 𝜍 is the friction matrix. In 

this case, the friction matrix is assumed to be diagonal, as it is in the analysis of Mihiretie, 

although this assumption is not necessary. 

 

 𝜍 = (
𝛾𝑥 0
0 −𝛾𝜃

) A.56  

 

with 𝜱 being defined as: 

 

 𝜱(𝒒) = 𝜱(𝑥, 𝜃) = [
𝑭𝑥

𝜞𝑦 + 𝑅̃𝜃𝑭𝑧
] (𝑥, 𝜃) A.57  

 

It should be noted that the optical forces and torques depend on the translational and rotational 

degrees of freedom of the particle in a very complex way. 𝜱 is therefore a nonlinear operator 

acting on 𝒒. 

 

The simplest and most standard trapping configuration is when (𝑥 = 0, 𝜃 = 0). To know 

whether the particle can be optically trapped amounts to knowing if (0, 0) is stable or not. To 

find out if this condition is true, one takes the linear limit of Equation A.55: 
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 𝜱𝑙𝑖𝑛(𝒒) = 𝜍𝒒̇ A.58  

 

 𝑳(𝒒) = 𝜍−1 ∙ 𝜱𝑙𝑖𝑛(𝒒) = 𝒒̇ A.59  

 

The linear operator 𝜱𝑙𝑖𝑛 is obtained by expanding 𝜱(𝒒) to the first order in (𝑥, 𝜃), near (0, 0). 

The explicit form of 𝑳 is a 2x2 matrix, namely the “stiffness matrix”, of the optical trap. In 

general, there is no reason why the off-diagonal terms of 𝑳, namely (𝑥𝜃) and (𝜃𝑥), should be 

equal. Due to the non-equivalence of (𝑥𝜃) and (𝜃𝑥), 𝑳 is a non-symmetrical matrix. An 

interesting situation occurs when 𝑳 has complex conjugate eigen-values: 

 

 𝜆1,2 = 𝜆
′ ± 𝑖𝜆′′ A.60  

 

When the real part, 𝜆′, is negative, then (0, 0) is a stable trapping configuration. In the (𝑥, 𝜃) 

configuration space, (0, 0) is a “stable focus point”. Stability translates as shown in Figure 57 

a). When the system is pushed off (0, 0), it always comes back to (0, 0). Note that the trajectory 

is a spiral. This is due to the imaginary part of the eigenvalues, which makes the (𝑥, 𝜃) point 

rotate around the origin. In practice, (0, 0) corresponds to the particle lying vertically, as well 

as being centred on the laser beam axis. When the particle is pushed off this position by some 

perturbation, it comes back to the origin through a few oscillations that are coupled in position 

and tilt angle. The amplitude of these oscillations vanishes as the particle comes closer to (0, 

0). 

 

When 𝜆′ is positive, (0, 0) is unstable. The particle moves off the (0, 0) configuration in both 𝑥 

and 𝜃. The trajectory is a spiral, for the same reason as above (see Figure 57 b)). The particle 

again makes oscillations, but this time of growing amplitude. The simulation does not go 

further, because the linear analysis only deals with the early steps of the motion, when 𝑥 ≪

𝑅0, and for infinitesimal 𝜃. Once 𝑥 and 𝜃 become large enough, only the full nonlinear analysis 

can describe the evolution of the system. 

 

A model of the nonlinear evolution of the system has been proposed by Mihiretie et al. [37]. 

The model is based on a simple analytical form for Equation A.55: 

 

 
𝑥̇ = 𝑋(𝑥, 𝜃) = 𝐺(𝑥)𝐺(𝜃 − 1) − 𝐺(𝑥)𝐺(𝜃 + 1) − 𝐺(𝑥 − 1)𝐺(𝜃)

+ 𝐺(𝑥 + 1)𝐺(𝜃) 
A.61  
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 −𝜃̇ = 𝑌(𝑥, 𝜃) = 𝐴 ∙ [𝐺(𝜃 + 𝑢)𝐺(𝑥 − 𝑡) − 𝐺(𝜃 − 𝑢)𝐺(𝑥 + 𝑡)] A.62  

 

In Equations A.61 and A.62, 𝐺 is the Gauss function. 𝑡 ≥ 1 and 𝑢 < 1 are positive constants. 

𝐴 is a positive parameter representing the amplitude of the torque, and is an increasing 

function of the ellipsoid aspect ratio, 𝑘. The above equations have been built as a schematic 

representation of the main features of the force and torque maps calculated from a ray-optics 

model [37, 39]. The ray-optics based simulation did show the same standard PA oscillations 

as those seen in levitation experiments. The authors verified that the dynamical system based 

on Equations A.61 and A.62 showed the same types of dynamical regimes and bifurcation as 

seen in the numerical simulation and the experiments. These models, either in the basic 

numerical version, or in the simplified form of Equations A.61 and A.62, are only valid as 

qualitative representations, but are still relevant, since they capture the main physical features 

of the dynamics of ellipsoids illuminated by the beam of an optical levitator. Numerical 

integration of Equations A.61 and A.62 yields the trajectories shown in Figure 57 a) and b).   

 

 

Figure 57: These graphs show trajectories obtained via the integration of Equations A.61 and A.62. The graphs 

are taken from [37]. Here, 𝑡 = 0.5 and 𝑢 = 0.5. a) shows the case where 𝐴 = 2, and the particle is stably trapped. 

b) shows the case where 𝐴 = 4, with the particle not stably trapped, and instead undergoing permanent nonlinear 

oscillations. 

Linearization of Equations A.61 and A.62 near (0, 0) yields an explicit form of 𝑳(𝒒) = 𝑳(𝑥, 𝜃), 

[37]. The stiffness matrix has complex conjugate eigenvalues (Equation A.60) in a large 

interval of 𝐴, more specifically 0.44 ≤ 𝐴 ≤ 14.97. For 𝐴 = 2, the central point, (0, 0), is a stable 

focus point, with the particle being trapped, as per Figure 57 a). A small value of 𝐴 corresponds 

to a small aspect ratio, with destabilisation occurring at 𝐴𝑐 ≈ 2.57. For 𝐴 > 𝐴𝑐, i.e. for a more 

elongated particle, the (0, 0) configuration is spirally unstable. The divergence saturates on a 

limit cycle, whose amplitude increases with 𝐴. In practice, this limit cycle translates as periodic 
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PA oscillations of the type seen in the levitation experiments (𝑃𝑜𝑠𝑐
𝑙𝑒𝑣). These oscillations are 

termed “nonlinear”, since they clearly originate from the nonlinear character of the equations 

dictating the motion of the particle. 

 

The linearized version, Equations A.58 and A.59, cannot produce sustained oscillations. This 

conclusion holds within the above analysis in so far as thermal noise is neglected. Thermal 

agitation of the water molecules is the source of the Brownian motion of the particle. In most 

of the experiments, either in levitation or with optical tweezers, thermal noise is visible as small 

fluctuations of the particle position. These fluctuations are very small on the scale of the 

particle size and then can be viewed as small noise, which can be neglected in order to adhere 

to the “zero-temperature” description of the particle dynamics. However, thermal fluctuations 

may become non-negligible if the laser power is small, or if the system comes close to the limit 

of linear stability. 

 

The equation of motion for a particle including thermal noise can be expressed as follows: 

 

 𝜱(𝒒) = 𝜍𝒒̇ + 𝒇𝑳(𝑡) A.63  

 

Here, 𝒇𝑳(𝑡) is the Langevin force, which is usually modelled as white noise with a mean value 

of zero. Equation A.63 is a very complex stochastic nonlinear differential equation, which has 

not yet undergone a systematic study. Simpson and Hanna [56] (hereafter referred to as SH) 

have thoroughly analysed the linear limit of the equation: 

 

 𝜱𝒍𝒊𝒏(𝒒) = 𝜍𝒒̇ + 𝒇
𝑳(𝑡) A.64  

 

Linearizing Equation A.63 is legitimate in describing small fluctuations of an ellipsoid which is 

optically trapped. In this case, the system is within the linear stability regime, and the 

fluctuations consist of quasi-infinitesimal random excursions in (𝑥, 𝜃). As shown by SH, the 

Langevin force is sufficient to permanently induce cyclic motion in the particle configuration 

(see the closed orbits in Figure 58). It should be noted that the orbits are averages obtained 

by superposing many repeated calculations of the particle motion in (𝑥, 𝜃) space. In reality, 

the particle undergoes what SH term as a “stochastic flapping motion”. 
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Figure 58: SH orbits (extracted from [56]). The graph shows lines of the probability current describing the time 

evolution of the particle configuration. 

The stochastic character of the cyclic motion should be visible in 𝑥(𝑡), 𝜃(𝑡) time sequences 

as periodic signals with strong amplitude and phase fluctuations. According to the analysis of 

SH, the frequency of the signal increases with the laser power. However, increasing 𝑃 

increases the stiffness of the trap and restricts particle excursions to a smaller zone around 

(0, 0), resulting in decreased amplitudes for the signals. 

 

Toe et al. [69] have reported observations of “resonant fluctuations in the stochastic motion of 

optically trapped nanowires”, and interpreted their observations with a model of their own 

(based on specific linear equations for the optical forces and the particle hydrodynamic drag). 

The motion of the particle was observed indirectly through fluctuations of the intensity in the 

back focal plane of the microscope. The recorded signals showed characteristic broadband 

resonance peaks in the kHz domain. From reading the paper, it is not clear to us how the 

amplitude and frequency of the nanorod motions would depend on the laser power. 

 

The observations reported here, in Section A-3.5, are presumably a direct illustration of “SH 

oscillations”. Video records unambiguously show the cyclic motion of the trapped particle, 

consisting in off-centring and tilting of the ellipsoids. The graph in Figure 41 a) approximately 

represents the angular motion corresponding to such noise driven oscillations, 𝜃(𝑡). The cyclic 

character of the motion is evident in spite of the many phase defects. The corresponding 

spectrum (shown in Figure 41 b)) displays a characteristic broad peak around 𝑓𝑜𝑠𝑐~10Hz. It 

was confirmed that the resonance frequency, 𝑓𝑜𝑠𝑐, increases with the laser power in an 

approximately linear way. The graph in Figure 42 suggests that the oscillations disappear 

when the power becomes too low, which is estimated to be for 𝑃 ≤ 12mW. The tendency for 
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the amplitude, as is shown in Figure 44, is to decrease with 𝑃, which is once again a 

characteristic synonymous with SH oscillations. 

 

As put forward in [56], the conditions necessary for SH oscillations to be observable may be 

difficult to satisfy. Of the OT experiments presented in this body of work, those concerned with 

ellipsoids optically trapped in bulk do not show SH oscillations, at least within the resolution of 

the video records. Oscillations become evident when the laser focus is moved down close to 

the lower tip of the particle, in the [A, B] interval of Figure 37, using the quartz-water interface 

to block the particle vertically. It is presumed that the focused laser beam still functions as a 

stable optical trap in this interval, but with very small stiffness constants. The small stiffness 

offers a twofold advantage. Firstly, it allows for excursions to be large enough (on the order of 

~0.5μm) to be directly visible in the microscope images, and secondly, the oscillation 

frequencies are low enough to be easily resolved in the recorded video sequences.  

 

 



A-6. Conclusion of Section A 

 

Levitation powers were measured for PS spheres (𝑅0 ≈ 5μm) with weakly and moderately 

focused beams (𝜔0 ≈ 3.6μm and 𝜔0 ≈ 1.7μm, respectively).  Experimental values of the 

levitation power, 𝑃𝑙𝑒𝑣
𝑒𝑥𝑝

, were slightly lower than those predicted by GLMT, 𝑃𝑙𝑒𝑣
𝐺𝐿𝑀𝑇, for standard 

values of the density and refractive index of such particles. The difference is within the 

experimental uncertainty when 𝜔0 ≈ 3.6μm, but is beyond that (~30% on average) with the 

more focused beam. Based on this finding, it is speculated that the particles slightly absorb 

the green laser light. Assuming absorption of 0.5% to 1% of the laser power by the particle is 

enough to reconcile the experimental data with the simulation. 

 

On practical grounds, it is concluded that the experimental procedure based on estimating the 

maximum value of the levitation power in the vicinity of the beam waist plane has been 

successfully tested, and is therefore reliable. An essential outcome was to verify that the 

optical levitation force is proportional to the laser power, and that no bias due to laser-induced 

heating or nonlinear effects is present with PS particles. The fact that the proportionality 

constant (or in other words, the levitation efficiency) is observed to be higher than that of GLMT 

indicates that the index of refraction of the particles may not be purely real, and instead has a 

small imaginary part, with 𝑛𝑃𝑆
𝐼𝑚 being of the order of 10−5. This may be due to molecular 

absorption, or to scattering by nanometre scaled inhomogeneities inside the particle structure. 

 

The effect of 𝑛𝑃𝑆
𝐼𝑚 is small in practice, and as such, will be ignored in the study about ellipsoids. 

 

Different types of static and dynamical responses of polystyrene spheroids in optical levitation 

(OL) and optical tweezer (OT) geometries have been observed.  

 

The characteristics of static configurations may serve as stringent tests for theories and 

numerical simulations of optical forces. 

 

MLFMA and basic ray-optics were compared for 𝑃𝑙𝑒𝑣 values of ellipsoids of varying 𝑘, for the 

basic (0, 𝜃) configuration. The results from the experiments and the theories show similar 

tendencies as functions of 𝑘; however, all of them are somewhat scattered. At this stage, 

simple one-beam levitation seems to be hard to exploit for quantitative tests. 

 

Oblique and off-centred static configurations seen in two-beam manipulations using the OL 

are of special interest because the powers of both beams may be high enough for gravity to 
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become negligible. Then, only optical forces and torques are involved in the particle 

equilibrium. Most interestingly, forces and torques combine in a non-trivial way to produce a 

tilted configuration. The existence of such configurations has been predicted from simple ray-

optics [39, 64], but a true quantitative description can only be obtained using a wave theory of 

the interaction. The latter point has not been explored yet. 

 

Different types of oscillatory motions were observed with ellipsoids, both for the OL and OT 

experiments. In the discussion it was insisted that a distinction be made between nonlinear 

oscillations, the type seen in OL experiments, and noise-driven (“SH”) oscillations. Each type 

of cyclic motion has its own distinctive characteristics, which were described, but both stem 

from the fundamentally non-conservative nature of optical forces. The existence of permanent 

motions of particles in laser beams in some (but not all) circumstances highlights the fact that 

the mechanical responses of particles to laser light do not simply amount to a binary choice of 

either being in a stable state, or undergoing expulsion from the beam. These responses must 

instead be viewed as dynamical states, in general.  

 

The 2D ray-optics simulations correctly reproduced the main trends observed experimentally. 

The agreement is mostly qualitative, as the model cannot pretend to yield accurate values for 

the optical forces or torques, of boundaries of stable equilibrium domains, or of bifurcation 

thresholds. However, the simulation yields enough information for the user to identify the main 

physical mechanisms at work in many experimental situations. 

