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Spatial estimation of actual evapotranspiration and 
irrigation volumes using water and energy balance 

models forced by optical remote sensing data (VIS / NIR 
/ TIR) 

1 Abstract  

In arid and semi-arid regions, water availability is a major limitation to crop 
production. Efficient agricultural water management is therefore a major issue, mainly 
in irrigated areas. The design of tools that provide an estimate of water balance 
components, especially of Evapotranspiration (ET), at the regional scale may help 
sustainable management of limited water resources in the water scarce regions. 
Remotely sensed Earth observation has become a major research field for agricultural 
water resources management. It provides regularly distributed data over large 
geographic areas about actual vegetation temporal dynamics (through the Normalized 
Difference Vegetation Index NDVI) and water availability under water stress (through 
the land surface temperature Tsurf) which are crucial factors controlling ET. 

The main objective of this thesis is to develop and test efficient techniques and 
methods to estimate hydrological variables (ET and irrigation volumes) in order to 
assess, in space (at "metric" and "kilometric" resolution) and over relatively long time 
periods (four agricultural seasons), the crop water requirements in the Kairouan plain 
(central Tunisia), as well as the extracted irrigation volumes from the overexploited 
aquifer. The adopted approach combines field experimentation, modeling and the use 
of multi-sensor / multi-resolution remote sensing data. Two types of tools to estimate 
ET and irrigation volumes are used: (a) a daily water balance model, SAMIR (SAtellite 
Monitoring of Irrigation), simulating water fluxes at a daily time step, and (b) an energy 
balance model, SPARSE (Soil Plant Atmosphere and Remote Sensing 
Evapotranspiration), which characterizes the water status at the satellite overpass time. 
For this purpose, two main research focuses have been explored: (i) to develop 
methods to integrate in situ data and high-resolution (VIS-NIR) remote sensing data 
(SPOT5 imagery) in the SAMIR model (calibrated using flux measurements by Eddy 
Covariance) to draw up the distributed water balance of irrigated areas in the Kairouan 
plain during four agricultural seasons (2008-2009 and 2011-2014) and (ii) to test the 
performance of the SPARSE model in monitoring the water status of a heterogeneous 
landscape in the study area and determine whether the low-resolution remote sensing 
data in the VIS-NIR and TIR domains (Terra-MODIS and Aqua-MODIS) are useful 
for spatializing the key variables of the energy balance (sensible and latent heat fluxes) 
in a semi-arid context.  

ET and irrigation volumes, estimated with the SAMIR model, are assessed using 
field measurements (flux measurements by Extra Large Scintillometer XLAS along a 
path length of 4 km), and field surveys (observed irrigation volumes), respectively. The 
validation of the SPARSE results was carried out by means of XLAS flux 
measurements. Special attention has been paid to the extrapolation of the modeled 
latent heat flux by SPARSE from instantaneous to daily estimates. The seasonal 
irrigation volumes estimated by the SAMIR model are acceptable, even though 
results at finer timescales (monthly and below) needed to be improved, in particular 
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by translating our knowledge of the agricultural practices into algorithmic constraints 
in the model. Hence, the SAMIR model parameters, especially non calibrated ones 
(market gardening and trees), are revisited in order to enhance the results of 
distributed ET and irrigation volumes. The SAMIR model was recalibrated by using 
simultaneously latent heat flux and soil moisture measurements of three cereals fields 
(irrigated and rainfed). This calibration aims to get a unique set of parameters for 
cereals taking into account irrigated and rainfed cereals in order to better parameterize 
the model in a context of various cropping practices, which is the case in the area 
below the XLAS transect. For the SPARSE model, the estimates of the sensible and 
latent heat fluxes are in close agreement with those obtained from the XLAS. These 
results indicate that the XLAS can be effectively used to validate large-scale sensible 
heat flux derived from remote sensing data (and residual latent heat flux), in particular 
for the results obtained at the satellite overpass time. However, the extrapolation from 
instantaneous to daily ET is less obvious. The daily latent heat fluxes derived from the 
XLAS agreed rather well with those modeled using SPARSE, which shows the 
potential of SPARSE in water consumption monitoring over heterogeneous landscape 
in semi-arid conditions, and especially to identify the most affected areas by water 
stress.  

 

Key words: Evapotranspiration, irrigation management, remote sensing, 
hydrological modeling, water balance model, energy balance model. 
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Estimation spatialisée de l’évapotranspiration réelle et 
des volumes d’irrigation à l’aide de modèles de bilans 
hydrique et énergétique forcés par des données de la 

télédétection optique (VIS/PIR/IRT) 

2 Résumé 

Dans les régions arides et semi-arides, la disponibilité de l'eau est le principal facteur 
limitant de la production agricole. La gestion efficace de l'eau est ainsi un problème 
majeur, principalement dans les zones irriguées. La conception d'outils fournissant des 
estimations régionales des composantes du bilan hydrique, en particulier 
l'évapotranspiration (ET), composante principale du bilan hydrique, peut aider à la 
gestion durable de la ressource en eau dans ces régions. La télédétection par satellite a 
démontré un très fort potentiel pour le suivi à différentes échelles des ressources 
hydriques agricoles. Elle fournit des données réparties sur de grandes zones 
géographiques et à intervalles réguliers, permettant, ainsi, de suivre la dynamique de la 
végétation (à travers des indices de végétation tel que l’indice de végétation par 
différence normalisée NDVI) et la détection du stress hydrique (à travers la 
température de surface terrestre Tsurf) qui sont des facteurs cruciaux contrôlant l’ET. 

L'objectif principal de ce travail de thèse est de développer des techniques et des 
méthodes efficaces pour estimer les variables hydrologiques (ET et les volumes 
d'irrigation) afin d'évaluer, dans l'espace (résolution "métrique" et "kilométrique"), les 
besoins en eau des cultures du couvert végétal de la plaine de Kairouan (Tunisie 
centrale) ainsi que les volumes d'irrigation extraits de son aquifère surexploité. 
L'approche adoptée combine l'expérimentation, la modélisation et l'utilisation de 
données de télédétection multi-capteurs / multi-résolutions. Les deux types d'outils 
utilisés pour estimer l’ET et les volumes d'irrigation sont le modèle de bilan hydrique 
journalier SAMIR (SAtellite Monitoring of Irrigation), simulant les flux d'eau à un pas 
de temps journalier et le modèle SPARSE (Soil Plant Atmosphere and Remote Sensing 
Evapotranspiration), qui caractérise l'état hydrique du sol et du couvert végétal au 
temps de passage du satellite. deux axes de recherche principaux ont été explorés à 
cette fin; (i) développer des méthodes pour intégrer des données in situ et des données 
de télédétection haute résolution (VIS-NIR) (imagerie SPOT5) dans le modèle SAMIR 
(calibrées à l'aide de mesures de flux par Eddy Corrélation) pour établir le bilan 
hydrique spatialisé des zones irriguées de la plaine de Kairouan pendant quatre saisons 
agricoles (2008-2009 et 2011-2014) et (ii) tester la performance du modèle SPARSE 
dans l’estimation de l’état hydrique d’un couvert agricole hétérogène dans la zone 
d'étude et déterminer l’utilité des données de télédétection basse résolution dans les 
domaines VIS-PIR et IRT (Terra-MODIS et Aqua-MODIS) dans la spatialisation des 
variables clés du bilan d’énergie dans un contexte semi-aride: les flux de chaleur 
sensible et latente. 

Les variables estimées avec le modèle SAMIR; ET et volumes d'irrigation; sont 
validés à l'aide des mesures terrain (mesures de flux par un scintillomètre à extra-large 
ouverture XLAS, le long d'un « transect » de 4 km) et des enquêtes de terrain (volumes 
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d'irrigation observés), respectivement. Alors que la validation des résultats SPARSE a 
été réalisée au moyen des mesures de flux XLAS. Une attention particulière a été 
portée à l'extrapolation des résultats instantanés du flux de chaleur latente SPARSE, au 
pas de temps journalier pour des applications hydrologiques. Les volumes d’irrigation 
saisonniers estimés par le modèle SAMIR sont acceptables, même si les résultats à des 
échelles de temps plus fines (mensuelles) doivent être améliorés, notamment en 
traduisant notre connaissance des pratiques agricoles en contraintes algorithmiques 
dans le modèle. Ainsi, les paramètres du modèle SAMIR, en particulier les paramètres 
non calibrés, sont revisités afin d'améliorer les performances de simulation de l’ET et 
des volumes d'irrigation. Pour le modèle SPARSE, les estimations des flux de chaleur 
sensible et latente sont en étroit accord avec celles obtenues à partir du XLAS. Ces 
résultats indiquent que les mesures d’un scintillomètre XLAS peuvent être utilisées 
avec succès pour valider du flux de chaleur sensible dérivé des données de 
télédétection (et du flux de chaleur latente résiduelle), en particulier pour les résultats 
obtenus au temps de passage du satellite. Cependant, l'extrapolation de l’ET 
instantanée au pas de temps journalier est moins évidente. Les flux de chaleur latente 
journalier dérivés du XLAS conviennent plutôt bien avec ceux modélisés par SPARSE, 
ce qui montre le potentiel du modèle SPARSE dans la surveillance de la consommation 
de l’eau agricole dans un paysage à couvert végétal hétérogène en conditions semi-
arides, et notamment pour la localisation des zones les plus touchées par le stress 
hydrique. 

 

Mots clés : Evapotranspiration, gestion de l’irrigation, télédétection, Modélisation 
hydrologique, modèle de bilan hydrique, modèle de bilan d’énérgie. 
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 نماذج باستخدام الري كميات و والتبخر النتح كمية تقدير

بعد عن الاستشعار بيانات و والطاقة الماء توازن  
 

 الخلاصة 3
 
 

    
 

  

تهدف هذه الاطروحة أساساً إلى تطوير التقنيات الفضائية المرئية لتقدير كمية  

النتح والتبخر فضلا عن كميات الري المستخرجة من طبقة المياه الجوفية المستغلة 
إن المنهج . استغلالا مفرطا و ذلك بالمناطق شبه القاحلة عامة وبسهل القيروان خاصة 

ين القياسات الميدانية والنمذجة واستخدام بيانات المتبع في هذه الدراسة يجمع ب

 . الاستشعار عن بعد
 

   

  

لحساب المؤشر  SPOT5وفي هذا الاطار تم إستعمال صور الأقمار الصناعية 

بهدف تقدير كمية النتح  SAMIRوذلك لإستعماله في النموذج  NDVIالإحصائي 

(. 8022-8022و  8002-8002)والتبخر و كميات الري خلال أربعة مواسم فلاحية 

بمقارنتها بكميات الري المسجلة فعلاً من  SAMIRقد تم إثبات فعالية نتائج النموذج  و

 .سهل القيروان خلال مسح ميداني شمل ثلاثة مناطق مروية في
   

  

  

في تقدير الحالة  SPARSEو من ناحية أخرى تم إختبار مدى نجاعة النموذج 

المائية للغطاء الزراعي غير المتجانس بالإضافة إلى تحديد جدوى بيانات الاستشعار 

في حساب متغيرات توازن الطاقة، و التي ( MODIS)عن بعد منخفضة الاستبانة 

-8022-و 8022-8028ين فلاحيين افضت إلى تقدير كمية النتح والتبخر خلال موسم

تمت مقارنتها مع قياسات التدفق  SPARSEوبهدف إثبات فعالية نتائج النموذج . 8022

XLAS  كم من المنطقة التي شملتها الدراسة 2على طول. 
 

 
     
 

 

النتح والتبخر ،التحكم في مياه الري،الاستشعار عن بعد مرئي، :الكلمات الدليلية

.الهيدرولوجية، نموذج توازن المياه، نموذج توازن الطاقةالنمذجة   
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4 Introduction 

Scientific context  

About 71 percent of the Earth's surface is covered by water. Oceans hold about 96.5 
percent of all Earth's water, the remainder freshwater is distributed between frozen and 
glaciated areas (1.74%), underground water tables (1.69%), and surface water, which 
includes rivers, lakes and soil moisture (about 0.07%) (USGS, 2016). 

According to the United Nations Environmental Program (UNEP, 2000), the 
freshwater scarcity is viewed by scientists and politicians as the second most important 
environmental issue of the 21st century. ‘‘The world water cycle seems unlikely to be able 
to cope with demands in the coming decades’’ (UNEP, 2000). Water requirements are 
generally associated with access to drinking water for the population, whereas it is also 
crucial for agriculture and many industrial and agro-food sectors. Indeed, the water use 
has continuously intensified and diversified since the beginning of the 20th century (Sauer 
et al., 2010; Shiklomanov, 2000; Siebert et al., 2005; Wisser et al., 2008).  

Water is one of the most important inputs required in agricultural production. Over 
90% of fresh biomass is essentially water that complements carbon dioxide as a major 
substrate in carbon fixation, photosynthesis, a process that is the essence of life on Earth. 
Agriculture water use through crop irrigation accounts for 70 % of all water use in the 
world and as much as 95 percent in many developing countries (Assessment Millennium 
Ecosystem, 2005). Irrigated agricultural lands occupy less than 20% of all cropped area 
but produce 40–45% of the world’s food. It is generally expected that irrigated agriculture 
will have to be considerably extended in the future in order to feed growing population, 
which has more than doubled between 1960 and 2008, from about 2.9 billion to more 
than 6.7 billion. Consequently, total agricultural output has increased by almost 170 % 
globally between 1961 and 2008 with an average increase of 2.2% per year (Wik et al., 
2008). However, the gap between available water supply and water demand is increasing 
in many parts of the world (Figure 1), limiting future expansion of irrigation (Assessment 
Millennium Ecosystem, 2005).  

 

https://water.usgs.gov/edu/watercycleoceans.html
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Figure 1: Water stress by country; this map shows the average exposure to water stress of water 
users in each country, i.e. the ratio of total withdrawals to total renewable supply in a given area. 
A higher percentage means more water users are competing limited supplies.(Source: Gassert et 

al. (2013)) 

Indeed, the distribution of populations is not correlated with water availability. The 
arid zones receive only 2.2% of the world's water but are home to 21.5% of the 
population (Frérot, 2011). Moreover, in regions subject to a monsoon climate, almost all-
annual rainfall and most river flows are concentrated for a short period, about two 
months. In many countries, surface water exploitation has almost reached its limit and 
large volumes are taken from underground aquifers to fuel agriculture, industrial and 
domestic consumption. Thus, most of the world's aquifers are overexploited (Wada et al., 
2012). This overexploitation is critical for both quantitative and qualitative aspects since it 
often goes together with water quality degradation. This is particularly the case for saline 
intrusions for coastal aquifers. 

In addition to the food requirements linked to the world population growth, 
agricultural production is one of the important sectors that might be significantly affected 
by climate change, since crop yields depend mainly on climate conditions (rainfall patterns 
and temperature). The Mediterranean region is one of the most prominent “Hot-Spots” 
in future climate change projections (Giorgi and Lionello, 2008) due to an expected larger 
warming than the global average and an increase in precipitation inter-annual variability. 
Indeed, the major part of the southern Mediterranean countries, already suffering from 
water scarcity, show a growing water deficit, due to the combined effect of the increase in 
water consumption (increased domestic use and extension of irrigated areas), and the 
reduction of resources (temporary drought and/or climate change). According to Blue 
Plan Note N°11 (UNEP, 2009), Mediterranean water demand is likely to increase by 50 
km3 by 2025 and reach 330 km3/year. The major portion of this increase would be due to 
the Southern and Eastern Mediterranean countries where, in view of demographic growth 
and of the immediate impacts of changes in the water cycle, it is estimated that, by 2050, 
about 290 million people would end up in a situation of severe water scarcity (Figure 2). 
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Figure 2: Evolution of water resources per inhabitant in the Southern and Eastern 
Mediterranean countries between 2000 and 2050 (Source: UNEP (2009)) 

Tunisia is mainly an arid to semi-arid country facing the problem of water scarcity 
(water resources per inhabitant are below the water shortage threshold with 
460m3/inhabitant/year). Strong tensions are being expressed on water access and sharing; 
hence, monitoring of agricultural water resources is of paramount importance. The 
Kairouan plain, in central Tunisia, is a semi-arid area that has experienced a strong 
development of irrigated crops during the last decades of 20th century. As in many parts 
of the Maghreb region, surface water is scarce and groundwater uptake is a dominant 
source. Annual consumption exceeds the annual recharge of the water table resulting in a 
piezometric decrease of between 0.5 m and 1 m per year (Leduc et al., 2004).  

