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Abstract. When large software product lines are engineered, a combined set
of traditional techniques, such as inheritance, or design patterns, is likely to be
used for implementing variability. In these techniques, the concept of feature, as
a reusable unit, does not have a first-class representation at the implementation
level. Further, an inappropriate choice of techniques becomes the source of vari-
ability inconsistencies between the domain and the implemented variabilities.

In this thesis, we study the diversity of the majority of variability implementa-
tion techniques and provide a catalog that covers an enriched set of them. Then,
we propose a framework to explicitly capture and model, in a fragmented way, the
variability implemented by several combined techniques into technical variability
models. These models use variation points and variants, with their logical relation
and binding time, to abstract the implementation techniques.

We show how to extend the framework to trace features with their respective
implementation. In addition, we use this framework and provide a tooled ap-
proach to check the consistency of the implemented variability. Our method uses
slicing to partially check the corresponding propositional formulas at the domain
and implementation levels in case of 1–to–m mapping. It offers an early and auto-
matic detection of inconsistencies.

As validation, we report on the implementation in Scala of the framework as
an internal domain specific language, and of the consistency checking method.
These implementations have been applied on a real feature-rich system and on
three product line case studies, showing the feasibility of the proposed contribu-
tions.





Résumé. Durant le développement de grandes lignes de produits logiciels,
un ensemble de techniques d’implémentation traditionnelles, comme l’héritage
ou les patrons de conception, est utilisé pour implémenter la variabilité. La no-
tion de feature, en tant qu’unité réutilisable, n’a alors pas de représentation de
première classe dans le code, et un choix inapproprié de techniques entraîne des
incohérences entre variabilités du domaine et de l’implémentation.

Dans cette thèse, nous étudions la diversité de la majorité des techniques
d’implémentation de la variabilité, que nous organisons dans un catalogue étendu.
Nous proposons un framework pour capturer et modéliser, de façon fragmen-
tée, dans des modèles techniques de variabilité, la variabilité implémentée par
plusieurs techniques combinées. Ces modèles utilisent les points de variation et
les variantes, avec leur relation logique et leur moment de résolution, pour ab-
straire les techniques d’implémentation.

Nous montrons comment étendre le framework pour obtenir la traçabilité de
feature avec leurs implémentations respectives. De plus, nous fournissons une ap-
proche outillée pour vérifier la cohérence de la variabilité implémentée. Notre
méthode utilise du slicing pour vérifier partiellement les formules de logique
propositionnelles correspondantes aux deux niveaux dans le cas de correspon-
dance 1–m entre ces niveaux. Ceci permet d’obtenir une détection automatique
et anticipée des incohérences.

Concernant la validation, le framework et la méthode de vérification ont été
implémentés en Scala. Ces implémentations ont été appliquées à un vrai système
hautement variable et à trois études de cas de lignes de produits.
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CHAPTER 1

Introduction

1.1 Context

1.1.1 Software Product Line Engineering

The software product line (SPL) engineering paradigm has emerged to foster
methodological reuse between the related software products in a domain or an or-
ganization. By adopting it, an organization expects to achieve mass-customization
for a family of products, such as decreasing their cost and their time to market
while increasing their quality. An SPL is then usually defined as "a set of software-
intensive systems sharing a common, managed set of features that satisfy the specific needs
of a particular market segment or mission and that are developed from a common set of core
assets in a prescribed way [Clements and Northrop, 2002; Northrop et al., 2007]. Orig-
inally, a feature is defined as "a prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems" 1 [Kang et al., 1990] within a domain.
Thus, features are used to describe and scope a set of related software products
within a domain through defining their common aspects and their differences.

There are three models for adopting an SPL approach in an organization:
proactive, when all products in the scoped domain are preplanned to be built; ex-
tractive, when from a set of legacy applications is build/extracted an SPL model;
and reactive one, when in either case the SPL itself get evolved [Krueger, 2002a].
In addition, the whole development cycle of an SPL consists of (1) domain engi-
neering, or development for-reuse, and (2) application engineering, or develop-
ment with-reuse [Clements and Northrop, 2002; Kang et al., 1998; Pohl et al., 2005;
Weiss et al., 1999]. Despite the SPL adaptation model, domain engineering and ap-
plication engineering processes are highly interactive and can occur in any order,
which are shown also as rotating cycles by Northrop et al. [2007].

Domain engineering and application engineering. Figure 1.1 shows the do-
main engineering and application engineering, as two main processes for the de-
velopment of software product lines. The domain engineering process is charac-
terized by the development of core assets, which represent those reusable artifacts
and resources that form the basis for eliciting the single software products during
the application engineering process. Core assets are made reusable by modeling
and realizing what is common and what is going to vary (i.e., the common and

1Based also on the American Heritage [1985]
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Figure 1.1: The software product line engineering processes, with the problem
space and solution space separation for software assets (adapted from Czarnecki
[2005]; Pohl et al. [2005, Ch. 2])

variable features) between the related products in a methodological way. Variabil-
ity can be part of any core assets, which "often include, but are not limited to, the
architecture, reusable software components, domain models, requirements statements, doc-
umentation,..." [Clements and Northrop, 2002; Northrop et al., 2007]. In this thesis,
in the focus is the variability of core assets at the implementation level, that is, the
core-code assets.

Problem space and solution space. Orthogonal with the domain engineering
and application engineering is the problem space and solution space dimensions
for all software assets [Czarnecki, 2005; Czarnecki and Eisenecker, 2000, Ch. 3], as
is shown in Figure 1.1. While in problem space all valid feature combinations and
requirements of software products are specified, in solution space these specifica-
tions are realized in concrete software systems, such as their reusable architecture,
detailed design, or implementation.

1.1.2 Software Variability Management

An essential activity of the whole product line development is the management
activity (cf. Figure 1.1). It can be (1) organizational management, which repre-
sents the "authority responsible for the ultimate success or failure of the product line
effort" [Northrop et al., 2007], and (2) technical management that deals with the
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Figure 1.2: Excerpt of the feature model for the Graph product line

development of core assets and product derivation activities.
Technical management has several practice areas, such as configuration

management, make/buy/mine/commission analysis, scoping, tool support,
etc. [Clements and Northrop, 2002]. From them, the well-known configura-
tion management comes from traditional single software system development
that is extended and represents the variation management in software product
lines [Krueger, 2002b]. According to Krueger [2002b] and Clements and Northrop
[2002], variation management is multi-dimensional and basically deals with (1)
the variability in space, that is, the management of the variability of core assets at
a fixed moment in time, and (2) the variability in time, that is, the management
of versions of core assets during the time (as in single software development),
maintenance (evolution of domain), and resolution of variability during a prod-
uct derivation with different binding times (cf. Section 3.1.1). Thus, variability in
space, known as software variability management, is specific only to product lines
but, it interferes with the variability in time regarding the binding time, during
each product derivation.

In realistic SPLs, where the variability is extensive, a crucial issue is the ability
to manage this variability in different core assets and among different abstraction
levels [Bosch et al., 2001]. An important aspect of this activity is then the ability to
identify or capture and trace a variable unit, commonly known as a feature, in core
assets of an SPL. In particular, from Figure 1.1, the specified domain variability in
the problem space needs to be mapped to their respective realization, such as in
architecture assets, and core-code assets, in the solution space.

More concretely, the specified domain variability in terms of features is com-
monly captured in a variability model (VM), such as a feature model (FM) [Kang
et al., 1990] (cf. Figure 1.1). The FM is a tree structure of features, consisting of
mandatory, optional, or, and/or alternative logical relations between features with
their cross-tree constraints, implies and/or excludes, that are expressed in proposi-
tional logic. Semantically, an FM represents the valid software products (i.e., the
feature configurations) within an SPL. In Figure 1.2 is given an excerpt of the fea-
ture model for the Graph product line [Lopez-Herrejon and Batory, 2001] 2, which
is well-known in the academia. Whereas, one of its possible realizations at the

2A complete feature model for Graph product line is given in Section 2.1
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implementation level is also given in Listing 1.1.
In this thesis, we address specifically the variability management activities be-

tween the specified variability in problem space, for example, the FM in Figure 1.2,
and core-code assets in solution space, for example, the implemented variability
in Listing 1.1, during the domain engineering process. In this context, we have
identified several challenges to be addressed.

1 o b j e c t Conf {
2 f i n a l val WEIGHTED: Boolean = t rue
3 }
4 a b s t r a c t c l a s s Graph { /∗ Core part ∗/ }
5 c l a s s ConcreteGraph extends Graph {
6 def adddirectededge ( s : Vertex , d : Vertex , w: I n t ) = {
7 val edge = new Edge ( s , d )
8 i f ( Conf .WEIGHTED) {
9 edge . weight = w

10 }
11 edges = edge : : edges
12 addtoadjacencymatrix ( edge )
13 }
14 def addundirectededge ( s : Vertex , d : Vertex , w: I n t ) = {
15 val edge1 = new Edge ( s , d )
16 val edge2 = new Edge ( d , s )
17 i f ( Conf .WEIGHTED) {
18 edge1 . weight = w
19 edge2 . weight = w
20 }
21 edges = edge1 : : edges
22 edges = edge2 : : edges
23 addtoadjacencymatrix ( edge1 )
24 addtoadjacencymatrix ( edge2 )
25 }
26 def addedge ( c a l l b a c k : ( Vertex , Vertex , I n t ) => Unit ,
27 x : Vertex , y : Vertex , w: I n t = 1) = c a l l b a c k ( x , y , w)

Listing 1.1: Graph PL implementation using two different techniques (parameters
and strategy pattern), in the Scala language

1.2 Overview of Challenges and Contributions

We now determine the addressed challenges, then we summarize our contribu-
tions and we give an outline of this dissertation.

1.2.1 Challenges

In the described context, there are several challenges to be addressed regarding the
modeling and management of variability in core-code assets. These challenges are
grouped into three main challenges, as in the following.
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Challenge A. Variability modeling at the implementation level

A1. Understanding the diversity of variability implementation techniques.
Variability can be implemented by different variability implementation tech-

niques, such as inheritance, generic types, design patterns (see Section 2.2.3). De-
pending from the used technique, the units that vary can be diverse at the imple-
mentation level. For example, some variability can be implemented at the class
level (e.g., using the technique of inheritance), or at method level (e.g., using the
technique of overloading). Also, variability can be resolved earlier (e.g., at compile
time) or later (e.g., at runtime) during the product derivation. This implies that,
when traditional techniques are used (cf. Section 3.1.3), the variability of core-code
assets is realized by using a combined set of techniques (e.g., inheritance, overrid-
ing, design patterns). In this case, choosing and combining the right techniques
to implement some variability of an SPL domain is not trivial. Whereas, when
variability is implemented by using a single technique, such as preprocessors in
C, the implementation is more straightforward with the whole variability being
implemented by using the preprocessor directives.

For evaluating and choosing a technique to address some domain variability
at the implementation level, pieces of advice can be found in studies, catalogs, or
taxonomies (e.g., Apel et al. [2013]; Bachmann and Clements [2005]; Coplien [1999];
Gacek and Anastasopoules [2001]; Muthig and Patzke [2003]; Patzke and Muthig
[2002]; Svahnberg et al. [2005]), but their studied techniques are evaluated by dif-
ferent subsets of criteria that remain scattered among different research works.

Moreover, towards an approach for documenting the variability at the imple-
mentation level, it is necessary to understand the diversity of variability imple-
mentation techniques, analysed by the same set of properties. To the best of our
knowledge, there is no up-to-date classification and catalog for variability imple-
mentation techniques. It is also expected that an enriched catalog would guide the
deveopers for choosing the right techniques in the majority of cases.

A2. Capturing and modeling the implemented variability when a combined set of tradi-
tional variability implementation techniques is used.

When traditional variability implementation techniques are used to implement
some variability, such as inheritance, generic types, or design patterns, the code is
not shaped in terms of features from the domain level. Usually, the implemented
variability is modeled in terms of variation points (vp-s) with variants [Coplien,
1999; Czarnecki et al., 2012; Jacobson et al., 1997; Schmid and John, 2004] (they
are defined in Section 2.2.1). Further, in realistic product lines, variability is im-
plemented by using a combined set of such traditional techniques, meaning that
the vp-s with variants are diverse (e.g., with different binding times, Section 3.1)
compared to the case when a single technique is used to implement the whole
variability, for example, by using the preprocessors in C the whole variability is
resolved during the compile time in case of a product derivation.
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Consequently, the capturing and modeling of the implemented variability in
core-code assets when a combined set of traditional variability implementation
techniques are used is a challenging task that should be facilitated. Moreover, this
modeling phase is essential for managing the variability of core-code assets.

A3. Separating the development dimension and variability dimension while maintaining
their corresponding relationship (a.k.a. consistency).

Variation points with variants (defined in Section 2.2.1) are not a by-product of
the traditional variability implementation techniques [Bosch et al., 2001; Sinnema
et al., 2004a], meaning that the places in core-code assets where some variability is
realized are implicit. Therefore, the implemented variability needs to be captured
and modeled in some way, in order to be managed. The variability of core-code as-
sets can become explicit (1) by annotating the places where the variability happens
directly in code, for example, using preprocessor directives [Tartler et al., 2012],
tags [Heymans et al., 2012], or a visual representation [Kästner, 2012], (2) abstract-
ing and documenting the variability separately from the code, for example, using
decisions for variation points with variants in a decision model [Schmid and John,
2003], or (3) implementing/factorizing the code in physically separated modules,
for example, in feature modules [Apel et al., 2013]. Here we do not consider the
reverse engineering approaches, such as feature location techniques for migrating
some related software products in an SPL approach.

Specifically, the development dimension, or the functionality in code, and the
variability dimension, or the variability-related issues, can stay either mixed or
separated. To ease the variability management, as mentioned by Berg et al. [2005];
John et al. [2007]; Muthig and Atkinson [2002], we aim at keeping separated the
variability and development dimensions. However, when they are separated, the
consistency between the variability dimension and the development dimension
becomes an issue as it needs to be maintained; therefore, it is one of our challenges.

A4. Modeling the implemented variability in a fragmented way.
In realistic product lines, the number of features in a feature model at the spec-

ification level may be considerable (e.g., [Tartler et al., 2012]). On the other hand,
the variation points with variants at the implementation level are a refinement of
features from the domain level [Hunt and McGregor, 2006]. Consequently, the
amount of variability at the implementation level is expected to be even larger
than the variability at the domain level [Pohl et al., 2005, Ch. 4]. The capturing
and modeling of the implemented variability at once and in one place may then be
harder and will weaken, instead of supporting, the management of variability. For
such reason, the documentation of the implemented variability in a fragmented
way can be practical and helpful, as is suggested by the variability-aware mod-
ule system [Kästner et al., 2012] where each implemented module defines its own
variability model.

When traditional programming paradigms are used (such as the object-
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oriented or functional ones) there is no concept of modules that can be considered
as fragments with variability, but variability may happen, for example, within a
package, file, or class. Therefore, we aim at modeling the variability of core-code
assets in a fragmented way, where a fragment can be flexible, such as a package,
file, or class with some variability that is worth to be modeled separately.

Challenge B. Variability traceability

B. Supporting the variability traceability between the specification and implementation
levels.

Originally, in the FORM method [Ch. 8 Capilla et al., 2013; Kang et al., 1998],
the need to model separately the variability at the specification and realization lev-
els is already present. While the variability at the realization level is more about
the software variability, the specification one represents the variability between
the software products themselves within an SPL [Metzger et al., 2007]. In most
variability management approaches, it is up to the reader to understand whether
a variability model is used to describe the variability at the specification or real-
ization levels [Metzger and Heymans, 2007]. Moreover, the mapping of features to
variable units in implementation is mostly 1 – to –1, for example, between features
and preprocessor directives in C [Le et al., 2013; Lotufo et al., 2010; Tartler et al.,
2012], although a directive can be scattered in core-code assets. In such cases, the
FM is used to model only the implemented variability, or from both levels into
a single model. In reality, the mapping of features from the specification level to
their implementation is n – to – m [Pohl et al., 2005, Ch.4], and also the variability
abstractions in both levels may use different names.

Therefore, an approach for tracing the specified and implemented variabilities,
when a combined set of techniques are used, is needed. Moreover, these trace
links make possible the variability management and can also be used for other
purposes, for example, to resolve the implemented variability during a product
derivation, or to check its consistency.

Challenge C. Consistency checking of variability

C1. Checking the consistency of variability between the specification and implementation
levels.

According to a recent survey about consistency checking in SPL engineering,
by Santos et al. [2015], there are three major approaches to address consistency
issues: (1) within the variability models (i.e., FMs), (2) between the FM and other
software models, or (3) between the FM and its implementation (i.e., core-code
assets). These also correspond to the locations where inconsistencies can happen,
as mentioned by Vierhauser et al. [2010].

Currently, the support for checking variability consistency between an FM and
core-code assets is limited. This means that the specified variability in terms of
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features at the domain level and their respective implementation, using the tradi-
tional techniques, in core-code assets must represent the same number of software
products.

Checking the consistency between the implemented and specified variabilities
is also a challenging task, as the mapping of the specified features in an FM to the
core-code assets is n – to – m. But, we expect to check their variability consistency
within the context of their trace links.

C2. Checking the consistency of variability when a combined set of traditional variability
implementation techniques is used.

The existing approaches are mostly conceived for resolving inconsistencies
within a specific software, such as the Linux kernel [Lotufo et al., 2010; Tartler
et al., 2012], or when the variability is implemented by a single variability im-
plementation technique, for instance, using preprocessors in C [Le et al., 2013].
However, in realistic SPL settings, variability is implemented by using a combined
set of traditional techniques, such as inheritance, overloading, design patterns. An
inappropriate choice and combination of such techniques become the source of
variability inconsistencies that cannot be detected by existing approaches. In this
work, we consider that the variability of core-code assets is implemented by using
a combined set of traditional techniques.

In case that some variability is implemented by using an improper technique,
several inconsistencies may appear, for example, when an alternative logical rela-
tion between features in a variability model is implemented by a variation point,
with an Or logical relation between its variants. In such case, the number of pos-
sible products at the specification level is inconsistent with the possible products
that can be derived from the core-code assets. Therefore, in complement to Chal-
lenge C1, a consistency checking approach should be able to check whether the
right technique to implement some variability is used.

C3. Achieving an early detection of variability inconsistencies.
The consistency of some specified variability can be checked only after it is real-

ized in core-code assets, but not necessarily only after the whole specified variabil-
ity is addressed. Commonly, some variability is deferred to be implemented later
or during the application engineering phase. In addition, it becomes harder to fix
the inconsistencies after all of them are shown at the same time at the end [Vier-
hauser et al., 2010]. In particular, it has been shown that trying to change the im-
plementation technique for some addressed variability, only after the whole SPL
is implemented, can be very costly [Bachmann and Clements, 2005]. Therefore,
an approach for detecting earlier the variability inconsistencies is needed, for ex-
ample, to be able to select a single or a group of variation points with variants
and to check them against the specified features at the domain level early during
the development process. Typically, we could expect that the earlier a variability
inconsistency is identified, the cheaper becomes the fix.
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1.2.2 Contributions

In this dissertation, we address these challenges by offering a detailed and tooled
framework for modeling and managing the variability of core-code assets. Specif-
ically, our contributions can be summarized as follows.

A catalog of variability implementation techniques. First, we study the diver-
sity for the majority of the existing variability implementation techniques and
provide a unified set of comparison criteria for them. Then, we build a cat-
alog that covers an enriched set of techniques, which are compared by using
the same set of criteria.

A framework for modeling and tracing the variability of core-code assets. We
used the analysed diversity of variability implementation techniques to create
our framework for capturing and modeling the variability of core-code assets.
Specifically, the framework supports the capturing and modeling of variabil-
ity when a combined set of traditional variability implementation techniques
are used at the implementation level, which exposes a form of what we de-
fine as imperfectly modular variability. Moreover, the framework is based on
capturing or abstracting the variability implementation techniques, with their
characteristic properties, in terms of variation points with variants, which are
used for modeling the variability of core-code assets into so-called technical
variability models, in a fragmented way.

In addition, the framework supports traceability, by defining the n–to–m trace
links between the features in a feature model at the domain level and the vari-
ation points with variants in technical variability models at the implementa-
tion level.

A method for checking the consistency of the implemented variability. Through
modeling the variability in a fragmented way, we provide a method for check-
ing the consistency between the specified and implemented variabilities, as
earlier during the realization of core-code assets. Concretely, the method uses
a slicing technique over the variability models to partially check the corre-
sponding propositional formulas at the domain and implementation levels in
case of their 1–to–m mapping.

Tool support and validation. Finally, we present a concrete implementation of our
framework as an internal DSL in the Scala language. Further, we use this DSL
for implementing the method for variability consistency checking. Both these
implementations are applied on a real feature-rich system and on three prod-
uct line case studies, showing the feasibility of the proposed contributions.

1.2.3 Outline

In the following, Chapter 2 gives a background for the used concepts in this thesis,
and the state of the art in variability management, which is not specific to core-
code assets. An introduction on domain specific languages (DSL), as a mean for
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building tool support in variability modeling is also given. Our contribution is
then presented, organized in three parts.

Part I: Design of variability models at the implementation level. In this part,
Chapter 3 presents the studied diversity of variability implementation techniques,
an updated catalog of them, and shows a way for using the catalog during the eval-
uation and choice of techniques. In Chapter 4 we describe our framework for cap-
turing and modeling the imperfectly modular variability (defined in Section 4.1.1)
at the implementation level. Also, the importance of capturing the variability im-
plementation techniques during a reverse engineering process.

Part II: Usage of technical variability models. Chapter 5 proposes an extension
of the framework, for tracing the specified and implemented variabilities under
their n–to–m trace links. Chapter 6 describes the method for checking the consis-
tency of the variabilities between the specification and implementation levels.

Part III: A tool support. In Chapter 7 an implementation of the framework, as
a domain specific language, is presented, as well as its usage in four case stud-
ies. Similarly, Chapter 8 presents a concrete implementation of the consistency
checking method and reports on it application in four case studies.

Finally, Chapter 9 concludes the thesis by summarizing the addressed chal-
lenges, and gives some further perspectives and our future work.



CHAPTER 2

Background and State of the Art

This chapter is an introduction to the main topics and related approaches of this
thesis. Specifically, we introduce variability modeling in Section 2.1, variability
realization at the implementation level in Section 2.2, and variability traceability
as a key aspect for variability management of core-code assets in Section 2.3. Then,
we discuss automated analysis of feature models in Section 2.4, as a means for
automatic consistency checking of variability, Section 2.5 is dedicated to domain
specific languages as a support for tooling the approach proposed in this thesis.

2.1 Variability Modeling

Since its first presentation by Kang et al. [1990], feature modeling (FM) is widely
adopted as a means for documenting the commonalities and variabilities in terms
of features of software products in an SPL. In different approaches or usage con-
texts, a feature is defined. Appendix A gives 20 of its definitions. Similarly, the
original notion of feature model has been extended over time. Capilla et al. [2013,
Ch. 2] compares 11 FM variations (by Benavides et al. [2005]; Czarnecki et al.
[2002]; Czarnecki and Eisenecker [2000]; Czarnecki et al. [2004]; Eriksson et al.
[2005]; Griss et al. [1998]; Hein et al. [2000]; Kang et al. [1998]; Riebisch et al. [2002];
Van Gurp et al. [2001] ), and a more holistic approach to feature modeling is also
available [Lee et al., 2014].

Figure 2.1: The feature model of the Graph product line

As an illustration, a concrete feature model, the Graph PL, is given in Figure 2.1.
This SPL is quite well understood and used by the community [Lopez-Herrejon
and Batory, 2001]. It is a hierarchically arranged set of features with the main
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feature, GraphProductLine, representing conceptually the SPL domain. It has
two compound mandatory features, GraphType and Weight, with their alternative
variant features, «Directed, Undirected» and «Weighted, Unweighted», respec-
tively. Also, it has two compound optional features, Search and Algorithms.
The first one has two alternative variant features, «DFS, BFS», and the second
one has six features in an Or relation, «Shortest, Cycle, StronglyConnected,
Connected, Number, and MST with alternative features Prime and Kruskal». Fea-
tures in an FM can have cross-tree constraints, which are commonly expressed in
propositional logic. This Graph PL has five cross-tree constraints, such as Number
→ (GraphType ∧ Weight ∧ Search), meaning that the selection of feature Number
requires features GraphType, Weight and Search to be selected.

Thus, the software variability of an SPL is documented in a variability model
(VM), which is commonly expressed as a feature model (FM) [Kang et al., 1990],
but it can also be a decision model (DM) (first introduced by the Synthesis
method [Corporation, 1993; Schmid et al., 2011]), an orthogonal variability model
(OVM) [Pohl et al., 2005], or FMs complemented by a Domain Specific Language
(DSL) [Voelter and Visser, 2011]. The FM and DM were introduced almost at the
same time and used quite equally [Czarnecki et al., 2012]. According to the Synthe-
sis method, "a Decision Model identifies, for each work product family, the application
engineering requirements and engineering decisions that determine how members of the
work product family can vary" [Corporation, 1993]. Overall, any variability model
(FM, DM, etc.) can be considered as a decision model whenever it is used for tak-
ing the decisions during the product derivation [Capilla et al., 2013, Ch. 20]. While
the variability in an FM has a graphical representation, in a DM it has a tabular
representation [Dhungana and Grünbacher, 2008; Forster et al., 2008; Muthig and
Atkinson, 2002; Schmid and John, 2004]. Besides, there are also formal approaches
for transforming an FM to a DM and vice versa [El-Sharkawy et al., 2012].

Problem space and solution space variability. Similar to the problem and so-
lution space for core assets, given in Section 1.1.1 [Czarnecki, 2005; Czarnecki and
Eisenecker, 2000; Turner et al., 1999], the problem space and solution space for vari-
ability are distinguished [Ch. 2 Capilla et al., 2013; Lee et al., 2014]. This variability
space is given in Figure 2.2, which shows that, depending on the viewpoints, fea-
tures can be in problem variability space (i.e., goal/objective, usage context, and
quality attribute features) or solution variability space (i.e., capability, operating
environment, and design features). The approach by Metzger et al. [2007] recog-
nizes these two variability spaces as the product line (PL) variability and software
variability.

There are few approaches that distinguish clearly these two variability spaces.
Their difference is introduced earlier in the FORM method [Kang et al., 1998] then,
among the first, in the variability management approach by Becker [2003a,b]. In
the majority of other approaches, it is up to the reader to understand when an FM
represents the PL variability or the software variability [Metzger and Heymans,
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Figure 2.2: Problem space and solution space for variability modeling (borrowed
from Capilla et al. [2013, Ch. 2])

2007].
According to a study by Czarnecki et al. [2012], an FM is mainly used at the

specification level for scoping the software products within an SPL in terms of
features, whereas a DM is used closer to the realization level (i.e., architecture,
implementation, etc.) for supporting the resolution of variation points (vp-s) with
variants in form of decisions (their definition is given in Section 2.2.1). In our work,
we consider specifically the implementation level (i.e., the core-code assets).

2.2 Variability Implementation

2.2.1 Variable Parts in Core-Code Assets

In realistic SPL settings, the implementation of variability in core-code assets com-
plies, mostly, to a commonality and variability approach, despite the program-
ming paradigm (e.g., object-oriented, or functional) [Coplien, 1999]. Specifically,
a domain is decomposed into subdomains, then within each subdomain the com-
monality is factorized from the variability that is used to differentiate the software
products within the domain.

The core-code assets consist of three parts: the core, commonalities, and vari-
abilities. The core part is what remains of the system in the absence of any particu-
lar feature [Turner et al., 1999], that is, the assets that are included in any software
product of the SPL. A commonality is a common part for the related variant parts
within a subdomain. After the commonality is factorized from the variability and
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implemented it becomes part of the core (i.e., it is buried in the core [Coplien,
1999]), except when it represents some optional variability. The variant parts are
used to distinguish the software products in the domain. A subdomain can have
more than one common and variant part. The core with the commonalities and
variabilities of all subdomains constitute the wholeness of core-code assets in an
SPL.

The commonalities and variabilities in core-code assets are commonly ab-
stracted in terms of variation points (vp-s) with variants, as solution oriented ab-
stractions. Unlike features in problem space, vp-s with variants are related to con-
crete elements in core-code assets. Originally, "a variation point identifies one or more
locations at which the variation will occur" [Jacobson et al., 1997]. Respectively, vari-
ation points are known as a manifestation of variability in architecture, in design,
and, eventually, in implementation [Fritsch et al., 2002]. The way that a varia-
tion point is going to vary is expressed by its variants. Over time, several other
definitions of vp-s with variants have appeared (see 16 of their definitions in Ap-
pendix A).

The variable part is like an organizing container. It contains the location where
some variability happens in core-code assets (i.e., the variation point), the variants,
and the used technique to implement them.

2.2.2 Variability Abstractions

In order to understand in terms of what abstractions we should capture some im-
plemented variability, we analyse in this section the usage of features and varia-
tion points (vp-s) with variants in the literature. In the following, we show their
definitions as problem or solution oriented abstractions, the diversity of their ter-
minology, and the different meanings of a vp concept.

Problem or solution oriented abstractions. To understand whether the concept
of features or vp-s with variants are used solely as problem oriented or solution
oriented variability abstractions, we analysed their definitions in 34 approaches
(see Appendix A).

