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Introduction en français

Dans cette thèse, nous étudions l’interaction entre les champs classiques du transport
optimal et des semigroupes de Markov avec le problème moins connu de minimisation
entropique de Schrödinger. Comme resultat des analogies et relations entre ces theories,
nous allons deriver des inegalités fonctionnelles.
Cela peut être résumé dans le schema suivant.

Optimal Transport Schrödinger Problem

Functional Properties

C
D
(κ
,N

)C
D
(κ
,N

)

Au cours des 20 dernières années, la théorie du transport optimal s’est revelée être un outil
efficace pour étudier le comportement asymptotique dans le cas des équations de diffu-
sion, pour prouver des inégalités fonctionnelles et pour étendre des propriétés géométriques
dans des espaces extrêmement généraux comme des espaces métriques mesurés, etc. La
condition de courbure-dimension de la théorie Bakry-Emery apparaît comme la pierre
angulaire de ces applications. Il suffit de penser au cas le plus simple et le plus impor-
tant de la distance quadratique de Wasserstein W2: la contraction du flux de chaleur en
W2 caractérise les bornes inférieures uniformes pour la courbure de Ricci; l’inégalité de
Talagrand du transport, comparant W2 à l’entropie relative est impliquée et implique,
par l’inégalité HWI, l’inégalité log-Sobolev; les géodésiques de McCann dans l’espace de
Wasserstein (P2(Rn),W2) permettent de prouver des propriétés fonctionnelles importantes
comme la convexité, et des inégalités fonctionnelles standards telles que l’isopérymétrie,
des propriétés de concentration de mesure, l’inégalité de Prékopa-Leindler et ainsi de
suite. Néanmoins, le manque de régularité des plans minimisation nécessite des argu-
ments d’analyse non lisse.

Le problème de Schrödinger est un problème de minimisation de l’entropie avec des
contraintes marginales et un processus de référence fixes. À partir de la théorie des
grandes déviations, lorsque le processus de référence est le mouvement Brownien, sa
valeur minimale A converge vers W2 lorsque la température est nulle. Les interpola-
tions entropiques, solutions du problème de Schrödinger, sont caractérisées en termes de
semigroupes de Markov, ce qui implique naturellement les calculs Γ2 et la condition de
courbure-dimension. Datant des années 1930 et négligé pendant des décennies, le prob-
lème de Schrodinger connaît depuis ces dernières années une popularité croissante dans
différents domaines, grâce à sa relation avec le transport optimal, à la regularité de ses
solutions, et à d’autres propriétés performantes dans des calculs numériques.

7



8 CONTENTS

Le but de ce travail est double. D’abord, nous étudions certaines analogies entre le
problème de Schrödinger et le transport optimal fournissant de nouvelles preuves de la
formulation duale de Kantorovich et de celle, dynamique, de Benamou-Brenier pour le
coût entropique A. Puis, en tant qu’application de ces connexions, nous dérivons certaines
propriétés et inégalités fonctionnelles sous des conditions de courbure-dimension. En par-
ticulier, nous prouvons la concavité de l’entropie exponentielle le long des interpolations
entropiques sous la condition de courbure-dimension CD(0, n) et la régularité du coût
entropique le long du flot de la chaleur. Nous donnons également différentes preuves de
l’inégalité variationnelle évolutionnaire pour A et de la contraction du flux de la chaleur
en A, en retrouvant comme cas limite, les résultats classiques en W2, sous CD(κ,∞)
et CD(0, n). Enfin, nous proposons une preuve simple de la propriété de concentration
gaussienne via le problème de Schrödinger comme alternative aux arguments classiques
tel que l’argument de Marton basé sur le transport optimal.

Organisation de la thèse

Dans le chapitre 1 nous rappellons toutes les notions préliminaires et les résultats con-
nus nécessaires à la compréhension du reste des chapitres. En particulier, la section 1.1
est divisée en quatre parties. La première est entièrement consacrée à l’entropie rela-
tive. Nous rappelons la définition classique des mesures de probabilité, l’extension aux
mesures non bornées et des propriétés importantes telles que la formule variationnelle
(1.2) et la propriété additive (1.6). Dans la deuxième partie, nous étudions les propriétés
cinématiques des processus de diffusion de Markov. Après avoir rappelé les définitions
de base, nous introduisons la notion (et la notation) de mesures de chemin sur l’espace
de trajectoires continues (1.10) comme solution au problème de martingale associé à une
EDS du type (1.7). Puis nous rappelons les notions de vitesses stochastiques de Nelson,
1.1.9, et donnons leur interprétation physique à l’aide des équations de transport et de
Fokker-Plank. À ce stade, nous présentons des exemples que nous utiliserons tout au long
du manuscrit, comme le mouvement Brownien, le processus d’Ornstein-Uhlenbeck et le
semi-groupe de Kolmogorov. La troisième partie contient les principaux résultats de la
théorie de Girsanov dans le théorème 1.1.14 et l’idée de la preuve. Le théorème de Gir-
sanov jouera un rôle crucial dans la section 3.5 et au chapitre 6. Dans la quatrième partie,
nous nous concentrons sur les semigroupes de Markov et le critère de Bakry-Emery via
l’opérateur Γ2. Dans la section 1.2 nous résumons les résultats très basiques du transport
optimal dans le contexte euclidien avec une attention particulière au cas quadratique de
la distance de Wasserstein.

Dans le chapitre 2 nous présentons le protagoniste principal du manuscrit, le problème de
Schrödinger: dans ce chapitre, nous passons sur beaucoup de détails, pour lesquels nous
renvoyons à la littérature et nous renonçons aux cas plus généraux où ces résultats sont
valables pour des arguments plus directs et explicites afin d’avoir un chapitre de taille
raisonnable. La section 2.1 concerne la définition du problème et l’existence de résultats
uniques. Dans la section 2.2 nous nous intéressons à la solution, c’est à dire, les ponts et
les interpolations entropiques, et nous analysons quelques propriétés cinématiques. Puis
dans la section 2.3 nous nous intéressons à la valeur optimale du problème de Schrödinger
et nous proposons des moyens alternatifs pour définir le coût entropique, analogue à la
distance Wasserstein. Dans les sections 2.4 et 2.5 nous étudions respectivement la con-
nexion du problème de Schrödinger au transport optimal et le comportement de l’entropie
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relative le long des interpolations entropiques, via le critère Γ2. Enfin, dans la section 2.6,
nous donnons un aperçu de la motivation physique statistique de la question originale
adressée par Schrödinger et une revue historique de la littérature sur ce sujet.

Le chapitre 3 traite des analogies entre le problème de Schrödinger et le transport optimal
(OT). Nous donnons une nouvelle preuve de la double formulation de Kantorovich pour
le coût entropique dans la section 3.4 et une formulation à la Benamou-Brenier dans la
section 3.5 Comme application nous démontrons à la section 3.6 des inégalités de con-
tractions pour le coût entropique qui, à la limite, donnent les resultats classique dans
la distance de Wasserstein (12). Enfin, dans la dernière section 3.7 nous donnons des
exemples explicites d’interpolations entropiques et de McCann dans deux cas simples où
des calculs explicites sont possibles et deux exemples numériques simples.

Dans le chapitre 4 nous montrons la propriété de concavité (26) et la propriété de régu-
larité (30) sous la condition CD(0, N). Nous dérivons les inégalités EVI et de contraction
dimensionnelles eqref eq-intro-contr-2n pour le coût entropique.

Dans le chapitre 5, nous prouvons sous le CD(κ,∞), l’inégalité EVI via deux méth-
odes alternatives.

Dans le chapitre 6 nous utilisons une version simple du problème de Schrödinger avec
ε = 1 fixé pour donner une preuve rapide de l’inégalité de concentration dans la section
6.1 et de l’inégalité de Prékopa-Leindler dans la section 6.2, via une méthode de couplage
et le théorème de Girsanov.

Les chapitres 1 et 2 ne contiennent aucun nouveau résultat, contrairement au reste du
manuscrit. Les chapitres 3 et 4 sont des versions légèrement modifiées de, respectivement,
[GLR17] et [Rip17] dans lesquelles nous avons ajouté quelques commentaires et utilisons
des notations cohérentes avec le reste du manuscrit. Nous avons décidé de les retranscrire
telles qu’elles apparaissent dans l’organisation de l’article (résumé, introduction, cadre,
résultats ...) pour garder leur autonomie par rapport au reste du manuscrit, et laisser
le lecteur libre de lire la partie qui l’intéresse, au prix de définitions parfois redondantes.
Nous nous excusons pour ces quelques répétitions. Le chapitre 6 est l’objet d’un nouvel
article en préparation avec Gentil et Léonard.
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Introduction

In this work we will study the interplay between the classical fields of optimal transport
and Markov semigroups with the less explored Schrödinger entropic minimization prob-
lem. As a result of the analogies and relations between these theories we will derive some
functional inequalities.
The introduction is organized in three parts. In a first part we recover the basic notions
of the optimal transport theory and some of the connections with curvature dimension
conditions. In a second part we introduce the Schrödinger problem and present some
of the new results of this manuscript about the analogies with optimal transport. The
third part contains our contributions to the applications of these analogies to functional
properties and inequalities via the Bakry-Emery theory.
This can be summarized in the following scheme.

Optimal Transport Schrödinger Problem

Functional Properties

C
D
(κ
,N

)C
D
(κ
,N

)

I. Optimal transport and Bakry-Emery theory

We start by giving an informal picture of the very definition of the Monge-Kantorovich
problem, its dynamic counterpart and few important and well known properties on Rn.
We will discuss these topics in more details later at Section 1.2.

Optimal Transport

The fathers of the optimal transport theory are Monge (1781) [Mon81] and Kantorovich
(1942) [Kan42a]. The idea is to transport in the most economical way some mass between
two prescribed distributions. Let us choose for simplicity, as state space the Euclidean
space Rn. We denote by μ0, μ1 ∈ P(Rn) the prescribed configurations and c : Rn×Rn → R+

the cost function. Then the Monge-Kantorovich problem consists in,

inf

{∫
Rn×Rn

c(x, y) π(dxdy); π ∈ Π(μ0, μ1)

}
, (1)

11
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where Π(μ0, μ1) is the set of all probability measures on the product space Rn × Rn with
marginals μ0, μ1 namely, all π ∈ P(Rn × Rn) such that

π0(dx) := π(dx× Rn) = μ0(dx), π1(dy) := π(Rn × dy) = μ1(dy). (2)

The Monge-Kantorovich problem admits also a dynamical formulation, proposed by Mc-
Cann in [McC97], taking into account the whole trajectory of the system and not only
the initial and final position. It can be written as,

inf

{∫
Rn

C[(Tt)0≤t≤1] dμ0; T0 = Id , T1#μ0 = μ1

}
, (3)

where C is a non-negative function on the space of the continuous trajectories on Rn,
Ω := C([0, 1],Rn). In order to be equivalent to its static version (1), the cost function
C : Ω → R+ in (3) has to satisfy the relation

c(x, y) = inf{C[(zt)0≤t≤1]; z0 = x, z1 = y}.

For instance in the quadratic case, C[(zt)] =
∫ 1

0
|żt|2/2 dt.

A keystone result is due to Brenier who, in the 1980s, characterized the optimal map,
in the quadratic case c(x, y) = |x − y|2. Brenier’s Theorem establishes that whenever
μ0, μ1 ∈ P2(Rn), that is the set of probability measures with second order moment finite,
and μ0 is absolutely continuous with respect to the Lebesgue measure, then the optimal
plan is given by

π = (Id ×∇ϕ)#μ0 ∈ P(Rn × Rn)

where ∇ϕ is the gradient of a convex function and is called Brenier’s map. With the push-
forward notation we have that ∇ϕ#μ0 = μ1, which means that for all regular enough real
function h on Rn, ∫

h dμ1 =

∫
h(∇ϕ) dμ0.

On the other hand, the solution of the quadratic dynamical problem is called McCann or
displacement interpolation and is characterized by the formula

μMc
t := Tt#μ0 = [(1− t)Id + t∇ϕ]#μ0, ∀ 0 ≤ t ≤ 1.

where ∇ϕ is the Brenier map.

In the quadratic case, the optimal value of the Monge-Kantorovich problem gives rise
to the square of a distance in the space P2(Rn) = {μ ∈ P(Rn),

∫
|x|2dμ < ∞}, that is

called the Wasserstein distance or cost, and is denoted,

W 2
2 (μ0, μ1) = inf

{∫
Rn×Rn

|x− y|2 π(dxdy); π ∈ Π(μ0, μ1)

}
(4)

The Wasserstein space (P2(Rn),W2) is geodesic. This means that for any couple of prob-
ability measures μ0, μ1 ∈ P2(Rn), there exists a path (μMc

t )t∈[0,1] in P2(Rn) such that for
any s, t ∈ [0, 1],

W2(μ
Mc
s , μMc

t ) = |t− s|W2(μ0, μ1).
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Such a path is a constant speed geodesic in (P2(Rn),W2), see [AGS08, Ch. 7]. Formally,
the optimal transport dynamics is driven by the transport equation,

∂tμt +∇ · (μt∇θt) = 0

for all t > 0, to be meant in a weak sense, and initial condition μt=0 = μ0. Here θt is the
solution of the Hamilton-Jacobi equation,

∂tθt +
|∇θt|2

2
= 0 (5)

with initial condition θ0(x) = ϕ(x)− |x|2/2. One issue of optimal transport maps is that
they are in general not smooth.
The Wasserstein distance enjoys two alternative formulations useful when dealing with
applications of optimal transport. The first one in the dual Kantorovich [Kan42b] formu-
lation. It allows us to write

W 2
2 (μ0, μ1) = sup

ψ∈Cb(Rn)

{∫
Q1ψdμ0 −

∫
ψdμ1

}
(6)

where Q1 is the Hopf-Lax formula at time t = 1, Qtψ(x) = infx∈Rn {ψ(x) + |y − x|2/t}
which is the viscosity solution of the Hamilton Jacobi equation (5). The second one is the
Eulerian Benamou-Brenier formulation [BB00]. It states that for any μ0, μ1 ∈ P2(Rn),

W 2
2 (μ0, μ1) = inf

(ν,v)

∫ 1

0

∫
Rn

|vt|2 dνt dt, (7)

where the infimum runs over all paths (νt, vt)t∈[0,1] where νt ∈ P(Rn) and vt(x) ∈ Rn are
such that νt is absolutely continuous with respect to time in the weak sense of [AGS08,
Ch. 1] for all 0 ≤ t ≤ 1, ν0 = μ0, ν1 = μ1 and

∂tνt +∇ · (νtvt) = 0, 0 ≤ t ≤ 1.

Markov semigroups and Γ2-calculus

Optimal transport matched very soon another well known theory, the one of Markov
semigroups and the Bakry-Emery theory, that we recall here briefly.

Given a Markov process (Xt)t≥0 the associated Markov semigroup is defined for any real
suitable measurable function f and any t ≥ 0 as

Ttf(x) := E(f(Xt)|X0 = x) =

∫
f(y) pt(x, dy).

where pt(x, dy) is the transition probability kernel of the process (Xt)t≥0. To any Markov
semigroup we associate an infinitesimal generator

Lf = lim
t→0+

Ttf − f

t
,

whenever the limit makes sense, and a reversing measure m ∈ M+(Rn) satisfying∫
fTtg dm =

∫
gTtf dm,
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whenever the integral exists. Hence for any suitable couple of functions f, g ∈ L2(m) we
define the symmetric non-negative and bi-linear carrè du champ operator as,

Γ(f, g) =
1

2
[L(fg)− fLg − gLf ].

In 1985 in the founding paper [BE85], Bakry and Emery introduced a notion of curvature-
dimension bound via the iterated carré du champ operator

Γ2(f, g) =
1

2
[Γ(f, g)− Γ(f, Lg)− Γ(Lf, g)].

We say that L satisfies the Bakry-Emery condition CD(κ,N) for some κ ∈ R and N ∈
[1,∞), if for all suitable function f ∈ L2(m)

Γ2(f) ≥ κΓ(f) +
1

N
(Lf)2. (8)

Roughly speaking the interpretation of κ as a curvature and N as a dimension can be
seen in a Riemannian manifold via Bochner’s formula. For instance consider L = Δg on
a smooth complete connected Riemannian manifold (M, g). Then the Bochner identity is

Γ2(f) =
1

2
L(|∇f |2)−∇f · ∇Lf = Ric(∇f,∇f) + ‖∇2f‖2

where Ric is the Ricci curvature and ∇2 is the Hessian. Hence we can deduce that the
CD(κ,N) condition is satisfied if and only if the Ricci curvature is bounded from below
by κ and the dimension of the manifold is bounded from above by N . This curvature-
dimension criterion was first introduced by Bakry and Emery in [BE85] as a sufficient
condition for a class of functional inequalities such as hypercontractivity, the log-Sobolev
inequality or the Poincaré inequality etc.

Optimal Transport and Curvature-Dimension

The connections between optimal transport theory and curvature-dimension conditions
are nowadays innumerable. Far from being exhaustive, we mention here some of the main
founding results of the last twenty years.

Displacement convexity. In the pioneering 1997 paper [McC97] McCann introduced
the concept of displacement convexity for functionals of the type,

F(μ) =

∫
F (ρ)dm (9)

where μ ∈ P(Rn), ρ is the density ρ = dμ/dm and m is the equilibrium measure. We say
that a functional F is κ-geodesically (or displacement) convex in the Wasserstein space
(P2(Rn),W2) for some κ ∈ R, if for all McCann interpolation (μMc

t )0≤t≤1 and all 0 ≤ t ≤ 1,

F(μMc
t ) ≤ (1− t)F(μ0) + tF(μ1)−

κ

2
t(1− t)W 2

2 (μ0, μ1). (10)
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Transport and HWI inequalities. In the 2000 paper [OV00] Otto and Villani es-
tablished a link between the transport Talagrand inequality and the log-Sobolev inequal-
ity. More precisely, let us introduce the two principal information-theoretical functionals:
the relative entropy defined for any couple of probability measures as

H(μ|ν) =
∫

log
dμ

dν
dμ

whenever μ 
 ν and +∞ otherwise. While the Fisher information,

I(μ|ν) =
∫ ∣∣∣∣∇ log

dμ

dν

∣∣∣∣2 dμ.

Otto and Villani proved that any measure m = e−V dx with V regular enough satisfying
the log-Sobolev inequality

H(μ|m) ≤ 1

2C
I(μ|m)

for some C > 0 and for any probability measure μ 
 m, then it also satisfies the Talagrand
inequality,

W2(μ,m) ≤
√

2H(μ|m)

C
. (11)

They also proved the reverse implication, through the introduction of a new inequal-
ity relating entropy, Fisher’s information and Wasserstein distance, hence called HWI
inequality, which writes for any μ ∈ P2(Rn) and μ 
 m, as

H(μ|m) ≤ W2(μ,m)
√
I(μ|m)− κ

2
W 2

2 (μ,m).

Contraction. In 2005 von-Renesse and Sturm [Sv05] proved the equivalence between
CD(κ,∞) and contraction in Wasserstein distance. This means that given a diffusion
operator L and denoting by (Tt)t≥0 the associated Markov semigroup with invariant mea-
sure m ∈ M+(Rn), saying that it satisfies the Bakry-Emery condition (8) with N = ∞
is equivalent of saying that the Wasserstein distance is a contraction along the flow of
(Tt)t≥0, that is

W 2
2 (Ttfdm, Ttg dm) ≤ e−2κtW 2

2 (f dm, g dm). (12)

This result was later established in the flat but dimensional case, CD(0, N) in [BGL15]
and [Kuw15],

W 2
2 (Tsf dx, Ttg dx) ≤ W 2

2 (f dx, g dx) + 2N(
√
t−

√
s)2, ∀ s, t ≥ 0. (13)

It has been recently extended to the general CD(κ,N) in [EKS15] and improved in
[BGG16] and [BGGK16], both in the Euclidean and the Riemannian cases, writing as,

W 2
2 (Ttf m, Ttg m) ≤ W 2

2 (f m, g m)− 2

N

∫ t

0

e−2κ(t−u)[H(Tug|m)−H(Tuf |m)]2 du. (14)

Gradient flow. In 1998 a new approach was proposed by Jordan, Kinderlehrer and
Otto [JKO98] on the heat flow, solution of the drift-diffusion equation

∂tμt = Δμt +∇ · (μt∇V ).
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They showed that it can be seen as the gradient flow in the Wasserstein space with its
Riemannian-like metric, of the relative entropy functional with respect to the invariant
measure m = e−V dx. A similar result was proved a bit later in [Ott01] for the porous
medium equation. This approach opened a new chapter in the study of integral functional
such as (9).
Let us recall the basic definition of gradient flow on Rn. Given the differential equation,

∂txt = −∇F (xt), t ≥ 0 (15)

with initial condition x0 = x, then we say that (xt)t≥0 is the gradient flow of F .

Evolutionary variational inequality The concept of κ-displacement convexity, gra-
dient flows and the contraction property are striclty related. In the textbook [AGS08] the
authors Ambrosio Gigli and Savaré, introduced a new inequality leading them together.
It is the Evolutionary variational equation (EVI) and, roughly speaking, it defines the
gradient flows in metric spaces, with the main advantage of avoiding differentiation of
non-smooth trajectories . In the Wasserstein space (P2(Rn),W2) it writes as,

1

2

d+

dt
W 2

2 (Ttu, v) +
κ

2
W 2

2 (Ttu, v) ≤ F(v)−F(Ttu) (16)

for all t ≥ 0, and any suitable function u and v. Later on it became a classical strategy
to derive contraction in Wasserstein distance along the flow (Tt)t≥0 from EVI. Moreover
it was also proved by Daneri and Savaré [DS08] that the EVI inequality with constant
κ ∈ R implies the κ-displacement convexity (10) of the functional F . For completeness let
us recall that displacement κ-convexity (10) of a functional implies the contraction (12)
for its gradient flow.
It is easily seen in the Euclidean setting that for xt, yt solutions of (15) with initial
condition respectively x0 = x and y0 = y,

d

dt
|xt − yt|2 = 2〈xt − yt, ∂txt − ∂tyt〉

= −2〈xt − yt,∇F (xt)−∇F (yt)〉
�

≤ −2κ|xt − yt|2

and Gronwall’s lemma yields to the contraction,

|xt − yt|2 ≤ e−2κt|x− y|, ∀ t ≥ 0.

The κ-convexity appears in the marked inequality, in the form of κ-monotonicity of ∇F ,

〈∇F (x)−∇F (y), x− y〉 ≥ κ|x− y|2.

The EVI approach was successively developed in the dimensional case CD(κ,N) by Erbar
Kuwada and Sturm in [EKS15].

LSV theory The mailstone of the links between optimal transport and Ricci curvature
is the Lott-Sturm-Villani theory, simoultaneously and independently developed in [LV09]
and [Stu06a]. They extended the notion of CD(κ,∞) condition to metric measured spaces
(X , d,m) through convexity properties along geodesics between probability measures on
X .
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II. Schrödinger problem and Optimal Transport
In this second part we introduce the Schrödinger problem and briefly recall the definitions
of the entropic interpolation and cost, respectively solution and optimal value of the
Schrödinger problem. After recalling that the Schrödinger problem is, roughly speaking,
a regular approximation of the Monge-Kantorovich problem, we will explore some new
analogy.

Schrödinger problem

Introduced in 1932 [Sch32], the Schrödinger problem is, in modern terms, an entropy min-
imization problem. We fix a reference path measure R ∈ M+(Ω), where Ω = C([0, 1],Rn).
We denote the joint law of the initial and final position as,

R01 = (X0 ×X1)#R ∈ P(Rn × Rn),

where (Xt)0≤t≤1 is the canonical process on Ω, defined by

Xt(ω) = ωt ∈ Rn, ∀ ω = (ωs)0≤s≤1 ∈ Ω, 0 ≤ t ≤ 1.

For any couple of prescribed marginals μ0, μ1 ∈ P(Rn), the Schrödinger problem consists in
minimizing the entropy relative to R01 among all the probability measures π ∈ P(Rn×Rn)
with marginals μ0 and μ1, that is,

inf{H(π|R01); π ∈ P(Rn × Rn), π0 = μ0, π1 = μ1}, (17)

where the marginals π0 and π1 are defined in (2). As the Monge-Kantorovich problem, it
admits the following dynamical formulation,

inf{H(P |R);P ∈ P(Ω) : P0 = μ0, P1 = μ1} (18)

where we denoted by Pt (for t = 0, 1) the time projection at time t of the path measure
P , namely

Pt := (Xt)#P = P (Xt ∈ ·) ∈ P(Rn)

where (Xt)t≥0 is the canonical process.
Problems (17) and (18) are equivalent, in the sense that they share the same optimal
value, attained respectively by π̂ and P̂ , mutually characterized by the relation,

P̂ (·) =
∫

Rn×Rn
Rxy(·)π̂(dxdy) ∈ P(Ω)

that means that P̂01 = π̂ and that P̂ shares the same bridges P̂ xy = Rxy := R(·|X0 =
x,X1 = y) of R. In the manuscript we will mainly consider as reference measure, the
Markov reversible path measure R associated with generator L = (Δ − ∇V · ∇)/2 and
reversing measure m = e−V dx, for a regular enough potential V . Under some sufficient
assumption on the reference measure and the marginals, which will be specified in Chapter
2 the Schrödinger problem admits a solution. Uniqueness follows directly from the strictly
convex nature of the Schrödinger problem.
In the two basic examples, when V = 0 and V = −|x|2/2, which correspond respectively
to the Brownian motion and the Ornstein-Uhlenbeck process, we will show that these
assumptions are satisfied, whereas the assumptions on the marginals reduce to

H(μ|m) < ∞, μ ∈ P2(R
n)
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that is, the marginal measures have finite relative entropy with respect to the equilibrium
measure (respectively m = L and m = e−|x|2/2/(2π)n/2dx), and second order moment
finite.
The solution of (18) is called entropic bridge and is characterized by the formula,

P̂ = f(X0)g(X1)R ∈ P(Ω)

where f, g are measurable non negative functions, satisfying the initial and final condi-
tions, {

μ0 = fT1g
μ1 = gT1f,

where (Tt)t≥0 is the Markov semigroup associated with the reference R. The entropic
interpolation is defined as the time marginal flow of the entropic bridge, μt := P̂t =
(Xt)#P̂ ∈ P(Rn) and characterized by the formula,

dμt := TtfT1−tg dm, ∀ 0 ≤ t ≤ 1.

We denote μt = dμt/dx the density of the entropic interpolation with respect to the
Lebesgue measure, it is a smooth solution of the transport equation,

∂tμt +∇ · (μt∇θt) = 0,

where the vector field
∇θt = (∇ϕt +∇ψt)/2 (19)

is called current velocity and the functions ψt, ϕt are the Schrödinger potentials defined
by ϕt = log Ttf , and ψt = log T1−tg.
From the point of view of random process, if R is associated with the SDE (in a sense
that will be made cleat later at Section 1.1.2)

dXt = −∇V

2
dt+ dWt, (20)

then the entropic bridge, P̂ is associated to the SDE,

dXt =

(
−∇V

2
+∇ψt

)
dt+ dWt, (21)

where ψt is a Schrödinger potential.
Provided that a solution P̂ ∈ P(Ω) of (18) exists, it attains the optimal value

H(P̂ |R) = inf{H(P |R);P ∈ P(Ω), P0 = μ0, P1 = μ1}.

Thus we define the entropic cost between two measures μ0, μ1 ∈ P(Rn) as,

A(μ0, μ1) := inf{H(P |R);P ∈ P(Ω), P0 = μ0, P1 = μ1} −
1

2
[H(μ0|m)−H(μ1|m)]. (22)

It is symmetric and non-negative. The necessity of withdrawing the constant term
[H(μ0|m) − H(μ1|m)]/2 will be clear at Sections 2.3 and 3.5. As an alternative, we
can define the forward and backward costs as,

−→A(μ0, μ1) := inf{H(P |R);P ∈ P(Ω), P0 = μ0, P1 = μ1} −H(μ0|m)
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←−A(μ0, μ1) := inf{H(P |R);P ∈ P(Ω), P0 = μ0, P1 = μ1} −H(μ1|m).

They have the drawback of being non symmetric but they admit a useful dual Kantorovich
formulation that will be proved at Section 3.4.

We can recover from here the original question addressed by Schrödinger. Roughly speak-
ing, assume that (20) models the position of a particles system with initial law L(X0) = μ0.
We observe the system at time, say, t = 1 and we see that L(X1) = μ1 is different from
what we expect according to the SDE (20). This is a rare event, with a very low proba-
bility to happen. It means that an unexpected drift, namely ∇ψt, perturbed the motion
of the system, that is thus driven by the SDE (21). Moreover the most likely dynamics
of the perturbed particles system is P̂ , that is the one who minimizes the relative entropy
with respect to R.

Schrödinger problem vs. Optimal Transport

Besides the fact of being transportation problems between two prescribed configurations,
the Monge-Kantorovich and the Schrödinger problems at a first sight don’t seem to have
much in common. One is deterministic the other is probabilistic, involving a reference
random process and the relative entropy functional. Nevertheless several connections and
analogies do actually hold between optimal transport and entropy minimization. Let us
discuss informally here the main results.

The link between the Schrödinger problem and optimal transport was first established
in [Mik04] not actually in terms of minimal entropy but of h-transforms. Considering
problem (17) with a scaling factor ε > 0,

Aε(μ0, μ1) = inf{εH(P |Rε);P ∈ P(Ω), P0 = μ0, P1 = μ1} −
ε

2
[H(μ0|m) +H(μ1|m)]

where Rε is associated to the generator Lε = εΔ/2 then,

lim
ε→0+

Aε(μ0, μ1) =
W 2

2 (μ0, μ1)

2
(23)

and
lim
ε→0

P̂ ε = P̂

where P̂ ∈ P(Ω) is the unique solution of the dynamic Monge-Kantorovich problem with
quadratic cost (4). In [Léo12a] Léonard proved that this limit is actually true whenever
the reference measure Rε in (18) and the cost function in (3) satisfy a large deviation
principle,

Rε(A) �
ε→0+

e
− inf
w∈A

C(ω)/ε
,

for any Borel set A ⊂ Ω. A formal but persuasive argument to prove the convergence (23)
is to consider the static versions (17) and (1) respectively with Brownian motion as ref-
erence measure, and the quadratic distance as cost function, namely

Rε
01(dxdy) =

e
−|x− y|2

2ε

(2πε)n/2
dxdy, c(x, y) = |x− y|2.
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An explicit computation shows that

εH(π|Rε
01) =

∫ |x− y|2
2

dπ + ε

∫
log

dπ

dxdy
dπ + ε log(2πε)n/2.

Hence at the limit
lim
ε→0+

εH(π|Rε
01) =

∫ |x− y|2
2

dπ.

Optimizing over all π ∈ Π(μ0, μ1), we obtain

lim
ε→0+

Aε(μ0, μ1) =
W 2

2 (μ0, μ1)

2
.

This is consistent with the fact that the entropic cost and the entropic interpolations
approximate the Wasserstein distance and the McCann interpolation when the rescaling
parameter ε vanishes. But even for fixed ε > 0 our two main problems enjoy some
important analogy. In [MT06] Mikami and Thieullen and later in [GLR17], Gentil Léonard
and the author proved with different methods a dual Kantorovich formulation for the
Schrödinger problem, analogous to (6). It states that for every μ0, μ1 ∈ P(Rn × Rn) such
that a solution of (18) exists, then

A(μ0, μ1) = sup
ψ∈Cb(Rn)

{∫
ψ dμ1 −

∫
Q1ψ dμ0

}
,

where
Q1ψ := log T1e

ψ, (24)

and (Tt)t≥0 is the reference semigroup associated with R. Note that Qtψ satisfies the
Hamilton-Jacobi-Bellman equation,

∂tu+
|∇u|2
2

+ Lu = 0

with initial condition ut=0 = ψ, in analogy with the Hopf-Lax semigroup appearing in (6)
defining the solution of the Hamilton-Jacobi equation (5).

The second important analogy is the Benamou-Brenier formulation for the entropic cost
proved by Chen Georgiu and Pavon in [CGP16] in the special case of Brownian mo-
tion with L = Δ/2 as reference measure, and for a general Kolmogorov semigroup with
L = (Δ−∇V ·∇)/2 in [GLR17, Section 5]. It states that the entropic cost can be written
as a minimal action problem,

A(μ0, μ1) =
1

2
inf

∫ 1

0

∫
Rn

(
|vt(z)|2 +

1

4
|∇ log ρt(z)|2

)
μt(z) dzdt,

where the infimum runs over all the couples (μt, vt)0≤t≤1 such that μt is a probability on
Rn for any 0 ≤ t ≤ 1 satisfying the marginals constrains μt=0 = μ0, μt=1 = μ1 and such
that

∂tμt +∇ · (μtvt) = 0.

Unlike the Benamou-Brenier formulation (7) where we minimize the classical kinetic ac-
tion, here we minimize the sum on the kinetic plus the osmotic actionj (that we will
define at Section 2.3) which takes into account the osmotic pressure due to the diffusion
phenomenon.
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III. Applications
From this comparative study of the Schrödinger and the optimal transport problem, a
natural question arises: can we develop some new connection between the Schrödinger
setting and the Bakry-Emery theory, in analogy to the several connections between opti-
mal transport and curvature dimension, recalled in the first part of the introduction? The
answer is yes. We mention here the main results that will be proved in the manuscript as
examples of these connections.

Schrödinger problem and Curvature-Dimension

The setting of the Schrödinger problem can be studied under curvature-dimension condi-
tions. Recalling that entropic interpolations are (smooth) approximations of the McCann
interpolations, and recalling the important role that plays convexity of the entropy func-
tional along geodesics the natural question that arises is: what is the behavior of the
relative entropy with respect to the equilibrium measure m, along entropic interpola-
tions? The surprising answer is that, despite in the Schrödinger setting we loose the
geometric properties of geodesics, entropic interpolations preserve the convexity of the
entropy. It follows by direct Γ2-computations, that the first and second derivative of the
entropy along entropic interpolations, can be written in terms of Γ and Γ2 operators.
Denote (μt)0≤t≤1 the entropic interpolation between two probability measures μ0, μ1 such
that a solution of (18) exists, then

d

dt
H(μt|m) =

∫
Γψt − Γϕt dμt = 2

∫
Γ(log ρt, θt) dμt

d2

dt2
H(μt|m) = 2

∫
Γ2ψt + Γ2ϕt dμt =

∫
(4Γ2θt + Γ2 log ρt) dμt (25)

where Γ2 is the iterated carré du champs operator associated to the generator L of the
reference measure R, m is the reversing measure of R, θt appears in the current veloc-
ity (19) and ρt = dμt/dm is the density of the entropic interpolation with respect to the
reversing measure m. Applying the Bakry-Emery condition (8) with κ = 0 and infinite
dimension to (25), we obtain immediately the convexity of the relative entropy along en-
tropic interpolation. This was first shown by Léonard in [Léo17]. This result has been
extended by the author in [Rip17] under the dimensional condition CD(0, N). It is shown
that,

[0, 1] � s �→ exp

(
− 1

n
H(μs|L)

)
, (26)

is concave. In the trivial example in which the entropic interpolation coincides with the
heat flow, μt = Ttf for some smooth probability density f , this result recovers Costa’s
Theorem [Cos85] that is one of the starting points of the Bakry-Emery-Ledoux theory.
The concavity property of the exponential entropy (26) holds also along displacement
interpolations and is a crucial result in [EKS15]. The gain of dealing with entropic inter-
polations, is that, being smooth, computations are not formal as in the optimal transport
setting but rigorous.

Application: functional inequalities

Optimal transport is an efficient tool to prove functional and geometric inequalities under
appropriate curvature-dimension conditions (see for instance [BGL14, Ch. 9] or [Vil09,
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Part III]). The analogies and connections to optimal transport, together with the reg-
ularity of trajectories and the characterization formula in terms of Markov semigroups,
suggest that the Schrödinger problem might also be a useful tool to prove functional in-
equalities under curvature-dimension bounds.
We propose in this manuscript some new proof of standard functional inequalities, through
the notions of entropic interpolations and entropic cost.

• In [GLR17, Sec. 6] we prove a contraction inequality with respect to the entropic cost,
along the semigroup (Tt)t≥0 associated with the reference measure R. In particular we
prove that, for Rε associated with generator Lε = ε(Δ−∇V · ∇)/2 with ε > 0,

(a) If V satisfies Hess(V ) ≥ κId, for some κ ∈ R, then for any t ≥ 0,

Aε
b(Tαt(b)um, Ttvm) ≤ Aε

βt(b)(um, vm) + ε[H(Tαt(b)um|m)−H(um|m)], (27)

where u and v are probability densities with respect to the reversing measure m =
e−V dx, and

αt(b) = t+
1

κ
log

(
e−εκb

1 + eκt(e−εκb − 1)

)
βt(b) = − 1

κε
log(1 + eκt(e−εκb − 1))

where: if κ ≤ 0, b ∈ (0,∞) and if κ > 0, b ∈ (0,− log(1− e−κt)/(κε)).

(b) If V = 0 then for any t ≥ 0,

Aε(TtuL, TsvL) ≤ Aε(uL, vL) + n

2
(
√
t−

√
s)2 + ε[H(Ttu|L)−H(u|L)]. (28)

In the first case we introduced a generalization of entropic cost Aε
τ defined as,

εAε
τ (μ0, μ1) = εH(μ0|m) + sup

{∫
Rn

ψ dμ1 −
∫

Rn
Qε
τψ dμ0, ψ ∈ Cb(R

n)

}
where for any ψ ∈ Cb(Rn),

Qε
τψ = ε log Tετ (e

ψ/ε).

Taking the limit as ε goes to zero of the contraction inequalities in entropic cost, we
recover the classical contraction in Wasserstein distance (12), (13). The dimensional case
(28) is successively improved by the author in [Rip17], obtaining,

A(Ttu, Ttv) ≤ A(u, v)− n

∫ t

0

sinh2

(
H(Tsu|L)−H(Tsv|L)

2n

)
ds. (29)

analogous of (14) for κ = 0. The proof of (27) and (28) are based on the commutation of
the semigroup (Tt)t≥0 and (Qt)t≥0 defined at (24), and is proved at Lemma 3.6.2. While
(29) is derived as a consequence of the EVI inequality for the entropic cost, in Corollary
4.3.8.

• The EVI inequality is proved for the entropic cost under the CD(κ,∞) and CD(0, N)
conditions. Taking advantage of the regularity properties of the entropic interpolation,
we prove in Theorem 4.3.4 that the function,

[0,∞) � t �→ A(uL, TtvL),
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where A is the entropic cost (22), is differentiable. In particular, for t = 0 it holds,

d

dt

∣∣∣
t=0

A(uL, TtvL) = −1

2

d

ds

∣∣∣
s=1

H(μs|L) (30)

where (μs)0≤s≤1 is the entropic interpolation between u and v. Hence the entropic inter-
polation is just a consequence of the concavity of (26). Under CD(κ,∞) with κ ∈ R we
prove in Chapter 5 that for all t ≥ 0,

d

dt
Aε(um, Ttvm) +

κ

2
Aε(um, vm)− ε2

8
|κ|
∫ 1

0

Im(μs)ds ≤
1

2
[H(u|m)−H(Ttv|m)]

where (μs)0≤s≤1 is the entropic interpolation between um and vm, and Im(μs) is the
Fisher’s information (5.8) of μs with respect to the reversing measure dm. We derive this
result by means of two strategies already used one in [DS08] and the other in [BGL15] to
derive EVI in Wasserstein distance.
We give a proof of the dimensional EVI for the entropic cost, as an immediate consequence
of (30) and the Costa’s type property (26),

d

dt
A(uL, TtvL) ≤

n

2

(
1− e−

1
n
[H(u|L)−H(Ttv|L)]

)
.

• Finally we propose an easy proof of the Gaussian concentration inequality at Theo-
rem 6.1.1, saying that for any 0 < p < 1, t > 0, x ∈ Rn and any Borel measurable subset
A ⊂ Rn such that mx,t(A) ≥ p, it holds

mx,t(Ar) ≥ 1− exp

{
− [r − r(p, κ, t)]2

2τ(κ, t)

}
, ∀r ≥ r(p, κ, t),

where Ar := {x ∈ Rn; d(x,A) ≤ r} is the r-enlargement of the subset A, and

τ(κ, t) =

{
(1− e−κt)/κ if κ �= 0
t if κ = 0,

and r(p, κ, t) :=
√
2τ(κ, t) log(1/p). The proof is very fast. It is based on a coupling

method and on the statistical physics nature of the Schrödinger problem (through Gir-
sanov’s Theorem 1.1.14); we don’t even need the limit to the optimal transport. As a
consequence we derive the Talagrand inequality (11).

• With the same method we obtain the Gaussian Prékopa-Leindler inequality recover-
ing the same result of Lehec [Leh13]. We recall that it writes, for any T > 0 as

log

∫
Rn

eθ dγT ≥ (1− λ) log

∫
Rn

eψ dγT + λ log

∫
Rn

eψ
′
dγT ,

where θ, ψ, ψ′ are measurable [−∞,∞)-valued functions on Rn satisfying for any 0 < λ < 1

θ((1− λ)x+ λx′) ≥ (1− λ)ψ(x) + λψ′(x′), ∀ x, x′ ∈ Rn,

and γT := N (0, T Id). As an application we derive the Prékopa-Leindler inequality for
any log-concave measure m (Corollary 6.2.3) and its geometric counterpart, the Brunn-
Minkowski inequality (Corollary 6.2.4).
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Structure of the manuscript

The manuscript is organized as follows.

In Chapter 1 we collect all the preliminary notions and known results necessary for un-
derstanding the rest of the chapters. In particular Section 1.1 is divided into four parts.
The first one is entirely devoted to relative entropy. We recall the classical definition for
probability measures, the extension to unbounded measures, and important properties
such as the variational formula (1.2) and the additive property (1.6). In the second part
we investigate kinematic properties of Markov diffusion processes. After recalling the
basic definitions, we introduce the notion (and notation) of path measures on the space
of continuous trajectories (1.10) as solution of the martingale problem associated with a
SDE of the type (1.7). Then we recall the concept of stochastic velocities due to Nelson,
in Definition 1.1.9 and give their physical interpretation by means of the Fokker-Plank
and the transport equations. At this point we introduce some example that will refer to
all along the manuscript, such as the Brownian motion, the Ornstein-Uhlenbeck process
and the Kolmogorov semigroup. The third part contains the main results of the Girsanov
theory in Theorem 1.1.14 and a sketch of the proof. Girsanov’s Theorem will play a crucial
role in Section 3.5 and at Chapter 6. In the fourth part we focus on Markov semigroups,
and the Bakry-Emery criterion via the Γ2-operator. In Section 1.2 we summarize the very
basic results of optimal transport in the Euclidean setting with particular attention to
the quadratic case of the Wasserstein distance.

In Chapter 2 we present the protagonist of the manuscript, the Schrödinger problem.
In this chapter we avoid many details, for which we refer time to time to the literature,
and renounce to the most generality in which these results are valid, in favor of more
direct and explicit arguments and of a reasonable size of the chapter. Section 2.1 is about
the definition of the problem and existence and uniqueness results. In Section 2.2 we
focus on the solution, namely the entropic bridges and entropic interpolations, and an-
alyze some kinematic properties. Then in Section 2.3 we are interested in the optimal
value of the Schrödinger problem and propose alternative ways to define the entropic cost,
the analogous of the Wasserstein distance. In Section 2.4 and Section 2.5 we investigate
respectively the connection of the Schrödinger problem to optimal transport and the be-
havior of the relative entropy along entropic interpolations, via the Γ2 criterion. Finally
in Section 2.6 we give a flavor of the statistical physics motivation of the original question
addressed by Schrödinger and an historical review of the literature on the topic.

Chapter 3 deals with the analogies between the Schrödinger problem and optimal trans-
port (OT). We give a new proof of the Kantorovich dual formulation for the entropic
cost in Section 3.4 and a Benamou-Brenier formulation in Section 3.5. As an application
we prove at Section 3.6 some contraction results in entropic cost that, at the limit, give
the classical contraction in Wasserstein distance (12). Finally in last Section 3.7 we give
some explicit examples of entropic and McCann interpolations in two basic cases in which
explicit computations are possible, that is between two Gaussian measures when the ref-
erence measure is either the heat either the Ornstein-Uhlenbeck semigroup, and two easy
numerical examples.

In Chapter 4 we prove the concavity property (26) and the regularity property (30) under
the CD(0, N) condition. We derive the dimensional EVI and the dimensional contraction
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(29) for the entropic cost.

In Chapter 5 we prove under the CD(κ,∞), the EVI inequality via two alternative meth-
ods.

In Chapter 6 we use a genuine Schrödinger problem with fixed ε = 1 to give a fast
proof of the Concentration inequality at Section 6.1 and of the Prékopa-Leindler inequal-
ity at Section 6.2, via a coupling method and the Girsanov theorem.

Chapters 1 and 2 do not contain any new results, contrary to the rest of the manuscript.
Chapters 3 and 4 are slightly modified versions of, respectively, [GLR17] and [Rip17]
in which we added few comments and use notations consistent with the rest of the
manuscript. We decided to report them in their article organization (abstract, introduc-
tion, setting, results...) to keep the autonomy with respect to the rest of the manuscript,
and leave the reader free to read the part of interest, at the price of some redundant
definition. We apologize for the occasional repetitiveness. Chapter 6 is the object of a
new article in preparation with Gentil and Léonard.
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Chapter 1

Preliminary tools

This chapter is meant to be a toolbox containing all the necessary instruments for a
complete comprehension of the rest of the manuscript. All the results presented here are
well known results, object, in more details and more generality, of a rich bibliography
of manuals and papers, that we will mention time to time. Thus the only ambition of
this chapter is to put together all these different topics, sharing uniform notation and the
same final goal. It is organized in two parts: Section 1.1 is devoted to relative entropy
and diffusion processes, while Section 1.2 to the optimal transport theory.

1.1 Actions of diffusion processes

This section is organized as follows. First at Section 1.1.1 we introduce the relative en-
tropy that will play a central role all along the manuscript. Then at Section 1.1.2 we
recall the basic notions of Markov diffusion processes and focus on kinematics proper-
ties. At Section 1.1.3 we present the main results of the Girsanov theory, and finally at
Section 1.1.4 we discuss the principal facts of Markov semigroups and Γ2-theory.

1.1.1 Relative entropy

The relative entropy is a fascinating functional recurring in different fields of physics,
mathematics and information theory. We start by giving a mathematical picture, far
from being complete but sufficient to understand the rest of the following chapters.

Definition 1.1.1 (Relative entropy) Let X be a Polish space and μ, ν ∈ P(X ) two
probability measures on X . The relative entropy is defined as,

H(μ|ν) =

⎧⎨⎩
∫
X
log

dμ

dν
dμ if μ 
 ν,

+∞ otherwise.
(1.1)

Some important properties of the entropy can be directly derived by its definition. Indeed,
we can write,

H(μ|ν) =
∫

h

(
dμ

dν

)
dν

where h(a) = a log a − a + 1 for any a ≥ 0 (with the convention that 0 log 0 = 0)
and +∞ for any negative a. The function h(·) is non-negative and strictly convex, and

27
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it is straightforward to see that these properties are inherited by the relative entropy
functional. Note that h(a) = 0 if and only if a = 1, which implies that

H(μ|ν) = 0 ⇐⇒ μ = ν.