In order to understand the reasons of this “hydrological crisis” and to find solutions, 
the Kairouan plain has been the subject of several investigations and scientific studies in 
the complementary fields of hydrology, anthropology, soil science, geology, hydrogeology, 
remote sensing, etc. Their main research topics were surface and groundwater resources 
management linked to irrigation (Cudennec, 2005; Feuillette, 2001; Le Goulven et al., 
2009; Leduc et al., 2007; Massuel et al., 2017; Pradeleix et al., 2015). Poussin et al. (2008) 
simulated regional irrigation water demand using a representation of agricultural activities 
based on typologies of farms and cropping systems. More recently, some studies dealt 
with the use of remote sensing for soil water balance assessment, including soil moisture 
estimation (Amri, 2013; Gorrab, 2016), soil texture mapping (Shabou et al., 2015; Zribi et 
al., 2012), distributed evapotranspiration and irrigation water requirement estimation 
using low (Amri et al., 2014) and high-resolution remote sensing data (Guermazi et al., 
2016) and cereal yield prediction (Chahbi et al., 2014). 

In this context, estimating the water consumption of crops is useful to address the 
issue of regional planning and management of water resources, which requires an overall 
understanding and quantification of the water cycle components (precipitation, 
evapotranspiration, run-off, infiltration). Evapotranspiration (ET) is of paramount 
importance since it represents the preponderant component of the terrestrial water 
balance; it is the second greatest component after precipitation at the global scale and the 
most relevant one in arid and semi-arid regions. Thus, ET quantification is a key factor 
for water management in arid and semi-arid environments. In this regard, some studies 
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aimed to compute distributed ET in Tunisia in view of regional agricultural water 
management. The majority of these studies was dealing with distributed reference ET 
(Baccour et al., 2012; Habaieb and Masmoudi Charfi, 2003; Jabloun and Sahli, 2008) or 
plot scale actual ET estimation (Boudhina et al., 2017). Some works combined the FAO56 
method (Allen et al., 1998) to remotely sensed data in order to estimate low-resolution 
distributed maximum ET in the Mejerda watershed in north Tunisia (Mjejra et al., 2014) 
and high-resolution distributed actual ET as well as irrigation water requirement in the 
Regueb watershed in central Tunisia (Guermazi et al., 2016). 

While the farmer generally has enough information to manage water for his property, 
agricultural land fragmentation, heterogeneous landscapes and the lack of relevant 
information on actual water use collected by authorities are important constraints for 
regional water management. Hydrologic applications in agriculture and water resource 
management require ET information over a range of temporal and spatial scales, from 
hourly to monthly to seasonal time steps, and at field to global scales. Therefore, without 
resorting to modern technologies of information gathering and management, this task 
would require a considerable human effort, an exorbitant financial cost and prohibitive 
delays.  

On the other hand, Earth Observation by satellites allows the acquisition of spatially 
distributed information on a regular acquisition basis. The type of biophysical variables 
that can be monitored through remote sensing (RS) varies according to the observed 

spectral range: vegetation cover (visible and near infrared domain, VIS-NIR), surface 
temperature (thermal infrared domain, TIR), surface soil moisture (microwave domain). 
These data must be combined and integrated into operational models, representing the 
elementary processes involved at the soil-vegetation-atmosphere interface, in order to 
produce information on the evolution of the various components of the surface water 
and energy budgets. Therefore, the techniques using RS information are essential when 
dealing with hydrological processes to understand water and plant functioning at different 
decision-making scales (farms, irrigated perimeter, and sub-watershed). Over the past 
decades, RS has shown a great potential for characterizing land surfaces (land use, 
vegetation coverage, soil moisture, water stress, etc.). 

Data acquisition in the microwave domain makes it possible to estimate soil moisture 
in the first centimeters (Wang and Qu, 2009). Active microwave sensors are characterized 
by high spatial resolutions (10-20 m) while the passive microwave sensors exhibit lower 
resolutions having no reliable applications when dealing with cropped soils. The plant 
available water, i.e. mainly the water stored in the first meter of soil depth, depends not 
only on the evolution of the surface moisture but also more widely on the water supply 
(precipitation and irrigation) and the soil structural properties (porosity, density). Hence, 
the microwave data cannot estimate directly the total quantity of water mobilized at the 
soil-vegetation-atmosphere interface.  

 The VIS-NIR domain data allows to estimate relatively accurately the vegetation cover 
fraction and therefore the leaf area involved in photosynthesis and evapotranspiration 
(Baret et al., 1989; Richardson and Everitt, 1992). In addition, since ET is the most 
effective means of dissipating the energy received as radiation, the surface temperature is 
a good indicator of water stress. When ET is limited by the water availability, the surface 
temperature increases above the theoretical surface temperature calculated under potential 
conditions (i.e. with the characteristics of the current climate and vegetation but with the 
assumption that water availability is not limiting). Thus, the use of information acquired in 
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the TIR domain is a good tool of estimating actual evapotranspiration (Boulet et al., 2007; 
Hain et al., 2009). 

In the recent decades, the various spectral domains have often been used 
independently: microwave experts have focused on soil moisture estimation, TIR domain 
experts have focused on stress retrieval, etc. It is only recently that joint efforts have been 
made between these different communities but also within and between international 
space agencies: NASA (with the Earth Observing System (EOS) program), ESA (with 
Living Planet and Copernicus programs) and JAXA (with the Global Change Observation 
GCOM mission program). There has been a growing number of space programs aimed at 
creating a multi-spectral synergy. A recent example of this motivation is the new Sentinel 
satellite constellation (ESA, 2017). VIS-NIR, TIR and C-band microwave data are 
available with unprecedented spatio-temporal resolution. These strategies are based on 
the development of a system of complementary observations in order to better 
characterize the continental surfaces. 

However, there are several limitations in the efficient use of RS observation for 
agricultural and hydrological applications. For instance, the accuracy of the measurement 
is as important as the measurement itself, since, it gives an idea of the observations 
quality. In most studies, it is defined as the uncertainty associated with instrumentation 
and inversion models. However, with the use of satellite images for agro-hydrology, it is 
also important to take into account the notion of spatial representativeness of the 
measurement, which plays a major role in the agrohydrological variables one wants to 
retrieve. Let's take the example of MODIS leaf area index (LAI) and land surface 
temperature (Tsurf) products. Global MODIS LAI products were validated using a global 
LAI field measurement database created on the basis of a literature review and major 
validation campaigns, showed uncertainties of 1.0–1.2 (Fang et al., 2012). Fensholt et al. 
(2004) showed also that MODIS LAI is overestimated by approximately 2–15% in 
comparison with LAI field measurements. Moreover, the reported error in MODIS Tsurf 
is less than 1 K, as validated over homogenous land surface patches by Wan et al. (2002). 
However, this error is greater over bare soil, and biases reach 3.8 K in comparison with 
ASTER Tsurf product (Duan et al., 2017). Better accuracy of MODIS Tsurf was found when 
evaluated against ground observations in an arid area of northwest China, with an average 
bias of 0.36 K and minus 0.58 K during daytime and nighttime, respectively (Li et al., 
2014). Furthermore, daily Tsurf products (MOD/MYD11A1) accuracy in relation to land 
cover in China’s arid and semi-arid areas was studied by Yu et al. (2014) and show a mean 
absolute error of 2–3 K in comparison with in situ longwave radiation measurements at 12 
stations; higher accuracy was observed for stations with homogeneous land cover.  

Spatial and temporal resolutions are of paramount importance to realistically integrate 
spatial observations into bio-physical models. The spatial resolution depends mainly on 
the sensitivity of the sensor to receive energy emitted by the surface. This sensitivity is 
strongly dependent on the wavelength domain and plays an important role since it 
determines the size of the region observed and the size of the objects that will be possible 
to characterize. For example, SMOS operating in passive L-band has a spatial resolution 
of 40 km that is too wide to be directly integrated into agro-hydrological models. Hence, 
spatial resolution must be chosen according to the objects observed and / or modeled 
(Figure 3); in other words, the spatial representativeness of the observation. The revisit 
frequency that governs the temporal availability of RS data is the time required for the 
satellite to perform a complete orbital cycle, that is, to observe exactly the same scene 
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again from the same point in space. The temporal resolution is related to the spatial 
resolution for a given wavelength domain because it depends on the orbit of the satellite. 
For example, in the thermal infrared, Landsat data have a spatial resolution of 100 m but 
a temporal resolution of 16 days whereas the MODIS data have a spatial resolution of 1 
km but a frequency of twice a day at least. Recently, the concept of satellite constellation 
with several satellites having the same characteristics allows to secure the acquisition in 
case of failure and also to increase the revisit frequency. For example, the Sentinel-2 
mission (10-60 m of spatial resolution) includes two satellites allowing an acquisition 
frequency of five days. Similarly, to the spatial resolution, the temporal resolution must 
be chosen according to the characteristic timescale of the variation for the objects one 
wants to observe and / or model (Figure 3). Finally, it is important to note that all visible 
images are sensitive to cloud cover, which can amplify the time gap between the available 
data. The recent increased high temporal resolutions cannot completely solve the 
problem of cloudiness even in semi-arid areas and combination with other VIS-NIR 
high-resolution sensors like Landsat 8 should still be useful.  

Currently, in the solar and TIR domains, two types of observation are available. In one 
hand, wide swath / low-resolution sensors (e.g. SPOT-VEGETATION, TERRA-
MODIS or PROBA-V) allow daily observation of the entire globe, but at a resolution (~1 
km) generally much larger than the size of an agricultural field. On the other hand, high 
spatial resolution sensors (less than 100 m, e.g. Landsat 8, SPOT, Sentinel-2) allow only 
one to six observations per month in nominal mode (orbital cycle) on smaller scenes (e.g. 
60 km for SPOT, 180 km for Landsat and 290 km for Sentinel-2). At the beginning of 
this work, i.e. before 2016, it was quite difficult to obtain series of high spatial resolution 
images to study an area as large as the Kairouan plain (3000 km2) over long periods. 
Moreover, the cost of these data was prohibitive when we had to program acquisition of 
SPOT image time series. Today, the situation is quite different with the breakthrough 
represented by the lunch of Sentinel-2. However, in a context of operational water 
resources management, the use of medium to low spatial resolution sensors, freely 
available on the internet, is still interesting. Indeed, they offer a daily acquisition frequency 
allowing to cope with cloudiness, and MODIS provides daily thermal acquisition which 
are still not available at high-resolution and frequency (Landsat images are acquired only 
every 16 days and subjected to clouds) although they are very useful for agricultural water 
monitoring. However, the major drawback of low-resolution sensors is that pixels usually 
contain several types of surfaces (mixed pixel). 



Introduction 

7 

 

 

Figure 3: Multi-sensor / multi-resolution remote sensing data for crop monitoring and agro-
hydrological applications (inspired from Malbéteau, (2016)) 

Contrarily to in-situ data (sparse network), RS provides exhaustive monitoring (complete 
coverage) over large regions; this contributes to strengthen decision-making tools 
designed for resource managers. However, the remotely sensed variables or parameters 
are generally only one component of these tools, which must integrate other sources of 
information. Broadly speaking, these tools are based on "agro-meteorological" models 
simulating the different elementary processes involved in the plant covers dynamics 
(phenology, photosynthesis, biomass production etc.) and in the soil water balance 
(evapotranspiration, infiltration, runoff etc.). The joint use of agro-meteorological models 
and remotely sensed data, regularly distributed in space and time, is a particularly dynamic 
research path allowing the establishment of water resources and agricultural production 
systems observatories at regional scale.  

Several models have been developed to estimate surface evapotranspiration from RS 
optical data and meteorological data (Bastiaanssen et al., 2000; Garatuza-Payan and Watts, 
2005; Neale et al., 2005). These methods are roughly divided into those fed with solar 
(VIS-NIR) RS data and those fed with TIR RS data (Figure 4). The first group is based on 
the fact that evapotranspiration is strongly linked to the green vegetation amount present 
at the surface, which is well quantified using remote sensing in the solar domain, typically 
vegetation indices. These approaches are thus based on agro-hydrological models fed by 
remote sensing. The second group relies on the fact that evapotranspiration is a 
component of the energy budget, which is strongly linked with surface temperature. 

Regarding the first group, one of the most popular approaches used in agriculture for 
crop water budget modeling is the FAO-56 set of evapotranspiration models (Allen et al., 
1998) recommended by the Food and Agriculture Organization (FAO). It is attractive 
because it requires a relatively small amount of input data and has a relatively good 
precision on evapotranspiration under standard conditions (unstressed vegetation). 
However, these models assume a precise knowledge of water supplies to work well. These 
models have long been coupled with remote sensing providing estimates of the crop 
coefficients representing the vegetation activity. Indeed, some pioneers provided 
empirical evidence about the direct relationship between crop coefficients and vegetation 
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indices (VI) derived from multispectral satellite images (Heilman et al., 1982; M. U. Neale 
et al., 1990). Monitoring crop development and crop ET over the growing season for the 
purpose of irrigation management requires dense time series of multispectral imagery 
delivered in real time and at a spatial resolution high enough to assume an homogeneous 
land cover in the pixel (Calera et al., 2017). Accordingly, the virtual constellation of 
Landsat 8 and Sentinel-2 currently provides, at no cost, a time resolution of around one 
image per week, which is adequate for the monitoring of crop development. In this 
dissertation, as Sentinel-2 images were not yet available, high-resolution SPOT images are 
used to feed a VI-based soil water balance (SWB) model run at field and irrigated 
perimeter scales to compute distributed ET and irrigation volumes. Nevertheless, the 
major drawback of SWB methods, even the relatively simple FAO-56 one, is the high 
number of required parameters (often crop specific) but also the lack of real irrigation 
information needed to compute actual ET (Figure 4). SWB parameters are difficult to 
estimate especially when dealing with heterogeneous land surface at a regional scale. 

At the regional scale, the second group of methods based on surface energy balance 
(SEB) is often used for ET estimation by combining remotely sensed Tsurf with vegetation 
parameters and meteorological variables (Figure 4). The pixel size of Tsurf sensors ranges 
from 100 m for the thermal sensor on board Landsat 8 to 1000 m for MODIS-AQUA, 
MODIS-TERRA and Sentinel-3. The advantage of these models, from a crop 
management point of view, is to provide ET under actual soil water conditions, including 
vegetation stress, and further indicators of water stress. Despite their high temporal 
resolution (e.g. twice a day for MODIS), the spatial resolution of TIR images provided by 
the most operational platforms is not appropriate for small agricultural fields (Allen et al., 
2011b) since the pixels may overlay broad mixtures so that surface temperature signals are 
mixed and the ET retrievals are difficult to interpret. Otherwise, medium spatial 
resolution TIR images (e.g. 60 and 100m for Landsat 7 and Landsat 8, respectively), have 
low temporal resolution (16 days for Landsat) which, combined with the cloudiness issue, 
does not allow an adequate monitoring of crop development. Disaggregation techniques, 
using typically high-resolution Normalized Difference Vegetation Index (NDVI) images 
to “distribute” the Tsurf of thermal images, are relatively new tools for solving spatial 
resolution problems and increasing the effective spatial resolution from satellite thermal 
imagery, in order to reach spatial resolutions comparable to the most common 
multispectral images (Semmens et al., 2016). Furthermore, aerial images and growing 
advances in airborne thermal cameras show very promising perspectives to produce 
temperature maps at very high spatial resolution (Berni et al., 2009; Zarco-Tejada et al., 
2012).  
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Figure 4: Actual evapotranspiration estimation using soil water balance and surface energy 
balance models fed by VIS-NIR and TIR remote sensing data, respectively. 

