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RÉSUMÉ EN FRANÇAIS

La robotique médicale est apparue dans les années 1980 avec pour objectif de fournir

aux médecins de nouveaux outils facilitant le traitement des patients. Un premier dis-

positif médical robotisé fut présenté en 1983. Il s’agit d’Arthrobot, un robot dédié à la

chirurgie orthopédique que le chirurgien utilisait principalement pour des tâches fati-

gantes (par exemple, maintenir une partie du corps du patient à la même position pen-

dant une longue période) et qu’il pouvait contrôler par commande vocale. Ce fut une

innovation majeure dans le domaine des interventions chirurgicales assistées par la

robotique. Suite au succès d’Arthrobot, d’autres applications analogues virent le jour

tirant partie de la précision et de la dextérité des dispositifs robotisés. En 1985, le ro-

bot industriel PUMA 560 fut utilisé comme un outil de positionnement d’aiguille, ap-

pliqué à la biopsie du cerveau sous imagerie tomodensitométrique (TDM) [42]. En 1992,

Think Surgical Inc introduisit ROBODOC, un assistant robotique pour l’arthroplastie de

la hanche [82]. A l’aide d’images TDM et durant l’intervention, le robot repérait la posi-

tion de trois broches insérées dans la hanche du patient par le chirurgien, puis assurait

la planification et la bonne exécution de tâches élémentaires. Ce robot fut le premier de

son genre à être utilisé sur des patients. Voyant le guidage par imagerie comme un al-

lié majeur de la robotique médicale, chercheurs et industriels proposèrent de nouvelles

solutions reposant sur davantage de modalités d’imagerie médicale.

Avec le temps, l’imagerie médicale devint incontournable dans la plupart des inter-

ventions chirurgicales, celle-ci permettant au médecin de visualiser l’intérieur du corps

humain sans avoir recours à une incision (imagerie non-invasive). Encore aujourd’hui,

les modalités les plus notables sont la tomodensitométrie (TDM), l’imagerie par ré-

sonance magnétique (IRM) et l’imagerie échographique qui utilise les ultrasons (US).

L’IRM est une technologie ayant recours à des champs magnétiques puissants pour pro-

duire une image des organes. L’acquisition d’une telle image est longue et nécessite des

équipements encombrants, rendant l’IRM inadaptée pour la commande par vision des

robots médicaux en temps réel. Malgré tout, des dispositifs robotisés ont été conçus
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pour être utilisés simultanément avec un scanner IRM, par exemple pour faciliter la ma-

nipulation d’aiguilles de biopsie [81]. L’imagerie échographie, quant à elle, s’appuie sur

la propagation du son dans le corps humain pour construire des images des organes. Un

de ses avantages majeurs par rapport aux autres modalités est son encombrement ré-

duit, puisqu’elle nécessite uniquement l’utilisation d’une station (pouvant être portable)

et d’une sonde échographique. Elle permet également d’acquérir des images en temps

réel. Pour ces deux raisons, l’imagerie par ultrasons est la modalité la plus utilisée pour le

guidage de robots médicaux. Elle fut pour la première fois utilisée à cette fin en 1999 [65].

Afin de faciliter l’examen de l’artère carotide, un système robotique fut conçu pour dé-

placer automatiquement une sonde à ultrasons dans le but de maintenir la section de

l’artère dans le plan de coupe de la sonde. Ce fut une innovation majeure dans le con-

trôle robotique par la vision (asservissement visuel). Dès lors, l’asservissement visuel

par imagerie échographique suscita un vif intérêt dans le monde scientifique [3].

Depuis, de nouvelles modalités d’imagerie ont vu le jour, issues de l’étude des in-

formations obtenues à partir des modalités d’imagerie désormais classiques (US, IRM,

TDM,. . . ). Parmi elles, l’élastographie permet d’acquérir des informations sur la rigid-

ité d’un tissu, offrant alors à l’utilisateur de nouvelles données de diagnostic, tout en

restant non-invasive. Ce concept fut approfondi durant les trois dernières décennies, en

particulier pour la détection de tumeurs du sein [31], de fibroses hépatiques à différents

stades [6] ou de cancer de la prostate [23]. Cependant, à ce jour la procédure permettant

d’obtenir des images d’élastographie est réalisée manuellement. Elle nécessite une for-

mation spécifique ainsi qu’une certaine expérience du praticien. Afin d’aider ce dernier,

la robotique pourrait être utilisée à des fins d’assistance.

Motivations

La palpation manuelle est une technique médicale de diagnostic pratiquée depuis des

siècles. Lorsqu’il a recours à cette approche, le praticien utilise le toucher pour éva-

luer la raideur des tissus du patient. Des changements de raideur peuvent alors être

interprétés comme des signes d’une éventuelle maladie. Dans la pratique, en plus d’être

non-invasive et simple à appliquer, cette méthode ne nécessite aucun équipement. En

revanche, elle ne fournit que des informations qualitatives au praticien et nécessite une

grande rigueur d’exécution. En effet, la raideur des tissus environnants peut influer sur

le résultat et surtout le médecin n’a accès qu’aux tissus à portée de ses mains. Malgré

cela, la palpation reste utilisée pour le diagnostic de nombreuses maladies. Par exemple,

certaines maladies du foie, telles que la cirrhose ou l’hépatite, peuvent être détectées en

repérant une fibrose. Certains types de cancers, tels que le cancer du sein, de la prostate
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ou de la thyroïde, peuvent être identifiés par la palpation. La détection précoce du can-

cer est cruciale pour accroître les chances de succès du traitement. Cependant, les tech-

niques les plus couramment utilisées pour la détection du cancer, comme la biopsie ou

la mastographie, peuvent perturber le confort du patient, le conduisant bien souvent

à retarder les examens nécessaires. Par conséquent, il est primordial de proposer des

outils de diagnostic indolores et non-invasifs.

L’élastographie ultrasonore est une méthode d’imagerie tactile utilisant les ondes ul-

trasonores pour mesurer la raideur des tissus. Cette approche permet de palier les dé-

fauts de la palpation manuelle, puisqu’elle fournit au praticien des informations impor-

tantes et précises. L’élastographie est le plus souvent manuelle et implique d’imposer un

mouvement répétitif au tissu. Pour un tissu donné, la carte de raideur peut varier si la

pression appliquée à ce dernier n’est pas régulière. Ainsi, il sera difficile, voire impossi-

ble, de reproduire des résultats d’élastographie d’un examen à un autre, en particulier s’il

ne s’agit pas du même médecin ou si plusieurs interventions successives sont réalisées

sur le même tissu. Ces inconvénients mettent en évidence la nécessité d’une méthode

capable de fournir des informations plus fiables. Dans cette optique, la robotique est une

alternative intéressante à l’intervention entièrement manuelle, de par la capacité des ro-

bots à effectuer des tâches répétitives avec un degré de précision constant et élevé. Cela

permettrait, entre autres, de pouvoir produire les mêmes cartes d’élasticité d’un examen

à un autre. En conclusion, la mise en œuvre d’un système robotisé capable de mesurer la

raideur d’un tissu pourrait apporter une aide considérable au diagnostic par palpation

manuelle, conduisant par la suite à une meilleure prise en charge du patient.

Objectifs de la thèse

Figure 1: Cadre robotique général pour l’élastographie ultrasonore quantitative.

L’objectif principal de la thèse est de fournir un cadre général de contrôle robotique

destiné à assister le praticien durant ses interventions d’élastographie. Un aperçu de
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l’architecture que nous proposons est fourni dans le schéma de principe présenté en

Figure 1 :

1. Développement d’un système robotisé pour réaliser le mouvement de palpation

des tissus de manière répétitive. Pour cela, la conception d’un système de com-

mande robotique utilisant un transducteur à ultrasons conventionnel pour appli-

quer le mouvement est requise.

2. Estimation quantitative de l’élasticité du tissu en temps réel par l’intermédiaire

d’un processus élastographique rapide.

3. Utilisation de l’information précédente pour commander le robot afin d’assister le

praticien durant l’intervention.

4. Télé-opération de la sonde à ultrasons pour explorer le tissu d’intérêt à distance.

Contributions

Durant cette thèse, plusieurs contributions ont été proposées dans le domaine de

l’assistance médicale robotisée. Elles sont présentées ci-dessous :

• Une nouvelle méthodologie pour utiliser la carte de déformation du tissu comme

entrée d’un schéma de contrôle par asservissement visuel. Cette contribution

inclut l’estimation en temps réel de la carte d’élasticité des tissus et l’extraction

des caractéristiques visuelles requise pour la commande d’un robot porteur d’une

sonde ultrasonore. Cette méthodologie est dérivée pour les cas d’échographie 2D

et 3D.

• Un système complet de palpation automatique fournissant une élastographie ul-

trasonore quantitative. Le schéma de contrôle, proposé dans le présent manuscrit,

est composé de trois tâches robotiques hiérarchiques collaborant les unes avec

les autres. Elles ont pour objectif de constamment afficher la carte d’élasticité

d’une région d’intérêt donnée. Dans l’ordre des priorités les tâches proposeés

sont : l’application d’un mouvement de palpation par une commande par retour

d’effort, le centrage automatique d’une cible correspondant à un tissu rigide dans

l’image par asservissement visuel, l’orientation automatique de la sonde ultra-

sonore afin d’observer la cible avec différents angles de vue. Cette contribution

a été publiée dans deux articles de deux conférences internationales en robotique
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de premier rang : IROS 2016 [58] (IEEE / RSJ International Conference on Intel-

ligent Robots and Systems) et ICRA 2017 [56] (IEEE International Conference on

Robotics and Automation).

• Une nouvelle méthode d’estimation de la carte des contraintes tissulaires. Cette

approche est basée sur l’estimation des déplacements d’une région d’intérêt, au

sein d’une image échographique. Ceux-ci sont calculés à l’aide des paramètres

géométriques caractérisant un système de recalage d’image déformable.

• Une nouvelle approche d’estimation par échographie 2D de la carte des déforma-

tions d’une région d’intérêt donnée soumise à des perturbations de type mouve-

ments physiologiques. La compensation de mouvement repose sur un asservisse-

ment visuel dense qui déplace la sonde de façon à annuler le mouvement relatif

entre la sonde et le tissu mobile. Ainsi, une estimation robuste de l’élasticité des

tissus peut être réalisée sur des structures en déplacement. Cette contribution a

été publiée dans un article de la conférence internationale IROS 2017 [57] (IEEE /

RSJ International Conference on Intelligent Robots and Systems).

• Un système haptique basé sur l’élastogramme des tissus. Ce dernier retourne à

l’utilisateur la sensation de l’élasticité des tissus, tout en permettant à l’utilisateur

de déplacer la position de la région d’intérêt à analyser dans l’image ultrasonore.

• Un dispositif associant la télé-opération de la sonde échographique au système

haptique présenté précédemment.

Structure de la thèse

Le présent manuscrit de thèse est organisé comme suit :

Le chapitre 1 introduit les concepts de base et l’état de l’art de l’élastographie ul-

trasonore. Il est divisé en trois sections. La première décrit succinctement la théorie

physique de la formation du faisceau d’ultrasons, puis explique la reconstruction

géométrique de l’image ultrasonore. La deuxième présente les concepts élémentaires

de l’élastographie, ainsi qu’un état de l’art. Ce dernier détaille plus particulièrement les

contributions existantes dans le domaine de l’élastographie ultrasonore. La dernière

section rappelle les principes de l’asservissement visuel qui seront utilisés dans les

chapitres suivants.

Le chapitre 2 présente le système de palpation robotique que nous proposons pour

réaliser une élastographie ultrasonore quantitative. Une partie traite du protocole ex-

périmental envisagé dans le cadre de la thèse. Elle détaille notamment l’ensemble des
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équipements utilisés, mais aussi les outils de travail nécessaires à la mise en œuvre de ce

dispositif robotique. Ensuite, trois sections principales décrivent les tâches robotiques

proposées pour concevoir le système de palpation robotique dédié à l’élastographie

ultrasonore. Ces tâches sont au nombre de trois. La première correspond à un con-

trôle du mouvement d’oscillation de la sonde ultrasonore par une commande en ef-

fort. La deuxième consiste à extraire et utiliser les paramètres d’élasticité du tissu dans

une commande par asservissement visuel permettant de maintenir une visibilité opti-

male du tissu analysé. Quant à la troisième, elle a pour objectif d’orienter automatique-

ment la sonde à ultrasons selon un angle fourni par l’utilisateur. Etant donné que ces

trois tâches sont couplées, une approche hiérarchique est présentée afin de pouvoir les

utiliser en combinaison dans le système de palpation proposé. Les résultats expérimen-

taux obtenus avec une sonde échographique 2D ou 3D sont décrits à la fin du chapitre.

Le chapitre 3 présente une méthode de compensation de mouvement robuste, util-

isée pour estimer la carte des déformations d’un tissu en déplacement. Ce système

complète et améliore celui décrit au chapitre 2. Ce chapitre comprend cinq sections.

La première décrit des travaux liés au suivi visuel de tissus déformables. La deuxième

présente un aperçu des modèles de suivi visuel, testés avec des images échographiques

réelles. Ensuite, une présentation détaillée de notre dispositif de suivi visuel dense est

effectuée. Cette section traite également de l’utilisation du modèle de suivi pour estimer

la carte des déformations du tissu en mouvement. La section 4 présente le schéma de

contrôle utilisé pour compenser une perturbation, de type mouvement physiologique,

par l’intermédiaire d’une sonde échographique 2D actionnée par un robot. Dans cette

partie, la compensation du mouvement est basée sur un asservissement visuel dense. La

dernière section introduit puis discute les résultats expérimentaux obtenus durant des

expérimentations réalisées sur un fantôme simulant des tissus en mouvement.

Le chapitre 4 propose un système haptique basé sur la carte des contraintes du tissu,

et restituant à l’utilisateur la sensation de l’élasticité des tissus. Ce chapitre est divisé

en quatre sections. La première décrit les concepts de base du retour haptique jusqu’à

aboutir au type de retour haptique utilisé dans ce chapitre. La deuxième introduit le

modèle permettant de transformer la carte de contraintes en retour haptique. Elle com-

prend la description d’un système de télé-opération chargé d’assister l’utilisateur dans

l’exploration des tissus avec une sonde à ultrasons. La combinaison de la télé-opération

et du contrôle de la force oscillatoire est présentée dans la même section. La quatrième

section détaille le protocole expérimental ainsi que les résultats obtenus avec le disposi-

tif haptique. Elle approfondit également l’implémentation du système haptique. Puis,

une conclusion est proposée pour clore ce chapitre.
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Le chapitre 5 présente la conclusion générale de la thèse et propose des perspectives

à court et à long termes de ces travaux.
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INTRODUCTION

Medical robotics emerged in the 1980s with the aim to provide the physicians with new

tools to extend their ability to treat patients. In 1983, arthrobot was the first robotic as-

sistant used for orthopedic surgery. This robot was voice-commanded by the surgeon to

assist in tiring tasks (e.g, holding a limb at the same position for long periods). Arthro-

bot was a major breakthrough at the time, offering a wide perspective of robotic assisted

procedures in medicine. The advantages of accuracy and dexterity of a robot brought

more applications in medical procedures since the success of arthrobot. In 1985 the in-

dustrial robot PUMA 560 was used as a positioning device to orient a needle for biopsy

of the brain [42]. The target was identified using computed tomography (CT) imaging.

Afterwards, many applications in medical robotics were developed, for example the RO-

BODOC system (Think Surgical, Inc.) [82] in 1992, which assisted a surgeon in a total hip

arthroplasty procedure. This system was the first on its kind used on humans. It em-

ploys the position of three pins implanted in the hip by the surgeon, locating them in CT

images for planning and performing most of the tasks involved in the orthopedic pro-

cedure. Since image-guidance offers extensive opportunities for medical robotics, more

medical imaging modalities began to be employed in this field.

Currently, medical imaging has become essential in most medical procedures, pro-

viding examiners with the ability to see through the body without having to incise it

(non-invasive). Along CT imaging, magnetic resonance imaging (MRI) and ultrasound

imaging (US) have been the most frequently used modalities in medical robotics. MRI is

a technology that uses strong magnetic fields to reconstruct images of the organs in the

body. The acquisition of one image takes time and requires big sized equipment, mak-

ing this modality incompatible for real-time visual control of medical robots. However,

robots have been designed to be used in MRI scanner in order to assist in different tasks

as for example the manipulation of a biopsy needle [81]. On the other hand, ultrasound

(US) is a modality based on the propagation of the sound inside the body to generate

images of the organs. The equipment used to perform ultrasound imaging is small com-

pared to the other modalities. In addition, US has real-time acquisition capability, which
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makes it the most used technology for the image-guidance of medical robots. One of the

first medical robots lead by ultrasound imaging was introduced in 1999 [65]. This robotic

system was designed to assist in the examination of the carotid artery by automatically

moving an ultrasound probe such that the artery section was always visible in the ul-

trasound image. This system was the first one to use vision-based robot control (visual

servoing) with ultrasound images. Since then, the application of ultrasound with visual

servoing has gained great interest [3].

New imaging modalities, such as elastography, have emerged of the analysis of the

information obtained from the classical imaging modalities (ultrasound, MRI, CT, etc.).

Elastography introduces the promising concept of obtaining quantitative values of the

stiffness of a tissue. The measurement of the stiffness can provide the examiner with

more tools for diagnosis of diseases avoiding invasive approaches. This concept has

been explored during the past three decades in medicine for the diagnosis of breast tu-

mors [31], liver fibrosis at different stages [6] and prostate cancer [23]. However, the

elastography process is currently performed manually, requiring high experience and

training of the examiner. To overcome this issue, robotic systems can be used to assist in

this medical procedure.

Motivations

Manual palpation is a medical procedure that has been used in diagnosis for centuries,

in which the stiffness of the tissue of a patient is felt with the examiner’s hands. It al-

lows to recognize changes on the stiffness of the tissue, indicating a possible disease.

This practice is non invasive, simple in concept and needs no equipment. However, it

requires great expertise and has significant constraints: it provides only qualitative in-

formation, it can be affected by the surrounding tissue and it is limited to the tissues

within the reach of the examiner’s hands. Palpation is used in the diagnosis of a wide

range of diseases. Some illnesses of the liver, such as cirrhosis and hepatitis can be diag-

nosed by detecting fibrosis. Certain types of cancer, such as breast, prostate and thyroid

cancer can be first identified by palpation. The early detection of cancer is fundamen-

tal in increasing the probabilities of successful treatment. However, the procedures most

commonly performed for cancer detection, such as biopsies and mastographies, present

significant drawbacks regarding the comfort of the patient, which can provoke for such

patient to delay necessary examinations. Therefore, the development of tools for diag-

nosing which are mostly painless and non-invasive is of the utmost importance.

Ultrasound elastography is a tactile imaging method that can measure the stiffness
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of tissue using ultrasound waves. Consequently, it can overcome the limitations of man-

ual palpation, providing important and precise information. Elastography is a process

commonly performed by hand, which requires a repetitive motion applied to the tissue.

The generation of a stiffness map of a tissue can variate if the pressure applied on the

tissue is not regular. As a consequence, the reproducibility of the results in elastography

can be affected if several examinations are performed on the same tissue, specially if it

is done by different examiners. This shortcoming suggests the need for an innovative

method capable of providing more reliable information. On that account, a robotic sys-

tem is capable of performing a repetitive task with the same pressure, which makes it a

great option in the assistance for elastography process. Moreover, if the elastography is

well performed, the output elasticity map of the tissue can be reproduced. Finally, the

implementation of a robotic system capable of measuring the stiffness of a tissue in a

patient can far extend the capabilities of diagnosis by manual palpation, creating a new

tool to aid an examiner in improving the treatment of patients.

Goal of the thesis

Figure 2: General robotic framework for quantitative ultrasound elastography.

The main goal of the thesis is to provide a general robotic control framework to assist

an examiner in the elastography process. A general overview of the robotic framework

we propose is illustrated by the block diagram presented in Figure 2 and described as

follows:

1. Development of a robotic system to perform the repetitive palpation motion on

tissues, which is always needed in classic ultrasound elastography process. This

goal requires the design of a robotic controller that applies motion with a conven-

tional ultrasound transducer.
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2. Estimation of quantitative elastic information of the tissue in real time by the de-

velopment of a fast elastography process.

3. Use of the elastic information of the tissue to perform robotic tasks, which can

assist the examiner during the elastography process.

4. Teleoperation of the ultrasound probe to remotely explore the tissue.

Contributions

This dissertation presents several contributions to medical robotic assistance, which are

listed as follows:

• A new methodology to use the strain map of the tissue as input of a visual servoing

control scheme. This contribution includes the real-time estimation of the strain

map, and the extraction of visual features required for the image-based control.

This methodology is developed for the cases of 2D and 3D ultrasound information.

• A complete system performing automatic palpation and providing quantitative ul-

trasound elastography. The proposed control process is composed of three hierar-

chical robotic tasks collaborating with each other. These tasks are proposed with

the goal of always obtaining the strain map visibility of a region of interest. Ac-

cording to their priority, the three tasks are palpation motion by force control, au-

tomatic centering of a stiff tissue target by visual servoing and the orientation of

the probe for tissue exploration. This contribution was published in two articles in

the proceedings of the two major international conferences in robotics, IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) [58] and IEEE

International conference on Robotics and Automation (ICRA) [56].

• A new method to estimate the tissue strain map. This approach is based on the es-

timation of the motion displacements of a region of interest inside an ultrasound

image. The displacements are computed through the geometric parameters in-

volved in a deformable registration system.

• A new approach to estimate the strain map in a region of interest under motion

perturbation using a 2D ultrasound probe. The motion compensation is based on

a dense visual servoing approach that actuates the 2D ultrasound probe such that

the perturbation motion is canceled. As a result, a robust estimation of the tissue

elasticity can be performed on moving tissues. This contribution was published in

an article in the proceedings of the IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS) [57].
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• A haptic system using the tissue elastogram that allows to the user to “feel” the

elasticity of the tissue while changing the position of the region of interest in the

ultrasound image.

• The combination of teleoperation of the ultrasound probe with the haptic system

described in the previous contribution.

Structure of the thesis

The manuscript of this thesis is organized as follows:

Chapter 1 introduces the basic concepts and state of the art of ultrasound elastog-

raphy. The chapter is divided in three main sections. First section starts with a brief de-

scription of the physics of the ultrasound beam forming, and it ends with the geometry

of the ultrasound image. Second section presents the elementary concepts of elastogra-

phy and a state of the art focusing particularly on ultrasound elastography. Last section

recalls the visual servoing principle, which is used along the next chapters.

Chapter 2 details the robotic palpation system we propose to perform quantitative

ultrasound elastography. This chapter introduces the experimental setup considered in

this thesis, detailing all the equipments and the workflow used in the implementation of

the robotic system. Afterwards, three main sections describe the three proposed robotic

tasks in the design of the robotic palpation system for ultrasound elastography. The first

task corresponds to an oscillatory force control of the ultrasound probe required for the

elastography process. The second task involves the extraction and use of geometric pa-

rameters of a stiff tissue that is then automatically centered in the field of view of an

ultrasound probe so the stiff tissue is always visible. The third task automatically ad-

justs the orientation of the ultrasound probe to a desired angle introduced by the user.

As these three tasks are coupled, a hierarchical approach is presented to combine them

into the proposed palpation system. Experimental results obtained by using either a 2D

or a 3D ultrasound probe are presented at the end of the chapter.

Chapter 3 presents a robust motion compensation process used to estimate the

strain map of a moving tissue. This functionality complements and improves the system

presented in chapter 2. This chapter is divided in five main sections. First section de-

scribes some works related to the visual tracking of deformable tissues. Second section

presents an overview of the visual tracking models tested with real ultrasound images.

Then, we detail our proposed dense visual tracking system. This section also explains
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the use of the tracking model to estimate the strain map of the moving tissue. After-

wards, section four presents the control system used to compensate the motion using a

2D ultrasound probe actuated by a robot. In this section, the motion compensation is

based on a dense visual servoing process. The last section presents and discusses the

experimental results obtained from experiments performed with a phantom simulating

moving tissues.

Chapter 4 proposes a haptic system based on the strain map of the tissue to pro-

vide the user with the feeling of the tissue elasticity. This chapter is divided in four sec-

tions. The first section describes the basic concepts of haptic feedback leading to the

type of haptic feedback used in this chapter. The second section presents the model of

the transformation from strain map to haptic force feedback. This section includes the

description of a teleoperation system, which helps the user in the exploration of the tis-

sues with an ultrasound probe. The fusion of the teleoperation with the oscillatory force

control is presented in the same section. Section four shows the experimental setup and

results of the haptic system. This section also describes the implementation details of

the haptic system followed by the conclusion of the chapter.

Chapter 5 delivers the general conclusions of this thesis and proposes several short-

term and long-term perspectives of this work.
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CHAPTER1
ULTRASOUND ELASTOGRAPHY AND

BASIC PRINCIPLES OF VISUAL SERVOING

The quest of building efficient systems to assist in medical procedures has been increas-

ing in the last decades. Medical imaging technologies as ultrasound imaging, magnetic

resonance imaging (MRI), X-ray radiography and tomography have been used by physi-

cians to facilitate the diagnosis of illnesses and their treatment, often through complex

medical procedures. However, the images produced by every one of these technologies

are vastly different in terms of content, appearance and resolution and their analysis

needs training and experience. When searching for malign soft tissue in a subject, med-

ical image analysis can be exploited for visual localization, however, the elasticity prop-

erties of the studied tissue can provide more precise and valuable information. Elastog-

raphy has been developed with the aim of finding the elastic parameters of a tissue to

help in the detection of tumors and other malign bodies by their stiffness. This tech-

nology has been implemented using ultrasound imaging and MRI. Since the ultrasound

imaging modality offers the capabilities of real-time and portability, ultrasound elastog-

raphy is a promising technique to be used in building a robotic-assisted system as the

one presented in this dissertation.