Proposition 1.1.2 (Variational formula) Let ν be a probability measure; for any μ ∈
P(X ) such that μ 
 ν, the relative entropy can be written as,

H(μ|ν) = sup

{∫
u dμ− log

∫
eu dν; umeas.,

∫
eudμ < ∞,

∫
|u| dν < ∞

}
. (1.2)

Proof
� We recover here the proof of [GL10, Prop. B1]. It is based on the Fenchel inequality
st ≤ t log t − t + es, valid for all t > 0, and s ∈ R. It can be easily checked that the
equality is attained when

st = t log t− t+ es ⇐⇒ t = es. (1.3)

Take this inequality with t = dμ/dν and s = u(x),

u
dμ

dν
≤ dμ

dν
log

dμ

dν
− dμ

dν
+ eu

then integrate it with respect to ν,∫
u dμ ≤ H(dμ|dν)− 1 +

∫
eu dν.

It makes sense under the hypothesis that
∫
eu dν < ∞ and

∫
|u| dμ < ∞. Taking the sup

among all the measurable function u satisfying
∫
eu dν < ∞ and

∫
|u| dμ < ∞, we obtain

H(μ|ν) = sup

{∫
u dμ−

∫
(eu − 1) dν; umeas.,

∫
eudμ < ∞,

∫
|u| dν < ∞

}
.

Observe that the equality is given by the monotone convergence theorem. Indeed, easy
computations show that the case of equality, eu = dμ/dν, is the limit of the sequence
un = max{log(dμ/dν), u−n}. Now, replace u by u+ b for some b ∈ R,∫

(u+ b) dν −
∫

e(u+b) − 1 dμ =

∫
u dν − eb

∫
eu dμ+ b+ 1.

The sup with respect to b ∈ R is attained by b = − log
∫
u dν, and it gives

sup
b∈R

{∫
u dν − eb

∫
eu dμ+ b+ 1

}
=

∫
u dν − log

∫
eu dμ.

Finally,

H(μ|ν) = sup

{∫
u dμ−

∫
(eu − 1) dν; umeas.,

∫
eudμ < ∞,

∫
|u| dν < ∞

}
= sup

{∫
u+ b dμ−

∫
(eu+b − 1) dν; b ∈ R, umeas.,

∫
eudμ < ∞,

∫
|u| dν < ∞

}
= sup

{∫
u dν − log

∫
eu dμ; umeas.,

∫
eudμ < ∞,

∫
|u| dν < ∞

}
.

This concludes the proof. �
Note that it follows from (1.2) by standard approximation arguments that

H(μ|ν) = sup

{∫
u dμ− log

∫
eu dν; u ∈ Cb(X )

}
.
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Relative entropy with respect to unbounded measures

We introduce here a generalization of the relative entropy to unbounded measures, which
will be necessary later in the manuscript. In order (1.1) to be meaningful when ν has
infinite mass, we need some restriction on the set of definition of probability measures.
Let X be a Polish space, and ν ∈ M+(X ) a σ-finite measure. The σ-finiteness assures
the existence of a function w : X �→ [0,∞), such that

zw :=

∫
X
e−wdν < ∞. (1.4)

Hence, we can define a probability measure associated to ν, by

νw :=
e−w

zw
ν ∈ P(X )

therefore, log(dμ/dν) = log(dμ/dνw)−log zw−w, so that we can write the relative entropy
w.r.t. ν via the relative entropy w.r.t. a probability measure as follows,

H(μ|ν) = H(μ|νw)− log zw −
∫

w dμ. (1.5)

This formula is well defined for all μ ∈ Pw(X ) := {μ ∈ P(X ) :
∫
w dμ < ∞}.

Definition 1.1.3 Let ν ∈ M+(X ) be a σ-finite measure. Then, for all probability mea-
sure μ ∈ Pw(X ) the relative entropy is defined as

H(μ|ν) =

⎧⎨⎩
∫
X
log

dμ

dν
dμ if μ 
 ν,

+∞ otherwise.

Proposition 1.1.4 The relative entropy defined at Definition 1.1.3 satisfies the following
properties:

(i) Variational formulation, H(μ|ν) = sup
{∫

u dμ− log
∫
eu dν; u ∈ Cb(X )

}
;

(ii) H(·|ν) is convex on the space of all signed measures M(Ω);

(iii) If X is a topological space, then H(·|ν) is lower semi-continuous with respect to the
topology σ(Mw(X ), Cw(X )), where Mw(X ) is the space of all signed measures μ on
X such that

∫
X w d|μ| < ∞

Proof
� (i) The proof is the same as in the classic case of Proposition 1.1.2.
(ii) + (iii) By (i) we have that H(·|ν) is the supremum of affine continuous functions
μ �→

∫
u dμ− log

∫
eu dν. Therefore it is convex and lower semi-continuous [Roc97]. �

A last important property that we mention in this section about relative entropy, is
the additive property.
Let X ,Y be two Polish spaces equipped with their Borel σ-fields. Then, for any mea-
surable function φ : X �→ Y , and any measure μ ∈ M+(X ) we have the disintegration
formula,

μ(·) =
∫
Y
μ(·|φ = τ)νφ(dτ)
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where μφ = φ#μ. We recall the push-forward μφ of a measure μ on a space X through a
map φ : X → Y , is a measure on Y defined for all regular enough function h : Y → R as∫

Y
h dμφ =

∫
X
h(φ) dμ.

Proposition 1.1.5 The following additive property for the relative entropy is satisfied,

H(μ|ν) = H(μφ|νφ) +
∫
X
H(μ(·|φ = τ)|ν(·|φ = τ))μφ(dτ). (1.6)

Proof
� The proof is a consequence of [Léo14a, Thm. 1.6] where it is proved an extension of
the conditional expectation to unbounded measures. In particular, it allows us to write,

H(μ|ν) =

∫
Y
Eμ

[
log

(
dμ

dν

) ∣∣∣φ = τ

]
νφ(dτ)

=

∫
Y
log

dμφ
dνφ

μφ(τ) +

∫
Y

[∫
X
log

dμ(·|φ = τ)

dν(·|φ = τ)
μ(dτ |φ = τ)

]
μφ(dτ)

= H(μφ|νφ) +
∫
X
H(μ(·|φ = τ)|ν(·|φ = τ))μφ(dτ)

that is the announced result. �

1.1.2 Kinematics of diffusion processes

In this section we investigate some kinematic property of diffusion stochastic processes.
We consider the stochastic differential equation (SDE)

dXt = b(Xt) dt+ σ(Xt)dWt,
X0 = x,

(1.7)

where (Wt)t≥0 is the standard Brownian motion on Rn, the diffusion coefficient σ is a n×n
matrix and the drift b is a vector on Rn. We assume the coefficients b, σ to be smooth
functions. In the next theorem we recall some sufficient conditions for the existence of a
unique solution of (1.7), see for instance [IW89].

Theorem 1.1.6 Let b and σ have linear growth, that is,

‖σ(x)‖+ |b(x)| ≤ D(1 + |x|)

for some D ∈ R and for all x ∈ Rn, and assume that b, σ are locally Lipschitz, in the sense
that for any compact K ⊂ R, there exists a constant CK > 0 such that,

‖σ(x)− σ(y)‖+ |b(x)− b(y)| ≤ CK |x− y|

for all x, y ∈ K. Then there exists a unique solution (Xx
t )t≥0 of (1.7) defined on [0,∞).
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The solution of the SDE (1.7) defines a Markov diffusion process. We recall that given a
filtration (Ft)t∈I , a process satisfies the Markov property if for all s, t ≥ 0,

P (Xt+s ∈ A|Ft) = P (Xt+s ∈ A|Xt), a.s.

for any A ∈ B. Or equivalently, E(f(Xt+s)|Ft) = E(f(Xt+s)|Xt) for any suitable function
f . In other words we say that a process is Markov if for all time t the past and the future
are conditionally independent given the present,

P (X[0,t] ∈ A,X[t,1] ∈ B|Xt) = P (X[0,t] ∈ A|Xt)P (X[t,1] ∈ B|Xt).

In the subsequent chapters we will deal only with Markov processes. On the other hand we
recall that a diffusion process, is a process driven by a second order differential operator
of the form,

Lf(x) =
n∑

i,j=1

aij(x)∂
2
ijf(x) +

n∑
i=1

bi(x)∂if(x). (1.8)

We can verify that this is the case for the solution of (1.7). Indeed, for every real smooth
function on Rn, Itô’s formula provides,

df(Xt) = ∇f(Xt) · dXt +
1

2
dXt · ∇2f(Xt)dXt.

Let us compute the terms dX i
tdX

j
t ,

dX i
tdX

j
t = (bidt+ σi(x)dW i

t ) · (bjdt+ σjdW j
t )

= bibjdt2 − biσjdtdW j
t − bjσidtdW i

t + σidW i
tσ

jdW j
t .

By definition of Brownian motion we have

E(dW i
t dW

j
t ) =

{
0 if i �= j
dt if i = j

and we can neglect the higher order terms dtdWt and dt2, hence by (1.7),

df(Xt) = ∇f(Xt) · (b(Xt) dt+ σ(Xt)dWt) +
1

2
Δf(Xt)a(Xt)dt

where a = σσ∗. After collecting the terms and integrating with respect to t, it yields to

f(Xx
t ) = M f

t +

∫ t

0

Lf(Xx
s ) ds, ∀ t ≥ 0, x ∈ Rn. (1.9)

where L is of the type (1.8), and (M f
t )t≥0 is a local martingale (for basic definition and

properties of martingales see for instance the reference book [Doo53]). In this case the
law of the process (Xx

t )t≥0 is said to solve the martingale problem associated with the
operator L.
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Path measures

In the subsequent chapters we will refer to the solution of the SDE (1.7) through the
notion of path measure, that we shall introduce now.
We denote the space of continuous paths on Rn as

Ω := C([0, 1],Rn). (1.10)

The canonical process X = (Xt)0≤t≤1 is defined for any 0 ≤ t ≤ 1 by,

Xt(ω) = ωt ∈ Rn, ∀ ω = (ωs)0≤s≤1 ∈ Ω.

For any time t, Xt : Ω → Rn represents the position at time t of the trajectory ω ∈ Ω.
We equip Ω with the canonical σ-field generated by (Xt; 0 ≤ t ≤ 1), denoted by σ(X[0,1]).
Any probability measure on Ω is called a path measure.
For any path measure P ∈ P(Ω) and any time 0 ≤ t ≤ 1, the probability measure

Pt := (Xt)#P = P (Xt ∈ ·) ∈ P(Rn)

is the law of the position of a particle at time t when its whole random history is described
by P . It is called the t-th marginal of P.
In the following we will say that P ∈ P(Ω) is associated to the SDE (1.7) or is the law of
the SDE (1.7), or even P is associated with the operator L, in the sense that P is solution
of the martingale problem associated to L. This means that for every smooth function f
and for every t ≥ 0,

f(Xt)− f(X0)−
∫ t

0

Lf(Xs) ds = M f
t

is a local-P martingale, that is the same of saying that

lim
h→0+

1

h
EP (f(Xt+h − f(Xt))|Xt = z) = Lf(z).

In the following chapters we will also use the notation

dXt = b(Xt) dt+ σdW P
t

where dW P
t denote a P -martingale increment (EP (dW

P
t |Xt) = 0) and a P -Brownian

increment (with quadratic variation [W P
t ] :=

∫ t
0
as ds, with as = σsσ

∗
s P -a.e.).

Given the time-reversal mapping

X∗
t := X1−t, 0 ≤ t ≤ 1, (1.11)

we introduce the next important properties for path measures.

Definition 1.1.7 (Reversible and invariant measure) We say that a path measure
R ∈ P(Ω) is reversible with reversing measure m ∈ M+(X) if R0 = m and for all
0 ≤ s ≤ t ≤ 1, the time reversed R∗ := (X∗)#R satisfies,

R∗
[s,t] = R[s,t],

that is equivalent to say that R is invariant with respect to the inversion of time.
We say that R is stationary if

(Xt)#R = m ∈ P(Rn), ∀ t ≥ 0.
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Clearly reversibility is stronger than stationarity. Indeed it means that Rs = Rt for all
0 ≤ s ≤ t ≤ 1 hence Rt = R0 = m for all t ∈ [0, 1].

In the following we will mainly focus on the case of (1.7) with a constant diffusion coeffi-
cient, that is

dXt = b(Xt) dt+ σ dWt, ∀ t ≥ 0 (1.12)

for some σ > 0.

Examples 1.1.8 Let us mention some fundamental examples that will occur often in this
manuscript.

1. The easiest case is the one with no drift, i.e. b = 0. In this case dXt = σdWt, is
the Brownian motion and the operator in (1.8) is

Lf = σ2Δf/2.

It is an easy exercise to prove that the reversing measure is m = L, where L is
the Lebesgue measure on Rn. Note that m is not a probability measure since it has
infinite mass on Rn.

2. Another typical example is when the drift is b(x) = −x. The solution is called
Ornstein-Uhlenbeck process, the operator L is given by,

Lf = (σ2Δf − x · ∇f)/2.

and the reversing measure is the Gaussian measure on Rn, dm = e−|x2|/2/(2π)n/2dx.

3. In general we will consider the Kolmogorov process, solution of the SDE (1.12)
with a drift of the type b = −∇V/2, for some regular enough potential V . Then the
operator L is

Lf = (σ2Δ−∇V · ∇f)/2,

and the reversing measure is m = e−V dx. Typically we will assume V to be C2, such
that

∫
e−V dx = 1 and κ-convex, that is ∇2V ≥ κId for some real κ.

Nelson’s velocities

We start by recalling the well known link between the SDE (1.12) and the related partial
differential equations.
Let μ(x, t) be the probability density of the diffusion process which satisfies (1.12) so that
for any measurable set B ⊂ Rn,

P (Xt ∈ B) =

∫
B

μ(x, t)dx. (1.13)

Then it follows by Itô’s formula that for any regular and integrable enough test function
u and any t ≥ 0,∫

Rn
u(z)μt(z) dz = EPu(X0) + EP

∫ t

0

(b · ∇u+ σ2Δu/2)(Xs)ds

=

∫
Rn

u(z)μ0(z)dz +

∫ t

0

ds

∫
Rn
(b · ∇u+ σ2Δu/2)(z)μs(z)dz
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and after integration by parts, we obtain

∂tμt +∇ · (bμt)−
σ2

2
Δμt = 0. (1.14)

that is the Fokker Plank equation [Doo53, Ch. 6].

In order to go further in the study of diffusion kinematics, let us introduce the notions
of backward and forward mean velocities, and current and osmotic velocities that we will
refer to with the name of Nelson’s velocities. We refer to [Nel67] and [Nel88] for a detailed
discussion on these notions.

Definition 1.1.9 (Nelson’s velocities) Given a Markov diffusion process (Xt)t≥0 so-
lution of the SDE (1.12), and let P ∈ P(Ω) be the path measure associated to it. We
define for dtdPt(dz)-almost all (t, z) ∈ [0, 1]× Rn, when these quantities are meaningful,

(i) the forward velocity as,

−→v P
t (z) := lim

h→0+

1

h
E
(
Xt+h −Xt

∣∣∣Xt = z
)
;

(ii) the backward velocity as

←−v P
t (z) := lim

h→0+

1

h
E
(
Xt−h −Xt

∣∣∣Xt = z
)
;

(iii) the current and osmotic velocities respectively by

vcu,Pt (z) := lim
h→0+

1

2h
EP (Xt+h −Xt−h|Xt = z) (1.15)

vos,Pt (z) := lim
h→0+

1

2h
EP (Xt+h − 2Xt +Xt−h|Xt = z). (1.16)

By the definition of current and osmotic velocities, it is clear that they are given respec-
tively by the half difference and the average of the forward and backward velocities, that
is,

vcu,Pt =
−→v P

t −←−v P
t

2
, vos,Pt =

−→v P
t +←−v P

t

2
. (1.17)

Moreover we see that
−→v P

t = vcu,P + vos,P , ←−v P
t = −vcu,P + vos,P . (1.18)

It is an immediate consequence of relations (1.17), that the Nelson velocities satisfy the
parallelogram identity,

2(|vcu|2 + |vos|2) = |−→v |2 + |←−v |2. (1.19)

Remark 1.1.10 These notions are defined for any P ∈ P(Ω). However, in the general
case where P might not be Markov, the forward and backward velocities of P are defined
by

−→v P (t,X[0,t]) := lim
h→0+

1

h
EP

(
Xt+h −Xt | X[0,t]

)
←−v P (t,X[t,1]) := lim

h→0+

1

h
EP

(
Xt−h −Xt | X[t,1]

)
.
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In this case the current and osmotic velocities depend on the whole past and future history
of the path and it is not true in general that they can be expressed by formulas of the
type (1.15), (1.16).

Remark 1.1.11 Note that we defined the backward velocity with opposite sign with respect
to the original definition of Nelson; this is actually a more natural choice when dealing
with reversed time.

Time reversed

Since we introduced two time directions notions of velocities, it is interesting to see which
is the relation with the Nelson velocities of the time reversed process.
Let us consider the time reversed P ∗ = (X∗)#P , where (X∗) is the time reversal map
introduced at (1.11). By Definition 1.1.9, the backward velocity is given by

←−v P
t = lim

h→0+

1

h
EP (Xt−h −Xt|Xt)

= lim
h→0+

1

h
EP ∗(X1−t+h −X1−t|X1−t) ◦X∗ = −→v ∗

1−t (1.20)

where the lighter index ∗ stands for P ∗. The same relation holds for the forward velocity
of P , hence we can deduce that,

vcu,∗t =
−→v ∗

t −←−v ∗
t

2
=

←−v P
1−t −−→v P

1−t
2

= −vcu,P1−t

and analogously,

vos,∗t =
−→v ∗

t +
←−v ∗

t

2
=

←−v P
1−t +

−→v P
1−t

2
= vos,P1−t ,

for dtdPt(z)-almost all (t, z) ∈ [0, 1]× Rn.

Examples 1.1.12 (First part) Let us identify the Nelson velocities in our typical ex-
amples.

1. In the deterministic case, i.e. σ = 0 and Xt = xt satisfying the ordinary differential
equation xt = xo +

∫ t
0
b(xs)ds, it is straightforward to see that

−→v t = vcut = b(z), ←−v t = −b(z) vost = 0.

2. For the general Markov diffusion process (1.12) the forward velocity is −→v t(z) = b(z),
indeed,

1

h
E(Xt+h −Xt|Xt = z) =

1

h
E

(∫ t+h

t

b(Xs)ds|Xt = z

)
+
√
σE(Wt+h −Wt|Xt = z)

=
1

h
E

(∫ t+h

t

b(Xs)ds|Xt = z

)
where the last equality derives by the definition of Brownian motion; then taking the
limit, we have

−→v t(z) = lim
h→0+

1

h
E(Xt+h −Xt|Xt = z) = b(z). (1.21)
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We want to see now the relations between Nelson’s velocities and the density μt = dPt/dz
introduced at (1.13). At the light of (1.21), the Fokker-Plank equation derived at (1.14)
can be written in terms of forward velocity as,

∂tμt +∇ · (−→v P
t μt)−

σ2

2
Δμt = 0. (1.22)

Writing the Fokker-Plank equation for the time reversed process P ∗,

∂tμ
∗
t +∇ · (−→v ∗

tμ
∗
t )−

σ2

2
Δμ∗

t = 0

where we denoted μ∗
t := dP ∗

t /dz = dP1−t/dz = μ1−t. Hence ∂tμ
∗
1−t = −∂tμt, and together

with (1.20) the last equation can be written as,

∂tμt −∇ · (←−v P
t μt) +

σ2

2
Δμt = 0 (1.23)

Taking the half sum of (1.22) and (1.23), we have

∂tμt +∇ ·
(−→v P

t −←−v P
t

2
μt

)
= 0

that gives, by (1.17), the current equation

∂tμt +∇ · (vcu,Pt μt) = 0. (1.24)

On the other hand, by taking the difference of (1.22) and (1.23) we obtain,

∇ · [μt(−→v P
t +←−v P

t − σ2∇ log μt)] = 0

it means by (1.17) that the quantity vos,Pt − σ2∇ log
√
μt is divergence free. It can be

proved that this quantity is actually zero via a duality formula (appearing in [Nag64],
[Nel67, Ch. 13] and [Föl86]) that is,

vos,Pt =
σ2

2
∇ log μt = σ2∇ log

√
μt. (1.25)

Examples 1.1.13 (Second part) Going back to the Examples 1.1.12, we study the case
when b = −σ2∇V/2 for some C2 real function V , where σ is the diffusion coefficient. As
pointed out in the Examples 1.1.8, (3), the reversing measure is m = e−V dz. Hence,
μt = dPt/dz = e−V . According to (1.25), we have,

vos,Pt =
σ2

2
∇ log(e−V ) = −σ2

2
∇V.

Moreover, by (1.21) the forward velocity is

−→v P
t = −σ2

2
∇V

and together with the relations (1.17) and (1.18) we can conclude that,

vcu,Pt = 0, ←−v P
t = −σ2

2
∇V.

Summerizing, when P ∈ P(Ω) is associated to the SDE

dXt = −σ2

2
∇V dt+ σdWt

the Nelson velocities are,

−→v P
t = ←−v P

t = vos,Pt = −σ2

2
∇V, vcu,Pt = 0.
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Physical interpretation

From a physical point of view, the diffusion process (1.12) describes the trajectory of
many particles suspended in a fluid, under the action of an external (deterministic) force.
Think for instance to a ink drop released in water, or to some perfume quickly spreading
in the air. The diffusion, that describes the motion of the particles from a region of high
concentration to a region of low concentration, is the result of random displacements due
to collisions between molecules in the suspension, namely Brownian motions.
Following [Nel67, Ch. 4], at the equilibrium the external force K is balanced by the
osmotic pressure that is the force due to collisions,

K = kT
∇ρ

ρ

where ρ is the probability density (the number of particles per unit of volume divided
by the total number of particles), k is the Boltzmann constant and T is the absolute
temperature. Without entering in the details, if we divide both sides by mβ where m is
the mass of a particle and β is some constant with the dimension of sec−1, encoding the
friction experienced by the particle moving in the fluid, we obtain,

K

mβ
= D

∇ρ

ρ

where D := kT/mβ is the diffusion coefficient derived by Einstein in [Ein05]. Thus, a
dimensional analysis shows us that the left hand side is a velocity, and is due to the
external force, whereas the right hand side is the velocity due to the osmotic pressure
(diffusion) and coincides with (1.25).
On the other hand the meaning of the current velocity is easily derived by the continuity
equation (1.24). It consists in the velocity field driving the flux, hence the movement of
particles (or in other words the current) according to equation (1.24) (see for instance the
textbook [Eva98] for a general discussion on continuity equations).

1.1.3 Entropy of diffusion processes

In this section we focus on the Girsanov Theory. It will play a crucial role when we will
derive a dynamic Benamou-Brenier formulation for the entropic cost at Section 3.5 and
in the application to the concentration and Prékopa-Leindler inequality at Chapter 6.
Let R ∈ P(Ω) be associated to the SDE (1.12), with σ > 0 and the vector field b :
[0, 1]× Ω → Rn locally Lipschitz.

Theorem 1.1.14 (Girsanov’s theorem) Let P ∈ P(Ω) be such that H(P |R) < ∞.
Then there exists a vector field β : [0, 1]× Ω → Rn defined P -a.e. such that,

1.

σ2EP

∫ 1

0

|βt|2 dt < ∞;

2. P is associated to the SDE

dXt = [bt(Xt) + σ2βt(Xt)] dt+ σdW P
t .

Assume furthermore that for all x ∈ Rn, Rx is the only weak solution of (1.12) with initial
law δx, then
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3. The density of P with respect to R is,

dP

dR
=

dP0

dR0

(X0) exp

{
σ

∫ 1

0

βt · dWR
t − σ2

2

∫ 1

0

|βt|2 dt
}
; (1.26)

4. The relative entropy of P with respect to R is given by,

H(P |R) = H(P0|R0) +
σ2

2
EP

∫ 1

0

|βt|2 dt.

Remark 1.1.15 Note that since σ is a positive and finite constant, it does not play any
role in 1. However we chose to include it, to underline the fact that the diffusion coefficient
does have a role. Indeed, whenever σ(Xt) is not constant, then MR

t =
∫ t
0
σs dW

R
s , with

quadratic variation,

[MR,MR]t =

∫ t

0

as ds R-a.e.

where at := σtσ
∗
t (Xt). In this situation, 1. becomes,

EP

∫ 1

0

βt · atβt dt < ∞.

Sketch of the Proof
� We only give a sketch of the proof and refer to [Léo12b, Thm. 2.1, Thm. 2.4] for a
detailed version.
For any measure Q ∈ P(Ω) we define,

H(Q) :=

{
g : [0, 1]× Ω → Rn; meas. and s.t. σ2EQ

∫ 1

0

|gt|2 dt < ∞
}

equipped with the semi-norm ‖g‖H(Q) :=
(
σ2Eq

∫ 1

0
|gt|2 dt

)1/2

. The starting point is the
variational representation of the relative entropy (1.2) which implies,

H(P |R) ≥
∫

u dP − log

∫
eu dR. (1.27)

We can choose u =
∫ 1

0
σhs dW

R
s − σ2

2

∫ 1

0
|hs|2 ds. For such a function u, [Léo12b, Lemma

4.1] assures that the logarithmic term in (1.27) is non-positive, therefore we can neglect
it and we obtain,

H(P |R) ≥ EPσ

∫
hs dW

R
s − σ2

2
EP

∫ 1

0

|hs|2 ds (1.28)

We can do the same for −h and replace h with h/λ for some λ > 0, to get∣∣∣∣EP
σ

λ

∫ 1

0

hs · dWR
s

∣∣∣∣ ≤ H(P |R) +
σ2

2λ2
EP

∫ 1

0

|hs|2 ds.

If we choose λ = ‖h‖H(P ), it reduces to∣∣∣∣σEP

∫ 1

0

hs · dWR
s

∣∣∣∣ ≤ (
H(P |R) +

1

2

)
‖h‖H(P )
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This holds even when ‖h‖HP = 0. Indeed, when ‖h‖HP = 0 replacing h by ah in (1.28)
gives

EPσ

∫
hs · dWR

s ≤ H(P |R)/a

and at the limit a → ∞ it gives EP

√
σ
∫
hs ·dWR

s = 0. Identifying the equivalence classes
turns (HP , ‖·‖P ) into an Hilbert space. Hence, the Riesz representation Theorem assures,
as soon as H(P |R) is finite, the existence of a unique β ∈ HP such that,

σEP

∫
h · dWR

s = σEP

∫ 1

0

βt · ht dt.

This is equivalent to,

EP

∫ 1

0

ht · (dMR
t − σ2βt dt) = 0, ∀ h ∈ HP .

And this implies that dMP
t := dMR

t −σ2βtdt = dXt− bt(Xt)dt−σ2βtdt is a P -martingale
increment. In other words, P is associated to the SDE,

dXt = [bt(Xt) + σ2βt(Xt)] dt+ σdW P
t

that is the statement in 2..
In order to prove 3. we take any P ∈ P(Ω) that satisfies

dXt = bPt dt+ dMP
t ,

for some bP such that

EP

∫ 1

0

|bPt |2dt < ∞. (1.29)

We define for some γ satisfying (1.29),

Q := exp

(∫ 1

0

γs · dW P
s − σ2

2

∫ 1

0

|γs|2 ds
)
P.

It can be proved that Q satisfies

dXt = [bPt + σγt] dt+ dMQ
t , Q-a.e.

with dMQ
t = σ dWQ

t . Now, if we recall that R is associated with (1.12) and take P ∈ P(Ω)
such that H(P |R) < ∞, then if we set γ = −β that is the vector field that appears in 1.
and 2., we obtain

dXt = [bPt − σβt] dt+ dMQ
t

= [bt + σβt − σβt] dt+ dMQ
t

= bt dt+ dMQ
t .

Finally by the assumption of uniqueness on R, we obtained Qx = Rx, that implies

P x = exp

(∫ 1

0

βt · dMP
t +

σ2

2

∫ 1

0

|βt|2
)
Rx

= exp

(∫ 1

0

βt · (dXt − btdt− σ2βtdt) +
σ2

2

∫ 1

0

|βt|2dt
)
Rx

= exp

(∫ 1

0

βt · (dXt − btdt)−
σ2

2

∫ 1

0

|βt|2dt
)
Rx

= exp

(∫ 1

0

βt · dMR
t − σ2

2

∫ 1

0

|βt|2dt
)
Rx
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that is 3..
Point 4. is a direct consequence of 3. Indeed by definition of relative entropy and (1.26)

H(P |R) = EP log(dP/dR)

= EP log(dP0/dR0)(X0) + EP

(∫ 1

0

βt · dMP
t +

σ2

2

∫ 1

0

|βt|2dt
)

= H(P0|R0) +
σ2

2
EP

∫ 1

0

|βt|2 dt

where the last equality is given by the martingale identity EP

∫ 1

0
βt · dMP

t = 0. �

1.1.4 Markov semigroups and Γ2-calculus

We recall here some well known and basic results related to the Γ2-calculus and the Bakry-
Emery theory. Beyond a wide literature on the topic, the main references are the two
monographs [BGL14] and [ABC+00] (in french).
Let us start by the definition of Markov semigroup and its relation to Markov processes.

Let m ∈ M+(Rn) be any σ-finite measure.

Definition 1.1.16 (Markov semigroup) Let (Tt)t≥0 be a family of linear bounded op-
erators on L2(m) it is a Markov semigroup if:
(i) T0 =Id,
(ii) for all f ∈ L2(m), t → Ttf is continuous on [0,+∞),
(iii) for all s, t ≥ 0, Tt+s = Tt ◦ Ts,
(iv) Tt1 = 1 and Ttf ≥ 0 for f ≥ 0,
(v) Tt is a contraction: ∀f ∈ L2(m), ‖Ttf‖L2(m) ≤ ‖f‖L2(m).

Given a Markov process (Xt)t>0 and X0 = x, solution of the SDE (1.7) then the associated
Markov semigroup is defined for any suitable real measurable function f on Rn by,

Ttf(x) := E(f(Xt)|X0 = x).

On Rn Markov semigroups admit the kernel representation,

Ttf(x) = E(f(Xt)|X0 = x) =

∫
f(y)pt(x, dy).

where pt(x, dy) is the transition probability kernel of the associated Markov process.
This is actually true on any space that admits a disintegration formula μ(dxdy) =
k(x, dy)μ1(dx), such as a Polish space. Moreover the kernel pt(x, dy) may have a den-
sity with respect to the measure m, in this case we say that a Markov semigroup admits
a density kernel with respect to m, if for any t > 0 and any f ∈ L2(m),

Ttf(x) =

∫
f(y)pt(x, y)dm(y).

The existence of such a kernel is not always guaranteed, see for instance [BGL14, Prop.1.2.5].
For all function f such that (Ttf − f)/t admits the limit for t → 0+ in L2(m) with the
L2(m) norm, we give the following
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Definition 1.1.17 (Infinitesimal generator) The infinitesimal generator is the oper-
ator L associated to the semigroup (Tt)t≥0 defined as

Lf := lim
t→0+

Ttf − f

t
.

The set of functions f for which the limit exists in L2(m) with respect to the L2-norm, is
called domain of L and is denoted D(L).

The semigroup property and the linearity of the operators (Tt)t≥ yield for any function
f ∈ D(L) and for all t ≥ 0 to,

∂tTtf = TtLf = LTtf

It is a delicate question to determine the domain of the generator L and the class of
functions on which defining a Markov semigroup. [BGL14, Ch. 3.3] is entirely devoted to
rigorously answering this question, and the name of the chapter "Heart of the darkness"
is emblematic. We only mention that in order the operator L to be well defined, it is not
enough to consider a class of functions smooth enough, but it is necessary a good behavior
at infinity in order to use integration by parts.
The infinitesimal generator L coincides with the differential diffusion operator (1.8) asso-
ciated to the martingale problem (1.9).

Let us now give the important notions of invariant and symmetric measures defined at
Definition 1.1.7 in terms of Markov semigroups.

Definition 1.1.18 (Invariant measure) A σ-finite measure m on Rn is invariant for a
Markov semigroup (Tt)t≥0, if for all t ≥ 0 and all bounded measurable function f : Rn → R,∫

Rn
Ttf dm =

∫
Rn

f dm

Not necessary a Markov semigroup admits an invariant measure; moreover it is not nec-
essary a finite measure, and it is defined up to a multiplicative factor. When m is a finite
measure we assume that it is a probability and we can see that

E(f(Xt)) = E(E(f(Xt)|X0)) =

∫
Rn

Ttf dm =

∫
Rn

f dm = E(f(X0)).

We can deduce that if the associated Markov process has initial distribution m, namely
L(X0) = m, then L(Xt) = m for any time t > 0. It follows directly from the definition of
infinitesimal generator, that Definition 1.1.18 is equivalent to say that for all f ∈ L2(m),
such that Lf ∈ L1(m), ∫

Rn
Lf dm = 0.

Another important definition that we will often use in the next chapters, is the one of
reversibility.

Definition 1.1.19 (Reversing measure) A σ-finite measure m on Rn is reversing for
a Markov semigroup (Tt)t≥0, if for all f, g ∈ L2(m) and all t ≥ 0,∫

Rn
fTtg dm =

∫
Rn

gTtf dm.
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Remark that reversibility is a stronger condition and implies invariance. It can be seen by
taking in the definition g = Id. It is an easy exercise to prove that these two definitions
are equivalent to the one given at Definition 1.1.7. Indeed, we say that a measure is
invariant if and only if Rt = (Xt)#R = m for all 0 ≤ t ≤ 1, hence∫

Ttf dm = ERf(Xt) = ERf(X0) =

∫
f dm.

On the other hand, R is reversible if and only if,∫
fTtg dm = ER(f(X0)g(Xt)) = ER∗(f(X0)g(Xt)) =

= ER(f(X1)g(X1−t)) = ER(f(Xt)g(X0)) =

∫
gTtf dm.

Examples 1.1.20 Let us look at the main example that we will explore all along this
manuscript. The Kolmogorov semigroup (Tt)t≥0 on Rn, associated to the random process
introduced in Example 1.1.8 (3.), has infinitesimal generator

L = (Δ−∇V · ∇)/2.

and reversing measure dm = e−V dx.

(a) The first main example is V = 0. In this case the generator is L = Δ/2, the
reversing measure is the Lebesgue measure and (Tt)t≥0 is the heat semigroup

Ttf(x) :=

∫
Rn

f(y)e
−
|x− y|2

2t /(2πt)n/2 dy.

(b) Another explicit example is V = |x|2/2. In this case, L = (Δ − x · ∇)/2, the
reversing measure is the Gaussian measure dm = e−|x|2/2/(2π)n/2dx and (Tt)t≥0 is
the Ornstein-Uhlenbeck semigroup

Ttf(x) :=

∫
f(e−tx+

√
1− e−2ty)

e−|y|2/2

(2π)n/2
dy.

Note that while the reversing measure of the Ornstein-Uhlenbeck semigroup is a
probability measure, the reversing measure of the heat semigroup is not finite on Rn.

We recall some general definition and property of the operators Γ and Γ2 associated to a
generator L with invariant measure m being fixed.
We assume the existence of an algebra A0 ⊂ L2(m) dense in L2(m), stable under the
action of smooth functions Φ : Rn → R, such that Φ(0) = 0 and satisfying LA0 ⊂ A0. See
[BGL14, Sec. 3.4.1] for further details on the existence and the properties of the algebra
A0.

Definition 1.1.21 (Carré du champs operators) For all couples (f, g) of functions
in A0, the carré du champ operator and the iterated carré du champ operator associated
to the generator L, are respectively defined as

Γ(f, g) :=
1

2
[L(fg)− fLg − gLf ],

Γ2(f, g) :=
1

2
[LΓ(f, g)− Γ(f, Lg)− Γ(g, Lf)].

We denote Γf = Γ(f) = Γ(f, f), and the same for Γ2.
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We collect in the next proposition some basic properties of Γ and Γ2, that will be used
over and over in this manuscript.

Proposition 1.1.22 Let Γ and Γ2 be associated to an infinitesimal generator L with
reversible measure m. For any couple of functions f, g ∈ A0 the following statements are
satisfied,

i. Γ(·, ·) and Γ2(·, ·) are bi-linear and symmetric;

ii. Γf ≥ 0,

iii. Γ satisfies the integration by parts formula,∫
fLg dm = −

∫
Γ(f, g) dm;

iv. For all real function Φ ∈ C∞(Rn) with Φ(0) = 0 and for all functions f1, ..., fn ∈ A0,
the diffusion property is satisfied,

LΦ(f1, ..., fn) =
n∑
i=1

∂Φ

∂xi
(f1, ..., fn)Lfi +

n∑
i,j=1

∂2Φ

∂xi∂xj
(f1, ..., fn)Γ(fi, fj); (1.30)

v. For all real function Φ ∈ C∞(Rn) with Φ(0) = 0 the chain formula is satisfied,

Γ(Φ(f), g) = Φ′(f)Γ(f, g);

vi. For any function h ∈ A0,∫
Γ(f, g)h dm = −

∫
[fΓ(g, h) + fhLg] dm;

vii. If f ∈ A0 depends also on a time variable t ≥ 0,

d

dt
Γ(ft) = 2Γ(ft, f

′
t);

viii. Γ satisfies for any α, β ∈ R the identity,

Γ(αf + βg, αf − βg) = α2Γ(f)− β2Γ(g);

ix. For any α, β ∈ R, Γ2 satisfies the parallelogram identity

Γ2(αf + βg) + Γ2(αf − βg) = 2α2Γ2(f) + 2β2Γ2(g);

x. Γ2 satisfies the integration by parts formula,∫
Rn

Γ2(f, g) dm =

∫
Rn
(Lf)(Lg) dm;

xi. Γ satisfies the symmetry property ,∫
Γ(Lf, g) dm =

∫
Γ(f, Lg) dm.
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Note that property (iv) is equivalent to the diffusion formula (1.8). An easy computation
shows that L defined at (1.8) satisfies (1.30). On the other hand by choosing fi = xi
in (1.30) shows that L is actually of the form (1.8). We skip the proof of these properties,
that is merely computations. We refer to [BGL14] for a deep and complete presentation
on the subject.

Definition 1.1.23 (Bakry-Emery condition) We say that an operator L satisfies a
curvature-dimension inequality CD(κ,N) with curvature κ ∈ R and dimension N ∈
[1,∞], if for all function f ∈ A0,

Γ2(f) ≥ κΓ(f) +
1

N
(Lf)2, (1.31)

or with infinite dimension N = ∞,

Γ2(f) ≥ κ Γ(f). (1.32)

Remark 1.1.24 Define for some α ∈ R the operator Lα = αL. It is an easy exercise to
see that the associated carré du champ operators are,

Γα = αΓ, Γα2 = α2Γ2,

where Γ and Γ2 are associated to the generator L. Then if L satisfies a CD(κ,N) condi-
tion, we have

Γα2 (f) = α2Γ2(f) ≥ α2κΓ(f) +
α2

N
(Lf)2

= ακΓα(f) +
1

N
(Lαf)2

that is, Lα satisfies a CD(ακ,N) condition. Note that unlike the typical L = Δ−∇V ·∇
traditionally used in the Bakry-Emery-Ledoux theory [BGL14], in the subsequent chapters
we will deal with the generator L/2 that is a more natural choice in our setting.

Examples 1.1.25 Easy computations show that for the Kolmogorov semigroup, with gen-
erator L = (Δ−∇V · ∇)/2 and reversing measure dm = e−V dx, the Γ and Γ2 operators
are given by

Γ(f) =
1

2
|∇f |2

Γ2(f) =
1

4
‖∇2f‖22 +

1

4
(∇f)T (∇2V )(∇f)

where ∇2 denotes the hessian matrix. Then condition CD(κ/2,∞) is satisfied if and only
if the potential V is κ-convex, that is ∇2V ≥ κId. Note that in this case, the algebra is
the set of all the smooth and compactly supported functions on Rn, that is, A0 = C∞

0 (Rn)

• The Ornstein-Uhlenbeck semigroup has V = |x|2/2, ∇2V = Id, (V is convex) and,

Γ2(f) =
1

4
[‖∇2f‖22 + |∇f |2] ≥ |∇f |2

4
=

1

2
Γ(f)

hence it satisfies the CD(1/2,∞) condition.
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• When V = 0, by the Cauchy-Schwarz inequality,

Γ2(f) =
||∇2f ||22

4
≥ 1

4n
(Δf)2 =

1

n
(Lf)2

hence the heat semigroup satisfies the CD(0, n) condition, with n the dimension of
the Euclidean space.

In practice often the CD(κ,N) condition is used in the following equivalent forms.

Theorem 1.1.26 The following are equivalent,

(i) CD(κ,∞) is verified;

(ii.) For any f ∈ A0 and any t ≥ 0,

Γ(Ttf) ≤ e−2κtTt(Γf); (1.33)

(iii.) For any positive f ∈ A0 and any t ≥ 0,

|∇Ttf |2
Ttf

≤ e−κtTt

( |∇f |2
f

)
;

(iv.) For any f ∈ A0 and any t ≥ 0,√
Γ(Ttf) ≤ e−κtTt(

√
Γf).

Proof
� The method used to prove the equivalence (i) ⇐⇒ (ii) is a classical tool in the
Bakry-Emery theory. We omit the computations and give an idea of the method.
Define a function Λ : [0, t] → R for any t > 0, by

Λ(s) := Ts(Γ(Tt−sf)).

We differentiate in s ∈ [0, t] and apply some of the properties stated in Proposition 1.1.22
to obtain, Λ′(s) ≥ 2κΛ(s). At this point, by the Gronwall lemma, it follows that

Λ(t) ≥ Λ(0) e2κt

which, by definition of Λ, gives (1.33). Analogous computations show the equivalence
(i) ⇐⇒ (iii). In order to prove (i) ⇐⇒ (iv), we use a similar strategy with the
function Λ̃, defined for any t > 0 as

Λ̃(s) := e−ks
√
Γ(Tt−sf).

But in order to show that Λ̃ is increasing and conclude, we need the special trick to
consider the reinforced curvature-dimension condition,

4Γf(Γ2f − κΓf) ≥ Γ(Γf).

See [BGL14, Thm3.2.4, page 515]. �
Taking into account the dimension, there is a corrective term that occurs and yields to
the next stronger result.
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Theorem 1.1.27 The following are equivalent,

(i) CD(0, N) is verified;

(ii) For any f ∈ A0 and any t ≥ 0,

Γ(Ttf) ≤ Tt(Γf))−
2t

N
(LTtf)

2.

The proof, via the dimensional log-Sobolev inequality, can be found in [BL06] .
In order to understand the geometrical meaning of the Bakry-Emery condition, let us
consider on a smooth complete connected Riemannian manifold (M, g), the generator
L = Δg where Δg is the Laplace-Beltrami operator. One might consider the more general
case L = Δg + X for some smooth vector field X on M , but let us stick to the trivial
but significant case V = 0. In this setting the Bochner identity says that for any smooth
function f on M ,

−∇f · ∇Δgf +Δg‖∇f‖2/2 = |∇2f |2 + Ric(∇f,∇f)

where Ric is the Ricci curvature on M . Comparing Bochner’s formula with Defini-
tion 1.1.21, one easily sees that the left hand side of (1.1.4) is equal to the formula
of Γ2, that is

Γ2f = ‖∇2f‖2 + Ric(∇f,∇f). (1.34)
Hence the Bakry-Emery condition (1.31) holds true if and only if

Ric(∇f,∇f) ≥ κΓ(f),

that is equivalent of saying that the Ricci curvature is bounded from below by some real
κ. Note that the bound on the term ‖∇2f‖2 in (1.34) is just a consequence of the the
Cauchy-Schwarz inequality,

‖∇2f‖2 ≥ (Δgf)
2/n.

Let us remark that the Laplacians are the only operators for which the dimension of the
manifold and the dimension in the CD(κ,N) condition are equal, while in general it can
be proved that N ≥ n.

The curvature-dimension condition (1.31) was introduced by Bakry and Emery in the
seminal paper [BE85] with the aim of providing a criterion for hypercontractivity, hence
by the Gross Theorem, for logarithmic Sobolev inequalities, see for instance the lecture
notes [Bak94]. Thereafter the Bakry-Emery condition has known a large number of gen-
eralizations ([EKS15]), it has proven to be equivalent to several semigroup inequalities
([Wan05]), functional, geometric and transportation inequalities. We refer to the text-
book [BGL14] and the related rich bibliography for the countless applications.

1.2 Optimal transport
The optimal transport theory is nowadays a huge increasing field, at the crossroads of
analysis, geometry, probability, functional inequalities, numerical applications. The main
references are the two monographs of Villani, [Vil03, Vil09] the one of Ambrosio, Gigli
and Savaré, [AGS08], and the one of Santambrogio [San15]. Here we recall some of the
basic notions and the fundamental results, and focus mainly on the particular case of
quadratic cost on Rn.
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1.2.1 The Monge-Kantorovich problem

Introduced by Monge in 1871 [Mon81], the basic idea of the optimal transport theory, is
to move in the cheapest possible way some kind of material (sand, particles, goods, ...)
from one configuration to another one.
We consider as a state space the Euclidean space Rn, and fix a measurable non-negative
function c(x, y) : Rn × Rn → R+, that represents the cost to transport a unity of particle
from position x to position y. We denote by μ0, μ1 : Rn → R+ respectively the initial and
final distribution; under the assumption that no mass is added or lost in the transporta-
tion, we assume

∫
Rn dμ0 =

∫
Rn dμ1 = α for some positive α < ∞, and without loss of

generality, we can assume α = 1.

Definition 1.2.1 (Static Monge-Kantorovich problem) Given two probability mea-
sures μ0, μ1 ∈ P(Rn) and a cost function c(x, y) : Rn × Rn → R+,

inf

{∫
Rn×Rn

c(x, y) π(dxdy) ; π ∈ Π(μ0, μ1)

}
(1.35)

where Π(μ0, μ1) is the set of probability measures on Rn × Rn with marginals μ0, μ1, that
is

Π(μ0, μ1) :=

{
π ∈ P(Rn × Rn) s.t. π(A× ·) = μ0(A)

π(· × B) = μ1(B),
A,B ⊂ Rn meas.

}
,

or equivalently, all the couplings π of μ0 and μ1, namely, all the probability measures
π ∈ P(Rn × Rn) such that for any bounded measurable functions ϕ and ψ on Rn,∫

Rn×Rn
[ϕ(x) + ψ(y)] π(dxdy) =

∫
Rn

ϕdμ0 +

∫
Rn

ψ dμ1. (1.36)

This one is actually a relaxed version, proposed by Kantorovich in the 1940s. The original
Monge’s problem had one more constraint : no mass to be split. It means that any particle,
say at postion x, can be send to a unique destination y = T(x). In this case, problem
(1.35) writes as,

inf

{∫
Rn

c(x, T(x)) dμ0(x); T : Rn → Rn meas. s.t. T#μ0 = μ1

}
.

The Monge Kantorovich problem (1.41) admits also a dynamical formulation, that takes
into account the path of each particle for any 0 < t < 1, and not only the initial and
final positions for t = 0, t = 1. To this aim we consider the path space Ω := C([0, 1],Rn)
already introduced in (1.10).