PhD motivation, objectives and methodological approach 

The central question of my PhD thesis is the control of agrometeorological models by 
satellite data from optical and thermal sensors to monitor the crop water budget in semi-
arid environments. The general objective of this work, entitled “Spatial estimation of 
actual evapotranspiration and irrigation volumes using water and energy balance models 
forced by optical remote sensing data (VIS/ NIR/TIR)”, is to develop and test methods 
for estimating the hydrological variables related to crop water budget, i.e. 
evapotranspiration, crop water requirements and irrigation volumes, at scales ranging 
from plot to regional level and for relatively long time periods (up to the agricultural 
season). The operational perspective is to provide tools for irrigation and watershed 
management. Our study area is the Kairouan semi-arid plain located in central Tunisia, 
occupied by irrigated agriculture and where most of the water is extracted from an 
overexploited aquifer. 

The adopted approach combines field experimentation, modeling and the use of multi-
sensor / multi-resolution remote sensing data. Both types of tools used to estimate 
hydrological variables (ET and irrigation volumes) are: i) a daily water balance model, 
SAMIR (Simonneaux et al., 2009), simulating water fluxes at a daily time step and ii) an 
instantaneous energy balance model, SPARSE (Boulet et al., 2015), which characterizes 
the water status at the satellite overpass time.  

For this purpose, two main research focuses have been explored: 

 The first was the development of methods to integrate in situ data and high-
resolution (VIS-NIR) remote sensing data (SPOT imagery) in the SAMIR 
model to draw up the spatialized water balance of irrigated areas in the 
Kairouan plain during four agricultural seasons (2008-2009 and 2011-2014). 



Introduction 

10 

 

The model was calibrated using plot scale measurement of evapotranspiration 
(eddy correlation) and the control output variables, ET and irrigation volumes 
were assessed using field fluxes measurements by Extra Large Scintillometer 
XLAS and irrigation volumes obtained by field surveys, respectively. 

 The second focus was to test the performance of the SPARSE energy balance 
model in monitoring the water status of a heterogeneous landscape in the 
Kairouan Plain and to determine whether the low-resolution data from Terra-
MODIS and Aqua-MODIS satellites in the VIS-NIR and TIR domains were 
useful for spatializing the key variables of the energy balance in a semi-arid 
context, i.e. sensible and latent heat fluxes. Validation of the results was carried 
out by means of the XLAS sensible heat flux measurements. Special attention 
has been paid to the extrapolation of the instantaneous ET estimates to daily 
time step for hydrological applications. 

This manuscript is organized in five chapters: 

- The first chapter reviews general notions concerning the soil water balance 
components and the various methods to estimate them. A particular interest is given to 
ET and irrigation with a comparison between water balance and energy balance-based 
methods for ET modeling. The potential of multi-sensor/multi-resolution spatial remote 
sensing data in ET modeling is also discussed. 

- The second chapter decribes the study area, the experimental set-up and the satellite 
datasets, as well as the pre-processing of the in situ data. 

- The third chapter studies the possibility of using high-resolution VIS-NIR imagery in 
an agro-meteorological modeling scheme through the SAMIR model (after calibration for 
irrigated cereal-crops) in order to establish maps of daily ET and irrigation volumes at the 
scale of the irrigated perimeter for four agricultural seasons (2008-2009 and 2011-2014). 
Observed irrigation volumes at field, farm and perimeter scale were used to validate the 
modeled irrigation volumes, while ET derived from the XLAS scintillometer 
measurements (operated continuously for more than two years from March 2013 to June 
2015) was used to validate the modeled ET of the last two seasons. 

- In the fourth chapter, the parameterization of SAMIR model was revisited, since the 
comparison of daily modeled ET with the scintillometer derived ET shows shortcomings 
mainly attributed to the parameterization of the non calibrated crops (trees and 
vegetables). Also, the calibration for cereal crops was redone based on both ET (eddy 
covariance) and soil moisture measurements. Since no calibration was possible for trees 
and vegetables parameters, they were enhanced based on literature. 

- In the last chapter, the operational use of the SPARSE model was tested and the 
accuracy of the modeled sensible heat flux (H) and of the modeled daily ET over a semi-
arid land surface, in a context of high land cover complexity (i.e. trees, winter cereals, 
summer vegetables) was assessed. The validation was based on the comparison of 
modeled H and ET with the scintillometer measured H and derived ET, respectively. 

Finally, we present the conclusions of this work and the research prospects.  
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1 Chapter 1: Soil water balance 
components’ estimation methods 

 

 

This chapter introduces theoretically the main processes of interactions at the Soil-Vegetation-
Atmosphere interface involved in coupled water and energy cycles, on which are based the soil water 
balance model and the surface energy balance model applied in this dissertation, i.e. SAMIR and 
SPARSE, respectively. We synthesize here the different types of evapotranspiration and irrigation 
estimation methods, mainly those based on Soil-Vegetation-Atmosphere Transfer modeling and 
assimilation of optical remote sensing data in the visible (VIS), near infrared (NIR) and thermal 
infrared (TIR) domains. 
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The determination of water fluxes at the soil-plant-atmosphere (SPA) interface is of 
fundamental interest for agro-hydrological management purposes. Information on water 
balance components under cropped soils is crucial for irrigation planning (Calera et al., 
2017) and crop water stress monitoring (Ihuoma and Madramootoo, 2017) at field and 
regional scales. The water balance equation is usually applied to the unsaturated zone of 
the soil. Mass conservation is thus expressed for agricultural systems as: 

                 
      

 

  
 (1. 1) 

where P is precipitation, I is irrigation, W is contribution from water table by capillary 
rise, ET is evapotranspiration, R is runoff, D is the deep percolation, Icp is interception 

and  S is soil water storage variation within the time step t in the soil layer where the 
roots are active to supply water to the plant (between the surface and the root zone depth 
z in meter). All the term in equation 1.1 are expressed in rates (millimeters per unit time). 

 

 Figure 1. 1: Components of the soil water balance (Source: Velluet (2014), modified)  

Since it is often very difficult to accurately measure all terms of Eq. (1.1), a number of 
simplifications are generally made. For application over flat terrain, condition that prevails 
in many agricultural regions, the runoff term R could be neglected (e.g. Holmes, 1984) 
but, actually, it depends on the occurrence and characteristics of precipitation (amount, 
duration and intensity) and can only be neglected for a particular type of soil (Jensen et al., 
1990), i.e. coarse (sand and loamy sand) and moderately coarse (sandy loam) in absence of 
other factors such as the presence of crust, overland flow for gravity irrigation etc. On the 
other hand, deep percolation is a major unknown of equation (1.1). Some researchers 
suggest that it can be neglected in dry regions (e.g. Holmes, 1984), but actually it depends 
on the soil depth, slope, permeability and surface storage (Jensen et al., 1990) and needs to 
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be checked in each particular case (Brutsaert, 2013), depending also on the climate and 
irrigation practices. For operational applications in irrigation management, the soil water 
balance equation can be expressed in its simplified form as follows: 

       
      

 

  
 (1. 2) 

The precipitation term can be estimated from a network of rainfall stations (rain gauge 
measurements) or weather radar data (Arkin and Xie, 1994), from satellite-based 
precipitation products like the Tropical Rainfall Measuring Mission (TRMM) (Huffman et 
al., 2007), the Global Satellite Mapping of Rainfall (Ushio et al., 2009), the Naval Research 
Laboratory blended-satellite rainfall technique (Turk et al., 2010) or from meteorological 
model outputs (Clark et al., 2016). Therefore, the evapotranspiration and irrigation terms 
become the key terms of the water balance equation. 

Strictly speaking, crop water requirement refers to the water transpired by the plant, 
the water evaporated from the soil and the water stored by the plant for its metabolic 
processes. Since evaporation from soil (E) and transpiration by the plant (T) occur 
simultaneously, the term evapotranspiration (ET) is used to describe the total loss of 
water from vegetated land surfaces to the atmosphere. Furthermore, since the water used 
for the plant metabolism is substantially negligible as compared to E and T, the term crop 
water requirement is frequently alternative to evapotranspiration in standard/optimum 
conditions. 

The crop ET under optimal conditions (unstressed crop), referred to as ETc (for 
“ET crop”), is the evapotranspiration from crops grown under standard management and 
environmental conditions. When cultivating crops in fields, the actual crop 
evapotranspiration, referred to as ETa, often deviates from ETc due to non-optimal 
conditions (pests and diseases, soil salinity, low soil fertility, water scarcity or water 
logging) that reduce the evapotranspiration rate. 

The amount of water required to cover the theoretical water demand by the plant, 
e.g. ETc, is defined as crop water requirement (CWR). Although the values for ETc and 
CWR are identical, crop evapotranspiration refers to the amount of water that is 
evaporated and transpired while CWR refers to the amount of water that needs to be 
available in the soil for making such crop consumption possible. The CWR always refers 
to a crop grown under optimal conditions, i.e. a uniform crop, actively growing, 
completely shading the ground, free of diseases, and favorable soil conditions (including 
fertility and water). The crop thus reaches its full production potential under the given 
environment. CWR mainly depends on the weather conditions (major climatic factors 
influencing the CWR are solar radiation, air temperature and humidity and wind speed), 
the crop type and the phenological/growing stage of the crop. The influence of the 
climate on CWR is synthesized into the reference crop evapotranspiration (ETo) which is 
the evapotranspiration of an hypothetical reference grass cover (Allen et al., 1998). The 
CWR can be supplied to the crops by rainfall, by irrigation or by a combination of 
irrigation and rainfall. Efficient agricultural water management requires reliable estimation 
of the CWR (or ETc) and the corresponding irrigation requirement to meet CWR 
complementary to rainfall.  
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1.1 Soil water storage  

The water balance computation consists in describing the evolution of the stock of 
water available in the soil, i.e. the profile distribution of the water content in the various 
soil horizons.  

In order to calculate the soil water budget, an estimate of the soil's ability to store water 
is required. Available water capacity is the maximum amount of water a soil can provide 
to the plant. It is the water held between the soil field capacity (FC) and the permanent 
wilting point (WP) in the root zone. The FC or drained upper limit (Figure 1.2) is defined 
as the water content of a soil that has reached equilibrium with gravity after several days 
of drainage. The WP or lower limit of available water (Figure 1.2) is defined as the water 
content at which plants can no longer extract a sustainable quantity of water from the soil 
and begin to wilt. Typical suction values associated with the FC and WP are -3.3 kPa (-
0.33 bars) and -1500 kPa (-15 bars) respectively. Like water content, FC and WP are 
defined as a volume of water per volume of soil. Given these two definitions, the water 
available for evapotranspiration after drainage i.e. the available water retention capacity is 
defined as the FC minus the WP.  

 

Figure 1. 2: The relative amounts of water available and unavailable for plant growth in soils 
with textures from sand to clay (Source: Soil-Quality (2017)) 

There are different methods to provide these soil hydrodynamic properties, which are 
function of soil texture and organic content. They may be prescribed from literature 
values when available (Table 1.1 gives some typical values of available water retention 
capacity). The in situ measurement of these properties is costly and time consuming, in 
addition to implementation difficulties, linked to soil manipulation and data 
interpretation. Moreover, proxy data on the soil texture, structure, organic matter content, 
porosity or dry bulk density, can be used to find the hydrodynamic parameters of the soil 
by applying functional mathematical relationships i.e. pedotransfer functions or PTF. 
However, PTF performance is quite variable and depends on several factors such as the 
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similarity between the application region and the database’s source region, climate, 
geology or measurement techniques (Wösten et al., 2001). 

Table 1. 1: Water retention properties for agricultural soils  

Soil Type (USA Soil Texture 
Classification)  

Soil water characteristics 

 FC [m3/m3]  WP [m3/m3]  FC -  WP [m3/m3] 

Sand 0.07 - 0.17 0.02 - 0.07 0.05 - 0.11 
Loamy sand 0.11 - 0.19 0.03 - 0.10 0.06 - 0.12 
Sandy loam 0.18 - 0.28 0.06 - 0.16 0.11 - 0.15 
Loam 0.20 - 0.30 0.07 - 0.17 0.13 - 0.18 
Silt loam 0.22 - 0.36 0.09 - 0.21 0.13 - 0.19 
Silt 0.28 - 0.36 0.12 - 0.22 0.16 - 0.20 
Silt clay loam 0.30 - 0.37 0.17 - 0.24 0.13 - 0.18 
Silty clay 0.30 - 0.42 0.17 - 0.29 0.13 - 0.19 
Clay 0.32 - 0.40 0.20 - 0.24 0.12 - 0.20 

Source: FAO paper N°56 (Allen et al., 1998) 

For soil water balance calculations, it is necessary to know the total available water 
retention capacity in a soil profile. This value is typically expressed in mm and can be 
obtained by integrating the available water-holding capacity over the effective depth of 
the soil, i.e the soil depth where the roots have access. If the initial soil moisture is 
unknown, which is usually the case, a soil moisture evolution model can be used to force 
the net change in soil moisture from the beginning to the end of a specified period (for 
which the soil moisture at the end can be considered similar to one at the beginning, e.g. 
an hydrological year), use the final moisture profile as the initial one and run the model 
again over the same period, and repeat the process until the first and the last profile of the 
period are similar (long-term equilibrium) according to a given precision (Ghosh, 2016); 
this method is called “spin-up”.  

Wang-Erlandsson et al. (2016) described six approaches for the root zone water storage 
capacity estimation, and showed that remote sensing-based studies are generally based on 
field observations and look up tables (Sánchez et al., 2010; Sánchez et al., 2012).  

1.2 Evapotranspiration  

The evapotranspiration process involves a phase change of water from liquid to 
gaseous state, with latent heat requirement of about 2.47 MJ per kg of water evaporated. 
Most of the energy required in ET process comes from solar and atmospheric radiation. 
The large amount of energy involved in the processes of evaporation and transpiration 
means a coupling between the water and energy cycles. Actual ET (ETa)– or its energy 
equivalent, the total latent heat flux LE (E is the rate of evaporation of water [kg.m-2.s-1] 
and L is the latent heat of vaporization of water [J.kg-1]) – depends on three factors: 
weather, soil water availability and vegetation cover, which are highly variable in time and 
space. Depending on the application, an estimation of ETa is required at hourly (weather 
applications), daily (hydrology, agronomy) or monthly (surface-subsurface interactions) 
time steps (Lagouarde and Boulet, 2016). 
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Transpiration occurs through different organs, involving many processes. It is driven 
by the water vapor difference between the stomata cavity and the surrounding air: as 
water evaporates through the stomata, it creates a negative pressure (also called tension or 
suction) within the leaves and the xylem cells, which exerts a pulling force on the water in 
the soil to be absorbed by the roots and draws the water upward from the root system to 
the air system by the conductive system. Water is then disseminated in liquid form 
through the leaf intercellular spaces and stomata (small orifices of a few micrometers in 
diameter ensuring and regulating the gas exchange (CO2 and H2O) between the plant and 
the atmosphere); T includes the transfer towards the atmosphere through the boundary 
layer around the leaf. 

In addition to the intrinsic specificities of the plant itself, root extraction depends on 
soil texture, soil moisture, and the climatic conditions. If the water is insufficiently 
abundant in the soil, the plant is under water stress and the leaf potential decreases. The 
critical leaf potential represents the water potential of the stomata under which the plant 
can no longer extract water to the atmospher. When this threshold is reached, the plant 
adapts its morphology to meet its needs, reducing for example the opening of the 
stomata, developing its root system or decreasing its leaf area. 

The capability to predict levels of actual ET is a valuable asset for water resource 
managers, as it describes the water consumption from vegetation. ET can be either 
measured or estimated via modeling (even though most models require field 
measurements). Conventionally, if ET is quantified by the use of an instrument, it is 
‘directly’ measured and when it is found by means of a relationship among several 
observations, it is ‘indirectly’ measured (Rana and Katerji, 2000). Conversely, ET is 
considered as ‘estimated’ if it is expressed by a model.  

1.2.1 Direct measurements of ET 

The ET measurement methods are based on concepts which can be critical under 
semi-arid and arid environments for several reasons: (i) representativeness (ii) 
instrumentation (iii) microclimate and (iv) applicability. Therefore, to establish the degree 
of accuracy of the obtained ET measurement and the validity of a method, it is necessary 
to consider all these parameters (Allen et al., 2011b). 