We compared 20 definitions of the feature concept, also analysed by Classen
et al. [2008], Patzke et al. [2011], and Apel et al. [2013, Ch. 2]. From them, eleven
definitions consider a feature as a problem oriented abstraction (including the orig-
inal definition by Kang et al. [1990]), four of them as a solution oriented abstraction
(including the extension of the original definition [Kang et al., 1998]), and five are
general definitions. Apel et al. [2013] give explicitly a broader (i.e., more inclu-
sive) definition of a feature by subsuming the variability of problem and solution
spaces.

Similarly, we analysed 14 definitions of the variation point. Twelve of them em-
phasize that a vp is a solution oriented concept (including the original definition
by Jacobson et al. [1997]), a single one uses the notion of variable part in solution
space instead of the variation point [Bachmann and Clements, 2005], and the last
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Figure 2.3: The vp concept as a) a variable point (i.e., the cx), b) a variable part (i.e.,
the cx with variants). The cx is the common part for variants va, vb, and vc.

one defines it as a problem oriented concept [Pohl et al., 2005]. In a subsequent ap-
proach [see Metzger et al., 2007], Pohl et al. [2005] make even clearer the usage of
vp-s only as domain abstractions. Although, in the standard [ISO/IEC 26550:2015,
2015], by Pohl et al. [2005], the feature concept is also defined and used as a prob-
lem oriented abstraction.

In two definitions of vp, the abstractions of feature and variation point are used
together. The first one considers that an FM is also a core asset and a vp is used
to point the varying places in the FM [Czarnecki and Eisenecker, 2000]. The sec-
ond definition, by Hunt and McGregor [2006], stresses that vp-s are refinements of
features.

Naming. In the literature, features and vp-s with variants are sometimes called
differently. Mostly, the alternative names for features reflect their usage as problem
or solution oriented abstractions. For example, a feature is known as a delivery
unit, configuration unit, reuse unit, semantic unit (in problem space), or as syn-
tactic unit [Kästner et al., 2011], design decision (design feature), changeable deci-
sion (alternative design feature) [Capilla et al., 2013], variation point feature [Griss,
2000], or variant feature (in solution space). On the other hand, a vp is known as
a design decision, delayed design decision [Van Gurp et al., 2001], spot [Becker,
2003a], extension point [Apel et al., 2013], or generic element [Becker, 2003b].

Sometimes, the notions of feature and vp with variants are used alternatively.
For example, in problem space, the node at which varying features are attached
(i.e., the compound feature) is known as vp [Czarnecki and Eisenecker, 2000; Griss,
2000]. In solution space, a design feature is the vp and an alternative design feature
(or variant feature) is the variant [Capilla et al., 2013].

Semantics of variability abstractions. Variability abstractions in problem space,
such as features, are mere names which are not related to any variability realiza-
tion technique or core asset in realization levels. On the contrary, vp-s and solution
space features are related to a concrete variability implementation technique or a
varying element within core-code assets, that is, they concretely point the elements
of core-code assets that are going to vary. For example, a solution space feature can
point to a file [Beuche et al., 2004], a feature module in Feature-Oriented program-
ming [Apel et al., 2013], or a macro in C using its preprocessors [Kästner, 2012].
Similarly, a vp can be a (super) class, an interface, a parameter [Jacobson et al.,
1997], or an #ifdef in C [Schmid and John, 2004].
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Mostly, a vp is understood as (1) a handle for relating the specified variabil-
ity to its respective varying element(s) in core assets on realization levels [CVL,
2012], (2) an abstraction of a location or point that vary in core-code assets
(cf. Figure 2.3a) [Jacobson et al., 1997], (3) a variable part (cf. Figure 2.3b) [Bach-
mann and Clements, 2005], (4) an abstraction of a variability implementation
technique [Capilla et al., 2013, pg. 48], or (5) as the symmetry (i.e., common-
ality invariance) and symmetry breaking places in software [Coplien and Zhao,
2000]. Regarding the first meaning, in a prototype implementation of the CVL,
KCVL [Barais et al., 2013; KCVL, 2015], is stated that "Using variation points, it is
possible to express and manipulate the links between the variability abstraction model and
the base model". Although the vp is used here as a link, it also supports some se-
mantics for reassigning references or excluding its other related model elements
from the base model. The third, fourth, and fifth meanings are related, as the com-
monality is factorized by using a variability implementation technique, whereas
the technique represents the mechanism to accommodate the variants and thus
to resolve the variability. In addition, most of the traditional variability imple-
mentation techniques have the properties of the symmetry or symmetry break-
ing in software [Castellani, 2003; Coplien and Zhao, 2000; Rosen, 1995; Zhao and
Coplien, 2003, 2002]. In geometry, the symmetry is defined as the immunity to a
possible change [Rosen, 1995]. Whereas, in software, a symmetry can be identified
between a class in object-oriented (which can be a vp) and its objects (its variants).
Specifically, a class establishes an invariance relationship between the class and its
objects, which are analogue (i.e., changed but still the same) with respect to the
class structure [Coplien and Zhao, 2000].

Independent from the implementation technique. There are approaches for
managing the implemented variability in terms of features (e.g., [Apel et al., 2013;
Heymans et al., 2012; Kästner and Apel, 2009]) and those in terms of variation
points with variants (e.g., [Becker, 2003b; Capilla et al., 2013; Jacobson et al., 1997;
Pohl et al., 2005; Schmid and John, 2004]). Thereby, in the literature, both abstrac-
tions of feature and vp are used almost equally and sometimes in combination.

We observed that the differences between a feature and a vp oriented imple-
mentation are not related to a specific variability implementation technique. In
most cases, a vp with variants are implemented by a traditional technique such as
inheritance, parameterization, etc. On the other hand, there are approaches where
a feature represents a class, a file [Beuche et al., 2004] or a plugin. As another exam-
ple, for Thüm et al. [2014] preprocessors are used as a technique for implementing
features, whereas by Schmid and John [2004] they are used as a technique for im-
plementing vp-s. But, still, the concepts of features and vp-s with variants are not
the same thing that is just called differently in different approaches.

An essential difference. Basically, the concept of a feature is used to annotate or
put in a separate module all those lines of code that may belong to a specific fea-
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ture (e.g., [Apel et al., 2013; Heymans et al., 2012; Kästner, 2010; Lee et al., 2000]).
Whereas, a vp is used as a way for abstracting a varying place without making a
commitment about which lines of code are exactly in or out the vp concept. Specif-
ically, in our understanding, a vp with variants represents some entities that have
a fuzzy border in core-code assets.

In this work, unless explicitly specified, we consider that variation points with
variants are solution oriented abstractions that we use for capturing and managing
the variability in core-code assets, whereas features as problem oriented abstrac-
tions.

2.2.3 Variability Implementation Techniques

The techniques that are used for realizing the variability in an SPL are called vari-
ability realization techniques [Capilla et al., 2013; Svahnberg et al., 2005], variabil-
ity mechanisms [Bachmann and Clements, 2005; Jacobson et al., 1997; Muthig and
Patzke, 2003], or variability implementation techniques [Fritsch et al., 2002]. Vari-
ability realization technique is a general term used for techniques acting at the archi-
tecture, design, or code level; whereas, the term variability implementation technique
will be only used for techniques at the code. All variability implementation tech-
niques came from several programming paradigms and are supported by different
constructs in different programming languages, which in turn offer different prop-
erties.

An SPL is structured around a set of features of several kinds, which repre-
sent different functional or non-functional software products’ requirements. These
features have to be properly realized and their reflection to vp-s with variants is
manifold in architecture, design, and especially in implementation, forming an n-
to-m relation [Gacek and Anastasopoules, 2001; Metzger and Pohl, 2014]. Each vp
is associated with one or more variability implementation techniques (e.g., when
several implemented versions of the same vp are needed for achieving different
binding times [Dolstra et al., 2003a,b; Rosenmüller et al., 2011]) and vice versa. In
principle, one vp is associated with only one technique, whereas the same tech-
nique can be used to implement several vp-s within a domain. Examples of vari-
ability implementation techniques are inheritance in object orientation, preproces-
sors, feature modules or some design patterns. In Listing 1.1 (Section 1.1.2) we
show the usage of parameters and strategy pattern in the Scala language as vari-
ability implementation techniques for implementing the two compound features,
GraphType and Weight, for the Graph PL (cf. Figure 2.1).

2.3 Variability Management Approaches

Variability management is a complex activity, first because variability is realized in
different types of core assets (e.g., requirements, architecture, code, etc.) and then,
within each of these abstraction levels, different variability realization techniques



18 Chapter 2. Background and State of the Art

can be used. For example, at the requirements or architecture level, various ex-
tensions of the UML (Unified Modeling Language) are proposed by using notes
or stereotypes [Clauß and Jena, 2001; Ziadi et al., 2003; Ziadi and Jézéquel, 2006].
Whereas, at the implementation level, with a textual representation, different tex-
tual or language annotations [Heymans et al., 2012; Tartler et al., 2012], language
constructs [Apel et al., 2013; Schaefer et al., 2010], or visualization tools [Kästner
et al., 2008b] are used. Therefore, modeling and tracing the variability of these core
assets is a primary step for the variability management during the SPL engineer-
ing [Berg et al., 2005].

2.3.1 Variability Traceability

The CoEST 1 [Cleland-Huang et al., 2012] defines a trace (noun 2) as "a specified
triple of elements comprising: a source artifact, a target artifact, and a trace link associating
the two artifacts". And, the traceability as "the potential for the traces to be established
and used".

The concept of traceability is already used for different reasons in single (tradi-
tional) software engineering, mostly to trace requirements [Winkler and Pilgrim,
2010]. Its meaning and techniques need to be enhanced for use in SPL engineer-
ing, because the relevant entities that are required to be traced and the semantics
of trace links in SPL engineering and in traditional software engineering are quite
different.

Traceability dimensions. Principally, four dimensions of traceability are distin-
guished among the literature: horizontal (intra), vertical (inter), versioning, and
variability traceability [Anquetil et al., 2008, 2010; Cleland-Huang et al., 2012;
Krueger, 2002b; Schmid and John, 2004; Winkler and Pilgrim, 2010]. The first three
dimensions are similar as in the traditional software engineering, whereas vari-
ability traceability is specific to SPL engineering and deals with variability in space
(i.e., the variability of core assets in a specific moment of time).

Variability traceability "is dealt by capturing variability information explicitly
and modeling the dependencies and relationships separate from other development arti-
facts" [Berg et al., 2005]. It has two other dimensions: tracing the realized variabil-
ity (i.e., the variability from the problem space to the solution space), and tracing
the resolved variability (i.e., the software artifacts between application engineering
and domain engineering) [Anquetil et al., 2010; Krueger, 2002b; Pohl et al., 2005].
They are shown as realize/implement and use trace links, respectively, in Figure 2.4.
Further, the term variability traceability is used mostly for the first dimension. The
horizontal and vertical traceability came from the single system engineering, but
can also have the meaning of tracing the variability in an SPL among the artifacts
within the same abstraction level or between different abstraction levels, respec-
tively. And, the versioning traceability conducts the evolution of a software artifact

1Center of Excellence for Software Traceability: http://coest.org/
2Sometimes we will use the term trace as a verb, see its definition by Cleland-Huang et al. [2012].

http://coest.org/
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Figure 2.4: Illustration of two variability traceability dimensions, realize/implement
and use - the blue links (adapted from Anquetil et al. [2010])

(in traditional engineering) and/or the evolution of variability (with the variability
in time, in SPL engineering).

All these traceability dimensions are orthogonal to each other: (1) they may in-
teract, such that, the variability traceability links may be subject to evolution over
time, and (2) can be applied in a hierarchical way, that is, versioning traceability
can be applied to variability, inter, and intra traceability, then variability traceabil-
ity can be applied to inter and intra traceability [Anquetil et al., 2008].

Usage of trace links. A generic traceability process model comprises the cre-
ation, usage, and maintenance of trace links [Gotel et al., 2012], as the trace links
are established to meet a specific usage purpose during a software engineering
process and need to be maintained. In SPL engineering, variability traceability
can be established and used for different reasons, and by different stakehold-
ers [Anquetil et al., 2010; Cleland-Huang et al., 2012, 2014]. It is mainly used for
(semi)automating different processes in SPL engineering, for example, for resolv-
ing the variability during product derivation [Deelstra et al., 2004, 2005], evolving,
checking consistency, addressing, or comprehending variability.

2.3.2 Modeling and Tracing the Variability of Core Assets

For identifying and modeling the variability in different core assets, several ap-
proaches are available, which are specific to a type of core assets [e.g., Clauß, 2001;
Czarnecki and Antkiewicz, 2005; Gomaa, 2005; Heymans et al., 2012; Ziadi et al.,
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Figure 2.5: The relation between the concepts of feature, variation point with vari-
ants and software entities (borrowed from Svahnberg et al. [2005])

2003] or general for all core assets [e.g., Bachmann et al., 2003; Pohl et al., 2005;
Sinnema et al., 2004b].

Further, several approaches for variability management provide detailed re-
lationship or mapping models between the variability of core assets at dif-
ferent abstraction levels. Mostly, they came in form of a general mapping
model [Becker, 2003a,b], metadata model [de Oliveira Junior et al., 2005], basic
traceability model [Mohan, 2003], a representation independent variability meta-
model [Schmid and John, 2003, 2004], a conceptual model for traceability [Berg
et al., 2005], or a framework for variability modeling and management in all ab-
straction levels [Ch. 9 Capilla et al., 2013; Sinnema et al., 2004b]. A common as-
pect of these approaches is a formal specification of the relations or associations
between the variation points with variants, as variability abstractions in different
core assets, the specified variability (e.g., features in an FM), and core assets them-
selves. For example, in Figure 2.5 we show a simple mapping model between the
variant features, variation points with variants in core assets and their relationship
with the software entities, without specifying the type of core assets (e.g., require-
ments, architecture, code, etc.).

Besides these variability management approaches, there are other approaches
that address specifically the variability traceability. Mostly, they address the gen-
eral issues of variability traceability management in SPL engineering. For exam-
ple, AMPLE [Anquetil et al., 2010] is a general framework based on a reference
meta-model for tracing the variability of different types of artifacts by several types
of trace links. It discusses the main traceability dimensions in an SPL engineering,
specifically when model-driven engineering and aspect-orientation are applied.
Quite similarly, XTraQue [Jirapanthong and Zisman, 2009] and the approach by
Bayer and Widen [2001] target tracing the variability in different types of artifacts.
But, the main idea in XTraQue is to translate the product line documents, the UML
documents, into XML documents and to trace their variability by using several
types of trace links. So, their main focus is in establishing, using, and/or managing
the trace links, without much focus on how the variability in different abstraction
levels, or types of core assets, is realized or identified and modeled. They consider
that the variability in core assets is already made explicit in someway and need
just to be traced.
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Variability dimension and development dimension. The artifact space (i.e., the
development dimension) and the variability space (i.e., the variability dimension),
in Figure 2.2, can be amalgamated or not. For example, the preprocessors direc-
tives in C for variability realization stay mixed with the functional code. Also, the
usage of UML notes or stereotypes for annotating the variable places in require-
ments or architecture artifacts. Thus, there are approaches for separating the vari-
ability dimension and the development dimension [Berg et al., 2005; John et al.,
2007; Muthig and Atkinson, 2002]. According to these approaches, the variabil-
ity dimension is orthogonal with the artifacts space, that is, the phases of devel-
opment (i.e., requirements, architecture, detailed design), and with their problem
space and solution space dimension. Separating these two dimensions is impor-
tant for supporting the variability management in an SPL.

2.3.3 Orthogonal Approaches to Variability Traceability

When traditional techniques are used for implementing the variability in an SPL,
such as inheritance, design patterns, generic types, the code is not shaped in terms
of features. In these techniques, the main concerns being separated are objects
and/or functions (depending from the programming paradigm, e.g., object ori-
ented or functional). Then, features or vp-s with variants are not by-product of
any of these techniques, in which case a feature can be implemented as a file, class,
method, plugin, package, a combination of them or by any part of them. Therefore,
the trace relation is n–to–m between the specified features to the vp-s with variants
at the implementation level. Traditional techniques encompass those methods that
are used for single system development but provide the necessary mechanisms to
be good candidates for SPL engineering [Coplien, 1999; Muthig and Patzke, 2003;
Svahnberg et al., 2005]. There are approaches which shape the core-code assets
in terms of features [Apel et al., 2013, 2008; Mezini and Ostermann, 2004; Schaefer
et al., 2010], or the specified features hold a direct representation in code [Heymans
et al., 2012; Kästner et al., 2008b], that is, their mapping is 1–to–1. We consider that
these are alternative approaches to the variability traceability itself, as the trace-
ability is straightforward.

2.3.4 Reverse Engineering Approaches

In the reverse engineering approaches, some aim to find the feature locations in
a single software product or different software (product) variants, within a sim-
ilar domain, and to migrate them to an SPL [Xue et al., 2012; Ziadi et al., 2012].
Basically, the feature location techniques aim at locating all pieces of code that im-
plement a specific functionality, well known as a feature, that is used to differen-
tiate the software applications within an SPL domain. Mainly, the existing feature
location techniques are based on information retrieval (IR), static or dynamic pro-
gram analysis, search based, or a combination of them [Assunção and Vergilio,
2014; Rubin and Chechik, 2013]. Whereas, by locating a vp with its variants we
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aim at finding the places where some variability is concentrated, that is, their vari-
ability implementation technique or mechanism for realizing and resolving the
variants of a vp. On the other side, there are approaches that show how to recon-
struct an FM from the described variability in a propositional formula [Czarnecki
and Wasowski, 2007]. In both cases, the capturing of variability is abstracted from
the implementation technique, for example, finding the feature locations through
analysing the abstract syntaxt tree (AST) of code in several product variants [Thüm
et al., 2014; Ziadi et al., 2014]. There are also approaches that describe how to
capture the implemented variability and reconstruct the FM when a single tech-
nique is used to implement the variability (e.g., using preprocessors in C as im-
plementation technique [Le et al., 2013]). But, an overview on the available tech-
niques for detecting the concepts of features or vp-s with variants in source code,
by Lozano [2011], shows that there are several approaches for detecting features in
code, whereas there is a complete lack of approaches for detecting vp-s with vari-
ants. "The lack of approaches may be due to the wide variety of possibilities to translate
a conceptual variation point (i.e., a delayed decision) to the implementation of a variation
point, as well as to the difficulty to trace this translation" [Lozano, 2011]. Therefore, the
role and characteristics of variability implementation techniques (analysed in Sec-
tion 3.1.1) in the reverse engineering processes are generally not considered.

2.4 Automated Analysis of Feature Models

In realistic SPLs, variability tends to be large with hundred or thousand of fea-
tures [e.g., Deelstra et al., 2004; Tartler et al., 2012]. Therefore, an automated analy-
ses is needed for checking the described software products by an FM and whether
the cross-tree constraints of features in an FM are well-established and do not in-
validate the desired set of software products (i.e., all valid feature configurations).

The current approaches for the automated analysis of feature models are
mainly based on propositional logic or constraint programming [Batory, 2005; Be-
navides et al., 2010; Mannion, 2002]. In this dissertation we use the solving tech-
niques that rely on propositional logic, in which case an FM is translated into a
propositional formula and solved by an off-the-shelf logic solver (e.g., SAT or BDD
solvers).

Table 2.1 shows the well-known translation rules for translating each logical
relation of features in an FM into a propositional formula. Cross-tree constraints
(implies and excludes) are considered to be already in propositional logic. For ex-
ample, in the third column of Table 2.1 are shown the translation examples for the
Graph PL case study. First, each feature is represented by a boolean variable (usu-
ally with the same feature’s name) and then each logical relation of variant features
in a compound feature is translated into propositional logic. Finally, the proposi-
tional formula for the whole FM is gained as a conjunction (i.e., connected with the
logical conjunction operator ∧) of all these subformulas and cross-tree constraints.

Then, the propositional formula for a feature model is denoted as φFM , for
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Table 2.1: Translation rules from an FM to propositional logic

Where P is a compound feature and C1, C2, ..., Cn its subfeatures (variant features).

Logical Relation Propositional Logic Graph PL Example

Mandatory P ↔ Ci GraphProductLine↔ GraphType

Optional Ci → P GraphProductLine→ Search

Or-group P ↔
∨

1≤i≤n Ci Algorithms↔ (Shortest∨Cycle∨ Strongly-
Connected ∨ Connected ∨Number ∨MST)

Alternative-
group

(
P ↔

∨
1≤i≤n Ci

)
∧∧

i<j (¬Ci ∨ ¬Cj)

(Search↔ (DFS ∨ BFS)) ∧ (¬DFS ∨ ¬BFS)

Implies Ci → Cj MST→ (Undirected ∧Weighted)
Excludes ¬(Ci ∧ Cj) – (i.e., Ci excludes Cj)

example, for Graph PL (cf. Figure 2.1) it is denoted as φFMg
3 (this whole formula

is given in Equation (Ex. 6.1), Section 6.1), whereas its valid feature configurations
(i.e., valid software products) are given as a set JφFMgK (see Table 6.1, Section 6.1).
Further, when a propositional formula φFM is evaluated to true, by assigning true
or false values to its boolean variables that represent features of software products,
we get an interpretation of this formula 4 that represents a valid configuration of
features (denoted as c ∈ JφFM K) or a software variant of an SPL.

In the literature, different analysis operators for automated consistency check-
ing of an FM have been devised [Benavides et al., 2010]. The most important ones
concern the detection of the three following anomalies (i.e., inconsistencies):

• Validity. A feature model is valid if it represents at least a valid configuration,
that is, at least a single software product.

• Dead features. A feature is dead if it is not part of any software product, that
is, of any configuration. It is denoted as

deads(FM) = {f ∈ FM |∀c ∈ JφFM K, f /∈ c}

• False optional features. When a variable feature is part of every configuration,
thus becoming a mandatory feature (a.k.a., common features). It is denoted
as

common(FM) = {f ∈ FM |∀c ∈ JφFM K, f ∈ c},

where f is a variable feature.

These anomalies are common within a single FM, or between FMs at the same
abstraction level. Whereas, there are few approaches for checking the variability

3FMg we used as an abbreviation for FMGraphProductLine
4Known also as a model of the propositional formula.
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inconsistencies between two variability models that are supposed to represent the
same variability but in two different abstraction levels, for example, at the specifi-
cation and implementation levels [Metzger et al., 2007].

2.5 Domain Specific Languages

A Domain Specific Language (DSL) is a small language that is narrowly focused
on a particular problem domain. It is defined as "a focused, processable language for
describing a specific concern when building a system in a specific domain. The abstractions
and notations used are natural/suitable for the stakeholders who specify that particular
concern" [Volter, 2011], and it is similarly defined by others [Van Deursen et al.,
2000].

There are distinguished internal DSLs and external DSLs. In contrast to an
external DSL that uses an IDE that is aware of the language itself, an internal DSL is
embedded in a host language and is implemented by using its language constructs.
For example, one can use general purpose languages, such as Java or Scala, as
host languages [Ch. 2,6., Ghosh, 2010; Odersky et al., 2010]. The Scala language
supports building also external DSLs using the parser combinators [Ghosh, 2010,
Ch. 8]. Moreover, any of these DSLs can be textual, graphical, tabular, or any
combination thereof [Voelter et al., 2013; Volter, 2011].

Except in single software development, domain specific languages have an im-
portant role also in SPL engineering. Specifically, there are several approaches
that suggest the usage of a DSL, built for a specific PL domain, as an intermedi-
ate layer between the feature model and the core-code assets. In such case, the
FM is related with the implementation of software product variants indirectly as
they are expressed in a DSL. The role of DSL in this case is to raise the abstraction
level, from the pure implementation of core-code assets, and to ease or automate
the product derivation; such DSL usage examples are Voelter et al. [2013]; Weiss
et al. [1999]. In such case, the built DSL is tailored specifically for the considered
product line domain, meaning that it is used to define the software products.

But, there are other usages of DSLs in the context of SPL engineering. Specifi-
cally, when the modeling of software products at the domain level in terms of fea-
tures with their logical relations, attributes and cross-tree constraints is the domain
itself. In this case, a DSL is tailored for modeling the software products within a
domain in terms of features and/or different operators for composing and slicing
FMs or detecting their anomalies automatically. There are several graphical and
textual feature modeling approaches, such as the well-known TVL [Classen et al.,
2011], FAMILIAR [Acher et al., 2013] (as textual DSLs), SPLOT [Mendonca et al.,
2009] (web-based graphical tool), an extension of FMs [Voelter and Visser, 2011],
the CVL [CVL, 2012] (a proposed standard in the OMG), or FeatureIDE [Thüm
et al., 2014]. The CVL is itself a DSL not only for modeling the variability in a
variability abstraction model (VAM), but also for defining the vp-s in the variabil-
ity realization part (VRM), and resolving the variability (RM) of base models as
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MOF-compliant models. A recent prototype implementation of CVL, the KCVL is
a textual DSL [Barais et al., 2013; KCVL, 2015], which supports these three parts
of CVL. Further, as an integrated development environment, FeatureIDE aims in
supporting the development of core assets in the whole engineering cycle of an
SPL by integrating different tools, whereas the creation of an FM is supported by
a graphical interface.

Such feature modeling tools or DSLs, textual or graphical, differ regarding their
support and automated analysis that they offer for feature models. In this work,
we use the DSL in this last meaning, as we aim in providing a tool support for
modeling the variability of core-code assets. But, we cannot used the existing tools
or DSLs for modeling the variability of core-code assets for four main reasons. (1)
vp-s with variants as abstractions at the implementation level need to be related
with the variable elements of core-code assets (e.g., the CVL maintains such rela-
tionship with the models, but not with the core-code assets). Then, (2) except their
logical relation, we need to model other properties of vp-s with variants, such as
their binding time, and evolution properties. Further, (3) at the same time these
vp-s with variants should be traced with the features at the specification level.
Overall, (4) we aim to model the variability of core-code assets in a fragmented
way instead of modeling it in a single place or variability model. The existing
DSLs, such as FAMILIAR or TVL, support a fragmented view and operators for
composing, slicing, or analysing multiple FMs within a domain.
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CHAPTER 3

Diversity in Variability
Implementations

This chapter shares material with the following paper:

Tërnava, Xh. and Collet, P. (2017b). On the diversity of capturing vari-
ability at the implementation level. In Proceedings of the 21st International
Systems and Software Product Line Conference - Volume B, SPLC ’17, pages
81–88. ACM

In this chapter, we analyse the diversity in variability implementations. Specifi-
cally, we study the diverse characteristic properties and the quality criteria of vari-
able parts in core-code assets (introduced in Section 2.2.1), then the classification
of variability implementation techniques at the code level. With respect to these
dimensions, we analysed 21 variability implementation techniques and created a
catalog of them. Toward using this catalog, an illustrative example is given with
some additional facets for evaluating and choosing a technique.

3.1 Dimensions of Diversity

Many techniques for implementing the variability of core-code assets have been
identified and proposed from different research works or shared industrial expe-
riences on SPL engineering [e.g., Apel et al., 2013; Bachmann and Clements, 2005;
Coplien, 1999; Gacek and Anastasopoules, 2001; Muthig and Patzke, 2003; Patzke
and Muthig, 2002; Svahnberg et al., 2005]. During our work, we analysed each of
these studies and the shared industrial experiences that we have encountered in
the literature. Instead of following a systematic literature review, we have anal-
ysed one-by-one the existing approaches that we found concerning the variabil-
ity implementation in core-code assets. Mostly, we found the relevant works by
looking into the previously referenced works within each approach on variability
implementation techniques, and then we checked the other studies that reference
them too.

During their study, we observed that the diversity in variability implementa-
tions can be organized according to three orthogonal dimensions: (1) the charac-
teristic properties of variable parts that each technique supports (e.g., the binding
time), (2) the quality criteria of variable parts or techniques (e.g., shaping the code
in terms of features), and (3) the classification of variability implementation tech-
niques (e.g., traditional, emerging). The details on each of these dimensions are
given in the following.
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3.1.1 Characteristic Properties of Variable Parts

A lot of knowledge is gathered about features of software products in an SPL dur-
ing domain analysis. Usually, just a part of that knowledge is modeled in the fea-
ture model (FM) and the rest remains implicit or is kept in informal ways (e.g., the
binding time of features). Specifically, from Section 2.1 and Figure 2.1, an FM rep-
resents only (1) the parent-child hierarchy of features (specialization/generalization,
and/or consist-of ), (2) the logical relations between features (mandatory, optional, or,
alternative), and (3) possibly some cross-tree constraints (requires, mutual exclusion)
that are expressed in propositional logic [Ch. 3 Capilla et al., 2013; Kang et al.,
1990].

For example, from Figure 2.1 (Section 2.1), (1) feature Directed specialize/gen-
eralize feature EdgeType, (2) Directed with Undirected are alternative features,
and (3) feature MST requires (⇒) Undirected and (∧) Weighted features.

However, variation points (vp-s) with variants in core-code assets are char-
acterized by a richer set of characteristic properties, which are additional to the
documented knowledge of features in the FM. These vp-s with variants and their
properties are important to be captured during both foward and reverse engineer-
ing processes. For example, the logical relation between variants and their binding
time are important to reconstruct the FM, or to be documented for resolving vari-
ability.