This chapter presents the basic principles of ultrasound imaging in section 1.1, from

the beam forming to the classic b-mode image. Afterwards, a state-of-the-art related to

elastography is introduced in section 1.2 that mainly focuses on techniques applied for

ultrasound elastography. In section 1.3, several robotic systems involving elastography

are presented. This chapter also recalls the definition of visual servoing in section 1.4

which is needed for a better understanding of the systems proposed in the next chapters.
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1.1. ULTRASOUND IMAGING

1.1 Ultrasound imaging

In medical applications, the use of ultrasound imaging has become one of the most

widespread along the medical community, due to its significant advantages over other

technologies, such as: no radiation, low-cost, portability, to mention a few.

The sound waves varying at higher frequencies than the ones audibles by humans

(20 Hz – 20 kHz) are classified as ultrasound. The frequencies in medical ultrasound

span between 30 kHz and 500 MHz. Low frequencies (30 kHz to 3 MHz) are used for

therapeutic purposes, frequencies between 2 and 40 MHz are used for diagnosis (most

common frequencies in imaging), and the highest frequencies (50 to 500 MHz) are used

in microscopic imaging.

The basic principle of US imaging consists in sending several pulses of ultrasound

into the body and waiting for echoes to return. The echoes are then processed to pro-

duce an image of internal structures of the tissue. The ultrasound pulses are mechanical

waves created by a vibrating object and propagated by a medium. The energy of these

waves traveling through the body is then attenuated, scattered and reflected, producing

echoes. An ultrasound wave is represented as a repetitive pattern of high and low am-

plitudes. The distance between two peaks is known as wavelength (λ), which represents

the property of the wave repetition and it is defined as

λ=
c

f
(1.1)

where c and f are the speed and frequency of the sound. Commonly, the speed of the

sound in soft tissue is assumed to be constant at 1540 m s −1. The frequency of sound f ,

as mentioned before, is in the range between 2 and 40 MHz.

Generally, ultrasound waves are generated by a piezoelectric transducer, which is

driven with electrical pulses sent from an ultrasound machine. The piezoelectric trans-

ducer also has the function of receiving the echoes after they have traveled through the

tissue and transforming them into electrical pulses for the ultrasound machine.

The propagation speed of ultrasound in homogeneous tissue depends on two par-

ticular properties of the considered tissue, the bulk modulus B and the density ρ. It is

described by the following definition:

c =

√
B

ρ
. (1.2)
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The propagation speed then depends on the material of the medium where it is propa-

gated. For example, the speed of the sound that propagates in soft tissue is 1540 m s−1.

When traveling in bone, the speed of the sound is around 4000 m s−1.

Tissue is composed of different materials that influence the propagation of the ul-

trasound waves. This propagation is described by the Snell’s law. This law relates the

ultrasound wave directions of incidence, reflection and transmission at the interface be-

tween two different materials. Figure 1.1 shows two different media with sound propaga-

tion speeds c1 and c2 respectively. Snell’s law states that if the sound wave is propagated

with an incidence angle θi 6= 0 with respect to the interface, then the wave is reflected in

the same medium and transmitted through the second medium with the angles θr and

θt , such that
sinθi

c1
=

sinθr

c1
=

sinθt

c2
(1.3)

Figure 1.1: Sound propagation through two different media. Left illustration depicts the
change in the wavelength of the sound for every media. Right sketch shows the orienta-
tion of the sound when is induced (θi ), transmitted (θt ) and reflected (θr ) between the
two media.

In practice, reflections of the sound wave do not only occur at tissue boundaries.

Tissues are inhomogeneous thus producing local deviation of density contributing to

the reflected wave. This is denominated as scatter reflection, which is represented as a

collection of point scatterers retransmitting the incident sound wave in all directions.

Figure 1.2 shows the representation of the reflections of the sound wave of incidence

produced by one scatterer point.

The retransmission of the receiving pulse in all directions due to scatterers causes in-

terferences between the other pulses received. These interferences depend on the shape

and size of every scatterer. Scattering occurs when the size of the scatter is bigger than

9
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Figure 1.2: Scatterer point reflections. This figure represents the sound waves reflected
for a segment of sound wave through one scatterer point.

the wavelength of the sound wave induced. Otherwise, the sound wave induced is re-

flected

If the scatterer is smaller than the wavelength of the sound wave induced, then the

interference is minimum. Otherwise, the interference is important, causing occlusions.

The ultrasound wave propagation is also affected by the traveled distance. Its energy

is reduced due to the scatterers and the absorption of the media. This energy loss is char-

acterized by the attenuation coefficient α (expressed in decibels), which is dependent on

the frequency of the sound wave. For soft tissue, the attenuation is usually between 0.3

and 0.6 dB/cm/MHz.

1.1.1 Ultrasound beam formation

The generation and detection of ultrasound waves is performed through a piezoelectric

crystal that vibrates when an electric field is applied or generates an electric signal when

it is subject to a mechanical vibration. The crystal is embedded in a transducer, usually

an array of 128 elements, used as a transmitter and as a detector at the same time. Com-

monly, every piezoelectric crystal is driven with a sinusoidal electric signal that results in

the emission of an ultrasound wave with a given frequency. The energy of the ultrasound

wave reflected by the tissues that comes back to the crystal is then modified due to the

factors previously discussed about sound propagation.

A transducer toggles from the state of transmitter to receiver every time a pulse is

emitted. The ultrasound wave echo received by the transducer is captured as function

of time by the ultrasound station. This detected signal is often called radio frequency

(RF) signal, because its frequency range corresponds to the one of the radio waves in the

electromagnetic spectrum (see Figure 1.3). An RF signal is described by the following
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Figure 1.3: RF signal recorded from a real transducer.

expression,

y(t ) = A(t )cos(ωr t +φ(t )) (1.4)

where ωr is the carrier frequency, φ is the phase and A is the amplitude of the RF sig-

nal (also known as the envelope of the RF signal). The description of the RF signal is

expressed in the analytic form, however in practice it is recorded using a sampling fre-

quency fs . The frequency fs follows the Nyquist criterion,

fs > 2 fmax , (1.5)

where fmax is the maximum frequency of the RF signal y(t ). For typical commercial

ultrasound transducers, the sampling frequency fs is set between 20 – 40 MHz. In our

work, we use the beamformed RF data from an ultrasonics machine.
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Figure 1.4: RF envelope detection. Red curve represents the envelope of the RF signal in
green.

The amplitude of the RF signal is commonly represented by a 16-bits integer. The

high frequency information is removed by envelope detection (see Figure 1.4). This
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process is computed as follows,

Yenv (t ) =
√

y(t )2 +H (y)(t ), (1.6)

where H (y)(t ) is the Hilbert transform of the RF signal y(t ) defined as,

H (y)(t ) =−
1

π
lim
ς→0

∫∞

ς

y(t +τ)− y(t −τ)

τ
dτ. (1.7)

The envelope detection is also known as demodulation of the RF signal. In practice,

the envelope of the RF signal is obtained in the Fourier domain as

F(H (y))(ω) =σH (ω) ·F(y)(ω), (1.8)

where F denotes the Fourier transform and σH is a sign function:

σH (ω) =






i , for ω< 0

0, for ω= 0

−i , for ω> 0

(1.9)

The envelope detection of the RF signal is used in the ultrasound image reconstruc-

tion.

1.1.2 Ultrasound image reconstruction

The envelope of the RF signal provides a filtered signal after removing the carrier fre-

quency of the original signal. Every amplitude along the envelope is represented as a

gray value of 8-bits. Then, for a transducer scanning different lines (number of scan

lines SL), a brightness mode (b-mode) image is obtained as shown in Figure 1.5a.

In Figure 1.5a we can only observe specular reflections in the brightest areas. How-

ever, reflections due to the scatterers are barely visible due to the large difference of am-

plitude between the reflections. This issue can be easily addressed by performing a log-

arithmic compression of every scan line obtained from the transducer as

Yl og (t )= A log(Yenv (t ))+β (1.10)

where A is the amplification parameter and β is the linear gain parameter. This process

enhances the image contrast as shown in the example presented in Figure 1.5b.
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(a) (b)

Figure 1.5: B-mode image reconstructed from the RF signals envelopes. (a) b-mode im-
age reconstructed only from the envelope detection for a set of scan lines. (b) b-mode
image obtained with the logarithmic compression of the envelope detection for the same
set of scanlines used in (a).

Ultrasound image formation also depends on the geometry of the ultrasound trans-

ducer, more commonly known as ultrasound probe. There exist different ultrasound

probe shapes, however two of the most common shapes are linear and convex probes.

The linear probes are mostly employed for vascular imaging and the convex probes are

used in abdominal imaging. In the following, we explain the relation between the geom-

etry of a 2D ultrasound probe and the image formation.

There are several parameters to consider in the reconstruction of an image from the

geometry of the probe. For example, in case of a linear probe the transducer elements

are co-linear to the extreme of the probe’s surface and the scan lines are parallel to each

other (see Figure 1.6). In the case of a convex probe, the transducer elements are po-

sitioned along the arc of the surface of the probe and the direction of the scan lines is

therefore normal to this curved surface (Figure 1.7).

The geometric parameters of a linear probe are shown in Figure 1.6. Every point

inside the RF array is represented by (i , j ), where i and j are the indexes of the scan line

and the sample, respectively. Using those parameters, the metric coordinates (x, y) of

any point located in the RF array at coordinates (i , j ) can be computed by

x = αL · (i − i0) (1.11)

y = αA · j (1.12)

where αA and αL are the axial and lateral resolutions, respectively. αL is the distance

between two consecutive elements of the transducer, usually a measure given by the

manufacturer. αA is the distance value between two adjacent samples in one scan line,

13



1.1. ULTRASOUND IMAGING

Figure 1.6: Geometry of a linear ultrasound probe.

and it is defined as

αA =
c

fs
(1.13)

In the case of a convex probe, the geometry of the probe is given in Figure 1.7. The

elements of the transducer are positioned along an arc of a circumference with center

at Fp . The metric coordinates of every point (x, y) inside the field of view (FOV) of the

probe are related to the polar coordinates (r,θ) by

x = r sin(θ), (1.14)

y = r cos(θ), (1.15)

where r is the distance of the point to the origin of Fp and θ is the angle with respect to

y-axis.

The RF scan lines obtained from the convex probe are stored in a rectangular array

also called RF array. The origin of this array is at the top-left corner as shown in Figure 1.7

(bottom-right). The distance r is computed using the radius of the ultrasound probe rp

and the distance between the origin and the j sample as,

r = rp +αA j (1.16)

where αA is the distance between two adjacent samples for every scan line i . This value

is obtained as in Equation (1.13).
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Figure 1.7: Geometry of a convex ultrasound probe.

To obtain the angle θ for the i -th scan line, first we need to know the angular distance

between two consecutive scan lines αθ. This angular distance can be computed as

αθ =
αL

rp
(1.17)

where αL is the separation between two contiguous elements of the transducer. There-

fore, the angular field of view of the convex probe is

Θ= SLαθ (1.18)

where SL is the number of scan lines recorded (typical values are 128 and 192). The limits

of the angular field of view correspond to θmin = −Θ

2 and θmax =
Θ

2 . The angle θ for the

i -th scan line is then defined as

θ = θmin + iαθ. (1.19)

With these previous relations (equations 1.14 to 1.19) we can therefore associate the

(i , j ) indexes of each sample stored in the RF array to its respective metric coordinates

(x, y). If the envelope detection is applied to the scan lines, then the image reconstructed

is known as pre-scan image with memory indexes coordinates (i , j ) (see Figure 1.8a).

However, in a pre-scan image, the geometric structures of the tissue scanned by a con-

vex probe are distorted since the geometry of the probe is not taken into account. The

rectification of the pre-scan image is called post-scan image as shown in Figure 1.8b,

which takes into account the geometry of the FOV of the ultrasound probe.
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In case of a convex probe, every pixel coordinates (u, v) in the post-scan image are

then transformed to the metric Cartesian coordinates (x, y) by the relations:

u =
x − (rp +SNαA)sin(θmin)

s
(1.20)

v =
y − rp cos(θmin)

s
(1.21)

where SN is the number of samples in a scan line and s is the scaling factor of the image

that represents the size of a pixel in meters.

(a) (b)

Figure 1.8: Pre-scan and post-scan b-mode images. (a) pre-scan and (b) resulted post-
scan b-mode images obtained with a convex ultrasound probe.

After every pixel is mapped in the post-scan image, an image interpolation is then

applied to fill the missing pixel intensities between the captured scan lines.

1.2 Elastography: state-of-the-art

Many diseases cause changes in the mechanical properties of tissues. Current imaging

devices such as computed tomography (CT), ultrasound (US) and magnetic resonance

imaging (MRI) are not directly capable of measuring these mechanical properties. How-

ever, this information can be obtained with elastography imaging techniques that con-

sist in applying internal or external compression on tissues and measuring the resulted

strain distribution from the image. This strain distribution is related to the tissue elas-

ticity and generates a strain image of the underlying tissues. This section provides a

state-of-the-art of the elastography process, starting from the principle of elastography.

Afterwards, an overview of elastography applied on different medical imaging modalities

is presented, as shown in Figure 1.9. Since this thesis concerns ultrasound elastography,

the state-of-the-art will be mainly focused on techniques dedicated to the ultrasound

modality that will be presented in section 1.2.5.
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Figure 1.9: Organization of the state-of-the-art of elastography. The number at the bot-
tom of every block is the subsection number where the topic is described.

1.2.1 Elastography principle

Mechanical properties of an organ or tissue provide essential information for diagnosis

in medicine. For example, a tumor or diseased tissue can be detected by its stiffness,

generally perceived by palpation, which is a physical examination used in medical di-

agnosis that is performed by applying pressure with a hand or fingers to the surface of

the body. However, this method is limited by the accessibility of the examiner to the

tissue of interest, and it only provides qualitative information that can be distorted by

surrounding tissues. Elastography is one of the existing approaches able to overcome

these issues. The principle of elastography is to apply external compression on tissues

and to measure their resulted displacements using medical imaging in order to estimate

a quantitative image of the strains (also known as elastogram or strain map). In practice,

the elastogram is derived from the analysis of the pre- and post-compression states of

the tissue. The solution proposed by Ophir et al. [54] uses sound waves generated by a

piezoelectric transducer array (usually RF signals) and models every wave as a succes-

sion of springs (see Fig. 1.10a). If an axial force is applied over the succession of springs

(see Fig. 1.10b), the length in each spring will change according to Hooke’s law as follows:

F =
∑

i

ki∆li , (1.22)

where F is the force applied to the succession of springs in Newtons (N). ki is the stiffness

of every i -th spring in (N·m−1), and ∆li is the deformation of each spring in meters (m).

The strain value (without units) for each i -th spring is defined as

εi =
∆li

li
(1.23)

Fig. 1.10b shows the Hooke’s law scheme, where li is the initial length of the i -th spring, l ′
i

is the length after a stress is applied and ∆li = l ′
i
−li is the difference of lengths. The rela-

tion between the change of length ∆li and the strain value εi is illustrated in Figure 1.11.

The analogy of Hooke’s law for the successive springs is then adapted to the echo signals

and the change of length ∆l is the time-delay ∆t between the pre- and post-compression
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(a) (b)

Figure 1.10: (a) RF signal analogy with a succession of springs S1, S2 and S3. (b) the
Hooke’s law scheme.

Figure 1.11: Strain profile for three consecutive springs. Springs 1 and 3 have the same
length l and stiffness value k in the pre-compression state.

18



CHAPTER 1. ULTRASOUND ELASTOGRAPHY AND BASIC PRINCIPLES OF
VISUAL SERVOING

segments of RF signal. In practice, the time-delay ∆t is usually obtained from cross-

correlation analysis between pre- and post-compression segments of RF signal. How-

ever, the amplitudes of the RF signal change between the different states of compression

of the tissue generating a false estimation of ∆t when using cross-correlation analysis.

In Equation (1.23) we can note that an optimal estimation of ∆t is essential to compute

the best approximation of the strain value ε. Thus, other ways to estimate ∆t are: phase

zero estimation (PZE) [59], axial velocity estimation (AVE) [45] and optical flow (OF) [55].

PZE computes the displacement ∆t based on the estimation of the zero-phase between

the pre- and post compressed RF signals represented in the Fourier domain. On the

other hand, AVE and OF compute the velocity between the two RF signals. AVE uses the

Doppler effect to calculate the velocity while OF uses a first order Taylor approximation.

The tissue elasticity variates among all the internal materials inside the body. Young’s

modulus E describes the tendency of any material to deform when a stress is applied on

it:

E =
σ

ε
(1.24)

where σ is the stress applied to the material, measured in Pascals (Pa). Young’s modulus

is also expressed in Pa, since the strain ε has no units. The strain value can be obtained

with the analogy of the Hooke’s law for successive springs. However, the estimation of the

Young’s modulus requires knowledge of the value of the stress applied, which cannot be

measured when the process of pre- and post-compression is performed manually. One

alternative solution to obtain the Young’s modulus is the use of shear waves, which are

elastic waves generated by an external actuator (vibration), natural physiological stress

(e.g. breathing) or acoustic radiation force impulses (ARFI) [69]. In this approach, local

elasticity is estimated from the phase of the displacement, instead of the amplitude. The

propagation of a shear wave is related to the shear elasticity modulus as,

ρ
∂2−→u

∂t 2 =G∆
−→
u (1.25)

where ρ is the density of the medium, −→u is the displacement vector and G (in kPa) is the

shear modulus of the medium [85]. Thus, the shear wave velocity is related to the shear

modulus through:

cs =

√
G

ρ
(1.26)

As shown in Equation 1.26, the estimation of the local shear wave velocity cs is re-

quired to compute the shear modulus G . The average of the shear wave velocity is cal-

culated from the phase shift of displacement between two locations and its distance.
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The existing elastography approaches mainly concern modalities such as magnetic res-

onance elastography (MRE), computed tomography elastography (CTE), optical coher-

ence tomographic elastography (OCTE) and ultrasound elastography (USE) which are

described in the next sections.

1.2.2 Magnetic resonance elastography (MRE)

MRE is a non-invasive medical imaging technique that reconstructs the stiffness of the

tissue by imaging the propagation of shear waves using MRI. MRE assesses quantita-

tively the mechanical properties of the tissue [48,49]. The technology is becoming avail-

able as an upgrade on conventional MRI scanners. MRE has proven to be beneficial as

a clinical tool for the diagnosis of diseases such as hepatic fibrosis, which increases the

stiffness of liver tissue [89, 90] (see Figure 1.12). The process to obtain a MRE image

Figure 1.12: Results where the MRE demonstrates increasing liver stiffness values with
increasing stage of fibrosis (Figure taken from [89]). The top row shows share wave im-
ages from four patients with biopsy-proven hepatic fibrosis from stage 1 to 4. The lower
row shows corresponding elastograms for these patients.

is composed of three basic steps. First, shear waves with frequencies ranging from 50

to 500 Hz are induced in the tissue using an external actuator. Then, the shear waves

are imaged inside the body using a MRI process. Finally, the imaged shear waves are

processed to generate quantitative images of the stiffness of the tissue. MRE does not

have real-time capability since the MRI takes at least 1s to generate the images of shear
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waves. However, MRE offers quantitative stiffness of all the tissue scanned. One impor-

tant application of MRE is the measure of the stiffness of in-vivo brain tissue as presented

in [86].

1.2.3 Computed tomography elastography (CTE)

CTE is a technique to obtain the stiffness of the tissue based on computed tomogra-

phy (CT) images. There are two ways to implement CTE. The first approach consists

in using two CT images corresponding to the pre- and post-compression states. Then,

the displacement map between the two images is computed with an image registration

technique, and the strain map is estimated from this displacement. A feasibility study of

this approach was presented in [38], where a non-rigid registration method was used to

estimate the displacement maps.

The second way to implement CTE is by performing an evaluation of the stiffness

of different tissues using a tactile sensor. Those tissues are imaged with CT and then

segmented in the images (automatically or manually). Then, the intensities in the image

and the stiffness measured with the tactile sensor are related with a curve fitting process.

Afterwards, the CTE image is reconstructed to provide quantitative stiffness of the tissue

in the CT image [70].

The major drawback of CTE is the radiation exposure of the patient. However, CTE

offers different information, which sometimes cannot be observed with other imaging

modalities.

1.2.4 Optical coherence tomographic elastography (OCTE)

OCTE is a modality based on optical coherence tomography (OCT), which is a med-

ical imaging technique that uses laser light and reaches micrometer resolution. OCT is

based on low-coherence interferometry, typically employing near-infrared light. It uses

long wavelength light which penetrates into the scattering medium. The information

that OCT provides has high resolution. In 1998 Schmitt [72] used the OCT information

to obtain strain maps of micro tissues (e.g., skin of the finger). More recently, in 2013,

Sampson et al [67] improved the differentiation of tissues pathologies, such as cancer or

atherosclerosis, based on Schmitt’s work.
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1.2.5 Ultrasound elastography (USE)

USE is a modality that has been in development for about 25 years. The principle of

elastography presented in section 1.2.1 is based on ultrasound imaging. USE was de-

veloped to reconstruct an image representing the elasticity of the structures observed

in the field of view of an ultrasound probe. This technique has been applied using dif-

ferent approaches to measure elastic parameters. These approaches can be divided in

two categories according to the measurement of the displacements: quasi-static and

dynamic. We show in Figure 1.13 four of the existing approaches: quasi-static, remote

palpation, transient and supersonic. For all the mentioned approaches, an overview of

related works is provided in the following sections.

Figure 1.13: Classification of ultrasound elastography approaches. The principle of each
category is described in the section indicated at the bottom of the box.

1.2.5.1 Quasi-static ultrasound elastography

Quasi-static ultrasound elastography is an approach based on the estimation of the elas-

tic parameters of the tissue under mechanical compression exerted by an ultrasound

probe. The displacement of the tissue is commonly obtained by cross-correlation of the

pre- and post-compressed RF signals. Cross-correlation is a method which exhaustively

searches the displacement of a segment spr e with M samples of the pre-compressed RF

signal into a segment spost with N samples (N > M) of the post-compressed RF signal:

R(n)= (spr e ⋆ spost )(n) =
M∑

m=1
s∗pr e (m)spost (m +n) (1.27)

where ⋆ is the cross-correlation operator and ∗ denotes the conjugate of the function. n

is the sample displacement (also known as lag) in a certain range (usually [−N , N ]). The

output of the correlation R(n) is a signal of length (2N −1), where the amplitude at every
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n-th displacement corresponds to the similarity measured value. Then, the optimal dis-

placement ∆t between the two RF signal segments can be estimated by

∆t = argmax
n

‖R(n)‖ (1.28)

The optimal displacement ∆t occurs when the two signals are the most similar. An illus-

trative example of the cross-correlation is shown in Figure 1.14.

Figure 1.14: Cross-correlation between the segments of RF signals spre and spost . The
absolute cross-correlation is normalized to one and the lag where the amplitude is max-
imum is indicated.

We can observe that RF signals are high frequency signals, which can cause the rep-

etition of some segments. This repetition can produce a wrong estimation of the op-

timal displacement ∆t when using N >> M . The quasi-static ultrasound elastography

approach offers a solution to this issue. It consists in applying a small compression to

the tissue that usually represents about 1% to 2% of the length of the tissue [54]. This

quasi-static compression improves the estimation of the displacement by limiting the

range of search in the cross-correlation analysis, while reducing the computational cost.

Once the displacement is estimated, the strain value of the tissue can be computed.

As explained in the principle of elastography described in section 1.2.1, the strain value

can be computed through Equation (1.23). However, if the strain value is calculated for

every segment of RF signal it can cause abrupt changes in the strain profile as illustrated

in Figure 1.11. A better strain profile can be obtained by computing the strain value for

all the samples in each of the RF signal segments. However, this process will increase the

computational cost. An approach based on least-squares (LSQ) was proposed to avoid

the computation of the displacement for every sample [36]. Let us consider the samples

in a RF signal segment as a vector n ∈ [ni ,n f ] with ni and n f as the initial and final
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samples of the segment, respectively. Then, a vector of displacements ∆t can be defined

as

∆t = an+b, (1.29)

where a and b are the slope and the offset values of the segment, respectively. The

Equation (1.29) can also be rearranged as follows





∆t (ni )

∆t (ni +1)
...

∆t (n f )




=





ni 1

ni +1 1
...