1.2.1.1 Hydrological approach: Weighing lysimeters 

Weighing lysimeters have been developed to give a direct measurement of ET. In 
general, it is a device, a tank or container, to define the water movement across a 
boundary (depth level of the soil). Lysimeters of many different designs, sizes, shapes, and 
measurement systems have been built over the years (Howell et al., 1991). The main 
advantage of the lysimeter in situ measurements is that water consumption of vegetation 
can be performed under approximately realistic field conditions. However, a lysimeter 
measurement requires elaborate preparation. Moreover it is typically limited to only few 
individual trees or a small surface area of agricultural crops (Verstraeten et al., 2008). A 
Major limitation of lysimeters is that capillary rise is not taken into consideration because 
the water table can be supposed to be at a considerable depth (Makkink, 1959); moreover, 
root extension is sometimes limited.  



Chapter 1: Soil water balance components’ estimation methods 

 

17 

 

1.2.1.2 Plant physiology approaches 

Methods based on plant physiology either measure the water loss from a whole plant 
or a group of plants. They may include methods such as tracer technique and porometry 
but here, only two of the most common methods will be analysed: the sap flow method 
and the chamber system. 

a. Sap flow method 

Sap flow measures only plant transpiration by means of simple accurate models; sap 
flow can be measured by two basic methods: (i) heat pulse and (ii) heat balance. The most 
popular sap flow method is the heat balance method, based on the concepts proposed by 
Čermák et al. (1973) and Steinberg et al. (1990). The plant transpiration can be estimated 
by determining the sap mass flow; this is done using gauges that are attached to or 
inserted in the plant stem. For the heat balance method, a heater element is placed around 
the plant stem to provide energy to the system. Thermocouples are used to determine 
how much heat is lost by conduction up, down and radially in the stem from the heater 
element. The difference between the heat input and these losses is assumed to be 
dissipated by convection with the sap flow up the stem and may be directly related to 
water flow (Kjelgaard et al., 1997). The mass flow rate F [g.t-1] is expressed by the 
relationship: 

  
        

    
 (1. 3) 

where Qh is input heat, Qv is vertical conductive heat, Qr is radial heat loss to 
environment, cw [J.g-1.K-1] is specific heat of water and δT is the temperature difference 
between the upstream and downstream thermocouples.  

Direct measurements of actual transpiration can also be performed with the heat pulse-
sap flow technique, which has been applied in vineyards (Yunusa et al., 2004) and olive 
groves (Testi et al., 2006; Williams et al., 2004). Sap flow method is a very good alternative 
to lysimeter experiments; however, operation of sap-flow sensors requires a vast technical 
input and maintenance effort. 

b. Chambers system 

The chamber system method was described for the first time by Reicosky and Peters, 
(1977). The first chambers system version was portable (by means of a tractor, for 
example) and the ET rate was calculated as a difference (latent heat storage) between two 
measurements by a psychrometer: one acquisition before the chamber was lowered on the 
plot and another one minute later. Chambers system is easier to implement than the 
weighing lysimeter (Reicosky et al., 1983), but it is not suitable for long term ET 
measurements. The most serious problem of almost all chambers is the microclimate 
modification (solar radiation balance; air temperature, wind speed) during the 
measurement period.  
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1.2.1.3 Micrometeorological approaches 

ET consumes energy; this energy corresponds to what is required to transport water 
from the inner intercellular space in the leaves and plant organs to the atmosphere; it is 
therefore expressed as a flux density in [W.m-2]. 

Micrometeorological methods based on physical principles require accurate 
measurements of meteorological parameters on a small temporal scale (1 h or less). Their 
accuracy depends on the validity of some hypothesis such as the flux conservation, which 
implies that measurements are performed over a large flat area with uniform vegetation. 

a. Aerodynamic method 

Assuming that a flux density can be related to the gradient of the concentration in the 
atmospheric surface layer (ASL), the latent heat flux by the aerodynamic technique can be 
determined directly by means measurement of the vapour pressure at different heights 
above the crop. LE is then calculated by means of the scaling factors u* and q* (Grant, 
1975; Saugier and Ripley, 1978): 

          (1. 4) 

where L [J.kg-1] is the latent heat of vaporization of water, ρ [kg.m-3] is the air density, q* 
is scale of the specific air humidity [kg. kg-1 ], and u* [m.s-1] is the friction velocity derived 
from the wind profile measurement as follows:  

   
  

   
   

  
    

  (1. 5) 

where k=0.41 is the von Karman constant, d (m) is the zero plane displacement height, z0 
(m) is the roughness length of the surface and ψm is the stability correction function for 
momentum transport. q* is determined similarly from the humidity profile measurement: 

   
       

   
   
  

    

 (1. 6) 

where q0 is the air humidity extrapolated at z=d+z0 and ψv is the stability correction 
function for latent heat transport. 

The major difficulty with this technique is the correct measurement of the vapor 
pressure at different heights above the crop. For this reason, LE can also be derived 
indirectly by the energy balance (see section 1.2.2.1) where the sensible heat flux can be 
determined by the flux-gradient relation for temperatures: 

       
    (1. 7) 

where cp [J.kg-1.K-1] is the specific heat of air at constant pressure, ρ [kg.m-3] is density of 
air and T*, the temperature scale, is deduced by the air temperature profile: 
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   (1. 8) 

where T0 is the temperature extrapolated at z=d+z0 and ψh is the correction function for 
the heat transport. 

Under this form, the main advantage of the aerodynamic technique consists in 
avoiding complex high frequency humidity measurements. Nevertheless, the accuracy 
depends on the number of measurement levels for the wind speed and temperature 
profiles. In fact, equations (1.8) and (1.9) require at least three or four levels (Webb, 
1965), but accuracy is improved when many more levels are used (Wiernga, 1993). This 
method showed good results (Pieri and Fuchs, 1990), when the stability correction 
functions of Dyer and Hicks (1970) and Paulson (1970) were used. 

b. Eddy covariance 

The transport of scalar (vapor, heat, carbon dioxide CO2) and vectorial amounts (i.e. 
momentum) in the lower atmosphere in contact with the canopies is mostly governed by 
air turbulence. In recent decades, methods for measuring turbulent flows have been 
been improved, both in terms of reliability and in terms of operationality. The eddy 
covariance method (EC) is considered as the standard method for measuring surface 
turbulent fluxes. The first complete scientific contributions to this topic were given by 
Dyer (1961) and Hicks (1970); extensive details of the theory can be found in Baldocchi, 
(2003), Falge (2017) and Stull (2012) . 

EC method is a direct measurement of the turbulence in order to get the surface fluxes 
of sensible and latent heat and of CO2 with high accuracy.  

The mean vertical flux density (  ) of a physical quantity (X, for example temperature, 
water vapor or CO2) in the turbulent layer is proportional to the covariance between the 

vertical velocity ( ) and the concentration of this quantity (Van Dijk, 2004). In general, 

the instantaneous vertical flux density (  ) per unit of time and surface can be written: 

      (1. 9) 

Using the Reynolds decomposition (        and          ), the average flux (  ) 
can be approximated by the following formula: 

                                                    (1. 10) 

By expanding this expression and using the fact that       and the fluctuations mean is 
zero, equation (1.10) becomes: 

                    (1. 11) 

In a horizontal homogeneous boundary layer flow, the average vertical wind speed is zero 

by definition (Brunet Y., 1995), hence      . 

Finally, for the flux density, we obtain: 
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                 (1. 12) 

Turbulent fluxes (momentum, sensible heat, latent heat and gas concentration) can be 
expressed as the product of the vertical wind speed fluctuations term by the considered 
quantity fluctuations term. 

The sensible heat flux density H, is given by: 

                   (1. 13) 

where cp [J.kg-1.K-1] is the specific heat of air at constant pressure, ρ [kg.m-3] is density of 

air,   is the instantaneous deviation of vertical wind velocity from mean vertical wind 

velocity ( ) and    is the instantaneous deviation of air temperature from mean 

temperature ( ). 

The latent heat flux density LE, is given by: 

                   (1. 14) 

where   is the instantaneous deviation of vertical wind velocity from mean vertical 

wind velocity ( ) and    is the instantaneous deviation of specific humidity from mean 

specific humidity ( ). The negative sign appears because velocity is conventionally defined 
as positive towards the surface while the flux is negative due to the sign convention used 
for vertical velocity. 

To measure ET directly by the EC method, vertical wind fluctuations have to be 
measured (by the sonic anemometer) and acquired synchronously to the vapour density 
fluctuations (by fast response hygrometer); both have to be acquired at a typical frequency 
of 10–20 Hz.  

Despite problems linked to the correct management of the sensors, complex data 
processing, and the management of ‘closure error’ (the sum of measured LE+H does not 
equal measured Rn−G) of about 10-30% (Foken, 2008; Twine et al., 2000; Wilson et al., 
2002), this method has very good performances both at hourly and daily scale, also in 
semi-arid environments. Examples of eddy correlation measurements can be found in Er-
Raki et al. (2009), Hoedjes et al. (2007), Hoedjes et al. (2008), Liu et al. (2016) and Williams 
et al. (2004). The EC method has the advantage of allowing the measurement of the fluxes 
of all kinds of molecules other than water, and in particular CO2.  

c. Scintillometer 

Large-scale turbulent fluxes are difficult to evaluate since the above methods are 
mostly valid only on small homogeneous surfaces. Indeed, the heterogeneity of most 
landscapes generates large flux variability, which is difficult to measure with the 
conventional techniques. Hence, indirect turbulent flow measurement techniques have 
been developed, the most promising is the scintillometery. Scintillometry has emerged as 
one of the most widely used tools to quantify average fluxes over heterogeneous land 
surfaces (Brunsell et al., 2011). Scintillometer operating at wavelengths λ of about 1μm are 
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called optical scintillometer, whereas when λ is ranged between 1 and 10 mm these are 
called microwave scintillometers.  

Scintillometer consists of a transmitter and a receiver at both ends of an atmospheric 
propagation path (measurement transect). Fluxes of sensible heat and momentum cause 
atmospheric turbulence close to the ground, and creates, with surface evaporation, 
refractive index fluctuations due mainly to air temperature and humidity fluctuations (Hill 
et al., 1980). The receiver detects and evaluates the intensity fluctuations of the 
transmitted signal, called scintillations, which are linked to surface fluxes of sensible and 
latent heat. The magnitude of the fluctuations in the refractive index is usually measured 
in terms of a structure parameter of the refractive index of air integrated along the optical 

path     [m-2/3] (Tatarskii, 1961). Scintillometers measure sensible and latent heat fluxes 

(H and LE) by relating     to the structure parameter of temperature     and the 

structure parameter of humidity    , respectively, through the Monin Obukhov stability 

parameters. Temperature fluctuations given by     are the dominant cause of scintillation 
in the optical wavelengths, and therefore optical scintillometers can be applied to measure 
H without making measurements of, or assumptions on, humidity fluctuations. 
Scintillometers can provide average H estimates over areas comparable to those observed 
by satellites (Hemakumara et al., 2003; Lagouarde et al., 2002) along a path length ranginge 
from a few hundred meters to 5 km (the case of large aperture scintillometers LAS) up to 
10 km (the case of extra large aperture scintillometers XLAS). 

Since the optical scintillometer provides spatially averaged H, LE can be computed as 
the energy balance residual term (LE =Rn-G-H) assuming 100% energy balance closure. 
The estimation of a representative value for the available energy (Rn-G) across the 
transect is therefore crucial for the accuracy of LE retrieved values.  

Since the upwind area contributing to the flux (i.e. the flux footprint) varies according 
to wind direction and atmospheric stability, it must be estimated if one wants to compare 
scintillometer measurements to, say, pixel derived estimates of the flux (Brunsell et al., 
2011). The footprint of a flux measurement defines the spatial context of the 
measurement, i.e. the source areas that influence the sensors. Assessing the upwind area 
contributing to the flux can be done using several footprint models (Horst and Weil, 
1992; Leclerc and Thurtell, 1990). These models have been developed to determine what 
area is contributing the the flux. Contributions of upwind locations to the measurement 
depend on the height of the vegetation, height of the instrumentation, wind speed, wind 
direction, and atmospheric stability conditions (Chávez et al., 2005).  

The scintillometry technique has been evaluated and analyzed over heterogeneous 
landscapes against EC measurements (Bai et al., 2009; Chehbouni et al., 2000; Ezzahar et 
al., 2009) and also against model outputs (Marx et al., 2008; Samain et al., 2012; Watts et al., 
2000). Few studies dealt with extra large aperture scintillometer (XLAS) data (Kohsiek et 
al., 2006; Kohsiek et al., 2002; Moene et al., 2006). An historical survey, the theoretical 
rationale as well as recent works in applied research are reviewed in De Bruin and Wang 
(2017). Calculations of the sensible heat flux measured by scintillometry as well as the 
footprint computation are detailed in the next chapter (see section 2.5.3). 
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1.2.2 Remote sensing based method for ET estimation 

Direct measurement of ET is only possible at local scale (for a single plot mostly); it is 
much more difficult at larger scales (irrigated perimeter or watershed) due to the 
complexity of hydrological processes (Minacapilli et al., 2007). Moreover, at these scales, 
land cover is usually heterogeneous and this affects the land-atmosphere exchanges of 
heat, water and other constituents (Giorgi and Avissar, 1997). ET estimates for various 
temporal and spatial scales, from hourly to monthly to seasonal time steps, and from field 
to global scales, are required for hydrologic applications in water resource management 
(Anderson et al., 2011). Techniques using remote sensing (RS) information are therefore 
essential when dealing with processes that cannot be represented by point measurements 
only. In fact, RS capabilities for monitoring vegetation and its physical properties on large 
areas have been identified for years now (Tucker, 1978). Jackson et al. (1977) were ones of 
the major pioneers in determining ET by remote sensing, with the use of infrared 
thermometry for the estimation of wheat water consumption.  

As explained in the introduction of this thesis, RS provides periodic data about some 
major ET drivers, amongst others, land surface temperature and vegetation properties 
(e.g. NDVI and Leaf Area Index LAI) from plot to regional scales (Li et al., 2009; Mauser 
and Schädlich, 1998). Many methods using remotely-sensed data to estimate ET are 
reviewed in Courault et al. (2005;) and Liou and Kar (2014). According to Courault et al. 
(2005), these methods are difficult to classify because their complexity depends on the 
balance between the empirical and physically based used modules. 

1.2.2.1 Surface energy budget methods 

The quantity of water released by a surface into the atmosphere can be directly 
related to the energy that was necessary for its transformation into vapor by the following 
equation: 

LE=ρ      (1. 15) 

Where LE [W.m-2] is the latent heat flux expressed in, L [J.kg-1] is the latent heat of 
vaporization of water, representing the energy required for the vaporization of one 
kilogram of water. ET represents the evaporation rate of the surface in cubic meter of 
water per square meter of surface per unit of time and ρ [kg.m-3] is the density of the 
water . 

The vegetation cover intercepts only part of the radiative energy emitted by the sun 
and the atmosphere, the complementary part being reflected towards the atmosphere. A 
small fraction of the energy absorbed by vegetation (usually neglected in energy balance 
expression) is used for photosynthesis, which is crucial for crop development. Most of 
the intercepted radiative energy is redistributed by the vegetation cover in its near 
environment under different propagation modes: emission of radiative energy (thermal 
infrared), conduction of heat into the ground or convection in the atmosphere. All these 
components allow introducing the concept of energy balance based on the principle of 
energy conservation in the environment. Conventionally, the radiative fluxes received by 
the surface are positive, whereas those emitted are negative. More generally, the heat 
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fluxes are positive if they represent a loss of energy for the surface and negative for a 
contribution. 