 

The real experimental system is of course in 3D, but most of the important observations can 

be roughly understood on the basis of a 2D description. Naturally, some phenomena cannot 

be accounted for by this model, as they are intrinsically 3D. For instance, real systems can 

produce chaotic oscillations, while chaos is impossible in 2d. 

 

The main weakness of ray-optics (RO) resides in the neglecting of the wave nature of light. A 

great deal of progress is to be expected from the dressing of rays with wave properties, as is 

done in VCRM, even just for a 2D model. The latter method would allow testing of the influence 

of phases on force and torque calculations in a very direct way.  One might then test the 

validity of RO quantitatively, instead of just obtaining the large approximations it currently 

provides, which can only even be considered reasonable when all characteristic sizes are 

much larger than a wavelength. 
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Part B  

 

Vector Complex Ray Model 

 





B-1. Introduction 

 

Light is one of the most fundamental features of our universe. It is one of the main reasons 

why there is even life on Earth. As if this were not enough, light continues to be increasingly 

useful to the human race in the form of a probe, to see the things around us that are not 

apparent with the naked eye, whether they be as small as a bacterium, or as large as a distant 

galaxy. 

 

Whenever light interacts with an object, its response gives away a lot of information about 

what exactly it interacted with, for example: shape, size, colour, temperature and refractive 

index. To be able to know these properties for objects that cannot be seen directly by eye, the 

nature of light must be understood to a very high degree. This is of great interest in fields 

where small particles are involved, ranging in size from hundreds of nanometres, to hundreds 

of micrometres. There is nowhere in life where small particles are not involved. This could 

range from aerosols in the atmosphere, to bacteria in a laboratory. In order to know exactly 

what is being dealt with, often the best thing to use is light. 

 

In cases where samples of small particles require rapid characterisation, a good way to 

approach this problem is to observe the intensity of light being scattered by the particles, then 

use theoretical models to predict the properties of the sample contents. This may be done for 

suspensions containing many particles, to find average sizes and shapes, or for single 

particles, often using microfluidics to funnel them across a laser beam of light, in order to find 

properties on a more individual basis [70]. The latter is of high value in bioparticle 

discrimination, although the technique could be used for many other applications also. 

 

The theoretical models that simulate the scattering of a laser beam of light by small particles 

are many and varied, with the most prominent being Generalised Lorenz-Mie Theory (GLMT) 

[59], T-Matrix [71, 72], Discrete Dipole Approximation (DDA) [73, 74], Finite Difference Time 

Domain (FDTD) [75], and Geometrical Optics (GO) [72, 76, 77, 78], although this is by no 

means an exhaustive list. 

 

All of these models have advantages and disadvantages. GO, whilst being a rough 

approximation, is very fast and can be applied to arbitrarily shaped particles of large size. 

GLMT is a rigorous and accurate model, but has size and shape limitations. The T-matrix 

formulation is very efficient for particles of comparable size to the wavelength, however, the 

integration is one dimensional only if the particle has rotational symmetry, so the calculation 
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is somewhat more demanding otherwise. DDA and FDTD are volume discretised methods, 

both of which need to be fully performed each time the incident angle of light is changed, which 

matters a lot if there are many randomly oriented particles. DDA shows slow improvement in 

accuracy as the number of discrete volumes is increased, however only the scatterer needs 

to be discretised in such a way [1]. FDTD on the other hand has to be applied over a spatial 

domain larger than the particle, and must be discretised by cells with lengths much smaller 

than the wavelength, which poses a problem for large particles [79, 1]. 

 

VCRM is a novel method, the fundamental basis of which lies in GO. It is intended for the 

calculation of light scattering by large (on the order of tens, or hundreds of micrometres) 

arbitrarily shaped particles. It combines ray optics with wave properties to create a simulation 

that can potentially provide reasonable accuracy with a lot less processing power. 

 

VCRM has been well established for plane wave scattering by infinite cylinders [4], spheres, 

and ellipsoids [2, 3]. It has been validated theoretically using LMT and MLFMA [6], as well as 

experimentally with acoustically trapped droplets [5]. 

 

The next step is to extend the model to include Gaussian beam scattering by spherical and 

ellipsoidal particles, which is the subject of this, Part B of the thesis. 

 

In Section B-2, some classical models for light scattering are discussed, namely LMT, GLMT 

and GO. GLMT will later be used as the rigorous comparison for all of the numerically 

calculated scattering patterns for spherical particles. Section B-3 contains the fundamental 

principles behind VCRM, with Section B-3.2 specifically focusing on the Gaussian beam case. 

The numerical results, as well as a discussion, are presented in Section B-4. Finally, Part B is 

concluded in Section B-5. 

 



B-2. Classical models for light scattering 

 

In this chapter, two of the main classical models for describing the scattering of light by a 

particle will be briefly recalled. One is Lorenz-Mie theory (LMT), as well as its extension, 

Generalized Lorenz-Mie theory (GLMT), and the other is Geometrical optics (GO). 

 

LMT is a rigorous solution to the Maxwell equations for an isotropic, homogeneous (or 

stratified) sphere illuminated by a plane wave.  This is the simplest case, and serves as a 

reference to validate other numerical, or approximate methods. When the particle is 

illuminated by a laser beam, the light (both in amplitude and phase) striking the particle is no 

longer constant, and the incident beam cannot be considered in the same way as the plane 

wave. In that case, two series of coefficients are introduced to describe the shape of the beam, 

thereby generalising LMT to make the aforementioned GLMT. This case is especially 

important in the study of radiation pressure forces, since for a plane wave, the force exerted 

on the particle depends only on the power of the wave, with the torque always being zero 

because of the symmetry of the problem. Contrary to that, when a particle is illuminated by a 

laser beam, the radiation force and torque imparted by the light onto the particle depend not 

only on the power of the beam, but also the position of the particle within the beam. 

 

When the particle is not spherical, both LMT and GLMT can no longer be applied in their 

original form. Some work has been done to extend GLMT to non-spherical particles, such as 

spheroids and infinite cylinders, but the calculable size for these non-spherical particles is still 

very limited (usually up to some tens of wavelengths). To interpret some of the results in Part 

A, a numerical method, MLFMA, was applied, with its precision having been validated by 

GLMT through comparisons with the case of sphere. Even though MLFMA permits the 

calculation of the light scattering, as well as the optical forces and torques for non-spherical 

particles of a volume equivalent to a sphere of radius more than a hundred wavelengths, the 

computation is very time consuming (around one or two days on a very powerful 

supercomputer). 

 

Naturally, an alternative solution is to use approximate methods. Ashkin and Roosen, amongst 

others, have applied GO in the calculation of radiation pressure forces for large spherical 

particles. Jean-Christophe Loudet has extended this method to calculate the radiation 

pressure forces and torques for a spheroidal particle. GO is simple, and very instructive when 

it comes to understanding the mechanisms of light scattering. The fundamental principles of 

GO will be presented in this section, which also serve as the basis of VCRM. 
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B-2.1. Lorenz-Mie theory 

 

Consider a homogeneous sphere of radius, 𝑎, and refractive index, 𝑚, illuminated by a plane 

wave of wavelength, 𝜆, propagating along the 𝑧-axis, and polarised in the 𝑥𝑧 plane, as shown 

in Figure 59. Its electric field is given by: 

 

 𝑬⃗⃗ 𝒊 = 𝐸0𝑒
−𝑖𝑘𝑧𝒆̂𝒙 = 𝐸0𝑒

−𝑖𝑘𝑟 cos(𝜃)𝒆̂𝒙 B.1 

 

This field can be expanded in the spherical coordinate system as: 

 

 𝑬⃗⃗ 𝒊 = 𝐸0∑𝑐𝑛
𝑝𝑤

∞

𝑛=1

[𝒎⃗⃗⃗ 𝑜𝑙𝑛
(1) − 𝑖𝒏⃗⃗ 𝑒𝑙𝑛

(1) ] B.2 

 

 𝑯⃗⃗⃗ 𝒊 = 𝐸0∑𝑐𝑛
𝑝𝑤

∞

𝑛=1

[𝒎⃗⃗⃗ 𝑒𝑙𝑛
(1) − 𝑖𝒏⃗⃗ 𝑜𝑙𝑛

(1) ] B.3 

 

where 𝐸0 is the amplitude of the electric field, and the expansion coefficients of plane wave is 

given by: 

 

 𝑐𝑛
𝑝𝑤 = 𝑖−𝑛

2𝑛 + 1

𝑛(𝑛 + 1)
 B.4 

 

with 𝒎⃗⃗⃗ 𝑜𝑙𝑛
(1)

, 𝒎⃗⃗⃗ 𝑒𝑙𝑛
(1)

, 𝒏⃗⃗ 𝑜𝑙𝑛
(1)

 and 𝒏⃗⃗ 𝑒𝑙𝑛
(1)

 are the vector wave functions [80]. 

 

The electric and magnetic fields within the particle, as well as their scattered counterparts, can 

also be expanded as vector wave functions. Thusly, the internal and scattered electric fields 

are: 

 

 𝑬⃗⃗ 𝒔 = 𝐸0∑𝑐𝑛
𝑝𝑤

∞

𝑛=1

[𝑖𝑎𝑛𝒏⃗⃗ 𝑒𝑙𝑛
(4) − 𝑏𝑛𝒎⃗⃗⃗ 𝑜𝑙𝑛

(4) ] B.5 

 

 𝑬⃗⃗ 𝒆 = 𝐸0∑𝑐𝑛
𝑝𝑤

∞

𝑛=1

[𝑐𝑛𝒎⃗⃗⃗ 𝑜𝑙𝑛
(1) − 𝑖𝑑𝑛𝒏⃗⃗ 𝑒𝑙𝑛

(1) ] B.6 
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Figure 59: A diagram to aid in explaining the circumstance of the plane wave scattering by a sphere, when 

considering Lorenz-Mie theory. The sphere is of radius, 𝑎, and lies at the origin of an (𝑥, 𝑦, 𝑧) coordinate system, 

with the incident field being, 𝑬⃗⃗ 𝒊, the internal field, 𝑬⃗⃗ 𝒆, and the scattered field, 𝑬⃗⃗ 𝒔. 

By using the continuous conditions of the tangent components on the surface of the particle: 

 

 𝐸𝑖𝜙 + 𝐸𝑠𝜙 = 𝐸𝑒𝜙 B.7 

 

 𝐸𝑖𝜃 + 𝐸𝑠𝜃 = 𝐸𝑒𝜃 B.8 

 

 𝐻𝑖𝜙 + 𝐻𝑠𝜙 = 𝐻𝑒𝜙 B.9 

 

 𝐻𝑖𝜃 + 𝐻𝑠𝜃 = 𝐻𝑒𝜃 B.10 

 

We can obtain the scattering coefficients: 

 

 𝑎𝑛 =
𝑚𝜓𝑛(𝑚̃𝛼)𝜓𝑛

′ (𝛼) − 𝜓𝑛(𝛼)𝜓𝑛
′ (𝑚𝛼)

𝑚𝜓𝑛(𝑚̃𝛼)𝜉𝑛′ (𝛼) − 𝜉𝑛(𝛼)𝜓𝑛′ (𝑚𝛼)
 B.11 

 

 𝑏𝑛 =
𝜓𝑛(𝑚𝛼)𝜓𝑛

′ (𝛼) − 𝑚𝜓𝑛(𝛼)𝜓𝑛
′ (𝑚𝛼)

𝜓𝑛(𝑚𝛼)𝜉𝑛′ (𝛼) − 𝑚𝜉𝑛(𝛼)𝜓𝑛′ (𝑚𝛼)
 B.12 

 

where 𝛼 =
2𝜋𝑎

𝜆
, with 𝜓𝑛 and 𝜉𝑛 being Riccatti-Bessel functions [76, 80]. 
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In a region far from the particle, the radial component of the scattered field is negligible and 

the two transverse components are simplified to: 

 

 𝐸𝑠𝜙 = −𝑖𝐸0
𝑒−𝑖𝑘𝑟

𝑘𝑟
sin(𝜙) 𝑆1 B.13 

 

 𝐸𝑠𝜃 = 𝑖𝐸0
𝑒−𝑖𝑘𝑟

𝑘𝑟
cos(𝜙) 𝑆2 B.14 

 

where 𝑆1 and 𝑆2 are distance free amplitudes of the scattered field for perpendicular and 

parallel polarisation, respectively: 

 

 𝑆1 = ∑
2𝑛 + 1

𝑛(𝑛 + 1)
[𝑎𝑛𝜋𝑛(𝜃) + 𝑏𝑛𝜏𝑛(𝜃)]

∞

𝑛=1

 B.15 

 

 𝑆2 = ∑
2𝑛 + 1

𝑛(𝑛 + 1)
[𝑎𝑛𝜏𝑛(𝜃) + 𝑏𝑛𝜋𝑛(𝜃)]

∞

𝑛=1

 B.16 

 

where 𝜋𝑛(𝜃) and 𝜏𝑛(𝜃) are two angular functions defined by the Legendre function [80]. 

Equations B.11 to B.14 then hold all the necessary component for the calculation of the 

scattered field. 

 

B-2.2. Generalized Lorenz-Mie theory 

 

In the case of shaped beam, the amplitude and the phase of the incident wave is not constant, 

therefore B.1 is replaced by: 

 

 𝑬⃗⃗ 𝒊 = 𝐸0𝜓(𝑟, 𝜃, 𝜙)𝑒
−𝑖𝑘𝑟 cos(𝜃)𝒆̂𝒙 B.17 

 

where 𝜓(𝑟, 𝜃, 𝜙) is a complex function describing the variation of the amplitude and phase of 

the beam at any given point. This field can also be expanded as the more general vector wave 

functions, 𝒎⃗⃗⃗ 𝑚𝑛
(1)

 and 𝒏⃗⃗ 𝑚𝑛
(1)

, with two series, 𝑔𝑛,𝑇𝑀
𝑚  and 𝑔𝑛,𝑇𝐸

𝑚 , called the beam shape coefficients 

[59]. The scattered fields in a region far from the particle can now be written: 
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 𝐸𝑠𝜙 = −𝑖𝐸0
𝑒−𝑖𝑘𝑟

𝑘𝑟
𝑒𝑖𝑚𝜙𝑆1 B.18 

 

 𝐸𝑠𝜃 = 𝑖𝐸0
𝑒−𝑖𝑘𝑟

𝑘𝑟
𝑒𝑖𝑚𝜙𝑆2 B.19 

 

with, 

 

 𝑆1 =∑ ∑ 𝐶𝑛

𝑛

𝑚=−𝑛

[𝑚𝑎𝑛𝑔𝑛,𝑇𝑀
𝑚 𝜋𝑛

|𝑚|(𝜃) + 𝑖𝑏𝑛𝑔𝑛,𝑇𝐸
𝑚 𝜏𝑛

|𝑚|(𝜃)]

∞

𝑛=1

 B.20 

 

 𝑆2 = ∑ ∑ 𝐶𝑛

𝑛

𝑚=−𝑛

[𝑎𝑛𝑔𝑛,𝑇𝑀
𝑚 𝜏𝑛

|𝑚|(𝜃) + 𝑖𝑚𝑏𝑛𝑔𝑛,𝑇𝐸
𝑚 𝜋𝑛

|𝑚|(𝜃)]

∞

𝑛=1

 B.21 

 

The scattering coefficients depend only on the properties of the particle, namely its size and 

refractive index, so Equations B.11 and B.12 still apply. 