Definition 1.2.2 (Dynamic Monge-Kantorovich problem) Let μ0, μ1 ∈ P(Rn) and
the cost function C(·) : Ω → R+ be fixed,

inf

{∫
Ω

C((ωt)0≤t≤1)P (dω); P ∈ P(Ω), P0 = μ0, P1 = μ1

}
. (1.37)

In order problem (1.35) and (1.37) to be equivalent, the cost functions c(·, ·) and C(·)
have to be related by,

c(x, y) = inf{C((ωt)0≤t≤1) : ω0 = x, ω1 = y}.
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From now on we will consider the particular case when the cost function is the quadratic
distance, namely c(x, y) = |x− y|2,

inf

{∫
Rn×Rn

|x− y|2 π(dxdy) ; π ∈ Π(μ0, μ1)

}
, (1.38)

or its dynamical version,

inf

{
EP

∫ 1

0

|Ẋt|2 dt;P ∈ P(Ω), P0 = μ0, P1 = μ1

}
. (1.39)

It can be easily verified that (1.38) and (1.39) are equivalent. Indeed,

EP

∫ 1

0

|Ẋt|2 dt =
∫

Rn×Rn
EPxy

∫ 1

0

|Ẋt|2 dtP01(dxdy),

and with Jensen’s inequality, we see that any solution P̂ of (1.39) satisfies,

P̂ xy = δγxy ,

where γxyt = (1 − t)x + ty is the constant speed geodesic between x and y. Hence, since
Eδγxy

∫ 1

0
|Ẋt|2 dt =

∫ 1

0
|γ̇xyt |2 = |x− y|2, we obtain

EP̂

∫ 1

0

|Ẋt|2 dt =
∫

Rn×Rn
|x− y|2 P̂01(dxdy).

Thus the two problems are equivalent, in the sense that they have the same minimal
value, and the respective solutions π̂ and P̂ are related by, P̂ (·) =

∫
Rn×Rn δγxy(·)π̂(dxdy)

and P̂01 = π̂.
Note that (1.39) can be written in the equivalent form,

inf

{∫
Rn

∫ 1

0

|Ṫt|2 dtdμ0; T0 = Id , T1#μ0 = μ1

}
. (1.40)

In this case, (1.35) defines the square of the quadratic Wasserstein pseudo-distance, for
any μ0, μ1 ∈ P(Rn) as

W 2
2 (μ0, μ1) := inf

{∫
Rn×Rn

|x− y|2 π(dxdy) ; π ∈ Π(μ0, μ1)

}
. (1.41)

In order W2 to be a distance (also known as Kantorovich-Monge-Rubinstein distance),
we need to reduce the set of definition of the marginals μ0, μ1. Let us denote the set of
probability measures with second order moment finite, by

P2(R
n) :=

{
μ ∈ P(Rn);

∫
|x|2 μ(dx) < ∞

}
, (1.42)

then the following proposition is satisfied.

Proposition 1.2.3 (P2(Rn),W2) is a metric space.



1.2. OPTIMAL TRANSPORT 49

Proof
� It is immediate to see that W2(μ0, μ1) ≥ 0 and that W2(μ0, μ1) = W2(μ1, μ0). Moreover,
if W2(μ0, μ1) = 0, it means that the infimum in (1.41) is attained, therefore it exists an
optimal γ ∈ Π(μ0, μ1) such that

∫
Rn×Rn |x − y|2 γ(dxdy) = 0. It means that γ(x, y) =

δ{x=y}, and this implies that for any test function φ∫
φ dμ0 =

∫
φ(x) dγ =

∫
φ(y) dγ =

∫
φ dμ1, (1.43)

where the first and last equality are given by the fact that γ ∈ Π(μ0, μ1) while the
central equality is given to the property that γ is concentrated on the set {x = y}
as we just saw. Hence, (1.43) implies that μ0 = μ1. It remains to prove the triangular
inequality. Let μ0, μ1, μ2 ∈ P(Rn) and let γ1 ∈ Π(μ0, μ1) and γ2 ∈ Π(μ1, μ2) be optimal for
the Monge Kantorovich problems respectively between (μ0, μ1) and (μ1, μ2). The gluing
lemma [Vil03, Ch. 1] makes sure the existence of a probability measure σ ∈ P (Rn×Rn×Rn)
such that (X01)#σ = γ1 and (X12)#σ = γ2, where (X01) and (X12) are the projection
respectively on the two first and two last variables. Define γ := (X02)#σ. It can be easily
verified that γ ∈ Π(μ0, μ2), hence,

W2(μ0, μ2) ≤
(∫

|x− z|2 dγ
)1/2

=

(∫
|x− z|2 dσ

)1/2

= |x− z|L2(σ)

≤ |x− y|L2(σ) + |y − z|L2(σ) =

(∫
|x− y|2dσ

)1/2

+

(∫
|y − z|2dσ

)1/2

=

(∫
|x− y|2dγ1

)1/2

+

(∫
|y − z|2dγ2

)1/2

= W2(μ0, μ1) +W2(μ1, μ2).

�

Remarks 1.2.4 (i). Note that Proposition 1.2.3 (and its proof) can be extended to (Pp(Rn),Wp)
for any p ≥ 1.
(ii). Note that on P(Rn), W2 already satisfies the axioms of distance but it is not necessary
finite. Whereas for any x, y ∈ Rn the inequality |x− y|2 ≤ 2(|x|2 + |y|2) implies∫ |x− y|2

2
π(dxdy) ≤

∫
|x|2μ0(dx) +

∫
|y|2μ1(dy) < ∞,

whenever μ0, μ1 ∈ P2(Rn).

1.2.2 McCann interpolations

From now on we will focus on the quadratic case, (1.41). We see here some existence and
uniqueness results of the static and dynamic Monge-Kantorovich problem, and how these
solutions are related.

Theorem 1.2.5 (Brenier’s Theorem) Let μ0, μ1 ∈ P2(Rn), suppose that μ0 
 L.
Then there exists a convex function ϕ : Rn → R differentiable a.e. such that

μ1 = ∇ϕ#μ0

and the optimal map T = ∇ϕ is unique, in other words,

W 2
2 (μ0, μ1) =

∫
Rn

|x−∇ϕ(x)|2 dμ0(x).
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Note that this is equivalent to say that the optimal coupling π̂ ∈ Π(μ0, μ1) is given by

π̂ = (Id×∇ϕ)#μ0.

This Theorem was later generalized by McCann to Riemannian manifolds in [McC01].
Let’s see now the solution of the dynamic problem.

Theorem 1.2.6 (McCann’s theorem) Let μ0, μ1 ∈ P2(Rn) with μ0 
 L, then the
unique solution (Tt)t∈[0,1] of (1.38) is,

Tt = (1− t)Id+ t∇ϕ, (1.44)

where ∇ϕ is the solution of the Monge-Kantorovich static problem given by the Brenier
Theorem 1.2.5.

Definition 1.2.7 (McCann interpolation) For μ0, μ1 ∈ P2(Rn) with μ0 
 L we de-
fine the McCann or displacement interpolation, the family of probability measures,

μMc
t := (Tt)#μ0 = ((1− t)Id+ t∇ϕ)#μ0 ∈ P(Rn) ∀ 0 ≤ t ≤ 1. (1.45)

where (Tt)0≤t≤1 is the solution of (1.40) given at Theorem 1.2.6.

In the rest of this section we shall drop the index Mc since there is no ambiguity with
other interpolations.
The McCann interpolations are constant speed geodesics in the space (P2(Rn),W2). In-
deed, for any 0 ≤ t ≤ 1,

W 2
2 (μ0, μt) =

∫
Rn

|x− [(1− t)x− t∇ϕ(x)]|2 dμ0

= t2
∫

Rn
|x−∇ϕ|2 dμ0

= t2W 2
2 (μ0, μ1).

Moreover, for any 0 ≤ s ≤ t ≤ 1,

W 2
2 (μs, μt) =

∫
|x− T̃x|2dμs,

where T̃ is the optimal map such that T̃#μs = μt. Since μs = Ts#μ0,

W 2
2 (μs, μt) =

∫
|Tsx− T̃Tsx|2dμ0.

On the other hand, it can be easily verified that T̃Ts#μ0 = μt but μt = Tt#μ0, hence

W 2
2 (μs, μt) =

∫
|Tsx− Ttx|2dμ0

=

∫
|(1− s)x+ s∇ϕ(x)− (1− t)x− t∇ϕ(x)|2dμ0

= (t− s)2
∫

|x−∇ϕ(x)|2dμ0.



1.2. OPTIMAL TRANSPORT 51

In other words, for any 0 ≤ s, t ≤ 1,

W2(μs, μt) = |t− s|W2(μ0, μ1).

Formally, the optimal transportation is driven by the system,⎧⎨⎩ ∂tρt +∇ · (ρt∇θt) = 0, ρt=0 = μ0

∂tθt +
|∇θt|2

2
= 0, θt=0 = ϕ(x)− |x|2/2, (1.46)

where μ0 ∈ P2(Rn) is the prescribed initial marginal and ϕ is the convex function given
by the Brenier Theorem 1.2.5.
Let us show how to obtain formally the equations of motion of (μt)0≤t≤1. We start by
showing that the McCann interpolation is a weak (in the sense of distribution) solution
of the transport equation with vector field ∇θt. We recall that μt = Tt#μ0 where Tt(x) =
(1− t)x+ t∇ϕ(x). Define the associated velocity filed by vt = dTt/dt◦T−1

t , or equivalently

v(t, Tt(x)) =
d

dt
Tt(x). (1.47)

By definition of push forward we have for any test function f ,∫
fdμt =

∫
f(Tt) dμ0.

It can be verified that the dominated convergence theorem allows us to switch integral
and derivative, hence we have

d

dt

∫
f dμt =

∫
∂tf(Tt)dμ0. (1.48)

The integrand on the right hand side is given by

∂tf(Tt) = ∇f(Tt)
dTt
dt

= ∇f(Tt) · vt(Tt)

where the last equality follows directly by the definition of vt. Hence from (1.48),

d

dt

∫
fμt dx =

∫
∇f(Tt) · vt(Tt) dμ0

�
=

∫
∇f · vt dμt =

∫
f∇ · (vtμt) dx,

where the marked equality is the definition of push forward and in the last equality we
integrated by parts.
We study now the equation satisfied by the vector field vt (1.47). We see by definition of
the map Tt (1.44) that the second order derivative is zero. Hence,

0 =
d2

dt2
Tt(x) =

d

dt
v(t, Tt) = − ∂

∂t
v(t, Ttx) + v(t, Ttx) · ∇v(t, Ttx)

that is,
∂tv + v · ∇v = 0. (1.49)

Moreover by definition of Tt the initial condition is given by

v(0, T0(x)) = v(0, x) =
d

dt
Tt(x)

∣∣∣
t=0

= ∇ϕ(x)− x. (1.50)
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It can be actually proved (see [Vil03, Ch. 5]) that vt is a gradient vector field, i.e. vt = ∇θt.
We can deduce the Hamilton Jacobi equation satisfied by θt by replacing ∇θt to vt in
(1.49),

∂t∇θt +∇θt · ∇2∇θt = 0

Note that,

∇
( |∇θt|2

2

)
= ∇θt · ∇2θt,

and replacing it in the previous equation, we can see that

∂tθt +
|∇θt|2

2
= 0.

Moreover, according to (1.50), the initial condition is

θ0 = ϕ(x)− |x|2/2. (1.51)

Corollary 1.2.8 (Conserved quantity) The Kinetic Energy is conserved along Mc-
Cann geodesics, in other words, for all 0 ≤ t ≤ 1,∫

|∇θt|2 dμt =
∫

|∇ϕ(x)− x|2dμ0 = W 2
2 (μ0, μ1). (1.52)

Proof
� We just show trough a formal computation, that the derivative of the energy is zero.

d

dt

∫
|∇θt|2 dμt =

∫
2∇θt · ∇∂tθtdμt + |∇θt|2∂tμtdx

=

∫
−2∇θt · ∇

|∇θt|2
2

μt − |∇θt|2∇ · (∇θtμt) dx

=

∫
−∇θt · ∇|∇θt|2 +∇|∇θt|2 · ∇θt μt dx = 0,

where in the last equality we integrated by parts. �

Remark 1.2.9 One bad news about optimal transport maps, is that they are in general
not smooth. Alexandrov’s Theorem makes sure that ϕ being a convex function on Rn,
is twice differentiable almost everywhere, but for what concerns continuity and regularity
everywhere it is a delicate issue. For instance as proved by Caffarelli [Vil09, Ch. 12],
even if we consider two marginal measures with smooth, compactly supported probability
densities on Rn, with smooth and connected supports, yet the optimal transport associated
with quadratic cost, is discontinuous.
Assume that μ0 and μ1 have respectively density f and g with respect to the Lebesgue
measure. Then the Brenier map, ∇ϕ verifying ∇ϕ#μ0 = μ1 satisfies for all regular
enough test function h, ∫

h(y) g(y)dy =

∫
h(∇ϕ(x))f(x)dx.
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On the other hand we can do at least formally, the change of variable y = ∇ϕ(x),∫
h(y) g(y)dy =

∫
h(∇ϕ(x))g(∇ϕ(x)) det∇2ϕ(x)dx.

Comparing these last two equations we derive the Monge-Ampère equation

det∇2ϕ(x) =
f(x)

g(∇ϕ(x))
.

Despite the regularity of f and g we cannot deduce any additional regularity property for
ϕ (See [Vil09, Ch. 12] and [Vil03, Ch. 4]). Some regularity results on the solutions of the
Monge-Ampère equation have been studied first in [Caf92] and then [McC97] under lighter
assumptions, provided that the Hessian is interpreted in the sense of Alexandrov.
It is a big drawback in the applications of optimal transport to require non-smooth argu-
ments, and it is an important part of the motivation of our work as it will be made clear
in the next chapter.

1.2.3 Kantorovich and Benamou-Brenier formulations

In this section we present two alternative formulations of the Monge-Kantorovich prob-
lem, that are useful when proving functional inequalities. One is the Kantorovich dual
formulation by mean of the Hopf-Lax semigroup, solution of the Hamilton Jacobi equa-
tion, very practical in computation. The other is the Benamou-Brenier formulation by
mean of minimal action.

Kantorovich dual formulation

We give first an intuitive interpretation of the Monge Kantorovich problem, and the dual
problem. The primal problem, as we already mentioned, consists in minimizing the cost
c(x, y) of the transportation of some goods from position x to position y. As an alternative
we can think to the transportation in terms of price. Imagine to operate the transportation
for someone else. You fix a price ψ(x) to charge the element in position x that you sell
in position y at the price ϕ(y). Your goal is to maximize your profit ϕ(y) − ψ(x) with
the condition not to exceed the cost c(x, y) (otherwise is not convenient). This can be
written as,

sup

{∫
ϕ(y)dμ1(y)−

∫
ψ(x)dμ0(x); ϕ(y)− ψ(x) ≤ c(x, y)

}
.

The dual formulation holds in extremely generality on the state spaces, as long as they
are Polish spaces, and on the cost function, as long as it is lower semi-continuous. It was
first proved by Kantorovich in [Kan42b] in a particular case; a complete and general proof
can be found in [Vil09]. In what follows, we will state the Kantorovich dual formulation
in the specific case of the quadratic Wasserstein distance, (1.41).

Theorem 1.2.10 (Kantorovich dual formulation for W 2
2 ) For any μ0, μ1 ∈ P2(Rn),

then
W 2

2 (μ0, μ1) = sup
ϕ

{∫
Rn

ϕdμ1 −
∫

Rn
Qϕdμ0

}
, (1.53)

where the supremum runs over all bounded continuous function ϕ and

Qϕ(x) = sup
y∈Rn

{
ϕ(y)− |x− y|2

}
, x ∈ Rn. (1.54)
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Intuitively it comes by the constrain on ϕ and ψ,

ϕ(y)− ψ(x) ≤ |x− y|2.

Indeed it can be written as,
ψ(x) ≥ ϕ(x)− |x− y|2

and taking the sup over y ∈ Rn it gives (1.54).

Remark 1.2.11 It is often expressed in the equivalent form,

W 2
2 (μ0, μ1) = sup

ψ

{∫
Rn

Q̃ψ dμ1 −
∫

Rn
ψ dμ0

}
, (1.55)

where the supremum runs over all bounded continuous function ψ and

Q̃ψ(y) = inf
x∈Rn

{
ψ(x) + |y − x|2

}
, y ∈ Rn. (1.56)

The map Qψ is called the sup-convolution of ψ and its defining identity is often referred
to as the Hopf-Lax formula.

Let us briefly recall that the Hopf-Lax formula describes the viscosity solution of some
class of Hamilton-Jacobi equations. Consider the Cauchy problem,{

∂tu+H(|∇u|) = 0 t > 0,
u = f t = 0.

(1.57)

Under some assumption on the Hamiltonian H and the initial datum f , it can be proved [Vil09,
Ch. 22] that

u(t, x) = inf
y∈Rn

{
f(y) + tH∗

( |x− y|
t

)}
, t > 0

and u(0, x) = f(x) when t = 0 is the solution of (1.57). Here H∗ is the Legendre-Fenchel
transform of H that is defined by H∗(r) = sups∈R+(rs − H(s)). So, when H(s) = s2/2
the also H∗ = s2/2. The HJ equation in (1.57) writes as,

∂tu+
|∇u|2
2

= 0

and the the solution for all t > 0 is given by,

u(t, x) = inf
y∈Rn

{
f(y) +

|x− y|2
2t

}
and for t = 1 it coincides up to a factor 1/2 with (1.56) with initial datum f .
Moreover it can be verified that the optimal ψ in (3.3) is given by θ0(x) = ϕ(x)− |x|2/2
introduced in (1.51).
The functions ϕ, ψ attaining the sup are called Kantorovich potentials.
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Benamou-Brenier formulation

The Monge Kantorovich problem admits a differential formulation, based on an Eulerian
point of view on the optimal transport problem. It was first eastablished in [BB00]
by Benamou and Brenier with the purpose of new numerical methods. The idea is to
associate to the cost of transportation, an action, as a way to measure the effort of
moving the system along continuous curves. Given a particle system, moving according
to the transport equation

∂tρt +∇ · (ρtvt) = 0.

The kinetic action is the time integral of the kinetic energy, that is, up to a factor 1/2,

A(ρ, v) =

∫ 1

0

∫
Rn

|vt(x)|2 ρt(x) dxdt.

Theorem 1.2.12 (Benamou-Brenier formulation for W 2
2 ) For any μ0, μ1 ∈ P2(Rn),

W 2
2 (μ0, μ1) = inf

(ν,v)

∫ 1

0

∫
Rn

|vt|2 dνt dt,

where the infimum runs over all paths (νt, vt)t∈[0,1] where νt ∈ P(Rn) and vt(x) ∈ Rn are
such that νt is absolutely continuous with respect to time in the sense of [AGS08, Ch. 1]
for all 0 ≤ t ≤ 1, ν0 = μ0, ν1 = μ1 and

∂tνt +∇ · (νtvt) = 0, 0 ≤ t ≤ 1.

In this equation which is understood in a weak sense, ∇· stands for the standard diver-
gence of a vector field in Rn and νt is identified with its density with respect to Lebesgue
measure. This general result is proved in [AGS08, Ch. 8]. A proof under the additional
requirement that μ0, μ1 have compact supports is available in [Vil03, Thm. 8.1].
Roughly speaking it can be proved that

W 2
2 (μ0, μ1) ≤ inf

(ν,v)

∫ 1

0

∫
Rn

|vt|2 dνt dt.

Formally this is a result of the Jensen inequality. Indeed consider any ρt between μ0 and
μ1 and let Tt be the associated trajectory and vt the velocity field. Then its action is given
by ∫ 1

0

∫
|vt(x)|2 dρt(x)dt =

∫ 1

0

∫
|vt(Tt(x))|2dμ0dt

=

∫ 1

0

∫
| d
dt
Ttx|2dμ0dt

≥
∫ ∣∣∣∣∫ 1

0

d

dt
Tt(x) dt

∣∣∣∣2 dμ0

=

∫
|T1(x)− T0(x)|2 dμ0 = W 2

2 (μ0, μ1),

since according to the dynamical formulation (1.40) T0 = Id and T1#μ0 = μ1. The
optimal couple, that is, the couple attaining the equality is given by (μt,∇θt) where μt is
the McCann interpolation and the vector field ∇θt is defined at (1.46). It can be seen by
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recalling that μt = Tt#μ0 where the optimal map Tt is given at (1.45) and the associated
velocity field is (1.47), that can be rewritten also as,

vt =

(
d

dt
Tt

)
◦ T−1

t = (∇ϕ− Id) ◦ T−1
t .

It implies that,∫
|vt|2 μt dx =

∫
|(∇ϕ− Id) ◦ T−1

t |2 μt dx

�
=

∫
|(∇ϕ− Id) ◦ (T−1

t ◦ Tt)|2 μ0 dx =

∫
|∇ϕ(x)− x|2 μ0 dx = W 2

2 (μ0, μ1),

where the � equality is just the push forward. Note that somehow we recovered (1.52).



Chapter 2

The Schrödinger problem

In this section we present the main protagonist of the manuscript, the Schrödinger prob-
lem. A reference on the subject is the survey of Léonard [Léo14b], and the other main
references will be recalled along the chapter. Introduced by Schrödinger in 1931 [Sch31],
in modern terms, it consists, roughly speaking, in minimizing the relative entropy with
respect to a fixed reference path measure R ∈ M+(Ω), among all the path probability
measures, satisfying the marginal constraints P0 = μ0 and P1 = μ1. In other words,

H(P |R) → min ; P ∈ P(Ω), s.t. P0 = μ0, P1 = μ1,

where Pt = (Xt)#P ∈ P(Rn) for all 0 ≤ t ≤ 1. First we define the problem in its dy-
namic and static formulations, give some sufficient conditions for the existence of solutions
and describe the minimizers, called entropic bridges at Section 2.1. Then starting from
Section 2.2 we will focus on the case of the reference path measure associated to the Kol-
mogorov process, whose generator is given by L = (Δ−∇V ·∇)/2, we define the entropic
interpolations as continuous time projection of entropic bridges, dμt = P̂t = TtfT1−tg dm;
we explore their kinematics, by identifying the correspondent Nelson’s velocities and de-
riving the associated time evolution equation. At Section 2.3 we discuss different possible
definitions of entropic cost between the two probability measures μ0, μ1 from the minimal
value attained by the minimizer. Then at Section 2.4 we will make the link between the
Schrödinger problem and the Monge-Kantorovich problem introduced at Section 1.2. In
particular we will see that the Schrodinger problem associated to the slowed down ref-
erence measure Rε with generator Lε = ε(Δ − ∇V · ∇)/2 is a regular approximation of
the square of the Wasserstein distance. At Section 2.5 we will study the behavior of the
relative entropy and the Fisher information along the entropic interpolation, in analogy
to their behavior along the heat flow and the McCann interpolations. And finally at
Section 2.6 we give the statistical physics interpretation of the problem that motivated
the question of Schrödinger and retrace the chronology and the related literature.

2.1 Solutions of the Schrödinger problem

Definition 2.1.1 (Dynamical formulation) Let the marginals μ0, μ1 ∈ P(Rn) and a
reference σ-finite path measure R ∈ M+(Ω) be fixed. The dynamic Schrödinger problem
is,

inf{H(P |R); P ∈ P(Ω) : P0 = μ0, P1 = μ1} ∈ (−∞,∞], (2.1)

57
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As for the Monge-Kantorovich problem, it also admits a static formulation. Consider the
projection,

R01 := (X0, X1)#R ∈ M+(R
n × Rn)

of R onto the endpoint space Rn × Rn.

Definition 2.1.2 (Static formulation) For any μ0, μ1 ∈ P(Rn), the static Schrödinger
problem is,

inf{H(π|R01); π ∈ P(Rn × Rn) : π0 = μ0, π1 = μ1} ∈ (−∞,∞], (2.2)

where π0 := π(· × Rn), and π1 := π(Rn × ·).

As stated in the next theorem, the dynamic and the static formulations are actually
equivalent.

Theorem 2.1.3 (Equivalence between the static and dynamic formulations) The
Schrödinger problems (2.1) and (2.2) admit respectively at most one solution P̂ ∈ P(Ω)
and π̂ ∈ P(Rn × Rn) and they are related by,

P̂ (·) =
∫

Rn×Rn
Rxy(·)π̂(dxdy) ∈ P(Ω),

that means P̂01 = π̂ ∈ P(Rn × Rn) and that P̂ has the same bridges of the reference
measure P̂ xy = Rxy, for π̂-almost every (x, y).

Proof
� We recover here the proof of [Föl88].
The minimization problems (2.1) and (2.2) are strictly convex, hence if a solution exists,
it has to be unique. Let us assume that such a solution exists.
The additive decomposition (1.6), when φ = (X0, X1) writes as,

H(P |R) = H(P01|R01) +

∫
Rn×Rn

H(P xy|Rxy)P01(dxdy).

It implies H(P01|R01) ≤ H(P |R) with equality whenever P xy = Rxy for P01-almost every
(x, y) ∈ Rn × Rn. Therefore, P̂ ∈ P(Ω) is solution of (2.1) if and only if it disintegrates
as,

P̂ (·) =
∫

Rn×Rn
Rxy(·)π̂(dxdy)

with π̂ = P̂01 ∈ P(Rn × Rn) solution of (2.2). �
Note that a priori the minimal value in (2.1) and (2.2) is not necessary finite and it
might also take negative values. We collect some sufficient and necessary condition for the
reference measure R ∈ M+(Ω) and the marginals μ0, μ1 ∈ P(Rn) in order the Schrödinger
problem (2.1) (or (2.2)) to admit a solution.

Theorem 2.1.4 (Existence and uniqueness) Let R ∈ M+(Ω) be Markov, with re-
versing measure m ∈ P(Rn), and let us assume that,

1. there exist two real non-negative measurable functions on Rn, A and B such that

(i) R01(dxdy) ≥ e−A(x)−A(y)m(dx)m(dy),
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(ii)
∫
Rn×Rn e

−B(x)−B(y) R01(dxdy) < ∞,

(iii)
∫
Rn A+B dμi < ∞, for μ0, μ1;

2. H(μi|m) < ∞ for μ0, μ1,

then (2.1) (hence (2.2)) admits a unique solution.
Moreover, assumption 2. is also a necessary condition.

Proof
� We already mentioned in the proof of Theorem 2.1.3 that from the strictly convex
nature of the problem, if a solution exists then it is unique.
Let us show that the existence of the function B such that (i)-(ii) are satisfied, makes
sure that the minimal value of (2.2) is bounded from below. In the generalization of the
relative entropy to unbounded measures in Section 1.1.1, we used the existence of a real
valued measurable function w such that (1.4) holds true. Assumption (ii) is nothing but
(1.4) when ν = R01 and w(x, y) = B(x) +B(y). It allows us to write the relative entropy
as in (1.5), for all π ∈ P(Rn × Rn), by

H(π|R01) = H(π|RB
01)−

∫
Rn×Rn

[B(x) + B(y)] π(dxdy)− zB. (2.3)

Since in the minimization problem (2.2) we take into account only probability measures
π ∈ P(Rn × Rn) with marginals μ0, μ1, the integral on the right hand side, writes as,∫

Rn×Rn
[B(x) + B(y)] π(dxdy) =

∫
Rn

B dμ0 +

∫
Rn

B dμ1. (2.4)

With decomposition (2.3) in mind, it is now clear that assumptions (ii) and (iii) make
sure respectively that zb < ∞, and that (2.4) is bounded from above. Moreover, the
relative entropy H(π|RB

01) ≥ 0 since RB
01 ∈ P(Rn×Rn), thus (2.3) is bounded from below.

It remains to prove that the minimal value of (2.2) is bounded from above. Consider the
probability measure μ0 ⊗ μ1 ∈ P(Rn × Rn), and compute the relative entropy of it with
respect to R01,

H(μ0 ⊗ μ1|R01) =

∫
Rn×Rn

log
dμ0 ⊗ μ1

dR01

μ0(dx)μ1(dy)

=

∫
Rn×Rn

log(μ0(x)μ1(y))μ0(dx)μ1(dy)−
∫

Rn×Rn
logR01μ0(dx)μ1(dy)

(i)

≤ H(μ0|m) +H(μ1|m) +

∫
Rn

A(x)dμ0(dx) +

∫
Rn

A(y)dμ1(dy)

(iii)+2.

≤ +∞.

Hence, since μ0 ⊗ μ1 ∈ P(Rn × Rn) and satisfies the marginal constrains,

inf{H(π|R01); π ∈ P(Rn × Rn) : π0 = μ0, π1 = μ1} ≤ H(μ0 ⊗ μ1|R01) < ∞.

Finally we show that 2. is actually a necessary condition. By the additive property (1.6)
with φ = X0, we deduce that for all π ∈ P(Rn × Rn) satisfying the marginal condition
π0 = μ0, it holds H(π|R01) ≥ H(μ0|m). Taking the inf over all the probability π satisfying
the marginal constrains, we obtain

inf{H(π|R01); π ∈ P(Rn × Rn) : π0 = μ0, π1 = μ1} ≥ H(μ0|m).
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This proves that if H(μ0|m) = +∞, the optimal value of the Schrödinger problem on the
right hand side cannot be finite. �

Examples 2.1.5 We verify here that assumptions (i)-(iii) are satisfied in two main ex-
amples introduced at Examples 1.1.8.

• The simplest example is R associated to the Brownian motion, with reversing mea-
sure m = L on Rn. In this case,

R01(dxdy) = e−|x−y|2/2/(2π)n/2dxdy,

and by the simple quadratic inequality (a − b)2 ≤ 2a2 + 2b2 for all a, b ∈ R, it is
immediate to see that by choosing A(x) = B(x) = |x|2 assumptions (i)-(ii) are
satisfied.

• Analogous computations show that assumptions (i)−(iii) are satisfied with the same
functions A(x) = B(x) = |x|2, up to multiplication by a real factor, when R is the
law associated to the Ornstein-Uhlenbeck process, in Example 1.1.20 (b),

R01(dxdy) = exp

(
−|y − xe−1/2|2

2(1− e−1)

)
/(2π(1− e−1))−n/2dxdy.

In both cases the assumption on the marginals (iii) reduces to ask the measures μ0, μ1 to
have second order moment finite, i.e.

μ0, μ1 ∈ P2(R
n)

defined at (1.42) and finite entropy relative to the reversing measure, H(μi|m) < ∞ for
μ0, μ1.

Provided that a solution exists, we are now interested in the minimizer.

Theorem 2.1.6 (Entropic bridge) Suppose that hypothesis 1. and 2. in Theorem 2.1.4
are satisfied. Then the unique solution of (2.1) is called entropic bridge and it is charac-
terized by the formula,

P̂ = f(X0)g(X1)R ∈ P(Ω), (2.5)

where f, g are measurable non-negative functions, unique solutions, up to the multiplica-
tions af, ga−1 for some constant a ∈ R, of the Schrödinger system{

μ0 = fT1g
μ1 = gT1f,

(2.6)

where (Tt)t≥0 is the Markov semigroup associated with the measure R. Moreover, the
unique solution of the static problem (2.2) π̂ ∈ P(Rn × Rn), is given by

π̂(dxdy) = f(x)g(y)R01(dxdy) ∈ P(Rn × Rn).
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Sketch of the Proof
� Let B be the function appearing at (i)-(ii) in Theorem 2.1.4. Define the sets, CB(Rn) :=
{u : Rn → R : sup |u|/B < ∞} and PB(Rn) = {μ ∈ P(Rn) :

∫
Rn Bdμ < ∞}. We recall

that to say that π ∈ P(Rn × Rn) has marginals μ0, μ1 is equivalent to (1.36). Hence, the
variational formula (1.2) writes for any π ∈ P(Rn × Rn) with marginals μ0, μ1 as,

H(π|R01) = sup

{∫
ϕdμ0 +

∫
ψdμ1 − log

∫
Rn×Rn

eϕ⊕ψdR01;ϕ, ψ ∈ CB(R
n)

}
(2.7)

where ϕ⊕ψ(x, y) = ϕ(x) +ψ(y). It is proved in [Léo01a] that the minimal value in (2.2)
is equal to the maximal value in (2.7). Hence, if π̂ is the minimizer of (2.2), the case of
equality (1.3) gives

dπ

dR01

= eϕ⊕ ψ.

Since the variational formulation still holds for the dynamic formulation H(P |R), analo-
gous computations yield to

dP

dR
= eϕ(X0)+ψ(X1)

that is (2.5), with f = eϕ and g = eψ. �

The solvability of the system (2.6) was left open by Schrödinger. The existence of solu-
tions has been proved first by Bernstein [Ber32] when the reference measure is the Wiener
measure on R and later in the 40s by Fortet [For40] under more general hypothesis through
a method of successive approximations. Subsequently Beurling in 1960 [Beu60] proposed
an alternative proof via functional analysis, and more recently, in [RT93] the existence
of the solution was obtained as a consequence of Csiszár’s projection theorem, whereas
in [BLN94] through a variational method.

Remark 2.1.7 Let us point out some issue of the (sketch of) the proof we presented here.
Nothing assures that the supremum is attained in (2.7) by functions in CB(Rn). In general
we only have that ϕ ⊕ ψ is R01-measurable [Léo01c] and this does not imply that ϕ and
ψ are respectively R0 and R1 measurable. The same measurability problems are of course
inherited by the functions f and g, thus we are not a priori allowed to write

T1f = ER(f(X0|X1 = y))

(and the same for T1−tg) in the marginal conditions in (2.6). To overcome these problems,
it is necessary to add an assumption on the reference R; in particulare, assume that there
exists some 0 < t0 < 1 and some measurable F ⊂ Rn such that Rt0(F ) > 0 and

R01 
 R((X0, X1) ∈ ·|Xt0 = z), ∀ z ∈ F.

For more details see [LRZ14] and [Léo14b, Thm. 2.6]

For completeness we mention that there is a complementary way to think to entropic
bridges, that can be found in the survey [Léo14b], through the definition of (f, g)-
transforms. Given a reversible Markov reference measure R, the basic idea is to fix
two functions f, g and build two measures μ0, μ1 by (2.6).

Definition 2.1.8 ((f, g)-transform) Let f, g : Rn → [0,∞) be two non-negative mea-
surable functions such that ER(f(X0)g(X1)) = 1. The (f, g)-tranform of R is defined
by,

P := f(X0)g(X1)R ∈ P(Ω).
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This definition is a two-sided version of the h-transform introduced by Doob in [Doo57].

Theorem 2.1.9 Let P be an (f, g)-transform of R, as defined at Definition 2.1.8, with
the functions f, g satisfying,∫

Rn
|fg log f | dm < ∞,

∫
Rn

|fg log g| dm < ∞.

Then P is the entropic bridge between μ0, μ1 ∈ P(Rn) given by,

μ0 = fT1g dm

μ1 = T1fg dm,

where (Tt)t≥1 is the Markov semigroup associated to R.

For the proof see [Léo14b, Thm.3.2].

2.2 Kinematics of entropic bridges
In this section we look closer at the minimizer of the Schrödinger problem. It is assumed
once for all that hypothesis of Theorem 2.1.4 are satisfied.
The results that we discuss here can be formulated for any σ-finite measure R ∈ M+(Ω)
satisfying the assumptions of Theorem 2.1.4. However we decided to focus on a specific
R ∈ M+(Ω), first because it is what will be actually used in the applications in the
following chapters, and then to provide some direct proofs and explicit properties. For
the literature about the Schrödinger problem in general we refer to [Léo14b], and therein
references.

The reference measure. Let Ω = C([0, 1],Rn) be the space of continuous path on
the state space Rn. We consider the measure Rε ∈ M+(Ω) associated to the stochastic
diffusion process (1.12), with diffusion coefficient σ2 = ε, for some ε > 0 and a drift vector
field of the form b = −ε∇V/2, for some real valued potential V on Rn, namely,

dXε
t = −ε∇V (Xε

t )/2 dt+
√
ε dWt, 0 ≤ t ≤ 1,

L(X0) = m
(2.8)

where dm = e−V dx is the reversing measure. We assume the potential V to be C2 on Rn

and, whenever
∫
Rn e

−V dx < ∞, such that
∫
Rn e

−V dx = 1. Furthermore, we assume that
there exists some constant c > 0 such that one of the following assumptions holds true:

(i) lim|x|→∞ V (x) = +∞ and inf{|∇V |2 −ΔV/2} > −∞, or

(ii) −x · ∇V (x) ≤ c(1 + |x|2), for all x ∈ Rn.

Under this assumption, (2.8) admits a unique solution, see [Roy99, Thm. 2.2.19].
Note that Rε is not necessary a probability measure on Ω. Indeed in the case V = 0,
Rε is the measure associated to the standard reversible Brownian motion, that on Rn has
infinite mass. This is the reason why we introduced at Section 1.1.1 the generalization of
the relative entropy to unbounded measures.
In the rest of the manuscript, we will mainly consider the case V = 0, already discussed,
or the case of κ-convex V , that is, for some κ ∈ R,

[∇V (x)−∇V (y)] · (y − x) ≤ −κ|x− y|2/2, ∀x, y ∈ Rn.
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The reason why we considered the slowed down process (2.8), instead of

dXt = −∇V (Xt)/2 dt+ dWt, 0 ≤ t ≤ 1,
L(X0) = m

(2.9)

will be clear at Section 2.4 when will take the limit for ε → 0, to connect the Schrödinger
problem to the optimal transport theory, and at Section 2.6 when we will give some phys-
ical motivation/interpretation.
As we already mentioned in the Examples 1.1.20, the operators associated to the Kol-
mogorov SDE (2.9) are

Lf = (Δf −∇V · ∇f)/2, Γf =
|∇f |2
2

, Γ2f =
1

2
L(|∇f |2)−∇f · ∇Lf. (2.10)

For the slowed down process (2.8), we denote,

Lε = εL, Γεf = εΓf, Γε2f = ε2Γ2. (2.11)

Definition 2.2.1 (Entropic interpolation) The Rε-entropic interpolation between μ0

and μ1 is defined as the marginal flow of the entropic bridge (2.5), that is

μεt := P ε
t = (Xt)#P

ε ∈ P(Rn), ∀ 0 ≤ t ≤ 1.

In particular, it is characterized by the formula,

dμεt = T ε
t fεT

ε
1−tgε dm, ∀ 0 ≤ t ≤ 1. (2.12)

It is sometimes more convenient to use the equivalent exponential form,

dμεt = e

ϕεt + ψεt
ε dm, ∀ 0 ≤ t ≤ 1, (2.13)

where for any t ∈ [0, 1],
ϕεt := ε log T ε

t fε
ψεt := ε log T ε

1−tgε
(2.14)

with fε, gε solutions of (2.6) and (T ε
t )t≥0 the Markov semigroup associated with the gen-

erator Lε. Note that in analogy to the Kantorovich potentials (attaining the sup in (1.53)
and (1.55)), ϕε0 and ψε1 are referred to as Schrödinger potentials.
Following the traditional notation in [Vil09], we denote the density of the measure dμεt
with respect to the invariant measure m and with respect to the Lebesgue measure L
respectively as,

ρεt =
dμεt
dm

, μεt =
dμεt
dx

.

Since we consider the case m = e−V dx, the relation between the densities is

μεt = e−V ρεt . (2.15)
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Proposition 2.2.2 The potentials ϕεt , ψεt are respectively solutions of the following Hamilton-
Jacobi-Bellman equations,{

∂tϕ
ε
t − Γϕεt − εLϕεt = 0, 0 < t ≤ 1,

ϕε0 = ε log fε t = 0

{
∂tψ

ε
t + Γψεt + εLψεt = 0, 0 ≤ t < 1,

ψε1 = ε log gε, t = 1.

(2.16)
where L and Γ are given at (2.10).

Proof
� The proof is an immediate consequence of Definition (2.14) and Γ2-calculus in Sec-
tion 1.1.4. Without any ambiguity, we can drop the index ε in the potentials ϕt and ψt
for the rest of the proof.

∂tϕt = ε
LεTtf

Ttf
= εe−ϕt/εLε(eϕt/ε)

= εe−ϕt/ε
[
eϕt/ε

ε
Lεϕt +

eϕt/ε

ε2
Γεϕt

]
= Lεϕt +

1

ε
Γεϕt = εLϕt + Γϕt,

where the last equality follows by the notation convention (2.11). The case of ψt is exactly
the same but with opposite sign. �

Kinematics of μεt . As a consequence of Proposition 2.2.2 we can derive the time evolu-
tion equation for the entropic interpolation. Indeed, taking the sum of the two equations
in (2.16), we obtain

∂t(ϕ
ε
t + ψεt ) + εL(ψεt − ϕεt) + (Γψεt − Γϕεt) = 0 (2.17)

Thanks to property (viii) in Proposition 1.1.22, and (2.13), it becomes

ε∂t(log ρ
ε
t) + εL(ψεt − ϕεt) + Γ(ε log ρεt , ψ

ε
t − ϕεt) = 0

Namely,
∂tρ

ε
t + 2ρεt [Lθ

ε
t + Γ(log ρεt , θ

ε
t )] = 0 (2.18)

where ∇θεt := ∇(ψεt − ϕεt)/2 is the current velocity that will be introduced at Proposi-
tion 2.2.4.

Examples 2.2.3 We write explicitly these equations in two particular cases.

• When the reference measure is associated to the generator Lε = εΔ/2 and dm = L,
the equations in (2.16) write as,{

∂tϕ
ε
t − εΔϕεt/2− |∇ϕεt |2/2 = 0, 0 < t ≤ 1,

ϕε0 = ε log fε, t = 0

and, {
∂tψ

ε
t + εΔψεt /2 + |∇ψεt |2/2 = 0, 0 ≤ t < 1,

ψε1 = ε log gε, t = 1.
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and equation (2.18) is the transport equation,

∂tρ
ε
t +∇ · (ρεt∇θεt ) = 0.

Note that in this case (μt)0≤t≤1 = (ρt)0≤t≤1 since the reversing measure m coincides
with the Lebesgue measure L.

• Whereas in the general case with generator Lε = ε(Δ−∇V ·∇)/2 and dm = e−V dx,
equation (2.18) writes as,

∂tρ
ε
t +∇ · (ρεt∇θεt )− ρεt∇V · ∇θεt = 0

or equivelently,
∂tρ

ε
t + eV∇ · (e−V ρεt∇θεt ) = 0.

We can deduce from (2.15) that the density with respect to the Lebesgue measure,

μεt = e−V ρεt

satisfies the transport equation,

∂tμ
ε
t +∇ · (μεt∇θεt ) = 0. (2.19)

Beyond these algebraic computations, we can derive the kinematics of the entropic bridge
P ε from a probabilistic point of view. In the next proposition we identify the Nelson
velocities introduced at Section 2.2 for the entropic bridge P ε ∈ P(Ω).

Proposition 2.2.4 Let P ε ∈ P(Ω) be the entropic bridge between two measures μ0, μ1 ∈
P(Rn). The forward and backward velocities associated with P ε are respectively,

−→v P ε

t = −ε

2
∇V +∇ψεt ,

←−v P ε

t = −ε

2
∇V +∇ϕεt , (2.20)

where ψεt and ϕεt are defined at (2.14). And the current and osmotic velocities are respec-
tively,

vcu,P
ε

t = ∇θεt =
∇ψεt −∇ϕεt

2
, vos,P

ε

t = ε∇ log
√

μεt . (2.21)

Proof
� We recall that as reference measure we consider the Markov and reversible Rε ∈ P(Ω)
associated with generator Lε = ε(Δ−∇V · ∇)/2.
In the rest of the proof we use the notations,

DX := Xt+h −Xt and, gt := ER(g(X1)|Xt) = T1−tg

where g appears at the Schrödinger system (2.6), and we drop the index ε. By definition
of entropic bridge we have,

EP (DX|Xt) = ER

(
dP

dR
DX

∣∣∣Xt

)
1

ER

(
dP
dR

∣∣∣Xt

)
=

ER(f(X0)g(X1)DX|Xt)

ER(f(X0)g(X1)|Xt)
,
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where in the last equality we applied Theorem 2.1.6. By the Markov property of the
reference measure R, the past and the future are independent, then

EP (DX|Xt) =
ER(f(X0)|Xt)ER(g(X1)DX|Xt)

ER(f(X0)|Xt)ER(g(X1)|Xt)

=
ER(g(X1)DX|Xt)

gt
.

Again, by the Markov property,

ER(g(X1)DX|Xt) = ER(g(X1)DX|X[0,t]) = ER(ER(g(X1)DX|X[0,t+hx])|X[0,t]).

Moreover, by writing Dg = gt+h − gt,

EP (DX|Xt) =
ER((gt +Dg)DX|Xt)

gt

= ER(DX|Xt) +
ER(DGDX|Xt)

gt
.

By definition of forward velocity (Definition 1.1.9 (i)),

−→v P
t = lim

h→0+
EP

(
DX

h
|Xt

)
= lim

h→0+
ER

(
DX

h

∣∣∣Xt

)
+ lim

h→0+

ER(DGDX|Xt)

hgt
(2.27)
= −→v R

t + 2
Γ(gt, xt)

gt

= −∇V

2
+ ε∇ log gt

= −∇V

2
+∇ψt.

Similar computations show that ←−v P ε

t = −ε∇V
2

+∇ϕεt .
It remains to identify the current and osmotic velocities. By Definition 1.1.9 we have, for
any 0 ≤ t ≤ 1,

vcu,Pt =
−→v P

t −←−v P
t

2
=

∇ψεt −∇ϕεt
2

.

Thus we recognize that the current velocity is the vector field that appears in the transport
equation vcu,Pt = ∇θt. For what concerns the osmotic velocity, we have for any 0 ≤ t ≤ 1,

vos,Pt =
−→v P

t +←−v P
t

2
= −ε

2
∇V +

1

2
∇(ψεt + ϕεt)

= −ε

2
(∇V −∇ log ρεt) =

ε

2
∇ log(ρεte

−V )

(2.15)
= ε∇ log

√
μεt (2.22)

recovering identity (1.25). �
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Remark 2.2.5 Note that in the proof we used the probabilistic definition of the Γ-operator,
that we recall here briefly. For any suitable function u, Ito’s formula gives

du(Xt) = Lu(Xt) +∇u(Xt) · dW P
t .

Multiply this equation for a suitable function v,

vdu(Xt) = vLu(Xt) + v∇u(Xt)d · dW P
t . (2.23)

We can switch the role of u and v,

udv(Xt) = uLv(Xt) + u∇v(Xt) · dW P
t . (2.24)

And finally consider Ito’s formula for the product function uv,

d(uv)(Xt) = L(uv)(Xt) +∇(uv)(Xt) · dW P
t . (2.25)

We subtract (2.23) and (2.24) from (2.25), and, according to Definition 1.1.21, get

d(uv)− vdu− udv = L(uv)− vLu− uLv = 2Γ(u, v)dt.

Hence,
Γ(u, v)dt = d(uv)− vdu− udv. (2.26)

Applying Ito’s formula to u(Xt) = ut and v(Xt) = vt,

d(utvt) = utdvt + vtdut + dvtdut.

This together with (2.26) gives,

Γ(u, v)dt = du(Xt)dv(Xt). (2.27)

Note also that the limit in the proof is formal, since one has to make sure that the relative
entropy is finite.

Remark 2.2.6 We can derive as well the relation between current and osmotic velocities
of the entropic bridge P ε with those of the reference path measure Rε. According to
Examples 1.1.13 we have

vcu,R
ε

= 0, vos,R
ε

= −ε

2
∇V.

Hence,

vcu,P
ε

t − vcu,R
ε

t = ∇θεt ;

vos,P
ε

t − vos,R
ε

t =
ε

2
[∇ log μεt +∇V ]

=
ε

2
∇ log(μεte

V )

(2.15)
=

ε

2
∇ log ρεt .

Let us see now which are the relations between the Nelson velocities of the the entropic
Bridge P and its time reversed P ∗ ∈ P(Ω), that we recall is P ∗ = (X∗)#P , where
X∗
t = X1−t for all t ∈ [0, 1], i.e.