Assuming an uniform and vegetation cover of large extension, and therefore no 
advection of heat from neighbouring areas, the energy exchange can be considered as 
purely vertical, and the equation of the energy balance at the surface is written as follows: 

           (1. 16) 

where LE is the latent heat flux, H is the sensible heat flux, Rn is the net radiation and G 
is the conduction flux in the soil. The difference (Rn-G) is called the available energy, an 
amount that is converted into H+λE, the turbulent fluxes. This latter denomination is 
used because they depend largely and in the same way on the intensity of convection in 
the atmospheric surface boundary layer. (Rn-G) is partitioned according to the surface 
water status between the two turbulent fluxes H and LE. When water is present in the soil 
in sufficient quantity, available energy is mostly converted into LE, while under water 
stress, this distribution is instead in favor of H. 

 

Figure 1. 3 : Components of the energy balance at the soil-vegetation-atmosphere interface (“c”, 
“s” and “a” refer to crop, soil and air, respectively and rx [s.m

-1] is the resistance of the canopy 
boundary layer) 

Radiative exchanges 

The radiations involved in the surface energy processes are i) the solar radiation (short 
wavelengths), part of which belongs to the visible spectral domain (0.3-5.0 µm), another 
to the ultraviolet domain (0.3-0.4 µm) and the remainder to the near and middle infrared 
range (0.8-5.0 µm) and ii) the thermal infrared radiation (long wavelengths, 5-100 µm) 
emitted and received by the surface. 

Incident short wavelengths radiation i.e. global radiation Rg [W.m-2] reaching the land 
surface consists of two components: the incident solar radiation that has not been 
absorbed by the atmosphere and has not been diffused in other directions as well as the 
solar radiation diffused by the atmosphere towards the surface. A fraction of the global 
radiation, the albedo α [-], is reflected by the surface, hence, the reflected short 
wavelengths radiation by the surface is therefore     (Equation 1.17). The surface albedo 
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α depends both on the optical properties of the bare soil αs and vegetation cover αv which 
in turn depend on the foliage structure affecting light interception (leaf size, orientation 
and spatial distribution). Hence, the leaf behaves as a semi-transparent surface for 
radiations coming from the atmosphere and those reflected from the ground; with 
absorption, transmission and reflection capacities depending on the solar spectrum 
wavelengths. The net surface radiation of short wavelengths (Rns) is the resultant of these 
two emitted and reflected short wavelengths radiation (Equation 1.17).  

                    (1. 17) 

The atmosphere emits thermal infrared radiation towards the surface, following the 
principle of a black body (Mandel and Wolf, 1995). Downward atmospheric radiation, or 

incident longwave radiation           
  [W.m-2], results from the gases and aerosols. 

Ta [K] and εa [-] are air temperature and emissivity, respectively. Atmospheric radiation 
increases with cloud cover. The surface reflects a fraction of the atmospheric radiation, 

depending on its absorption coefficient assimilated to the surface emissivity (   
          ) under the assumption of the surface thermal homogeneity. Furthermore, the 

Earth surface emits like a gray body at land surface temperature Tsurf [K] and with an 
“effective” surface emissivity εsurf [-] which takes into account the long wavelengths 
radiation exchanges in the canopy. Hence, it emits thermal infrared radiation according to 

the Stephan-Boltzmann law (           
 ) (Johnson, 2012). The net surface radiation of 

long wavelengths (Rnl) is the resultant of these emitted and reflected long wavelengths 
radiation (Equation 1.18).  

         
                 

             
                         

 
 (1. 18) 

Consequently, the net surface radiation Rn [W.m-2] (Figure 1.3) is the balance of energy 
between incoming and outgoing shortwave and longwave radiation fluxes at the land-
atmosphere interface can be written as follows: 

                                         
 

  (1. 19) 

where σ is Stefan-Boltzmann constant=5.67⨯10-8 W.m-2.K-4  

Heat conduction 

The associated flux with heat conduction is the conduction heat flux, referred G 
[W.m-2] (Figure1.3). The conductive heat exchanges in the soil are controlled by the 
vertical temperature gradient at the soil surface, according to the law of Fourier (Lienhard, 
1981). The G flux is positive during the day (the skin surface temperature is greater than 
the below ground temperature) and negative at night. The diurnal and nocturnal 
conductive fluxes roughly compensate each other and the average daily flux is low. G 
depends on several factors including soil composition, amount of organic matter, 
minerals, water (which is strongly conductive) and air (which is weakly conductive). In the 
absence of sufficiently accurate spatial information on these factors, the G flux is 
conventionally expressed as a fraction of total net radiation (ξ=G/Rn). Generally, G 
represents 5-20% of Rn during daylight hours (Kalma et al., 2008). Since G cannot be 
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directly measured remotely, several models have been proposed to estimate G based on 
the G/Rn ration as a function of soil and vegetation characteristics (Bastiaanssen, 1995; 
Burba et al., 1999; Choudhury et al., 1987; Jackson et al., 1987; Kustas and Daughtry, 1990; 
Kustas et al., 1993; Ma et al., 2002; Payero et al., 2001; Tasumi, 2003). 

Heat Convection 

Convection is the predominant mode of mass transfer between the surface and the 
atmosphere; it propagates thermal energy via eddies. The associated fluxes with this mode 
of energy propagation are the sensible heat flux H [W.m-2] depending on a vertical 
temperature gradient and the latent flux LE [W.m-2] associated with the quantity of water 
vapor introduced into the atmosphere (Figure1.3). Convective exchanges depend on 
fluctuations in wind speed and atmospheric scalars (temperature, humidity). In general, 
convective fluxes Fc are expressed, by analogy with the laws of diffusion, as the product 
of a transfer coefficient Kt and a vertical concentration gradient dC/dz (Lagouarde and 
Boulet, 2016). 

      
  

  
        (1. 20) 

This equation is strictly valid in the atmosphere, but it has been extended between the 
surface itself and a reference level above (Figure 1.5). Assuming that the convective fluxes 
are conservative, and linking the turbulent diffusivities to resistive terms by an electrical 
analogy (Figure 1.4), it can be shown that sensible heat flux H in the case of a uniform 
surface and latent heat flux LE can be written as: 

      
        

  
       (1. 21) 

   
   

 
 
            

     
   (1.22) 

where ρ [kg.m-3] is the air density, cp [J.kg-1.K-1] is the specific heat of air at constant 
pressure,   [K.Pa.C-1] is the psychrometric constant, Ta [K] and ea [Pa] are respectively the 
air temperature and vapor pressure at the reference level za, Taero is the aerodynamic 
temperature which is equivalent to an air temperature within the canopy at the 
evaporation level zaero=d+zom where d is the displacement height of the wind speed 
profile and zom is the bare soil roughness length; es(T) [Pa] denotes the saturation water 
vapor pressure curve as a function of temperature T and ra [s.m-1] and rs [s.m-1] are the 
aerodynamic and bulk surface resistances, respectively. These two resistances depend on 
turbulent diffusivities, turbulent characteristics (wind speed, thermal gradients) and the 
surface and vegetation cover characteristics (height, roughness, stomatal functioning, leaf 
area). ra is dependent on the turbulent properties of the atmospheric boundary layer 
above the surface. An unstable and therefore more mixed atmosphere (this is often the 
case during the day) will tend to facilitate vertical energy transfers and thus decrease 
atmospheric resistance while a more stable and stratified atmosphere (mostly at night) will 
oppose strong resistance to energy transfer (Penman, 1948) . 
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Figure 1. 4: Electrical analogue of aerodynamic resistance (I [A] is the current through a 
conductor between two points, U [V] is the voltage measured across the conductor , R [Ohm] is 

the resistance of the conductor, d [m] is the displacement height and zom [m] is the bare soil 
roughness length; “a" refers to air). 

In fact, surface temperature affects all four terms of the energy balance of equation 
1.16, which takes the following form by replacing each of terms with expressions (1.19), 
(1.21) and (1.22):  

                             
       

        
  

 
   
 
             

     
  (1.23) 

In the case of reduced water availability, the surface temperature adjusts so that the 
other dissipative terms, H and G (as well as the long wavelength radiation emitted by the 
surface, included in the radiation net), all of which are positive functions of temperature, 
compensate for the decrease in latent heat flux. The resulting increase in temperature is all 
the more significant as the decrease in LE is significant. There is therefore a clear 
relationship, in the case of vegetated surfaces, between water stress and surface 
temperature.  

Remote sensing based energy budget models are reviewed in Courault et al. (2005), 
Farahani et al. (2007), Glenn et al. (2007), Kalma et al. (2008), Overgaard et al. (2006) and 
Verstraeten et al. (2008). The majority considers the land surface as an electrical analogue, 
which means that the rate of exchange of a quantity (heat or mass) between two points is 
driven by a difference in potential (temperature or concentration) and controlled by a 
number of resistances that depend on the local atmospheric environment and internal 
properties of the land surface and vegetation. 
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Figure 1. 5: Analogous schematization of the transpiration process under the hypothesis of a 
conservative transpiration flow (Source: Guyot (1999) and Boulet (2003), modified). 

Two types of methods are currently used to compute LE: the so-called “single pixel” 
methods use information from each pixel independently of any other pixel in the image, 
while the “contextual” methods take advantage of thermal contrasts in the image. They 
provide instant estimates of latent heat flux at the time of the satellite overpass. “Single 
pixel” estimation methods solve the energy balance at the surface for a given pixel, 
independent of the rest of the image. Calculation of atmospheric resistances distributed 
over large areas is therefore a major challenge for these models, partly because of the 
difficulties encountered in the spatialized estimation of the roughness properties of the 
surface. To circumvent this problem, the “contextual” methods exploit the spatial 
variability of the surface properties, placing each pixel in its context and locating it with 
respect to endmembers. The most cited contextual models are the “Surface Energy 
Balance Algorithm for Land model (SEBAL)” (Bastiaanssen et al. 1998), "Mapping 
EvapoTranspiration with High-resolution and Internalized Calibration (METRIC)” (Allen 
et al. 2007), “Triangle method” (Carlson, 2007) and “Simplified Surface Energy Balance 
Index (S-SEBI)” (Roerink et al., 2000). These models are based on a "single-source" (see 
later) scheme, and solve for H through a relationship with temperature gradient. The 
near-surface air temperature gradient obtained by solving the energy balance over 
carefully selected “hot and cold” (or dry and wet) pixels identified using the thermal 
(radiometric surface temperature) and shortwave (surface albedo and NDVI) bands of the 
satellite image. METRIC is based on the same structure as SEBAL but uses a reference 
ET (Penman-Monteith) to express the potential evapotranspiration rate. In what follows, 
we focus on “single pixel” methods because at kilometric-resolution (e.g. MODIS images) 
endmembers (spectra chosen to represent pure surface in a spectral image) are difficult to 
found. Moreover, SPARSE model applied in this dissertation is based on these methods. 
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“Single pixel” methods 

Residual methods use information from each pixel independently of any other pixel in 
the image. Here after, we focus on these methods mainly those using thermal infrared 
remote sensing data on which is based the SPARSE model applied in this dissertation. A 
common approach to LE estimation from RS is to calculate LE as the residual term of 
the energy budget, i.e. the difference between available energy (Rn-G) and H as follows: 

             
        

  
 (1.24) 

This equation is widely used for the estimation of instantaneous LE. When estimated 
at midday, it provides a good indicator of plant water status for irrigation scheduling. 
When dealing with seasonal, monthly or daily estimations, the use of ground-based ET 
from weather data is necessary to make temporal interpolation. 

The main issue of estimating ET as a residual is the need to measure or estimate Rn and 
G accurately, which can be problematic under conditions such as with sparse or 
heterogeneous vegetation. G is normally considered a fixed fraction of the net radiation 
(Anderson et al., 1997; Boegh and Soegaard, 2004; Norman et al., 1995), and since 
previous studies have shown that net-radiation can be accurately determined from RS 
data (e.g. Boegh et al., 1999), the main task becomes the determination of sensible heat 
flux from remote sensing data using the electrical analogue from.  

SEB models employ various expressions for the aerodynamic resistance. In the reviews 
by Kalma et al. (2008) and Overgaard et al. (2006) , three broad approaches to describe the 
surface and its resistance network are distinguished: (i) “one source” methods considering 
the surface as a homogeneous mixture of soil and vegetation without distinction between 
soil evaporation and vegetation transpiration (Monteith, 1965; Penman, 1948); (ii) “two 
source” models taking into account vegetation and bare soil as two separate sources for 
energy transfers (Shuttleworth and Wallace, 1985); (iii) “multisource” models, which are 
essentially extensions of the “two source” model (figure 1.6) . Moreover, these models use 
different representations of the soil water storage, from conceptual to physical or 
mechanistic modeling (Boulet, 1999): Single-reservoir model, two-reservoir model derived 
from the Force-Restore model (Deardorff, 1978) and the discretized model which 
decompose the column of soil into several horizons, among which the equations of water 
and heat dissipation in the soil derived from Richards (1931) are applied (figure 1.6).  
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Figure 1. 6: Complexity levels of the soil and schematic diagram of the electrical resistance 
analogy to one-source, two-source (series and parallel approaches) and multi-layer models 

(Source: Boulet (1999) and Chirouze (2009), modified)  

 One source model 

One layer or one source models, often referred to “big-leaf” models, are derived from 
the approach proposed by Monteith (1965) which recognize the role of surface controls 
but do not distinguish between soil evaporation and transpiration in the heat exchange. 
They are well adapted to estimate the evapotranspiration of dense canopies (Monteith and 
Unsworth, 1990). They consider a stomatal resistance of the vegetation cover and an 
aerodynamic resistance between the surface and the atmosphere. The “big-leaf” concept 
assumes that the canopy is horizontally homogeneous and that the vertical distribution of 
surface fluxes (sensible heat and latent heat) can be represented by a single source at the 
“big-leaf” surface located at the conceptual height z=d+zom (figure 1.6).  

The one dimensional equations based on aerodynamic theory and energy balance 
(Monteith and Unsworth, 2007; Penman, 1948), have proved very useful in the actual 
crop ET estimation; because they take into account both the canopy properties and 
meteorological conditions (Black et al., 1970; Szeicz and Long, 1969; Szeicz et al., 1973). 
The most widely used form of the combination equation, called Penman-Monteith 
equation, can be expressed under the following form: 

   
            

            
  

 

        
   
  
 

  (1.25) 

where Rn-G [W.m-2] is available energy,   [kPa C-1] is the slope of the saturation vapour 
pressure temperature relationship, (es-ea) [kPa] is the vapour pressure deficit of the air, ρa 

[kg.m-3] is the air density, cp [J.kg-1.K-1] is the air specific heat at constant pressure, γ 
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[kPa.C-1] is the psychrometric constant, ra [s.m-1] is the aerodynamic resistance and rs [s.m-

1] is the bulk (surface) resistance. In Equation 1.25 we can distinguish non-parametric 

variables (available energy, vapor pressure deficit   and γ) which are standard measurable 
climatic data; and the parametric variables (ra and rs) which are not directly measurable 
and need to be modeled. 

The difficulty of using this equation, especially at regional scale, is the estimation of ra . 
Differences in crop height and leaf area index (LAI) determine crop roughness and 
thereby ra. Crop rooting characteristics, root water uptake and LAI describe the value of 
canopy resistance (rs). The lack of information on aerodynamic properties for ra or on the 
soil water status necessary for rs makes the Penman-Monteith equation difficult to 
implement in operational hydrology and water management studies. This shortcoming has 
been solved in the irrigation community by introducing the concept of crop reference ET 
and crop coefficients accounting for a rough estimate of the vegetation development and 
a global soil moisture level deduced from a simplified water budget equation.  

