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Abstract

Nowadays diversity of software raises difficulties for many companies and organizations.
While software product line engineering is considered as a solution and used in many
domains for decades, research about the development of correct-by-construction software
product lines is still up-to-date and necessary. We begin this thesis with an overview of
how existing techniques were applied to develop and guarantee the correctness of software
product lines. We propose a solution based on the design and implementation of a lan-
guage FFML (Formal Feature Module Language) inspired by the FoCaLiZe language and
providing mechanisms for expressing reuse and variability. This language allows to spec-
ify, implement a feature and prove correctness by giving hints to the automatic theorem
prover Zenon. We develop a compiler for FFML to FoCaliZe. We also provide a com-
position mechanism which applied to a valid user configuration automatically computes
a final product correct-by-construction, meaning that the code of the product is correct
with respect to its specifications. The specifications of the final product are obtained by
composing the specifications of the features involved in the user configuration, the code
is obtained by composing the code of the features and the proofs are also produced by
composition. Finally, we evaluate our methodology by building a poker software product

line.

Keywords : Correct-by-Construction Development, Software Product Lines, variability,

formal specification, Formal proof, FoCaliiZe, Zenon






Résumé

Aujourd’hui, la diversité des logiciels pose des difficultés & de nombreuses entreprises et
organisations. Alors que I'ingénierie des lignes de produits logiciels est considérée comme
une solution possible et utilisée dans de nombreux domaines depuis des décennies, la prob-
lématique du développement de lignes de produits corrects par construction est toujours
d’actualité. Cette thése commence par une présentation de quelques techniques existantes
appliquées pour développer et garantir la correction des lignes de produits logiciels. Nous
proposons une solution basée sur la conception et la mise en ceuvre d’un langage FFML
(Formal Feature Module Language) inspiré du langage FoCalLiZe et fournissant des mé-
canismes pour exprimer la réutilisation et la variabilité. Ce langage permet de spécifier,
implanter une fonctionnalité et prouver sa correction en donnant des indications au prou-
veur automatique de théorémes Zenon. Nous développons un compilateur de FFML en
FoCalLiZe. Nous fournissons également un mécanisme de composition qui, appliqué a une
configuration valide fournie par l'utilisateur, produit automatiquement un produit final
correct-par-construction, ce qui signifie que le code produit est correct par rapport a ses
spécifications, elles-aussi obtenues par composition des spécifications des caractéristiques
impliquées dans la configuration de I'utilisateur. Enfin, nous évaluons notre méthodologie

en construisant une ligne de produits logiciels pour le poker.

Mots-clefs:  Développement correct-par-construction, ligne de produits logiciels, vari-

ablilité, spécification formelle, preuve formelle, FoCaliZe, Zenon






Résumé de la thése

Instruction

Dans SPLE, un actif est un artefact employé dans le développement de logiciels. Les
actifs doivent étre alloués et gérés pour créer différents produits. Ainsi, les points com-
muns et la variabilité entre les logiciels doivent étre identifiés et les produits d’un SPL -
appelés membres de la gamme de produits ou variantes de produits - sont caractérisés par
leurs fonctionnalités communes et aussi par leurs différences [Pohl et al.| |2005]. Pohl et
al. a également introduit un cadre de ligne de produits logiciels qui est considéré comme
une base de nombreuses technologies pour le développement de lignes de produits logiciels
(SPL). Le principe, centré sur ce qui pourrait étre réutilisé par d’autres produits, devrait
étre réalisé en premier, puis sur ce qui peut étre ajouté afin de répondre & diverses exi-
gences. Récemment, de nombreuses approches ont été proposées pour analyser les points
communs et la variabilité de la modélisation en se concentrant sur ce principe. De nom-
breux types de modéles ont été proposés pour l'analyse des SPL, tels que le modéle de
caractéristiques |Kang et al.| [1990]; modeles de variabilité orthogonale [Pohl et al.| 2005],
ou modele de décision [Schmid et al| 2011], etc. Cependant, 'approche appelée modéli-
sation de caractéristiques, qui utilise des modéles de caractéristiques pour représenter les
relations graphiques entre les caractéristiques est la plus populaire. Ces modéles offrent
une flexibilité dans I'ajout de nouvelles fonctionnalités pour créer différents produits de

SPL, en s’adaptant aux clients individuels.

La dérivation de produit est le processus de création de variantes de produit & partir
d’un SPL. Ce processus définit la maniére dont les actifs sont sélectionnés en fonction d’une

configuration de fonction donnée et spécifie comment ces éléments sont assemblés afin de
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générer le produit souhaité. L’approche de la programmation générative est une solution
qui a d’abord été proposée et réalisée par Czarnecki |[Czarnecki and Eisenecker| [1999|
dans le but de générer automatiquement les produits via un générateur. Récemment, de
nombreuses approches se sont concentrées sur la programmation orientée fonction (FOP),
une technique de mise en ceuvre qui s’est avérée efficace pour générer des produits |[Prehofer
1997; |Apel et al. [2013a; [Thum et al. [2014b]. Une autre technique de mise en ceuvre,
la programmation orientée Delta |Schaefer et al. [2010|, prend également en charge le

processus de génération de produits, mais plus complexe et flexible que FOP.

L’exactitude-par-construction (CbyC) est I'une des approches efficaces principalement
pour le développement de systémes automatisés de sécurité et de sécurité en construisant
des unités démontrables [Hall and Chapman| 2002; Kourie and Watson| 2012; Watson
et al| |2015]. En utilisant un paradigme de raffinement, ces unités sont construites a
chaque étape d’affinage, et ainsi les systémes sont gérés et vérifiés plus facilement. Notre
principale préoccupation de cette thése est de développer des SPL et d’appliquer cette
approche dans le but de générer automatiquement des produits corrects par construction.
En raison des avantages de cette approche [Batory [2015|, nous sommes convaincus que
notre direction de recherche est prometteuse, surtout aprés avoir détecté de nombreuses

techniques et méthodes existantes qui peuvent aider & élaborer cette direction.

Objectifs de la thése

Notre objectif principal est de développer des SPL corrects par construction.En ex-
aminant la littérature de recherche sur I'application de ’approche CbyC aux SPL, nous
surmontons les lacunes des recherches précédentes et identifions les principales propositions
pour notre direction. Premiérement, nous nous concentrons sur les travaux publiés sur les
techniques d’analyse et de mise en ceuvre des SPL qui permettent de créer ensemble des
modules de spécifications, de code d’implémentation et d’exactitude dans les mémes unités
afin de les réutiliser plus efficacement. Deuxiémement, pour recevoir les produits finaux
corrects en plus de poursuivre une technique de mise en ceuvre existante, nous avons be-
soin d’'une méthodologie dans laquelle les unités sont composées pour créer les produits

finaux dont la correction est maintenue. Troisiémement, afin de réaliser la méthodologie,
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nous avons réalisé que le développement de SPL correct par construction en utilisant des
langages existants se heurte a de nombreux problémes et limitations. Par conséquent, nous
avons créé un nouveau langage qui aide les développeurs a écrire les modules plus facilement
et plus efficacement. Quatriémement, pour adapter les demandes de la méthodologie, nous
avons défini des mécanismes de composition indépendants a appliquer a ces modules. Sur
la base de nos connaissances acquises grace aux techniques existantes, nous construisons
un outil de génération automatisé pour élaborer ces mécanismes. Enfin, pour évaluer notre

approche, nous 'avons appliquée & un cas pratique: un Poker SPL.

Contribution de thése

e Nous avons développé un langage, appelé FFML (Formal Feature Module Language),
qui permet d’exprimer la variabilité des artefacts. Ce nouveau langage se compose
de syntaxe et de sémantique et soutient le développement de SPL suivant I’approche
CbyC plus facilement. Un SPL est analysé dans les modules qui sont écrits en FFML.

Un outil appelé outil FFML Compiler a été construit pour compiler ces modules.

e Les mécanismes de composition ont été définis pour composer des modules FFML de
SPL. Nous avons développé un outil générateur, appelé FFML Product Generator,
qui implémente ces mécanismes de composition pour générer automatiquement les

produits finaux corrects.

Chapitre 1: Etat de I’art

Dans ce chapitre, nous visons & introduire les connaissances de base sur lesquelles la

thése est basée.

Lignes de produits logiciels

Le terme ligne de produits logiciels a d’abord été mentionné par Bass et al. dans
[Bass et al.| [1998| tout en proposant une architecture pour cela. Au cours de la derniére
décennie, ce terme a été utilisé pour remplacer le terme famille de programmes. L’ingénierie

de SPL a été enrichie par Clements et Northrop ou les actifs de base sont déterminés et

11
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gérés |Clements and Northrop [2001]. En plus de proposer les mécanismes de partage
d’un ensemble commun d’actifs de base, les auteurs ont décrit comment appliquer ces
mécanismes dans la pratique. La variabilité a été mentionnée comme une clé pour ces
mécanismes. Pohl, Bockle et Linden ont défini le cycle de développement complet d’un
SPL [Pohl et al| 2005], dans lequel il y a deux processus principaux: l'ingénierie de
domaine et l'ingénierie d’application. L’intention du processus d’ingénierie de domaine
est d’établir une plate-forme réutilisable pour une ligne de produits qui contient tous les
types d’artefacts. Les artefacts associés sont liés les uns aux autres. La communauté et
la variabilité sont définies dans la plateforme. En revanche, I'ingénierie d’application est
le processus par lequel les produits finaux sont dérivés de la plate-forme établie dans le
processus d’ingénierie de domaine et des demandes des clients. Séparer le développement
de la gamme de produits en ces deux processus garantit l’expression de la variabilité et
offre la flexibilité nécessaire pour choisir les artefacts pour les différents produits, selon les

besoins.

Modélisation de fonctionnalités

La gestion de la variabilité est une téche principale liée au succés des SPL. Dans
SPLE, une caractéristique est un comportement caractéristique spécifié comme une unité
d’exigences, des fonctions techniques ou des caractéristiques non fonctionnelles [Kang et al.
1990], qui est associé a ses actifs dans un SPL. Dans la modélisation de caractéristiques,
un produit d’'un SPL différe des autres par ses caractéristiques impliquées. Un modéle de
caractéristiques est défini comme une représentation de “I’'information de tous les produits
possibles d'une gamme de produits logiciels en termes de caractéristiques et de relations
entre eux” dans |Benavides et al. [2010]. Un modéle de fonctionnalité d'un SPL est un
ensemble hiérarchique des fonctionnalités du SPL. Ces caractéristiques sont communes ou
variantes a différents niveaux d’abstraction et sont liées par des relations et liées par des

contraintes.

Un modéle de caractéristique est souvent représenté graphiquement sous la forme d’un
arbre, également appelé diagramme de caractéristiques (ou FODA) |[Kang et al.| [1990]. Une

fonctionnalité parent se rapporte & ses entités enfant par des relations. Les relations de base

12
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sont éventuellement facultatives (les fonctionnalités enfants sont facultatives), obligatoires
(les fonctionnalités enfants sont obligatoires) ou (une ou plusieurs fonctionnalités enfants
peuvent étre sélectionnées), alternative (une seule fonction enfant peut étre sélectionnée)

ou et (toutes les fonctions enfant doivent étre sélectionnées).

Configuration

La modélisation d’entités permet la sélection d’entités flexibles a partir d’'un modéle
de fonctionnalité. Un utilisateur peut sélectionner une collection cohérente ou valide de

fonctionnalités, appelée configuration, pour un produit attendu.

Artifacts

Dans la these, nous considérons un SPL qui est congu dans les caractéristiques d’'un
modéle de fonctionnalité. Les actifs de ce SPL sont divisés en trois types d’artefacts:
la spécification, le code et 'exactitude. Les artefacts de spécification sont associés aux
fonctionnalités des entités. Ces fonctionnalités sont implémentées par les artefacts de code.
Les preuves d’exactitude sont des artefacts utilisés pour prouver que les implémentations de
ces fonctionnalités répondent & leurs spécifications. Afin de construire tout produit final de
la SPL, nous avons besoin de mécanismes de composition définis pour tous ces artefacts.
Sur la base d’une configuration sélectionnée par l'utilisateur, les artefacts, associés aux
fonctionnalités impliquées dans cette configuration, sont composés afin de générer le produit

souhaité.

Implementation Technologies

La technologie de mise en ceuvre est une technologie utilisée pour générer les produits
finaux des SPL. Le principe de base de la technologie est que, en fonction d’une configura-
tion, les modules liés aux fonctionnalités impliquées dans la configuration sont composés
(automatiquement ou non automatiquement) pour établir le produit final. Il existe des
technologies d’implémentation populaires telles que FOP et Delta-oriented programming

(DOP) [Schaefer et al.| [2010].

13
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Développement de logiciels corrects par construction

CbyC est un style de développement qui permet a ’application d’évoluer progressive-
ment par le biais de petites étapes. La clé de 'approche est la garantie d’exactitude que
I’application se comporte comme spécifié 4 chaque étape. La notion de raffinement a été
introduite par |Dijkstra] [1976|, puis Back |[Back [1978| a proposé une technique de raf-
finement par étapes pour construire des programmes corrects. Le calcul de raffinement est
introduit pour raisonner sur des programmes, dans lesquels I'exactitude d’un programme
est préservée pendant que le programme est affiné ou amélioré en utilisant la technique de

raffinement par étapes |[Morgan| [1993; Back and Wright| [1998].

FoCaliZe

Le langage FoCal.iZe a une saveur orientée objet permettant I’héritage, la liaison tardive
et la redéfinition |[Prevosto and Doligez| 2002]|. Ces caractéristiques sont trés utiles pour
réutiliser les spécifications, les implémentations et les preuves. Nous avons travaillé avec
I’environnement FoCaliZe7 qui fournit un ensemble d’outils pour spécifier et implémenter
des fonctions et des instructions logiques avec leurs preuves. Le développement de Fo-
Cal.iZe est facile a réaliser (en programmation fonctionnelle) car il permet au développeur
d’écrire du code d’implémentation dont le style est fermé au langage fonctionnel, OCaml.
Un programme source FoCal.iZe est analysé et traduit en sources OCaml pour ’exécution

et sources Coq pour une vérification formelle.

Chapitre 2: Méthodologie pour générer des produits finis au-
tomatisés

Assurant I'exactitude et la fiabilité de tous les produits des SPL, les techniques tradi-
tionnelles, telles que la vérification des types, la vérification des modéles et la démonstration
des théorémes, doivent faire face & de nombreux défis. Dans la vérification de la gamme
de produits, nous analysons si tous les produits de la gamme répondent a leurs spécifi-
cations. Récemment, certaines approches ont été proposées pour vérifier les LSP, mais

elles sont souvent simplement utilisées comme preuve de concept pour les techniques de
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vérification et ne sont pas justifiées empiriquement. Au meilleur de notre connaissance, ce
chapitre présente la méthodologie comme la premiére discussion systématique sur la fagon

de générer des produits automatisés de lignes de produits en utilisant une approche CbyC.

In this chapter, we aim at presenting our the whole approach that is to facilitate the
development of correct-by-construction software using product lines. The approach allows
features together with their proofs to be reused. A mechanism to compose features with
their proofs is proposed. The variability that is all the possible solutions of a problem, is
expressed. We introduce the way we develop a SPL and generate its correct-by-construction

final products.

Pour avoir une vue compléte de la méthodologie, nous considérons a la fois le développeur

du SPL et l'utilisateur de la SPL intéressé par un ou plusieurs produits.

Méthodologie de View Developer

Le développeur de logiciels cherche toujours a faciliter la réutilisation des artefacts. En
appliquant le principe de la technique FOP, un développeur FFML travaille sur le modéle

de fonctionnalité d'un SPL et développe les modules associés aux fonctionnalités.

A partir du modeéle de fonctionnalité, en utilisant le langage FFML, le développeur

écrit pour chaque fonction un module FFML qui refléte la fonctionnalité. Le module
(un fichier .fm) inclut les propriétés, en spécifiant les fonctionnalités associées a la

fonctionnalité, et le code implémentant ces fonctionnalités.

e Les modules écrits sont envoyés au compilateur FFML pour vérifier leur syntaxe et

leur sémantique, puis traduits dans les fichiers FoCal.iZe correspondants.

e (Ces fichiers traduits sont envoyés au compilateur FoCaLiZe. Si le compilateur décou-

vre des erreurs, elles sont signalées au développeur FFML.

e FoCaliZe développeur remplit les indices de preuve dans les preuves (qui ont été
supposés précédemment) de chaque module. Sur la base de ces indices de preuve, le

Zenon Prover appelé par FoCaliiZe, trouve automatiquement les preuves.

15
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e Les astuces de preuve sont copiées dans les preuves des modules FFML sous forme

de commentaires du développeur FFML.

Le langage FFML est créé pour ’écriture de modules FFML. En fait, le langage prend en
charge la technique FOP permettant de modulariser les artefacts en modules. La technique
FOP ne contient que les principes de base, c¢’est-a-dire que chaque caractéristique d’'un SPL
est réfléchie par un module FFML. Ainsi, pour générer automatiquement les produits d’un
SPL, nous devons définir les mécanismes de composition de ces modules. En outre, trois
types d’artefacts (spécifications, code d’implémentation et preuves d’exactitude) contenus

dans les modules rendent le processus de composition plus complexe.

Méthodologie de la vue utilisateur

L’utilisateur sélectionne certaines fonctionnalités qui sont censées étre essentielles pour
un produit attendu. La configuration sélectionnée, si elle est valide, est envoyée a I'outil
FFML Product Generator. Le générateur récupére tous les modules impliqués dans la
configuration & partir de la base de données d’actifs. Les modules concernés sont composés
et intégrés dans un produit final décrit comme un ensemble de modules composites FFML,

appelé produit FFML.

e [’utilisateur sélectionne certaines fonctionnalités qui sont censées étre essentielles

pour un produit attendu.

e La configuration sélectionnée par I'utilisateur, si elle est valide, est envoyée a I'outil
FFML Product Generator. Le générateur récupére tous les modules impliqués dans

la configuration a partir de la base de données d’actifs.

e Les modules concernés sont composés et intégrés dans un produit final décrit comme
un ensemble de modules composites FFML, appelé produit FFML. Le générateur
incorpore un ensemble de régles de composition qui sont définies pour composer

toutes sortes d’artefacts (spécifications, preuves de code et de correction).

Le résultat de FFML Product Generator est le produit final contenant les artefacts

composites obtenus & partir de tous les modules impliqués. Les spécifications composites

16
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sont garanties par 'implémentation composite. Le processus de génération du produit est
automatique, mais certaines preuves peuvent étre effectuées manuellement (en raison de

I'état actuel du FFML Product Generator).

Product Generation Process

Les produits FFML, construits a partir d’'un modéle de fonctionnalité, sont les résultats
attendus générés par 'outil FFML Product Generator. Pour une configuration valide, les
modules FFML correspondant aux entités concernées sont collectés dans un diagramme
de module. Le diagramme du module a la méme hiérarchie que le modéle d’entités mais
est limité aux entités impliquées dans la configuration. Les nceuds du diagramme sont les
modules liés les uns aux autres via des relations. Basé sur le diagramme du module et la
mise en ceuvre de 'opération de composition, FFML Product Generator compose tous les

artefacts des modules pour construire les produits FFML.

Chapitre 3: Langage FFML

Dans ce chapitre, nous expliquons pourquoi nous avons décidé de créer le langage
FFML, la définition d’'un module FFML, la grammaire et la sémantique de FFML. Compi-

lateur FFML, un outil de traduction et 'exactitude du compilateur est également discuté.

Vers un langage formel pour des lignes de produits logiciels correctes par con-
struction

FoCalLiZe est un langage efficace pour spécifier, implémenter et prouver des logiciels.
Cela permet le développement de programmes corrects par construction. Dans nos premiers
travaux, nous avons commencé avec I’hypothése que le développement de SPL correct-par-
construction peut étre réalisé avec le support de ce langage mais nous avons rapidement

réalisé qu’il n’est pas facile de les développer en FoCaliZe.

Comme indiqué dans | ’«Introduction», nous avons présenté les raisons pour lesquelles
nous choisissons le FOP comme méthode de conception et de gestion de la variabilité des
SPL. Le principe de base de la technique FOP est que chaque caractéristique du modéle de

fonctionnalité d’'un SPL est mappée & un module séparé qui implémente la fonctionnalité.

17



RESUME DE LA THESE

Ainsi, chaque module peut contenir son code d’implémentation incluant ses preuves de

spécification et d’exactitude.

Inspiré par la technique FOP et FoCal.iZe, nous avons décidé de créer FFML (pour
Formal Feature Module Language) qui est proche de FoCaLiZe mais apporte de nouveaux
mécanismes et réduit les limitations pour atteindre nos objectifs principaux pour dévelop-

per des SPL corrects par construction.

La méthode utilisée en FFML pour représenter la variabilité (réutilisation et modifica-
tion de la spécification) des SPL en termes de syntaxe est inspirée de la programmation

orientée delta (DOP) proposée par Schaefer et al. [Schaefer et al.| 2010].

En tant que principes de base de la technique FOP, chaque caractéristique d’un modéle
de fonctionnalité est implémentée par un module correspondant. Aprés avoir été écrits en

FFML, ces modules sont intégrés dans des fichiers séparés.
Définition du module

Avec le désir de développer des SPL corrects par construction au moyen de la technique
FOP, chaque nceud (caractéristique) du modele de caractéristique d’un SPL est associé a
un module. Chacun de ces modules nécessite la spécification des comportements attendus
en tant que collection de propriétés. Un module contient également le code I'implémentant.
Cette implémentation est prouvée plus tard pour répondre a sa spécification par une col-
lection de preuves d’exactitude. Cela nous motive & définir un module FFML qui contient
trois types d’artefacts: la spécification, le code et la preuve d’exactitude, comme les actifs

d’une structure d’unité.
Module FFML

Comme présenté dans la section précédente, un module FFML contient trois types
d’artefacts dans un seul paramétre. La définition du module permet la description de la
communalité et de la variabilité par rapport aux artefacts du module parent. Un module
est une modification de son module parent. Par conséquent, nous définissons un module
FM comme une structure d’unité (comme une classe en Java ou une espéce en FoCaliZe).

Un module FFML FM est un tuple contenant les éléments: nom, nom du parent, décla-
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ration de la fonction, propriété, type de représentation, définition de la fonction et preuve

d’exactitude.

FFML Grammar

Notre objectif principal dans la définition de FFML est de proposer un langage proche
de FoCaliZe qui permet déja au développeur d’écrire les modules de fonctionnalités &
partir d’'un modeéle de fonctionnalité d’un SPL. Tous les artefacts sont placés dans un
seul paramétre. FFML est inspiré de FoCaliZe, en particulier en ce qui concerne les
styles d’écriture des spécifications, les preuves de code et de correction. FFML et Fo-
CalLiiZe différent principalement dans la maniére de structurer et d’organiser I'information.
Cependant, comme nous le verrons dans cette section, FFML permet au développeur de
se concentrer sur I’expression de la réutilisation et la modification des artefacts de module.

La syntaxe de FFML est définie et décrite dans cette section.

Syntaxe

La grammaire concréte de FFML est présentée dans cette section. Un module est
introduit par un mot-clé f module et son nom. Le mot-clé from exprime qu’'un module
ayant un identifiant de nom est étendu a partir de son module parent nommé parent, qui

suit le principe de FOP.

Classification of Properties

Nous définissons une propriété suivant le principe de conception par contrat comme

invariant, nouveau ou raffinant.

"From" - Réutilisation et mécanismes de modification

Le mot clé de est trés important pour FFML en apportant des mécanismes de réutili-
sation et de modification. Un module courant peut étre construit en modifiant a partir de
son module parent en utilisant le mot-clé de. Ce mot-clé implique plusieurs mécanismes,

tels que I’héritage, la modification et 'importation.
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Sémantique

Dans cette section, nous présentons la sémantique de FFML étroitement liée aux signi-
fications du mot clé from. Nous discutons en détail comment les significations du module
et de ses éléments sont calculées de maniére séquentielle. Nous discutons également de la

relation entre une propriété d’affinage et sa correction d’exactitude.

Compilateur FFML dans FoCalLiZe

Dans cette section, nous commengons par présenter nos notations pour représenter les
régles de traduction de FFML. Nous présentons les grammaires abstraites de FFML et Fo-
Cal.iZe par types. En utilisant ces grammaires abstraites, nous expliquons nos fonctions de
traduction implémentées dans le compilateur FFML. Une fonction de traduction de module
traduisant un module FFML en FoCaliZe est introduite, puis nous décrivons comment le
compilateur FFML traduit les signatures, les propriétés, le type de représentation, les (re)

définitions de fonctions et les preuves d’exactitude.

Résumé

FFML se concentre sur la construction d’un environnement convivial pour le développeur
et n’augmente pas 'effort d’encodage. Ceci est considéré comme un avantage de FFML et
explique pourquoi un module FFML est implémenté dans FFML plus facilement et plus

rapidement que dans FoCal.iZe.

Chapitre 4: Génération de produits FFML

Cette section tente de répondre aux questions sur la facon de rendre le processus de

génération automatisé et correct.

Les exigences de base du processus de génération automatisé sont discutées. Nous
définissons une opération de composition binaire pour les modules FFML et analysons
comment l'opération se comporte sur chaque type d’artefact impliqué dans les modules.
Nous décrivons les régles de composition pour la mise en ceuvre de cette opération en

détail et expliquons le processus de génération des produits finaux. A laide de l'outil
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Product Generator, la génération automatique des produits finaux corrects est illustrée sur

le compte SPL du compte bancaire.

Exigences de base de la génération automatisée de produits

Poursuivant I'objectif principal d’un outil de génération automatique, a partir des méth-
odes existantes, nous donnons les exigences de base qui sont essentielles pour générer des

variantes de produit correctes dans cette section.

Tout d’abord, nous avons seulement besoin d’une opération de composition binaire qui
est appliquée pour une paire de modules, puisque la composition de plusieurs modules
peut étre effectuée par paire selon le diagramme du module. Deuxiémement, I'outil FFML
Product Generator doit contenir des fonctions automatisées, mettant en ceuvre des régles
de composition pour composer deux modules. Troisiémement, il est nécessaire d’avoir une

technique de mise en ceuvre pour établir des produits

Module Composition Operation

Dans cette section, nous présentons notre opération de composition binaire définie
pour deux modules. L’opération est appliquée pour le calcul de la composition de tous les
types d’artefacts (spécification, code et exactitude) contenus dans ces deux modules. Les

artefacts sont composés par I'opération qui est spécifique a ce type d’artefact.

Notation 1 (Binary Composition Operation) Given two modules FMy and FM;,
the composition of module F'My with module F M, represented by FM} = FM, o FMy, is
the binary composition operation that forms a composite module F M) from module F My

and refers to module F M as the parent of the composite module via a from relation.

Analyse de composition

Dans cette section, nous nous concentrons sur ’analyse de la fagon dont 'opération de
composition binaire, réalisée sur des types d’artefacts spécifiques. Nous analysons égale-
ment comment ’opération de composition binaire est déployée sur toutes sortes d’artefacts:

signature, propriété, type de représentation, définition de fonction et preuve d’exactitude.
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omposition de la propriété

Notre méthodologie applique les principes de la conception par contrat pour spécifier
la fonctionnalité de SPL. Autrement dit, pour chaque fonction, le développeur peut écrire
un ensemble de propriétés spécifiant ses comportements. Nous supposons que 'opération

de composition ne concerne que les propriétés liées & une fonction.

Régles de composition

Dans cette section, nous nous concentrons sur la définition de I’'opération de composition
binaire pour les modules en exprimant les fonctions implémentant les régles de composi-
tion pour tous les artefacts impliqués dans deux modules: signature, propriété, type de
représentation, définition de fonction et preuve d’exactitude. Les régles de composition de
deux modules sont définies par des fonctions qui sont utilisées pour les éléments séparés

des modules.

Régles de composition des propriétés

Nous discutons les régles de composition pour deux ensembles de propriétés, qui sont
spécifiés aprés 'approche de conception par contrat. Selon notre classification des pro-

priétés, nous donnons les formules de composition correspondantes.

Preuve de correction

Une preuve d’exactitude est écrite pour prouver qu’une implémentation satisfait une
certaine propriété. Par conséquent, avant de composer les preuves d’exactitude, nous
devons considérer les propriétés liées a ces preuves. Nous commengons par considérer la

fagon dont ces propriétés sont composées, d’otl la carte aux cas de composition des preuves.

Propriétés de la composition binaire

Dans cette section, nous décrivons les propriétés de base de notre opération de compo-

sition binaire, & savoir ’associativité et I'identité
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Génération de produits finaux

L’établissement de la variante de produit & partir d’un modéle de fonction et d’une
configuration nécessite la composition de tous les modules associés du diagramme de mod-
ule associé & la configuration. Cependant, pour composer tous les modules connexes, nous
avons maintenant besoin de régles de construction basées sur le diagramme des fonction-
nalités (telles que l'ordre des modules et la structure de la structure). Nous appelons ce
processus la composition basée sur un diagramme de module. Dans cette section, nous
expliquons comment les produits finaux sont générés en fonction de 'opération binaire et

du processus de composition basé sur un diagramme de module.

Composition basée sur un diagramme de module. La composition basée sur un dia-
gramme de module (MDC pour abréger) est un processus récursif qui utilise la composition

binaire précédemment définie pour composer des modules et des modules composites.

Application sur le compte bancaire SPL

L’outil FFML Product Generator est écrit en OCaml avec environ un millier de lignes
de code. L’outil permet a un utilisateur de sélectionner une configuration en entrée et
renvoie le produit final correspondant. Gréace a notre outil générateur, les douze produits
du compte bancaire SPL ont été générés automatiquement. Le compte bancaire SPL a
été analysé avec cinq caractéristiques et développé dans les cinq modules correspondants

d’environ 400 LOC en FFML.

Chapitre 5: Evaluation

In this chapter we deal with a bigger and more complex example, Poker product line,

that is developed using our methodology.

Etude de cas: Gamme de logiciels de poker

Pour évaluer notre méthodologie, nous développons un exemple qui est plus complexe
que la gamme de produits Bank Account avec plus de fonctionnalités et de produits finaux.

Nous choisissons Poker SPL. Cependant, au lieu des spécifications, leurs définitions de
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fonctions sont simples et presque vides. En raison de ’absence d’informations nécessaires,
dans cette section, nous décidons de créer notre propre SPL Poker en collectant les variantes
du jeu de poker, en résumant les régles qui s’y rapportent, puis en concevant un modéle de

fonctionnalités.

Exemple: Ligne de produits de poker

Dans cette section, nous avons collecté les variantes du jeu de poker, résumé leurs régles

associées et ensuite congu un modéle de fonctionnalité.

Analyse et développement de ligne de produits de poker

Sur la base des régles de poker collectées et du modéle de fonctionnalité congu dans
la section précédente, nous analysons et développons les fonctionnalités de Poker SPL en

modules FFML dans cette section.

BasicPoker. Nous spécifions les régles simples applicables & tous les types de jeu
de poker dans la fonction BasicPoker. Le jeu de poker de base est joué avec un paquet

standard de 52 cartes.

BasicMPoker. La fonctionnalité BasicMPoker est construite en tant qu’enfant de
BasicPoker. Les joueurs qui rejoignent le jeu peuvent utiliser de l'argent (jetons) pour
jouer. Un tour d’enchéres a lieu & chaque fois avant ou aprés une transaction dans laquelle

les joueurs ont I'opportunité de parier sur leurs mains.

Basic36Poker. Basic36Poker est construit comme un enfant de BasicPoker, il est joué

avec un jeu de cartes de 36 cartes dans lequel les cartes de 2 & 5 sont supprimées.

BasicWPoker. BasicWPoker est construit en tant qu’enfant de BasicPoker. Apreés le
quatriéme tour de cartes, une carte est mise sur la table et cette carte est vue par tous les
joueurs. Les trois autres cartes ayant le méme rang que la carte sont sauvages. Le dernier

tour final de cartes est distribué pour donner la cinquiéme carte aux joueurs.

MFormPoker. MFormPoker est construit en tant qu’enfant de BasicMPoker. Dans le
jeu, aprés avoir distribué des cartes a chaque joueur, certaines cartes (1, 2 ou 3) continuent

d’étre retirées du paquet et tournées vers le haut sur la table. Ces cartes sont appelées
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"cartes communautaires".

DrawMPoker. DrawPoker est un enfant de MFormPoker dans lequel la liste de cartes
de communauté est vide. Les joueurs peuvent rejoindre un tour d’enchéres avant le premier
deal. Le premier pari est déterminé par un nombre, appelé "ante" et décidé par tous les

joueurs.

Evaluation

Dans cette section, nous nous concentrons sur I’analyse des résultats obtenus en dévelop-

pant Poker SPL. La validité et la limitation de notre méthodologie sont également discutées.

Le Poker SPL a été analysé avec douze caractéristiques, dont sept ont été dévelop-
pées dans les sept modules correspondants: BasicPoker (BP), BasicMPoker (BMP), Ba-
sic36Poker (B36P), BasicWPoker (BWP), MFormPoker (MFP), DrawMPoker (DMP ),
TexasHold’emMPoker (THP) d’environ 800 LOC en FFML. Ces sept modules ont été
traduits en FoCaliZe par FFML Compiler.

Validité de la méthodologie

D’aprés les résultats obtenus & partir des tables statistiques du compte bancaire SPL
et du Poker SPL, nous pouvons voir que ces deux SPL ont été développés avec succés. Les
produits générés sont corrects par construction. Les artefacts, c’est-a-dire les propriétés
et les preuves, sont composés automatiquement par nos outils. Bien que certaines preuves

manquent de preuves, la plupart des preuves sont faites automatiquement.

Le développement des modules de SPL utilisant FFML est plus facile que dans FoCal.-
iZe. Le développeur écrira moins de LOC. En réduisant la complexité et en économisant
les efforts de la génération automatique des produits corrects tout en développant les deux

SPL, notre méthodologie s’est avérée efficace et fiable.

Conclusion

Dans ce chapitre, nous résumons briévement notre travail sur la thése et donnons les

contributions. Ensuite, nous discutons de futurs travaux potentiels sur le développement
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de lignes de produits correctes par construction.

Contributions

e La contribution principale de cette thése se référe & une méthodologie efficace pour
développer des SPL et générer automatiquement des produits finis corrects en util-

isant une approche proche de 'approche CbyC.

e La méthodologie a été mise en ceuvre en utilisant les techniques FoCal.iZe et FOP.
Les résultats obtenus en utilisant nos outils pour générer les produits finaux cor-
rects du compte bancaire SPL et du Poker SPL démontrent ’applicabilité de notre

méthodologie.

e Les mécanismes de modification de tous les types d’artefacts (spécification, code et
exactitude) ont été définis. En particulier, une propriété peut étre affinée a partir
d’une propriété existante, réutilisant ainsi la preuve correspondante. La preuve était
en réalité plus facile a réaliser. Ces mécanismes aident a réutiliser les artefacts et a

réduire les efforts pour I'écriture d’artefacts.

e Une opération de composition pour toutes sortes d’artefacts au niveau du module a
été définie et implémentée dans notre outil. Cet outil peut générer automatiquement
des produits sans intervention de l'utilisateur. L’effort de vérification est consid-

érablement réduit grace a la réutilisation des épreuves.

e Une chaine d’outils avec FFML Compiler et FEFML Product Generator a été dévelop-
pée. Il prend en charge a la fois le développeur et 'utilisateur lors du développement

de SPL et de la génération de produits corrects par construction.

Travail futur
e Terminez le développement du Poker SPL.

e Analyser les propriétés dont les preuves sont effectuées manuellement, donc définir

de nouvelles régles de composition d’épreuve afin de supporter ces propriétés.
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e Impliquez FFML afin de prendre en compte de nouvelles facons de réutiliser, telles

que l'introduction de nouveaux paramétres dans une propriété d’affinage.

e Développer une interface utilisateur graphique (GUI) pour notre chaine d’outils et y

intégrer un outil permettant de vérifier la validité des configurations.

e Adaptez notre méthodologie & d’autres langages, tels que B ou Java au lieu de Fo-

CaliZe.
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Introduction

Nowadays together with diversity of customers’ requirements, many companies are con-
fronted with a rising demand for individualized products. For instance, the diversity of
devices forces developers to build many variants of a software. Then, a solution for devel-
oping similar products to respond to the numerous customers’ needs becomes necessary.
The problematic is not new: in 1976 Parnas [Parnas| [1976] named this kind of products
“a program family” which is defined as “a set of programs whose common properties are so
extensive that it is advantageous to study the common properties of the programs before
analyzing individual members”. Later, a program family is called Software Product Line
(SPL) which is introduced by Bass et al. [Bass et al.| [1998| as “a set of software-intensive
systems sharing a common, managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed from a common set of core
assets in a prescribed way”. The same design of software is placed into core assets, then
shared and reused across multiple products |Bass et al| [1998 |Clements and Northrop
2001]. Numerous research publications indicate the achievements and benefits gained by
applied Software Product Line Engineering (SPLE) |[Pohl et al. 2005; Apel et al.| 2013a;
Thim et al| [2014a]. Because of the benefits gained from SPLE, such as achieving large-
scale software, reducing costs, improving time-to-market, and bringing higher quality, this
technique is considered as a methodology for developing the diversity of software. Conse-
quently, SPLE has been used widely in many domains and organizations in the I'T industry

[Linden et al. 2007, Benduhn et al. 2015].
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Context of Thesis

In SPLE, an asset is any artifact employed in the development of software. The assets
must be allocated and managed to create different products. Thus, the commonality and
variability across software must be identified and products of a SPL - called product line
members or product variants - are characterized by their common functionalities and also
by their differences |[Pohl et al. [2005]. Pohl et al. also introduced a software product
line framework that is considered as a base of many technologies for developing Software
Product Lines (SPLs). The principle, focusing on what might be reused by other products,
should be performed first, and then on what is able to be added in order to satisfy vari-
ous requirements. Recently, many approaches for analyzing commonalities and modeling
variability have been proposed focusing on this principle. Many kinds of models have been
proposed for analyzing SPLs, such as feature model |Kang et al| [1990|, orthogonal vari-
ability models [Pohl et al.| [2005], or decision model |[Schmid et al| [2011], etc. However,
the approach called feature modeling, which uses feature models for representing graphical
relations between features is the most popular. These models provide flexibility in adding

new functionality to create various products of SPLs, adapting to individual customers.

Product derivation is the process of building product variants from a SPL. This process
defines how assets are selected according to a given feature configuration, and it specifies
how those assets are assembled in order to build the desired product. Besides resolving
existing problems in software engineering when developing a single application, SPLE also
has to face some practical specific problems, such as, ensuring the automation of product
derivation or the establishment of independent platforms, etc. The approach of generative
programming is a solution which was first proposed and realized by Czarnecki |[Czarnecki
and Eisenecker| [1999] with the purpose of generating automatically the products via a
generator. This generating process is called product generation and the product produced
from this process is called a final product. The approach was enriched by a step-wise refine-
ment method [Batory et al.| 2003| that allows adding features for developing more complex
software. Batory [Batory |2005b| also proposed the ability for developing a collection of
generator tools, each of which is specific for a kind of artifact, since it adapts itself to

the diversity of software. Recently, many approaches focus on Feature-Oriented Program-
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ming (FOP), an implementation technique, that has proven to be effective in generating
products |Prehofer| [1997; |Apel et al| 2013b} Thiim et al| 2014b|. Another implementa-
tion technique, Delta-oriented programming |Schaefer et al.| 2010], also supports product

generation process but more complex and flexible than FOP.

It is the fact that the security and safety-critical systems use increasingly SPLE, such as
medical, aircraft flight control, automotive systems, etc. |Braga et al. 2012|. The request
for guaranteeing the correctness of product variants derived from generators becomes very
important in the context of critical systems. This requires the use of specification and
verification methods and techniques satisfying SPLE principles. Namely, when developing
a SPL, numerous products are produced automatically by generators, these methods and
techniques have to adapt to not only guarantee the correctness but also to save time and
effort. They should take advantage of commonalities and differences of product variants,

and thus try to reuse specifications and verification results.

Early, modular verification methodologies have been proposed, first for type checking
|[Thompson| {1991} |Aversano et al.| 2002|, for model checking |Fisler and Krishnamurthi
2001] and then for theorem proving [Poppleton| 2007, Thiim et al.| |2011]. Recent research
has shown that the strategies in analyzing and verifying SPLs, such as family-based, product-
based and feature-based, also bring efficiency and advantages [Thiim et al| 2014a; Apel
et al.| [2013d]. The techniques mentioned above can help to automatically generate correct
final products. Some writers also offered solutions for developing SPLs efficiently and
mostly automatically, such as in |Delaware et al.| [2011, 2013} [Thim| 2015|. However,
the automated generation requires more efforts, more efficient methods and strategies for

verifying and generating all final products, especially in ensuring correctness.

The Correctness-by-construction (CbyC) is one of the effective approaches mainly for
developing automated security- and safety-critical systems by building demonstrable units
[Hall and Chapman, [2002; Kourie and Watson [2012; Watson et al.| [2015]. Using a
refinement paradigm, these units are built in each refining step, and thus systems are
managed and verified easier. Our main concern of this thesis is developing SPLs and
applying this approach with an objective to generate automatically correct-by-construction

products. Because of the benefits of this approach [Batory| 2015|, we are confident that
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our research direction is promising, especially after detecting many existing techniques and

methods which can support to elaborate this direction.

Objectives of Thesis

Our main goal is to develop correct-by-construction SPLs. Surveying research literature
about applying the CbyC approach on SPLs, we overcome shortcomings of previous re-
search and identify the major proposals for our direction. First, we focus on published works
on analysis and implementation techniques for SPLs which allow creating modules of speci-
fications, implementation code and correctness proofs together into the same units in order
to reuse them together and more effectively. Second, to receive the correct final products
besides pursuing an existing implementation technique we need a methodology in which
the units are composed to create the final products whose correctness is remained. Third,
in order to achieve the methodology, we realized that developing correct-by-construction
SPLs using existing languages faces many problems and limitations. Hence, we created a
new language that supports developers to write the modules easier and more effectively.
Fourth, to adapt the requests of the methodology, we defined an independent composition
mechanisms to be applied to these modules. Based on our knowledge gained from the
existing techniques, we build an automated generation tool to elaborate these mechanisms.

Finally, to evaluate our approach, we applied it to a practical case: a Poker SPL.
Contribution of Thesis

The objective of this dissertation is to propose a methodology for developing SPLs.
The methodology follows the software life cycle of a SPL and generates the correct final
products from feature selections. With the proposed methodology, we have accomplished

the following contributions.

e We have developed a language, called Formal Feature Module Language (FFML),
that allows expressing the variability of artifacts. This new language consists of syn-
tax and semantics, and supports to develop SPLs following the CbyC approach more
easily. A SPL is analyzed into the modules which are written in FFML. A tool, called

FFML Compiler tool, has been built for compiling these modules.
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e The composition mechanisms have been defined for composing FFML modules of
SPLs. We have developed a generator tool, called FFML Product Generator,
that implements these composition mechanisms to generate automatically the correct

final products.

According to the first proposal described previously, we begin by finding and selecting
a relevant implementation technique for expressing the variability of all artifacts types
(specification, code implementation and correctness proof) of SPLs. Although a SPL may
be defined at different levels of abstraction, we adopted Feature-Oriented Programming
(FOP) technique |Prehofer| 1997|. There are many reasons why we choose this technique.
First, it is a technique whose principles allow any SPL to be analyzed at feature level and
modularized all artifacts employed in each feature into a feature module that implements
the feature. Second, these principles are a core which may be transferred into different
systems, since if our methodology developed on it can be independently applied to different
languages. Third, based on the technique we can focus on the definition of a feature module
that contains three kinds of artifacts and also leverages the variability across a family of
products, since a maximum of the artifacts can be reused. Consequently, it is possible
to conclude that FOP technique is a rational choice for modeling the commonality and

variability of SPLs.

As indicated above, the benefits gained from FOP lead us to choose it as a core imple-
mentation technique deployed into our methodology. The methodology, proposed in the
thesis, have overcome the existing limitations, such as, many efforts and much time for en-
suring the correctness and the automated generation of final products. The methodology

saves verification time and is friendly to developers.

Initially, FoCaliZe is a formal language that we choose to implement the FOP tech-
nique. The language allows writing correct-by-construction software efficiently |[Prevosto
and Doligez 2002|. FoCalLiZe also contains a tool chain supporting the developer to de-
velop and execute the software. FoCal.iZe proofs are sent to the Zenon prover (embedded
in FoCaliiZe) which produces proofs that can be verified by Coq for more confidence |[Boni-

chon et al.| 2007]. Zenon automatically proves that software meets its specifications using
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the proof hints given in the correctness proofs. We rely on FoCal.iZe in developing correct-
by-construction software and on Zenon in automated proving its correctness. However,
FoCalLiZe does not have a SPL flavor while our main purpose aims at developing SPLs.
From the limitation and the advantage of the language, we decide to develop the FFML
language based on FoCaliZe. This new language and its compiler tool (FFML Compiler)
support for developing SPLs following the CbyC approach but more easily.

In the initial stage of our methodology, a SPL is analyzed into the features using FOP
technique. The corresponding feature modules are written into FFML by the developer.
Each FFML module contains both the specification and the implementation code. These
modules are compiled by the FFML Compiler tool into FoCaliZe files. The specification
is verified using Zenon, a theorem prover for FoCaliZe. We consider a collection of all the
feature modules as a resource for developing the products of the SPL. In the second step
of the methodology, the user selects the features for his product. The configuration is
determined based on these selected features. Using a filter operation, it is possible to check
the configuration validity, and if the configuration is valid, a generator receives it as an
input. In the third stage, based on this valid configuration, the generator will collect the
relevant modules from the resource. These collected modules are composed automatically
through the composition rules that are defined and embedded into the generator (FFML
Product Generator). The result of the composing process is a FFML product. In the
final stage, using the FFML Compiler tool, the product is translated into FoCaLiZe

program which is compiled using FoCalLiZe Compiler and verified using Zenon.

To ensure the realization of this methodology for automatically generating correct prod-
ucts, we investigate existing techniques and tools supporting automated composition of
specifications and correctness proofs (such as FEATUREHOUSE [Apel et al.| [2009], FEA-
TUREIDE [Thiim et al.| [2014b|, etc.). We recognize that there is no automated tool for
composing correctness proofs. Hence, in the thesis we target a more powerful tool than the
existing ones that allows expressing the variability of three kinds of artifacts and also com-
posing all of them automatically. Consequently, we have defined the composition rules for
FFML modules and developed the FFML Product Generator tool. The final products

of a SPL can be generated automatically using this tool.
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Road Map of Thesis

As our main goal is to develop correct-by-construction SPLs, we demonstrate the con-

tributions of this dissertation by the following chapters:

e We begin by survey literature on SPLE and CbyC approaches in the State of the Art.
Based on the overview and the insights obtained, we analyze the existing problems

and suggest ways to solve them for our main goal before entering other main chapters.

e In Chapter 2, we explain our methodology for developing SPLs and generating au-
tomatically correct final products. Different views offer a global perspective on the
methodology. We also discuss languages, mechanisms and tools required for devel-

oping correct-by-construction SPLs.

e In Chapter 3, we propose the FFML language for writing SPLs. We start justi-
fying the definition of the language. Based on three kinds of classified artifacts
(specification, implementation code and correctness proof), we define the syntax and
semantics of the language. We also discuss how FFML supports variability of these
artifacts along with the FOP technique selected. We present the description of our
tool, FFML Compiler, with the translation rules from FFML into FoCaLiZe. The
correctness of the FFML translation is discussed, and we conclude that FFML is a

language to develop SPLs efficiently following CbyC approach.

e In Chapter 4, we focus FFML product generation. The requirements for automatic
generation of the correct products from feature selections, are discussed. We intro-
duce a binary composition operation for composing FFML modules, and then analyze
the composition cases related to this operation. The operation is defined by means
of composition rules that are applied for each kind of artifacts. The relations of
specification, code and correctness proofs are clarified, and thus together with the
compositions of specification and implementation code, correctness proofs are also
composed. The process of generating final products and a quick view of the FFML

Product Generator tool are described in the end of the chapter.
e In Chapter 5, to evaluate our methodology, besides the Bank Account SPL deployed
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in the thesis as a running example, we develop one more complex SPL, a Poker SPL.
The final products generated from our tools (FFML Compiler and FFML Product
Generator tool) are verified, tested and validated. Consequently, we give our evalu-

ation of the methodology.