...

n f 1





[
a

b

]
, (1.30)

and can be written also in a short form as,

∆t = A

[
a

b

]
. (1.31)

We can observe from Equation (1.23) that the relation between the displacement ∆t

and the strain value ε can be expressed as,

∆t = εn, (1.32)

leading to redefine a = ε and b = 0. Therefore, the Equation (1.31) can be changed to

obtain ε from the displacement of the segment as

[
ε

0

]

= (AT A)−1AT
∆t (1.33)

Obtaining the strain values by LSQ as presented in Equation (1.33) still requires the

computation of the displacement for all the samples in the segment n. However, Kallel

and Ophir [36] found a reduction of the first row of
[

AT A
]−1

AT as a vector g(k),

g(k) = ξ(k)
[

1 −k+1
2

][
1 2 . . . k

1 1 . . . 1

]

(1.34)

where ξ(k) = 12
k(k2−1)

is the variance of the estimated displacement and k is the number of

samples in the RF signal segment. Then, by convolving the vector g(k) with the displace-

ment ∆t , the strain values are estimated. This filter was designed such that ∆t contains

only two displacements (at ni and n f ) reducing the computational time considerably

in the strain estimation. The LSQ strain estimator has been used to obtain a real-time

ultrasound elastography [84].
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The methodology presented for the quasi-static ultrasound elastography is the base

for the strain estimation of one RF line. Moreover, this approach can be easily adapted

for 2D and 3D ultrasound information [60, 78]. Since motion estimation is essential for

optimal strain measurements, the improvement of this estimation in elastography has

been studied in multiple works, like the one presented in [55], where a method based

on two-step optical flow measure is proposed to estimate the tissue strain map. This

technique has been tested in vivo in the breast of myocardial stiffness [39, 88].

1.2.5.2 Remote palpation

There are more ways to exert force on tissue than the mechanical compression presented

in the quasi-static approach. Remote palpation introduces the alternative of using ultra-

sound energy to remotely excite the tissue [52]. In this method, acoustic radiation force

impulse (ARFI) is used to locally displace the tissue in order to reveal its mechanical

properties. ARFI is created by focusing a high-intensity ultrasound signal on a small re-

gion generating a local force in the direction of the propagation of the ultrasound wave.

This force is proportional to the power absorbed by the medium at the focal region:

F =
2υI

c
(1.35)

where υ is the absorption coefficient, I is the ultrasound intensity and c is the longi-

tudinal wave speed in the medium. This force generates a displacement in the tissue

(typically a few micrometers). This phenomenon is the result of the latency of soft tis-

sue in responding to the excitation making the response out of phase [29, 53]. The same

ultrasound transducer used for imaging can generate ARFI excitation.

In the conventional method of ARFI strain imaging, the transducer excites multiple

locations in the tissue at a constant depth [29]. These locations are spread along the

lateral direction. Regular ultrasound then captures the axial tissue motion before and

after excitation for each lateral position to form the strain image. It is also possible to

monitor temporal response of the tissue after excitation by firing a series of ultrasonic

imaging signals. However, the sequence of firing limits the frame rate of ARFI imaging

and the size of the region of interest. Another limitation is the imaging depth, which is

limited in a focused region [92].

The first in-vivo results of ARFI imaging were presented in [53] and demonstrated the

feasibility of ARFI imaging for clinical applications. In [29], thermally- and chemically-

induced lesions were imaged in ex-vivo tissues. In addition, ARFI has been employed

for other applications such as assessment of breast lesions [77], detection of prostate

cancer [92] and for delineation of Radiofrequency ablation (RFA) [28].
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1.2.5.3 Transient elastography

Transient elastography or pulsed elastography is a technique where an ultrasound trans-

ducer probe is mounted on the axis of a vibrator (see Figure 1.15). Vibrations of mild

amplitude and low frequency (arround 50 Hz) are transmitted from the vibrator to the

tissues via the transducer. This induces an elastic shear wave that propagates through

the tissues. In the meantime, pulse-echo ultrasound acquisitions allow the propagation

of the shear wave to be followed and its velocity to be measured. The stiffness of the tis-

sue is directly related to the velocity of the shear wave propagation: the stiffer the tissue,

the faster the shear wave is propagated [68].

Figure 1.15: Transient elastography process with an ultrasound transducer. First, the
shear wave is produced by the vibrator and then, the ultrasound is emmited. This process
produces the elastic information of the tissue scanned by the ultrasound transducer.

The first study in transient ultrasound elastography was presented in [12]. This work

introduced an experiment where an acoustic impulse was induced in a gelatin phantom

as shown in Figure 1.16. The acoustic impulse is generated with a function generator.

This produces a spherical shear wave. Then, an ultrasound transducer emits an ultra-

sound pulse. The reflection of the ultrasound pulse is processed to obtain the stiffness

of the tissue.

Based on transient ultrasound elastography, the FibroScan (Echosens company) is a

device for quantification of the level of liver fibrosis. This device estimates the stiffness of

the tissue, within a range of 2.5 and 75 kPa, in a given window of a certain depth as shown

in Figure 1.17. For example, patients with liver stiffness > 14 kPa have approximately a
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Figure 1.16: Experimental setup for transient ultasound elastography (Figure taken
from [12]). A 3.5 MHz transducer propagates an ultrasound wave in the tissue during
generation and propagation of low frequency waves induced by a point source. At each
position of the transducer, the amplitudes of the shear and ultrasound waves are calcu-
lated with an intercorrelation technique on successive scan lines [12].

90% probability of having cirrhosis. FibroScan is the first non-invasive method used for

diagnosis of chronic liver disease [25].

Figure 1.17: Liver stiffness measurement using FibroScan (Figure taken from [25]).

1.2.5.4 Supersonic ultrasound elastography

Supersonic ultrasound elastography or supersonic shear imaging (SSI) is the most re-

cent technique for ultrasound elastography. This approach uses the same principle as

remote palpation to generate mechanical vibrations using ARFI. However, supersonic

ultrasound elastography generates the radiation shear waves, allowing to compute an
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elasticity map of the tissue up to 5000 frames/s [9].

The generation of the supersonic ultrasound elastography requires special equip-

ment for fast generation of the ARFI. After the generation of the pulses with ARFI at

supersonic speeds, the system switches to ultrasound imaging, requiring a fast acquisi-

tion and processing of the ultrasound information too. The processing of the ultrasound

data is based on a cross-correlation analysis that estimates the axial displacement map

required to compute the strain map of the tissue. SSI has been used for the assessment

of liver fibrosis [19] with promising results as a noninvasive technique for evaluate liver

fibrosis in children. Regarding to breast lesions, SSI has demonstrated the capacity to be

considered as a tool for breast cancer diagnosis [2].

1.2.5.5 Comparison of the ultrasound elastography approaches

The main approaches of ultrasound elastography can be compared as shown in

Table 1.1. In this Table, the elasticity of the tissue can be estimated applying compres-

sion to the tissue in three ways: using quasi-static compression, with external vibrator

or through ARFI. We also present the comparison of the advantages and limitations for

every approach.

Approach Stress type Stress source Advantages Limitations

Quasi-static Mechanical
Manual

compression

Compatibility with
all ultrasound

probes

Operator
dependent

Remote
palpation

Shear wave
ARFI

Can assess deeper
located tissue

Special or
additional
equipmentTransient

Transient
force

Accuracy for liver
fibrosis staging

Supersonic ARFI Fast acquisition

Table 1.1: Comparison between some of the ultrasound elastography approaches.

The advantages and limitations of the ultrasound elastography approaches pre-

sented in Table 1.1 offer us a perspective to select the most convenient method for our

robotic system. In order to avoid special equipment (besides the robot), we opt for the

quasi-static approach, which is compatible with all ultrasound probes. The main limi-

tation of this approach is the necessity of an operator holding the ultrasound probe to

perform quasi-static compression. However, this limitation can be overcome by having

a robot performing this task with precision.
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The following section presents a brief overview of medical robotic systems involving

ultrasound elastography.

1.3 Robotic-assisted systems for elastography

Very few investigations have been undertaken regarding the use of ultrasound elastog-

raphy in robot-assisted procedures. These works are related to the field of minimal inva-

sive surgery (laparoscopy). For example, a snake-like robot was presented in [76], where

a micro ultrasound probe attached at the distal part of the robot was used to find hard

lesions by palpation motion. This system controls an 11 degrees of freedom (DOF) robot

in order to perform three types of motion: coarse positioning, fine positioning and pal-

pation motion. This system was tested on a prostate phantom with some stiff regions,

and the performance of the palpation system is displayed in Figure 1.18.

Figure 1.18: Results of the snake robot performing palpation of a prostate phantom pre-
sented in [76]. (Left) shows the experiment setup and (right) presents the stiffness of the
artificial prostate.

The da Vinci surgical robot (Intuitive Surgical Inc.) has been used to obtain elastic

information of a tissue of interest by controlling the motion of a laparoscopic 2D ultra-

sound probe [10]. This robot-assisted system applies a palpation motion that is mixed

with the teleoperated motion of a laparoscopic ultrasound probe. Therefore, it allows to

obtain the elastogram of the tissue while the surgeon teleoperates the ultrasound probe

with the da Vinci robot (see Figure 1.19). In a similar framework [73], a mechanical vi-

brator placed on the skin of the patient was used to replace the palpation through the

controlled motion of an ultrasound probe.

In ultrasound remote palpation, a robotic system was built to control the contact

forces between an ultrasound probe and the tissue. Then, ARFI were applied to obtain a

measure of the elasticity of the tissue [7]. The block diagram of this approach is shown

in Figure 1.20, where a proportional-integral-derivative (PID) controller was designed to
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Figure 1.19: View of the da Vinci console displaying the real-time images including the
elastogram (Figure taken from [10]).

compute the velocity applied to the robot based on the error measurement between the

desired force Fd and the measured force Fm along the axial axis of the ultrasound probe.

Figure 1.20: Force control scheme of the robotic system presented in [7] for applying the
ARFI required for the tissue elasticity measurement.

The works mentioned in this Section introduced robotic systems to assist in the elas-

tography process. However, none of these robotic systems used the information of the
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elastogram as part of the robotic controller, which is one of the main contributions of

this thesis that will be presented in Chapter 2. The following Section briefly recalls the

principle of visual servoing since it will be considered in this thesis work.

1.4 Visual servoing principle

A brief overview on visual servoing is presented here to explain the basic concepts of this

control technique. The reader can find a more detailed explanation of visual servoing in

the two parts tutorial presented by François Chaumette and Seth Hutchinson [17, 18].

Figure 1.21: Visual servoing closed-loop.

Visual servoing is a control based on visual information. This methodology consid-

ers the visual information as feedback in a closed-loop control of a dynamic process as

shown in Figure 1.21. The aim of visual servoing is to minimize a visual error e(t ), de-

fined as,

e(t )= s(t )−s∗, (1.36)

where s(t ) ∈R
k is a vector of k visual features (e.g., black dots centroid image coordinates

in Figure 1.21) extracted from the image at time t . s∗ ∈ R
k is a vector containing the

desired visual features (target). The control law provides the velocity v(t ) to apply to the

robot such that the visual error e(t ) is minimized.

There are two main approaches in visual servoing which rely on the design of the fea-

tures vector s. First, the image-based visual servoing (IBVS) considers an error between

current and desired features directly expressed in the image without involving any pose

estimation of the target. The extraction of image features has been used to locate key

points that provide a representation of the image content. The features can be related to

geometrical 2D information extracted from the image as edges, corners, blobs and image

moments. These features can be used to obtain more complex features as for example,

planes, circles/ellipses or arbitrary 2D shapes. The second approach is the position-

based visual servoing (PBVS) where the pose of the target is estimated with respect to

the visual sensor using a CAD (computer-aided design) model of the target. In this case
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the image features are extracted to estimate 3D information (pose of the target object).

Two main configurations related to the visual sensor position are used in visual servo-

ing: eye-in-hand and eye-to-hand configurations (see Figure 1.22). In the eye-in-hand

configuration, the visual sensor is placed on the robot, so its motion is guided by the ro-

bot. Alternatively, in the eye-to-hand configuration, the visual sensor is in a fixed remote

location, and observes the moving robot’s end-effector interacting with the scene.

Figure 1.22: The two configurations of the visual sensor location in visual servoing.

1.4.1 Interaction matrix

The configuration in any robotic mechanism depends on the position of its joints q(t ) ∈

R
p at time t , with p as the number of joints (see Figure 1.23). The number of joints p

is also known as the number of degrees-of-freedom (DOF) of the robot. Since we will

consider a robotic arm holding an ultrasound probe, the following expressions will be

recalled for the eye-in-hand visual servoing configuration. Therefore, the pose of the vi-

sual sensor r(q, t ) can be linked to the joints position using the forward kinematic model

of the robot.

Figure 1.23: Robot joints q for a 6-DOF robot, and the pose r of the end-effector.

In the design of the control scheme, the variation of the robot’s end-effector ṙ(t ) is

related to the time variation of the features ṡ(t ). This relation is defined as,

32



CHAPTER 1. ULTRASOUND ELASTOGRAPHY AND BASIC PRINCIPLES OF
VISUAL SERVOING

ṡ =
∂s

∂r
v+

∂s

∂t
, (1.37)

where v is the velocity screw vector of the end-effector obtained from the time variation

of r. ∂s
∂t is the variation of the features in the environment through time. This means that

in a static environment ∂s
∂t

= 0. The remaining term, ∂s
∂r is called the interaction matrix of

k ×6, also defined as,

Ls =
∂s

∂r
. (1.38)

The interaction matrix links the velocity screw vector of the visual sensor, v, to the

variation of the visual features ṡ(t ) as,

ṡ = Ls v. (1.39)

We consider here the case where the feature variation is only due to the robot displace-

ment meaning that ∂s
∂t = 0.

1.4.2 Control law

The relation between time variation of the error ė and the sensor velocity v can be com-

puted using equations (1.36) and (1.39) as follows,

ė = Ls v. (1.40)

Since the goal of visual servoing is to minimize e, the variation of the error ė is usually

set as an exponential decrease of the error

ė =−λe, (1.41)

where λ> 0 is the gain of the control law. This gain can be set as a constant value or as a

variable (e.g, adaptive gain) dependent on the current error value [37], such as,

λ(‖e‖) = (λ0 −λ∞) e
−

λ′0
λ0−λ∞

‖e‖
+λ∞, (1.42)

where λ0 = λ(0) and λ∞ are the gains for the smallest and highest values of ‖e‖ respec-

tively, and λ′
0 is the gain slope at ‖e‖= 0.

Now, we can compute the velocity control law to be applied to the robot by using

equations (1.40) and (1.41) to obtain,

v =−λL+
s e, (1.43)
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where L+
s ∈ R

6×k is the Moore-Penrose pseudoinverse of Ls defined by L+
s =

(
L⊤

s Ls

)−1
L⊤

s

when Ls is full rank. However, if Ls is square (k = 6) and the det(Ls ) 6= 0, then it is possible

to invert Ls , giving the velocity control law as v =−λL−1
s e.

We should notice that the interaction matrix Ls cannot be known perfectly on a real

system and an approximated value L̂s is usually considered. To ensure an asymptotic

stability of the system using L̂s , the condition L̂s Ls > 0 must be valid as demonstrated

in [17]. Therefore, the control law becomes

v =−λL̂+
s e (1.44)

1.5 Conclusion

This chapter has introduced the principles of ultrasound imaging, ultrasound elastog-

raphy and visual servoing. First, we explained the process to reconstruct an ultrasound

image from the acquired information of the ultrasound propagation through the tissue.

This introduction allows the reader to be introduced to the basic concepts of medical

ultrasound imaging which are important for the understanding of this thesis. Mainly,

the focus of this chapter is elastography, presented in Section 1.2.1, where the most

widely used approaches for this process were introduced. Magnetic resonance elas-

tography (MRE), computed tomography elastography (CTE) and optical computed to-

mography elastography (OCTE) require expensive and large equipment to be used. On

the other hand, ultrasound elastography (USE) requires small and less expensive equip-

ment which is already present in most medical facilities. The different methods used

in USE were also presented in Section 1.2.5, where the principle and state-of-the-art of

every approach was provided. The comparison of these techniques was presented in

Section 1.2.5.5, which led us to select the classic quasi-static approach for our robotic

framework that will be detailed in the following chapters. The quasi-static approach was

chosen due to its compatibility with most ultrasound systems, requiring no additional

devices, nor special ultrasound transducers. All the concepts presented in this chapter

are widely used in the next chapters. Chapter 2 will present a novel approach to build a

robotic-assisted elastography system. This approach not only helps in the generation of

the tissue elasticity map, but it also exploits the elastic information in a visual servoing

task.
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CHAPTER2
AUTOMATIC PALPATION FOR

ULTRASOUND ELASTOGRAPHY

In the previous chapter we presented the background of elastography and its first usage

in robotic applications. Strain information has been used to localize malign tissue based

on its elasticity, which is not possible with common b-mode ultrasound images. This

chapter focuses on the development of a quasi-static elastography approach that en-

sures the compatibility with widespread conventional medical ultrasound systems. The

major contribution presented in this chapter is the development of a robotic assistant

palpation system that autonomously provides tissue elasticity information based on a

quasi-static elastography estimation process. Our assistant robotic system is composed

by a robotic arm that holds and controls an ultrasound probe. Its goal consists in contin-

uously applying a palpation motion on the tissues and maintaining the visibility of a stiff

tissue of interest in the ultrasound image. To achieve these assistance functionalities, we

propose to perform three hierarchical robotic tasks that collaborate together. The first

task consists in automatically applying a periodical compression motion to the tissues

with the ultrasound probe in order to obtain the pre- and post-compression states of the

tissues. The secondary task is based on a visual servoing control scheme that uses di-

rectly the strain information as visual feature to automatically maintain a selected tissue

of interest in the field of view of the ultrasound probe. To the best of our knowledge, it is

the first time the elastography strain information is used as input of a robot controller.

The third proposed task is the automatic orientation of the ultrasound probe, allowing

the user to explore the surrounding area of the target tissue.

This chapter is structured as follows. In Section 2.1, the experimental setup used for
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the experiments presented in this chapter and Chapter 3 is first detailed. Then, in Sec-

tion 2.2, the process to obtain the elastogram by applying periodical soft tissue deforma-

tion by a force control is described. Section 2.3 develops the visual servoing approach

we propose to automatically align the tissue of interest with the center of the FOV of the

ultrasound probe. The automatic orientation of the ultrasound probe is presented in

Section 2.4, and the fusion of the three control tasks is detailed in Section 2.5. Experi-

mental results obtained with the robotic system are presented in Section 2.1 for the use

of 2D and 3D ultrasound probes interacting with different kinds of phantoms.

2.1 Experimental setup

This section presents the setup and the equipment used for the experiments. First, we

explain the workflow presented in Figure 2.1, and then we present all the components

used to build the setup.

Figure 2.1: Scheme and workflow of the experimental setup.

In Figure 2.1, we illustrate the connections between the elements of our experimental

setup. We have a robot equipped with a force/torque sensor and an ultrasound probe

attached to the end-effector. Force sensor data is sent to a workstation, where all the

algorithms are implemented. The robot is connected bidirectionally to the workstation

to send its status and to receive motion velocity commands.
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The ultrasound probe sends the transducer signals to the ultrasound station. This

station sends the ultrasound data as RF signals or b-mode image to the workstation.

All the experiments were performed at Inria Rennes Bretagne-Atlantique on the ro-

botic platform of the Lagadic team. We present in the next sections the different equip-

ment used for the realization of the experiments of this thesis.

2.1.1 Robot manipulator

Figure 2.2: Viper s850 robot.

The robot used in the experiments is the Viper s850 (Omron Adept Technologies,

Inc.,CA) with six rotatory joints. In addition, the robot is equipped with a 6-axes force/-

torque sensor attached to the robot’s end-effector. The force/torque sensor is the

Gamma SI-65-5 (ATI Industrial Automation, NC) with the sensing range and resolution

reported in Table 2.1. As shown in Figure 2.2, the robot is holding an ultrasound probe

plugged to its end-effector.

Axis Sensing range Resolution
Fx , Fy 65 N 12.5 mN

Fz 200 N 25 mN
Tx , Ty and Tz 5 N·m 0.75 µN·m

Table 2.1: Force/torque sensor range and resolution.

2.1.2 Ultrasound equipment

We used the ultrasound station SonixTOUCH (BK Ultrasound, MA) as shown in

Figure 2.3a. This diagnostic ultrasound system is packed with an ultrasound research
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(a) SonixTouch ultrasound system. (b) Ultrasound transducer 4DC7-3/40.

Figure 2.3: Ultrasound equipment used for the experiments.

interface that allows the acquisition and storage of raw data in several formats. The sys-

tem is running under Windows XP© operative system (OS), and it has three slots for ul-

trasound probes.

The probe used for the experiments is the 4DC7-3/40 (see Figure 2.3b) which is a

convex 3D probe. This probe has a motor to orientate a 2D curvilinear transducer array.

The motor, with a radius of 2.72 cm, makes the probe suitable to acquire 2D and 3D

ultrasonic data. The curvilinear array of the transducer has a frequency range between 7

and 3 MHz, a focal depth range between 5 and 24 cm, and an image field of view of 78°.

The motor sweeping maximum angle range is 75°.

2.1.3 Phantoms

(a) Abdominal phantom ABDFAN US-1B. (b) Two-layers gelatin phantom containing
two duck gizzards.

Figure 2.4: Phantoms used in the experiments.

Along this manuscript, we use the word phantom to define an object made of soft

material that simulates human tissue. The ultrasound examination training phantom
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ABDFAN US-1B (Kyoto Kagaku Co., Japan) shown in Figure 2.4a was used in most of the

experiments. Additional homemade gelatin phantoms, like the one in the Figure 2.4b,

were also used in the experiments.

2.2 Automatic palpation

We define as “autonomous palpation” the robotic task and image processing needed to

automatically compute a strain map. It is performed in real-time by applying periodic

compression motion to the tissue with an ultrasound probe attached to the end-effector

of the 6-DOF Viper manipulator robot. The Figure 2.5 shows the location of the Cartesian

frames we considered in this study, where the force sensor and the robot end-effector

are positioned at frames F f and Fe , respectively. We define two frames attached to the

mechanical part holding the ultrasound probe that is plugged to the robot end-effector:

first, the frame at the gravity center of mass Fg , second, the frame at the probe first

contact point Fcp . We define one frame FU S at the center of the image acquired by

the ultrasound probe. All these frames are defined using the metric system (meter and

radian) and we consider in the following of this manuscript that both intrinsic and ex-

trinsic parameters of the ultrasound probe have been calibrated using a method like the

ones presented in [43].

Figure 2.5: Cartesian reference frames attached to the robotic arm.

2.2.1 Force control

In order to obtain the pre- and post-compression states of the tissue, we propose to ap-

ply a varying force along the axial direction (ycp ) of the ultrasound probe at the contact
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frame Fcp by using a force control scheme. We denote the velocity screw vector of the

probe at the frame Fcp , as v = [vx vy vz ωx ωy ωz]⊤. The first three components

of v correspond to the translational velocities, and the last three elements to the angular

velocities.

The 6-axes force/torque sensor provides a force tensor measurement Hf

f
in the

force sensor frame F f . To measure the interaction force between the probe and the

tissue expressed in the contact frame Fcp , we have to consider the probe mass mp in

order to compensate the gravity force tensor Hg
g = [0 0 9.81mp 0 0 0]⊤ defined

at Fg . The force tensor applied to the tissue can then be expressed in the frame Fcp as

follows:

Hcp
cp = Fcp

f

(
Hf

f
− Ff

g Hg
g

)
(2.1)

where Ff
g and Fcp

f
are force twist transformation matrices from the gravity frame Fg

to the frame F f and from the frame F f to the frame Fcp , respectively. The force twist

transformation matrix is used to transform the force/torque vector expressed at a frame

Fb into a frame Fa and it is defined by a 6×6 matrix:

Fa
b =

[
Ra

b
03×3[

ta
b

]
×

Ra
b

Ra
b

]
(2.2)

with Ra
b

and ta
b

as the rotation matrix and translation vector, respectively.
[

ta
b

]
×

is the

three-by-three skew-symmetric matrix representation of ta
b

.

Since our goal is to control only the force component along the y-axis (axial direc-

tion) of the probe, we define the feature vector to be regulated as

s f = [0 1 0 0 0 0] Hcp
cp . (2.3)

In order to apply a continuous compression motion, we propose to implement the

following desired varying force that is based on a sinusoidal function:

Fd (k) =
∆F

2

[
sin

(
(4k −T )π

2T

)
+1

]
+F0, (2.4)

where k is the discrete time and ∆F is the amplitude of the sinusoidal function as shown

in Figure 2.6. T is the period of the desired force signal expressed in sample time and F0

is the initial desired force value.
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Figure 2.6: Desired sinusoidal force applied by the force controller.

In order to apply this varying force along the y-axis, we define the desired force as

s∗
f
= Fd (k) and the force error to minimize as e f = s f − s∗

f
. An exponential decrease of e f

is achieved by imposing the desired error variation of the error such as ė∗
f
=−λ f e f with

λ f being the force control gain. To generate a velocity control law that minimizes e f , we

need to express the interaction matrix L f which relates the variation of the force feature

to the probe velocity tensor such as ṡ f = L f v. In this work we consider an approximation

of the interaction matrix L f = [0 K 0 0 0 0], where K is a coarse estimation of the

contact stiffness between the probe and the tissue. The force control law is then obtained

by applying the following velocity to the ultrasound probe:

v f = L+
f (ė∗

f + ṡ∗f ), (2.5)

where the operator “+” represents the Moore-Penrose pseudo-inverse defined as L+
f
=

(L⊤
f

L f )−1L⊤
f

when L f is full rank. ṡ∗
f

(k) =
ds∗

f
(k)

dk
is the differential of the desired force

variation. If we analyze Equation (2.5), the term ṡ∗
f

(k) can be neglected in this work,

since our goal is just to obtain a sinusoidal variation of the force. Simulated outputs of

the force controller are presented in Figure 2.7 to show the temporal evolution of the

resulting force with and without considering the term ṡ∗
f

(k) in the control law. Since a

perfect phase between the desired and measured force is not necessary for the palpation

motion task, we simplified the control law as:

v f = L+
f ė∗

f . (2.6)

The velocity v f is applied in the contact point frame Fcp . However, in practice the

velocity must be expressed at the robot’s end-effector frame Fe to be applied. Thus, the

velocity at Fe is formulated as follows,

ve = Ve
cp v f (2.7)
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Figure 2.7: Measured force when the force control law is applied. Green curve is the
desired force variation. The red and blue curves correspond to the force measured when
applying Equations (2.5) and (2.6) respectively.

where Ve
cp is a 6×6 velocity twist transformation matrix defined in Equation (2.8).