EP ∗f(X∗
t ) = EPf(X1−t).
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Lemma 2.2.7 (Time reversal) Given an entropic bridge P and its time reversed P ∗,
the forward velocity of the former and the backward velocity of the latter are related by,

−→v P ∗
1−t(z) =

←−v P
t (z),

←−v P ∗
1−t(z) =

−→v P
t (z), (2.28)

for any 0 ≤ t ≤ 1.

Proof
� It follows directly by the definitions that,

−→v P ∗
1−t(z) = lim

h→0+
EP ∗

(
X1−t+h −X1−t

h

∣∣∣Xt = z

)
= lim

h→0+
EP̂

(
Xt−h −Xt

h

∣∣∣Xt = z

)
= ←−v P

t (z).

A similar computation shows that ←−v P ∗
1−t(z) =

−→v P
t (z). �

The stochastic equation associated to the entropic bridge P ε is

dXt =
(
−ε

2
∇V +∇ψεt

)
dt+

√
ε dWt, t > 0 (2.29)

L(X0) = μ0

This implies that for any regular and integrable enough test function u and any 0 ≤ t ≤ 1,∫
Rn

u(z)μεt(z) dz = EP εu(X0) + EP ε

∫ t

0

(−→v P ε

s · ∇u+ εΔu/2)(Xs)ds

=

∫
Rn

u(z)μ0(z)dz +

∫ t

0

ds

∫
Rn
(−→v P ε

s · ∇u+ εΔu/2)(z)μs(z)dz.

After integration by parts, it yields the Fokker Planck equation

∂tμ
ε
t +∇ ·

(
μεt

[−→v P̂
t − ε

2
∇ log μεt

])
= 0,

and replacing the forward velocity by its value (2.20),

∂tμ
ε
t +∇ ·

(
μεt

[
−ε

2
∇V +∇ψεt −

ε

2
∇ log μεt

])
= 0. (2.30)

Writing (2.30) for the time reversed P ε,∗ ∈ P(Ω), together with (2.20) and (2.28), gives

∂tμ
ε,∗
t +∇ ·

(
με,∗t

[
−ε

2
∇V +∇ϕεt −

ε

2
∇ log με,∗t

])
= 0, (2.31)

where we denoted μ∗
t (z) = dP ε,∗

t /dz = dP ε
1−t/dz = μ1−t(z). Since, ∂tμ∗

1−t = −∂tμt(z),
(2.31) writes as,

∂tμ
ε
t +∇ ·

(
μεt

[ε
2
∇V −∇ϕεt +

ε

2
∇ log μεt

])
= 0. (2.32)

Taking the half sum of (2.30) and (2.32), we obtain,

∂tμ
ε
t +∇ · (μεt∇θεt ) = 0,

recovering the transport equation (2.19).

In Corollary 1.2.8 we showed that the kinetic energy is conserved along displacement
interpolations and actually coincides with W 2

2 . We show here an analogous result along
entropic interpolations.
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Lemma 2.2.8 (Conserved quantity) For any entropic interpolation (μεt)0≤t≤1,

Cε =

∫
|∇θεt |2 −

ε2

4
|∇ log ρεt |2 dμt = 2

∫
∇ψεt · ∇ϕεt dμ

ε
t (2.33)

is constant for each t ≥ 0.

Proof
� We drop the index ε to simplify the notation. We start to prove that∫

Γ(ψt, ϕt) dμt =

∫
Γ(ft, gt) dm, (2.34)

where {
ft := Ttf
gt := T1−tg

(2.35)

with f, g solutions of the Schrödinger system (2.6). Then,∫
Γ(ϕt, ψt) dμt =

∫
Γ(log ft, log gt) dμt

�
=

∫
1

ftgt
Γ(ft, gt)dμt =

∫
Γ(ft, gt) dm,

where the marked equality is due to property v. in Proposition 1.1.22, and the last equality
to dμt = ftgtdm as in (2.12).
We show that (2.34) is constant. From property vii. in Proposition 1.1.22 and (2.35) it
follows,

d

dt

∫
Γ(ft, gt) dm =

∫
Γ(∂tft, gt) + Γ(ft, ∂tgt) dm

=

∫
Γ(Lft, gt)− Γ(ft, Lgt) dm = 0, (2.36)

and the last equality is given by the symmetry property xi. in Proposition 1.1.22.
Finally in order to show that the constant quantity Cε is (2.33) we recall the relations
between Nelson’s velocities in Proposition 2.2.4, and property viii. in Proposition 1.1.22,
to obtain

2

∫
Γ(ψt, ϕt) dμt = 2

∫
Γ(θt + ε log

√
ρt, θt − ε log

√
ρt) dμt

= 2

∫
Γ(θt)− ε2Γ(log

√
ρt) dμt

=

∫
|∇θt|2 −

ε2

4
|∇ log ρt|2 dμt,

that is the claimed result. �

Remark 2.2.9 Note that Lemma 2.2.8 is a particular case of a more general result. We
introduce the Γn operator defined via the iterative formula for n = 0, 1, 2...

Γn+1 =
1

2
[LΓn(f, g)− Γn(Lf, g)− Γn(f, Lg)]
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with initial condition Γ0 = fg, recovering Definition 1.1.21 for n = 1, 2. It can be proved
with the same arguments as in (2.36) that for any n ≥ 0, the function

[0, 1] � t �→
∫

Γn(f
ε
t , g

ε
t ) dm

is constant.

2.3 Entropic cost
Provided that an entropic bridge between two measures μ0, μ1 ∈ P(Rn) exists, it attains
the minimal value, that is

H(P̂ |R) = inf{H(P |R);P ∈ P(Ω), P0 = μ0, P1 = μ1}.

We could think about the value H(P̂ |R) as a cost of transporting μ0 into μ1 according to
the minimization problem (2.1). However, despite it is the most natural and intuitive way
to define such a cost, it might not be the most meaningful, since for instance, it might
be negative. We discuss here the different possible definitions of entropic cost with their
properties.

Definition 2.3.1 (Forward and backward entropic costs) Given two probability mea-
sures μ0, μ1 ∈ P(Rn), such that there exists an entropic bridge P̂ ∈ P(Ω), we define, the
forward entropic cost as,

−→A ε(μ0, μ1) = inf{εH(P |Rε);P ∈ P(Ω), P0 = μ0, P1 = μ1} − εH(μ0|m) (2.37)

and the backward entropic cost as,
←−A ε(μ0, μ1) = inf{εH(P |Rε);P ∈ P(Ω), P0 = μ0, P1 = μ1} − εH(μ1|m).

The interest of considering
−→A and

←−A is that they are non negative quantities, and they
take into account only the contribution of the transportation, of the dynamics. However
they are not symmetric, since reversing μ0 with μ1, the value of the constant term H(μi|m),
for μ0, μ1 changes, hence also the value of costs.
To enforce symmetry, but still taking into account only the demand of transportation, we
introduce the next definition.

Definition 2.3.2 (Entropic cost) Given two measures μ0, μ1 ∈ P(Rn), such that there
exists an entropic bridge P ε ∈ P(Ω), we define the entropic cost as,

Aε(μ0, μ1) = inf {εH(P |Rε);P ∈ P(Ω), P0 = μ0, P1 = μ1} −
ε

2
[H(μ0|m) +H(μ1|m)].

The entropic cost A is symmetric A(μ, ν) = A(ν, μ) since R is reversible. To see this, let
us denote X∗

t = X1−t, 0 ≤ t ≤ 1, and Q∗ := (X∗)#Q the time reversal of any Q ∈ M+(Ω).
As X∗ is one-to-one, we have H(P |R) = H(P ∗|R∗) and since we assume that R∗ = R, we
see that

H(P |R) = H(P ∗|R), ∀ P ∈ P(Ω).

Hence, if P solves (2.1) with (μ0, μ1) = (μ, ν), then X∗
#P solves (2.1) with (μ0, μ1) =

(ν, μ) and these Schrödinger problems share the same value. For what concerns the
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constant term [H(μ|m) +H(ν|m)] it is evident that if we exchange the role of μ and ν it
remains unchanged.
Thus A seems to be the best candidate to define a cost between two measures, having
in mind the idea that we have no hope to define the square of an entropic distance
between μ0 and μ1, in analogy to W 2

2 . Indeed there is no reason why A(μ, μ) = 0 for any
μ ∈ P(Rn) (and this is true also for

−→A and
←−A). This last definition is useful when we

want to look at the dynamic Eulerian point of view. We will prove at Section 3.5 that the
entropic cost A admits a Benamou-Brenier formulation, in analogy to the Wasserstein
distance (Theorem 1.2.12). In order to motivate Definition 2.3.2 we anticipate here some
arguments of Section 3.5.
Let P ∈ P(Ω) be such that H(P |Rε) < ∞, by the Girsanov Theorem 1.1.14 there exists
a vector field

−→
β t such that

EP

∫ 1

0

|−→β t|2/2dt < ∞,

the forward velocity of P is given by −→v P
t = ε

−→
β t − ε∇V/2 and the relative entropy can

be written as,

H(P |Rε) = H(P0|m) + εEP

∫ 1

0

|−→β t|2/2dt.

Since Rε is reversible, we obtain by reversing time, analogously

H(P |Rε) = H(P1|m) + εEP

∫ 1

0

|←−β t|2/2dt,

where
←−
β t appears in the backward velocity of P , that is ←−v P

t = ε
←−
βt−ε∇V/2. Furthermore

by definition of current and osmotic velocities (Definition 1.1.9),

vcu,P =
ε
−→
βt − ε

←−
β t

2
=: εβcu, vos,P =

ε
−→
βt + ε

←−
β t

2
− ε

2
∇V =: εβos − ε∇V/2.

We define here the forward and backward entropic actions of P with respect to Rε by

−→
A (P |Rε) := H(P |RP0,ε) = εEP

∫ 1

0

|−→β t|2 dt

←−
A (P |Rε) := H(P |RP1,ε) = εEP

∫ 1

0

|←−β t|2 dt,

where

RP0,ε(·) :=
∫

Rn
Rε(·|X0 = x)P0(dx), RP1,ε(·) :=

∫
Rn

Rε(·|X1 = y)P1(dy),

for which it holds,

H(P |RP0,ε) = H(P |Rε)−H(P0|Rε
0), H(P |RP1,ε) = H(P |Rε)−H(P1|Rε

1).

Similarly, we define the current and osmotic actions as,

Acu(P |Rε) = εEP

∫ 1

0

|βcu|2/2 dt,
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Aos(P |Rε) = εEP

∫ 1

0

|βos|2/2 dt.

It follows that

Acu(P |Rε) = ε−1

∫ 1

0

∫
Rn

|vcut |2/(2) dtdμt,

Aos(P |Rε) =
ε

2

∫ 1

0

∫
Rn

|∇ log μt +∇V/2|2 dtdμt.

Taking the half sum of the two expressions in (2.3) together with the parallelogram iden-
tity (1.19), leads us to,

H(P |Rε) =
1

2
[H(P0|Rε

0) +H(P1|Rε
1)] + εEP

∫ 1

0

|βcut |2 + |βost |2 dt. (2.38)

Let us introduce the last definition of the entropic action,

A(P |Rε) := Acu(P |Rε) + Aos(P |Rε) = [
−→
A (P |Rε) +

←−
A (P |Rε)]/2, (2.39)

and write (2.38) as,

H(P |Rε) =
1

2
[H(P0|Rε

0) +H(P1|Rε
1)] + A(P |Rε). (2.40)

It is straightforward that the Schrödinger problem (2.1) is equivalent, up to an additive
constant, to

inf{εA(P |Rε);P ∈ P(Ω) : P0 = μ0, P1 = μ1},

and it follows in particular that its minimal value is,

Aε(μ0, μ1) = inf{H(P |Rε);P ∈ P(Ω), P0 = μ0, P1 = μ1} −
ε

2
[H(μ0|m) +H(μ1|m)].

In the subsequent chapters we will deal both with the forward and entropic cost. The
advantage of the first is that it has a duality formulation that will be proved at Sec-
tion 3.4, while the advantage of the second is the Benamou-Brenier formulation proved at
Section 3.5. We will choose time to time which is the most convenient definition to adopt.
When we will use the two different entropic costs

−→A and A in the same expression, it
might seem confusing but keep in mind that they differ just for a constant term, that is

Aε(μ0, μ1) =
−→A ε(μ0, μ1) +

ε

2
[H(μ0|L)−H(μ1|L)].

Remark 2.3.3 As a consequence of (2.40), we deduce that the conserved quantity at
Lemma 2.2.8 is finite, indeed,

|Cε| < 2H(P ε|Rε) < ∞,

where P̂ ε is an entropic bridge.
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2.4 Limit for ε → 0

In this section we explore the relation between the Schrödinger problem and the Monge-
Kantorovich problem. We will see that the normalized entropic cost, no matter which
of the previous definitions we choose, converges to the minimal value of the Monge Kan-
torovich problem, whenever the reference path measure Rε ∈ P(Ω) of the former, is
properly related to the cost function of the latter C : Ω → R+ in (1.37). In particular, we
need that (Rε)ε>0 satisfies a large deviation principle with scale 1/ε, as ε tends to zero,
and rate function C, that is,

Rε(A) �
ε→0+

e
− inf
ω∈A

C(ω)/ε

for any measurable subset A ⊂ Ω. The paper [Léo12a] of Léonard gives the proof of
this convergence result in all generality. Let us first give an idea of how the family of
Schrödinger problems with reference measure Rε associated to the Brownian motion is
related to the quadratic Wasserstein distance.
Indeed when Rε

01 ∈ M+(Rn × Rn) and c : Rn × Rn → R+ are given respectively by

Rε
01(dxdy) = e

−|x− y|2
2ε /(2πε)n/2 dxdy, c(x, y) =

|x− y|2
2

,

we can compute explicitely the relative entropy for any π ∈ P(Rn × Rn) as,

εH(π|Rε
01) = ε

∫
log

dπ

dRε
01

dπ

= ε

∫
log

dπ

dxdy
dπ − ε

∫
log

(
e
−|x− y|2

2ε /(2πε)n/2
)
dπ

= ε

∫
log

dπ

dxdy
dπ +

∫ |x− y|2
2

dπ +
nε

2
log(2πε).

Taking limit for ε → 0, when H(π|dxdy) is finite, shows that

lim
ε→0

εH(π|Rε
01) =

∫ |x− y|2
2

dπ.

And taking the infimum over all π ∈ P(Rn × Rn) satisfying the marginal constrains, we
obtain

lim
ε→0

Aε(μ0, μ1) =
W 2

2 (μ0, μ1)

2
. (2.41)

Remark 2.4.1 Note that either
−→A ε or

←−A ε or Aε defined at Definitions 2.3.1 and 2.3.2
can play the role of the entropic cost Aε in this theorem, since they differ by some constant
quantity times ε, namely εH(μ0,1|m) that vanishes at the limit.

Despite formal, these computations give an enlightening intuition on how the entropy
minimization problem (2.1) can be actually an approximation of a linear deterministic
minimization problem as (1.37), without entering in the heavy machinery of large devia-
tion theory and Γ-convergence.
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The relation between the Schrödinger problem with reference measure (Rε)ε>0 with gen-
erator Lε = ε(Δ−∇V ·∇)/2 to the quadratic Wasserstein distance, is due to the fact that
they satisfy a large deviation principle. We recall here that a sequence (pε)ε>0 of proba-
bility measures satisfies the large deviation principle with scale 1/ε and rate function I,
if for each Borel measurable set A we have,

− inf
x∈intA

I(x) ≤ lim inf
ε→0

ε log pε(A) ≤ lim sup
ε→0

ε log pε(A) ≤ − inf
x∈clA

I(x)

where intA and clA are respectlively the interior and the closure of the set A.
We recall that when V = 0 and Rε ∈ M+(Ω) is associated to the SDE,

Y ε,x
t = x+

√
εWt, 0 ≤ t ≤ 1.

where the initial condition Y x,ε
0 = x is deterministic, Schilder’s theorem makes sure that

such a (Rε)ε>0 satisfies a large deviation principle with scale 1/ε and rate function,

Cx(ω) =

{ ∫ 1

0
|ω̇t|2
2

dt ∈ [0,∞], if ω ∈ Ω s. t. ω0 = x, and ω is abs.cont.
+∞ otherwise.

(2.42)

Theorem 2.4.2 (Schilder’s theorem) The sequence of stochastic processes (2.4) sat-
isfies a large deviation principle in Ω = C([0, 1],Rn) equipped with the topology of uniform
convergence with scale 1/ε and rate function (2.42).

For the proof see [DZ98, Thm. 5.2.3]. This result was extended in the Freidlin-Wentzell
Theorem, which states that the solution of the SDE (1.12),

dXt = b(Xt)dt+
√
εdWt, ∀ 0 ≤ t ≤ 1, X0 = 0

satisfies a large deviation principle as ε tends to zero with rate function

I(ω) =
1

2

∫
|ω̇t − b(ωt)|2 dt,

see [DZ98, Thm. 5.6.3]. Since we consider the drift b = −ε∇V/2, it can be proved
through exponential equivalence, that the rate function I(ω) coincides with the quadratic
cost (2.42) as ε tends to zero.

Theorem 2.4.3 (Convergence of Aε to W 2
2 /2) Let Rε have generator Lε = ε(Δ −

∇V · ∇)/2 and reversing measure m = e−V and let μ0, μ1 ∈ P2(Rn) have finite relative
entropy with respect to m. Then,

Γ- lim
ε→0

Aε(μ0, ·) =
W 2

2 (μ0, ·)
2

in P(Rn). Moreover, for any μ1 ∈ P(Rn), there exists a sequence με1 ∈ P(Rn) such that
limε→0 μ

ε
1 = μ1 ∈ P(Rn), and

lim
ε→0

Aε(μ0, μ
ε
1) =

W 2
2 (μ0, μ1)

2
.

If μ1 ∈ P2(Rn), then for any small enough ε > 0 the dynamic Schrödinger problem (2.1)
admits a unique solution P̂ ε ∈ P(Ω) such that

lim
ε→0

P̂ ε = P̂ ,

where P̂ ∈ P(Ω) is the unique solution of the dynamic Monge-Kantorovich problem with
quadratic cost, (1.40).
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Let us give a flavor of the general arguments of the proof in [Léo12a]. We first recall
that the Γ-limit of a sequence (fk)k≥1 of (−∞,∞]-valued functions on Rn, is given for all
x ∈ Rn by,

Γ- lim
k→∞

fk(x) = sup
V ∈N(x)

lim
k→∞

inf
y∈V

fk(y)

where N(x) is the set of all neighborhoods of x. This is equivalent to say that, for any
sequence (xk)k≥1 such that limk→∞ xk = x,

lim inf
k→∞

fk(xk) ≥ f(x),

and there exists a sequence (x̃k)k≥1 such that limk→∞ x̃k = x, and

lim sup
k→∞

fk(x̃
k) ≤ f(x).

The proof of Theorem 2.4.3 relies on the next preliminary result. First we introduce some
useful notation. We denote,

Rε,μ0(·) :=
∫

Rn
Rε,x(·)μ0(dx), ∈ P(Ω),

with Rε,x the law of the stochastic process (2.4), and for every x ∈ Rn and A ⊂ Rn,

ιx∈A =

{
0, if x ∈ A
∞ otherwise.

We also denote for any P ∈ P(Ω),

ξε,μ0(P ) := εH(P |Rε,μ0) + ιP0=μ0 (2.43)

ξμ0(P ) :=

∫
Ω

C dP + ιP0=μ0 . (2.44)

Observe that,

Aε(μ0, ν) = inf{ξε,μ0(P ) : P ∈ P(Ω), P0 = μ0, P1 = ν}
W 2

2 (μ0, ν)

2
= inf{ξμ0(P ) : P ∈ P(Ω), P0 = μ0, P1 = ν}.

Proposition 2.4.4 For any x ∈ Rn and μ0 ∈ P(Rn), it holds for any P ∈ P(Ω),

Γ- lim
ε→0+

εH(P |Rε,μ0) + ιP0=μ0 =

∫
Ω

C dP + ιP0=μ0 . (2.45)

where Rε,μ0 and C are given respectively at (2.4) and (2.42). Equivelently according to
Definitions (2.43) and (2.44),

Γ- lim
ε→0+

ξε,μ0 = ξμ0 ∈ P(Ω).

Sketch of the Proof
� We give the recipe of the proof step by step.
Step1. Furnish the space Cb(Ω) with the norm ‖f‖ = supΩ |f |, f ∈ Cb(Ω) and denote
Cb(Ω)

′ its topological dual space. Prove that for each P ∈ Cb(Ω)
′,

H(P |Rμ0) + ι{P0=μ0} = sup
f∈Cb(Ω)

{∫
Ω

f dQ−
∫

Rn
log

(∫
Ω

ef/εRε,x(dw)

)
μ0(dx)

}
.
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Compare this formula to the variational formula (1.2).
Step2. For any f ∈ Cb(Ω) denote

Λ(f) :=

∫
Rn

sup
Ω
{f − Cx}μ0(dx) =

∫
Rn

sup
Ωx

{f − C}μ0(dx),

where Ωx := {X0 = x} ⊂ Ω, and its convex conjugate by,

Λ∗(Q) := sup
f∈Cb(Ω)

{∫
Ω

f dQ− Λ(f)

}
.

Prove that for any Q ∈ P(Ω),

Λ∗(Q) =

∫
Ω

C dQ+ ι{Q0=μ0},

or shortly, Λ∗(Q) = ξμ0(Q), ∀ Q ∈ Mb(Ω).
Step3. Define, for any f ∈ Cb(Ω)

Λε(f) := ε

∫
Rn

log

(∫
Ω

ef/εRε,x(dω)

)
μ0(dx).

Prove that

• limε→0 Λε(f) = Λ(f);

• supε>0 |Λε(f)| ≤ ‖f‖, |Λ(f)| ≤ ‖f‖ := supΩ |f |;

• Λ,Λ∗ are convex.

From the Laplace-Varadhan principle [DZ98, Thm. 4.3.1], it follows that for all x ∈ Rn,

lim
ε→0

ε log

∫
Ω

ef/εRε,x(dw) = sup
Ω
{f − Cx}.

Moreover, it is easy to see that |ε log
∫
Ω
ef/εRε,x(dw)| ≤ ‖f‖∞. Hence by the dominated

convergence theorem, is follows that limε→0 Λ
ε(f) = Λ(f), for all f ∈ Cb(Ω).

Prove that
Λε,∗(Q) = εH(P |Rε,μ0) + ιP0=μ0 .

Step4. From Step3. and [Léo12a, Cor.5.4]1, deduce that

lim
ε→0

Λε,∗(Q) = Λ∗(Q)

From Step1. it follows that Λ∗,ε = ξε,μ0 , and from Step2. Λ∗ = ξμ0 . Hence, by Defini-
tions (2.43) and (2.44), conclude the proof. �

Proof of Theorem 2.4.3
� The proof of Theorem 2.4.3 is an immediate consequence of Proposition 2.4.4 and

1It states that given a family of real valued convex functions (gk)k≥1 on a normed space (Y, ‖ · ‖),
such that gk converges pointwise to g as k → ∞ and there exists c > 0 such that |gk(y)| ≤ c(1 + ‖y‖) for
all y ∈ Y and k ≥ 1, then (g∗k)k≥1 Γ-converges to g∗ with respect to σ(X,Y ) where X is the topological
dual space of Y .
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[Léo12a, Thm. 6.1]. The last insures that, given the Γ-convergence (2.45), we have that
the minimization problem

inf
{
εH(π|Rε,μ0

01 ) + ι{P0=μ0} : π ∈ P(Rn × Rn) : P1 = μ1

}
(2.46)

Γ-converges as ε tends to zero to

inf

{∫
Rn×Rn

|x− y|2
2

π(dxdy) + ι{P0=μ0} : π ∈ P(Rn × Rn) : P1 = μ1

}
(2.47)

in P(Rn). Moreover it states that for any μ1 ∈ P(Rn), it exists a sequence (με1)ε>0 such
that limε→0 μ

ε
1 = μ1 and such that

lim
ε→0

inf
{
εH(π|Rε,μ0

01 ) + ι{P0=μ0} : π ∈ P(Rn × Rn) : P1 = με1
}
= (2.48)

inf

{∫ |x− y|2
2

dπ + ι{P0=μ0} : π ∈ P(Rn × Rn) : P1 = μ1

}
.

Note that the Γ-convergence of (2.46) to (2.47) can be written equivalently as,

Γ- lim
ε→0

Aε(μ0, ·) =
W 2

2 (μ0, ·)
2

in P(Rn). Hence (2.48) writes as,

lim
ε→0

Aε(μ0, μ
ε
1) =

W 2
2 (μ0, μ1)

2
.

Moreover [Léo12a, Thm. 6.1] states that if μ1 ∈ P(Rn) is such that W 2
2 (μ0, μ1) < ∞, then

Aε(μ0, μ
ε
1) < ∞ for a small enough ε > 0, and it admits a minimizer π̂ε. The sequence

(π̂ε)ε>0 admits at least a cluster point π̂, minimizer of W 2
2 (μ0, μ1). �

As a consequence of Theorem 2.4.3, we can derive some convergence result for the current
and osmotic actions.

Lemma 2.4.5 Let (μεt)0≤t≤1 be the entropic interpolation between two measures μ0, μ1 ∈
P(Rn), then

limε→0+

∫ 1

0

∫
|∇θεt |2 dμεtdt = W 2

2 (μ0, μ1) (2.49)

limε→0+ ε2
∫ 1

0

I(μεt |m) dt = lim
ε→0+

ε2
∫ 1

0

∫
|∇ log ρεt |2 dμεtdt = 0, (2.50)

where ∇θεt is the current velocity of the entropic bridge P ε in (2.21) and I(μt|m) denotes
the Fisher information I(ρ|ν) =

∫
|∇ log(dρ/dν)|2dρ.

Proof
� Let P ε ∈ P(Ω) be the entropic bridge between μ0, μ1 ∈ P(Rn), then according to
(2.39) it minimizes

inf{εA(P |Rε);P ∈ P(Ω), P0 = μ0, P1 = μ1}

thus,

εA(P ε|Rε) =
1

2

∫ 1

0

∫
Rn

|vcu,P ε |2 dμεtdt+
ε2

8

∫ 1

0

I(μεt |m) dt
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where (μεt)0≤t≤1 is the entropic interpolation between μ0 and μ1. Theorem 2.4.3 implies
that

lim
ε→0+

Aε(μ0, μ1) = lim
ε→0+

∫ 1

0

∫
Rn

|vcu,P ε |2 dμεtdt+
ε2

8

∫ 1

0

I(μεt |m) dt = W 2
2 (μ0, μ1). (2.51)

Since the continuity equation and the other assumptions in Theorem 1.2.12 are satisfied
by (μεt)0≤t≤1, the Benamou-Brenier formulation makes sure that for any ε > 0,

W 2
2 (μ0, μ1) ≤

∫ 1

0

∫
Rn

|vcu,P εt |2 dμεtdt.

Together with limit (2.51), it implies the claimed limits (2.49) and (2.50). �

Lemma 2.4.6 Let (μεt)0≤t≤1 be the entropic interpolation between two measures μ0, μ1 ∈
P(Rn), then

lim
ε→0+

∫ 1

0

t

∫
|∇θεt |2 dμεtdt =

W 2
2 (μ0, μ1)

2

lim
ε→0+

ε2
∫ 1

0

tI(μεt |m) dt = lim
ε→0+

ε2
∫ 1

0

t

∫
|∇ log ρεt |2 dμεtdt = 0, (2.52)

where ∇θεt is the current velocity of the entropic bridge P ε in (2.21) and I(μt|m) denotes
the Fisher information.

Proof
� The proof is a consequence of Lemma 2.4.5 and the conserved quantity at Lemma
2.2.8. Indeed since

Cε =

∫
|∇θεt |2 dμεt −

ε2

2

∫
|∇ log ρt|2dμεt =

∫
|∇θεt |2 dμεt −

ε2

2
I(μεt |m),

taking the limit

lim
ε→0+

Cε = lim
ε→0+

∫
|∇θεt |2 dμεt − lim

ε→0+

ε2

2
I(μεt |m) = W 2

2 (μ0, μ1),

where the two limits are given at (2.49) and (2.50). At the same time from (2.50) it
follows,

0 ≤ lim
ε→0+

∫ 1

0

tI(μεt |m) dt ≤ lim
ε→0+

∫ 1

0

I(μεt |m) dt = 0 (2.53)

that is (2.52). Finally,

lim
ε→0+

∫ 1

0

t

∫
|∇θεt |2dμεt = lim

ε→0+

∫ 1

0

tCε + lim
ε→0+

∫ 1

0

tI(μεt |m) dt

= lim
ε→0+

Cε

∫ 1

0

t dt =
W 2

2 (μ0, μ1)

2
,

where the first equality is a consequence of (2.53). �

Another convergence result is about the kinematics of the entropic bridge with veloc-
ity field vP̂

ε

t = − ε
2
∇V +∇ψεt introduced at Proposition 2.2.4 to the one associated with

the McCann interpolation introduced at (1.46). Since in this convergence the potential
V doesn’t play any role, we can assume V = 0, that is Lε = εΔ/2.
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Proposition 2.4.7 The following limit holds true,

lim
ε→0+

ψεt = θt

where θt is introduced at (1.46) and ψεt in (2.14).

Proof
� We recall that ψεt is defined as,

ψεt = ε log T1−tg =: Qψε1

where the semigroup Q is defined for any suitable function f as Qtf = ε log Tte
f/ε and

ψε1 = ε log gε. Moreover as we proved in Proposition 2.2.2 it satisfies the Hamilton-Jabobi-
Bellman equation for any 0 ≤ t < 1

∂tψ
ε
t + εΔψεt /2 + |∇ψεt |2/2 = 0

with initial condition ψε1 = ε log gε. By the vanishing viscosity theory [Eva98] it follows
that for ε → 0, ψεt converges to the solution of the associated Hamilton-Jacobi equation
∂tψt + |∇ψt|2/2 = 0 with condition

ψ1 := lim
ε→0

ψε1. (2.54)

It will be clear at Section 3.4 that the limit (2.54) is a consequence of the dual Kantorovich
formulation for the entropic cost given at Theorem 3.4.1 and that in particular

ψ1(x) = inf
y∈Rn

{
ϕ(y)− |y|2 + |x− y|2

2

}
(2.55)

where ψ0(y) := ϕ(y)−|y|2 is given at (1.46) where ϕ is the convex function of the Brenier
Theorem 1.2.5. �

Remark 2.4.8 The convergence of ψεt might be seen as well as the result of the Schilder
Theorem 2.4.2. Indeed the Laplace-Varadhan principle [DZ98, Thm. 4.3.1] states that,

lim
ε→0+

ψεt (z) = sup

{
ψ1(ω1)−

∫ 1

t

|ω̇s|2
2

ds;ω ∈ Ω : ωt = z

}
= sup

y∈Rn

{
− |y − z|2
2(1− t)

+ ψ1(y)

}
where ψ1 is given at (2.55). Again we recovered the solution of the Hamilton-Jacobi
equation in (1.46).

2.5 Entropy along entropic interpolation

In this section we look at the evolution along entropic interpolations of two information
functionals: the relative entropy and the Fisher Information introduced at Section 1.1.1.
Let (μεt)t∈[0,1] be the entropic interpolation between two measures μ0, μ1 ∈ P(Rn) chosen
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in order assumptions in Theorem 2.1.4 to be satisfied. In the rest of the Section, the
reference measure is Rε with generator

Lε =
ε

2
(Δ−∇V · ∇), and Γε(f, g) =

ε

2
∇f · ∇g

In the following we will adopt the convention (2.11) to have a clearer and explicit notation.
We recall that by definition, the relative entropy and the Fisher Information of the entorpic
interpolation with respect to the invariant measure m are, respectively,

H(μεt |m) =

∫
ρεt log ρ

ε
t dm, I(μεt |m) =

ε

2

∫
|∇ log ρεt |2ρεt dm

We recall also that the densities with respect to the Lebesgue and the reversing measure
m are respectively

μεt = e

ϕεt + ψεt
ε e−V , ρεt = e

ϕεt + ψεt
ε

related by (2.15). The question of the behavior of the relative entropy along entropic
interpolations was first addressed in [Léo17], in which the first and second derivative,
that we compute in the next two Propositions, are studied. Here we won’t make any
assumption on the marginals μ0, μ1 ∈ P(Rn) in addition to those of Theorem 2.1.4 which
assure the existence of entropic interpolations. Further assumptions are necessary to make
sure that Γ2-computations are allowed. We will make them clear later at Chapter 4 when
these results will be used.

Proposition 2.5.1 (First derivative of the entropy) Let μ0, μ1 ∈ P(Rn) and the ref-
erence measure Rε ∈ P(Ω) be such that hypothesis in Theorem 2.1.4 are satisfied. Then
the first order derivative of the relative entropy along the entropic interpolation (μεt)0≤t≤1,
is

d

dt
H(μεt |m) =

1

ε

∫
Γψεt − Γϕεt dμ

ε
t = 2

∫
Γ(log ρεt , θ

ε
t ) dμ

ε
t

where Γ is the carré du champs operator associated with the generator L of the reference
measure R.

Proposition 2.5.2 (Second derivative of the entropy) In the same setting as in Propo-
sition 2.5.1, the second order derivative of the relative entropy along the entropic inter-
polation (μεt)0≤t≤1, is

d2

dt2
H(μεt |m) = 2

∫
Γ2ψ

ε
t + Γ2ϕ

ε
t dμ

ε
t =

∫
4Γ2θ

ε
t + ε2Γ2 log ρ

ε
t dμ

ε
t

where Γ2 is the iterated carré du champ operator associated with the generator L of the
reference measure R.

Proposition 2.5.3 (First derivative of the Fisher Information) In the same set-
ting as in Proposition 2.5.1, the first order derivative of the Fisher information along
the entropic interpolation (μεt)0≤t≤1, is

d

dt
I(μεt |m) = 2

∫
Γ2ψ

ε
t − Γ2ϕ

ε
t dμ

ε
t = 4ε

∫
Γ2(log ρ

ε
t , θ

ε
t ) dμ

ε
t

where Γ2 is the iterated carré du champ operator associated with the generator L of the
reference measure R.
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Remarks 2.5.4 Let us do some formal considerations.
1. It is interesting to remark the formal analogy between (both the expressions of) the
first derivative of the Fisher information in Proposition 2.5.3 and the first derivative of
the entropy in Proposition 2.5.1.
2. The entropic interpolation can be seen somehow as a link between the heat flow and
the McCann interpolation. Indeed consider equation (2.18),

ρ̇εt = −2ρεt [Lθ
ε
t + Γ(log ρεt , θ

ε
t )]

for some θεt . If, formally, we assume vcu + vos = 0, that is equivalent to

θεt = −ε log ρεt/2,

we get the heat equation ρ̇εt = Lερεt . It is well known that in this case the Fisher infor-
mation represents the opposite of the first derivative of the entropy along the heat flow.
Indeed we recover this result, if we replace θεt = −ε log ρεt/2 in the second expression in
Proposition 2.5.1, and as a consequence, we get also, from Propositions 2.5.2 and 2.5.3
that, in this specific case, d2H(μεt |m)/dt2 = −dI(μεt |m)/dt.
On the other hand by considering the case ε = 0, we get,

ρ̇t = −ρt[Δθt + Γ(log ρt, θt)]

that is the transport equation satisfied by the McCann interpolation as stated in (1.46).
Hence, with ε = 0, and replacing ∇θε=0

t = ∇θt also given at (1.46), we obtain in Propo-
sitions 2.5.1 and 2.5.2 the formal expression of the first and second order derivatives of
the entropy along the McCann interpolation.
3. It is interesting to look at the equation satisfied by the potential θεt , that can be easily
verified,

θ̇εt = Γθεt −
ε2

2
L log ρεt −

ε2

4
Γ log ρεt .

If we consider the example L = Δ/2, we recognize the Hamilton-Jacobi equation with the
potential log ρεt , [Eva98].

2.5.1 Proofs of the preceding results.

Proof of Proposition 2.5.1
� We drop the index ε to simplify the notation.

d

dt
H(μt|m) =

d

dt

∫
ρt log ρt dm

=

∫
ρ̇t(log ρt + 1)dm

�
=

1

ε

∫
(−εLψt − Γψt + εLϕt + Γϕt)

1

ε
(ψt + ϕt)dμt

=
1

ε

∫
(ϕt + ψt)L(ϕt − ψt)dμt︸ ︷︷ ︸

(∗)

+
1

ε2

∫
(Γϕt − Γψt)(ϕt + ψt)dμt (2.56)

where the star equality is given to (2.17). We integrate (∗) by parts,
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(∗) = −
∫

Γ(ϕt − ψt, (ϕt + ψt)e
ψt+ϕt
ε )dm

�
= −

∫
Γ(ϕt − ψt, ϕt + ψt)

(
1 +

1

ε
(ϕt + ψt)

)
dμt

��
= −

∫
(Γϕt − Γψt)

(
1 +

1

ε
(ϕt + ψt)

)
dμt

=

∫
Γψt − Γϕt dμt −

1

ε

∫
(Γϕt − Γψt)(ϕt + ψt)dμt.

Where in the the star and double star equality we used respectively properties (v.) and
(viii.) of Proposition 1.1.22. If we replace it in (2.56) we have,

d

dt
H(μt|m) =

1

ε

∫
Γψt − Γϕt dμt −

1

ε2

∫
(Γϕt − Γψt)(ϕt + ψt)dμt +

1

ε2

∫
(Γϕt − Γψt)(ϕt + ψt)dμt

=
1

ε

∫
Γψt − Γϕt dμt.

In order to get the second equality in Proposition 2.5.1 by property (viii.) in Proposi-
tion 1.1.22, together with the current velocity (2.2) and the characterization formula (2.13),

1

ε

∫
Γψt − Γϕt dμt =

1

ε

∫
Γ(ψt + ϕt, ψt − ϕt) dμt

=
1

ε

∫
Γ(2θt, ε log ρt) dμt

= 2

∫
Γ(θt, log ρt) dμt =

∫
∇θt · ∇ log ρt dμt

and this concludes the proof.

Proof of Proposition 2.5.2
� Again for simplicity we drop the index ε.

d2

dt2
H(μt|m) =

1

ε

d

dt

∫
Γψt − Γϕt dμt.
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By property (vii.) in Proposition 1.1.22

d2

dt2
H(μt|m) =

1

ε

∫
2Γ(ψt, ψ̇t)− 2Γ(ϕt, ϕ̇t) +

1

ε
(Γψt − Γϕt)(ψ̇t + ϕ̇t) dμt

�
=

1

ε

∫
2Γ (ψt,−εLψt − Γψt)− 2Γ (ϕt, εLϕt + Γϕt) +

+
1

ε
(Γψt − Γϕt) (εLϕt − εLψt + Γϕt − Γψt) dμt

=
1

ε

∫
−2εΓ(ψt, Lψt)− 2Γ(ψt,Γψt)− 2εΓ(ϕt, Lϕt)− 2Γ(ϕt,Γϕt)

+ΓψtLϕt − ΓψtLψt − ΓϕtLϕt + ΓϕtLψt

+
1

ε
ΓψtΓϕt −

1

ε
(Γψt)

2 − 1

ε
(Γϕt)

2 +
1

ε
ΓϕtΓψt dμt

=
1

ε

∫
2εΓ2ψt + 2εΓ2ϕt−εLΓψt − εLΓϕt︸ ︷︷ ︸

(∗∗)

−2Γ(ψt,Γψt)− 2Γ(ϕt,Γϕt)

+ΓψtLϕt − ΓψtLψt − ΓϕtLϕt + ΓϕtLψt

+
1

ε
ΓψtΓϕt −

1

ε
(Γψt)

2 − 1

ε
(Γϕt)

2 +
1

ε
ΓϕtΓψt dμt. (2.57)

Where the star equality is given by (2.16), and the last equality is given by definition of
Γ2 (Definition 1.1.21). Integrating the terms (∗∗) twice by parts, we obtain

(∗∗) = −ε

∫
L(Γψt + Γϕt)e

ψt+ϕt
ε dm

= ε

∫
Γ(Γψt + Γϕt, e

ψt+ϕt
ε )dm

=

∫
Γ(Γψt + Γϕt, ϕt + ψt)dμt

�
= −

∫
(Γψt + Γϕt)Γ(ϕt + ψt, e

ψt+ϕt
ε ) + (Γψt + Γϕt)L(ϕt + ψt)e

ψt+ϕt
ε dm

= −
∫

1

ε
(Γψt + Γϕt)Γ(ϕt + ψt, ϕt + ψt) + (Γψt + Γϕt)L(ϕt + ψt)dμt

= −1

ε

∫
(Γψt + Γϕt)(Γϕt + 2Γ(ϕt, ψt) + Γψt) dμt +

−
∫

ΓψtLϕt + ΓψtLψt + ΓϕtLϕt + ΓϕtLψt dμt

where the marked equality is again due to property (vi.) in Proposition 1.1.22. Therefore,
in (2.57) we get,
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d2

dt2
H(μt|m) =

1

ε

∫
2εΓ2ψt + 2εΓ2ϕt − 2Γ(ψt,Γψt)− 2Γ(ϕt,Γϕt)

+ΓψtLϕt − ΓψtLψt − ΓϕtLϕt + ΓϕtLψt −
1

ε
(Γψt)

2

−1

ε
ΓψtΓϕt −

2

ε
ΓψtΓ(ϕt, ψt)−

1

ε
(Γϕt)

2 − 2

ε
ΓϕtΓ(ψt, ϕt)

−1

ε
ΓψtΓϕt − ΓψtLϕt − ΓψtLψt − ΓϕtLϕt − ΓϕtLψt

+
1

ε
ΓψtΓϕt −

1

ε
(Γψt)

2 − 1

ε
(Γϕt)

2 +
1

ε
ΓϕtΓψt dμt.

After simplification it reduces to

d2

dt2
H(μt|m) =

1

ε

∫
2εΓ2ψt + 2εΓ2ϕt−2Γ(ψt,Γψt)︸ ︷︷ ︸

(∗∗∗)

−2Γ(ϕt,Γϕt)︸ ︷︷ ︸
(∗∗∗∗)

−2ΓψtLψt

−2ΓϕtLϕt −
2

ε
(Γψt)

2 − 2

ε
(Γϕt)

2 − 2

ε
Γ(ϕt, ψt)(Γϕt + Γψt) dμt.

We integrate by parts (∗ ∗ ∗),

(∗ ∗ ∗) = −2

∫
Γ(ψt,Γψt)e

ψt+ϕt
ε dm

= 2

∫
ΓψtΓ(ψt, e

ψt+ϕt
ε ) + ΓψtLψte

ψt+ϕt
ε dm

= 2

∫
1

ε
ΓψtΓ(ψt, ϕt + ψt) + ΓψtLψt dμt

= 2

∫
1

ε
ΓψtΓ(ψt, ϕt) +

1

ε
(Γψt)

2 + ΓψtLψt dμt.

Analogously, we can deduce that

(∗ ∗ ∗∗) = 2

∫
1

ε
ΓϕtΓ(ψt, ϕt) +

1

ε
(Γϕt)

2 + ΓϕtLϕt dμt.

So, replacing these two terms in (2.57),

d2

dt2
H(μt|m) =

1

ε

∫
2εΓ2ψt + 2εΓ2ϕt +

2

ε
ΓψtΓ(ψt, ϕt) +

2

ε
(Γψt)

2 + 2ΓψtLψt

+
2

ε
ΓϕtΓ(ψt, ϕt) +

2

ε
(Γϕt)

2 + 2ΓϕtLϕt − 2ΓψtLψt

−2ΓϕtLϕt −
2

ε
(Γψt)

2 − 2

ε
(Γϕt)

2 − 2

ε
Γ(ϕt, ψt)(Γϕt + Γψt) dμt

=

∫
2Γ2ψt + 2Γ2ϕt dμt.

And after simplification of equal opposite terms, we get the announced result. Finally to
get the second equality in Proposition 2.5.2, we use property (ix.) in Proposition 1.1.22,
together with the current velocity (2.2) and the characterization formula (2.13),

2

∫
Γ2ψt + Γ2ϕt dμt =

∫
Γ2(ψt + ϕt) + Γ2(ψt − ϕt) dμt

=

∫
4Γ2θt + ε2Γ2 log ρt dμt.
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Proof of Proposition 2.5.3
�
d

dt
I(μt|m) =

d

dt

ε

2

∫
|∇ log ρt|2 dμt

=
d

dt

1

ε

∫
Γ(ϕt + ψt)e

ϕt+ψt
ε dm

=
1

ε

∫
2Γ(ϕt + ψt, ϕ̇t + ψ̇t) +

1

ε
Γ(ϕt + ψt)(ϕ̇t + ψ̇t)dμt

=
1

ε

∫
2Γ(ϕt + ψt,−εL(ψt − ϕt)− Γψt + Γϕt)

+
1

ε
Γ(ϕt + ψt)(−εL(ψt − ϕt)− Γψt + Γϕt)dμt

=
1

ε

∫
−2εΓ(ϕt, Lψt) + 2εΓ(ϕt, Lϕt)− 2εΓ(ψt, Lψt) + 2εΓ(ψt, Lϕt)

+2Γ(ϕt + ψt,Γϕt − Γψt)− Γ(ϕt + ψt)L(ψt − ϕt) +
1

ε
Γ(ϕt + ψt)(Γϕt − Γψt)dμt

=
1

ε

∫
−2εΓ2ϕt + εLΓϕt︸ ︷︷ ︸

(∗)

+2εΓ2ψt − εLΓψt︸ ︷︷ ︸
(∗∗)

−2εΓ(ϕt, Lψt) + 2εΓ(ψt, Lϕt)

+2Γ(ϕt + ψt,Γϕt − Γψt)− Γ(ϕt + ψt)L(ψt − ϕt)

+
1

ε
Γ(ϕt + ψt)(Γϕt − Γψt)dμt. (2.58)

Integrating by parts (∗) and (∗∗)

(∗) = ε

∫
LΓϕtdμt

=

∫
Γ(Γϕt, ϕt + ψt)dμt

(∗∗) = −
∫

Γ(Γψt, ϕt + ψt)dμt.

It follows that,

(∗) + (∗∗) = −
∫

Γ(ϕt + ψt,Γϕt − Γψt) dμt.

So, replacing these terms in (2.58),

d

dt
I(μt|m) =

1

ε

∫
−2ε[Γ2ϕt − Γ2ψt] + Γ(ϕt + ψt,Γϕt − Γψt)︸ ︷︷ ︸

(∗∗∗)

−2ε[Γ(ϕt, Lψt) + Γ(ψt, Lϕt)]

−Γ(ϕt + ψt)L(ψt − ϕt) +
1

ε
Γ(ϕt + ψt)(Γϕt − Γψt)dμt. (2.59)

Integrating (∗ ∗ ∗) by parts,

(∗ ∗ ∗) =

∫
Γ(ϕt + ψt,Γϕt − Γψt)dμt

= −
∫
(Γϕt − Γψt)[Γ(ϕt + ψt)

1

ε
+ L(ϕt + ψt)]dμt.
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Therefore, after simplification we get,

d

dt
I(μt|m) =

1

ε

∫
−2εΓ2ϕt + 2εΓ2ψt − 2εΓ(ϕt, Lψt)︸ ︷︷ ︸

∗∗∗∗

+2εΓ(ψt, Lϕt)︸ ︷︷ ︸
∗∗∗∗∗

− Γ(ϕt + ψt)L(ψt − ϕt) + (Γϕt − Γψt)L(ϕt + ψt)dμt.