Remark. Capturing a variation point (vp) or variant means to abstract a variable asset el-
ement in a core-code asset or a whole variable core asset (i.e., the place where the variability
happens), and thus representing it by a variation point or variant concept.

For example, in Listing 1.1 (Section 1.1.2) two vp-s and four variants can be cap-
tured. The callback function in lines 26-27 is the vp vp_edgetype and the param-
eter WEIGHTED in line 2 is captured as another vp vp_weight. Then, the methods
in lines 6-13 and 14-25 are captured as variants v_directed and v_undirected,
respectively, for the first vp. Similarly, the true and false values in line 2 are
captured as variants v_weighted and v_unweighted, respectively, for the second
vp.

In the following, we gather the important characteristic properties of vp-s with
variants that should be considered when choosing a variability implementation
technique or during the capturing of variability in core-code assets. These prop-
erties are diverse as they depend from the variability implementation techniques
that are used to implement a domain.

Logical relation. As vp-s with variants at the implementation level are refine-
ments of features in an FM at the domain level (see their definition in Section 2.2.1),
the logical relations of vp-s and of their variants are similar to the possible relations
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Table 3.1: Logical relations of vp-s and of variants in a vp

Logical Relation Description

Mandatory The vp or variant is part of each software product
Optional The vp or variant can be part of the software product or not
Multi Coexisting (Or) One or more than one of the variants in a vp can be part of

the software product
Alternative (Xor) Only one of the alternative variants in a vp can be part of

the software product

Mutual exclusion When, during configuration, the selection of a feature (also,
vp or variant) requires the exclusion of another feature (vp
or variant) and vice versa

Requires When the selection of a feature (also, vp or variant) requires
the selection of another feature (vp or variant)

between features in an FM (cf. Figure 2.1), and they are shown in Table 3.1. A sin-
gle variability implementation technique can offer at least one of these logical re-
lations, for example, the inheritance can be used for implementing the alternative
variants, overriding for implementing the multi-coexisting variants, or aggrega-
tion for optional variants.

Concretly, in Listing 1.1 (Section 1.1.2) we capture the alternative logical relation
between variants v_directed and v_undirected, which is realized by the strat-
egy pattern.

Variation points with variants can have dependencies in core-code as-
sets [Bühne et al., 2003]. They are similar to the dependencies between features
in an FM (i.e., mutual exclusion, requires, which are shown in Table 3.1). In ad-
dition, when a feature or a set of features modify or influence another feature in
defining the overall system behaviour [Zave, 1999], it is reflected in one of the vp-s
with variants dependencies.

Binding time. Within a domain, vp-s may require being resolved at different de-
velopment phases. Thus, each vp is associated with a binding time, which is the
time when the variability is decided or the vp is resolved with its variants. This
should be supported by the chosen variability implementation technique. A vp
can be resolved early during the development cycle (e.g., when the decision for a
variant is made at compile time), or later during the development cycle (e.g., dy-
namically, at runtime) [Alves et al., 2009; Bosch, 2000]. Binding units are important
for identifying which vp-s should be bound together (e.g., when several vp-s par-
ticipate in implementing some major functionality in a system and they should be
resolved together as a unit) [Ch. 4 Capilla et al., 2013; Lee and Kang, 2004; Lee
and Muthig, 2008]. The binding time here is the time when the variability should
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Table 3.2: Binding times of vp-s with variants (adapted from Bosch and Capilla
[2012]; Capilla et al. [2013])

Binding time Values Description

Static
binding (S)

(S) compilation / link
(S) build / assembly
(S) programming time
(S/D) configuration
(S/D) deploy and redeploy

The variability is resolved early dur-
ing the development cycle, i.e., the de-
cision for a variant in a variation point
is made early/statically.

Dynamic
binding (D)

(D) runtime (start-up)
(D) pure runtime
(operational mode)

The variability is resolved later during
the development cycle, i.e., the decision
for a variant in a variation point is
made as late as possible/dynamically.

be resolved and should not be confused with the time when it will be introduced,
which is differentiated by Svahnberg et al. [2005]. As for the common kinds of
binding times, a taxonomy is given by Capilla et al. [2013] and Bosch and Capilla
[2012]. They are also shown in Table 3.2.

For example, in Listing 1.1 (Section 1.1.2) we capture that the vp_edgetype is
bound during the runtime to one of its variants, for instance to v_directed.

In some domains, a vp may require more than one binding time (i.e., multi-
ple binding times), for example, when a feature requires a static and/or dynamic
binding [Rosenmüller et al., 2011]. In this case, it represents a real challenge for ex-
isting techniques, as they offer only a single binding time. To accomplish a flexible
binding time, different techniques areusually combined. However, in this work
we consider that a vp with its variants is realized by a single variability implemen-
tation technique that offers a single binding time.

Defaults. Some variability is not subject to frequent variations among the major-
ity of software products in an SPL. In such cases, one of the variants on a vp can
be set as its default variant [Coplien, 1999, p. 94].

For example, in Listing 1.1 the v_unweighted is captured as a default variant of
the vp_weight. It is realized by setting the argument w: Int = 1 (line 27), as a
default value.

Granularity. A vp or variant in core-code assets can have different granularities
depending on the size of variability and the used technique [p. 59 Apel et al., 2013;
Kästner et al., 2008a] (cf. Table 3.3). As abstractions, a vp or variant can represents
a coarse-grained element that is going to vary (e.g., a file, a package, a class, an
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Table 3.3: Granularity of vp-s with variants

Granularity Values Description

Coarse-
grained

Component, framework with
plug-ins as variants, file, pack-
age, class, interface, frame, fea-
ture module, etc.

The specified variability has an ef-
fect in the coarsest elements of the
implementation structure.

Medium-
grained

Method, field inside a class, as-
pect, delta module, frame, etc.

The specified variability has an ef-
fect in the medium sized elements of
the implementation structure.

Fine-
grained

Expression, statement, block of
code within a method, frame,
etc.

The specified variability has an ef-
fect in the finest grained elements of
the implementation structure.

interface), a medium-grained element (e.g., a method, a field inside a class), or a
fine-grained element (e.g., an expression, a statement, a block of code).

For example, in Listing 1.1 we should be able to capture the v_directed in method
level (realized by method adddirectededge() in lines 6-13); or, the vp_weight as
a parameter (realized by WEIGHT parameter in line 2).

Evolution. Depending on whether the specified variability in the FM is meant to
be evolved with new features, vp-s can be open or closed (i.e., to be extended with
new variants in the future or not, respectively).

For example, we capture a vp as closed when it is implemented as an enum type in
Java, and open when it is implemented simply as an abstract class.

Abstract features. In addition to these characteristic properties for vp-s with
variants, some of the features in the FM are abstract [Thum et al., 2011].

For example, in Figure 2.1 (Section 2.1) the conceptual feature GraphProductLine
is an abstract feature, which is colored with the lighter blue.

The abstract features are introduced to structure the variable features in the FM
but do not require any implementation. This property becomes important during
the traceability of variability, as there are no abstract vp-s or abstract variants in
core-code assets where the abstract features can be mapped.

3.1.2 Quality Criteria

Variability implementation techniques are supported by different constructs
among potentially various programming languages, thus providing different qual-
ities for the resulting implemented variability. A dominant quality criterion is
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the ability to shape the code (i.e., its variability) in terms of features as cohesive
reusable units so, to handle more easily the variability among distinct abstraction
levels. Several other quality criteria are introduced in the literature [Apel et al.,

Table 3.4: Quality criteria of variability implementation techniques

Quality Description

Preplanning effort The required preplanning effort to introduce and use a variability
implementation technique.

Visibility of vp Variation points in code can be explicit, implicit (e.g., in cloning
technique [Patzke et al., 2011]), or ambiguous (i.e., in traditional
techniques when the same mechanism is used for implementing
the variability and the functionality of software).

Information
hiding

It enables the modular reasoning of variability in implementa-
tion by separating a system into modules [Apel et al., 2013, Ch.
3]. In such case, each module has an internal part, which is en-
capsulated or hidden from other modules, and an external part,
which represents the interface or the contract with the rest of the
system.

Uniformity Some techniques that are used for variability at the implementa-
tion level can also be applied to realize the variability to the other
not code artifacts among the other abstraction levels.

Separation of
Concerns (SoC)

While the main concerns in an SPL development are features,
SoC is related here to the ability to shape the code in terms of
(modular) features

Traceability The ability to trace features in their development lifecycle, specif-
ically with the implemented artifacts, which is also described
in Section 2.3.1.

Scalability The ability of a technique to support new user requirements or
some extension/evolution of variability (i.e., being able to add
new variants to a vp over time without changing their imple-
mentation technique).

2013; Fritsch et al., 2002; Gacek and Anastasopoules, 2001; Patzke et al., 2011].
Some that are widely studied are shown in Table 3.4. We also consider them as
the most important ones for evaluating techniques and capturing the vp-s with
variants.

For example, from Listing 1.1, using the strategy pattern requires more preplanning
effort than using the technique of parameters.

A single technique supports differently each of these quality criteria. Overall, it
is not possible to meet all of the quality criteria as they have conflicting properties,
for example, by choosing a technique that offers little preplanning effort, such as
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the technique of parameters, it makes difficult the traceability of variability at the
finest-grained level (i.e., at the parameter level). Similarly, by chosing any design
pattern to implement some variability, the information hiding and traceability is
improved but it requires more preplanning effort.

3.1.3 Classifications of Techniques

Due to the evolving diversity of variability implementation techniques, re-
searchers have grouped them differently and mentioned dissimilar subsets of
them [e.g., Apel et al., 2013; Gacek and Anastasopoules, 2001; Kästner, 2010; Käst-
ner and Apel, 2008; Muthig and Patzke, 2003; Patzke and Muthig, 2002; Svahnberg
et al., 2005]. In general, implicitly or explicitly, all variability implementation tech-
niques are found to be classified based on three orthogonal subdimensions: (1)
traditional or emerging, (2) language-based or tool-based, and (3) annotative or
compositional.

The first subdimension depends on the time when a technique has emerged and
whether it is dedicated to the variability implementation in core-code assets.

Traditional techniques. They have emerged and evolved indipendently and be-
fore the emergence of the SPL paradigm. Alternatively known as classical tech-
niques, they encompass methods that are used for single system development but,
nevertheless, provide the necessary mechanisms to be good candidates for SPL
engineering. Example of these techniques are inheritance, overloading, generic
types, design patterns. Consequently, in all these techniques, the concept of fea-
ture does not have a first-class representation in implementation.

Emerging techniques. On the contrary, these techniques have emerged as the
SPL engineering field advances. Here, the concept of feature is a first-class citizen
at the code level. In our study, all these techniques come from academia, such as
frames [Bassett, 1996], feature modules [Apel et al., 2013], delta modules [Schaefer
et al., 2010]. They are mainly integrated by language extensions through specific
mechanisms and do not require heavy tooling. For example, the Jak language is an
extension of Java language where each feature is realized by using the language
construct of layer, which represents a feature module [Batory et al., 2004]. In the
literature, these techniques are also called advanced techniques [Apel et al., 2013].

Some of the techniques only depend on language mechanisms, whereas others
rely on extra tool support. Based on Apel et al. [2013], we introduce the following
subdimension of classification.

Language-based techniques. The variability is realized and resolved by different
and dedicated language constructs or mechanisms. Examples of these techniques
are inheritance, feature modules, aspects, and delta modules.
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Tool-based techniques. In this case, specialized tools are used to identify and
resolve variability among the software assets. Although they are conceptually in-
dependent of any given language and orthogonal to its constructs, currently they
are only supported by specific programming environments. For example, such
technique is frames [Bassett, 1996], where a specific frame processor is needed to
automatically execute the frame commands that are used to denote the variability
in code level. Currently, such frame processors are developed by Bassett [1996],
the XVCL language by Jarzabek et al. [2003]; Swe et al. [2002], and the plain frame
processor (fp) by Patzke and Muthig [2003].

The third subdimension is about, the now common distinction, on the way that
variability is represented and resolved at code level [Kästner, 2010; Kästner and
Apel, 2008].

Annotative techniques. The specified features are realized in core-code assets
as a whole and the variants are annotated by a technique in order to include or
exclude them during variability resolution. Different variability implementation
techniques have different means for realizing annotations, for example, prepro-
cessor directives in C [Tartler et al., 2012], or simple tagging approach [Heymans
et al., 2012], but this last one falls into the tool-based approaches and not tech-
niques. When an annotative technique is used to remove the unneeded variants
from core-code assets, it supports negative variability.

Compositional techniques. Variable features aim at having a cohesive or mod-
ular representation at code level, for example, in form of components, plug-ins,
classes, packages, modules, aspects, deltas, or subjects. The intention is that a final
product is derived by simply attaching or composing any of these modular units
or variants in the base assets as part of core-code assets that are included in all soft-
ware products. Thanks to this ability to compose the needed variants, these tech-
niques are known to support positive variability (e.g., the technique behind feature
modules). In the last subdimension, negative or positive variability may some-
times be orthogonal to this classification. For example, the delta programming as
compositional technique suggests to add or remove the delta modules from the
base core-code assets.

Another very notable set of techniques is the one that follows a generative ap-
proach [Czarnecki, 2005; Czarnecki and Eisenecker, 2000]. These techniques have
the ability to generate software products from the generic assets (i.e., core-code as-
sets). Respectively, they may use a description in a higher abstraction language
level, such as a Domain Specific Language (DSL), for deriving software prod-
ucts [Weiss et al., 1999]. We see these techniques as orthogonal to our issue of
evaluating and choosing a variability implementation technique or capturing the
variability in core-code assets.
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3.2 Catalog Building Method

In this section we describe both the building method and the resulting catalog
of variability implementation techniques regarding the characteristic properties of
vp-s with variants that should be realized or can be captured in core-code assets.

3.2.1 Covered Techniques

To have an up-to-date catalog of implementation techniques, we collected the iden-
tified variability implementation techniques so far. They are diverse and spread
among different research works and shared experiences, forming a significant set.
It must be noted that we did not follow a systematic process in our literature re-
view. We took the existing classifications and related references as starting points
for finding the relevant research publications. Then, we decided to consider only
those techniques that are used in a closed-world SPL engineering process [Käst-
ner et al., 2011] (i.e., when a technique is used for implementing a set of features
with a closed view within a domain). Different programming languages support
subsets of them (see a given mapping of techniques with the programming lan-
guages by Gacek and Anastasopoules [2001]), and even for a single technique, dif-
ferent mechanisms or language constructs can be used. We excluded techniques
like components and frameworks as they already use the considered closed-world
techniques to realize their variability.

3.2.2 Evaluation Process

We then rely on the previously introduced dimensions with their subdimensions
as the evaluation criteria for a variability implementation technique. Next, we per-
formed the evaluation of each technique by applying the following two methods
in parallel.

First process. We used four small case studies from different domains to experi-
ment with several techniques and vp-s characteristic properties. Those case stud-
ies are: Arcade Game Maker PL [AGM, 2009], Microwave Oven PL [Gomaa, 2005],
Expressions PL [Lopez-Herrejon et al., 2005], and Graph PL [Apel et al., 2013; Lopez-
Herrejon and Batory, 2001] 1. Their domains are quite well understood and used
by the SPL community. A summary of their development is given in Appendix B.
For their implementation, we used the Scala language, which supports both the
object-oriented and functional paradigms and has rich constructs for modulariza-
tion of features. This enables us to cover more choices of techniques with only one
implementation language.

1Their implementation are available on https://github.com/ternava/
variability-cchecking

https://github.com/ternava/variability-cchecking
https://github.com/ternava/variability-cchecking
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Second process. We built an informed opinion for each technique and some of
their classification criteria from the existing research works, some of them are sum-
marized in Section 3.2.4. These works mainly evaluate a technique using Java and
C++ language constructs or extensions of these languages (e.g., AspectJ). We thus
examined manually the realized evaluations and the obtained results by the others.
Similar to us, most of them use three evaluation levels for a criteria: good support,
possible support, and no support. After the examination step, we compared the
results from these works, especially when they were considering the same criteria
for a same technique. Whenever two different works do not agree on a value for
a specific criterion, we did a more depth analysis in the literature (e.g., analysing
more detailed approaches, auch as Ramos Alves [2007]) or, when was possible, we
used one of our case studies to evaluate it. As a result, each technique was system-
atically evaluated by the mentioned criteria in the three classification dimensions
(given in Section 3.1).

3.2.3 Resulting Catalog

The evaluated techniques are shown organized in the proposed catalog in Ta-
ble 3.5 2. Techniques are gathered in two main groups, those that provide ad-hoc
reuse and methodological reuse. We did not want to exclude from our classification
the most applied techniques such as copy-and-paste or cloning. These techniques
have well-known drawbacks and may not scale due to their ad hoc form of reuse.
However, this is strongly related to the maturity levels of an SPL [Antkiewicz et al.,
2014; Bosch, 2000] and practical for building quick solutions [Patzke, 2010], which
can be refactored later. The other techniques encourage the methodological reuse
as the main ingredient for a sustainable SPL.

The catalog contains two legends. The first legend, Legend A, is used to ex-
plain the evaluation results and the second one, Legend B, is used to explain our
evaluation method using previous works. Therefore, some evaluation values to a
criteria are associated with a reference work, using numbers, to show when a result
is influenced by an existing work and by which one. For example, the technique
of Frames for the criterion of Binding Time (see the colored intersection in Ta-
ble 3.5) is evaluated as offering static binding of variants. This result is supported
by three references, [Gacek and Anastasopoules, 2001; Patzke and Muthig, 2003;
Patzke et al., 2011], refereed by numbers 2, 5, and 7, respectively. In Table 3.5 only
some of the main works that we used are shown, as they cover a considerable set
of techniques. These references can be used also to show how the evaluated tech-
niques and the used criteria are distributed among the previous research works.

In this way, we address the Challenge A1 to comprehend the diversity in vari-
ability implementations of core-code assets, and to compare the majority of the
existing variability implementation techniques by the same set of properties.

2See also in our repository https://github.com/ternava/expressions_spl/wiki.

https://github.com/ternava/expressions_spl/wiki
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Table 3.5: Catalog of variability implementation techniques
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3.2.4 Related Work

An important issue for variability implementation is the ability to evaluate and
choose a technique that will fulfill best some given variability requirements. Sev-
eral evaluation schemas of various implementation techniques are currently avail-
able. They mainly came from the academia in form of frameworks, taxonomies, stud-
ies, and catalogs. We used them for building our catalog in Table 3.5; and, the most
influential ones are described in the following in no particular order.

Taxonomies. Svahnberg et al. [2005] group and organize the techniques by two
dimensions of similarity. According to the size of software entities in which the
techniques can be applied (components, frameworks, and lines of code), and their
latest binding time. Examples of concrete techniques categorized by this taxonomy
have been given, but for the majority of the other techniques it is up to the user to
evaluate and categorize them.

Catalogs. Patzke and Muthig [2002] gather several techniques and evaluate them
by three types of variability: optional, alternative, and multi-coexisting. They
also give a model that captures how and which technique is appropriate to be
introduced [Patzke, 2010] depending on the maturity level of the SPL [Antkiewicz
et al., 2014; Bosch, 2000]. Concrete examples on each technique and other details
have been complemented later in an enriched set of techniques and evaluation cri-
teria [Patzke et al., 2011]. Quite similarly, Muthig and Patzke [2003] evaluate a
slightly different set of techniques and criteria. Gacek and Anastasopoules [2001]
discuss also another rich set of techniques and criteria. They are organized in a
catalog and evaluated by the proposed criteria. A second catalog gives details on
the language support for each technique.

Studies. Coplien addresses many issues for realizing the commonalities and
variabilities [1999], although with no direct emphasis on SPL engineering. He in-
troduces several techniques from different programming paradigms for variability
implementation, and enlightens how these techniques factorize the commonality
and accommodate the variability on it [Coplien et al., 1998].

Apel et al. [2013] recently cover the majority of the identified variability im-
plementation techniques and study a set of criteria for each of them. Although a
deeper discussion about techniques is given, they are not organized in a catalog
nor compared, while only a subset of previously used evaluation criteria is con-
sidered.

Some of the variability implementation techniques are evaluated separately,
such as Aspects [Anastasopoulos and Muthig, 2004] or Frames [Patzke and
Muthig, 2003]. It is important to note that in almost all these evaluation schemes,
techniques are evaluated in isolation. A notable exception is the combined eval-
uation of aspects and other techniques by Apel et al. [2008], which analyses the
synergy between aspects and feature modules to implement crosscutting features.
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Figure 3.1: The FM of Expressions PL

Furthermore, the combination of annotative and compositional techniques was
also investigated by Kästner and Apel [2008].

Frameworks. The work of Fritsch et al. [2002] is of a different nature. They pro-
pose an evaluation framework for techniques. Several evaluation criteria are de-
termined, but it is up to the developers to evaluate the techniques by these criteria
and to create their own catalog.

As the SPL engineering field is making progress, various techniques are regu-
larly identified. New ones have emerged and have not been taken into account
with enough details in the previous comparisons or catalogs. Considering all the
work mentioned above, we observe that they cover different subsets of techniques
and use different evaluation methodologies and criteria. Merging all techniques
and criteria is not straightforward and cannot be made easily by SPL architects
or developers. Making a decision over one or several variability implementa-
tion techniques is then a cumbersome task. Therefore, we created a richer catalog
where all techniques are evaluated by the same set of criteria (see Table 3.5), and,
still, we kept a mapping of these criteria and techniques to the existing works (see
Legend B in Table 3.5).

3.3 Choosing a Technique

3.3.1 Illustration

For illustrating the evaluation steps in choosing a technique, by using the catalog
and the unexpressed facets on it, we use the Expressions PL case study [Lopez-
Herrejon et al., 2005; Loverdos and Syropoulos, 2010, Ch. 12]. Its feature model
is shown in Figure 3.1, whereas the development details for its three versions are
given in Appendix B.

We use a proactive approach for implementing the variability of Expression
PL. Then, we decide for choosing those techniques that offer a methodological
reuse (cf. Table 3.5). From these techniques, we rule out the ones that are not di-
rectly supported by any of the Scala language constructs, such as frames, feature
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Table 3.6: Two implemented versions of the Expressions PL

version 1 version 2

Variation Point Operation Data Operation Data
Variants Print, Eval Lit, Add, Sub Print, Eval Lit, Add, Sub

Technique Subtype polymorphism Visitor Pattern
Lang. mechanism Bounds, Traits Traits Classes Case classes
Open/Closed Open Open Open Closed
Binding time Compile time Static config. Runtime Compile time
Granularity Traits Traits, methods Class Method
Visibility of VPs Explicit Explicit Implicit Explicit

(Abstract type) (Trait) (-) (Trait)
Comment: Operation-centric decomposition Data-centric decomposition

modules, or deltas. We then take into consideration the logical relations between
features in the FM to choose a technique. As a result, several techniques are left to
be chosen, and we decide for any of them in an arbitrary way. Concretely, in Ta-
ble 3.6 are shown the different chosen techniques to implement the case study as
two different versions. These two implementations are given in Appendix B.2.

In version 1 (cf. Table 3.6), from the remaining options of techniques, we choose
the subtype polymorphism (cf. Listing B.1). Thus, one vp has static binding and
the other dynamic binding, the optional logical relation between features is sup-
ported, the vp-s are left open for adding more variants in the future, and the code
is shaped in terms of features by using the trait mechanism in Scala language.
Whereas, in version 2 we choose a single technique (i.e., the visitor pattern with
case classes in Scala) for implementing the two vp-s (cf. Listing B.2). We decide
for using the visitor pattern because the lines of code are fewer compared with
any other implementation as it is supported directly by a Scala language construct
(with the case classes). Concretely, the version 1 has 73 lines of code, whereas the
version 2 has 34 lines of code. In Table 3.6 are shown the other properties of vp-s
with variants. By using this technique, the code is not shaped in terms of features,
thus making difficult the management or traceability of variability.

3.3.2 Discussion

The methodological development and reuse of core-code assets can be achieved
by evaluating and choosing a technique in a systematic way that fits best to im-
plement some variability. The given catalog in Table 3.5 supports such systematic
evaluation and choice of techniques, but it is insufficient.

Concretely, although we used the catalog for realizing the two versions 3 in Ta-
ble 3.6, we still took some decisions that were unexpressed in the catalog. Specifi-
cally, we decided for using the Scala language, which looks as an ad hoc decision
but was conform with our personal knowledge and preferences. Therefore, we

3One more version is given in the repository link, in Appendix B.
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noticed that to choose a technique, there are few more facets that make difficult a
systematic choice of techniques, which should be considered and are unexpressed
in the catalog. We discuss them in the following.

Evaluation is informal. Evaluating whether we are selecting the right technique
is, not surprisingly, difficult as it is largely informal. First, a feature model itself
does not say much, obviously, about how its features are going to be implemented.
Even some of the characteristic properties of variable parts that are important for
the end users, such as the binding time, are unspecified in the FM. Similarly, the
other characteristic properties and quality criteria are also unspecified and the de-
velopers have to balance and make trade-offs on them [Apel and Kästner, 2009].
Secondly, variability implementation techniques came from different development
paradigms (e.g., object-oriented, functional) that are supported by different lan-
guages, which may use different language constructs even for the same paradigm.
Overall, there is a variety of domains and strategies within an organization, which
may prefer to support some of the characteristic properties of variable parts or the
quality criteria over the others.

Evaluation from different perspectives. An aspect of techniques, which is im-
plicit in the catalog, is that they can be evaluated from different perspectives.
Specifically, a technique can be evaluated (1) whether it addresses the characteristic
properties of variable parts that are relevant for the end users or for the resolution
of variability (e.g., by the logical relation between variants, their binding time), (2)
whether it simplifies the development of variability (e.g., by the preplanning effort,
information hiding), or (3) whether it improves the management of variability (e.g.,
by shaping the core-code assets in terms of features – SoC, or easing the traceability
of variability). All techniques overlap regarding this aspect and any of such per-
spectives can have an impact in evaluating and choosing a technique. Although
implicit, these perspectives can be used to begin with the evaluation of a technique
by using our catalog for implementing some variability.

Non-isolated evaluation. Another aspect is that a single technique may not
cover well all requirements within an SPL domain. Therefore, a given do-
main may employ several techniques and paradigms (e.g., object-oriented, func-
tional) [Coplien, 1999], although a smaller set of them is suggested in order to
simplify the management of variability [Bachmann and Clements, 2005]. This is
evident when traditional techniques are used, such as inheritance, overloading,
design patterns. The emerging techniques, such as feature modules or delta mod-
ules, are meant to be used as a single technique for development of the whole SPL.
Similarly, preprocessors in C, which have a wide usage in the realistic SPLs, are
used as a single technique. Actually, these techniques annotate or modularize the
variability of core-code assets in terms of features, which are implemented at first
by a programming paradigm (e.g., object-oriented, functional). In other words,
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when techniques are used together they have an effect on each other regarding the
implementation of variability. A combined usage of paradigms and techniques
means that a systematic choice of a technique depends also on the other chosen
techniques, which implement together the variability of some strongly related sub-
domains.

For example, in Listing 1.1, we could not use the strategy pattern to implement the
variants v_directed with v_undirected and then also the variants v_weighted
with v_unweighted, although both are in an alternative relation.

Dependency on the adaptation model of the SPL. As a last but not the least
aspect, the development of core-code assets is basically driven by the adapta-
tion model of the SPL, which can be a proactive, extractive, or reactive adapta-
tion [Krueger, 2002a] (see Section 1.1.1). When it is not a proactive way then, the
choice of a technique and usage of the catalog depends from the existing tech-
niques used for implementing the variant software application(s). Consequently,
depending on the adaptation model some techniques may be more suitable to be
chosen over the others.

3.4 Summary

A diverse and growing set of variability implementation techniques is available in
the SPL engineering field. Understanding and choosing an appropriate technique
is not a trivial task for architects and developers. Besides, the variation points with
variants in core-code assets become diverse, meaning that the realisation and the
capture of variability at the implementation level is not uniform. Different subsets
of techniques have been identified and classified while new techniques emerged.

In this chapter, we studied the elements of diversity for capturing the imple-
mented variability of core-code assets in terms of variation points with variants, in
form of their characteristic properties or comparison criteria for their implementa-
tion techniques. Then, we studied the majority of the variability implementation
techniques and provided a unified set of comparison criteria for them. We orga-
nized these criteria in a catalog that covers an enriched set of techniques, which are
compared with a same set of criteria. Finally, we provide an illustrative example
to show the diversity of the characteristic properties for variation points with vari-
ants even within a small case study. We also illustrate the usage of our catalog and
discuss four of the unexpressed facets of techniques in this catalog, which should
be considered during the evaluation and choice of a variability implementation
technique.



CHAPTER 4

Technical Variability Models

This chapter shares material with the following paper:

Tërnava, Xh. and Collet, P. (2017). Tracing imperfectly modular variability
in software product line implementation. In International Conference on
Software Reuse, pages 112–120. Springer

In Section 2.1, we have shown the necessity to differentiate and model separately
the variability in problem and solution spaces. Specifically, one of our main chal-
lenges (cf. Challenge A) is to model the variability of core-code assets, as solution
space artifacts. Toward this, we undertake two main steps: (1) capturing the vari-
ability of core-code assets and (2) modeling it in variability models. For the first
step, we reflect on whether we should use the concepts of features or variation
points (vp-s) with variants to abstract the variability at the implementation level
(which analysis is given in Section 2.2.2). Therefore, we first study their differences
as concepts and their terminology, and then their differences during the capturing
of variability in a forward or reverse engineering process. In particular, we are fo-
cused in the common situation in which a combined set of traditional techniques
are used together for variability implementation, thus tackling the Challenge A2.
Finally, we propose a framework for capturing and modeling the variability of
core-code assets in a fragmented way, thus addressing the Challenges A3 and A4.