 

Knowing the scattered field, one can calculate all the required scattering quantities, such as 

intensity, as well as the radiation force and torque. The three components of the radiation 

cross-section are given as a function of the beam shape coefficients and the scattering 

coefficients as follows: 

 

 

𝐶𝑝𝑟,𝑧 =
𝜆2

𝜋
∑Re {

1

𝑛 + 1
(𝐴𝑛𝑔𝑛,𝑇𝑀

0 𝑔𝑛+1,𝑇𝑀
0∗ + 𝐵𝑛𝑔𝑛,𝑇𝐸

0 𝑔𝑛+1,𝑇𝐸
0∗ )

∞

𝑛=1

+ ∑ [
1

(𝑛 + 1)2
(𝑛 + 𝑚 + 1)!

(𝑛 − 𝑚)!
(𝐴𝑛𝑔𝑛,𝑇𝑀

𝑚 𝑔𝑛+1,𝑇𝑀
𝑚∗

𝑛

𝑚=1

+ 𝐴𝑛𝑔𝑛,𝑇𝑀
−𝑚 𝑔𝑛+1,𝑇𝑀

−𝑚∗ + 𝐵𝑛𝑔𝑛,𝑇𝐸
𝑚 𝑔𝑛+1,𝑇𝐸

𝑚∗

+ 𝐵𝑛𝑔𝑛,𝑇𝐸
−𝑚 𝑔𝑛+1,𝑇𝐸

−𝑚∗ )

+ 𝑚
2𝑛 + 1

𝑛2(𝑛 + 1)2
(𝑛 + 𝑚)!

(𝑛 − 𝑚)!
𝐶𝑛(𝑔𝑛,𝑇𝑀

𝑚 𝑔𝑛,𝑇𝐸
𝑚∗

− 𝑔𝑛,𝑇𝑀
−𝑚 𝑔𝑛,𝑇𝐸

−𝑚∗)]} 

B.22 

 

 𝐶𝑝𝑟,𝑥 = Re(𝐶) B.23 
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 𝐶𝑝𝑟,𝑦 = Im(𝐶) B.24 

 

where, 

 

𝐶 =
𝜆2

2𝜋
∑ {−

(2𝑛 + 2)!

(𝑛 + 1)2
𝐹𝑛
𝑛+1

∞

𝑛=1

+ ∑
(𝑛 +𝑚)!

(𝑛 − 𝑚)!

1

(𝑛 + 1)2
[𝐹𝑛

𝑚+1 −
𝑛 +𝑚 + 1

𝑛 −𝑚 + 1
𝐹𝑛
𝑚

𝑛

𝑚=1

+
2𝑛 + 1

𝑛2
(𝐶𝑛𝑔𝑛,𝑇𝑀

𝑚−1𝑔𝑛,𝑇𝐸
𝑚∗ − 𝐶𝑛𝑔𝑛,𝑇𝑀

−𝑚 𝑔𝑛+1,𝑇𝐸
−𝑚+1∗

+ 𝐶𝑛
∗𝑔𝑛,𝑇𝐸

𝑚−1∗𝑔𝑛,𝑇𝑀
𝑚∗ − 𝐶𝑛

∗𝑔𝑛,𝑇𝐸
−𝑚 𝑔𝑛,𝑇𝑀

−𝑚+1∗)]} 

B.25 

 

and 

 

 
𝐹𝑛
𝑚 = 𝐴𝑛𝑔𝑛,𝑇𝑀

𝑚−1𝑔𝑛+1,𝑇𝑀
𝑚∗ + 𝐵𝑛𝑔𝑛,𝑇𝐸

𝑚−1𝑔𝑛+1,𝑇𝐸
𝑚∗ + 𝐴𝑛

∗ 𝑔𝑛+1,𝑇𝑀
−𝑚 𝑔𝑛,𝑇𝑀

−𝑚+1∗

+ 𝐵𝑛
∗𝑔𝑛+1,𝑇𝐸

−𝑚 𝑔𝑛,𝑇𝐸
−𝑚+1∗ 

B.26 

 

with 

 

 𝐴𝑛 = 𝑎𝑛 + 𝑎𝑛+1
∗ − 2𝑎𝑛𝑎𝑛+1

∗  B.27 

 

 𝐵𝑛 = 𝑏𝑛 + 𝑏𝑛+1
∗ − 2𝑏𝑛𝑏𝑛+1

∗  B.28 

 

 𝐶𝑛 = −𝑖(𝑎𝑛 + 𝑏𝑛+1
∗ − 2𝑎𝑛𝑏𝑛+1

∗ ) B.29 

 

All of these calculations have been integrated in the software, ABSphere, developed by Prof. 

Kuan Fang Ren [28]. 

 

B-2.3. Geometrical Optics 

 

GO is a very simple and useful tool to deal with the interaction of light with particles of arbitrary 

shape, and of size much larger than the wavelength. In GO, a wave of light is modelled as 

bundles of rays which propagate rectilinearly in a homogenous medium. These rays possess 
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four properties, namely amplitude, phase, direction and polarisation. Each of these is modified 

independently each time a ray interacts with the surface of the particle. 

 

GO is an approximate method, and as such, it fails to predict the scattering pattern in certain 

circumstances. For example, the intensity of scattered light tends to infinity at the rainbow 

angles. The diffraction, which is responsible for about half of the scattered energy, is also 

inherently not taken into account. For large particles, it is confined to a narrow angle in the 

forward direction [76]. 

 

B-2.3.1. Fundamentals 

 

Let us first consider the reflection and refraction of a ray on a plane surface. To be able to 

trace the trajectory of the ray, the direction it travels after an interaction with a boundary must 

be known, for both the reflected and transmitted case. When the boundary is an interface 

between two different media, the directions of the ray are related by the Snell-Descartes laws: 

 

 𝑛1 sin(𝛼) = 𝑛2sin (𝛽) B.30 

 

where 𝑛1 and 𝑛2 are the refractive indices of media 1 and 2 respectively. The directions of the 

rays are described by the incident angle 𝛼, and the refracted angle 𝛽, which are defined as 

the angle between the corresponding rays and the normal to the interface. The reflected ray 

has the same angle with the normal as that of the incident ray, but unlike the incident ray, its 

component normal to the interface is reversed. 

 

To determine the amplitudes of the reflected and refracted rays, the Fresnel coefficients must 

be calculated. The necessary Fresnel coefficients are given below: 

 

 𝑟1 =
𝑛1 cos(𝛼) − 𝑛2 cos(𝛽)

𝑛1 cos(𝛼) + 𝑛2 cos(𝛽)
 B.31 

 

 𝑟2 =
𝑛2 cos(𝛼) − 𝑛1 cos(𝛽)

𝑛2 cos(𝛼) + 𝑛1 cos(𝛽)
 B.32 

 

Where the subscript of 𝑟𝜒, 𝜒, may take the value of 1 or 2, representing the perpendicular and 

parallel polarisations to the plane of incidence, respectively. These coefficients dictate the 

reflectance, 𝑅, and transmissivity, 𝑇, of the interaction, where: 
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and 

 

 𝑇 = 1 − 𝑅 B.34 

 

It is worthwhile to point out that Equations B.31 and B.32 also affect the phase of a ray at the 

point of reflection. When the media are non-absorbing (meaning that 𝑛1 and 𝑛2 are real), the 

Fresnel coefficients may be negative, which means that the reflected ray has the opposite 

phase to that of the incident ray. If total reflection occurs, the Fresnel coefficients become 

complex, and the argument of this complex number is counted as the phase shift of the 

reflected ray with respect to the incident ray. 

 

B-2.3.2. Scattering by a sphere 

 

A typical and useful example in the application of GO in the scattering of light by a particle, is 

that of a homogenous sphere being illuminated by a plane wave, which is the subject of this 

subsection. 

 

Let us now consider a ray impinging on the surface of a sphere of radius, 𝑎, and refractive 

index, 𝑛, with an incident angle of , as shown in Figure 60. The reflected ray, of order 𝑝 = 0, 

makes the same angle with the normal of the surface as the incident ray. The refracted ray 

propagates within the particle until its next interaction with the particle surface. Once this 

occurs, the refracted ray exits the particle as part of the 𝑝 = 1 order. The angle of this emergent 

ray with respect to the normal of the particle surface is also equal to the angle of incidence, . 

The internally reflected ray, however, continues to propagate and interact with particle surface. 

It should be noted that all emergent rays make the same angle with normal of the particle 

surface as did the original ray they came from, namely the angle, 𝛼. 

 

 𝑅 = |𝑟𝜒|
2
 B.33 
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Figure 60: A depiction of a ray striking the surface of a particle or radius, 𝑎, and refractive index, 𝑛, with an incident 

angle of 𝛼. The angle after refraction is 𝛽, whereas the angle for reflection remains the same as the angle of 

incidence, 𝛼. 

The amplitude of each emergent ray can be calculated using the Fresnel coefficients. Since 

all emergent rays, except those that are initially reflected (for 𝑝 = 0), experience two 

transmissions and 𝑝 − 1 internal reflections, with the Fresnel coefficient having an opposite 

sign for those reflection, the ratio of the emergent ray to that of the incident ray is given by: 

 

 𝜀𝜒 = {
𝑟𝜒                            for 𝑝 = 0

(1 − 𝑟𝜒
2)(−𝑟𝜒)

𝑝−1
           for 𝑝 = 1, 2, 3…

 B.35 

 

The amplitude of the emergent rays also depends on the divergence, or convergence, of the 

wave on the surface of the particle. Thanks to the symmetry of the problem, this influence can 

be described by a so-call divergence factor, derived analytically by the balance of energy. 

 

Consider a bundle of rays from a plane wave impinging on a surface element of the particle, 

described as 𝑑𝐴 = 𝑎2 cos(𝛼) 𝑑𝛼𝑑𝜙. After an interaction with the particle, this bundle of rays is 

spread onto a surface element, 𝑑𝐴′ = 𝑟2sin(𝜃)𝑑𝜃𝑑𝜙. Here, 𝑟 is the distance of this surface 

element from the particle centre, with   and 𝜙 being the conventional angle coordinates in a 

spherical coordinate system. If the intensities of the incident and emergent rays with 

polarisation 𝜒 are then noted as, 𝐼𝜒,0 and 𝐼𝜒, respectively, then the energy flux of the bundle 

of incident rays is: 

 

 𝑑𝑊 = 𝐼𝜒,0𝑎
2 sin(𝛼) cos(𝛼) 𝑑𝛼𝑑𝜙 B.36 

 

and that of the emergent rays is: 

 

 𝑑𝑊′ = 𝐼𝜒𝑟
2 sin(𝜃) 𝑑𝜃𝑑𝜙 = 𝜀𝜒

2𝑑𝑊 B.37 
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Since the term B.36 is attenuated by successive interactions with the particle, the fractions of 

energy that are then carried through are calculated directly using the factor, 𝜀𝜒, in Equation 

B.35. This results in the following expression for the intensity of an emergent ray: 

 

 𝐼𝜒 =
𝜀𝜒
2𝐼𝜒,0𝑎

2 sin(𝛼) cos(𝛼) 𝑑𝛼𝑑𝜙

𝑟2sin(𝜃)𝑑𝜃𝑑𝜙
=
𝑎2

𝑟2
𝐼𝜒,0𝜀𝜒

2𝐷 B.38 

 

where 𝐷 is the divergence factor, which accounts for the influence that the shape of the 

scattering particle has on the angular dispersion of the light, and can be given by: 

 

 𝐷 =
sin(𝛼) cos (𝛼)

sin (𝜃) |
𝑑𝜃
𝑑𝛼
|

 B.39 

 

In order to obtain |
𝑑𝜃

𝑑𝛼
|, we must first define the total deviation of the escaping ray with respect 

to its incident direction. This can be analytically derived for the spherical case [76]: 

 

 𝜃𝑝
′ = 2𝑝𝛽 − 2𝛼 + 𝜋(1 − 𝑝) B.40 

 

The total angle deviation can then be related to the scattering angle of the ray, 𝜃𝑝, by: 

 

 𝜃𝑝
′ = 2𝜋𝑘𝑝 + 𝑞𝑝𝜃𝑝 B.41 

 

where 𝑘𝑝 is an integer, and 𝑞𝑝 is ±1 so that 𝜃𝑝 is between 0 and 𝜋. 

 

Once differentiated with respect to 𝛼, Equation B.41 enables us to define: 

 

 𝑑𝜃𝑝 = |
𝑑𝜃𝑝

′

𝑑𝛼
| 𝑑𝛼 B.42 

 

We can then differentiate B.40 with respect to 𝛼 also, and using the Snell-Descartes law 

(Equation B.30) and Equation B.42 we get: 

 

 
𝑑𝜃

𝑑𝛼
= 2 (𝑝

tan (𝛽)

tan (𝛼)
− 1) B.43 
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This completes the expression for the divergence factor in Equation B.39: 

 

 
𝐷 =

sin (2𝛼)

4sin (𝜃) (𝑝
tan (𝛽)
tan (𝛼)

− 1)
 

B.44 

 

There are three factors to consider when counting the phase of the emergent rays [76]. The 

first is the phase shift due to reflection, 𝜑𝑝,𝑟𝑒𝑓𝑙 which is calculated directly, in accordance with 

the Fresnel coefficients, as was elaborated earlier.  

 

The second factor is the phase due to the optical path. Specifically, this is counted as the 

difference in optical path between the scattered ray and a reference ray that goes through the 

centre of the particle as if the particle was not there. The reference ray has the same incident 

and emergent angle as the incident and emergent rays. The phase due to the optical path can 

be expressed analytically for the spherical case: 

 

 𝜑𝑝,𝑝𝑎𝑡ℎ = 2𝑘𝑎 [cos(𝛼) − 𝑝
𝑛2
𝑛1
cos(𝛽)] B.45 

 

where 𝑘 represents the wavenumber of the medium outside of the particle. 

 

The last factor is the phase change due to foci. After a focal line is passed, the phase advances 

by 
𝜋

2
. Once again, there is an analytical solution to this problem: 

 

 𝜑𝑝,𝐹𝐿 =
𝜋

2
(𝑝 − 2𝑘𝑝 +

1

2
𝑠 −

1

2
𝑞𝑝) B.46 

 

The 𝑘𝑝 and 𝑞𝑝 are the same as in Equation B.41, and 𝑠, is +1  𝑜𝑟 − 1, depending on the sign 

of 
𝑑𝜃𝑝

′

𝑑𝛼
. 