After describing the main contributions mentioned above, we conclude our thesis and

discuss future work in the last chapter.
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Chapter 1

State of the Art

In this chapter we aim at introducing the basic knowledge which the thesis is based on.
We also give a critical review of the context of the research question stated in the chapter
Introduction and related issues. The chapter is organized as follows. The main concepts
of SPLs are introduced in Section [L.1] We discuss the feature modeling principles, the
implementation technologies, the product line analysis strategies and verification. The ini-
tial requirements while developing correct-by-construction software is discussed in Section
The main principles of the correctness by construction approach and the FoCaliZe
language which follows this approach are presented in this section. The research works
relating to your main thesis goal are also analyzed. We finish the chapter with a summary

of the approaches presented in Section [1.3

1.1 Software Product Lines

In the beginning, program family was early defined in [Douglas [1968| as a set of similar
programs which are developed together. The idea of this approach is that making the
families of software components reduces encoding efforts. Stepwise refinement method has
first introduced in |Dahl et al| [1972] and formalized for producing program families in
Back [1978]. Similarly to this method, Parnas proposed another one, called sequential
development [Parnas| (1976|, in which the variability is defined as the common properties
of programs should be carried out before analyzing others of individual members. These

authors also suggested to use generator(s) for program generation instead of implementing
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variability at runtime.

The term software product line was first mentioned by Bass et al. in [Bass et al.| [1998]
while proposing an architecture for it. During the last decade, this term has been used
to replace the term program family. The engineering of SPL was enriched by Clements
and Northrop where the core assets are determined and managed |Clements and Northrop
2001]. Besides proposing the mechanisms for sharing a common set of core assets, the au-
thors described how to apply these mechanisms in practice. The variability was mentioned
as a key for these mechanisms. Pohl, Béckle and Linden defined the complete development
life cycle of a SPL [Pohl et al| [2005|, in which there are two main processes: domain
engineering and application engineering. The intention of the domain engineering process
is for establishing a reusable platform for a product line that contains all types of artifacts.
The related artifacts are linked to each other. The commonality and the variability are
defined in the platform. By contrast, application engineering is the process where the final
products are derived from the established platform in the domain engineering process and
from customers’ requests. Separating the product line development into these two pro-
cesses ensures to express variability and brings the flexibility in choosing the artifacts for

the different products as required.

In the next sections, we focus on describing in detail the techniques in developing SPLs.
In Section, [1.1.1] we explain feature modeling and how it supports to manage the variabil-
ity. Bank Account product line is analyzed as a running example. We also present the
definition of configuration in feature modeling. In Section [[.1.3] we describe implementa-
tion technologies that support the generation of final products. The strategies for analyzing
SPLs are discussed in Section and thus indicate the verification approaches in which

these strategies appear. Finally, we summarize and relate the techniques to our work.

1.1.1 Feature Modeling

Variability management is a main task related to success of SPLs. In SPLE, a feature
is a characteristic behavior specified as a unit of requirements, technical functions or non
functional characteristics [Kang et al. [1990|, that is associated to its assets in a SPL.

Variability can be understood as the allocation of the features that makes one product
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different from others in the same product family [Pohl et al.| 2005|. In feature modeling, a
product of a SPL differs from others by their involved features. A feature model is defined
as a representation of “the information of all possible products of a software product line
in terms of features and relationships among them” in |[Benavides et al.| [2010]. A feature
model of a SPL is a hierarchical set of the features of the SPL. These features are either
common or variant at different levels of abstraction and they are related by relationships

and bound by constraints.

A feature model is often graphically depicted as a tree, also called a feature diagram
(or feature oriented domain analysis (FODA) |[Kang et al| [1990]). A parent feature
relates to its child features by relationships. The basic relationships are possibly optional
(child features are optional), mandatory (child features are required), or (one or more
child features can be selected), alternative (only one child feature can be selected) or and
(all child features must be selected). Notice that the root feature always appears in all

products. And if a child is selected for a product, its parent must be part of the product.

Besides these relationships, the con-
straints among features can be repre-
sented by inclusion and exclusion state-
ments, such as, requires, excludes and

other more complex ones [Batory| 2005a].

. A * 2
______ 1 [ |
A requires constraint means that if a fea-
T Y
. . ; O optional alternative - - requires 1
ture B is required by a feature A, the pres- : :
' —® mandatory 4 or < - > excludes,

ence of A in a product implies the presence
of B. An excludes constraint means that Figure 1.1: A sample feature model
if a feature A excludes a feature B, it is impossible to have both A and B in the same

product. We show the example of a feature model in Figure [1.1

Cardinality-based feature model |Czarnecki et al.| 2005] is extended from feature model
with two new relationships, namely feature cardinality and group cardinality. A feature
cardinality is a sequence of intervals denoted [n..m], in which n is the lower bound and m is
the upper bound. The number of instances of the feature that can be involved in a product

is determined by these intervals. A group cardinality is an interval denoted (n :: m), where
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F2 F3 Fa F2

Figure 1.2: Tree A Figure 1.3: Tree B

n is the lower bound and m is the upper bound. When a feature is selected for a product,
this interval limits the number of its child features that can be part of the product. In
order to include more information about features, the extended feature model [Benavides
et al.| [2005] is also defined to extend feature model with more complex constraints among

attributes and features.

Besides feature model [Kang et al.| 1990], there are many other kinds of models that are
also used for analyzing SPLs with more sophisticated constraints, such as, the orthogonal
variability model [Pohl et al.| [2005|, the decision models |Schmid et al| [2011], etc.
However, it appears that using feature models in analyzing SPLs brings enough flexibility
while adding new functionalities or selecting combinations of features. Hence, the basic
feature model is considered as a standard description used to manage the variability of
SPLs [Benavides et al. [2010]. In this thesis, we will use this model. But for us, the nodes
are ordered and the tree A (Figure and B (Figure are not the same.

1.1.1.1 Bank Account Software Product Line

As a running example, we consider the bank account product line, described in [Thiim
et al| [2012a], that is analyzed using feature modeling. Its feature diagram is shown in
Figure It illustrates a family of products allowing the management of bank accounts.
The root feature BankAccount (BA for short) provides the basic management of an account.
It allows the bank to store the current balance and the amount of money added into or
withdrawn from an account. A customer can withdraw more money from the account than
available if it is within an over limit. The feature BA has three optional child features
DailyLimit (DL for short), LowLimit (LL for short) and Currency (CU for short). The

feature CU has one optional child feature CurrencyExzchange (CE for short).

50



1.1. SOFTWARE PRODUCT LINES

The feature DL allows the bank to BankAccount
limit the amount of money withdrawn in
L Currency = LowLimit | DailyLimit
a day. The feature LL indicates that
the bank authorizes a customer to with- CurrencyExchange optional relation |

draw money from the account only if the Figure 1.4: Feature diagram of bank account
amount is greater than a low limit. The product line

feature CU accommodates the manage-

ment of currency. Finally, an optional feature CE is established as a child of CU to
enable the calculation of currency exchange. A product is collected by a selection of these
features. For example, the user wants to build a bank account management system when

a limit is put on withdrawals in a day and on each withdrawal. In this case, features DL,

LL and BA will be collected to establish this bank account product.
1.1.1.2 Configuration

Feature modeling allows flexible features selection from a feature model. A user can
select a coherent or valid collection of features, called configuration, for an expected prod-
uct. Benavides et al. |[Benavides et al| 2010] introduce the definitions associated to the

configuration as follows:

e Configuration. Given a feature model with a set of features F'E, a configuration is
a 2-tuple of the form (SE, RE) such that both SE C FE and RE C FE, in which
SE is the set of features to be selected, RE is the set of features to be removed and

SENRE = 0.
o Full configuration. If SE U RE = F'E the configuration is called full configuration.

e Partial configuration. If SE U RE C F'E the configuration is called partial configu-

ration.

o Valid configuration. A valid configuration is a configuration when the constraints

expressed in the feature model are satisfied.

A full configuration contains all features necessary for deriving a final product. A
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partial configuration (PC) and a full (FC) configuration possibly formed from the feature
model such as described in our bank account example in Figure [[.4] are represented as

follows:

PC = ({LowLimit, DailyLimit}, {Currency})
FC = ({ BankAccount, Low Limit, Daily Limit}, { Currency, CurrencyExchange})

There is a fact that not all configurations are valid. For example, as defined PC is not
valid configuration. The validity of configurations is necessary and it is clear that from only
the valid ones will be used to combine their features to establish the corresponding products.
However, a partial configuration can also be interesting if there is no contradiction between

its included features.

Over the last decade, the analysis of feature models has been achieved automatically:
giving features selection as input the user can receive some results, such as, the validity of
configuration, the number of products, finding full configurations, etc. The automation of
feature model analysis is due to analysis operations |Benavides et al.| [2010]. An operation
takes a configuration as input and returns a result as output. For example, the validity of
a configuration can be checked by a wvalid configuration operation. Another filter operation
takes a (partial) configuration and a feature model and returns all of the possible full
configurations that can be derived from the model containing the selected features from
the configuration. These operations help the user in the process of selecting relevant
features and configurations. There are many tools supporting the operations, such as a
prototype extending fmp (an Eclipse plug-in) |Czarnecki et al.| [2005], pure::vam'antsﬂ,
guidsl [Batory| [2005a], etc.

To understand deeply the mentioned operations, we look into the specification methods
for feature models. By modeling the feature models into formulas (according to the logic
paradigm or other methods), we can use the operations embedded into automated tools.
In fact, there are many ways to specify a feature model. The first paradigm which is
used popularly, is the propositional logic. The developer expresses his feature model using

propositional formulas. Initially, Batory [Batory and O’Malley| [1992| used grammars

"https://www.pure-systems.com
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to specify feature models and then the idea of making the connection between feature
models with propositional formulas is proposed in [Mannion| |2002|. There are two primary
propositional logic based tools which are widely used: SAT solver |[Berre and Parrain [2010]
used in |Batory| [2005a; Benavides et al.| 2007; Mendonga et al.| 2009] and binary decision
diagram (BDD) solver [Whaley 2016] used in |Benavides et al.| [2007; Mendonca et al.
2008]. Other ways to specify feature models use constraint programming. A feature model
is mapped to a constraint satisfaction problem (CSP) [Tsang| 1993]. Using a off-the-shelf
solver, the CSP can be analyzed automatically. The usage of constraint programming is
first proposed in |[Benavides et al.| 2005| and widely used in |[Djebbi et al.| 2007} [White
et al| |2008]. The popular tools based on constraint programming are CHOCO EI, GNU
prolog EL etc. Based on the specifications of feature models, the operations are realized
using analysis tools in order to calculate the desired results. For example, to check the
validity of a configuration, a valid configuration operation will calculate the satisfiability
of the formula (in propositional logic or constraint programming, etc.) related to the

configuration.

In this thesis, we will rely on the possibility of using any of these tools to verify the
validity of a configuration and will not propose a new solution. When talking about valid

configurations, we will assume that the user will uses such tools to verify it.

1.1.2 Artifacts

In Software Product Line Engineering, the same design of software is placed into core
assets, then shared and reused across multiple products |[Bass et al.| [1998} |Clements and
Northrop| [2001} [Pohl et al.| [2005]. An asset is any artifact employed in the development
of the software. All the assets must be allocated and managed to create different products.
They are associated to the features of the feature model that contains the functionalities

of the software.

In the thesis, we consider a SPL that is designed into the features of a feature model.

The assets of this SPL are divided into three kinds of artifacts: specification, code and

http://choco-solver.org/
Shttp://www.gprolog.org/
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correctness proof. The specification artifacts are associated to the functionalities of the
features. These features are implemented by the code artifacts. The correctness proofs are
artifacts used to prove that the implementations of these features meet their specifications.
In order to build any final product of the SPL, we need composition mechanisms defined for
all of these artifacts. Based on a configurations selected by user, the artifacts, associated
to the features involved in this configuration, are composed in order to generate the desired

product.

1.1.3 Implementation Technologies

Implementation technology is a technology that is used to generate the final products
of SPLs. The basic principle of the technology is that given a configuration, the modules
related to the features involved in the configuration are composed (automatically or not
automatically) to establish the final product. In this section, we explore several well-known
implementation techniques for SPLs that have been evaluated to bring benefits in terms

of modularization, asset re-usability and asset composition.

The early implementation technique uses mizins in which a mixin is a “subclass defi-
nition that may be applied to different superclasses to create a related family of modified
classes” |Bracha and Cook| [1990|. In particular, a mixin can add fields and methods to an
existing class and override existing methods [Flatt et al.| [1998|. The ideas of modeling the
variability of code artifact and encapsulating all variants into a meta-product are initiated
in [Post and Sinz [2008]. Batory et al. proposed AHEAD tool suite that provides a concept
of several tools, each of which relates to a specific artifact type [Batory et al| [2003]. A

keyword super is used to express the relation between a class to its superclass.

Feature-Oriented Programming technique was proposed first in [Prehofer| 1997] which
is an extension of object-oriented programming. Its principles for (composing objects) gen-
erating automatically products are proposed in [Prehofer| 2001] based on a feature module
and method refinement. A keyword original is used to override the original method
and refers to the original method body. Apel et al. |Apel et al.| 2009] improved AHEAD
and proposed a tool chain, called FEATUREHOUSE, for generating automated software

composition. The composition operation for feature modules of a given configuration is
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presented in [Apel et al.| 2010| and implemented in |Apel et al. [2013b| with superim-
position. Apel et al. continued proposing a feature-based specification and verification
which support writing feature specification in separate and composable units [Apel et al.
2013c]. A tool chain, called SPLVERIFIER, implemented the method for specification and
correctness proof |[Apel et al.| 2013d|. However, the method was only realized for a model
checking approach. In addition, this tool chain are is only available for modules written in

Java and C.

Adhere the theorem proving approach and FOP technique, Thiim et al. [Thim et al.
2014b| have developed the tool FEATUREIDE, improved from FEATUREHOUSE |Apel
et al. [2009|, that implements the mechanisms for automated generation of products
including both their specifications and code artifacts. But proof artifacts are not included.

The tool is now only available for modules written in Java.

Besides FOP, Delta-oriented programming (DOP) is a different approach for designing
and implementing SPLs |Schaefer et al.| [2010] which is based on the concept of program
deltas. Features are implemented into corresponding delta modules that are supported to
add, modify, remove artifacts [Hahnle et al.| 2013]. The composition of artifacts can be
implemented by means of uninterpreted assertions |[Hahnle and Schaefer| 2012 which are
generalized with keyword original. Let us note that this approach is really interesting
but only focuses on single composition mechanism for specification while what we need is

mechanisms for not only specification, but also for other artifacts, e.g. correctness proofs.

1.1.4 Product-line Analysis Strategies and Verification

In this section, we focus on describing techniques for analyzing SPLs, and thus indicate

their appearance in the verification approaches.

Product-line analysis is necessary to be able to respond to a large number of prod-
ucts. The key idea of product-line analysis is to exploit analysis strategies before devel-
oping a product line, hence reduces analysis effort and improve the quality. Recently,
research about product-line analysis is interested and classified based on different strate-
gies |Kolesnikov et al.| 2013} |Apel et al| 2013d} |[Thiim et al. 2014a]. These strategies

are classified into three basic ones based on what the analysis is applied to, i.e, features,
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products or the whole product line.

An analysis strategy of features is called feature-based analysis. That is, a feature is
implemented with all artifacts that are analyzed in isolation without considering other
features or the feature model. Although the strategy can reduce the analysis effort, other
characteristics, such as feature interactions and the validity of feature combinations are

not considered.

Another analysis strategy is product-based analysis that generates and analyzes all the
products of a product line individually using a kind of model (e.g, feature model). The basic
idea of this strategy is that the developer sample a smaller number of products, usually
based on some coverage criteria, such that still reasonable statements on the correctness

or other properties of the entire product line are possible to analyze.

The products of a product line have similar assets shared between these products [Czar-
necki [2002; |Apel et al.| 2013a]. Checking products individually leads to redundant compu-
tations. Another analysis strategy, bringing more efficiency, is called family-based analysis.
The analysis operates on domain artifacts as feature modules instead of products. The

valid combinations of features, specified by a feature model, are also considered.

In the publication |Thiim et al| [2014a|, Thiim studied conceptually the strengths
and weaknesses of each three mentioned product-line analysis strategies. The main dif-
ference indicated between them is the ability to avoid extent redundant computations.
A SPL analyzed with the product-based strategy has redundant computations because
of the similarities between its products. To avoid redundancies, we can analyze a SPL
with the feature-based strategy. However, this strategy allows considering domain arti-
facts in isolation, it does not support noncompositional properties and we can only analyze
compositional properties. The family-based strategy supports both compositional and non-
compositional properties, hence avoids redundancies. The author has also proposed the

combinations of these three strategies to minimize redundant efforts.

The three analysis strategies (feature-based, product-based and family-based) are found
when surveying on the the publications relating to our domain. These strategies are used

for model checking and theorem proving.
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Product-line Model Checking

Pursuing product-based analysis strategy, Plath and Ryan have introduced the first
approach for model checking applied to SPLs |Plath and Ryan| 2001]. Since then, many
publications have proposed different approaches for model checking, most of which has
followed family-based strategy [Apel et al. [2011} 2013d; |Classen et al.| |2014} |Thiim et al.
2014c| and the remaining of which has pursued product-based and feature-based strategies
[Fisler and Krishnamurthi 2001; Liu et al| [2011} Plath and Ryan [2001} |Apel et al.
2013d].

Product-line Theorem proving

Based on the survey publications about the analysis strategies used for theorem proving,
we recognize that there are fewer publications for theorem proving than for model checking.
Most of the publications, such as |[Harhurin and Hartmann| 2008} Delaware et al.| 2011}
Héhnle and Schaefer| 2012; Damiani et al.| 2012] have applied product-based and feature-
based analysis strategies. Only several research works, such as |[Thiim et al.| 2014c| and
[Pham et al| [2015|, have applied family-based strategy for theorem proving. It means
that this research field should be still explored.

The strategies for analyzing SPLs bring efficiency and advantages [Thim et al.| [2014a;
Apel et al| [2013d|. Selecting a relevant analysis strategy can help to reduce redundant
efforts and generate automatically a large number of products. However, besides the strate-
gies, product generation process still requires more efforts and more efficient methods in

ensuring the correctness of products.

1.1.5 Summary of Software Product Line

We have presented the main principles of the SPLE. We have discussed the key concept
in SPLs that is variability. Managing variability among a set of products is one of the big
challenges for the success of any SPL. The tools for feature modeling focus on the operations
for selecting and managing configurations. We discussed the technologies and tools that

are necessary to automatically generate final products from different configurations. We
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presented the product-line analysis strategies which are considered as a necessary step for

analyzing and verifying complex SPLs.

In our approach, we do not specifically deal with the problem of selecting and verifying
a configuration and product-line analysis strategies, but rather with the product generation
process. We focus on the implementation technique that is able to support all kinds of
artifacts and enable the automated generation for a product line. In order to follow such
an implementation technique, we consider that a variability model has to be defined, so
that, developers can create multiple product configurations that are used as input to the
product generation. This model can be analyzed automatically by different tools, to take

advantage of the configuration management capabilities of the tools.

1.2 Development of Correct-by-Construction Software

Correct Programming is a perpetual requirement when implementing software. A pro-
gram is written from a particular specification implementing it. The implementation is
run on the assumption that it meets its specification. In most cases the program does not
perform exactly as it should. How should this problem be tackled? Testing cannot ensure
the complete absence of errors; only a formal proof of correctness can guarantee that a

program meets its specification [Thompson [1991].

To prove that programs are correct, correctness proofs can contribute practically to
software correctness. However, proofs can rapidly become too complex if there is no ef-
ficient method for incrementally producing them. A method which can help solving this
issue, called Correctness by Construction (CbyC), is a combination of formal methods and
incremental developments [Chapman| [2006|. It is proved to be a promising method thanks
to the benefits obtained while developing a software, such as a decrease of ambiguity (the
major cause of bugs), an avoidance of repetition, management, etc. The method has been
applied in industry, demonstrating its effectiveness for reducing defects and increasing pro-
ductivity, especially in order to develop security and safety-critical applications [Hall and

Chapman| 2002; Barnes et al| [2006] and B |Abriall 2005].

We introduce CbyC, together with the techniques and languages supporting it, in Sec-
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tion [[.2.] In Section [[.2.2] we describe in more detail FoCaLiZe, a language pursuing this

approach. Finally, we summarize and relate CbyC to our work.

1.2.1 The correctness by Construction Approach

CbyC is a development style that allows application to progressively evolve by re-
finement via small steps. The key of the approach is the correctness warranty that the
application behaves as specified at each step. The notion of refinement was first intro-
duced by |Dijkstral [1976] and then Back |[Back [1978| has proposed stepwise refinement
technique for constructing correct programs. The refinement calculus is introduced for
reasoning about programs, in which the correctness of a program is preserved while the
program is refined or improved using the stepwise refinement technique |[Morgan| [1993;

Back and Wright| 1998|.

Because of the gains, CbyC approach is also applied to many research applications.
SPARK is one of the early languages which applies the approach, it is used for developing
high-quality software [Hall and Chapman| 2002|. The developer implements the software
in SPARK, using the Toolsets (including static verification and design method). Guarded
Command Language (GCL) is another language supporting the definition of pre- and
post-conditions. An GCL program is engineered using CbyC method an translated into a

common language, such as Java, C++, etc. for execution |Kourie and Watson 2012].

Besides the languages mentioned above, there is a language which is very popular in
specification and verification domain, also pursues the CbyC approach: B. The method
B |Abriall 2005 is a method to specify, design and build sequential software. In B, a
specification is stepwise refined into an executable code. At each step, it must be formally
proven that the previous steps properties are still satisfied. An evolution of B, Event-B has
the purpose of modeling event based systems |Abrial 2010]. To the present time, there
are several industrial projects written in B and used in practice, such as, transportation
systems, banking, etc. Rodin toolsedﬂ7 Atelier Bﬂ, and B toolkiﬂ are tools supporting the

B method and have proved to be powerful and easy in managing correctness proofs.

‘http://www.event-b.org/
Swww.atelierb.eu
Shttps://github.com/edwardcrichton/BToolkit
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FoCalLiZe is a language built for developing correct-by-construction programs [Prévosto
2003] .The language contains the formal method design for the modularity of specification
and verification, and other mechanisms for managing all the development life cycle of
correct-by-construction software |Ayrault et al.| 2009]. In the next section, we will present

what the language is and discuss how it supports effectively software development.

1.2.2 FoCaliZe

In this section, we briefly present FoCaliZe. The FoCaliZe language has an object
oriented flavor allowing inheritance, late binding and redefinition |[Prevosto and Doligez
2002]. These characteristics are very helpful to reuse specifications, implementations and
proofs. We worked with the FoCaLiZeﬂ environment that provides a set of tools to specify
and implement functions and logical statements together with their proofs. The devel-
opment in FoCal.iZe is easily proceeded (in functional programming setting) because of
allowing the developer to write implementation code whose style is closed to the functional
language, OCaml. A FoCal.iZe source program is analyzed and translated into OCaml

sources for execution and Coq sources for formal verification.

A FoCalLiZe specification can be seen as a set of algebraic properties describing relations
between input and output of the functions implemented in a FoCaliZe program. These
properties are written in a very common precise language, the first-order logic. For writing
code, FoCal.iZe offers a pure functional programming style close to ML, featuring strong
typing, recursive functions, data types and pattern-matching. Proofs written using the
FoCalLiiZe proof language are sent to the Zenon prover which produces proofs that can be
verified by Coq for more confidence |Bonichon et al.| 2007]. The FoCaLiZe proof language
is a declarative language in which the programmer states a property and gives hints to

achieve his proofs which are performed by Zenon.

FoCalLiZe units are called collections. They contain entities in a model akin to classes
and objects or types and values. A collection is called a complete unit when it implements

a species whose all properties are proved and all functions are defined. A collection has

4('77

functions and properties which can be called using the notation. It is derived from

"http://focalize.inria.fr
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other units called species which can specify and implement functions and also contain

proofs.

A species defines a set of entities together with functions and properties characterizing
them. At the beginning of a development, the representation of these entities is usually
abstract, it is defined later during the development. The type of these entities is referred
as Self in any species. Species may contain specifications, functions and proofs. More
precisely species may specify a function or a property (with respectively signature,
property keywords) or implement them (let keyword when a function is defined, proof
of keyword to introduce a proof of a property). A let defined function must match its
signature and similarly a proof introduced by proof of should prove the statement given

by the property keyword. Statements belong to first order typed logic.

As said previously, FoCalLiZe has an object-oriented favor and integrates inheritance,
late binding and redefinition to ease reuse and modularity. Inheritance allows the definition
of a new species from one or several other species. The new species inherits all the functions,
properties and proofs from its parents. Some syntactical mechanisms are provided to
prevent ambiguities. A species may provide a definition for a function that is only specified
in its parents. It may also redefine a function when this one is already defined in a
parent but in that case the signature is maintained (no overloading). Multiple inheritance
comes with a late binding mechanism close to the one found in object oriented languages.
FoCalLiiZe and its tool set, based on an unique framework, brings the benefits, such as, easy
reuse and modularity, ambiguity prevention, automated proving, etc. These characteristics

are helpful to write and reuse specifications, code and correctness proofs.

1.2.3 Correct-by-Construction Software Product Line

Because of the benefits gained from CbyC, we consider adopting this development style

for SPLs.

According to the introduction of the thesis about the first experiment in developing
SPL using FoCal.iZe, we faced several issues. Even if the characteristics of FoCaliZe are
helpful to reuse specifications, code and correctness proofs, FoCal.iZe does not have SPL

flavor. Namely, FoCaliZe does not contain any technique supporting the basic princi-
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ples of product line engineering. For example, to be able to manipulate feature-oriented
programming technique, we have to split the artifacts, belonging to a feature, into small
related species, hence reuse or compose to other artifacts. In addition, the relations be-
tween species are not easy to understand even by an FoCaliZe developer. Especially, when
a SPL is modeled into several features, the number of species and the relations become
higher and the specifications more complex. Furthermore, FoCaLiZe does not supports
the refinement or the modification of a property. In order to reuse, a trick was made by
copying the statement of the property. All of these manipulations, while developing SPLs
using FoCal.iZe mentioned above, have not specialized that make FoCal.iZe difficult to be

used by non non FoCal.iZe experts.

Let us consider the research work |Apel et al.| [2013d| using model checking approach.
The authors proposed a tool chain, called SPLVERIFIER, implementing a method which is
activated on both specification and correctness proof. This tool chain is now only available
for modules in Java and C. Although model checking can be applied fully automatically,
it may be very hard to prove strong properties about SPLs. By contrast, using theorem

proving facilitates proving these properties.

Let us consider another research work [Thiim et al.| [2011] on the development of SPLs,
that adheres to the theorem proving approach. It is closely related to our main goal but
does not pursue ChyC. Besides expressing the variability of code artifact using FOP, Thiim
et al. applied design-by-contract for expressing variability of specification artifacts, i.e.,
contracts, into the same unit together with code artifact [Thiim et al.| 2012a]. Specification
artifacts are expressed using the Java Modeling Language (JML)|Burdy et al.| [2005]. The
correctness proof artifact was consider as a part by itself and placed outside but related to
the unit. They use Why and Krakatoaﬂ to generate proof obligations for the proof assistant
Coq. When generating a final product, its corresponding specification and code artifacts
are composed via the mechanisms proposed in |[Thiim| 2015|. This mechanism of proof
composition was proposed in [Thiim et al.| 2011|, in which partial proofs related to units
were also composed. The tool FEATUREIDE, improved from FEATUREHOUSE [Apel

et al.| 2009], implemented all of these mechanisms. These tools are now only available for

Shttp://why.lri.fr/
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modules in Java.

A limitation of this research is that the relation between specification and correctness
proofs are not formally defined, in other words, they are activated independently to each
others. Moreover, while generating a final product, the related units are composed without
taking into account the proofs while we consider that both specification and proofs should
be composed together. In addition, they did not define formal composition rules for proof
artifact, which is very important for automated generation of correct products. In fact,
they only analyze and demonstrate in text how proofs written in Coq can be composed.

This means that there is still no automated generator for all products.

Delaware et al. |Delaware et al| 2011] have proposed a method to prove development
correctness aiming at the reuse of proof artifacts. The authors have showed how to de-
velop SPLs with theorems and proofs built from modules. Similar to the partial proofs in
|[Thiim et al.| 2011, proof fragments are written in Coq and located into each module, and
thus enable their reuse. These fragments are composed to build a complete correctness
proof for each product. However, the method have been only implemented on a limited
language domain, namely on a SPL of programming languages: Featherweight Java (FJ)
and Featherweight Generic Java (FGJ). Let us not that there is no module-level compo-
sition operation that eases the composition of new modules. In other words, without this
operation, the method can not be automated composition of proof fragments to build new

languages.

1.2.4 Summary of Development of Correct-by-Construction Software

In this last section, we have presented the CbyC approach and the FoCaliZe language
that supports the development of correct-by-construction programs. We have also indicated
the limitations found when we adopted CbyC for SPLs. In our approach we rely on the
principles of stepwise development and take advantage of the strong points of the FoCal.iZe
language. In order to pursue our main goal, we also look for solutions that can overcome
existing limitations, such as defining a composition operation at module level for all kinds
of artifacts including proofs. These solutions would guarantee to be able to reuse encodings,

and the correctness of products generated from automatic product generator.
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1.3 Summary

In this chapter we have briefly introduced the principles and basic concepts of two
main approaches in software engineering: Software Product Lines and Correctness-by-
Construction approach. We consider that these approaches can be combined for develop-
ing correct-by-construction SPLs. We have reviewed research directions to develop SPLs

employing the approaches presented in this chapter.

The next chapters describe the contributions of this dissertation. We illustrate our
methodology that allows us to develop correct-by-construction SPLs in Chapter 2] Later,
we concentrate on the details of the FFML language introduced to give a SPL favor to
FoCalLiZe and the FFML Product Generator tool. The language is defined for writing
SPLs in Chapter ] The tool is developed for automated generation of final products in
Chapter @l An evaluation of our methodology is presented in Chapter [5] by mean of the

development of an example : a Poker SPL game.
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Chapter 2

Methodology for Generating
Automated Final Products

Ensuring correctness and reliability of all products of SPLs, the traditional techniques,
such as type checking, model checking, and theorem proving, have to face many challenges.
In product-line verification, we analyze whether all products of the product line meet their
specifications. Recently, some approaches have been proposed to verify SPLs, however,
they are often just used as proof-of-concept for verification techniques and not justified
empirically. To the best of our knowledge, this chapter presents the methodology as the
first systematic discussion of how to generate automated products of product lines using a

CbyC approach.

According to the expectation presented in the introduction, we propose a methodology,
developed along the SPL life cycle, generating the correct final product from the feature
selection of a feature model. The methodology responses to the following requirements:
the existing limitations of verification technique are overcome; the product generation is

automated; and the products of SPLs generated by the methodology are correct;

In this chapter, we aim at presenting our the whole approach that is to facilitate the
development of correct-by-construction software using product lines. The approach allows
features together with their proofs to be reused. A mechanism to compose features with
their proofs is proposed. The variability that is all the possible solutions of a problem,
is expressed. We introduce here the way we develop a SPL and generate its correct-by-

construction final products.
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METHODOLOGY FROM DEVELOPER VIEW

We use theorem proving techniques and pursuing CbyC approach,

We choose the FOP technique as the core implementation technique deployed into

the methodology,

We define a module containing all kinds of artifacts (specifications, implementation
code and correctness proofs). We propose to build a new language, called FFML,
to write such modules. Using the language, a developer can easily implement the

features of a SPL.

We develop a tool, called FFML Compiler, translating FFML modules into Fo-
Cal.iZe code.

We define formally a composition operation at module level applied for kind of ar-
tifacts. The relationships between specification and correctness proof artifacts are

explained clearly.

We develop a tool, called FFML Product Generator, collecting all involved FFML
modules of a feature selection and implementing the defined composition operation.
The tool allows the user to choose configurations from a feature model, and then

receive the corresponding final products.

To have a comprehensive view of the methodology, we consider it from both the devel-

oper of the SPL and the user of the SPL interested in one or more products. In Section 2.1]

we explain our methodology from the developer side. A description of how the methodology

supports the user to select and build his own products, is given in Section [2.2

2.1 Methodology from Developer View

Software developer always looks for facilitation of reusing artifacts. In order to ex-

plain why our methodology can support the reuse of artifacts, we begin by describing the

methodology from the developer view in Figure 2.1} Applying the principle of FOP tech-

nique, an FFML developer works on the feature model of a SPL and develops the modules

associated to the features. The process is conducted as follows:
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. From the feature model, using FFML language the developer writes for each fea-
ture an FFML module that reflects the feature. The module (a file .fm) includes the
properties, specifying the functionalities associated to the feature, and the code imple-
menting these functionalities. The correctness proofs corresponding to the properties

are assumed at this very first step.

. The written modules are sent to FFML Compiler to check their syntax and semantics,

and then translated into the corresponding FoCaliZe files .fcl.

. These translated files are sent to the FoCaLiZe Compiler. If the compiler finds out
errors, they are reported to the FFML developer.

. FoCalLiZe developer fills proof hints into the proofs (which were assumed previously)
of each module. Based on these given proof hints, the Zenon Prover called by Fo-

CaLiZe, automatically finds the proofs.

. The proof hints are copied back into the proofs of FFML modules as comments by
the FFML developer.

Developer

read/ \wr;e D
V \E)

report

FoCaLize |Zenon = ret
Compiler |Prover Nj j

AEDDED

Asset Database

Feature model \

Figure 2.1: The methodology from the developer view

The result achieved after completing the compilation with no errors, is the FFML

modules associated to the feature model (the right model in Figure . We put these

modules and the feature model into a database (called the asset database) of the SPL

which will be used to generate the final products. Notice that, the FFML developer has

to know about FoCaliZe and Zenon to produce the correctness proofs and understand the

€rrors messages.
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As indicated in the beginning of this chapter, FFML language is created for writing
FFML modules. In fact, the language supports the FOP technique allowing artifacts to
be modularized into modules. The FOP technique only contains the basic principles, i.e.,
each feature of a SPL is reflected by an FFML module. Hence, to generate automati-
cally products of a SPL we have to define the mechanisms for composing these modules.
Furthermore, three kinds of artifacts (specifications, implementation code and correctness

proofs) contained in the modules make the composition process more complex.

Example. For Bank Account product line presented in Section [I.1.1.1) we write five
modules in FFML associated to the five features of the feature diagram (Figure :
module BA associated to feature BankAcount, module DL associated to feature DailyLimit,
module LL associated to feature LowLimit, module CU associated to feature Currency and
module CE associated to feature CurrencyExchange. The feature diagram and the modules
are saved into the system as asset database. The user can read this database to configure

his own product with the expected functionalities.

In the next section, we will consider the automated generation of products from the

user view.

2.2 Methodology from User View

The activity of generating an FFML product is illustrated in Figure We show
another view of our methodology that allows the user to choose a configuration as input

and receives an FFML product as output. The process is as follows:

1. From the asset database of a SPL (the left model in Figure|2.1)) the user selects some
features which are supposed to be essential for an expected product. To decide which
features must be selected in the product, the user has to look at the feature model

and the specifications in the FFML modules.

2. The configuration selected by the user, if it is valid, is sent to the FFML Product
Generator tool. The generator retrieves all the modules involved in the configuration

from the asset database.
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. The involved modules are composed and built into a final product that is described as
a set of FFML composite modules, called the FFML product. The generator embeds
a set of composition rules that are defined for composing all kinds of artifacts (spec-
ifications, code and correctness proofs). It can report to the user several warnings

that can appear while composing the artifacts, such as a lack of proof hints.

User
/ |
read select refert
< =
- - —_ FFML _
‘J _J "‘J . Product -
C Generator

-'a 13 ? 'ra FFML Product
Asset Database

.

Valid configuration

Figure 2.2: The methodology from the user view

The result from FFML Product Generator is the final product containing the composite

artifacts obtained from all involved modules. The composite specifications are guaranteed

to be satisfied by the composite implementation. The process of the product generation is

done automatically but some proofs may be done manually (because of the current status

of the FFML Product Generator).

A configuration selected by the user is a potentially partial one, and may be valid or not.

In our work, we require a valid full configuration, however, there are many tools checking

the validity of configurations, such as a prototype extending fmp (an Eclipse plug-in)

|Czarnecki et al.| 2005, pure::vam’antﬂ guidsl 2005a], etc. In the scope of this

thesis, we do not focus on these operations but use the result from them. Furthermore, we

assume that a configuration is not a set of features but a sequence of features imposing a

certain order of composition. We will also consider only valid configurations.

"https://www.pure-systems.com
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Feature mode! Valid full configuration Module diagram FFML Product

—O optional relation
D Feature o

——& mandatory relation
@ Module

= F— — = "from' relation
- variant

Figure 2.3: FFML products

Product Generation Process

Assuming that the composition mechanisms for the modules are reliable, an FFML
product, generated by the FFML Product Generator, contains the composite artifact es-
tablished by these mechanisms. If the composite correctness proofs prove that the product

satisfies the composite specifications, we can conclude that the product is correct.

A global picture of the product generation process is illustrated in Figure [2.3] The
FFML products, built from a feature model, are the expected results generated by the
FFML Product Generator tool. For a valid configuration, the FFML modules correspond-
ing to the involved features are collected in a module diagram. The module diagram has
the same hierarchy as the feature model but is restricted to the features involved in the
configuration. The nodes of the diagram are the modules that are related to each other via
relationships. Based on the module diagram and the implementation of the composition
operation, FFML Product Generator composes all the artifacts of the modules to build the
FFML products.
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FFML Product FoCalLize Program Execution

FFML FoCalize |Zenon
- g Compiler ; > | Compiler |Prover

—

.ml.zv.v

Figure 2.4: Translation of an FFML Product into FoCal.iZe

Product Execution

The result, established by the methodology after composing all involved modules of a
configuration, is an FFML product that is also translated into a FoCal.iZe program for
verification, and thus this program is compiled into an OCaml executable file. This process
is illustrated in Figure[2.4] For each module of the product, the composite implementation
code is proven to meet the composite specifications by the composite correctness proofs es-
tablished by the composition process. FoCaliZe calls Zenon Prover to prove automatically

the satisfaction of the composite properties.
Products of Bank Account Product Line

We consider the example of Bank Account product line mentioned in Section From

the asset database, the system allows a user to select one of the twelve valid following

configurations:
Cy = ({BankAccount})
Cy = ({ BankAccount, Daily Limit})
C3 = ({BankAccount, LowLimit})
Cy = ({BankAccount, Currency})
C5 = ({BankAccount, Currency, CurrencyExchange})
Cs = ({ BankAccount, DailyLimit, Low Limit})
C7 = ({BankAccount, Daily Limit, Currency})

Cs = ({ BankAccount, Low Limit, Currency})
Cy = ({ BankAccount, DailyLimit, Low Limit, Currency})

Cio = ({BankAccount, DailyLimit, Currency, CurrencyExchange})
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C11 = ({BankAccount, Low Limit, Currency, CurrencyExchange})
Ci2 = ({ BankAccount, DailyLimit, Low Limit, Currency, Currency Exchange})

Assume that the configuration Cg is selected with the expectation of receiving a prod-
uct with the functionalities obtained from the features BankAccount, DailyLimit and
LowLimit. Besides the basic management from BankAccount, the product also contains
the functionalities, allowing the bank to limit the amount of money withdrawn in a day and
the amount of each withdrawal, obtained from both DailyLimit and LowLimit. The system
will take the corresponding modules (i.e., module BA, DL and LL) as input, compose these
three modules, and produce the FFML final product. This product is translated into an

FoCalLiZe program that is correct-by-construction and can be executed.

2.3 Summary

In this chapter we describe our methodology for generating correct products of SPLs
from both the developer view and the user view. Besides proposing an automated gener-
ation, we also expect that our methodology to be able to apply to other target languages
(which are required to be able to express specifications, implementation code as well as
correctness proofs, such as B or Java). The requirements and also the solutions for imple-
menting the methodology are presented. A tool chain realizes the methodology in order
to allow the user to choose a collection of features and receives corresponding correct final
product. In the next chapters, we present how to adapt our methodology to FoCaLiZe by

building a new language FFML and how to generate the correct products of a SPL.
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Chapter 3

FFML Language

This chapter is a part of work |[Pham et al.| [2015] which presented FFML language at
FMSPLE’15. Furthermore, the chapter shares the material with [Dubois et al.| 2016] that
described the advantages of FFML in developing SPLs.

We begin by explaining why we decided to create the FFML language in Section (3.1
The definition of a FFML module is described in Section B2l In Section B3] we show the
grammar of FFML and then its semantics is explained in Section 3.4 FFML Compiler, a
translation tool is presented in Section [3.5] and the correctness of the compiler is discussed

in Section [3.6] The last section is a summary of this chapter.

3.1 Towards a Formal Language for Correct-by-construction
Software Product Lines

As indicated in Section FoCalLiZe is an efficient language for specifying, im-
plementing and proving software. It allows the development of correct-by-construction
programs. In our early work, we started with the hypothesis that the development of
correct-by-construction SPLs can be achieved with the support of this language but we

rapidly realized it is not easy to develop them in FoCaLiZe.

The different limitations we found while developing SPLs in FoCal.iZe are the reasons
why we decide to build another language. We analyzed these limitations in Section [T.2:3]
The main limitation is that FoCal.iZe does not have SPL favor, namely it does not contain

any automated implementation technique for SPLs. To develop SPLs in FoCaliZe, the
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developer has to conduct a lot of manipulations that are sometimes difficult to understand.

With our main purpose of developing correct-by-construction SPLs, we begin by finding
a relevant implementation technique applicable to our work. We investigate several imple-
mentation techniques to assist us in achieving the purpose. An obvious fact that over the
last decade, FOP become a well-known technique for reusing assets in SPLE [Apel et al.
2013a]. As indicated in the “Introduction”, we presented the reasons why we choose FOP
as a method for designing and managing the variability of the SPLs. The basic principle
of FOP technique is each feature of a SPL’s feature model is mapped to a separate module
that implements the feature. Hence, each module can contain its implementation code
including its specification and correctness proofs. We can notice that the modularity of
correctness proofs was proven effective by many previous works, such as |[Delaware et al.
2011; Thum et al| [2011; Pham et al| 2015} Batory [2015]. Once the proofs can be
modularized and built as other artifacts, such as specification and implementation code,
the proof artifacts related to a module can be written into a unit and evolved together
with its specification and code in a common language. We can also build mechanisms for
reusing both specification and correctness proof in the language. This will make the formal

development of SPLs become more understandable and reduce the coding efforts.

Inspired by FOP technique and FoCaLiZe, we decided to create FFML (for Formal
Feature Module Language) which is close to FoCaLiZe but brings new mechanisms and
reduces the limitations to reach our main purposes for developing correct-by-construction
SPLs |Pham et al.| 2015|. A compiler of the language can specialize the complex developing
manipulations in FoCaLiZe. The language supports modularity, variability management
and also composition of artifacts. Thanks to FOP’s basic principles, the organization of
the artifacts is proceeded in independent modules. These modules will be translated into
FoCaLiZe to check their correctness. Zenon, the prover embedded in FoCalLiZe, auto-
matically proves that the implementations meet their specifications using the proof hints
given in the correctness proofs. We rely on FoCal.iZe in developing correct-by-construction

software and on Zenon in automated proving its correctness.

In FFML, the properties of SPLs are specified in the same way as in FoCalLiZe but
they are managed in a different way. The method we apply to the specification of SPLs
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is inspired by design by contract |[Meyer| 1992|. The technique has appeared for more
than two decades, but recently it is used widely to specify formally the behaviors of SPLs
[Thiim et al.| 2012b]. Meyer and Thiim et al. defined the techniques in object-oriented
programming setting. However, we put ourselves in functional programming setting and
consider properties as the first order formulas specifying the desired behaviors of functions.
Moreover, following the key idea of design by contract [Meyer| [1992|, for each function
there are a collection of properties which specify its desired behaviors. In fact, we apply
this basic idea to manage the writing of the properties. The properties in FFML is linked
to a function and they are calculated together when the function is (re)defined. As a result,
it is easier to organize and manage the properties following the functions which they are

related to.

The method used in FFML for representing the variability (the reuse and modification
of the specification) of SPLs in terms of syntax is inspired by delta-oriented programming
(DOP) which was proposed by Schaefer et al. [Schaefer et al| [2010]. As indicated in
the chapter Background (Section , DOP is extended from FOP with a purpose for
implementing SPLs more flexibly. Its principles allow the developer to add, modify and even
remove implementation code, such as, classes, functions and interfaces in delta modules. We
apply similar mechanisms for FFML while refining and modifying artifacts. In addition,
we are also motivated by the generation principle of DOP that from a core module (which
is necessary for all product variants) and the delta modules, the final products can be

established. These principles are also applied in the translation of FFML into FoCalLiZe.

As the basic principles of FOP technique, each feature of a feature model is implemented
by a corresponding module. After written in FFML, these modules are embedded into
separate files (.fm). Although FFML is inspired by FoCal.iZe, FFML’s syntax is designed
so that it is suitable for writing, reusing and modifying artifacts easily. FFML allows the
user to write only what differs from one module to another one, hence reduces inessential

code. Finally, these modules are translated into files (.fcl) in FoCal.iZe by FEML Compiler.
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3.2 Module definition

In this section, we begin by giving a classification of module artifacts in Section [3.2.1
then the definition of an FFML module in Section [3.2.2 which contains these classified

module artifacts.

3.2.1 Classification of Module Artifacts

With the desire to develop correct-by-construction SPLs by means of FOP technique,
each node (feature) of the feature model of a SPL is associated to a module. Each of these
modules requires the specification of the expected behaviors as a collection of properties.
A module also contains the code implementing it. This implementation is later proved to
meet its specification by a collection of correctness proofs. This motivates us to define an
FFML module which contains three kinds of artifacts: specification, code and correctness
proof, as the assets of a unit structure. We use the term artifact from now to call all of

these assets.