Integrate by parts (∗ ∗ ∗∗)

(∗ ∗ ∗∗) = 2ε

∫
Γ(ϕt, Lψt) dμt

= −2ε

∫
LψtΓ(ϕt, ϕt + ψt)

1

ε
+ LψtLϕtdμt.

In the same way,

(∗ ∗ ∗ ∗ ∗) = −2ε

∫
LϕtΓ(ψt, ϕt + ψt)

1

ε
+ LψtLϕtdμt.

We replace these terms in (2.59), and after further simplification,

d

dt
I(μt|m) =

1

ε

∫
−2εΓ2ϕt + 2εΓ2ψt − 2LϕtΓψt − 2LϕtΓ(ϕt, ψt)

−Γ(ϕt + ψt)L(ψt − ϕt) + (Γϕt − Γψt)L(ϕt + ψt)dμt

= 2

∫
−Γ2ϕt + Γ2ψt dμt.

The second equality in Proposition 2.5.3 is obtained similarly to the others in Proposi-
tions 2.5.1 and 2.5.2.

2.6 Physical motivation and chronology
The Schrödinger problem appears for the first time in a 1931 paper [Sch31] of the Austrian
physicist Nobel prize Erwin Scrhödinger. Interested by quantum mechanics phenomenon,
in the last section of his paper, translated in french the next year [Sch32], he proposed
a probability problem in the classic theory of Brownian motion that at first sight has no
link with the rest of his paper. But as he advises the reader at the end he will show an
astonishing analogy.
The original question of Schrödinger didn’t look like the modern formulation in terms of
minimal entropy (2.1) but it was motivated by a statistical physics consideration.
Consider the classical heat equation,

∂tρ = Δρ, (2.60)

where ρ is the probability density of a particles system. Assume that we know at time t0
that ρ|t=t0 = ρ0 and at a later time t1 that ρ|t=t1 = ρ1, that is,{

∂tρ = Δρ
ρ|t=t0 = ρ0, ρ|t=t1 = ρ1.

(2.61)

With only one of the two initial conditions the solution of the Cauchy problems,

(i)

{
∂tρ = Δρ
ρ|t=t0 = ρ0

(ii)

{
∂tρ = −Δρ
ρ|t=t1 = ρ1

(2.62)
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is well known. But if we know simultaneously the two limit conditions, then the solution
of (2.60) will not be equal to the solution of any of the Cauchy problems in (2.62).
Schrödinger did not prove existence and uniqueness results for problem (2.61) but he
proved that if a solution exists then, it is given by the product of the unique respective
solution of (i) and (ii) in (2.62). Indeed this is what we obtained in (2.12).
Therefore the Schrödinger problem can be addressed in the following way: according to (i)
in (2.62) we are supposed to find the particles system at time t1 > t0 at the configuration
ρ̂|t=t1 where ρ̂ is the solution of the classical Cauchy problem with initial condition ρ0. If
we find the system at time t1 in the configuration ρ1 �= ρ̂|t=t1 it means that something
unexpected perturbed the evolution of the system. Hence the problem is to determine a
drift ∇ψ (a priori it is not unique), able to drive the system in the observed ρ1, i.e. a
drift such that the problem {

∂tρ = Δρ+∇ψ · ∇ρ
ρ|t=t0 = ρ0, ρ|t=t1 = ρ1

(2.63)

admits a solution. We can still formulate this problem in more probabilistic terms. To
this aim we basically follow [Léo14b, Sec. 6].
Consider a large number N of particles moving in the state space, that so far we assumed
to be Rn. The particles are independent, non interacting and indistinguishable. The
position of each particle is associated to a random variable Y i, i = 1, ..., N on Ω, the set
of continuous path on Rn (1.10), such that

P (Y i ∈ ·) = R(·|Y0 = yi0) ∈ P(Ω), ∀ 1 ≤ i ≤ N,

where yi0 is the initial deterministic position of the i-th particle and R is the reference
path measure. For instance if

Y i
t = yi +W i

t (2.64)

we recover the Brownian motion, namely, (2.60). Consider the empirical measure,

LN =
1

N

N∑
i=1

δY i

that is a random element in P(Ω). For any 0 ≤ t ≤ 1 the projection of LN is an element
of P(Rn) given by,

LNt =
1

N

N∑
i=1

δY it .

Suppose that the initial positions are close to some configuration μ0 ∈ P(Rn),

LN0 −→
N→∞

μ0 ∈ P(Rn).

By the law of large numbers, we know that for N → ∞, LN converges in law to the law
of Y i, that is, taking into account the conditioning with respect to the initial position,

LNt (dy) −→
N→∞

∫
Rn

R(Xt ∈ dy |X0 = x)μ0(dx). (2.65)

For instance in the example (2.64), we expect LN1 to be close to N (0, 1) for N large.
Schrödinger’s question is then the following. Suppose that at time t = 1, we observe the
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system in a configuration μ1 different from the one we expect according to (2.65). This
is possible since N is finite, but is a rare event. Conditionally to this rare event what is
the most likely dynamics of the whole system described by LN? Mathematically this is
equivalent to determine the limit,

lim
ε→0+

lim
N→∞

Prob(LN ∈ · |LN1 ∈ B(μ1, ε))

in P(P(Ω)), where B is the ball of radius ε centered in μ1 according to some metric on
P(Rn). In these terms it is clear that it is a large deviations problem, hence it can be
solved via the Sanov Theorem [DZ98]. Define Cε = {P ∈ P(Ω) : P0 = μ0, P1 ∈ B(μ1, ε)},
a modified version of Sanov’s Theorem states that,

Prob(LN ∈ A|LN ∈ Cε) �
N→∞

exp

[
−n

{
inf

P∈A∩Cε
H(P |R)− inf

P∈Cε
H(P |R)

}]
. (2.66)

Roughly speaking, if P̂ ∈ Cε is the solution of

inf
P∈Cε

H(P |R), (2.67)

there are two possible situations: P̂ ∈ A ∩ Cε or P̂ ∈ Cε \ (A ∩ Cε). In the first case it
means that the two optimal values in (2.66) are equal, thus,

Prob(LN ∈ A|LN ∈ Cε) �
N→∞

1.

In the latter case, it means that the two optimal values are different, the exponent is
strictly negative, hence at the limit for N → 0,

Prob(LN ∈ A|LN ∈ Cε) �
N→∞

0.

Summarizing we obtained that limN→∞ Prob(LN ∈ ·|LN ∈ Cε) = δP̂ε where P̂ε is the
solution of (2.67). Finally it can be proved that at the limit ε → 0+, P̂ε → P̂ solution of

inf{H(P |R);P ∈ P(Ω), P0 = μ0, P1 = μ1} (2.68)

hence we can conclude that

lim
ε→0+

lim
N→∞

Prob(LN ∈ · |LN1 ∈ B(μ1, ε)) = δP̂ ∈ P(P(Ω)),

where P̂ is the unique solution of (2.68) that coincides with the dynamical definition of
the Schrödinger problem (2.1). This is equivalent to say that for large enough N , LN
converges in law to P̂ .
In the same way the probability that the system evolves spontaneously from μ0 to the
unexpected profile μ1 is given by,

lim
ε→0+

lim
N→∞

1

N
logProb(LN1 ∈ B(μ1, ε)|LN0 ∈ B(μ0, ε)) =

− inf{H(P |R);P ∈ P(Ω), P0 = μ0, P1 = μ1}+H(μ0|m) (2.69)

where the quantity on the right hand side is equal to the forward entropic cost defined
at (2.37).
To summarize, the entropic cost defined at Section 2.3 is an evaluation of the (low)
probability to end up in the prescribed μ1, starting from μ0. The entropic interpolation
defined at Section 2.2 is the most likely dynamics followed by the system, and ∇ψt in
(2.29) is the unexpected drift which perturbed the reference (Brownian) motion in the
formulation (2.63).
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2.6.1 Brief history

Schrödinger’s work has been remembered by the large public for the "cat", by the mathe-
matical and physical community for the "equation", and by a quite tiny subset of mathe-
maticians for the problem we are dealing with. Although it is an interesting and classical
question in probability, Schrödinger’s problem has never been mainstream, rather it was
forgotten for a long time before being properly studied. After 1932’s article, the first con-
tributions for the solvability of system (2.6), were accomplished first by Bernstein [Ber32],
successively by Fortet in 1940 [For40], 20 years later by Beurling [Beu60] and still 15 years
later in the 70s by Jamison [Jam74, Jam75].
It was Föllmer in the 80s [Föl88] to give a new birth to the Schrödinger problem through
its modern formulation in terms of large deviation theory. At the same time, inspired by
the work of Schrödinger, Zambrini in [Zam86] started to develop a work of connections
between stochastic processes and quantum physics that is still productive, [CZ91, CWZ00,
CZ08]. More recently, are due to Mikami and Léonard the results on the convergence of
the Schrödinger problem to the Monge-Kantorovich problem, [Mik04, Léo12a].
The last few years have known an increasing popularity of the Schrödinger problem. In
connection with the optimal transport theory we recall the works of Chen, Georgiu and
Pavon [CGP16, CGP17], and, with applications to functional inequalities, the works of
Gentil, Léonard and the author [GLR17, Rip17]. The Schrödinger problem has recently
been studied by Gigli and Tamanini in [GT17] in RDC∗ spaces and applied to the study
of incompressible viscid fluids in [ABLZ17].
In applied mathematics the Schrödinger problem is used as a regularizing approxima-
tion of the Monge-Kantorovich problem, being much more performing in numerical com-
putations. We mention the works of Benamou, Carlier, Cuturi, Duval, Nenna, Peyré,
Schmitzer such as [Cut13, BCC+15, CDPS17]. The Schrödinger problem counts also
applications in economics, given by Galichon and Salanié in [GS09].
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Chapter 3

Analogies between optimal transport
and minimal entropy

This chapter contains a slightly modified version of [GLR17]. We tried to uniform no-
tations to the rest of the manuscript and we decided to keep the original structure of
the paper to leave the chapter self-contained. We invite the reader who already passed
through Chapter 1 and Chapter 2 to skip Sections 3.2 and 3.3, which are basically repe-
titions and start directly from Section 3.4.

Abstract We describe some analogy between optimal transport and the Schrödinger
problem where the transport cost is replaced by an entropic cost with a reference path
measure. A dual Kantorovich type formulation and a Benamou-Brenier type represen-
tation formula of the entropic cost are derived, as well as contraction inequalities with
respect to the entropic cost. This analogy is also illustrated with some numerical exam-
ples where the reference path measure is given by the Brownian motion or the Ornstein-
Uhlenbeck process.
Our point of view is measure theoretical, rather than based on stochastic optimal control,
and the relative entropy with respect to path measures plays a prominent role.

Resumé Nous décrivons des analogies entre le transport optimal et le problème de
Schrödinger lorsque le coût du transport est remplacé par un coût entropique avec une
mesure de référence sur les trajectoires. Une formule duale de Kantorovich, une formula-
tion de type Benamou-Brenier du coût entropique sont démontrées, ainsi que des inégalités
de contraction par rapport au coût entropique. Cette analogie est aussi illustrée par des
exemples numériques où la mesure de référence sur les trajectoires est donnée par le mou-
vement Brownien ou bien le processus d’Ornstein-Uhlenbeck.
Notre approche s’appuie sur la théorie de la mesure, plutôt que sur le contrôle optimal
stochastique, et l’entropie relative joue un rôle fondamental.

3.1 Introduction

In this article, some analogy between optimal transport and the Schrödinger problem is
investigated. A Kantorovich type dual equality, a Benamou-Brenier type representation of
the entropic cost and contraction inequalities with respect to the entropic cost are derived
when the transport cost is replaced by an entropic one. This analogy is also illustrated
with some numerical examples.

91
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Our point of view is measure theoretical rather than based on stochastic optimal control
as is done in the recent literature; the relative entropy with respect to path measures
plays a prominent role.

Before explaining the Schrödinger problem which is associated with an entropy min-
imization, we first introduce the Wasserstein quadratic transport cost W 2

2 and its main
properties. For simplicity, our results are stated in Rn rather than in a general Polish
space. Let us note that properties of the quadratic transport cost can be found in the
monumental work by C. Villani [Vil03, Vil09]. In particular its square root W2 is a
(pseudo-)distance on the space of probability measures which is called Wasserstein dis-
tance. It has been intensively studied and has many interesting applications. For instance
it is an efficient tool for proving convergence to equilibrium of evolution equations, concen-
tration inequalities for measures or stochastic processes and it allows to define curvature
in metric measure spaces, see the textbook [Vil09] for these applications and more.

The Wasserstein quadratic cost W 2
2 and the Monge-Kantorovich

problem

Let P(Rn) be the set of all probability measures on Rn. We denote its subset of probability
measures with a second moment by P2(Rn) = {μ ∈ P(Rn);

∫
|x|2 μ(dx) < ∞}. For any

μ0, μ1 ∈ P2(Rn), the Wasserstein quadratic cost is

W 2
2 (μ0, μ1) = inf

π

∫
Rn×Rn

|y − x|2 π(dxdy), (3.1)

where the infimum is running over all the couplings π of μ0 and μ1, namely, all the
probability measures π on Rn × Rn with marginals μ0 and μ1, that is for any bounded
measurable functions ϕ and ψ on Rn,∫

Rn×Rn
(ϕ(x) + ψ(y)) π(dxdy) =

∫
Rn

ϕdμ0 +

∫
Rn

ψ dμ1.

In restriction to P2(Rn), the pseudo-distance W2 becomes a genuine distance. The Monge-
Kantorovich problem with a quadratic cost function, consists in finding the optimal cou-
plings π that minimize (3.1). For more details see Section 1.2.

The entropic cost AR and the Schrödinger problem

Let fix some reference non-negative measure R on the path space Ω = C([0, 1],Rn) and
denote R01 the measure on Rn × Rn. It describes the joint law of the initial position X0

and the final position X1 of a random process on Rn whose law is R. This means that

R01 = (X0, X1)#R

is the push-forward of R by the mapping (X0, X1). Recall that the push-forward of a
measure α on the space A by the measurable mapping f : A → B is defined by

f#α(db) = α(f−1(db)), db ⊂ B,

in other words, for any positive function H,∫
Hd(f#α) =

∫
H(f)dα.
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For any probability measures μ0 and μ1 on Rn, the entropic cost AR(μ0, μ1) of (μ0, μ1) is
defined up to a constant term by

AR(μ0, μ1) = inf
π
H(π|R01)

where H(π|R01) =
∫
Rn×Rn log(dπ/dR01) dπ is the relative entropy of π with respect to R01

and π runs through all the couplings of μ0 and μ1. The Schrödinger problem consists in
finding the unique optimal entropic plan π that minimizes the above infimum.

In this article, we choose R as the reversible Kolmogorov continuous Markov process
specified by the generator 1

2
(Δ−∇V · ∇) and the initial reversing measure e−V (x) dx.

Aim of the paper

Below in this introductory section, we are going to focus onto four main features of the
quadratic transport cost W 2

2 . Namely:

• the Kantorovich dual formulation of W 2
2 ;

• the Benamou-Brenier dynamical formulation of W 2
2 ;

• the displacement interpolations, that is the W2-geodesics in P2(Rn);

• the contraction of the heat equation with respect to W 2
2 .

The goal of this article is to recover analogous properties for AR instead of W 2
2 , by

replacing the Monge-Kantorovich problem with the Schrödinger problem.

Several aspects of the quadratic Wasserstein cost

Let us provide some detail about these four properties.

Kantorovich dual formulation of W 2
2

The following duality result was proved by Kantorovich in [Kan42b]. For any μ0, μ1 ∈
P2(Rn),

W 2
2 (μ0, μ1) = sup

ψ

{∫
Rn

ψ dμ1 −
∫

Rn
Qψ dμ0

}
, (3.2)

where the supremum runs over all bounded continuous function ψ and

Qψ(x) = sup
y∈Rn

{
ψ(y)− |x− y|2

}
, x ∈ Rn.

It is often expressed in the equivalent form,

W 2
2 (μ0, μ1) = sup

ϕ

{∫
Rn

Q̃ϕ dμ1 −
∫

Rn
ϕdμ0

}
, (3.3)

where the supremum runs over all bounded continuous function ϕ and

Q̃ϕ(y) = inf
x∈Rn

{
ϕ(x) + |y − x|2

}
, y ∈ Rn.

The map Qψ is called the sup-convolution of ψ and its defining identity is sometimes
referred to as the Hopf-Lax formula.
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Benamou-Brenier formulation of W 2
2

The Wasserstein cost admits a dynamical formulation: the so-called Benamou-Brenier
formulation which was proposed in [BB00]. It states that for any μ0, μ1 ∈ P2(Rn),

W 2
2 (μ0, μ1) = inf

(ν,v)

∫
Rn×[0,1]

|vt|2 dνt dt, (3.4)

where the infimum runs over all paths (νt, vt)t∈[0,1] where νt ∈ P(Rn) and vt(x) ∈ Rn are
such that νt is absolutely continuous with respect to time in the sense of [AGS08, Ch. 1]
for all 0 ≤ t ≤ 1, ν0 = μ0, ν1 = μ1 and

∂tνt +∇ · (νtvt) = 0, 0 ≤ t ≤ 1.

In this equation which is understood in a weak sense, ∇· stands for the standard diver-
gence of a vector field in Rn and νt is identified with its density with respect to Lebesgue
measure. This general result is proved in [AGS08, Ch. 8]. A proof under the additional
requirement that μ0, μ1 have compact supports is available in [Vil03, Thm. 8.1].

Displacement interpolations

The metric space (P2(Rn),W2) is geodesic. This means that for any probability measure
μ0, μ1 ∈ P2(Rn), there exists a path (μMc

t )t∈[0,1] in P2(Rn) such that for any s, t ∈ [0, 1],

W2(μs, μt) = |t− s|W2(μ0, μ1).

Such a path is a constant speed geodesic in (P2(Rn),W2), see [AGS08, Ch. 7]. Moreover
when ν is absolutely continuous with respect to the Lebesgue measure, there exists a
convex function ϕ on Rn such that for any t ∈ [0, 1], the geodesic is given by

μt = ((1− t)Id + t∇ϕ)#μ0. (3.5)

This interpolation is called the McCann displacement interpolation in (P2(Rn),W2), see [Vil03,
Ch. 5].

Contractions in Wasserstein distance

Contraction in Wasserstein distance is a way to define the curvature of the underlying
space or of the reference Markov operator. In its general formulation, the von Renesse-
Sturm Theorem tells that the heat equation in a smooth, complete and connected Rieman-
nian manifold satisfies a contraction property with respect to the Wasserstein distance if
and only if the Ricci curvature is bounded from below, see [SvR09]. In the context of the
present article where Kolmogorov semigroups on Rn are considered, two main contraction
results will be explained with more details in Section 3.6.

Organization of the paper

The setting of the present work and notation are introduced in Section 3.2. The entropic
cost AR is defined with more detail in Section 3.3 together with the related notion of
entropic interpolation, an analogue of the displacement interpolation. A dual Kantorovich
type formulation and a Benamou-Brenier type formulation of the entropic cost are derived
respectively at Sections 3.4 and 3.5. Section 3.6 is dedicated to the contraction properties
of the heat flow with respect to the entropic cost. In the last Section 3.7, we give some
examples of entropic interpolations between Gaussian distributions when the reference
path measure is given by the Brownian motion or the Ornstein-Uhlenbeck process.
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Literature

The Benamou-Brenier formulation of the entropic cost which is stated at Corollary 3.5.3
was proved recently by Chen, Georgiou and Pavon in [CGP16] (in a slightly less general
setting) without any mention to optimal transport (in this respect Corollary 3.5.6 relating
the entropic and Wasserstein costs is new). Although our proof of Corollary 3.5.3 is close
to their proof, we think it is worth including it in the present article to emphasize the
analogies between displacement and entropic interpolations. In addition, we also provide
a time asymmetric version of this formulation at Theorem 3.5.1.
Both [MT06] and [CGP16] share the same stochastic optimal control viewpoint. This
differs from the entropic approach of the present paper.
Let us notice that Theorem 3.6.1 is a new result: it provides contraction inequalities with
respect to the entropic cost. Moreover, examples and comparison proposed at the end of
the paper, with respect two different kernels (Gaussian and Ornstein-Uhlenbeck) are new.

3.2 The reference path measure
We make precise the reference path measure R to which the entropic cost A is associ-
ated. Although more general reversible path measures R would be all right to define a
well-suited entropic cost, we prefer to consider the specific class of Kolmogorov Markov
measures introduced at Section 1.1.2. This choice is motivated by the fact that, as pre-
sented in [Léo12a], the Monge Kantorovich problem is the limit of a sequence of entropy
minimization problems, when a proper fluctuation parameter tends to zero. The Kol-
mogorov Markov measures, as reference measures in the Schrödinger problem, admit as
a limit case the Monge Kantorovich problem with quadratic cost function, namely the
Wasserstein distance.

Notation

For any measurable set Y , we denote respectively by P(Y ) and M(Y ) the set of all the
probability measures and all positive σ-finite measures on Y . The relative entropy of a
probability measure p ∈ P(Y ) with respect to a positive measure r ∈ M(Y ) is loosely
defined by

H(p|r) :=
{ ∫

Y
log(dp/dr)dp ∈ (−∞,∞], if p 
 r,

∞, otherwise.

For some assumptions on the reference measure r that guarantee the above integral to
be meaningful and bounded from below, see Section 1.1.2. For a rigorous definition and
some properties of the relative entropy with respect to an unbounded measure see Section
1.1.1 and [Léo14a]. The state space Rn is equipped with its Borel σ-field and the path
space Ω with the canonical σ-field σ(Xt; 0 ≤ t ≤ 1) generated by the canonical process

Xt(ω) := ωt ∈ Rn, ω = (ωs)0≤s≤1 ∈ Ω, 0 ≤ t ≤ 1.

For any path measure Q ∈ M+(Ω) and any 0 ≤ t ≤ 1, we denote

Qt(·) := Q(Xt ∈ ·) = (Xt)#Q ∈ M(Rn),

the push-forward of Q by Xt. When Q is a probability measure, Qt is the law of the
random location Xt at time t when the law of the whole trajectory is Q.
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The Kolmogorov Markov measure R and its semigroup

Most of our results can be stated in the general setting of a Polish state space. For the
sake of simplicity, the setting of the present paper is particularized. The state space is
Rn and the reference path measure R is the Markov path measure associated with the
generator

1

2
(Δ−∇V · ∇) (3.6)

and the corresponding reversible measure

m = e−V L

as its initial measure, where L is the Lebesgue measure. It is assumed that the potential V
is a C2 function on Rn such that the martingale problem associated with the generator (3.6)
on the domain C2 and the initial measure m admits a unique solution R ∈ M+(Ω). This
is the case for instance when the following hypothesis are satisfied.

Existence hypothesis (Exi)

There exists some constant c > 0 such that one of the following assumptions holds true:

(i) lim|x|→∞ V (x) = +∞ and inf{|∇V |2 −ΔV/2} > −∞, or

(ii) −x · ∇V (x) ≤ c(1 + |x|2), for all x ∈ Rn.

See [Roy99, Thm. 2.2.19] for the existence result under the assumptions (i) or (ii). For
any initial condition X0 = x ∈ Rn, the path measure Rx := R(· | X0 = x) ∈ P(Ω) is the
law of the weak solution of the stochastic differential equation

dXt = −∇V (Xt)/2 dt+ dWx(t), 0 ≤ t ≤ 1

where Wx is an Rx-Brownian motion. The Kolmogorov Markov measure is

R(·) =
∫

Rn
Rx(·)m(dx) ∈ M(Ω).

Recall that m = e−V L is not necessary a probability measure. The Markov semigroup
associated to R is defined for any bounded measurable function f : Rn �→ R and any t ≥ 0,
by

Ttf(x) = ERxf(Xt), x ∈ Rn.

It is reversible with reversing measure m as defined in [BGL14].

Regularity hypothesis (Reg1)

We also assume for simplicity that (Tt)t≥0 admits for any t > 0, a density kernel with
respect to m, a probability density pt(x, y) such that

Ttf(x) =

∫
Rn

f(y)pt(x, y)m(dy). (3.7)

For instance, when V (x) = |x|2/2, then R is the path measure associated to the Ornstein-
Uhlenbeck process with the Gaussian measure as its reversing measure. When V = 0, we
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recover the Brownian motion with Lebesgue measure as its reversing measure. We studied
these examples in Sections 1.1.2 and 1.1.4. Examples of Kolmogorov semigroups admitting
a density kernel can be found for instance in [BBGM12, Cor. 4.2]. This semigroup is fixed
once for all.

Properties of the path measure R

The measure R is our reference path measure and it satisfies the following properties.

(a) It is Markov, that is for any t ∈ [0, 1], R(X[t,1] ∈ ·|X[0,t]) = R(X[t,1] ∈ ·|Xt).
See [Léo14a] for the definition of the conditional law for unbounded measures since
R is not necessary a probability measure.

(b) It is reversible. This means that for all 0 ≤ T ≤ 1, the restriction R[0,T ] of R to
the sigma-field σ(X[0,T ]) generated by X[0,T ] = (Xt)0≤t≤T , is invariant with respect to
time-reversal, that is [(XT−t)0≤t≤T ]#R[0,T ] = R[0,T ].
Any reversible measure R is stationary, i.e. Rt = m, for all 0 ≤ t ≤ 1 for some
m ∈ M(Rn). This measure m is called the reversing measure of R and is often
interpreted as an equilibrium of the dynamics specified by the kernel (Rx; x ∈ Rn).
One says for short that R is m-reversible.

3.3 Entropic cost and entropic interpolations

We recall the definitions of the Schrödinger problem, the entropic cost and the entropic
interpolation which are respectively the analogues of the Monge-Kantorovich problem,
the Wasserstein cost and the displacement interpolation that were briefly described in the
introduction and in Chapter 2.

Let us state the definition of the entropic cost associated with R.

Definition 3.3.1 (Entropic cost) Consider the projection

R01 := (X0, X1)#R ∈ M(Rn × Rn)

of R onto the endpoint space Rn × Rn. For any μ0, μ1 ∈ P(Rn),

A(μ0, μ1) = inf{H(π|R01); π ∈ P(Rn × Rn) : π0 = μ0, π1 = μ1} −
1

2
[H(μ0|m) +H(μ1|m)]

is the R-entropic cost of (μ0, μ1).

This definition is related to a static Schrödinger problem. It also admits a dynamical
formulation.

Definition 3.3.2 (Dynamical formulation of the Schrödinger problem) The Schrödinger
problem associated to R, μ0 and μ1 consists in finding the minimizer P̂ of the relative en-
tropy H(·|R) among all the probability path measures P ∈ P(Ω) with prescribed initial
and final marginals P0 = μ0 and P1 = μ1,

H(P̂ |R) = min{H(P |R), P ∈ P(Ω), P0 = μ0, P1 = μ1}. (3.8)
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It is easily seen that its minimal value is the entropic cost,

A(μ0, μ1) = inf{H(P |R); P ∈ P(Ω) : P0 = μ0, P1 = μ1} −
1

2
[H(μ0|m) +H(μ1|m)] (3.9)

see for instance [Léo14b, Lemma 2.4].

Remark 3.3.3 (1) First of all, when R is not a probability measure, the relative entropy
might take some negative values and even the value −∞. However, because of the
decrease of information by push-forward mappings, we have

H(P |R) ≥ max(H(μ0|m), H(μ1|m)),

see [Léo14a, Thm. 2.4] for instance. Hence H(P |R) is well defined in (−∞,∞] when-
ever H(μ0|m) > −∞ or H(μ1|m) > −∞. This will always be assumed.

(2) Even the nonnegative quantity A(μ0, μ1) ≥ 0 cannot be the square of a distance such
as the Wasserstein cost W 2

2 . There is no reason for A(μ0, μ1) = 0 in the special
situation where μ0 = μ1 = μ,,

(3) A good news about A is that since R is reversible, it is symmetric: A(μ, ν) = A(ν, μ).
To see this, let us denote X∗

t = X1−t, 0 ≤ t ≤ 1, and Q∗ := (X∗)#Q the time reversal
of any Q ∈ M+(Ω). As X∗ is one-to-one, we have H(P |R) = H(P ∗|R∗) and since
we assume that R∗ = R, we see that

H(P |R) = H(P ∗|R), ∀P ∈ P(Ω). (3.10)

Hence, if P solves (3.8) with (μ0, μ1) = (μ, ν), then X∗
#P solves (3.8) with (μ0, μ1) =

(ν, μ) and these Schrödinger problems share the same value.

Another definition of entropic cost is possible, depending on the time direction.

Definition 3.3.4 The forward and backward entropic cost are defined respectively as,

−→A(μ0, μ1) = inf{H(P |R); P ∈ P(Ω) : P0 = μ0, P1 = μ1} −H(μ0|m)

←−A(μ0, μ1) = inf{H(P |R); P ∈ P(Ω) : P0 = μ0, P1 = μ1} −H(μ1|m).

Existence of a minimizer. Entropic interpolation

We recall some general results from [Léo14b, Thm. 2.12] about the solution of the dynami-
cal Schrödinger problem (3.8). Let us denote by p(x, y) the probability density introduced
at (3.7), at time t = 1, so that

R01(dxdy) = m(dx)p(x, y)m(dy).

In order for (3.8) to admit a unique solution, it is enough that it satisfies the following
hypothesis:
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Regularity hypothesis (Reg2)

(i) p(x, y) ≥ e−A(x)−A(y) for some nonnegative measurable function A on Rn;

(ii)
∫
Rn×Rn e

−B(x)−B(y)p(x, y)m(dx)m(dy) < ∞ for some nonnegative measurable func-
tion B on Rn;

(iii)
∫
Rn(A+B) dμ0,

∫
Rn(A+B) dμ1 < ∞ where A appears at (i) and B appears at (ii);

(iv) −∞ < H(μ0|m), H(μ1|m) < ∞;

Assumptions (ii)-(iii) are useful to define rigorously H(μ0|m) and H(μ1|m). Under these
assumptions the entropic cost A(μ0, μ1) is finite and the minimizer P (entropic bridge)
of the Schrödinger problem (3.8) is characterized, in addition to the marginal constraints
P0 = μ0, P1 = μ1, by the product formula

P = f(X0)g(X1)R (3.11)

for some measurable functions f and g on Rn. The uniqueness of the solution is a direct
consequence of the fact that (3.8) is a strictly convex minimization problem.

Definition 3.3.5 (Entropic interpolation) The R-entropic interpolation between μ0

and μ1 is defined as the marginal flow of the minimizer P of (3.8), that is μt := Pt ∈
P(Rn), 0 ≤ t ≤ 1.

Proposition 3.3.6 Under the hypotheses (Exi), (Reg1) and (Reg2), the R-entropic in-
terpolation between μ0 and μ1 is characterized by

μt = eϕt+ψt m, 0 ≤ t ≤ 1, (3.12)

where
ϕt = log Ttf, ψt = log T1−tg, 0 ≤ t ≤ 1, (3.13)

and the measurable functions f, g solve the following system

dμ0

dm
= fT1g,

dμ1

dm
= gT1f. (3.14)

The system (3.14) is often called the Schrödinger system. It simply expresses the marginal
constraints. Its solutions (f, g) are precisely the functions that appear in the iden-
tity (3.11). Actually it is difficult or impossible to solve explicitly the system (3.14).
However, in Section 3.7, we will see some particular examples in the Gaussian setting
where the system admits an explicit solution. Some numerical algorithms have been
proposed recently in [BCC+15].

In our setting where R is the Kolmogorov path measure defined at (3.6), the entropic
interpolation μt admits a density μt(z) := dμt/dz with respect to the Lebesgue measure
and ρt := dμt/dm with respect to the equilibrium measure. It is important to notice that,
contrary to the McCann interpolation, the (t, x) �→ μt(x) is smooth on (t, x) ∈]0, 1[×R
and solves the transport equation

∂tμt +∇ · (μt vcu(t, μt)) = 0 (3.15)

with the initial condition μ0 and where vcu(t, μt, z) = ∇ψt(z)−∇V (z)/2 +∇ log μt(z)/2
refers to the current velocity (see Section 2.2), introduced by Nelson in [Nel67, Chap. 11]



100 CHAPTER 3. ANALOGIES BETWEEN OT AND SP

(this will be recalled at Section 3.5). The current velocity is a smooth function and the
ordinary differential equation

ẋt(x) = vcu(t, xt(x)), x0 = x

admits a unique solution for any initial position x, the solution of the continuity equa-
tion (3.15) admits the following push-forward expression,

μt = (xt)#μ0, 0 ≤ t ≤ 1, (3.16)

in analogy with the displacement interpolation given at (3.5).

Remark 3.3.7 (From the entropic cost to the Wasserstein cost) The Wasserstein
distance is a limit case of the entropic cost. We shall use this result to compare contraction
properties in Section 3.6 and also to illustrate the examples in Section 3.7.
Let us consider the following dilatation in time with ratio ε > 0 of the reference path
measure R: Rε := (Xε)#R where Xε(t) := Xεt, 0 ≤ t ≤ 1. It is shown in [Léo12a] and
presented in Section 2.4 that some re-normalization of the entropic cost ARε converges to
the Wasserstein distance when ε goes to 0. Namely,

lim
ε→0

εAε(μ0, μ1) = W 2
2 (μ0, μ1)/2.

Even better, when μ0 and μ1 are absolutely continuous, the entropic interpolation (μεt)0≤t≤1

between μ0 and μ1 converges as ε tends to zero towards the McCann displacement inter-
polation (μt)0≤t≤1, see (3.5).

3.4 Kantorovich dual equality for the entropic cost
We derive the analogue of the Kantorovich dual equality (3.2) when the Wasserstein cost
is replaced by the entropic cost.

Theorem 3.4.1 (Kantorovich dual equality for the entropic cost) Let V, μ0 and
μ1 be such that the hypothesis (Exi), (Reg1) and (Reg2) stated in Section 3.3 are sat-
isfied. We have

−→A(μ0, μ1) = sup

{∫
Rn

ψ dμ1 −
∫

Rn
QRψ dμ0; ψ ∈ Cb(R

n)

}
where for every ψ ∈ Cb(Rn), QRψ(x) := logERxe

ψ(X1) = log T1(e
ψ)(x), x ∈ Rn.

This result was obtained by Mikami and Thieullen in [MT06] with an alternate statement
and a different proof. The present proof is based on an abstract dual equality which is
stated below at Lemma 3.4.2. Let us first describe the setting of this lemma.

Let U be a vector space and Φ : U → (−∞,∞] be an extended real valued function
on U. Its convex conjugate Φ∗ on the algebraic dual space U∗ of U is defined by

Φ∗(�) := sup
u∈U

{
〈�, u〉U∗,U − Φ(u)

}
∈ [−∞,∞], � ∈ U∗.

We consider a linear map A : U∗ → V∗ defined on U∗ with values in the algebraic dual
space V∗ of some vector space V.
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Lemma 3.4.2 (Abstract dual equality) We assume that:

(a) Φ is a convex lower σ(U,U∗)-semicontinuous function and there is some �o ∈ U∗ such
that for all u ∈ U, Φ(u) ≥ Φ(0) + 〈�o, u〉U∗,U ;

(b) Φ∗ has σ(U∗,U)-compact level sets: {� ∈ U∗ : Φ∗(�) ≤ a} , a ∈ R;

(c) The algebraic adjoint A† of A satisfies A†V ⊂ U.

Then, the dual equality

inf {Φ∗(�); � ∈ U∗, A� = v∗} = sup
v∈V

{
〈v, v∗〉V,V∗ − Φ(A†v)

}
∈ (−∞,∞] (3.17)

holds true for any v∗ ∈ V∗.

Proof
� [Proof of Lemma 3.4.2] In the special case where Φ(0) = 0 and �o = 0, this result
is [Léo01b, Thm. 2.3]. Considering Ψ(u) := Φ(u) − [Φ(0) + 〈�o, u〉], u ∈ U, we see that
inf Ψ = Ψ(0) = 0, Ψ is a convex lower σ(U,U∗)-semicontinuous function and Ψ∗(�) =
Φ∗(�o+�)+Φ(0), � ∈ U∗, has σ(U∗,U)-compact level sets. As Ψ∗ satisfies the assumptions
of [Léo01b, Thm. 2.3], we have the dual equality

inf {Ψ∗(�); � ∈ U∗, A� = v∗ − A�o} = sup
v∈V

{
〈v, v∗ − A�o〉V,V∗ −Ψ(A†v)

}
∈ [0,∞]

which is (3.17). �

Proof
� [Proof of Theorem 3.4.1] Let us denote

Rμ0(·) :=
∫

Rn
Rx(·)μ0(dx) ∈ P(Ω).

Rμ0 is a measure on paths, its initial marginal, as a probability measure in Rn, is Rμ0,0 =
μ0. When μ0 = m, we have Rm = R. If U is a functional on paths,

ERμ0
(U) =

∫
ER(U |X0 = x)μ0(dx) =

∫
ER(U |X0 = x)

dμ0

dR0

(x)R0(dx)

= ER

(
ER(U

dμ0

dR0

|X0)
)
= ER

(
ER(U

dμ0

dm
(X0)|X0)

)
= ER

(
U
dμ0

dm
(X0)

)
.

So Rμ0(·) =
dμ0

dm
(X0)R(·), we see that for any P ∈ P(Ω) such that P0 = μ0,

H(P |R) = H(μ0|m) +H(P |Rμ0).

Consequently, the minimizer of (3.8) is also the minimizer of

H(P |Rμ0) → min; P ∈ P(Ω) : P0 = μ0, P1 = μ1 (3.18)

and −→A(μ0, μ1) = inf{H(P |Rμ0), P ∈ P(Ω) : P0 = μ0, P1 = μ1}. (3.19)
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Therefore, all we have to prove is

inf{H(P |Rμ0), P ∈ P(Ω) : P0 = μ0, P1 = μ1} =

sup

{∫
Rn

ψ dμ1 −
∫

Rn
QRψ dμ0, ψ ∈ Cb(R

n)

}
.

This is an application of Lemma 3.4.2 with U = Cb(Ω), V = Cb(Rn) and

Φ(u) =

∫
Rn

log

(∫
Ω

eu dRx

)
μ0(dx), u ∈ Cb(Ω),

A†ψ = ψ(X1) ∈ Cb(Ω), ψ ∈ Cb(R
n).

Let Cb(Ω)′ be the topological dual space of (Cb(Ω), ‖ · ‖) equipped with the uniform norm
‖u‖ := supΩ |u|. It is shown at [Léo12a, Lemma 4.2] that for any � ∈ Cb(Ω)

′,

Φ∗(�) =
{

H(�|Rμ0), if � ∈ P(Ω) and (X0)#� = μ0

+∞, otherwise (3.20)

But according to [Léo01a, Lemma 2.1], the effective domain {� ∈ Cb(Ω)
∗ : Φ∗(�) < ∞} of

Φ∗ is a subset of Cb(Ω)′. Hence, for any � in the algebraic dual Cb(Ω)∗ of Cb(Ω), Φ∗(�) is
given by (3.20). The assumption (c) of Lemma 3.4.2 on A† is obviously satisfied. Let us
show that Φ and Φ∗ satisfy the assumptions (a) and (b).
Let us start with (a). It is a standard result of the large deviation theory that u �→
log

∫
Ω
eu dRx is convex (a consequence of Hölder’s inequality). It follows that Φ is also

convex. As Φ is upper bounded on a neighborhood of 0 in (Cb(Ω), ‖ · ‖) :

sup
u∈Cb(Ω),‖u‖≤1

Φ(u) ≤ 1 < ∞ (3.21)

(note that Φ is increasing and Φ(1) = 1) and its effective domain is the whole space U =
Cb(Ω), it is ‖·‖-continuous everywhere. Since Φ is convex, it is also lower σ(Cb(Ω), Cb(Ω)′)-
semicontinuous and a fortiori lower σ(Cb(Ω), Cb(Ω)

∗)-semicontinuous. Finally, a direct
calculation shows that �o = Rμ0 is a subgradient of Φ at 0. This completes the verification
of (a). The assumption (b) is also satisfied because the upper bound (3.21) implies that
the level sets of Φ∗ are σ(Cb(Ω)

∗, Cb(Ω))-compact, see [Léo01a, Cor. 2.2]. So far, we have
shown that the assumptions of Lemma 3.4.2 are satisfied. It remains to show that A� = v∗

corresponds to the final marginal constraint. Since {Φ∗ < ∞} consists of probability
measures, it is enough to specify the action of A on the vector subspace Mb(Ω) ⊂ Cb(Ω)

∗

of all bounded measures on Ω. For any Q ∈ Mb(Ω) and any ψ ∈ Cb(Ω), we have

〈ψ,AQ〉Cb(Rn),Cb(Rn)∗ =
〈
A†ψ,Q

〉
Cb(Ω),Cb(Ω)∗ =

∫
Ω

ψ(X1) dQ =

∫
Rn

ψ dQ1.

This means that for any Q ∈ Mb(Ω), AQ = Q1 ∈ Mb(Rn). With these considerations,
choosing v∗ = μ1 ∈ P(Rn) in (3.17) leads us to

inf
{
H(Q|Rμ0);Q ∈ P(Ω) : Q0 = μ0, Q1 = μ1

}
= sup

ψ∈Cb(Rn)

{∫
Rn

ψ dμ1 −
∫

Rn
log

〈
eψ(X1), Rx

〉
μ0(dx)

}
which is the desired identity. �
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Remark 3.4.3 Alternatively, considering Ry := Rμ1(· | X1 = y), for m-almost all x ∈ Rn

and
Rμ1(·) :=

∫
Rn

Ry(·)μ1(dy) ∈ P(Ω)

we would obtain a formulation analogous to (3.3) for the backward entropic cost
←−A (Def-

inition 2.3.1).

Remark 3.4.4 We did not use any specific property of the Kolmogorov semigroup. The
dual equality can be generalized, without changing its proof, to any reference path measure
R ∈ P(Ω) on any Polish state space X .

3.5 Benamou-Brenier formulation of the entropic cost
We derive some analogue of the Benamou-Brenier formulation (3.4) for the entropic cost.

Theorem 3.5.1 (Benamou-Brenier formulation of the entropic cost) Let V, μ0 and
μ1 be such that hypothesis (Exi), (Reg1) and (Reg2) stated in Section 3.3 are satisfied.
We have

−→A(μ0, μ1) = H(μ0|m) + inf
(ν,v)

∫
Rn×[0,1]

|vt(z)|2
2

νt(dz)dt, (3.22)

where the infimum is taken over all (νt, vt)0≤t≤1 such that, νt(dz) is identified with its
density with respect to Lebesgue measure ν(t, z) := dνt/dz, satisfying ν0 = μ0, ν1 = μ1

and the following continuity equation

∂tν +∇ · (ν [v −∇(V + log ν)/2]) = 0, (3.23)

is satisfied in a weak sense.
Moreover, these results still hold true when the infimum in (3.22) is taken among all (ν, v)
satisfying (3.23) and such that v is a gradient vector field, that is

vt(z) = ∇ψt(z), 0 ≤ t ≤ 1, z ∈ Rn,

for some function ψ ∈ C∞([0, 1)× Rn).

Remark 3.5.2

(1) The continuity equation (3.23) is the linear Fokker-Planck equation

∂tν +∇ · (ν [v −∇V/2])−Δν/2 = 0.

Its solution (νt)0≤t≤1, with v considered as a known parameter, is the time marginal
flow νt = Pt of a weak solution P ∈ P(Ω) (if it exists) of the stochastic differential
equation

dXt = [vt(Xt)−∇V (Xt)/2] dt+ dW P
t , P -a.s.

where W P is a P -Brownian motion, P0 = μ0 and (Xt)1≤t≤1 is the canonical process.

(2) Clearly, one can restrict the infimum in the identity (3.22) to (ν, v) such that∫
Rn×[0,1]

|vt(z)|2 νt(dz)dt < ∞.
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Proof
� Because of (3.9) and (3.19), all we have to show is

inf{H(P |Rμ0); P ∈ P(Ω) : P0 = μ0, P1 = μ1} = inf
(ν,v)

∫
Rn×[0,1]

|vt(z)|2
2

νt(dz)dt,

where (ν, v) satisfies (3.23), ν0 = μ0 and ν1 = μ1. As Rμ0 is Markov, by [Léo14b,
Prop. 2.10] we can restrict the infimum to the set of all Markov measures P ∈ P(Ω) such
that P0 = μ0, P1 = μ1 and H(P |Rμ0) < ∞. For each such Markov measure P , Girsanov’s
theorem introduced in Section 1.1.3 (see for instance [Léo12b, Thm. 2.1] for a proof related
to the present setting) states that there exists a measurable vector field βPt (z) such that

dXt = [βPt (Xt)−∇V (Xt)/2] dt+ dW P
t , P -a.s., (3.24)

where W P is a P -Brownian motion. Moreover, βP satisfies EP

∫ 1

0
|βPt |2(Xt)dt < ∞ and

H(P |Rμ0) =
1

2

∫
Rn×[0,1]

|βPt |2(z)Pt(dz)dt. (3.25)

For any P with P0 = μ0, H(μ0|m) < ∞ and H(P |Rμ0) < ∞, we have Pt 
 Rt = m 
 L
for all t. Taking ν = (Pt)0≤t≤1 and v = βP , the stochastic differential equation (3.24)
gives (3.23) and optimizing the left hand side of (3.25) leads us to

inf{H(P |Rμ0); P ∈ P(Ω) : P0 = μ0, P1 = μ1} ≤ inf
(ν,v)

∫
Rn×[0,1]

|vt(z)|2
2

νt(dz)dt.

On the other hand, it is proved in [Zam86, Léo14b] that the solution P of the Schrödinger
problem (3.18) is such that (3.24) is satisfied with βPt (z) = ∇ψt(z) where ψ is given
in (3.13). This completes the proof of the theorem. �

Corollary 3.5.3 Let V , μ0 and μ1 be such that the hypotheses stated in Section 3.3 are
satisfied. We have

A(μ0, μ1) = inf
(ρ,v)

∫
Rn×[0,1]

(
1

2
|vt(z)|2 +

1

8
|∇ log ρt(z)|2

)
ρt(z)m(dz)dt, (3.26)

where the infimum is taken over all (ρt, vt)0≤t≤1 such that ρ0 m = μ0, ρ1 m = μ1 and the
following continuity equation

∂tρ+ eV∇ ·
(
e−V ρv

)
= 0 (3.27)

is satisfied in a weak sense.
Moreover, these results still hold true when the infimum in (3.26) is taken among all (ν, v)
satisfying (3.27) and such that v is a gradient vector field, that is

vt(z) = ∇θt(z), 0 ≤ t ≤ 1, z ∈ Rn,

for some function θ ∈ C∞([0, 1)× Rn).
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Remark 3.5.4 The density ρ in the statement of the corollary must be understood as a
density ρ = dν/dm with respect to the reversing measure m. Indeed, with ν(t, z) = dνt/dz,
we see that ν = e−V ρ and the evolution equation (3.27) writes as the current equation
∂tν +∇ · (νv) = 0.