 

Finally, by combining the phase shift and amplitude evolution, the complex amplitude of all 

emergent rays can be calculated. This can be written as: 

 

 𝑆̃𝑝 = 𝑆𝑝𝑒
𝑖𝜎𝑝 B.47 
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where 𝜎 is the total phase of the ray: 

 

 𝑝 = 𝜑𝑝,𝑟𝑒𝑓𝑙 + 𝜑𝑝,𝑝𝑎𝑡ℎ + 𝜑𝑝,𝐹𝐿 B.48 

 

And 𝑆𝑝 is the distance free amplitude, given by: 

 

 𝑆𝑝 =
𝑎

𝑟
√𝐷 B.49 

 

The final intensity at a given angle is then the summation of the complex amplitudes of all the 

rays arriving in that angle, and multiplying that value by its complex conjugate. 

 



B-3. Vectorial Complex Ray Model 

 

While GO is a very useful approximation, it is a technique rarely used in any kind of quantitative 

study of light scattering from non-spherical or non-circular cylindrical particles. This is due to 

a few difficulties that are encountered as soon as one tries to go beyond the spherical or 

circular case, and starts modelling more complex shapes. 

 

One of these is the tracing of rays, which is technically possible for any shape, however, it 

becomes more difficult in three-dimensions. This problem can be overcome by using vectors, 

which simplifies the processes considerably. In fact, if we multiply the Snell-Descartes law 

from Equation B.30, by the wave number, 𝑘0 =
2

0
, it is found that 𝑘0𝑛1 sin() = 𝑘1 sin(), and 

𝑘0𝑛2 sin() = 𝑘2 sin(), meaning that the tangential component of the incident wave vector on 

the interface, is the same as that of the refracted, or reflected wave, after the interaction. 

Therefore, the Snell-Descartes law can be written in vector form as: 

 

 𝑘𝜏𝑖 = 𝑘𝜏𝑟 = 𝑘𝜏𝑙 B.50 

 

where the indices, 𝑖, 𝑟 and 𝑙 signify the wave vector of the incident, refracted and reflected 

rays, respectively, with the subscript, 𝜏, indicating that these are tangential components. 

 

The main difficulty in dealing with the light scattering of a non-spherical particle using GO is to 

evaluate the divergence and convergence of the wave on the surface of the particle. One of 

the possible methods is to calculate the direction of each individual ray, then using numerical 

techniques, evaluate the divergence or convergence of the wave that these rays represent. 

This technique, however, is not only very tedious, but also problematic for the calculation of 

the scattered intensity in the direction of incidence [81]. 

 

Furthermore, the problem of divergence and convergence is also related to the counting of 

the phase shift due to the focal lines, or focal points, that may occur during propagation. In 

fact, when a wave passes a focal line, the phase advances by /2, and when a wave passes 

a focal point (two perpendicular focal lines crossing at the same point) the phase advances 

by . This phase shift has been discussed by van de Hulst in [76], and Hecht in [82]. In the 

case of scattering by a homogeneous sphere, it can be calculated analytically, as discussed 

in Section B-2.3.2. 
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In order to extend the GO model, and deal with the issues above, the Vectorial Complex Ray 

Model (VCRM) has been developed by Ren et al. [2, 3]. As the name would suggest, VCRM 

utilises vectors to deal with the ray tracing, and also makes progress in tackling the problem 

of beam divergence, by introducing the property of wavefront curvature, attached to each ray. 

The influence upon the wavefront by an arbitrary curved smooth surface can then be 

calculated using this technique, so the phase change resulting from passing a focal point can 

be assessed. 

 

The complex amplitudes of all rays arriving at the same angle can then be added to obtain the 

total intensity.  

 

Since the wavefront curvature is an intrinsic property of the rays in the model, VCRM can 

naturally deal with the scattering of a Gaussian beam, or a beam of any shape, by a complexly 

shaped particle, such as ellipsoids, which are the subject of this thesis, and are discussed in 

detail in the following subsections. 

 

B-3.1. General principles 

 

In this section, we will discuss the methodology of VCRM, and then apply it to the case where 

light is scattered in the symmetrical plane of an ellipsoid. However, we will be considering the 

curvature of the particle, both parallel and perpendicular to that plane. 

 

Each complex ray of light in this model represents a bundle of paraxial rays that form an 

approximation of an isophase wavefront, which is described using a number of characteristics, 

namely direction of propagation, phase, amplitude, polarisation and the wavefront curvatures, 

both perpendicular and parallel to the interaction plane. In turn, the complex rays approximate 

the overall electromagnetic field. From here on, when the term “ray” is used, it refers to the 

complex rays of VCRM. 

 

The direction of each ray is expressed by its wave vector, 𝒌⃗⃗ , which is a product of the 

wavenumber and the directional unit vector. In a medium with refractive index, 𝑛, it is given 

by: 

 

 𝒌⃗⃗ = 𝑘𝒌̂ =
2𝜋𝑛

𝜆0
𝒌̂ B.51 
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where 𝜆0 is the wavelength of the light in a vacuum. 

 

The Snell-Descartes law in Equation B.30 can be written in vector form as: 

 

 𝒌⃗⃗ 𝑖 ⋅ 𝛕̂ = 𝒌⃗⃗ 𝒓 ⋅ 𝛕̂ = 𝒌⃗⃗ 𝒍 ⋅ 𝛕̂ B.52 

 

where 𝛕̂ is the directional unit vector of the tangent to the surface at that point, 𝒌⃗⃗ 𝑖, 𝒌⃗⃗ 𝒓 and 𝒌⃗⃗ 𝒍 

are the wave vectors of the incident, refracted and reflected rays of the interaction, 

respectively. 

 

Thusly, we can work out the magnitude of the normal component of the post-interaction ray: 

 

 |𝒌⃗⃗ 𝒓 ⋅ 𝐧̂| = √|𝒌⃗⃗ 𝒓|
2
− |𝒌⃗⃗ 𝑖 ⋅ 𝛕̂|

2
 B.53 

 

where 𝐧̂ is the unite vector that is normal to the surface of the scatterer, and the formula 

applies to the reflected ray by substituting the subscript 𝒓 for 𝒍. We also have the relation 

between the wave vector magnitudes: 

 

 |𝒌⃗⃗ 𝑖| =
𝑛𝑖
𝑛𝑟
|𝒌⃗⃗ 𝒓| B.54 

 

 |𝒌⃗⃗ 𝑖| = |𝒌⃗⃗ 𝒍| B.55 

 

Here, 𝑛𝑖 and 𝑛𝑟 are the refractive indices within the media of the incident and refracted rays 

of the interaction, respectively. 

 

So, provided that the normal to the surface is known for a given point, the directions of all rays 

can be obtained indefinitely. 

 

In VCRM, the wavefront is calculated using the wavefront equations [2, 3, 83]. Referring to 

Figure 61, if we suppose that a wave with some wavefront curvature, described by the 

curvature matrix 𝑸𝒊, strikes a smooth dioptric surface, the curvature of which is described by 

the matrix 𝑪, then it is deduced that the curvature matrix of the wavefront after the interaction, 

𝑸𝒓 or 𝑸𝒍, can be expressed by the wavefront matrix equation: 
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 (𝒌⃗⃗ 𝒓 − 𝒌⃗⃗ 𝒊) ∙ 𝐧̂𝑪 = |𝒌⃗⃗ 𝒓|𝜣𝒓
𝑻𝑸𝒓𝜣𝒓 − |𝒌⃗⃗ 𝒊|𝜣𝒊

𝑻𝑸𝒊𝜣𝒊 B.56 

 

The subscript 𝒓 can be replaced by 𝒍 to arrive at the analogous equation for reflection. 𝜣 is 

the projection matrix between the base unitary vectors of the coordinate systems of the 

wavefront surface, (𝒕̂𝟏, 𝒕̂𝟐), and the scattering surface, (𝒔̂𝟏, 𝒔̂𝟐). It can be evaluated by: 

 

 𝜣 = (
𝒕̂𝟏 ∙ 𝒔̂𝟏 𝒕̂𝟏 ∙ 𝒔̂𝟐
𝒕̂𝟐 ∙ 𝒔̂𝟏 𝒕̂𝟐 ∙ 𝒔̂𝟐

) B.57 

 

𝜣𝑻 is simply the transpose of 𝜣. 

 

In this case, where the interaction plane is the symmetrical plane of the ellipsoid, the rays are 

always in a plane containing one of the principal curvatures, so the curvature matrices, 𝑪 and 

𝑸 (𝑸 representing the initial, reflected and refracted wavefront principal curvatures, in a 

general way), are diagonal, and can be written as: 

 

 𝑪 =

(

 

1

𝜌1
0

0
1

𝜌2)

  B.58 

 

 𝑸 =

(

 

1

𝑅1
0

0
1

𝑅2)

  B.59 

 

where 𝜌1 and 𝜌2 are the principal curvature radii of the dioptric surface, 𝑅1 and 𝑅2 are the 

principal curvature radii of the wavefront of the ray (before or after the interaction), and once 

again, the subscripts 1 and 2 respectively signify the perpendicular and parallel directions of 

the curvatures relative to the interaction plane. 
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Figure 61: Schematic of the interaction between a wavefront and curved smooth surface. 

The following subsections will go into detail about how to calculate the scattering of both, plane 

waves, and Gaussian beams, in the symmetrical plane of an ellipsoid. 

 

B-3.1.1. Ray tracing 

 

Consider a coordinate system (𝑥, 𝑦, 𝑧), the origin of which is the centre of an ellipsoidal particle, 

with its semi-major axis, 𝑐, along the 𝑧-axis, and semi-minor axes, 𝑎 and 𝑏, lying along the 𝑥-

axis and 𝑦-axis respectively, as shown in Figure 62. The equation describing the ellipsoid is: 

 

 
𝑧2

𝑐2
+
𝑦2

𝑏2
+
x2

𝑎2
= 1 B.60 

 

Since only the scattering in the symmetric plane is considered, 𝑦 = 0, and the rays of light are 

constrained to the 𝑥𝑧 plane, which they will not leave regardless of any scattering event. Both 

the wave fronts perpendicular and parallel to the symmetrical plane will change each time the 

ray interacts with the particle surface. 

 

 

Figure 62: A sketch representing the coordinate system and the dimensions of the kind of ellipsoid being referred 

to in the text, with semi-minor axes along 𝑥 and 𝑦 (coming out of the page), namely 𝑎 and 𝑏 (coming out of the 

page), respectively, with 𝑐 being the semi-major axis along 𝑧. 
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The particle being homogeneous (with a constant refractive index) means that each ray 

propagates rectilinearly between any two successive interaction points, and as such, can be 

described by the equation of a line: 

 

 𝑥 = 𝑚𝑧 + 𝑑 B.61 

 

where 𝑚 is the slope, and 𝑑 is the 𝑥-axis intercept. To obtain the coordinates of a ray crossing 

the boundary of the ellipse, Equation B.61 is substituted into Equation B.60, whereby the 𝑧 

coordinates can be solved for: 

 

 𝑧 =
−𝑑𝑚𝑐2 ± 𝑐𝑎√𝑎2 +𝑚2𝑐2 − 𝑑2

𝑎2 +𝑚2𝑐2
 B.62 

 

after which the 𝑥 coordinates can easily be found with Equation B.61. Then, to define the 

region of illumination for a plane wave, the discriminant has to be set to zero, and then the two 

roots of 𝑑 must be found. These two roots indicate the extrema 𝑥-axis intercepts, 𝑑, of rays 

with slope, 𝑚, impinging on the particle: 

 

 𝑑 = ±√𝑎2 +𝑚2𝑐2 B.63 

 

This cannot be done analytically for shaped beams, and instead has to be performed 

numerically, which will be elaborated later. 

 

Then, for a given set of interaction coordinates, the normal of the ellipsoid, which points 

outward from the particle, is calculated by: 

 

 𝒏̂ = (
𝑐2𝑥

√(𝑎2𝑧)2 + (𝑐2𝑥)2
, 0,

𝑎2𝑧

√(𝑎2𝑧)2 + (𝑐2𝑥)2
) B.64 

 

with the tangent at that point as: 

 

 𝝉̂ = 𝒏̂ × 𝒚̂ B.65 

 

where 𝒚̂ is the unit vector parallel to the 𝑦-axis. It should be noted that for the first interactions, 

while the rays are still outside of the particle, the normal to the surface, 𝒏̂, is used in the 

opposite direction to that of the rest of the interactions.  
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So, using Equations B.51 to B.55, as well as those within this subsection, and knowing the 

initial direction of each ray, all ray tracing can be performed in VCRM for any size and aspect 

ratio ellipsoid. 

 

B-3.1.2. Wavefront and particle surface curvatures 

 

To know what the wavefront curvature of each ray is after an interaction, we must consider 

the curvature of the particle at the point of interaction. For the special case, where the 

interaction plane is a symmetrical plane of an ellipsoid, the principal curvature radii can be 

calculated as follows [2, 3, 84]: 

 

 𝜌1 = 𝑏2(
𝑧2

𝑐4
+
𝑥2

𝑎4
)
1
2 B.66 

 

 𝜌2 = 𝑎
2𝑐2(

𝑧2

𝑐4
+
𝑥2

𝑎4
)
3
2 B.67 

 

Equations B.66 and B.67, combined with the knowledge of the initial wavefront curvature of 

each ray, enables the use of Equation B.56 to find the post-interaction wavefront curvatures. 

Due to the symmetry of the situation, Equation B.56 can be reduced to the following two scalar 

equations, for perpendicular and parallel wavefront curvatures, with respect to the interaction 

plane: 

 

 
|𝒌⃗⃗ 𝒓|

𝑅1,𝑟
=
|𝒌⃗⃗ 𝑖|

𝑅1,𝑖
+
𝒌⃗⃗ 𝒓 ⋅ 𝒏̂ − 𝒌⃗⃗ 𝑖 ⋅ 𝒏̂

𝜌1
 B.68 

 

 
(𝒌⃗⃗ 𝒓 ⋅ 𝒏̂)

2

|𝒌⃗⃗ 𝒓|𝑅2,𝑟
=
(𝒌⃗⃗ 𝑖 ⋅ 𝒏̂)

2

|𝒌⃗⃗ 𝑖|𝑅2,𝑖
+
𝒌⃗⃗ 𝒓 ⋅ 𝒏̂ − 𝒌⃗⃗ 𝑖 ⋅ 𝒏̂

𝜌2
 B.69 

 

Here, the same applies to both, the refracted and reflected wavefronts, the difference being 

that the subscript 𝒓 should be replaced with 𝒍. 