In our context, each module includes its artifacts: specification, code and correctness
proofs. Specification is given here as a set of function declarations (signatures) and ex-
pected properties or requirements. Technically these properties are logical formulas relating
together some functions described only by their signatures. Thus, in our setting a specifi-
cation is close to an algebraic specification of an abstract data type |Goguen et al.| [1976].
Code artifact has to be understood as the implementation of the functions declared in the
specification. In our work, we place ourselves in a functional programming setting. The
proof artifacts concern the correctness of the code with respect to the specification. The

three kinds of artifacts are defined as follows:

e Specification artifact includes function declarations and the properties associated
to the functions. A function declaration or signature only describes the name of the
function, and the types of its arguments and result. A property is expressed by a first
order formula. For instance, a square function, named pow, is declared with input
and output types as double. A property not negative of pow is written as “ property

not_negative: all x : double, pow(x) >= 0;”, meaning that the returned value of the
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function is always positive. In FFML context, a property is either a new one which
is expressed by a new logical formula or refined /modified from an existing property

of a parent module. FFML will support the developer to write these properties.

e Code artifact consists of the definition of the representation type and the function
definition/re-definitions. The representation type of a module is the concrete type
associated to the abstract data-type specified in the specification artifact. It will
be a concrete type (a la ML) or a Cartesian product of concrete types (complex).
In an FFML module, the representation type is unique for each module and can be
also established from the representation type of a parent module. For instance, the
representation type of a module B, is denoted by A * int, in which A is the parent of
B. A * int means that the representation in B is the one in A extended by an integer.
If type A is string then type B is the type of tuples made of a string and an integer.
A function may be (re)defined after the representation type has been defined. The

implementation of a function can refer to the existing one of a parent module.

e Proof artifact contains correctness proofs. These proofs appear as comments in
FEFML. The proofs are done in FoCaliZe, that is, they are done on the translated
code. Zenon Prover will automatically prove and the developer will copy them back to
FFML. In a module, the correctness proofs are written corresponding to the specified
properties. While writing the correctness proof of a property which refines/modifies
the same property of a parent module, the developer can mention the parent’s as a
property proof hint. This proof hint allows the reuse of the corresponding correctness

proof from the parent module.

3.2.2 FFML Module

As presented in the previous section, an FFML module contains three kinds of artifacts
in a single setting. The module definition enables the description of the commonality
and the variability with respect to the artifacts of the parent module. A module is a
modification from its parent module. Hence, we define a module F'M as a unit structure

(like class in Java or species in FoCaliZe). An FFML module F'M is a tuple containing
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the following elements:

FM := (MN,PN,S,P,R,D, Pf) (3.1)

Equation [3.1| represents the module named M N which is a child of module named PN.
In a special case if F'M is the root module (i.e, the FFML module associated to the root of
the feature model), there is no PN element. The module only contains the artifacts which
are extended/modified from its parent (PN). The specification of module F'M consists of
a set of function declarations S (including constants) and a set of properties P that specify
the desired behaviors of these functions. The declared functions S are (re)defined later
and the definitions are collected into D. The properties P are proved by correctness proofs
P f written by a FoCaLiZe developer. The representation type R implements the abstract
data type as a concrete type. The elements of the representation types are always extended
from that of the parent PN. The representation type R and the function (re)definitions

D are the code artifact of the module.

The FFML syntax is created with the purpose of writing the modules represented in
Equation Each of these modules are put into a separate file .fm. FFML grammar
provides keywords in order to represent all included artifacts. However, the last element

P f being proofs, written and completed in FoCal.iZe, are copied back into the file . fm.

We define a complete module in Definition [1| as a module in which all of its declared
functions are defined and all of its properties are proved. Moreover, as shown in the
beginning of this chapter, FFML is inspired by FoCalLiZe, so the definition of the complete
module is also related to the completeness of species which is a condition to execute the

species in FoCaLiZe.

Definition 1 A module is called o complete module when all its declared functions are

defined and all its properties are proved.

The completeness of FFML modules is an important property for FFML Compiler.
Once a complete module is proved successfully, its correctness is guaranteed. It also can be
executed and validated by test cases. This is an initial step to guarantee the correctness

of theses modules and also the products which are constructed from such modules. Based
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on the definition of an FFML module in Equation in the next section we will present
the grammar of FFML.

3.3 FFML Grammar

Our main objective in defining FFML is to propose a language close to FoCaliZe
that already allows the developer to write the feature modules from a feature model of
a SPL. All artifacts are put in a single setting. FFML is inspired from FoCalLiZe, in
particular concerning styles for writing specifications, code and correctness proofs. FFML
and FoCaliZe differ mainly in the way to structure and organize information. However,
as we will see in this section, FFML allows the developer to focus on expressing reuse and
modification of module artifacts. The syntax of FFML is presented in Section [3.3.1 We
classify the properties in FFML in Section In Section we focus on a keyword
from upon which the reuse and modification mechanisms of FFML are revealed. In Section
3.3.4) we show how the example of Bank Account is implemented in FFML (see Section
T1.1.1).

3.3.1 Syntax

When we consider a SPL written in FFML, it can be defined as a collection of modules.
The user-defined types related to a module are gathered in a file called a user-defined type

file. Let us briefly look into a module and a user-defined type file.

e Module. A module can be defined as a unit that contains the artifacts to implement

the module.

e User-defined type file. This file contains the types that are defined by the user

and related to a module.

The concrete grammar of FFML is presented in Grammar 3.1l A module is introduced
by a keyword f_module and its name. The keyword from expresses that a module having
name id is extended from its parent module named parent, which follows the principle of

FOP. Keyword from is very important because it enables representing the fundamental
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mechanisms for reusing and modifying module artifacts in FFML. It is an optional part

which is not required in the root module.

m) == ‘f_module’ (id) [‘from’ ({parent))* . et < * )] e
U oy ((pmp>)< Dk Gy (defy i ves Gume_m) [0 (Gar)® 9] =
((proof))* *5;
O e lid (proof) = ‘proof of’ (prop_n) ‘=
(parent) == (id) ‘“foc proof’ (focproofbody) *;’
(sig) == ‘signature’ (func_n) ‘i’ (type) ¢}’
(focproofbody) - FoCaliZe proof body
(prop) ::= (new_prop) | (inv_prop) | (ref_prop)
t -t
(new_prop) == ‘contract’ (func_n) (type) - type
) [} %,
‘F-):%pie;;)vi) g?fap— n) 57 ((lwar))*™ [{leapr) (lvar) - variable _with universal quantifier
(inv_prop) 1= ‘contract’ (func_n) (lexpr) - predicate logical formula
‘invariant property’ (prop n) ‘%’ _
((lvar))* [(lexpr) ‘->"] (lexpr) *}’ (ezpr) - expression
(ref _prop) := ‘contract’ (func_n) {c_prod) -
‘property’ (prop n} Cartesian_product of concrete types
‘refines’ (parent)‘!’(prop_n)
[‘extends premise’ (lexpr)] ‘;’ (id) - module name

(rep) ::= (bas_rep) | {ext rep) (prop_n) - property name

(bas_rep) ::= ‘representation = (c¢_prod) ;’
(func_mn) - function name
(ext_rep) == ‘representation extends’
(parent) ‘with’ (c¢_prod) ‘;’ (par) - function parameter

Grammar 3.1: FFML module

A new function declaration sig is introduced by a keyword signature with its name
func_n and its type type. By adhering to the basic principles of design by contract, for
each function the developer can write a collection of properties that specify the expected
behaviors of the function. Keyword contract followed by a function name func n of
a property definition indicates that the property is related to the function func n. A
new property is specified by keyword property with its name prop n, a list of variables
lvar (with universal quantifiers), and followed by two logical expressions lexpr (without
quantifiers of the global variables lvar) as its premise and conclusion separated by the im-
plication connective. However the other local variables in lexpr can be with with universal

quantifiers.

Using keyword representation, the representation type rep of a module is estab-

lished either from a Cartesian product ¢ prod of concrete types or an extension from the
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representation type of its parent. In the extension case, two more keywords extends and
with are used to describe this extension as a Cartesian product of the representation type
of the parent together with the extension. After concreting the abstract type of the module
by the representation type, the function, declared early (sig), are defined by definition de f
with expression expr using keyword let. These function definitions follow the functional

programming paradigm.

The correctness proof of a property is written using keyword proof of followed by
the property name and a proof body description focproofbody. As discussed in Section
[3:2.2] the proof body is a FoCaLiZe proof considered as a comment in FFML.

The elements such as focproofbody, type, lvar, lexpr, etc. are not defined in the
concrete grammar of FFML because they are very close to the FoCal.iZe corresponding

syntactic categories (see Grammar in Annex).

A module may be associated with a user-defined type file (.tp). The concrete grammar

of this file is represented as follows:

(ftype) == ‘f_type’ (id) ((dtype))* ‘i’
(dtype) := ‘type’ (type_n) =" (type) ‘;’
Grammar 3.2: User-defined type file
The file is introduced by a keyword f_type followed by its name id. The file has the
same name as the related module. A type dtype is defined in the file using a keyword type
with its name type n and its type type. Such a file appears in Poker SPL developed in
Chapter [3]

In the next section we classify the properties and clarify how they can be used in FFML.

3.3.2 Classification of Properties

Before explaining the semantics for the modification and reuse in FFML, we define
a property following the principle of design by contract. Given a function f : U — V
in module F'M, the properties Py of f is represented by a set of all properties pfi(?i)
related to the function, i.e., Py — {pfl(:r_1>), pfg(x_g), ey pfn(x_g)}, in which 77 is the list of

universally quantified variables.
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The property py; is described in Equation [3.2} where two predicates prem; and conc;
are respectively the premise and the conclusion of py;. The list of variables zr quantified

by V. This property must be satisfied by the implementation of f:

pfi(f;) = VE} : U, premi(fz) — conci(f;) (3.2)

We continue to divide the properties (represented by Equation [3.2)) into invariant and
not invariant ones in Section B.3.2.7] and Section B.3.2.2)

3.3.2.1 Invariant Property

The property of a function is possibly a universal property defined on |[Charpentier and
Chandy| [2004] as a proposition that must hold for all systems. Adapting this definition to
our context, we define the universal property of a module as a property that must hold for
all product variants of a SPL in which the module is involved. As a result of FOP approach
embedded into our work, we can observe that a universal property will never be refined in
other modules. In FFML, we called such a property an invariant property that is defined
by Definition [2} The developer uses the keyword invariant property (Grammar
to specify the property. The property will be inherited but can not be refined /modified by

one or several modules.

Definition 2 A property of a module is called tnvariant property if it is held for the

module and for all its child modules.

3.3.2.2 Non Invariant Property

If a property is not an invariant one, it can be a new property. It also can be a property
that is refined from another. It can be specified as an extension (or modification) from a
property of a parent. We call the property refining property that is defined in Definition
The keyword refines property is used for introducing this kind of property. The
extension part is a new premise following the keyword extends premise. Due to adding

a new premise into the property, the property becomes more restrictive.
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Definition 3 A property which is refined from another property by adding a new premise

is called a refining property.

Assume that from module F'M we build another child module F M7 and f is redefined

in module F'M;. Properties Py associated to f in module FM;p is a set of properties

_ — —
pis (@), iew P = 0 (@h), Do(@h), oo P @) By @hen)s s Ppu(@n) }. The
/

_>
properties p'y (:1,71), p’fg(xz), ooy Py (x7,) are kept, refined or modified from the properties

— —
of F'M while p'f(nﬂ)(x;lﬂ), s p’fm(x’m) are new properties.

Because function f is (re)defined in module F'Mj, the property specifying the expected
behavior of f in module FMj is either a new property or a modified property from py;
into p}j. If the function still keeps the behavior, p’fj is the same as py;. If the behavior

of the function is extended /modified, p’fj is represented as in Equation in which a new

!/

; Or new variables are added into py;. The variables 3? are considered as an

premise prem J

extension of 7. Adding the new premise makes the constraint p’fj more restrictive than

Pfi-

Z

= Va?j e U, prem’fj( i) = pfi(?)

)

'’
pfj(xj) (3.3)
where Z 1s an extension of 7

3.3.3 "From" - Reuse and Modification Mechanisms

The keyword from is very important for FFML by bringing reuse and modification
mechanisms. In this section we summarize the possibilities of reusing and modifying ar-
tifacts. A current module can be constructed by modifying from its parent module using
the keyword from. This keyword implies several mechanisms, such as, inheritance, modi-

fication and importation.

Inheritance

The inheritance mechanism allows a current module to be based on and use the artifacts
of a parent module. Hence, the module can maintain the behavior of the parent. This

mechanism is applied for the following artifacts:
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Declaration. The declarations in the parent module are also valid in the current

one. We say they are inherited from the parent.

Invariant property. The invariant properties in the parent module are inherited
into the current one. The developer may not need to reprove these properties but
FFML implies that the current module may use the same correctness proofs of the

parent.

Property. The properties in the parent which are not invariant property and not
refined or modified, are kept in the current module. We say they are inherited from
the parent. If the developer does not reprove them, FFML implies that the current

module uses the same correctness proofs as the parent.

Function definition. If a function definition is not modified in the current module,
it is inherited from the parent. However, in case of changes in the representation
type, a function definition may have to be adapted (this is implicit in the FFML

module).

Correctness proofs. A correctness proof in the parent may be kept in the current

module. It can also be reused but must be provided by the developer in that case.

Modification

We describe here all possible modification cases of the artifacts in a module from its par-

ent. The modification mechanism in FFML allows adding, refining and extending artifacts

(or a part of artifacts).

¢ Adding a new declaration. The developer can declare new functions for a module.

These functions have to be defined for the module to be complete.

¢ Adding a new invariant property. Similar to addition of new declarations, the

developer can write new invariant properties for a module. The correctness proofs

have to be written for them in the module.

e Adding a new property. The developer can write new properties and write cor-

rectness proofs for them.
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e Refining a property. The developer can refine a property (not an invariant one)
from the parent module and write a correctness proof for it. The refining property

will be proved by the corresponding correctness proof written by the developer.

¢ Extending the representation type. The representation type of a current module
can be extended from that of its parent. The structure of this representation type is
a Cartesian product between the parent representation type and an extended part.

If not, the module keeps the representation type of the parent.

¢ Adding a new function definition. In case of declaring a new function in the

current module, the developer has to add its definition.

¢ Redefining a function. A function previously declared in a parent (direct or not
direct parent), can be redefined in the current module. The definition can be a new

one or is modified from the old one of the parent.

Importation

Besides the above mechanisms, FFML allows the importation of files that contain user-
defined types for each module. The type definitions imported in the parent module can
be used in the current module. The importation mechanism will be used in Poker SPL

developed in Chapter

The reuse and modification mechanisms we built for FFML, which is carried on the

keyword from, bring flexibility.

3.3.4 Example: The Bank Account in FFML

We refer here to the feature diagram of the bank account product line given in Figure
of Section A module BA (Bank Account) implements the root feature BA.
It has three children: modules DL (Daily Limit), LL (Low Limit), and CU (Currency),
mapped to the features DL, LL, and CU respectively. The modules DL, LL, CU will be
defined using “from BA”. Module CE (CurrencyExchange) implementing feature CE, is
defined from the module CU.
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The root module BA is shown in Listing This module includes three signatures:
over - is over limit, get bal - gets the current balance value of the account and update -
upgrades the value balance (lines 2-4). The next part of the module BA contains an invari-
ant property ba_bal _gr over (line 6) that concerns the function get bal, saying that the
balance of an account is always greater than over. The property ba_upd succ_with _over
(line 8) concerns the function update, saying that a customer can withdraw more money
a from the account than available if the balance is within over. Then the representation
type of module BA is defined as int (line 10), which means that an account is only rep-
resented by its balance. Then definitions of the functions get bal and update are given
(lines 12-15). The invariant property ba_bal _gr over is admitted by the proof (line 17)
which contains proof hints mentioned after the keyword foc. Assumed here means that
the property is not proved but is assumed. In fact, it can not be proved, we can only prove
that the different functions preserve that property |[Rioboo| 2009|. The proof of the prop-
erty ba_upd_succ_with _over (line 18) includes two proof hints: by definition of update
and get bal. This means that the proof must be done by unfolding the definitions of these

two functions.

We show another example, module DL, defined according to the module BA using
keyword from (line 1 of Figure . Two new declarations limit _with and get _with are
added into the module (lines 2-3). The module introduces the constant limit_with only
declared at that point. It denotes the limit of withdrawn money in a day. The module also
introduces another function get with that returns, for an account, the current amount
of withdrawn money in a day. The functions update, get bal and over defined in parent
BA are also available in the present module. Remark that they are not even mentioned
in DL. A refining property dl _upd succ_with wlimit R1 is obtained by modifying the
property ba_upd_succ_with _over of parent BA (lines 5-7) using the keyword refines.
The modification includes a new premise following keyword extends premise. The
refining property states that the bank allows a customer to withdraw money only if the
amount of withdrawn money in a day is greater than limit _with (limit _withd are negative
numbers). The representation type of module DL is defined as a Cartesian product of the

representation type of parent BA and int (i.e. the concrete type associated with the
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fmodule BA 1 | fmodule DL from BA
signature update: BA —> int —> BA; 2 signature limit_with: int ;
signature get_bal: BA —> int; 3 signature get_with: DL —> int
signature over: int; 4
5 contract update
contract get_bal :: invariant property property dl upd succ with wlimit_R1
ba bal gr over: all x : BA, get bal(x) 6 refines BA!ba upd succ with over
>=over; N 7 extends premise (a <= 0) /\ (get_ with (x) +
a >= limit_ with); -
contract update :: property 8 -
ba_upd_succ_with_over: all x : BA, all a 9 representation extends BA with int ;
int, (get_bal(x) + a) >= over —> 10
get _bal (update(x,a)) = get bal(x) + a; 11 let get with (x) = second(x);
12 let limit_ with = (=70);
representation = int; 13 let update (x, a) =
14 if (a <= 0) then
let get_bal (x) = x; 15 if (get_with(x) + a >= limit_withd) then
let update (x, a) = 16 (BA'!'update (x,a), get_with(x) + a)
if ((get_bal(x) + a) >= over) then 17 else x
get_bal(x) + a 18 else (BA!update(x,a), get_with(x));
else get_bal(x); 19
20 proof of dl_upd_succ_with_wlimit_R1 =
proof of ba_bal_ gr_ over = 21 foc proof {=x
foc proof {x* assumed =x*}; 22 <1>1 assume x: DL, a : int,
proof of ba update succ_ with over = 23 hypothesis hl: (a <= 0) /\ (get_ with(x) + a
foc proof - - - >= limit with), B
{* by definition of update, get_ bal x}; 24 prove (get bal(x) + a) >= over —> (get bal (
H update(x,a))) = get_ bal(x) + a
25 <2>1 prove first (update(x,a)) = BAl!lupdate (
first (x) ,a)
26 by definition of first , update hypothesis
. . . h1l
LlStlng 3-1 MOdule BA m FFML 27 <2>e qged by step <2>1 definition of over,
get bal property
BA!ba_upd_succ_with_over
28 <l1>e conclude;*}
29 | ;3

Listing 3.2 Module DL in FFML

amount of money withdrawn in a day) (line 9). The functions get with and update are
defined /redefined (lines 11-178. We can notice that the new definition of update calls
the parent function update (BAlupdate, in lines 16 and 18). The proof is written for
property dl _upd succ_with _wlimit _R1 reusing property ba_upd succ_with _over of
parent BA as a proof hint (line 27). The primitive functions first and second used in
this proof and the definition of function get with (line 11) are the usual projections of a

Cartesian product.

It is worth adding that the keyword from conveys different meanings in FFML. For ex-
ample, Trom together with keyword refines is used to express the property di _upd _succ
_with_wlimit Rl refining the property ba upd succ_with over and adding a new
premise using the modification mechanism. The invariant property ba_bal gr over (line
6 of Listing is still available in the module DL because of the inheritance mechanism
which is defined as a part of the meaning of from (line 1 of Listing [3.2). FFML allows

the developer to express new artifacts and modification of artifacts. The other complete
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modules of the bank account product line are shown in Annex.

3.4 Semantics

In this section, we present the semantics of FFML that is related tightly to the meanings
of the keyword from mentioned in Section We use the brackets [ ] which is a function

to display the semantics of an item, namely a module or an artifact.

[FM] = FM if M is the root
B (MN,PN,[S],[P],IR], [DP], [Pf]) if F'M is not the root (3.4)

where FM = (MN,PN,S,P,R,D,Pf)

The semantics of a module F'M is denoted in Equation [3.4] as a tuple (M N, PN, [S],
[P], [R], [D], [Pf]), where M N is the name, PN is the parent name, S is a set of all the
signatures, P is a set of all the properties, R is the representation type, D is a set of all
the function definitions, Pf is a set of all the correctness proofs of the module. The parent
module of FM is denoted by FP, a tuple (PN, PPN, Spp, Prp, Rrp, Drp, Pfrp) as
defined by Equation [3.1]in Section [3.2.2] in which PPN is the parent name and Sgpp, Prp,
Rpp, Dpp, Pfrp are respectively all the signatures, all the properties, the representation
type, all the function definitions and all the correctness proofs of the parent module. In
the special case, if F'M is the root module, [FM] is the module. We continue discussing
in detail how the meanings of the module elements are calculated itself sequentially in the

next sections.
3.4.1 Function Declaration

The semantics of S in Equation the set of all the function declarations, [S] of a
module F'M is defined as follows.

1] = S if FM is the root
IRUETS (PNMN] U S if F'M is not the root (3.5)

where Sgp is the function declarations of the parent module FP.

If the module F'M is the root, [S] is S itself, the new function definitions written into

FM. By contrast (F'M is not the root), according to the inheritance mechanism defined
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in previous section, all the function declarations for the parent module F P, denoted by
[SFp], are entered into the module F M. The semantics [S] for F M, is a union of [Srp]
and S. The module type which is an abstract type, is renamed from PN to M N. This
renaming is denoted by [PN < M N] in Equation and later.

Listing 1 Semantics of function declarations

fmodule BA 1 | fmodule LL from BA
signature update: BA —> int —> BA; 2 signature limit low: int;
signature get bal: BA —> int; 3| ... -
signature over: int;

Listing 3.4 Signatures of module LL
Listing 3.3 Signatures of module BA

Example. In Listing [1, we show the example of module LL which is defined from
module BA. S here contains a new signature limit low (Listing [3.4). Other functions
update, get bal and over, declared in BA (Listing , are the elements of [Spa], still
available in module LL thanks to the inheritance mechanism. [Srr] includes all of the

mentioned functions and theirs type are renamed. Hence,

update : LL — int — LL; get bal : LL — int;

[Sze] =
over : int; limit_low : int

3.4.2 Property

As the kinds of properties are defined in Section [B.3.2] we denote the set of invariant
properties by i P, the set of new properties by nP and the set of refining properties by rP.
These three sets form a partition of P, the set of properties appearing in module F M. The
set of all the properties, [P] for the module FFM mentioned in Equation is defined as

follows:

[P] = P if FM is the root
| ([Prp] \ P([Prr],P))ipNemn) U P if FM is not the root

where Ppp are the properties of the parent module F'P; (3.6)

and P is the function returning the properties in [Prp] that are refined by rP.
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If FM is the root then [P] is P itself, in which P are the properties added or re-
fined /modified from the parent into the module. When FM is not the root, all the
properties [P] are calculated by implementing a mechanism which is more complicated
than the one for function declarations. These properties include P and other properties
which are calculated from [Prp] by eliminating the properties refined by rP. Prp is the
set of the all parent properties defined as Prp = iPrp U nPrp U rPpp, where iPpp,
nPrp and rPpp are respectively invariant, new and refining properties of FP. A part
of ([Prp] \ P([Prpr],rP))ipNenn (Equation are all the invariant properties [i Prp]
inherited from F'P. The remaining part of ([Prp] \ P([Prp],7P))pnnmn] are all the
properties of F'P kept into FM, denoted by [kP]. The types in the properties have to be
renamed from PN (of FP) to MN (of FM). We will discuss how we calculate these parts

in the next sections.

3.4.2.1 Invariant Property

[iP] 1P if M is the root
VA =
[iPrplipNenn) UiP if FM is not the root (3.7)

where iPpp is the invariant properties of F'P

Similarly to the function declarations, using the inheritance mechanism, we represent
how to calculate all the invariant properties for F'M (present in Equation by Equation
If FM is the root, [iP] is iP. If FM is not the root, all the invariant properties
[¢P] for FM includes iP and all the invariant properties [iPpp], in which the module
type is renamed by M N. Using the inheritance mechanism, the invariant properties are
entered into F'M. For example, in the bank account product line the invariant property
ba_bal gr over of the module BA (line 6 of Listing is still available in the module
DL (Listing [3.2). Thus,

[iPpr] = {ba_bal_gr_over :all x: DL, get_bal(x) >= over;}
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3.4.2.2 Kept Property

The properties of F'P which are neither invariant nor refined in FM (present in Equa-
tion are kept and represented in Equation If FM is the root, [kP] is empty set.
If FM is not the root, [kP] is calculated by ([Ppn] \ P([Prp],rP)) removing [iPpp].

The abstract type present in these properties must be renamed by M N.

if FM is the root

(([[Ppp]] \ P([Prp],7P)) \ [[iPpp]]) PN if F'M is not the root

[kP] =

where Ppp are the properties of the parent module F'P; (3.8)
1Prp is the invariant properties of F'P;
and P is the function returning the properties in [Prp] that are refined by rP.
For example, there are two properties ba _upd succ_with over and ba_upd nosucc
_with_over in module BA specified for the function udpate, presented in Listing The

first one is refined in module DL while the second one is not (Listing [3.5). This second

one is kept and still available in DL.

Listing 2 Example of keeping a property from module BA

1
contract update:: property 2 | property dl_upd_succ_with wlimit R1 refines
(ba_upd suc_with _over): all x : BA, all a (BA!ba_ upd succ_with over)
: int, get_bal(x) + a) >= over —> 3 extends premise ((a <= 0) /\ (get_with(x) + a
get _bal (update(x,a)) = get_bal(x) + a; >= limit_with)) \/ (a > 0);
contract update:: property . .
ba_upd_nosucc_with_over: LIStlng 3'6 MOdule DL

all x : BA, all a : int, (get_bal(x) + a) <
over —> get_bal (update(x,a)) = get_bal
(x)3

Listing 3.5 Module BA

3.4.3 Representation Type

R if FM is the root
[R] = {

[Rrp] * R if FM is not the root

where Rpp is the representation type of the parent module F'P; (3.9)

and x is the Cartesian product.
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Like in FoCaliZe, in FFML the representation type of a module concretes the abstract
date type of the specification into an explicit type. We calculate the complete representa-
tion type of FM (mentioned in Equation by Equation In FFML, the representation
of a module is a Cartesian product of concrete types. We consider the representation type
as a record of value-typed elements ordered from left to right. If F'M is the root, [R] is R.
If FM is not the root, [R] is the Cartesian product of [Rrp] and S.

Listing 3 Example of extending a representation type

1
representation = int; 2 | representation extends BA with ;

Listing 3.7 Module BA Listing 3.8 Module DL

An example of extending the representation type of the module BA is described in
Listing The representation type of the module DL is demonstrated with BA (the
parent name) and a new part int (an extension part), introduced in Listing [3.8] The
representation type of module DL is the Cartesian product int * int which is calculated

by int of BA (Listing with the new part.
3.4.4 Function Definition

A function which is declared in F'P can be redefined in F'M with a new definition or a
redefinition. We call all these function implementations rD. We denote the new functions
which are declared and defined in FM by nD the set of definitions of these new functions.
The sets 7D and nD form a partition of D, the set of definitions appearing in FM. As
mentioned in Equation the set of all the function (re)definitions, [D] for the module

F M, is represented as follows.

D if FM is the root
[D] = {

([DrPI\ D([DFp], D)) pNenn YD if F'M is not the root

where Dpp are the (re)definitions of the parent module FP; (3.10)

D is the function returning the definitions in [Dpp] that are redefined by rD;

If FM is the root then [D] is D, where D is the (re)definitions of FM. If FM

is not the root, all the (re)definitions for F'M include D and others which are calcu-
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lated by [Dpp] eliminating the ones replaced by rD. The implementations ([Drp] \
D([Drp],mD))ipnenn of FP are kept in F'M. [PN < MN] denotes that the type

name PN is replaced by the type name M N.
Function Redefinition

We assume that a function f is defined in F'P. Then, the function is redefined in F'M
with a redefinition redef. For simplicity we assume that this redefinition refers to the
implementation of f at most once. We can then model a redefinition with the help of a

term contextl] as follows:

redef := C[FP!f(args)]

(3.11)
where C is the context needed for calling f in FM with the arguments args;
Listing 4 Example of redefining a function
1

signature : BA —> int —> BA; 2 | representation = BA;

representation = int; 3 | let (update (x, a))=

let update (x, a) = 4 if ((a >= 0) || (a <= limit_low)) then

if ((get_bal(x) + a) >= over) then get_bal(x) BA!update (x, a)

- a 5 else x;
else get bal(x);

Listing 3.9 Module BA Listing 3.10 Module LL

As mentioned earlier, after defining the representation type, the functions of F'M must
be defined before the module becomes complete. We give an example of a function update
in Listing The function update is declared (line 2 of Listing and defined in the
module BA (lines 4-6), and then redefined in the module LL (lines 3-5 of Listing [3.10).
The signature of the function update is inherited from BA and available in LL as update :
LL — int — LL;. While implementing, the function from BA is called in lines 4 of Listing
5. 10)

Kept Function Definition

The function implementations from the parent module that are not redefined in F'M

are kept into the current module using the reuse mechanism, denoted by the part ([Dpy]

LA context is an expression with a hole where another expression, here a call to a parent function, can
be plugged in. The notation C[t] means that ¢ has been plugged in the hole of the context C.
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\ D([Dpn],mD))pnenmn) in Equation FFML supports the reuse mechanism, that
is, FM uses the same implementation as F'P. Listing [5] is an example of two functions
update and get _bal declared in BA (3.11)). update is redefined in DL while get bal is not.

The function get bal is still available in DL and its implementation is kept from BA.

Listing 5 Example of keeping a function definition

signature update: BA —> int —> BA;

signature get_bal: BA —> int;

let get_ bal(x) = x;

let update (x, a) =

if ((get_bal(x) + a) >= over) then get_ bal(x)

let update (x, a) =

if (a <= 0) then
if (get_with(x) + a >= limit_with) then
(BA'!'update (x,a), get_with(x) + a)
else x

else (BA!update(x,a), get_ with(x));

N oUW e

+ a
else get_bal(x);

Listing 3.11 Module BA Listing 3.12 Module DL

3.4.5 Correctness Proof

For each property, the developer must write a proof (a proof may include several sub-
proofs as in Listing corresponding to it. Refining properties are proved by corre-
sponding correctness proofs that are denoted by rPf. The proofs Pf of F'M is the set
rPf and new proofs nPf (the proofs for new properties nP in FM). As mentioned in
Equation the set of all the proofs, [P f] for the module FM, is represented as follows:

[Pf] = Pf if FM is the root
~ (PRI \PFIPrr], rPf))pnering UPS  if FM is not the root

where P frp are the proofs of the parent module F'P; (3.12)

and Pf is the function returning the proofs in [P frp] that are reproved by rPf.

If FM is the root then [Pf] is Pf, where Pf is the proofs of FM. If FM is not the
root, [Pf] includes Pf and others which are calculated by [Pfrp] eliminating the ones
reproved by rPf. The proofs ([Pfrp] \ Pf([Pfrpl,Pf))ipnenrn) of FP are kept in

FM and the concrete module type is renamed automatically from PN to M N, denoted
by (pPN—MN]-

An example of how the proofs of BA are kept in LL is shown in Listing [f] The
property ba_upd succ_with _over of BA (Listing is refined by another property
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Listing 6 Example of kept proofs

1
contract update :: property 2 | contract update :: property
ba_upd_succ_with_ zero: all x : BA, all a 11 _upd_succ_with_llimit_R1
int , 3 refines BA!ba upd_succ_with_ over
(a >= 0) —> get_bal (update(x,a)) = get_ bal( | 4 extends premise
x) + aj 5 ((a >= 0) || (a <= limit_low));
6
contract update :: property 7 | proof of 1l _upd_ succ_with llimit R1 =
ba_upd_succ_with_over : all x:BA, all a: 8 | foc proof
int, (get_bal(x) + a) >= over —> get_bal( 9 | {#* by definition of update, get_ bal, over
update(x,a)) = get_bal(x) + a; property BA!ba_upd_succ_with_over;}
e IR Listing 3.14 Module LL
<1>1 assume x : Self, a : int,

prove (a >= 0) —> get_bal (update(x,a)) =
get bal(x) + a

<2>1 prove (a >= 0) —> get bal(x) + a >=
over + 0 -

by property int_ge plus_plus, ba_bal_gr_ over

<2>3 prove (a >= 0) —> get_ bal(x) + a >=
over

by step <2>1 property int_ 0 _plus,
int _plus_ commute

<2>4 qged by step <2>3 property
ba_upd_succ_with_over

<1>e conclude;*}

proof of ba_upd_succ_with_over = foc proof {x
by definition of update, get_bal;x*}

Listing 3.13 Module BA

Il _upd succ_with_llimit _R1 (Listing [3.14]). The proof of the refining property is writ-
ten in line 7. Another property ba upd succ with zero of BA is not refined but still
available in LL. Its proof is kept.

Relation between a Refining Property and its Correctness Proof

As mentioned in Section [3.3.2.2] a refining property is defined in Equation [3.3] as

Py(@) = a U, premd, (3)) = pr(,

), where a?j is an extension of 7. By adding
a new premise prem}j, the constraint p} y becomes more restrictive than py;. The property
pyi can be used as a proof hint in the proof of p}j. In other words, in such a case the proof

of ps; is reused when proving the property p’fj.

The relationship between a refining property and the property refined by it while prov-
ing, is demonstrated in Listing [} Property Il _upd_succ_with_llimit_R1 refines prop-
erty ba_upd_succ_with _over of BA (line 3 of Listing by adding a new premise
(line 4). Tts correctness proof mentions ba_upd _succ_with _over as a property proof hint

(line 9).
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Listing 7 Example of relation between refining and refined property

[

contract update :: property contract update :: property
ba_upd_succ_with_over: all x : BA, all a II_upd succ with llimit R1
: int, refines BA!ba upd_succ_with_ over
(get_bal(x) + a) >= over —> get bal (update( extends premise
x,a)) = get_ bal(x) + a; ((a >= 0) || (a <= limit_low));

proof of ba upd succ_ with over = foc proof {x
by definition of update, get_bal;x}

proof of 1l _upd succ_with llimit R1 =
foc proof

©00]U W

{* by definition of update, get bal, over
property BA!ba_upd_succ_with_over;x}

Listing 3.15 Module BA

Listing 3.16 Module LL

3.5 FFML Compiler into FoCalLiZe

To translate a module file .fm to FoCaliZe we need a set of transformation functions
implementing the translation rules that convert the abstract syntax tree (AST) of FFML
into that of FoCaLiZe. The FFML Compiler receives a FFML file .fm as its input and
compiles the file into a FoCal.iZe file .fcl.

In this section, we begin by presenting our notations to represent the translation rules of
FFML. We present the abstract grammars of both FFML and FoCaliZe by types in Section
3.5.20 Using these abstract grammars, we explain our translation functions implemented
in the FFML Compiler. A module translation function translating an FFML module
into FoCaLiZe is introduced in the Section And then, we describe how the FFML
Compiler translates signatures, properties, representation type, function (re)definitions and

correctness proofs sequentially in next sub-sections.
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3.5.1 Notation

In Table we introduce notations, used in the translation rules of FFML Compiler.

The left column describes the notations and the right column gives their corresponding

informal meaning.

Notation Meaning

string - basic type string
‘o - string «

N

: string — string — string

- infix function that concatenates two strings.

vfm, vparent, vprem, vconc vprop_n ...

Tr _fm,Tr props, Get _iprops, Join_ca ...

- variable names
- function names

T,V, FM, PARENT, ...
ve T

- FFML types
- variable vz having type T

Casev:eq :: es

- implements e2 when v matches e;.

SP, SSIG, SPROP, SREP, ...

- FoCalLiZe types

Top

- Top = None | T - is optional type.

T list
vlist : T list

vlist[i]
vx € vlist

- type of list of elements of type T'
- vlist = [vai; ...; va;; ...;van] - list of elements
having type T', where va; : T and i € {1, ...,n}
- vlist[i] - the i'™™ element of vlist.
- vx is one element of vlist

Q: T list — T list — T list

- Infix function that concatenates two lists of
type T'

Map: (T — V) — T list — V list

- Map F vlist = [F vai; ...; F oag; .5 F van] -
mapping function applying function F' on each
element of and vlist

T:T1 *TQ*Tg

vt = (vtl, vt2, vt3) - Cartesian product vt
where vt : T, vty : T1, vto : Th and vits : T3

Table 3.1: Notations used in the translation rules implemented in FFML Compiler
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3.5.2 Abstract Syntax of FFML and FoCalLiZe

Before analyzing FFML Compiler, we describe how the concrete syntax of FFML and
FoCalLiZe are abstracted into the corresponding abstract grammars. The types and con-
struction of these abstract grammars will be used later to define the translation functions

of FFML Compiler.

Table describes the relationship between the FFML concrete syntax (presented in
Grammar in Section and its corresponding abstract syntax. The types in the
first column of the table are presented by the concrete constructions detailed in the second
column. The definitions of these types are given in the third column. For example, the
first line of the table describes that the type FM, which is the type of an FFML module in
the abstract syntax grammar, is defined in the third column as a Cartesian product. The

corresponding concrete syntax is given in the second column.

Similarly, we list the abstract syntax of FoCaLiZe in Table [3.3] which is related to the
FoCalLiZe grammar (Grammar |A.1)) detailed in Annex. Each type defined in the FoCaliZe

abstract syntax grammar starts with a letter “5”.
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Type Concrete Syntax Type definition
(fm) == ‘f_module’ (id) [from’ ID % ID list x SIG list *
FM ({parent))* | ((sig))* (({prop))* PROP list « REP « DEF list
(rep) ({def))* ({proof))* *;;’ * PROOF list
siG (sig) gzgpe‘;‘l.g’nature’ (func_ny FUNC N «TYPE
PROP (prop) ::== (nprop) | (iprop) | (rprop) NPROP | IPROP | RPROP
(new_prop) ::= ‘contract’ (func_n) FUNC N * PROP N *
NPROP ‘property’ (prop_n) ‘> ((lvar))* | LV AR list * LEXPR,, *
[(lezpr) ->] <lexpr>‘}’ LEXPR
iprop) = ‘contract’ (func n
w ]?>inva riant prope<£ty’_<p7>"op n) FUNC_N * PROP_N *
IPROP o (ar)® [(lempr) <] (leapry | EVARlist * LEX PRy *
LEXPR
<rprop§ = ‘contract’ (func_n
RPROP ‘property’ (prop n) FUNC_N * PROP_N *1ID
‘refines’ (parent)‘!’(prop n) * PROP_N * LEXPR,,
[‘extends premise’ (lezpr)] ¢;’
REP (rep) ::= (bas_rep) | (ext rep) BAS _REP| EXT_ REP
BAS REP (bas_rep) ::= ‘representation =’ C PROD
- (c_prod) ¢}’ -
(ext_rep) =
EXT_ REP ‘representation extends’ ID *C _PROD
(parent) ‘with’ (¢ prod) ¢}’
DEF (def) == ‘Let’ (func_n) ['C ((par))® | FUNC N * PAR list *
)] (eapr) EXPR
PROOF (proofy ::= ‘proof of’” (prop_ n) =’ PROP N *
‘foc proof’ (focproofbody) ‘;’ FOCPROOFBODY
FOCPROOFBODY | (focproofbody) string - FoCaLiZe proof
1D (id) (or (parent) string - module name
LVAR (lvar) Varlab'le with universal
quantifier
TYPE (type) == (basicT) | (funcT) | (prodT) BASICT | FUNCT | PRODT
FUNCT (funcT) ::= (type) ‘-> (type) - function type
PRODT (prodT) ::= (type) ‘¥’ (type) - Cartesian product of types
BASICT (basicT) —tbasm type such as int, string,
LEXPR (lexpr) %FC‘ML predicate logical formula
EXPR (expr) FFML expression
C PROD (c_prod) Cartesian product of concrete
- - types
FUNC_N (func_n) string - function name
PROP N (proof n) string - property name
PAR (par) string - parameter name of

function

Table 3.2: FFML abstract syntax
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Name Concrete Syntax Type Definition
{sp) “<: ‘SpeCl;;;;“d;][ ¥ SID * SPARAM _DEF list *
sparam__ de )= R .
SP ‘inherit’ (<87/th def)) , 4;7 ] SINH_DEF list * SSIG list

(
[
((ssig))* ((sprop))* [(srep)]
((sdef)* ({sproof)* ‘end;;’

* SPROP list * SREP,, *
SDEF list * SPROOF list

SPARAM DEF

(sparam__def) := (sparam_n) ‘1S’ (sid)
[ ‘(7 ((sparam_n))* ‘)’]

SPARAM N * SID *
SPARAM N list

(sinh_def) == (sid) [ *(

SINH DEF N SID * SPARAM N list
- ((sparam_n))* *) } -

SSIG (sszg)(;:;pe;}g’nature (sfunc_n) *: SFUNC_N * STY PE

SPROP <Spmfzsl%;r>pf?pe rty” (sprop_n) SPROP_N * SLEXPR

SREP, o (srep) ::= rept‘e7sentatlon = None | SC_PROD
(sc_prod) -

SDEF (sdef) == ‘let’ (sfunc_n) [‘(’ ({(spar))* | SFUNC_N * SPAR list *
‘)’} (sexpr) ¢}’ SEXPR

SPROOF (sproof) = pro?ﬁ of” (sproof n) ‘= SPROOF N *
(sproofbody) *; SPROOFBODY

(sproofbody)

SPROOFBODY FoCalLiZe proof body

SID (sid) string - module name

STYPE (stype) FoCaliZe species type

SLEXPR (slexpr) FoCaliZe predicate logical

formula
SEXPR (sexpr) FoCal.iZe expression
SC PROD (sc_prop) Cartesian product of FoCaliZe
- concrete types
SPARAM N (sparam_n) strm'zg - parameter name of
- species

SFUNC _N (sfunc_n) string - function name

SPROP_N (sprop_n) string - property name

SPAR <spar) string - parameter name of

function
SPROOF N (sproof n) string - proof name

Table 3.3: FoCaliZe abstract syntax
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3.5.3 A Module Translation Function

FFML Compiler first analyzes the module file .fm and converts it into an AST of type
FM (see Table . A module translation function tran_ fm of FFML Compiler receives

the abstract syntax tree of type FM as its input and returns three FoCal.iZe species of
type SP and one collection of type COL. This function is defined in Table [3.4] The first

column of the table is the function name and its type is described in the second column.

The third column is the definition of the function. SPEC appearing in the second column

is the type of the FFML modules defining the considered SPL. An argument vspec of type

SPEC (in the third column) is used to retrieve the artifacts of the modules of the SPL.

Function name | Type

Definition

Tr _fm

SPEC * FM — SP * SP * SP

Tr_fm (vspec, vfm) = (Tr_sp1 vfm,
Tr_sp2 (vspec, vfm), Tr_sps (vspec,
vfm), Tr_col vfm)

Table 3.4: Module translation function

Listing 9 Example of module transformation

A -spl--- -
1 | fmodule BA ‘5?::"‘T7‘-3[72- ______ ~?li’species BA _specl
20 ... 3 e -_2 . end;;
P e
. . STA . - specly
Listing 3.17 Modulg, B in FFME™---___ 5| Tena:;, -
g Sl P 6T species BA imp =
“~__ 7 inherit BA_spec2;
T--_38 . end;;
9 collection BA col =

implement BA_imp;
end ;;

Listing 3.19 Moduyle BA translated into
FoCal.iZe

species DL specl{(BA is BA imp) =
inherit BA _ specl;
. end;;

3
- 4 M species DL spec2¢(BA i3 BA_imp) =

4
Tr_spl.” .- 5

inherit DL_specl(BA)}
. end;;

, . _6
Tr ,s»pz,’ _--~"" " %*species DL imp/BA is BA imp) =
7 7’ /’ -

7’ 7§ /’
T, $p3- oo
L= --" 10 T collection DL col =

- -7 _
s = 11
fmodule DL from BA ‘E::::‘l:/r_.f—colr 12

-

Jun

Listing 3.18 Module DL in FFML

inherit DL_spec2(BA))
. end;;

implement DL_imp(BA_col);
end ;;

Listing 3.20 Module DL translated into
FoCal.iZe

Function Tr__ fm translates module v fm into three different species and a collection.

It uses three functions T'r_spi, Tr_sps and Tr_sps, each of which converts sequentially
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the artifacts of the module into these species. Tr fm also uses other function Tr col,
establishing a collection in FoCaLiZe, which is built from a complete species (Section m
of FoCalLiZe). The three separate species and the collection in FoCal.iZe are related by an

inheritance hierarchy.

We explain the reasons why we divide the artifacts of a module into three separate
species and a collection. In fact, their names are generated according to a strict convention
that allows for an easy maintenance of the artifacts. The first species will contain the new
signatures (function declarations) and invariant properties, that are abstract specifications
and can be inherited. These specifications can not be modified in the children species,
however, these species have to implement the declared functions and prove the properties.
According to the inheritance mechanism of FoCal.iZe, the second species inherits the first
species in order to reuse the specification. The new properties or refining properties are
transformed into the second species, so they can be reused, refined or modified. Notice
that FoCaliiZe does not contain any mechanism allowing refining or modifying properties.
These properties are copied each time we use them for keeping or for defining new other
properties. The third species inherits (in the FoCaliZe sense) the second species to obtain
all the artifacts from the second species. The code and correctness proof artifacts are
transformed into the third species. The last translated unit is a collection that implements
the third species which is a complete species (where every signature is accompanied with

a definition and each property is proved).

A module can be constructed from its parent using the keyword from with a purpose
of restricting an artifact repetition. Besides the relationships between the three species of a
module, if the module is not the root one, its species are also related to the corresponding
species of its parent. Via the inheritance relationships and the parametrization mechanism
of FoCal.iZe, the artifacts of the parent can be reused, refined or modified. The first species
of the module inherits the first species of the parent in order to obtain all the artifacts
involved in the species of the module. Each species, obtained when translating a non
root FFML module, receives as a parameter an implementation of its parent. Thus, each
artifact of the child module may access to the functions and properties of the parent. The

properties in the second species of the parent can be refined or modified by copying their
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statements.

Listing [9] illustrates these translation scheme for two features BA and DL. FFML mod-
ules in the left are translated into the species in the right using the translation functions.
Three species BA_specl, BA spec2, BA imp and a collection BA _imp are produced
by FFML Compiler while translating module BA. BA imp inherits BA spec2 while
BA _spec2 inherits BA specl. BA_imp is implemented by BA col which is used to
call the artifacts of BA when executing. Similarly, module DL is also translated into
three species DL _specl, DL _spec2, DL imp and a collection DL imp. Because DL
is constructed from BA, the first species DL _specl inherits BA specl and BA _imp is
mentioned by an object name BA as a parameter of the three species. The collection

DL col implements DL imp with the collection BA col as an effective parameter.

Before discussing in detail the functions appearing in T'r__fm, we also provide several
supplementary functions that are necessary to get the values of an FFML module. They

are listed in Tables 3.5l and

3.5.4 Translating into the First Species

In this section we focus on explaining how the function Tr sp; (Table E[) translates
the module artifacts of an FFML module into the first species in FoCaLiZe. The function
is presented in Table 3.7} The function also calls other functions to translate each kind of
elements, i.e. Tr_idy, Tr parents and Tr inh; for module header (presented in Section
, Tr _sigs for function declarations (presented in Section and Tr_iprops
for invariant properties (presented in Section [3.5.4.3). In the next sections, we will define

these mentioned functions.

3.5.4.1 Module and Parent Name

To convert an FFML module name and the name of its parent to the first species’s name,
parameter definitions and inheritance clauses in FoCaliZe, we split into small cases, listed
in Table The function Tr_id; (row 2) translates the module name to the corresponding
species’s name which is built from the module name with " _specl" as a suffix. The function

Tr _parents (row 3) translates the module’s parent names to the parameter definitions of
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Function name Type Note
Get_fm SPEC * ID — FM - gets the GFML module from a
N T, ol fi
Get id - gets the module name from a
- o e -y VI, parent TmoduT
Get_parents FM — ID list - gets the list o parent module

names

Get_sigs FM — SIG list - gets the list of module signatures.
Get__snames SIG list = FUNC _N list - gets the list of function names.
Get_props FM — PROP list - gets the list of module properties.