4.1 Capturing the Variability of Core-Code Assets

4.1.1 Imperfectly Modular Variability

In realistic SPL settings, variability is implemented by using a combined set of
traditional techniques, such as inheritance, overloading, generic types, design pat-
terns. These techniques offer a form of imperfectly modular variability at the im-
plementation level. To illustrate what imperfectly modular variability means, let
us consider the implementation of a set of features in the JavaGeom [Legland,
2017], as a realistic feature-rich system. Its features are depicted in the FM on Fig-
ure 4.1, whereas the details for the development of the whole case study are given
in Appendix B.

Specifically, from Figure 4.1, StraightCurve2D is a mandatory feature with three
shown alternative features: Line2D, Segment2D, and Ray2D. Excerpts of their re-
spective implementations are given in Listings 4.1 to 4.4. Focusing on the im-
plementation techniques, the abstract class AbstractLine2D is a vp and its three
variants, StraightLine2D, LineSegment2D and Ray2D, are created by generaliz-
ing/specializing its implementation.
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Figure 4.1: Four features of JavaGeom product line

Figure 4.2: A detailed design excerpt of JavaGeom product line from the implemen-
tations in Listings 4.1 to 4.4

In a detailed design, their implementation technique looks as in Figure 4.2. Fea-
tures in the FM (cf. Figure 4.1) seem to have a direct and perfect modular map-
ping in implementation (cf. Figure 4.2) (i.e., «StraightCurve2D implemented by
AbstractLine2D», «Line2D implemented by StraightLine2D», «Segment2D im-
plemented by LineSegment2D», and «Ray2D implemented by Ray2D»). But, actu-
ally, this perfect form of modularity hardly exists. The vp AbstractLine2D and
its variants have a lot of internal variability, for example, in AbstractLine2D the
method getSymmetric() is another vp with two alternative variants implemented
using the technique of overloading (cf. Figure 4.2 and Listing 4.1 in lines 5-7 and
9-12). The variants of getSymmetric() can be considered as an implementation in
finer grained modules. It represents some technical and nested variability, which
could be specified or not in the FM, but still needs to be documented, traced, and
managed (e.g., to be resolved).

Imperfect modularity comes also from the fact that a feature is a domain concept
and its refinement in core code assets is a set of vp-s with variants, even if they are
modular, meaning that it may not have a direct and single mapping.

For example, the feature Line2D uses several vp-s, such as AbstractLine2D,
Cloneable and CirculinearElement2D, the variant StraightLine2D (cf. Fig-
ure 4.2 and Listing 4.3), plus their technical vp-s mentioned in the previous para-
graph.
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1 /∗ F i l e AbstractLine2D . java ∗/
2 public a b s t r a c t c l a s s AbstractLine2D extends AbstractSmoothCurve2D
3 implements SmoothOrientedCurve2D , LinearElement2D {
4 /∗∗Return the symmetric of point p r e l a t i v e to t h i s s t r a i g h t l i n e . ∗/
5 public Point2D getSymmetric ( Point2D p ) {
6 return getSymmetric ( p . x ( ) , p . y ( ) ) ;
7 }
8 /∗∗Return the symmetric of point with coordinate ( x , y ) r e l a t i v e to

t h i s s t r a i g h t l i n e . ∗/
9 public Point2D getSymmetric ( double x , double y ) {

10 double t = 2 ∗ positionOnLine ( x , y ) ;
11 return new Point2D (2 ∗ x0 + t ∗ dx − x , 2 ∗ y0 + t ∗ dy − y ) ;
12 }
13 /∗ . . . ∗/
14 }

Listing 4.1: An excerpt from the realization of feature StraighCurve2D, for JavaGeom
in Figure 4.1, as a variation point AbstractLine2D

1 /∗ F i l e StraightLine2D . java ∗/
2 public c l a s s StraightLine2D extends AbstractLine2D
3 implements SmoothContour2D , Cloneable , CircleLine2D {
4 /∗ . . . ∗/
5 }

Listing 4.2: An excerpt from the realization of feature Line2D, for JavaGeom
in Figure 4.1, as a variant StraightLine2D of AbstractLine2D

1 /∗ F i l e LineSegment2D . java ∗/
2 public c l a s s LineSegment2D extends AbstractLine2D
3 implements Cloneable , CirculinearElement2D {
4 /∗ . . . ∗/
5 }

Listing 4.3: An excerpt from the realization of feature Segment2D, for JavaGeom
in Figure 4.1, as a variant LineSegment2D of AbstractLine2D

1 /∗ F i l e Ray2D . java ∗/
2 public c l a s s Ray2D extends AbstractLine2D
3 implements Cloneable {
4 /∗ . . . ∗/
5 }

Listing 4.4: An excerpt from the realization of feature Ray2D, for JavaGeom
in Figure 4.1, as a variant Ray2D of AbstractLine2D

While it would be preferable to use a single variability implementation tech-
nique to implement an SPL, none of the existing techniques is yet "a preferred
one" [Apel et al., 2013], which could cover all types and properties of variability
that may appear in different domains. Although, to facilitate the management of
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Figure 4.3: A three step framework for variability management of core-code assets
(T VMm stands for Technical Variability Model (cf. Section 4.2.2) of the core-code asset
cam, with vp-s {vpa, vpb, ...} and their respective variants {va1, va2, ...} that are realized
by different techniques {ta, tb, ...}. Whereas, {f1, f2, ...} are features in the FM.)

variability, a smaller set of techniques is preferable for implementing an SPL [Bach-
mann and Clements, 2005]. This implies that an SPL architect has to deal with a va-
riety of vp-s with variants, that is, implemented by different language constructs,
or with different binding times. In our illustrative example (cf. Figure 4.2 and List-
ings 4.1 to 4.4) the traditional technique of inheritance and overloading are used,
which induce a class and method granularity of variability with runtime and com-
pile time binding, respectively. In these techniques, the concept of feature does
not have a first-class representation in implementation. Still, a degree of modular-
ization of variability can be achieved when used with variability management or
traceability in mind.

In this chapter, we address the ability to capture and model this imperfectly
modular variability at the implementation level, in a forward engineering process,
which we define as follows:

Definition 1. An imperfectly modular variability in implementation occurs when some
variability is implemented in a methodological way, with several variability implementa-
tion techniques used in combination, the code being not necessarily shaped in terms of
features, but still structured with the variability traceability in mind. �

Specifically, we distinguish three main steps for managing the imperfectly
modular variability of core-code assets. Therefore, we provide a three step frame-
work, which is depicted in Figure 4.3, for

1. Capturing the imperfectly modular variability at the implementation level in
terms of vp-s with variants, as abstract concepts;

2. Modeling (documenting) this variability in terms of vp-s with variants, while
keeping the consistency with their implementation in core-code assets, and;
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3. Establishing the trace links between the specified and implemented variabil-
ities (i.e., we extend the framework for variability traceability).

In this chapter we address the first two steps of capturing and modeling the
variability of core-code assets, whereas in the next chapter we address the ability
to trace this variability with the specified domain features in a feature model.

4.1.2 A Framework for Capturing the Variability

Toward addressing one part of Challenge A2, we provide the following frame-
work for capturing the variability of core-code assets when it is realized by using
a combined set of traditional variability implementation techniques (e.g., inheri-
tance, overriding).

The variabilities in core-code assets that have a form of imperfect modularity
usually consist of a common part and a variable part. It may happen that a whole
core-code asset is also a variable asset, for example, a source file, a package, a class.
The variable part consists of technique with a mechanism for creating the variants,
a way for resolving the variants, and the variants themselves. We abstract them by
using the concepts of vp-s with variants and their dependencies. The variable part
may have several vp-s and their variants, which may have dependencies with the
vp-s and variants in the same or in the other assets.

Let vpx be a specific variation point and vx one of its variants. We assume that
the vpx is implemented by a single traditional technique tx. The set T of possible
techniques for vpx is then made explicit in our framework:

T = {Inheritance , Generic Type, Overriding , Strategy
pattern, Template pattern ,...}

A vp is not a by-product of a traditional implementation technique [Bosch et al.,
2001; Sinnema et al., 2004a]. Therefore, we use the second and the fourth meaning
of a vp (see its all five meanings in Section 2.2.2), depending on the implementation
technique, for tagging the variability of core-code assets.

Remark. Tagging a variation point or variant means to map the variation point or variant
concept to a concrete variable asset element in core-code assets; respectively, to maintain
their consistency.

For example, we use the fourth meaning when tx = Inheritance through tag-
ging as a vpx the whole superclass instead of tagging the methods inside it or its
interface that is going to vary in subclasses as variants. When tx = Generic Type
we use the second meaning by tagging as a vpx the parameter itself.

For example, the superclass AbstractLine2D is a vp (cf. Figure 4.2), and
we abstract/tag it as vp_AbsLine2D. Similarly, we abstract its variants,
StraightLine2D, LineSegment2D, and Ray2D, as v_Line2D, v_Segment2D, and
v_Ray2D, respectively. A similar example is given on page 30, for the Graph PL
case study.
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Characteristic properties of vp-s with variants. Depending on the used imple-
mentation technique, the nature of a core asset element that represents a vp or one
of its variants varies. We gathered their variety as characteristic properties of vp-
s with variants, which are given in the previous chapter (see Section 3.1.1). We
give here these properties of vp-s with variants in a formal way, as part of our
framework.

The set of logical relations 1 (LG) between variants in vpx that are commonly
faced in practice are similar with the relations between features in an FM, as are
given in Table 3.1 (Section 3.1.1). Then,

LG = {Mandatory , Optional, Alternative , Multi−Coexisting}

A single technique, tx, can offer at least one of these logical relations between vari-
ants, for example, the Inheritance can be used for implementing the alternative
variants (as in JavaGeom, Figure 4.1), the Overriding for implementing the multi-
coexisting variants, or the Aggregation for optional variants. Our catalog of vari-
ability implementation techniques can then be used as a guidance for chosing a
technique (see Table 3.5).

The possible static and dynamic binding times (BT ) of a vpx (see Table 3.2
in Section 3.1.1) are:

BT = {Compilation , Assembly, Programming time,
Configuration , Deploy, StartUp, Runtime}

Depending on whether the vpx is meant to be evolved (EV) in the future with
new variants, it can be (see Evolution on page 33):

EV = {Open, Close}

For example, from the JavaGeom PL (cf. Figure 4.2), the vp_AbsLine2D has a Class
level granularity (cf. Table 3.3 in Section 3.1.1), which can be resolved at Runtime
to one of its Alternative variants (v_Line2D, v_Segment2D, or v_Ray2D) and it is
Open for adding new variants in the future.

Other characteristic properties of a vp can be formalized and also added, for
example, whether a variant is added, removed, or replaced by another variant.
This property matters during the process of product derivation, which is a possible
usage of our framework.

Tagging properties of vp-s with variants. We use the following nomenclature
for describing the tagging properties of vp-s with variants.

Let the set of all vp-s in core-code assets be:

VP = {vpa, vpb, vpc, ..., vpx} (4.1)

1In the literature they are also known as types of vp-s; but, it was more meaningful to use the term
Type of vp for something else (see Table 4.2).
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The set of all realized variants for the vpx is:

V = {vx1, vx2, vx3, ..., vxn},where n ∈ N (4.2)

The set of all core-code assets, with variability or variable themselves:

CA = {cam, can, cao, ..., cax} (4.3)

The variable elements in a core-code asset, for example, for cam, which repre-
sent some vp-s or its variants, are:

cam = {eam1, eam2, eam3, ..., eamn},where n ∈ N (4.4)

The abstractions of each vp and variant from sets (4.1) and (4.2) are associated
with their concrete implementation in core-code assets, for example, with a vary-
ing file, class, or method, which we named as in sets (4.3) and (4.4). Analysing
some of the traditional variability implementation techniques, we determine four
possible associations for vp-s and two for variants. They are described in the fol-
lowing and in Table 4.1.

• (vpx, eaxn) , where n represents a specific element of the cax in (4.4).
This is the case when vpx represents only one element of an asset.
For example, (vp_AbsLine2D, AbstractLine2D), represented by a class .

• (vpx,∅) , when the vpx is implicit, hard to be tagged.

For example, when an if-else statement is used [Svahnberg et al., 2005] .

• (vpx, cax) , when the core-code asset cax itself is variable.

For example, if vp_AbsLine2D is Optional vp and together with its three
variants is contained in a file, then the whole file is variable. Thus,
(vp_AbsLine2D, file).

• (vxy, eaxn) , where y represents a specific variant of V in (4.2) and n repre-
sents a specific variable element of cax in (4.4). This is the case when the
variant represents only one element of an asset.

For example, (v_Line2D, StraightLine2D), (v_Segment2D,
LineSegment2D), or (v_Ray2D, Ray2D), where each of these variants
is implemented by a single class in core-code assets.

Until now, we considered that a feature or a vp abstraction is associated with a
single location in core-code asset, for example, (vpx, eaxn) . In several techniques,
this association is at least 1–to–m, that is, a feature or a vp can be present in several
places in core-code assets.

If we analyse the second part of the vp definition, given in Section 2.2.1, it states
that "a variation point identifies ... more locations at which the variation will occur" [Ja-
cobson et al., 1997]. We found that only Muthig and Atkinson [2002] have con-
sidered explicitly this part of the definition after Jacobson et al. [1997] themselves.
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Table 4.1: Tagging properties of variation points and variants

Properties Description

Single location When a vp or variant is present in a single location
Spread When the same vp or variant is present in several locations
Implicit When a vp is implicit and cannot easily be tagged

According to them, this means that a decision (an entity in form of a question that
is used for resolving the realized variability) can have more than one vp, which is
something else. However, Jacobson et al. [1997, p. 105] explain that, depending on
the used technique, the same vp can be in more locations in core-code assets (e.g.,
when the technique of parameterization is used). Therefore, we distinguish two
more tagging properties:

• (vpx, {eax1, eax2, ..., eaxn}) , when the vpx is found in more than one place in
core-code assets.

• (vxy, {eax1, eax2, ..., eaxn}) , when the variant is found in more than one
place in core-code assets.

For example, from Listing 1.1 (Section 1.1.2), the variant Weighted is implemented
in two separate places: lines from 8–10 and 17–20. These properties can be recog-
nized easily when features are implemented by using the technique of preproces-
sors in C. Just as an example, in the Berkley DB2 the preprocessor directive that
represent feature DIAGNOSTIC is present in 45 .c files or in 73 places or, feature
HAVE_QUEUE is present in 19 .c files or in 25 places.

In a general case, the vpx or vxy can be associated with an element of any core-code
asset from the CA in (4.3).

In this section, we presented the essential basis for capturing vp-s and variants
at the implementation level. In some existing approaches, vp-s or variants are la-
beled depending on their resolution nature ( e.g., choice, substitution [CVL, 2012]),
or depending on their location in assets (e.g., kernel-param-vp, kernel-abstract-
vp [Gomaa, 2004]). For now, we keep a more inclusive label simply as a vp con-
cept, which can reflect in the future its resolution nature, location or evolution.

4.2 Modeling the Implemented Variability

After capturing the variability of a core-code asset cax, we now model its variabil-
ity in terms of vp-s with variants as abstractions. Specifically, we model the rela-
tions between these abstractions by associating each vp with its realized variants

2http://oracle.com/technology/products/berkeley-db

http://oracle.com/technology/products/berkeley-db
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Table 4.2: Types of variation points

Types Description

Ordinary A vp is introduced and implemented (i.e., its variants are realized)
by a specific technique.

Unimplemented A vp is introduced but is without predefined variants (i.e., its vari-
ants are unknown during the domain engineering).

Technical A vp is introduced and implemented only for supporting internally
the implementation of another vp, which realizes some of the vari-
ability at the specification level.

Optional The vp itself, not its variants, is optional (i.e., when it is included
or excluded in a product, so are its variants).

Nested vp When some variable part in a core code asset becomes the common
part for some other variants.

and its implementation technique (i.e., the logical relation between the variants,
their binding time, and the evolution property). Other properties from Tables 3.1
to 3.4 on Section 3.1.1 can also be abstracted and attached. In this way, we want to
address the remained part of Challenge A2, for modeling the implemented vari-
ability of core-code assets, and Challenge A3 on keeping the consistency between
the captured variability in terms of vp-s with variants and their concrete variability
implementation techniques and core-code assets that they abstract.

4.2.1 Types of Variation Points

As a continuation of our framework, we observed that five types of vp-s can be
distinguished for modeling the implemented variability, which are given in the
set X below. A resolution for them is given in Table 4.2, and they are modeled as
follows.

X = {vp, vp_unimplemented , vp_technical , vp_optional ,
vp_nested}

The implementation technique tx ∈ T of the vpx ∈ VP , which relation we write
as (vpx, tx) , describes three main properties of the vpx: the logical relation for its
variants, the evolution, and the binding time. Then,

tx = {lgx, evx, btx, ...}, where lgx ∈ LG, evx ∈ EV, and btx ∈ BT

So, when the vpx is an ordinary vp (cf. Table 4.2) we model the variability in a
core-code asset as a set of its variants and the characteristic properties derived
from the vpx’s implementation technique tx. This leads to the following definition
(cf. Equation (4.2)):

vpx = {V, tx} = {{vx1, vx2, vx3, ..., vxn}, tx},where n ∈ N (4.5)
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which we will graphically represent as:

(vpx, tx)

vx1 vx2 vx3 ... ≡

(vpx, {lgx, evx, btx, ...})

vx1 vx2 vx3 ...

For example, from Figure 4.2,

(vp_AbsLine2D, (alt., open, runtime))

v_Line2D v_Segment2D v_Ray2D

When the vpx is an unimplemented vp (cf. Table 4.2), we model it as:

vpx = {{∅}, tx} , respectively
(vpx, tx)

A technical vp is in principle an ordinary vp but it may be made visible or not
to different stakeholders (cf. Figure 4.2). This depends on the purpose of variability
management, for example, to resolve or to address the variability. For the sake of
generalization, we consider that a technical vp can be also an unimplemented vp.
A technical variation point vpy of the vpx is modeled as below.

(vpx, tx)

vx1 vx2 ... (vpy, ty)

vy1 vy2 vy3 ...

For example, let us consider that vp_getSymmetric is the abstraction of the vp
getSymmetric (cf. Figure 4.2), and it is a technical vp of vp_AbsLine2D. It has two
alternative variants, v_argPoint2D and v_argDouble, which are realized using
the technique of overloading. This variability is then modeled as follows:

(vp_AbsLine2D, (alt., open, runtime))

v_Line2D v_Segment2D v_Ray2D (vp_getSymmetric, (alt., close, compile))

v_argPoint2D v_argDouble

On the contrary, when the vpy is a nested variation point of vpx then a variable
part (e.g., the variant vx3) becomes the common part for the variability of vpy (e.g.,
for vy1, vy2, and vy3). This is modeled as follows.
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(vpx, tx)

vx1 vx2 vx3 ≡ (vpy, ty)

vy1 vy2 vy3 ...

...

When vpx is optional, the tuple (vpx, tx) becomes a triple (vpx, tx, opt) . We
use the acronym opt here in order to distinguish between the optional variants in a
vp and the optionality of the vp itself. Also, to make a vp as optional it may not re-
quire a technique (i.e., simply the vp is not included in a final product). Therefore,
we should document it. An optional vp can be ordinary, unimplemented, and can
have other nested or technical vp-s. This is modeled as:

(vpx, tx, opt)

vx1 vx2 vx3 ... ≡

(vpx, {lgx, evx, btx, ...}, opt)

vx1 vx2 vx3 ...

1 /∗ GraphBasic . s c a l a ∗/
2 o b j e c t Conf {
3 f i n a l val WEIGHTED: Boolean = t rue
4 }
5 a b s t r a c t c l a s s Graph { /∗ Core part ∗/ }
6 c l a s s ConcreteGraph extends Graph {
7 def adddirectededge ( s : Vertex , d : Vertex , w: I n t ) = {
8 val edge = new Edge ( s , d )
9 i f ( Conf .WEIGHTED) {

10 edge . weight = w
11 }
12 edges = edge : : edges
13 addtoadjacencymatrix ( edge )
14 }
15 def addundirectededge ( s : Vertex , d : Vertex , w: I n t ) = {
16 val edge1 = new Edge ( s , d )
17 val edge2 = new Edge ( d , s )
18 i f ( Conf .WEIGHTED) {
19 edge1 . weight = w
20 edge2 . weight = w
21 }
22 edges = edge1 : : edges
23 edges = edge2 : : edges
24 addtoadjacencymatrix ( edge1 )
25 addtoadjacencymatrix ( edge2 )
26 }
27 def addedge ( c a l l b a c k : ( Vertex , Vertex , I n t ) => Unit ,
28 x : Vertex , y : Vertex , w: I n t = 1) = c a l l b a c k ( x , y , w)

Listing 4.5: The variability on file GraphBasic.scala (given also in Listing 1.1)
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It is common that a variant can be part of several vp-s, such as the
variant v_Line2D that use vp_AbsLine2D and vp_CirculinearElem2D (cf. Fig-
ure 4.2). This is more about modeling the variability from the perspective of a
variant.

1 /∗ Search . s c a l a ∗/
2 t r a i t Search
3 c l a s s DFS extends Search {
4 def detec tCyc le ( gr : Graph , vr : Vertex ) : Boolean = f a l s e
5 var elements : L i s t [ Vertex ] = L i s t ( )
6 def dfs ( g : Graph , v : Vertex , count : I n t = 0) : Unit = {
7 v . wasVisited = t rue
8 v . id = count
9 v . p r i n t v e r t e x ; p r i n t l n ( v . id )

10 for (w <− g . getUnvis i tedChi ld ( v ) ) {
11 i f ( !w. wasVisited ) {
12 elements = w : : elements
13 dfs ( g , w, count )
14 }
15 }
16 }
17 }
18 c l a s s BFS extends Search {
19 def bfs ( g : Graph , v : Vertex ) : Unit = {
20 var q : L i s t [ Vertex ] = L i s t ( )
21 q = v : : q
22 v . wasVisited = t rue
23 while ( ! q . isEmpty ) {
24 val v : Vertex = q . l a s t
25 for (w <− g . getUnvis i tedChi ld ( v ) ) {
26 i f ( !w. wasVisited ) {
27 q = w : : q
28 w. wasVisited = t rue
29 w. parent = v
30 }
31 }
32 }
33 }
34 }

Listing 4.6: The variability on file Search.scala

4.2.2 Fragmented Variability Modeling

For addressing Challenge A4, instead of modeling the whole implemented vari-
ability at once and in one place, we model it in a fragmented way. What we
consider as a fragment aims at being flexible. Specifically, it is a core-code asset
that can be a package, a file, or a class. In other words, a fragment can be any
unit that has its inner variability and it is worth to be modeled locally/separately.
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(vptype, Strategy pattern)

vdirected vundirected

(vpweight, Parameters)

vweighted vunweighted

tvm_basic

(vpsearch, Inheritance, opt)

vdfs vbfs

tvm_search

Figure 4.4: Documentation of the implemented variability in T VMs for the Graph
SPL (cf. Figure 2.1)

For this reason, we designed special models, named as Technical Variability Models
(TVM). They contain the abstractions of vp-s with variants, their tags for keeping
the consistency with the variable elements in core-code assets (cf. Section 4.1.2),
and describe the realized variability on specific core-code assets (cf. Section 4.2).

Specifically, the TVM is a power set (set of subsets) of all vp-s in a core-code
asset. For example, let us suppose that the vp-s in (4.1) model the variability of the
core asset cam in (4.3) and (4.4), then the T VMm is:

T VMm = Pow(VPm) = {{{va1, va2, va3, ..., van}, ta},
{{vb1, vb2, vb3, ..., vbn}, tb}, ..., {vx1, vx2, vx3, ..., vxn}, tx}}, where n ∈ N

(4.6)

In a more illustrative way, in Figure 4.4 are shown two TVMs that document
the implemented variability in files GraphBasic.scala, given in Listing 4.5, and
Search.scala, given in Listing 4.6. These two TVMs, tvm_basic and tvm_search,
model some of the implemented variability for the Graph PL (see Figure 2.1), and
have two and one vp-s, respectively. One of the vp-s, vpsearch, is optional, therefore
the acronym opt for it in the tvm_search. In this case, the whole file Seach.scala is
optional, that is, it can be included or not in a final software product. Both these
TVMs are at file level.

As a result, the whole existing variability of core-code assets in CA (in (4.3)) is
modeled in technical variability models (TVMs), which are created and maintained
locally and closer to the core-code assets. In this way we address Challenge A4,
for modeling the implemented variability in a fragmented way.

All these TVMs together constitute the Main Technical Variability Model (MTVM)
that is created automatically from them. So,

MT VM = {T VMm, T VMn, T VMo, ..., T VMx} (4.7)
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This MTVM contains the modeled variability of all core-code assets of an SPL.
Unlike the organization of features in an FM as a tree structure, in MTVM the vp-s
with variants reside in a forest-like structure. Moreover, the meaning of a vp is
extended:

Definition 2. A variation point is the location in core-code assets that represents a node
for collecting, attaching to the core implementation, and configuring a set of variable units
(variable elements of core-code assets) that are related in functionality. In particular, it
is the place at which the variation occurs [Jacobson et al., 1997], and represents the used
technique to realize the variability. �

4.2.3 Capturing and Modeling the Variability for Reverse Engineering

In the previous sections, we analysed the capturing and modeling of the imple-
mented variability from a forward engineering process; that is, when the TVMs
are created during the realization of the functionality in code.

During a reverse adaptation model of an SPL, the capturing and modeling of
variability from code becomes important for two main reasons. First, when an ex-
isting software product, or a set of similar products, are required to be migrated
to an SPL approach. Then, as variability evolves over time, new features are in-
troduced or the existing variability is extended. When the implemented and the
specified variability in domain level do not co-evolve, their mapping may deterio-
rate and inconsistencies appear. Thus, in both cases, a reverse approach is usually
needed to reconstruct the FM (completely or partially), or an approximation of it,
from the code.

Reconstructing the FM or TVMs from the implemented variability is not triv-
ial, as the code may not be shaped in terms of features. According to a recent
overview on the available approaches for detecting the concepts of vp-s with vari-
ants in source code [Lozano, 2011] (see Section 2.3.4), the role and characteristics
of variability implementation techniques (analysed in Section 3.1.1) in the reverse
engineering processes are generally not considered.

In this section, we show that our approach can be applied for capturing vp-s
with variants, also the difference of vp-s with the capture of features, in a reverse
engineering adaptation model. Moreover, we show the importance of capturing
the variability implementation technique during reverse engineering, but we do
not discuss the automation of a migration or evolution of an SPL. Therefore, the
term of capturing is used in the meaning of extracting the variability information
from code, as a first step of a reverse engineering process.

In the following, we illustrate and compare the capture of variability for the
Graph PL (cf. Figure 2.1 in Section 2.1) in two implementation cases, when vari-
ability is implemented by using the traditional techniques of strategy pattern with
parameters (cf. Listing 4.5) and then the emerging technique of feature modules
(cf. Listing 4.7). In Listing 4.7 we have shown the main organization of feature
modules (borrowed from Apel et al. [2013]), where each variable feature is real-
ized as a physically separated module.
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1 l a y e r BasicGraph ;
2 c l a s s Graph {
3 Vector nodes = new Vector ( ) ;
4 Vector edges = new Vector ( ) ;
5 Edge add (Node n , Node m) {
6 Edge e = new Edge ( n , m) ;
7 nodes . add ( n ) ;
8 nodes . add (m) ;
9 nodes . add ( e ) ;

10 return e ;
11 }
12 void p r i n t ( ) {
13 for ( i n t i = 0 ; i < edges . s i z e ( ) ; i ++) {
14 ( ( Edge ) edges . get ( i ) ) . p r i n t ( ) ;
15 i f ( i < edges . s i z e ( ) − 1)
16 System . out . p r i n t ( " , " ) ;
17 }
18 }
19 }
20 c l a s s Node {
21 i n t id = 0 ;
22 Node( i n t _id ) { id = _id ; }
23 void p r i n t ( ) {
24 System . out . p r i n t ( id ) ;
25 }
26 }
27 c l a s s Edge {
28 Node a , b ;
29 Edge (Node _a , Node _b ) { a = _a ; b = _b ; }
30 void p r i n t ( ) {
31 System . out . p r i n t ( " ( " ) ;
32 a . p r i n t ( ) ;
33 System . out . p r i n t ( " , " ) ;
34 a . p r i n t ( ) ;
35 System . out . p r i n t ( " ) " ) ;
36 }
37 }

1 l a y e r Weighted ;
2 r e f i n e s c l a s s Graph {
3 Edge add (Node n , Node m) {
4 Edge e = Super . add ( n , m) ;
5 e . weight = new Weight ( ) ;
6 return e ;
7 }
8 Edge add (Node n , Node m, Weight w) {
9 Edge e = add ( n , m) ;

10 e . weight = w;
11 return e ;
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12 }
13 }
14 r e f i n e s c l a s s Edge {
15 Weight weight ;
16 void p r i n t ( ) {
17 Super . p r i n t ( ) ;
18 weight . p r i n t ( ) ;
19 }
20 }
21 c l a s s Weight {
22 void p r i n t ( ) { /∗ . . . ∗/ }
23 }

1 l a y e r Directed ;
2 r e f i n e s c l a s s Graph { /∗ . . . ∗/ } /∗ . . . ∗/

1 l a y e r Undirected ;
2 r e f i n e s c l a s s Graph { /∗ . . . ∗/ } /∗ . . . ∗/

Listing 4.7: The Graph SPL using feature modules (borrowed from [Apel et al.,
2013])

Capturing vp-s with variants. As in Section 3.1, we can capture the implemented
variability in terms of vp-s with variants from Listing 4.5. The captured variability
(i.e., vp-s with variants) is given again in Tables 4.3 and 4.4. Our catalog of tech-
niques can then help one to capture the right characteristic properties for each used
technique. For example, the strategy pattern (cf. Table 3.5 ) can offer an alternative
relation between variants, runtime binding, default variants, and the possibility to
add new variants during the evolution. All these properties are consistent with
the captured variability of vp_edgetype, and its variants, which are implemented
by the strategy pattern (cf. Tables 4.3 and 4.4).