Ve
cp =

[
Re

cp

[
te

cp

]

×
Re

cp

03×3 Re
cp

]

(2.8)

The velocity ve can finally be applied using the robot’s velocity kinematics model as fol-

lows,

q̇ = J+e ve (2.9)

where q̇ is the join velocity control vector and Je is the Jacobian of the robot estimated

through its kinematics. The remaining of the manuscript assumes that Equations (2.7)-

(2.9) are always applied after expressing any control law at the frame Fcp .

2.2.2 Elastogram estimation

Force control gives us the mechanical compression required for the elastography. The

process that estimates the elastogram is illustrated in Figure 2.8. Two RF frames are

grabbed before and after the tissue compression and represent respectively the pre- and

post-compression states. A region of interest (ROI) or a volume of interest (VOI), in case

of the use of a 2D or 3D ultrasound probe, is selected from the RF data to estimate the

elastogram and display it on the b-mode image.

The elastogram is generated using a method based on motion estimation and strain

filtering. First, we detail the motion estimation process for the 2D and 3D cases, and

then the filter used to estimate the strain map.
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Figure 2.8: Elastography process. From left to right: mechanical compression with the
ultrasound probe over a static soft tissue; RF frames acquired for the pre- and post-
compression states; b-mode image with an elastogram overlaid on a ROI.

2.2.2.1 2D Motion estimation

The essential part of the elastography method is the displacement estimation of the RF

signals from pre- to post-compression states. This can be computed using motion esti-

mation. We propose to use a subpixel motion estimation approach [14] with the purpose

of achieving real time elastography imaging capability. Motion estimation is divided in

two steps: integer displacement estimation and sub-displacement estimation.

Figure 2.9: Displacement estimation. Parameters in the motion estimation process us-
ing the RF data observed in the ROIs of the pre- and post-compressed frames.

Integer displacement estimation is obtained with the block matching algorithm

(BMA). Figure 2.9 shows the parameters used for this approach. Let us define two ar-

rays of RF signals, the RF ROI in pre-compression as f (i , j ) and post-compression as

g (i , j ), where i is the scan-line index and j is the sample index of the RF scan line. BMA
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divides the RF frame in blocks of M × N size (B1 and B2 for f (i , j ) and g (i , j ) respec-

tively). Then, the displacement for each block in the current frame f is estimated with

respect to the next one, g . The search of the best match is performed over a region of

size (2N −1)×(2M −1) (as the one shown in Figure 2.9 in orange). The search region size

can be changed to optimize the computational cost.

The best match of the i -th block over the search region can be found using common

similarity measures (MSE, SAD, ZNCC, etc.). In our case, the sum of absolute differences

(SAD) was selected due to its low computational cost. Therefore, the minimization is

computed as follow,

(u0, v0) = arg min

(
1

M N

M−1∑

m=0

N−1∑

n=0
|B1(m +u0,n +v0)−B2(m,n)|

)
(2.10)

where B1 ∈ f and B2 ∈ g are blocks (matrices) of M×N size. The u0 and v0 are the integer

displacements corresponding to lateral and axial displacements, respectively.

Unfortunately, BMA only estimates integer displacements, and we need to estimate

the sub-displacements to obtain an accurate displacement map. There are approaches

for sub-displacement estimation that are based on parabolic interpolation, cosine inter-

polation, optical flow (OF) and splines, to name a few. In our work, we use OF as base

for sub-displacement estimation. The OF between the blocks B1 and B2 is estimated by

solving the next linear system,




∑

m,n

(
∂B1
∂i

)2 ∑
m,n

∂B1
∂i

∂B1
∂ j

∑
m,n

∂B1
∂i

∂B1
∂ j

∑
m,n

(
∂B1
∂ j

)2




(
δu

δv

)
=

(∑
m,n (B2 −B1)∂B1

∂i∑
m,n (B2 −B1)∂B1

∂ j

)
(2.11)

Once we have obtained the sub-displacements (δu ,δv ), we can compute a more ac-

curate displacements as,

u = (ic −u0)+δu (2.12)

v = ( jc −v0)+δv (2.13)

where (ic , jc ) is the center point of the search region as shown in Figure 2.10. At this

stage, we have shown the estimation of the motion for one block. The same process is

repeated for the next blocks, but we need to define their position. We define the position

changing as a shifting process, where the next block position can represent a block over-

lapping with respect to one or more previous blocks (see Figure 2.10). The percentage

of blocks overlapping is related to the resolution of the axial and lateral displacements
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Figure 2.10: Parameters involved in the motion estimation algorithm using the informa-
tion of the post-compression RF frame (element access through g (i , j )). The grid inside
the search region represents the integer step between the RF elements.

maps. For example, high overlapping percentage gives a fine displacement map, and low

overlapping percentage produces a coarse displacement map.

The overlapping can be tunned to achieve good results. For example, a real-time

displacement map was obtained using a zero-overlapping in [93]. This produced good

results when a 2% compression between the pre- and post compress states was ap-

plied. In our case, we consider 25% of overlapping to obtain a finer displacement map

while allowing real-time processing capability. The displacement maps, U0(i , j ) and

V0(i , j ) for lateral and axial displacements respectively, are the outputs of this process

(see Figure 2.11). Since the maps are of different size than the RF ROI due to the overlap-

ping, we apply a bilinear interpolation to obtain the real sized U (i , j ) and V (i , j ) of the

considered ROI.

Figure 2.11: Displacement maps from motion estimation. After obtaining the displace-
ments for every block, their axial and lateral components are stored in two arrays V0(i , j )
and U0(i , j ), respectively.
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2.2.2.2 Strain filtering

Strain values depend directly on the motion estimation. The base of the strain tensors is

the partial derivative of the directional displacement map with respect to the axis of the

tensor component. In the specific case of elastography, the compression is performed in

axial direction. Then, the axial strain values can be computed as,

ε j j =
∂v

∂ j
. (2.14)

where ∂v
∂ j

indicates the variation of the axial displacement v through j -direction.

Additionally, to obtain a better quality elastogram, we use the LSQ strain filter pro-

posed by Kallel and Ophir [36]:

h(n)= ξ(n)
[

1 −n+1
2

][
1 2 . . . n

1 1 . . . 1

]

(2.15)

where ξ(n) = 12
n(n2−1)

and n is the number of samples in the interval ∆ j as shown in

Figure 2.12.

Figure 2.12: LSQ strain estimation. (a) strain estimation parameters for the sample at
(is , js) in the displacement map, and the respective (b) strain map.

As demonstrated in [36], the convolution of this filter h(n) with the axial component

of the motion estimation V (i , j ) can generate a smooth strain map ε(i , j ).

The strain map ε(i , j ) provides the elastic information inside the ROI. However, the

strain is a measure depending on the constant stress applied to the tissue. This stress

is performed with the ultrasound probe by applying the force controller presented in

Section 2.2.1.

46



CHAPTER 2. AUTOMATIC PALPATION FOR ULTRASOUND ELASTOGRAPHY

2.2.3 Evaluation of the estimated elastogram using a ground truth from finite
element model (FEM) simulation

The process to obtain the elastogram should be evaluated based on a ground truth

model. Therefore, we propose to evaluate the strain map estimation based on finite el-

ement analysis (FEA). The physical phenomenon of strain is expressed using partial dif-

ferential equations. Solving these equations for any shape using analytical formulation

is challenging. However, FEA is a numerical methodology to approximate the solution

to these partial differential equations. The principle of FEA is to divide a rigid body into

finite elements using a mesh and compute a solution for every element. The accuracy of

the solution improves with the increment of the number of elements, but the computa-

tional cost also increases. FEA is used in many engineering applications to design and

test mechanical structures under several boundary conditions.

Figure 2.13: Generation of the ground truth using a FEM.

There is a wide variety of software for FEA, from open-source to paid license. In our

case, we use COMSOL Multiphysics 5.0 (COMSOL, Inc.) to obtain the ground truth of the

strain map. To estimate the elastogram as in section 2.2.2, we need the pre- and post-

compressed RF frames. We obtain those RF frames using an ultrasound simulator called

Field II [35]. This software can simulate the data acquired by a virtual ultrasound sys-

tem based on an accurate ultrasound wave propagation model. We first defined a virtual

stiff tissue target by randomly positioning scatterers in a geometrical mesh that repre-

sents a virtual organ at the pre-compression state as illustrated in Figure 2.13. Then we

simulated tissue deformation by applying displacements computed from the FEA to the
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scatterers in order to obtain the post-compressed state of the virtual organ. FIELD II was

then used to simulate the RF data of the pre- and post-compression states of the virtual

tissue. In practice, FIELD II has to be initialized with the parameters of an ultrasound

probe and in our case we set it with the parameters of our real probe (4DC7-3/40) in 2D

mode, shown in Table 2.2.

Parameter Value
Transducer center frequency [Hz] 3.5×106

Sampling frequency [Hz] 4.0×107

Speed of sound [m/s] 1540
Wave length [m] 1540/3.5×106

Width of element[m] 4.25×10−4

Kerf [m] 5.5×10−5

Number of elements in the transducer 128

Table 2.2: Parameters used in FIELD II.

Figure 2.14 shows few scatterers as red points in a frame acquisition by the simulated

ultrasound machine (similar to a real ultrasound machine). The same figure also shows

how the scatterers have been displaced due the mechanical compression. Note that in

order to work, FIELD II requires a number of scatterers of order 103 points in a random

Gaussian distribution.

Figure 2.14: Scatterers position in the process of compression.

During the compression process, the scatterers displacement is relative to the stiff-

ness of the tissue. The Figure 2.14 has a gray circle that represents a stiff incrustation in

a soft tissue, and it is possible to observe that the displacement of the scatterers inside

this region is low with respect to the other scatterers in the same axial line. As previously

mentioned, the displacement of the scatterers due to the compression was simulated us-

ing a finite element model (FEM) of the tissue by employing the COMSOL Multiphysics

5.0 software. This software contains a GUI to draw the model based in simple geometric

shapes (ellipses and rectangles), it also contains different modalities of partial differ-

ential equation (PDE) analysis such as heat transfer, strain-stress, etc. The strain-stress
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modality was selected in order to obtain the displacement of the scatterers after applying

certain stress and the strain output was considered as ground truth.

In our work we simulated a phantom (rectangular shape) with a Poisson ratio of 0.495

(tissue property) and Young’s modulus of 20 kPa. The dimensions of the virtual phantom

are 50 mm width and 60 mm height. This phantom was used with different region in-

crustations having different Young’s moduli as shown in Figure 2.15. The first example,

left in Figure 2.15, contains two circles with radius of 5 mm and centers C1 = (13,45) and

C2 = (35,18) respectively. The value of the Young’s modulus of these regions was set to

75kPa. The second example, at center of the figure, contains the same two circles of the

previous case, but now the Young’s modulus of the regions were set to 80 and 100 kPa for

C1 and C2, respectively. Additionally, this case also includes two more circles with radius

of 9 mm (centers C3 = (13,15) and C4 = (34,42)) with Young’s modulus of 70 and 60kPa,

respectively. The third example, at the right of the figure, has an incrustation of a square

shape object (side length of 25 mm) with Young’s modulus of 300kPa.
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Figure 2.15: Three input models used to simulate the compression by FEM.

Once the models are defined for the FEM, we need to apply the compression. In

our work, we fixed the edge of the base and define a Neumann boundary condition,

which specifies the normal derivative of the function on a surface. A 2% compression

was applied and we obtained the results reported in Figure 2.16 with the image of axial

displacements presented in the first row and the strain image in the second row.

The value of the displacements d ∈R
2 obtained by FEM are then applied to the scat-

terers position. We define the scatterers position at pre-compression frame as ps , and

the scatterers position at post-compression as p ′
s . We use each frame as input in FIELD

II to obtain its RF frames. Figure 2.17 shows the output of the three models described

previously, where the pre- and post-compression frames are displayed in the first and

second row, respectively. The output is shown in b-mode.

The output of FIELD II gives the RF data, which is the input to the processes de-

scribed in Section 2.2.2.1 and Section 2.2.2.2. These processes were implemented in

Qt with C++, and the library used to compute the FFT (Fast Fourier Transform) in the
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Figure 2.16: Output due the compression by FEM.

0 20 40

0

20

40

60

width [mm]

h
ei

gh
t

[m
m

]

Two circles

0 20 40

0

20

40

60

width [mm]

Four circles

0 20 40

0

20

40

60

width [mm]

Square

0 20 40

0

20

40

60

width [mm]

h
ei

gh
t

[m
m

]

Two circles - compress

0 20 40

0

20

40

60

width [mm]

Four circles - compress

0 20 40

0

20

40

60

width [mm]

Square - compress

Figure 2.17: Output FIELD II using B-Mode.
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Hilbert transformation is the FFTW3 [30]. The results of the algorithm are presented in

the Figure 2.18, where the outputs of FEM are displayed. Using sum of squared differ-

ences (SSD), we measured the error of the estimated strain values with respect to the

ground truth and obtain a maximum error of 5.3%. Despite the large difference among

the elasticity of the encrusted objects, we can observe that our elastography process pro-

vides an excellent estimation of the strain values. Therefore, these results allow us to

validate the estimation of the strain map before testing it experimentally.
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Figure 2.18: Results using simulation data from FEM+FIELD II.

2.2.4 Extension for 3D elastogram estimation

We have defined how to compute the elastogram in 2D. Now, in this section, we use an

ultrasound probe able to obtain volumetric data. For this case, the ultrasound probe

motor is enabled to move, with a specific angle step, as opposed to the 2D case where

the motor position is fixed. In this case, one volume of RF signals can be seen as a set

of N f RF frames in 2D. These frames are acquired during one directional sweep of the

motor as shown in Figure 2.19.

If we estimate the 3D elastogram with the same principle as the 2D case, then we

need to wait for the acquisition of two complete RF volumes, one for each state: pre-

and post-compression. However, the computational cost of the motion estimation in

3D using a BMA algorithm increases highly and impedes the real time capabilities of

the application. Therefore, we propose an adaptation of the 2D framework to 3D, which

consists in the online computation of the 3D elastogram during the second sweep of the

probe once the set of 2D frames of the first volume was acquired.
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Figure 2.19: RF volume for one motor sweep.

Figure 2.20: 3D elastogram reconstruction based on the 2D process.

52



CHAPTER 2. AUTOMATIC PALPATION FOR ULTRASOUND ELASTOGRAPHY

Figure 2.20 shows the process to compute one elastogram in 3D based on the 2D

process. First, we store the RF volume for one state Vr (pre- or post-compress). After-

wards, the 2D elastograms are computed online for every motor position in the current

motor sweep, where we also grab the frames in the RF volume Vc . At the end of the

current motor sweep we obtain the complete 3D elastogram, defined as,

Vs(i , j ,k)= εk (i , j ) (2.16)

where i and j are the indexes of the ultrasound scanline and the sample in the scanline,

respectively. εk is the strain map in 2-D estimated at the k-frame pair of Vr and Vc in the

interval [k0,kn−1] with k0 and kn−1 as the indexes of the initial and final frame pair in the

volumes Vr and Vc , respectively.

2.3 Automatic centering of a stiff tissue in ultrasound image

In the last section, we presented how to estimate the elastogram by automatically mov-

ing an ultrasound probe with a robot. Now, in this section, we define a robotic task to

automatically align the center of the probe with the stiffest tissue in a ROI. This process

can assist the examiner by always maintaining the visibility of the target tissue during a

medical procedure. We propose to use visual servo control for this robotic task by con-

sidering visual features extracted from the estimated strain image directly as inputs of

the control scheme.

In order to automatically center a stiff object at the middle of the full image by visual

servoing, we propose to isolate the biggest rigid region in the elastogram and use its

barycenter coordinates as the visual features.

The method we propose to extract these features consists first in segmenting the

biggest stiff region from the elastogram and then computing the coordinates of its cen-

troid as described next.

2.3.1 Stiff tissue segmentation

First, we propose to generate an image Ig (i , j ) by filtering the strain map with a Gaussian

function as:

Ig (i , j ) =
e−ε(i , j )2

eε2
max

(2.17)
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where εmax = max(|ε(i , j )|) and Ig (i , j ) ∈ [0,1]. The aim of this filter is to enhance the

intensity of the rigid objects and to decrease the intensity of the rest of the area.

The segmentation is obtained by applying a binarization on the image Ig (i , j ) such

as,

Iu(i , j ) =

{
1 if Ig (i , j ) ≥ Γ

0 otherwise
(2.18)

where Γ is the threshold value. In practice, the value of Γ= 0.5 was used since it provides

optimal results.

A similar approach can be used for the segmentation of a 3D strain volume. In this

case, we generate first a filtered volume Vg (i , j ,k)∈ [0,1] as,

Vg (i , j ,k)=
e−Vs(i , j ,k)2

eV 2
smax

, (2.19)

where Vsmax = max(|Vs |).

The segmentation of the volume Vg is then computed as,

Vu(i , j ,k)=

{
1 if Vg (i , j ,k)≥ Γ

0 otherwise
(2.20)

2.3.2 Centroid estimation

Once we have isolated all the stiff regions, we need to know which is the biggest one

by labeling all the regions. For this process, we can use a connected components al-

gorithm [66], which is a graph theory-based approach to label different regions. In

Figure 2.21, we show an example of the labeling of different regions. We represent a

binary image with a tree (e.g., a quadtree for a 2D case) to search the adjacent nodes and

classify them in one region. Every node is defined as a pixel in the 2D case, or as a voxel

in the 3D case.

The biggest region is the region having the bigger area (or volume in the 3D case) of

the labeled regions, and its centroid is computed from the image moments as proposed

in [16]. The general definition of the image-based moments in 2D is given by

Mmn =

∫∫

Ω

Iu(i , j )i m j ndi d j , (2.21)
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Figure 2.21: Connected components process to label different regions for 2D and 3D
images.

where the integration is done using all the elements in the RF plane Ω. The area A and

the centroid (ic , jc ) are computed as follows,

A = M00 (2.22)

ic =
M10

M00
(2.23)

jc =
M01

M00
(2.24)

In a similar way for the 3D case, the moments in 3D are defined by,

Mmno =

∫∫∫

Ψ

Vu(i , j ,k)i m j n kod xd yd z, (2.25)

and the integration is done using all the elements in the RF volume Ψ. The volume ν and

the centroid (ic , jc ,kc ) are estimated as,

ν = M000 (2.26)

ic =
M100

M000
(2.27)

jc =
M010

M000
(2.28)

kc =
M001

M000
(2.29)

The area (volume for 3D case) of every labeled region is used to find the biggest one.

Then, the centroid of the biggest region is obtained through the image moments as pre-

viously defined. Figure 2.22 shows the different steps of the centroid computation in a

2D case.
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(a) (b) (c)

Figure 2.22: Centroid estimation of the biggest region. (a) The elastogram with its cen-
troid (black rectangle). The hot colormap is used to display the elastogram (soft
hard). (b) Output of the filtering process where the grey levels inside of the regions rep-
resent the remaining strain values after the filter (values normalized to 1). (c) The biggest
region obtained with binarization and connected components detection.

2.3.3 Automatic centering in 2D

The centroid of the stiffest region of the elastogram, extracted using the prior process,

will be used to horizontally center the rigid object in the full image. As the centroid

coordinates are expressed in the ROI’s frame (in RF frame units), it is necessary to express

them in the ultrasound contact probe frame Fcp (metric units).

Figure 2.23: Cartesian frames in the ROI for automatic centering process.

In Figure 2.23, we show how the centroid (red dot) can be positioned at any location

inside of the ROI. In this figure, we define two new frames Fr and Fpr e at the origin of

the RF array and the center of the deformed ultrasound FOV, respectively. The frame Fr

is expressed in RF lines and samples for the i - and j -axes, respectively. The first step

consists in expressing the centroid in the frame Fpr e in metric units as,
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cx = −αL

(
ir 0 + ic −

wp

2

)
(2.30)

cy = αA

(
jr 0 + jc −

hp

2

)
(2.31)

where wp in RF lines and hp in RF samples are the width and height of the RF frame.

The coordinate (ir 0, jr 0) is the initial point (top-left corner) of the ROI with respect to the

RF frame. The constants αL and αA are the scale values to express RF in metric units for

RF lines and samples, respectively. We should mention that αL and αA were defined in

Section 1.1.2. Due to the geometry of the convex probe, the centroid (cx ,cy ) is distorted,

and it requires scan conversion to the real metric centroid (xc , yc ). This scan conversion

is estimated through Equations (1.14) and (1.15).

To center the ultrasound probe with the stiffest tissue centroid, we need to minimize

xc to zero. In a 2D case, to achieve this robotic task we are controlling in-plane motions.

This means that we can control only 3-DOF of the ultrasound probe, vx , vy andωz . Then,

we define the measure of the lateral component of the centroid as our measures in the

control loop, st = xc , and our desired centroid position as s∗t = 0 corresponding to the

horizontal component of the center of the ultrasound image. The relation of the varia-

tion of st with respect to the ultrasound probe velocity v is defined as,

ṡt = Lt v (2.32)

where Lt is the interaction matrix that relates the probe velocity and the measure vari-

ation. The value of Lt can be found through the Varignon’s formula using the relation

between the centroid variation with respect to the probe’s velocity as,




ṡt

ẏc

0



=




ẋc

ẏc

0



=−




vx

vy

vz



−




ωx

ωy

ωz



×




xc

yc

0



 . (2.33)

As we mentioned before, we want to control only 3-DOF (vx , vy and ωz). Then,

the remaining velocities are zero, and we compute the interaction matrix Lt =

[−1 0 0 0 0 yc ].

The goal of this control task is to minimize the error et = st − s∗t with an exponential

decrease of et . Therefore, the desired variation of the error is defined as ė∗
t = −λt et

with λt being the centering control gain. Then, the control law for automatic horizontal

centering is defined as,
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vt = v = L+
t ė∗

t (2.34)

2.3.4 Automatic centering in 3D

Figure 2.24: Axes for the frameFp (frame of the ultrasound probe). Lateral and top views
of the probe in contact with a virtual human torso are shown in left and right images,
respectively. A target, in green, is placed inside of the torso to relate the two views.

Similar to automatic centering in 2D, the goal is to center the stiffest object on the

plane X −Z of the full volume (see Figure 2.24). First, we need to convert the value of the

centroid in RF units to the metric coordinates. To do this, as we use a convex ultrasound

probe, we perform a scan conversion of each point inside the RF volume to the Cartesian

coordinates (see Figure 2.25), s(i , j ,k)→ p(X ,Y , Z ), in order to obtain the metric location

with respect to a Cartesian frame. We define the scan conversion using the ultrasound

probe parameters as described in [44]. In our case, RF data is considered instead of pre-

scan images. We recall the scan conversion formulation as,

Figure 2.25: 3D scan conversion. We show the parameters needed to convert any point s
in RF units to a point p in metric units.

58



CHAPTER 2. AUTOMATIC PALPATION FOR ULTRASOUND ELASTOGRAPHY

X = r sinφ (2.35)

Y =
[
r cosφ− (rp − rm)

]
cosθ+ (rp − rm) (2.36)

Z =
[
r cosφ− (rp − rm)

]
sinθ (2.37)

where rp and rm are the radii of the ultrasound probe and the motor of the probe, re-

spectively (see Figure 2.25 right). The coordinates in the Cartesian volume are sorted

as quasi-spherical coordinates with r as the distance from the point to the origin of

the scanlines, φ as the azimuthal angle in the X -Z plane and θ as the zenith angle (see

Figure 2.25 right).

The quasi-spherical coordinates are computed in function of the RF coordinates as,

r =
vs

fs
j + rp (2.38)

φ = −0.5αl (N f −1)+αl i (2.39)

θ = −0.5η(N f −1−2k) (2.40)

where vs is the speed of the sound (1540 m/s), fs is the sampled frequency (40 MHz), αl

is the angle between neighboring scanlines and η is the angle of the field of view (FOV)

of the motor in the ultrasound probe for a motor angular step. All these parameters are

given by the ultrasound system and probe specifications.

Using the scan conversion defined above, we can compute the metric value of any

point in the RF volume with respect to the probe frame Fp . We calculate the centroid

inside of a VOI, which means that the centroid coordinate in the full RF volume is ex-

pressed as,

icm = ir 0 + ic +
wp

2
(2.41)

jcm = jr 0 + jc +
hp

2
(2.42)

kcm = kr 0 +kc +
dp

2
(2.43)

where (ir 0, jr 0,kr 0) is the initial point of the VOI (top-left-front corner) in RF units. wp ,

hp and dp are the dimensions of the VOI in RF units. Then, using equations (2.35) to

(2.40) for (icm , jcm ,kcm), we obtain (Xc ,Yc , Zc ) in metric units.