- gets the Iist of the invariant
Get_iprops PROP list — IPROP list properties from a list of module

properties. ]
Get_nprops PROP list — NPROP list ; gets thfe [ist of the new propertles

rom a list of module properties.

- s the Tist of the refini ies
Get_rprops PROP list — RPROP list gets the list of the refining properties

from a list of module properties.

Get _pname

PROP — PROP_N

- gets the name of a property.

PROP N * LVAR list ¥
LEXPR,, * LEXPR —

Get_lvars LV AR list - gets the list of the property variables.
PROP N * LVAR list * .
Get prem LEXPR.. * LEXPR — - gets the property premise from a
- LEXP ROp new or invariant property.
op
Get  cone PROP_N * LVARlist ¥ - gets the property conclusion from a

LEXPR,, * LEXPR — LEXPR

new or invariant property.

Get_rprop_pat

RPROP — ID

- gets the parent module name from a
refining property.

Get_rprop_ppname

RPROP — PROP_N

- gets the name of the property of
parent module from a refining

property.

Get rmprem RPROP — LEXPR - gets the new premise from a refining
—"mp or property.

Get _prop PROP N * FM — PROP - finds the property through its name
- - in a module

Get_re FM — REP - gets the module representation.
_rep g P

Get ext EXT REP — C PROD - gets the extension part of an
- - - extended representation.

Get funcs FM — DEF list - gets the list of the function

definitions

Get_rfuncs

FM — DEF list

- gets the list of the redefined
functions

Get_ fname

DEF — FUNC N

- gets the name of a function.

SPEC * FM *¥ FUNC_N —

Get__ ftype TV PE - gets the type of a function.

Get fexpr DEF — EXPR - gets the expression of a function.

Get fpars ID * FUNC N — PAR list - finds the parameters of the function

- - of a module

Get_proofs FM — PROOF list - gets the list of the proofs.

Get_cprops SPEC * FM — PROP list - gets all the properties available in a
B I the Fanction defnTt

Get_cfuncs SPEC * FM — FUNC list - gets a e function definitions

available in a module

Get_cproofs

SPEC * FM — PROOF list

- gets all the proofs available in a
module

Table 3.5: Supplementary functions for getting module values (1)
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Function Type Definition Note
- gets all the properties kept into a
module from its parent,
where
vparent = Get _parent vfm,;
Get_kprops (vspec, veprops = Get _cprops (Get _ fm vspec
vfm) = vparent); - all the properties of parent
SPEC * FM fm) P )7 prop p
Get kprops ) Remove prop vrprops = (Get_rprops (Get _props
- — PROP list - i .= . -
(vepropsp, vfm)); - refining properties.
vrpnamesp) ; vrpnamesp = Map Get _rprop__ppname
vrprops; - the properties of parent which
are refined
Remove__prop - a function removing the
properties vrpnamesp in vcprops.
- gets all the function definitions kept into
a module from its parent,
where
Get_kfuncs (vspec, | vparent = Get_parent vfm;
vfm) = vefuncs = Get _cfuncs (Get _ fm vspec
SPEC * FM fm) f , _cfuncs (Get_fm P
Get kfuncs i Remove func vparent); - all the function definitions of
- — FUNC list -
(vefuncsp, parent
ur funcsp) ; vrfuncsp = (Get_rprops (Get__props
vfm)); - function re-definitions.
Remove__ func - a function removing
vr funcsp in vefuncs.
- gets all the proofs kept into a module
from its parent,
where
Get _k
et_kproofs vparent = Get parent vfm;
SPEC * FM | (vspec, vfm) = et
veproofs = Get_cproofs (Get _fm vspec
Get_kproofs| — PROOF Remove__proof — —
- . — vparent); - all the proofs of parent
list (veproofsep, vrproofs = (Get_rproofs (Get _proofs
vrproofsp) ; P =P =P

vfm)); - reproved proof.
Remove_proof - a function removing
vrproofsp in veproof's.

Table 3.6: Supplementary functions for getting module values (2)
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Function Type Definition Note
Tr spivfm=
(Tr_idi vfm, - is the first species translation
Tr _parents vfm, function translating module v fm
Tr sp1 FM — SP Tr inhsi vfm, to the first species in FoCaliZe

Tr _sigsvfm,
Tr _iprops vfm,
None, [], [])

which only contains signatures and
invariant properties.

Table 3.7: Function translating an FFML module to the first FoCal.iZe species

type SPARAM DEF. Each of the parameter definitions contains vparent (parent name)
as a parameter referring to a species which is the third species obtained from the parent.
This third species has a name built from the parent name with string " _imp". If the current
module is the root one, the first species does not contain any parameter definition. The
other function T'r_inhs; (row 6) translates adds an inheritance clause built from the parent
name. The result established from this function indicates that the first species inherits the
first species translated from the parent, namely its name is obtained by concatenating the

parent name with string " specl".

Tr parents

SPARAM DEF list

[Tr _parent
(Get_parent vfm)]

Function Type Definition Note
) - translates the module
Tr_idy vfm = name of module vfm to a
Tr idy FM — SID (Get_id vfm) " . .
- o 1y species name ended with
SpGC]‘ 13 7
- specl”.
- translates the parent
Tr parents vfm =
FM — P / names of module vfm to

the species parameter
definitions

Tr parent

ID — SPARAM N *
SID *
SPARAM N list

Tr _parent vparent =
(vparent,

vparent N ¢ _imp”,
Tr _param vparent)

- translates a parent name
to a species parameter
definition.

Tr _param

ID —
SPARAM N list

Tr _param vparent =
Get_parents
(Get _fm vparent)

- translates the parent
names of vparent to
parameters names.

Tr inhsi vfm =

- translates the parent

SPARAM N list

Tr _param vparent)

. FM — . modules of module vfm to
Tr _inhs . Tr inh (Get_ parent
- ! SINH_DEF list [Tr_ (Get_p the species inheritance
vfm)] i
g definitions
) ID — SID * Tr_inh vﬁ)a:“ent = - translat.es a pargnt name
Tr _inh (vparent _specl”, to a species inheritance

clause.

Table 3.8: Functions translating the elements of an FFML module into the first FoCaliZe
species

Example. The translation of module DL which is described from parent B A is shown

in Listing [I0] The first species DL_spec2 of DL receives receives a parameter named BA
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that has to conform to the interface of the third species BA imp. It also inherits the first
species BA specl of BA.

Listing 10 Example of translating module and parent names into the first FoCaliZe
species

species BA_ specly=

fmodule BA
coo 88§ . end;;

species BA_ spec2
. end;;

species BA_imp
... end;;
collection BA_co
... end;;

Listing 3.21 BA in FFML

0O U WN =

Listing 3.22 BA in aliiZe

Ty idy - .

e Tr. _parents---===w______
fmodule From DB S - 1 specie\sADLis[;ezl_ H:BA is BAiimpl) =
R T 727‘7/]‘7,81' ------- “2"[®inherit BA specl

3 ... end;;

Listing 3.23 DailyLimit (DL) in FFML 1450 3 24 DailyLimit (DL) in FoCaLiZe

3.5.4.2 Function Declaration

The function Tr_sigs translates all signatures of a module into FoCal.iZe signatures
in the first species, presented in Table [3.9] The difference between signatures in FoCaLiZe
and in FFML is that FFML signature uses an abstract type which has the same name as
the module name whereas FoCal.iZe uses Self in that case. The function T'r _stype, called
in the function T'r _sig, carries out the transformation of the abstract type. In an example
shown in Listing[T1] there are three functions update, get _bal and over declared in module
BA in lines 2-4 of Listing They are moved into the first species BA specl Listing
[3.26] Type BA is converted to abstract type Self in this species.

Function | Type Definition Note

- translates FFML
signatures of module vfm
into the species signatures,
where vname is the
module name

Tr_sigs vfm = Map (Tr_sig

Tr_sigs FM — SSIG list vname) (Get sigs vfm)

ID - FUNC _N * Tr_sig vname (vfunc_n, - translates a FFML
Tr sig TYPE — SFUNC _N vtype) = (vfunc_n, Tr_stype signature into a FoCal.iZe
* STYPE vtype vname) signature.

Table 3.9: Function translating signatures into signatures of the first FoCaliZe species
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Listing 11 Example of translating the signatures of BA into the signatures of the first
FoCalLiZe species.

=W N =

’_—l’/’r“;s'[’;]-].~ species BA_specl =
signature update: BA —> int —> BA;~ 2 Asignature update: Self —> int —> Self;
signature get_bal: BA —> int;"‘"-T-tr'- _,9/[;.‘(]__.3— ¥ signature get_bal: Self —> int;
signature over: int;>< - 4_|wsignature over: int;

~o —

- —= "5 | end;;
~Fr-sig-- i

Listing 3.25 BA in FFML Listing 3.26 BA in FoCaLiZe

3.5.4.3 Invariant Property

The translation of invariant properties is done similarly and presented in Table
Function T'r _inprop transforms an FFML property with its name, variables, premise and
conclusion to the corresponding property in FoCaLiZe. This function contains the function
Tr _ptype translating the abstract type (as the module name vname) to Sel f of FoCaLiZe.
For example, invariant property ba get bal gr over of module BA in Listing is
translated and added into the first species Inh _BA in Listing [3.28] The same conversion

of types, BA into Self, is done here.

Function Type Definition Note

- translates the invariant
(Tr_inprop vname) properties of module vfm

(Get iprops (Get_props to the species properties,
vfm)j - where vname is the

module name

Tr _iprops vfm = Map
Tr _iprops FM — SPROP list

Tr _inprop vname
(vprop_n, vlvars, vprem,
veonc) = Tr_ptype inprop
ID —- PROP_N * vname;

LV AR list * LEXPR, * Where:

- translates an invariant

Tr i . roperty (or new propert
PP\ LEXPR — SPROP_N * | inprop = (vprop_n, property (or new property)
— to a FoCalLiZe property.
SLEXPR Tr lexpr (vlvars,
(Join_imply vprem vconc
))
LEXPR., * LEXPR Join_imply (vprem - joins a premise with a
Join__imply °op - —mpry {vp ’ conclusion with a logical
- LEXPR veonc) . .
implication.
- joins a FFML logical
AR list * formula viexpr and logical
Tr lexpr LVARlist * LEXPR — Tr_lexpr (vlvars, vlexpr) variables vlvars, then

SLEXPR translates them to

FoCalLiZe logical formula.

Table 3.10: Function translating invariant properties to the first FoCalLiZe species.
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Listing 12 Example of translating the invariant properties of BA to the first FoCaliZe
species.

___[—17-‘;%177"01)‘ ~Lipecies BA _specl =

contract get_bal :: invariant” property 2 property ba_get_ bal_ gr_ over: all x : Self,
ba_get_bal_gr_over: all x : BA, get_bal( get _bal(x) >= over;
x) >= over; 3 |end;;

Listing 3.27 BA in FFML Listing 3.28 BA in FoCaliiZe

3.5.5 Translating into the Second Species

In this subsection we focus on explaining how the function T'r sps (Table @ trans-
lates some other module artifacts into the second species in FoCaliiZe. It is presented
in Table An argument vspec of type SPEC is used to retrieve all the properties
that are kept into module v fm from its parent (via function Get kprops which is men-
tioned in Table . The function also calls several intermediate translation functions, i.e.
Tr _ide, Tr parents and Tr_inhy for translating module and parent names, Tr_props

for translating refining and new properties.

Function | Type Definition Note
Tr_ sps (vspec, vfm) — - 1s the second species translation
- ’ function translating module v fm to
(TT_id? vfm, the second species in FoCal.iZe
N Tr parentsvfm, which only contains new and refining
Tr spa SPEC Tr_inhs vfm, [], (Map properties, where vname is the
B FM — 5P (T'r _prop vspec vname) module name;
(vnrprops @ vkprops)), vnrprops = (Get _nprops vfm) Q
None, | ]) (Get_rprops vfm);
vkprops = Get kprops vspec vfm

Table 3.11: Function translating a module into the second FoCal.iZe species

3.5.5.1 Module and Parent Names

To translate a FFML module name together with its parent name into the second
species name, parameter definitions and inheritance clauses in FoCalLiZe, we split them
into small cases. The function Tr_ids (row 1 of Table translates the module name to
the corresponding species name. The second species has a name obtained from the string
" spec2" and the module name. The species has the same parameter definitions as those

of the first species, computed by function T'r parents which is the same one mentioned

in row 2 of Table The other function Tr inhs (row 2 of Table [3.12) produces an
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inheritance clause for the second species: the second species inherits the first one.

Function | Type Definition Note

- translates the module name of

Tr idy FM — SID ?g;&ldfdvf}zm;A € gpeco” module vfm to a species name
- —5P ended with “  spec2”.
- creates an inherited species
Tr inhss FM — Tr _inhy vfm=[Tr_inh having name ended with
- SINH_DEF list | ((Get_id vfm) " ¢ specl”)] | “_specl”. (T'r_inh - see Table

3.8)

Table 3.12: Function translating the elements of a module into the second FoCal.iZe species

Example. The translation of module DL having a parent BA is shown in Listing
The second species DL _spec2 of module DL receives a parameter which has to be
conformed to the third species of BA, BA imp and named BA. It also inherits the first

species DL _specl, associated to DL.

Listing 13 Example of translating the module and parent names to the second FoCaliZe
species

fmodule Ergm ____ [T;p@reuﬂ:s_species DL_specl (BA is BA_imp) =
R N L _gcdoe _ 2 | Tinherit BA _specl;
- — T bd"z ""-3——...4_~er3d;;"‘~-__
T ‘NIJLZ_ ________ g_jpe}(:ies:D]gfspcchﬂ‘]?gA)is BA_imp)
s : : - inheri spec 3
Listing 3.29 DL in FFML 6| .. endss =

Listing 3.30 DL in FoCal.iZe

3.5.5.2 Refining and New Properties

The function T'r _prop (appeared Table translates a refining or new property of
a module into the second species, presented in the first row of Table The translation
of a new property is done similarly to the translation of an invariant property, by the same
function T'r _inprop (in Table . For a refining property, FFML Compiler provides
another function Tr _rprop to calculate its statement and transform into FoCalLiZe. The

details of T'r_rprop are presented in Table [3.14]

Example. There are two properties in module DL shown in Listing[3.32} The first one
isdl _upd_succ_with_wlimit _R] refined from property ba _upd_succ_with _over from
module BA (Listing by adding a new premise for it, shown in line 5. The second one is
dl_upd succ_gr wlimit R1, new property in module DL, shown in lines 7-8. The refin-

ing property is obtained by combining the statement of property ba _upd succ _with over
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Function | Type Definition Note
Tr _prop vspec vname vprop =
Case vprop : NPROP :: Tr_inprop - translates a FFML

T SPEC — ID — . - property (new or

r_prop vname vVprop; . .
- PROP — SPROP refining) to a FoCaLiZe
Case vprop : RPROP :: Tr rprop
- property.

(vspec, vprop)

Table 3.13: Translating a property into the second FoCalLiZe species

Function Type Definition Note
SPEC * Tr_rprop (vspec, (vprop_n,
* *
;PRROOPPQ\J]V * b vparentS)Ugan_nP’ - translates a refining
Tr rprop - vnprem)) = (Uprop_m property to a FoCalLiZe
_ LEXPR,,) — Tr_lexpr (Get_pat_prop propert
SPROP N * (vspec, vparent, vprop _np, Y-
SLEXPR vnprem)))
%:&pa:l_p:}%;;ng)ec, vparent, | _ is a function getting
_np, =
Case vpropp : NPROP :: ;};iszi:;ment of a
(Get_lvars vprop, Join_imply | Where ’
(Join_and (vnprem, vpremp), | vpremp = Get_prem
. vpropp;
SPEC* ID * veoner ))7 vIcJon]c?P = Get_conc
PROP N * Case vpropp : RPROP :: opro P_ -
Get_pat_prop | LEXPR,y, — Get _pat_prop (vspec, azr)ldpp7
of K
LVAR list qurentl, vprop_npi, vparent, =
LEXPR Join_and (vnprem, )
. Get_rprop_pat vpropp;
vm})lreml)% vprop npi =
Where Get _rprop ppname
vfmp = Get__fm (vspec, vprope:
vparent); vnpremi = Get rprem
vpropp = Get_prop wpropp: _
(vprop_np, vfmp); ’
LEXPR,, * - joins two FFML
Join_and LEXPR,, — Join_and (vnprem, vprem) logical formulas by a
LEXPR,p logical conjunction.

Table 3.14: Translating a refining property to the second FoCaliZe species

with the new premise and translated into FoCalLiZe, presented in lines 5-8 of Listing
[3.331 We can see here that we need to access to the artifacts of module BA to retrieve
the statement of BA!ba upd succ _with over, and thus produce the statement of the
property dl _upd succ_with _wlimit R1 in the species DL _spec2. The new property
dl_upd succ_gr wlimit is also moved to the second species DL spec2 in line 10 of

Listing [3.33]
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Listing 14 Example of translating refining and new properties to the second FoCal.iZe

species
1 | species DL_specl (BA is BA_imp) =

contract update :: property 2 . end;;
ba_upd_succ_with_over: all x : BA, all a : 3 | species DL_spec2 (BA is BA_imp)=

int, (get_bal(x) + a) >= over —> get_bal 4 inherit DL specl (BA);

(update(x,a)) = get_bal(x) + a; 5 | gproperty dl_upd_succ_with_wlimit_R1: all x :

== ) Self, all a : int,
. . : pad (((a <= 0) /\ (get with(x) + a >=
Listing 3.31 BA in FFML T orop=" Himit. with)y \/ (a3 0)) =5
.- — 8 ((get_bal(x) + a) >= over —> (get_bal(
< update(x,a))) = get_bal(x) + a);
¢ 9

contract update :: property/ 10 gproperty dl_upd_succ_gr_wlimit: all x : Self,
dl_upd_succ_with_wlimit_R1: ’ all a : int, ((a <= 0) /\ (get_with(x) +
refines BA!ba upd succ_with over) e a >= limit_with)) —>(get_ with (update(x,a)
extends premise A ) = get with (x) + a;

((a <= 0) /\ (get with)(x) + ar,, ~7 |11 |end;; -

>= limit_with)) \/ (a > 0); __TZ—;]"’OP
contract update :: property” LlStlng 3.33 DL in FOC&LIZQ
dl_upd_succ_gr_wlimit: all x : DL, all a :

int, ((a <= 0) /\ (get_with(x) 4+ a >=

limit with)) —>(get with(update(x,a)) =

get _with (x) + aj

Listing 3.32 DL in FFML

3.5.6 Translating into the Third Species

In this section, we focus on explaining how the function Tr sp3 (mentioned first in
Table translates the remaining artifacts of an FFML module (i.e., code and correct-
ness proofs) into the third species in FoCaliZe, presented in Table The function
also calls several transformation functions for each of the included elements, i.e. T'r ids,
Tr parents and Tr _inhs for the module and parent names, Tr code for the represen-
tation type and function (re)definitions, Tr proof for the correctness proofs. Again an
argument vspec of type SPEC is used in Tr _code and Tr _proof to retrieve all the func-
tion (re)definitions and correctness proofs that are kept into module v fm from its parent.
The function Tr_ sps is much more complex than the two other ones (T'r _sp; and Tr_ sp2)

because it has to generate function (re)definitions and correctness proofs.

Function | Type Definition Note
Tr _sps (vspec, vfm) = - is the third species translation
(Tr_ids vfm, function translating module v fm
Tr sps SPEC * FM — Tr_parents vfm, to the third species in
— Ssp Tr _inhsvfm, [],[], Tr_code | FoCaliZe which contains
(vspec, vfm), Tr_proofs representation, function
(vspec, v fm)); definitions and correctness proofs.

Table 3.15: Function translating a module into the third FoCal.iZe species

112



Jun

3.5. FFML COMPILER INTO FOCALIZE

3.5.6.1 Module and Parent Name

Similar to the first and second species, the functions translating a module name and
its parent name into the third species are described in Table The function T'r_ids is
for translating the module name to the corresponding species name. The species has the
same parameter definitions as the first species, presented by function Tr parents. The
third species has a name built from the module name and the string " imp". The other
function Tr inhss establishes an inheritance clause for the third species which explains

that the third species inherits the second species associated to the module.

Function | Type Definition Note
. - translates the module name of
) Tr idsvfm = .
Tr ids FM — SID — Aw module vfm to a species name end
- (Get_idvfm) imp e
- — with ¢ imp
FM —s Tr_inhsz vfm = [ITr_inh | - creates an inherited species
Tr _inhs SINH DEF list ( (Get_idvfm) " having the name ended with
- “ spec2” )] “ spec2” (Tr _inh see Table [3.8)

Table 3.16: Function translating a module and its parent names into the third FoCaliZe
species

Example. The translation of module DL having a parent BA is shown in Listing
The third species DL _itmp of the translation of DL has a parameter conform to the third

species of BA. It also inherits the second species of DL spec2.

Listing 15 Example of translating the module and parent names of a module to the third
FoCaliZe species

fmodule Ergm @ ————— - TI’ "p(],-’ﬂ(z 1/118 species DL_specl (BA is BA_imp) =
coa 88 S~ TTm--o . - "2 L ... end;;
= - 4—72';@7(1-3_ S 3 s}f)‘@c.ie\s.} DL _spec2 (BAAis BA_imp) =
Tr. _,b.n‘h“i -4 :n-herl ‘TQliispecl (BA)
_ [N S~ end;; ~

specieg‘DLiimp ~1‘BA is BA_imp)
T™inherit DL _spec2 (BA);
. end;;

Listing 3.35 DL in FoCal.iZe

3.5.6.2 Implementation Code

The function Tr_code (appearing in Table [3.15)) translates the implementation code
of a module into the third species in FoCal.iZe. It distinguishes two cases according to

whether the representation type of the module is either extended from the representation
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type of the parent or not. The function is presented in Table

Representation Type

In the case of extension, function T'r erep translates the representation type to the

corresponding one in FoCaliZe using the representation type of the parent and the ex-

tended part ve__prod. The details of T'r _erep are in Table In addition, the species is

added several basic conversion functions, named vbas _funcs,defined three supplementary

functions in Table 319} If the representation type of the module is not extended, then it

is translated into FoCaLiZe by function Tr prod (see its definition in Table [3.18)).

Function

Type

Definition

Note

Tr _code

SPEC * FM —
SREP *
SFUNC list

Tr _code (vspec, vfm) =

Case rep : BAS_REP ::
(T'r_prod rep, vscfuncs )

Case rep : (vparent, ve_prod)
it (Tr_erep (vparent, ve_prod),
vbas__ funcs @Q vscfuncs );
where
vscfuncs = Map (Tr_func
(vspec,vfm)) (vfuncs @
vk funcs);

- translates the
implementations including
function definitions and
representation to FoCalLiZe,
where rep = Get _rep vfm;
(vparent, ve_prod):
EXT_REP (see Table [3.2]of
FFML abstract syntax);
vfuncs = Get _funcs vfm;
vk funcs = Get_kfuncs
(vspee, vfm);

vbas_funcs = [Cr_make
vparent vc_prod ; Cr_ first
vparent; Cr_second ve_prod);

Table 3.17: Function translating the implementation code into the third FoCaliZe species

Function Type Definition Note
Tr _erep (vparent,
Tr erep ID *C_PROD | vc_prod) = Join_ca - translates an extended presentation
- — SC_PROD (Tr _tparent vparent, to a FoCaLiZe presentation.
Tr prod ve_ prod)
Tr tparent| ID — STY PE Tr _tparent vparent - translates vparent to FoCaliZe type.
Tr_prod | G5 ROD FIME 1o Cartestas product i
- SC_PROD ‘ procuct 1
ST;PE . FoCal.iZe
soin_ea | 50 pron
SC PROD P :

Table 3.18: Functions for translating an extended representation into FoCalLiZe

Example. The translation of representation type of module DL is shown in Listing

It is expressed as an extension from that of module BA with a new part int (line 2 of

Listing [3.36]). The corresponding representation type in FoCaliZe is a Cartesian product
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Function Type Definition Note

- creates the function named make
combining two values into type Self
in FoCalLiZe.

ID *C PROD Cr_make (vparent, The code: let make(vni : vtype,

— SFUNC ve_prod) vng 1 ve_prod): Self= (vni, vn2);;
where vni, vng are variable names,
vtype = Tr _tparent vparent and
ve prod = Tr prod ve prod.

Cr_make

- creates the function named first to
get the first part of a value typed Self
in FoCalLiZe.

Cr_ first ID - SFUNC Cr_first vparent The code : let first (vn: Self):
vtype= fst(vn);;

where vn is variable name and

vtype = Tr tparent vparent.

- creates the function named second
to get the second part of a value typed
Self in FoCaLiZe.

Cr_second vec_prod The code: let second (vn : Self):
vprod= snd(vn);;

where vn is variable name and

C_PROD —

d
Cr_secon SFUNC

vprod = Tr prod cv prod.

Table 3.19: Supplementary translation functions

of BA and int (line 3 of Listing |3.37). The functions following are basic functions make,
first and second that respectively create a pair, compute the first projection or the second

projection.

Listing 16 Example of translating the representation type of module DL to the third
FoCalLiZe species

species DL _imp (BA is BA_ imp)
inherit DL _spec2 (BA);

representation = BA x int);
let make (x: BA, a: int) : Self = (x, a);

let first (t: Self) : BA = fst(t) ;
let second (t: Self): int = snd(t);

Listing 3.36 DL in FFML

00~ O UL W —

Listing 3.37 DL in FoCalLiZe

Function Definition

In Table we calculate two sets of function definitions. vfuncs is the set of the
function definitions explicitly written in the module. These implementations are copied
in the third species. vk funcs is the set of all function definitions that are kept from

the parent, they are calculated by the function Get kfuncs. However, vk funcs are not
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inherited in the sense of FoCaliiZe but are to be re-built from the parent which is a
parameter of the third species. All of these functions are adapted to the change of the new
representation type. So, vk funcs are to be generated automatically in FoCaLiZe according

to the following scheme:
let f x = e; (in the parent FP)= let f x = FP\f(first(z)); (in the third species)

in which the parameter x has the abstract type. We recall that a parameter called F'P
has been introduced in the third species. So F'P!f denotes the function f defined in F'P.
Furthermore the representation may have been extended, so a value of type F M is in this
case a type whose first component is an element of type F'P. So FP!f(first(x)) applies

the parent function on a value of type FP.

Similarly, if v funcs are redefined, then they are updated automatically as follows (see

Equation in Section |3.4.4]):
redef := C[F'P!f(arg1,arga,...,argy)] (in the parent FP)

= redef := C[FP!f(sargi, sargs, ..., sargy)] (in the third species)
in which

arg; if arg; does not have the abstract type
sarg; = { gi gi YPE 1,..,n  (3.13)

first(arg;) if arg; has the abstract type

The function Tr _ func (mentioned in Table translates a function definition into
the third species in FoCaliiZe. Function definitions in FFML are similar to those in Fo-
CaliiZe. The translation rules for the function definitions focus mainly on adapting the
function bodies to the change of the new representation type. The detail of Tr func is
described in Table It contains the function Tr expr that is defined for translating
the expression vexpr of the function vfunc n. This expression is adapted to the rep-
resentation type vrep, in which vpars are the parameters and v ftype is the type of the

function.

Example. The function definitions of module DL in FFML are translated into FoCal.-
iZe, in Listing Two function limit _with and get _wih are defined in module DL (lines
2-3 of Listing [3.38). The function update, declared previously in BA, is redefined (lines

4-9). Their translations are shown in lines 7-14 of Listing [3.39} The argument = of update
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Function | Type Definition Note
Tr_func (vspec, vfm)
SPEC * FM — (vfunc_n, vpars, vexpr) =
Tr func FUNC _N * PAR list * (vfunc_n, vpars, Tr _expr | - translates a function
— EXPR — SFUNC N * (vpars, vexpr, Get_ ftype definition to FoCaLiZe
SPAR list * SEXPR vspec vfm vfunc_n,
Get_rep vfm))
- translates the expression
. vexpr into FoCal.iZe, and
PAR list * EXPR * Tr _expr (vpars, vexpr, . .
Tr expr TYPE * REP — SEXPR | vftype, vrep) adapts thlS. expression
’ corresponding to the
representation type vrep.

Table 3.20: Translating a function definition to the third FoCaliiZe species

is updated automatically to first(xz) by Equation The two functions get bal, over,
declared previously in BA, not redefined in FFML module DL, are kept and automatically
generated in FoCaliZe (lines 4-5).

Listing 17 Example of translating the functions of module DL to the third FoCal.iZe
species

1 | species DL imp (BA is BA imp)
let get with (x) = second(x); 2 inherit DL _ spec2 (BA);
let limit with = (—70); 3 =
let update (x,a) =~~~ "~~~ -- g 4 let get bal(x) = BA!get bal(first(x));
if (a <= 0) then TTF_‘:fUZL\C 5 || 1et over = BAlover; -
if (get_ with(x) + a >= limit_ with) then>< 6
(BAlupdate(x,a), get_ with(x) + a) \~‘ 7 let get with (x) = second(x);
else x 8 | let limit_with = (—70);
else (BA!update(x,a), get_with(x)); 9 ta
10 let update (x : Self, a : int) =
11 if (a <= 0) then
.. . 12 if (get_with(x) + a >= limit_with) then
Listing 3.38 DL in FFML 13 (BAlupdate (first(x),a), get_with(x) + a)
14 else x
15 else (BA!update(first (x),a), get_with(x));

Listing 3.39 DL in FoCaliZe

3.5.6.3 Correctness Proofs

The correctness proofs of a module in FFML are expressed in comments as proof scripts
and copied from FoCal.iZe, presented through Tr proofs in Table We define the
function in Table B.211

There are two kinds of correctness proofs in the code artifact part:

e the first kind (vproofs) includes the ones required for new properties or refining

properties that must be done by the user. The properties, associated to the functions
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which are redefined in the current module, must be reproved by the user. The

translation of this proof kind is quite trivial, consisting in a simple copy.

e the second kind (vkproofs) concerns invariant properties and properties that corre-
spond to the kept properties, such as, the proof of ba bal gr over. An invariant
property may involve a function that has been redefined. In that case it has to be
proved again. The correctness proofs, belonging to this kind, are automatically gen-
erated by the function Up kproof, unfolding the functions and adding the proof
hints being the names of the properties of the parent. It is just a heuristics. Zenon

may fail in that case, asking for more hints or subproofs provided by the user.

Function | Type Definition Note
- translate FFML proof
Tr_proofs (vspec, vfm) — nwol‘izilgns to FoCalLiZe,
Tr proofs SPEC * FM - Map (Tr_proof (vspec, vproofs = Get_proofs vfm;
SPROOF list vfm)) (vproofs @ vkproofs = Map (Up_kproof
vkproofs) vfm) Get _kproofs (vspec,
vfm);
PROP_N¥*
Tr proof FOCPROOFBODY | Tr_proof (vrpoof m, - copy a FFML proof notation
- — SPROOF_N * | vfocproof) to FoCaLiZe.
SPROOFBODY

Table 3.21: Translating proofs to the third FoCaliiZe species

Example. The correctness proof of property ba_upd succ_with over shown in List-
ing [3:40] is proved in line 8. Its translation is in line 6 of Listing 842} However, in DL
(Listing this property is refined into the property di _upd succ _with _wlimit R1
(lines 2-4) and is reproved (lines 6-14). The proof of this refining property is translated
into FoCal.iZe (lines 9-15 of Listing . Module BA also contains another property
ba_bal gr over in lines 2-3 and its corresponding proof lines 6-7 of Listing [3.40] The
property is not refined but is kept in DL. Its proof is generated automatically: the hints
indicate to use the definitions of the functions get bal and over, and also the property
ba_bal gr over of BA (lines 5-6 of Listing [3.43]). This proof is done automatically by

Zenon.
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Listing 18 Example of translating correctness proofs into the third FoCal.iZe species

contract get_bal
ba bal gr over
contract Epdate property
ba upd succ with over: all x:BA, all a:
int, (get bal(x) + a) >= over —> get bal(
update(x,a)) = get bal(x) + a;

invariant property
all x:BA, get_bal(x) >=

over;

proof of ba_ bal gr over =

foc proof { * assumed x};

proof of ba upd succ_with over =
by definition of update, get bal

foc proof {x

*}3

O U W N

=
o © 0w

Listing 3.40 BA in FFML

contract update property
dl_upd_succ_with_wlimit_R1

refines BA!ba_upd_succ_with_over
extends premise (a <= 0) /\ (get_with(x) + a
>= limit_with);

proof of dl_upd_succ_with_wlimit_R1 =
foc proof {x

<1>1 assume x: DL, a int ,
hypothesis hl: (a <= 0) /\ (get_with(x) + a
>= limit_with),

prove (get_ bal(x) 4 a) >= over —> (get_bal (
update(x,a))) = get_ bal(x) + a

<2>1 prove first (update(x,a)) = BA!update (
first (x),a)

by definition of first ,update hypothesis hl

<2>e qed by step <2>1 definition of over,
get _bal property BA!
ba_upd_succ_with_over

<1>e conclude;x*}

=
(=Rl R RGN

[
=

12

13
14

15

Listing 3.41 DL in FFML

property ba_bal_ gr_over all x Self ,

(get_bal(x) >= over);

property ba_up_succ_with_over
a:int, ((get_bal(x) + a) >= over) —> (
get bal(update(x, a)) = (get_ bal(x) + a))

5

all x:Self,all

proof of bal gr over = assumed ;
proof of ba_upd_succ_with_over = by definition
of update, get_bal;

Listing 3.42 BA in FoCalLiZe

property dl_upd_succ_with_ wlimit_R1 all x :
Self, all a int, (a <= 0) && ((get_with
(x) + a) >= limit_with) —> ((get_ bal(x) +

a) >= over) —> (get_ bal(update(x, a)) =
(get_bal(x) + a));
proof of ba bal gr over = by definition of

get _bal, over property BA!ba_bal_gr_ over;

proof of dl_upd_succ_with_wlimit_R1 =
<1>1 assume x Self , assume a : int,
hypothesis hl (a <= 0) && ((get_ with(x) + a
) >= limit_with), -
prove ((get bal(x) + a) >= over) —> (get bal(
update(x, a)) = (get_bal(x) + a))
<2>1 prove (first (update(x, a)) = BAl!update(
first (x), a))
by definition of first , update hypothesis hl
<2>e qged by step <2>1 definition of over,
get bal property BA!
ba_upd_succ_with_over
<1>e conclude;

Listing 3.43 DL in FoCalLiZe
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3.5.7 Generating a collection

The function Tr _col (mentioned previously in Table is described in Table
This function creates a collection that implements the third species. An example shows

how to build a collection for BA in Listing [I9]

Function | Type Definition Note

- 1s a translation function translating
module vfm to a collection in
FoCal.iZe which implement the third
species.

Tr colvfm =
Tr _col FM — SP (Tr_ids vfm,
Tr _impvfm)

- translates the module name of

Tr i = .
Tr_ids FM — SID T—del vfm A , | module vfm to a collection name
- (Get_idvfm) col .
— — ended with col.
Tr imp vparent = - translates a parent name to a
* _
Tr imp ID = SID (vparent ™ “_col”, collection implementation clause.

SPARAM N list
- Tr _param vparent)

Table 3.22: Function translating the module and parent names of a module into a collection

Listing 19 Example of translating a module to a collection in FoCaliZe

fmodule from @ ———————— T‘ 3
S Sog T mp

~

species DL_specl (BA is BA_imp) =
. end;;

5

species DL spec2 (BA is BA imp) =
. end;; -

species DL imp (BA is BA_ imp)
inherit DL spec2 (BA);

... end;;

>‘ollecl:ion :

implement DL_imp(BA col);

end;;

) \TT‘_w/Ldél A
Listing 3.44 DL in FFML -l

% 7

1
=
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Listing 3.45 DL in FoCal.iZe

3.6 Correctness of FFML Translation

With the purpose of writing and reusing artifacts easily, modules are written in FFML
and then translated in FoCaLiZe. As mentioned in the beginning of this chapter, the imple-
mentation of the artifacts in FoCalLiZe is more complex. FMML reduces this complexity
by dissembling code repetition such as keeping the properties, the function definitions,
the representation type, from a parent module. These artifacts are automatically copied,
sometimes with some adaptation, or redefined into FoCalLiZe syntactic elements. Besides
shorter code, FFML supports the reuse and modification mechanisms that are translated

with the help of the inheritance and parametrization mechanisms available in FoCaliZe.
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Although the syntax of FFML and FoCal.iZe are close to each other, FFML supports
other keywords allowing the developer to reuse existing properties for specifying new ones.
To implement these in FoCal.iZe, we decided to translate an FFML module into three
species with the purpose of distinguishing the artifacts according to the kind of artifacts
(specification versus code and correctness proof) and also according to the variability of

property may have (invariant property versus other kinds of properties).

First, to guarantee the correctness of the translation, FFML translation needs the
formal semantics of FoCaLiZe [Prevosto and Doligez 2002, on which we rely. In fact,
we borrowed FoCaliiZe’s syntax and expanded it. Second, we use flexibly the mechanisms
available in FoCalLiZe, allowing us to reuse and modify artifacts. Namely, the specification
which is inherited, is translated into the first species that will be inherited by other species
using the inheritance mechanism in FoCal.iZe. The second species contains the specification
that will be copied in FoCaLliZe with an intention of refining or modifying. Lastly, the
parameterisation mechanism is intensively used in the third species. It allows to keep the

functionality, encapsulated as specification abstractions, from the parent module.

A formal proof of the correctness of our translation is beyond this thesis. It is a hard
and complex task that would need more time. We have tested the translation on different
FFML files, coming from the Bank Account SPL and another example (Poker SPL that
will be developed in Chapter [5|). Furthermore, the translated programs in FoCaLiZe have

been executed on different test cases.

3.7 Summary

While comparing FFML to FoCaLiZe through their syntax (Section and seman-
tics (Sections , we can notice that FFML is close to FoCaLiZe, but focuses on building
a friendly environment for the developer and does not increase encoding effort. This is
considered as an advantage of FFML and explains why an FFML module is implemented

in FFML more easily and in a shorter way than in FoCalLiZe.

It is worth mentioning that the keyword from included in FFML grammar is very

flexible. Using this keyword from, FFML Compiler also recognizes from which a module
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is extended or modified. As described by the previous translation functions, we can see that
the keyword from does not have the same meaning as the keyword inherit in FoCaLiZe
(Grammar [A.1)) which is used only for inheritance mechanism. In fact, the keyword from

conveys itself a combination of several mechanisms for reusing and modifying artifacts.

We have formulated the semantics of the FFML language by representing how each
kind of artifacts can be calculated through the mechanisms proposed for the language. Its
semantics is related tightly to the meanings of the keyword from. The example Bank

Account SPL, written in FFML, illustrates how to write the different artifacts.

We also have defined the translation rules for translating FFML modules into FoCalLiZe.
The elements of an FEFML module are respectively translated into three different species and
a collection using translation functions. Three species allow an easier management, hence
the translated artifacts can be reused in FoCalLiZe. FFML Compiler tool, implementing
these translation functions, is built in OCaml with more than three thousands of code lines.
We use the newest version of FoCaLiZe 0.9.1. FFML presents some systematic and semantic
constraints, for example we require that each FFML module is complete, that a function
(re)definition has the same type (or a more general one) as its signature. These constraints

are verified by the FoCalLiZe compiler on the translated versions of FFML files.

As indicated in Chapter [2] to develop correct-by-construction SPLs, besides a language
supporting the writing, our methodology also needs a technique for automatically gener-
ating the correct final products. This requires a connection of modules written in FFML
to the generation technique, and then definitions for composing these modules according
to the technique. The methodology has to be proved efficient in implementing other SPLs.
With the two following chapters, we will resolve these issues. In Chapter [d] we define the
composition of FFML modules, formulate the generation of FFML products and present an
FFML Product Generator tool. Using our tool chain (FFML Compiler and FFML Product
Generator) to implement a bigger example (Poker SPL), we evaluate our methodology in

Chapter
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Chapter 4

FFML Product Generation

In Chapter [2, we have described a methodology which applies FOP technique for de-
veloping correct-by-construction SPLs. An FFML language has been defined for writing
these SPLs in Chapter [3] In this chapter, we focus on an automated generation of the

products that is proposed in the methodology.

The basic requirements of the automated generating process are discussed in Section
This part tries to answer the questions about how to make the process automated and
correct. In Section we define a binary composition operation for FFML modules. We
continue to analyze how the operation behaves on each kind of artifacts involved in the
modules in Section We describe the composition rules for implementing this operation
in detail in Section [£.4} In Section [£.5] we explain the generation process of final products.
Using the Product Generator tool, into which the composition rules are embedded, the
automated generation of the final correct products is illustrated in Section |4.6|on the Bank

Account SPL. Finally, we summarize our methodology in Section [.7]

4.1 Basic Requirements of The Automated Product Genera-
tion

Over the last decade, many methods were proposed for generating SPL products. Fol-
lowing FOP and design-by-contract techniques, Thiim et al. propose composition mech-
anisms for contracts |Thiim| 2015]. The contract composition operations are formally

defined, since mapped to the composite proofs which are built in Coq [Thim et al.| 2011}
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2014b|. They call the proof parts, which are located somewhere and related to modules,
partial proofs. When composing the modules, these partial proofs are also composed. How-
ever, the proof compositions are explained by cases, which may happen while composing,
but not by formal definitions. Consequently, these compositions are not implemented auto-
matically for proofs. In the context of programming language meta-theory within the Coq
proof assistant, another direction for formally composing artifacts is proposed by Delaware
et al. in |Delaware et al. 2011, [2013]. This approach guarantees the reuse and com-
position of correctness proofs but was only implemented on a limited language domain.
Recently, an approach for formally composing models is presented in [Hamiaz et al.| [2016].
The idea is that once elementary composition operators are formalized and verified, they
can be used to define more complex operators. However, the approach was achieved on
metamodels and follows component-based techniques which is not actual SPLE |Clements
and Northrop [2001]. By contrast, our main goal in this direction is to develop SPLs and
to define the composition operations at the level of modules which contain three kinds of

artifacts.

Pursuing the main purpose of an automated generation tool, from the existed meth-
ods we give below the basic requirements which are essential to generate correct product

variants.

e First, we only need a binary composition operation which is applied for a pair of
modules, since composition of more modules can be done pairwise according to the

module diagram. The generator tool embeds this binary composition operation.

e Second, FFML Product Generator tool needs to contain automated functions, im-
plementing composition rules for composing two modules. These rules decide which
artifacts are composed and how to compose artifacts. They are built for all kinds of
artifacts: specification, code and correctness proof. The output of the composition
will be a composite module, which should be also a module, that is, this composite
module can be reused to write other modules. This is needed to remain the modular-
ization and the optimization while developing SPLs in FFML. As defined in Chapter
the keyword from of FFML, which is used to express that a module is extend-
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ed/modified from another, is also used here to express the relationships between the

composite modules. This new semantics is introduced in Section [.2]

e Third, it is necessary to have an implementation technique for establishing products.
The generator tool also takes the hierarchy, relationships and order of the features

as inputs.

Figure shows how to obtain the expected product using the FFML Product Gener-
ator tool. The final product is built by lining up the composite modules which are denoted
by the red nodes with a symbol “”” following the module names. While building the prod-
uct variant, the involved modules in the module diagram have to be in turn composed by

the binary operator.

——0 optional relation
Feature

[]
D Module
L

Composite —= "£rom'relation
Module

——@ mandatory relation

Feature model Valid full configuration Module diagram

({A,D,,H,C,G,B,F,M,E}, {J,K,N})

Product variant

Figure 4.1: Product Building

In the next sections of this chapter we sequentially explain the solutions we have adopted

for the requirements mentioned above.
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4.2 Module Composition Operation

In this section, we present our binary composition operation defined for two modules.
The operation is applied for computing the composition of all kinds of the artifacts (spec-
ification, code and correctness proof) contained in these two modules. The artifacts are

composed by the operation which is specific to that artifact kind.

Notation 2 (Binary Composition Operation) Given two modules FMy and FM;,
the composition of module F'My with module F M, represented by FM} = FM, o FMy, is
the binary composition operation that forms a composite module F M) from module F My

and refers to module F M as the parent of the composite module via a Trom relation.

We describe a binary composition operation in Notation [2] (that is analyzed in Sec-
tion and then is defined via the function Com__ fm in Table of Section The
composition is calculated from the artifacts contained in the two modules F My and F M.
We use dot “e” to represent the operation. Its output is a composite module, illustrated
in Figure connected to F'M; by a relation from. The composite module F M) refers
to the name M Ny of FM; meaning that F M is its parent. FMé is also an FFML mod-
ule modeled by a 7-tuple (as defined in Section whose components are sequentially
calculated by the composition operation. The exact composition of the tuple elements
(MNy "M Ny, MNy,Sh, Py, R, Dy, Pf}) is defined in the following section. As a conse-

quence, F M/ can be extended /modified to build other modules by means of FOP principle.

FM; = (MNQ,PN27SQ,P2,R2,D2,Pf2) FM;, = (MNl,PNl,ShPl,Rl,Dl,Pfl)
from
FM - module, FMj = FMs e FM; = (MN2 “"MNi, MNi, S5, Py, Ry, Db, Pf3)

MN - module name,

PN; and PN> - parent names,
S - function declarations,

P - properties,

R - representation,

D - function definitions,

Pf - correctness proofs.

from - is from relation.

Figure 4.2: Module composition

126



4.3. COMPOSITION ANALYSIS

Our composition operation is different from the others defined previously. More pre-
cisely, our operation is defined to calculate all kind of artifacts (specification, implemen-
tation code and correctness proof). In AHEAD the composition operation is achieved on
the inheritance mechanism, namely mizin, in object-orienting programming |Batory et al.
2003]. A keyword super is used for representing this inheritance relation in code artifact.
Another composition operation was defined in FEATUREHOUSE which uses superimposi-
tion mechanism. The keyword original is used to refer to the previous implementation
(code artifact) |Apel et al| 2009]. Thiim improved the operation in FEATUREHOUSE
for composing specification artifacts, namely for contracts, by pursuing design-by-contract
approach |Thium et al| [2014b; [Thim| 2015]. For more extension, the mechanisms we
define for our composition operation is represented through the keyword from. This key-
word conveys itself more complicated mechanisms as a mix of several ones for not only
extending/modifying (see in Section but also composing the artifacts of modules.
To understand more about how the composition operation, we continue the discussion in

the next sections.

4.3 Composition Analysis

In this section, we focus on analyzing how the binary composition operation, introduced
in Notation |2} achieved on specific artifact kinds. According to the notation, the composite
module F M} is formed from F M, and refers to FM; according to the from relation. In
fact, the module associated to the root feature is built first and does not to be composed to
others. This module is involved in all products. In other words, composition only concerns
the modules (namely F'M; and F'Mj) which are not the root. In the next sections, we focus

on analyzing how the binary composition operation is deployed on all kinds of artifacts.