Table 4.3: Capturing the implemented variability of Graph PL in Listing 4.5

VP-s Lines Granularity Binding time Logical Rl. Evolution

vp_edgetype 26 – 27 method runtime alternative Open
vp_weight 2 parameter programming alternative Close

Capturing features. In Listing 4.7 the code is shaped in terms of features by using
the technique of feature modules. Each feature module is realized by a layer, which
is a language construct in the Jak language (an extension of the Java language for
feature-oriented programming) [Batory et al., 2004]. In this implementation, each
problem space feature (cf. Figure 2.1) is implemented by a feature module (cf. List-
ing 4.7), whereas their mapping is ensured by their common names. The mod-
ule BasicGraph is the base module where can be added other feature modules as
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Table 4.4: Capturing the implemented variability of Graph PL in Listing 1.1

Variants Lines Granularity Default VP-s

v_directed 6 – 13 method No vp_edgetype

v_undirected 14 – 25 method No vp_edgetype

v_weighted 2 value No vp_weight

v_unweighted 2 value Yes vp_weight

Figure 4.5: The reconstructed FM from features in Listing 4.7

variants during the product derivation. The only variability properties that can
be captured in Listing 4.7 is the base module, which is mandatory, and 3 variants
(Directed, Undirected and Weighted) that are optional with the same binding
time (deployment), granularity (feature module), and no evolution or default con-
cepts. Moreover, the feature Unweighted is made default by being part of the base
module. In addition, in this implementation there is no concept of vp-s.

To reflect on the differences between capturing vp-s with variants and features
in core-code assets, we show that they may stay together when variability has an
imperfect form of modularity (defined in Section 4.1.1). Concretely, in Listing 4.5,
except the captured vp-s with variants, we can also capture the specified features
at the domain level. For example, feature Directed can be captured in lines 6 – 7,
11 – 13. Feature Weighted can be captured in lines 2, 6, 8 – 10, 14, 17 – 20. And,
if we compare these lines of code with the lines of the captured vp-s with variants
in Tables 4.3 and 4.4, it is obvious that capturing vp-s with variants and features is
different. Whereas, in Listing 4.7 there is no concept of variation point, but only of
variant features. Thus, by capturing features in core-code assets we capture only
those lines of code that implement a problem oriented feature, while by capturing
a vp with variants we capture the implementation technique that gives a rich set
of properties to them (cf. Tables 4.3 and 4.4).

Reconstructing the feature model. As for reverse engineering, we decide to as-
sess an implementation technique regarding their support to reconstruct an FM
from the captured variability in core-code assets. This will also points out the
differences between the captured variability in terms of features and vp-s with
variants.

For example, from the captured variability in Tables 4.3 and 4.4 we can recon-
struct an FM similar to the original FM on Figure 2.1. The only difference between
these feature models is that feature Unweighted is realized as a default variant



62 Chapter 4. Technical Variability Models

v_unweighted. The successful reverse engineering of the FM from this captured
variability is made possible mainly because the logical relations between vp-s with
variants are known (cf. Table 3.1 in Section 3.1.1). The other captured properties
can be used for other reasons (e.g., the binding time during the product derivation).

Similarly, in Figure 4.5 is shown the reconstructed FM from the captured fea-
tures and their properties in Listing 4.7. This reconstructed FM is hardly similar to
the original FM in Figure 2.1 because the feature modules expose a single logical
relation between them. Therefore, a feature oriented implementation is always as-
sociated with the original FM, which is used to configure and manage the feature
modules.

These examples indicate that an implementation technique influences the cap-
turing of variability and the reconstruction of a good approximation of the FM
with the original one, in case of its deterioration over time. Furthermore, as a
complement and comparison to the definition of variation point (vp) that is given
in Definition 2, we state the following:

Definition 3. A solution space feature is used to locate the parts (lines) of code in core-code
assets, independently of the implementation technique, that belong to a single variable unit
(i.e., a problem space feature), which is going to vary between products in a PL family. �

4.3 Summary

Managing the implemented variability is an important part of the development
process in SPL engineering. While features at the specification level are merely
concepts, at the implementation level a combination of traditional variability im-
plementation techniques are actually used in many realistic SPLs, thus leading to a
form of, what we call, an imperfectly modular variability at the implementation level.

In this chapter, we gave a framework for capturing and modeling this imper-
fectly modular variability. Specifically, we addressed the modeling of the imple-
mented variability from its early step of capturing and then modeling it in a frag-
mented way, in technical variability models (TVMs). Then, we give an illustrative
example for capturing vp-s with variants and features in a reverse engineering
process, when variability is realized using the strategy pattern with parameters
(in first implementation) and feature modules (in second implementation). We
use these two implementations for highlighting the differences between capturing
the implemented variability in terms of features and vp-s with variants, and then
the importance of considering the variability implementation techniques during a
reverse engineering process.

We believe that our framework is general enough and can be used for different
management reasons of the implemented variability, such as for product deriva-
tion, consistency checking, or addressing the variability. In the following Chap-
ter 5, we show an approach for using the TVMs in tracing the implemented vp-s
with variants with the features in the FM at the specification level. Then, in Chap-
ter 6, we use the TVMs and these trace links for checking the consistency of the
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implemented variability against the specified features in the FM.





PART II:

USAGE OF TECHNICAL

VARIABILITY MODELS





CHAPTER 5

Traceability with Technical
Variability Models

This chapter shares material with the following paper:

Tërnava, Xh. and Collet, P. (2017). Tracing imperfectly modular variability
in software product line implementation. In International Conference on
Software Reuse, pages 112–120. Springer

In this chapter, we show the usage of technical variability models (TVMs) for sup-
porting the variability management. In particular, we use them to trace the speci-
fied variability, in terms of features at the domain level, to the imperfectly modular
variability, in terms of vp-s with variants, at the implementation level.

5.1 A Three Step Traceability Approach

In the previous Chapter 4, we addressed the first two steps of our three step frame-
work, illustrated in Figure 4.3, for managing the variability of core-code assets.
They resemble the capture and documentation of the imperfectly modular variability
(cf. Definition 1) in technical variability models (TVMs). In this chapter, we address
the last step of this approach. That is, the mapping between the modeled variabil-
ity at the specification level (i.e., features in an FM) and the TVMs at the implemen-
tation level (i.e., vp-s with variants), by establishing the trace links between them,
as is illustrated in Figure 5.1. In this way, we aim to address the Challenge B1 for
variability traceability.

Variability traceability is usually organized around two types of trace links: re-
alization, and use [Anquetil et al., 2010; Pohl et al., 2005] (cf. Section 2.3.1). The first
link is used in domain engineering for relating the specified variability at the do-
main level with the artifacts that realize it, such as in code level. The trace link use
relates an artifact during the application engineering process to its respective core
assets that are developed during the domain engineering process, from which it is
elicited (see Figure 2.4 in Section 2.3). Usually, the realization trace link is implied
by "variability traceability" and in the same meaning we use it also here.

Let us suppose that fx ∈ FM is a variable feature at the specification level,
then

FM = {f1, f2, f3, ..., fn}, where n ∈ N (5.1)

is the set of features in the feature model. Whereas, a single compound feature fx
with its variant features and their logical relation (i.e., logic, which can have any of
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Figure 5.1: Proposed traceability approach through using the technical variability
models (TVMs)

the values from Table 3.1 in Section 3.1.1) in the feature model, in an illustrative
way, is given as in the following:

(fx, logic)

fx1 fx2 fx3 ...

For mapping features to vp-s and variants in TVMs, we use a single bidirec-
tional type of trace links implementedBy ( 7−→) or implements (←[), which presents
the variability realization trace link at the implementation level.

In general, this mapping of variability from the specification level to the imple-
mentation level is n–to–m (cf. step ® in Figure 5.1). Specifically, from the analysed
diversity of vp-s with variants in Chapter 4, the variability traceability may consist
of (1) the ideal, 1–to–1 mapping, (2) the 1–to–m mapping, and/or (3) the n–to–1
mapping.

1–to–1 Mapping. In an ideal mapping, each specified feature at the domain level
is realized by a single variable unit (i.e., variable element in core-code assets) that is
represented by a vp or variant concept at the implementation level. Such mapping
looks as in the following:

In this case, we say that a compound feature fx and its variant features fx1, fx2,
and fx3 are implemented ideally by a single variation point vpx with its variants
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vx1, vx2, and vx3, or conversely. Thus, their mapping is ideal or 1–to–1. For in-
stance, for feature fx we write:

(fx 7−→ vpx) or implementedBy(fx, vpx),

respectively implements(vpx, fx)
(5.2)

For example, by using the first meaning (i.e., 7−→), from Figure 2.1 (Section 2.1) and
Listing 4.5 for the GraphPL case study, then (EdgeType 7−→ vp_edgetype). Like-
wise, from Figure 4.1 and Figure 4.2 in JavaGeom case study, (StraightCurve2D
7−→ vp_AbsLine2D).

Similarly, a variant feature fxn can be implemented by a single variant vxn of
vpx (as in the illustration above), that is,

(fxn 7−→ vxn) or implementedBy(fxn, vxn),

respectively implements(vxn, fxn)
(5.3)

For example, from Figure 2.1 (Section 2.1) and Listing 4.5, (Directed 7−→
v_directed). Likewise, from Figure 4.1 and Figure 4.2, (Line2D 7−→ v_Line2D).

The vpx and vxn can be from different TVMs. Therefore, we may need to spec-
ify, for example, that vpx, vxn ∈ T VMm. Moreover, from Section 4.1.2, the vp-s
with variants in a TVM can be from different core-code assets.

We distinguish a special case in the ideal mapping when a vp with variants
implement some features that do not correspond to the same hierarchy in the FM.
In an illustrative way, this looks as in the following.

According to Capilla et al. [2013, Ch. 3], this happens when the variation
point has a broader scope, by relating the functionalities that belong in different
subsystems. But, this can be resolved by refactoring the organization of features in
the FM, or the implementation of vp-s with variants.

1–to–m Mapping. In this mapping, each feature at the domain level is realized
by more than one vp or variant at the implementation level. For example, in the
following is illustrated the case when a feature is mapped to two vp-s.
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In this case, a feature fx is implemented by several vp-s, which can be from the
same core-code asset or not, then

(fx 7−→ {vpx, vpy, vpz, ...}) or implementedBy (fx, {vpx, vpy, vpz, ...}) (5.4)

In our observations, this case happens depending on the type of vp-s (given
in Section 4.2.1). Concretely, when vpx is an ordinary variation point and vpy its
technical variation point, then their mapping looks as in the following:

For example, (StraightCurve2D 7−→ {vp_AbsLine2D, vp_getSymmetric}), from
Figure 4.1 and Figure 4.2.

n–to–1 Mapping. In this multiple mapping, a vpx with its variants implement
partially several variable features, which can be from the same or different parts
of the tree hierarchy in the FM.

We trace them as

({fx, fy, fz, ...} 7−→ vpx) or implements (vpx, {fx, fy, fz, ...}) (5.5)

The overall mapping between features and vp-s with variants (see step ®

in Figure 5.1) is expected to be a partial mapping. This is because, some features in
FM can be abstract features (i.e., do not require an implementation) [Thum et al.,
2011], or they can be deferred to be implemented later, for example, when a varia-
tion point is unimplemented (cf. Table 4.2).
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5.2 Establishing Trace Links

An automatic approach for establishing the trace links depends on the multiplicity
of mapping between features and vp-s with variants. Specifically, when the map-
ping is ideal then the trace links can be automated by using the same names for
features and their respective vp-s or variants. For instance, in Equation (5.2) with
the example, we used the same names for vp-s and variants with features, except
that we added the prefix vp_ for a variation point and v_ for a variant. Whereas,
in the case of the multiple mapping (i.e., 1–to–m), the vp-s or variants that imple-
ment the same feature can be grouped under the same name with the feature’s
name that they implement. But, this requires extra work during the variability
modeling in TVMs.

In our three step traceability approach (cf. Figure 5.1), for establishing the trace
links are required both variability models at the specification and implementation
levels, that is, the FM and TVMs, respectively. Whereas, the established trace links
are kept separately and orthogonal with the FM and the implemented variability
in core-code assets that is modeled in TVMs.

5.3 Summary

This three step traceability approach (cf. Figure 5.1) can be used for managing the
variability at the implementation level, from the early steps of capturing the im-
perfectly modular variability in core-code assets (cf. Sections 4.1.1 and 4.1.2), mod-
eling their variability in TVMs (cf. Section 4.2), and finally tracing it with features
in the FM (cf. Section 5.1).

It also can be extended and used for several management reasons during an
SPL engineering. For example, these trace links can be used for product deriva-
tion, addressing the variability, consistency checking, evolution, etc. In the follow-
ing Chapter 6, we use them for detecting the inconsistencies between the specified
and implemented variabilities, so to continue with their respective implementa-
tion and application in Part III.





CHAPTER 6

Consistency Checking

This chapter shares material with the following paper:

Tërnava, Xh. and Collet, P. (2017a). Early consistency checking between
specification and implementation variabilities. In Preceedings of the 21st
International Systems and Software Product Line Conference - Volume A, SPLC
’17, pages 29–38. ACM

Previously, in Chapter 4, we have described our framework for modeling the im-
perfectly modular variabiliy (cf. Chapter 3) in terms of variation points (vp-s) with
variants in technical variability models (TVMs). Then, as part of a three step ap-
proach, we used these models to achieve variability traceability in core-code as-
sets (cf. Chapter 5). In this chapter, we exploit the TVMs and the trace links to
achieve an early consistency checking during the development process (cf. Chal-
lenge C3), between the specified and implemented variabilities (cf. Challenge C1),
when several variability implementation techniques are used together (cf. Chal-
lenge C2). We present a tooled approach to check the consistency of variability
while addressing the three Challenges in C. The proposed method takes the im-
plemented variability that is modeled in terms of variation points with variants,
in a forest-like structure, and uses slicing to partially check the resulting proposi-
tional formulas at both levels. As a result, it offers an early and automatic detection
of inconsistencies when the mapping of variability between both levels is 1–to–1,
and then with an extension to 1 – to – m mapping.

6.1 Assumptions and Issues of Consistency Checking

Within an SPL, it is important to be able to check whether the specified and imple-
mented variabilities are consistent. For this reason, we consider that the variability
of software products at the specification level is modeled in a feature model (FM),
using the concept of features, for example, the FM for Graph PL in Figure 6.1.
Whereas, at the implementation level variability is modeled in technical variabil-
ity models (TVMs), in terms of variation points (vp-s) with variants, for example,
the TVMs for the Graph PL in Figure 6.2. All TVMs of an SPL constitute the Main
TVM (MTVM) at the implementation level. Therefore, the modeled variability in
terms of vp-s with variants has a forest-like structure, unlike the tree structure of
features in an FM. In this way, we aim in addressing the Challenge C2 for checking
the variability consistency of core-code assets when a combined set of traditional
variability implementation techniques are used.

Further, the specified features in an FM and their implementation as vp-s with
variants that are modeled in TVMs may use different names and have an n–to–m
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Figure 6.1: A simplified feature model of the Graph PL (cf. Figure 2.1)

mapping. Therefore, we achieve their mapping by using the trace links (cf. Chap-
ter 5). Moreover, we assume that,

Assumption 1. The mapping between features in a feature model (FM) and the variation
points (vp-s) with variants in technical variability models (TVMs) is performed by bidi-
rectional trace links φTL that are established before doing the consistency checking and are
themselves consistent.

What we mean by the consistency of trace links is that the vp-s with variants are
traced correctly to the features that they implement or vice versa. Generally, the
mapping between features and vp-s with variants is n – to – m. In our approach,
we exclusively consider the single links (i.e., 1 – to – 1) and multiple links (i.e., 1 –
to – m), as they are the two common forms of mapping. A vp may partially im-
plement several features (i.e., n – to – 1 mapping [Capilla et al., 2013, Ch. 3], see
also Chapter 5), which case was not present in any of our targeted SPL implemen-
tations.

Following an inconsistency management approach [Spanoudakis and Zisman,
2001], we define a consistency rule, which represents what must be satisfied by the
variabilities at specification and implementation levels.

Consistency Rule. Within an SPL, where the specified domain variability and the imple-
mented variability convey the same functionality, they also should represent the same set
of software products.

An inconsistency (i.e., when the consistency rule is not hold) concerns a spe-
cific feature configuration for which it is impossible to derive a concrete software
product from the existing core-code assets, despite the fact that the whole speci-
fied variability is implemented. We thus propose a method, based on propositional
logic, for checking and detecting the places of such variability inconsistencies.

Conversion to propositional logic. Toward an automated reasoning (cf. Sec-
tion 2.4), we convert the modeled variability at the specification and implemen-
tation levels (i.e., the FM and the TVMs or the MTVM, respectively) into proposi-
tional logic. And then, we describe the consistency rule in a formal way. In this
way, the whole issue of consistency checking is translated to analysing the propo-
sitional formulas φFM and φMTVM if the consistency rule between them hold.
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(vptype, Strategy pattern)

vdirected vundirected

(vpweight, Parameters)

vweighted vunweighted

tvm_basic

(vpsearch, Inheritance, opt)

vdfs vbfs

tvm_search

Figure 6.2: Documentation of the implemented variability from Listing 4.5
(Page 55) in TVMs for the Graph PL (cf. Figure 6.1)

For example, by using the underlined letters for the feature names in the simplified
Graph PL in Figure 6.1 (e.g., dt stands for Directed), as variables in the formula,
and the translation rules in Table 2.1 (Page 23), the propositional formula for the
Graph PL, φFMg

1, in conjuctive normal form (CNF) is:

φFMg = g ∧ (t↔ g) ∧ (w ↔ g) ∧ (s→ g)∧

(t↔ (dt ∨ ud)) ∧ (¬dt ∨ ¬ud) ∧ (w ↔ (wt ∨ uw))∧
(¬wt ∨ ¬uw) ∧ (s↔ (dfs ∨ bfs)) ∧ (¬dfs ∨ ¬bfs)

(Ex. 6.1)

Similarly, we apply the same conversion rules (cf. Table 2.1 in Page 23) to trans-
late the TVMs to a propositional formula. In this case, the names of vp-s with
variants are used as variables in the formula. Thus, each TVM is translated to a
formula, φTVMx , whereas the conjunction of all their formulas constitutes the Main
TVM formula, φMTVM , for a whole SPL.

For example, for the features in Figure 6.1, their technical variability models
(TVMs) at the implementation level (cf. Listing 4.5) are given in Figure 6.2. Then,
the propositional formulas for these TVMs, the φTVMbasic

and the φTVMsearch
, are

given in (Ex. 6.2) and (Ex. 6.3), respectively.

φTVMbasic
= vpt ∧ vpw∧

(vpt ↔ (vdt ∨ vud)) ∧ (¬vdt ∨ ¬vud)∧
(vpwt ↔ (vwt ∨ vuw)) ∧ (¬vwt ∨ ¬vuw)

(Ex. 6.2)

1The underlined parts of the formula will be explained in the following.
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φTVMsearch
= vproot ∧ (vps → vproot)∧

(vps ↔ (vdfs ∨ vbfs)) ∧ (¬vdfs ∨ ¬vbfs)
(Ex. 6.3)

A mandatory vp in a TVM is shown as a single positive literal in a propositional
formula (cf. Table 2.1 in Page 23), for example, the vpt or vpw in (Ex. 6.2) , whereas
an optional vp needs another parent feature to become optional. For this reason,
we inserted a mandatory root vp that is the common root for all vp-s.

For instance, the vproot in (Ex. 6.3), which is used to make optional the vpsearch
in Figure 6.2.

When the vp is mandatory, the vproot does not make any difference in the formula,
and thus we did not show it in (Ex. 6.2).

On the other hand, the bidirectional trace links (given already as a logical
equivalence,↔, in Chapter 5) for all features and vp-s with variants are converted
as a conjunction of each individual mapping.

In our example, φFMg (Ex. 6.1) has 1 – to – 1 mapping to φTVMbasic
(Ex. 6.2) and

φTVMsearch
(Ex. 6.3) (cf. Table 6.1). Therefore, their single and bidirectional trace

links φTLg are:

φTLg = (g ↔ vproot)∧

(t↔ vpt) ∧ (w ↔ vpw) ∧ (s↔ vps)∧

(dt↔ vdt) ∧ (ud↔ vud) ∧ (wt↔ vwt)∧
(uw ↔ vuw) ∧ (dfs↔ vdfs) ∧ (bfs↔ vbfs)

(Ex. 6.4)

The consistency rule then corresponds to the fact that the domain variability,
φFM , and the implemented variability, φMTVM , must be semantically equivalent.
In the propositional logic, the two formulas φFM and φMTVM are semantically
equivalent, in symbols φFM ≡ φMTVM , if and only if they have the same set of
interpretations 2 [Ben-Ari, 2012].

Let JφFM K be the set of feature configurations for φFM (i.e., the set of inter-
pretations for the propositional formula that represents the FM), and JφMTVM K be
the set of vp-s with variants configurations for φMTVM (see an example from the
given Graph PL in Table 6.1). Every feature configuration in JφFM K should have a
respective mapping to a vp-s with variants configuration in JφMTVM K, while con-
sidering that the mapping between features and vp-s with variants can be n–to–m.
But, instead of comparing their configurations, we need a consistency checking
approach at the formula level.

The φFM and φMTVM use different variability abstractions (features and vp-s
with variants, respectively), which may use different names and have an n – to –

2Also known as the models of a propositional formula
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Table 6.1: Features and vp-s with variants configurations in Graph PL

JφFMgK JφMTVMgK = JφTVMbasic
K ∪ JφTVMsearch

K

{(g, t, w, dt, wt), {(vproot, vpt, vpw, vdt, vwt),
(g, t, w, dt, uw), (vproot, vpt, vpw, vdt, vuw),
(g, t, w, ud, wt), (vproot, vpt, vpw, vud, vwt),
(g, t, w, ud, uw), (vproot, vpt, vpw, vud, vuw),
(g, t, w, dt, wt, s, dfs), (vproot, vpt, vpw, vdt, vwt, vs, vdfs),
(g, t, w, dt, uw, s, dfs), (vproot, vpt, vpw, vdt, vuw, vs, vdfs),
(g, t, w, ud, wt, s, dfs), (vproot, vpt, vpw, vud, vwt, vs, vdfs),
(g, t, w, ud, uw, s, dfs), (vproot, vpt, vpw, vud, vuw, vs, vdfs),
(g, t, w, dt, wt, s, bfs), (vproot, vpt, vpw, vdt, vwt, vs, vbfs),
(g, t, w, dt, uw, s, bfs), (vproot, vpt, vpw, vdt, vuw, vs, vbfs),
(g, t, w, ud, wt, s, bfs), (vproot, vpt, vpw, vud, vwt, vs, vbfs),
(g, t, w, ud, uw, s, bfs)} (vproot, vpt, vpw, vud, vuw, vs, vbfs)}

m mapping (e.g., compare their names in the given example in Table 6.1, although
their mapping is 1–to–1). Therefore, we could check their semantic equivalence
only under the existence of their trace links. Consequently, the formal definition
of the consistency rule becomes:

φFM ∧ φTL ≡ φMTVM ∧ φTL

or, φFM ∧ φTL ≡ (φTVM1 ∧ φTVM2 ∧ ... ∧ φTVMn) ∧ φTL

(6.1)

As the trace links are bidirectional (i.e., features and vp-s with variants are mapped
to each other as f ↔ vp), then (6.1) is valid thanks to the substitution theorem in
propositional logic [Kleene, 2002]:

φFM(f) ∧ (f ↔ vp) ≡ φMTVM(vp) ∧ (f ↔ vp) (6.2)

In other words, φFM and φMTVM are consistent if within the context of their trace
links φTL, φFM and φMTVM represent the same variability.

According to the consistency rule in (6.1), φFMg in (Ex. 6.1) represents the
same software products with {φTVMbasic

, φTVMsearch
} ∈ φMTVMg in (Ex. 6.2)

and (Ex. 6.3) when

φFMg ∧ φTLg ≡ (φTVMbasic
∧ φTVMsearch

) ∧ φTLg (Ex. 6.5)

That is, within the context of trace links φTLg , φFMg is equivalent to
(φTVMbasic

∧ φTVMsearch
). In details, their equivalence or conistency is shown in Ta-

ble 6.1, too.
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6.2 Proposed Method

For checking the consistency of the entire variability between both levels, by using
the Equation (6.1), it is required that (1) the whole specified variability in an FM
to be implemented and documented in an MTVM, and (2) all their trace links are
established. This restricts the consistency checking to a complete system, which
itself is likely to be represented by large variability models, harder to check, but
also harder for tracing and fixing inconsistencies after all of them are shown at
once [Vierhauser et al., 2010]. In addition, it is common that the implementation
of some variability is deferred (e.g., during the application engineering phase) and
some partial checking is then highly desirable. Besides, even for illustrative SPLs
with a small set of features, the propositional formula to compute Equation (6.1)
becomes already quite large.

For example, in our Graph PL, to perform a total checking we need to find the
logical equivalence (↔, and cf. (Ex. 6.5)) between the FM with trace links, which
have 35 clauses in CNF (cf. (Ex. 6.1), (Ex. 6.4)), and the two TVMs and trace links,
with 33 clauses in CNF (cf. (Ex. 6.2), (Ex. 6.3), (Ex. 6.4)).

Moreover, in realistic SPLs, checking for inconsistencies only within a single
FM has still scalability issues [Benavides et al., 2010].

To overcome these problems, we propose a consistency checking method for
detecting the variability inconsistencies earlier during the development process.
Its main steps are based on slicing, substitution, and assertion properties, which
are depicted in Figure 6.3. First, we will explain the method when single links are
used, to extend it to multiple links just after.

6.2.1 Initial Checking

As a prerequisite, we check first if φFM and φMTVM individually are consistent. To
do so, we use state of the art methods to check if each of them in isolation is valid
(i.e., satisfiable), as well as free of dead and false-optional (a.k.a common) features
or vp-s with variants, respectively (cf. Section 2.4 and Figure 6.3). We also check
whether the Assumption 1 about trace links holds; that is, they are established,
bidirectional, and consistent.

A trace link is by default translated into a propositional formula as an equiv-
alence (i.e., ↔, as in (Ex. 6.4)). Therefore, when some variability is selected to be
checked, it is first checked whether it is traced. If φFM and φMTVM are free of such
individual inconsistencies, we can proceed to the variability consistency checking
between them.

6.2.2 Slicing

The originality of our method lies in the fact that we can select a single TVM, as
the φTVMx in Figure 6.3, or a subset of them from the MTVM in an SPL, so to check
the consistency of their variability against the specified variability in an FM.
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Figure 6.3: Proposed consistency checking method

According to [Acher, 2011; Acher et al., 2011], the purpose of slicing in SPL
engineering is to produce a feature model that contains only a subset of relevant
features for some stakeholders. This is made possible by defining the set of fea-
tures that are of interest, known as the slicing criterion, and then computing a new
feature model with only the relevant features, known as a sliced feature model.

In our case, the first slicing criterion is the selection of a TVM or subset of them
among the other TVMs, whereas the slice is that selected TVM or subset of them
that we want to check their variability consistency. This selection corresponds to
the first slicing step, slice0 in Figure 6.3, which is manual in our method. The
advantage of selecting a single TVM instead of the whole MTVM is that, the initial
checking has to be done only for the selected φTVMx and the Assumption 1 about
trace links must be met only for this TVM.

In the second step, slice1 in Figure 6.3, we use the φTVMx to simplify the for-
mula for trace links φTL by selecting only those trace links that are relevant for
the φTVMx . As a result, the new sliced formula for trace links, φ′TL, is generated
(cf. Figure 6.3). Further, we slice the FM, during the slice2, using the φ′TL relevant
trace links. The result is a new smaller formula, slice φ′FM , which contains only the
relevant features for the vp-s with variants in φTVMx , against which they should
be checked.