Keeping a target in the FOV of the volume of analysis is a task which requires the

displacement of the ultrasound probe on the X -Z plane (see Figure 2.24). The centroid

of the target is defined as (Xc ,Yc , Zc ), but in this case we only use the values of Xc and

Zc . This means that the centroid’s coordinates with respect to Fp are the same with

respect to the frame Fcp . Then, similar to the 2D case, we define a visual feature as st =
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[Xc Zc ]⊤ and the desired feature vector to reach the centering of the object of interest

in the probe FOV is directly s∗t = 02×1.

The error is defined as et = st − s∗t . Similar to the 2D case, an exponential decrease

of the error can be obtained by defining the desired error variation as ė∗t =−λt et with λt

being the target-probe centering control gain.

Using the Varignon’s formula, we determine the relation between the probe velocity

v and the variation of the retained features as,

[
Ẋc

Żc

]

=

[
−1 0 0 0 −Zc Yc

0 0 −1 −Yc Xc 0

]

v. (2.44)

The Equation (2.44) can be written as ṡt = Lt v, where Lt is the interaction matrix

related to st . Then, the control law for the target-probe centering can be expressed as

vt = v = L+
t ė∗t (2.45)

2.4 Probe orientation

Probe orientation is the third proposed task in our approach. This task offers to the

user the capability to explore the surrounding area of the target tissue with an automatic

orientation of the ultrasound probe. In the following, we detail this robotic task in both

2D and 3D cases.

2.4.1 2D Probe orientation

Figure 2.26: Probe orientation.
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The aim of this task is to automatically orient the probe to a desired angle s∗
θ

(in the

image plane) from the current angle of the probe sθ = θ − θi ni t . θi ni t is the angle of

the initial probe orientation and θ is the angle measured during the probe orientation

control (see Figure 2.26). Both angles are obtained by the odometry measures of the

robot. The variation of the angle feature sθ due to the probe velocity is defined as:

ṡθ = Lθv (2.46)

where Lθ =

[
0 0 0 0 0 −1

]
is the interaction matrix related to the variation of sθ.

The angle error is defined as eθ = sθ − s∗
θ

, and the desired angle error variation as

ė∗
θ
=−λθeθ with λθ being the probe orientation control gain. Therefore, the control law

for the orientation of the probe is defined as,

vθ = L+
θ ė∗

θ (2.47)

2.4.2 3D Probe orientation

Figure 2.27: 3D probe orientation.

The control of probe orientation is also extended for a 3D case (see Figure 2.27).

To perform this, the orientation of the probe must reach a desired orientation s∗
θ
=

[θxd
θyd

θzd
]⊤ from the feature vector sθ = [θx θy θz]⊤, where θx , θy , θz are the

measured angles of the ultrasound probe provided by the robot odometry at the current

time tc .

The error to be minimized is defined as eθ = sθ−s∗
θ

, and the desired exponential error

decrease can be achieved by the desired error variation expressed as ė∗
θ
= −λθeθ where

λθ is the orientation control gain.
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As in the previous 2D case, we determine the interaction matrix that relates the fea-

ture vector variation, ṡθ, with the probe’s velocity v as,

Lθ =



 03×3

−1 0 0
0 −1 0

0 0 −1



 (2.48)

The control law for the probe orientation is then provided by,

vθ = L+
θ ė∗θ (2.49)

2.5 Control fusion

The system that we propose requires the three control tasks presented in this chapter.

However, if we analyze the interaction matrices, we can observe a coupling between the

automatic centering and the probe orientation controls. This means that these two tasks

are disturbing each other. We can deal with this through the redundancy control frame-

work [80], where a hierarchical method for the i -th control task (ėi ,Li ) is proposed as,
{

v0 =0

vi =vi−1 + (Li Pi−1)+(ėi −Li vi−1)
(2.50)

where Pi−1 is the projection operator onto the null-space of (L1, . . . ,Li−1), and it is de-

fined as, {
P0 =I

Pi =Pi−1 −L+
i Li

(2.51)

This formulation allows us to establish the control tasks priorities, giving to the i -

th task a lower priority with respect to the previous i − 1 task so it does not disturb it.

Considering this hierarchical approach, we assign to the palpation task by force control

e f the highest priority, since it is needed for the elastogram estimation process. Then,

the automatic horizontal centering et and the automatic probe orientation eθ are set

as the second and third priorities, respectively. We can express these tasks using the

redundancy control framework. First we designated the task e f with the highest priority

such that,

v1 = v f = L+
f ė f . (2.52)
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Then, the projector of v1 on the next task is defined as,

P1 = I6 −L+
f L f =





1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





. (2.53)

We can observe in P1 that the first task, force control, constrains the next tasks on

the translation along the y-axis. Then, projecting the matrix Lt onto the null space of L f

(ker(L f )) we obtain,

Lt P1 = Lt . (2.54)

This means that the first and second tasks are decoupled, and the product Lt v f = 0.

Then, the secondary task can be defined as,

v2 = L+
t ėt , (2.55)

where L+
t is the Moore-Penrose pseudoinverse of Lt that we analytically calculated for

the 2D and 3D cases as,

2D case: L+
t =C1

[
−1 0 0 0 0 Yc

]⊤
, (2.56)

3D case: L+
t =C1C2

[
−(X 2

c +Y 2
c +1) 0 −(Xc Zc ) −(Xc Yc Zc ) −Zc (Y 2

c +1) Y 2
c (X 2

c +Y 2
c +1)

−(Xc Zc ) 0 −(Y 2
c +Z 2

c +1) −Yc (Y 2
c +Z 2

c +1) Xc (Y 2
c +1) Xc Yc Zc

]⊤
,

(2.57)

where C1 =
1

1+Y 2
c

and C2 =
1

X 2
c +Y 2

c +Z 2
c +1

.

The projector of this task on ker(L f ) and ker(Lt ) can be defined for both cases as,

P2 = P1 −L+
t Lt , (2.58)

producing the projectors that constrain the motion for the third task on the x- and y-

translations for the 2D case, and for the 3D case x-, y- and z-translations.

The third task, probe orientation, can be expressed as,
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v3 = (LθP2)+(ėθ−Lθ(v f +v2)). (2.59)

Finally, we obtain the control law that fuses the three hierarchical tasks with the fol-

lowing expression:

v = v1 +v2 +v3. (2.60)

The behavior of this control law can be compared with another approach, where

there are not task priorities, which can be defined by a simple interaction matrices stack-

ing as:

2D case: v =




−1 0 0 0 0 Yc

0 K 0 0 0 0

0 0 0 0 0 −1





+


ėt

ė f

ėθ



 (2.61)

3D case: v =





−1 0 0 0 −Zc Yc

0 K 0 0 0 0

0 0 −1 −Yc Xc 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1





+





ėtx

ė f

ėtz

ėθ




(2.62)

In the 3D case, ėtx and ėtz are the first and second row of ėt , respectively. We can ob-

serve Equation (2.61) (2D case) that the first and third rows of the interaction matrices

stacking, representing the second and third tasks, respectively, are disturbing each other.

Similarly for the 3D case in Equation (2.62), we can notice this disturbance between the

same tasks, the second task and third tasks represented in the first row and third to sixth

rows, respectively. This issue represents a coupling between the second and third task

which can cause instability in the control law when using equations (2.61) and (2.62).

However, we can see that the approach presented in Equation (2.60) can deal with the

coupling of the second and third tasks offering us stability in the control system.

In order to demonstrate the difference between the control laws presented with and

without the hierarchical approach, we performed a simulation with the initial and de-

sired features shown in Table 2.3. This table presents the parameters of the controller

for the 2D and 3D cases. The initial values are set for all the parameters. However, we

changed at t =2s the desired probe orientation in order to observe the behavior of the

control laws due to the modification of the third task. The evolution of the probe veloci-

ties is shown in Figure 2.28.
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Modality Parameter Initial value Value at t =2s

2D
st 9 cm –
s∗
θ

π
6 rad π

3 rad

3D
st [9 3]⊤ cm –
s∗
θ

[π6
π
32

π
9 ]⊤ rad [ 5π

18
7π
36 −5π

36 ]⊤ rad

2D and 3D
F0 3 N –
∆F 2 N –

Table 2.3: Parameters for the control simulation test.
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Figure 2.28: Plots of the probe control velocities. First and second rows are for the 2D
and 3D cases, respectively. The performance of the three tasks are displayed using a
global interaction matrix at the left, and using the redundancy control framework at the
right. The gray strip highlights the time segment where we can observe the difference
between the two approaches.
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We can observe in Figure 2.28 the differences between the two approaches that oc-

cur during the time periods that are highlighted with the gray strips. As expected, the

hierarchical control framework allows to obtain a perfect decoupling of the three tasks.

On the other hand, the use of the interaction matrices stacking, presented in equations

(2.61) and (2.62), shows the coupling between the second and third tasks as we expected.

For this reason, we will retain the hierarchical approach in the next of our work.

2.6 Experimental results

We present here the experimental results obtained by applying the control framework

that combines the three robotic tasks. We consider both the 2D and 3D cases that cor-

respond respectively to the use of a 2D or 3D ultrasound probe. In the first part of this

section, we present the results and performance obtained for the 2D case by consider-

ing in the setup the abdominal phantom that was presented in Figure 2.4a. Then, in

the second part of this section, we present the results obtained with the implementation

of our control approach to the 3D case by the use of a 3D US probe interacting with a

homemade phantom.

For all experiments, the acquisition of RF data was implemented using a server-client

TCP/IP communication in a local network. We used as server the SonixTouch ultrasound

scanner, and as client a Linux workstation (Intel Xeon CPU @2.1 GHz) that performs all

the imaging process, control law computation and communication with the robot. The

RF data from the server is sent to the client at the rate of 24 FPS (frames per second).

In the 3D case, each 3D image (volume) is composed of 31 RF 2D frames which result

in a volume acquisition rate of 0.77 VPS (volumes per second). On the client side, we

developed a multi-thread software application in C++ based on ViSP [47], VTK [74] and

Qt [27] libraries. It provides a graphical user interface (GUI) to activate and supervise

the proposed functionalities of the elastography robotic system. The ViSP library was

used to perform all the computation process related to the elastogram estimation, con-

trol law, and robot communication. The elastogram display and application GUI were

implemented using VTK and QT. The details of the implementation are presented for

every case.
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2.6.1 Results of the 2D case implementation

The multi-thread software application presented in Figure 2.29 was developed for the

implementation of the 2D case. The RF frame is created as a shared pointer1, which is

shared with three threads (RFtoBMode, Acquisition and Elastography). The RF frame is

updated every time the Acquisition thread acquires the RF data from the client-server

communication, previously described. Then, the RF frame is converted to b-mode im-

age to be displayed in the main thread containing a GUI. The same RF frame is stored by

the Elastography thread such that the first RF frame is defined as the pre-compress and

the next one as the post-compress state. After the second frame is sent into the Elastog-

raphy thread, the incoming RF frames are always defined as post-compress state, and

the previous post-compress RF frame is shifted to the pre-compress state. In this thread

the elastogram is computed after a ROI is selected by the user in the GUI. Then, the elas-

togram in the ROI is overlaid in the b-mode image. The robot is activated in the GUI to

perform the palpation motion, and the automatic centering of the stiffest tissue in the

center of the FOV of the US probe is also enabled through the GUI. The required centroid

for this task is computed in the main thread using the current elastogram.

Figure 2.29: Block diagram of the 2D case implemented in the multi-thread software
application.

The process time of the elastography algorithm was 20 ms corresponding to 50 FPS,

over a ROI of 50% of the RF frame size. Therefore, it is compatible with the time con-

straint of a real-time robotic control scheme.

1Address of the shared memory that allows data exchange between the different threads
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2.6.1.1 Experimental results using a training abdominal phantom

For the next experiments we used the setup presented in section 2.1 with the 3D con-

vex ultrasound probe in 2D imaging mode. The force control law was performed with

a frequency higher than the other tasks (200 Hz). The visual control was performed

with the same period as the image capture (24 fps). The experiments were performed

over the ABDFAN ultrasound examination training model (see section 2.1) simulating

the abdomen of a patient. The phantom manufacturer specifications note the presence

of lesions and tumors. Experiments were performed selecting a ROI including hepatic

lesions and pancreatic tumors.

In the experiments, the probe was initially positioned above the phantom, without

contact, and oriented with an initial angle θi ni t and initial force F0 = 0. Then, to demon-

strate the efficiency of the general control law (2.60), we set a desired sinusoidal force

signal with F0 = 5 N and ∆F = 2 N. We selected ∆F = 2 N, because it is the minimum

force variation required to compute an elastogram, which was found by applying dif-

ferent forces in the finite element analysis. The lower relative error compared with the

ground truth computed by the FEA was 5.3%, which proves that our elastogram is well

estimated. The automatic horizontal centering of the ROI is activated once the user se-

lects this area in the graphical interface. We performed several experiments and present

here the results obtained from one of the experiments.

A set of five desired angles for the probe orientation task is considered: θ0 = θi ni t −

10◦, θ1 = θ0+5◦, θ2 = θ1+5◦, θ3 = θ2+5◦ and θ4 = θ3+5◦. The curves of the error evolution

for the three tasks are shown in Figure 2.30.

We can see that the force error ranges between ±1N due to the sinusoidal desired

force variation. Once the ROI is selected (at time 20 s), the centroid of the elastogram is

computed, and it is sent to the automatic centering control task. The object centering

error decreases towards zero but still exhibits a low remaining oscillation of ±3 mm due

to the elastogram noise. However, the ROI is horizontally maintained close to the image

center by the visual servoing task even when the user successively changed the probe

desired angles at times 21, 90, 126, 167 and 205 s, keeping automatically the object of

interest in the field of view. Figure 2.31 presents in the second row the overlay of the b-

mode US images and the elastograms, showing that the elasticity map (ROI) has reached

the horizontal center of the full image for each probe orientation.
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Figure 2.30: Phantom experiment. Evolution of the system during the experiment. (a)
Force error evolution, with F0 = 5N and ∆F = 2N. (b) Probe orientation error evolution.
(c) Horizontal target centering error evolution. (d) Velocities applied to the 3-DOF in-
volved in the control law.
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2.6.1.2 Elastogram quality improvement

To improve the elastogram quality, we propose to align and average the different elas-

tograms obtained for all probe orientations. This alignment is performed by a warp-

ing function that consists in applying a translation based on the centroid relative posi-

tion and the image relative rotation between each elastogram of the object of interest

(blue region in the images of the third row in the Figure 2.31, where dark blue is the

lower strain, and dark red is the highest strain). Once we obtain the warped elastograms

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 2.31: Experiment with different probe orientations: (a)-(e) the probe oriented
at different angles, from left to right the angles are θ0 = −10◦, θ1 = −5◦, θ2 = 0◦, θ3 =

5◦ and θ4 = 10◦. (f)-(j) b-mode image where the target is centered with the image and
the elastogram ROI overlaid for each probe orientation. (k)-(o) elastograms obtained for
each probe orientation shown in the ROI of the images.

and average them together, the result ensures an improvement of the elastogram quality

compared with only one elastogram obtained for a given probe orientation. The result

of this quality improvement is shown in Figure 2.32.
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Further, in elastography, the concept of contrast-noise-ratio (CNRe ) is expressed as,

CNRe =
2(µs −µb)

σ2
s +σ2

b

(2.63)

where µs and µb represent the mean value of the stiff and background tissues, and σ2
s , σ2

b

denote the strain variance, respectively. The value of the CNRe allows to make a decision

on accepting or rejecting the presence of a lesion as presented in [87], and a higher level

of CNRe suggests better ability to detect the lesion. Therefore, to evaluate the elastogram

quality in our experiment, we compute the CNRe in the strain images for each probe

orientation and for their mean as shown in Table 2.4. The highest CNRe is obtained for

the image of the mean of the elastograms as expected.

θ0 θ1 θ2 θ3 θ4 mean
97.40 71.45 65.87 87.52 87.02 127.42

Table 2.4: Comparison of the CNRe (in dB) of the estimated elastography images at the
different probe orientations of the experiment and their mean.

Figure 2.32: Mean of aligned elastograms obtained from 5 probe orientations.

2.6.2 Results of the 3D case implementation

For the implementation of the 3D process, we developed a multi-thread software appli-

cation as described in Figure 2.34. A shared pointer related to the memory of the RF

volume is continuously updated by the acquisition thread (frame by frame). This shared

pointer is read by the RFtoBMode thread (process in charge of converting the RF volume

to b-mode volume) and the Elastography thread (process to compute the 3D elastogram

in a VOI) once a volume is completed. The Display object, in the main thread, contains

the functions to display three orthogonal planes (sagittal, axial, coronal) of the volume

(see Figure 2.33) using VTK library (Visualization Toolkit [74]). This object also allows

the user to select the VOI by displacing the planes to the desired position.
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Figure 2.33: Display of the three orthogonal planes and the VOI with the 3D elastogram.

Figure 2.34: Short diagram of the implemented multi-thread software application.
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We perform a set of experiments on a homemade gelatin phantom containing two

duck gizzards (see Figure 2.35), and we present the evolution of one experiment, which

is the base for every experiment performed.

We set the values of Fmi n = 1.5 N, Fmax = 2.5 N and λ f = 0.002. Fmi n and Fmax were

estimated empirically for the gelatin phantom, and they can be adapted for any other

kinds of tissue. In this implementation, for the second and third tasks, we used adaptive

gains (see Equation (1.42)). The parameters in the adaptive gains in the control law of

Equation 2.60 are set as λt (0) = 0.1, λt (∞) = 0.03 , λ̇t (0) = 0.3, λθ(0) = 1.5, λθ(∞) = 0.2

and λ̇θ(0) = 2.3.

The experiment begins with an initial probe position where a stiff object of interest

is located in the 3D US probe FOV (red point in Figure 2.35-left). Then, the automatic

palpation task with the robot is activated to perform the compression of the tissue. Next,

four points delimiting the VOI are chosen using the developed GUI and displayed by

small yellow spheres as shown in Figure 2.33. Once the VOI is selected, the 3D elas-

togram is estimated for every pair of RF volumes. The centroid of the 3D elastogram is

computed as we previously described in section 2.3, and it is sent to the automatic cen-

tering control task. The probe orientation is always active, and the user can change the

desired orientation of the probe any time through the GUI.

Figure 2.35: Experiment with a gelatin phantom containing two duck gizzards.

We show in Figure 2.36 the plots of the evolution of the probe velocities and error of

the three tasks for one experiment. We can observe at the beginning of the experiment

that the only active velocity is the vy (force control). At time t ≃ 23s the system is paused

to select the VOI, and at time t ≃ 72s the process continues. Then, the center of mass

of the biggest stiff tissue is computed and the velocities vx and vz applied by the visual
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servoing task start to variate. The convergence is reached at t ≃ 150s when the probe has

been automatically aligned with the stiff tissue of interest (duck gizzard) by following an

exponential decrease of the visual error et as expected. A change of the orientation of the

probe is introduced by the user at time t ≃ 160s and we can see at this point the variation

of ωx , ωy and ωz that allow reaching the desired orientation (s∗
θ
= [ π

36 − π
36

π
18 ] rad). At

this time all the tasks are activated which lead us to keep the target in the center of the

ultrasound image.

2.7 Conclusion

We have proposed a new approach for automatic palpation in this chapter. We based our

methodology on three hierarchical tasks. The main task, the compression motion based

on the force variation, is required every moment for the elastography system. Then,

the secondary task, ultrasound probe centering with a target tissue, performs the visual

servoing-based approach to automatically center the probe’s FOV with the biggest stiff

tissue in a ROI or VOI. The third task, the probe orientation, is used to explore the tis-

sue targeted with the secondary task from different orientations of the probe. In the 2D

case, our system was also used to improve the quality of the elastogram. It is based on

the elastograms captured at different probe orientations using the third task. This third

task will be revisited in chapter 4, where the probe orientation will be controlled with a

haptic interface. The control system of the 2D case was designed to control the 3-DOF

of the ultrasound probe corresponding to the in-plane motions. We have also presented

an extended approach for the use of a 3D US probe allowing our system to perform real-

time 3D quantitative ultrasound elastography. It is based on a control scheme similar to

the 2D case but controlling the 6-DOF of a 3D motorized ultrasound probe in order to

consider the out-of-plane motions. The experimental results demonstrated the feasibil-

ity of the proposed concept. The experiments were performed on static tissues which

is not the case with the human body. However, next chapter will present an extended

dense approach to deal with the physiological motions and also with the control of the

out-of-plane motions with a 2D probe.
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Figure 2.36: Evolution through time of the 3D reference experiment. (a)-(d) evolution
of the errors and velocities during the experiment. (e)-(h) evolution of the pose of the
ultrasound probe during the centering of the object in the FOV with the 3D ultrasound
images at the top. The stiffest object (green color) is also overlaid in the 3D ultrasound
images. (i) probe orientation control of the ultrasound probe.
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CHAPTER3
ROBUST MOTION COMPENSATION

In the previous chapter, a palpation assistant system for ultrasound elastography was

proposed to automatically move a 2D or 3D ultrasound probe to maintain the visibility

of a stiff tissue of interest at the center of the FOV. This approach requires a processing

step to segment and compute the centroid of the stiff tissue which is then automati-

cally centered in the image by visual servoing. The system was designed for motionless

tissues, and it gives good results under small perturbations. However, the previous im-

plementation could not provide satisfactory output in case the tissue is moving since

perturbation motion generates large noises in the estimated elastogram. This is also

an important issue for a clinician when performing manual ultrasound elastography

by moving the probe with his hand. Therefore, the main objective of this chapter is to

present a method to estimate the strain map of a moving tissue, which was not possible

with the process previously described. We propose a new robotic solution that exploits

the intensity information of the 2D b-mode images. It is based on a tissue deformation

tracking algorithm and an automatic 6-DOF compensation of the perturbation motion

by ultrasound visual servoing.

In this chapter, a method for non-rigid motion estimation in 2D ultrasound images is

proposed to estimate the displacement map required to compute the tissue strain map.

For this, the intensity changes in the ultrasound images due to the force applied by the

probe are considered. Moreover, to estimate the strain map of a moving tissue, we pro-

pose to perform an automatic motion compensation using an ultrasound image-based

visual servoing that synchronizes the probe and tissue motions during the strain map

estimation process.

This chapter is divided in four sections. Section 3.1 introduces few works related
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to the tracking of deformable tissues. Then, the general principle of the visual dense

tracking approach is presented in Section 3.2. In the same section, deformable tracking

models and their relation with the strain map are presented. Afterwards, in Section 3.3,

the motion compensation of the ultrasound probe is introduced. A dense visual servoing

based on ultrasound b-mode images is elaborated to compensate the in-plane and out-

of-plane motions of a targeted tissue of interest. Experimental results obtained on a

moving abdominal phantom are presented and discussed in Section 3.4.

3.1 Related works

Image tracking has gained interest over the past 20 years in the medical image-

processing field. Image tracking is the process of aligning two or more images. Such

images can originate from a single imaging modality or from different modalities; they

can be taken from different patients to study the same organ, tissue or structure; or they

can be obtained from an acquisition through time, where temporal structural changes

are analyzed. Image tracking can extract valuable information that can be spread on

two or more images. Defining the transformation model that best aligns the structures

or tissues of interest present in the images is of the utmost importance. Deformable

transformations are capable of managing significant changes of biological structures.

Accordingly, deformable image tracking is a fundamental task in medical image pro-

cessing. Currently, there is a wide variety of techniques developed for medical imaging

tracking as presented in [1]. We briefly describe few works related to the tracking method

of deformable tissues that will be presented in the next section.

In heart surgery, the surface of a beating heart was tracked in stereoscopic images

using a thin-plate spline (TPS) deformation model [61] (see Figure 3.1).

Figure 3.1: Surface tracking of a beating heart [61]. Left and right images of the stereo
camera and the TPS surface approximation.

Similar methodology was presented to track the deformation applied to a soft tissue
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phantom from 3D ultrasound images [44]. In this work, a 3D non-rigid tracking algo-

rithm based on a thin-plate spline 3D deformation model was considered and a visual

servoing scheme was designed to automatically move the ultrasound probe to compen-

sate the rigid motion components of the tissue. Recently, an approach based on a mass-

spring-damper model combined with the dense information contained in a sequence of

ultrasound 3D images was proposed to track the deformation of liver tissues [63].

However, none of these works were applied to obtain the strain information of a mov-

ing tissue which is the goal of our work presented in this chapter.

3.2 Dense visual tracking

In Chapter 2, a geometrical-feature-based visual tracking approach was presented,

where the centroid of the stiffest tissue in a selected ROI was extracted from the elas-

togram using a segmentation algorithm. Unlike this previous approach, we propose here

to use directly the appearance of the b-mode image to perform a non-rigid visual track-

ing of the ROI containing the deformable tissue of interest. In addition, the elastogram is

estimated exploiting the output of the visual tracking process. The use of intensities, col-

ors and textures instead of geometrical features has been proposed in several works. Vi-

sual tracking based on image pixel intensities was introduced by Lucas and Kanade [46]

as an approach for image matching (registration) in stereo vision. Through the years,

image registration has been extended in several approaches. For example in [34], a tech-

nique for moving object detection was presented. A two-view approach for moving ob-

jects detection was introduced in [71]. The common factor of these works that are refer-

enced as dense registration techniques is the use of image templates as visual features.

One of these approaches is the photometric visual tracking technique that considers the

intensity of all pixels in the image registration process [33]. However, these dense reg-

istration approaches are computationally expensive due to the large quantity of pixels

to match. Nevertheless, an efficient optimization for direct image registration has been

presented in [8, 24].