4.3.1 Signature

The signatures S of F'MJ are calculated as in Equation The signatures Sy of F'My
are entered into F'MJ, but the type name PNj is replaced by the type name M N; and the
type name M N is replaced by the type name M NJ.
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S5 = (52) [P Ny MN,|[M N MN}) (4.1)

By from relation built for the composite module (see in Figure , the signatures S
of F'M; are entered into F'M/ (by the function Rpr_signs in Table {4.2| of Section {4.4.1]).
Applying Equation [B.5]in Section 3.4.1] about FFML semantics of signatures, we calculate

the meaning of S} as follows:

[Ss] = [S1lneny e nng U Sy = [S1]iae vy e minvg) Y (S2) 1PNy e M Ny M No e M NG
4.3.2 Property

As described, our methodology applies the principles of the design by contract approach
for specifying functionality of SPL. That is, for each function, the developer can write a
set of properties specifying its behaviors. We imply that the composition operation only
concerns the properties related to a function. In other words, for each function its related

properties are composed.

The idea of composing properties is related directly to function (re)definitions in two
modules F'Ms and F'M;. Each module contains the properties which are either invariant
properties ¢ P, new properties nP or refining properties rP. The composition operation

manipulates all these properties and the composite properties Py are computed as follows:

Py = (iPy UnPs) (pNy Ny [MNo-MNy U TPy
where 7P = (rP2)[pny My [MNo- Ny @ [P1]); (4.2)

and [P1] is the set of all the properties of F'Mj;

We can see that the composite properties Pj are calculated by Equation These
properties consist of iP» and nPs from FMj, and P established by composing r P, from
FMs, and [P;] from FM; using “e” operation (defined in Section as the function
Com_ props in Table . rP} are also the refining properties of the composite module
FM,. [Pi] is the set of all properties of FM; calculated by Equation As with
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signatures, the type names PNy and M Ny are respectively replaced by the type names
MN; and M N},

The reason why 7P} is established by composing with [P;] instead of P; is that [P;]
consists of all properties of FM; (calculated by Equation in Section . Note that,
FFML allows the user to extend a module but not to repeat the reusable artifacts. However,
the FFML semantics still keeps the meaning of these artifacts. Hence, if the composition
only concerns Py, the reused property of FM; can be lost. In order to avoid losing these
properties, the composition is calculated on [P;].

Because of from relation used for connecting F'M/ and F M, the properties P; are
entered into F'MJ, via the FFML reuse mechanism. Applying Equation in Section

about the semantics of property, we calculate the property meaning of Pj as follows.

[P] = ([P \ P([PL], 7 Ps)) vy - navg) U Py (4.3)
4.3.3 Representation Type

The representation type Rf of F'MJ is calculated from that of F'Mjy according to Equa-
tion (defined by the function Rpr rep in Table of Section . The type name
M Nj replaces the type name PNy in Re. The meaning of this replacement is that R}
reuses the representation type of F'M; but keeps the extended part Ro of F'Ms if this part

exists.

Ry = (R2)[pNyeMN] (4.4)

Via the relation from connecting F M) to F'Mj, the representation type R; is entered
into F M} via the FEFML reuse mechanism. We apply Equation in Section (the

semantics of representation type) to calculate meaning of R, as follows:

[Ro] = [R] * Ry (4.5)

When composing the representation types the change in the composite representation

type may impact other elements of the composite module. A signature or a property
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related to a function is specified with abstract types, thus they are not affected when
the representation type changes. However, a (re)definition, being an implementation of
the function, based on concrete type, new composite representation type forces converting
between explicit types. We can understand more about this impact when composition rules

for (re)definitions and correctness proofs are analyzed in the next sections.

4.3.4 (Re)definition

An FFML module may contain new definitions n.D or re-definitions rD. The composi-
tion of the function (re)definitions of two module F'My and F'M is represented in Equation
The composite module F Mé includes nDy from F'Msy and r Doy that is composed with
[D1] by “e” operation (defined in Sectionby the function Com__ funcs in Table,
in which [D1] is the set of all (re)definitions of F'M;. The result of this composition is the
composite re-definition rDY for F M. As with signatures and properties, the type names

PNy and M Ny are respectively replaced by the type names M Ny and M NJ.

Dy = (nD2)(pNy e MmNy mng U mDy
where 7Dy = (rD2)(pN,« My | [M N+ Ny @ [D1s (4.6)

and [D1] is the set of all (re)definitions of F'M;

The (re)definitions of FM; are entered into F'M) using the FFML reuse mechanism.
Applying the semantic Equation in Section about FFML semantics of (re)definition,

we calculate the definition meaning for F'MJ as follows:

[D5] = ([D1] \ D([D1], 7D3)) paa vy - nanvy) U Doy
4.3.5 Correctness Proof

We represent how the correctness proofs of modules F'My and F'M; are composed in
Equation The proofs iPfa, nP fo and rP fy (see page 65 of Section [3.4.2]) are moved
into FM.,. However, the proofs rPfy have to be composed with the proofs [Pfi[ (the

set of all the correctness proofs of F'M;) using the operation “e” (defined by the function
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Com_proofs in Table of Section [4.4.5)). We call the result of these compositions
rPf}. the type names PNy and M Ny are respectively replaced by the type names M N;
and M NJ,.

Pf3 = (0P f2)[pNynNy|[M NNy U TP f3
where 1P fy = (1P f2)[pnynni) [Ny —nmng) @ [Pfil (4.7)

and [Pf] is the set of all the correctness proofs ofof F'Mj;

The proofs of FM; are also entered into F'M using FFML reuse mechanism. Similar

to other kinds of artifacts, we calculate the set of all proofs of F'M/ by applying Equation
[3.12lin Section B.4.5] as follows.

[Pfs] = ([PAIN PP 1], 7P f2)) vy —nany U P

In this section, we analyzed how the binary composition operation is applied to all
kinds of artifacts. According to this analysis, in the next section we aim at defining the

composition rules for two modules and their artifacts.

4.4 Composition Rules

In this section we focus on defining the binary composition operation for modules by
expressing the functions implementing the composition rules for all the artifacts involved

in two modules.

The main function Com__ fm is defined for composing two modules vfmgo and vfm;
of a SPL, represented in the first line of Table It corresponds to Notation [2| of the
binary composition operation between two modules. The supplementary parameter vspec
is used to get the information from other FFML modules of the SPL. The result of the
composition is a module (of type F-M), called a composite module. This composite module

uses the module vfm; (with name vname;) as its parent.

The functions, used in the definition of Com__fm, realizes intermediate composition

rules for the different elements into the composite module. Function Com_id is used for
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creating the name of the composite module, function Rpr sigs for defining the signatures,
function Com__props for composing the properties, function Rpr _rep for composing the
representation types, function Com__ funcs for composing the function (re)definitions and

function Com_ proofs for composing the correctness proofs.

Function | Type Definition Note
Com__fm (vspec, vfma, vfmy) = - composes two modules vfms
vnamesy, vnamer, and vfm; into a composite
module,

Rpr_sigs (vfma, vnamer),

SPEC * c where
om__props (vspec, vfma, vfmi), )
* — _ .
Com_fm | FM * FM Rpr_rep (vfma, vnamen), vnames = Get_?d vfma;
— FM . vnamey = Get_id vfmu;

Com_ funcs (vspec, vnamel, v fma,
Ufml),

Com__proofs (vspec, vfmea, vfml))

vnames; = vnames " vnames;

Get_id - gets the identity of a
module

Table 4.1: Composition function of two modules v fmgy and v fmq

In Listing [20[ we present an example of a composite module DLLL (Listing which
is established by composing module DL (Listing and module LL (Listing . DLLL
expresses that module LL is its parent (line 1 of Listing .

Listing 20 Example of composing the identity of two modules

fmodule Fr;r; _Bﬁ_ 1 fmod—g—h?DLLL_ from
R T _2’_,=-;"—(—"‘"—__
Listing 4.1 module LL UL i Listing 4.3 module DLLL

AAAAA

Listing 4.2 module DL

The intermediate composition functions used in Table are further discussed in the

following subsections.

4.4.1 Signature

When implementing the binary composition operation, the function declarations in
module v fmy are reproduced into the composite module by a function Rpr signs, repre-
sented in Table[I.2] As analyzed in Section [£.3.1] the composite function indicates module
vfmy as its parent (using keyword from), the signatures in vfmj are still available and

entered into the composite module thanks to the “from” mechanism of FFML. There is a

132




=

4.4. COMPOSITION RULES

supplementary function Up _stype, that renames the module type vnames into the com-

posite module type vnames;.

Function Type Definition Note
- reproduces signatures into
composite module;
Rpr_signs (vfma, vnamer) Where:
* - > v = Get_id ;
Rpr _signs FM ]D Map (Up__stype (vnames, vnames er_¢ U{m%
— SIG list T vnamesr = vnames " vnamer;
vnamesi)) vS$ignssa . .
vsignse = Get__sigs vfma;
Get_id - gets module name;
Get sigs - gets signatures;
Up stupe ID*ID — Up_stype (vnamez, vnames:) - updates the module type vname:
p_styp SIG — SIG | vsigna of the signature vsigs to vnames;

Table 4.2: Concatenating the names of two modules vfms and v fmy

An example of reproducing a signature get with, declared in module DL, is shown in
Listing 21} Before composing, the function takes as inputs module type DL and returns an

output type int (line 2 of Listing [4.5). In the composite module, this signature is copied

in the composite module DLLL with an updated type DLLL (Listing [4.6)).

Listing 21 Example of signature composition

fmodule LL from BA
signature limit_low: int;

.....

1 | fmodule DLLL from LL
2 signature get_with : ([DLLL) —> int;
3

Listing 4.4 Module LL

Listing 4.6 Module DLLL

fmodule DL from BA
signature get_ with: —> int;

Listing 4.5 Module DL

4.4.2 Property

This section aims at describing how properties are composed. We begin by explaining

the formulas representing the combination of two sets of properties in Section The

functions for composing properties are discussed in Section

4.4.2.1 Composition rules of properties

In this section, we discuss the composition rules for two sets of properties, which are

specified following the design by contract approach. According to our classification of
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properties (Section [3.3.2)) the properties Py related to a function f are formulated using
the keyword contract and formulated as Py — {pfl(ﬁ)), pfz(g?g), s pfn(:c—n))}, in which

7, is list of universally quantified variables.

The developer may have written properties for f in both modules F'M; and F M.
Pp¢ is the set of properties p’fj(:?]) in FM;, represented by P = {p,f1(571)a p’f2(:72),
), Dy @1 o D)} The properties ply (7)), (@), . pl(21)
oy P (T)y Plngn)(@nga)s o0 D (T) }- e properties pl (1), Pla(x3), -y P, (2n,
respectively modifies or keeps the properties pfl(?l), pf2(a72>), ey pfn(a;_%) of Py. The

: / I ' : :
properties pf(nJrl)(:L‘,hLl)7 s pfm(xm) are new ones written into F'Mj.

Similarly, the set of properties in module vfmsy, is represented by Poy = {p’]ﬁl(ajl’ ),
— —
Pis(@h), oos D (@), Py (@i)s s D@}, The properties {pl, (2]), plo(ah), .

%
pfn( ") modifies or keeps the properties pfl(azl) pr(:cg), vy pfn(azn) of Ps. The properties
— —
pf(nﬂ)(a;nﬂ), ooy Dp(27,) } are new ones written into F'Mo.

The composite properties Pyoq, resulting from the composition of F'My and F My, are

calculated by composing Prs and Py as follows.

i

1)’29}1(

=

);
);

8

Pjy1 = Pry @ Pry = {pf(

i

2) ’P}z(

8
8
N

prQ(
),
k)

/% / _/>
pf(n—l—l)(‘rn—i-l) ,pfm(ﬂj )}

— (4.8)

plfn(xx) o pfn(
7pf (

:H\L

H

/! iz
Prn+1) (@ 41); -

In Equation [4.8] the properties in both modules having index from 1 to n are composed
by Equation [£.9) using the operation “e” defined by Notation [2]in Section [£.4.2.2] The new
properties of v fmo are copied while the new properties of v fm; are changed according to

Equation (marked with a symbol “*”).

— —
() » 9 (2]) = V) € U, premf(a) = 1 (o)
where x_kj)-, is a combination of 3,7,; and 17] (4.9)

and j,k:1,...n
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Equation represents the composition of two properties pj/ (37,;) and p;(;g), both of
—
which refines (or keeps) the same property p;(7;). premy(zy;) is the premise of py (37,;)

The parameters :U_k; of the composite property is a union of l7k/ and 1'73 .

The composite property, established by Equation is a refining property that refines
— —
property pj (IL‘;W) of FM; by adding prem’k’(x’k’j) of F M, as its new premise.

While composing the properties of two modules, a special case can happen when they
are invariant properties kept from Pf. As defined, these properties can not be refined

or modified in other modules, since their compositions, implemented by operation “e” in

Equation 4.9 are themselves. In other words, the composite module keeps these properties.

The case of transposing a new property p; (ajj ) with n+1 < j < m of module F'M; into

—
the composite module is represented by Equation4.10, The premise prem; (], j) (Equation

H
is added into p] (1‘;6]) to build the refining property pZ(:E_k;)

- —
Pi(@) = Vg € U, premyi(af;) — pj(x};)
where a:—k}, is a combination of 97]; and :z (4.10)

andj:n+1,...m; k:1,...n

4.4.2.2 Composition functions of properties

The composition rules for properties are more complicated than for signatures. The
three kinds of properties in FFML, as defined in Section [3.3.2] require specific composi-
tion functions, described in Table [£.3] Function Com_props is used for composing the
properties of two modules vfmso and vfm;. The function Com__inprops is applied for
determining the invariant properties and the new properties of the composite module. An-
other function Com_rprops composes the refining properties vrpropss with veprops; in

which veprops; denotes the set of the properties of v fmy (denoted [P], see Equation [4.2)).

We consider in detail the function Com__inprops, applied for both invariant and new
properties, presented in Table [{:4] The function provides the rules for reproducing these
properties into a composite module. A function Up ptype, used in Com __inprops, renames

the module type into the new one.
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Function Type Definition Note
- composes the properties of
vfme and vfma;

Where
vname; - name of vfmy;
Com__props (vspec, vfma vnames - name of v fma;
vfmi) = vnames; = vnames " vnames;
SPEC * FM | Com__inprops (vnamesz, veprops: = Get__cprops vspec
Com_props | * FM — vnameai, vipropss @ vnpropsz) | vfma - all properties of v fm;
PROP list @ Com_rprops (vspec, ([P1] in Equation ;
vnamer, vnames, vnamesi, vipropsz = Get_iprops vfmsa -
VTPropse, VCPropsi) invariant properties of v fma;

vnpropse = Get_nprops vfma -
new properties of vfms;
vrpropse = Get_rprops vfma -
refining properties of vfma;

Table 4.3: Composition of properties

Function Type Definition Note
Com__inprops (vnamea,
. ID* ID_* vnam_emf)vi??;pr(opsz) :2 Map - composes invariant/new
Com_inprops | PROP list — (Up__ptype (vnames properties;
PROP list — ' ’

vnamezi)) vVinpropssz

- updates the module type
vnamez of the property
vpropz to vnamesi;

ID *ID — Up_ptype (vnames, vnames:)

Up pt
b_ptype PROP — PROP | vprops

Table 4.4: Composition of invariant and new properties

We demonstrate an example of a property dl _upd _succ__gr wlimit of module DL in
Listing [22| that is a new one in the module DL. The property specifies that the total of
withdrawn money must be always greater than a limit (negative number). After composing,
the property is reproduced into the composite module DLLL (line 2 of Listing in which
module type DL attended in the property is replaced by the module type DLLL using the
function Up_type expr.

Another function Com __ rprops, used in Com__props (Table, for composing refining
properties is presented in Table [1.5] The function takes the refining properties vrpropss
of module vfmo and the set of properties vprops; of vfm; as its inputs. The function
Fi_prop is used to find for each pair of properties vrprops (in vrpropss) and vprop; (in
vrprops ), the property p refined by both of them. If this property p exists, then function
Up_rprop composes these two properties into a composite refining property by updating
vrprops. This function is an implementation of Equation in which the composite

property generated refines property named vpname; of module vfm;. If the function
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Listing 22 Example of composing new property case

fmodule LL from BA 1 | fmodule DLLL from LL
oo B8 2 contract update :: property
3 dl_upd_succ_gr_wlimit : all x:DLLL, all a:int
tat , ((a <= 0) /\ (get_with(x) + a >=
LIStlng 4'7 MOdUIe LL limit _with)) —> (get_ with(update(x,a)) =

get _with(x) + a);

P

fmodule DL from BA

contract update :: property H H

dl_upd_succ_gr_wlimit: all x : DL, all a : LIStlng 4'9 MOdUIe DLLL
int, ((a <= 0) /\ (get_with(x) + a >=
limit _with)) —> (get_with(update(x,a)) =
get _with (x) + a );

0o §8

Listing 4.8 Module DL

Fi_prop can not find such a property p, the composite property is established by function
Cr_rprop. This function is an implementation of Equation [I.10] which creates a composite

property refining itself with the premise vprems of property vprops.

The detail of the function Up rprop is represented in the second row of Table
The composite property, calculated by Equation [1.9] is a refining property which has
a premise vprems and refines the property vpnamey. To illustrate, we show an ex-
ample of the function Up rprop in Listing For the function update, the property
Il _upd succ_with _wlimit_R1 in module LL and dl upd succ_with llimit Rl in
module DL refine the same property ba_upd succ_with_over of module BA (line 3
of Listing and line 3 of Listing . They are composed into a composite property
dl_upd_succ_with _wlimit_R1 of module DLLL that refines property ll _up succ_with
_llimit _R1 in module LL (lines 2-6 of Listing [4.12)).

Listing 23 Example of composing two refining properties

fmodule LL from BA | 1 fmodule DLLL from LL
contract update :: property - - 27|~ ~<ontract update :: property
11 _upd succ_ with llimit R17 3 | gdl_upd_.succ_with_wlimit_R1
refines BA!ba upd_ succ_with_over 4 refines LL!ll _upd_ succ_with_llimit_ R1
extends premise 5’ extends premise
((a >= 0) || (a <= limit_low)); 6 <«(a <= 0)/\(get_with(x) + a >= limit_with);
cco Ry ,’ 7 I'. ao BB
. . . 1, . .
Listing 4.10 Module LL R4 ' Listing 4.12 Composite module DLLL
P 1
fmodule DL from BA PR !
contract update :: property - - 1
dl _upd_ succ_ with wlimit R17 '
refines BA!ba upd_ succ_with_ over ’
extends premise .
(a <= 0)/\(get_with(x) + a >= limit_with);”

Listing 4.11 Module DL
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Function Type Definition Note
- composes refining properties;
Where
VTpropz € Vrpropsz;
Comirprops (spec, vnames, vepropr € cpropsi;
vnamesz, vnamezi, vrpropsz, | Fi_prop - finds p which is refined
vepropsi) = by both vrprops and veprop;
SPEC * ID * | p = Fi_prop (vspec, vrpopa,
ID* D * vepropi); vecom__prop = Up_rprop
Com__rprops | PROP list * if p exists then (vnamer, vrpropz, vepropr) - the
PROP list — | Up_ptype (vnames, property denoted in Equation
PROP list UNames1) VCOM_props veom__prop* = Cr_rprop
else (vfname, vname, vrpropa,
Up_ptype (vnamesz, veprop: ) - the property denoted
vnamesi) veom__props™; in Equation
(vcom__pros and vcom__prop*
will be related to proofs in Table
[E12) of Section [£.4.5)
- updates refining property
according to Equation
Up_rprop (vnamei, vrpropz, | Where:
Up rprop IplizggliOP . vepropr) = (vfname, vfname - is method name;
- vrpnames, vnames, vrpnames - name of vrprops;
PROP vepnamer, vrprems) vepname; - name of veprops;
vrprems = Get _prem vrpropz;
( Get prem - gets the premise;
Cr_rprop (vnamer, vrprops,
Cr rprop é[l)%g]fliOP * vepropr) = (vfname, - creates refining property
- vepnamer, vnamer, according to Equation [.10]
PROP vepnamey, vrprems)
Table 4.5: Composition rules of refining properties

In the third row of Table we define the function Cr_rprop. Using Equation
the composite property is built as a refining property that keeps the name vpnames, refines

the property vpname; and adds a premise vprems.

An example of implementation of the function Cr_rprop is described in Listing [24]
Property Il _upd _nosucc_with_ls_llimit is the new one in module LL (lines 2-4 of List-
ing and is used to create the composite property Il _upd nosucc_with _ls llimit C1
for module DLLL (lines 2-5 of Listing . This property references itself to the prop-
erty of module LL (line 4 of Listing and is extended by a new premise (a <=
0)/\(get_with(z) + a >= limit_with) (line 4 of Listing coming from a property of
function update in module DL (line 5 of Listing .

4.4.2.3 Feature Interaction
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Listing 24 Example of composing new property

fmodule LL from BA

contract update :: property _ .-~ 7
11 _upd nosucc_with Is 1limit~ :
all x : LL, all a : int, (a < 0) && (a >

limit _low) —> get bal (update(x, a)) =

get bal(x);

Listing 4.13 Module LL

fmodule DL from BA

contract update :: property ...

refines ...

extends premise -4
(a <= 0)/\(get_ with(x) + a >= limit_ with);~

AAAAA

Listing 4.14 Module DL

1 | fmodule DLLL from LL

~2. contract update :: property

3 11 upd nosucc with Is llimit C1

4| refines LL!1l upd_nosucc_with_ls_llimit

5 | gextends premise (a <= 0)/\(get_with(x) + a >=

limit _with);

6/
1

AAAAA

! Listing 4.15 Module DLLL

1

1

Let us assume the feature model as in Figure In the

feature F, a function f is introduced with a property P (not

invariant one) which is refined both in the module F; and

the module F,. P_F 1 and P_F 2 in Listing and

F, F

Figure 4.3: Feature dia-

gram 1

are respectively properties in the modules F| and F5.

So then, in the composite module F5F}, the composite property is established as in Listing

When translating to FoCaLiZe, the statement of this composite property will have

both x < 0 and « > 0 as its premises. It is a case of feature interaction.

fmodule F1

contract f ::
refines F!P
extends premise x > 0;

property P_F_1

fmodule F2F1 from F1
contract f :: property P F 2
refines F1!P F1 o
extends premise x < 0;

W=

Listing 4.16 Module F

fmodule F2

contract f ::
refines F!P
extends premise x < 0;

property P F 2

Listing 4.17 Module F5

Listing 4.18 Composite module F5F}

In our approach, we assume that this case should be

forbidden by the feature model. It should be in Figure f.4]

F; F

in which it is possible to select one of the features F; and

F5 but not both. So with this diagram, the configuration

Figure 4.4: Feature dia-
gram 2

{F, Fy, F5} is not valid. We rely on the hypothesis that all

the configurations allowed by a feature model do not lead to interactions of that kind.
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Another problematic would be to detect such interaction and thus helps to design a good

feature model. But this is out of the scope of our thesis.

4.4.3 Representation Type

Function | Type Definition Note
- composes representation types;
Where:
Rpr rep ID * REP — | Rpr_rep (vnamer, reps) = vexts - is the extension part of
- REP Join _prod (vname, vexts) repa;
Join_prod - makes a Cartesian
product of vname; and vexts;

Table 4.6: Composition of representation types

The principle for composing two representation types is that the composite represen-
tation type refers to the module name vname; meaning that the composite representation
type is extended from that of module vfm; (presented in Table : the extension part
vexty of repy is copied. The extension can be empty, in this case it means that the module
keeps the representation type of its parent. Following the semantics of FEFML, this compo-
sition will be a Cartesian product of vname; and vexts that is implemented by function

Join_prod.

Listing 25 Example of composing representation types

fmodule LL from BA 1 | fmodule DLLL from LL

representation = BA; 2 representation extends LL with int;
3

Listing 4.19 Module LL Listing 4.21 Module DLLL

fmodule DL from BA
representation extends BA with int;

Listing 4.20 Module DL

As discussed before in the previous section, the change of a representation type affects
the code artifacts in the composite module. However, within the scope of our work, FFML
covers all the problems automatically. We show an example in Listing 25] in which the
representation type of composite module DLLL (Listing is composed from those of
module DL and LL. Instead of extending B A as in module DL, the composite representation

type is constructed from LL and the extension int.
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4.4.4 Function Definition

Function Type Definition Note

- composes function definitions.
Where

vnames1 = vnames " vname;
- combined name of vfms and
vfma;

vnfuncsa = Get_nfuncs vfme
- new definitions of v fmsa;

vr funcse = Get__rfuncs vfmo
- re-definitions of v fma;
vefuncsy = Get _cfuncs vspec
vfmi - all (re)definitions of vfm.

([D1] in Equation [4.6));

Com__funcs (vspec, vfma
vfmi) = Com_nfuncs
SPEC * FM | (vnamez, vnamesi,

Com_ funcs | * FM — vn funcsz)

FUNC list @ Com_rfuncs (vspec,
vnamer, vnames, vnamesl,
ur funcsz, vefuncsi)

Table 4.7: Composition of (re)definitions

The rules for composing function (re)definitions are explained in Table Similarly to
property composition, the composition proceeds in two steps. The function Com_ nfuncs
is used to reproduce new definitions vn funcss into the composite module while another

function Com_ r funcs is used to compose (re)definitions vr funcsy of vfmsg and vr funcs;

of vfmg.
Function Type Definition Note
*
ID ID‘* Com_nfunc (vnamesz, vnames, _ composes new
Com_nfuncs | FUNC list — vnfuncsz) = Map (Up_dtype definitions
FUNC list (vnamez vnames:)) nfuncss :
ID*ID > Up_dtype (vnamesz, vnamesi)
Up dtype FUNC — vji;w yp 2 21 - updates module type.
FUNC ?

Table 4.8: Composition of new definitions

The function Com__n funcs moves the new definitions vn funcsy of module v fms into
the composition module, presented in Table Module type vnames must be updated
to the module type vnames; of the composite one by a function Up dtype. We illustrate
this case with a function get_with in Listing [26] whose definition is in line 2 of Listing

It is copied in the composite module DLLL (Listing [4.24])).

We continue with the function Com_rfuncs (Table that allows the composition
of function re-definitions. The details of the function are described in Table The
composition aims at establishing a composite re-definition from vrfunce and refers to

vr func; whenever both vr funce and vr func; are re-definitions of the same function. In

141



N

W N =

4.4. COMPOSITION RULES

Listing 26 Example of composing new definitions

fmodule LL from BA
let limit_low = (—10);

[

fmodule DLLL from LL
2 let get_ with (x) = second(x);

Listing 4.22 Definitions of module LL

Listing 4.24 Definitions of module LL

fmodule DL from BA
let get_with (x) = second(x);

Listing 4.23 Definitions of module BA

that case they share the same name and the same type (since we have no overload in FFML).

Function Up_r func updates vr funce in the second row of the table. By mentioning the

module named vname;, FFML Compiler can trace back vr funcy in vfmi, whatever there

is a re-definition of the function in vfmy or not. In another case, when both the vr funco

and vr funcy are re-definitions of different functions, vr funcs is kept but updated to the

module type vnames; (by function Up_dtype).

Function Type Definition Note
Com__r funcs (vspec, vnamen,
vnames, vnamesi, vrfuncss,
SPEC * ID | vefuncsi) =
*x ID * D * if vr funca, vefunc, redefines the - composes re-definitions;
Com_ rfunes FUNC lZ:St * same function then Where:
- FUNC list Up_dtype (vnamez, vnames1) vrfunce € vrfuncss;
— FUNC (Up_rfunc (vnamen, vrfunCQ)); vefuney € vefuncsi;
list else
Up_dtype (vnamesz, vnamea:)
or funce;
- updates re-definition.
Where:
vfname - is function
Up rfunc ID * FUNC Up_rfunc (vnamer, vr funcg) = name of vr funcs;

- — FUNC (vfname, vpars, vnamei, vexprs) vparss - are function
parameters of vr funcse;
vexpra - the expression of
ur funcy;

Table 4.9: Composition of redefinitions

Let us describe an example of composing the re-definitions of function update in Listing

The function is redefined in module LL (Listing [4.25)) and in module DL (lines 2-7 of

Listing [4.26)). The redefinition in DL is moved into the composite module DLLL but refers
to the implementation of module LL instead of module BA (lines 2-7 of Listing |4.27)).
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Listing 27 Example of composing re-definitions

fmodule LL from BA 1 | fmodule DLLL from LL
let update (x, a) = 2 let update (x, a) =
if ((a >= 0) || (a <= limit_low)) then BA! 3 if (a <= 0) then
update (x, a) 4 if (get with(x) + a >= limit_ with) then
else x; 5 (!update (x,a), get with(x) + a)
8 6 else x
7
8

else (LL) update(x,a), get with(x));

Listing 4.25 Module LL

Listing 4.27 Module DLLL

fmodule DL from BA
let update (x, a) =
if (a <= 0) then

if (get with(x) + a >= limit_with) then
(@!update (x,a), get_ with(x) + a)
else x

else (@!update(x,a), get _with(x));
S8l

Listing 4.26 Module DL

4.4.5 Correctness Proof

A correctness proof is written to prove that an implementation satisfies a certain prop-
erty. Hence, before composing the correctness proofs we have to consider the properties
related to these proofs. We start by considering the way these properties are composed,

hence map to the composition cases of the proofs.

The main function Com_proofs for composing the correctness proofs of vfmsy and
vfmy is presented in Table As described in Section [£.4:2] about the composition
rules for properties, we distinguish the proofs viproofs and vnproofs written respectively
for invariant properties (viprops) and new properties (vnprops), and the proofs vrproofss
written for refining properties (vrprops) (see Table . The function Com__inproofs is
used for copying the proofs viproofss and vnproofs. The proofs vrproofss is used for
composing vrproo fo with veproofi, in which veproofs is the set of all proofs of v fmy that
is denoted [P f1] (see Equation [4.7).

The detail of function Com_inproofs is presented in Table[L.11] this function is applied
for the proofs vinproofs (a union of viproofss and vnproofss). As usually the types
are updated in these proofs (by the function Up pftype) and copied into the composite

module.

Com__rproofs for composing the proofs vrproofs is more complex than Com __inproofs
because of its relationship with the composite properties established from Table Sim-

ilarly, we distinguish two cases, belonging to the property named vpname is found or not.
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Function Type Definition Note
- composes the proofs of v fms and
vfma;
Where
vnames; = vnames " vname;
- combined name of v fms and
Com__proofs (vspec, v fms vfma;
vfmi) = veproofsi = Get _cproofs vspec
Com__inproofs (vnamea, vfmi - all the proofs of vfm
SPEC * FM Unam_empvipfoog”w Q : ([{Pfll]] in EquatiIz)n. fma
Com_proofs | * FM — ? L : ;
- . unproofss) viproofss = Get_iproofs vfmeo
PROOF list . - .
@ Com__rproofs (spec, - proofs of invariant properties of
vnamer, vnames, vnamesi, vfma;
vrproofsa, veproofsi) vnpropss = Get _nprops vfms
- proofs of new properties of
vfmea;
vrpropse = Get _rprops vfms
- proofs of refining properties of
vfmo;
Table 4.10: Composition of correctness proofs
Function Type Definition Note
ID*[ID* Com_mpropf (vnames, - composes proofs of
] PROOF li vnamesy, vinproofsz) = Map invariant and new
Com__inproofs ?St — (Up_pftype (vnames, .
PROOF list — . properties;
vnamesi)) vinproof sy
ID *ID — Up_pftype (vname - updates the module type
Up_pftype PROOF — p_PJtyp > vnames of the proof
— vnamez1) vproofa
PROOF vproofa to vnamesi;

Table 4.11: Composition of correctness proofs of invariant and new properties

vpname is the name of the property that is refined by two properties which are proved
respectively by vrproofs and veproofi. The function Fi  pname determines the existence

of vpname, it is similar to the function F'i _prop in Table

We show the details of the function Com_rproofs in Table In the case when
pname exits, the proof vcom proof, corresponding to the property vcom prop (in Equa-
tion and defined in Table , is calculated by the function Up_ rproof. The types
in vcom__proof are updated using the function Up ptype, the proofs are then copied into
the composite module.

Another case when vpname does not exist, the two proofs vrproofs and wveproofi

prove two different properties. The proof vcom proof, corresponding to vcom prop* in

Equation and defined in Table is created by the function Cr_rproof.

To update the proof vrproo fa, we should give more information for function Up _rproof

144



4.4. COMPOSITION RULES

Function Type Definition Note

- composes the proofs of
refining properties;

Where:

veproofi € veproofsi;
vrproofa € vrproofss;
vepname; - name of property
veprop;

veprems - premise of property
veprop;

Fi_pname - finds the same
property refined by two
properties which are proved
respectively by vrproofs and

Com__rproofs (spec, vname,
vnames, vnamesi, vrproofssa,
veproofsi) =

fPE(:; * [2 vpname = Fi_pname (vspec, veproo fi;
ID *ID vrpoofa, veproofi);
PROOF list | if ypname exists then veom_proof = Up_rproof
Com_rproofs| « PROOF (vnamer, vpname, vepname;
Up_pftype (vnamesz, vnames:) ’ ) )
list — veom._ proof; veprems, vepropi, vrproofs) -
PROOF list o ’ the proof written for the

else vpname does not exist
Up_ fptype (vnamesz, vnames:)
vecom__proof™;

composite property denoted as
vcom__prop in Equation

and defined in Table
veom_proof* = Cr_rproof
(vnamei, vepname, vepropa,
veprems) - the proofs written
for the composite properties
denoted as vcom__prop™ in
Equation and defined in

Table @

veprems - premise of property
vecom  prop™;

Table 4.12: Composition rules of the correctness proofs of refining properties

such as, the premise veprem; of the property veprop, of proof veproofi, represented in
Table [L.13] Our generator will update the proof with a veprem; because of the update
in composite property vcom _prop, using function Up _prem. The property hints for the
composite proof must be updated, i.e. property name vpname (the same refined property)
is replaced by vepnamey, the property from v fmy (by the function Up phint). In addition,
when the composite property refers to veprop; as its refined property, the functions are
present in this refined property to be indicated in vcom_proof as the definition hints. The
supplementary functions such as, first, second, make are also mentioned as definition
hints if they are present in vrproofs. These definition hints are added by the function
Ad__dhint. All updated information is necessary to give enough hints for Zenon Prover to

automatically prove. But Zenon may fail because he lacks proof hints. So the process may
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Function Type Definition Note
- updates proof. The involved
functions:
Up_prem - updates veprem;
into vrproofa;
;g : ID* Up_phint - replaces property
" Up_rproof (vnamei, vpname, hint vpname by vepname; into
Up_rpoof PREM* vepnamer, veprems, veprop, vTProo fa;
PROP vrproofa) Ad_dhint - adds definition
PROOF — hints: the redefined function
PROOF names (attended in veprop:)
or/and the supplementary
functions (first, second,
make) into vrproofa;

Table 4.13: Updating correctness proof

require some manual help to have the proofs done by Zenon.

Example. The composition of two proofs of two refining properties is illustrated
in Listing Following the property composition rules, property di upd succ_with _
wlimit _R1 in module DL is composed with property [l upd succ_with llimit Rl in
module LL into a refining one in module DLLL (lines 6-10 of Listing. It refines prop-
erty Il _upd_succ_with_llimit R1. With the establishment of this composite property,
we generate the composite proof for it in lines 17-28 of Listing The premise of the
property in module LL (line 6 of Listing is updated into the composite proof in line
22 of Listing The name of function limit low is added in line 27 of the Listing [4.30
to let Zenon know that it is redefined in the composite module. The module parameter
LL (lines 23 and 27 of Listing replaces BA in the proof of module DL (lines 14 and
16 of Listing . Finally, property Il upd succ with llimit R1 in line 27 of List-
ing [4.30] is a property proof hint updated for the composite poof by replacing property
ba_upd_succ_with_over in line 16 of Listing [£.29

Function Type Definition Note
- creates proof. The involved
functions:
Cr_phint - creates property
ID*ID * hint vepnames;
c PROP * Cr_rproof (vnamei, vepnamer, | Cr_dhint - creates definition
r_rpoof . .
- PREM — vepropy, veprems) hints: the redefined function
PROOF names (attended in veprems
and veprop:) or/and the
supplementary functions
(first, second, make);

Table 4.14: Creating correctness proof
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Listing 28 Example of composing proofs (1)

fmodule LL from BA 1
contract update property 2
11 _upd_ succ_with_ llimit_ R1 3
refines BAlba upd succ_ with over 4 | fmodule DLLL from LL
with all x : BA, all a int , 5
extends premise 6 contract update property
((a >= 0) || (a <= limit_low))3~. 7 | dl_upd_succ_with_wlimit_R1
\\\ 8/, refines LL!Il upd succ w1th_11imit_R1
proof of 1l_upd_succ_with_1limit_R1 = NG ) extends premise
088 S /’i(i ,((a <= 0)/\(get_with(x) + a >= limit_with);
. . /\’
Listing 4.28 Module LL RN
i \\1’4
fmodule DL from BA Pae %
contract update property _,” 16\\ . .
dl upd succ with wlimit R1=~~ 0174 -\V\proof of dl_upd_succ_with_ wlimit_R1 =
refines BATba_ upd_succ_with over 4718 foc proof {x X
extends premise - L7, |19 <1>1 assume x Self , assume a int ,
(a <= 0)/\(get with(x) + a >= limit_ with?);’ 20 vh}'\pothesls h1 (a <= 0) /\
- = _° 21 { (gét with(x) + a >= limit with),
proof of dl upd succ with wlimit R1°Z _ -2 prove ((a >=0) || (a <= limit_low)) —>
foc proof {* - - - - _-" 23 I(get bal(x) + a) >= over —>
<1>1 assume x: DL, a int , -7 24,’ (get _bal(update(x,a))) = get_bal(x) + a
hypothesis hl: (a <= 0) /\ 7 ’,25 <2>1 prove getlst(update(x,a)) = (LL)! update (
(get_with(x) + a >= limit with)’ L getlst (x),a)
prove (get bal(x) | a) >= over —> -—— 26 by definition of getlst ,update hypothesis
(get _bal (update(x,a))) = get bal —+ hl .
<2>1 prove getlst (update (x, a)) = 'update( 27 <2>e qed by step <2>1 definition of over,
getlst (x),a) get _bal definition of (limit low
by definition of getlst ,update hypothesis property . —
hi 28 ( LL!1l1 upd succ with llimit Rl)
<2>e qed by step <2>1 definition of over, 29 | <l>e conclude;x}
get bal property 30 | . 5
(BA!ba upd succ_ with over)
<1>e conclude;x* . .
o . Listing 4.30 Module DLLL

Listing 4.29 Module DL

The detail of function Cr_rproof to create the proof vcom proof*, is described in

Table The information such as, the premise vepremso which is added to the property

vcom__prop* must be given as parameter for the function Cr_rproof. FFML Generator

will create vcom proof* by mentioning veprems and adding some hints into it.

The

property veprop; must be indicated as a property hint of the composite proof because

of vcom __prop* refers to this property (done by the function Cr _phint).

In addition,

the function present in veprems or veprop; must be added as definition hints, using the

function Cr_dhint.

veprems Or Vepropy.

The supplementary functions are also inserted if they are used in

Example. In the Listing 29 the automated property ll_upd_nosucc_ls_llimit_C1

is a vprop} in DLLL (line 2-6 of Listing|4.33)). The property refines property [l _upd nosucc
_ls_llimit of module LL (lines 2-4 of Listing 4.31]) and is extended by adding a premise
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Listing 29 Example of Composing Correctness roofs (2)

fmodule LL from BA 1 | fmodule DLLL from LL
contract update :: property 2 contract update :: property
11 _upd_ nosucc_with ls_ Ilimit : 3 11 _upd_ nosucc_with Is_ llimit_ C1
all x : LL, all a : int, (a < 0) && (a > 4 refines LL!ll_ upd_nosucc_with_ls_llimit
limit _low) —> get_bal (update(x, a)) = 5 extends premise
get _bal(x); 6 (a <= 0)/\(get_with(x) + a >= limit_with);
7
proof of 11_upd_nosucc_with_Is_Illimit = ...; 8
008§ 9 proof of 11_upd_nosucc_with_1Is_1llimit_C1 =
10 foc proof {=x
3 3 11 <1>1 assume x : Self, assume a : int,
LIStlng 4.31 MOdule LL 12 hypothesis hl : (a <= 0) /\ (get_with(x) + a
>= limit_with),
fmodule DL from BA 13 prove (; t< (0) &)&) (a >tlingit1(1())w) —> get_bal(
contract update :: property ... update(x,a — get_ball{x
T e 14 <2>1 fp.rovte( f)lrs)t(update(x,a)) = LL!update(
— 0 t ith — limit ith): irs X),a
(é_i,< ) /\(get_with(x) + a > rmit_wi )i 15 by definition of update, first hypothesis hl
16 <2>e qged by step <2>1 definition of (over),
o« g (get _bal), (limit_low), (update)
LlStlng 4.32 MOdule DL 17 property
18 | LL!1l upd nosucc_with ls 1limit)
19 <l1>e conclude;x*}
20 cachB

Listing 4.33 Module DLLL

in module DL (line 4 of Listing 4.32)). Referring to Il upd nosucc_ls_llimit of module
LL as property hint is generated automatically by the function Cr _phint in Table
The function names over, get bal, update, limit low, are labeled as the definition hints

by the function Cr_dhint.

4.4.6 Properties of the Binary Composition “e”

There are two basic properties of our binary composition operation, namely associativ-

ity and identity, defined as Conjecture [I] and Property [I]

Conjecture 1 (Associativity) Given three modules FMs, F My and FM;, two binary
compositions, (FMs e FMs) e FM; and FMs e (F My e F M) are equivalent, denoted by
(FMs o FMy) @ FM, = FMs o (FMy o F M) where = denotes semantic equivalence.

Property 1 (Identity) If F'M; refers F My through the “from” relation (i.e, FM; =
(N, , , , , Yand FMy= (N, , , , , , ))then FM; o FMy = FM;, where

N is the module name of F' M.

Proof. The proof of Property [I]is trivial by the definitions of the composition rules.

Example. On the Bank Account SPL, applying the property of identity we can deduce
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the following equalities:

DLeBA=DL

CEeCU=CE
4.5 Generating Final Products

As explained in the first section of this chapter, establishing the product variant from
a feature model and a configuration requires the composition of all related modules of
the module diagram associated to the configuration. The composition of two modules is
computed by the binary composition operation, which is defined in Section [I.2] and defined
formally by the related composition rules in Section [f.4] However, to compose all the
related modules, we need now construction rules based on the feature diagram (such as
the the order of the modules and the structure design of the feature diagram). We call
this process the module diagram-based composition. In this section, we discuss how the
final products are generated based on the binary operation and the module diagram-based

composition process.

Module diagram-based composi-

tion. The module diagram-based compo- —] Moduie
sition (MDC for short) is a recursive pro- D Composie
cess that uses the binary composition pre- —> '"Erom' relation

viously defined to compose modules and
composite modules. So roughly speaking
we compose two by two the modules, we

impose an order for composing the mod-

ules of a module diagram to establish a /\ s _Z\_
. | W el (el i

final product is necessary. This order cor- &

responds to a particular traversal of the M

Module diagram
module diagram (which is a tree obtained

. Lo Product variant
by pruning some branches of the initial

Figure 4.5: Example of a Product Genera-

feature model, which is also a tree): a left- tion

right-root traversal (this term is a little bit
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abusive because the tree is not binary but n-ary). This traversal produces a chain of pair-
wise composition, as illustrated on Figure [I.5] In this figure the arrow in the chain denotes
the from relation and the prime nodes correspond to composite modules. For example, E’,
the expected final product results from the binary composition of the module E (taken
in the asset database) and the composite module M’, which is the result of the binary
composition of the M and F’ and so on, until reaching so top of the chain. So, the
computation for E' is Ee (M e (Fe(Be(Ge(De(He(le(DeA)))))))). According
to the identity property [I D e A is D and that I @ D is I, the computation becomes
Ee(Me(Fe(Be(Ge(De(Hel)))))).

4.6 Application on the Bank Account SPL

The FFML Product Generator tool is written in OCaml with about a thousand lines of
code. The tool allows a user to select a configuration as input and returns the corresponding

final product (as an FFML bunch of files, called an FEFML product).

Modules FFML FoCalLiZe
iP | nP | rP | Pf | P | Ze-Pf reuse
BA 1 3 0 4 | 4 4 0
DL 0 2 2 5 |5 6 1
LL 0 1 2 3 |4 5 2
CU 0 1 0 4 | 4 5 1
EX 0 2 0 2 16 7 5
iP - invariant properties P - properties
nP - new properties Ze-Pf - proofs are done
rP - refining properties reuse - proofs are reused
Pf - proofs

Table 4.15: Modules of Bank Account SPL

The Bank Account SPL has been analyzed with five features and developed into the
five corresponding modules (BA, DL, LL, CU and EX) by about 400 LOC in FFML. We
summarize this product line in Table The left side of the table contains qualitative
information about the product line in FFML and the right side concerns the corresponding
compiled FoCaliZe code. In all the FFML files, we count one invariant property, nine

new properties, four refining properties and eighteen written proofs in all FFML modules.
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Configurations FFML FoCalLiZe
uP | uPf | cP | cPf | P | Ze-Pf | reuse | auto | manu

{BA,DL,LL} 2 2 3 4 6 7 1 7 0
{BA,DL,CU} 2 2 2 3 6 7 2 6 1
{BA,LL,CU} 1 1 2 2 5 6 3 6 0
{BA,DL,LL,CU} 2 2 3 4 7 8 2 7 1
{BA,LL,CU,EX} 1 1 2 2 7 8 5 7 1
{BA,DL,CU,EX} 1 1 2 2 8 9 1 7 2
{BA,DL,LL,CU,EX} | 2 2 3 4 9 10 1 8 2

{BA},{BADL},{BA LL},{BA,CU} and {BA,CU,EX]} are in Table [4.13]

uP - properties are updated P - properties

uPf - proofs (resp. uP) are updated Ze-Pf - proofs are done

cP - properties are composed reuse - proofs are reused
cPf - proofs (resp. cP) are composed auto - automatic proofs

manu - manual proofs

Table 4.16: Bank Account SPL

Compared to the modules in the right side, the numbers of properties P and proofs Ze-
Pf generated in FoCaliZe are more than in FFML. The properties are reused and their
proofs reuse are built automatically by the FFML Compiler. There are more proofs than
properties because some properties are “inherited” need to be proven again because of some

re-definitions.

Using our generator tool, the twelve products of Bank Account SPL have been generated
automatically. Some configurations (listed in the last row of the table) are omitted because
their code, both in FFML and FoCal.iZe, are just existing modules. For example, according
to our composition rules and Property [} the module corresponding to the configuration
{BA,CU,EX} is the module EX. In we count the different properties, functions
and proofs generated by the composition process. These products contains uP (properties
obtained just by copy and type substitution) and cP (properties obtained by composition of
other properties). The number of proofs ¢cPf which are composed automatically, are more
than the composed properties because of the compositions of the reused properties and the
corresponding proofs in the modules. The information of the FFML products which are
translated into FoCalLiZe, is in the right side. Most of the proofs after composing are done
successfully. The proofs reuse are reused using the mechanisms of the FFML language.

The proofs auto are done automatically by Zenon. The proofs manu lack some proof
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hints. In fact, Zenon fails to find a proof because of internal error - this bug has been
reported. However, giving a more detailed proof (with sublemmas) we can bypass this
Zenon’s bug (see the proofs cu_upd cur succ in line 37 of Listing of Appendix).
For the moment, the proofs that have been done manually in that case are difficult to

generalize and then to generate automatically.