The temperature at the aerodynamic level Taero is defined as the temperature of the air at 
the aerodynamic level within the canopy, and can be represented as an average 
temperature of the surface elements, weighted by their relative contributions to global 
atmospheric conductance (Moran et al., 1989). This temperature is more a conceptual 
variable than a quantity one can measure in situ (Kalma and Jupp, 1990). Single source 
models require a method to relate Taero and the remotely-sensed surface temperature 
(Matsushima, 2005). It has been showed that Taero and Tsurf may differ by several degrees 
(Kustas and Norman, 1996; Stewart et al., 1994; Troufleau et al., 1997). Taero is greater than 
Tsurf in stable conditions and lower in unstable conditions (Kalma and Jupp, 1990). This 
difference essentially depends on the geometric distribution of the canopy (height of the 
canopy, vegetation cover ratio, leaf distribution). It is compensated by adding an 
additional resistance term rx , related to a factor kB-1 as follows (Stewart et al., 1994): 

   
    

   
 

(1.26) 

This kB-1 factor is usually determined empirically or semi-empirically as a function of 
atmospheric conditions, LAI and the height of the canopy (Boulet et al., 2012). Several 
formulations have been proposed in the literature to determine kB-1 (e.g. the SEBS model 
(Su, 2002)). Other methods for linking Taero and Tsurf introduce a β factor    β= 
(Taero-Ta)/ (Tsurf-Ta) determined empirically from LAI (Boulet et al., 2012; Chehbouni et 
al., 1997). Whereby, the radiometric surface temperature can substitute the aerodynamic 
surface temperature. Hence, H can be written as: 

      
      

     
       (1.27) 

 Two-source models 

The one source approach makes no distinction between the soil evaporation (E) and 
the vegetation transpiration (T); therefore the resistances are not well defined (Raupach 
and Finnigan, 1988). To address these concerns, two sources energy balance models such 
as described by Shuttleworth and Wallace (1985) include a canopy layer in which heat and 
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mass fluxes from the soil and from the vegetation are allowed to interact. These models 
treat ET as the sum of separate flux-profile relationships governing E and T and have 
been initially developed for sparse canopies (e.g. Jupp et al., 1998; Kustas and Norman, 
1999; Lhomme et al., 1994; Norman et al., 1995).  

In that sense, dual-source models provide a more realistic description of the main 
water and heat fluxes, even if the vegetation is seen as a single “big leaf” and the soil as a 
single “big pore” (Kustas and Norman, 1996), which is especially true for sparse 
vegetation, when commonly used scalar profiles within the canopy no longer apply. It also 
avoids the use of a parameterized kB−1 (Kustas and Anderson, 2009). 

The two sources model assumes that in most agro-systems vegetation has access to 
enough water in the root zone to transpire at a potential rate, so that a modeled potential 
transpiration rate is a valid first guess to estimate T. This assumption implies that, if 
vegetation stress is not properly taken into account, the resulting evaporation will 
decrease to unrealistic levels (negative fluxes) in order to maintain the same total surface 
temperature, so that a retrieved negative evaporation is a good witness of plant water 
stress. The original version of two sources energy balance model (Norman et al., 1995) 
provides two algorithms to describe the soil–vegetation–atmosphere interactions, 
representing, respectively, the “patch” and “layer” approaches following the terminology 
proposed by Lhomme et al. (2012). In the “layer” approach, the vegetation layer 
completely covers the ground and prevents the soil from interacting directly (in terms of 
radiation and turbulent heat transfer) with the atmospheric reference level: soil and 
vegetation heat sources are fully coupled through a resistance network organized in series 
(Figure 1.6). In the “patch” approach, soil and canopy sources are located side by side, 
and the soil interacts directly with the air above the canopy: soil and vegetation heat 
sources are thermally uncoupled and fluxes are computed with two parallel resistance 
schemes (Figure 1.6). 

The two sources energy balance model requires land surface temperature Tsurf 
observations adjusted for atmospheric effects and corrected for surface emissivity in the 
thermal infrared (TIR) band to produce accurate results. 

 Multilayer models  

Multi-layer models have been developed since the 1960s (Waggoner et al, 1969), they take 
into account the vertical structure of the vegetation (three or more vegetation levels) 
(Raupach et al., 1989); hence, a stomatal resistance is added for each vegetation layer, as 
well as a resistance to control the interactions with the overlying and underlying layers. 
These models are not considered suitable for hydrological modeling because they require 
a large number of parameters that would be very difficult to obtain.  

Assimilation of TIR data in SEB models 

Land surface temperature (Tsurf), as frequently referred to as the skin temperature of 
the Earth's surface and is derived from remotely sensed TIR data. It is the result of the 
thermodynamic equilibrium dictated by the energy balance at the atmosphere, surface, 
and subsurface interface, and the efficiency by which the surface transmits radiant energy 
into the atmosphere (Kustas et al., 2003). Tsurf plays a key role in the partitioning of 
available energy between turbulent fluxes of sensible and latent heat. There is a strong link 
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between water availability in the soil and surface temperature under water stress, hence, in 
order to estimate soil moisture status as well as actual ET at relevant space and timescales, 
information in the TIR domain (8–14 µm) is frequently used (Boulet et al., 2007). 

Major improvements in large scale estimates of actual ET have been obtained through 
remote sensing methods based on TIR data, available from a variety of satellite systems 
(Cammalleri et al., 2014). These approaches reviewed in Kalma et al. (2008) and Liang et al. 
(2010); appear to accurately reproduce ET over a wide range of conditions at both the 
satellite overpass time and daily time scales. The basic idea behind these approaches is 
that surface radiative temperature, and by association the surface turbulent energy fluxes, 
are dependent on the surface soil water content. 

Tsurf is highly variable in space and time (Prata et al., 1995), mainly due to the 
meteorological forcing variability and of to surface properties heterogeneity. The 
environmental conditions impacting the Tsurf are climatic conditions, topography, 
vegetation cover (density, phenology etc.), surface and root zone soil moisture, soil 
hydrodynamic properties (texture, porosity, etc.) and the radiative properties (albedo, 
emissivity).  

Given the complexity of this variable, ground measurements are not satisfactory, 
especially when dealing with large areas. Hence, remote sensing provides the possibility of 
observing the Tsurf in the spectral range of thermal infrared (8 to 14 μm) with varying 
temporal and spatial resolutions.  

Satellite-based thermal datasets currently available and main TIR missions are 
summarized in annex 1. These datasets reflect a tradeoff between temporal and spatial 
resolution such that the systems have either high-spatial/low-temporal resolution (e.g., 
Landsat Thematic Mapper (TM); and Landsat Enhanced Thematic Mapper Plus (ETM+) 
or low-spatial/high-temporal resolution (e.g., National Oceanic and Atmospheric 
Administration-Advanced Very High-resolution Radiometer (NOAA-AVHRR); 
Terra/Aqua-Moderate Resolution Imaging Spectrometer (MODIS); Geostationary 
Operational Environmental Satellite (GOES). ASTER data are only available by demand 
and therefore provide only sporadic temporal coverage at a given site. 

1.2.2.2  Soil water balance method: crop coefficient approach 

The most common and practical approach used for estimating ET is the FAO-56 
method (Allen et al., 1998), previously adopted by Doorenbos and Pruitt (1977), on which 
is based the SAMIR model used in this dissertation. It is used to estimate crop water 
requirements based on the reference evapotranspiration (ETo) and crop coefficients.  

According to the FAO drainage and irrigation paper N°56 (Allen et al., 1998), 
distinctions are made between reference crop evapotranspiration (ETo), crop 
evapotranspiration (ETc) and actual evapotranspiration (ETa). ETo is the 
evapotranspiration rate from a hypothetical grass reference crop with an assumed crop 
height of 0.12 m, a fixed surface resistance of 70 s.m-1 and an albedo of 0.23. ETo was 
often confused with potential ET (ETp) (Douglas et al., 2009; Torres et al., 2011; Zhang et 
al., 2010). ETc is the water lost by crops that are grown in large fields under optimum soil 
moisture, excellent management and environmental conditions, and achieve full 
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production under the given climatic conditions. ETa involves all conditions of the 
vegetated surface. Due to sub-optimal crop management and environmental constraints 
that affect crop growth and limit evapotranspiration, ETa is generally smaller than ETc. 

The FAO-56 method is applied in three steps: (i) determine the climatic reference 
ETo, ii) apply a single (Kc) or double crop coefficient (Ke and Kcb) to get ET of a given 
crop under standard conditions i.e. optimal agronomic conditions (ETc), and (iii) apply a 
water stress coefficient Ks to get ET under non-standard conditions i.e. stress conditions 
(ETa) also called actual ET (ETcadj). 

The FAO-56 method is based on two underlying assumptions: (1) 
ETo represents the climate effect and (2) Kc (and Kcb) varies mainly with the specific 
characteristics of the crop, allowing the use of these coefficients regardless of the 
climates and environmental conditions (Allen et al., 1998). 

In the single crop coefficient approach, ETa is computed as follows: 

           (1.28) 

In the dual crop coefficient approach, the effects of crop transpiration and soil 
evaporation are determined separately. Two coefficients are used: the basal crop 
coefficient (Kcb) to describe plant transpiration and the soil water evaporation coefficient 
(Ke) to describe evaporation from the soil surface. ETc and ETa are computed as 
follows: 

                 (1.29) 

                    (1.30) 

More exactly, the basal crop coefficient, Kcb, is defined as the ratio of ETc to ETo 
when the soil surface layer is dry but where the average soil water content of the root 
zone is adequate to sustain full plant transpiration. Thus, it is the sum of transpiration and 
evaporation due to capillary rise from the root compartment passing through the dry soil 
surface, which explains why the Kcb during the initial stage for annual crops (before 
vegetation appears), as proposed in the FAO-56 paper, is above zero. In other words, the 
Kcb represents the baseline potential Kc in the absence of the additional effects of soil 
wetting by irrigation or precipitation. If the soil is wet following rain or irrigation, Ke may 
be large. However, the sum of Kcb and Ke can never exceed a maximum value, Kcmax, 
determined by the energy available for ET at the soil surface. As the soil surface becomes 
drier, Ke becomes smaller and falls to zero when no water is left for evaporation. The 
estimation of Ke requires a daily water balance computation for the calculation of the soil 
water content remaining in the upper topsoil. The dual crop coefficient approach is best 
for real time irrigation scheduling and for soil water balance computations. 

The evaporation coefficient Ke is driven by both the water content in the soil surface 
and the fraction of soil actually subject to evaporation, i.e. exposed and wet (few). 

The total evaporable water of the surface layer (TEW) [mm] is defined by water 
content at field capacity and wilting point (θfc [-], θwp [-]) and the depth of the evaporation 
layer Ze [mm] as follows: 
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(1.31) 

REW [mm] is the readily evaporable water, i.e. the fraction of TEW evaporating 
without resistance, related to soil texture and defined by the user. When the water 
depletion in the evaporation layer (De) [mm] is higher than the easily evaporable water 
(REW), a reduction factor Kr [-] is computed as follows to reduce evaporation: 

   
      

       
    

(1.32) 

Kr is equal to 1 as long as De < REW, i.e. as long as there is readily evaporable water. 

The fraction of soil actually subjected to evaporation, few [0-1], is determined by to 
parameters: the fraction of soil wetted by irrigation (fw), linked to the type of irrigation 
(typically 1 for gravity irrigation, <1 for drip irrigation), and the fraction of soil actually 
exposed to evaporation, i.e. not shadowed by vegetation. 

                 (1.33) 

For example, for flood irrigation where evaporation is not limited by the wetted 
fraction of soil (fw = 1), few is only controlled by the fraction cover of vegetation, 
few = 1-fc. 

Finally, Ke is computed using the following equation: 

                                   (1.34) 

where the first term accounts for limitation due to available energy and soil water 
content, and the second term accounts for limitation due to few. 

The estimation of Ks requires a daily water balance computation for the root zone in 
order to highlight the effect of water stress on crop ET and irrigation requirement. Soil 
water balance is calculated on a daily basis following the scheme illustrated in Figure 1.7, 
although in our case surface runoff is neglected. It is expressed in terms of water 
depletion in the effective root zone, Dr [mm], at the end of each day i through the 
following equation (Allen et al., 1998): 

                            (1.35) 

where Dri [mm] is root zone depletion at the end of day i, Dri-1 [mm] is root zone 
depletion at the end of the previous day i-1, Pi [mm] is effective rainfall on day i [mm], Ii 

[mm] is net irrigation depth on day i that infiltrates the soil [mm], W is contribution from 
water table by capillary rise on day i, ETai [mm] is crop evapotranspiration on day i and Di 
[mm] is water loss out of the root zone by deep percolation on day i. 
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Figure 1. 7: Water balance components in the root zone (Source: Allen et al. (1998)) 

At field capacity, Dr is zero. When soil water is extracted by ET, the depletion 
increases and stress will be induced when Dr becomes larger than the readily available 
water (RAW). When the root zone depletion is smaller than RAW, then Ks = 1. For root 
zone depletion greater than RAW, the water stress coefficient is computed as (Allen et al., 
1998): 

     
        

         
   

        

           
 (1.36) 

where Ks [-] is a dimensionless transpiration reduction factor dependent on available soil 
water ranging between 0 and 1, Dr [mm] is root zone depletion, TAW [mm] is total 
available soil water in the root zone [mm], RAW [mm] is readily available water in the 
root zone and p [-] is the fraction of TAW (i.e. RAW/TAW) that the crop can extract 
from the root zone without causing water stress. 

The total available water (TAW) in the root zone is linked to the root depth and to the 
difference between the water content at field capacity and wilting point as expressed in 
equation 1.37. The two latter terms depends on the type of soil. 

                     (1.37) 

Complementarily of the FAO-56 method and remote sensing 

The FAO-56 method has long been used to monitor plot scale water budget with tools 
like CROPWAT (Clarke, 1998) using most of the time crop coefficients taken from the 
FAO tables. RS provides spatial and updated information about vegetation. The satellite 
images not only allow distinguishing different types of land use, but also, provide further 
information about the actual development of vegetation. This information is well 
correlated with the photosynthetic activity of plants, which is itself determinant of ET. 

To compute ET on larger areas, some tools have been developed based mainly on the 
use of thermal remote sensing for energy balance methods, like METRIC (Allen Richard 
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et al., 2007). However, the increasing availability of high-resolution NDVI time series 
arose the coupling of the FAO-56 with remotely sensed crop coefficients (González-
Dugo et al., 2013; Mateos et al., 2013; Neale et al., 2007; Simonneaux et al., 2008). This 
trend lead to the emergence of tools like the DEMETER concept (Calera-Belmonte et al., 
2005) providing Kc to farmers, the HYDROMORE tool (Sánchez et al., 2010) computing 
the water budget of crops, or the TOPS-SIM “system-of-system” for irrigation 
management (Melton et al., 2012). Zhang and Wegehenkel (2006) developed a model 
based on the FAO-56, lumped in a more complex model including the whole watershed 
system, and using essentially low-resolution MODIS images. Minacapilli et al. (2008) 
proposes the SIMODIS model based on a variant of FAO-56 where Kc is determined 
analytically using vegetation and climatic parameters, and a more physical soil modeling.  

Spatio-temporal monitoring of vegetation dynamics by remote sensing is possible 
through the use of reflectance combinations through vegetation indices (VI). VIs are 
based essentially on the red band (R) corresponding with a high absorption of the 
radiation and the infrared band (NIR) offering a high reflectance. VIs determined over 
the last thirty years by different authors and their fields of application are summarized in 
annex 3. 