This result was proved recently by Chen, Georgiou and Pavon in [CGP16] in the case
where V = 0 without any mention to gradient type vector fields. The present proof is
essentially the same as in [CGP16]: we take advantage of the time reversal invariance of
the relative entropy H(·|R) with respect to the reversible path measure R.
Proof
� The proof follows almost the same line as Theorem 3.5.1’s one. The additional in-
gredient is the time-reversal invariance (3.10): H(P |R) = H(P ∗|R). Let P ∈ P(Ω) be
the solution of (3.8). We have already noted that P ∗ is the solution of the Schrödinger
problem where the marginal constraints μ0 and μ1 are inverted. We obtain

dXt = vPt (Xt) dt+ dW P
t , P -a.s.

dXt = vP
∗

t (Xt) dt+ dW P ∗
t , P ∗-a.s.

where W P and W P ∗ are respectively Brownian motions with respect to P and P ∗ and

H(P |R) = H(μ0|m) + EP
1

2

∫ 1

0

|βPt (Xt)|2 dt

H(P ∗|R) = H(μ1|m) +
1

2
EP ∗

∫ 1

0

|βP ∗
t (Xt)|2 dt = H(μ1|m) +

1

2
EP

∫ 1

0

|βP ∗
1−t(Xt)|2 dt

with vP = −∇V/2 + βP and vP
∗
= −∇V/2 + βP

∗
. Taking the half sum of the above

equations, the identity H(P |R) = H(P ∗|R) implies that

H(P |R) =
1

2
[H(μ0|m) +H(μ1|m)] +

1

4
EP

∫ 1

0

(|βPt |2 + |βP ∗
1−t|2) dt.

Let us recall the definition of current velocities of P and P ∗ introduced in Section 1.1.2

vcu,Pt (z) := vPt (z)−
1

2
∇ log νPt (z) = βPt (z)−

1

2
∇ log ρPt (z)

vcu,P
∗

t (z) := vP
∗

t (z)− 1

2
∇ log νP

∗
t (z) = βP

∗
t (z)− 1

2
∇ log ρP

∗
t (z)

where for any 0 ≤ t ≤ 1, z ∈ Rn,

νPt (z) :=
dPt
dz

, ρPt (z) :=
dPt
dm

(z) and νP
∗

t (z) :=
dP ∗

t

dz
, ρP

∗
t (z) :=

dP ∗
t

dm
(z).

The naming current velocity is justified by the current equations

∂tν
P +∇ · (νPvcu,P ) = 0 and ∂tρ

P + eV∇ · (e−V ρPvcu,P ) = 0,

∂tν
P ∗

+∇ · (νP ∗
vcu,P

∗
) = 0 and ∂tρ

P ∗
+ eV∇ · (e−V ρP ∗

vcu,P
∗
) = 0.

To see that the first equation ∂tν
P +∇ · (νPvcu,P ) = 0 is valid, remark that νP satisfies

the Fokker-Planck equation (3.23) with v replaced by βP . The equation for ρP follows
immediately and the equations for νP

∗ and ρP
∗ are derived similarly.
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The very definition of P ∗ implies that ρP ∗
t = ρP1−t and the time reversal invariance R∗ = R

implies that
vcu,P

∗
t (z) = −vcu,P1−t (z), 0 ≤ t ≤ 1, z ∈ Rn.

Therefore, βP ∗
1−t = −vcu,Pt + 1

2
∇ log ρPt and 1

4
(|βPt |2 + |βP ∗

1−t|2) = 1
2
|vcu,Pt |2 + 1

8
|∇ log ρPt |2.

This completes the proof of the first statement of the corollary.
For the second statement about v = ∇θ, remark that as in Theorem 3.5.1’s proof, the
solution P of the Schrödinger problem is such that βP = ∇ψ for some smooth function
ψ. One concludes with vcu,P = βP − 1

2
∇ log ρP , by taking θ = ψ − log

√
ρP . �

Remark 3.5.5

(1) The current velocity vcu,P of a diffusion path measure P has been introduced by Nelson
in [Nel67] together with its osmotic velocity vos,P := 1

2
∇ log ρP .

(2) Up to a multiplicative factor,
∫
Rn |∇ log ρt(z)|2 ρt(z)m(dz) is the entropy production or

Fischer information. The average osmotic action is Aos(P ) :=
∫
Rn×[0,1]

1
2
|vos,P |2 dPtdt =∫

Rn×[0,1]
1
8
|∇ log ρ|2ρ dmdt and it is directly connected to a variation of entropy. It’s

worth remarking that by considering the dilatation in time of the reference path mea-
sure as introduced in Remark 3.3.7, the osmotic action vanishes in the limit for ε → 0.
Let us define now the osmotic cost

Ios(μ0, μ1) := inf{Aos(P );P ∈ P(Ω) : P0 = μ0, P1 = μ1}

and the current cost Icu(μ0, μ1) := inf(ρ,v)
∫
Rn×[0,1]

1
2
|vt(z)|2 ρt(z)m(dz)dt where the

infimum runs through all the (ρ, v) satisfying (3.27). The standard Benamou-Brenier
formula precisely states that Icu(μ0, μ1) = W 2

2 (μ0, μ1)/2. Therefore, Corollary 3.5.3
implies that

A(μ0, μ1) ≥
1

2
W 2

2 (μ0, μ1) + Ios(μ0, μ1).

In particular, by the positivity of the entropic cost Ios we obtain the following relation
between the entropic and Wasserstein costs:

Corollary 3.5.6 Let V, μ0 and μ1 be such that the hypotheses stated in Section 3.3 are
satisfied. We have

A(μ0, μ1) ≥
1

2
W 2

2 (μ0, μ1).

3.6 Contraction with respect to the entropic cost
The analogy between optimal transport and minimal entropy can also be observed in the
context of contractions.
As explained in the introduction, contraction in Wasserstein distance depends on the cur-
vature. Even if there are actually many contraction inequalities in Wasserstein distance,
we focus here on two main results. The first one depends on the curvature and the second
one includes the dimension. These results can be written for more general semigroups
satisfying the curvature-dimension condition as defined in the Bakry-Émery theory.

In the context of the Kolmogorov semigroup of Section 3.2 with a generator given
by (3.6) in Rn, the two main contraction inequalities can be formulated as follows.
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• Let assume that for some real κ, we have Hess(V ) ≥ κ Id in the sense of symmetric
matrices. Then for any f, g probability densities with respect to the measure m and
any t ≥ 0,

W2(Ttf m, Ttg m) ≤ e−
κ
2
tW2(fm, gm). (3.28)

Let us recall that this result was proved in [SvR09] in the general context of Rie-
mannian manifold. Although in the context of Kolmogorov semigroups the proof is
easy, its generalization for the entropic cost to a Riemannian setting is not trivial.

• When L = Δ/2 that is V = 0, the heat equation in Rn satifies the following
dimension dependent contraction property:

W 2
2 (Ttf L, TsgL) ≤ W 2

2 (f L, gL) + n(
√
t−

√
s)2, (3.29)

for any s, t ≥ 0 and any f, g probability densities with respect to the Lebesgue
measure L. This contraction was proved in a more general context in [BGL15,
Kuw15].

The two inequalities (3.28) and (3.29) can be proved in terms of entropic cost. Let us
choose the reference path measure R associated with the potential V and take ε, u > 0
and μ0, μ1 ∈ P(Rn). In order to extend for each u, ε > 0 the dual formulation for the
entropic cost of Theorem 3.4.1, consider the semigroup (Tεut)t≥0 and the corresponding
path measure Rεu: time is dilated by the factor (εu)−1. Theorem 3.4.1 implies that

ARεu(μ0, μ1) = H(μ0|m) + sup

{∫
Rn

ψ dμ1 −
∫

Rn
log Tεu(e

ψ) dμ0, ψ ∈ Cb(R
n)

}
.

Now by changing ψ with ψ/ε we see that

εARεu(μ0, μ1) = εH(μ0|m) + sup

{∫
Rn

ψ dμ1 −
∫

Rn
Qε
uψ dμ0, ψ ∈ Cb(R

n)

}
(3.30)

where for any ψ ∈ Cb(Rn),
Qε
uψ = ε log Tεu(e

ψ/ε). (3.31)

For simplicity, we denote εARεu = Aε
u and Aε

1 = Aε.
As explained in Remark 3.3.7, we have

lim
ε→0

Aε
u(μ0, μ1) = W 2

2 (μ0, μ1)/2u. (3.32)

The entropic cost associated to the Kolmogorov semigroup has the following properties.

Theorem 3.6.1 (Contraction in entropic cost) Let ε > 0 be fixed.

(a) If V satisfies Hess(V ) ≥ κ Id for some κ ∈ R, then for any t ≥ 0,

Aε
b(Tut(b)fm, Ttgm) ≤ Aε

vt(b)(fm, gm) + ε[H(Tut(b)fm|m)−H(fm|m)], (3.33)

where f, g are probability densities with respect to m, and

ut(b) = t+ 1
κ
log

(
e−εκb

1+eκt(e−εκb−1)

)
vt(b) = − 1

κε
log(1 + eκt(e−εκb − 1)) (3.34)

where: if κ ≤ 0, b ∈ (0,∞) and if κ > 0, b ∈ (0,− 1
κε

log(1− e−κt)).
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(b) If V = 0 then for any t ≥ 0,

Aε(Ttfm, Tsgm) ≤ Aε(fm, gm) +
n

2
(
√
t−

√
s)2 + ε[H(Ttfm|m)−H(fm|m)].

The proof of this theorem relies on the following commutation property between the
Markov semigroup Tt and the semigroup Qε

t defined at (3.31). Let us notice that the
second statement of next lemma was proved in [BGL15, Section 5].

Lemma 3.6.2 (Commutation property) Let s, t ≥ 0, ε > 0 and f : Rn → R be any
bounded measurable function.

(a) If Hess(V ) ≥ κ Id for some real κ, then

Qε
vt(b)(Ttf) ≤ Tut(b)(Qε

bf) (3.35)

where for each t ≥ 0, the numbers ut(b), vt(b) and b are given in (3.34).
Moreover, for ε small enough and t > 0 fixed, (3.35) is valid for all b positive.

(b) If V = 0 then
Qε

1(Ttf) ≤ Ts(Qε
1f) +

n

2
(
√
t−

√
s)2.

Proof
� We only have to prove the first statement (a). Let us define for each s ≤ t the function

Λ(s) = TαQε
β(Tt−sf)

with α : [0, t] → [0,∞) an increasing function such that α(0) = 0, and β : [0, t] → [0,∞)
and we call β(t) = b. Setting g = exp(Tt−sf/ε), using the chain rule for the diffusion
operator L we obtain

Λ′(s) = εTα

[
α′L log Tεβg +

1

Tεβg
Tεβ (εβ

′Lg − gL log g)

]
= εTα

[
α′
(
LTεβg

Tεβg
− |∇Tεβg|2

2(Tεβg)2

)
+

1

Tεβg
Tεβ

(
εβ′Lg − Lg +

|∇g|2
2g

)]
= εTα

[
1

Tεβg

(
LTεβg(α

′ + εβ′ − 1) + Tεβ

( |∇g|2
2g

)
− α′ |∇Tεβg|2

2Tεβg

)]
≥ εTα

[
1

Tεβg

(
LTεβg(α

′ + εβ′ − 1) +
1

2
Tεβ

( |∇g|2
g

)
(1− e−κεβα′)

)]
where the last inequality is given by the commutation,

|∇Ttg|2
Ttg

≤ e−κtTt

( |∇g|2
g

)
which is implied by the condition Hess(V ) ≥ κId (see for instance [BGL14, Section 3.2]).
If the following conditions on α and β hold{

α′ + εβ′ − 1 = 0
1− e−κεβα′ = 0,

(3.36)



3.6. CONTRACTION WITH RESPECT TO THE ENTROPIC COST 109

we have Λ′(s) ≥ 0 for each 0 ≤ s ≤ t. In particular Λ(0) ≤ Λ(t) for each t ≥ 0, that is

Qε
vt(b)(Ttf) ≤ Tut(b)(Qε

bf)

where vt(b) = β(0) and ut(b) = α(t). Finally solving system (3.36) together with the
conditions α(0) = 0, β(t) = b, we can compute the explicit formulas for v and u as in
statement (a). In particular, substituting α′ in the second equation of the system and
integrating from 0 to t we obtain the following relation

e−εκβ(0) = 1 + eκt(e−εκb − 1). (3.37)

If we assume for a while that the term on the right hand side is positive, we obtain

β(0) = − 1

κε
log(1 + eκt(e−εκb − 1))

and

α(t) = t+
1

κ
log

(
e−εκb

1 + eκt(e−εκb − 1)

)
.

Let us study now the sign of the right hand side in (3.37).

• If κ ≤ 0, it is positive for each b ∈ R;

• If κ > 0 in order to be positive, we need the condition for b,

b < − 1

εκ
log(1− e−κt) := b0.

Finally let us consider the case when ε > 0 is small. From (3.37) we obtain the
relation,

β(0) = beκt + o(ε)

for each κ ∈ R and b positive.

This completes the proof of the lemma. �

Proof
� [Proof of Theorem 3.6.1] The proof is based on the dual formulation stated in Theo-
rem 3.4.1. Let ψ ∈ Cb(Rn), by Lemma 3.6.2 under the condition Hess(V ) ≥ κId and by
time reversibility,∫

Rn
ψ Ttg dm−

∫
Rn

Qε
bψ Tut(b)f dm =

∫
Rn

Ttψ g dm−
∫

Rn
Tut(b)Qε

bψ f dm

≤
∫

Rn
Ttψ g dm−

∫
Rn

Qε
vt(b)Ttψ f dm

≤ Aε
vt(b)(fm, gm)− εH(fm|m).

Finally taking the supremum over ψ ∈ Cb(Rn) we obtain the desired inequality in (i).
The same argument can be used to prove the contraction property in (ii), applying the
second commutation inequality in Lemma 3.6.2. �
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Remark 3.6.3 Let observe that if κ < 0, the function β(s), for s ∈ [0, t], is decreasing,
while for κ > 0 it is increasing and if κ = 0 it is the constant function β(t) = b. In
particular by choosing b = 1 (3.35) writes as follows

Qε
1(Ttf) ≤ Tt(Qε

1f).

Remark 3.6.4 Lemma 3.6.2 can be proved in the general context of a Markov diffusion
operator under the Bakry-Émery curvature-dimension condition. Its application to more
general problems is actually a working paper of the third author.

Remark 3.6.5 Let us point out two converse assertions.

(1) The contraction in entropic cost in Theorem 3.6.1 implies back the contraction in
Wasserstein cost. Indeed, under the assumptions of Section 3.3, it can be easily
checked that when ε → 0, we have u(t) → t and v(t) → beκt. Therefore, with (3.32)
and (3.33), one recovers (3.28). Analogous arguments can be applied to recover the
contraction of the Wasserstein cost (3.29) when V = 0.

(2) The commutation property in Lemma 3.6.2 implies back the convexity of the potential
V . This can be seen by differentiating (3.35) with respect to b around 0. We believe
also that for ε > 0 fixed, inequality (3.33) implies back the convexity of the potential.

3.7 Examples

In this section we will compute explicitly the results discussed in the previous sections, be-
tween two given measures. We first compute the Wasserstein cost, its dual and Benamou-
Brenier formulations and the displacement interpolation, as exposed in the introduction.
Then, we will do the same for the entropic cost, taking in consideration two different
reference path measures R. In particular, we will compute (3.30), for u = 1 and ε > 0
and look at the behavior in the limit ε → 0 to recover the classical results of the optimal
transport. For abuse of notation we will denote with μt both the interpolation and its
density with respect to the Lebesgue measure dx. We introduce for Gaussian measures the
following notation: for any m ∈ Rn and v ∈ R, the density with respect to the Lebesgue
measure of N (m, v2) is given by

(2πv2)−n/2 exp
(
− |x−m|2

2v2

)
,

As marginal measures we consider for x0, x1 ∈ Rn

μ0(x) := N (x0, 1), μ1(x) := N (x1, 1). (3.38)

Note that the entropic interpolation between two Dirac measures δx and δy should be the
Bridge Rxy between x and y with respect to the reference measure R. But unfortunately
H(δx|m), H(δy|m) = ∞, hence we consider only marginal measures with a density with
respect to m.
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3.7.1 Wasserstein cost

The Wasserstein cost between μ0, μ1 as in (3.38), is

W 2
2 (μ0, μ1) = d(x0, x1)

2.

In its dual formulation, the supremum is reached by the function

ψ(x) = (x1 − x0)x

and in the Benamou-Brenier formulation the minimizer vector field is

vMC = x1 − x0

The displacement or McCann interpolation is given by

μMC
t (x) = N (xt, 1) (3.39)

where xt = (1− t)x0 + tx1. In other words using the push-forward notation (3.5),

μMC
t (x) = (x̂MC

t )#μ0

with x̂MC
t (x) := (1 − t)x + t(x + x1 − x0) a trajectory whose associated velocity field is

vMC = x1 − x0.

3.7.2 Schrödinger cost

Heat semigroup

As a first example we consider on the state space Rn the Heat (or Brownian) semigroup,
that corresponds to the case V = 0 in our main example in Section 3.2, whose infinitesimal
generator is the Laplace operator L = Δ/2 and the reversing reference measure is the
Lebesgue measure dx. Since we are interested in the ε−entropic interpolation, with
ε > 0, we take in consideration the Heat semigroup with a dilatation in time, whose
density kernel is given by

pεt(x, y) = (2πεt)−n/2 exp
(
−|x− y|2

2εt

)
i.e. pεt(x, y) = N (y, εt) for t > 0, (x, y) ∈ Rn × Rn.

• The entropic interpolation (3.12) is

μεt(x) = N (xt, D
ε
t ) (3.40)

where xt is like in (3.39) and Dε
t : [0, 1] → R+ is a polynomial function given by

Dε
t = αεt(1− t) + 1

with αε = δ2/(1 + δ) where δ = (ε − 2 +
√
4 + ε2)/2. We observe that Dε

t is such
that D0 = D1 = 1 with a maximum in t = 1/2 for each ε > 0, (see Figure 3.1).
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It’s worth to point out how we managed to derive an explicit formula for the entropic
interpolation. The key point is the resolution of the Schrödinger system (3.14) that
in our example writes as⎧⎨⎩ (2π)−n/2 exp

(
− |x−x0|2

2

)
= f(x)

∫
g(y)(2πεt)−n/2 exp

(
− |x−y|2

2εt

)
dy

(2π)−n/2 exp
(
− |x−x1|2

2

)
= g(x)

∫
f(y)(2πεt)−n/2 exp

(
− |x−y|2

2εt

)
dy.

By taking f and g exponential functions of the type

ea2x
2+a1x+a0 with a0, a1, a2 ∈ R

we can solve the system explicitly by determining the coefficients of f and g.
One can also express the entropic interpolation through the push-forward notation
as introduced at (3.16), μεt = (x̂εt)#μ0 where

x̂εt(x) =
√

Dε
t (x− x0) + xt.

Furthermore x̂εt satisfies the differential equation

ẋεt = vcu,ε(xεt) (3.41)

where vcu,ε is the current velocity, and is given by

vcu,ε =
Ḋε
t

2Dε
t

(x− xt) + x1 − x0.

It can be finally verified that the entropic interpolation (3.40) satisfies the PDE

μ̇εt +∇ · (μεtvcu,ε) = 0. (3.42)

Remark 3.7.1 Let observe that if x0 = x1, μεt is not constant in time, unlike the
McCann interpolation.

• Denoting P ∈ P(Ω) the path measure whose flow is given by (3.40) and that mini-
mizes H(·|R), the entropic cost between μ0, μ1 as in (3.39) is

Aε
u(μ0, μ1) = H(P |R).

The easiest way to compute this quantity is to use the Benamou-Brenier formulation
in Section 3.5. The resulting formula has not a nice and interesting form, therefore
we don’t report it explicitly.

• In the dual formulation proved in Section 3.3, the supremum is reached by the
function ψ ∈ Cb(Rn) given, up to a constant term, by

ψt(x) = −1

2

δ

1 + δ(1− t)
x2 − 1

2

γ

1 + δ(1− t)
x (3.43)

with δ as in (3.40) and γ = 2[x0(1 + δ)− x1].

• In the Benamou-Brenier formulation in Theorem 3.5.1 the minimizer vector field is

vH = ∇ψt.

where ψt is given by (3.43) and ∇ψt represents the forward velocity. It can be easily
verified that the equation

∂tμt +∇ ·
(
μt

[
∇ψt −

∇μt
2μt

])
= 0

is satisfied.
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Ornstein-Uhlenbeck semigroup

As a second example, we consider on the state space Rn the Ornstein-Uhlenbeck semi-
group, that corresponds to the case V = |x|2/2 for the Kolmogorov semigroup in Sec-
tion 3.2, whose infinitesimal generator is given by L = (Δ − x · ∇)/2 and the invariant
measure is the standard Gaussian in Rn . Here again we consider the kernel representa-
tion with a dilatation in time; in other words, for ε > 0, the kernel with respect to the
Lebesgue measure is given by

pt(x, y) = (2π(1− e−εt))−n/2 exp
(
−|y − xe−εt/2|2

2(1− e−εt)

)
i.e. pt(x, y) = N (xe−εt/2, 1− e−εt).

• The entropic interpolation (3.12) is given by

μεt(x) = N (mt, D
ε
t ) (3.44)

where mt = at[(e
−εt/2 − e−ε(1−t/2))x0 + (e−ε(1−t)/2 − e−ε(1+t)/2)x1] with

at :=
1 + δ − δe−ε

(1− e−ε)[δ(1 + δ)(e−εt + e−ε(1−t))− 2δ2e−ε]

with δ as in (3.45), and Dε
t : [0, 1] → R+ defined as

Dε
t := −1 + 2(1− e−ε)at

satisfying, as in the case of the Heat semigroup, Dε
0 = Dε

1 = 1.

Furthermore, we have μεt = (x̂εt)#μ0 where

x̂εt :=
√
Dε
t (x− x0) +mt.

It can be verified that equations (3.42) and (3.41) hold true also in the Ornstein-
Uhlenbeck case, with the current velocity given by

vεcu =
Ḋε
t

2Dt

(x− x0) + ṁt

• The entropic cost between μ0, μ1 can be computed as in the Heat semigroup case
by

Aε
u(μ0, μ1) = H(P |R)

where P is the path measure associated to the flow (3.44) which minimizes H(·|R).

• In the dual formulation at Section 3.3, the supremum is reached, up to a constant
term, by the function

ψt(x) = −1

2

εδe−ε(1−t)

1 + δ(1− e−ε(1−t))
x2 +

εγe−ε(1−t)/2

1 + δ(1− e−ε(1−t))
x (3.45)

where δ = (e−ε−
√
e−2ε − e−ε + 1)/(e−ε−1) and γ = (x0e

−ε/2−x1(1+δ−δe−ε))/(1−
e−ε).
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• In the Benamou-Brenier formulation (Theorem 3.5.1) the minimizer vector field is

vOU = ∇ψt.

Remark 3.7.2 Let observe that both in the Heat and Ornstein-Uhlenbeck cases, if we take
the limit ε → 0 of the entropic interpolation, of the velocities vH , vOU and of the function
ψt, we recover the respective results for the Wasserstein cost stated in Subsection 3.7.1.

In the following figures we refer to the McCann interpolation with a dotted line, the Heat
semigroup with a dashed line and the Ornstein Uhlenbeck semigroup with a continuous
line. We fix ε = 1 and consider marginal measures in one dimension.

• Figure 3.1 represents the variance of the three interpolations, independent from the
initial and final means x0, x1.

• Figures 3.2 and 3.3 correspond to the mean in the three cases respectively with
the initial and final means symmetric w.r.t the origin, and for any means. It’s
worth to remark from these images that the McCann interpolation and the entropic
interpolation in the case of the heat semigroup, have the same mean.

• Finally figures 3.4 and 3.5 represent the three interpolations at time t = 0, 1/2, 1
respectively with different marginal data, as before.

Figure 3.1: Variance, ε = 1

Figure 3.2: Mean with x0 = −3, x1 = 3, ε = 1
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Figure 3.3: Mean x0 = 1, x1 = 7, ε = 1

Figure 3.4: Interpolations at time t = 0, 1/2, 1, x0 = −3, x1 = 3, ε = 1

Figure 3.5: Interpolations at time t = 0, 1/2, 1, x0 = 1, x1 = 7, ε = 1
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3.7.3 Numerical examples

The question of determining explicit solutions f, g of the Schrödinger system (3.14) is not
trivial. Explicit computations, as those presented in Section 3.7.2, are possible in very few
cases. Just think to the trivial case of the heat semigroup as reference, and two uniform
probability measures as marginals: despite trivial, we cannot determine the two functions
f and g by hands. With the precious help of my PhD colleague Maxime Herda, we propose
here two further examples via numerical computations. In both cases we choose the heat
semigroup on the real line as reference measure and play with the choice of the marginals
μ0, μ1 ∈ P(R).
The implemented algorithm is the following. The first step is to discretize the Schrödinger
system (3.14). Given a space interval I ⊂ R, we consider the discretization (xi)i∈{1,...,N}
of I. We denote by fi ≈ f(xi) and gi ≈ g(xi) and the same for μ0, μ1 ∈ P(R). Then the
Schrödinger system (3.14) writes as,

μ0,i = fi

N∑
j=1

Gijgj μ1,i = gi

N∑
j=1

Gijfj (3.46)

for all i = 1, ..., N . Here Gij = ΔxG(xi−xj) and G is the Gaussian kernel. System (3.46)
can be reformulated as,

fi =
μ0,i

N∑
j=1

Gij

(
μ1,j∑N

k=1 Gjkfk

) , gi =
μ1,i

N∑
j=1

Gij

(
μ0,j∑N

k=1 Gjkgk

) . (3.47)

Note that (3.46) and (3.47) are equivalent up to a constant factor. Indeed for any solution
(f, g) of (3.46), (λf, λg) is a solution of (3.47) for any λ ∈ R. Any confusion will be avoided
by a re-normalization to unit mass of the terms on the right hand side in (3.46). It is a
fixed point problem of the form f = F01(f) and g = F10(g), where the applications F01

and F10 are given at (3.47). The maps F01 and F10 are contractions on the positive cone
Rn+ with respect to the Hilber projective metric,

dH(f, g) := log

(
maxi fi/gi
mini fi/gi

)
.

The Sinkhorn algorithm [Cut13] consists in iterating F01 and F10 to converge to the
solutions f and g of (3.46). Once the solutions f, g of the Schrödinger system are de-
termined, the entropic interpolation is defined according to (2.12). Figures 3.6 and 3.8
show respectively two choices of marginal measures. In both cases we set I = [−5, 5] and
N = 1000. Moreover, by considering the Gaussian kernel with variance ε > 0, we can see
in Figures 3.7 and 3.9 the behavior of the entropic interpolation when ε decreases to zero.
We stopped at ε = 0.05 since the algorithm is very unstable when ε > 0 is too small as
pointed out in [BCC+15].
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Figure 3.6: Marginals μ0, μ1
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Figure 3.7: Interpolations for different values of ε
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Figure 3.8: Marginals μ0, μ1
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Figure 3.9: Interpolations at for different values of ε



Chapter 4

Convexity and regularity properties
under CD(0, n)

In this chapter we report a slightly modified version of [Rip17]. Sections 4.1 and 4.2 con-
tain repetitions of the previous chapters, hence the reader who already went over them
can start over from Section 4.3 which contains the main results.

Abstract In this paper we prove a convexity property of the relative entropy along
entropic interpolations (solutions of the Schrödinger problem), and a regularity property
of the entropic cost along the heat flow. Then we derive a dimensional EVI inequality and
a contraction property for the entropic cost along the heat flow. As a consequence, we re-
cover the equivalent results in the Wasserstein space, proved by Erbar, Kuwada and Sturm

Résumé Dans cet article nous démontrons une propriété de convexité de l’entropie rela-
tive le long des interpolations entropiques (solutions du problème de Schrödinger), et une
propriété de régularité du coût entropique le long du flot de la chaleur. Ensuite, nous en
déduisons une inégalité EVI dimensionnelle et une propriété de contraction pour le coût
entropique le long du flot de la chaleur. En conséquence, nous retrouvons les résultats
équivalents dans l’espace de Wasserstein, démontrés par Erbar, Kuwada et Sturm.

4.1 Introduction

Convexity of the entropy along evolutionary equations is a powerful tool to prove regularity
properties, asymptotic behavior, etc. We extend and compare some main and fruitful
results around convexity of the entropy in the Wasserstein space, to the context of the
Schrödinger problem.

For simplicity, results are presented in Rn associated with the Lebesgue measure L.
Generalization can be stated in the context of a n-dimensional Riemannian manifold
(Mn, g).

We consider the relative entropy functional, loosely defined for any couple of positive
measures μ, ν on Rn as

H(μ|ν) =
∫

log

(
dμ

dν

)
dμ,

whenever the integral is meaningful. A rigorous definition is stated at Section 4.2.

119
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Context of the Wasserstein space

The quadratic Monge-Kantorovich distance between two probability measures μ0, μ1 ∈
P2(Rn) = {μ ∈ P(Rn) :

∫
|x|2dμ < ∞}, is defined as

W 2
2 (μ0, μ1) := inf

π

{∫
Rn×Rn

|x− y|2π(dxdy)
}
,

where the infimum is running over all the couplings π of μ0 and μ1, namely, all the
probability measures π ∈ P(Rn × Rn) with marginals μ0 and μ1, that is for any bounded
measurable functions ϕ and ψ on Rn,

∫
[ϕ(x) + ψ(y)]π(dxdy) =

∫
ϕdμ0 +

∫
ψ dμ1.

The space (P2(Rn),W2) is geodesic. This means that for any couple μ0, μ1 ∈ P2(Rn)
there is a path (μMC

s )s∈[0,1] in P2(Rn) such that,

W2(μ
MC
s , μMC

t ) = |t− s|W2(μ0, μ1) ∀ s, t ∈ [0, 1].

• The first result in this context is the convexity of the entropy along geodesics, i.e. if
(μMC

s )s∈[0,1] is a geodesic in P2(Rn), then the map

[0, 1] � s �→ H(μMC
s |L)

is convex. The entropy is then displacement convex in the sense introduced by McCann
in [McC97]. This was a breakthrough, a starting point of the Lott-Sturm-Villani theory,
who defined the (positive) curvature in a metric measure space (mms space), see [LV09,
Stu06b]. This is usually noted the CD(0,∞) condition.

• Taking into account the dimension, the main progress is proposed by Erbar-Kuwada-
Sturm in [EKS15] who proved the stronger result, under the same assumption, that the
map

[0, 1] � s �→ N(μMC
s ) := exp

(
− 1

n
H(μMC

s |L)
)
,

is concave. This condition can be used to define the CD(0, n) condition in a mms space.
This result has two main applications.

→ First a dimensional evolution variational inequality (EVI) for the quadratic Monge-
Kantorovich distance, that writes for all t ≥ 0 as,

d

dt

+

W 2
2 (TtuL, vL) ≤ n

(
1− e−

1
n
[H(v|L)−H(Ttu|L)]

)
, (4.1)

for any u, v ∈ P2(Rn) where (Tt)t≥0 is the heat semi-group in Rn. This inequality is
actually equivalent to say that the heat flow is the gradient flow associated to the entropy
functional [AGS08].

→ Then, it provides a proof of the dimensional contraction with respect to the W2

distance, for any u, v ∈ P2(Rn) and any τ > 0,

W 2
2 (TτuL, TτvL) ≤ W 2

2 (u, v)− 4n

∫ τ

0

sinh2

(
H(Ttu|L)−H(Ttv|L)

2n

)
dt, (4.2)

result proved in [BGG16, BGGK16].
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Context of the Schrödinger problem

It will be properly defined in Section 4.2. Roughly speaking, the entropic cost associated
to the Schrödinger problem, is, up to a constant term, the minimization problem,

A(μ0, μ1) = inf{H(P |R) ; P ∈ P(Ω) s.t. P0 = μ0 and P1 = μ1} ∈ (−∞,∞], (4.3)

for a fixed reference measure R ∈ M+(C([0, 1],Rn)), that we can consider to be the
Brownian motion on Rn with reversing measure the Lebesgue measure, and marginals
μ0, μ1 in some restriction of the set P2, that will be defined later at Section 4.2. If we
denote P̂ ∈ P(Ω) the minimizer of (4.3), the entropic interpolation is defined as its
marginal flow, i.e.

μt := P̂t = (Xt)#P̂ ∈ P (Rn), for any 0 ≤ t ≤ 1.

• The first result on the subject is due to Léonard [Léo17] who proved that for any
entropic interpolation (μs)s∈[0,1], the map

[0, 1] � s �→ H(μs|L),

is convex, where L denotes the Lebesgue measure on Rn.
One particular entropic geodesic is the map μs = Tsf , s ∈ [0, 1], where f is a smooth

probability density. This is one of the starting point of the Bakry-Émery-Ledoux theory to
prove regularity, asymptotic behaviour etc. of diffusion Markov generators (see [BGL14]).

In this context, adding the dimension, again it is more convenient to look at the
exponential entropy. In 1985, Costa [Cos85] proved that the map

R+ � s �→ N(Tsf) = exp

(
− 2

n
H(Tsf |L)

)
(4.4)

is concave. This is an important result in information theory, and it is also useful to prove
some functional inequalities, for instance the dimensional log-Sobolev inequality as it is
reported in [ABC+00, Ch. 10].

All these results have their counterparts in the more general case of Ricci curvature
bounded from below by some κ ∈ R. We refer to references for general cases, Riemannian
manifolds or mms spaces, see for instance [Con17].

The aim of the paper is to complete the picture concerning convexity and regularity for
the Schrödinger problem. First we prove a Costa type result for the entropic interpolation,
that is for any entropic interpolation (μs)s∈[0,1], the map

[0, 1] � s �→ exp

(
− 1

n
H(μs|L)

)
,

is concave, cf. Theorem 4.3.1. Note the absence of the factor 2 with respect to (4.4). The
relation between these two expressions will be done at Remark 4.3.2. Secondly, we prove
that for any u and v, probability densities in some space that will be specified later, the
map

R+ � t �→ A(TtuL, vL),
is differentiable and,

d

dt

∣∣∣
t=0

A(TtuL, vL) = −1

2

d

ds

∣∣∣
s=1

H(μs|L),
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where (μs)s∈[0,1] is the entropic interpolation between u and v, cf. Theorem 4.3.4.
From these two results, one can deduce an EVI inequality for the entropic cost (Corol-

lary 4.3.6)
d

dt
A(f L, TtgL) ≤

n

2

(
1− e−

1
n
[H(f |L)−H(Ttg|L)]

)
,

for any t > 0 and a dimensional contraction inequality (Corollary 4.3.8) of the entropic
cost along the heat flow,

A(TτuL, TτvL)−A(uL, vL) ≤ −n

∫ τ

0

sinh2

(
H(Ttu|L)−H(Ttv|L)

2n

)
dt.

In conclusion, this approach provides an easy and rigorous proof of the analogous
results for the Wasserstein distance. In fact, if we introduce a parameter ε > 0 in the
entropic cost as follows,

Aε(μ0, μ1) = inf{εH(P |Rε); P ∈ P(Ω) s.t. P0 = μ0 and P1 = μ1}−
ε

2
[H(μ0|m)+H(μ1|m)]

where Rε is the reference path measure associated to the generator Lε = εΔ/2. As proved
in [Léo12a, Mik04] we have the convergence property,

lim
ε→0

Aε(μ0, μ1) =
W 2

2 (μ0, μ1)

2
.

Thanks to this result, it is an immediate consequence to derive (4.1) and (4.2) as limits
respectively of EVI and the contraction for the ε-entropic cost.

The paper is organized as follows. In the next section, we give in full details the set-
ting of the Schrödinger problem. In Section 4.3 we present and prove our main results.
First, in Theorem 4.3.1 we prove concavity of the exponential entropy along entropic inter-
polations. Then, in Theorem 4.3.4 we prove the regularity property of the entropic cost.
We derive from these two results the EVI inequality for the entropic cost (Corollary 4.3.6),
the dimensional contraction along the heat flow (Corollary 4.3.8) and an integral form
of EVI (Proposition 4.3.10). Finally, we deduce contraction in Wasserstein distance (Re-
mark 4.3.9) and the classical EVI for the Wasserstein distance (Corollary 4.3.11).

4.2 Setting
In this section we fix notations and recall some definition and property of the main objects
of our framework.
First we extend the definition of relative entropy to measures that are not necessary finite.
Let r ∈ M+(Y ) be σ-finite. Then, it exists at least a measurable non negative function W
such that zW =

∫
e−Wdr < ∞. By defining the probability measure drW = e−Wdr/zW ,

we can write, H(p|r) = H(p|rW )−
∫
Wdp−log zW . And it is well defined for any p ∈ P(Y )

such that
∫
Wdp < ∞. Therefore the relative entropy of a probability measure p ∈ P(Y )

such that
∫
Wdp < ∞, with respect to a positive σ-measure r ∈ M+(Y ) is defined by,

(−∞,∞] � H(p|r) =

⎧⎨⎩
∫

log
dp

dr
dp if p 
 r

+∞ otherwise.
(4.5)
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For more details about relative entropy, conditional expectation and disintegration for
unbounded measures, see [Léo14a] or Section 1.1.1.
A reference path measure R ∈ M+(Ω), is a positive measure on the set Ω = C([0, 1], Y ).
We fix the state space Y = Rn, equipped with its Borel σ-field, and the path space Ω,
with the canonical σ-field σ(Xt; 0 ≤ t ≤ 1) generated by the canonical process for all
t ∈ [0, 1],

Xt(ω) := ωt ∈ Rn, ω = (ωs)0≤s≤1 ∈ Ω.

Moreover, for any measure Q ∈ M+(Ω) and any t ∈ [0, 1], we denote

Qt(·) := Q(Xt ∈ ·) = (Xt)#Q ∈ M+(R
n).

In this chapter the reversing and Lebesgue measure coincide, hence without ambiguity by
abuse of notation we will not distinguish between density functions and measures.

The reference path measure

In the sequel, as reference path measure, we consider the reversible Brownian motion R
on the state space Y = Rn, with generator L = Δ/2 and initial condition R0(dx) := L
the Lebesgue measure on Rn. Note that it is an unbounded measure since R has the
same mass as R0 (See [Léo14b]). In particular, we denote (Tt)t≥0 the Markov semigroup
associated to the generator L, which is defined for any bounded measurable function f
and any t ≥ 0 and x ∈ Rn by,

Ttf(x) =

∫
f(y)

e−|x−y|2/2t

(2πt)n/2
dy. (4.6)

Reversibility will play a crucial role at different points of our proofs. We recall that it is
equivalent to say that for any couple of functions f, g ∈ C∞

c (Rn),∫
fTtg dx =

∫
gTtf dx.

In other words, let us define the time reversal mapping X∗
t := X1−t, 0 ≤ t ≤ 1 and

R∗ = (X∗)#R the time-reversed of R. Reversibility means that R∗ = R. Moreover it
implies that R is L-stationary, that is, Rt = L, for all 0 ≤ t ≤ 1, and this is equivalent to
say that the generator is symmetric, that is for f, g ∈ C∞

c (Rn),∫
fLg dx =

∫
gLf dx.

It can be easily verified that the carré du champ operator, defined for any couple of
functions f, g ∈ C∞

c (Rn), by Γ(f, g) = [L(fg) − fLg − gLf ]/2, when it is associated to
L = Δ/2, is given by Γ(f, g) = ∇f · ∇g/2. It satisfies the integration by parts formula,∫

fΔg dx = −
∫

∇f · ∇g dx = −2

∫
Γ(f, g) dx. (4.7)

Moreover the iterated carré du champ operator Γ2, defined for f ∈ C∞
c (Rn) by,

Γ2(f) :=
1

2
L(|∇f |2)−∇f · ∇Lf

when the generator L = Δ/2, writes as Γ2(f) = ||Hessf ||22/4 and by the Cauchy-Schwarz
inequality, it yields to,
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Γ2(f) ≥
1

4n
(Δf)2 =

1

n
(Lf)2. (4.8)

Inequality (4.8) is known under the name of CD(0, n) condition, introduced by Bakry
and Emery in [BE85], see also [BGL14]. For further details about this subject we refer to
Section 1.1.4.

Entropic cost A
In order to define the entropic cost, we need to fix, in addition to a reference path measure,
two marginal probability measures on the state space Rn. In particular we assume that
the marginals,

μ0, μ1 ∈ Π :=

{
μ ∈ P (Rn) : H(μ|L) < ∞,

∫
|x|2 dμ < ∞

}
. (4.9)

Under this assumption, the entropic cost is defined as

A(μ0, μ1) := inf{H(P |R); P ∈ P(Ω) s.t. P0 = μ0 and P1 = μ1} −
1

2
[H(μ0|L) +H(μ1|L)]

(4.10)
In order to show that the entropic cost is well defined and finite, it is more convenient to
use the equivalent static definition. Let us consider the joint law of the initial and final
position of the reversible Brownian motion R, that is,

R01(dxdy) =
e−|x−y|2/2

(2π)n/2
dxdy.

It is shown in [Léo14b, Prop. 2.3] (see Theorem 2.1.3) that the entropic cost can be
defined equivalently as,

A(μ0, μ1) = inf{H(π|R01); π ∈ P(Rn×Rn) s.t. π0 = μ0, π1 = μ1}−
1

2
[H(μ0|L)+H(μ1|L)]

where π0 := π(· × Rn), and π1 := π(Rn × ·). The assumption on the marginals μ0, μ1 to
have second order moment finite in (4.9), implies that the relative entropy with respect
to R01 is bounded from below. To see this, it is enough to choose W (x, y) = |x|2 + |y|2
in the definition of relative entropy (4.5). Moreover, the assumption of finite relative
entropy in (4.9) together with the fact that R01(dxdy) ≥ e−|x|2−|y|2dxdy, makes sure that
H(μ0⊗μ1|R01) < ∞, therefore A(μ0, μ1) is bounded also from above (See [Léo14b, Lemma
2.a, Prop. 2.5] and Section 2.1 for more details and the general case).
However, in order to enunciate rigorously our results we need some more restrictive as-
sumption on the marginals. In particular, we will assume μ0, μ1 to be smooth and com-
pactly supported probability measures. As a consequence of this assumption we have that
μ0, μ1 ∈ Π. A stronger result in Theorem 4.3.4 is stated under stronger assumptions that
will be specified later at...

Remark 4.2.1 Note that unlike the W 2
2 , A is not the square of a distance. Though, by

the reversibility of the reference measure R, A is symmetric, that is, for all suitable μ0, μ1,

A(μ0, μ1) = A(μ1, μ0).
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Indeed, since the time reversing mapping X∗ (defined above) is one-to-one, it holds H(P |R) =
H(P ∗|R∗). Moreover, since R is reversible, it implies that, H(P |R) = H(P ∗|R). Thus,
if P is a minimizer in (4.10), then P ∗ is the minimizer of the same Schrödinger problem
with switched marginals.

We introduce here a fluctuation parameter, that will allow us to link the entropic cost to
the quadratic Wasserstein distance. Let Rε be the law of the reversible Brownian motion
with infinitesimal generator

Lε =
ε

2
Δ, for any ε > 0.

Note that it doesn’t change the dynamics, but it corresponds to a simple dilatation in
time. We define the ε-entropic cost as,

Aε(μ0, μ1) = inf{εH(P |Rε); P ∈ P(Ω) s.t. P0 = μ0, P1 = μ1} −
ε

2
[H(μ0|L) +H(μ0|L)].

(4.11)
Note the rescaling factor ε in front of the entropy, in order Aε not to explode to infinity
in the limit when ε vanishes. It is shown in [Léo12a] via large deviation arguments, see
also Section 2.4 that the ε-entropic cost is a regular approximation of the square of the
quadratic Wasserstein distance, namely,

lim
ε→0

Aε(μ0, μ1) =
W 2

2 (μ0, μ1)

2
. (4.12)

We only use the ε-entropic cost Aε to recover the classic results for W2 at Remark 4.3.9
and Corollary 4.3.11 at the end of the chapter.

Entropic interpolations

We assume from now on, that the reference path measure R is associated to the heat
semigroup as introduced at the beginning of this section, and μ0, μ1 ∈ C∞

c (Rn). Under
these assumptions, by [Léo14b, Thm. 2.12], a unique minimizer exists, is called entropic
bridge and is characterized by the formula,

P̂ = f(X0)g(X1)R ∈ P(Ω), (4.13)

where f, g positive, are unique solutions of the Schrödinger system (cf. [Föl88]),{
μ0 = fT1g
μ1 = gT1f.

(4.14)

Here T1 is the heat semigroup (4.6) at time t = 1, and again by abuse of notation we
denote by μi also the density of the probability measure μi with respect to the Lebesgue
measure, for i = 0, 1.

Remark 4.2.2 As proved in [GT17, Thm. 3.1], and in [Tam17] in a non compact setting,
the assumption on the marginal measures to have densities with respect to the Lebesgue
measure in C∞

c (Rn), makes sure that the functions f, g solution of (4.14) are positive and
L∞ then Ttf, T1−tg ∈ C∞(Rn) for any 0 ≤ t ≤ 1. Thus,

f =
μ0

T1g
∈ C∞

c (Rn)

since T1g is smooth and strictly positive and μ0 ∈ C∞
c (Rn). The same is valid for g.



126 CHAPTER 4. PROPERTIES UNDER CD(0, N)

Definition 4.2.3 (Entropic interpolation) The R-entropic interpolation between μ0

and μ1 is defined as the marginal flow of the minimizer (4.13), that is μt := P̂t = (Xt)#P̂ ∈
P (Rn) for 0 ≤ t ≤ 1. In particular, it is characterized by the formula,

dμt = TtfT1−tgL, ∀ 0 ≤ t ≤ 1,

or equivalently,
dμt = eϕt + ψtL, ∀ 0 ≤ t ≤ 1,

where for any t ∈ [0, 1], ϕt := log Ttf and ψt := log T1−tg with f, g solutions of (4.14) and
(Tt)t≥0 the heat semigroup (4.6). Note that since by hypothesis f, g are C∞

c (Rn), then μt
is in C∞(Rn) for all 0 ≤ t ≤ 1.
The two functions ϕt and ψt satisfy respectively the Hamilton-Jacobi-Bellman equations,⎧⎨⎩ ∂tϕt −

Δϕt
2

− |∇ϕt|2
2

= 0, 0 ≤ t ≤ 1,

ϕ0 = log f t = 0

⎧⎨⎩ ∂tψt +
Δψt
2

+
|∇ψt|2

2
= 0, 0 ≤ t ≤ 1,

ψ1 = log g, t = 1.
(4.15)

In analogy to the Kantorovich potentials, ϕ0 and ψ1 are often referred to as Schrödinger
potentials. By adding the PDEs for ϕ and ψ in (4.15), we deduce that the entropic
interpolation is a smooth solution of the transport equation,{

∂tμt +∇ · (μt∇θt) = 0, ∀ t ∈ (0, 1]
μ0 = μ0, t = 0,

(4.16)

where ∇θt = ∇(ψt−ϕt)/2. We briefly recall here the definitions of forward, backward, os-
motic and current velocity introduced by Nelson in [Nel67] and explained in Sections 1.1.2
and 2.2, and how they are related,

⎧⎨⎩ vcut := ∇θt =
∇ψt−∇ϕt

2

vost := 1
2
∇ log μt = ∇ψt +∇ϕt

{ −→v t := ∇ψt =
1
2
∇ log μt +∇θt

←−v t := ∇ϕt = −∇θt +
1
2
∇ log μt.

Moreover, the definition of P ∗, the time reversal of the minimizer in (4.10), implies that,
μ∗
t = μ1−t = T1−tfTtg, for any 0 ≤ t ≤ 1, and it establishes the following relation between

the backward and the forward velocities respectively associated to μt and its time reversal
μ∗
t ,

←−v t(x) =
−→v ∗

1−t(x), 0 ≤ t ≤ 1, x ∈ Rn. (4.17)

Dual and Benamou-Brenier formulations

Finally, we recall two equivalent formulations of the entropic cost, that will be crucial in
the proof of our main results. First, the dual formulation, in analogy with the Kantorovich
formulation for the Monge problem ([MT06], [GLR17, Section 4] and Chapter 3).