 

Whilst the ray is propagating freely through a medium, from one point to another, the wavefront 

curvature radii between two points can be related by: 
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 𝑅𝑝+1,𝑖 = 𝑅𝑝,𝑟/𝑙 − 𝑟 B.70 

 

where 𝑅𝑝,𝑟/𝑙 is the wavefront curvature radius at the point, 𝑝, and 𝑅𝑝+1,𝑖 is the curvature radius 

of the same wavefront at the next point of interaction, 𝑝 + 1, with 𝑟 being the distance between 

the two points. This style adheres to common sign conventions, where the wavefront radius is 

positive before it converges toward the focus, and is then negative once it starts to diverge 

away from the it. 

 

B-3.1.3. Divergence factor 

 

In VCRM, the behaviour of divergence, or convergence, of a wave is described by the 

divergence factor, 𝐷. It can be evaluated directly, using the wave front curvature radii, in 

accordance to the following equation [2, 3]: 

 

 𝔇 = |
𝑅10,𝑟/𝑙𝑅20,𝑟/𝑙

𝑅11,𝑖𝑅21,𝑖
∙
𝑅11,𝑟/𝑙𝑅21,𝑟/𝑙

𝑅12,𝑖𝑅22,𝑖
∙∙∙

𝑅1𝑝,𝑟/𝑙𝑅2𝑝,𝑟/𝑙

(𝑅1𝑝,𝑟/𝑙 − 𝑟)(𝑅2𝑝,𝑟/𝑙 − 𝑟)
| B.71 

 

Here, 𝑟 is the distance between the location of the last interaction and the observation point. 

In the far field, 𝑟 tends to infinity, so the denominator is omitted from the calculation, leaving: 

 

 𝐷 = 𝔇𝑟2 = |
𝑅10,𝑟/𝑙𝑅20,𝑟/𝑙

𝑅11,𝑖𝑅21,𝑖
∙
𝑅11,𝑟/𝑙𝑅21,𝑟/𝑙

𝑅12,𝑖𝑅22,𝑖
∙∙∙ 𝑅1𝑝,𝑟/𝑙𝑅2𝑝,𝑟/𝑙| B.72 

 

So, for the first reflection, when 𝑝 = 0, the divergence factor would be: 

 

 𝐷 = |𝑅10,𝑙𝑅20,𝑙| B.73 

 

The product of the surface curvatures here, generally expressed as, 
1

𝑅1𝑝,𝑟/𝑙𝑅2𝑝,𝑟/𝑙
, is the 

Gaussian curvature of the given wavefront. 

 

B-3.1.4. Fresnel coefficients 

 

As with GO, VCRM takes into account the Fresnel coefficients as a way to determine the 

attenuation of a ray at each interaction. In vector form, these can be expressed as: 
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 𝑟1 =
|𝒌⃗⃗ 𝑖 ⋅ 𝒏̂| − |𝒌⃗⃗ 𝒓 ⋅ 𝒏̂|

|𝒌⃗⃗ 𝑖 ⋅ 𝒏̂| + |𝒌⃗⃗ 𝒓 ⋅ 𝒏̂|
 B.74 

 

 𝑟2 =
𝑛𝑟
2|𝒌⃗⃗ 𝑖 ⋅ 𝒏̂| − 𝑛𝑖

2|𝒌⃗⃗ 𝒓 ⋅ 𝒏̂|

𝑛𝑟2|𝒌⃗⃗ 𝑖 ⋅ 𝒏̂| + 𝑛𝑖
2|𝒌⃗⃗ 𝒓 ⋅ 𝒏̂|

 B.75 

 

 𝑡1 =
2|𝒌⃗⃗ 𝑖 ⋅ 𝒏̂|

|𝒌⃗⃗ 𝑖 ⋅ 𝒏̂| + |𝒌⃗⃗ 𝒓 ⋅ 𝒏̂|
 B.76 

 

 𝑡2 =
2𝑛𝑖𝑛𝑟|𝒌⃗⃗ 𝑖 ⋅ 𝒏̂|

𝑛𝑟
2|𝒌⃗⃗ 𝑖 ⋅ 𝒏̂| + 𝑛𝑖

2|𝒌⃗⃗ 𝒓 ⋅ 𝒏̂|
 B.77 

 

where 𝑛𝑖 is the refractive index of the incident medium, and 𝑛𝑟 is the refractive index of the 

refracting medium. 

 

The incident and the refraction angles (or equivalently 𝒌⃗⃗ 𝑖 ⋅ 𝒏̂ and 𝒌⃗⃗ 𝒓 ⋅ 𝒏̂) change at each 

interaction of a ray with the particle surface during light scattering by an elliptical particle. The 

factor defined in Equation B.35 for a spherical particle, must therefore be replaced by the 

following equation: 

 

 𝜀𝜒 =

{
 

 
𝑟𝜒,0                            for 𝑝 = 0

𝑡𝜒,0𝑡𝜒,𝑝∏𝑟𝜒,𝑖

𝑝−1

𝑖=1

           for 𝑝 = 1, 2, 3…
 B.78 

 

This mean that that, 𝜒 = 𝑡𝜒,0𝑡𝜒,1, for a ray of order, 𝑝 = 1, and 𝜒 = 𝑡𝜒,0𝑡𝜒,2𝑟𝜒,1 for a ray that 

has undergone 1 internal reflection (order 𝑝 = 2), and so on. 

 

B-3.1.5. Phase calculations 

 

The phase in VCRM can be counted as four parts, similar to GO. They are the phase of the 

incident ray, the phase due to the optical path, the phase due to reflection (taken care of by 

the Fresnel coefficients, including total reflection), and focal lines. This amounts to: 

 

 𝜑 = 𝜑𝑖 + 𝜑𝑝 + 𝜑𝑅 +𝜑𝐹𝐿 B.79 
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with 𝜑𝑖 being the initial phase, 𝜑𝑝 the phase due to the optical path, 𝜑𝑅 the phase change due 

to reflection, and finally 𝜑𝐹𝐿 is the phase change from focal lines. 

 

The phase of the incident ray is necessary only for a shaped beam, since it is constant for the 

plane wave case. An example of this will be dealt with in Section B-3.2, where the case for a 

Gaussian beam will be addressed. 

 

The phase shift from the optical path is calculated with respect to a reference ray, and is made 

up of two components, one outside the particle, and the other within it. The reference ray is 

one that arrives at the same angle as the incident ray, passing by the particle centre, then 

going out in the same direction as the emergent ray, as if there were no particle. This is 

represented by the dashed line in Figure 63. 

 

The phase shift due to the optical path within the particle can be calculated directly by counting 

the total distance travelled by the ray within the particle boundaries, namely 𝑑𝑝𝑎𝑟𝑡 𝑡𝑜𝑡 (BC in 

Figure 63), where: 

 

 𝜑𝑝,𝑝𝑎𝑟𝑡 = 𝑘𝑝𝑎𝑟𝑡𝑑𝑝𝑎𝑟𝑡 𝑡𝑜𝑡 B.80 

 

with 𝑘𝑝𝑎𝑟𝑡 being the wavenumber within the particle. This is then combined with the phase 

shift from the path of the ray that is travelled outside the particle. The optical path outside of 

the particle includes two parts, one before arriving at the particle surface (AB in Figure 63), 

noted as 𝑑𝑑𝑖𝑓𝑓,𝑖𝑛𝑐, and the other after emerging from the particle (DE in Figure 63), noted 

as 𝑑𝑑𝑖𝑓𝑓,𝑒𝑥𝑖𝑡. It is worth noting that the phase due to the outside optical path may be, 

respectively, positive or negative, depending on whether the ray travels a shorter or longer 

distance outside the particle than the reference ray does to the origin. 
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Figure 63: A sketch to aid in the description of the phase change due to the optical path. The dashed line is the 

reference ray, while the solid line is the ray being scattered. 

The total optical path phase can then be expressed as: 

 

 𝜑𝑝 = 𝑘𝑜𝑢𝑡 (𝑑𝑟𝑒𝑓 − (𝑑𝑑𝑖𝑓𝑓,𝑖𝑛𝑐 + 𝑑𝑑𝑖𝑓𝑓,𝑒𝑥𝑖𝑡)) − 𝜑𝑝,𝑝𝑎𝑟𝑡 B.81 

 

with 𝑘𝑜𝑢𝑡 being the wavenumber in the medium outside of the particle, and 𝑑𝑟𝑒𝑓 

 

This can be taken care of vectorially, using: 

 

 𝜑𝑝 = −𝑘𝑜𝑢𝑡(𝒌̂𝟎 ∙ 𝒓⃗⃗ 𝟏 − 𝒌̂𝒒 ∙ 𝒓⃗⃗ 𝒒)− 𝑘𝑝𝑎𝑟𝑡∑ 𝒌̂𝒊 ∙ (𝒓⃗⃗ 𝒊+𝟏 − 𝒓⃗⃗ 𝒊)

𝑞−1

𝑖=1

 B.82 

 

where 𝒌̂𝒊 is the directional unit vector of the ray after interaction point 𝑖, with 𝒓⃗ 𝒊 as the position 

vector at point 𝑖. Here, 𝑞 is the total number of interactions. 

 

As previously stated, the phase shift due to reflection is calculated by the Fresnel coefficients. 

This is because the reflection coefficients can be positive, negative, or complex (in the case 

of total reflection, or for an absorbing particle). 

 

If no total reflection occurs, the Fresnel coefficients can only be positive or negative. In this 

case, there is a phase shift of half a wave [82], meaning that: 
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 𝜑𝑅 = 𝜋 B.83 

 

The transmission coefficients are always positive, so there is no phase shift associated with a 

refractive event. 

 

However, when a ray travels from a medium with a high refractive index, to one with a lower 

refractive index, 𝑛𝑖 > 𝑛𝑟, then the condition for total reflection in VCRM may be met if |𝒌⃗⃗ 𝑖 ⋅ 𝛕̂| >

|𝒌⃗⃗ 𝒓|. This means that if the tangent component of the incident ray is greater than the 

wavenumber in the second medium, the reflection coefficients become complex. So, Equation 

B.53 becomes: 

 

 |𝒌⃗⃗ 𝒓 ⋅ 𝐧̂| = 𝑖√|𝒌⃗⃗ 𝑖 ⋅ 𝛕̂|
2
−|𝒌⃗⃗ 𝒓|

2
 B.84 

 

and the reflection coefficients, B.74 and B.75 are changed to: 

 

 𝑟1 =
|𝒌⃗⃗ 𝑖 ⋅ 𝒏̂| − 𝑖√|𝒌⃗⃗ 𝑖 ⋅ 𝛕̂|

2
−|𝒌⃗⃗ 𝒓|

2

|𝒌⃗⃗ 𝑖 ⋅ 𝒏̂| + 𝑖√|𝒌⃗⃗ 𝑖 ⋅ 𝛕̂|
2
−|𝒌⃗⃗ 𝒓|

2
 B.85 

 

 𝑟2 =
𝑛𝑟
2|𝒌⃗⃗ 𝑖 ⋅ 𝒏̂| − 𝑖𝑛𝑖

2√|𝒌⃗⃗ 𝑖 ⋅ 𝛕̂|
2
−|𝒌⃗⃗ 𝒓|

2

𝑛𝑟2|𝒌⃗⃗ 𝑖 ⋅ 𝒏̂| + 𝑖𝑛𝑖
2√|𝒌⃗⃗ 𝑖 ⋅ 𝛕̂|

2
−|𝒌⃗⃗ 𝒓|

2
 B.86 

 

Whilst the amplitude is not attenuated after such an interaction, the phase does change after 

total reflection. The argument of each of the complex coefficients yields this phase shift, which 

is applied to the perpendicular and parallel components of the totally reflected ray, 

respectively: 

 

 𝜑𝑇𝑅,1 = − tan−1

(

 
2|𝒌⃗⃗ 𝑖 ⋅ 𝒏̂|√|𝒌⃗⃗ 𝑖 ⋅ 𝛕̂|

2
−|𝒌⃗⃗ 𝒓|

2

|𝒌⃗⃗ 𝑖 ⋅ 𝒏̂|
2
− |𝒌⃗⃗ 𝑖 ⋅ 𝛕̂|

2
+ |𝒌⃗⃗ 𝒓|

2

)

  B.87 
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 𝜑𝑇𝑅,2 = − tan−1
2 (
𝑛𝑟
𝑛𝑖
)
2

|𝒌⃗⃗ 𝑖 ⋅ 𝒏̂|√|𝒌⃗⃗ 𝑖 ⋅ 𝛕̂|
2
−|𝒌⃗⃗ 𝒓|

2

(
𝑛𝑟
𝑛𝑖
)
4

|𝒌⃗⃗ 𝑖 ⋅ 𝒏̂|
2
− |𝒌⃗⃗ 𝑖 ⋅ 𝛕̂|

2
+ |𝒌⃗⃗ 𝒓|

2
 B.88 

 

The final phase change is, 𝜑𝐹𝐿, the shift due to the focal lines. Since it was elaborated 

previously that wavefront curvature is an intrinsic property of the rays in VCRM, the calculation 

of the phase due to the focal lines amounts to simply counting the sign changes of the 

wavefront curvatures, which are events that occur as a direct result of passing a focus. If only 

the perpendicular, or parallel, wavefront curvature changes sign between two interactions, we 

add 
𝜋

2
 to the phase. If both change sign, then 𝜋 is added. 

 

B-3.1.6. Amplitude and intensity 

 

Combining the phase, the divergence factor and the Fresnel coefficients, we can calculate the 

complex amplitude of each ray. For convenience in describing the calculation of the total field, 

each ray will have a number, 𝑖, from now on. Thus, the complex amplitude of each ray in the 

far field can be expressed as [2, 3]: 

 

 𝑆𝜒,𝑖 = 𝐴𝜒,0,𝑖𝑒
𝑖𝜑𝑖|𝜀𝜒,𝑖|√𝔇𝑖 =

1

𝑘𝑟
𝑠𝜒,𝑖 B.89 

 

where 𝐴𝜒,0,𝑖 is the amplitude of the incident ray. 𝑠𝜒,𝑖 is the distance free amplitude, given by: 

 

 𝑠𝜒,𝑖 = 𝐴𝜒0,𝑖𝑘𝑒
𝑖𝜑𝑖|𝜀𝜒,𝑖|√𝐷𝑖 B.90 

 

Knowing the phase and the amplitude of each ray, we can calculate the total complex 

amplitude of the scattered light at a given angle, by the summation of the complex amplitudes 

of all rays arriving at that angle: 

 

 𝑠𝜒 =∑𝑠𝜒,𝑖

𝑁

𝑖=1

 B.91 

 

where 𝑁 is the number of rays emerging at the given angle. So, the total intensity at that point 

is therefore simply the square of its amplitude: 
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 𝑖𝜒 = |𝑠𝜒|
2
= 𝑠𝜒𝑠𝜒

∗ B.92 

 

with 𝑠𝜒
∗  being a complex conjugate. 𝑖𝜒 is the distance free intensity of the scattered light in the 

far field, which is the quantity usually presented within a scattering diagram. 