4.7 Summary

In this chapter, we discussed the FEFML Product Generation. This generation is based
on the composition rules for composing two modules in Section and the MDC process
for all involved modules of products in Section [1.5] These processes are built independently
and could be extended or modified for future purposes. The generation is implemented in
the FFML Product Generator tool. We have applied it on the Bank Account example and

shown our results in Section [L.6]

The results, obtained in Table and Table indicates that our methodology is
applied successfully for developing Bank Account SPL. In order to check the methodology
is effective and realistic, in the next chapter we run a new example, a Poker SPL that is

more complex than Bank Account SPL.
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Chapter 5

Evaluation

In this chapter we deal with a bigger and more complex example, Poker product line,
that is developed using our methodology. We begin by explaining the case study in Section
(.1 The analysis of the modules of Poker SPL is described in Section [5.2] Based on the
results obtained from both Bank Account (the running example in the thesis) and Poker

product lines, we evaluate our methodology in Section [5.3

5.1 Case Study: Poker Software Product Line

To evaluate our methodology, we develop an example which is more complex than
Bank Account product line with more features and final products. We choose Poker SPL,
as described on the website http://spl2go.cs.ovgu.de/. However, the instead of
the specifications, their function definitions are simple and almost empty. The products
are built using FEATUREHOUSE |Apel et al.| 2009] and there is no proofs. Because
of the absence of necessary information, in this section we decide to build our own Poker
SPL by collecting the variants of poker game, summarizing their related rules and then

designing a feature model.

To model the Poker SPL, we first define the simple rules: this first game corresponds
to the feature BasicPoker, the root of our feature model. Then we define different variants
formalized as different optional features, forming the feature model depicted by in Figure

b1} In the rest of this section, we describe informally the different features.

Poker is a popular card game but having many different gaming rules related to the
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number of cards and some special rules. However, in oder to analyze Poker SPL into
features, we start with a feature, called BasicPoker, containing the simplest rules. From
this feature, we continue to design other features and put them into a feature model that is
illustrated in Figure Poker SPL is analyzed into twelve features. We study here only
seven features. The five remaining will be described in Appendix[A73] BasicPoker contains

all the mandatory rules. All others are optional.

Example: Poker Product Line

We developed a Poker product line which with more features and final products than
Bank Account. We find this product line on the website http://spl2go.cs.ovgu.
de/. However, their specifications and function definitions are simple and almost empty.
We collected the variants of poker game, summarized their related rules and then designed

a feature model as figure 5.1

: BasicPoker
BasicM.Pc.::ker . Basic36Poker . BasicWPoker
MFormPokcer " | FixedLimit | | PotLimit |
DrawMPoker . StudMPoker
TexasHoId'emMPoker. PreFiiedLimit | Roodles

Figure 5.1: Feature Model of Poker SPL

We describes the basic rules that are applicable to all types of poker game into the root
feature named BasicPoker (BP). The basic poker game is played with a standard 52-card
pack of playing cards. The cards held by players are combined into ranks. The winner is a
person who has the highest rank in hand. The root feature as three optional child features

BasicMPoker (BMP), Basic36Poker (B36P) and BasicWPoker (BWP).
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In the feature BMP, the players can use money (chips) for gambling. The addition rule
is that each player put this chips into a pot when he bets. A player can “call” (put into
the pot the same number of chips of previous player), “raise” (put in the pot more chips to
call), or “drop” (“fold”) which means the player put nos chips in the pot and is out of the
game. The feature B36P allows players to play with 36 playing cards instead of 52. An
addition rule of wild cards (a wild card can be seen as any card) is added into the feature

BWP.

The features MFormPoker (MFP), FixedLimit (FL) and PotLimit (PL) are optional
child features of BasicMPoker. MFP is added a rule dealing with “community cards”
(faced up and all players can used them to combine with their held cards). A rule of each
“raise” limitation and another rule relating to chips in pot are designed in FL and PL.
DrawMPoker (DMP) and StudMPoker (SMP) are child features of MFP in which DMP
contains the rules used popularly that allows an “ante” for the first bet. DMP has two
child features TexasHold’emMPoker (THP) and PreFixedLimit (PFL). The features SMP,

THP and PreFixedLimit contain other addition rules.

5.2 Analyzing and Developing Poker Software Product Line

Based on the poker rules collected and the feature model designed in the previous
section, we analyze and develop the features of Poker SPL into FFML modules in this
section. As previously, a module is named according to the feature it corresponds to. We
describe their main artifacts and their relationships in a module diagram (Figure .
In each node of the diagram, we list the new functions, the representation type and the
redefined functions. The type files are also shown in the figure and they are imported into
the modules relating to them. While composing to build a product, the related type files
are merged into a type file unified for the product. The full code of all modules and some

products of Poker SPL can be found in Appendix [A-3]
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Module BasicPoker

The module definition is given in Listing of Appendix

The representation type Ry of the module BasicPoker is denoted by BP = player
list * pack, meaning that the game includes a list of players and a pack (a list of 52
playing cards). A player, defined as player = id * chips * card list, has an identity
id, chips and a list of hole cards (see the related type file in Figure . However, in
BasicPoker the chips of each player is empty. Total of the cards held by players and
put on the table, totalCardNum, is always 52.

The function getPack gets the pack of a basic poker game.

— The invariant property bp getPack succ specifies that the cards set up for the

pack of a poker game can be taken out by the function getPack (see line 15).
The function setPack sets up a pack of 52 random cards.

— The invariant property bp setPack totalCard Num specifies that after setting a
pack (by calling the function setPack), the number of cards in the pack is equal
to totalCardNum, or the pack is not updated (see line 17).

The function combination takes a list of cards (defined here xwith 5 cards) held by
a player as input, counts and returns the rank of the player. The rank is in range
from 1 to 9, corresponding to the ranks of poker ranking hands which are listed in

the first column of Table [A.1]

The function compare is called when two hands have the same highest rank, corre-

sponding to the third column of Table

In the BasicPoker, the function flop deals cards (sequentially from the pack) to each
player at the table with a flop type F'Basic (a basic dealing of cards in the module
BasicPoker that card Num cards are dealt for each player; defined in the related type
file in Figure . After running flop, each player has cardNum hole cards .
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— The property bp flop minusCards states that after dealing a number of cards
from a pack for all players, the cards in the pack are subtracted by all the dealt

cards (see line 19).

e The function showdown finds out the winner of the game based on the ranks of the

players, determined by the functions combination and compare.

— An invariant property bp showdown notWinner states that if a player drops

out the game, he can not be the winner (see line 21).
e The function endPoker resets the game.

Module BasicMPoker

The module definition is given in Listing of Appendix

e The module BasicMPoker is built from BasicPoker. Its representation type BM P =
BP * pot, includes Ry (the representation of BasicPoker) and an extended part pot

containing all the bet chips of the game.

e The function getPack declared in the module BasicPoker is redefined. There is an

invariant property added into the module.

— The invariant property bmp getPack succ specifies that the cards set up for
the pack of a basic poker game with chips can be taken out by the function

getPack (see line 9).
e The function bet allows a player (with an identity id) to bet with an amount of chips.

— The property bmp_bet upd_pot describes that after a player makes a bet, the

chips added into the pot are removed from the player (see line 11).

e The function fold allows a player to drop out of the game. This player will loose the

game and not be taken into the showdown process.
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e The function bettingRound allows players to bet with their chips sequentially. All of
the bet chips are put into the pot. A basic bet type, defined by betType = BBasic
(see the related type file in Figure, determines a basic betting round which allows
players to call or raise. The bettingRound finishes when all players at the table make

“call”.

— The property bmp_ bettinground _upd_pot defines that after a betting round,
the bet chips taken out from all the players must be put into the pot (see line
13).

e The function giveToWinner is called after finding the winner by the function show-
down (reused from BasicPoker). All the chips in the pot will be given to the winner

of the game.

Module Basic36Poker

e The module Basic36Poker is built from BasicPoker. Its representation type is reused
and denoted as B36P = BP. The properties of BasicPoker are reused and some
of them are reproved because of some function re-definitions (see Listing of

Appendix |A.3]).
e The total number of the cards in a pack totalCard Num is updated to 36 cards.

e The function setPack is reused to set a pack of 36 cards.

Module BasicWPoker

The module definition is given in Listing [A.20] of Appendix [A3]

e The module BasicWPoker is built from BasicPoker. Its representation type is ex-
tended from BP (the representation type of BasicPoker) to BWP = BP * wcards,

in which wcards is an extended part, a list of three wild cards.

e The function make WCards deals one card, facing up on the table, and adds the other

three cards having the same rank into wcards.
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— The property bwp make wcards describes that after dealing a wild card, the
three remaining cards with the same value are put into the wild list wcards (see

line 7).

e The function wCombination gets 5 hole cards of a player and wcards as input and re-
turns if the player has “Five of A Kind” score (an updated hand rank of BasicWPoker
mentioned in Section [5.1)).

e The function showdown is redefined. If no player was found with “Five of A Kind”
by the function wCombination, the function showdown of BasicPoker will be called.

If not, the player found by wCombination is the winner.

Module MFormPoker

The module definition is given in Listing of Appendix

e The module MFormPoker is built from BasicMPoker. Its representation type contains
community cards comCards (faced up and put up on the table). It is denoted by
MFEFP = BMP * comCards in which R; is reused from BasicMPoker.

e The function getPack introduced in BasicPoker is redefined in the module MForm-

Poker. There is a property added into it.

— The property mfp_getPack succ specifies that the cards set up for the pack of
a MFormPoker poker game can be taken out by the function getPack (see line

5).

e The function flop is redefined by adding a case of flop type flopType = FCom, in

which the cards dealt from the pack are saved into comCards (defined in the related

type file in Figure )

— The property mfp_flop_ addComCards states that after dealing some common
cards from a pack, the dealt cards are put into the common card list (see line

7).
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— The refining property mfp flop minusCards_R1 refines the property bp flop
_minusCards of the module BasicMPoker. It specifies that if the flop type is

not F'Com, the dealing is proceeded as in the module BasicMPoker (see line 9).

e The function showdown is redefined to find the winner from the combinations of the

hole players cards and the community cards.

Module DrawMPoker

e The module DrawMPoker is built from MFormPoker. The representation type is
represented as DM P = M FP * ante, in which ante is an amount of chips. The ante
and the rule for betting with ante are to be set before the game starts if all players

agree.
e The community card list comCards is empty.

e The function discardCards allows a player to discard some hole cards in his hand and

take new cards from a pack.

e The function bettingRound is redefined by adding a case of bet type betType = BAnte
in which the amount of each bet is defined by ante (defined in the related type file

in Figure .

— The refining property dmp bettinground_upd_pot R1 specifies that if the bet
type of the function bettingRound is not BAnte, the constraint of the property
bmp_ bettinground_upd_pot of module BasicMPoker is still guaranteed in the
module DrawMPoker (see lines 8 - 11 of Listing of Appendix .

Module TexasHold’emMPoker

e The module TexasHold’emMPoker is built from the module DrawMPoker and has

the same representation type.

e The community card list comCards is not empty and its cards are faced up on the

table in each dealing time.
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e The function betting Round is redefined by adding a case where the bet type betType
= BFinal. BFinal is defined for the final betting round in which the players can

decide to increase their bets with raiseNum (defined in the related type file in Figure

52).

Besides the seven modules that have been mentioned above, the analysis of other fea-
tures, such as FixedLimit, PotLimit, StudMPoker, PreFixedLimit, Roodles can be found
in the first half of Appendix[A-3] At the moment, we have developed seven FFML modules
corresponding to the seven analyzed features in this section. The details of these modules
and the products established from them are listed in the remaining half of Appendix [A-3]
All of them are obtained by using our tools, the FFML Compiler and the FFML Product

Generation.

fmodule BP

signature totalCardNum : int;

signature getPack : BP —> card list;

signature makePoker : player list —> card list —> BP;

contract getPack :: invariant property bp getPack succ : all players : player list , all pack :
card list , getPack(makePoker(players, pack)) = pack;

representation = player list % card list;

let totalCardNum = 52;

let makePoker (players, cards) = (players, cards);

let getPack (x) = snd(x);

proof of bp_ getPack succ = foc proof {x by definition of getPack, makePoker;x}

Listing 5.1: BasicPoker (BP) in FFML

A poker product is configured by selecting these features in the model[5.1] For example,
a user who wants a poker game which has some functionalities as playing with 36 cards
of a pack and gambling with chips will select the BP, B36P and BMP features to make a
valid configuration { BP, B36 P, BM P}. The development of the configuration is generated
from the associated FEFML modules (same names with features). We show these modules
partially in Listings and (We just give small parts of their code). A function
makePoker describe a game with a list of player, a list of playing cards. Total of all cards
are 52 describes by totalCardNum. A function getPack is used for getting cards in a current
pack. The property bp getPack succ in BP, related to getPack, specifies a user can get
the cards in the pack. This property is inherited and reproved in both BMP and B36P.
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fmodule BMP from BP
signature makeMPoker : BP —> int —> BMP;

representation extends BP with int; (% BP and pot x*)
let makeMPoker (poker, pot) = (poker, pot);

proof of bp getPack succ =
foc proof {x
<1>1 assume players : player list , desk : card list ,
prove getPack (makePoker(players, desk)) = desk
<2>1 prove getPack(makePoker(players, desk)) = BP!getPack (BP!makePoker(players, desk))
by definition of getPack, makePoker, getlst
<2>e qed by step <2>1 property BP!bp_getPack_succ
<l>e conclude; =x}

iR

Listing 5.2: BasicMPoker (BMP) in FFML

fmodule B36P from BP
representation = BP;
let totalCardNum = 36;
proof of bp_getPack succ =
foc proof {x
<1>1 assume players : player list , assume desk : card list ,
prove (getPack(makePoker(players, desk)) = desk)
<2>1 prove (getPack(makePoker(players, desk)) = BP!getPack (BP!makePoker(players, desk)))
by definition of getPack, makePoker
<2>e qed by step <2>1 property BP!bp getPack succ
<l>e conclude; =x}

53

Listing 5.3: Basic36Poker (B36P) in FFML

The three FFML modules are composed into a module, called B36PBMP, by FFML
Product Generator. The generated product that is shown in Listing [5.4] inherits BMP.
However, the total of playing cards is kept (36 cards) and the proof of the property

bp getPack succ is updated from B36P. The object name BP in the proof is changed
to BMP.

fmodule B36PBMP from BMP
representation = BMP;
let totalCardNum = 36;
proof of bp getPack succ =
foc proof {x
<1>1 assume players : player list , assume desk : card list ,
prove (getPack(makePoker(players b desk)) = desk)
<2>1 prove (getPack(makePoker(players ,hdesk)) = BMP!getPack (BMP! makePoker(players ,desk)))
by definition of getPack, makePoker
<2>e qed by step <2>1 property BMP!bp_ getPack_succ
<1>e conclude;x*}

iR}

Listing 5.4: B36PBMP in FFML

5.3 Evaluation

In this section, we focus on analyzing the results obtained from developing Poker SPL.

The validity and the limitation of our methodology are also discussed.
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Poker SPL

The Poker SPL has been analyzed with twelve features, seven of which have been
developed into the seven corresponding modules: BasicPoker (BP), BasicMPoker (BMP),
Basic36Poker (B36P), BasicWPoker (BWP), MFormPoker (MFP), DrawMPoker (DMP),
TexasHold’emMPoker (THP) by about 800 LOC in FFML. These seven modules have
been translated into FoCalLiZe by FFML Compiler. We summarize the statistics of these
modules in Table 5.1l The left side of the table contains qualitative information about the
product line in FFML and the right side concerns the corresponding compiled FoCalLiZe
code. Similar to the Bank Account SPL, there are more proofs than properties because some
properties, which are “inherited”, need to be proven again because of some re-definitions.
Ze-Pf are the proofs obtained by translating the modules in which reuse are proofs built
automatically. For example, the module BP (line 1) implementing the feature BasicPoker
is defined with 4 properties in FFML, three of which are invariant. The four corresponding
proofs are written for these properties. This module translated into FoCaliZe contains 4
properties and 4 proofs. No properties or proofs are reused because BasicPoker is the root
feature. The module BMP (line 2) implementing the feature BasicMPoker is built from
BP. This module reuses all the properties of BP and is added 3 properties, one of which
is invariant. There are five proofs written in BMP, three of which are for these added
properties and the two remaining ones reprove the properties reused from BP. The module
BMP translated into FoCaliZe, contains 4 properties and 7 proofs. We can see that the
translated module has 1 property and 2 proofs more than the FFML module. This has
happened because of the reuse mechanism in FFML which is implemented in the FFML

Compiler.

Table [5.2] presents the results we obtained by implementing some other configurations
selected from the seven developed modules. Using our tool, the FEML Product Generation,
the corresponding products in FFML are generated automatically. The right side of the
table is the FFML products translated into FoCal.iZe. cPf are the proofs built from the
composing process. Most of their proofs, after being composed, are done successfully. A half
of these proofs (reuse) are reused and the remaining proofs (auto) are done automatically

by Zenon. The proofs manu that lack some proof hints are more numerous than in the

164



5.3. EVALUATION

Modules FFML FoCalLiZe

iP | nP | rP | Pf | Fo-P | Ze-Pf reuse
BP 3 1 0 4 4 4 0
BMP 1 2 0 5 4 7 2
B36P 0 0 0 3 1 4 1
BWP 0 1 0 4 2 5 1
MFP 0 2 1 9 5 9 0
DMP 0 0 1 7 5 9 2
THP 0 0 0 6 5 8 2
iP - invariant properties Fo-P - properties in FoCalLiZe
nP - new properties Ze-Pf - proofs are done by Zenon
rP - refining properties reuse - proofs are reused
Pf - proofs in FFML

Table 5.1: Modules of Poker SPL

Bank Account SPL. As discussed previously, Zenon fails to find a proof because of an
internal error. However, giving a more detailed proof (with sublemmas) we can bypass this

Zenon’s bug.

Configurations FEML FoCaliZe
P | Pf | Fo-P | Ze-Pf | cPf | reuse | auto | manu

{BP,B36P,BMP} 0] 3 6 7 4 3 5 2
{BP,B36P,BWP} 0] 3 ) 5 4 1 4 1
{BP,BMP,BWP} 31| 4 7 8 4 4 7 1
{BP.BMP.MFP.BWP} | 1 | 5 10 10 4 6 7 3
P - properties in FFML Fo-P - properties in FoCal.iZe
Pf - proofs in FFML Ze-Pf - proofs are done by Zenon

cPf - proofs are composed

reuse - proofs are reused

auto - automatic proofs

manu - manual proofs

Table 5.2: Configurations of Poker SPL

We explian an example of the configuration {BP, B36P, BM P} (line 1 of Table [5.2).
To generate the product corresponding to this configuration, the two modules B36P and
BMP (lines 2-3 in Table are composed into a module B36PBMP (see Listing in
Appendix [A.3). The composed module does not contain any properties but reuses all the
properties of BMP. The translattion of the module BB6PBMP contains 120 LOC while the
module B36PBMP in FFML is written by only 30 LOC. Seven proofs in the translated
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module are generated by the FFML Product Generator tool, four of them are composed
automatically and three of them are reused via the reuse mechanism of FFML. Five of
these seven proofs are automatic while two of them lack proof hints. These manu proofs
appeared due to Zenon’s bug. Similar to the Bank Account SPL, we can bypass this bug by
giving a more detailed proof. For example, Listing [5.5] shows the proof bmp_ getPack_ succ
(line 2) of the module B36PBMP that is fixed manually by a proof with more details in
lines 4-12.

proof of bmp_getPack_ succ =
<1>1 assume p0 : BP, assume pot : int,

prove (getPack(makeMPoker(p0, pot)) = BP!getPack(p0))

<2>1 prove getPack (makeMPoker (p0O, pot)) = BMP!getPack (BMP!makeMPoker(p0O, pot))
by definition of getPack, makeMPoker

<2>2 prove BMP! getPack (BMP! makeMPoker (p0, pot)) = BP!getPack(p0)

by property BMP!bmp getPack succ
<2>e conclude
<1>e conclude;

Listing 5.5: An example of bypassing Zenon’s bug

Based on the results obtained after developing the Poker SPL and the Bank Account

SPL (in the previous chapter), we evaluate our methodology by its validity and limitation.
Validity of the Methodology

e According to the results obtained from the statistics tables of the Bank Account SPL
and the Poker SPL, we can see that these two SPLs have been developed successfully.
Namely, Table and Table show the developed modules of the two SPLs.
Table [£.16] and Table 5.2] contains the products generated from these modules. The
generated products are correct-by-construction. The artifacts, i.e., the properties
and the proofs, are composed automatically by our tools. Although some proofs lack

their proof hints, most of the proofs are done automatically.

e The development of the modules of SPLs using FFML is easier than in FoCaLiZe.
The developer will write less LOC. This can be seen when comparing the modules
of the Bank Account SPL in FFML and FoCaLiZe in Appendix [A2] or the product
B36PBMP of the Poker SPL in Listing [A:24] and Listing [A.2§]in Appendix [A23]

e By reducing the complexity and saving the efforts from the automated generation of

the correct products while developing the two SPLs, our methodology is proven to
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be effective and reliable.

Although a product line becomes more complex when more features are added, the
reuse and modification mechanisms in FFML allow reducing the complexity of the
code and its redundancy (for example, the developer must not redefine a function if
he/she intends to reuse its definition). This is shown by the fact that less artifacts

are written for the modules in lower levels of the Bank Account and Poker SPLs.

The generation of the combinations is automated and requires no intervention from
user or developer. This meets the aim of SPL development that it is easier to generate

new products as the combinations or configurations are automatically generated.

The products of a SPL developed using our methodology are correct-by-construction
even if some proofs remain to be done manually. The properties and proofs of these
products are composed automatically. These product can be proved to be correct

with respect to their specifications by Zenon.

Limitation of the Methodology

Besides the advantages mentioned above, we indicate some limitations:

Our examples, the two product lines (Bank Account SPL and Poker SPL) developed
using our methodology, are not much complex. We need more the developments of

practical SPLs to evaluate exactly the methodology.

The composite modules become big piece of code for some configurations when the
SPL contains many features. We have realized this issue when developing the Poker

SPL which has more features than the Bank Account SPL.

Our tools only work with an assumption that a proof is written for each property
and has a defined structure. In fact, it is possible that a property can be proved by

several proofs. The tool has to cover this case and implement further proof heuristics.

One of the advantages of FoCaliZe is to handle proofs by their proof hints that is
how they are done. In other languages, it is not the case. Therefore, the reuse of

proofs will be much more difficult.
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Conclusion

In this chapter, we briefly summarize our work on the thesis and give the contributions.

Then we discuss potential future work on developing correct-by-construction product lines.

Summary

We have proposed in Chapter [2| a methodology to develop product lines such that the
generated products are correct-by-construction. Our main intention is that a user does
not need to know the product generation process but can receive a correct final product
from selecting a configuration of features. Using the methodology, the final products are
generated automatically and their correctness is guaranteed. Following this proposal, we
have moved in Chapter [3] to define the FFML language that is used for writing modules.
The reuse and modification mechanism, defined for the language and applied to all kinds
of artifacts (specification, code and correctness proof), reduce the programming effort. In
Chapter [4] we have focused on defining the composition mechanisms for composing FFML
modules and embedded them into the FFML Product Generator tool. The evaluation
of our methodology is performed through the development of two software product lines,
the Bank Account SPL and the Poker SPL, the latter being a bit more complex than the
former. In the evaluation, we have highlighted the advantages and the limitation of our

methodology.

Contributions

e The main contribution of this thesis refers to an effective methodology for developing
SPLs and generating automatically correct final products using an approach close to

CbyC approach.
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e The methodology has been implemented using FoCal.iZe and FOP techniques. The
results obtained by using our tools to generate the correct final products of the Bank

Account SPL and the Poker SPL. demonstrate the applicability of our methodology.

e The modification mechanisms of all kinds of artifacts (specification, code and correct-
ness proof) have been defined. Especially, a property can be refined from an existing
one, hence reusing the corresponding proof. The proof was actually easier to realize.

These mechanisms help to reuse artifacts and reduce effort for artifact writing.

e A composition operation for all kinds of artifacts at the module level has been defined
and implemented in our tool. This tool can generate automatically products without

user intervention. Verification effort is significantly reduced by means of proof reuse.

e A tool chain with FFML Compiler and FFML Product Generator has been developed.
It supports both the developer and the user when developing SPLs and generating

the correct-by-construction products.

Future work

We discuss the future work that could lead to further improvements of our methodology
when developing SPLs. We list them below going from short term perspectives to more

ambitious improvements:

e Complete the development of the Poker SPL. More properties and their corresponding
proofs should be written. More products will be generated automatically by selecting

these remaining features.

e Analyze the properties whose proofs are done manually (see Table and Table
5.2)), hence define new proof composition rules in order to support these properties.
FFML Product Generator tool will be updated to take into account these new rules

and thus make Zenon able to do the proofs automatically.

e Make FFML involve in order to take into account new ways of reusing such as in-
troducing new parameters in a refining property. The presence of these parameters

would allow the developer to write more complex properties.
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e Develop a Graphic User Interface (GUI) for our tool chain and integrate to it a tool
that supports checking the validity of configurations. This would permit a user to
select the desired features for a configuration from the system and tell him/her the

validity of the selected configuration.

e Adapt our methodology to other languages, such as B or Java language instead of

FoCalLiZe. The adaptation is necessary to prove the independence of the methodol-

ogy.

e Transform FOP, the implementation technique used in our methodology, to other
ones, for instance DOP technique (based on the concept of program deltas) [Schaefer
et al.| 2010]. DOP is more flexible than FOP with allowance of removing artifacts.
This will extend the characteristic for the methodology and is an evolution of the
FFML language. A transformation of implementation technique or an adaptation to
other languages can require more effort and difficulties. The mechanisms of modifica-
tions and compositions might be updated or new ones must be defined. For example,
in DOP technique an artifact can be removed before entering into another module,
we need to define a mechanism for removing the artifact and analyze the impacts of

this modification.
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Appendix A

Appendix

We give the supplementary information that is referred in the chapters of the thesis.
Our tools and two implemented product lines (Bank Account SPL and Poker SPL) are
publicly available at https://files.ftm/u/hgpyuhgrl In Section we present the
FoCaliiZe grammar in Grammar The encodings of the modules and the products of
the Bank Account SPL are supplemented in Section Last, we describe the code parts
of the Poker SPL in Section [A.3l

A.1 FoCaliZe

FoCal.iZe grammar, which is used to compared to FEML’s (see Grammarin Section
3.3.1)), is represented in Grammar
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==

HOOWWODUAWN -

A.2. BANK ACCOUNT SPL

(sp) == ‘species’ (sid) [ ‘(" ((sparam_def))* (sproofbody) - FoCaLiZe proof body
‘)] =" [‘inherit’ ((sinh_def))* ;|
(ssig)* ({sprop))* Korep)] ({sdef))* (stype) - species type
((sproof))* ‘end; ;’

(slexpr) - FoCaLiZe predicate logical formula

(sparam_ def) == (sparam_n) ‘is’ (sid) [ (’

({sparam_n))* *)’] (sexpr) - FoCal.iZe expression

. o (s £\ (sc_prod) -
(sinh_def) = (sid) [ *(" ((sparam_n))* *)'] Cartesian _product _of FoCaliiZe concrete types
(ssig) ::= ‘signature’ (sfunc_mn) ‘i’ (stype) ‘; (sid) - species_name
n= ‘pr rty’ - 47
{sprop) property’ {sprop_n) *:" (sleapr) (sparam_n) - parameter name
(srep) := ‘representation =’ (sc_prod) ‘;’

(sfunc_n) - function name

(sdef) == ‘let’ (sfunc_n) [*(* ((spar))* *)’]

(sprop_mn) - property name

(sexpry ‘3’
- functi t
(sproof) ::= ‘proof of’ (sproof n) ‘=’ {spar) - function_parameter
(sproofbody) *;’ (sproof _m) - FoCaliZe proof name

Grammar A.1: FoCaliZe Grammar

A.2 Bank Account SPL

The features of Bank Account SPL models bank account management into basic con-
cepts, such as simple withdrawal and deposition, a withdrawal limitation or currency ex-
change. We supplement the details of the following modules: BA (BanckAccount) in List-
ing [A.1] LL (LowLimit) in Listing [A.2] DL (DailyLimit) in Listing CU (Currency)
in Listing [A.4) EX (CurrencyExchange) in Listing and the final products: DLLL
in Listing [A.6] (built from the configuration {BA, DL, LL}), DLCU in Listing (built
from the configuration {BA, DL,CU}), LLCU in Listing (built from the configura-
tion {BA,LL,CU}), LLEX in Listing [A.9[ (built from the configuration {BA, LL, EX}),
DLLLCU in Listing[A.10| (built from the configuration { BA, DL, LL,CU}) and DLLLEX
in Listing (built from the configuration { BA, DL, LL, EX}). The translations of some
modules and products are supplemented in Listings [A.12] [A.13] [A"14] [A"15| and [A.16]

fmodule BA
signature update: BA —> int —> BA;
signature get_ bal: BA —> int;
signature over: int;
signature makeBA : int —> BA;

contract get_bal :: invariant property ba_bal_gr_ over: all x : BA, get_bal(x) >= over;
contract update :: property ba upd succ_with over: all x : BA, all a : int,
(get_bal(x) + a) >= over —> get_bal (update(x,a)) = get_bal(x) + a;

contract update :: property ba_upd_nosucc_with_over: all x : BA, all a : int,

(get_bal(x) + a) < over —> get_bal (update(x,a)) = get_ bal(x);
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A.2. BANK ACCOUNT SPL

contract update :: property ba_upd_succ_with_zero: all x : BA, all a : int,
(a >= 0) —> get_bal (update(x,a)) = get_bal(x) + a;

representation = int; (* amount =x)

let get_ bal(x) = x;

let over = 0;

let makeBA (x) = x;

let update (x, a) = if ((get_bal(x) + a) >= over) then get_ bal(x) + a else get_ bal(x);

proof of ba_ bal gr over = foc proof {* assumed; =x}
proof of ba_ upd_ succ_with over = foc proof {* by definition of update, get bal;x}
proof of ba upd nosucc_with over = foc proof {* by property int ge le eq definition of get bal,
update;x*}
proof of ba upd succ_with zero =
foc proof {x
<1>1 assume x : BA, a : int,
prove (a >= 0) —> get_bal (update(x,a)) = get_bal(x) + a
<2>1 prove (a >= 0) —> get_bal(x) + a >= over + 0
by property int_ge_ plus_plus, ba_bal_ gr_ over
<2>3 prove (a >= 0) —> get_bal(x) + a >= over
by step <2>1 property int_O0_plus, int_plus_commute
<2>4 qged by step <2>3 property ba_upd_succ_with_over
<1>e conclude;x*}

3

Listing A.1: BA

fmodule LL from BA
signature limit_low: int;

contract update :: property 1l upd succ with llimit R1
refines BA!ba upd succ with over B - B
extends premise ((a >= 0) |[ (a <= limit low));
contract update :: property 1l _upd_ nosucc_with_Ilimit_ R1
refines BA!ba_ upd_ nosucc_with_ over
extends premise ((a >= 0) || (a <= limit_low));
contract update :: property 1l _upd_ nosucc_with_ Is_llimit : all x : LL, all a : int,

(a < 0) && (a > limit_low) —> get bal (update(x, a)) = get bal(x);
representation = BA ;

let limit_low = (—10);

let update (x, a) = if ((a >= 0) || (a <= limit_low)) then BAl!update (x, a) else x;

proof of 11_upd_succ_with_1llimit_R1 = foc proof {* by definition of update, get_ bal, over
property BA!ba upd_succ_with_over;*}

proof of 1l _upd nosucc with Ilimit R1 = foc proof {* by definition of update, get bal, over
property BA!ba upd nosucc with over;*} -

proof of lliupd7nosiucc77withilsiillimiit = foc proof {* by definition of update, get bal property
int_ge le_eq, int_ge le_ eq2;x*}

Listing A.2: LL

fmodule DL from BA
signature limit_with: int ;
signature get_ with: DL —> int ;

contract update :: property dl_ upd_ succ_ with wlimit_ R1
refines BA!ba upd_ succ_with_over
extends premise (a <= 0) /\ (get_ with(x) + a >= limit_with);
contract update :: property dl_upd_nosucc_with_wlimit_R1
refines BA!ba_upd_nosucc_with_over
extends premise (a <= 0) /\ (get_with(x) + a >= limit_with);

contract update :: property dl_upd_nosucc_ls_wlimit: all x : DL, all a : int,
((a <= 0) /\ (get_with(x) 4+ a < limit_with)) —>
get _with (update(x,a)) = get_with (x);

contract update :: property dl_upd_succ_gr_wlimit: all x : DL, all a : int,
((a <= 0) /\ (get_with(x) + a >= limit_with)) —>
(get _with(update(x,a)) = get_ with (x) + a );

representation extends BA with int;

let limit_ with = 70;
let get with (x) = snd(x);
let makeBA (amount) = (BA!makeBA (amount), 0);
let update (x, a) =
if (a <= 0) then
if (get with(x) + a >= limit_with) then (BA!update (x,a), get with(x) + a) else x
else (BA!update(x,a), get_with(x));

proof of dl_upd_succ_with_wlimit_R1 =
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29 foc proof {x

30 <1>1 assume x: DL, a int ,

31 hypothesis hl: (a <= 0) /\ (get_with(x) + a >= limit_with),

32 prove (get_ bal(x) + a) >= over —> (get_bal (update(x,a))) = get_ bal(x) + a

33 <2>1 prove first (update(x,a)) = BAlupdate (first (x),a)

34 by definition of first , update hypothesis hl

35 <2>e ged by step <2>1 definition of over, get bal property BA!ba upd succ with over

36 <1>e conclude;x*} - B - - -

37 proof of dl upd nosucc with wlimit R1 =

38 foc proof {; - B B -

39 <1>1 assume x: DL, a : int,

40 hypothesis hl: (a <= 0) /\ (get_with(x) + a >= limit_with),

41 prove (get bal(x) 4+ a) < over —> (get_ bal (update(x,a))) = get bal(x)

42 <2>1 prove first (update(x,a)) = BAlupdate (first(x),a)

43 by definition of update, first hypothesis hl

44 <2>e qed by step <2>1 definition of over, get_bal property BA!ba_upd_nosucc_with_over

45 <1>e conclude;x}

46 proof of ba_upd_succ_with_zero =

47 foc proof {x

48 <1>1 assume x DL, a int ,

49 hypothesis Hl: a >= 0,

50 prove get_bal (update(x,a)) = get_ bal(x) + a

51 <2>1 prove first (update(x,a)) = BAlupdate(first(x), a)

52 by definition of update, first property int ge le eq3 hypothesis Hl

53 <2>2 prove BAl!get bal (BA!update(first (x),a)) = BAlget bal(first(x)) + a

54 by property BA!ba upd succ_ with zero hypothesis H1

55 <2>e qed by step <2>1, <2>2 definition of get bal

56 <l>e conclude; =x} -

57 proof of dl_upd_ nosucc_ls_ wlimit = foc proof {* by definition of update, get_ with property
int _ge le eq;x}

58 proof of dl _upd succ_gr wlimit = foc proof {* by definition of update, get with;x}

59 | ;53

Listing A.3: DL

1

2 | fmodule CU from BA

3 signature get_cur: CU —> cur;

4 signature upd cur : CU —> cur —> CU;

5 signature makeCU BA —> cur —> CU;

6

7 contract upd_cur property cu_upd_cur_succ : all x: CU, all ¢ cur, (get_cur(upd_cur(x,c)) =
c) && (get_bal(upd_cur(x,c)) = get_ bal(x) + get_ bal (x) % (convert_ cur(c) — convert cur(
get_cur(x))));

8

9 representation extends BA with cur;

10

11 let get cur (x) = snd(x);

12 let makeBA (amount) = (BA!makeBA (amount), VND) ;

13 let makeCU (ba, c¢) = (ba,c);

14 let update (x, a) = (BAl!update (x,a), get_cur(x));

15 let upd_cur (x, c) = let a = get_bal (x) % (convert_cur(c) — convert_cur(get_cur(x))) in

16 ((BA!makeBA (get _bal(x) + a)), c);

17

18 proof of ba_upd_succ_with_over =

19 foc proof {x

20 <1>1 assume x: CU, a int ,

21 prove (get bal(x) + a) >= over —> (get bal (update(x,a))) = get bal(x) + a

22 <2>1 prove first (update(x,a)) = BAlupdate (first(x),a) -

23 by definition of first , update

24 <2>e qed by step <2>1 definition of over, get bal property BA!ba upd_ succ_with_over

25 <l1>e conclude;x}

26 proof of ba_ upd nosucc_with_ over =

27 foc proof {x

28 <1>1 assume x: CU, a int ,

29 prove (get_bal(x) + a) < over —> (get_bal (update(x,a))) = get_bal(x)

30 <2>1 prove first (update(x,a)) = BAlupdate (first (x),a)

31 by definition of update, first

32 <2>e qed by step <2>1 definition of over, get_bal property BA!ba_ upd_nosucc_with_over

33 <1>e conclude;x*}

34 proof of ba_upd_succ_with_zero =

35 foc proof {x

36 <1>1 assume x CU, a int ,

37 hypothesis Hl: a >= 0,

38 prove get bal (update(x,a)) = get bal(x) + a

39 <2>1 prove first (update(x,a)) = BAlupdate(first(x), a)

40 by definition of update, first

41 <2>2 prove BA!get bal (BA!update(first(x),a)) = BA!get_ bal(first(x)) + a

42 by property BA!ba upd_ succ_with zero hypothesis H1

43 <2>e qed by step <2>1, <2>2 definition of get_ bal

44 <l1>e conclude;x}

45 proof of cu_upd_ cur_ succ =

46 foc proof {x

47 <1>1 assume x: CU, c cur, a : int,

48 hypothesis Hl: a = get_bal (x) % (convert_cur(c) — convert_cur(get_cur(x))),

49 prove (get_cur(upd_cur(x,c)) = c) && (get_bal(upd_cur(x,c)) = get_bal(x) + a)
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50 <2>1 prove BA!get bal(BA!makeBA(get_ bal(x) + a)) = get_bal(x) + a

51 assumed

52 <2>e qed by step <2>1 hypothesis Hl definition of upd_cur, get_cur, get_bal, first

53 <1>e conclude;*}

54 | 55

Listing A.4: CU

1 | fmodule EX from CU

2 signature exchange cur : EX —> int —> cur —> EX * int;

3

4 contract upd_cur :: property ex_exchange cur_succ : all x: EX, all a : int, all ¢ : cur,
get bal (fst(exchange cur (x, a, c))) = get bal (x) + a;

5 contract upd cur :: property ex exchange cur nosucc : all x: EX, all a : int, all ¢ : cur, a>=
0 —> (snd(exchange cur (x, a, c))) = 0;

6

7 representation = CU;

8

9 let update (x, a) = CU!update(x, a) ;

10 let exchange cur (x, a, c) =

11 if a < 0 then

12 (CU!makeCU (BA!makeBA (get _bal(x) + a), get_cur(x)), a * ratio (get_cur(x), c))

13 else (x,0);

14

15 proof of ex_exchange_ cur_succ = foc proof {* assumed;}

16 proof of ex_exchange_ cur_nosucc = foc proof {* by definition of exchange_ cur property
int_ge_le_eq;x*}

17 | 53

Listing A.5: EX

1 | fmodule DLLL from LL

2 signature limit_with : int;

3 signature get_with : DLLL —> int;

4

5 contract update :: property 1l upd nosucc with 1ls 1limit C1

6 refines LL!1l upd nosucc_ with 1s Ilimit B - B

7 extends premise (a <= 0) /\ (get with(x) + a >= limit_ with);

8 contract update :: property dl_upd succ with wlimit R1

9 refines LL!117updisucciwithilliimitiiRl - - -

10 extends premise (a <= 0) /\ (get_with(x) + a >= limit_with);

11 contract update :: property dl upd nosucc with wlimit R1

12 refines LL!lliupd7nosucciwithjlimiziR1 - - -

13 extends premise (a <= 0) /\ (get_ with(x) 4+ a >= limit_with);

14 contract update :: property dl_upd nosucc_ls_ wlimit : all x:DLLL, all a:int, ((a <= 0) /\ (
get _with(x) + a < limit_with)) —> get_with(update(x,a)) = get_with(x);

15 contract update :: property dl_upd_succ_gr_wlimit : all x:DLLL, all a:int, ((a <= 0) /\ (
get _with(x) + a >= limit_with)) —> (get_with(update(x,a)) = get_with(x) + a);

16

17 representation extends LL with int;

18

19 let limit_with = 70;

20 let get_with (x) = snd(x);
21 let makeBA (amount) = (LL!makeBA (amount) ,0) ;
22 let update (x , a) =

23 if (a <= 0) then

24 if (get_with(x) + a >= limit_with) then (LL!update(x,a),get_with(x) + a) else x
25 else (LL!update(x,a),get_ with(x));

26

27 proof of 1l _upd nosucc_with_ Is_llimit_ Cl1 =
28 foc proof {x

29 <1>1 assume x : DLLL, assume a : int,

30 hypothesis hl : (a <= 0) /\ (get_with(x) + a >= limit_with),

31 prove (a < 0) && (a > limit_low) —> get_bal(update(x,a)) = get_bal(x)

32 <2>1 prove first (update(x,a)) = LL!update(first (x) ,a)

33 by definition of update, first hypothesis hl

34 <2>e qed by step <2>1 definition of over, get_bal, limit_low, update property LL!

11_upd_nosucc_with_1ls_1llimit
35 <1>e conclude;=}

36 proof of dl_upd_succ_with_wlimit_R1 =
37 foc proof {x

38 <1>1 assume x : , assume a : int,
39 hypothesis hl : (a <= 0) /\ (get_with(x) + a >= limit_with),
40 prove ((a >= 0) || (a <= limit_low)) —> (get_bal(x) + a) >= over —> (get_bal(update(x,a)))
= get_bal(x) + a
41 <2>1 prove first (update(x,a)) = LL!update(first (x),a)
42 by definition of first , update hypothesis hl
43 <2>e qed by step <2>1 definition of over, get_ bal definition of limit_ low property LL!
11 _upd_ succ_with_ llimit_ R1

44 <1>e conclude;*}

45 proof of dl_upd_nosucc_with_wlimit_R1 =
46 foc proof {x

47 <1>1 assume x : DLLL, assume a : int,
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hypothesis hl : (a <= 0) /\ (get_with(x) + a >= limit_with),
prove ((a >= 0) || (a <= limit_low)) —> (get_bal(x) + a) < over —> (get_bal(update(x,a)))
= get_bal(x)
<2>1 prove first (update(x,a)) = LL!update(first (x) ,a)
by definition of update, first hypothesis hl
<2>e qed by step <2>1 definition of over, get_ bal definition of limit_low property LL!