Slicing an FM is an operation that has recently drawn attention in the SPL com-
munity. In the literature, there are already some well defined and validated algo-
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rithms [Acher et al., 2011; Krieter et al., 2016]. While we have experimented with
them, we used a new slicing algorithm based on clause selection in a conjunctive
normal form formula because of the trace links, as will be explained in the follow-
ing.

For example, let us suppose that we want to check the consistency of φTVMsearch

in (Ex. 6.3) against its specification in φFMg as in (Ex. 6.1), which is the step slice0.
By applying φTVMsearch

to slice φTLg in (Ex. 6.4) we get the new formula φ′TLg

(Ex. 6.6), during the step slice1, which keeps only those clauses that contain the
vp-s with variants that are in φTVMsearch

. So, the generated φ′TLg
contains only the

underlined clauses in (Ex. 6.4). As we can see, by clause selection we keep the
links to feature names, in this example, to the features g, s, dfs, and bfs; although,
they are not the selected variables. Thus,

φ′TLg
= (g ↔ vproot)∧

(s↔ vps) ∧ (dfs↔ vdfs) ∧ (bfs↔ vbfs)
(Ex. 6.6)

where φ′TLg
is a subformula of φTLg if φ′TLg

∈ Sub(φTLg). And, Sub(φTLg) is the
set of subformulas for φTLg [Ben-Ari, 2012].

Similarly, by applying the new formula, φ′TLg
, to the φFMg in (Ex. 6.1), we select

only the relevant clauses for the features in these trace links (i.e., only the under-
lined clauses of φFMg ). Thus, the slice φ′FMg

is:

φ′FMg
= g ∧ (t↔ g) ∧ (w ↔ g)∧

(s→ g) ∧ (s↔ (dfs ∨ bfs)) ∧ (¬dfs ∨ ¬bfs)
(Ex. 6.7)

where φ′FMg
is a subformula of φFMg if φ′FMg

∈ Sub(φFMg).

It should be noted that the existing slicing algorithms cannot be applied to slice the
trace links. Basically, the existing algorithms consist in eliminating the unselected
variables in a propositional formula. But, as we need the bidirectional relationship
of a selected variable (i.e., a vp or variant) to another unselected variable (i.e., a
feature), we have to apply clause selection instead of variable elimination. This is
the main reason why we propose this new slicing algorithm. Consequently, except
for slicing trace links, slicing the FM itself can be done by previously proposed
algorithms, which have shown good scalability on larger FMs [Acher et al., 2011].
Another reason is that our algorithm is based on selecting which features or vp-s
with variants should remain in a sliced formula, instead of which of them should
be eliminated. We expect that the selected set of variables to be eliminated from
a formula of FM or MTVM can be larger than by only selecting which variables
should remain in the sliced formula.
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6.2.3 Substitution

After the slicing steps, the formal consistency rule given in (6.1) becomes:

φ′FM ∧ φ′TL ≡ φTVMx ∧ φ′TL (6.3)

In essence, this consistency rule is applicable based on the substitution theo-
rem [Kleene, 2002] for propositional formulas. "The substitution theorem says in plain
English that parts may be replaced by equivalent parts" [Van Dalen, 2004], which corre-
spond with the substitution of features with the traced vp-s or variants (f ↔ vp).
Therefore, checking the consistency between φ′FM and φTVMx by using the (6.3)
is equivalent to checking the satisfiability and the interpretations of the following
formula (cf. Figure 6.3):

φ′FM ∧ φ′TL ∧ φTVMx (6.4)

Thus, we apply the substitution directly:

φ′FM(f) ∧ (f ↔ vp)′ ∧ φTVMx(vp) (6.5)

Concretely, for our Graph PL example, the formula for checking the consistency of
φTVMsearch

becomes:

φ′FMg
∧ φ′

TLg
∧ φTVMsearch

= g ∧ (t↔ g) ∧ (w ↔ g)∧

(s→ g) ∧ (s↔ (dfs ∨ bfs)) ∧ (¬dfs ∨ ¬bfs)∧
(g ↔ vproot) ∧ (s ↔ vps) ∧ (dfs ↔ vdfs) ∧ (bfs ↔ vbfs)∧
vproot ∧ (vps → vproot) ∧ (vps ↔ (vdfs ∨ vbfs)) ∧ (¬vdfs ∨ ¬vbfs)

(Ex. 6.8)

In boldface are shown the clauses, or bidirectional trace links, that make possible
the substitution.

6.2.4 Assertion

By just checking if the resulting formula after slicing in (6.4) is satisfiable is insuf-
ficient to determine whether φ′FM and φTVMx are consistent or not. As previously
stated, they are consistent when they have the same configurations. But, instead of
comparing their configurations after they are generated, as in our example in Ta-
ble 6.1, we propose to achieve this comparison while the formula in (6.4) is calcu-
lated.

Consistency detection. The trace links (f ↔ vp)′ in (6.5) indicate that (6.4) will
generate only those interpretations (i.e., configurations) which are similar between
φ′FM and φTVMx . When φ′FM is consistent with φTVMx then they will have the
same models with (φ′FM ∧ φ′TL ∧ φTVMx), by applying the substitution (f ↔ vp)′
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in any side of the formula. As a result, we can simplify checking to only comparing
their number of configurations. More exactly, we assert whether

Jφ′FM ∧ φ′TL ∧ φTVMxKsize = Jφ′FM Ksize = JφTVMxKsize (6.6)

When this assertion is false then φTVMx and φ′FM are inconsistent. Let us illustrate
how this works in our example.

Let us check the consistency of φTVMsearch
(Ex. 6.3) against the slice φ′FMg

(Ex. 6.7).
Figure 6.4 shows the sets of configurations for Jφ′FMg

K, JφTVMsearch
K, and Jφ′FMg

∧
φ′TLg

∧ φTVMsearch
K. In this case, φTVMsearch

is consistent against the φ′FMg
as the

assertion (from (6.6)) is true (i.e., each of the formulas have three configurations).

Figure 6.4: Consistency checking by asserting the number of configurations

As one can see, the bidirectional trace links ensure to generate from (6.4), re-
spectively (Ex. 6.8), only those configurations that are similar between the φTVMx

and φ′FM . Therefore, whenever the sliced formulas of φ′FM and φTVMx have the
same number of configurations (i.e., the same size of the set of configurations),
then they are consistent. Moreover, under the Assumption 1 for trace links, it is
not possible for φ′FM with φTVMx to have the same number of configurations and
to be inconsistent.

Inconsistency detection.
As another example, let us suppose that the vp in φTVMsearch

is implemented as
an Or logical relation between its variants (instead of their alternative logical rela-
tion), see Figure 6.5. According to the translation rules to the propositional logic
(cf. Table 2.1), then

φTVMsearch
= vproot∧

(vps → vproot) ∧ (vps ↔ (vdfs ∨ vbfs))
(Ex. 6.9)
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(vpsearch, {or, ...}, opt)

vdfs vbfs

tvm_search

Figure 6.5: Implementation of vpsearch, from Figure 4.4, as an Or logical relation
between its variants.

Figure 6.6: Example of inconsistency detection

Figure 6.6 shows the assertion step between Jφ′FMg
K (from (Ex. 6.7)), the new for-

mula JφTVMsearch
K (from (Ex. 6.9)), and Jφ′FMg

∧φ′TLg
∧φTVMsearch

K (from (Ex. 6.8)).
In this case, φ′FMg

and φTVMsearch
are inconsistent as they have different sets of con-

figurations, with 3 and 4 number of configurations, respectively. By comparing the
configurations themselves in Figure 6.6, we see that for any feature configurations
of φ′FMg

we cannot obtain the software product as is the last configuration of vp-s
with variants in φTVMsearch

.

For checking the next TVMs, for instance the φTVMbasic
as in Figure 4.4 , we

repeat the same steps in our method except the initial checking for φFM , which
is unnecessary. Instead of checking a single TVM, we can select for checking a
set of TVMs until a total checking, in case that the whole specified variability is
implemented. In this way, the form of variability consistency checking that we
defined can be performed as soon as it is addressed, thus meeting the Challenge
C3 on early consistency checking.

6.2.5 Handling 1 – M trace links

So far we considered that the mapping between features in the FM to the vp-s
with variants in MTVM, respectively between their slices, is 1 – to – 1. When their
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mapping is 1 – to – m, the assertion step in (6.6) becomes insufficient.

To illustrate the issues related to this mapping, let us suppose that the vpsearch in
φTVMsearch

(cf. Figure 4.4) has an implemented technical vp, tvpnone, that we have
documented as in Figure 6.7 (see the five types of vp-s in Table 4.2, Section 4.2.1).
Its functionality consists in coloring the graph with a green, vgreen, or blue, vblue,
color instead of performing a search. This technical vp is not specified at the spec-
ification level (i.e., at the FM in Figure 6.1), but it is implemented as an alternative
variant with vdfs and vbfs. The propositional formula for this new TVM is (cf. Ta-
ble 2.1):

(vpsearch, {alt., ...}, opt)

vdfs vbfs (tvpnone,{alt., ...})

vgreen vblue

tvm_search

Figure 6.7: The tvm_search with a technical vp (cf. Figure 4.4 and Figure 6.1)

φTVMsearch
= vproot ∧ (vps → vproot)∧

(vps ↔ (vdfs ∨ vbfs ∨ tvpn)) ∧ (¬vdfs ∨ ¬vbfs)∧
(¬vdfs ∨ ¬tvpn) ∧ (¬vbfs ∨ ¬tvpn)∧

(tvpn ↔ (ve ∨ vb)) ∧ (¬ve ∨ ¬vb)

(Ex. 6.10)

Tracing the technical vp-s. It is common to consider that all vp-s (e.g., ordinary,
technical, nested) and their variants that implement a feature should be traced to
that feature in FM, as in Equation (5.4) (Chapter 5).

Concretely, the technical variation point tvpn with variants ve and vb, respectively,
(cf. Figure 6.7) is traced to the feature Search in Figure 6.1, as this technical vp
implements this feature. In this case, the slice of trace links φ′TLg

∈ Sub(φTLg)

corresponds to:

φ′TLg
= (g ↔ vproot)∧

(s ↔ vps) ∧ (dfs↔ vdfs) ∧ (bfs↔ vbfs)∧
(s ↔ tvpn) ∧ (s ↔ ve) ∧ (s ↔ vb)

(Ex. 6.11)
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Figure 6.8: False inconsistency detection for 1 – to – m links

For this new TVM (cf. (Ex. 6.10)) and its 1 – to – m trace links (see the links in
boldface in (Ex. 6.11)), the assertion step is given in Figure 6.8.
Although the implementation of vdfs and vbfs are consistent to features DFS and
BFS in Figure 6.1 (i.e., both of them are in an alternative logical relation), the asser-
tion step in our method shows that they are inconsistent.

The reason for such inconsistency is that, when we trace the technical vp to the
same parent feature, we dismiss the logical relation between its variants, that is,
the alternative relation between ve and vb in Figure 6.7 is lost and not considered.

In Figure 6.8, by comparing the underlined parts between Jφ′FMg
K and

JφTVMsearch
K, we noticed that the intersection between each feature configuration

and vp-s with variants configuration is the set of configurations that shows their
consistency.

This example reveals that, if for each configuration cf ∈ Jφ′FM K and cvp ∈
JφTVMxK their intersection cf ∩ cvp is not empty then φ′FM and φTVMx are consis-
tent. But, instead of comparing the configurations (e.g., in Table 6.1 and Figure 6.8)
we need a scalable solution at the formula level.

Slicing about technical vp-s. Among the possible solutions, to check the consis-
tency of variability for 1–to–m trace links, the option to not trace the technical vp-s
(i.e., the software variability of core-code assets that is unspecified at the domain
level) cannot be considered. Not tracing these technical vp-s, or roughly removing
any of the vp-s with variants, may violate the dependencies of the other vp-s and
variants, which have a direct mapping. Moreover, tracing all types of vp-s is im-
portant during the usage of trace links for product derivation, or simply to address
the specified variability.

Therefore, a feasible solution is first to trace these technical vp-s and then to
remove them by slicing the TVMx for checking consistency. For such reason, it
is easy to recognize when a vp is technical from the documentation of variabil-
ity (cf. Section 4.2.1).
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For example, in Figure 6.7 the technical variation point tvpnone is preceded by a ’t’
letter.

We can remove this vp from the consideration during the consistency checking
through slicing it, and still preserving the logical relations for the other vp-s and
their dependencies.

For example, by using the approach of the existential quantifcation of a variable to
slice a formula [Acher et al., 2011], we can remove the technical vp with its variants
{tvpn, ve, vb} in (Ex. 6.10). The resulting slice, φ′TVMsearch

, will be the formula with
1–to–1 mapping, as in (Ex. 6.3).

In this way we bring back the 1 – to – 1 mapping and our consistency checking
method is fully applicable. In this way, we addressed the Challenge C1 for check-
ing the consistency of variabilies between the specification and implementation
levels when their mapping is 1–to–m.

In our method we do not include checking for dead or false-optional features,
respectively vp-s with variants, between both levels. To check for them would re-
quire a complete implementation of the specified features, and a total consistency
checking of variabilities.

6.3 Related Work

Consistency checking of variability models and implementation is a topic of prime
importance since the emergence of SPL engineering [Santos et al., 2015]. In the
following we discuss works related to our approach according to different aspects.

Metzger et al. [2007] are among the first that propose to check consistency
between the variability at specification and implementation levels. In their ap-
proach, the specified variability is modeled in an orthogonal variability model
(OVM) [Pohl et al., 2005] in terms of vp-s with variants while the implemented
variability is represented in an FM in terms of features. Although not explicitly,
the mapping between vp-s with variants and features is 1 – to – 1. Basically, they
check when cross-tree relations of features in FM or vp-s with variants in OVM
may cause inconsistencies between each other. Unlike this approach, we advocate
that the implemented variability is better captured by a forest-like structure, in-
stead of a hierarchical tree structure that can be modeled by an FM. Further, in our
approach the vp-s with variants are not merely abstractions, but they are consis-
tent tags (i.e., keep their corresponding association) to the existing variability in
core-code assets that they represent.

Le et al. [2013] propose to check consistency of variability between features in
an FM and preprocessor directives in C, their mapping being 1 – to – 1 and vari-
ability being implemented by only a single technique. Differently from us, they
check the consistency of variability at once, considering that all features are im-
plemented. Another major difference is that they propose to extract the variability
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information from the core-code assets (i.e., the preprocessor directives) and to re-
build the feature model which variability should be checked against the existing
FM. In some points, the approach by Tartler et al. [2012] is similar to the one of Le
et al. [2013]. The main difference is that they check variability consistency in a
specific software system – the Linux kernel. Similarly, they check the total con-
sistency of variability and identify the dead or false optional features modeled in
KConfig language and their respective implementation as preprocessor directives.
From our part, we target any SPL that use traditional techniques for addressing
the variability in core-code assets.

Vierhauser et al. [2010] propose a tooled approach for checking the consistency
between a variability model at specification level and other realization models,
including the core-code assets. Unlike us, they define several consistency check-
ing rules that are more about checking whether the variable units are addressed,
and not if their logical relations are consistent with different models across the ab-
straction levels. As a result, they do not check whether the right mechanism or
technique is used to realize the variability. As for their checking at code level, code
artifacts are transformed into model elements and then checked. Another differ-
ence is that they propose an incremental checking, that is, whenever a developer
makes a change it will be checked for consistency. Similarly, we propose to check
the variability as earlier as it is implemented, but not after every single change. We
do not check if a feature is simply addressed, but if the logical relation between a
set of features are consistent with their implementation.

6.4 Summary

In this chapter, we proposed a method for checking the consistency of variabilities
between the specification and implementation levels, as early as possible during
the development process of an SPL. We handle the case when variability is im-
plemented by different variability implementation techniques (i.e., is imperfectly
modular) and vp-s with variants can have an 1–to–1 and 1 – to – m mapping to the
specified domain features in an FM.

Our consistency checking method is based on propositional logic. In particular,
we achieve an early detection of inconsistencies during the development process
by selecting just some of the modeled variability in terms of vp-s with variants in
one or several TVMs within an SPL. Further, the method itself is based on three
main steps, slice-substitute-assert. Whereas, for slicing the propositional formulas
of FM and trace links we propose a new slicing algorithm based on clause selec-
tion. Thus, the method shows the usage of our designed TVMs and trace links,
given in Chapters 4 and 5, respectively.

In the following Chapter 8, we present the implementation of this consistency
checking method and its applicability in several case studies.
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CHAPTER 7

Framework Implementation and
Applications

Aiming at a complete solution to the challenges identified in this thesis, we imple-
mented the proposed framework for capturing (cf. Section 4.1), modeling (cf. Sec-
tion 4.2), and tracing (cf. Chapter 5) what we define as the imperfectly modular
variability (cf. Section 4.1.1) at the implementation level. With such tooled support,
we aim to show the implementation of our framework and its applicability in con-
crete PL domains. Specifically, we expect to be able to model their implemented
variability in a fragmented way and to trace it, despite that several variability im-
plementation techniques are used and that the variability in core-code assets is not
shaped in terms of features. Therefore, in this chapter are presented the resulting
tool support and its applications in four different case studies. These applications
show a successful usage of our framework in small and medium-sized SPLs.

7.1 Technical Foundations

An Internal DSL in Scala. We implemented the proposed framework, for mod-
eling (cf. Chapter 4) and tracing (cf. Chapter 5) the variability of core-code assets, as
a textual Domain Specific Language (DSL) (cf. Section 2.5) in Scala. One of the design
goals of the Scala language was the support for DSL development [Odersky et al.,
2010], thus we choose it as it is well-known for its first-class support for design-
ing expressive DSLs [Ghosh, 2010, Ch. 6]. The interoperability between Java and
Scala enables one to use our DSL in almost all Java-based systems. Our framework
could be implemented as another internal DSL also in other general-purpose lan-
guages, or an external DSL. For such DSL design, some of the available and handy
guidance can be found in Fowler and Parsons [2010]; Ghosh [2010]; Voelter et al.
[2013]; Voelter and Visser [2011].

Patterns supported by the DSL. In this part, we give the language constructs
that are defined in our DSL. They are presented here as patterns for guiding the
usage of the DSL, and the form of support that the DSL offers for modeling and
tracing the implemented variability.

Specifically, Listings 7.1 to 7.3 show the patterns to use the DSL for defining (i.e.,
capturing) vp-s with variants, modeling the implemented variability, and estab-
lishing the trace links with features at the specification level. The internal DSL just
has to be imported into the current scope (e.g., package, file, class) where variabil-
ity needs to be separately documented into a technical variability model (TVM).
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The TVM consists of two parts:

1. The captured abstractions of vp-s ( < vp_name > ) with variants
( < variant_name > ) that are associated with the variable elements in
core-code assets ( < tag to the variabe asset > ), given in Listing 7.1; and,

2. The documented variability in a fragment construct, given in Listing 7.2.

To capture variability, our DSL relies on the reflection capabilities in Scala. This
helps to keep the relationship and strong consistency between the concepts of vp-
s with variants with their concrete implementation in core-code assets. The DSL
supports the five types of vp-s we defined (cf. Table 4.2, Section 4.2.1), which are
shown as < vp_types > in Listing 7.1. Thus, an ordinary vp is defined as VP ,
an optional vp is defined as opt_VP , a technical vp is defined as tech_VP , an
unimplemented vp is defined as an ordinary vp (i.e., as VP ) but without variants,
whereas a nested vp is defined as nested_VP . In addition, < vp_name > and
< variant_name > are of String types.

import dsl._
import scala.reflect.runtime.universe._

<vp_name> := <vp_type>(<tag to the variable asset>)
<variant_name> := Variant(<tag to the variable asset>)

<tag to the variable asset> := asset(<class | method | field>)
<vp_type> := <VP | opt_VP | tech_VP |nested_VP>
<vp_name> | <variant_name> := String

Listing 7.1: Pattern for defining a variation point and variant

import dsl.fragment._

fragment(<class | file | package name>) {
<vp_name> is <logical relation> with_variants
(<list of variant_name(s)>) use
<technique> with_binding
<binding time> and_evolution <evolution>

}

<logical relation> := <MND | OPT | ALT | MUL>
<technique> := <Inheritance | Overriding | ...>
<binding time> := <Compilation | Start up | Runtime | ...>
<evolution> := < Open | Close>

Listing 7.2: Pattern for modeling some implemented variability in terms of the
defined variation points with variants in Listing 7.1

In Listing 7.2, the < logical relation > , < technique > , < binding time > and

< evolution > take their specified values that are given in our framework, in Sec-
tion 4.1.2 (Page 49). Technically, we defined their possible values as extensions of
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their respective sealed classes 1 in Scala, thus well defining their possible values.
And, the DSL is made expressive by using the implicit conversions in Scala.

import dsl.traces._

traces {
% for all variation points with variants %
<vp_name> implements <feature_nameA>
<variant_name> implements <feature_nameB>

}

Listing 7.3: Pattern for defining trace links

The implemented DSL uses another construct, traces , for establishing the
trace links between the specified features and the documented variability in TVMs
(cf. Listing 7.3). These traces are internally kept in a map structure. The DSL sup-
ports the creation of 1–to–m trace links, where a single feature, < feature_nameX > ,
can be mapped to several vp-s, < vp_nameX1 > , < vp_nameX2 > , or variants.
This is made possible by defining the map structure as Map[feature, vp] and
Map[feature, variant], where feature is the key whereas the vp or variant is its
value; and, a key in the map structure can have several values.

Further, the traces with the implements construct of the DSL (cf. List-
ing 7.3) are used to establish the trace links between the vp with variants and
features, for example, between features in Figure 4.1 (Page 46) and the modeled
variability for Listings 4.1 to 4.4 (Page 47), as shown in Listing 7.5.

1 import dsl . _
2 import s c a l a . r e f l e c t . runtime . universe . _
3

4 val vp_AbsLine2D = VP( a s s e t ( typeOf [ AbstractLine2D ] . typeSymbol ) )
5 val v_Line2D = Variant ( a s s e t ( typeOf [ StraightLine2D ] . typeSymbol ) )
6 val v_Segment2D =Variant ( a s s e t ( typeOf [ LineSegment2D ] . typeSymbol ) )
7 val v_Ray2D = Variant ( a s s e t ( typeOf [Ray2D ] . typeSymbol ) )
8 // . . .
9

10 import fragment . _
11 fragment ( "geom2D . l i n e " ) {
12 vp_AbsLine2D i s ALT with_var iants
13 ( v_Line2D , v_Segment2D , v_Ray2D ) use
14 INHERITANCE with_binding
15 RUN_TIME and_evolution OPEN
16 }

Listing 7.4: An excerpt of variability capturing and documentation in JavaGeom

As illustrative example,

1 A sealed class cannot have any new subclasses added except the ones that are defined in the
same file [Odersky et al., 2010].
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Listing 7.4 shows the usage of the DSL for documenting the implemented vari-
abilities, from Listings 4.1 to 4.4 (Page 47), in a TVM. First, the DSL support is
imported (line 1), then the abstractions for the implemented variability are created
(i.e., the vp with variants) by using the reflection in Scala (lines 4-7). Finally, the
implemented variability is modeled in a fragment construct (lines 10-16) in terms
of the defined vp with three variants. In addition, in Listing 7.4 is defined an ordi-
nary vp, by using the VP construct of the DSL in line 4, with its three variants, by
using the Variant construct of the DSL (lines 5-7).

1 import dsl . t r a c e s . _
2

3 t r a c e s {
4 vp_AbsLine2D implements StraightCurve2D
5 v_Line2D implements Line2D
6 v_Segment2D implements Segment2D
7 v_Ray2D implements Ray2D
8 }

Listing 7.5: An excerpt of variability traceability in JavaGeom

A particular case is the definition of a nested vp. In such case, a variant should
be redefined as a nested vp, as illustrated in Listing 7.6.

1 import dsl . _
2 import s c a l a . r e f l e c t . runtime . universe . _
3

4 val v_Line2D = Variant ( a s s e t ( /∗ . . . ∗/ ) )
5 val vp_newLine2D : nested_VP = v_Line2D . toNestedVP

Listing 7.6: Defining a nested variation point (a variant becoming a nested vp, as
defined in Section 4.2.1)

Availability. The prototype implementation of our DSL is publicly available
at https://github.com/ternava/variability-cchecking. It also con-
tains the three case studies (Graph PL, Arcade Game Maker PL, and Microwave
Oven PL) that we implemented in Scala, with examples on capturing, mod-
eling, and tracing their variability. The feature model (FM) for each of these
case studies is given at https://github.com/ternava/Expressions_SPL/
wiki/Feature-Models. Whereas, a further detailed description of the DSL and
its documentation is given at https://ternava.github.io/.

7.2 Applications

Our aim is to be able to use this DSL in concrete PL domains. First, for model-
ing the implemented variability in a fragmented way (i.e., in technical variability
models) when a combined set of traditional techniques are used. In such case, the

https://github.com/ternava/variability-cchecking
https://github.com/ternava/Expressions_SPL/wiki/Feature-Models
https://github.com/ternava/Expressions_SPL/wiki/Feature-Models
https://ternava.github.io/
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The number
of T VMs

“JavaGeom”: 11
(199 vp-s with 269 variants)

“Microwave Oven PL”: 8
(9 vp-s with 20 variants)

“Arcade Game Maker PL”: 3
(8 vp-s with 17 variants)

“Graph PL”: 3
(4 vp-s with
12 variants)

Figure 7.1: A comparison of TVMs (the colored boxes), and their vp-s with vari-
ants, between the four case studies

vp-s with variants are diverse and not a by-product of any of these techniques.
Then, we want to show its applicability to trace these vp-s with variants with the
features at the domain level, while their mapping is 1–to–1 and 1–to–m. Thus, we
expect to be able to apply this DSL in different PLs, for modeling and tracing their
variability of core-code assets.

Therefore, we used the DSL for modeling and tracing the implemented vari-
ability of four case studies: Graph PL [Lopez-Herrejon and Batory, 2001], Ar-
cade Game Maker PL [AGM, 2009], Microwave Oven PL [Gomaa, 2005], and Jav-
aGeom [Legland, 2017]. The domains of the first three case studies are quite well
understood and used by the SPL community. The fourth case study, JavaGeom, is
an open source library implemented in Java, which is a feature-rich system for cre-
ating geometric shapes. A summary of these case studies is given in Appendix B.

Initially, we applied the DSL to the open source library, JavaGeom. It has 142
Java source files (excluding tests) and 35,456 lines of code. Considering that the
implementation of 3D geometric shapes is under implementation, we analysed
only 122 files of 2D geometric shapes that constitute 92% of the code. As JavaGeom
does not have an FM with the realized features, we created it from their textual
description and by analysing the source code. It consists of 110 concrete features,
which are rather close to the implementation.

Thus, we used the DSL for modeling the whole implemented variability for the
JavaGeom library. It resulted in 11 TVMs, all of them being at the package level,
as we intended to minimize the dependencies of vp-s across different TVMs.

As for the three other case studies, we implemented them in Scala and ap-
plied the DSL just after we were implementing their variability. In this way, we
documented their variability in TVMs. The number of TVMs and their vp-s with
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Table 7.1: Number of features (F-s), implemented features (Impl. F-s), TVM-s, and
the captured vp-s with variants in each case study

Case Study F-s Impl. F-s TVM-s vp-s with variants

Graph PL 19 16 3 4 with 12
Arcade Game Maker PL 27 26 3 8 with 17
Microwave Oven PL 26 23 8 9 with 20
JavaGeom 110 110 11 199 with 269

variants in each case study is given in Figure 7.1. For example, in Graph PL we
modeled the variability in 3 TVMs, which contain 4 vp-s with 12 variants. While
the TVMs in JavaGeom are at the package level, we created the TVMs in the three
other case studies at the file level. A combination of TVMS at the package, file, or
class level would have been also possible. Further, we save internally all modeled
variability of TVMs directly into a map structure known as power_set, which rep-
resents the whole variability of an SPL, that is, the MTVM. Thus, the MTVM in
each case study is created automatically from their TVMs. With our DSL we were
able to capture different variability implementation techniques and to model the
variability of core-code assets in a fragmented way.

In Table 7.1 we show the number of features that are implemented and their
respective number of vp-s with variants that we documented in each case study.
This also shows that their mapping is not ideal (i.e., 1–to–1 as in Listing 7.5).

For example, in Listing 7.7, the technical vp vp_Temperature with its three
variants, v_High, v_Medium, and v_Low, are traced to the same feature
f_HeatingElement in line 6 (i.e., an 1–to–m trace link).

1 import dsl . t r a c e s . _
2 import tvm_temperature . _
3 import s p e c i f i c a t i o n _ l e v e l . moven_spl
4

5 t r a c e s {
6 vp_HeatingElement implements f_HeatingElement
7 v_OneLevelHeating implements f_OneLevelHeating
8 v_MultiLevelHeating implements f_Mult iLevelHeating
9 vp_Temperature implements f_HeatingElement

10 v_High implements f_HeatingElement
11 v_Medium implements f_HeatingElement
12 v_Low implements f_HeatingElement // . . .
13 }

Listing 7.7: An example of multiple trace links, in Microwave Oven PL

Although it is not mandatory, in each case study we kept all the trace links in
one file. To do so, we just need to import the specific TVM to trace its vp-s with
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Table 7.2: Number of vp-s and their implementation techniques in each case study

Techniques of vp-s Graph PL Arcade Game
Maker PL

Microwave
Oven PL

JavaGeom

Inheritance - 6 11 60
Overloading - - - 121
Generic Type - - - 18
Parameters 2 - - -
Template Pattern 1 - - -
Strategy Pattern 2 - - -
Include Package 2 - - -

Total 7 6 11 199

variants (e.g., the tvm_temperature._ in line 2, from Listing 7.7 ) and the speci-

fied features in the FM (e.g., the specification_level.moven_spl in line 3 ).