 

However, the summation of Equation B.91 cannot be calculated directly, because the angle 

with which each emergent ray exits the particle depends on its incident position, its order, the 

shape of the particle, as well as other factors, which make the angular distribution of the 

scattered rays irregular, and hence make the summation of the complex amplitudes a not so 

simple task. This is illustrated in Figure 64, where the variation of the amplitude of emergent 

rays of order  𝑝 = 2 can be seen. It can clearly be noticed that the same order of rays arrives 

twice through a given angle range. However, the two amplitudes of the emergent rays at a 

given angle, for example 142°, are not known. Therefore, the amplitude and phase of each 

ray at a given angle needs to be determined by an interpolation procedure that includes the 

local emergent rays. 

 

 

Figure 64: This is a small section of an intensity scattering diagram. It highlights and example of the irregular 

angular distribution of scattered rays. The rays shown are of order 𝑝 = 2. 

 

B-3.1.7. Interpolation 

 

Usually, interpolation algorithms are used for monotone functions, so the first thing to be done 

is to separate the emergent rays into groups, so that the variation of the angle in each group 
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is monotone (either increasing or decreasing, and never both). To accomplish this, we first 

separate the emergent rays by their orders, 𝑝. This means that rays of different orders cannot 

be used in the same interpolation. 

 

Rays of the same order are then further split into groups based on whether or not there is a 

returning angle (the angle difference between two successive rays changes sign from one 

step to the next in a particular order, 𝑝). If total reflection is encountered for a particular order, 

then this also acts as a separator for the groups. 

 

Once the groups of rays are well defined, the amplitudes and phases can be interpolated 

simultaneously for any angle. Finally, the total complex amplitude can be calculated according 

to Equation B.91 for all angles necessary for the scattering diagram. In the case of VCRM, 

the Lagrangian interpolation method is used to calculate the intermediate amplitudes and 

phases of the rays. 

 

B-3.2. Gaussian beam 

 

One of the important advantages of VCRM is that it can be applied to deal with any shaped 

beam, provide the latter is not too strongly focused, so that its propagation can be described 

by rectilinear rays inside the particle.  

 

In this thesis, the interest lies in the radiation pressure forces acting on ellipsoidal particles. 

So, in this section, the scattering of a Gaussian beam by an ellipsoidal particle will be 

discussed. Like the plane wave case, only the scattering contained within the symmetrical 

plane is considered, so the axis of the beam must lie in this plane also.  

 

In VCRM, the only difference between plane wave scattering and beam scattering is that the 

ray properties (namely amplitude, phase, direction and wave front curvatures) at the incident 

point are no longer constant. Thusly, the only necessary modification to the model is that these 

properties need to be determined for each ray at its initial incident point. 

 

B-3.2.1. Description of a Gaussian beam 

 

Consider a circular Gaussian beam of beam waist radius, 𝜔0, propagating along the positive 

𝑤 direction in its coordinate system, (𝑢, 𝑣, 𝑤). A graphical representation of its intensity can be 

seen in Figure 65. 



Vectorial Complex Ray Model 

150  

 

 

Figure 65: A simple characterisation of a circular Gaussian beam. 

The complex amplitude of the Gaussian beam is given by [85]: 

 

 𝑆𝐺(𝑢, 𝑣, 𝑤) =
𝜔0
𝜔𝑙
exp (−

𝑢2 + 𝑣2

𝜔𝑙
2 )exp (𝑖𝜑(𝑢, 𝑣, 𝑤)) B.93  

 

where 

 

 𝜑(𝑢, 𝑣, 𝑤) = −𝑘

(

 
 
𝑤 +

𝑢2 + 𝑣2

2𝑤 (1 + (
𝑙
𝑤)

2

)
)

 
 
+ tan−1 (

𝑤

𝑙
) B.94  

 

with tan−1 (
𝑤

𝑙
) being the Gouy phase, 𝜔0 the beam waist radius, 𝑙 the Rayleigh length, and 𝜔𝑙 

the local beam radius, where the latter two can be expressed in the following way, respectively: 

 

 𝑙 =
𝜋𝜔0

2

𝜆
 B.95  
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 𝜔𝑙 = 𝜔0√1 + (
𝑤

𝑙
)
2

 B.96  

 

In the case under study, 𝑣 = 0 holds true, because the 𝑢𝑤 plane of the beam always coincides 

with the symmetrical plane, 𝑥𝑧, of the ellipsoid. 

 

In the plane wave case, the illumination region can be defined analytically, however, this is 

not the case for a Gaussian beam, because the incident direction changes from point to point. 

A simple way is to determine if a ray interacts with the particle surface is to calculate the scalar 

product of the wave vector of the beam and the normal vector of the particle surface at that 

point. If the result is negative, the ray interacts with the particle, if not it is discarded. 

 

B-3.2.2. Transformation of coordinate systems 

 

To calculate the properties of the incident rays of the Gaussian beam at the interaction point 

on the particle surface, we need the electric field at that point. However, in the general case, 

the coordinate system of the beam does not coincident with that of the particle. Hence, a 

coordinate transformation between the two systems is necessary. 

 

This can be realized by a rotation and a translation. Before the transformation is performed, 

both coordinate systems are coincident, with 𝑢 lying along 𝑥, 𝑣 lying along 𝑦 and 𝑤 lying 

along 𝑧. The respective translations, (𝑥0, 𝑦0, 𝑧0), are made in order to vary the beam centre 

with respect to that of the particle. As previously discussed, 𝑦0 will always be zero. However, 

𝑥0 and 𝑧0 are the coordinates of the beam centre within the particle coordinate system. The 

complete transformation is then achieved by simply rotating by an angle, 𝜃, about the 𝑦 axis. 

The relation between the particle coordinate system and that of the beam is given by: 

 

 (
𝑢
𝑣
𝑤
) = 𝐴(

𝑥 − 𝑥0
𝑦

𝑧 − 𝑧0
) B.97  

 

the matrix 𝐴, is: 

 

 𝐴 = (
cos (𝜃) 0 −sin (𝜃)
0 1 0

sin (𝜃) 0 cos (𝜃)
) B.98  
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Figure 66: A graphic description of the coordinate system transformation - the ellipsoidal coordinate system being 

in black, and that of the beam in blue, with the relevant translations, 𝑥0 and 𝑧0, distances, 𝑑𝑢 and 𝑑𝑤 as well as the 

rotation, 𝜃 shown accordingly. 

Remembering that 𝑦0 = 0, and utilising Equation B.97, any point in the particle coordinate 

system can be obtained within the beam coordinate system using the following expressions: 

 

 𝑢 = (𝑥 − 𝑥0) cos(𝜃) − (𝑧 − 𝑧0) sin(𝜃) B.99  

 

 𝑣 = 0 B.100  

 

 𝑤 = (𝑥 − 𝑥0) sin(𝜃) + (𝑧 − 𝑧0) cos(𝜃) B.101  

 

Now all the beam calculations can be managed within its own coordinate system, by 

transforming each interaction point on the particle surface. 

 

For the purpose of making it easier to match usual experimental conditions with that of the 

model, two distances may be used to indicate the distance between the beam centre and that 

of the particle. 𝑑𝑤 dictates the perpendicular distance between the beam waist and the particle 

centre, whilst 𝑑𝑢 is the lateral counterpart, this time with respect to the beam propagation axis 

and the particle centre, as shown in Figure 66. 𝑑𝑢 and 𝑑𝑤 can be obtained using: 

 

 𝑑𝑢 = −𝑥0cos(𝜃) + 𝑧0 sin(𝜃) B.102  

 

 𝑑𝑤 = −𝑥0 sin(𝜃) − 𝑧0 cos(𝜃) B.103  
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These equations can be solved simultaneously to get the positions, 𝑥0 and 𝑧0, to correspond 

to the desired displacements of the beam with respect to the particle centre, 𝑑𝑢 and 𝑑𝑤. 

 

B-3.2.3. Propagation direction 

 

In VCRM model, a Gaussian beam is represented by a bundle of rays. Each of these rays is 

travelling in a direction orthogonal to the local wavefront, which can otherwise be described 

as the isophase surface. Since the isophase surface propagates in the same direction as the 

rays, we may obtain that direction by finding the gradient of the phase function (Equation B.94) 

at the desired point in space (in this case at the surface of the scattering particle). We may 

then use the transpose of the rotation matrix to find that direction within the coordinate system 

of the ellipsoid, which we can generally express as: 

 

 ∇𝐹(𝑥, 𝑦, 𝑧) = (𝐹𝑥
′, 𝐹𝑦

′, 𝐹𝑧
′) = (𝜑𝑢

′ , 𝜑𝑣
′ , 𝜑𝑤

′ )𝐴 B.104  

 

So, in order to obtain the wavevector of the ray, we have: 

 

 𝑘⃗ = 𝑘
∇𝐹(𝑥, 𝑦, 𝑧)

‖∇𝐹(𝑥, 𝑦, 𝑧)‖
 B.105  

 

where 𝑘 is the wavenumber. 

 

From Equation B.94, we can find the first order derivatives to be: 

 

 𝜑𝑢
′ = −𝑘

𝑢𝑤

𝑙2 + 𝑤2
 B.106  

 

 𝜑𝑣
′ = −𝑘

𝑣𝑤

𝑙2 + 𝑤2
 B.107  

 

 𝜑𝑤
′ = −𝑘 − 𝑘

(𝑢2 + 𝑣2)(𝑙2 − 𝑤2)

2(𝑙2 + 𝑤2)2
+

𝑙

𝑙2 + 𝑤2
 B.108  

 

B-3.2.4. Wavefront curvature 
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Since the wavefronts are isophase surfaces, they can be calculated directly from the phase 

function in Equation B.94. To do this, the method by Goldman [86] is adopted. The principal 

curvatures, 𝜅1 and 𝜅2 are then given by: 

 

 𝜅1, 𝜅2 = 𝜅𝑀 ±√𝜅𝑀
2 − 𝜅𝐺 B.109  

 

where 𝜅𝑀 and 𝜅𝐺 are the mean and Gaussian curvatures, respectively. The mean curvature, 

𝜅𝑀, is the average of the principal curvatures, 𝜅𝑀 =
1

2
(𝜅1 + 𝜅2), whilst the Gaussian curvature 

is the product of the same, 𝜅𝐺 = 𝜅1𝜅2. These can be found by [86]: 

 

 𝜅𝑀 =
∇𝐹 ∙ 𝐻(𝐹) ∙ ∇𝐹𝑇 − |∇𝐹|2Trace(𝐻)

2|∇𝐹|3
 B.110  

 

 𝜅𝐺 =
∇𝐹 ∙ 𝐻∗(𝐹) ∙ ∇𝐹𝑇

|∇𝐹|4
 B.111  

 

Here, 𝐻(𝐹) is the hessian of the function 𝐹(𝑥, 𝑦, 𝑧), and 𝐻∗(𝐹) is the cofactor matrix of the 

hessian. 𝐻(𝐹) can be represented as: 

 

 𝐻(𝐹) = (

𝐹𝑥𝑥
′′ 𝐹𝑥𝑦

′′ 𝐹𝑥𝑧
′′

𝐹𝑦𝑥
′′ 𝐹𝑦𝑦

′′ 𝐹𝑦𝑧
′′

𝐹𝑧𝑥
′′ 𝐹𝑧𝑦

′′ 𝐹𝑧𝑧
′′

) B.112  

 

where ′′ stands for a second order derivative. To arrive to Equation B.112 from the beam 

coordinate system, we use: 

 

 𝐻(𝐹) = 𝐴𝑇 (

𝜑𝑢𝑢
′′ 𝜑𝑢𝑣

′′ 𝜑𝑢𝑤
′′

𝜑𝑣𝑢
′′ 𝜑𝑣𝑣

′′ 𝜑𝑣𝑤
′′

𝜑𝑤𝑢
′′ 𝜑𝑤𝑣

′′ 𝜑𝑤𝑤
′′
)𝐴 B.113  

 

We find the second order derivatives of Equation B.94 to be: 

 

 𝜑𝑢𝑢
′′ = 𝜑𝑣𝑣

′′ = −
𝑘𝑤

𝑙2 + 𝑤2
 B.114  
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 𝜑𝑢𝑣
′′ = 𝜑𝑣𝑢

′′ = 0 B.115  

 

 𝜑𝑢𝑤
′′ = 𝜑𝑤𝑢

′′ = −
𝑘𝑢(𝑙2 −𝑤2)

(𝑙2 + 𝑤2)2
 B.116  

 

 𝜑𝑣𝑤
′′ = 𝜑𝑤𝑣

′′ = −
𝑘𝑣(𝑙2 −𝑤2)

(𝑙2 + 𝑤2)2
 B.117  

 

 𝜑𝑤𝑤
′′ = −

𝑘𝑤(𝑢2 + 𝑣2)(3𝑙2 − 𝑤2)

(𝑙2 + 𝑤2)3
−

2𝑙𝑤

(𝑙2 + 𝑤2)2
 B.118 

 

Therefore, the wave front curvature at each incident point can be calculated using the first and 

the second derivatives of the phase function, along with the transformation matrix between 

the beam coordinate system and that of the particle. 

 





B-4. Results and discussion 

 

In accordance with the method of VCRM, described in Section B-3, two programs have been 

written in Python 2.7.13 to deal with plane wave, as well as Gaussian scattering by spheroidal 

particles. To address the accuracy and quality of the model, scattering diagrams of the 

intensity distribution have been calculated for the cases of spheres, as well as both oblate and 

prolate spheroids. Both, the VCRM plane wave and Gaussian cases are compared alongside 

rigorous GLMT calculations in order to validate them, at least when dealing with spheres. The 

particles are all non-absorbing, so their refractive indices are always real. Diffraction is not 

taken into account in the VCRM model used for these calculations, although for large particles, 

the effect of diffraction is confined to a very narrow angle range in the forward scattering 

direction, as will become apparent when comparisons are made with GLMT. Surface waves 

have also not been taken into account for any of the calculations. 

 

It should be noted that the wavelength for all calculations is that of the commonly utilised 

Helium-Neon laser, 𝜆0 = 0.6328μm, the orders that are considered are from 𝑝 = 0 to 𝑝 = 5, 

the polarisation is always perpendicular to the interaction plane, and the number of incident 

rays is 𝑁𝑖𝑛𝑐 = 5000, with the number of scattered points being the same, 𝑁𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 = 5000.  

 

Firstly, some spherical cases are addressed in Section B-4.1, after which scattering diagrams 

for both oblate and prolate particles at various incidence angles with respect to the direction 

of light are presented in Section B-4.2. 

 

B-4.1. Scattering diagrams for spheres 

 

Figure 67 shows the scattering of a plane wave by a large sphere (𝑎 = 𝑏 = 𝑐 = 100μm). This 

is achieved with VCRM and GLMT. The beam waist radius is taken to be 𝜔0 = 1m in the GLMT 

and VCRM Gaussian beam calculations. 
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Figure 67: Scattering diagram showing the intensity distribution (in log10) across the angle range, 0° to 180°, for 

light scattered by a sphere using a VCRM plane wave (blue), a VCRM Gaussian beam (black), and GLMT (red). 