The first researches relating vegetation development and canopy reflectance was 
carried out during the 1970s (Kanemasu, 1974; Tucker, 1979), It has been shown that the 
crop coefficients were linked to the VIs (Er-Raki et al., 2007; Glenn et al., 2011; Hunink et 
al., 2017; Hunsaker et al., 2005a; Hunsaker et al., 2005b; Simonneaux et al., 2008). The 
arguments in favor of the causal Kcb-VI relationship include the direct relationship 
between Kcb and the fraction of photosynthetic active radiation absorbed by the canopy 
(fPAR) and the relationship of these parameters with the VIs (Calera et al., 2017). Ke is 
linked to the bare soil fraction, complementary of the fractional vegetation cover (fc) 
which can also be related to visible RS data (Huete et al., 1985). Although the relations 
proposed between Kcb, fc and VIs are not theoretically fully linear, they can usually be 
approximated by linear relations (Choudhury et al., 1994; Gonzalez-Dugo and Mateos, 
2008). One pitfall of RS methods based on crop coefficient is their requirement for crop 
specific relations providing crop coefficient from RS data (Gowda et al., 2008). Some 
relations may be found in the literature, either directly estimating crop coefficients from 
VIs, or assessing them from vegetation parameters like the leaf area index (LAI) or fc. 
This difficulty also applies to the relation between VIs and fractional vegetation cover (fc) 
required running the FAO-56. Furthermore, establishing a unique relationship between 
crop coefficient and spectral vegetation indices is an ongoing research topic (Er-Raki et 
al., 2010) and many empirical linear relationships available in the literature have been 
derived experimentally. The interest for coupling the FAO-56 method (Allen et al, 1998) 
with remotely-sensed crop coefficients is raising alongside the increasing availability of 
high-resolution NDVI time series (González-Dugo et al., 2013; Mateos et al., 2013; Neale 
et al., 2007; Simonneaux et al., 2008). The low availability of such data, for financial as well 
as technical reasons, combined with the intermittent presence of cloud, has been a restraint 
to their use (J. Trout et al., 2008; Pinter et al., 2003; Takeuchi et al., 2003). However, the 
recently lunched Sentinel-2 mission offers a unique opportunity to improve this monitoring 
thanks to high-resolution (10 m) and high repetitivity (5 days) visible and near infrared 
(VIS-NIR) remote sensing. Main VIS-NIR missions are detailed in annex 2. 
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1.2.2.3 Deterministic methods 

Surface processes are driven by three important interlocking mass and energy budgets, 
a water balance, an energy balance and a carbon budget (Figure 1.8). Deterministic 
methods are based on more complex models such as land surface models (LSM) which 
compute the different components of energy and/or water balance. Water and energy 
balances are coupled by the ET flux, in the water balance; which is called LE in the 
energy balance. The development of LSMs since the 1960s has allowed the understanding 
of the complex biophysical, hydrological, and biogeochemical interactions between land 
surface and the atmosphere at micro- and mesoscales by providing a simple and realistic 
way to represent the transfer of energy, water and carbon fluxes between the land surface 
and the atmosphere (Zhao and Li, 2015). Soil-Vegetation-Atmosphere Transfer (SVAT) 
models are a subgroup of the LSMs, they solve the coupled water and energy budget 
equations via ET. They are generally mechanical models, describe the vertical exchanges 
(one-directional 1-D vertical transfers are considered while lateral interactions are 
neglected), and rely on a simplified representation of the vegetation cover. SVAT models 
are mainly used for estimating ET, surface-energy exchanges and water balance 
components (Olioso et al., 2005) (Figure 1.8). Their application has often been limited by 
the lack of in situ data required for models forcing, calibration and evaluation. The over-
parameterization of SVAT models due to their physical nature requires a multi-criteria 
analysis (i.e. several variables) over a sufficiently long period. Indeed, a major problem 
related to the degree of complexity of SVAT models is the equifinality problem (Beven, 
2006), which is to say that the good performance of the global description of a complex 
model does not mean that its components are estimated correctly. Indeed, there are 
theoretically an infinite number of possible combinations between the different variables 
of the system that can lead to the same overall result. This means, for example, that a 
precise estimate of the ET rate of the surface does not mean that the evaporation and 
transpiration components are correctly simulated. Moreover, in studies of land–
atmosphere interactions, a SVAT model is assumed to respond in a realistic way to 
changes in land surface properties, despite the fact that the model may be validated only 
for specific locations or surface types. However, model response is potentially sensitive 
not only to changes in land surface properties, but also to interactions between them 
(Beringer et al., 2002). 

Remote sensing data are used at different SVAT modeling levels, either for forcing the 
model input, or correcting the course of state variables in the model each time remote 
sensing data are available (sequential assimilation) or re-initializing unknown parameters 
using data sets acquired over temporal windows of several days/weeks (variational 
assimilation) (Courault et al., 2005). 
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Figure 1. 8: The current generation of land surface models (LSM) treats the biosphere and 
atmosphere as a coupled system based on modeling the transfers of (A) energy, (B) water and (C) 
carbon fluxes between land surface and atmosphere. Soil Vegetation Atmosphere (SVAT) models 

are based on the coupled water and energy cycles (Source: Bonan (2008), modified) 

1.2.2.4 Inter comparisons of ET estimation methods 

Soil water balance (SWB) and the surface energy budget (SEB) approaches, as well as 
both approaches integrated into SVAT modeling, use remote sensing data to estimate 
spatially distributed ET (Minacapilli et al., 2009). The SWB approach exploits only visible-
near-infrared (VIS-NIR) observations to perceive the spatial variability of crop 
parameters. The SEB modeling approach uses visible (VIS), near infrared (NIR) and 
thermal (TIR) data to solve the SEB equation by forcing remotely sensed estimates of the 
SEB components (mainly the land surface temperature Tsurf). The SWB approach has the 
advantage of high-resolution and frequency VIS-NIR remote sensing data availability 
against limited availability of high-resolution thermal imagery for the SEB approach. 
Indeed, satellite data such as Landsat or Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) provide accurate field scale (30–100 m) estimates of ET 
(Allen et al., 2011a), but they have a low temporal resolution (16 day-monthly) (Anderson 
et al., 2011).  

Three categories of methodologies for the integration of satellite data in the models are 
distinguished; (i) forcing consists of directly integrating the data in the model as input data 
of the system; (ii) calibration consists of estimating a set of constant parameters of the 
model so that its estimates are optimal over a given period or study area. The validity of 
this set of parameters over other time periods or study zones can be questioned; and (iii) 
data assimilation is a set of techniques for combining data from a variety of sources 
(satellite observations, field measurements, model outputs) in order to estimate a system 
variables that are statistically optimal (Bouttier and Courtier, 2002; Gu et al., 2009). A 
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classic assimilation scheme is composed of three elements: a set of observations, a 
dynamic model and an assimilation technique (Robinson and Lermusiaux, 2000). These 
techniques make it possible to use the distributed satellite data in order to correct and 
improve the spatialized predictions of land surface models, and also help calibrate them 
on large study areas.  

SWB and SEB models each have their strengths and weaknesses. The RS-based SWB 
models provide estimation of ET, soil water content, and irrigation requirements in a 
continuous way. For instance, at plot scale, accurate estimates of seasonal ET and 
irrigation can be obtained by SWB modeling using high-resolution remote sensing 
forcing. However, for an appropriate estimation of ET, the SWB model requires 
knowledge of the water inputs (precipitation and irrigation) and an assessment of the 
extractable water from the soil (mostly derived from actual water content in the root 
zone, wilting point and field capacity ), whereas, significant bias are found mainly when 
dealing with large areas and long periods, due to the spatial variability of the water inputs 
uncertainties as well as the inaccuracy in estimating other flux components such as the 
deep drainage (Calera et al., 2017). Hence, the major limitation of the SWB method is the 
high number of needed inputs whose estimations are likely uncertain especially over a 
heterogeneous land surface due to hydrologic processes complexity. Moreover, spatially 
distributed SWB models (typically those using the FAO guidelines (Allen et al., 1998) for 
crop ET estimation) generally parameterize the vegetation characteristics on the basis of 
land use maps (Bounoua et al., 2015; Xie et al., 2008), and different parameters are used 
for different land use classes. Nevertheless, SWB modelers generally do not have the 
possibility to carry out remote sensing-based land use change mapping due to time, 
budget, or capacity constraints and use often very generic classes potentially leading to 
modeling errors (Hunink et al., 2017). In addition, the lack of data about the soil 
properties (controlling field capacity, wilting point and the water retention) as well as the 
actual root depths for heterogeneous areas crops, lead to limited practical use of the SWB 
models (Calera et al., 2017). The same apply to the soil evaporation whose estimation 
generally rely on the FAO guidelines (Allen et al., 1998). Although, it was shown that 
under high evaporation conditions, immediately after rain or irrigation for instance, the 
FAO-56 daily evaporation computed on the basis of the readily evaporable water (REW) 
is overestimated (Mutziger et al., 2005; Torres and Calera, 2010). Hence, to improve the 
estimation of E at the beginning of each drydown, a reduction factor proposed by Torres 
and Calera (2010) was applied to deal with this problem in several studies (e.g. Odi-Lara et 
al. (2016) and Saadi et al. (2015)). Furthermore, since actual ET is computed based on 
actual soil moisture status, the limited knowledge of the actual farmers’ irrigation 
scheduling is a further critical limitation for SWB modeling. Therefore, SWB modelers 
must deal with the lack of information about real irrigation, which induces unreliable 
estimations. Some approaches assimilate either water stress estimates based on canopy 
temperature (Colaizzi et al., 2003) or ET estimates based on SEB models into the soil 
water balance models (Anderson et al., 2007; Crow et al., 2008; Neale et al., 2012; 
Schuurmans et al., 2003), in order to calibrate the fraction of water depleted derived from 
the water balance model. In a slightly different approach, some authors propose the 
integration of actual ET values in order to calibrate the soil water balance model in terms 
of the root zone storage capacity (Campos et al., 2016; Hain et al., 2009; Wang-Erlandsson 
et al., 2016). 
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At regional scale, ET estimation is often achieved using SEB approaches, by 
combining surface temperature from medium to low-resolution (kilometer scale) remote 
sensing data with vegetation parameters and meteorological variables (Liou and Kar, 
2014). Recently, many efforts have been made to feed remotely-sensed surface 
temperature into ET modeling platforms in combination with other critical variables, e.g., 
NDVI and albedo (Kalma et al., 2008; Kustas and Anderson, 2009). A wide range of 
satellite-based ET models were developed, and these methods are reviewed in (Liou and 
Kar, 2014). The majority of SEB-based models are “single source” models”. However, as 
mentioned before, separate estimates of evaporation and transpiration makes the “dual-
source” models more useful for agro-hydrological applications (water stress detection, 
irrigation monitoring etc.) (Boulet et al., 2015). 

Contrarily to SWB models, most SEB models are run in their most standardized 
version, using observed remote sensing-based parameters such as albedo in conjunction 
with a set of input parameters taken from literature or in situ data; results are mostly 
instantaneous images of surface fluxes of which the extrapolation (instantaneous satellite 
overpass to the daily accumulation) and the interpolation (between acquisition two dates) 
are sources of uncertainty. On the other hand, the SEB model validation with enough 
data in space and time is difficult to achieve, due to the lack of enough ET field 
measurements but also to the limited availability of high-resolution thermal images 
(Chirouze et al., 2014). Therefore, it is usually possible to evaluate SEB models results 
only at similar scale (km) to medium or low-resolution images. Indeed, the pixel size of 
thermal remote sensing images, except for the scarce Landsat7 images (60 m), covers a 
range of 1000 m (MODIS), to the order of 4000 m (GOES). 

1.3 Irrigation  

The irrigation schedule indicates how much irrigation water has to be given to the 
crop, and how often or when this water is given. How much and how often water has to 
be applied depends on the irrigation water requirement (IR) of the crop. IR is defined as 
the amount of irrigation water required to be delivered in the field to meet the CWR. 

1.3.1 How much water is given? 

The amount of irrigation water, usually expressed in mm.day-1 or mm.month-1, which 
can be given during one irrigation application is influenced by the soil type (influences the 
maximum amount of water which can be stored in the soil per meter depth), the root 
depth (frequent - but small - irrigation applications shallow root system and less 
frequently and more water for deep rooting crops) and the irrigation method (surface, 
sprinkler or drip irrigation). 

Surface irrigation consists of a broad class of irrigation methods in which water is 
distributed over the soil surface by gravity flow. The irrigation water is introduced into 
level or graded furrows or basins, using siphons, gated pipe, or turnout structures, and is 
allowed to advance across the field. Surface irrigation is best suited to flat terrain, and 
medium to fine textured soil types which promote the lateral spread of water down the 
furrow row or across the basin. 
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Sprinkler irrigation is a method of irrigation in which water is sprayed, or sprinkled 
through the air in rain like drops. The spray and sprinkling devices can be permanently set 
in place (solid set), temporarily set and then moved after a given amount of water has 
been applied (portable set or intermittent mechanical move), or they can be mounted on 
booms and pipelines that continuously travel across the land surface (wheel roll, linear 
move, central pivot). 

Drip Irrigation is sometimes called trickle irrigation and involves dripping water onto 
the soil at very low rates (2-20 litres/hour) from a system of small diameter plastic pipes 
fitted with outlets called emitters or drippers. Water is applied close to plants so that only 
part of the soil in which the roots grow is wetted, unlike surface and sprinkler irrigation, 
which involves wetting the whole soil surface. With drip irrigation water, applications are 
more frequent (usually every 1-3 days) than with other methods and this provides a very 
favorable high moisture level in the soil in which plants can flourish.  

In the Kairouan plain, the main used irrigation techniques are drip and sprinkler 
irrigation. Cereals are mainly irrigated by sprinkling. The olive tree, with a density of less 
than or equal to 200 trees per hectare, is most often irrigated by gravity. The development 
of drip irrigation since 1999, facilitated by state subsidies (NOURY et al., 2007), has 
concerned vegetables crops and fruit trees (apple, pear, peach and apricot trees), as well as 
new olive plantations. At the time, these crops were irrigated mainly by surface irrigation 
(Koukou-Tchamba, 2000). The work of (Feuillette, 2001; Kadi, 2002) showed that the 
conversion to drip irrigation allowed not only a reduction in labor but also an increase in 
the yields and the financial benefit of vegetable crops. 

In most cases, CWR is supplied by rainfall and the remaining part by irrigation. In such 
cases IR is computed as a residual term of the water balance equation i.e. as the difference 
between the CWR and the rainfall part which is effectively used by the plants i.e. the 
effective rainfall defined as the fraction of the total amount of rainwater retained in the 
root zone and useful for meeting the water need of the crops. 

                  
  (1.38) 

IR is mainly estimated using RS-based SWB models, since irrigation is a component of 
the water balance equation on which SWB models are based. The crop coefficient 
method (FAO56 method) is currently the main method used for scheduling irrigations 
around the world (Glenn et al., 2007). IR was rarely directly estimated using SEB models. 
Indeed, SEB outputs are generally actual ET i.e. its energy equivalent LE, and if irrigation 
is estimated, it should be computed as a residual term of the water balance equation. 
Exception exists, for example, Courault et al. (1998) used surface temperature derived 
from NOAA data and a SVAT model called MAGRET to find parameters linked to the 
irrigation over the agricultural region “la Crau” in South-Eastern France ; the predicted 
parameters were the beginning and the end of irrigation, frequency and water quantity 
diverted. IR for a typical crop and an assumed rainfall pattern may be illustrated as in 
figure 1.9; it is rather a dynamic variable. 
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Figure 1. 9: Typical crop water requirement and corresponding water provided naturally by rain 
or artificially by irrigation 

1.3.2 When water is given? 

The total water required for crop growth is not uniformly distributed over its entire life 
span. The total growing season of an annual crop can be divided into four growth stages; 
the initial stage, the crop development stage, the mid-season stage (including flowering 
and grain setting or yield formation) and the late season stage (including ripening and 
harvest). 

Since it is the period of the highest crop water needs, the mid-season stage is most 
sensitive to water scarcity in which water shortages occurrence lead to negative effects on 
the crop yield. The least sensitive to water shortages is the late season stage. Water 
shortages in this stage - especially if the crop is harvested dry - have only a slight effect on 
the yield. Care should, however, be taken even during this stage with crops which are 
harvested fresh (lettuce as example) which are also sensitive to water shortages during the 
late season stage. The initial and crop development stages are between the mid-season 
and late season stages with respect to sensitivity to water shortages. Some crops react 
favorably to water shortage during the crop development stage: they react by developing a 
deeper root system, which is helpful during the later stages (Brouwer et al., 1989).  
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1.3.3 How often water is given? 

Soon after irrigation, when the soil is saturated, up to the field capacity, the extraction 
of water from the soil by the plants is at the peak. This rate of water withdrawal decreases 
as the soil moisture depletes. A critical threshold is reached in the moisture content of the 
soil, below which the plant is stressed. Unless the soil moisture is increased by application 
of water, the plant production would decrease. The difference of moisture content 
between the maximum content of available water i.e. field capacity and the lowest 
allowable moisture content i.e. wilting point is called the optimum soil water, from which 
the interval period of irrigation water may be estimated 

 

Figure 1. 10: Rise and fall of soil moisture content due to irrigation and evapotranspiration 
(Source: Dhrubajyoti (2009)) 

When sprinkler and drip irrigation methods are used, it may be possible and practical 
to vary both the irrigation depth and interval during the growing season. Whereas, when 
surface irrigation methods are used, it is not very practical to vary the irrigation depth and 
frequency, and it is very confusing for the farmers to change the schedule all the time.  
Therefore, farmers usually fix the most suitable irrigation depth and interval and keep 
them constant over the growing season.  