The main advantage of dense image registration techniques is the suppression of

an image feature extraction step, therefore avoiding errors due to false detection or bad

segmentation in the image. Let us define It ∈ R
m×n and Ic ∈ R

m×n as the initial and

current image templates, respectively. The templates are composed of N = m ×n pixels.

Then, the process to match the pixel position of Ic with It is defined as:

p̂ = argmin
p

N−1∑

k=0
E (It (xk ), Ic (w (xk ,p))) (3.1)
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where w (x,p) warps the image point coordinates x using the transformation parameters

p and E is a similarity function.

3.2.1 Similarity measures

The similarity function E is the cost function to be optimized by finding the parameters

p and it is an essential part of the visual tracking process. E measures the similarity or

dissimilarity between two images. We present two similarity metrics that we consider in

this thesis.

3.2.1.1 Sum of squared difference (SSD)

The sum of squared differences (SSD) measures the difference between the pixel inten-

sities of a template image It and a current image Ic as,

SSD(Ic , It ) =
N−1∑

k=0

[
It (xk )− Ic (w (xk ,p))

]2
(3.2)

This function is simple and computationally efficient, which makes it a widely used

function in image registration [79]. However, SSD function lacks of robustness to inten-

sity changes and occlusions in the image. These are common occurrences in ultrasound

images when the probe is moving as illustrated in Figure 3.2.

(a) (b) (c)

Figure 3.2: Ultrasound images acquired after applying small motion to the probe.(a) ref-
erence image. (b)-(c) images acquired after small motion of the probe. (c) an oclussion
(shadow) at the right side of the image is present due to the lack of echogenic gel between
the probe and the tissue surface.

80



CHAPTER 3. ROBUST MOTION COMPENSATION

3.2.1.2 Sum of conditional variance (SCV)

To deal with issues as the ones presented in Figure 3.2, a more robust similarity measure

is required. In our work we propose to use the sum of conditional variance (SCV) [62],

which is robust to global illumination changes and that is expressed as follows:

SCV (p) =
N−1∑

k=0

[
Ît (xk )− Ic (w (xk ,p))

]2
(3.3)

where Ît is the image intensity adaptation of the template relative to the image inten-

sity conditions in the current warped image Ic (w (x,p)). The image template adaptation

is performed through the expectation operator E as Ît = E (Ic (w (x,p))|It (x)). Thus, the

adaptation of every gray level for the reference It is,

Ît (x) =
L−1∑

i=0
i

p It Ic (i , j )

p It ( j )
(3.4)

where L is the maximum gray level of the template image It and current image Ic . p It is

the probability density function of It and p It Ic is the joint probability density function of

It and Ic . These functions are computed as follows:

p It Ic (i , j ) = p It Ic (Ic (w (x,p)) = i , It (x) = j ) (3.5)

=
1

N

N−1∑

k=0
δ(Ic(w (xk ,p))− i )δ(It (xk )− j )

p It (i ) =
L−1∑

j=0
p It Ic (i , j ) (3.6)

where δ is a Dirac delta function such as δ(u) = 1 ⇔ u = 0.

3.2.2 Optimization

The selection of the SCV as a similarity function replaces E in Equation (3.1) as follows:

p̂ = argmin
p

N−1∑

k=0

[
Ît (xk )− Ic (w (xk ,p))

]2
(3.7)

The variation of the intensity values of Ît (x) with respect to the coordinates x is nonlin-

ear. Therefore, the Equation (3.7) is a nonlinear optimization, and we can solve it using

some iterative strategies. Nonlinear optimization iteratively updates the values of the

parameters p until convergence. A good performance of the optimization depends on

81



3.2. DENSE VISUAL TRACKING

Strategy Warp parameters increment Update rule

Forward ad-
ditional [46]

∆̂pl = argmin
∆pl

N−1∑

k=0

[
Icl

(w (xk ,pl +∆pl ))− Ît (xk )
]2

pl+1 = pl +∆pl

Direct com-
positional

∆̂pl = argmin
∆pl

N−1∑

k=0

[
Icl

(w (w (xk,∆pl ),pl ))− Ît (xk )
]2 w (x,pl+1)=

w (w (x,∆pl ),pl )

Inverse com-
positional

∆̂pl = argmin
∆pl

N−1∑

k=0

[
It (w (xk ,∆pl ))− Îcl

(w (xk ,pl ))
]2 w (x,pl+1)=

w (w−1(x,∆pl ),pl )

Table 3.1: Nonlinear optimization strategies. ∆̂pl is the increment of the parameters at
the iteration l .

the initialization of parameters. Table 3.1 presents three of the most used strategies to

solve the Equation (3.7).

Table 3.2 summarizes the advantages and drawbacks of the different optimization

strategies presented in Table 3.1. The iterative process of every strategy ends when SCV

is minimum or when l (iteration index) has reached Ni t (maximum iteration number).

Strategy
Convergence

efficiency
Advantages Disadvantages

Forward
additional

Low Simple approach Jacobian computed every
at iteration

Direct com-
positional

Medium Intuitive approach and
faster convergence than
forward additional ap-
proach

Jacobian computed every
at iteration

Inverse com-
positional

High Jacobian computed be-
fore iterations

Requires good knowledge
about the warp function w

Table 3.2: Features of nonlinear optimization strategies.

In our work, we select the inverse compositional approach due to the advantages

of efficiency with respect to the other strategies. This strategy helps us to converge in

less number of iterations. Since the nonlinear optimization is solved using an increment
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∆pl , we perform the first order Taylor expansion of It (w (xk ,∆pl )) as:

It (w (xk ,∆pl )) = It (w (xk ,0))+∇It
∂w

∂∆pl
∆pl , (3.8)

where ∇It ∈R
1×2 is the image gradient of It defined as ∇It =

[
∂It

∂x
∂It

∂y

]
. We assume that

w (xk ,0) is the identity warp [4], such that w (xk ,0) = xk . Therefore, the SCV (∆pl ) can be

defined as:

SCV (∆pl ) =
N−1∑

k=0

[
It (xk )+∇It

∂w

∂∆pl
∆pl − Îcl

(w (xk ,pl ))

]2

(3.9)

The goal of every l -iteration is to minimize the value of SCV (∆pl ), which can be

achieved by nullifying the gradient of SCV with respect to ∆pl as:

∂SCV (∆pl )

∂∆pl
= 2

N−1∑

k=0

[
∇It

∂w

∂∆pl

]⊤[
It (xk )+∇It

∂w

∂∆pl
∆pl − Îcl

(w (xk ,pl ))

]
= 0 (3.10)

We can obtain the change of the parameters for every iteration from Equation (3.10) as

follows,

∆pl =−J(∆pl )+
[
Îcl

(w (x,pl ))− It (x)
]

, (3.11)

where J(∆pl ) ∈ R
N×Np , defined in Equation (3.12), is the Jacobian matrix with Np as the

number of parameters in the warp function w . Îcl
(w (x,pl )) and It (x) are row vectors of

N -elements containing every pixel in the images Îcl
and It , respectively.

J(∆pl ) =∇It
∂w

∂∆pl
(3.12)

We have defined how to solve iteratively a dense visual tracking problem as presented

in the Equation (3.7). This solution is invariant to global illumination changes due to the

robustness of the SCV similarity metric. Next, we define the warp function w and how to

select it according to the complexity of the image registration problem.

3.2.3 Warp transformation

The warp function R
2 →R

2 : x′ = w (x,p) is a function that maps a point or set of points x

to a new location x′ by applying a geometric transformation, as illustrated in Figure 3.3.

The parameters p in the warp function depend on the type of geometric transfor-

mation to use. These transformations are classified in two groups, rigid and non-rigid

transformations. The most commonly used transformations in visual tracking are briefly

explained in the next section.
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Figure 3.3: Arbitrary warp transformation applied to a set of points x.

3.2.4 Rigid transformations

Geometric rigid transformations preserve the distance between points. These trans-

formations are based on Euclidean geometry and include rotations and translations.

A rigid transformation in 2D can be defined as a homogeneous transformation matrix

T ∈ SE (2)1:

T(ψ, tx , ty ) =

[
R2×2(ψ) t2×1(tx , ty )

01×2 1

]

(3.13)

where R ∈ SO(2) and t ∈ R
2 are the rotation matrix (2× 2 size) and the translation vec-

tor (2× 1 size) respectively. These two elements of the rigid transformation matrix are

formally defined as:

R(ψ) =

[
cos(ψ) −sin(ψ)

sin(ψ) cos(ψ)

]
(3.14)

t(tx , ty ) =

[
tx

ty

]
(3.15)

The rigid transformation, defined in Equation (3.13), is applied to any pixel with co-

ordinates x = [x y]⊤ to obtain the new pixel coordinates:

(
x′

1

)

= T(ψ, tx , ty )

(
x

1

)

(3.16)

This leads us to obtain the warp function w to compute the transformed coordinates

x′ = [x′ y ′]⊤ as,

x′ = w (x,p)=

[
x cos(ψ)− y sin(ψ)+ tx

x sin(ψ)+ y cos(ψ)+ ty

]
(3.17)

where p = [ψ tx ty ]⊤ are the parameters of the warp function.

1 The special Euclidean group SE(2) = SO(2)⋉R
2 with SO(2) as the special orthogonal group.
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Once we have defined the function w , we can estimate the Jacobian defined in

Equation (3.12) as:

J(∆pl ) =∇It

[
−x sin(ψ)− y cos(ψ) 1 0

x cos(ψ)− y sin(ψ) 0 1

]
(3.18)

where J(∆pl ) ∈R
N×3 is the Jacobian that estimates the parameters variation in the itera-

tive process to solve the image registration problem (Equation (3.11)) with a rigid trans-

formation.

In order to evaluate the performance of every transformation model presented in

this chapter, we implemented the visual tracking algorithm in C++ in a Linux notebook

(Intel i7 CPU @2.1 GHz). For this evaluation, the convergence conditions are the maxi-

mum number of iterations Ni t set to 50 or the minimum SCV value set to 1×10−6. Then,

we acquired a sequence of 500 ultrasound b-mode images during the application of the

palpation motion task, presented in Section 2.2, and the presence of lateral in-plane mo-

tion also applied with the ultrasound probe. Due to palpation motion, deformations are

produced along the image sequence. We tested the rigid transformation with this image

sequence using a ROI as shown in Figure 3.4a delineated in green color. This ROI was

tracked through the image sequence until the last image as shown in Figure 3.4. The

performance of the dense rigid tracking was evaluated with the image absolute error,

eabs =
‖e⊤e‖

N
, (3.19)

where e = Îc (w (x,p))− It (x). The algorithm converged after 29 iterations and the value

of eabs reached 9.70×10−7. It is well known that the palpation motion introduces defor-

mations that are non-rigid, therefore, it is likely that a rigid transformation will not be

sufficient for this visual tracking problem.

(a) Initial image. (b) Image 500 (c)
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Figure 3.4: Example of performance in dense rigid tracking. (a) initial image (i = 0) of an
image sequence (green rectangle is the region to be tracked). (b) last image (i = 500) in
the sequence. (c) template image from (a) at top and warped image from (b) at bottom.
(d) error image computed from Îc (w (x,p))− It (x).
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3.2.5 Non-rigid transformations

The compressions required in the elastography generate deformations in the ultrasound

images which cannot be approximated using rigid transformations. Therefore, it is nec-

essary to introduce non-rigid transformations as warp functions. These transformations

are commonly used when the image template is distorted or deformed. Moreover, non-

rigid transformations are classified as linear and non-linear. Linear transformations are

used for image distortion, which can come from the change in the normal of a planar ob-

ject in an image sequence. Image distortions also appear when a planar object is viewed

from a different point of view in relation to the camera perspective. The most well-

known linear transformations are the affine and the projective transformations. How-

ever, the projective transformation is not suitable for the ultrasound images, since the

image is not reconstructed from a perspective model as images from a camera. Non-

linear transformations are used when deformation is applied to the image template in

an image sequence. For example, in an image sequence where an elastic material is de-

formed by an external force, a non-linear transformation should be defined to track the

image template through the sequence.

Next, we describe the most common linear transformation, the affine transform. Af-

ter, we detail the free-form deformation (FFD) and the TPS as non-linear transforma-

tions for image deformation. For every transformation, the warping function and the

Jacobian (required for the visual tracking process) are formulated. In order to present

a comparative of the image registration process, we use the same ultrasound image se-

quence presented for the rigid tracking case. This image sequence was acquired with

our experimental setup by applying deformation on the phantom with the ultrasound

probe.

3.2.5.1 Affine

The main characteristic of an affine transformation is that it preserves parallels lines in

the image after being applied. This transformation combines the rigid transformation

motions, along with scale and shear in a set of six parameters p. Basically, four parame-

ters of p modify rotation, scale and shear of a pixel coordinate x = [x y]⊤. The remain-

ing two parameters are directly related to the translation of x. An affine transformation

can be define as a matrix as follows,

A(p) =

[
p0 p1 p2

p3 p4 p5

]
(3.20)
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where p = [p0 p1 p2 p3 p4 p5]⊤ is the vector containing the parameters of the

affine transformation with Np = 6.

The affine transformation A is applied to any pixel coordinate x to obtain the trans-

formed coordinate x′. If we use the augmented version of A expressed in homogeneous

coordinates, we can then compute the transformed coordinate as:

(
x′

1

)
=




p0 p1 p2

p3 p4 p5

0 0 1





(
x

1

)
. (3.21)

The warp function w that maps x → x′ using the affine transformation is then ex-

pressed as,

x′ = w (x,p)=

[
xp0 + y p1 +p2

xp3 + y p4 +p5

]
(3.22)

in order to be adapted to the image registration process. The resulted Jacobian of the

Equation (3.12) can be then expressed as:

J(∆pl ) =∇It

[
x y 1 0 0 0

0 0 0 x y 1

]
(3.23)

In the dense affine registration process, the Jacobian J(∆pl ) ∈ R
N×6 allows to esti-

mate the parameters variation in the iterative process to solve the image registration

(Equation (3.11)).

We show in Figure 3.5 an example of the performance of the dense registration

process using the affine model. For comparative purposes of the warp functions per-

formance, we use the same image sequence as the one used for rigid registration. In this

case, the image absolute error after 31 iterations was 9.23×10−7 which is better than the

error obtained with the rigid transformation.

3.2.5.2 Free-Form deformation

Free-Form deformation (FFD) is a common technique in computer graphics and anima-

tion design. The main concept of FFD relies on the use of hierarchical transformations

to deform an object [5]. The transformations include twisting, bending, tapering and

stretching of the object. A most generalized approach for FFD was presented in [75]

allowing to apply global and local deformations to surfaces of any degree (e.g., plane,
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(a) Initial image (b) Image 500 (c)
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Figure 3.5: Example of the performance in dense affine tracking. (a) initial image (i = 0)
of an image sequence (green rectangle is the region to be tracked). (b) last image (i = 500)
in the sequence. (c) template image from (a) at top and warped image from (b) at bottom.
(d) error image computed from Îc (w (x,p))− It (x).

quadric or parametric). This generalization was performed by using Bernstein polyno-

mials to design the spline functions. In the context of image registration, FFD has been

used to match breast MRI images where deformations are present [64]. More recently,

image matching with FFD has been also improved in terms of computational cost [11]

using an intuitive feature-driven framework.

FFD is one of the most common transformation models in medical imaging, where a

rectangular grid of Np = Npx ×Npy control points are placed on the template image. The

displacement of the control points deforms the image using the products of univariate

splines. The deformation of the image using FFD is obtained by applying the warping

function:

w (x,p)=
Np y∑

j=1

Npx∑

i=1
pk Bi (x)B j (y), (3.24)

where pk ∈ R
1×2 is the k-th control point with index number k = ( j −1)Npx + i and Bi is

the basis function of the cubic B-splines:

Bi (x) =






B1(x) = x̂3

6 if x ∈ [ki ,ki+1]

B2(x) = −3x̂3+3x̂2+3x̂+1
6 if x ∈ [ki+1,ki+2]

B3(x) = 3x̂3−6x̂2+4
6 if x ∈ [ki+2,ki+3]

B4(x) = −x̂3+3x̂2−3x̂+1
6 if x ∈ [ki+3,ki+4]

0 otherwise

(3.25)

with x̂ =

{
x−kl

δ |x ∈ [kl , kl+1], δ=∥ kl+1 −kl ∥

}
. kl is the l-th control point.

A generalization of the Equation (3.24) can be expressed as

w (x,p)=ψ⊤P, (3.26)
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where ψ ∈ R
Np and P ∈ R

Np×2 are the vectors of the basis functions and control points

respectively:

ψ⊤
= [B1(x)B1(y) . . . BNpx

(x)B0(y) . . . BNpx
(x)BNp y

(y)] (3.27)

P = [p1 . . . pNp
] (3.28)

One big advantage of the Equation (3.26) is that the vector of the basis functions can

be precomputed for the pixel coordinate x. This helps us to improve the computational

cost of this warping function. Therefore, the deformation of the current image depends

on the variation of the parameters p. Moreover, the computational cost also increases

with a large number of control points.

As in previous transformations, we define the Jacobian of the warp function required

for the image registration process. This one is expressed as,

JF F D =
∂w

∂∆p
=

(
ψ⊤ 01×N p

01×N p ψ⊤

)
(3.29)

The Jacobian JF F D ∈R
2×2Np helps us to solve iteratively the image registration process of

the Equation (3.11) using the FFD warp function. We show in Figure 3.6 the performance

of the dense visual tracking system using FFD transformation applied in the same image

sequence as the previous transformations. In this case a 5×5 grid of control points was

used. The image absolute error after 50 iterations was 4.69×10−7, which is a better result

than the previous transformation models. This improvement is due to the FFD transfor-

mation fitting better the image template to the deformation presented in the image.

(a) Initial image (b) Image 500 (c)
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Figure 3.6: Example of the performance in dense FFD tracking. (a) initial image (i = 0) of
an image sequence (green rectangle is the region to be tracked). (b) last image (i = 500) in
the sequence. (c) template image from (a) at top and warped image from (b) at bottom.
(d) error image computed from Îc (w (x,p))− It (x).
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3.2.5.3 Thin-plate splines

This nonlinear transformation was suggested for image registration [32], and it is based

on the analogy of how a metallic thin plate is deflected by normal forces at discrete

points. Thin-plate splines (TPS) have also been used for dense image tracking in [26]

and [11]. TPS warping function is a combination of an affine transformation and defor-

mation parameters (control points) as follows:

w (x,p)=

(
a0 a1

a3 a4

)
x+

(
a2

a5

)
+

Nc−1∑

k=0

(
κk

x

κk
y

)
φ(d(x,ck )) (3.30)

where Nc is the number of control points c, κk
x and κk

y are the weights of each k control

point along the x and y axes respectively. These weights represent the force amplitude

applied at the control point position. φ is the thin-plate kernel defined as,

φ(x) = x2 l og (x)

2
and (3.31)

d(x,y) is the euclidean distance between the points x and y.

The parameter vector of the warping function p of dimension 2Nc+6 is expressed as:

p⊤
=

(
a0 a1 a2 a3 a4 a5 κ⊤

x κ⊤
y

)
(3.32)

where the first six parameters are the parameters of the affine transformation. κx and

κy are vectors (Nc elements) containing the weights κk
x and κk

y respectively:

κ⊤
x =

(
κ0

x . . . κ
Nc−1
x

)
(3.33)

κ⊤
y =

(
κ0

y . . . κ
Nc−1
y

)
(3.34)

In the registration process, the positions of the control points c are initially distrib-

uted in an equidistant grid inside the image. Then, the values of the forces applied at

every control point are changed to match a deformed image with a template image. We

illustrate in Figure 3.7 how the TPS warp function can be adapted to deform the template

image.

Image registration with TPS is commonly performed by changing the parameters p

to adjust the current image, in an image sequence, with the image template. The opti-

mization requires the Jacobian of w , as we shown in the previous transformations, which
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Figure 3.7: TPS image transformation. Image deformation using the TPS warp function.
Red dots represent the location of the control points.

can be obtained as:
∂w

∂∆p
=

(
JA Jκ

)
(3.35)

where:

JA =

(
x y 1 0 0 0

0 0 0 x y 1

)
∈R

2×6,

Jκ =

(
φ 0 · · · 0

0 · · · 0 φ

)

∈R
2×2Nc ,

φ =

(
φ(d(x,c0)) · · · φ(d(x,cNc−1))

)
,

x and y are the pixel coordinates in the image It .

The Jacobian J(∆pl ) ∈ R
N×(6+2Nc ) can be obtained through Equation (3.12). This Ja-

cobian is employed to solve the image registration system of the Equation (3.11) using

the TPS transformation. We show in Figure 3.8 the performance of this process using the

same example as the one tested with the previous transformations. This figure shows

the results of the dense tracking process using the TPS transformation with 5×5 control

points. The image absolute error after 21 iterations was 1.33×10−7. This result is better

than the result obtained by the FFD transformation. In addition, TPS reaches the conver-

gence in the image registration process in less number of iterations than the FFD image

registration.

The performance of the registration process using the different warp functions pro-

vides a perspective to select the best function for our application. Due to the mechanism

of the elastography using the compression of the tissue, the ultrasound image tends to

present deformation. The non-linear warp functions perform better than the other func-

tions under deformations. Therefore, from our performance comparison study of the

different tested approaches, summarized in Table 3.3, we propose to choose the TPS as
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(a) Initial image (b) Image 500 (c)
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Figure 3.8: Example of the performance in dense TPS tracking. (a) initial image (i = 0) of
an image sequence (green rectangle is the region to be tracked). (b) last image (i = 500) in
the sequence. (c) template image from (a) at top and warped image from (b) at bottom.
(d) error image computed from Îc (w (x,p))− It (x).

the warp function in our visual tracking system due to its faster convergence and min-

imum absolute error. The computational time is also a major factor considered in our

decision, since our system requires real-time visual tracking capability.

Transformation
Average

Iterations
number

Average
convergence

time

Minimum
absolute error

Rigid 29 ∼ 17ms 9.70×10−7

Affine 31 ∼ 21ms 9.23×10−7

Free-form deformation
(FFD)

50 ∼ 50ms 4.69×10−7

Thin-plate splines (TPS) 21 ∼ 41ms 1.33×10−7

Table 3.3: Performance evaluation of the transformations in the visual tracking system.

3.2.6 Strain estimation based on optical flow

Strain estimation is a process that depends on the motion estimation of the elements

contained in the ROI to generate an elastogram. From the TPS registration, we can ob-

tain the displacement mapsU (x, y) and V (x, y) (lateral and axial directions respectively).

Let us define x′ = w (x,p) as the corresponding coordinates of x after the tissue defor-

mation. For every x we have a displacement vector D(x) = x′−x. Then, we can obtain

U (x) and V (x) as the lateral and axial components of the displacement vector D(x) (see

Figure 3.9).

Assuming that we have at least a grid of 3 × 3 control points, then the elastogram

ε(x, y) can be computed as in Section 2.2.2.2 by convolving a least-squared (LSQ) strain
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Figure 3.9: Displacement map obtained from the deformation of the ROI. x and x′ repre-
sent respectively the coordinates of one pixel in It and its new coordinates in the current
image Ic after tissue deformation. D(x) is the vector displacement from x to x′.

filter with the axial displacement map V (x, y). Therefore, the elastogram ε(x, y) can be

computed using the information from the deformable registration.

3.3 Motion compensation

We have developed a method to track a template image (in our case the ROI) when the

tissue is deformed. Since the elastography process requires the compression of the tis-

sue, deformable registration is essential to track the ROI. However, some of the physio-

logical motions cause the ROI to go outside of the image plane when using a 2D probe.

This leads to a failure of the image tracking. Therefore, to solve this issue, we propose to

use a control system that uses prior information of parallel images planes to the plane

containing the ROI. This control system helps us to fully control the 6-DOF of the ultra-

sound probe in order to always maintain the visibility of the ROI.

Figure 3.10 shows the workflow of our proposed method. The main problem pro-

duced by a moving object is the generation of noise in the elastogram, due to the intro-

duction of non-axial motion. To counter this, our system combines ultrasound dense

visual servoing, force control and the non-rigid motion estimation to compute the elas-

togram of moving tissue presented in last section. In the next subsections we describe

the elements of the proposed control system featured in Figure 3.10.

Preserving the position of the ROI stable even when the tissue is moving is essential

for the right estimation of an elastogram. Moving tissue can cause motions not only in-

plane but also out-of-plane as emphasized in [40] (see Figure 3.11). This tissue motion

can be compensated by controlling the motion of a 2D US probe using the intensity-

based ultrasound visual servoing presented in [50, 51].
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Figure 3.10: Proposed methodology to obtain the strain map of a moving tissue. This
diagram shows the steps to estimate the elastogram from two ROIs in the ultrasound
images It and Ic . These images are the reference and current images respectively. Iw

represents the image Ic modified with a non-rigid transformation (w ) that is performed
from the motion estimation in order to reduce the absolute difference with It . [U,V] are
the lateral and axial displacement maps computed between Ic and It after the motion
estimation.

Figure 3.11: Possible motions with a 2D US probe.
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3.3.1 6-DOF motion compensation by dense visual servoing

We propose to use a similar visual servoing approach to the one presented in [50] to con-

trol a robotic arm holding the probe in order to automatically compensate the relative

non-axial motions between the probe and the moving tissue of interest to analyze. Non-

axial motions correspond to one lateral and one rotational motions in the US plane and

one lateral and two rotational motions out of the US plane (see Figure 3.11).