Theorem 4.2.4 (Dual Kantorovich formulation) For μ0, μ1 ∈ C∞
c (Rn) defined at

(4.25), then
−→A(μ0, μ1) = sup

ψ∈Cb(Rn)

{∫
ψ dμ1 −

∫
Q1ψ dμ0

}
. (4.18)

Here, Q1ψ := log T1e
ψ, where T1 is the heat semigroup at time t = 1. The supremum is

achieved by the Schrödinger potential ψ1 = log g that appears in (4.15).
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We recall from Section 2.3 that the forward entropic cost is defined by,

−→A(μ0, μ1) = inf{H(P |R) ; P ∈ P(Ω) s.t. P0 = μ0 and P1 = μ1} −H(μ0|L)

and is related to the entropic cost (4.10) by the relation

A(μ0, μ1) =
−→A(μ0, μ1) +

1

2
[H(μ0|L)−H(μ1|L)]. (4.19)

Then, the Benamou-Brenier formulation for the entropic cost (Theorem 3.5.1), in analogy
with the one for the Wasserstein distance proved in [BB00]. In the case of the entropic
cost this formulation is been proved for the Brownian motion in [CGP16] and for a general
Kolmogorov semigroup in [GLR17, Section 5].

Theorem 4.2.5 (Benamou-Brenier formulation) Let R be the Brownian motion on
Rn, μ0, μ1 ∈ C∞

c (Rn) defined at (4.25), then

A(μ0, μ1) =
1

2
inf

∫ 1

0

∫
Rn

(
|vt(z)|2 +

1

4
|∇ log μt(z)|2

)
μt(z) dzdt,

where the infimum runs over all the couples (μt, vt)0≤t≤1 such that⎧⎨⎩
μt ∈ P (Rn), ∀ 0 ≤ t ≤ 1,
μt=0 = μ0, μt=1 = μ1,
∂tμt +∇ · (μtvt) = 0.

(4.20)

The infimum is achieved by the couple (μt,∇θt)0≤t≤1 ∈ C∞(Rn), where (μt)t∈[0,1] is the
entropic interpolation between μ0 and μ1 and (∇θt)t∈[0,1] appears in (4.16).

4.3 Main results
The first result in this section is about the concavity of the exponential entropy along the
entropic interpolation. For simplicity we state and prove our results in the Euclidian space
Rn, but it is still true in more general cases, like a smooth complete connected Riemannian
manifold satisfying the CD(0, n) condition, under lighter assumptions on the marginals
μ0, μ1. This result is a generalization of an older result known in information theory as
the Costa’s Theorem [Cos85, CT06], that establishes the concavity of the exponential
entropy along the heat flow.

Theorem 4.3.1 (Concavity of exponential entropy) Let R ∈ P(Ω) be the reversible
Brownian motion, μ0, μ1 ∈ C∞

c (Rn). Let (μs)s∈[0,1] be the entropic interpolation between
the probability measures μ0 and μ1. Then the function,

Ψ : [0, 1] � s �→ e−H(μs|L)/n

is concave.

Proof
� The assumptions on the marginals μ0, μ1 make sure that the function Ψ is smooth for
all 0 ≤ s ≤ 1. Thus, to prove the concavity we will show that the second derivative of Ψ
is non positive. In the rest of the proof we use the shortest notation d

ds
H(μs|L) := h′(s).

A double differentiation provides,
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Ψ′′(s) =
e−H(μs)/n

n

[
1

n
h′(s)2 − h′′(s)

]
.

It remains to prove that

CD(0, n) =⇒ 1

n
h′(s)2 − h′′(s) ≤ 0. (4.21)

By definition of the entropy functional, and the transport equation (4.16), easy compu-
tations show that the first and second order derivatives of the entropy along the entropic
interpolation write as, (see [Léo17])

h′(s) =

∫
∇θs · ∇μs dx (4.22)

h′′(s) =

∫
[4Γ2(θs) + Γ2(log μs)] dμs. (4.23)

Explicit computations are in Section 2.5.
But the CD(0, n) condition implies (4.8), therefore,

h′′(s) ≥ 1

n

∫
(Δθs)

2dμs

(i)

≥ 1

n

(∫
Δθsdμs

)2

(ii)
=

1

n

(∫
∇θs · ∇μs dx

)2

=
1

n
(h′(s))2

where (i) follows from the Jensen’s inequality and (ii) from integration by parts (4.7).
Thus, it yields (4.21) and this completes the proof. �

Remark 4.3.2 Note that formally, if θs = − log μs/2 in (4.16) (hence in (4.22) and (4.23)),
then μs would be the heat flow and we would recover the stronger result obtained by Costa,
namely, the concavity of the function Ψ2. Though, when μs is the McCann interpola-
tion, concavity of Ψ is the best we can obtain, being equivalent to CD(0, n) as proved
in [EKS15]. Our result shows that it is still true for the entropic approximation of the
McCann geodesics, namely the entropic interpolations.

Remark 4.3.3 An analogous result holds when we neglect the dimension and we add a
drift to the generator, i.e. we consider L = (Δ − ∇V · ∇)/2, with reversing measure
dm = e−VL where the potential V is κ-convex for some non-negative κ.

The next theorem is about a differential property of the entropic cost. The stronger result
holds under some more restrictive hypothesis on the marginal measures. To this aim let
us introduce here the Schwartz space, tha is the space of rapidly decreasing functions
defined by,

S = {f : Rn → R, s.t. f ∈ C∞ and ‖xαDβf‖∞ < ∞, ∀α, β ∈ Zn+}. (4.24)
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It is well known that S is closed under multiplication and convolution and for any 1 ≤
p ≤ ∞, S ⊂ Lp(Rn).
We consider all the couples of measures that admit a Schrödinger decomposition of the
type (4.14) in which f and g are two positive functions in the Schwartz space (4.24) such
that there exists some α > 0 such that f, g ≥ cαe

−α|x|2 for some positive constant cα. In
other words, we define the set

ΠS =

⎧⎨⎩(μ0, μ1) : μ0, μ1 ∈ P(Rn) and ∃ f, g s.t.

⎧⎨⎩
μ0 = fT1g, μ1 = gT1f ;
f, g ∈ S and f, g > 0;

∃α, cα > 0 s.t. f, g ≥ cαe
−α|x|2 .

⎫⎬⎭
(4.25)

It is immediate to see that if (μ0, μ1) ∈ ΠS then μ0, μ1 ∈ Π defined at (4.9).

Theorem 4.3.4 (Regularity of the entropic cost) Let u, v be two probability densi-
ties with respect to the Lebesgue measure on Rn and let (Tt)t≥0 denote the heat semigroup.

(a) If u, v are such that uL, vL ∈ ΠS as defined in (4.25), then the function,

[0,∞) � t �→ A(uL, TtvL)

is differentiable. In particular, for t = 0 it holds,

d

dt

∣∣∣
t=0

A(u, Ttv) = −1

2

d

ds

∣∣∣
s=1

H(μs|L) (4.26)

where (μs)0≤s≤1 is the entropic interpolation between u and v.

(b) If u, v ∈ C∞
c (Rn), then,

d

dt

+∣∣∣
t=0

A(u, Ttv) ≤ −1

2

d

ds

∣∣∣
s=1

H(μs|L)

Where we used the notation

d

dt

+

f(t) = lim sup
h→0+

f(t+ h)− f(t)

h
(4.27)

to denote the super derivative.

Proof
� We start by proving that

lim sup
t→0+

A(u, Ttv)−A(u, v)

t
≤ − 1

2

d

ds

∣∣∣
s=1

H(μs|L).

for u, v ∈ C∞
c (Rn). This will prove (b). The same arguments are valid under the as-

sumption (u, v) ∈ ΠS , thus we will complete the proof of (a), by proving the converse
inequality,

lim inf
t→0+

A(u, Ttv)−A(u, v)

t
≥ −1

2

d

ds

∣∣∣
s=1

H(μs|L). (4.28)

Let (μs)s∈[0,1] be the entropic interpolation between u and v, with associated vector field
∇θs, verifying equation (4.16), that is, ∂sμs+∇·(μs∇θs) = 0. According to the Benamou-
Brenier formulation at Theorem 4.2.5 the entropic cost between u and v can be written
as,
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A(u, v) =
1

2

∫ 1

0

∫
Rn

(
|∇θs|2 +

1

4
|∇ log μs|2

)
μs dzds. (4.29)

Following a method already used in [DS08], we define a new path between u and Ttv, for
all fixed t ≥ 0, by

(μts)s∈[0,1] := (Tstμs)s∈[0,1].

Let us compute the derivative with respect to s > 0, in order to see if it satisfies a
transport equation,

∂sμ
t
s = ∂sTstμs

=
t

2
Δμts − Tst∇ · (μs∇θs)

= ∇ ·
(
t

2
∇μts −Tst(μs∇θs)

)
= ∇ ·

[
μts

(
t

2
∇ log μts −

1

μts
Tst(μs∇θs)

)]
where (Tt)t≥0 is, roughly speaking, the heat semigroup acting on Rn-valued functions as
a standard heat semigroup on each coordinate,

Tt

⎛⎜⎝f1
...
fn

⎞⎟⎠ =

⎛⎜⎝Ttf1
...

Ttfn

⎞⎟⎠
and the associated generator is Δ/2, acting on Rn-valued functions in similar way,

Δ/2

⎛⎜⎝f1
...
fn

⎞⎟⎠ =

⎛⎜⎝Δ/2f1
...

Δ/2fn

⎞⎟⎠
Therefore (μts)s∈[0,1] satisfies the transport equation ∂sμ

t
s+∇ · (μtsvts) = 0, with the vector

field

vts = − t

2
∇ log μts +

Tst(μs∇θs)

μts
. (4.30)

Moreover, μt0 = u and μt1 = Ttv for all t ≥ 0, and of course, for any s > 0, (μts)t≥0

is a probability on Rn. Then the three conditions in (4.20) are satisfied, and, by the
Benamou-Brenier formulation (Theorem 4.2.5), we can write,

A(u , Ttv) ≤
∫ 1

0

∫ ( |vts|2
2

μts +
1

8
|∇ log μts|2μts

)
dxds. (4.31)

Taking the difference between (4.31) and (4.29),

A(u, Ttv)−A(u, v) ≤
∫ 1

0

∫ ( |vts|2
2

μts +
1

8
|∇ log μts|2μts

)
dxds

−
∫ 1

0

∫ ( |vs|2
2

μs +
1

8
|∇ log μs|2μs

)
dxds. (4.32)
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Here we denoted vs = v0s = ∇θs, by definition (4.30). And recall that the couple (μs,∇θs)
is optimal in Theorem 4.2.5 when μ0 = u and μ1 = v. Dividing (4.32) by t > 0 and taking
the superior limit for t → 0+, we obtain

lim sup
t→0+

A(u, Ttv)−A(u, v)

t
≤ d

dt

∣∣∣
t=0

[∫ 1

0

∫ |vts|2
2

μts dxds

+
1

8

∫ 1

0

∫
|∇ log μts|2μtsdxds

]
.

Note that on the right hand side, the superior limit is actually a limit since μ0, μ1C
∞
c (Rn).

Indeed, all the three terms are differentiable. From Lemma 4.3.5 below we can conclude
that,

lim sup
t→0+

A(u, Ttv)−A(u, v)

t
≤ − 1

2

d

ds

∣∣∣
s=1

H(μs|L).

This concludes the proof of (b). These aeguments are valid also for (u, v) ∈ ΠS , hence to
conclude the proof of (a) let us show (4.28). Note that since (u, v) ∈ ΠS then u, Ttv ∈ Π,
therefore the entropic cost A(u, Ttv) is still finite. We will use the Kantorovich dual
formulation (4.18) for the forward entropic cost. Indeed,

−→A(u, Ttv)−
−→A(u, v) ≥

∫
ξTtv dx−

∫
Q1ξu dx−

∫
ψv dx+

∫
Q1ψu dx

where ξ ∈ Cb(Rn) is any bounded continuous function and ψ is optimal in (4.18) when
μ0 = u and μ1 = v. By choosing ξ = ψ, we get

−→A(u, Ttv)−
−→A(u, v) ≥

∫
ψ(Ttv − v) dx. (4.33)

Note that since g is in the Schwartz space, ψ = log g is smooth but not bounded. Hence
we are not actually allowed to take ξ = ψ but we should approximate ψ by a sequence of
bounded and continuous functions by standard arguments. For the sake of simplicity we
avoid here the technical details and use the inexact shortcut ξ = ψ. Note also that the
right hand side of (4.33) is bounded from below thanks to the third hypothesis on the
functions f, g in the definition of ΠS , namely up to (bounded) constant factors,∫

ψ(Ttv − v)dx ≥ −
∫

|x|2(Ttv − v)dx ≥ −∞.

The same is false in the case f, g ∈ C
|
cinfty(Rn) for which

∫
ψTtvdx = −∞.

On the other hand, by symmetry

−→A(u, Ttv)−
−→A(u, v) =

−→A(Ttv, u)−
−→A(v, u) +H(Ttv|L)−H(v|L). (4.34)

Again, by duality (4.18),

−→A(Ttv, u) − −→A(v, u) ≥
∫

ξu dx −
∫

Q1ξTtv dx −
∫

ψ∗u dx +

∫
Q1ψ

∗Ttv dx.

Here, as before, we choose ξ = ψ∗, where ψ∗ is optimal in (4.18) in the reverse case, when
μ0 = v and μ1 = u. In this case we get,
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−→A(Ttv, u)−
−→A(v, u) ≥ −

∫
Q1ψ

∗(Ttv − v) dx. (4.35)

Take the half-sum of (4.33) and (4.35) and recall relation (4.34),

−→A(u, Ttv)−
−→A(u, v)+

1

2
[H(v|L)−H(Ttv|L)] ≥

1

2

(∫
ψ(Ttv − v) dx−

∫
Q1ψ

∗(Ttv − v) dx

)
.

According to (4.19) it reduces to,

A(u, Ttv)−A(u, v) ≥ 1

2

(∫
ψ(Ttv − v) dx−

∫
Q1ψ

∗(Ttv − v) dx

)
.

We divide both sides by t and take the inferior limit for t → 0+. By the assumptions on
the marginals μ0, μ1, the lim inf on the right hand side is actually a limit. By definition
of the infinitesimal generator (that we recall being for any measurable bounded function
f as Lf := limt→0(Ttf − f)/t we obtain,

lim inf
t→0+

A(u, Ttv)−A(u, v)

t
≥ 1

2

∫
ψLv dx− 1

2

∫
Q1ψ

∗Lv dx

and after integration by parts (4.7), it yields to

lim inf
t→0+

A(u, Ttv)−A(u, v)

t
≥ −1

2

∫ (∇ψ −∇Q1ψ
∗

2

)
· ∇v dx. (4.36)

Note that since ψ∗ is optimal, Q1ψ
∗ coincides with the potential ψ∗

t = log T1−tg∗ =
log T1−tf for t = 0. Therefore ∇Q1ψ

∗ = ∇ψ∗
0 = −→v ∗

0 = ←−v 1 = ∇ϕ1, where the middle
equality is given by the relation (4.17). We can conclude that on the right hand side
of (4.36) we have,

∇θ1 =
∇ψ1 −∇ϕ1

2

and this proves (4.28).
We have proven that the inferior and supremum limits are bounded from above and be-
low by the same quantity, and it proves (4.26). Moreover by the semigroup property, the
differential property can be extended to any t ≥ 0. �

Lemma 4.3.5

d

dt

∣∣∣
t=0

∫ 1

0

∫ ( |vts|2
2

+
1

8
|∇ log μts|2

)
μts dxds = −1

2

d

ds

∣∣∣
s=1

H(μs|L).

Proof
� We denote for simplicity,

(i) =
d

dt

∣∣∣
t=0

∫ 1

0

∫ |vts|2
2

μts dxds,

(ii) =
d

dt

∣∣∣
t=0

∫ 1

0

∫ (
1

8
|∇ log μts|2

)
μts dxds.

Let us compute separately, these two derivatives,
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(i) =

∫ 1

0

∫
vts

d

dt
vtsμ

t
s +

|vts|2
2

d

dt
μts dxds

∣∣∣∣
t=0

=

∫ 1

0

∫
vts ·

[
−1

2
∇ log μts −

t

2
∇
(
sΔμts
2μts

)
+

1

(μts)
2

(
s
Δ

2
Tst(μs∇θs)μ

t
s

−s

2
Tst(μs∇θs)Δμts

)]
μts +

|vts|2
4

sΔμts dxds

∣∣∣∣
t=0

=

∫ 1

0

∫
∇θs ·

[
−1

2
∇ log μs +

1

(μs)2

(
s
Δ

2
(μs∇θs)μs −

s

2
μs∇θsΔμs

)]
μs +

+
|∇θs|2

4
sΔμs dxds

=
1

2

∫ 1

0

∫
−∇θs · ∇μs + s∇θs ·Δ(μs∇θs)− s

|∇θs|2
2

Δμs dxds

=
1

2

∫ 1

0

∫
−∇θs · ∇μs + s

[
∇Δθs · ∇θsμs −

1

2
Δ(|∇θs|2)μs

]
dxds

(4.22)
=

∫ 1

0

[
−1

2

d

ds
H(μs|L)− 2s

∫
Γ2(θs)μsdx

]
ds.

On the other hand,

(ii) =
1

8

∫ 1

0

∫
2∇ log μts · ∇

(
sΔμts
2μts

)
μts +

1

2
|∇ log μts|2sΔμts dxds

∣∣∣∣
t=0

=
1

8

∫ 1

0

∫
s∇ log μs · ∇

(
Δμs
μs

)
μs +

1

2
|∇ log μs|2sΔμs dxds

=
1

8

∫ 1

0

∫
s(∇ log μs · ∇(Δ log μs + |∇ log μs|2) +

1

2
Δ|∇ log μs|2)μs dxds

=
1

8

∫ 1

0

∫
s∇ log μs · ∇Δ log μsμs −

1

2
sΔ|∇ log μs|2μs dxds

= −1

2

∫ 1

0

∫
sΓ2(log μs)μs dxds

Taking the sum of (i) and (ii),

(i) + (ii) =

∫ 1

0

[
−1

2

d

ds
H(μs|L)− 2s

∫
Γ2(ψs)μs +

1

2
Γ2(log μs)dx

]
ds

(4.23)
=

∫ 1

0

−1

2

d

ds
H(μs|L)−

s

2

d2

ds2
H(μs|L)ds

= −1

2

∫ 1

0

d

ds

(
s
d

ds
H(μs|L)

)
ds

= −1

2

d

ds

∣∣∣
s=1

H(μs|L).

�
The next theorem is an immediate consequence of Theorem 4.3.1 and Theorem 4.3.4. It
establishes the Evolution Variational Inequality for the entropic cost, under the CD(0, n)
condition.
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Corollary 4.3.6 (EVI for entropic cost) Under the same hypothesis of Theorem 4.3.4
(a),

d

dt

+

A(uL, TtvL) ≤
n

2

(
1− e−

1
n
[H(u|L)−H(Ttv|L)]

)
(4.37)

for any t ≥ 0. If u, v satisfy the hypothesis of Theorem 4.3.4 (b), then the standard
derivative on the left hand side has to be replaced by the super derivative.

Proof
� Without loss of generality, by the semigroup property, it is enough to prove (4.37) for
t = 0, i.e.

d

dt

∣∣∣
t=0

A(uL, TtvL) ≤
n

2

(
1− e−

1
n
[H(u|L)−H(v|L)]

)
.

By Theorem 4.3.1, we have in particular that the concavity of the function Ψ implies that

Ψ′(1) ≤ Ψ(1)−Ψ(0).

Taking into account the definition of Ψ, it is equivalent to say

e−H(v|L)/n
(
− 1

n

d

ds

∣∣∣
s=1

H(μs|L)
)

≤ e−H(v|L)/n − e−H(u|L)/n

that after rearranging the terms gives,

− d

ds

∣∣∣
s=1

H(μs|L) ≤ n
(
1− e−

1
n
[H(u|L)−H(v|L)]

)
. (4.38)

We conclude by applying (4.38) to (4.26), to obtain the claimed result,

d

dt

∣∣∣
t=0

A(uL, TtvL) ≤
n

2

(
1− e−

1
n
[H(u|L)−H(v|L)]

)
.

�

Remark 4.3.7 We show later at Corollary 4.3.11 that the EVI inequality for the entropic
cost provides an immediate and alternative proof of the EVI inequality for the Wasserstein
distance under the CD(0, n) condition.

The evolution variational inequality has some nice consequence. The first one stated in
the first Corollary below, is the contraction of the entropic cost along the heat flow. It is
an improvement of Theorem 3.6.1 ( [GLR17, Thm 6.6 (b)]) where dimensional contraction
with respect to two different time variables t, s ≥ 0 is shown.

Corollary 4.3.8 (Contraction) Under the same hypothesis of Theorem 4.3.4 (a), it
holds for any t > 0,

A(Tτu, Tτv) ≤ A(u, v)− n

∫ τ

0

sinh2

(
H(Ttu|L)−H(Ttv|L)

2n

)
dt. (4.39)
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Proof
� To derive contraction from EVI, we follow a standard strategy already used to deduce
contraction in Wasserstein distance, see [AGS08].
Inequality (4.37) is true for any probability density u, thus it is true in particular for Tsu
for some fixed s ≥ 0,

d

dt
A(Tsu, Ttv) ≤

n

2

(
1− e−

1
n
[H(Tsu|L)−H(Ttv|L)]

)
. (4.40)

We mentioned in Remark 4.2.1 (ii), that the entropic cost is symmetric with respect to
the initial and final measures, thus,

d

dt
A(Ttv, u) ≤

n

2

(
1− e−

1
n
[H(u|L)−H(Ttv|L)]

)
and if we switch u and v, it yields to

d

dt
A(Ttu, v) ≤

n

2

(
1− e−

1
n
[H(v|L)−H(Ttu|L)]

)
.

Since v is also arbitrary, we can replace it by Tsv for some s ≥ 0 fixed,

d

dt
A(Ttu, Tsv) ≤

n

2

(
1− e−

1
n
[H(Tsv|L)−H(Ttu|L)]

)
. (4.41)

We take the sum of (4.40) and (4.41),

d

dt
A(Tsu, Ttv)+

d

dt
A(Ttu, Tsv) ≤

n

2

(
2− e−

1
n
[H(Tsu|L)−H(Ttv|L)] − e−

1
n
[H(Tsv|L)−H(Ttu|L)]

)
.

We take s = t and integrate in t between 0 and τ , for some τ > 0,

A(Tτu, Tτv)−A(u, v) ≤ n

2

∫ τ

0

2−
(
e−

1
n
[H(Ttu|L)−H(Ttv|L)]+ e

1
n
[H(Ttu|L)−H(Ttv|L)]

)
dt

= n

∫ τ

0

1− cosh

(
H(Ttu|L)−H(Ttv|L)

n

)
dt.

Moreover, by recalling that sinh2 x = (cosh(2x) − 1)/2, we can rewrite the contraction
inequality as,

A(Tτu, Tτv)−A(u, v) ≤ −2n

∫ τ

0

sinh2

(
H(Ttu|L)−H(Ttv|L)

2n

)
dt.

�

Remark 4.3.9 Contraction for the entropic cost, implies the analogue dimensional con-
traction for the quadratic Wasserstein distance along the heat flow [BGG16, BGGK16].

W 2
2 (Tτu, Tτv) ≤ W 2

2 (u, v)− 4n

∫ τ

0

sinh2

(
H(Ttu|L)−H(Ttv|L)

2n

)
dt. (4.42)

It can be seen, by considering (4.39) for the ε-entropic cost Aε defined in (4.11), take the
limit for ε → 0 and recall the convergence property (4.12).
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Finally, we show an integral and equivalent form of (4.37). Through the integral form we
will be able in Corollary 4.3.11 to deduce the classical EVI for the Wasserstein distance.

Proposition 4.3.10 Under the same assumption as in Theorem 4.3.4, the following
statements are equivalent:

(i) For any u, v ∈ ΠS , and any t ≥ 0,

d

dt
A(u, Ttv) ≤

n

2

(
1− e−

1
n
[H(u|L)−H(Ttv|L)]

)
; (4.43)

(ii) For any u, v ∈ ΠS ,

d

dt

∣∣∣
t=0

A(u, Ttv) ≤
n

2

(
1− e−

1
n
[H(u|L)−H(v|L)]

)
;

(iii) For any u, v ∈ ΠS , and any t ≥ 0,

A(u, Ttv)−A(u, v) ≤ n

2
t
(
1− e−

1
n
[H(u|L)−H(Ttv|L)]

)
. (4.44)

Proof
� (i) ⇒ (iii) We integrate (4.43) with respect to 0 ≤ t ≤ τ , for any fixed τ > 0. Thus,

A(u, Tτv)−A(u, v) ≤ n

2

∫ τ

0

1− e−
1
n
[H(u|L)−H(Ttv|L)]dt

≤ n

2

(
1− e−

1
n
[H(u|L)−H(Tτv|L)]

)∫ τ

0

dt

=
n

2
τ
(
1− e−

1
n
[H(u|L)−H(Tτv|L)]

)
where the second inequality is given by the fact that the entropy is decreasing along the
heat flow.
(iii) ⇒ (ii) We divide by t both sides of (4.44), and take the limit for t → 0+. The limit
exists on the left hand side by Theorem 4.3.4, and on the right hand side by continuity.
Therefore we obtain,

d

dt

∣∣∣
t=0

A(uL, TtvL) ≤
n

2

(
1− e−

1
n
[H(u|L)−H(v|L)]

)
.

(ii) ⇒ (i) It is true by the semigrop property. �

Corollary 4.3.11 (EVI for the Wasserstein distance) Under the same assumption
of Theorem 4.3.4, EVI for the Wasserstein distance holds for any t ≥ 0,

d+

dt
W 2

2 (u, Ttv) ≤ n(1− e−
1
n
[H(u|L)−H(Ttv|L)]). (4.45)

Proof
� Let us consider (4.43) for the ε-entropic cost (4.11). As we just showed, it implies the
integral form (4.44) for the ε-entropic cost,

Aε(u, Ttv)−Aε(u, v) ≤ n

2
t
(
1− e−

1
n
[H(u|L)−H(Ttv|L)]

)
.
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Taking the limit for ε → 0, and recalling (4.12) we obtain, for any t > 0,

W 2
2 (u, Ttv)−W 2

2 (u, v) ≤ nt
(
1− e−

1
n
[H(u|L)−H(Ttv|L)]

)
.

Finally, divide by t both sides and take the lim sup for t → 0+, to get

d

dt

+

W 2
2 (u, Ttv)

∣∣∣∣
t=0

≤ n
(
1− e−

1
n
[H(u|L)−H(v|L)]

)
.

Again, by the semigroup property, it implies (4.45) for any t ≥ 0+. Remark that at the
limit ε → 0 the differential property at Theorem 4.3.4 is no more satisfied, hence we
cannot have better than the sup-derivative of the Wasserstein distance. �

Remark 4.3.12 The absence of the factor 1/2 on the left hand side in (4.45) and (4.42),
is due to the fact that we have chosen the heat semigroup associated to L = Δ/2, that is a
more natural choise in the framework of the Schrödinger problem. It is straighforward to
see that they are equivalent to their analogues in [EKS15, BGG16] and [BGGK16], where
L = Δ.
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Chapter 5

Evolutionary variational inequality
under CD(κ,∞)

In this chapter we investigate the Evolutionary variational inequality under the CD(κ,∞)
condition for some κ ∈ R. Let (Tt)t≥0 be the Markov semigroup associated with the
generator L = (Δ − ∇V · ∇)/2 and reversing measure m = e−VL. We recall that in
this context to say that L satisfies a CD(κ/2,∞) condition is equivalent to say that
the potential V is κ-convex, that is |∇2V | ≥ κ/2Id . The EVI inequality in Wasserstein
distance under CD(κ/2,∞) writes as,

d+

dt
W 2

2 (u, Ttv) +
κ

2
W 2

2 (u, Ttv) ≤ H(u|m)−H(Ttv|m), ∀t ≥ 0, (5.1)

where d+/dt is defined at (4.27). This inequality was first introduced in [AGS08] to
define gradient flows in measure metric spaces and κ-convexity of functionals such as the
relative entropy (See also [Vil09, Ch. 23]). In Chapter 4 we proved this inequality for
the entropic cost in the flat dimensional case CD(0, n). Here we show the counterpart
of these results in the case CD(κ,∞). In particular we will see that, contrarily to the
CD(0, N) case, when we replace the ε-entropic cost to the Wasserstein distance in (5.1)
we obtain a penalized inequality due to the diffusion phenomenon. Luckily at the limit
for ε → 0+, the additional term vanishes, and we recover the standard results for the
Wasserstein distance.
After briefly reviewing in Section 5.1 the basic notions and properties that we need in the
proof, at Section 5.2 we present the main result of this Chapter, that will be proved at
Section 5.3 via two different methods.

5.1 Setting

We start by recalling some essential facts already stated in Chapters 1, 2, 3. We denote
(Tt)t≥0 the Kolmogorov Markov semigroup associated with generator L = (Δ−∇V ·∇)/2
and recall that it satisfies the CD(κ/2,∞) condition (1.32), that is equivalent to the
gradient bound

|∇Ttf |2 ≤ e−κtTt(|∇f |2) (5.2)

for any function f ∈ C∞
c (Rn), (Theorem 1.1.26).

We consider the Schrödinger problem with reference measure Rε, associated to the gen-
erator Lε = ε(Δ−∇V · ∇)/2 for which we adopt the convention for the notation (2.11),

139



140 CHAPTER 5. EVI UNDER CD(κ,∞)

that we recall,
Lε = εL, Γεf = εΓf, Γε2f = ε2Γ2.

where

Lf = (Δf −∇V · ∇f)/2, Γf =
|∇f |2
2

, Γ2f =
1

2
L(|∇f |2)−∇f · ∇Lf.

Let the marginals μ0, μ1 ∈ P(Rn) be such that the hypothesis of Theorem 2.1.4 are
satisfied, then the associated entropic cost is defined by,

Aε(μ0, μ1) = inf{εH(P |Rε) : P ∈ P(Ω), P0 = μ0, P1 = μ1} −
ε

2
[H(μ0|m) +H(μ1|m)].

See Chapter 2 for any further detail about the Schrödinger problem. In Chapter 3 we
proved the dual Kantorovich formulation for the entropic cost (2.37), that we recall here.

Theorem 5.1.1 (Dual Kantorovich formulation) For μ0, μ1 ∈ C∞
c (Rn), then

−→A ε(μ0, μ1) = sup
ψ∈Cb(Rn)

{∫
ψ dμ1 −

∫
Qε

1ψ dμ0

}
. (5.3)

Here, Qε
tψ(x) := ε log Tεt(e

ψ/ε)(x), x ∈ Rn and it satisfies the Hamilton-Jacobi-Bellman
equation {

∂tu− |∇u|2
2

− ε
2
Δu = 0, t > 0,

u(0, ·) = ψ.
(5.4)

We recall from Section 2.3 that the forward entropic cost is defined by,
−→A ε(μ0, μ1) = inf{H(P |R) ; P ∈ P(Ω) s.t. P0 = μ0 and P1 = μ1} − εH(μ0|L)

and is related to the entropic cost (4.10) by the relation

A(μ0, μ1) =
−→A(μ0, μ1) +

ε

2
[H(μ0|L)−H(μ1|L)]. (5.5)

On the other hand the entropic cost of Definition 2.3.2 admits the Benamou-Brenier
formulation, proved at Chapter 3, which states that

Theorem 5.1.2 (Benamou-Brenier formulation) Let R be the Brownian motion on
Rn, μ0, μ1 ∈ C∞

c (Rn), then

Aε(μ0, μ1) =
1

2
inf

∫ 1

0

∫
Rn

(
|∇φs|2 +

ε2

4
|∇ log ρs|2

)
μs(z) dxds, (5.6)

where we denoted ρs = dμs/dm for all 0 ≤ s ≤ 1, and the infimum runs over all the
couples (μs,∇φs)0≤s≤1⎧⎨⎩

μs ∈ P (Rn), ∀ 0 ≤ s ≤ 1, φs ∈ C∞([0, 1]× Rn)
μ0 = μ0, μ1 = μ1,
∂sμt +∇ · (μs∇φs) = 0.

For the proof of these two results, in the case ε = 1, see Sections 3.4 and 3.5. We denote by
(μεs)0≤s≤1 the entropic interpolation, solution of the Schrödinger problem (See Section 2.2),
and recall that we denote the density of (μεs)0≤s≤1 with respect to the Lebesgue measure
and to the equilibrium measure m, respectively by,

μεs =
dμεs
dx

, ρεs =
dμεs
dm

,

where,

ρεs = e

ϕεs + ψεs
ε μεs = e

ϕεs + ψεs
ε e−V .
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5.2 Main result
Theorem 5.2.1 (EVI) Let u, v ∈ C∞

c (Rn) be two probability densities with respect to m
on Rn. Under CD(κ/2,∞) with κ ∈ R we have for all t ≥ 0,

d

dt
Aε(um, Ttvm) +

κ

2
Aε(um, vm)− ε2

8
|κ|
∫ 1

0

Im(ρs)ds ≤
1

2
[H(u|m)−H(Ttv|m)] (5.7)

where (ρs)0≤s≤1 is the density of the entropic interpolation between um and vm, and Im(ρs)
is a short notation for the Fisher information of ρs with respect to the reference measure
dm,

Im(ρ) =

∫
|∇ log ρ|2ρ dm. (5.8)

Remarks 5.2.2 Let us point out that:
• we obtained a penalized inequality, due to the presence of the additional term,

−ε2

8
|κ|
∫ 1

0

Im(ρs)ds

which corresponds to |κ| times the osmotic action introduced at Section 2.3.
• the case κ = 0 is trivial. It can be seen as a consequence of the case κ > 0, or as a
consequence of Corollary 4.3.6 when N → ∞.

Corollary 5.2.3 (EVI under CD(κ,∞) for W2) Under the same assumptions as The-
orem 5.2.1, we have

d+

dt
W 2

2 (u, Ttv) +
κ

2
W 2

2 (u, Ttv) ≤ H(Ttv|m)−H(u|m), ∀t ≥ 0.

Proof
� Consider an integrated form of the EVI inequality (5.7).

Aε(um, Ttvm)−Aε(um, vm)+
κ

2
tAε(um, vm)+

ε2

8
|κ|t

∫ 1

0

Im(μs)ds ≤
1

2

∫ t

0

H(u|m)−H(Tτv|m)

Taking the limit for ε → 0+, we have from (2.41) and (2.50),

W 2
2 (um, Ttvm)

2
− W 2

2 (um, vm)

2
+ κt

W 2
2 (um, vm)

4
≤ 1

2

∫ t

0

H(u|m)−H(Tτv|m).

It suffices to divide by t > 0 and take the superior limit for t → 0+, to obtain the claimed
result. �

5.3 Proofs

5.3.1 First method

Here we present one proof of Theorem 5.2.1, following the strategy explained by Bakry
Gentil and Ledoux in [BGL15] to prove EVI for the Wasserstein distance in the particular
case κ = 0. This proof is based on the Kantorovich and Benamou-Brenier formulations,
with the trick of running along the entropic interpolation (μs)0≤s≤1, not linearly in s but
through a smooth bijective function ζ(s) : [0, 1] → [0, 1] "carrying" the curvature κ.

First we prove the following auxiliary result.
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Lemma 5.3.1 For any couple (μs, vs)0≤s≤1 such that conditions (i)-(iii) in (5.6) are sat-
isfied, for all function H ∈ L2(m) and each smooth function ζ : [0, 1] �→ [0, 1], it holds,∫ 1

0

∫
ζ̇μ̇ζ(s)H − ζ̇Kμζ(s)

|∇H|2
2

ds dx ≤ 1

2K

∫ 1

0

∫
|vs|2μs ds dx

for all K > 0.

Proof
� Consider the transport equation (iii) in (5.6) at time t = ζ(s),∫ 1

0

∫
ζ̇μ̇ζ(s)H ds dx =

∫ 1

0

∫
−ζ̇H∇ · (vζ(s)μζ(s)) ds dx

=

∫ 1

0

∫
ζ̇(∇H · vζ(s))μζ(s) ds dx

≤
∫ 1

0

∫
ζ̇

(
K

2
|∇H|2 + 1

2K
|vζ |2

)
μζ(s) ds dx

for all K > 0. After the change of variable t = ζ(s) in the last term on the right hand
side and after rearranging the terms, we get the desired result. �

Proof of Theorem 5.2.1
� Thanks to the semigroup property, we can prove inequality (5.7) in t = 0, without loss
of generality. For ε > 0 and all t ≥ 0, let us define

B :=

∫
ψ Ttv dm−

∫
Qε

1ψ udm+

(
t− ε

2

)∫
(Ttv log Ttv − u log u) dm

where ψ is the optimal function in the Kantorovich dual formulation (5.3) when μ0 = um
and μ1 = Ttvm. Let (μs)0≤s≤1 be the entropic interpolation between um and vm, let
(ρs)0≤s≤1 be its density with respect to the equilibrium measure m and let ζ(s) be a
smooth function from [0, 1] to [0, 1] such that ζ(0) = 0 and ζ(1) = 1. Then, it can be
easily checked that B can be written as,

B =

∫ 1

0

d

ds

∫
Qε

1−sψTstρζ(s) +
(
t− ε

2

)
Tstρζ(s) log Tstρζ(s)ds dm

Let us compute explicitly the derivative with respect to s ∈ [0, 1]. Recall the Hamil-
ton Jacobi Bellman equation (5.4) satisfied by the semigroup Qε, and together with the
properties in Proposition 1.1.22 we obtain,

B =

∫ 1

0

∫ [
−εLQε

1−sψ − |∇Q1−sψ|2
2

]
Tstρζ(s) +Qε

1−sψ
[
tLTstρζ(s) + ζ̇Tstρ̇ζ(s)

]
+

(
t− ε

2

)
[tLTstρζ(s) + ζ̇Tstρ̇ζ(s)] log Tstρζ(s) ds dm

We regroup the terms with factor ζ̇ ρ̇ζ(s) and integrate by parts according to the identity,∫
fLg dm = −1

2

∫
∇f · ∇g dm.
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We get,

B =

∫ 1

0

∫
ζ̇ ρ̇ζ(s)

[
TstQε

1−sψ +
t− ε

2
Tst log Tstρζ(s)

]
+

Tstρζ(s)

[
t− ε

2
∇Qε

1−sψ · ∇ log Tstρζ(s) −
|∇Qε

1−sψ|2
2

− t(t− ε)

4
|∇ log Tstρζ(s)|2

]
ds dm.

We set H := TstQε
1−sψ+

(
t−ε
2

)
Tst log Tstρζ(s) and rearrange the terms in the square brackets

to obtain the square of a sum,

B =

∫ 1

0

∫
ζ̇ ρ̇ζ(s)H − 1

2
Tstρζ(s)

∣∣∣∣∇Qε
1−sψ +

(
t− ε

2

)
∇ log Tstρζ(s)

∣∣∣∣2 +
+

ε2

8
Tstρζ(s)|∇ log Tstρζ(s)|2ds dm.

For what concerns the second term,∫ 1

0

∫
−1

2
Tstρζ(s)|∇Qε

1−sψ +

(
t− ε

2

)
∇ log Tstρζ(s)|2ds dm

=

∫ 1

0

∫
−1

2
ρζ(s)Tst

(
|∇Qε

1−sψ +

(
t− ε

2

)
∇ log Tstρζ(s)|2

)
ds dm

≤
∫ 1

0

∫
−1

2
eκstρζ(s)

(
|∇TstQε

1−sψ +

(
t− ε

2

)
∇Tst log Tstρζ(s)|2

)
ds dm

=

∫ 1

0

∫
−1

2
eκstρζ(s)|∇H|2 ds dm,

where the inequality is given by the commutation property between the semigroup and
the gradient (5.2). Thus we obtained,

B ≤
∫ 1

0

∫
ζ̇ ρ̇ζ(s)H − 1

2
ρζ(s)e

κst|∇H|2 + ε2

8
Tstρζ(s)|∇ log Tstρζ(s)|2 ds dm. (5.9)

Now, we use Lemma 5.3.1 applied to the couple (μs, vs)0≤s≤1 given by the entropic in-
terpolation between um and vm, and the associated current velocity, with ζ̇K = eκst.
Together with the boundary conditions ζ(0) = 0 and ζ(1) = 1, it yields to,

ζ(s) :=
1

K

eκst − 1

κt
, where K =

eκt − 1

κt
> 0, ∀ t > 0. (5.10)

This provides the following upper bound for the first two terms on the right hand side of
(5.9),

B ≤
∫ 1

0

∫
1

2K
|vs|2ρs +

ε2

8
Tstρζ(s)|∇ log Tstρζ(s)|2 ds dm (5.11)

According to the Benamou-Brenier formulation (5.6) the first term on the right hand side
is equal to∫ 1

0

∫ |vs|2
2K

ρs ds dm =
1

K

[
Aε(um, vm)− ε2

8

∫ 1

0

∫
|∇ log ρs|2ρs ds dm

]
. (5.12)
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On the other hand, given the Kantorovich dual formulation (5.3), B corresponds to

B =
−→A ε(um, Ttvm) +

(
t− ε

2

)
[H(Ttv|m)−H(u|m)],

which reduces, according to (5.5) to,

B = Aε(um, Ttvm) + t[H(Ttv|m)−H(u|m)]/2. (5.13)

Finally the estimation (5.11) of B togheter with (5.12) and (5.13) yields to,

Aε(um, Ttvm) +
t

2
[H(Ttv|m)−H(u|m)] ≤ 1

K
Aε(um, vm)−

ε2

8K

∫ 1

0

I(ρs|m) ds+
ε2

8

∫ 1

0

∫
Tstρζ(s)|∇ log Tstρζ(s)|2 ds dm

The CD(κ/2,∞) condition implies (see [BGL14, Section 5.7]),

Im(Ttρs) ≤ e−κtIm(ρs).

Moreover, dividing by t > 0,

1

t
Aε(um, Ttvm)− 1

Kt
Aε(um, vm) ≤ 1

2
[H(u|m)−H(Ttv|m)]+

ε2

8

[∫ 1

0

e−κts

t
Im(ρζ(s))ds−

1

Kt

∫ 1

0

Im(ρs)ds

]
. (5.14)

For small positive t, by the definition of K in (5.10), a Taylor expansion of 1/K gives
1/K = 1− κ/2t+ o(t). For what concerns the terms inside the square brackets, they can
be written as,∫ 1

0

Im(ρs)

(
1

t
− 1

Kt

)
︸ ︷︷ ︸

(∗)

ds+

∫ 1

0

Im(ρζ(s))
e−κst − 1

t︸ ︷︷ ︸
(∗∗)

ds+

∫ 1

0

1

t
[Im(ρζ(s))− Im(ρs)]︸ ︷︷ ︸

(∗∗∗)

ds. (5.15)

Let us compute the three terms separately. Taylor expansions provide (∗) = (K−1)/Kt =
κ/2 + o(t) and (∗∗) = (e−κst − 1)/t = −κs+ o(t). After the change of variable ζ(s) = σ,
with ds = 1/(1 + κtσK)dσ for the first term in (∗ ∗ ∗), we can write it as,

(∗ ∗ ∗) =
∫ 1

0

Im(μs)

(
K

t+ κt2sK
− 1

t

)
ds

A Taylor expansion of the term into the square brackets gives,

(∗ ∗ ∗) =
∫ 1

0

(κ/2− κs+ o(t))Im(ρs)ds

Hence we obtained that (5.15) is equal to∫ 1

0

κ(1− 2s+ o(t))Im(ρs)ds.
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Raplacing it in the square brackets in (5.14), and taking the limit for t → 0+, yields,

d

dt

∣∣∣
t=0

Aε(um, Ttvm)− κ

2
Aε(um, um) ≤ 1

2
[H(u|m)−H(v|m)]

+
ε2

8
κ

∫ 1

0

(1− 2s)Im(ρs)ds

Since 0 ≤ s ≤ 1, it holds κ(1− 2s) ≤ |κ|, hence we obtain the desired result,

d

dt

∣∣∣
t=0

Aε(um, Ttvm)− κ

2
Aε(um, um) ≤ 1

2
[H(u|m)−H(v|m)] +

ε2

8
|κ|
∫ 1

0

Im(ρs)ds.

�

5.3.2 Second method

Here we prove Theorem 5.2.1 following the method proposed by Daneri and Savaré in
[DS08] for the Wasserstein distance based on the approach of [OW05] and [Ott01]. We
will show in particular that the same arguments are still valid for the entropic cost with
some proper adaptation.
Again, we denote (μs)0≤s≤1 the entropic interpolation between um and vm and (ρs)0≤s≤1 its
density with respect to the reversing measure m. We consider the following perturbation
of the entropic interpolation through the Kolmogorov semigroup, for all t ≥ 0

(ρts)0≤s≤1 := (Tstμs)0≤s≤1 (5.16)

Let φts be defined by
∂sμ

t
s +∇ · (μts∇φts) = 0 (5.17)

We denote the action of the perturbed path as,

At
s :=

∫
|∇φts|2ρts dm+

ε2

4

∫
|∇ log ρts|2ρts dm (5.18)

We present here some preliminary results that will be crucial in the following proof of
Theorem 5.2.1.

Lemma 5.3.2 Let At
s, ρ

t
s and φts be respectively like in (5.18), (5.16) and (5.17). Then

the following formula holds

1

2

∂

∂t
At
s +

1

2

∂

∂s
H(μts|m) = −2s

∫
[Γ2(φ

t
s) +

ε2

4
Γ2(log ρ

t
s)] ρ

t
s dm (5.19)

Furthermore, under CD(κ/2,∞)

• if κ = 0,
∂

∂t
At
s +

∂

∂s
H(μts|m) ≤ 0 (5.20)

• if κ �= 0,
∂

∂t
At
s +

∂

∂s
H(μts|m) ≤ −κsAt

s (5.21)
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Proof
� The proof of (5.19) is essentially the same of the proof of Lemma 4.3.5. For simplicity
in the proof we assume ε = 1. Let us start by computing (i) and (ii) separately in

1

2

∂

∂t
At
s =

1

2

∂

∂t

∫
|∇φts|2ρts dm︸ ︷︷ ︸
(i)

+
ε2

8

∂

∂t

∫
|∇ log ρts|2ρts dm︸ ︷︷ ︸

(ii)

(5.22)

We recall that the computation of (i) can be found in a more general setting in [DS08],
but we decided to report it for completeness.

(i) =

∫
∇φts ·

∂

∂t
∇φtsρ

t
s dm+

1

2

∫
|∇φts|2

∂

∂t
ρts dm

=

∫
−∇ ·

(
ρts

∂

∂t
∇φts

)
φts dm+

s

2

∫
|∇φts|2Lρts dm

=

∫ [
∂2

∂t∂s
ρts +∇ ·

(
∇φts

∂

∂t
ρts

)]
φts dm+

s

2

∫
L(|∇φts|2)ρts dm

=

∫
Lρtsφ

t
s − sL∇ · (ρts∇φts)φ

t
s +∇ · (sLρts∇φts)φ

t
s +

s

2
L(|∇φts|2)ρts dm

=

∫
ρtsLφ

t
s − s∇ · (ρts∇φts)Lφ

t
s − sLρts|∇φts|2 +

s

2
L(|∇φts|2)ρts dm

=

∫
ρtsLφ

t
s − s∇ρts · ∇φtsLφ

t
s − s(Δφts)

2ρts − sρtsL(|∇φts|2) +
s

2
L(|∇φts|2)ρts dm

=

∫
ρtsLφ

t
s − s∇ρts · ∇φtsLφ

t
s − sρts(Lφ

t
s)

2 − s

2
ρtsL(|∇φts|2) dm

=

∫
−1

2
∇ρts · ∇φts + sρts[(Lφ

t
s)

2 +∇φts · ∇Lφts]− sρts(Lφ
t
s)

2 − s

2
L(|∇φts|2)ρts dm

=

∫
−1

2
∇ρts · ∇φts dm+ s

∫ (
∇φts · ∇Lφts −

1

2
L(|∇φts|2)

)
ρts dm

We remark now that,

• By definition of Γ2 operator 1.1.21

∇φts · ∇Lφts −
1

2
L(|∇φts|2) = −2Γ2(φ

t
s). (5.23)

• On the other hand it follows by Proposition 2.5.1 that∫
1

2
∇φts · ∇ρts dm =

1

2

∂

∂s
H(μts|m).