11 upd nosucc with 1limit R1
<l1>e conclude;*} - - -
proof of ba upd succ with zero =
foc proof {* - B -
<1>1 assume x : DLLL, assume a : int,

hypothesis Hl1 : a >= 0,
prove get bal(update(x,a)) = get bal(x) + a
<2>1 prove first (update(x,a)) = LL!update(first (x),a)
by definition of update, first property int ge le eq3 hypothesis HIl
<2>2 prove LL!get_ bal(LL!update(first (x),a)) = LL!get_bal(first(x)) + a
by property LL!ba_upd_succ_with_zero hypothesis H1
<2>e qed by step <2>1, <2>2 definition of get_bal
<1>e conclude;x*}
proof of dl_upd_nosucc_ls_wlimit = foc proof {* by definition of update, get_ with property
int_ge_le_eq;x*}

proof of dl_upd_succ_gr_wlimit = foc proof {* by definition of update, get_ with;x}

3

Listing A.6: DLLL

fmodule DLCU from CU
signature limit_with : int;
signature get_with : DLCU —> int;

contract update :: property dl_upd_succ_with_wlimit_R1
refines CU!ba_upd_succ_with_over

extends premise (a <= 0) /\ (get_ with(x) + a >= limit_with);
contract update :: property dl_upd nosucc with wlimit R1
refines CU!ba_ upd nosucc with over B - B
extends premise (a <= 0) /\ (get with(x) + a >= limit_ with);

contract update :: property dl_upd_ nosucc_ls_wlimit : all x:DLCU, all a:int, ((a <= 0) /\ (
get _with(x) 4+ a < limit_with)) —> get with(update(x,a)) = get_ with(x);
contract update :: property dl upd succ_gr wlimit : all x:DLCU, all a:int, ((a <= 0) /\ (

get with(x) + a >= limit_with)) —> (get with(update(x,a)) = get with(x) + a);
representation extends CU with int;

let limit_with = 70;
let get_with (x) = snd(x);
let makeBA (amount) = (CU!makeBA (amount) ,0) ;
let update (x , a) =
if (a <= 0) then
if (get_with(x) + a >= limit_with) then (CU!update(x,a),get_with(x) + a) else x
else (CU!update(x,a),get_with(x));

proof of dl upd succ with wlimit R1 =
foc proof {* - - - -
<1>1 assume x : DLCU, assume a : int,
hypothesis hl : (a <= 0) /\ (get_with(x) + a >= limit_with),
prove (get bal(x) 4+ a) >= over —> (get_ bal(update(x,a))) = get_ bal(x) + a
<2>1 prove first (update(x,a)) = CU!update(first (x) ,a)
by definition of first , update hypothesis hl
<2>e qed by step <2>1 definition of over, get_ bal property CU!ba_ upd_ succ_with_ over
<1>e conclude;x}
proof of dl_upd_nosucc_with_wlimit_R1 =
foc proof {x

<1>1 assume x : DLCU, assume a : int,
hypothesis hl : (a <= 0) /\ (get_with(x) + a >= limit_with),
prove (get_ bal(x) + a) < over —> (get_bal(update(x,a))) = get_bal(x)

<2>1 prove first (update(x,a)) = CU!update(first (x),a)
by definition of update, first hypothesis hl
<2>e ged by step <2>1 definition of over, get bal property CU!ba upd nosucc with over
<1>e conclude;x*} - N - - -
proof of ba upd succ with zero =
foc proof {* B B -
<1>1 assume x : DLCU, assume a : int,
hypothesis Hl : a >= 0,
prove get bal(update(x,a)) = get bal(x) + a
<2>1 prove first (update(x,a)) = CU!update(first (x) ,a)
by definition of update, first property int ge le eq3 hypothesis HI1
<2>2 prove CU!get_ bal(CU!update(first(x),a)) = CU!get_bal(first(x)) + a
by property CU!ba_upd_succ_with_zero hypothesis Hl1
<2>e qed by step <2>1, <2>2 definition of get_bal
<1>e conclude;x*}
proof of dl_upd_nosucc_ls_wlimit = foc proof {* by definition of update, get_ with property
int _ge_le_eq;x*}
proof of dl_upd_succ_gr_wlimit = foc proof {* by definition of update, get_ with;x}

3

Listing A.7: DLCU
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fmodule LLCU from CU

signature limit_low : int;

contract update :: property 1l _upd_succ_with_llimit_R1

refines CU!ba_ upd_succ_with over

extends premise ((a >= 0) || (a <= limit_low));

contract update :: property 1l _upd nosucc_with_Illimit_ R1

refines CU!ba_ upd_ nosucc_with_ over

extends premise ((a >= 0) || (a <= limit_low));

contract update :: property 1l_upd_nosucc_with_1Is_1limit : all x:LLCU, all a:int, (a < 0) && (a
> limit_low) —> get_bal(update(x,a)) = get_bal(x);

representation = CU;

let limit_low = (—10);

let update (x , a) = if ((a >= 0) || (a <= limit_low)) then CU!update(x,a) else x;

proof of 1l upd succ_ with llimit R1 = foc proof {*x by definition of update, get bal, over
property CU!ba_ upd succ with over ;* } -

proof of 1l _upd nosucc with Ilimit R1 = foc proof {* by definition of update, get bal, over
property CU!ba_ upd nosucc with over ;* } B

proof of lliupd7nosiucciiwithilsiillim7it = foc proof {* by definition of update, get bal property

int_ge le_eq, int_ge le eq2;}

Listing A.8: LLCU

fmodule LLEX from EX

signature limit_low : int;

contract update :: property 1l _upd_ succ_with_ llimit_ R1

refines EX!ba upd_succ_with over

extends premise ((a >= 0) || (a <= limit_low));

contract update :: property 1l _upd nosucc_with_ Illimit_ R1

refines EX!ba upd_ nosucc_with_ over

extends premise ((a >= 0) || (a <= limit_low));

contract update :: property 11_upd_nosucc_with_1Is_1limit : all x:LLEX, all a:int, (a < 0) && (a
> limit_low) —> get_bal(update(x,a)) = get_bal(x);

representation = EX;

let limit_low = (—10);

let update (x , a) = if ((a >= 0) || (a <= limit_low)) then EX!update(x,a) else x;

proof of 1l upd succ_ with llimit R1 = foc proof {*x by definition of update, get bal, over
property EX!ba upd succ with over ;* } B

proof of 117upd7nosiucciivithiillimitiiRl = foc proof {* by definition of update, get_ bal, over
property EX!ba upd_ nosucc_with over;x}

proof of 11 _upd_ nosucc_with_1s_ Ilimit = foc proof {* by definition of update, get bal property
int_ge le _eq, int_ge le eq2;x*}

Listing A.9: LLEX

fmodule DLLLCU from LLCU
signature limit_with : int;
signature get_ with : DLLLCU —> int;

contract update :: property 1l upd nosucc with Is llimit C1
refines LLCU!lliupdinosucciwiith71s7711imi1:7 - -
extends premise (a <= 0) /\ (get_ with(x) 4+ a >= limit_with);
contract update :: property dl_ upd_ succ_with_ wlimit R1
refines LLCU!ll upd_succ_with_llimit_R1

extends premise (a <= 0) /\ (get_with(x) + a >= limit_with);
contract update :: property dl_upd_nosucc_with_wlimit_RI1
refines LLCU!ll upd_nosucc_with_llimit_R1

extends premise (a <= 0) /\ (get_with(x) + a >= limit_with);

contract update :: property dl_upd_nosucc_ls_wlimit : all x:DLLLCU, all a:int, ((a <= 0) /\ (
get _with(x) + a < limit_with)) —> get_with(update(x,a)) = get_with(x);

contract update :: property dl_upd_succ_gr_wlimit : all x:DLLLCU, all a:int, ((a <= 0) /\ (
get _with(x) + a >= limit_with)) —> (get_with(update(x,a)) = get_ with(x) + a);

representation extends LLCU with int;

let limit_ with = 70;
let get with (x) = snd(x);
let makeBA (amount) = (LLCU!makeBA (amount) ,0) ;

let update (x , a) = if (a <= 0)

then if (get with(x) + a >= limit_ with)
then (LLCU!update(x,a),get with(x) + a)
else x

else (LLCU!update(x,a),get_with(x));
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proof of 1l_upd_nosucc_with_Is_1limit_C1l =
foc proof {x
<1>1 assume x : DLLLCU, assume a : int,
hypothesis hl : (a <= 0) /\ (get_with(x) + a >= limit_with),
prove (a < 0) && (a > limit_low) —> get_bal(update(x,a)) = get_bal(x)
<2>1 prove first (update(x,a)) = LLCU!update(first (x) ,a)
by definition of update, first hypothesis hl
<2>e ged by step <2>1 definition of over, get bal, limit low, update property LLCU!
11 upd nosucc with 1s llimit - -
<1>e conclude;*} B -
proof of dl_upd_succ_with_ wlimit_R1 =
foc proof {x
<1>1 assume x : DLLLCU, assume a : int,
hypothesis hl : (a <= 0) /\ (get_with(x) + a >= limit_with),
prove ((a >= 0) || (a <= limit_low)) —> (get_ bal(x) + a) >= over —> (get_ bal(update(x,a)))
= get_bal(x) + a
<2>1 prove first (update(x,a)) = LLCU!update(first (x) ,a)
by definition of first , update hypothesis hl
<2>e qed by step <2>1 definition of over, get_bal definition of limit_low property LLCU!
11 _upd_succ_with_l1limit_R1
<1>e conclude;*}
proof of dl_upd_nosucc_with_wlimit_ R1 =
foc proof {x
<1>1 assume x : DLLLCU, assume a : int,
hypothesis hl : (a <= 0) /\ (get_ with(x) + a >= limit_with),
prove ((a >= 0) || (a <= limit low)) —> (get bal(x) + a) < over —> (get_ bal(update(x,a)))
get _bal(x) - - -
<2>1 prove first (update(x,a)) = LLCU!update(first(x) ,a)
by definition of update, first hypothesis hl
<2>e qed by step <2>1 definition of over, get_ bal definition of limit low property LLCU!
11 _upd_ nosucc_with_llimit_ R1
<1>e conclude;*}
proof of ba upd succ_with zero =
foc proof {x
<1>1 assume x : DLLLCU, assume a : int,
hypothesis Hl : a >= 0,
prove get_bal(update(x,a)) = get_bal(x) + a
<2>1 prove first (update(x,a)) = LLCU!update(first (x) ,a)
by definition of update, first property int_ge le_ eq3 hypothesis H1l
<2>2 prove LLCU!get_bal(LLCU!update(first (x),a)) = LLCU!get_ bal(first(x)) + a
by property LLCU!ba upd succ with zero hypothesis Hl
<2>e qed by step <2>1, <2>2 definition of get bal
<1>e conclude;*} -

proof of dl_upd_ nosucc_ls_ wlimit = foc proof {x
by definition of update, get with property int_ ge le eq;x}
proof of dl_upd_ succ_gr_ wlimit = foc proof {x

by definition of update, get with;x}

3

Listing A.10: DLLLCU

fmodule DLLLEX from LLEX
signature limit_with : int;
signature get_ with : DLLLEX —> int;

contract update :: property 11 _upd_nosucc_with_1Is_1limit_C1
refines LLEX!1l upd nosucc with Is l1llimit

extends premise (a <= 0) /\ (get_ with(x) + a >= limit_with);
contract update :: property dl_upd succ_ with wlimit R1
refines LLEX!1l upd_succ_with 1limit_R1 N N

extends premise (a <= 0) /\ (get_with(x) + a >= limit_with);
contract update :: property dl upd nosucc with wlimit R1
refines LLEX!117upd7nosucciwit71711i?nit7R17 - -
extends premise (a <= 0) /\ (get_ with(x) + a >= limit_with);

contract update :: property dl _upd nosucc_ls wlimit : all x:DLLLEX, all a:int, ((a <= 0) /\ (
get _with(x) + a < limit_with)) —> get_with(update(x,a)) = get_with(x);
contract update :: property dl_upd_ succ_gr_wlimit : all x:DLLLEX, all a:int, ((a <= 0) /\ (

get with(x) + a >= limit_with)) —> (get_with(update(x,a)) = get_ with(x) + a);
representation extends LLEX with int;

let limit_with = 70;
let get_with (x) = snd(x);
let makeBA (amount) = (LLEX!makeBA (amount) ,0) ;
let update (x , a) =
if (a <= 0) then
if (get_with(x) + a >= limit_with)
then (LLEX!update(x,a),get_ with(x) + a) else x
else (LLEX!update(x,a),get_ with(x));

proof of 1l _upd_ nosucc_with_ Is_llimit_ Cl1l =
foc proof {x
<1>1 assume x : Self, assume a : int,

hypothesis hl : (a <= 0) /\ (get_with(x) + a >= limit_with),
prove (a < 0) && (a > limit_low) —> get_bal(update(x,a)) = get_bal(x)
<2>1 prove first (update(x,a)) = LLEX!update(first (x) ,a)
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34 by definition of update, first hypothesis hl

35 <2>e qed by step <2>1 definition of over, get_bal, limit_low, update property LLEX!
11 _upd_nosucc_with_1ls_llimit

36 <1>e conclude;*}

37 proof of dl_upd_succ_with_wlimit_R1 =

38 foc proof {x*

39 <1>1 assume x : Self, assume a : int,

40 hypothesis hl : (a <= 0) /\ (get_with(x) + a >= limit_with),

41 prove ((a >= 0) || (a <= limit_ low)) —> (get bal(x) + a) >= over —> (get bal(update(x,a)))
= get_bal(x) + a

42 <2>1 prove first (update(x,a)) = LLEX!update(first (x) ,a)

43 by definition of first , update hypothesis hl

44 <2>e qed by step <2>1 definition of over, get_ bal definition of limit low property LLEX!
11 _upd_succ_with_llimit_R1

45 <1>e conclude;*}
46 proof of dl_upd_nosucc_with_wlimit_R1 =
47 foc proof {x

48 <1>1 assume x : Self, assume a : int,

49 hypothesis hl : (a <= 0) /\ (get_with(x) + a >= limit_with),

50 prove ((a >= 0) || (a <= limit_low)) —> (get_bal(x) + a) < over —> (get_bal(update(x,a))) =
get _bal(x)

51 <2>1 prove first (update(x,a)) = LLEX!update(first (x) ,a)

52 by definition of update, first hypothesis hl

53 <2>e qed by step <2>1 definition of over, get_bal definition of limit_ low property LLEX!

11 upd nosucc_ with 1limit R1
54 <l1>e conclude;*} B - -
55 | proof of ba upd succ_ with zero =

56 | foc proof {; B - -

57 <1>1 assume x : Self, assume a : int,

58 hypothesis Hl1 : a >= 0,

59 prove get bal(update(x,a)) = get bal(x) + a

60 <2>1 prove first (update(x,a)) = LLEX!update(first (x) ,a)

61 by definition of update, first property int ge le eq3 hypothesis HI1

62 <2>2 prove LLEX!get_ bal(LLEX!update(first (x),a)) = LLEX!get_ bal(first(x)) + a
63 by property LLEX!ba_ upd_succ_with_zero hypothesis HI1

64 <2>e qed by step <2>1, <2>2 definition of get_bal

65 <1>e conclude;*}

66 | proof of dl_upd_nosucc_ls_wlimit = foc proof {* by definition of update, get_ with property
int_ge_ le_eq;x*}

67 | proof of dl_upd_succ_gr_wlimit = foc proof {* by definition of update, get_with;x*}

68 | ;3

Listing A.11: DLLLEX

1 | species BA_specl =

2 signature update : Self —> int —> Self;

3 signature get bal : Self —> int;

4 signature over : int;

5 signature makeBA : int —> Self;

6 property ba_bal_ gr_over : all x : Self, (get_bal(x) >= over);

7 | end;;

8

9 | species BA_spec2 —

10 inherit BA_specl;

11 property ba_upd_succ_with_over : all x : Self, all a : int, ((get_bal(x) + a) >= over) —> (
get _bal(update(x, a)) = (get_bal(x) + a));

12 property ba_ upd_nosucc_with_over : all x : Self, all a : int, ((get_bal(x) + a) < over) —> (

get bal(update(x, a)) = get bal(x));

13 property ba_upd_succ_with_zero : all x : Self, all a : int, (a >= 0) —> (get_bal(update(x, a)) =
(get_bal(x) + a));

14 | end;;

15
16 | species BA_ imp =

17 inherit BA_ spec2;

18 representation = int;
19 let get_bal (x) = x;
20 let over = 0;

21 let makeBA (x) = x;
22 let update (x, a) =

23 if ((get_bal(x) + a) >= over) then
24 (get_bal(x) + a)

25 else get_bal(x);

26

27 proof of ba_bal_ gr over = assumed;

28 proof of baiupdisuicciwithiover = by definition of update, get_bal;
29 proof of ba_upd_nosucc_with_ over = by property int_ge_ le_ eq definition of get_ bal, update;

30 proof of ba upd succ with zero =

31 <1>1 assume x : Self, assume a : int,

32 prove (a >= 0) —> (get_bal(update(x, a)) = (get_bal(x) + a))
33 <2>1 prove (a >= 0) —> ((get_bal(x) + a) >= (over + 0))

34 by property int_ ge plus_ plus, ba_ bal gr_ over

35 <2>3 prove (a >= 0) —> ((get_bal(x) + a) >= over)

36 | by step <2>1 property int_ 0 _ plus, int_ plus_ commute

37 <2>4 qed by step <2>3 property ba_upd_succ_with_over

38 <1>e conclude;

39 |end;;
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collection BA_col =
implement BA_imp;
end;;

Listing A.12: BA in FoCalLiZe

species DL_specl (BA is BA_imp) =
inherit BA_specl;

signature limit_with : int;
signature get_with : Self —> int;
end;;

species DL spec2 (BA is BA imp) =

inherit DL specl (BA); -

property ba_ upd_ succ_with zero : all x : Self, all a : int, (a >= 0) —> (get_bal(update(x, a)) =
(get _bal(x) + a));

property dl upd_ succ_with_ wlimit_R1 : all x : Self, all a : int, (a <= 0) && ((get_with(x) + a)
>= limit _with) —> ((get_bal(x) + a) >= over) —> (get_ bal(update(x, a)) = (get_bal(x) + a));

property dl _upd nosucc_with wlimit_ R1 : all x : Self, all a : int, (a <= 0) && ((get_ with(x) + a
) >= limit_with) —> ((get_bal(x) + a) < over) —> (get_ bal(update(x, a)) = get bal(x));

property dl_upd_nosucc_ls_wlimit : all x : Self, all a : int, ((a <= 0) && ((get_with(x) + a) <
limit _with)) —> (get_with(update(x, a)) = get_with(x));

property dl_upd_succ_gr_wlimit : all x : Self, all a : int, ((a <= 0) && ((get_with(x) + a) >=
limit _with)) —> (get_with(update(x, a)) = (get_with(x) + a));

end;;

species DL_imp (BA is BA_imp) =

inherit DL spec2 (BA);

representation = BAx int;

let make (x1: BA, x2: int): Self = (x1, x2);
let getlst (x1: Self): BA = fst(x1);

let get2nd (x1: Self): int = snd(x1);

let get bal (x) = BAlget bal(getlst(x));

let over = BAl!over;

let limit_ with = 70;

let get with (x) = snd(x);

let makeBA (amount) = (BA!makeBA (amount), 0);

let update (x, a) =a

if (a <= 0) then

if ((get_with(x) + a) >= limit_with) then (BA!update(getlst(x), a), (get_with(x) + a)) else x
else (BA!update(getlst(x), a), get_with(x));

proof of ba_bal_ gr_ over — by definition of get_ bal, over property BA!ba_bal_ gr_ over;
proof of dl_upd_succ_with_wlimit_R1 =
<1>1 assume x : Self, assume a : int,
hypothesis hl : (a <= 0) && ((get_ with(x) + a) >= limit_with),
prove ((get bal(x) + a) >= over) —> (get bal(update(x, a)) = (get_ bal(x) + a))
<2>1 prove (getlst(update(x, a)) = BA!update(getlst(x), a))
by definition of getlst, update hypothesis hl
<2>e qed by step <2>1 definition of over, get_ bal property BA!ba_ upd_succ_with_ over
<1>e conclude;
proof of dl_upd_ nosucc_with wlimit_ R1 =
<1>1 assume x : Self, assume a : int,
hypothesis hl : (a <= 0) && ((get_with(x) + a) >= limit_with),
prove ((get_bal(x) + a) < over) —> (get_bal(update(x, a)) = get_bal(x))
<2>1 prove (getlst(update(x, a)) = BAlupdate(getlst(x), a))
by definition of update, getlst hypothesis hl
<2>e qed by step <2>1 definition of over, get_ bal property BA!ba_upd_nosucc_with_over
<1>e conclude;
proof of ba_upd_succ_with_zero =
<1>1 assume x : Self, assume a : int,
hypothesis Hl1 : (a >= 0),
prove (get bal(update(x, a)) = (get bal(x) + a))
<2>1 prove (getlst(update(x, a)) = BAlupdate(getlst(x), a))
by definition of update, getlst property int_ ge le_ eq3 hypothesis Hl
<2>2 prove (BA!get bal(BA!update(getlst(x), a)) = (BA!get_ bal(getlst(x)) + a))
by property BA!ba upd_ succ_with zero hypothesis H1
<2>e qed by step <2>1, <2>2 definition of get bal
<1>e conclude;
proof of dl _upd nosucc_ls wlimit = by definition of update, get with property int ge le eq;
proof of dl upd succ_gr wlimit = by definition of update, get_ with;
end;;

collection DL_col =
implement DL_imp (BA_col);
end;;

Listing A.13: DL in FoCaliZe
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species CU specl (BA is BA imp) =
inherit BA specl; B

signature get cur : Self —> cur;
signature upd:cur : Self —> cur —> Self;
signature makeCU : BA —> cur —> Self;
end;;

species CU_spec2 (BA is BA_ imp) =

inherit CU_specl (BA);

property ba_upd_succ_with_zero : all x : Self, all a : int, (a >= 0) —> (get_bal(update(x, a)) =
(get_bal(x) + a));

property ba_upd_nosucc_with_over : all x : Self, all a : int, ((get_bal(x) + a) < over) —> (
get _bal(update(x, a)) = get_bal(x));

property ba_upd_succ_with_over : all x : Self, all a : int, ((get_bal(x) + a) >= over) —> (
get _bal(update(x, a)) = (get_bal(x) + a));

property cu_upd_cur_succ : all x : Self, all ¢ : cur, ((get_cur(upd_cur(x, c)) = c) && (get_bal(
upd_cur(x, c¢)) = (get_bal(x) + (get_bal(x) * (convert_ cur(c) — convert_cur(get_cur(x)))))))

end;;

species CU imp (BA is BA imp) =

inherit CU spec2 (BA);

representation = BAx cur;

let make (x1: BA, x2: cur): Self = (x1, x2);
let first (x1: Self): BA = fst(x1);

let secon (x1: Self): cur = snd(x1);
let get bal (x) = BAlget bal(first(x));
let over = BAlover;

let get_cur (x) = snd(x);
let makeBA (amount) = (BA!makeBA (amount), VND) ;
let makeCU (ba, c) = (ba, c);

let update (x, a) = (BAl!update(getlst(x), a), get_cur(x));
let upd_cur (x, c) =
let a = (get_bal(x) * (convert_ cur(c) — convert_cur(get_cur(x)))) in

(BA!makeBA ((get bal(x) + a)), c);

proof of ba bal gr over = by definition of get bal, over property BA!ba bal gr over;
proof of ba upd succ with over = B B -
<1>1 assume x : Self, assume a : int,
prove ((get_bal(x) + a) >= over) —> (get_bal(update(x, a)) = (get_bal(x) + a))
<2>1 prove (getlst(update(x, a)) = BAlupdate(getlst(x), a))
by definition of getlst, update
<2>e qed by step <2>1 definition of over, get_ bal property BA!ba_ upd_ succ_with_ over
<1>e conclude;
proof of ba_upd_nosucc_with_over =
<1>1 assume x : Self, assume a : int,
prove ((get_bal(x) + a) < over) —> (get_bal(update(x, a)) = get_bal(x))
<2>1 prove (getlst(update(x, a)) = BAlupdate(getlst(x), a))
by definition of update, getlst
<2>e qed by step <2>1 definition of over, get_ bal property BA!ba_upd_nosucc_with_over
<1>e conclude;
proof of ba_upd_succ_with_ zero =
<1>1 assume x : Self, assume a : int,
hypothesis Hl1 : (a >= 0),
prove (get bal(update(x, a)) = (get_bal(x) + a))
<2>1 prove (getlst(update(x, a)) = BA!update(getlst(x), a))
by definition of update, getlst
<2>2 prove (BA!get bal(BA!update(getlst(x), a)) = (BA!get bal(getlst(x)) + a))
by property BA!ba_ upd_ succ_with zero hypothesis H1
<2>e qed by step <2>1, <2>2 definition of get bal
<1>e conclude;
proof of cu_upd_cur_succ =
<1>1 assume x : Self, assume ¢ : cur, assume a : int,
hypothesis Hl1 : (a = (get_bal(x) * (convert_cur(c) — convert_cur(get_cur(x))))),
prove ((get_cur(upd_cur(x, c)) = c) && (get_bal(upd_cur(x, c)) = (get_bal(x) + a)))
<2>1 prove (BA!get_ bal(BA!makeBA ((get_bal(x) + a))) = (get_bal(x) + a))
assumed
<2>e qed by step <2>1 hypothesis Hl definition of upd_cur, get_cur, get_bal, getlst
<1>e conclude;
end;;

collection CU_col =
implement CU_imp (BA_col);
end;;

Listing A.14: CU in FoCalLiZe

species DLCU_specl (BA is BA imp, CU is CU_imp (BA))
inherit CU_specl (BA);

signature limit_with : int;
signature get with : Self —> int;
end;;

species DLCU_spec2 (BA is BA_imp, CU is CU_imp (BA)) =
inherit DLCU_specl (BA, CU);
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9 property cu_upd_cur_succ : all x : Self, all ¢ : cur, ((get_cur(upd_cur(x, c)) = c) && (get_bal(
upd_cur(x, c¢)) = (get_bal(x) + (get_bal(x) * (convert_ cur(c) — convert_cur(get_cur(x)))))))

;
10 property ba_upd_succ_with_zero : all x : Self, all a : int, (a >= 0) —> (get_bal(update(x, a)) =
(get_bal(x) + a));

11 property dl_upd_succ_with_wlimit_R1 : all x : Self, all a : int, (a <= 0) && ((get_with(x) + a)
>= limit with) —> ((get_bal(x) + a) >= over) —> (get_ bal(update(x, a)) = (get_bal(x) + a));
12 property dl_upd nosucc with wlimit R1 : all x : Self, all a : int, (a <= 0) && ((get with(x) + a
) >= limit with) —> ((get_ bal(x) + a) < over) —> (get bal(update(x, a)) = get bal(x));

13 property dl_upd_ nosucc_ls_wlimit : all x : Self, all a : int, ((a <= 0) && ((get_with(x) + a) <
limit _with)) —> (get_ with(update(x, a)) = get_ with(x));

14 property dl_upd_succ_gr wlimit : all x : Self, all a : int, ((a <= 0) && ((get_with(x) + a) >=
limit _with)) —> (get_ with(update(x, a)) = (get_with(x) + a));

15 | end;;

16
17 | species DLCU_imp (BA is BA_imp, CU is CU_imp (BA)) =
18 inherit DLCU_spec2 (BA, CU);

19 representation = CUx int;

20 let make (x1: CU, x2: int): Self = (
21 let getlst (x1l: Self): CU = fst(x1);
22 let get2nd (x1: Self): int = snd(xl);
23 let get_ bal (x) = CU!get_bal(getlst(x));

24 let over = CU!over;

25 let get cur (x) = CUlget cur(getlst(x));

26 let makeCU (ba, c) = (CU'makeCU(ba, c), 0);

27 let upd cur (x, c) = (CU!upd cur(getlst(x), c), get2nd(x));
28 | let limit_with = 70; N

29 let get with (x) = snd(x);

30 let makeBA (amount) = (CU!makeBA (amount), 0);

31 let update (x, a) =

x1l, x2);

32 if (a <= 0) then

33 if ((get_ _with(x) 4+ a) >= limit_ with) then (CU!update(getlst(x), a), (get_ with(x) + a)) else x

34 else (CU!update(getlst(x), a), get with(x));

35

36

37 proof of cu_upd_cur_succ = by definition of get_cur, upd_cur, get_bal, convert_cur, getlst
property CU!cu_upd_cur_succ;

38

39 | (+ proof of cu_upd_cur_succ =

40 <1>1 assume x: Self, ¢ : cur, a : int,

41 hypothesis Hl: a = get bal (x) * (convert cur(c) — convert cur(get cur(x))),

42 prove (get cur(upd cur(x,c)) = c) && (get bal(upd cur(x,c)) = get bal(x) + a)

43 <2>1 prove CUlget cur(CU!upd cur(getlst(x), c)) = c && CUlget bal(CUTupd cur(getlst(x), c))

= CU!get bal(getlst(x)) + a

44 by hypothesis Hl definition of get_ bal, get cur property CU!cu_upd_cur_succ

45 <2>e qed by step <2>1 hypothesis Hl definition of upd_ cur, get cur, get_ bal, getlst

46 <1>e conclude;

47 | %)

48

49 proof of ba_bal_gr_over = by definition of get_bal, over property CU!ba_bal_ gr_over;
50 proof of dl_upd_succ_with_wlimit_R1 =

51 <1>1 assume x : Self, assume a : int,

52 hypothesis hl : (a <= 0) && ((get_with(x) + a) >= limit_with),

53 prove ((get_bal(x) + a) >= over) —> (get_bal(update(x, a)) = (get_bal(x) + a))
54 <2>1 prove (getlst(update(x, a)) = CUlupdate(getlst(x), a))

55 by definition of getlst, update hypothesis hl

56 <2>e qed by step <2>1 definition of over, get_ bal property CU!ba_upd_succ_with_over
57 <1>e conclude;

58 proof of dl upd nosucc with wlimit R1 =

59 <1>1 assume x : Self, assume a : int,

60 hypothesis hl : (a <= 0) && ((get_with(x) + a) >= limit_with),

61 prove ((get_bal(x) + a) < over) —> (get_bal(update(x, a)) = get_bal(x))

62 <2>1 prove (getlst(update(x, a)) = CU!update(getlst(x), a))

63 by definition of update, getlst hypothesis hl

64 <2>e qed by step <2>1 definition of over, get_ bal property CU!ba_ upd nosucc_with_ over
65 <1>e conclude;

66 proof of ba_upd_succ_with_zero =

67 <1>1 assume x : Self, assume a : int,

68 hypothesis Hl : (a >= 0),

69 prove (get_bal(update(x, a)) = (get_bal(x) + a))

70 <2>1 prove (getlst(update(x, a)) = CU!update(getlst(x), a))

71 by definition of update, getlst property int_ge_ le_eq3 hypothesis H1

72 <2>2 prove (CU!get_ bal(CU!update(getlst(x), a)) = (CU!get_bal(getlst(x)) + a))
73 | by property CU!ba_upd_succ_with_zero hypothesis H1

74 <2>e qed by step <2>1, <2>2 definition of get bal

75 <1>e conclude; B

76 proof of dl_upd_nosucc_ls_wlimit = by definition of update, get_ with property int_ge le_ eq;
7 proof of dl_upd_succ_gr_wlimit = by definition of update, get_with;

78 | end;;

79

80 | collection DLCU_col =

81 implement DLCU_ imp (BA col, CU_ col);
82 | end;;

Listing A.15: DLCU in FoCaliZe
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species DLLLCU specl (BA is BA imp, CU is CU imp (BA), LLCU is LLCU imp (BA, CU)) =
inherit LLCU specl (BA, CU); - B

signature limit with : int;

signature getix;ith : Self —> int;

end;;

species DLLLCU spec2 (BA is BA imp, CU is CU_imp (BA), LLCU is LLCU_ imp (BA, CU)) =

inherit DLLLCU_ specl (BA, CU, LLCU);

property cu_upd_ cur_ succ : all x : Self, all ¢ : cur, ((get_ cur(upd cur(x, c)) = c) && (get_bal(
upd_cur(x, c)) = (get_bal(x) + (get_bal(x) * (convert_cur(c) — convert_cur(get_cur(x)))))))

OO~ ksWN -

10 property ba_upd_succ_with_zero : all x : Self, all a : int, (a >= 0) —> (get_bal(update(x, a)) =
(get_bal(x) + a));

11 property 1l_upd_nosucc_with_Is_llimit_C1 : all x : Self, all a : int, (a <= 0) && ((get_with(x)
+ a) >= limit_with) —> ((a < 0) && (a > limit_low)) —> (get_bal(update(x, a)) = get_bal(x))

;
12 property dl_upd_succ_with_wlimit_R1 : all x : Self, all a : int, (a <= 0) && ((get_with(x) + a)
>= limit _with) —> ((a >= 0) || (a <= limit_low)) —> ((get_bal(x) + a) >= over) —> (get_ bal(
update (x, a)) = (get bal(x) + a)); - - a
13 property dl _upd nosucc with wlimit R1 : all x : Self, all a : int, (a <= 0) && ((get with(x) + a
) >= limit_with) —> ((a >= 0) || (a <= limit_low)) —> ((get_bal(x) + a) < over) —> (get_ bal
(update(x, a)) = get_ bal(x));
14 property dl_upd nosucc_ls_ wlimit : all x : Self, all a : int, ((a <= 0) && ((get_with(x) + a) <
limit _with)) —> (get with(update(x, a)) = get_ with(x));
15 property dl_upd_ succ gr wlimit : all x : Self, all a : int, ((a <= 0) && ((get_with(x) + a) >=
limit _with)) —> (get_ with(update(x, a)) = (get_with(x) + a));
16 | end;;
17
18 | species DLLLCU_imp (BA is BA_imp, CU is CU_imp (BA), LLCU is LLCU_imp (BA, CU)) =
19 | inherit DLLLCU spec2 (BA, CU, LLCU);
20 representation = LLCUx int;
21 let make (x1: LLCU, x2: int): Self = (x1, x2);
22 let getlst (x1: Self): LLCU = fst(x1);
23 let get2nd (x1: Self): int = snd(x1);
24 let get bal (x) = LLCU!get bal(getlst(x));
25 let over = LLCU!over; -
26 let get cur (x) = LLCU!get cur(getlst(x));
27 let makeCU (ba, c) = (LLCU'makeCU(ba, c), 0);
28 let upd cur (x, c¢) = (LLCU!'upd cur(getlst(x), c), get2nd(x));
29 | let limit_low = LLCU!limit_low;
30 | let limit_with = 70;
31 let get with (x) = snd(x);
32 let makeBA (amount) = (LLCU!makeBA (amount), 0);
33 let update (x, a) =

34 if (a <= 0) then
35 if ((get_with(x) + a) >= limit_with) then (LLCU!update(getlst(x), a), (get_with(x) + a)) else
X
36 else (LLCU!update(getlst(x), a), get_with(x));
37
38
39 proof of cu_upd_cur_succ = by definition of get_ cur, upd_cur, get_ bal, convert_cur, getlst
property LLCU!cu_upd_cur_succ;
40
41 | (x proof of cu_upd_ cur_succ =
42 <1>1 assume x: Self, ¢ : cur, a : int,
43 hypothesis Hl: a = get_ bal (x) * (convert_ cur(c) — convert cur(get_cur(x))),
44 prove (get_ cur(upd_cur(x,c)) = c) && (get_bal(upd_cur(x,c)) = get_ bal(x) + a)
45 <2>1 prove LLCU!get cur (LLCU!upd cur(getlst(x), c)) = ¢ && LLCU!get bal(LLCU!upd cur(getlst (
x), c¢)) = LLCUlget bal(getlst(x)) + a
46 by hypothesis Hl definition of get bal, get cur property LLCU!cu upd_ cur_succ
47 <2>e qed by step <2>1 hypothesis Hl definition of upd_cur, get_cur, get_bal, getlst
48 <1>e conclude;
49 * )
50

51 proof of ba_bal_ gr_ over = by definition of get_bal, over property LLCU!ba_bal_ gr_ over;
52 proof of 1l_upd_nosucc_with_Is_1limit_C1 =

53 <1>1 assume x : Self, assume a : int,

54 hypothesis hl : (a <= 0) && ((get_with(x) + a) >= limit_with),

55 prove ((a < 0) && (a > limit_low)) —> (get_bal(update(x, a)) = get_bal(x))

56 <2>1 prove (getlst(update(x, a)) = LLCU!update(getlst(x), a)) -

57 by definition of update, getlst hypothesis hl

58 <2>e qed by step <2>1 definition of over, get bal, limit low, update property LLCU!
11 _upd_ nosucc_with lIs llimit B -

59 <1>e conclude;

60 proof of dl_upd_ succ_with_ wlimit_R1 =

61 <1>1 assume x : Self, assume a : int,

62 hypothesis hl : (a <= 0) && ((get_ with(x) + a) >= limit_with),

63 prove ((a >= 0) || (a <= limit_low)) —> ((get_bal(x) + a) >= over) —> (get_ bal(update(x, a
)) = (get_bal(x) + a))

64 <2>1 prove (getlst(update(x, a)) = LLCU!update(getlst(x), a))

65 by definition of getlst, update hypothesis hl

66 <2>e qed by step <2>1 definition of over, get_bal definition of limit_low property LLCU!
11 _upd_succ_with_llimit_R1

67 <1>e conclude;

68 proof of dl_upd_nosucc_with_wlimit_ R1 =

69 <1>1 assume x : Self, assume a : int,
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hypothesis hl : (a <= 0) && ((get_with(x) + a) >= limit_with),
prove ((a >= 0) || (a <= limit_low)) —> ((get_bal(x) + a) < over) —> (get_bal(update(x, a)
= get_bal(x))
<2>1 prove (getlst(update(x, a)) = LLCU!update(getlst(x), a))
by definition of update, getlst hypothesis hl
<2>e qed by step <2>1 definition of over, get_ bal definition of limit_ low property LLCU!
11 upd nosucc with 1limit R1
<l1>e conclude; B - B
proof of ba upd succ with zero =
<1>1 assume x : Self, assume a : int,
hypothesis Hl1 : (a >= 0),
prove (get_ bal(update(x, a)) = (get_bal(x) + a))
<2>1 prove (getlst(update(x, a)) = LLCU!update(getlst(x), a))
by definition of update, getlst property int ge le eq3 hypothesis Hl
<2>2 prove (LLCU!get bal(LLCU!update(getlst(x), a)) = (LLCU!get bal(getlst(x)) + a))
by property LLCU!ba_upd_succ_with_zero hypothesis HI1
<2>e qed by step <2>1, <2>2 definition of get_bal
<1>e conclude;
proof of dl_upd_nosucc_ls_wlimit = by definition of update, get_ with property int_ge le_ eq;
proof of dl_upd_succ_gr_wlimit = by definition of update, get_with;
end;;

collection DLLLCU_col =
implement DLLLCU_ imp (BA_col, CU_col, LLCU_col);
end;;

Listing A.16: DLLLCU in FoCalLiZe
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A.3 Poker Product Line

We developed the product line of poker game from scratch. The features are designated
in order to cover all practical variants of the game. We describe here all features of Poker
SPL. We also give the details of the models and some products of this product line in
FFML.

BasicPoker

Although Poker has many variants, they share some basic rules. We specify the simple
rules that are applicable to all types of poker game into the BasicPoker feature. The basic
poker game is played with a standard 52-card pack of playing cards. Poker is totally a
gambling game, however at BasicPoker the players do not need to use money. Poker is
ideally played with 4-7 players. A pack is being dealt one time for each player in turn
with 5 cards (by default). The cards held by a player are called “the hole cards” that are

distributed face down and not seen by the other players.

The winner is determined according to the score of Poker hands. The various combi-
nations of Poker hands are listed in Table [A.T] with ranks from one pair to five of a kind
(the highest rank). The case when two hands have the same rank are described in the last
column of the table. In such cases, the ranking of the other cards in the hand determines

who wins. For example: 9, 9, 7, 4, 2 beats 9, 9, 5, 3, 2 which is decided by the third card.

BasicMPoker

The feature BasicMPoker is built as a child of BasicPoker. The players joining the
game can use money (chips) for gambling. A betting round takes place each time before or
after a dealing in which the players have an opportunity to bet on their hands. The rule is
that a player puts his chips into a pot then the next player to the left, in turn, must either
“call” that bet by putting into the pot the same number of chips; or “raise”, which means
that the next player puts in the pot more chips to call; or “drop” (“fold”), which means
that the next player puts no chips in the pot, discards his hand, and is out of the game.

Lastly, the player having the highest score will be the winner and receives all the chips in
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Ranks of Hand | Description

If two hands show the same rank

One Pair 2 cards of the same value

The hand with the higher value pair wins. If
they are the same, then the highest value card in
the remaining 3 cards determines who wins. If
they are also the same, the highest value card in
the remaining 2 cards determines who wins and
SO on.

Two Pairs 2 different value pairs

The hand with the highest value pair wins. If
they are the same, then the value of the second
pair determines who wins. If they are also the
same, then the value of the remaining card
determines who wins.

Three of a kind 3 cards of the same value

The hand with the higher 3 cards wins.

A run of 5 cards, regardless

The Straight that starts with the highest value

Straight of suit card wins.
The hand with the highest value card wins or if
) the highest cards are the same, the value of the
Flush 5 cards of the same suit second highest cards determines the winner and
SO on.
3 cards of the same value
Full House and 2 cards of the same The hand with the higher 3 cards wins.

different value.

Four of a kind 4 cards of the same value

The hand with the higher matching 4 cards wins.

A run of 5 cards of the

Straight Flush .
same suit

The Straight Flush that starts with the highest
value card wins.

A run of 5 cards of the same

1 Flush . . .
Roya s suit starting with a ten.

n/a

Table A.1: Poker Ranking Hands

200




A.3. POKER PRODUCT LINE

the pot.

Basic36Poker

Basic36Poker is built as a child of BasicPoker, it is played with a 36-card pack of
playing cards in which the cards from 2s to 5s are removed. In simple words, the feature
Basic36Poker is built from BasicPoker but only the total cards in a pack is updated. The
number of total cards is declared as an integer number in BasicPoker then defined with
52. However, in Basic36Poker the declaration of this number is inherited and the total
cards are redefined by 36. So, Basic36Poker can be chosen together with any of the other

features modifying the number of cards of the pack.

BasicWDPoker

BasicWPoker is built as a child of BasicPoker. After the fourth round of dealing cards,
a card is put on the table and this card is seen by all players. The other three cards having
the same rank as the card are wild. The last final round of cards is dealt to give the fifth
card to the players. For example, if a card 9 of hearts is the one showed up on the table,
others namely 9 of clubs, 9 of diamonds and 9 of spades are wild cards. Betting rounds

can be set up after showing the wild cards and after dealing the last round.

The ranking of a hand is determined by the cards held by a player. Wild cards can be
seen as any card. The card combination is similar to BasicPoker’s but the last combination,
the highest possible hand, is “Five of a Kind” instead of “The Royal Flush”. This can occur
only when at least one card is wild. For example, “Five of a Kind” would be four cards 10s

and a wild card.

MFormPoker

MFormPoker is built as a child of BasicMPoker. In the game, after dealing cards to
each player, some cards (1, 2 or 3) continue to be taken from the pack and faced up on
the table. These cards are called “community cards”. They are seen by all players and
combined with the hole cards held by each player to calculate his/her score. Two activities

which are added into a betting round, are “check” that allows a player to follow the game
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but not to put chips into the pot and “all in” that allows a player to put all chips he has

into the pot.

DrawMPoker

DrawPoker is a child of MFormPoker in which the community card list is empty. Players
can join a betting round before the first dealing. The first bet is determined by a number,
called “ante” and decided by all players. The next player will put down another bet, double
the ante. Instead of dealing community cards, some dealing rounds allow a player to discard

one to three cards (1, 2 or 3).

TexasHold’emMPoker

A popular poker is TexasHold’emMPoker that is designated as a child of DrawMPoker.
The first dealing turn, called “preflop”, gives 2 hole cards to each player. The second dealing
turn, called “flop”, deals 2 community cards on the table. The third dealing turn, called
“turn”, gives one more community card. The forth dealing turn, called “river”, give the last
community card. After each dealing turn, there is a betting round. However, in the final

betting round, the number of chips for raising can be increased by players.

Other features of Poker SPL, such as FixedLimit, PotLimit, StudMPoker, PreFixedLimit
and Roodles are described in Appendix [A.3]

FixedLimit

FixedLimit is a child of BasicMPoker that allows fixing a limit of a raise for each bet

time.

e The module FixedLimit is built from BasicMPoker. Its representation type is the

same as BasicMPoker’s.

e The function bettingRound is redefined by adding a raise limit raiseLimit.
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PotLimit

BasicPoker has one more child called PotLimit that is added a rule for each raise. The

rule is defined each time when a player bets based on the amount of the chips in the pot.

e The module FixedLimit is built from BasicMPoker and keeps the representation type.

e The function bettingRound is redefined by adding a new function raiseMin that de-

fines the bet rule relating to the chips in the pot.
StudMPoker

StudMPoker is also a child of MFormPoker in which there are community cards. The
two cards, dealt in the first dealing round for each player, are hole cards, but one is faced
down and one faced up. The faced-up card decides who makes the first bet of the first
betting round. The second, third and fourth dealing turns give totally 3 community cards

on the table (one card for each turn).

e The module StudMPoker is built from and has the same representation type as

MFormPoker.
e The community card list comCards is not empty.

e The function bettingRound is redefined with activating the case that the first faced-up
hole card decides who makes the first bet of the first betting round.

PreFixedLimit

In fact, in DrawWPoker a bet can be limited by an “ante”. We design PreFixedLimit
as a child feature of DrawWPoker in which the pre-betting round has an ante limit which

is decided by all the player.

e The module PreFixedLimit is built from and has the same representation type as

DrawMPoker.

e The function bettingRound is redefined with a case of bet type betType = BAnte in

which the chips of a bet are limited by an ante limit anteLimzt.
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Roodles

Roodles is a child of DrawWPoker whose rule is applied when a lucky player wants to
bet more in the game. He can make a “roodle” by setting a rule, such as multiplication

of “ante”.

e The module Roodles is built from and has the same representation type as DrawM-

Poker.
e A function setAnteLimit sets up a new rule for ante (such as multiplication).

e The function bettingRound is redefined by adding a new rule in which the chips of a

bet are limited by the function setAnteLimit.