In [50], a visual servoing method that uses the intensity information of the pixels in-

side a ROI has demonstrated the feasibility to control the 6 DOF of a 2D ultrasound probe

for compensating both in-plane and out-of-plane rigid motions. However, in this previ-

ous work the tissue was assumed rigid without considering deformation due to internal

physiological motion or the presence of mechanical compression. To deal with the soft

tissue deformations, we propose to improve the method of [50] by using the non-rigid

motion estimation algorithm presented in Section 3.2.5.3

We briefly recall the principle of the ultrasound dense visual servoing approach [50].

The aim is to control the probe velocity v expressed in the frame Fcp (see Figure 2.5).

The visual features vector, s, used in this control scheme contains directly the intensities

of the pixels inside a ROI such as:

sI = (I1,1, . . . , IM ,N ) (3.36)

where Iu,v is the intensity in gray level for the 2D pixel coordinates (u, v) in the US image.

The interaction matrix LIu,v ∈ R
1×6 that relates the variation of the pixel intensity to

the probe velocity v, such that Iu,v = LIu,v v, is given by:

LIu,v =

[
∇Ix ∇Iy ∇Iz y∇Iz −x∇Iz (x∇Iy − y∇Ix )

]
(3.37)

where ∇Iu,v = [∇Ix ∇Iy ∇Iz ] corresponds to the 3D image gradient associated with

the pixel (u, v). The three components, ∇Ix =
∂Iu,v
∂x , ∇Iy =

∂Iu,v
∂y and ∇Iz =

∂Iu,v
∂z are ob-

tained with 3D derivative filters (see Figure 3.12), as performed in [50], applied to a thin

volume composed of 5 parallel slices captured by moving the probe during an initial

procedure before launching the visual servoing. The values of x and y are the metric

coordinates of the pixel (u, v) in the image obtained from the intrinsic parameters of the

probe: (
x

y

)
=

(
sx (u −ucp )

sy (v −vcp )

)
(3.38)
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where (sx , sy ) are the pixel width and height and (ucp , vcp ) are the pixel coordinates of

the origin of the contact point frame, Fcp , in the ultrasound 2D image.

Figure 3.12: Spatial derivative filters. Every row corresponds to the three derivative filters
applied to the images I f 1, I f 0, I0, Ib0 and Ib1. The subindex b and f mean back and front
slice to the current image I0 respectively.

The definition of the interaction matrix in (3.37) is related to one pixel. The inter-

action matrix Ls ∈ R
mn×6 that associates the intensity variation of all the pixels in the

ROI (visual features) to the probe velocity v is then obtained by stacking all the m ×n

interaction matrices LIu,v for every pixel as:

Ls =

(
LI1,1 . . . LIm,n

)⊤
(3.39)

In order to automatically compensate the moving tissue, we define the visual error
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as es = sw I − s∗I , and we establish the desired visual error variation as ė∗s = −λs es with

λs being the visual control gain. Unlike [50], here sw I = Ic (w (x,p)) is the current im-

age warped with the TPS warping function using the current parameters p. This major

improvement allows the visual servoing approach to be robust to the presence of the

non-rigid motion induced by the tissue deformation. The desired pixel intensities vec-

tor corresponds to the intensities value of the pixels contained in the ROI of the initial

image It , s∗I = (It1,1 , . . . , Itm,n ). Then, the control law applied to the probe for performing

the automatic motion compensation is provided by:

vs = L+
s ė∗s . (3.40)

3.3.2 Control fusion

In order to fuse the automatic motion compensation by visual servoing and the force

control (presented in Chapter 2 Section 2.2.1), we can define a control law for the probe

velocity v using the redundancy control framework (presented in Chapter 2 Section 2.5).

We set the force control law as the highest priority task, remaining as in Equation (2.6).

Then, the secondary task that corresponds to the visual servoing can be expressed as:

vs = (Ls P f )+(ė∗s −Ls v f ) (3.41)

where P f = I−L+
f

L f is the projector operator onto the null space of L f . I is the identity

matrix of size 6.

Finally, the general control law that allows to control the 6-DOF of the 2D probe is

given from (2.6) and (3.41) as:

v = v f +vs (3.42)

This control fusion allows to control the 6-DOF of the ultrasound probe in order to

automatically compensate the motions and keep the ROI always visible. In the next sec-

tion we present the experimental results of the proposed approach that makes possible

the estimation of the elastogram of a moving tissue.

3.4 Experimental results

We present the results obtained with the same experimental setup proposed in Chap-

ter 2. The images from the scanner were sent to the workstation at a rate of 40 FPS
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(frames per second). Force control was performed at higher frequency (200 Hz). We

developed a C++ software with a graphical user interface (GUI), and we used ViSP [47]

for the communication with the robot.
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Figure 3.13: Evolution through time of the reference experiment. (a) to (d) show the
evolutions of the velocities, measured force and visual error during the experiment.

The experiments were performed on the ABDFAN ultrasound phantom. Now, we

describe the complete process for one experiment. Initially, the probe was positioned

above the phantom without contact. Then, through the GUI, we enabled the force con-

trol without oscillation (F0 =5 N and ∆F =0 N), and we can see that the measured force

value reaches the desired force in the strip (light gray background) of the plot in the

Figure 3.13c.

Once we have selected a ROI in the ultrasound image, a grid of 5×5 control points

is placed inside the ROI as shown in Figure 3.14e, and the oscillatory force variation is

activated (∆F =2 N) with the soft tissue motion estimation process. The strain map is

estimated and displayed in real time (see Figure 3.14i). Then, a thin volume composed

of five parallel ultrasound images is acquired to obtain the 3D image gradient (during

the period of time with light gray background in Figure 3.13a) just before launching the

automatic soft tissue motion compensation by visual servoing.
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(a) Initial state (b) Rotation along y-
axis

(c) Perturbation at
the bottom of the
phantom

(d) Perturbation
at one side of the
phantom

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.14: Perturbations introduced to the phantom. (a) to (d) show some of the
states during the experiment. (e) to (h) show the b-mode images observed at these states.
(i) to (l) show the strain maps for every state.

The curves in the Figure 3.13 show the evolution through time of the experiment,

where we manually apply to the abdominal phantom small and large motions to test

the robustness of the system to perturbation motions. Some states during the temporal

evolution of the experiment are shown in Figure 3.14, where we can observe in the first

row (images (a) to (d)) the kind of manual motion applied (maximum values for linear

and angular motions applied of ∼ 50mm and ∼ 20deg, respectively) to the phantom that

were automatically compensated by the visual servoing. In the same figure, we show

for every state the corresponding b-mode image with the grid of control points (images

(e) to (h)) and the resulting strain maps (images (i) to (l)). The color representation of

the strain maps indicates in red the soft tissue and in white the hard tissue. We can

easily observe in the brightest region of the obtained strain maps that a hard tissue target

corresponding to an artificial cyst always remains visible in the center of the elastogram

even when the phantom is moving.

Figure 3.15 shows three elastograms obtained under different conditions. In

Figure 3.15a, the strain map has been estimated using only oscillatory force control with-

out the automatic motion compensation when the phantom was motionless. We can see
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(a) (b) (c)

Figure 3.15: Strain maps obtained under the following conditions: (a) Oscillatory force
control active, no perturbation motion applied. (b) Out-of-plane perturbation motion
applied and motion compensation disabled. (c) Out-of-plane perturbation motion ap-
plied and motion compensation activated.

that the cyst is very visible as opposed to the elastogram presented in Figure 3.15b where

a perturbation motion was applied to the phantom without activating the automatic

compensation by visual servoing. It is clear that in this case the elastogram estimation is

perturbed and can not provide any useful information. Figure 3.15c shows the obtained

elastogram when the phantom is moving and the automatic motion compensation by

visual servoing is activated. This last test demonstrates the efficiency of our approach

since the cyst is very visible and similar to the case where the phantom was motionless.

3.5 Conclusion

Physiological motions are always present in real tissue making it necessary to consider

motion compensation in the design of our robotic-assisted system for elastography. We

have encountered several challenges to obtain the elastogram of a moving tissue. First,

since the elastogram computation depends on the axial motion estimation between the

pre- and post-compression states, a large lateral motion causes wrong measurements

in the elasticity of the tissue. The process presented in Chapter 2 which includes a block

matching algorithm (BMA) and an optical flow (OF) algorithm for motion estimation can

deal with small lateral motions introduced to the tissue. However, it does not consider

large motion perturbations in the tissue when using a 2D probe, neither it can deal with

out-of-plane motions. On the other hand, the system using a 3D probe, also presented

in Chapter 2, takes into account in- and out-of-plane motions in the robotic centering

task. However, the slow acquisition rate of the volumetric information makes the system

fail when fast motions are induced to the tissue. These reasons lead us to the design of a

robust approach for motion compensation.

In this chapter, we use the 2D ultrasound probe to reach a faster acquisition rate

than with the 3D probe, in order to be reactive to fast motion introduced to the tissue.
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Contrary to the approach presented in Chapter 2, we consider the b-mode image for

our visual tracking process instead of the RF signals. This makes the process two times

faster, since the visual tracking does not require two acquisitions of RF data. The visual

tracking system presented here was tested with several dense approaches considering

an image template as our ROI to estimate the elastogram. Rigid and non-rigid transfor-

mations were implemented to evaluate the performance of our visual tracking system.

This also demonstrated that the sum of conditional variance (SCV) is robust to inten-

sity changes usually observed in ultrasound images. The thin-plate splines (TPS) trans-

formation was selected due to its fast performance with respect to the other transfor-

mations evaluated (rotation-translation, affine and free-form deformation transforma-

tions). TPS transformation uses control points placed inside of the ROI and then com-

putes the displacement of the points due to the deformation of the tissue reflected in the

ultrasound image. The use of the control point displacements that are estimated by the

proposed non-rigid dense visual tracking allows us to avoid the axial motion estimation

from the pre- and post-compressed RF signal. However, the palpation motion task is

still required to generate a slight deformation of the tissue along the axial direction. In

addition, our approach uses the b-mode image ROI in a dense visual servoing approach

that automatically moves the ultrasound probe to compensate the in-plane and out-of-

plane motions of a moving tissue using the 2D ultrasound probe. This process considers

the information of five parallel images captured at the initial position of the probe in

order to estimate the 3D image gradient that is needed in the control law for compensat-

ing both the in-plane and out-of-plane tissue motions. Preliminary ex-vivo results have

demonstrated the feasibility to estimate the strain map of a moving tissue.
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CHAPTER4
TELEOPERATION AND HAPTIC

FEEDBACK BASED ON ELASTOGRAM

The term teleoperation refers to a process performed at a distance. It comprises a robotic

system where a human operator controls a remote robot. Teleoperation has been used in

applications where close manual operation is hazardous or where access is limited (e.g.,

nuclear waste manipulation, underwater exploration). The first teleoperation system

was designed to handle nuclear material in 1940 [91]. Since the 1990s the use of teleop-

eration for medical purposes began to appear along the concept of computed-assisted

surgery. The first teleoperated system related to this field was the ZEUS surgical robot

(Computer Motion, Inc.) developed in 1995 [41]. This system comprises three robotic

arms mounted on a table, one holding an endoscope which provides a view of the in-

ternal operating field, and the others holding surgical instruments. The robotic arms are

controlled by the surgeon through a console. Currently, ZEUS is discontinued and the da

Vinci surgical system (Intuitive Surgical, Inc.) is the most widely used robotic system for

telesurgery in hospitals. The da Vinci surgical system provides to the surgeon a console

that renders force feedback and 3D vision of the internal operating field. The current

version of the da Vinci system is equipped with four robotic arms with one holding the

camera and the others actuating the surgical instruments. Force feedback is provided

to the surgeon via the joysticks of the console when the instruments are in contact with

the tissues. Usually, the force feedback is associated with the name of haptic feedback

and its rendering is performed at a higher frequency than the visual feedback in order to

provide a responsive interface to the user [13]. Such haptic feedback allows the surgeon

to increase his perception of the scene and it is therefore a functionality of great interest

to facilitate the execution of the intervention. For the same reason, we propose in this

chapter to provide a haptic feedback functionality to our robotic palpation system.
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We develop hereafter an approach that will provide a force feedback to the examiner

from the estimated strain map. Indeed, our objective is to give the examiner the abil-

ities of feeling the rigidity of a tissue while visualizing its elastogram with the use of a

haptic device. First, the basic concepts of haptic feedback are introduced in Section 4.1.

In Section 4.2, the design of the system that translates the elastogram into force feed-

back is presented. Afterwards, in the same section, a method to remotely control the

ultrasound probe held by the robot using a haptic device is described. In Section 4.3, re-

sults obtained from experiments performed on the abdominal phantom are presented.

Finally, Section 4.4 concludes this chapter.

4.1 Haptic feedback

The sense of touch is used to perceive and explore the world, helping us to identify ob-

jects or warning us when touching something dangerous. There are two types of force

feedback when making physical contact with an object, kinesthetic and tactile. The

kinesthetic feedback is the perception of the internal status of the body. On the other

hand, tactile feedback is the response that allows us to feel the material or texture of any

object. The combination of these two feedbacks facilitates the adjustment in the config-

uration of the body to interact with the object. For example, the configuration adopted

with a hand to hold something lightweight such as a cotton ball is not the same as the

configuration to hold a ceramic mug.

In robotics, the haptic feedback is commonly associated with the two types of force

feedback used to explore an object by hand. A wide variety of devices have been de-

signed to emulate the kinesthetic and tactile force feedbacks with the aim of feeling vir-

tual objects. Those devices can be easily identified by their structure: the kinesthetic

haptic devices are usually grounded while the tactile ones are wearable (see Figure 4.1).

Currently, the most common haptic devices are the kinesthetic kind, which can be classi-

fied by their configuration: manipulandum, grasp, and exoskeleton (see Figure 4.2). The

manipulandum configuration involves all grounded devices with 3 to 6 DOF. Grasp con-

figuration concerns the devices simulating grasping interaction at the user’s hand. The

exoskeleton configuration is associated with devices adapted to the user’s body, provid-

ing forces at the joints.

In this thesis, we use the Virtuose 6D (Haption S.A.) shown in Figure 4.3. This de-

vice is a kinesthetic haptic device with a manipulandum configuration (referred on the

next sections as haptic device) with 6 DOF. It also has the capability of applying a 6-DOF

force feedback to the user, three translational forces (maximum force of 31N) and three
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(a) Kinesthetic haptic feedback (b) Tactile haptic feedback

Figure 4.1: Types of haptic force feedback.

(a) Manipulandum (b) Grasp (c) Exoskeleton

Figure 4.2: Configurations of kinesthetic haptic device.

rotational forces (maximum torque of 3.1Nm).

Figure 4.3: Virtuose 6D (Haption S.A.). Haptic device used in this thesis work.

Kinesthetic haptic devices are also classified in impedance and admittance types.

The impedance type devices are the most common force feedback devices (see

Figure 4.4). The input of the impedance type device is the motion applied by the user

to the kinesthetic haptic device and the output is a force feedback. On the other hand,

the admittance type devices have as input the force applied by the user to the kinesthetic

haptic device and, as output, the user feels motion (see Figure 4.5). Admittance type de-

vices are not as common as the impedance ones. In our case, the Virtuose 6D haptic

device can be configured as both types (impedance or admittance), but we adopted the

impedance configuration in order to be compatible with most of the similar haptic de-

vices.
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Figure 4.4: Workflow of the impedance feedback. User applies motion to the haptic de-
vice and obtains force as feedback.

Figure 4.5: Workflow of the admittance feedback. User applies force to the haptic device
and receives motion as feedback.

106



CHAPTER 4. TELEOPERATION AND HAPTIC FEEDBACK BASED ON
ELASTOGRAM

In the next section, we present the design of our robotic system to provide haptic

force feedback estimated from an elastogram acquired in real-time. The system allows

the teleoperation of a 6-DOF robot, actuating an ultrasound probe (as shown in previous

chapters) with a haptic device that is also used to provide force feedback rendered by the

elastogram.

4.2 Haptic force feedback from elastogram

The use of a haptic device allows us to move a virtual probe within a virtual representa-

tion of the environment. The location of the virtual probe can be modified by physically

manipulating the haptic device, generating a force feedback. To compute the output

force, the algorithm transforms the motion into a force value. For example, if the vir-

tual probe is positioned at the middle of an empty container or box, the force feedback

would be null. However, if the position of the virtual probe is displaced to the location of

any wall of the container, then the force would be estimated based on the strength of its

material. This example provides an idea on how to translate the location of the virtual

probe into haptic force feedback.

We consider the virtual probe as a virtual region located at the center of the ROI in

the ultrasound image. The virtual probe moves according to the haptic device motion,

implying that the ROI is also moving. Next, we present the development of a new ap-

proach to estimate the force feedback based on the location of the virtual probe. We also

present a teleoperation system to position the ultrasound probe according to the hap-

tic’s motion. Figure 4.6 shows a short block diagram of the robotic system proposed that

will be developed in the following sections. Two operational modes are presented in this

block diagram: impedance haptic control and teleoperation control. The haptic control

mode uses the elastogram in a ROI of the ultrasound image to estimate the force feed-

back that will be applied to the haptic device as we will describe in Section 4.2.1. On the

other hand, the teleoperation control mode applies the motion introduced to the han-

dler of the haptic device into the ultrasound probe as we will describe in Section 4.2.3.

4.2.1 Force estimation from elastogram

The diagram of the proposed process to estimate the force based on the elastogram is

shown in Figure 4.7. First, the elastogram is defined as a matrix of strain values E ∈R
M×N

and the access to any element (i , j ) is done through the function ε(i , j ). The elastogram is
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Figure 4.6: Short block diagram of the system proposed in this chapter.

Figure 4.7: Force estimation based on strain information.
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filtered using a Gaussian mask Gm ∈ R
M×N , where the function to access every element

(i , j ) of the Gaussian mask is defined by

ḡm(i , j ) =
gm(i , j )

max(Gm)
, (4.1)

where max(Gm) is a constant value representing the maximum component value of Gm ,

and

gm(i , j ) =
e
−

(
i 2

2σ2
x
+

j 2

2σ2
y

)

√
2πσxσy

, (4.2)

where σx and σy are the standard deviation for lateral and axial directions, respectively.

In our case, these values are typically set as σx = N
4 and σy =

M
4 aiming to obtain a Gauss-

ian distribution inside of a rounded area. The center of the rounded area is located at the

center of Gm .

Following the diagram of Figure 4.7, the filtering of the elastogram is performed using

the following expression

E f =E ◦Gm , (4.3)

where ◦ is the Hadamard product operator and E f is the resulting elastogram after fil-

tering.

Next, the average scalar strain value of E f , µε is computed and then used in the

process to estimate the displacement ∆x of a virtual spring after being compressed with

a force F (see Figure 4.7). Based on the classic definition of mechanical strain, we can

obtain the value of the displacement of the spring as,

∆x =µεL (4.4)

where L is the original length of the spring. The force F of the spring according to Hooke’s

law is defined as,

F =−k∆x (4.5)

where k is the stiffness value of the spring given by

k =
Eπr 2

d
(4.6)

where E is the Young’s modulus of the soft tissue. The Young’s modulus of healthy tis-

sue has values between 2-4kPa. d is the thickness of the compressed tissue and r is the
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radius of the compressed area. The value d represents the height of the cross-sectional

rectangular area while compressing the tissue with an ultrasound probe. This parameter

can be physically measured with the ultrasound probe as shown in Figure 4.8. The radius

r is a variable depending on the radius of the virtual probe, which is computed with the

parameters of the Gaussian mask Gm as,

r =

√
σ2

x +σ2
y (4.7)

Figure 4.8: Thickness of the compressed tissue with an ultrasound probe.

The translation from strain to force is then achieved through Equation (4.5). Now, in

the following sections we define how the motion applied by the user on the haptic device

is used to move the virtual probe which corresponds to the ROI in the ultrasound image.

Afterwards, we detail the process we developed for teleoperating the ultrasound probe.

We also show how moving the virtual probe gives us the force feedback in function of the

tissue elasticity by using the approach previously explained.

4.2.2 Impedance force feedback system

This section describes the impedance force feedback scheme we implemented on the

haptic device. The relation between the elastogram and the output force has been es-

tablished in the previous section. Now, we explain how to relate this output force to the

user input motion.

In this study, we consider the use of a 2D ultrasound probe instead of a 3D one in

order to obtain 2D elastograms in real time. Therefore, the motion of the 2D US probe

will be limited to pure in-plane translations (lateral and axial translations). Figure 4.9
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illustrates the principle that consists in moving the ROI to follow the displacement of

the user measured by the handler of the haptic device. This figure also shows the Carte-

sian frames Fb and Fh corresponding to the base and the handler of the haptic device,

respectively, and FI corresponding to the ultrasound image. The point (ur , vr ) is the

origin point of the ROI with respect to the ultrasound image frame FI , and the point

(uc , vc ) is the center of the ROI. If the user applies motion at the handler of the haptic

device Fh , then the point (uc , vc ) is shifted with a displacement ∆d proportional to the

displacement of the handler.

Figure 4.9: Moving elastogram inside of the ultrasound image.

The displacement ∆d ∈ R
2 depends on the in-plane relative motion of the handler

∆h ∈R
2. To obtain ∆h , we first define the initial and the current poses of the handler with

respect to the base of the haptic device as bPh0 ∈SE(3) and b Ph ∈SE(3), respectively. The

poses bPh0 and bPh are described with the 4×4 homogeneous matrices bMh0 and bMh ,

respectively. Then, the relative pose of the current handler’s pose bPh with respect to the

initial handler’s pose bPh0 is defined as,

h0Mh = (bMh0)−1bMh . (4.8)

where the operator −1 represents the inversion of a homogeneous matrix. The value of

the homogeneous matrix bMh0 is measured at the initialization and remains constant,

and b Mh represents the current measure of the handler pose. As previously mentioned,

we only need the relative translation, which is extracted from the relative homogeneous

matrix h0Mh as h0th ∈ R
3. Therefore, the relative motion of the handler ∆h in the x-y

plane is obtained from the x and y components of the relative translation h0th . The value
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Figure 4.10: Handler displacement into the ultrasound image.

of ∆h in metric units can be translated to the image frame FI (see Figure 4.10) through

the next expression,

∆d = SI Rh∆h , (4.9)

where I Rh ∈SO(2) is a 2×2 rotation matrix between the x-y plane of Fh and the image

frame FI . S ∈ R
2×2 is a 2×2 diagonal matrix containing the scale values for lateral and

axial direction. These values are computed from the calibration of the ultrasound probe

to convert pixels to meters (sx and sy ). Therefore, the matrix S is defined as

S =

[
1
sx

0

0 1
sy

]
. (4.10)

The displacement ∆d of the point (uc , yc ) in the ultrasound image affects directly

the position of the ROI where the elastogram is estimated. This produces a displace-

ment of ∆d in all the elements inside the ROI, and the motion of the point (uc , yc ) must

be bounded in the region RI ∈

{
( wr

2 (w I −
wr

2 )]× ( hr

2 (hI −
hr

2 )]
}

(see Figure 4.11). Setting

boundaries for the motion of the point (uc , yc ) is necessary to ensure the estimation of

the elastogram in a ROI of size wr ×hr .

The displacement of the point (uc , yc ) generates a new elastogram which is trans-

lated to a force feedback F using the method described in Section 4.2.1 through

Equation (4.5). This completes the impedance haptic system that generates force feed-

back every time the user applies motion to the handler of the haptic device. As we previ-

ously explained, this approach is implemented for the 2D FOV of the ultrasound probe.

In addition, the adaptation of the probe teleoperation in the robot’s workspace to explore

112



CHAPTER 4. TELEOPERATION AND HAPTIC FEEDBACK BASED ON
ELASTOGRAM

Figure 4.11: Motion boundary RI of the point (uc , yc) in the ultrasound image.

the tissue while moving the handler of the haptic feedback can provide more freedom to

the user. However, the teleoperation of the probe and the force feedback system can

not work together since they would need to share the same DOF of the haptic device.

To deal with this issue, we design two operation modes as shown in Figure 4.6, where

the user can switch between teleoperation of the ultrasound probe and virtual probe for

haptic sensing through the haptic device handler’s buttons. Next section presents the

teleoperation of the US probe, and the experimental results of teleoperation and haptic

feedback.

4.2.3 Robotic teleoperation

In this section, the teleoperation of the ultrasound probe is presented. This process is

based on a master-slave system, where the master is a unit manually operated by a user,

in our case the haptic device. The slave robot holding the US probe is duplicating the

motion applied on the master device. The master-slave communication is essential to

perform delicate procedures. Figure 4.12 shows the proposed system for the master-

slave teleoperation of the ultrasound probe.

In the system presented in Figure 4.12, the haptic state contains the information of

the kinematics of the haptic device. This information provides the current pose of the

handler of the haptic device. An initial pose of the handler is represented by the homoge-

neous matrix b Mh0 once the system is launched. Afterwards, the current pose described

by b Mh is used to compute the relative pose of bPh with respect to the initial one bPh0

as defined in Equation (4.8). The relative pose represented by h0Mh is measured with

respect to the frame Fh and to duplicate the displacement with the ultrasound probe

we need to define it with the same direction as the ultrasound contact frame Fcp (see

Figure 4.13). Therefore, the new relative pose expressed by the homogeneous matrix M∆
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Figure 4.12: Main components of the master-slave teleoperation system and the con-
nexions between them.

is obtained using the rotation matrix cp Rh between the frames Fh and Fcp :

M∆ =

[
cp Rh 03×1

01×2 1

]
h Mh0 (4.11)

Figure 4.13: Cartesian frames used for teleoperation of the probe.