In order to understand what variability implementation techniques are used in
these case studies where we modeled the variability of their core-code assets, and
how many of them and in what combination (cf. Challenge A2), we analysed the
documented variability in four case studies regarding the used variability imple-
mentation techniques (i.e., binding time, granularity etc.), and types of vp-s. The
results are shown in Tables 7.2 and 7.3, which highlight some of the capabilities of
our DSL, respectively of our framework, that we applied.

For example, in JavaGeom we documented up to three used techniques for im-
plementing variability (cf. Table 7.2). We omit the technique of overriding as it
is used constantly to realize the specialization in the inheritance hierarchy. More
specifically, the inheritance is applied at class level (30%) with runtime binding.
The overriding is used at method level (37%) or constructor level (24%) with com-
pile time binding. Finally, generic types represent the variability of a parameter
at class or method level (9%) with static binding. We marked all 199 vp-s with
Open as their default evolution, and the majority of them has an alternative rela-
tion among the variants. These vp-s contains around 269 variants, excluding that
35 vp-s have 79 nested vp-s. As ordinary vp-s we documented 71, while the others
were unimplemented or technical vp-s (cf. Table 7.3). Similarly, we captured and
documented the variability for the other three case studies. In Table 7.2 we empha-
sized the "technique" of Include Package for the Graph PL because it is not actually
an implementation technique (cf. Table 3.5). It is a way for making optional a core
asset (i.e., an optional vp).

These applications show the successful usage of our DSL for capturing and
modeling different traditional techniques in core-code assets (i.e., for modeling the
imperfecly modular variability at the implementation level). For this reason, we
successfully used the five types of vp-s with variants and traced them with the
features at the domain level, under their 1–to–1 and 1–to–m mappings.
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Table 7.3: The documented number of vp-s’ types in each case study

Types of vp-s Graph PL Arcade Game
Maker PL

Microwave
Oven PL

JavaGeom

Ordinary 5 6 7 71
Unimplemented - - - 7
Technical - - - 121
Optional 2 - 4 -
Nested - - - 79

7.2.1 Design Evaluation of TVMs

In this section, we give some of the advantages of TVMs, in the way that they are
supported by the DSL. Specifically, we study how they make possible to keep the
strong consistency between the vp-s with variants abstractions and their concrete
realizations in core-code assets while keeping both the variability and develop-
ment levels still separated (cf. Challenge A3), as well as modeling the implemented
variability in a fragmented way (cf. Challenge A4). In addition, the usage of TVMs
with the trace links, which is also supported by our DSL, is multiple.

Easy management. Our DSL supports the documentation of variability for an
SPL in several TVMs. The vp-s with variants of a TVM can be part of their core-
code assets, are not amalgamated with the functionality in code, but still they are
close to the core-code assets. Thus, a TVM can be part of the same class or file, as
in Figure 7.2, or kept separately in a class, a file (see Figures 7.3b and 7.3c), or a
package level (see Figures 7.3a and 7.3c) on its own. A concrete example is given
in Figure 7.3d. Moreover, if required, the whole variability can be modeled in
a single TVM, in which case it becomes equivalent with the MTVM. On the other
hand, we establish and keep all trace links for an SPL in one single file at the project
level. By documenting the implemented variability in such flexible TVMs, we
believe that the management of variability is facilitated, thus meeting Challenge
A4.

Strong consistency with core-code assets. By using the reflection mechanisms
in Scala, we keep the strong consistency of vp-s with variants, as concepts (e.g.,
in Listing 7.4 lines 4-7), to their concrete realization in core-code assets (i.e., List-
ings 4.1 to 4.4, Page 47). Moreover, by capturing the implementation technique,
such as the logical relations, binding time, evolution properties of vp-s with vari-
ants (e.g., in Listing 7.4 lines 12-15), we also keep a form of consistency between the
modeled variability in TVMs and its implementation in core-code assets (i.e., List-
ings 4.1 to 4.4, Page 47). Thus, the TVMs and the core-code assets are kept close but
separated enough (e.g., Figure 7.2), thus meeting the Challenge A3 on separating
the variability and development dimensions. In this way, our DSL supports the
management of the implemented variability from the earlier steps of capturing,
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Figure 7.2: The TVMs closer but still separated with the functional code in files

documenting and then tracing it.

Multiple usage. Further, the usage of TVMs and trace links are multiple (cf. Chal-
lenge B). Capturing and documenting the different types of vp-s and their imple-
mentation techniques, as in Listing 7.4 and Tables 7.2 and 7.3, becomes important
especially during the usage of technical variability models and trace links. Specif-
ically, when trace links are used to resolve variability, knowing the binding time
of variants in a vp is necessary. Then, the logical relation between variants in a vp
is needed to check the consistency between the variability at the specification and
implementation levels. In addition, knowing whether a vp is open or unimple-
mented is needed during variability evolution. All these indicate that considering
the variability implementation techniques, as in our DSL, during the capturing
and documentation of variability have a major impact in establishing and using
the trace links, that is, in variability management. Especially when the variabil-
ity is implemented by several traditional techniques in combination (cf. Challenge
A2).

Main TVM to SPL ratio. For capturing and documenting the variability in TVMs
we use our textual DSL. Obviously, it contribues to the overall lines of functional
code in core-code assets. Therefore, we use the Main TVM to SPL ratio as a means
for evaluating the design of TVMs, with our DSL, by measuring the percentage of
lines of code in all TVMs toward the lines of code for realizing the functionality in
core-code assets within an SPL.

For this reason, we measured this ratio in one of our PL case studies, for the
Microwave Oven PL. This SPL has 914 lines of functional code, and 8 TVMs with
116 lines of code. Therefore, the Main TVM to SPL ratio, in this case, is around
11% and indicates that around 89% of the overall lines of code are used for imple-
menting the functionality of Microwave Oven PL and the rest for documenting its
variability. But, depending on what is calculated as a line of code in our DSL for
the TVMs, this ratio may be smaller. For example, the 4 lines of code in Listing 7.4
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DevelopedSPL

packageA
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files
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Figure 7.3: (a) The separated TVMs in package level; (b) The separated TVMs in
file level; (c) The separated TVMs in package, file, or class level; (d) For example,
the TVMs in separate files for Microwave Oven PL

in 12-15 lines represent a single line of code in our DSL, but we have separated in
4 lines for the sake of readability.

Overall, for a vp or variant to be captured is needed always a single line of
code (e.g., Listing 7.4, line 4, or 5), and also another line of code (or two lines, for
the nested variation points) to model a vp with its variants within the fragment

module (e.g., Listing 7.4, lines 12-15). Moreover, we observed that this ratio is
proportional to the number of vp-s with variants and the number of TVMs, but it
does not depend on the lines of functional code within an SPL.

The DSL itself is a small language, (2) with few defined language constructs,
(2) it uses the reflection in Scala, and (3) as an internal DSL relies on the host Scala
language, also meaning that it can easily be extended. These imply that the DSL
itself should also have a light learning curve.

7.2.2 Limitations

A limitation of our DSL, but not of the framework itself, is that we could not apply
it for tracing the variability at the finest granularity level (e.g., at the expression
level), as using reflection for tagging the variability is not possible at that level.
A solution is to refactor this finest-grained variability, although using reflection is
not mandatory. Variability can also be captured by using a form of annotations,
such as by Heymans et al. Heymans et al. [2012]. But, we used the reflection of a
language instead of developing another tool for annotating and parsing the code
for extracting "automatically" the variability information.

In our proposition, putting annotations is still a manual process, and they stay
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amalgamated with code. Moreover, we capture the implementation technique,
such as the logical relation, binding time, and evolution of vp-s with variants,
instead of simply identifying and annotating the places in core-code assets where
some variability happens. In the other hand, reflection helps us to maintain the
strong consistency between the vp-s with variants and their implementation in
core assets, and we keep the variability information separated from the core-code
assets such that the TVMs can be part of the core asset (not amalgamated with its
code) or separated into their own files. However, there is weak consistency (i.e.,
corresponding relationship) between the implementation technique itself and the
modeled logical relation, binding time, and the evolution properties of a vp with
its variants (cf. Listing 7.4, lines 12-15).

Another difficulty was to understand which is exactly a vp and variant in core
code assets, during the modeling of variability later as in the JavaGeom case study.
It was sometimes hard to distinguish whether an inheritance hierarchy imple-
ments some product line variability (i.e., which differentiates products in an SPL)
or some internal functionality that should not be modeled or traced. Although,
this is not a limitation that is particular to our framework or its DSL implementa-
tion. We emphasize it here because it became obvious to us while we were using
the DSL in our case studies. We faced most of the difficulties in deciding which
technique (e.g., inheritance hierarchy) should be classified as a relevant vp with
variants to be modeled in TVMs and traced, or whether we should document all
of them. In the last case, the reverse engineering approaches, such as finding the
feature locations during the migration of some software products in an SPL [Ziadi
et al., 2014], could help, but within the context of our approach, to find and reverse
engineer the vp-s with variants by capturing the implementation techniques. This
is similar to approaches that consider that all C preprocessor directives in core-
code assets are used for implementing some PL variability, whereas the others
disagree [Zhang et al., 2013]. Specifically, Zhang et al. [2013] state that "from our
experience most #ifdef blocks (e.g., 87.6% in the Danfoss SPL) are actually not variability
related, but for other purposes such as include guards or macro substitution". However,
this was not an issue during a proactive SPL engineering process, when the vari-
ability is implemented in a methodological way and vp-s with variants are docu-
mented by the DSL while they are implemented, as in the three other case studies
that we implemented.

This difficulty may restrict the usage of our framework in proactive SPL de-
velopment. Still, we believe its usage could increase the awareness of developers
for the variability traceability during the engineering phases, so that they aim at
modularizing the variability whenever possible.

7.3 Summary

As a concrete solution of our given framework for capturing, modeling, and trac-
ing the variability, we implemented an internal DSL in Scala language. To show
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the applicability of this DSL and of the framework itself for variability manage-
ment in realistic SPLs, we applied the DSL in three small SPLs and a medium SPL.
The DSL has language constructs for capturing the five types of vp-s with variants
when several traditional techniques are used in core-code assets, and two other
constructs, for modeling their variability in a fragmented way - in TVMs, and trac-
ing their vp-s with variants with the specified features in an FM.

Further, we present a design evaluation of TVMs, mostly regarding the way
that they meet the given challenges A2 to A4 and B. Using this DSL, the addressed
variability can be documented while it is implemented and in the same place (e.g.,
package or file) by using the same development tool.

In addition, the DSL can be extended to raise the given limitations, also the
future work for extending the framework itself, as presented in Section 9.3.



CHAPTER 8

An Implementation of the
Consistency Checking Method

This chapter shares material with the following paper:

Tërnava, Xh. and Collet, P. (2017a). Early consistency checking between
specification and implementation variabilities. In Preceedings of the 21st
International Systems and Software Product Line Conference - Volume A, SPLC
’17, pages 29–38. ACM

In this chapter, we present our implementation of the consistency checking
method, given in Chapter 6, for checking the consistency of variabilities between
the specification and implementation levels. It supports the early consistency
checking, that is, during the development process and by selecting only some of
the addressed variabilities at the implementation level. This is made possible by
using our DSL for modeling the implemented variability of core-code assets in
TVMs and tracing it to features at the specification level (cf. Chapter 7). We also
show the applicability of this implemented method in four case studies.

8.1 Implementation

Figure 8.1 depicts our toolchain for checking the consistency of variability. We im-
plemented the slice-substitute-assert method, given in Section 6.2, using the Scala
language. In this way, we could use the TVMs and trace links directly, as our DSL
is also defined in Scala (cf. Section 7.1).

Toolchain. Initially, we take as input the feature model (FM) in the propositional
logic. We use FeatureIDE [Thüm et al., 2014] for converting the whole FM to propo-
sitional formula, φFM , although it is not integrated into our implementation. Then,
the trace links (TLs) that are established by using our DSL, we convert them to the
propositional logic by using the classic conversion rules given in Table 2.1. Fur-
ther, the propositional logic formulas for FM and TLs are converted to conjunctive
normal forme (CNF), by using the conversion algorithms by Gupta [2014]. In this
way, with our tool, we encode their CNF formulas in DIMACS CNF format (i.e.,
in .dimacs or in .cnf files) and we perform the initial checking (cf. Section 6.2.1),
by using SAT techniques with the SAT4j solver [Berre, 2013; Le Berre and Par-
rain, 2010]. Specifically, we check whether each of the formulas is valid, free of
false-optional and dead variables [Benavides et al., 2010]. A more complete set of
the implemented operators for analysing the FMs can be found in several existing
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Figure 8.1: Prototype toolchain for consistency checking

implementations [Chechik et al., 2015; Henard, 2012; Holthusen et al., 2015]. De-
pending on the kind of analysis operation that has to be performed, a combination
of different solvers is suggested [Benavides et al., 2007, 2006], but in our current
implementation, we used only a SAT solver.

If the FM and TLs are valid we proceed to the conversion of a specific tech-
nical variability model, TVMx, or several TVMs to CNF, which are selected to be
checked. Then, we encode them to DIMACS CNF format and check their validity
as well. What proceeds is the application of our method for checking the consis-
tency of a selected TVMx against the given variability in FM. The slicing steps are
implemented by using our proposed clause selection algorithm on CNF formulas
(cf. Section 6.2.2), but other slicing algorithms could be used. The clause selection
algorithm is sufficient for the considered SPLs (cf. Section 8.2). Moreover, we use
SAT4j for generating the number of models for a propositional formula (cf. Sec-
tion 6.2.3) and then conclude whether the TVMx is consistent with the FM or not
(cf. Section 6.2.4).

In our implementation, the specified variability in terms of features in an FM is
used as a reference model against which is checked the consistency of the imple-
mented variability in terms of vp-s with variants in TVMs.

Availability. The prototype implementation of our consistency check-
ing method is publicly available at https://github.com/ternava/
variability-cchecking. It is configured for checking the consistency of
the implemented variability for Microwave Oven PL, which can help as a guide
for using our method in other case studies, too. Whereas, a further detailed
description of our implemented method and its documentation is given at

https://github.com/ternava/variability-cchecking
https://github.com/ternava/variability-cchecking
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https://ternava.github.io/.

8.2 Applications

We applied and evaluated our method by using it for checking the consistency of
variability in the four case studies, which are given in Appendix B. In the previous
chapter, we applied our DSL in these case studies for modeling and tracing their
implemented variability (cf. Section 7.2).

We evaluated our method regarding the logical relations of features, respec-
tively vp-s with variants that can be checked (i.e., mandatory and optional vp-s,
as well as alternative and Or logical relations between their variants). Specifically,
we evaluated whether the method is capable to detect the inconsistencies success-
fully in all these possible logical relations. For example, in the Microwave Oven PL
and JavaGeom we experimented with the technical and nested vp-s of any type,
whereas in Graph PL with vp-s that are implemented as a refactoring form of the
specified variability (e.g., when some related optional features are implemented
as a vp with variants in an Or logical relation). We expect that our method will
be functional and applicable in many SPL settings, whereas we do not specifically
discuss its scalability. Specifically, it should be able to detect successfully the incon-
sistencies that may happen on any kind of the logical relations between features in
an FM and vp-s with variants in TVMs at the implementation level.

The implemented variability is documented in each case study, using our
DSL 1. In all case studies, a TVM has at least one vp with its variants. In the
first three SPLs, we did not implement all features. First, it is common that some
variability is implemented later. Secondly, the SPLs can be evolved during the
time with new features. Despite that some features are unaddressed, we could
check the consistency for only that part of the implemented variability showing
the partial checking capability of our method.

8.2.1 Evaluation Process

We performed the evaluation process in two stages. First, we checked the consis-
tency of variability by selecting TVMs one by one, and then we were selecting a
subset of them. In each stage, we analysed first the vp-s with variants that have 1
– to – 1 mapping to features in the FM (i.e., single trace links) and then those with
1 – to – m mapping (i.e., multiple trace links).

For example, Figure 8.2 shows a screenshot of a setup for checking the consis-
tency of one or several TVMs for Microwave Oven PL. Specifically, the FM and
trace links are checked about their validity by selecting a specific PL. Currently,
we first configure the solution with an SPL during the step ¬ in Figure 8.2, as is
configured with the Microwave Oven PL. Then, during the step , the TVMs are
imported in the current scope. Finally, one or several TVMs can be selected to

1 In the previous chapter, Table 7.1 (Page 96) showns their respective number of TVMs and their
vp-s with variants.

https://ternava.github.io/
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Figure 8.2: A setup for checking the consistency of one or several TVMs for Mi-
crowave Oven PL

check their consistency at once, as shown in step ®. Also, all TVMs can be se-
lected for checking in case that the whole specified variability is addressed at the
implementation level.

Inconsistencies due to trace links. The first inconsistencies that can be reported
are about trace links (step ¬, Figure 8.2). An inconsistency will be reported when
a vp or variant from the selected TVM to be checked (1) does not have a mapping
to the FM, and (2) when it has a wrong mapping. In the first case, when we se-
lect such TVM, or a subset of them, if the trace links are not well-established (i.e.,
the Assumption 1 is not met, Section 6.1 on Page 74) an inconsistency is reported
early, meaning that the consistency of the selected variability cannot continue and
checked without establishing the trace links for all vp-s with variants in the se-
lected TVMs.

Whereas, in the second case, the inconsistency will be reported at the end,
showing an inconsistency between the checked TVMs with the sliced FM. This
inconsistency is likely to require more effort to be detected and understood, as it is
caused by wrong trace links. This happens when a variant is mapped to a feature
that it does not implement. Whereas, such inconsistency goes undetected when
a vp with variants is mapped mistakenly to some features that have completely
similar logical relation between them in FM. Overall, the trace links can be estab-
lished only between the TVMs and the FM. Otherwise, our DSL reports an error at
compile time. For instance, it is not possible to trace a feature to another feature in
the FM instead of tracing it to a vp or variant at the implementation level.

If trace links are well-established, the FM and TVM are checked about their self-
consistencies, then the consistency checking between them is performed using our
prototype implementation.
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Table 8.1: Checking a TVM with one vp and its variants

a) The selected logical relations of variants in a vp to test. Where their mapping to
features in FM is 1–to–1, and with the same logical relation

Features vp-s with variants Result

alternative alternative variants consistent
or or variants consistent
optional optional vp consistent
optional or variants consistent

b) The selected logical relations of variants in a vp to test. Where their mapping to
features in FM is 1–to–1, and with the different logical relation

Features vp-s with variants Result

alternative or variants inconsistent
mandatory optional vp inconsistent
or alternative variants inconsistent

Table 8.2: Checking more than one TVM with one or more vp-s with variants

The selected logical relations of variants in a vp to test. Where, their mapping to features
in FM is 1–to–1, and when only one of the vp-s has different logical relation

Features vp-s with variants Result

(alternative, or) alternative variants inconsistent
or (or, alternative) variants inconsistent
(optional, or) mandatory vp, or variants inconsistent

Single trace links. We selected several TVMs in each case study, with the aim
to assess our implementation with different logical relations of vp-s with variants,
shown in Table 8.1a. When the variability was implemented in the right way and
the mapping of vp-s with variants to features in FM was 1–to–1, then we could
check successfully their consistency. For example, in Figure 8.3 is shown the con-
sistency checking for an alternative vp, Language 2, with five variants, English,
French, Italian, Spanish, and German (step ¬). This vp implements a com-
pound feature with five alternative features in the FM 3. Therefore, by selecting
the TVM with this vp and its variants (step ) one obtains a consistency message
(step ®). Similarly, when an optional feature is implemented as an optional vp,
their checking reports a success. Consistency was also reported when a vp was

2In this case study we did not used the prefix vp_ for a vp and v_ for a variant. For instance,
instead of vp_Language we name it simply as Language.

3See its FM in https://github.com/ternava/expressions_spl/wiki/
feature-models

https://github.com/ternava/expressions_spl/wiki/feature-models
https://github.com/ternava/expressions_spl/wiki/feature-models
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Figure 8.3: The detected consistency for a TVM in the Microwave Oven PL

a refactoring form of a group of features in FM, for example, when a group of
Or related features is implemented as optional variants in a vp, see the last entry
in Table 8.1a.

Similarly, we selected the TVMs that have different types of vp-s, but in cases
where the variability is not properly implemented (see Table 8.1b), for example,
when an alternative group of features is implemented as an Or group of variants
in a vp, or a mandatory feature is implemented as an optional vp. Concretely, if
the vp, Language, in Figure 8.3 ¬ is implemented by a technique that offers an Or
logical relation between its variants (instead of an alternative logical relation) then
an inconsistency is reported as in Figure 8.4. Their inconsistency is reported as a
difference between their numbers of configurations.

Then, within a single case study, we selected different subsets of TVMs to check
the consistency of their variability against the features in FM (e.g., see the com-
mented TVMs in Figure 8.2 in step ®). These TVMs have one or more vp-s with
variants. When each individual TVM in the subset was consistent, we could check
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Figure 8.4: The detected inconsistency for a TVM in the Microwave Oven PL

that together they are consistent too. Further, we combined a consistent TVM, or a
group of them, with at least one inconsistent TVM and we checked their variabil-
ity together. Table 8.2 shows the types of logical relations that we selected for vp-s
in TVMs. As was expected, we got an inconsistency, but now it is part of the all
selected TVMs, or their respective slice FM.

All kinds of inconsistencies are reported as a difference between the number of
vp-s with variants configurations in TVMs and the number of features configura-
tions in the slice FM. Their configurations are also made available for any further
comparison.

Multiple trace links. Our current implementation supports tracing a feature to
more than one vp or variant, as illustrated by the example in Listing 7.7 (Page 96).
This means that some vp-s are technical or nested, and do not have a direct map-
ping at the specification level. They are only modeled at the implementation level,
and we must consider them during the consistency checking of variability.

We applied our consistency checking method when a technical vp and its vari-
ants are traced directly to the same specified feature in the FM (cf. Figure 6.7,
Page 84). Under these 1 – to – m trace links, we did similar evaluations with
different logical relations of vp-s with variants, as in the case of 1–to–1 trace links
(cf. Tables 8.1 and 8.2). However, an inconsistency was always reported even when
the other vp-s where consistent, as we were expecting. This indicates that our im-
plementation for checking the consistency of variabilities when the mapping is
1–to–1 is insufficient for the 1–to–m mapping.

Therefore, for handling the 1–to–m mapping, in Section 6.2.5 (Page 85) we pro-
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Table 8.3: Times for checking the consistency of TVMs compared to self-
consistency checking of the FM, in the Microwave Oven SPL

Where FM’ is the sliced feature model, TVM the technical variability model, and CC the
consistency checking of TVM against the FM’.

tvmlang tvmtemp tvmweight

Prop. Formula FM’ TVM CC FM’ TVM CC FM’ TVM CC

# Configurations 6 6 6 5 5 5 2 2 2
Checking time
(average in ms) 28.10 27.81 30.26

tvm{lang,temp} tvm{lang,temp,weight}

Prop. Formula FM’ TVM CC FM’ TVM CC

# Configurations 30 30 30 60 60 60
Checking time
(average in ms) 33.98 44.82

posed to slice the selected TVM first, by removing the technical vp-s and keeping
only vp-s with variants that have a single mapping to features in FM. This requires
only an extension of our implemented method by one more slicing step, regarding
the technical vp-s, between the slice0 and slice1 in Figure 6.3 (Page 79).

8.2.2 Execution Time

By selecting a single or a subset of TVMs at a time, the consistency checking is
made possible early in the development process, as soon as the specified variabil-
ity is implemented and documented. But, we also expected that the consistency
checking time for the resulting sliced formulas should be smaller. As for compari-
son, we recorded the execution time for some TVMs in Microwave Oven PL, as it
has most of the vp’s types. The resulting data are given in Table 8.3. The measure-
ments are performed on a PC Intel(R) Core(TM) i5-4300U CPU, 64-bit, with 2.50
GHz and 4 GB RAM, on Windows 10.

We selected for checking three TVMs from the Microwave Oven SPL, tvmlang,
tvmtemp, tvmweight. They have 7, 7, and 3 vp-s with variants, respectively. We then
checked them together. Execution times in each case was instantaneous, and are
reported in Table 8.3. For example, for tvmlang we measured the execution time
for the sliced FM ′, the TVM itself, and the time for checking their consistency
took around 28.10 millisecons. The execution time for checking the validity of the
whole FM with 26 features and 720 configurations took around 130 milliseconds
(it is not shown in the Table). As we expected, the execution times for checking
the consistency of partial variability compared to only the validity of the FM is
smaller. This indicates that the number of features and vp-s with variants that can
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be selected and checked tend to be smaller, but we did not measure how much and
for what number of vp-s with variants in TVMs that are checked.

The slicing time of trace links and FM contribute also to the consistency-
checking time of a TVM. We did not measure it, as it is a property of the slicing
algorithm and requires extra validation on its own.

8.2.3 Limitations

First, our DSL cannot be currently used to model features in an FM at specifica-
tion level (cf. Figure 8.1). For this reason, we used another tool, FeatureIDE, to
model the variability in an FM and to convert it to a propositional formula, but it
is not integrated with our implementation. We thus plan to extend our DSL or to
integrate it with another textual DSL that models the variability specifically at the
specification level, such as FAMILIAR [Acher et al., 2013].

When features or vp-s with variants have dependencies, then slicing their
propositional formulas with our proposed algorithm in Section 6.2.2, based on
clause selection, is not tested. However, we tested it for slicing the bidirectional
trace links, as the existing algorithms could not be used. On the other hand, af-
ter the initial checking, our consistency checking method is based on counting the
number of features or vp-s with variants configurations. In a performance com-
parison of some logical solvers, such as SAT 4, BDD 5, and CSP 6, Benavides et al.
[2010, 2007, 2006] suggest that for counting the number of configurations the BDD
solver is more efficient than the SAT solver. However, we used the SAT solver
for the initial checking and, in particular, because our slicing algorithm requires
the propositional formula to be in a CNF, whereas the BDD solver takes a propo-
sitional formula not necessarily in CNF. Therefore, when other slicing algorithms
are used, the method can use a BDD solver.

In the current implementation, slicing of TVMs according to technical vp-s for
checking the consistency of variability for 1–to–m mapping (cf. Section 6.2.5) is not
completelly implemented at the time of writting.

8.3 Summary

Our prototype implementation is a realization of our consistency checking
method, given in Figure 6.3 (Section 6.2), and represents a usage of our framework
for capturing, modeling and tracing the imperfectly modular variability at the im-
plementation level. Further, it also shows the applicability of our implemented
DSL, as a concrete solution for modeling and tracing the variability of core-code
assets.

Towards evaluating the implemented method, we applied it in three small and
a medium case studies. We evaluated it regarding three main aspects: (1) when

4Boolean SAT-isfiability problem
5Binary Decision Diagrams
6Constraint Satisfaction Problem
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the mapping between features and vp-s with variants was 1–to–1 and 1–to–m, (2)
by selecting one TVM at a time and then a combination of them within a single
SPL, and also (3) by considering those TVMs that contain vp-s with variants in
different logical relations, such as mandatory, optional, or, and alternative ones.
In all cases the method was reporting the expected consistency or inconsistency,
even considering the limitation on the current implementation for supporting the
1–to–m mapping. We also do a small comparison regarding the execution time for
checking different numbers of the selected TVMs within an SPL, which result to
be smaller than checking the satisfiability of only the whole FM.

In addition, we give some limitations of the currently implemented prototype
of our consistency checking method. They are additional to the given limitations
and future work for extending the framework and the method itself, as presented
in Section 9.3



CHAPTER 9

Conclusion

In this chapter, we step back on the contributions of this dissertation. First, in Sec-
tion 9.1 we discuss how the challenges determined in Section 1.2.1 have been ad-
dressed. Then, in Section 9.2 we discuss some limitations of this work. Finally,
in Section 9.3 we discuss some possible perspectives.