Calculation parameters: 𝑎 = 𝑏 = 𝑐 = 100μm, 𝑚 = 1.333, 𝜔0 = 1m and 𝜃𝑖𝑛𝑐 = 0°. Here, the plane wave case (blue) 

has been offset by 103, and the GLMT calculation (red) has been offset by 10−3, in the interest of clarity. 

As can be seen in Figure 67, there is reasonable agreement between the VCRM models and 

GLMT, although some small differences are discernible, especially in the region of the first 

and second rainbows (from about 𝜃~125° to 𝜃 = 140°), for which GO approximations fail, 

since the intensity is calculated as being infinite. Also, as is the case for the rest of the 

scattering diagrams by spheres, there is a difference due to diffraction for 𝜃 ≲ 5°. 

 

Figure 68 is simply the same sphere as that in Figure 67, but the incident beam makes an 

angle of 𝜃 = 20° with respect of the 𝑧-axis. Theoretically, the rotation of a sphere should not 

make any difference to the scattering diagram. However, it has been clearly shown that there 

exists an intrinsic problem in numerical calculations using classical GO [81]. Furthermore, this 

is a critical step to check the code for scattering by any non-spherical particle. We observe 

that the scattering diagrams calculated by VCRM are just translated by 20° with respect to on-

axis incidence (Figure 67), which shows that the code works well. 
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Figure 68: The parameters are the same as in Figure 67, except that 𝜃𝑖𝑛𝑐 = 20° for the VCRM plane wave (blue), 

and the VCRM Gaussian beam (black) cases. 

Figure 69 and Figure 70 are scattering diagrams for a sphere with 𝑎 = 𝑏 = 𝑐 = 50μm, 

illuminated by a Gaussian beam with a beam waist radius (for the Gaussian VCRM and GLMT 

simulations) of 𝜔0 = 50μm and 𝜔0 = 10μm, respectively. While the Gaussian beam waist 

radius is equal to the particle radius, the scattering diagram is similar to that of a plane wave, 

but the intensity at the rainbow angles is weaker (see Figure 69). On the other hand, if the 

beam waist is much smaller than the particle radius (as per Figure 70, with 𝜔0 = 10μm and 

𝑎 = 𝑏 = 𝑐 = 50μm), then the rainbow structures are no longer visible and the profiles of the 

VCRM Gaussian beam and the GLMT calculations match quite well in Figure 70. In fact, the 

agreement seems greater than that in Figure 69. This is because the incident intensities of the 

rays corresponding to the rainbows (the impact point of which is at about 0.86𝑎 for the first 

rainbow, and about 0.95𝑎 for the second) are much lower than those near the beam axis. 
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Figure 69: Scattering diagram showing the intensity distribution (in log10) across the angle range, 0° to 180°, for 

light scattered by a sphere using a VCRM plane wave (blue), a VCRM Gaussian beam (black), and GLMT (red). 

Calculation parameters: 𝑎 = 𝑏 = 𝑐 = 50μm, 𝑚 = 1.333, 𝜔0 = 50μm and 𝜃𝑖𝑛𝑐 = 0°. Here, the plane wave case (blue) 

has been offset by 103, and the GLMT calculation (red) has been offset by 10−3, in the interest of clarity. 

 

 

Figure 70: The parameters are the same as in Figure 69, except that 𝜔0 = 10μm for the VCRM Gaussian beam 

(black) and GLMT (red) cases. 

Finally, Figure 71 highlights the fact that as the radius of a sphere gets smaller, and becomes 

not much bigger than the wavelength of the light, the agreement between the scattering of the 

VCRM Gaussian beam and that of GLMT becomes lower. This leads to the lower particle size 

limit of VCRM, where accurate results can only be expected for 𝑎 = 𝑏 = 𝑐 ≫ 𝜆. 
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Figure 71: Scattering diagram showing the intensity distribution (in log10) across the angle range, 0° to 180°, for 

light scattered by a sphere using a VCRM plane wave (blue), a VCRM Gaussian beam (black), and GLMT (red). 

Calculation parameters: 𝑎 = 𝑏 = 𝑐 = 25μm, 𝑚 = 1.333, 𝜔0 = 25μm and 𝜃𝑖𝑛𝑐 = 0°. Here, the plane wave case (blue) 

has been offset by 103, and the GLMT calculation (red) has been offset by 10−3, in the interest of clarity. 

 

B-4.2. Scattering diagrams for spheroids 

 

Figure 72 to Figure 74 show the VCRM plane wave and Gaussian beam scattering by an 

oblate spheroid (𝑘 = 0.8) of large size (with 𝑎 = 𝑏 = 125μm and 𝑐 = 100μm) for different 

angles of incidence, namely 𝜃 = 0, 20, 40°, respectively. The effect of the Gaussian beam can 

be seen clearly when compared to the plane wave case. We observe that the scattered 

intensities in the forward and backward direction are of the same order for the plane wave and 

the Gaussian beam. This is because the main contributors to this part of the scattering diagram 

are rays that struck the particle near the beam axis. Using the same logic, the scattered 

intensities for the beam are much weaker on either side of the incident direction, because 

most of the contributing rays are from near the border of the beam. The rainbows, if visible, 

are located at the same place for the plane wave and the Gaussian beam, since the beam is 

relatively large, so the incident rays are almost all parallel, as are the rays of the plane wave. 
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Figure 72: Scattering diagram showing the intensity distribution (in log10) across the angle range, −180° to 180°, 

for light scattered by a spheroid using a VCRM plane wave (blue) and a VCRM Gaussian beam (black). Calculation 

parameters: 𝑎 = 𝑏 = 125μm, 𝑐 = 100μm, 𝑚 = 1.333, 𝜔0 = 50μm and 𝜃𝑖𝑛𝑐 = 0°. There is no offset in intensity in 

these diagrams. 

 

 

Figure 73: The parameters are the same as in Figure 72, except that 𝜃𝑖𝑛𝑐 = 20° for both the VCRM plane wave 

(blue), and the VCRM Gaussian beam (black) cases. 
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Figure 74: The parameters are the same as in Figure 72, except that 𝜃𝑖𝑛𝑐 = 40° for both the VCRM plane wave 

(blue), and the VCRM Gaussian beam (black) cases. 

 

 

Figure 75: Scattering diagram showing the intensity distribution (in log10) across the angle range, −180° to 180°, 

for light scattered by a spheroid using a VCRM plane wave (blue) and a VCRM Gaussian beam (black). Calculation 

parameters: 𝑎 = 𝑏 = 100μm, 𝑐 = 120μm, 𝑚 = 1.333, 𝜔0 = 50μm and 𝜃𝑖𝑛𝑐 = 0°. There is no offset in intensity in 

these diagrams. 

Figure 75 to Figure 77 show the scattering of a VCRM plane wave and a Gaussian beam, this 

time by a prolate spheroid (𝑘 = 1.2) of similar size to the previous oblate example (with 𝑎 =

𝑏 = 100μm and 𝑐 = 120μm). Similar comments as those made for the case of oblate particles 
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can be made concerning the scattered intensity of prolate particles. Furthermore, we can note 

that the rainbow positions depend on the incident angle and the aspect ratio, which is 

something that is also true for oblate spheroids. 

 

 

Figure 76: The parameters are the same as in Figure 75, except that 𝜃𝑖𝑛𝑐 = 20° for both the VCRM plane wave 

(blue), and the VCRM Gaussian beam (black) cases. 

 

 

Figure 77: The parameters are the same as in Figure 75, except that 𝜃𝑖𝑛𝑐 = 40° for both the VCRM plane wave 

(blue), and the VCRM Gaussian beam (black) cases. 

 



B-5. Conclusion of Section B 

 

Classical GO was modified by adding wave properties to rays, with the resulting model being 

the Vectorial Complex Ray Model. This concept was then used in the scattering of both a 

plane wave and a Gaussian beam by spheres and spheroids. To validate VCRM, the results 

for spheres were compared with rigorous GLMT calculations, which exhibited good agreement 

for large particles (where the radius is ≫ 10𝜆), except at the rainbow angle, and in a narrow 

range of angles near the angle of incidence. The latter is due to diffraction, which has not been 

added to the model used for the calculations in this thesis, and the former is a notorious 

problem with GO approximations. 

 

The model was also used for spheroidal particles. Due to the nature of the calculations, it is 

easily possible to rotate the particle with respect to the direction of the illuminating light, which 

holds great flexibility for the characterisation of arbitrarily shaped particles. 

 

The Gaussian scattering profile is easily distinguished from the plane wave, with clear 

Gaussian characteristics being visible when the beam waist radius is smaller than the particle 

principle axes. 

 

The first improvement that needs to be included in the current VCRM model is diffraction, so 

as to match GLMT calculations more closely in the forward scattering direction for large 

particles. 

 

The second is to extend it to a 3D version, so as to encapsulate the full aspect of light 

scattering, although this is no easy task, especially due to the interpolation component that is 

necessary for this model to work. 

 

Once 3D scattering is achieved, optical forces acting on the particle may be incorporated so 

that the model may be compared and validated with a type of experimental results other than 

intensity patterns. For example, the levitation powers from Part A would serve as a great tool 

for comparison. 

 

The following step would be to focus on the analysis of particle dynamics, such as those 

presented in Section A-3.3, some of which can only be analysed with simulations that have 

access to all three spatial dimensions. This is possible for a model such as VCRM because of 

the fast processing times, which could potentially analyse dynamics in minutes, or hours on a 
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normal computer. This is unlike other, more rigorous models, that may require days of 

processing on a supercomputer just to calculate the forces acting only on a large, arbitrarily 

shaped particle in a single position and orientation. 
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General Conclusion 

 

The aim of this work was to cross experimental information about the mechanical effects of 

light on particles with simulations. 

 

The focus was placed on the case of spheroids, meaning circularly symmetrical ellipsoid-

shaped particles, which are the simplest of the family, “complex-shaped particles”. The 

particles used were made from polystyrene, with sizes of up to several tens of micrometres in 

length, which lies within the size domain targeted by the AMOCOPS project. 

 

Systematic experiments concerning the optical levitation, and the 3D optical trapping of such 

particles was carried out. A large quantity of data has been gathered, documenting the 

responses of these particles to laser beams, either of low apertures, as in the OL setup, or 

tightly focused, as with the OT. It was observed that the ellipsoids could be stably trapped in 

3D by OT, and that non-trivial static configurations could be produced in a two-beam OL with 

appropriate ratios of the powers of both beams.  

 

Characteristics of the static equilibria of the particles are directly exploitable for comparison 

with numerical simulations. In some cases, it was possible to use “exact methods”, such as 

GLMT and MLFMA, to calculate levitation powers. GLMT was used for spheres, whilst MLFMA 

was used for the ellipsoids levitated using a one-beam OL, in the simplest configuration, where 

the particle stands vertically and is centred on the beam axis.  The study with spheres allowed 

us to detect a small absorbance by the material of the particles (mainly polystyrene), a 

parameter which was necessary to be taken into account to reach quantitative agreement 

between experimental and GLMT values of the levitation power, 𝑃𝑙𝑒𝑣. Noteworthily, this 

method is novel, since previous attempts to measure the absorbance of such particles dealt 

with suspensions containing many of them [87], instead of the use of a few specimens. 

 

As for the levitation of ellipsoids, the agreement with MLFMA was only qualitative due to large 

scatter of both the experimental and calculated values of 𝑃𝑙𝑒𝑣.  Reasons for the dispersions of 

the respective 𝑃𝑙𝑒𝑣 values, as a function of the particle aspect ratio (𝑘), are not yet clear to us. 

Refinements are possible in the experimental procedure, and many more MLFMA calculations 

are necessary along a fine grid along the axis containing 𝑘, in order to possibly evidence the 

role of particle resonances. 
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Oblique configurations of ellipsoids in a two-beam OL, and trapping configurations in OT, have 

only been explored with standard RO simulations, limited to two dimensions. The simulation 

did rather well in recovering the main characteristics of most of the experimental 

configurations. In particular, the mechanisms for the oblique, off-centred equilibria, and the 

influence of spherical aberration in 3D trapping of the ellipsoids could be understood with the 

help of the simulations. However, and not surprisingly, the simple 2D RO simulation is not 

quantitatively reliable, and indeed, predicted values of characteristic parameters do not closely 

match measured ones. As no source of systematic bias has been noticed so far in the 

experimental measurements, it is supposed that the differences mainly stem from the 

limitations of the basic RO model, and from the restriction to 2D in the current version of the 

simulation. 

 

Basic ray-optics ignores the wave nature of light, meaning that rays scattered by the particle 

do not interfere. Ignoring these interferences is obviously a source of systematic error in the 

calculation of the scattering diagram, as well as in the momentum transfer from the light to the 

particle. The VCRM method [2, 3] recently developed by K. F. Ren is a promising option to 

approximately reconcile rays with the wave character of light in a practical framework which 

may apply to any particle shape. The principles of the method are explained, with which a 

Python version has been coded for the scattering of a plane wave and a Gaussian beam by 

an ellipsoid in a symmetric plane. This is an extension of the preliminary work for the on-axis 

Gaussian beam scattering by a spheroid [78], to the scattering of any incident Gaussian beam 

by an ellipsoid of any orientation [81]. The power of the method was illustrated by efficiently 

calculating scattering diagrams of ellipsoids illuminated by a Gaussian beam. Unfortunately, it 

was a lack of time that has caused the lack of elaboration for force maps with VCRM, and to 

then compare these maps to those calculated with simple 2D RO (the method used by J.C. 

Loudet). 

 

An important part of this thesis has been dedicated to the dynamical responses of the particles 

in the OL and OT setups. The observations made here have confirmed those made prior to 

this work by Mihiretie et al., and thereby the conception that responses of particles to light 

should be thought of as dynamical states in general. In the course of the two-beam OL 

experiments, two new types of oscillations involving large angular excursions of the particle 

were identified, both in the polar and azimuthal angles. 

 

It was verified that oscillations in the OL sensitively depend on the beam waist and the particle 

aspect ratio. Conversely, it was observed that the ellipsoids were always stably trapped in the 

OT when in bulk water, but that oscillations were produced for specific configurations with the 
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particle in contact to the lower boundary of the cell. Interestingly, these oscillations were found 

to be incoherent, contrary to the types of regular oscillations in the OL. 

 

Our understanding is that the oscillations seen in the OT experiments are of the type described 

by Simpson and Hanna [56], namely thermal noise-driven oscillations within the linear domain 

of the force-torque field acting on the particle. Conversely, thermal noise plays no role in the 

large amplitude oscillations seen in the OL setup [37]. The latter oscillations stem from the 

nonlinear coupling between translational and rotational degrees of freedom within the force-

torque field, hence the distinction made between noise-driven and nonlinear oscillations. 