Thanks to these two considerations, we can conclude that

(i) = −1

2

∂

∂s
H(μts|m)− 2s

∫
Γ2(φ

t
s)ρ

t
s dm
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Let us compute now the second part of (5.22), which does not appear in the case of the
Wasserstein distance.

(ii) =
ε2

8

∂

∂t

∫
|∇ log ρts|2ρts dm

=
ε2

8

∫
2∇ log ρts ·

∂

∂t
∇ log ρtsρ

t
s + |∇ log ρts|2

∂

∂t
ρts dm

=
ε2

4

∫
∇ log ρts ·

(∇(sLρts)ρ
t
s −∇ρts(sLρ

t
s)

ρts

)
dm+

ε2

8
s

∫
|∇ log ρts|2Lρts dm

=
sε2

4

[∫
∇ log ρts · ∇Lρts −∇ log ρts ·

∇ρts
ρts

Lρts dm+
1

2

∫
|∇ log ρts|2Lρts dm

]
=

sε2

4

∫
∇ log ρts · ∇Lρts − |∇ log ρts|2Lρts +

1

2
|∇ log ρts|2Lρts dm

=
sε2

4

∫
∇ log ρts · ∇L log ρtsρ

t
s −

1

2
L(|∇ log ρts|2)ρts dm

= −sε2

2

∫
Γ2(log ρ

t
s)ρ

t
s dm

where the last equality is given again by (5.23). This concludes the proof of (5.19). The
two inequalities (5.20) and (5.21) follow directly from the Bakry-Emery condition (1.32).
Let us assume κ �= 0,

1

2

∂

∂t
At
s +

1

2

∂

∂s
H(μts|m) = −2s

∫
[Γ2(φ

t
s) +

ε2

4
Γ2(log ρ

t
s)] ρ

t
s dm

≤ −κ

2
s

∫
|∇φts|2 +

ε2

4
|∇ log ρts|2ρts dm

= −κ

2
sAt

s

The case κ = 0 is trivial. �
The next Lemma is a generalization to the entropic setting of [DS08, Lem. 5.1].

Lemma 5.3.3 For every function f ∈ C∞([0, 1]), and (μs, φs)0≤s≤1 satisfying conditions
(i)-(iii) in (4.2.5),

Aε(um, vm)− ε2

8

∫ 1

0

∫
1− L2

ff(s)
2

Lff(s)
|∇ log ρs|2 ds dm ≤ Lf

2

∫ 1

0

f(s)Asds,

where Lf =
∫ 1

0
f(s)−1ds.

Proof
� We consider a smooth increasing map r : [0, 1] → [0, 1] defined by

r(s) := L−1
f

∫ s

0

1

f(s)
ds, Lf :=

∫ 1

0

1

f(s)
ds.

We define s the inverse function of r.

s(r) = r−1(r) = r−1(r(s)) = s(r(s)).
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So,
s′(r(s)) = Lff(s).

We consider the new reparametrized curve

ρ̄r(x) := ρs(r)(x), φ̄r(x) := s′(r)φs(r)(x).

It can be easily verified that (ρ̄r, φ̄r) satisfies conditions (i)-(iii) in (5.6) thus, the Benamou-
Brenier formulation implies that

Aε(um, vm) ≤ 1

2

∫ 1

0

Ārdr, (5.24)

where,

Ār =

∫
|∇φ̄r|2ρ̄r(x) dm+

ε2

4

∫
|∇ log ρ̄r|2ρ̄r dm

=

∫
|∇φs(r)|2ρs(r)s′(r)2 dm+

ε2

4

∫
|∇ log ρs(r)|2ρs(r) dm

= s′(r)2As(r) +
ε2

4
(1− s′(r)2)

∫
|∇ log ρs(r)|2ρs(r) dm.

Integrating with respect to r ∈ [0, 1],∫ 1

0

Ārdr =

∫ 1

0

s′(r)2As(r)dr +
ε2

4

∫ 1

0

(1− s′(r)2)
∫

|∇ log ρs(r)|2ρs(r) dm

=

∫ 1

0

s′(r(s))Asds+
ε2

4

∫ 1

0

1− s′(r(s))2

s′(r(s))

∫
|∇ log ρs|2ρs ds dm

= Lf

∫ 1

0

f(s)Asds+
ε2

4

∫ 1

0

∫
1− L2

ff(s)
2

Lff(s)
|∇ log ρs|2ρs ds dm,

where the last equality is obtained with the change of variable s(r) = s. Together
with (5.24) it follows that

Aε(um, vm) ≤ Lf
2

∫ 1

0

f(s)Asds+
ε2

8

∫ 1

0

∫
1− L2

ff(s)
2

Lff(s)
|∇ log ρs|2ρs ds dm

that is the claimed result. �
We have now all the elements to prove the main result of this section.

Proof of Theorem 5.2.1
� Let us remark that thanks to the semigroup property, we can prove EVI only for t = 0
without loss of generality.
Let us start by multiplying the inequality (5.21) by eκst ,

1

2

∂

∂t
At
se
κst +

κ

2
sAt

se
κst +

1

2

∂

∂s
H(μts|m)eκst ≤ 0,

that can be written also as,

1

2

∂

∂t

(
At
se
κst
)
+

1

2

∂

∂s

(
H(μts|m)eκst

)
≤ κ

2
teκstH(μts|m).
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We integrate with respect to s ∈ [0, 1],

1

2

∂

∂t

∫ 1

0

eκstAt
s ds+

1

2
eκtH(μ1

t |m)− 1

2
H(μ0

t |m) ≤
∫ 1

0

κ

2
teκstH(μts|m) ds.

By definition of ρts (5.16) we have μ0
t = u, μ1

t = Ttv. Then, we integrate with respect to
t ∈ [0, τ ] for some τ ≥ 0,

1

2

∫ 1

0

eκsτAs
τ ds−

1

2

∫ 1

0

Ãs
0 ds−

τ

2
H(u|m)+

1

2

∫ τ

0

eκtH(Ttv|m) dt ≤
∫ τ

0

∫ 1

0

κ

2
teκstH(μts|m) dtds.

(5.25)
Since the entropy is decreasing along the semigroup (Tt)t≥0,∫ τ

0

eκtH(Ttv|m)dt ≥ H(Tτv|m)Eκ(τ),

where we denoted,

Eκ(τ) :=

∫ τ

0

eκtdt =
eκτ − 1

κ
.

By the Benamou-Brenier formulation (5.6) and the fact that (μ0
s)0≤s≤1 coincides with the

entropic interpolation between um and vm,

−1

2

∫ 1

0

A0
sds = −Aε(um, vm).

In order to control the first term on the left hand side of (5.25), we apply Lemma 5.3.3
with

f(s) = eκsτ , hence Lf (τ) =
1− e−κτ

κτ
, ∀τ > 0. (5.26)

So from (5.25) we get,

1

Lf (τ)
Aε(um, Ttvm)−Aε(um, vm)− ε2

8

∫ 1

0

∫
1− L2

ff(s)
2

L2
ff(s)

|∇ log ρsτ |2ρsτ ds dm

− τ

2
H(u|m) +

Eκ(τ)

2
H(Tτv|m) ≤

∫ τ

0

∫ 1

0

κ

2
teκstH(μts|m) dtds. (5.27)

• We consider first the case κ ≤ 0. Being negative, we can then neglect the term on the
right hand side.
We divide (5.27) by τ > 0 and let τ → 0+. Since Lf (0) = 1, (5.27) gives,

d

dτ

[
1

Lf (τ)
Aε(um, Tτvm)

]
τ=0

− lim
τ→0

ε2

8

∫ 1

0

∫
1− L2

ff(s)
2

tL2
ff(s)

|∇ log ρτs |2ρτs ds dm

≤ 1

2
[H(u|m)−H(v|m)]. (5.28)

Let us study now each term separately.

The first term:

d

dτ

[
1

Lf (τ)
Aε(um, Tτvm)

]
τ=0

=
d

dτ

1

Lf (τ)

∣∣∣∣
τ=0

Aε(um, vm) +
1

Lf (0)

d

dτ
Aε(um, Tτvm)

∣∣∣
τ=0

=
κ

2
Aε(um, vm) +

d

dτ
Aε(um, Tτvm)

∣∣∣
τ=0
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It can be easily checked indeed that the derivative of (Lf (τ))−1 in τ = 0 is equal to κ/2.

The second term:

lim
τ→0

ε2

8

∫ 1

0

∫
1− L2

ff(s)
2

τL2
ff(s)

|∇ log ρτs |2ρτs ds dm.

By definition of f and Lf (5.26),

1− L2
ff(s)

2

L2
ff(s)

=

1−
(
1− e−κτ

κτ

)2

f(s)2(
1− e−κτ

κτ

)2

f(s)

=
e−κsτ(

1− e−κτ

κτ

)2 − eκsτ

≤ e−κτ(
1− e−κτ

κτ

)2 − eκτ

where the inequality follows from the fact that κ ≤ 0 and 0 ≤ s ≤ 1. With the Taylor
expansion we can conclude that

lim
τ→0

1

τ

⎛⎜⎜⎜⎝ e−κτ(
1− e−κτ

κτ

)2 − eκτ

⎞⎟⎟⎟⎠ = lim
τ→0

1

τ

(−κτ + 3(κτ)2/4 + o(τ 2)

1− κτ + (κτ)2/4 + o(t2)

)

= −κ.

And finally we get,

lim
τ→0

ε2

8

∫ 1

0

∫
1− L2

ff(s)
2

τL2
ff(s)

|∇ log ρτs |2ρτs ds dm ≤ lim
τ→0

ε2

8

1

τ

⎛⎜⎜⎜⎝ e−κτ(
1− e−κτ

κτ

)2 − eκτ

⎞⎟⎟⎟⎠
∫ 1

0

Im(ρ
s
τ ) ds

= −ε2

8
κ

∫ 1

0

Im(ρs) ds.

Coming back to (5.28), it reduces to

d

dτ
Aε(um, Tτvm)

∣∣∣∣
τ=0

+ κ

[
Aε(um, vm) +

ε2

8

∫ 1

0

Im(ρs)ds

]
≤ 1

2
[H(u|m)−H(v|m)].

• Let us consider now the case κ ≥ 0. Since the entropy is decreasing along the heat flow,
and convex along the entropic interpolation, the term on the right hand side of (5.25) is
bounded by,∫ τ

0

∫ 1

0

κ

2
teκtsH(μts|m) dsdt ≤

∫ τ

0

∫ 1

0

κ

2
teκtsH(μs|m) dsdt

≤
∫ τ

0

∫ 1

0

κ

2
teκts[(1− s)H(u|m) + sH(v|m)] dsdt

≤ κ

2
τ 2eκτ [H(ν|m) +H(μ|m)].



5.3. PROOFS 151

For what concerns the bounds of the terms of the left hand side of (5.25), the first one
remains unchanged, while the second one changes as follows,

1− L2
ff(s)

2

L2
ff(s)

=

1−
(
1− e−κτ

κτ

)2

f(s)2(
1− e−κτ

κτ

)2

f(s)

=
e−κsτ(

1− e−κτ

κτ

)2 − eκsτ

≤ 1(
1− e−κτ

κτ

)2 − 1.

Therefore,

lim
τ→0

1

τ

⎛⎜⎜⎜⎝ 1(
1− e−κτ

κτ

)2 − 1

⎞⎟⎟⎟⎠ = lim
τ→0

1

τ

κτ − (κτ)2/4 + o(t2)

1− κτ + (κτ)2/4 + o(t2)

= κ.

So this time,

lim
τ→0

ε2

8

∫ 1

0

∫
1− L2

ff(s)
2

τL2
ff(s)

|∇ log μτs |2μτs ds dm ≤ κ

∫ 1

0

∫
|∇ log μs|2μs ds , dm

which has opposite sign with respect to the previous case κ ≤ 0. So, as before,

d

dτ
Aε(um, Tτvm)

∣∣∣∣
τ=0

+ κ

[
Aε(um, vm)− ε2

8

∫ 1

0

Im(ρs)ds

]
≤ 1

2
[H(u|m)−H(v|m)].

that is the claimed result. �
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Chapter 6

Functional inequalities when ε = 1

In the previous chapters we used the Schrödinger problem to prove functional inequalities
by recovering the optimality of McCann geodesics at the limit ε → 0+. In this chapter we
prove that the Schrödinger problem is a useful tool itself for a fixed ε = 1. We will show
the classical Gaussian concentration and Prékopa-Leindler inequalities by using only the
statistical physical nature of the Schrödinger problem, together with a simple coupling
technique.

6.1 Concentration inequality
In the last fifty years the study of the concentration measure phenomenon concerned a
wide number of mathematicians from different fields, such as geometry, functional analysis,
discrete mathematics, complexity theory and probability theory. See the textbook of
Ledoux [Led01] for a complete description of the subject from all the different points of
view.
In an abstract metric measure space (X , d,m) equipped with a Borel probability measure
m and distance d, a concentration inequality writes as

m(Ar) ≥ 1− Cp(r), ∀r ≥ 0, ∀A ⊂ X : m(A) ≥ p

where A is a Borel subset, 0 < p < 1 and Ar := {x ∈ X ; d(x,A) ≤ r} is the r-enlargement
of the subset A. The function Cp is called concentration profile of the measure m with
respect to the distance d. It was Marton for the first time in 1986 in [Mar86] to provide
a link between transport inequalities and concentration. Through an easy and elegant
argument she proved that if a measure satisfies a transport-entropy inequality of the form
α(Td) ≤ H then it satisfies a concentration inequality with profile Cp(r) = exp{−α(r−r0)}
for any bijection α : R+ → R+, any measurable subset A and any r ≥ r0 = α−1(log 2).
See for instance [GL10] for more details.
Here we propose a new proof of the concentration inequality of statistical mechanics
nature. We will consider the measure of a set as the relative entropy of the uniform
measure on the set, with respect to a prescribed reference measure, and then derive
the result from the dynamics of the particles system that is optimal for a particular
Schrödinger problem. The setting of our proof is the following.
We consider the state space X = Rn and denote as usual Ω = C([0, 1],Rn) the set
of continuous paths. We fix the reference path measure R ∈ P(Ω), with infinitesimal
generator L defined for all functions u : [0,∞)× Rn → R, by

Lu = Δu/2 + b · ∇u (6.1)
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where b is a locally Lipschitz vector field and satisfies

[b(t, y)− b(t, x)] · (y − x) ≤ −κ|x− y|2/2, ∀x, y ∈ Rn, t ≥ 0 (6.2)

for some κ ∈ R. We denote the transition probability kernel mx,t(·) := Rx(Xt ∈ ·) =
R(Xt ∈ ·|X0 = x) ∈ P (Rn) for all t > 0.

Theorem 6.1.1 (Concentration inequality) Let b be a locally Lipschitz vector field,
verifying hypothesis (6.2); for any 0 < p < 1, t > 0, x ∈ Rn and any Borel measurable
subset A ⊂ Rn such that mx,t(A) ≥ p, we have

mx,t(Ar) ≥ 1− exp

{
− [r − r(p, κ, t)]2

2τ(κ, t)

}
, ∀r ≥ r(p, κ, t)

where Ar := {x ∈ Rn; d(x,A) ≤ r} is the r-enlargement of the subset A, and

τ(κ, t) =

{
(1− e−κt)/κ if κ �= 0
t if κ = 0,

(6.3)

and r(p, κ, t) :=
√
2τ(κ, t) log(1/p).

Remarks 6.1.2 We denote,

Cκ
p,t(r) = exp

{
− [r − r(p, κ, t)]2

2τ(κ, t)

}
.

(a) For any fixed r > 0, 0 < p < 1 and κ ≥ 0, t �→ Cκ
p,t(r), t �→ τ(κ, t) and t �→ r(p, κ, t)

are increasing functions. This reflects the fact that mx,t starting from the Dirac
measure mx,0 = δx looses concentration as time increases.

(b) For any fixed r > 0, 0 < p < 1 and t > 0, κ �→ Cκ
p,t(r), t �→ r(p, κ, t) are decreasing

functions. This reflects the fact that increasing curvature enforces concentration.

(c) In the flat case κ = 0 we have τ(o, t) = t that is the usual Brownian concentration.

We prove the theorem after presenting some preliminary results about the two main
tools that we will need in the proof: the coupling technique and a light version of the
Schrödinger entropy minimization problem.

In the following, we consider an abstract probability space, (Θ,F ,P) and build a pro-
cess X such that X#P = R where R is the reference path measure that we introduced
above. Under hypothesis (6.2), R is the law of the Rn-valued random process X, with
SDE,

dXt = b(t,Xt) dt+ dWt, t ≥ 0 (6.4)

where W is a (P,F)-Brownian motion. In addition, let P and Q be two other path
measures in P(Ω), such that P0 = Q0 = R0 and H(P |R), H(Q|R) < ∞. On the same
abstract probability space (Θ,F ,P), there exists two Rn-valued random processes Y and
Z such that Y#P = P and Z#P = Q, and satisfy respectively the SDEs,

dYt = [b(t,Yt) + ut]dt+ dWt, t ≥ 0

dZt = [b(t,Zt) + vt]dt+ dWt, t ≥ 0
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for the same vector field b(t, ·) and the same (P,F)-Brownian motion W as in (6.4), with
initial conditions Y0 = Z0 = X0, P-a.e., where ut and vt are two predictable vector fields
given by Girsanov’s Theorem 1.1.14.

Lemma 6.1.3 For all t > 0,

|Zt − Yt|2 ≤ τ(κ, t)

∫ t

0

|vs − us|2ds < ∞

for the same constant τ(κ, t) as in (6.3).

Proof
� By Ito’s formula,

d|Zs − Ys|2 = 2(Zs − Ys) · d(Zs − Ys)

= 2(Zs − Ys) · [b(s,Zs)− b(s,Ys) + vs − us]ds

≤ −κ|Zs − Ys|2ds+ 2(Zs − Ys) · (vs − us)ds.

An integration in 0 ≤ s ≤ t and the initial condition Z0 = Y0 = x, lead to

|Zt − Yt|2 ≤
∫ t

0

−κ|Zs − Ys|2 + 2(Zs − Ys) · (vs − us)ds.

We can use here the following nonlinear Gronwall’s type inequality, which states that for
c ≥ 0, and a(s), b(s) continuous functions, if for t ≥ 0,

u(t) ≤ c+

∫ t

0

[a(s)u(s) + b(s)u(s)1/2]ds,

then

u(t) ≤
{
c1/2 exp

[
1

2

∫ t

0

a(s)ds

]
+

1

2

∫ t

0

b(s) exp

[
(1/2)

∫ t

s

a(r)dr

]
ds

}2

.

By applying this result to u(t) = |Zt − Yt|2, a(s) = −κ, b(s) = 2(vs − us) and c = 0, we
can conclude that

|Zt − Yt|2 ≤
[∫ t

0

(vs − us) exp

{
−κ

2

∫ t

s

dr

}
ds

]2
≤

[∫ t

0

(vs − us) exp
{
−κ

2
(t− s)

}
ds

]2
≤

[(∫ t

0

|vs − us|2ds
)1/2(∫ t

0

e−κ(t−s)ds
)1/2

]2

=
1− e−κt

κ

∫ t

0

|vs − us|2ds,

that is the desired result with τ(k, t) := (1− e−κt)/κ. �
The following Lemma is about a particular case of the entropy minimization problem (2.1).
Let R ∈ P(Ω) be associated to the generator (6.1) with some R0 ∈ P(Rn) and RT = m ∈
P(Rn) for T > 0.
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Lemma 6.1.4 Given the following entropy minimization problem,

inf{H(Q|R) ; Q ∈ P(Ω), s.t. QT (E) = 1} (6.5)

with instant T > 0 fixed, E a Borel subset of Rn and R the same reference path measure
as above. The unique solution of this problem is QE = 1(XT )/m

x,T (E)R := ρE(XT )R ∈
P(Ω). The minimal value of the relative entropy is,

H(QE|R) = − logmx,T (E).

Remark 6.1.5 It is indeed a Schrödinger problem in which the infimum runs among all
the path measures Q, that concentrate on the subset E at time T > 0, whereas the initial
constraint on Q0 is forced by the initial condition on R, being the Dirac measure R0 = δx
and by the condition Q0 
 R0.

Proof
� In the following, since x ∈ Rn and T > 0 are fixed, we will drop the index and use the
lighter notation m = mx,T . Let Q ∈ P(Ω) be any path measure satisfying the marginal
constraint in (6.5),

H(Q|R) = EQ log
dQ

dR
= EQ log

(
dQ

dQE

dQE

dR

)
= H(Q|QE) + EQ log

dQE

dR

≥ EQ log ρE(XT ) = EQE log ρ
E(XT ) = H(QE|R),

where the inequality is a consequence of the non negativity of the relative entropy. The
uniqueness of the solution is given by the strictly convex nature of the Schrödinger prob-
lem. It follows that the minimal value achieved is,

H(QE|R) = EQE log
dQE

dR
= EQE log

1(XT )

m(E)

=

∫
E

1

m(E)
log

1

m(E)
dm = − logm(E). (6.6)

And this completes the proof. �
We are ready now to prove our main result of this section, the concentration inequality.
Proof of Theorem 6.1.1
� Consider problem (6.5) respectively for the subset A and B = Rn \ Ar. We denote
PA,T and PB,T the minimizers, and uAt and uBt the two predictable vector fields whose
existence is assured by the Girsanov theory, and such that

H(PA,T |R) = EPA,T

∫ T

0

|uAt |2
2

dt, H(PB,T |R) = EPB,T

∫ T

0

|uBt |2
2

dt. (6.7)

This ensures in particular that
∫∞
0

|uAt |2,
∫∞
0

|uBt |2 < ∞. As we have already done in
Lemma 6.1.3, we construct on an abstract probability space (Θ,F ,P) two random Rn-
valued processes YA and YB such that

Y A
# P = PA, Y B

# P = PB

associated with the SDEs,
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dYAt = (b(t,YAt ) + uAt ) dt+ dWt, t ≥ 0,

dYBt = (b(t,YBt ) + uBt ) dt+ dWt, t ≥ 0,

and the initial constraint translates to the initial condition X0 = YA0 = YB0 = x, P-a.e. By
the choice of the sets A and B it is a trivial observation that r ≤ |YAT −YBT |; on the other
hand by Lemma 6.1.3 it holds that,

r2 ≤ |YAT − YBT |2 ≤ τ(κ, T )

∫ T

0

|uAT − uBT |2dt. (6.8)

By the basic inequality, −2ab ≤ (as)2 + (b/s)2, valid for all s > 0, we can bound (6.8) on
the right hand side by,

r2 ≤ |YAT − YBT |2 ≤ τ(κ, T )

[
(1 + s)E

∫ T

0

|uAt |2dt+
(
1 +

1

s

)
E
∫ T

0

|uBt |2
]

(6.7)
= 2τ(κ, T )

[
(1 + s)H(PA,T |R) +

(
1 +

1

s

)
H(PB,T |R)

]
(6.6)
= −2τ(κ, T )

[
(1 + s) logm(A) +

(
1 +

1

s

)
logm(B)

]
≤ −2τ(κ, T )

[
(1 + s) log p+

(
1 +

1

s

)
logm(B)

]
where the last inequality follows from the hypothesis m(A) ≥ p. After rearranging the
terms, and replacing m(B) = 1−m(Ar), we get

1−m(Ar) ≤ exp

{
− 1

2τ(κ, T )

[
r2

s

1 + s
+ 2s log pτ(κ, T )

]}
, ∀s > 0

Optimizing in s, it can be easily verified that the best value is s̃ = r2/
√
2τ(κ, T ) log(1/p)−

1 providing,

m(Ar) ≥ 1− exp

{
−(r − r(T, κ, p))2

2τ(κ, T )

}
where r(T, κ, p) :=

√
2τ(κ, T ) log(1/p). �

Remark 6.1.6 The same argument can be used also to provide a proof of the Talagrand
inequality. Let R ∈ P(Ω) be the same reference measure as before, associated to the
SDE (6.4) and same initial condition R0 = δx for some x ∈ Rn. Consider the Schrödinger
problem in Lemma 6.1.4 with marginal constraint at time T > 0 given by PT = fRT for
some real function f on Rn, such that

∫
fdRT = 1. By the Girsanov theory, there exists

a predictable vector field ut such that the minimizer P ∈ P(Ω) is the law of the random
process with SDE

dYt = (b(t,Yt) + ut) dt+ dWt, ∀t > 0
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and initial condition P0 = δx. By Lemma 6.1.3, it holds that |YT−Xt|2 ≤ τ(κ, T )
∫ T
0
|ut|2dt.

It follows that

W 2
2 (P

x
T , R

x
T ) ≤ E(|YT − XT |2) ≤ τ(κ, T )E

∫ T

0

|ut|2dt = 2τ(κ, T )H(P x
T |Rx

T ).

Letting T → ∞ and thanks to the ergodic property we obtain the classic Talagrand in-
equality,

W 2
2 (P,R) ≤ 2

κ
H(P |R).

6.2 Prékopa-Leindler inequality
The Prékopa-Leindler inequality is the functional form of the Brunn-Minkowski inequal-
ity. It is been used in [BL00, Gen08] to prove other functional inequalities such as the
Brascamp-Lieb or the logarithmic Sobolev inequality. Known from the 70s [Pré71], among
all the proofs of this inequality the two main contributions were given by Borell [Bor00]
who proposes a proof via Brownian motion, and, independently, by McCann and Barthe
(in the Gaussian case), see for instance [Vil03], who use optimal transport.
The proof we propose here is in the same line of the proof of the concentration inequality,
via coupling techniques. Our proof is very close to the works of Lehec [Leh13], [Leh14]
(see also [Leh15] for the Riemannian setting) and the paper of Cordero-Erasquin and
Maurey [CEM17]. In both cases Borell’s formula is used to prove functional inequalities,
among which the Prékopa-Leidndler inequality. The Borell formula states that,

log

(∫
Rn

ef dγ

)
= sup

u

[
E

(
f

(
W1 +

∫ 1

0

us ds

)
− 1

2

∫ 1

0

|us|2 ds
)]

where γ denotes the standard Gaussian measure on Rn, W is the standard Brownian
motion and f is a bounded real function on Rn. Roughly speaking, the Borell formula
is obtained by the variational formula for the relative entropy (1.2) and the Girsanov
Theorem 1.1.14, which are also the main ingredients of our proof.

Theorem 6.2.1 (Prékopa-Leindler inequality) Let θ, ψ, ψ′ be three measurable [−∞,∞)-
valued functions on Rn satisfying for each 0 < λ < 1

θ((1− λ)x+ λx′) ≥ (1− λ)ψ(x) + λψ′(x′) ∀x, x′ ∈ Rn. (6.9)

Then, for any T > 0,

log

∫
Rn

eθ dγT ≥ (1− λ) log

∫
Rn

eψ dγT + λ log

∫
Rn

eψ
′
dγT ,

where γT := N (0, T Id).

The proof of this theorem is in the same spirit of the one of Theorem 6.1.1, and we will
use similar tools. Moreover, a key role will be played by the following variational formula
for the log-Laplace transform of the probability R.

Proposition 6.2.2 Let Σ be a measurable space, and R ∈ P (Σ); for any f : Σ →
[−∞,∞),

log

∫
Σ

efdR = sup

{∫
Σ

fdQ−H(Q|R) : Q ∈ P (Σ)

∫
Σ

f+dQ < ∞
}
. (6.10)
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Proof
� The proof is very close to the one of the variational formula for the relative entropy (1.2)
but we recover it here for completeness. The starting point is the elementary inequality
st ≤ t log t− t+ es for all s ∈ R and t ≥ 0 with equality if and only if t = es. We choose
s = f(x) and t = dQ/dR for some Q ∈ M+(Ω) and integrate with respect to R to obtain∫

ef dR ≥
∫

f dQ−
∫

log
dQ

dR
dQ+Q(Ω).

It implies,∫
ef dR ≥ sup

{∫
f dQ−

∫
log

dQ

dR
dQ+Q(Ω);Q ∈ M+(Ω),

∫
f+dQ < ∞

}
.

Hence, the case of equality ef = dQ/dR is the limit of the sequence Qn = emin{f,n}R, it
provides,∫

ef dR = sup

{∫
f dQ−

∫
log

dQ

dR
dQ+Q(Ω);Q ∈ M+(Ω),

∫
f+dQ < ∞

}
.

We replace Q by aQ for some a ≥ 0, leading∫
ef dR = sup a

{∫
f dQ−

∫
log

dQ

dR
dQ+Q(Ω) log a;Q ∈ M+(Ω),

∫
f+dQ < ∞

}
.

Since,

sup
a≥0

{
a

(∫
f dQ−

∫
log

dQ

dR
dQ+Q(Ω) log a

)}
= Q(Ω) exp

{∫
fdQ/Q(Ω)−

∫
log

dQ

dR
dQ/Q(Ω)

}
we can write,∫

ef dR = sup

{
a

(∫
f dQ−

∫
log

dQ

dR
dQ+Q(Ω) log a

)
; a ≥ 0; Q ∈ M+(Ω),

∫
f+dQ < ∞

}
= exp sup

{∫
fdQ/Q(Ω)−

∫
log

dQ/Q(Ω)

dR
dQ/Q(Ω);Q ∈ M+(Ω),

∫
f+dQ < ∞

}
and this completes the proof. �

Proof of Theorem 6.2.1
� We denote Ω := C([0, 1],Rn) the space of the Rn-valued continuous paths defined for
t ∈ [0, 1]; as reference path measure R ∈ P (Ω) we fix the Wiener measure with R0 = δ0
and for any T > 0, RT = γT := N (0, T Id), the standard Gaussian measure on Rn. For
f = ψ(XT ), the formula (6.10) when R is the Wiener measure, writes as,

log

∫
Rn

eψ dγT = sup
QT∈P (Rn)

{∫
Rn

ψ dQT −H(QT |γT )
}
. (6.11)

It can be verified that the maximizer of this problem is given by Q̂T = eψγT/Z, ∈ P (Rn),
where Z =

∫
eψdγT is a renormalization factor. Indeed
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∫
Rn

ψ dQ̂T −H(Q̂T |γT ) =
1

Z

∫
ψeψdγT −

∫
log

(
eψ

Z

)
eψ

Z dγT

= logZ
= log

∫
Rn

eψ dγT .

In addition we observe that (6.11) is equivalent to the following entropy minimization
problem,

inf

{
H(P |R) ; P ∈ P (Ω) s.t. PT = Q̂T =

eψ

Z γT

}
. (6.12)

Remark that as in (6.5) it is a Schrödinger problem, where the final constraint in T > 0
is explicit, whereas the initial condition is forced by R0 = δ0 and the condition Pt 
 Rt

for all t ≥ 0. We denote P̂ ∈ P (Ω) the minimizer in (6.12), and see that

H(P̂ |R) = EP̂

(
log

dP̂

dR

)
= EP̂

(
log

eψ(XT )

Z

)
=

∫
Rn

log

(
eψ(x)

Z

)
dP̂T

=

∫
Rn

log

(
dP̂T
dγT

)
dP̂T = H(P̂T |γT ).

As in the case of the concentration inequality, we construct an abstract space (Θ,F ,P).
By Girsanov’s Thorem 1.1.14, there exists a predictable drift ut such that P̂ will be the
law of the process with stochastic equation,

dYu = ut dt+ dWt, ∀t > 0,

and,

H(P |R) = H(PT |γT ) = E

(∫ ∞

0

|ut|2
2

)
. (6.13)

Let us consider (6.11) and (6.12) with a different function ψ′(XT ). The optimal P ′ ∈ P(Ω)
then is the law of the process Yu′ with drift u′ and verifies (6.13).
Let θ be a measurable function on Rn satisfying for 0 < λ < 1

θ((1− λ)x+ λx′) ≥ (1− λ)ψ(x) + λψ′(x′) ∀x, x′ ∈ Rn. (6.14)

By the Borell’s formula (6.10),

log

∫
eθdγT = sup

{∫
θdQT −H(Q|γT ) :

∫
θ+dQT < ∞

}
≥

∫
θ dQ̂T −H(Q̂T |γT ), (6.15)

for a specific Q̂ ∈ P(Ω). We consider in particular Q̂ being the law of the process given
by the linear combination of Yu and Yu′ ,

Zt = (1− λ)Yu
t + λYu′

t .
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We provide a lower bound for the two terms in (6.15), separately. By definition of Q̂,

∫
θ dQ̂T = E(θ(ZT )) = E[θ((1− λ)Yu

T + λYu′
T )]

(6.14)
≥ E[(1− λ)ψ(Yu

T ) + λψ′(Yu′
T )]

= (1− λ)E(ψ(Yu
T )) + λE(ψ′(Yu′

T )) = (1− λ)

∫
Ω

ψ(XT )dP + λ

∫
Ω

ψ′(XT )dP
′.

Again by definition, Q̂ has drift vt = (1− λ)ut + λu′t, hence

H(Q̂T |γT ) = E
∫ ∞

0

1

2
|vt|2dt = E

∫ ∞

0

1

2
|(1− λ)u+ λu′|2dt

≤ 1

2
E
∫ ∞

0

(1− λ)|ut|2 + λ|u′t|2dt

= (1− λ)H(PT |γT ) + λH(P ′
T |γT ).

Therefore (6.15) can be controlled by,

log

∫
eθdγT ≥ (1− λ)

∫
ψ dPT + λ

∫
ψ′dP ′

T − (1− λ)H(PT |γT )− λH(P ′
T |γT ).

But since P and P ′ are the maximizer of (6.10) respectively for ψ and ψ′, we can conclude
that,

log

∫
Rn

eθdγT ≥ (1− λ) log

∫
Rn

eψdγT + λ log

∫
Rn

eψ
′
dγT .

�
We can actually generalize this result to any log-concave measure m. Let m = e−V ∈
M(Rn), where the potential V : Rn → R is C2 and satisfies

∇2V ≥ κId, for some κ ∈ R. (6.16)

Corollary 6.2.3 Let θ, ψ, ψ′ be three measurable [−∞,∞)-valued functions on Rn satis-
fying for each 0 < λ < 1

θ((1− λ)x+ λx′) ≥ (1− λ)ψ(x) + λψ′(x′)− κ′λ(1− λ)

2
|x′ − x|2,

for all x, x′ ∈ Rn and some κ′ < κ. Then,

log

∫
Rn

eθ dm ≥ (1− λ) log

∫
Rn

eψ dm+ λ log

∫
Rn

eψ
′
dm.

Proof
� Let us consider θ̃ := θ − V + QT , ψ̃ := ψ − V + QT , and ψ̃′ := ψ′ − V + QT , where
QT = − log(dγT/dx). Hypothesis (6.9) in Theorem 6.2.1 for θ̃, ψ̃, ψ̃′, for any T > 0, is
equivalent to,
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θ((1− λ)x+ λx′) ≥ (1− λ)ψ(x) + λψ′(x′)

+ V ((1− λ)x+ λx′)− (1− λ)V (x)− λV (x′)

−QT ((1− λ)x+ λx′) + (1− λ)QT (x) + λQT (x
′). (6.17)

Since (6.16) is equivalent to

(1− λ)V (x) + λV (x′)− V ((1− λ)x+ λx′) ≥ κ
λ(1− λ)

2
|x′ − x|2,

and by definition of QT ,

(1− λ)QT (x) + λQT (x
′)−QT ((1− λ)x+ λx′) = (1− λ)

|x|2
2T

+ λ
|x′|2
2T

− |(1− λ)x+ λx′|2
2T

=
λ(1− λ)

2T
|x′ − x|2.

Therefore from (6.17) it follows that,

θ((1− λ)x+ λx′) ≥ (1− λ)ψ(x) + λψ′(x′)−
(
κ− 1

T

)
λ(1− λ)

2
|x′ − x|2.

So if θ, ψ, ψ′ satisfy (6.16), then θ̃, ψ̃, ψ̃′ satisfy (6.9), and by Theorem 6.2.1,

log

∫
Rn

eθ̃dγT ≥ (1− λ) log

∫
Rn

eψ̃dγT + λ log

∫
Rn

eψ̃
′
dγT .

Finally, by definition of θ̃, ψ̃, ψ̃′ and the arbitrary of T , we conclude the proof. �
To conclude, we show that by an appropriate choice of the functions θ, ψ and ψ′, we can
recover the geometric counterpart of the Prékopa-Leindler inequality, that is the Brunn-
Minkowski inequality.

Corollary 6.2.4 Let A,B ⊂ Rn be two bounded measurable sets, such that (1−λ)A+λB
is also measurable, then

|(1− λ)A+ λB| ≥ |A|1−λ|B|λ (6.18)

where | · | denotes the volume of the set.
Proof
� It is enough to consider the functions θ, ψ, ψ′ in Theorem 6.2.1 such that, respectively

eθ = 1((1−λ)A+λB), eψ = 1A, eψ
′
= 1B.

And by the properties of the logarithmic function, (6.18) is immediately derived.
�

Physical interpretation

We stress here the statistical mechanics flavour of this proof, given by the Schrödinger
problem. We consider a large number N of independent and non interacting particles. We
associate to each particle a random variable X i

t defined on Rn, for all t ≥ 0. The initial
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conditions R0 = δ0, means that at time t = 0, they are all concentrated in the origin;
and for each t > 0, each of them, is distributed as a Normal Gaussian random variable
N (0, tId). By the law of large numbers, we know that for each t > 0, the empirical
measure converges as N → ∞ to the law N (0, tId). We assume to observe the system at
time T uniformly distributed (and normalized) on a set A. We get,

H(Q|R) = H(QT |RT ) = − log γT (A).

According to (2.69) the measure of the set gives an estimation of the probability to end
up to the uniform distribution of the same set: the largest the set A is (w.r.t to Gaus-
sian measure) the most likely (but still unexpected!) is to observe the system uniformly
distributed on A.
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Conclusions and perspectives

In this manuscript we studied the Schrödinger entropy minimization problem and some
of its applications.

We proved some similarities between the solutions of the Schrödinger problem and the
Monge-Kantorovich problem, respectively the entropic and the displacement interpola-
tions, and their minimal values, respectively the entropic cost and the quadratic Wasser-
stein distance. Among them, the most useful in the applications are the Kantorovich-
Schrödinger dual formulation and the Benamou-Brenier-Schrödinger formula-
tion.

On the other hand, we saw that the Schrödinger problem naturally involves Markov
semigroups and the Γ2-operator, hence, it lend itself to be studied under suitable curvature-
dimension conditions. As a consequence of these features, we derived some functional
property and inequality. We proved that convexity of the relative entropy is con-
served along entropic interpolations under CD(0, n) both for finite and infinite dimension
and a regularity result of the entropic cost along the heat flow.

In order to prove functional inequalities we followed two strategies: one is to give
proofs through the genuine Schrödinger problem, that is ε = 1, without exploiting the
convergence to optimal transport; the other is to give proofs via the Schrödinger problem
with ε > 0, and then take advantage of the limit ε → 0 to recover the standard results like
for instance, the contraction and EVI inequalities. The first method is very perform-
ing, providing easy and fast proofs for instance for Prékopa-Leindler or concentration
inequalities. For what concerns the second method, what we can observe is that in some
case, the inequalities that we obtain for ε > 0 are penalized by some additional term, due
to the diffusion phenomenon, see for instance (5.7). On the other hand the advantage of
this method is to be able to perform rigorous computations thanks to the regularity of
entropic interpolations, without an additional effort. This is the main gain of working
with the Schrödinger entropy minimization problem, as an approximation of the Monge-
Kantorovich problem.

Far from being exhaustive, our work leaves many open questions, that hopefully will
be answered soon. Let us mention some of them.

• A short term question is to study the convexity of the entropy along entropic inter-
polations and the EVI inequality under the CD(κ,n) condition, with finite n > 1 and
non-zero κ.

• Characterize curvature-dimension conditions via entropic properties. In
[Sv05] it is proved that CD(κ,∞) is equivalent to contraction in Wasserstein distance
of the heat flow. We proved that CD(κ,∞) implies the contraction of the heat semigroup
with respect to the entropic cost; can we prove the reverse implication? Of course, as
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we have shown, contraction in entropic cost, implies contraction in Wasserstein distance,
but could we have a direct equivalence between curvature-dimension conditions and the
Schrödinger problem without recurring to the optimal transport setting? On the same
line, the κ-EVI inequality is strictly related to displacement κ-convexity of the entropy
functional. Does the κ-EVI inequality for the entropic cost give rise to an analogue notion
of entropic κ-convexity?

• Another natural extension of our work is to replace the Brownian motion on Rn with
a random walk on a discrete graph. This approach was initiated in [Léo16] to provide
a notion of displacement interpolation in the discrete setting. In particular the discrete
analogue of our results might give an hint for a notion of κ-convexity and curvature-
dimension conditions on a discrete setting.

• Numerical applications. The Schrödinger problem revealed itself to be very per-
forming in numerical computations, [Cut13, BCC+15]. It is therefore used as a regular
approximation to solve optimal transport related problems. For instance in [CDPS17] it
is studied the discretization of the JKO scheme [JKO98] where the Wasserstein distance
is replaced by its entropy approximation (the equivalent of our entropic cost). This ap-
proach is relatively few explored and might be extended to many other optimal transport
based questions.
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Abstract

In the past 20 years the optimal transport theory revealed to be an efficient tool to
study the asymptotic behavior for diffusion equations, to prove functional inequalities,
to extend geometrical properties in extremely general spaces like metric measure spaces,
etc. The curvature-dimension of the Bakry-Émery theory appears as the cornerstone of
those applications. Just think to the easier and most important case of the quadratic
Wasserstein distance W2: contraction of the heat flow in W2 characterizes uniform lower
bounds for the Ricci curvature; the transport Talagrand inequality, comparing W2 to the
relative entropy is implied and implies via the HWI inequality the log-Sobolev inequality;
McCann geodesics in the Wasserstein space (P2(Rn),W2) allow to prove important func-
tional properties like convexity, and standard functional inequalities, such as isoperimetry,
measure concentration properties, the Prékopa-Leindler inequality and so on. However
the lack of regularity of optimal maps, requires non-smooth analysis arguments.

The Schrödinger problem is an entropy minimization problem with marginal con-
straints and a fixed reference process. From the Large deviation theory, when the refer-
ence process is driven by the Brownian motion, its minimal value A converges to W2 when
the temperature goes to zero. The entropic interpolations, solutions of the Schrödinger
problem, are characterized in terms of Markov semigroups, hence computation along
them naturally involves Γ2-computations and the curvature-dimension condition. Dating
back to the 1930s, and neglected for decades, the Schrödinger problem recently enjoys
an increasing popularity in different fields, thanks to this relation to optimal transport,
smoothness of solutions and other well performing properties in numerical computations.

The aim of this work is twofold. First we study some analogy between the Schrödinger
problem and optimal transport providing new proofs of the dual Kantorovich and the
dynamic Benamou-Brenier formulations for the entropic cost A. Secondly, as an appli-
cation of these connections we derive some functional properties and inequalities under
curvature-dimensions conditions. In particular, we prove the concavity of the exponential
entropy along entropic interpolations under the curvature-dimension condition CD(0, n)
and regularity of the entropic cost along the heat flow. We also give different proofs the
Evolutionary Variational Inequality for A and contraction of the heat flow in A, recovering
as a limit case the classical results in W2, under CD(κ,∞) and also in the flat dimensional
case. Finally we propose an easy proof of the Gaussian concentration property via the
Schrödinger problem as an alternative to classical arguments as the Marton argument
which is based on optimal transport.

Key words: Schrödinger problem, Optimal Transport, Functional inequalities, curvature-
dimension.



Le problème de Schrödinger et ses liens avec le
transport optimal et les inégalités fonctionnelles

Résumé : Au cours des 20 dernières années, la théorie du transport optimal s’est revelée être un outil efficace
pour étudier le comportement asymptotique dans le cas des équations de diffusion, pour prouver des inégalités
fonctionnelles et pour étendre des propriétés géométriques dans des espaces extrêmement généraux comme des
espaces métriques mesurés, etc. La condition de courbure-dimension de la théorie Bakry-Emery apparaît comme
la pierre angulaire de ces applications. Il suffit de penser au cas le plus simple et le plus important de la distance
quadratique de Wasserstein W2 : la contraction du flux de chaleur en W2 caractérise les bornes inférieures uni-
formes pour la courbure de Ricci ; l’inégalité de Talagrand du transport, comparant W2 à l’entropie relative est
impliquée et implique, par l’inégalité HWI, l’inégalité log-Sobolev ; les géodésiques de McCann dans l’espace de
Wasserstein (P2(R

n),W2) permettent de prouver des propriétés fonctionnelles importantes comme la convexité, et
des inégalités fonctionnelles standards telles que l’isopérymétrie, des propriétés de concentration de mesure, l’in-
égalité de Prékopa-Leindler et ainsi de suite. Néanmoins, le manque de régularité des plans minimisation nécessite
des arguments d’analyse non lisse.
Le problème de Schrödinger est un problème de minimisation de l’entropie avec des contraintes marginales et un
processus de référence fixes. À partir de la théorie des grandes déviations, lorsque le processus de référence est le
mouvement Brownien, sa valeur minimale A converge vers W2 lorsque la température est nulle. Les interpolations
entropiques, solutions du problème de Schrödinger, sont caractérisées en termes de semigroupes de Markov, ce qui
implique naturellement les calculs Γ2 et la condition de courbure-dimension. Datant des années 1930 et négligé
pendant des décennies, le problème de Schrodinger connaît depuis ces dernières années une popularité croissante
dans différents domaines, grâce à sa relation avec le transport optimal, à la regularité de ses solutions, et à d’autres
propriétés performantes dans des calculs numériques.
Le but de ce travail est double. D’abord, nous étudions certaines analogies entre le problème de Schrödinger
et le transport optimal fournissant de nouvelles preuves de la formulation duale de Kantorovich et de celle,
dynamique, de Benamou-Brenier pour le coût entropique A. Puis, en tant qu’application de ces connexions, nous
dérivons certaines propriétés et inégalités fonctionnelles sous des conditions de courbure-dimension. En particulier,
nous prouvons la concavité de l’entropie exponentielle le long des interpolations entropiques sous la condition de
courbure-dimension CD(0, n) et la régularité du coût entropique le long du flot de la chaleur. Nous donnons
également différentes preuves de l’inégalité variationnelle évolutionnaire pour A et de la contraction du flux de la
chaleur en A, en retrouvant comme cas limite, les résultats classiques en W2, sous CD(κ,∞) et CD(0, n). Enfin,
nous proposons une preuve simple de la propriété de concentration gaussienne via le problème de Schrödinger
comme alternative aux arguments classiques tel que l’argument de Marton basé sur le transport optimal.

Mots-clés : Transport Optimal ; Problème de Schrödinger ; Entropie relative ; Bakry-Emery ; Inéga-
lités fonctionnelles.
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