9.1 On Challenges

A software product line (SPL) engineering approach is based on a methodological
development and reuse of core software assets for a set of related software appli-
cations within a domain. At first, in a proactive approach, the domain of software
products is scoped and the common and variable features between products are
modeled in a variability model, usually in a feature model (FM). Then, these fea-
tures are realized in different core assets, such as in code level, known as core-code
assets. For realizing the variability in core-code assets, there are available differ-
ent variability implementation techniques. When traditional techniques are used,
such as inheritance, design patterns, the code basically is not shaped in terms of
features at the domain level, thus hampering the handling of variability at the code
level. In this dissertation, we addressed the three groups of the given challenges
in Section 1.2.1, for modeling, tracing, and checking the consistency of the imple-
mented variability in core-code assets during an SPL engineering. In this thesis,
we addressed the following challenges:

Challenge A. Variability modeling at the implementation level

A1. Understanding the diversity of variability implementation techniques

A2. Capturing and modeling the implemented variability when a combined set of
traditional variability implementation techniques is used

A3. Separating the development dimension and variability dimension while main-
taining their corresponding association (a.k.a. consistency)

A4. Modeling the implemented variability in a fragmented way

Challenge B. Variability traceability

B. Supporting the variability traceability between the specification and implemen-
tation levels

Challenge C. Consistency checking of variability
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C1. Checking the consistency of variability between the specification and imple-
mentation levels

C2. Checking the consistency of variability when a combined set of traditional vari-
ability implementation techniques is used

C3. Achieving an early detection of variability inconsistencies

In Chapter 3 we studied the elements of diversity for the majority of variability
implementation techniques and provided a unified set of comparison criteria. We
organized these criteria in a catalog that covers an enriched set of techniques com-
pared to a same set of criteria; thus, meeting Challenge A1. We built this catalog
(1) by using existing catalogs, taxonomies, frameworks, and studies that we iden-
tify in the literature about the variability implementation techniques and also (2)
by exercising with different techniques in three PL case studies implemented with
the Scala language.

We believe the given catalog can be seen as a complete set of variability im-
plementation techniques with respect to the major approaches in the state of the
art. However, some very specific language techniques and those less popular in
the industry or research works have not been included. Consequently, choosing
a technique is not limited to selecting only among these techniques, but we ex-
pect the proposed catalog to guide SPL architects and developers in the majority
of cases.

Although other criteria for evaluating techniques can also be added, we believe
they would not change the current evaluated results to the existing criteria. To the
best of our knowledge, the criteria themselves do not have a correlation within a
technique, but they are used to make trade-offs between techniques. These trade-
offs are not currently shown in our catalog, for instance, the one between binding
time and open/closed properties [Bosch et al., 2001].

While features at the specification level are merely concepts, at the implemen-
tation level a combination of traditional variability implementation techniques are
actually used in realistic SPLs, thus leading to a form of an imperfect modularity of
the variability at the implementation level that should be handled. In Chapters 4
and 5 we provided a framework for capturing, modeling, and tracing this im-
perfectly modular variability of core-code assets, thereby meeting the Challenges
A2 and B. The framework supports the capture of variability in core-code assets
in terms of variation points (vp-s) with variants and its modeling in technical vari-
ability models (TVMs), thus meeting the Challenge A4 for modeling the variability
in a fragmented way.

We did not use the decision models for variability modeling (cf. Section 2.1)
because decisions are commonly used only as a means for resolving the vp-s with
variants. Whereas, the vp-s with variants in TVMs and with their characteristic
properties capture the variability implementation techniques and can be used for
different purposes, such as for resolving the variability, evolving, checking the con-
sistency, understanding the addressed variability in core-code assets. By keeping
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separated the concepts of vp-s and variants with their realization in core-code as-
sets, we achieved the objective of the Challenge A3 for separating the variability
dimension from the development dimension in core-code assets, while maintain-
ing their consistency. Moreover, we have met the Challenges A2 to B during the
variability traceability of core-code assets from its early steps, by capturing and
modeling the implemented variability in several TVMs, then we traced it up to
variability at the specification level (i.e., features in the FM), under their n–to–m
mapping.

We expect that our framework can be realized and used in realistic SPLs where
commonly a combined set of variability implementation techniques are used at
the code level. Actually, we showed a form of its feasibility and applicability by
implementing it as an internal domain specific language (DSL) in Scala, which
realization is applied in four different SPL case studies (cf. Chapter 7).

Toward using the framework and meeting Challenge C, in Chapter 6 we pro-
posed a method for checking automatically the consistency between specification
and implementation variabilities expressed in the propositional logic. Concretely,
the method supports the checking of whether the specified variability in terms of
features at the domain level and their respective implementation in core-code as-
sets represent the same number of software products. We handled the case when
the imperfectly modular variability in core-code assets is modeled in TVMs, and
vp-s with variants have an 1–to–1 and/or 1–to–m mapping to the specified domain
features in the FM.

In this context, the consistency of variability could be checked successfully
whenever features and vp-s with variants had a single mapping, whereas it be-
came harder when their mapping was 1 – to – m, that is, with multiple trace links.
The difficulty to check consistency under multiple links lies in the fact that it is
ambiguous how to trace the technical vp-s with variants that do not have a single
mapping to some features in the FM. We evaluated our method by tracing them at
the same feature as their parent variation point. In this case, despite that some vp-s
with variants that have single links were consistent, an inconsistency was reported.
However, since multiple mapping links between these levels of variabilities can be
reduced to single mapping links, it is possible to use the same proposed method
for detecting the variability inconsistencies under the 1–to–m mapping.

In this way, by checking the consistency between the specification and imple-
mentation variabilities, while considering their multiple trace links, we met Chal-
lenges C1 and C2. Also, instead of doing a complete checking, we select a single
TVM or a subset of them to detect their inconsistencies as early as possible during
the development process, that is, immediately after some variability is addressed;
thus, meeting Challenge C3.

Furthermore, in Chapter 8 we provided a prototype implementation of our
consistency checking method. Then, we applied it in four SPL case studies to check
the consistency of variabilities between specification and implementation levels as
early as possible during the development process.
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9.2 On the Scope and Limitations

Usage of the catalog. The existing catalogs, frameworks, and studies have evalu-
ated their considered techniques by using different programming paradigms and
languages, such as Java, C++, Smalltalk, and we used the Scala language. There-
fore, the evaluation of techniques in our catalog is not uniform regarding the used
paradigms or programming languages. Also, each variability implementation
technique is evaluated in isolation, whereas in reality, a combined set of techniques
seems to be necessary to meet the diverse requirements of variability and their de-
pendencies in implementation. We consider that these two main issues should be
taken into account during the usage of our given catalog.

Modeling of dependencies between the vp-s with variants. A weakness of our
framework is that it does not include the modeling of dependencies between the
vp-s with variants, which are different from the cross-tree constraints of features in
the FM at the specification level. In addition, because we model the variability in
several TVMs, then the vp-s with variants in one TVM can have dependencies to
the vp-s with variants in another TVM. These dependencies between TVMs may
also help us to define more exactly the proper number of TVMs that should be
used within an SPL, whereas in our case studies we tried to minimize them.

The variability models in both abstraction levels are required. Our variability
consistency checking method is based on checking the logical relations between
features and vp-s with variants, thus checking whether the same number of the
specified software products are also realized in core-code assets. Variability can
also be checked with regards to binding times or evolution properties. Usually,
these properties are modeled only at the realization level and checking for their
consistency requires them to be specified at the specification level, too. Specifically,
only in TVMs we documented explicitly these two properties of vp-s. In this con-
text, there are two main limitations of our approach. First, the variability models
in both abstraction levels are required. Then, for example, to check the variability
regarding its binding time, it is required to be available or modeled the binding
times for features and vp-s in each variability model. Besides, for an automatic
checking, the binding time should be represented in the propositional formulas in
some way.

Evaluating the proposed slicing algorithm. Another concern in our consistency
checking method is about the slicing algorithm. Actually, we did not evaluate
our proposed algorithm for slicing the propositional formulas (based on clause se-
lection) when vp-s with variants have dependencies in core-code assets. This is
because we used our framework, and it does not support the modeling of depen-
dencies between the variability abstractions, yet. But, instead, some of the other
existing slicing algorithms are mathematically proved that they do the right slicing
for every kind of propositional formulas, which can also be used.
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Alternative tool support for modeling the implemented variability. Instead of
using our DSL, the implemented variability can be documented using other ways,
such as a form of annotations [Heymans et al., 2012]. When annotations are used,
they should not only annotate the place where a variable unit is implemented in
core-code assets but also what is the logical relation between those units. This is
related to our consistency rule. Specifically, we did not check only whether some
variability is merely addressed. We checked whether the same software products
that are specified can be derived from the core-code assets, within an SPL. Fur-
ther, we supposed that the trace links are well-established. Otherwise, when trace
links are the source of an inconsistency, we considered that it is not a variability
inconsistency anymore. It is then an inconsistency regarding the addressing and
mapping of variabilities, for instance, when we try to check the consistency of an
unimplemented variability or the mapping is mistaken.

Considering that a single variability implementation technique is used. In our
work, variability is implemented by using a combined set of traditional variability
implementation techniques (e.g., inheritance, design patterns). In these techniques
vp-s are not explicit, such as by using preprocessors in C. If we take preproces-
sors, they also can offer all kinds of logical relations between variants in a vp. Al-
though, they offer a single binding time for vp-s compared to the case when sev-
eral traditional techniques are used. As preprocessors are a form of annotations
with variability information between variants, it could be interesting to apply our
framework for modeling and tracing the implemented variability, and then apply-
ing our consistency checking method when only this implementation technique is
used.

Moreover, in Chapters 7 and 8 we determined the limitations of our implemen-
tations, for the DSL and the prototype of our consistency checking method, respec-
tively. They are particular limitations regarding only the current implementations.
Specifically, we cannot use the DSL for modeling and tracing the variability at the
finest granularity level. Also, there is a weak consistency between the used im-
plementation language and the modeled properties of vp-s with variants. Further,
using the DSL in a forward engineering approach is more straightforward than in
a reverse engineering approach.

As for the limitations of the implemented consistency checking method, the
current tool does not support the modeling of variability at the specification level
(i.e., features in a feature model). Besides, our slicing algorithm based on clause se-
lection is not evaluated when vp-s with variants have dependencies and the con-
sistency checking for 1–to–m mapping is not yet fully supported by our current
implementation. Moreover, we could use in our method another logical solver,
for example, a BDD solver that is suggested by Benavides et al. [2010, 2007] over
the SAT solvers for counting the number of features or vp with variants configu-
rations.
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9.3 Future Work

Improving the catalog. Some ongoing work is currently tackling the evaluation
and choice of variability implementation techniques in a more systematic way, by
considering the variable parts in core-code assets as centers 1 in Alexander’s mean-
ing [Alexander, 2004]. We believe that the 15 fundamental properties for building
beautiful and functional centers in the architecture can guide us also in evaluating
and choosing different techniques in combination for realizing manageable variable
parts, while realizing the functionality in core-code assets.

Extending the framework. Further, we plan to complement our framework for
supporting the modeling of dependencies between vp-s with variants in core-code
assets and among the TVMs. In the literature, there are already some frameworks
about the dependencies of vp-s, such as from Bühne et al. [2003]; Sinnema et al.
[2004a], which can be considered. By addressing these dependencies, we plan to
extend our DSL to support the documentation of these dependencies, then to test
our slicing algorithm in the consistency checking method for slicing the proposi-
tional formulas in the presence of vp-s with variants dependencies.

Resolving the detected inconsistencies. When an inconsistency is detected, it is
supposed to be handled, that is, finding its location and resolving it. Finding its
location is quite trivial as we select a single TVM or a set of them for checking their
consistency against their sliced FM. When the location is known, the variability
inconsistencies can be resolved by changing the implementation technique for the
vp-s, changing the way how the variants are implemented or refactoring the spec-
ified features in the FM. In order to give help for resolving such inconsistencies at
the implementation level, we plan to show the usage of our catalog for choosing
the right variability implementation techniques.

Evaluating the scalability of our framework and consistency checking method.
As we need both variability models, at the specification and implementation lev-
els, we have not yet studied precisely the scalability of our framework and con-
sistency checking method. However, the experimental results of our case studies
(cf. Chapters 7 and 8) and the short execution time of TVMs are promising indi-
cators. In addition, we plan to use existing slicing algorithms to slice the FM and
compare their performances. Choosing the best slicing algorithm will improve the
scalability of our implementation. Then, instead of using the SAT solver, we want
to evaluate the consistency checking method when a BDD solver is used. Cur-
rently, we are tackling the implementation and analysis of the consistency check-
ing method under 1 – to – m trace links when the technical vp-s are first removed
by slicing the selected TVMs.

1Informally, centers are fundamental entities of a spatial structure. They mark something that we
experience as memorable, remarkable, or draws our attention.
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We expect these advances will complement our current framework and consis-
tency checking method so that we can more largely evaluate their practicality and
usefulness in order to obtain insights to guide SPL practitioners.

An upcoming usage of the framework. Moreover, the exploitation of our three
step framework for product derivation is also envisaged. To do so, we are try-
ing first to improve the current DSL for achieving a stronger consistency between
the used variability implementation techniques in core-code assets and the char-
acteristic properties of vp-s with variants, such as the binding time (cf. Listing 7.4,
lines 12-15). Something similar with the consistency of vp-s with variants with
core-code assets (cf. Listing 7.4, lines 4-7).

Actually, a concern about our framework is its use for an automatic resolution
of vp-s with variants during a product derivation. Approaches that are based on
using a form of annotations, actually annotate the places in core-code assets, such
as some lines of code, a file, or a package, that represents a feature and has to be
part of the final software product or not. For example, depending on whether an
#if preprocessor directive in C is true or false then the whole enclosed code within
that #if-#endif condition that represents a feature is included or erased in/from
the final software product. This cannot happen with traditional techniques, such
as inheritance, or overriding, for two main reasons. First, during a product deriva-
tion, when a feature from the specification level is not selected to be included in
the final software product, it is not possible to remove an entire declaration, such
as a package, a class, or method, from the core-code assets that is used to address
that feature using the Java or Scala language. Secondly, in our framework, the
vp-s with variants mark the places in code where the variability is concentrated
(e.g., a file, a class, a method) and we do not do a commitment which lines of code
are exactly in or out a vp or variant concept (see "An essential difference" in Sec-
tion 2.2.2 and Section 4.2.3). For such reasons, we plan to a semiautomatic product
derivation approach.

Possible integration. Overall, while we are going to make these improvements,
the framework itself can be used to complement several existing works. Our de-
veloped DSL can be integrated with another language for modeling the variability
in terms of features in an FM, thus having a more inclusive support for managing
the variability at the specification and implementation levels. In Section 8.2.3, we
mentioned a possible integration with FAMILIAR textual DSL [Acher et al., 2013].
In such case, the developed analysis operators for feature models can be used also
for analysing the technical variability models at the implementation level, such is
integrated and used the FAMILIAR with the KCVL [2015].

Then, although FeatureIDE [Thüm et al., 2014] is meant to support only feature-
oriented development [Apel et al., 2013], we believe that it can be extended, or
a parallel and similar tool support in the existing IDEs is needed for managing
the variability when a combined set of traditional variability implementation tech-
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niques are used in core-code assets, which is the case in realistic SPL settings. Also,
our catalog can be integrated in such tools and used to guide the developers in
choosing the techniques in a methodological way. In this way, we aim at develop-
ing features of software products within an SPL as conceptual modules, although
not perfectly modular, and not particularly as physically separated modules.
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Definitions of Features and
Variation Points with Variants

Feature’s Definitions

Kang et al. [1990] – a prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems

Jacobson et al. [1997] – a use case, part of a use case or a responsibility of a use
case

Kang et al. [1998] – distinctively identifiable functional abstractions that must be
implemented, tested, delivered, and maintained.

Zave [1999] – an increment of functionality, usually with a coherent purpose

Czarnecki and Eisenecker [2000] – anything users or client programs might want
to control about a concept

Bosch [2000] – a logical unit of behavior that is specified by a set of functional
and quality requirements

Czarnecki and Eisenecker [2000] – a property of a domain concept, which is rel-
evant to some domain stakeholder and is used to discriminate between concept
instances

Savolainen and Kuusela [2001] – a common language between many stakehold-
ers. They communicate the high-level functional requirements from the market-
ing to the development

Riebisch [2003] – an aspect valuable to the customer

Batory et al. [2004] – a product characteristic that is used in distinguishing pro-
grams within a family of related programs

Gomaa [2005] – a functional requirement; a reusable product line requirement or
characteristic. A requirement or characteristic that is provided by one or more
members of the software product line

Berg et al. [2005] – product capabilities and characteristics that are important to
the user

Pohl et al. [2005] – an abstract requirement. Features describe the functional as
well as the quality characteristics of the system under consideration
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Chen et al. [2005] – a product characteristic from user or customer views, which
essentially consists of a cohesive set of individual requirements.

Batory [2006] – an elaboration or argumentation of an entity(s) that introduces a
new service, capability or relationship.

Hotz et al. [2006] – a prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems. An asset type that is used to
model functional aspects of a product

Apel et al. [2007] – a structure that extends and modifies the structure of a given
program in order to satisfy a stakeholder’s requirement, to implement and en-
capsulate a design decision, and to offer a configuration option

Classen et al. [2008] – a triplet, f = (R, W, S), where R represents the requirements
the feature satisfies, W the assumptions the feature takes about its environment
and S its specification

Reiser [2008] – a characteristic or trait in the broadest sense that an individual
product instance of a product line may or may not possess. A feature only de-
scribes what is variable, not how this variability is realized

John [2010] – a product requirement R⊆D that is visible to a user of the product
P (in the application domain D)

Variation Point’s Definitions

Jacobson et al. [1997] – A variation point identifies one or more locations at
which the variation will occur.

Czarnecki and Eisenecker [2000] – The nodes to which variable features are at-
tached are referred to as variation points. More formally, a variation point is a
feature (or concept) that has at least one direct variable subfeature (or feature).

Clauß and Jena [2001] – A variation point is modeled in the modeling element
where the variation occurs because it is not an extra entity (in contrast to a class
or component).

Van Gurp et al. [2001] – a variation point is defined as a delayed design decision

Becker [2003a] – The main concept that represents variability on the implemen-
tation level is the variation point. A variation point is a spot in a software asset
where variation will occur, i.e. where a variability is realized, at least partially.
Thus, a variation point can be considered as some kind of generic element in a
software asset.

Sinnema et al. [2004b] – Variation points are places in a design or implementa-
tion that identify locations at which a choice can be made between zero or more
variants.
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Schmid and John [2004] – A variation point is "the «point» in a generic artifact
where variation may occur.

Svahnberg et al. [2005] – Variation points are "places in the design or imple-
mentation that together provide the mechanisms necessary to make a feature
variable.

Pohl et al. [2005] – A variation point is a representation of a variability subject
within domain artefacts enriched by contextual information.

Bachmann and Clements [2005] – A variable part is the place in an asset that is
allowed to vary." On contrary, "variation point is often used to describe varia-
tions in terms that refer to an asset’s externally visible properties or functions
rather than places in the asset’s internal structure.

Hunt and McGregor [2006] – Variation point is the place in the product where
we see the consequences of feature choices.

Rabiser et al. [2007] – A decision represents a user intervention needed for the
selection of assets required for a concrete product during product derivation.
Decisions are abstract representations of variation points in the asset model.

John et al. [2007] – A variation point describes the occurrence of variability in a
development artifact.

Forster et al. [2008] – The locations at which a software artefact can be extended
or configured for a particular context are so-called variation points.

Variant’s Definitions

The way that a variation point is going to vary is expressed by its variants.

ISO/IEC 26550:2015 [2015] – one alternative that may be used to realize partic-
ular variation points (Note 1 to entry: One or more variants must correspond to
each variation point. Each variant has to be associated with one or more vari-
ation points. Selection and binding of variants for a specific product determine
the characteristics of the particular variability for the product.)
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The Developed Case Studies

In the context of this dissertation, we study and developed several case studies,
which we also use them for the illustration. In this appendix, we give some
more details for each of these case studies. As a summary, four of them we
have implemented and one of them is an open source library. In addition, we
make the feature model and the source code available for all of these case studies:
https://github.com/ternava/variability-cchecking.

B.1 Summary of Case Studies

Graph Product Line

Version: March, 2017 (last change)
Features: 18 (16 developed)
vp-s with variants: 4 with 12
Developed by: Xhevahire Tërnava
Developed as: Software product line (forward approach)
Language: Scala
Size: 323 lines of code, 3 files

Description. Graph product line is a family of graph applications, which is
proposed as a case study for evaluating the product line methodologies [Lopez-
Herrejon and Batory, 2001]. The domain of Graph PL consists of 2 mandatory fea-
tures, 2 optional features, 3 groups of alternative features (each with 2 variants),
and 1 group of 7 features in an Or logical relation. Also, it has 6 cross-tree con-
straints between these features. Table 7.2 shows the variability implementation
techniques that we used to realize these features.

Arcade Game Maker Product Line

Version: March, 2017 (last change)
Features: 28 (26 developed)
vp-s with variants: 8 with 17
Developed by: Xhevahire Tërnava
Developed as: Software product line (forward approach)
Language: Scala
Size: 651 lines of code, 17 files

https://github.com/ternava/variability-cchecking
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Description. Arcade Game Maker product line is a family of three arcade games:
Brickles, Pong, and Bowling. It is introduced by the SEI 1 as a case study for
experimenting and learning the development of software product lines [AGM,
2009]. Originally it has 19 features, with only a group of 3 alternative fea-
tures, and 2 other optional features. We refined these in 27 features with 3
groups of alternative features (each contains from 2 variants), and 5 groups of
features in an Or logical relation, and 1 optional feature. Both these feature mod-
els are given in https://github.com/ternava/expressions_spl/wiki/
feature-models. Whereas, Table 7.2 shows the variability implementation
techniques that we used for its development.

Microwave Oven Product Line

Version: March, 2017 (last change)
Features: 26 (23 developed)
vp-s with variants: 9 with 20
Developed by: Xhevahire Tërnava
Developed as: Software product line (forward approach)
Language: Scala
Size: 914 lines of code, 19 files

Description. Microwave Oven product line is one of the three case studies in-
troduced by [Gomaa, 2005]. It has input buttons for selecting Cooking Time, Start,
and Cancel, as well as a numeric keypad. It can display the cooking time left. Also,
it has a microwave heating element, a door sensor, and a weight sensor. Cooking is
possible only when the door is closed and when there is something in the oven. Its
development is described step-by-step from requirements to detail design using
the UML language. Even the feature modeling is given as a feature dependency
diagram in UML. It has 7 mandatory features, 7 optional features, and 4 groups of
features in an alternative logical relation. Table 7.2 shows the variability imple-
mentation techniques that we used for its development.

Expressions Product Line

Version: March, 2017 (last change)
Features: 7 (7 developed)
vp-s with variants: 2 with 5
Developed by: Xhevahire Tërnava
Developed as: Software product line (forward approach)
Language: Scala
Size (version 1): 73 lines of code, 1 file
Size (version 2): 34 lines of code, 1 file

1Software Engineering Institute: http://www.sei.cmu.edu/productlines/ppl/

https://github.com/ternava/expressions_spl/wiki/feature-models
https://github.com/ternava/expressions_spl/wiki/feature-models
http://www.sei.cmu.edu/productlines/ppl/
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Size (version 3): 103 lines of code, 1 file

Description. The Expressions product line is represented by Lopez-Herrejon
et al. [2005], and it is actually the old "Expressions Problem" where one can add new
Data (e.g., Add, Subtract) and new Operations (e.g., Print, Evaluate) over these
data [Wadler, 1998]. It has several implementations in different programming lan-
guages. Our three implementations are based on the Scala capabilities to handle
this problem [Lopez-Herrejon et al., 2005; Loverdos and Syropoulos, 2010; Zenger
and Odersky, 2004]. It consists of 4 mandatory features and 3 optional features. Its
feature model and the used techniques to implement two of its versions are also
given on Page 42.

JavaGeom

Version: 2009 - 2017 (last change)
Features: 110 (110 developed)
vp-s with variants: 199 with 269
Developed by: David Legland (open source)
Developed as: A feature-rich system
Language: Java
Size: 35 456 lines of code, 142 files

Description. JavaGeom is a feature-rich system in Java, which is developed
by Legland [2017]. It is an open source geometry library for Java that is archi-
tected around well-identified features, although not presented as a product line.
We selected JavaGeom as a relevant case for demonstrating the applicability of
our tooled framework on a feature-rich system, being the size of medium-size
SPLs and easily understandable. Some more details about its development and
our usage are given in Section 7.2 (Page 94).
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B.2 Implementation of Expressions PL - Versions 1 and 3

1 // Base i n t e r f a c e
2 t r a i t ExpAlg [ E ] {
3 def l i t ( x : I n t ) : E
4 }
5 // Adding s u b t r a c t i o n
6 t r a i t AddExpAlg [ E ] extends ExpAlg [ E ] {
7 def add ( e1 : E , e2 : E ) : E
8 }
9 // Adding adding

10 t r a i t SubExpAlg [ E ] extends ExpAlg [ E ] {
11 def sub ( e1 : E , e2 : E ) : E
12 }
13 // Adding p r e t t y p r i n t i n g
14 t r a i t Echo {
15 def p r i n t ( ) : S t r i n g
16 }
17 t r a i t PrintExpAlg extends ExpAlg [ Echo ] {
18 def l i t ( x : I n t ) = new Echo ( ) {
19 def p r i n t ( ) = x . t o S t r i n g ( )
20 }
21 }
22 // Updating eva luat ions
23 t r a i t PrintAddExpAlg extends PrintExpAlg with AddExpAlg [ Echo ] {
24 def add ( e1 : Echo , e2 : Echo ) = new Echo {
25 def p r i n t ( ) = e1 . p r i n t ( ) + " + " + e2 . p r i n t ( )
26 }
27 }
28 t r a i t PrintSubExpAlg extends PrintExpAlg with SubExpAlg [ Echo ] {
29 def sub ( e1 : Echo , e2 : Echo ) = new Echo ( ) {
30 def p r i n t ( ) = e1 . p r i n t ( ) + " − " + e2 . p r i n t ( )
31 }
32 }
33 // The evaluat ion i n t e r f a c e
34 t r a i t Eval {
35 def eval ( ) : I n t
36 }
37 // Updating evaluat ion
38 t r a i t EvalExpAlg extends SubExpAlg [ Eval ] with AddExpAlg [ Eval ] {
39 def l i t ( x : I n t ) = new Eval ( ) {
40 def eval ( ) = x
41 }
42 def add ( e1 : Eval , e2 : Eval ) = new Eval ( ) {
43 def eval ( ) = e1 . eval ( ) + e2 . eval ( )
44 }
45 def sub ( e1 : Eval , e2 : Eval ) = new Eval ( ) {
46 def eval ( ) = e1 . eval ( ) − e2 . eval ( )
47 }
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48 }
49 /∗ An a l t e r n a t i v e implementation
50 ∗∗ of p r e t t y p r i n t i n g t h a t d i r e c t l y computes a s t r i n g ∗/
51

52 t r a i t PrintExpAlg2 extends SubExpAlg [ S t r i n g ] {
53 def l i t ( x : I n t ) = x . t o S t r i n g ( )
54 def add ( e1 : Str ing , e2 : S t r i n g ) = e1 + " + " + e2
55 def sub ( e1 : Str ing , e2 : S t r i n g ) = e1 + " − " + e2
56 }
57 // Test
58 o b j e c t ExpressionProblem {
59 def t e s t ( ) : Unit = {
60 c l a s s Core extends PrintSubExpAlg with PrintAddExpAlg
61

62 val pa = new Core
63 val ea = new EvalExpAlg ( ) { }
64 val pa2 = new PrintExpAlg2 ( ) { }
65 val exp = pa . add ( pa . l i t ( 5 ) , pa . l i t ( 7 ) ) . p r i n t ( ) + " = " + ea .

add ( ea . l i t ( 5 ) , ea . l i t ( 7 ) ) . eval ( )
66 val exp2 = pa2 . sub ( pa2 . l i t ( 5 ) , pa2 . l i t ( 7 ) ) + " = " + ea . sub (

ea . l i t ( 5 ) , ea . l i t ( 7 ) ) . eval ( )
67 p r i n t l n ( exp )
68 p r i n t ( exp2 )
69 }
70 def main ( args : Array [ S t r i n g ] ) {
71 t e s t
72 }
73 }

Listing B.1: Expressions PL implementation - version 1, in Scala language

1 sea led t r a i t Expr
2 case c l a s s L i t ( n : I n t ) extends Expr
3 case c l a s s Add( l : Expr , r : Expr ) extends Expr
4 case c l a s s Sub ( l : Expr , r : Expr ) extends Expr
5 c l a s s Eval {
6 def eval ( e : Expr ) : I n t = e match {
7 case L i t ( n ) => n
8 case Add( l , r ) => eval ( l ) + eval ( r )
9 case Sub ( l , r ) => eval ( l ) − eval ( r )

10 }
11 }
12 c l a s s Echo {
13 def echo ( e : Expr ) : Unit = e match {
14 case L i t ( n ) => p r i n t ( " " + n + " " )
15 case Add( l , r ) => echo ( l ) ; p r i n t ( "+" ) ; echo ( r )
16 case Sub ( l , r ) => echo ( l ) ; p r i n t ( "−" ) ; echo ( r )
17 }
18 }
19 //Test
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20 o b j e c t ExpressionProblem {
21 def main ( args : Array [ S t r i n g ] ) {
22 val eval = new Eval
23 val echo = new Echo
24

25 val expr1 =
26 Sub (Add( L i t ( 4 ) , Sub ( L i t ( 7 ) , L i t ( 1 0 ) ) ) ,
27 Add( L i t ( 4 ) , Sub ( L i t ( 7 ) , L i t ( 1 0 ) ) ) )
28

29 val x = eval . eval ( expr1 )
30 val p = echo . echo ( expr1 )
31

32 p + " " + p r i n t l n ( " = " + x )
33 }
34 }

Listing B.2: Expressions PL implementation - version 2, in Scala language
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