 

We end this conclusion with suggestions for future developments. 

 

The work with 2D-VCRM is to be continued with calculations of force-torque maps. It will be 

especially interesting to test the influence of phases in these maps compared to maps 

obtained with standard RO, where interference is not taken into account [39]. The comparison 

would be a quantitative test of the accuracy of basic RO, which is a much better way to refute 

it than the standard statement that RO is inaccurate whenever a characteristic distance in the 

system is not large enough compared to the wavelength. 

 

3D-VCRM is then the obvious progression of the model. It may reach a reasonable quantitative 

match between calculated and observed static configurations, which would be a great way to 

validate it. 

 

A much more ambitious goal is to simulate dynamic states in 3D. This task demands a huge 

amount of computation, because forces and torques must be calculated within the full 5-

dimensional configuration space of the particle. This is certainly beyond practical possibility 

with MLFMA, due to prohibitive computation times. In this context, 3D-VCRM is the only 

possible method for computations to be fast enough. 

 

The accuracy of experimental observations can still be improved at different levels: 

 

❖ Controlling the temperature of the sample cell in the OL setup is technically difficult, if 

the side view is to be preserved. However, it is mandatory to eliminate the uncertainty 

produced by temperature in the graphs showing 𝑃𝑙𝑒𝑣 against 𝑣𝑠𝑒𝑑. 

❖ The position of the particle relative to the beam waist plane also needs to be controlled 

more accurately. This may be feasible using an automated real-time analysis of the 
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top view images of the particle. The method may bring the uncertainty in particle 

altitude down to about a micrometre. 

❖ A detailed analysis of the particle oscillations in terms of their “true coordinates”, (𝑥, 𝑦, 

𝑧, 𝜃, 𝜙), demands developing dedicated tracking software tools far more sophisticated 

than the crude version used in our experiments. 
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Appendices 

 

Sedimentation of spheroids in viscous fluid 

 

Consider a spheroidal particle moving under the sole action of gravity in a fluid of viscosity 𝜂. 

𝑎 = 𝑏 =
𝑐

𝑘
 are the size parameters of the particle (see Figure 2). The particle and its velocity 

are small enough for inertia forces and torques to be negligible. Here, we briefly recall the 

results from [43, 44], which are used later to analyse the experimental data gathered here. 

 

We first suppose that the particle moves parallel to its long axis at velocity, 𝑣. The fluid opposes 

this with a drag force whose amplitude is given by: 

 

 𝐹𝑑𝑟𝑎𝑔
∥ = 𝜍∥𝑣 App.1  

 

with 

 

 𝜍∥(𝑘) = 16𝜋𝜂
𝑐

𝑘
𝑓∥(𝑘) App.2  

 

and 

 

 𝑓∥(𝑘) = [
−2𝑘

𝑘2 − 1
+
2𝑘2 − 1

(𝑘2 − 1)
3
2

ln (
𝑘 + √𝑘2 − 1

𝑘 − √𝑘2 − 1
)]

−1

 App.3  

 

Similarly, for motion perpendicular to the spheroid symmetry axis: 

 

 𝐹𝑑𝑟𝑎𝑔
⊥ = 𝜍⊥𝑣 App.4  

 

with 

 

 𝜍⊥(𝑘) = 16𝜋𝜂
𝑐

𝑘
𝑓⊥(𝑘) App.5  

 

and 
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 𝑓⊥(𝑘) = [
𝑘

𝑘2 − 1
+
2𝑘2 − 3

(𝑘2 − 1)
3
2

ln (𝑘 + √𝑘2 − 1)]

−1

 App.6  

 

The theory deals with the general case of a spheroid that starts sedimentation with an initial 

tilt angle, 𝜃0 (see Figure 78). Based on the symmetries of the particle shape and of the Stokes 

equation, the theory predicts that the particle will keep the same tilt angle throughout the 

sedimentation. The trajectory is a straight line whose tilt angle 𝜃𝑠𝑒𝑑 depends on 𝜃0: 

 

 
𝜍∥
𝜍⊥
tan(𝜃0) = tan(𝜃0 − 𝜃𝑠𝑒𝑑) App.7  

 

 

Figure 78: Sedimentation of a spheroid in an oblique configuration. 𝜃𝑠𝑒𝑑  in the sketch is large, for clarity. In reality, 

calculated values of 𝜃𝑠𝑒𝑑  are small (≤ 6°). 

Simple situations are those when the spheroid is initially vertical, or horizontal. In such 

conditions the particle falls vertically. 

 

The spheroid is supposed to have the same volume and mass as that of a mother sphere with 

a radius, 𝑅0, whose sedimentation velocity is given by: 

 

 𝑣𝑠𝑒𝑑
(0)

=
2∆𝜌𝑔𝑅0

2

9𝜂
 App.8  

 

Using Equations App.1 to App.6 and Equation App.8, we can deduce the sedimentation 

velocity of an initially vertical spheroid (𝜃0 = 0): 
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 𝑣𝑠𝑒𝑑(𝑘, 𝜃0 = 0) =
3

8
𝑘
1
3𝑓∥

−1(𝑘) ∙ 𝑣𝑠𝑒𝑑
(0)

 App.9  

 

Similarly, if the spheroid is horizontal: 

 

 𝑣𝑠𝑒𝑑 (𝑘, 𝜃0 =
𝜋

2
) =

3

8
𝑘
1
3𝑓⊥

−1(𝑘) ∙ 𝑣𝑠𝑒𝑑
(0)

 App.10  

 

Below are shown the results of an experiment which has been carried out with a particle made 

from a polystyrene mother sphere of radius, 𝑅0 = 5μm. The spheroid aspect ratio was 

estimated from the overall length of the particle as seen through the microscope, combined 

with the assumption of volume conservation. It was found that 2.65 ≤ 𝑘 ≤ 2.83. The particle, 

having a moderate aspect ratio, could be trapped in the standard vertical on-axis configuration, 

and so was prepared with a 𝜃0 = 0 initial condition. Rather unexpectedly, the particle did not 

stay vertical and instead tumbled twice before reaching the floor of the sample cell. Throughout 

the sedimentation sequence, the sample cell was moved vertically to maintain the microscope 

image of the particle in focus. The particle altitude, 𝑧𝑝𝑎𝑟𝑡, was deduced from that of the cell 

(with a simple correction to take the refraction through water into account). The graphs in 

Figure 79 show 𝑧𝑝𝑎𝑟𝑡 and the particle tilt angle, 𝜃, as a function of time. The value of 𝜃 was 

estimated from the projected length (2𝑙) of the particle image, using the following formula: 

 

 cos2(𝜃) =
𝑘2

𝑘2 − 1
[1 − (

𝑙

𝑐
)
2

] App.11  

 

The predicted value of 𝑣𝑠𝑒𝑑
(0)

 is 2.73μms−1, for 𝜂 = 10−3Pas. It is slightly lower than values 

measured in experiments with a suspension of mother spheres. The difference (~5%) may be 

due to an error either on the particle size, or on the value of the fluid viscosity for the 

temperature at which the experiments have been carried out. 

  

The sedimentation trajectory of the spheroid (see Figure 79) roughly consists of two straight 

line portions, corresponding to 𝑣𝑠𝑒𝑑
𝑚𝑎𝑥 = 2.18μms−1 and 𝑣𝑠𝑒𝑑

𝑚𝑖𝑛 = 1.78μms−1. Because the tilt 

angle is far from constant throughout the descent of the particle, the theory cannot be applied 

in a straightforward manner. As a tentative option, we may compare the above values of 𝑣𝑠𝑒𝑑 

to the predicted values for the vertical and horizontal configurations, respectively. These 

configurations correspond to the maximum and minimum values of the sedimentation velocity, 

in theory. The results are displayed in Table 5 for 𝑘 = 2.83. The values are almost the same 

for the lower limit of the aspect ratio, 𝑘 = 2.65. We see that the measured velocities are about 
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20% lower than the predictions for the vertical and horizontal orientations of the particle. In 

view of the statistical scatter of the experimental data, and of the limited applicability of the 

theory, it is estimated that measured sedimentation velocities are not significantly different 

from what might be expected. 

 

Noteworthily, tumbling of spheroids during sedimentation was observed in all experiments, 

with particles of different sizes and aspect ratios. As a tentative explanation of the 20% 

anomaly in 𝑣𝑠𝑒𝑑, it may be supposed that the particle rotation has the effect of slightly slowing 

down the sedimentation. 

 

Experiment 𝑣𝑠𝑒𝑑
𝑚𝑎𝑥

𝑣𝑠𝑒𝑑
(0)

= 0.80 
𝑣𝑠𝑒𝑑
𝑚𝑖𝑛

𝑣𝑠𝑒𝑑
(0)

= 0.65 
𝑣𝑠𝑒𝑑
𝑚𝑎𝑥

𝑣𝑠𝑒𝑑
𝑚𝑖𝑛

= 1.23 

Theory 𝑣𝑠𝑒𝑑
∥

𝑣𝑠𝑒𝑑
(0)

= 1.04 
𝑣𝑠𝑒𝑑
⊥

𝑣𝑠𝑒𝑑
(0)

= 0.86 
𝑣𝑠𝑒𝑑
𝑚𝑎𝑥

𝑣𝑠𝑒𝑑
𝑚𝑖𝑛

= 1.22 

 

Table 5: Comparison of theoretical and measured values of sedimentation velocities for a spheroid-shaped particle 

of 𝑘 = 2.83, with a mother sphere radius of 𝑅0 = 5μm. 

 

 

Figure 79: Sedimentation trajectory of a polystyrene spheroid. a) Altitude of the particle as a function of time. b) tilt 

angle as a function of time. Particle parameters: 𝑘 = 2.83, with a mother sphere radius of 𝑅0 = 5μm. 
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Numerical aperture calibration 

 

In this appendix we describe the procedure which was followed to quantitatively control the 

aperture of the 100x microscope objective.  

  

First, it is necessary to know the characteristics of the laser beam passing through the 

objective pupil. Since numerical apertures are involved, the light distribution within a cone of 

half-angle, 𝑢, is considered (see Figure 80). 𝑢 = 𝑢𝑚𝑎𝑥 is the objective aperture angle when 

the iris diaphragm is fully open. The value of 𝑢𝑚𝑎𝑥 is given by 𝑁𝐴 = 𝑛𝑜𝑖𝑙 sin(𝑢𝑚𝑎𝑥), where 

𝑛𝑜𝑖𝑙 ≈ 1.50 is the refractive index of oil. 𝑁𝐴𝑚𝑎𝑥 = 1.30 gives 𝑢𝑚𝑎𝑥 = 60.07° = 1.049rad. The 

minimum aperture, 𝑁𝐴𝑚𝑖𝑛 = 0.60, gives 𝑢𝑚𝑖𝑛 = 23.58° = 0.412rad. 𝛼 ∈ [0, 𝑢] is the polar 

angle. 

 

 

Figure 80: Sketch of objective diaphragm and aperture cone. The aperture angle, 𝑢, can be varied between 𝑢𝑚𝑎𝑥 

and 𝑢𝑚𝑖𝑛. The laser spot (red disk and photo on the right) has a finite size, which increases when closing the iris 

diaphragm. 

The laser beam is supposed to be Gaussian. Thus, the intensity distribution in the plane of the 

diaphragm reads: 

 

 𝐼(𝛼) = 𝐼0𝑒
(−
𝛼2

𝜔2
)
 App.12  

 

for 𝛼 < 𝑢, and 𝐼(𝛼) = 0 for 𝛼 > 𝑢. 

 

The laser was focused on the quartz-water interface of the sample cell in order to obtain a 

clear image of the laser spot (see Figure 80). The total power of the beam in the observation 

plane, 𝑃𝑜𝑏𝑠, can be determined (in arbitrary units) by integration of the video signal in each 

image (we used ImageJ software). The value of 𝑃𝑜𝑏𝑠 depends on the aperture angle, 𝑢: 
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 𝑃𝑜𝑏𝑠(𝑢) = 𝐼02𝜋∫ 𝑒
(−
2𝛼2

𝜔2
)
sin(𝛼) 𝑑𝛼

𝑢

0

 App.13  

 

The experiment yields 
𝑃𝑜𝑏𝑠(𝑢𝑚𝑖𝑛)

𝑃𝑜𝑏𝑠(𝑢𝑚𝑎𝑥)
≅ 0.5. Applying Equation App.13 for 𝑢𝑚𝑎𝑥 and 𝑢𝑚𝑖𝑛, we can 

obtain the value of the beam waist, 𝜔 ≅ 0.725rad. It can be seen that the beam intensity is far 

from uniform within the pupil of the objective. The effective laser beam numerical aperture is 

𝑁𝐴𝑙𝑎𝑠𝑒𝑟 = 𝑛𝑜𝑖𝑙 sin(𝜔) ≅ 1.0. 

  

Knowing the value of 𝜔, Equation App.13 Eq. (2) allows us to calculate the ratio, 
𝑃𝑜𝑏𝑠(𝑢)

𝑃𝑜𝑏𝑠(𝑢𝑚𝑎𝑥)
 for 

any value of 𝑢. In the experiment, the iris diaphragm was closed to some intermediate position 

(marked by a point on the objective mount) and the corresponding power ratio was measured. 

We may then fit the computed value to the measured one to obtain the value of 𝑢. This 

procedure was repeated for a set of intermediate positions of the iris diaphragm ring, and the 

corresponding 𝑁𝐴 values were obtained.
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Spheroid tilt-tracking software 

 

Video images of a tilted ellipsoid generally show two bright spots and a dark perimeter (see 

Figure 81 and Figure 82). These features can be monitored with a typical two-peak grey-level 

histogram of the image (see Figure 81). The main peak corresponds to the brighter zone, and 

the secondary peak corresponds to the other, less bright, bright zone. The user has to choose 

parameter values to isolate regions of the histogram close to these zones, and thus constitute 

two subsets of pixels. The program calculates the barycenters of both subsets, outputting the 

green and pink points of the bright spots, as can be seen in Figure 82. Note that the positions 

of both points coincide when the particle stands vertically, like in Figure 82 a) and f), and 

separate when the particle gets tilted, as shown in the rest of the frames of Figure 82. We take 

the distance 𝑑± between the two points as the signal indicating that the particle is tilted. Note 

that 𝑑± increases with the tilt angle, 𝜃, but is not proportional to it. 

 

 

Figure 81: Graphical user interface of the tilt-tracking software. Example of a histogram of grey levels for a given 

image. The user chooses parameter values according to the positions and amplitudes of the two main peaks of the 

histogram. 

 

 

Figure 82: Video sequence showing the oscillation of a trapped ellipsoid in contact to the bottom boundary of the 

sample cell (quartz-water interface). The green and pink circled crosses indicate the bright spots. Numbers below 

each photo show the time (in seconds) and frame rate (fps). 