Module Implementations in FFML

The analyzed modules of Poker SPL are implemented in FFML. We show here the mod-
ules BasicPoker (BP) in Listing [A.17, BasicMPoker (BMP) in Listing [A.18] Basic36Poker
(B36P) in Listing BasicWPoker (BWP) in Listing MFormPoker (MFP) in
Listing DrawMPoker (DMP) in Listing and TexasHold’emMPoker (TMP) in
Listing

fmodule BP

signature totalCardNum : int;

signature flop : flopType —> BP —> int —> BP;
signature combination : card list —> int;
signature showdown : BP —> player;

signature endPoker : BP —> BP;

signature setPack : BP —> card list —> BP;

signature getPack : BP —> card list;

signature makePoker : player list —> card list —> BP;

signature playerGetsCards : player list —> card list —> int —> ©player list;

signature getPlayers : BP —> player list;

signature isPlaying : player —> BP —> bool;

signature getPlayerIld : BP —> int —> player;

contract getPack :: invariant property bp_getPack_ succ : all players : player list , all pack
card list , getPack(makePoker(players, pack)) = pack;

contract setPack :: invariant property bp_setPack_ totalCardNum : all x : BP, all cards : card
list , getLength (getPack(setPack(x, cards))) = totalCardNum || getLength (getPack(setPack(x
, cards))) = getLength (getPack(x));

contract flop :: property bp_ flop_ minusCards : all x : BP, all cardNum : int, all flopT
flopType, all sumNum : int, flopT = FBasic —> cardNum x getLength(getPlayers (x)) = sumNum
—> getLength (getPack (flop (flopT, x, cardNum))) = getLength (removeElements(getPack(x), sumNum
)) s

contract showdown :: invariant property bp_ showdown notWinner : all x : BP, all p : player, ~(

isPlaying (p, x)) —> ~(showdown (x) = p);

representation = player list % card list;
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25 let totalCardNum = 52;
26 let setPack (x, cards) = if getLength (cards) = totalCardNum then (fst(x),cards) else x;
27

28 let combination (cards) =

29 if haveRoyalFlush (cards) then 9

30 else if haveStraightFlush (cards) then 8

31 else if haveFourOfAKind (cards) then 7

32 else if haveFullHouse (cards) then 6

33 else if haveFlush (cards) then 5

34 else if haveCardRun (cards) then 4

35 else if haveTriple (cards) then 3

36 else if have2Pairs (cards) then 2

37 else if havelPair (cards) then 1

38 else 0;

39

40 let compare (cardsl, cards2) = ...;

41

42 let flop (x, cardNum, turnNum) =

43 let playerNum = getLength (fst(x)) in

44 let newplayers = playerGetsCards (fst(x), snd(x), cardNum) in
45 (newplayers, removeElements(pack, cardNum * playerNum)) ;
46

47 let showdown (x) =

48 let players = fst(x) in

49 let player0 = getPlayer(players) in

50 let rec loop (players : player list, player0) = match players with
51 | FNil —> player0

52 | FCons (p, 1) —>

53 begin

54 let pcombine = combination (snd(p)) in

55 let pcombine0 = combination (snd(player0)) in
56 if pcombine > pcombine0 then loop(l, p)

57 else if pcombine = pcombine0 then

58 if compare(snd(p), snd(player0)) then loop(l, p)
59 else loop(l, player0)

60 else loop(l, player0)

61 end in loop (players, player0);

62

63 let endPoker (x) = ...;

64

65 | proof of bp_getPack succ = foc proof {* by definition of getPack, makePoker;x*}
66
67 | proof of bp setPack totalCardNum =

68 | foc proof {* B

69 <1>1 assume x: Self, cards : card list ,

70 prove getLength (getPack(setPack(x, cards))) = totalCardNum || getLength (getPack(setPack(x
, cards))) = getLength (getPack(x))

71 <2>1 hypothesis Hl: getLength (cards) = totalCardNum,

72 prove getLength (getPack(setPack(x, cards))) = totalCardNum

73 by definition of getPack, setPack hypothesis HI

74 <2>2 hypothesis H2: ~“(getLength (cards) = totalCardNum),

75 prove getLength (getPack(setPack(x, cards))) = getLength (getPack(x))
76 by definition of getPack, setPack hypothesis H2

7 <2>3 conclude
78 <1>e conclude;*}
79
80 | proof of bp_flop_ minusCards =
81 | foc proof {x

82 <1>1 assume x: Self, cardNum : int, flopT : flopType, sumNum : int,

83 hypothesis Hl: flopT = FBasic,

84 hypothesis H2: cardNum * getLength(getPlayers (x)) = sumNum,

85 prove getLength(getPack(flop (flopT, x, cardNum))) = getLength(removeElements(getPack(x),
sumNum ) )

86 by definition of flop, getPack, makePoker hypothesis H1l, H2

87 <l1>e conclude; x)

88

89 | proof of bp showdown notWinner = foc proof {x assumed; =x}

90 | ;3

Listing A.17: BasicPoker (BP) in FFML

1 | fmodule BMP from BP

2 signature getPot : BMP —> int;

3 signature bet : BMP —> int —> int —> BMP;

4 signature fold : BMP —> int —> BMP;

5 signature makeMPoker : BP —> int —> BMP;

6 signature bettingRound : BMP —> betType —> int —> int —> (int x int) list —> BMP;

7 signature giveToWinner : BMP —> int —> int —> BMP;

8

9 contract getPack :: invariant property bmp getPack succ : all p0 : BP, all pot : int, getPack(

makeMPoker (p0, pot)) = BP!getPack(p0);

10

11 contract bet :: property bmp_bet_upd_pot : all x1 : BMP, all id : int, all amount : int, all x2
BMP, all playerl : player, all player2 : player, x2 = bet (x1, id, amount) —> playerl =
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getPlayerId(x1, id) —> player2 = getPlayerld(x2, id) —> getPot(x2) = getPot(xl) + amount &&
getAmount (player2) = getAmount(playerl) — amount;

contract bettinground :: property bmp_bettinground_ upd_pot : all x:BMP, all bType : betType, all
raiseNum : int, all callRepeat : int, all bettings : (int * int) list , all x2:BMP, x2 =
bettingRound (x, bType, raiseNum, callRepeat, bettings) —> getPot(x2) = getPot(x) + sumBets

(bettings);
representation extends BP with int; (% BP and pot x*)

let makeMPoker (poker, pot) = (poker, pot);
let getPot (x) = snd (x);

let bet (x, id, amount) =

let players = getPlayers(x) in
let pack = getPack(x) in
let rec loop (players) = match players with

| FNil —> FNil

| FCons (p, 1) —> if fst(fst(p)) = id then FCons (minusAmount(p, amount), loop (1))
else FCons(p, loop(l)) in

makeMPoker (BP! makePoker (loop (players), pack), snd(x) + amount);

let fold (x, id) =
let players = getPlayers(x) in
let pack = getPack(x) in
let rec loop (players : player list) = match players with
| FNil —> FNil
| FCons (p, 1) —> if fst(fst(p)) = id then loop(l)
else FCons(p, loop(l)) in
makeMPoker (BP! makePoker (loop (players), pack) ,snd(x));

let rec secondBetting (x, raiseNum, callRepeat, lastid, list) = ...;

let bettingRound (x, betType, raiseNum, callRepeat, bettings) =
if betType = BBasic then
begin
if getLength(getPlayers(x)) <= 1 then x
else
match bettings with
| FNil —> x
| FCons ((id, betAmount), 1) —>
if “(inPlayers (id, getPlayers(x))) then x
else if ~(betAmount > 0) then x
else secondBetting (bet(x,id,betAmount), raiseNum , callRepeat, id, 1)
end else x;

let giveToWinner (x, id, sumPot) =
let rec loop (players) = match players with
| FNil —> FNil
| FCons (p, 1) —>
if fst(fst(p)) = id then FCons (minusAmount(p, 0 — sumPot), loop(l))
else FCons(p, loop(l)) in makeMPoker(BP!makePoker(loop( getPlayers(x)), getPack(x)), snd(x)

3

proof of bmp_getPack succ =
foc proof {x
<1>1 assume p0 : BP, pot : int,
prove getPack (makeMPoker(p0, pot)) = BP!getPack(p0)
by definition of getPack, makeMPoker, getlst
<l>e conclude; =x}

proof of bmp_bet upd_ pot =
foc proof {=x
<1>1 assume x1 : Self, id : int, amount : int, x2 : Self, playerl : player, player2 : player,
hypothesis Hl: x2 = bet (x1, id, amount),
hypothesis H2: playerl = getPlayerld (x1, id),
hypothesis H3: player2 = getPlayerld (x2, id),
prove getPot(x2) = getPot(x1l) + amount && getAmount(player2) = getAmount(playerl) — amount
<2>1 prove getPot(x2) = getPot(x1l) + amount
assumed (* by hypothesis Hl definition of bet, makeMPoker, getPotx*)
<2>2 prove getAmount(player2) = getAmount(playerl) — amount
assumed
<2>e conclude
<l>e conclude; =x)

proof of bmp_bettinground upd_pot = foc proof {* assumed;x*}

proof of bp getPack succ =
foc proof {x -
<1>1 assume players : player list , desk : card list ,
prove getPack (makePoker(players, desk)) = desk
<2>1 prove getPack(makePoker(players, desk)) = BP!getPack (BP!makePoker(players, desk))
by definition of getPack, makePoker, getlst
<2>e qed by step <2>1 property BP!bp getPack succ
<l1>e conclude; =x}

proof of bp_flop_minusCards =

206




A.3. POKER PRODUCT LINE

93 | foc proof {=x

94 <1>1 assume x: Self, cardNum : int, flopT : flopType, sumNum : int,

95 prove flopT = FBasic —> cardNum x* getLength(getPlayers (x)) = sumNum —> getLength (getPack(
flop (flopT, x, cardNum))) = getLength (removeElements(getPack(x), sumNum))

96 <2>1 prove getPack (flop (flopT, x, cardNum)) = BP!getPack (BP!flop (flopT , getlst(x),
cardNum) )

97 by definition of flop, getlst, getPack

98 <2>e qged by step <2>1 definition of getPlayers, getPack property BP!bp flop minusCards

99 <l>e conclude; =x} - -

100 8%

Listing A.18: BasicMPoker (BMP) in FFML

1 | fmodule B36P from BP

2 representation = BP;

3 let totalCardNum = 36;

4

5 proof of bp_ setPack totalCardNum = foc proof {* assumed;x*}
6

7 proof of bp getPack succ =

8 foc proof {x

9 <1>1 assume players : player list , assume desk : card list ,
10 prove (getPack(makePoker(players, desk)) = desk)

11 <2>1 prove (getPack(makePoker(players, desk)) = BP!getPack (BP!makePoker(players, desk)))
12 by definition of getPack, makePoker

13 <2>e qed by step <2>1 property BP!bp_getPack_ succ

14 <l>e conclude; =x}

15

16 proof of bp_flop_ minusCards =
17 foc proof {x

18 <1>1 assume x : Self, assume cardNum : int, assume flopT : flopType, assume sumNum : int,

19 prove (flopT = FBasic) —> ((cardNum x getLength(getPlayers(x))) = sumNum) —> (getLength (
getPack (flop (flopT , x, cardNum))) = getLength (removeElements (getPack(x), sumNum)))

20 <2>1 prove (getPack(flop (flopT, x, cardNum)) = BP!getPack (BP! flop (flopT, x, cardNum)))

21 by definition of flop, getPack

22 <2>e qed by step <2>1 definition of getPlayers, getPack property BP!bp _ flop minusCards

23 <l>e conclude; =x}

24 | ;5

Listing A.19: Basic36Poker (B36P) in FFML

1 | fmodule BWP from BP

2 signature makeWCards : BWP —> BWP;

3 signature getWCards : BWP —> card list ;

4 signature wCombination : card list —> card list —> bool x int;

5 signature makeWPoker : BP —> card list —> BWP;

6

7 contract makeWCards :: property bwp_ make_ wcards : all x : BWP, all x2 : BWP, x2 = makeWCards(x)
—> isAKind (FCons (getElement (getPack(x),1), getWCards (x2)));

8

9 representation extends BP with card list;

10

11 let makeWCards (x) = .. ;
12 let getWCards (x) = snd (x);
13 let makeWPoker (poker, wCards) = (poker, wCards);

14 let wCombination (cards, wcards) aoaf

15

16 let showdown(x) =

17 let players = getPlayers(x) in

18 let player0 = getPlayer(players) in

19 let rec loop (players : player list , player0) = match players with

20 | FNil —> player0

21 | FCons (p, 1) —>

22 begin

23 if fst(wCombination (snd(p), wCards)) then

24 if snd(wCombination (snd(p), wCards)) > snd(wCombination(snd(player0), getWCards(x)))
then loop(l, p)

25 else loop (1, player0)

26 else loop (1, player0)

27 end in

28 if (fst(wCombination(snd(loop(players, player0)), wCards)) = false) then BP!showdown(x)

29 else loop(players, player0);

30

31 proof of bwp make wcards = foc proof {x assumed;x*}

32

33 proof of bp getPack succ =
34 foc proof {x

35 <1>1 assume players : player list , desk : card list ,

36 prove getPack (makePoker(players, desk)) = desk

37 <2>1 prove getPack(makePoker(players, desk)) = BP!getPack (BP!makePoker(players, desk))
38 assumed (* by definition of getPack, makePoker, getlst =x)

39 <2>e qed by step <2>1 property BP!bp_getPack_succ

40 <l>e conclude; =x}
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proof of bp_ flop_minusCards =
foc proof {x
<1>1 assume x: Self, cardNum : int, flopT : flopType, sumNum : int,
prove flopT = FBasic —> cardNum x* getLength(getPlayers (x)) = sumNum —> getLength (getPack(

flop (flopT, x, cardNum))) = getLength (removeElements(getPack(x), sumNum))
<2>1 prove getPack (flop (flopT, x, cardNum)) = BP!getPack (BP! flop (flopT, getlst(x),
cardNum) )

by definition of flop, getlst, getPack
<2>e qed by step <2>1 definition of getPlayers, getPack property BP!bp flop minusCards
<l>e conclude; =x}

proof of bp showdown notWinner =

foc proof {x

<1>1 assume x : Self, p : player, players: player list , player0 : player, wCards : card list ,
hypothesis Hl : wCards = getWCards(x) ,
hypothesis H2 : players = getPlayers(x),
hypothesis H3 : player0 = getPlayer(players),

prove ~ (isPlaying (p, x)) —> = (showdown (x) = p)

<2>1 hypothesis H21: (fst(wCombination(snd(findPlayer(players, player0, wCards)), wCards))
= false),
prove ~ (isPlaying (p, x)) —> ~ (showdown (x) = p)

<3>1 prove showdown(x) = BP!showdown(getlst (x))
by definition of showdown hypothesis H1, H2, H3, H21

<3>2 prove isPlaying (p, x) = BP!isPlaying (p, getlst(x))
by definition of isPlaying
<3>3 prove ~ (BP!isPlaying (p, getlst(x))) —> =~ (BP!showdown (getlst(x)) = p)

by property BP!bp showdown notWinner
<3>4 prove (-~ (BP!isPlaying (p, getlst(x))) —> =~ (BP!showdown (getlst(x)) = p)) —>
(7 (isPlaying (p, x)) —> = (showdown (x) = p))
(* by property update equal step <3>1, <3>2%) assumed
<3>e conclude
<2>2 hypothesis H22:
)) = false),
prove ~ (isPlaying (p, x)) —> = (showdown (x) = p)
assumed
<2>e conclude
<l>e conclude; =x}

(fst (wCombination(snd(findPlayer (players, player0, wCards)), wCards

Listing A.20: BasicWPoker (BWP) in FFML

fmodule MFP from BMP
signature makeMPokerForm : BMP —> card list —> MFP; (% BMP —> common cards —> MFP =x)
signature getCommonCards : MFP —> card list; (% MFP —> common cards x)

contract getPack :: property mfp getPack succ : all pl : BMP, all ccards : card list , getPack(
makeMPokerForm (pl, ccards)) = BMP!getPack(pl);

contract flop :: property mfp_flop_addComCards : all x : MFP, all cardNum : int, all flopT
flopType, all x2: MFP, flopT = FCom —> flop (flopT, x, cardNum) = x2 —> getPack (x2) =
removeElements (getPack (x), cardNum) && getCommonCards(x2) = getNumCards(getPack(x), cardNum

)5

contract flop :: property mfp_flop minusCards_R1
refines BMP!bp flop_ minusCards
extends premise flopT <> FCom;

representation extends BMP with card list; (* BMP x common cards )

let makeMPokerForm (mpoker, commonCards) = (mpoker, commonCards) ;
let getCommonCards (x) = snd (x);

let flop (flopType, x, cardNum) =
if flopType = FCom then
begin
let pack = removeElements(getPack(x), cardNum) in
makeMPokerForm (BMP! makeMPoker
(BP! makePoker(getPlayers (x) ,
removeElements (getPack (x), cardNum) ), getPot(x))
, getNumCards(getPack(x), cardNum))
end
else (BMP! flop (flopType ,x, cardNum), getPot(x));

let showdown (x) =

let players = getPlayers(x) in
let player0 = getPlayer(players) in
let rec loop (players : player list , player0) = match players with

| FNil —> player0
| FCons (p, 1) —>
begin
let pcombine = combination (join2Lists(snd(p), getCommonCards(x))) in
let pcombine0 = combination (join2Lists (snd(player0), getCommonCards(x))) in
if pcombine > pcombine0 then loop(l, p)
else if pcombine = pcombine0 then
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if BP!compareCombination(join2Lists (snd(p), getCommonCards(x)) , join2Lists (snd(player0),
getCommonCards(x))) then loop(l, p)
else loop(l, player0)
else loop(l, player0)
end in
loop (players, player0);

proof of mfp flop minusCards R1 =
foc proof {* - -
<1>1 assume x: MFP, cardNum : int, flopT : flopType,
hypothesis Hl: flopT <> FCom,
hypothesis H2: flopT = FBasic,
prove getLength (getPack(flop (flopT, x, cardNum))) = getLength(getPack(x)) — cardNum x*
getLength (getPlayers (x))
<2>1 prove fst (flop (flopT, x, cardNum)) = P1l!flop (flopT, getlst(x), cardNum)
by definition of getlst, flop hypothesis Hl property flopType_ neq
<2>2 prove getLength (Pl!getPack(P1l!flop (flopT, getlst(x), cardNum))) = getLength( P1!
getPack(getlst(x))) — cardNum % getLength(Pl!getPlayers(getlst(x)))
by property Pl!bmp_flop_minusCards_K1 hypothesis H2
<2>e ged by step <2>1, <2>2 definition of getPlayers, getPack, getlst
<l1>e conclude; =x}

proof of mfp getPack succ = foc proof {* by definition of getPack, makeMPokerForm, getlst; x}

proof of mfp flop addComCards =
foc proof {*x -
<1>1 assume x: Self, cardNum : int, flopT : flopType, x2 : Self,
hypothesis Hl: flopT = FCom,
hypothesis H2: x2 = flop (flopT, x, cardNum) ,
prove getPack (x2) = removeElements(getPack(x), cardNum) && getCommonCards(x2) =
getNumCards (getPack (x), cardNum)
<2>1 prove getCommonCards(x2) = getNumCards(getPack(x), cardNum)
by definition of flop, makeMPokerForm, getCommonCards hypothesis H1l, H2
<2>2 prove getPack (x2) = removeElements(getPack(x), cardNum)
<3>1 prove getPack(x2) = BMP!getPack (BMP!makeMPoker (BP!makePoker(getPlayers(x),
removeElements (getPack (x), cardNum)), getPot(x)))
by property mfp_ getPack_ succ definition of flop, getPack, makeMPokerForm, getlst
hypothesis H1, H2
<3>2 prove BMP!getPack (BMP! makeMPoker (BP!makePoker(getPlayers(x), removeElements(getPack
(x), cardNum)), getPot(x))) = BP!getPack (BP!makePoker(getPlayers(x), removeElements(
getPack(x), cardNum)))
by property BMP!bmp getPack succ
<3>3 prove BP!getPack (BP!makePoker(getPlayers(x), removeElements(getPack(x), cardNum))) =
removeElements (getPack (x), cardNum)
by property BP!bp getPack succ
<3>e conclude
<2>3 conclude
<l>e conclude; =x}

proof of mfp flop minusCards R1 =
foc proof {=x
<1>1 assume x: Self, cardNum : int, flopT : flopType, sumNum : int,
hypothesis Hl: flopT <> FCom,
prove flopT = FBasic —> cardNum x* getLength(getPlayers (x)) = sumNum —> getLength (getPack(

flop (flopT, x, cardNum))) = getLength (removeElements(getPack(x), sumNum))
<2>1 prove getPack (flop (flopT, x, cardNum)) = BMP!getPack (BMP! flop (flopT , getlst(x),
cardNum) )

by definition of flop, getlst, getPack hypothesis Hl property flopType_ neq
<2>e qed by step <2>1 hypothesis Hl definition of getPlayers, getPack property BMP!
bp flop minusCards
<l1>e conclude; x*}

proof of bp getPack succ = foc proof {x assumed; =x}
(* proof of bp getPack succ =
<1>1 assume players : player list , desk : card list ,
prove getPack (makePoker(players, desk)) = desk

<2>1 prove getPack(makePoker(players, desk)) = Pl!getPack(P1l!makePoker(players, desk))
by definition of getPack, makePoker, getlst
<2>e qed by step <2>1 propety Pl!bp_getPack_succ

<l1>e conclude; x)

proof of bmp_bettinground upd_pot =
foc proof {x
<1>1 assume x:Self, bType : betType, raiseNum : int, callRepeat : int, bettings : (int * int)
list , x2:Self,
hypothesis Hl : x2 = bettingRound (x, bType, raiseNum , callRepeat, bettings),
prove getPot(x2) = getPot(x) + sumBets(bettings)
<2>1 prove getlst(x2) = BMP!bettingRound(getlst(x), bType, raiseNum, callRepeat, bettings)
by definition of bettingRound, getlst hypothesis H1
<2>2 prove getPot(x2) = BMP!getPot(getlst (x2))
by definition of getPot
<2>3 prove getPot(x) = BMP!getPot (getlst(x))
by definition of getPot
<2>4 assume x2BMP : BMP, xBMP : BMP,
hypothesis H2 : x2BMP = getlst(x2),
hypothesis H3 : xBMP = getlst(x),
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prove x2BMP = BMP! bettingRound (xBMP, bType, raiseNum, callRepeat, bettings) —> BMP!getPot (
x2BMP) = BMP! getPot (xBMP) + sumBets(bettings)
by property BMP!bmp_bettinground_upd_pot
<2>e conclude
<l>e conclude; =x}

proof of bmp bet upd pot =
<1>1 assume x1 : Self, id : int, amount : int, x2 : Self, playerl : player, player2 : player,
hypothesis Hl: x2 = bet (x1, id, amount),
hypothesis H2: playerl = getPlayerld(x1, id),
hypothesis H3: player2 = getPlayerld (x2, id),
prove getPot(x2) = getPot(x1l) + amount && getAmount(player2) = getAmount(playerl) — amount
<2>1 assume x1BMP : BMP, x2BMP : BMP, playerll : player, player22 : player,
hypothesis H10 : x1BMP = getlst (x1),
hypothesis H1l : x2BMP = BMP!bet (x1BMP, id, amount),
hypothesis H12 : playerll = BMP!getPlayerld (x1BMP, id),
hypothesis H13 : player22 = BMP!getPlayerld (x2BMP, id),
prove getPot(x2) = getPot(x1l) + amount && getAmount(player2) = getAmount(playerl) —
amount
<3>1 prove getlst(x2) = x2BMP
<31>1 prove getlst(x2) = BMP!bet (getlst(xl), id, amount)
by definition of getlst, bet hypothesis HI1
<31>2 prove BMP!bet (getlst(xl), id, amount) = x2BMP
by hypothesis H1l, HI10
<31>e conclude

<3>2 prove playerl = playerll
by definition of getPlayerld hypothesis H10, H2, HI12
<3>3 prove player2 = player22

by definition of getPlayerld hypothesis H10, H3, H13 step <3>1
<3>10 prove BMP!getPot (x2BMP) = BMP!getPot (xI1BMP) -+ amount && getAmount(player22) =
getAmount (playerll) — amount
(* by property BMP!bmp bet upd pot hypothesis H11l, H12, H13 x*) assumed
<3>e qed by hypothesis H10 step <3>1, <3>2, <3>3, <3>10 definition of getPot
<2>e conclude
<l>e conclude; =x}

proof of bmp_getPack succ =
foc proof {x
<1>1 assume p0 : BP, pot : int,
prove getPack (makeMPoker(p0, pot)) = BP!getPack(p0)
assumed
(* FoC + Zenon error:
<2>1 prove getPack (makeMPoker(p0, pot)) = BMP!getPack (BMP! makeMPoker(p0, pot))
by definition of getPack, getlst, makeMPoker
<2>2 prove BMP!getPack (BMP! makeMPoker (p0O, pot)) = BP!getPack(p0)
by property BMP!bmp getPack succ
<2>e conclude x)
<l>e conclude; =x}

proof of bp setPack totalCardNum =
foc proof {x
<1>1 assume x: Self, cards : card list ,
prove getLength (getPack(setPack(x, cards))) = totalCardNum || getLength (getPack(setPack
(x, cards))) = getLength (getPack(x))
by definition of totalCardNum , getPack, setPack, getlst property BMP!
bp_setPack_totalCardNum
<l>e conclude; =x}

Listing A.21: MFormPoker (MFP) in FFML

fmodule DMP from MFP

signature makeDMPoker : MFP —> int —> DMP;

signature discardCards : DMP —> int —> list (int) —> DMP;
signature getAnte : DMP —> int;

signature setAnte : DMP —> int —> DMP;

signature ante : int;

contract bettingRound :: property dmp_bettinground upd_pot_R1
refines MFP!bmp_bettinground_upd_ pot
extends premise bType <> BAnte;

representation extends MFP with int; (x MFP x ante x)

let makeDMPoker (mfpoker, ante) = (mfpoker, ante);
let getAnte (x) = snd(x);
let setAnte (x, ante) = makeDMPoker(fst (x), ante);

FNil —> false

FCons ((_, chipsl), FNil) —> false

FCons ((_, chipsl), FCons ((_, chips2), list)) —>
if chipsl = getAnte(x) && chips2 = 2 % chipsl then

let checking betting chips (x, betlist : (int x int) list) = match betlist with
\
\
\
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23 begin

24 let rec loop (list : (int x int) list , chips2) = match list with

25 | FNil —> true

26 | FCons ((_, chips3), 1) —> (chips3 = 2 % chips2) && loop (1, chips3)

27 in loop (list , chips2)

28 end

29 else false;

30

31 let bettingRound (x, betType, raiseNum , callRepeat, bettings) =

32 if betType = BAnte then

33 if getAnte(x) >= 0 then

34 if checking betting chips (x, bettings) = true then

35 (MFP! bettingRound (x, betType, raiseNum, callRepeat, bettings), snd(x)) else x
36 else x

37 else (MFP!bettingRound (x, betType, raiseNum, callRepeat, bettings), snd(x));
38

39 let discardCards (x, playerld, places) =

40 let players = getPlayers (x) in

41 let pack = getPack (x) in

42 let rec loop_players (players : player list, pack : card list) = match players with
43 | FNil —> FNil

44 | FCons(((id, amount), playerCards), 1) —>

45 begin

46 if playerld = id then

47 begin

48 let result = discard (pack, playerCards, places) in

49 FCons (((id, amount), snd(result)), loop players (1, fst(result)))

50 end -

51 else FCons(((id, amount), playerCards), loop players (1, pack))

52 end in -

53 let rec loop pack (players : player list , pack : card list) = match players with
54 | FNil —> pack

55 | FCons(((id, amount), playerCards), 1) —>

56 begin

57 if playerld = id then

58 begin

59 let result = discard (pack, playerCards, places) in

60 fst (result)

61 end

62 else (loop_pack (1, pack))

63 end in

64 let newPack = loop pack (players, pack) in

65 let updatePlayers = loop players (players, pack) in

66 makeDMPoker (MFP! makeMPokerForm (BMP! makeMPoker

67 (BP! makePoker (updatePlayers, newPack),getPot(x)), getCommonCards(x)) ,snd(x));
68

69 proof of dmp bettinground upd_ pot_R1 =
70 foc proof {x

71 <1>1 assume x:Self, bType : betType, raiseNum : int, callRepeat : int, bettings : (int * int)
list , x2:Self,
72 hypothesis Hl1 : (bType <> BAnte),
73 hypothesis H2 : (x2 = bettingRound(x, bType, raiseNum, callRepeat, bettings)),
74 prove (getPot(x2) = (getPot(x) + sumBets(bettings)))
75
76 <2>1 assume x1MFP : MFP, x2MFP : MFP,
i hypothesis H3 : xIMFP = getlst(x),
78 hypothesis H4 : (x2MFP = MFP! bettingRound (getlst(x), bType, raiseNum, callRepeat,
bettings)) ,
79 prove (getPot(x2) = (getPot(x) + sumBets(bettings)))
80
81 <3>1 prove getPot(x2) = MFP!getPot(getlst(x2))
82 by definition of getPot
83 <3>2 prove getPot(x) = MFP!getPot(getlst(x))
84 by definition of getPot
85 <3>3 prove x2MFP = MFP!bettingRound (xIMFP, bType, raiseNum,6 callRepeat, bettings)
86 by definition of bettingRound, getlst hypothesis H1,H2, H3, H4 property
betType neq
87 <3>4 prove getlst(x2) = x2MFP
88 by hypothesis H2, H4 definition of bettingRound, getlst hypothesis Hl property
betType_neq
89
90 <3>5 prove MFP!getPot (x2MFP) = (MFP!getPot (xIMFP) 4 sumBets(bettings))
91 assumed (* by property MFP!bmp_bettinground upd_pot step <3>3 x)
92 <3>e qed by step <3>1, <3>2, <3>3, <3>4, <3>5 hypothesis H3
93 <2>e conclude
94 <l>e conclude; =x}
95

96 | proof of mfp_ flop_ addComCards =
97 | foc proof {=x

98 <1>1 assume x: Self, cardNum : int, flopT : flopType, x2 : Self,

99 hypothesis Hl: flopT = FCom,

100 hypothesis H2: x2 = flop (flopT, x, cardNum),

101 prove getPack (x2) = removeElements(getPack(x), cardNum) && getCommonCards(x2) =
getNumCards (getPack (x), cardNum)

102 <2>1 assume xMFP : MFP, x2MFP : MFP,

103 hypothesis H21IN1: xMFP = getlst (x),

104 hypothesis H21IN2: x2MFP = getlst(x2),

105 prove getPack (x2) = removeElements(getPack(x), cardNum) && getCommonCards(x2) =
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getNumCards (getPack (x), cardNum)
<3>1 prove getPack (x2) = removeElements(getPack(x), cardNum)
<4>1 prove getlst(x2) = MFP! flop (flopT, getlst(x), cardNum)
by definition of flop, getlst hypothesis H2
<4>2 prove x2MFP = MFP! flop (flopT , xMFP, cardNum)
by hypothesis H21N1, H2IN2 step <4>1
<4>3 prove getPack(x) = MFP!getPack (xMFP)
by definition of getPack hypothesis H2IN1
<4>4 prove getPack(x2) = MFP!getPack (x2MFP)
by definition of getPack hypothesis H2IN2
<4>5 prove MFP!getPack (x2MFP) = removeElements (MFP! getPack (xMFP) , cardNum)
by hypothesis Hl step <4>2 property MFP!mfp flop addComCards
<4>e conclude
<3>2 prove getCommonCards(x2) = getNumCards(getPack(x), cardNum)
<4>1 prove getlst(x2) = MFP!flop (flopT, getlst(x), cardNum)
by definition of flop, getlst hypothesis H2
<4>2 prove x2MFP = MFP! flop (flopT , xMFP, cardNum)
by hypothesis H21N1, H2IN2 step <4>1
<4>3 prove getCommonCards(x2) = MFP!getCommonCards (x2MFP)
by definition of getCommonCards hypothesis H21N2
<4>4 prove getPack(x) = MFP!getPack (xMFP)
by definition of getPack hypothesis H21IN1
<4>5 prove MFP!getCommonCards(x2MFP) = getNumCards( MFP! getPack (xMFP) , cardNum)
by hypothesis Hl1 step <4>2 property MFP!mfp flop addComCards
<4>e conclude - -
<3>e conclude
<2>e conclude
<l>e conclude; =x}

proof of bmp getPack succ =
foc proof {x
<1>1 assume pO0 : BP, pot : int,
prove getPack (makeMPoker(p0, pot)) = BP!getPack(p0)
<2>1 prove getPack(makeMPoker(p0, pot)) = MFP!getPack (MFP!makeMPoker(p0, pot))
by definition of getPack, getlst, makeMPoker
<2>2 prove MFP!getPack (MFP! makeMPoker(p0, pot)) = BP!getPack(p0)
by property MFP!bmp_getPack_ succ
<2>e conclude
<1>e conclude;x*}

Listing A.22: DrawMPoker(DMP) in FFML

fmodule THP from DMP
representation = DMP;
let bettingRound (x, betType, raiseNum, callRepeat, bettings) =
if betType = BFinal then x
else DMP!bettingRound (x, BBasic, raiseNum, callRepeat, bettings);

H

Listing A.23: TexasHold’emMPoker (THP) in FFML

Products of Poker SPL

We show the products generated automatically by FFML Product Generation tool.
Listing [A.24]is the implementation of the configuration {BP, B36P, BM P}. Listing [A.25
is the implementation of the configuration {BP, BM P, BW P}. Listing is the im-
plementation of the configuration { BP, B36 P, BIW P}. Listing is the implementation
of the configuration {BP, BM P, MFP,BWP}. At the end of this section we give the
details of the product B36PBMP of the configuration { BP, B36 P, BM P} translated into

FoCaLiZe in Listing [A:28]

fmodule B36PBMP from BMP
representation = BMP;
let totalCardNum = 36;

proof of bp_getPack_ succ =
foc proof {x
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<1>1 assume players : player list , assume desk : card list ,
prove (getPack(makePoker(players ,hdesk)) = desk)
<2>1 prove (getPack(makePoker(players ,hdesk)) = BMP!getPack (BMP! makePoker(players ,desk)))
by definition of getPack, makePoker
<2>e qed by step <2>1 property BMP!bp_ getPack_succ
<1>e conclude;*}

proof of bp flop minusCards =
foc proof {* -
<1>1 assume x : Self, assume cardNum : int, assume flopT : flopType, assume sumNum : int,
prove (flopT = FBasic) —> ((cardNum x getLength(getPlayers(x))) = sumNum) —> (getLength (
getPack (flop (flopT ,x,cardNum))) = getLength (removeElements(getPack(x) ,sumNum)))
<2>1 prove (getPack(flop (flopT ,x,cardNum)) = BMP!getPack (BMP! flop (flopT ,x,cardNum)))
by definition of flop, getPack
<2>e qed by step <2>1 definition of getPlayers, getPack property BMP!bp flop minusCards
<l>e conclude; =x}

Listing A.24: B36PBMP in FFML

fmodule BMPBWP from BWP

signature getPot : BMPBWP —> int;

signature bet : BMPBWP —> int —> int —> BMPBWP;

signature fold : BMPBWP —> int —> BMPBWP;

signature makeMPoker : BWP —> int —> BMPBWP;

signature bettingRound : BMPBWP —> betType —> int —> int —> (int x int) list —> BMPBWP;
signature giveToWinner : BMPBWP —> int —> int —> BMPBWP;

contract getPack :: invariant property bmp getPack succ : all p0:BWP, all pot:int, getPack(
makeMPoker (p0, pot)) = BWP!getPack(p0);

contract bet :: property bmp_bet_upd_pot : all x1:BMPBWP, all id:int, all amount:int, all x2:
BMPBWP, all playerl:player, all player2:player, x2 = bet(xl,id,amount) —> playerl =
getPlayerId(x1,id) —> player2 = getPlayerld (x2,id) —> getPot(x2) = getPot(x1l) + amount &&
getAmount (player2) = getAmount(playerl) — amount;

contract bettinground :: property bmp_bettinground_ upd_pot : all x:BMPBWP, all bType:betType,
all raiseNum:int, all callRepeat:int, all bettings: (int x int) list, all x2:BMPBWP, x2 =
bettingRound (x,bType,raiseNum , callRepeat ,bettings) —> getPot(x2) = getPot(x) + sumBets(
bettings) ;

representation extends BWP with int;
let getPot (x) = snd(x);

let bet (x , id , amount) =
let players = getPlayers(x) in
let pack = getPack(x) in
let rec loop (players) = match players with
| FNil —> FNil
| FCons(p,l) —> if fst(fst(p)) = id then FCons(minusAmount(p,amount) ,6loop (1))

else FCons(p,loop(l)) in
makeMPoker (BWP! makePoker (loop (players) ,pack) ,getPot(x) + amount);

let fold (x , id) =

let players = getPlayers(x) in

let pack = getPack(x) in

let rec loop (players : player list) = match players with
| FNil —> FNil

| FCons(p,l) —> if fst(fst(p)) = id then loop (1)

else FCons(p,loop(l)) in
makeMPoker (BWP! makePoker (loop (players) ,pack) ,getPot(x));

let rec secondBetting (x , raiseNum , callRepeat , lastid, list) = ... ;
let bettingRound (x , betType , raiseNum , callRepeat , bettings) =

if betType = BBasic then

begin

if getLength(getPlayers(x)) <= 1 then x
else match bettings with
| FNil —> x
| FCons((id ,betAmount),1) —>
if “(((inPlayers(id, getPlayers(x))))) then x
else if ~(((betAmount > 0))) then x
else secondBetting (bet(x,id ,betAmount) ,raiseNum, callRepeat ,id,1)
end
else x;

let giveToWinner (x , id , sumPot) =

let rec loop (players) = match players with
| FNil —> FNil
| FCons(p,l) —> if fst(fst(p)) = id then FCons(minusAmount(p,0 — sumPot) ,loop (1))

else FCons(p,loop(l)) in
makeMPoker (BWP! makePoker (loop (getPlayers (x)) ,getPack(x)),getPot(x));

proof of bp_flop_minusCards =
foc proof {=x
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<1>1 assume x : Self, assume cardNum : int, assume flopT : flopType, assume sumNum : int,
prove flopT = FBasic —> cardNum x* getLength(getPlayers(x)) = sumNum —> getLength (getPack (
flop (flopT ,x,cardNum))) = getLength (removeElements(getPack(x) ,sumNum))

<2>1 prove getPack(flop (flopT ,x,cardNum)) = BWP!getPack (BWP! flop (flopT , getlst (x) ,cardNum))
by definition of flop, getlst, getPack
<2>e qed by step <2>1 definition of getPlayers, getPack property BWP!bp_ flop minusCards
<l>e conclude; =x}

proof of bmp bet upd pot =
foc proof {* - -
<1>1 assume x1 : Self, assume id : int, assume amount : int, assume x2 : Self, assume playerl
player , assume player2 : player,
hypothesis Hl1 : x2 = bet(x1l,id ,amount),
hypothesis H2 : playerl = getPlayerlId(x1,id),
hypothesis H3 : player2 = getPlayerld (x2,id),

prove getPot(x2) = getPot(x1l) + amount && getAmount(player2) = getAmount(playerl) — amount
<2>1 prove getPot(x2) = getPot(x1l) + amount

assumed
<2>2 prove getAmount(player2) = getAmount(playerl) — amount

assumed

<2>e conclude
<l>e conclude; =x}

proof of bmp_bettinground upd_pot = foc proof {* assumed; =}

proof of bp getPack succ =
foc proof {x -
<1>1 assume players : player, assume desk : card list ,
prove getPack (makePoker(players ,desk)) = desk
<2>1 prove getPack(makePoker(players ,hdesk)) = BWP! getPack (BWP! makePoker(players ,desk))
by definition of getPack, makePoker, getlst
<2>e qed by step <2>1 property BWP!bp getPack succ
<l>e conclude; =x}

proof of bmp_getPack succ =

foc proof {=x

<1>1 assume p0 : BWP, assume pot : int,
prove getPack (makeMPoker(p0, pot)) = BWP!getPack (p0)
by definition of getPack, makeMPoker, getlst

<l>e conclude; =x}

3

Listing A.25: BMPBWP in FFML

fmodule B36PBWP from BWP
representation = BWP;
let totalCardNum = 36;

proof of bp getPack succ =
foc proof {* -
<1>1 assume players : player list , assume desk : card list ,
prove (getPack(makePoker(players ,hdesk)) = desk)
<2>1 prove (getPack(makePoker(players ,hdesk)) = BWP!getPack (BWP! makePoker(players ,desk)))
by definition of getPack, makePoker
<2>e qed by step <2>1 property BWP!bp getPack succ
<1>e conclude;*}

proof of bp_flop_minusCards =
foc proof {x
<1>1 assume x : Self, assume cardNum : int, assume flopT : flopType, assume sumNum : int,
prove (flopT = FBasic) —> ((cardNum x getLength(getPlayers(x))) = sumNum) —> (getLength (
getPack (flop (flopT ,x,cardNum))) = getLength(removeElements(getPack(x) ,sumNum)))
<2>1 prove (getPack(flop (flopT ,x,cardNum)) = BWP!getPack (BWP! flop (flopT ,x,cardNum)))
by definition of flop, getPack
<2>e qed by step <2>1 definition of getPlayers, getPack property BWP!bp flop minusCards
<l>e conclude; =x} - -

3

Listing A.26: B36PBWP in FFML

fmodule BWPMFP from MFP

signature makeWCards : BWPMFP —> BWPMFP;

signature getWCards : BWPMFP —> card list ;

signature wCombination : card list —> card list —> bool * int;
signature makeWPoker : MFP —> card list —> BWPMEFP;

contract makeWCards :: property bwp make wcards : all x:BWPMFP, all x2:BWPMFP, x2 = makeWCards(
x) —> isAKind (FCons(getElement (getPack(x) ,1) ,getWCards(x2)));

representation extends MFP with card list;
let makeWCards (x) = ...;

let getWCards (x) = snd(x);
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let makeWPoker (poker , wCards) = (poker,wCards);
let wCombination (cards , wcards) = ... ;

let showdown (x) =

let wCards = getWCards(x) in
let players = getPlayers(x) in
let player0 = getPlayer(players) in

if (fst(wCombination(snd(findPlayer (players ,player0 ,wCards)) ,wCards)) = false) then MFP!
showdown (x)
else findPlayer (players ,player0 ,wCards);

proof of bp getPack succ =
foc proof {x
<1>1 assume players : player list , assume desk : card list ,
prove getPack (makePoker(players ,desk)) = desk
<2>1 prove getPack(makePoker(players ,desk)) = MFP!getPack (MFP! makePoker(players ,desk))
assumed
<2>e qed by step <2>1 property MFP!bp_ getPack_ succ
<l>e conclude; =x}

proof of bp_flop_minusCards =
foc proof {x

<1>1 assume x : Self, assume cardNum : int, assume flopT : flopType, assume sumNum : int,
prove flopT <> FCom —> flopT = FBasic —> cardNum x getLength(getPlayers(x)) = sumNum —>
getLength (getPack (flop (flopT ,x,cardNum))) = getLength (removeElements(getPack (x) ,sumNum
))

<2>1 prove getPack(flop (flopT ,x,cardNum)) = MFP!getPack (MFP! flop (flopT ,getlst (x) ,cardNum))
by definition of flop, getlst, getPack
<2>e qged by step <2>1 definition of getPlayers, getPack property MFP!
mfp flop minusCards_R1
<l>e conclude; =x}

proof of bwp make wcards = foc proof {x assumed; =}

proof of bp_ showdown_notWinner =
foc proof {=x
<1>1 assume x : Self, assume p : player, assume players : player list , assume player0 : player,
assume wCards : card list ,
hypothesis Hl : wCards = getWCards(x) ,
hypothesis H2 : players getPlayers (x),
hypothesis H3 : player0 getPlayer (players),

prove ~ (isPlaying(p,x)) —> ~ (showdown(x) = p)

<2>1 hypothesis H21 : (fst(wCombination(snd(findPlayer (players ,player0 ,wCards)),wCards)) =
false),
prove = (isPlaying(p,x)) —> = (showdown(x) = p)

<3>1 prove showdown(x) = MFP!showdown(getlst (x))
by definition of showdown hypothesis H1l, H2, H3, H21
<3>2 prove isPlaying(p,x) = MFP!isPlaying (p,getlst(x))
by definition of isPlaying

<3>3 prove ~ (MFP!isPlaying(p,getlst(x))) —> =~ (MFP!showdown(getlst(x)) = p)
by property MFP!bp_ showdown_notWinner
<3>4 prove ( ~ (MFP!isPlaying(p,getlst(x))) —> =~ (MFP!showdown(getlst(x)) = p)) —> (
~ (isPlaying(p,x)) —> ~ (showdown(x) = p))
assumed
<3>e conclude
<2>2 hypothesis H22 : ~ (fst(wCombination(snd(findPlayer (players ,h player0 ,wCards)) ,wCards))
= false),
prove ~ (isPlaying(p,x)) —> ~ (showdown(x) = p)

assumed
<2>e conclude
<l>e conclude; =x}

3

Listing A.27: BWPMFP in FFML

open "bp";;

open "bmp";;

species B36PBMP_specl (BP is BP_imp, BMP is BMP_imp (BP)) =
inherit BMP_specl (BP);

end;;

species B36PBMP_spec2 (BP is BP_imp, BMP is BMP_imp (BP)) =
inherit B36PBMP_specl (BP, BMP);

property bmp_bettinground_upd_pot : all x : Self, all bType : betType, all raiseNum : int, all

callRepeat : int, all bettings : ( intx int ) list , all x2 : Self, (x2 = bettingRound(x,
bType, raiseNum, callRepeat, bettings)) —> (getPot(x2) = (getPot(x) + sumBets(bettings)));

property bmp_ bet upd_ pot : all x1 : Self, all id : int, all amount : int, all x2 : Self, all
playerl : player, all player2 : player, (x2 = bet(xl, id, amount)) —> (playerl =
getPlayerId(x1, id)) —> (player2 = getPlayerld(x2, id)) —> ((getPot(x2) = (getPot(x1l) +
amount)) && (getAmount(player2) = (getAmount(playerl) — amount)));

property bmp_getPack_succ : all p0 : BP, all pot : int, (getPack(makeMPoker(p0, pot)) = BP!
getPack (p0));
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16 property bp_flop_ minusCards : all x : Self, all cardNum : int, all flopT : flopType, all sumNum
int, (flopT = FBasic) —> ((cardNum * getLength(getPlayers(x))) = sumNum) —> (getLength (

getPack (flop (flopT, x, cardNum))) = getLength(removeElements(getPack(x), sumNum)));

17

18 property bp_showdown_ notWinner : all x : Self, all p : player, ~ isPlaying(p, x) —> = (
showdown (x) = p);

19

20 property bp getPack succ : all players : player list, all pack : card list , (getPack(makePoker(
players, pack)) = pack);

21

22 property bp setPack totalCardNum : all x : Self, all cards : card list , ((getLength(getPack(
setPack (x, cards))) = totalCardNum) || (getLength (getPack(setPack(x, cards))) = getLength(
getPack (x)))) ;

23 | end;;

24

25 | species B36PBMP_imp (BP is BP_imp, BMP is BMP_imp (BP)) =
26 inherit B36PBMP_spec2 (BP, BMP) ;

27
28 representation = BMP;
29
30 let maxPlayers = BMP! maxPlayers;

31 let combination (listc) = BMP!combination(listc);

32 let setPack (x, cards) = BMP!setPack(x, cards);

33 let addPlayer (x, player) = BMP!addPlayer(x, player);

34 let getPlayerCards (player) = BMP!getPlayerCards(player);

35 let addCards (cards, pack, cardNum, count) = BMP!addCards(cards, pack, cardNum, count);

36 let playerGetsCards (players, pack, cardNum) = BMP!playerGetsCards(players, pack, cardNum);
37 let flop (flopType, x, cardNum) = BMP! flop (flopType, x, cardNum) ;

38 let showdown (x) = BMP!showdown(x) ;

39 let getPlayers (x) = BMP!getPlayers(x);

40 let getPack (x) = BMP!getPack(x);

41 let inPlayers (id, players) = BMP!inPlayers(id, players);

42 let isPlaying (p0, x) = BMP!isPlaying (p0, x);

43 let getPlayerId (x, id) = BMP!getPlayerlId(x, id);

44 let makePoker (players, cards) = BMP!makePoker(players, cards);

45 let endPoker (x) = BMP!endPoker(x);

46 let makeMPoker (poker, pot) = BMP!makeMPoker(poker, pot);

47 let getPot (x) = BMP!getPot(x);

48 let bet (x, id, amount) = BMP!bet(x, id, amount);

49 let fold (x, id) = BMP!fold (x, id);

50 let bettingRound (x, betType, raiseNum, callRepeat, bettings) = BMP!bettingRound(x, betType,
raiseNum, callRepeat, bettings);

51 let giveToWinner (x, id, sumPot) = BMP!giveToWinner(x, id, sumPot);

52 let totalCardNum = 36;

53

54

55

56

57 proof of bmp getPack succ =

58 <1>1 assume p0 : BP, assume pot : int,

59 prove (getPack(makeMPoker(p0O, pot)) = BP!getPack(p0))

60 <2>1 prove getPack (makeMPoker (p0, pot)) = BMP!getPack (BMP!makeMPoker(p0O, pot))
61 by definition of getPack, makeMPoker

62 <2>2 prove BMP!getPack (BMP! makeMPoker (p0, pot)) = BP!getPack(p0)
63 by property BMP!bmp_getPack_succ

64 <2>e conclude

65 <1>e conclude;

66

67 proof of bp_ showdown_ notWinner = by definition of isPlaying, showdown property BMP!
bp_showdown_notWinner;

68

69 proof of bp_ getPack succ =

70 <1>1 assume players : player list , assume desk : card list ,

71 prove (getPack(makePoker(players, desk)) = desk)

72 <2>1 prove (getPack(makePoker(players, desk)) = BMP!getPack (BMP! makePoker(players, desk)))

73 by definition of getPack, makePoker

74 <2>e qed by step <2>1 property BMP!bp getPack succ

75 <1>e conclude;

76

7 proof of bp_flop_minusCards =

78 <1>1 assume x : Self, assume cardNum : int, assume flopT : flopType, assume sumNum : int,

79 prove (flopT = FBasic) —> ((cardNum x getLength(getPlayers(x))) = sumNum) —> (getLength (
getPack (flop (flopT, x, cardNum))) = getLength(removeElements(getPack(x), sumNum)))

80 <2>1 prove (getPack(flop (flopT, x, cardNum)) = BMP!getPack (BMP! flop (flopT , x, cardNum)))

81 by definition of flop, getPack

82 <2>e qed by step <2>1 definition of getPlayers, getPack property BMP!bp flop minusCards

83 <1>e conclude; - B

84

85 [end;;

86

87 | collection B36PBMP _col =

88 implement BSGPBMPiimp (BP_col, BMP_ col);

89 | end;;

Listing A.28: B36PBMP in FoCal.iZe
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Software using Product Lines

Résume :

Aujourd’hui, la diversité des logiciels pose des difficultés a de nombreuses entreprises et
organisations. Alors que 1’ingénierie des lignes de produits logiciels est considérée comme une
solution possible et utilisée dans de nombreux domaines depuis des décennies, la problématique du
développement de lignes de produits corrects par construction est toujours d’actualité. Cette these
commence par une présentation de quelques techniques existantes appliquées pour développer et
garantir la correction des lignes de produits logiciels. Nous proposons une solution basée sur la
conception et la mise en oeuvre d’un langage FFML (Formal Feature Module Language) inspiré du
langage FoCaLiZe et fournissant des mécanismes pour exprimer la réutilisation et la variabilité. Ce
langage permet de spécifier, implanter une fonctionnalité et prouver sa correction en donnant des
indications au prouveur automatique de théorémes Zenon. Nous développons un compilateur de
FFML en FoCaLiZe. Nous fournissons également un mécanisme de composition qui, appliqué a une
configuration valide fournie par ’utilisateur, produit automatiquement un produit final correct-par-
construction, ce qui signifie que le code produit est correct par rapport a ses spécifications, elles-aussi
obtenues par composition des spécifications des caractéristiques impliquées dans la configuration de
’utilisateur. Enfin, nous évaluons notre méthodologie en construisant une ligne de produits logiciels
pour le poker.

Mots-clefs:
Développement correct-par-construction, ligne de produits logiciels, variablilité, spécification
formelle, preuve formelle, FoCaliZe, Zenon

Abstract :

Nowadays diversity of software raises difficulties for many companies and organizations. While
software product line engineering is considered as a solution and used in many domains for decades,
research about the development of correct-by-construction software product lines is still up-to-date
and necessary. We begin this thesis with an overview of how existing techniques were applied to
develop and guarantee the correctness of software product lines. We propose a solution based on the
design and implementation of a language FFML (Formal Feature Module Language) inspired by the
FoCaLiZe language and providing mechanisms for expressing reuse and variability. This language
allows to specify, implement a feature and prove correctness by giving hints to the automatic theorem
prover Zenon. We develop a compiler for FFML to FoCalLiZe. We also provide a composition
mechanism which applied to a valid user configuration automatically computes a final product
correct-by-construction, meaning that the code of the product is correct with respect to its
specifications. The specifications of the final product are obtained by composing the specifications of
the features involved in the user configuration, the code is obtained by composing the code of the
features and the proofs are also produced by composition. Finally, we evaluate our methodology by
building a poker software product line.

Keywords :
Correct-by-Construction Development, Software Product Lines, variability, formal specification,
Formal proof, FoCalLiZe, Zenon
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