Once the relative pose is expressed in the frame Fcp , we can extract the six dis-

placement components, three angular displacements (∆θx ,∆θy ,∆θz) and three linear

displacements (∆tx ,∆ty ,∆tz). The linear displacements are computed from the trans-

lational vector inside M∆. On the other hand, the angular displacements are obtained

through the rotation matrix R∆ contained in M∆ and expressed as three angular com-

ponents (∆θx ,∆θy ,∆θz ) with Rodrigues’ formula. These six displacement components

are the desired values that the ultrasound probe should reach with respect to the initial

probe position relative to the robot’s base frame Fr , r Mcp0„ and we can enclose them in

a desired feature vector as,

s∗
∆
=

[
∆tx ∆ty ∆tz ∆θx ∆θy ∆θz

]⊤
(4.12)
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As we want to reach the desired displacement with the ultrasound probe, we define

the current pose as r Mcp , and its relative pose cp0Mcp with respect to the initial pose
r Mcp0 as,

cp0Mcp = (r Mcp0)−1r Mcp (4.13)

We can extract the relative probe displacement from cp0Mcp using the same principle as

the one used to extract the displacement component of M∆. In this case the six displace-

ment elements are defined inside the measured vector s∆:

s∆ =

[
∆t px ∆t p y ∆t pz ∆θpx ∆θp y ∆θpz

]⊤
(4.14)

The error between the measured and desired displacement is defined as,

e∆ = s∆−s∗
∆

, (4.15)

and the desired exponential error variation as,

ė∆ =−λ∆e∆, (4.16)

where λ∆ is the gain of the error variation.

The variation in the measured displacement ṡ∆ is related to the ultrasound probe

velocity v with the following expression,

ṡ∆ = L∆v, (4.17)

where L∆ = I6 is the interaction matrix that relates the variation of the measured dis-

placement ṡ∆ with the probe velocity v and I6 is a 6×6 elements identity matrix.

The variation of the measured displacement ṡ∆ is directly related to the varia-

tion of the desired exponential error ė∆. Therefore, if we replace ṡ∆ with ė∆ in the

Equation (4.17), then we obtain a relation to compute the velocity v corresponding to

the desired error variation:

v = L+
∆

ė∆ (4.18)

The Equation (4.18) is the velocity control law for the 6-DOF at the frame Fcp . Since

this control law is designed for the full motion of the probe at frame Fcp , we need to

limit its movement in the y-axis for security reasons, such that the force control in the

y-axis has full priority. Indeed, force control is needed for the elastography process, but

it also brings safety when combined with the teleoperation task. The force control law
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was detailed in Chapter 2, and it is defined by the Equation (2.6). The fusion of the force

control and the teleoperation task is achieved by using the redundancy control frame-

work presented in Section 2.5. Therefore, the highest priority task is the force control

defined as:

v1 = v f (4.19)

The secondary task is the teleoperation of the ultrasound probe. Then, to determine the

second task, we must define a projector matrix P1 that allows to project the second task

onto the null space of the first task v1. The projector P1 was defined in Equation (2.53),

and the secondary task is expressed as

v2 = (L∆P1)+(ė∆−L∆v1) (4.20)

The secondary task v2 does not disturb the primary task v1. Therefore, the fusion of

the two robotic tasks leads to

vp = v1 +v2, (4.21)

where vp is now the velocity expressed at the frame Fcp , and it includes the hierarchy

of the two tasks. This velocity is applied to the robot using the Equations (2.7)-(2.9) in

order to express them in the frame of the robot’s end effector.

The control law presented in Equation (4.21) is always executed by the system. How-

ever, when the user switches to the impedance haptic mode in order to feel the force

generated by the elastogram contained in the ROI, then we deactivate the secondary

task by setting v2 = 06×1. This implies that the primary task is always running and the

secondary task is paused so the elastogram can be estimated.

4.3 Experimental results

This section presents the results of the teleoperation and haptic feedback system pre-

viously described. First, we define the experimental setup as illustrated in Figure 4.14.

The haptic device used for the experiments is the Virtuose 6D (Haption S.A.). The robot

and the ultrasound systems are the same used in the experiments presented in the previ-

ous chapters. We use the 3D ultrasound probe in 2D mode and the abdominal phantom

ABDFAN US-1B. For more details about the equipments, please refer to Section 2.1.

The implementation of the system was coded in C++ and divided in five threads as

shown in Figure 4.15. In the main thread is a graphic interface (coded with Qt libraries),
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Figure 4.14: Experimental setup of the proposed haptic system.

which is used to display the ultrasound image, the elastogram and to manage the state

of the threads using the signal-slot Qt connections. The shared pointers are created in

the main thread and shared between the threads. The RF frame pointer indicates the

memory that is filled by the RF acquisition thread, which is connected to the ultrasound

machine via TCP/IP to acquire the RF signals from the ultrasound probe. The pointer RF

frame is stored at the same rate of the acquisition (40 FPS).

The content of the Elastogram shared pointer is changed by the elastography thread

at 24 FPS. The elastography process computes the elastogram with the approach pre-

sented in Section 2.2.2. Then, the elastogram is converted into force feedback as pre-

sented in Section 4.2.1 in the haptic system thread. The haptic system measures the han-

dler current pose with an update rate frequency of 100Hz, and the new relative displace-

ment ∆d is sent to the elastography process to change the position of the ROI. Inside the

haptic system thread, a mechanism can be activated on demand by the user to switch

between the impedance force feedback and the teleoperation control mode. This mech-

anism uses the two buttons located on the handler to switch between the two control

modes. When the teleoperation process is activated, the Robot Control thread computes

and applies the velocity to the robot by using the Equation (4.21). The Robot Control

thread is also in charge of applying the continuous oscillation in the y-axis force needed

to obtain the pre- and post-compressed states of the tissues required for the elastogram

estimation. The thread RFtoBMode performs the conversion of the RF frame to a B-mode
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Figure 4.15: Proposed multithread workflow for the implementation. Directional con-
nections between the threads are depicted with red lines.

image and sends it to the main thread for displaying purposes. In this implementation,

most of the threads are running at different frequencies. However, the synchronization

between the threads is achieved by the Qt connection signal-slot mechanism.

Now, we present an experiment that consists in two parts. First, the initial state of

the system is in teleoperation mode, and the user can explore the tissue by moving the

handler of the haptic device. Figure 4.16 shows in the first row different configurations of

the haptic device when the user applied manual motion on the handler during the tele-

operation control mode. The second row of Figure 4.16 presents the resulting pose of the

robot holding the probe and the third row provides the observed ultrasound image for

each configuration. Figure 4.17 shows the temporal evolution of the measured force and

the control velocities of the robot applied at the contact frame Fcp . The experiment be-

gins with the ultrasound probe above the phantom without making contact, as shown in

Figure 4.16d. Then, the palpation motion task is activated, initiating the force control to

reach contact with the phantom as shown in Figure 4.16e. Figure 4.17a shows at t =∼ 2.5s

the beginning of the force variation needed for the palpation motion. The teleoperation

of the US probe with the haptic device starts at t =∼ 13s as indicated with the black ar-

row in the plot illustrating the evolution of the teleoperation errors (Figure 4.17d). At

the same time, we can also observe in Figures 4.17b and 4.17c that the velocities applied

to the ultrasound probe related to the teleoperation task (vx , vz , ωx , ωy and ωz) start
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(a) Haptic state for the initialization of the
system.

(b) Handler rotation
in z-axis.

(c) Handler with an
arbitrary pose.

(d) Initial probe posi-
tion.

(e) Probe reaching the
contact force.

(f) Probe pose for
the handler pose at
(4.16b).

(g) Probe pose for
the handler pose at
(4.16c).

(h) (i) (j) (k)

Figure 4.16: Teleoperation system states. (a) initial pose of the handler and (d) the cor-
responding pose of the ultrasound probe with the (h) resulting ultrasound image before
the contact with the phantom. (b) rotation around z-axis of the handler and (f) the cor-
responding pose of the ultrasound probe with the (j) resulting ultrasound image. (c) ar-
bitrary pose of the handler and (g) the corresponding pose of the ultrasound probe with
the (k) resulting ultrasound image.
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Figure 4.17: Measured force, velocities and errors in the teleoperation system.

to variate in order to replicate the motion introduced by the user in the handler of the

haptic device. After, in Figure 4.17d we highlighted two moments when the user was ap-

plying continuous motion to the haptic device (strips in light-blue color) and when the

user stops the motion (strips in light-green color). We can observe the fast convergence

(∼ 0.5s) of the teleoperation system in both cases. In these plots, one can observe the

variation in the velocities and the errors due to the different motions introduced to the

handler of the haptic device. The parameters of the force controller F0 and ∆F were set

to 5N and 3N, respectively. We can observe that the measured force follows correctly the

desired oscillation reference, since the force control task that has the highest priority is

not disturbed by the teleoperation task.

The second part of the experiment presents the results of the impedance haptic sys-

tem when the user switches from the teleoperation mode to the haptic force feedback

mode. After selecting a ROI where the elastogram is estimated in real time, the user can

feel the force computed from the elastogram while moving the handler of the haptic de-

vice. We present the results of one experiment where the user moves the virtual probe

position, corresponding to the ROI, inside the ultrasound image with the haptic device.

The user feels the force feedback while moving the haptic device. We can observe in

Figure 4.18 the plot that represents the haptic force feedback applied to the handler of
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the haptic device. The ultrasound images with the elastogram overlaid are placed for

some states along the force feedback evolution to show the position of the elastogram.

Above every ultrasound image we display the image of the current state of the haptic de-

vice. We can notice the higher forces applied to the handler of the haptic device when

stiff tissues (dark areas) are observed in the ROI representing the teleoperated virtual

probe.

Figure 4.18: Result of the force feedback of the impedance system. First row shows the
different states while moving the handler of the haptic device. The motion of the ROI
containig the elastogram is shown in the second row for the different states of the handler
motion. The temporal evolution of the force feedback is ploted at the bottom and the
position of the states are indicated with red arrows.

The confidence in the force feedback measurements while moving the virtual probe

is analyzed by performing repeated force value estimations along a trajectory of the vir-

tual probe represented by the green path shown in Figure 4.19. The test consists in mea-

suring the force feedback for 109 positions along the green path with a position changing

rate of 40 FPS (total duration of 2.4s). The same motion is then repeated 50 times while

the impedance force feedback mode is running to statistically measure the average of

the force feedback for different locations of the ROI. Through this test, we noticed small
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variations in the average of the force feedback. Figure 4.20 shows the force feedback av-

erage after the 50 repetitions of the green path, where the black line is the force feedback

average and green area represents the interquartile range (IQR). The small IQR for all the

positions shown in the plot of Figure 4.20 describes the standard deviation (SD). Based

on the observed small variation (maximum SD of 0.21N) of the force feedback after 50

repetitions of the green path illustrated in Figure 4.19, we can conclude that our force

feedback measurement in the ROI is highly reproducible.

Figure 4.19: Repetitive motion path of the virtual probe. The four images correspond to
the four corners of the square path. The green path was used to measure the standard
deviation of the force feedback.
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Figure 4.20: Force feedback average after 50 repetitions of the squared path shown in
Figure 4.19.

4.4 Conclusion

The sense of touch in palpation examination is essential to differentiate tissue stiffness.

In addition to the capability of ultrasound elastography to provide quantitative elastic

information, the interaction with the examiner to feel the elasticity can help to locate
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anomalies while moving a ROI in the ultrasound image. Two assistant modes were pro-

posed in this chapter to aid the examiner to perform ultrasound elastography of the tis-

sue and to simultaneously feel the elasticity of the tissue with a haptic device. This sys-

tem with the teleoperation of a 2D ultrasound probe offers the capabilities to remotely

perform ultrasound elastography on a patient or simply to confirm the tissue elasticity

displayed in the elastogram. We have demonstrated experimentally a good performance

for both teleoperation and impedance haptic control modes. The force feedback using

the elastogram was statistically evaluated to determine its reproducibility. However, the

estimation of the force feedback from the elastogram assumes a specific stiffness value

depending on the Young’s modulus of the soft tissue and this may variate between differ-

ent kinds of soft tissues. Despite of the coarse assumption value of the Young’s modulus,

the force feedback feeling obtained from the experimental results is promising, and of-

fers the possibility to perform a study with expert physicians to validate this force feed-

back functionality assistance.
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CHAPTER5
CONCLUSION AND PERSPECTIVES

5.1 Conclusion

The research work presented in this thesis focused on the design of a robotic system to

assist the examiner in the ultrasound elastography process. The assistance of the robotic

system could facilitate the diagnosis of diseases done by the physician. In addition, the

system introduced in this work has demonstrated the ability to perform fatiguing tasks

that the examiner usually performs. In Chapter 1, we introduced the principles of ultra-

sound imaging, the state-of-the-art of the ultrasound elastography and the definition of

visual servoing. In Chapter 2, we presented a robotic-assisted system for quantitative ul-

trasound elastography combining three hierarchical robotic tasks. As far as we know, the

system presented in Chapter 2 is the first robotic-assisted system that uses direct para-

meters from the elastography in a robotic task. This contribution showed its capacity to

be used with 2D and 3D ultrasound probes. A different methodology to maintain the stiff

tissue of interest in the field of view of the ultrasound probe was designed in Chapter 3.

This approach took into account motion perturbations in the tissue (e.g., physiological

motions), which were not addressed in the system presented in Chapter 2. The approach

of Chapter 3 considered a 2D ultrasound probe using a hybrid ultrasound visual servo-

ing process to compensate this perturbation motion with a 6-DOF robot. The automatic

motion compensation with the robot led to another contribution, the estimation of the

elasticity map of a moving tissue. In Chapter 4, another robotic application with elas-

tography was presented. This last application was the development of a haptic system

based on the elasticity map given by the robotic palpation system. In addition, the hap-

tic device was used to teleoperate the ultrasound probe in order to explore the tissue. In

the following, we present the general conclusions of the thesis. Afterwards, several ideas
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for perspectives of this work are provided.

The first Chapter presented the three concepts most used in this work. First off, the

main concepts of ultrasound imaging modality were introduced. The definition of the

image reconstruction from ultrasound was described. Then, the state-of-the-art of the

elastography described the most common approaches to obtain the strain map of the

tissue. The entire classic approach of elastography was detailed to introduce the idea of

the process in which a robot can assist. Afterwards, the few robotic systems related with

ultrasound elastography were described. However, these previous robotic systems do

not exploit the elastic information in their robotic controllers. This chapter also recalled

the basic principle of visual servoing.

Chapter 2 presented one of the major contributions of this thesis, a robotic-assisted

system for quantitative ultrasound elastography. The proposed system allows an auto-

matic and real-time generation of the elasticity map of the observed tissues. It is based

on the development and implementation of three robotic tasks: palpation motion, au-

tomatic centering of stiff tissue, which is the target of interest and orientation of the

ultrasound probe. The palpation motion was performed by a force controller that uses

the force measured with a force/torque sensor placed between the end-effector of the

robot and the ultrasound probe. This controller was designed to continuously apply a

periodical pressure on the tissues by controlling the probe velocity component along

its axial direction. An algorithm was then proposed based on BMA (Block Matching Al-

gorithm) and optical flow to estimate the elasticity image (elastogram) from pre- and

post-compression RF arrays acquired during this palpation task. The second task was

employed to automatically center the ultrasound probe with the stiffest tissue in a ROI.

The location of the stiffest tissue was extracted from the elastogram image generated by

the palpation task. Then, the location of the stiffest tissue was used as input of a visual

servoing process to laterally center it in the FOV of the ultrasound probe. The third ro-

botic task that we proposed was an automatic re-orientation of the probe that can be

activated on demand by the examiner to observe the stiff tissue of interest under differ-

ent view angles. The three tasks were combined by formulating a hierarchical control.

The palpation motion has the highest priority, followed by the automatic centering of the

stiffest tissue and lastly, the orientation of the probe has the lower priority. Experimen-

tal results obtained on different phantoms demonstrated the feasibility of our proposed

assistant robotic system for 2D and 3D elastography. The experiments performed with

the 2D probe demonstrated convergence of the robotic system when a ROI was selected

in the ultrasound image’s FOV. As the use of a 2D probe limited the motion control of

the probe in the observation plane, we also proposed an adaptation of our system for

the use of a 3D probe. This adaptation gave to the system the possibility of performing

3D elastography and centering the probe on a stiff tissue target that does not initially
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intersect with the central US observation plane. However, the acquisition time of an ul-

trasound volume with a motorized probe is important (around 1s per volume) and this

limitation caused the system to be slow compared with the one developed with a 2D

probe. Additionally, a study of the use of this robotic system to improve the quality of

the 2D elastography was also included in this chapter. This study consisted in captur-

ing elastograms at different probe orientations and then averaging them to compute the

resulting elastogram, which has better quality than an individual elastogram at one ori-

entation. The quality assessment in the elastogram was performed by measuring the

CNRe (contrast-noise ratio elastogram).

The limitations of the robotic system presented in Chapter 2 led us to design an alter-

native approach to assist in the elastogram estimation. This approach has to be robust to

any motion perturbation on the tissue. This system was presented in Chapter 3, where a

2D ultrasound probe was used to perform the compensation of perturbing motions. The

robotic system comprised two tasks, palpation motion and motion compensation. The

first task, palpation motion, remained the same as in the previous approach. However,

the motion compensation using a 2D ultrasound probe was the key issue in the design

of the new system. As explained before in the previous approach, a 2D ultrasound probe

was limited to in-plane motions. However, prior knowledge of close parallel planes to the

initial 2D ultrasound image provides enough information to estimate the motion out-of-

plane through 3D image gradients, as presented in [51]. This approach can compensate

motion based on a dense image tracking of a ROI. However, the existing approach only

considered a rigid model transformation to track the ROI, which in our case is not always

sufficient due to the deformation of the tissue. Therefore, we proposed to adapt this

dense image tracking method by including a deformable model to track the ROI in the

image in order to compensate for the deformations of the ROI due to the compression

applied by the palpation motion with the ultrasound probe. This improves the efficiency

of the robotic motion compensation task. In addition, the information of the deformable

tracking of the ROI was employed to compute the displacement map and then used for

the estimation of the elastogram in the ROI. The experimental results demonstrate that

the system is capable of compensating a wide range of external motions applied to the

tissue, keeping the ROI in the FOV of the ultrasound probe. This improved the system

presented in Chapter 2, providing a better alternative for a robotic-assisted system for

elastography.

The possibility of measuring the elasticity of the tissue with the assistance of a ro-

botic system helps the examiners to detect stiff tissues. However, the cooperation be-

tween the robotic system and the examiner is indispensable to allow a better diagnosis

of diseases based on the elasticity of the tissue. Feeling the elasticity of the tissue is a fun-

damental task in palpation examination, which complements the elastography process.
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Therefore, in Chapter 4, we presented a haptic system to apply force feedback based on

the motion of a virtual probe and the estimated elastogram of the tissue. This approach

was designed as a master-slave system, where the master was a haptic device and the ro-

bot performing palpation motion with the ultrasound probe was the slave. This system

included a teleoperation of the probe with a haptic device to explore the tissue while the

ultrasound probe was always in contact with the tissue using the palpation motion task.

The approach was experimentally tested over the abdominal phantom used in the other

two robotic systems previously described, and the results of the haptic force feedback

were analyzed. The results showed that the haptic system is an excellent approach that

can help doctors to just not only measure the elasticity, but to be able to feel it through a

haptic device.

5.2 Perspectives

There are some important perspectives of this work which are classified in two categories

accordingly to the time of development: short-term and long-term perspectives.

5.2.1 Short-term perspectives

Many studies can be performed with the robotic framework presented in this work. For

example, the use of a 3D ultrasound probe with faster acquisition of ultrasound data

can be explored to expand the approach presented in Chapter 2. The exploration and

comparison of different ultrasound elastography approaches with the robotic system

can also provide another perspective in determining which technique performs better

with the robotic system. A multi-modality image registration process can also improve

the system presented in Chapter 2. The information of the 3D stiffness map of the tis-

sue can be obtained beforehand with MRE (Magnetic resonance elastography) to apply a

multi-modality image registration with the 2D stiffness map estimated in real-time with

the ultrasound. This approach can be applied in laparoscopy, guiding the surgeon in the

location of stiff tissues. The multi-modality image registration for elastography can also

be used to avoid the estimation of the tissue stiffness and instead using the correspond-

ing stiffness value computed by the MRE to calculate the force feedback in the haptic

system presented in Chapter 4.

The occlusions on the ultrasound propagation due to bones or other artifacts are

cause of low quality in the image. The quality in the acquisition of the ultrasound infor-

mation is fundamental to compute the elasticity of the tissue. Recently, a new robotic
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approach to improve the ultrasound imaging quality was presented in [15]. This work is

based on the optimization of the confidence map, which is an image representation of

the ultrasound quality. Therefore, the adaptation of this approach to the robotic systems

presented in this thesis could be an advantageous perspective, leading to increase the

quality of the elastogram of the tissue.

In terms of applications, guidance on the insertion of a needle for a biopsy using

elastography can be an interesting approach. This application can be obtained with

the combination of the robotic needle insertion approach presented in [20] and the ap-

proach presented in Chapter 2 to locate the stiffest tissue in a region of interest inside

the field of view of an ultrasound probe. The real-time computation of the location of

the stiffest tissue, usually corresponding to a tumor, would be the goal to achieve a ro-

botic needle insertion system.

5.2.2 Long-term perspectives

The estimation of tissue deformation can be improved by an online registration between

the real-time ultrasound information and prior knowledge of the geometrical structure

of the tissue. This kind of approach has been applied in radiotherapy of the neck [22]

where weight loss during several weeks of therapy modifies the volume of anatomical

structures. This approach uses a finite element method (FEM) obtained from the first

CT scans. Afterwards, an interactive registration of few points is performed to obtain the

deformation and biomechanic parameters of the soft tissue helping in the limitation of

radiations.

Currently, soft robots have been studied for minimal invasive surgery [21]. This kind

of robots provides higher dexterity and flexibility than the classic robots. The mobility is

one of the most interesting elements in a soft robot, it can help in performing elastog-

raphy of regions occluded by bones in real-time. The design of a soft robot to perform

elastography is a perspective that can help surgeons to localize and remove tumors in a

minimal invasive surgery.

Finally, the three robotic-assisted systems presented in this dissertation are just the

beginning in the research of a robotic tool that someday can be employed in hospitals

to facilitate the diagnosis of diseases or the planning of surgery. The approaches for a

robotic system to assist in elastography presented in this work were only evaluated on

phantoms. However, the main goal is to take these approaches to real medical applica-

tions. This is a long process that involves evaluations of the systems with in-vivo tissues,

which requires the approvement of hospitals and clinicians. Despite the accuracy of an
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industrial robot, the volume and safety of this kind of robots are limitations that should

be considered for a certified medical robotic system [83]. Therefore, the implementation

of the proposed robotic assistance tasks on a smaller and safer robot is a necessary step.
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Résumé

Cette thèse se situe dans le contexte de la robotique médicale et porte sur l’élaboration d’un
système robotisé permettant d’assister le processus d’élastographie ultrasonore. La solution
proposée consiste à commander par retour d’effort et asservissement visuel un bras manip-
ulateur actionnant une sonde échographique afin d’automatiser le mouvement de palpation
nécessaire à la génération des images d’élasticité des tissus. La solution permet de réaliser
l’imagerie élastographique de tissus sujets à des mouvements au moyen d’une tâche de com-
pensation par asservissement visuel. Une approche innovante a également été proposée pour
fournir à l’utilisateur un retour d’effort lui reflétant la sensation d’élasticité des tissus observés
par l’intermédiaire d’un dispositif haptique. Les résultats expérimentaux des trois approches ro-
botiques obtenus sur des fantômes constitués de tissus démontrent l’efficacité des méthodes pro-
posées et ouvre des perspectives intéressantes pour l’élastographie ultrasonore assitée par robot.

Mots-clés – Robotique médicale, élastographie ultrasonore, asservissement visuel, haptique.

Abstract

This thesis concerns the development of a robotic control framework for quantitative ultrasound
elastography. Ultrasound elastography is a technology that unveils elastic parameters of a tissue,
which are commonly related with certain pathologies. This thesis proposes three novel robotic
approaches to assist examiners with elastography. The first approach deals with the control of a
robot actuating an ultrasound probe to perform palpation motion required for ultrasound elas-
tography. The elasticity of the tissue is used to design a servo control law to keep a stiff tissue of
interest in the field of view of the ultrasound probe. Additionally, the orientation of the probe is
controlled by a human user to explore other tissue while elastography is performed. The second
approach exploits deformable image registration of ultrasound images to estimate the tissue elas-
ticity and to help in the automatic compensation by ultrasound visual servoing of a motion intro-
duced into the tissue. The third approach offers a methodology to feel the elasticity of the tissue
by moving a virtual probe in the ultrasound image with a haptic device while the robot is per-
forming palpation motion. Experimental results of the three robotic approaches over phantoms
with tissue-like offer an excellent perspective for robotic-assistance for ultrasound elastography.

Keywords – Medical robotics, ultrasound elastography, visual servoing, haptic feedback.
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