Irrigation schedule can be determined either by plant observation method or by 
estimation method: 

o Plant observation method is based on observing changes in the plant characteristics 
(plants color, curling of the leaves and ultimately plant wilting). The changes can often 
only be detected by looking at the crop as a whole rather than at the individual plants. 
The disadvantage of this method is that by the time the symptoms are evident, the 
irrigation water has already been withheld too long for most crops and yield losses are 
already unavoidable. 

o Estimation method is based on the estimated depth (in mm) of the irrigation 
application, and the calculated irrigation water need of the crop during the growing 
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season. Thus, the influence of the climate, i.e. radiation, air temperature and humidity, 
wind speed and rainfall, is more accurately taken into account.  

1.3.4 Plant response to water stress 

In order to increase water savings and enhance agricultural sustainability, early 
detection of water stress in crops, before it causes irreversible damage and yield loss, is 
crucial. In water deficit settings, ET will be less than in fully irrigated conditions because 
deficit-irrigated plants cannot transpire water at the same rate as fully watered, healthy, 
and actively growing plants (NebGuide, 2009). Under the same microclimatic conditions, 
irrigated crops will have higher ET rates than rainfed crops. Under rainfed or deficit 
irrigation, the plant leaf stomata will close when the soil cannot supply water at a 
sufficient rate, or the root system is not extensive and efficient enough to withdraw water 
from the soil system to meet the atmospheric demand. Rainfed crops usually will have 
deeper and more extensive root systems than irrigated crops and can withdraw water 
from deeper soil layers. However, in the absence of rain, when the available soil water is 
depleted, rainfed plants will experience wilting and ET will be reduced. Beyond a certain 
water stress threshold, crop yield will decrease. Water stress indicators are therefore useful 
to diagnose the causes of crop yield variability and develop management strategies in 
water-limited environments.  

Conventional methods for monitoring crop water stress rely on in situ soil moisture 
measurements, however, recent studies have focused on the use of remotely-sensed data 
as an alternative to traditional field measurements of plant stress parameters, as this 
provides information about the spatial and temporal variability of crops, these methods 
are reviewed in Ihuoma and Madramootoo (2017). The most classical indicator of crop 
water stress that uses RS data without using direct measurements is the crop water stress 
index (CWSI) based on the difference between air and canopy temperature (Idso et al., 
1981).  

1.3.5 Irrigation efficiencies 

The water that is required to irrigate a field or plot of land growing a particular crop 
not only has to satisfy the evapotranspiration needs for growing the crop (i.e. CWR), but 
would also include i) losses in the form of deep percolation and surface runoff while 
conveying water from the inlet of the field up to its tail end and ii) water requirement for 
special operations like land preparation, transplanting, leaching of salts, etc.  

The net irrigation requirement (NIR) is defined as the amount of irrigation water 
required to be delivered in the field to meet the irrigation water requirement of crop (IR) 
as well as other needs such as leaching, pre-sowing, etc. The Gross Irrigation 
Requirement (GIR) is defined as the amount of water required to meet NIR plus the 
amount of water lost as surface runoff and through deep percolation. Hence, to reflect 
water losses at field scale, the field application efficiency (ea) defined as the ratio of NIR 
and GIR, is used; it depends on the irrigation method and the level of farmer discipline. 

           (1. 39) 

http://www.sciencedirect.com/topics/agricultural-and-biological-sciences/water-stress
http://www.sciencedirect.com/topics/agricultural-and-biological-sciences/soil-moisture
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1.4 Synthesis 

This chapter is a state of art of the different estimation methods of the two main soil 
water balance components, ET and irrigation, with a special care to VIS-NIR and TIR 
remote sensing contribution in ET modeling. Finally, a comparative analysis between the 
two main approaches using remote sensing data to estimate spatially distributed ET: the 
SWB-based approach and the SEB-based approach, was performed, since, in this 
dissertation, the two applied models to our study area; SAMIR and SPARSE; and aiming 
to estimate ET either at field or regional scale are SWB model and SEB model, 
respectively.  

The study area as well as the used dataset is presented in the next chapter.  
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2 Chapter 2: Study area and data 
processing 

 

 

In this chapter, the general framework of the study area (location, climate, natural resources, 
land use etc.) is presented. Then, the different experimental sets and satellite data that have been 
collected and used during this thesis are detailed. Climate and soil data as well as land use maps 
are useful for agrometeorological models implementation. Other data are used for models 
calibration (soil moisture, evapotranspiration flux) and validation (irrigation volumes on the main 
irrigated areas of the region, scintillometer measurements). The processing steps of these data are 
also described. Finally, satellite images series and associated pre-processing are detailed. The high 
spatial resolution SPOT5 images series are used to feed the SAMIR model with VIS-NIR data 
for four agricultural seasons (2008-2009, 2011-2012, 2012-2013 and 2013-2014). The 
atmospheric and radiometric correction of the SPOT5 images series were based (among other pre-
processing methods) on the SPOT4-Take5 high repetitivity images series acquired by CNES in 
the beginning of the year 2013. The low spatial resolution images series Terra-MODIS and 
Aqua-MODIS are used to feed the SPARSE model with VIS-NIR and TIR data. 
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2.1 Study area description  

2.1.1 Geographic location 

The Merguellil watershed (Figure 2.1) is a large watershed in Tunisia (1540 km2), it has 
a relatively mountainous upstream part (1200 km2) with contrasting topography and land 
use, and a downstream part, a vast plain mostly devoted to agriculture; the outlet of the 
upstream subcatchment is the el Haouareb dam, built in 1989 which receives the waters 
of the Merguellil wadi (Leduc et al., 2005). The downstream plain is the Kairouan plain, 
our study area (Figure 2.1), located 9°30' E - 10°15' E and 35°N - 35°45' N, southwest of 
Kairouan city and surrounding the village of "Sidi Ali Ben Salem". 

The Kairouan plain is a low-lying plain (less than 100 m) whose water flows reach 
closed depressions i.e. sebkhas; Sebkha of el-Kalbia and Sebkha of sidi-el-Heni; acting as a 
base level for the two main wadis in the region; Merguellil wadi and Zeroud wadi, 
respectively. It is surrounded by the Sahel hills to the east and by mountains to the west 
(Jebel Ouesslat, Jebel Cherichira, and Jebel Touila) (Figure 2.1). 

 

Figure 2. 1: The upstream and downstream parts of the Merguellil watershed in central Tunisia  

The climate of this region is a semi-arid climate with very high precipitation variability 
(average annual rainfall ranging from 250 to 500 mm/year); dry summers, wet winters and 
large thermal amplitudes. 

Various water and soil conservation works were carried out in the Merguellil basin 
such as hill lakes and dams, which significantly reduce surface runoff and therefore 
protect the El Haouareb dam from rapid siltation; contour ridges that locally reduce 
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erosion processes and retain rainwater; and artificial groundwater recharge areas. 
However, these structures have been poorly maintained and managed, resulting in 
successive drying of the El Houareb dam (Cudennec et al., 2003). The dam has altered the 
balance of water intakes in the plain which leads, outside of flood periods, to dry out the 
portions of wadis situated downstream of the dam (Leduc et al., 2007). 

2.1.2 Climat data 

The Kairouan plain is part of the arid bioclimatic zone with a temperate winter 
(Barbery and Mohdi, 1987). Indeed, the Merguellil basin is sometimes influenced by a 
temperate climate, specific to the cold and rainy Tellian mountainous of northern Tunisia 
and at other times by the arid desert climate typical of southern Tunisia. However, du to 
its topography, this basin is more influenced by Southern climate than by the North one 
(Bouzaiane and Laforgue, 1986). 

2.1.2.1 Rainfall  

In central Tunisia, the rainy season extends from September to April, and in summer 
the rains are almost absent. Precipitation is mainly rainfall, with dew and mist are 
insignificant due to quasi-permanent atmosphere dryness. In the Kairouan region, annual 
mean rainfall ranges from 265 mm in the plain to 515 mm in the highest part of the 
catchment (Alazard et al., 2015). 

The Merguellil watershed is characterized by high interannual and spatial precipitation 
variability with intense floods and droughts. The annual rainfall measured between 1986 
and 2016 at the Kairouan SM meteorological station (9°32' 40'' E - 35°22' 60'' N) is 
illustrated in figure 2.2. In this figure, totals are computed for hydrological years, from 
September to August. The average annual precipitation is about 320 mm. 2000-2001 was 
the driest hydrological year, with a total annual rainfall of 160 mm. The wettest 
hydrological year was 1989-1990, with 575 mm of annual rainfall.  

 

Figure 2. 2: Kairouan SM station annual precipitation during the time series period 1986-2016 

Moreover, average monthly precipitation measured in the same meteorological station 
is shown in figure 2.3, showing significant irregularities in inter-monthly rainfall 
throughout the year. The most intense downpours are recorded in September and 
October. Generally, winter rains are often of low intensity compared to autumn rains, 
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whereas in summer rains are rare or absent, which is a characteristic of semi-arid regions. 
As annual rainfall averages fall below 400 mm, summer and spring drought affects plant 
development and yields (Gorrab, 2016). 

 

Figure 2. 3: Average monthly rainfall variation of the Kairouan SM station (1986-2016). 

2.1.2.2 Temperature 

Analyzing the temperature data for the Kairouan station during the last 30 
years (1986-2016) (Figure 2.4), it can be seen that the average monthly temperature 
oscillates between 10°C and 28°C. Generally the coldest months are December, January 
and February with average monthly temperatures below 15°C. The warmest months are 
July and August with an average temperature of about 28°C. This temperature variation in 
proves the region climate aridity. Warming at Kairouan during the last 50 years (1951–
2002) is statistically significant (0.29°C/10 years), also minimum temperatures have 
increased significantly (Mougou et al., 2011).  

 

Figure 2. 4: Monthly average air temperature variation in the Kairouan Station (1986-2016) 
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2.1.2.3 Relative humidity 

The average monthly relative humidity in the region varies between 55% and 70% 
during the cold season and between 40% and 55% during the warm season. The climate is 
therefore moderately dry from September to April and very dry from May to August, 
which explains the atmospheric clarity (Bouzaiane and Laforgue, 1986). 

2.1.2.4 Wind conditions  

The prevailing wind is from the north and north-west direction in winter and from the 
south and south-west in summer. Winds are generally light winds (speed less than 50 
km.h-1). Two characteristic winds of the region are worth noting:  

i- The sirocco is a warm, dry wind of Saharan origin, often accompanied by sand. It 
blows between April and September (between 20 and 55 days per year) and causes 
significant temperature increases of up to 50°C and can last for 12 successive days. 
Annual mean sirocco days recorded during 1975 to 1995 were 41 (minimum 13; 
maximum 60) (Mougou and Henia, 1998). 

ii- Jebbali is a cold winter wind. It begins on the Algerian massifs (Bouzaiane and 
Lafforgue, 1986).  

2.1.3 Water Resources  

The water resources of the Merguellil watershed are characterized by a very high 
complexity, linked in particular to a spatial disparity in rainfall, to the interconnection of 
surface and underground flows, to water withdrawals for various uses (agricultural, 
domestic and industrial), to water and soil conservation works, and to large dams (El 
Haouareb and Sidi Saad) located in the downstream part of the watershed (Kingumbi et 
al., 2007). 

2.1.3.1 Surface water resources 

The Merguellil watershed (Figure 2.5) is mainly drained by the Merguellil wadi. It 
drains a vast basin of about 8600 km and collects surface water from most of central 
Tunisia from the Tunisian-Algerian border. When large floods occur, usually during the 
months of September, October or April, the waters of the Wadi Zeroud flooded a large 
part of the Kairouan plain, especially its southern shore. 
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Figure 2. 5: Hydrographic Network of the Merguelil and Zeroud wadi (Source: SIG Merguellil, 
AMETHYST project) 

During the autumn of 1969, the region of Kairouan experienced intense floods. In 
September 1969, the rainfall was 145 mm (with 127 mm over six days), four times the 
monthly average. This flood was followed by a second more intense flood in October 
1969 (three times larger than in September, 428 mm). These exceptional floods are part of 
the remarkable rainfall events in the Merguellil watershed (Bouzaiane and Laforgue, 
1986). 

2.1.3.2 Groundwater resources 

The aquifer system of the plain of Kairouan is considered as the most important 
reservoir of Central Tunisia (about 3000 km), with several aquifers stacked on top of each 
other and communicating most often between them. The natural recharge of the 
Kairouan aquifers was estimated at 57 Mm3/year (Besbes, 1975; Chaieb, 1988). The 
outlets of this hydrogeological system are the hydraulic boundaries of the Cherbai, Sidi El 
Hani and Kalbia border sebkhas. The discharge of the water table takes place towards the 
sebkhas where the waters are subjected to a strong evapotranspiration (natural discharge).  

The Kairouan aquifer, of regional importance, is overexploited for irrigation as well as 
for drinking water supply. This is due to the continued increase in the population 
occupying the plain (564900 inhabitants in 2011) and the fact that water withdrawals 
increasingly exceed natural inputs. The intensification of agriculture since the 1970–1980s 
has relied on groundwater supply. The tendency is to intensify agriculture, not necessarily 
with additional wells, but by the deepening of existing wells to increase their capacity. The 
main irrigated crops are horticultural crops, cereals and orchards. The Tunisian State has 
invested in public and collective wells in some areas, whereas others are private and 
individually managed. However, illicit drilling and pumping were rapidly developed, while 
water authorities tried to maintain situational awareness by conducting regional inventory 
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of the pumping wells and maintaining a regional network to monitor water-table levels 
(Massuel et al., 2017). The evolution of the number of private wells in the Kairouan plain 
from an inventory done in 2010 (approximately 2,066 private pumping wells; dug wells 
and boreholes, for a total irrigated area of 12,000 ha within the 700 km2 of the northern 
part of the plain) was studied by Massuel et al. (2017); they found that this evolution 
follows a steep growth often qualified as exponential (Figure 2.6).  

The increase in water withdrawals from the Kairouan aquifer is the cause of its 
overexploitation. The overexploitation of aquifers is perceptible through a general decline 
in the piezometric level from 0.25 to 1 m per year for the last two decades and an average 
annual drawdown of around 0.30 m for the period 1995-2007 (Leduc et al., 2007). The 
Kairouan plain aquifer has presented a general drop of the piezometric head of about 
30 m over the last 40 years (Jerbi et al., 2014). Figure 2.7 shows an example of a 
piezometer in the Kairouan Plain in which a considerable decline in the piezometric level 
is noted. 

 

Figure 2. 6: Exponential evolution of the cumulative number of private pumping wells from the 
2010 inventory (Source: Massuel et al. (2017)) 

In an attempt to stop overexploitation, the authorities initially intervened on supply 
through the management of dams and then on demand, by setting up a "back-up area" 
(areas where drilling is prohibited) supposed to compel the drilling of new wells, since 
1991. However, the Kairouan aquifer remains a collective resource in free access: the 
restrictive regulations are not respected and the wells continue to proliferate especially 
after the revolution (January 2011). 

https://link.springer.com/article/10.1007/s10040-017-1573-5#Fig3
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Figure 2. 7: Variation of the Kairouan aquifer piezometeric level during 1969-2008: Example of 
the El Grin piezometer (9°50' 52'' E; 35° 36' 13'' N) (Source, DGRE)  

2.2  Land use maps  

Land use in the Kairouan plain is intimately linked to climatic factors as well as soil and 
available water resources. Land use maps were available for 2008–2009 (Shabou, 2010), 
2011–2012 (Chahbi et al., 2014), 2012-2013 (Chahbi, 2015) and 2013–2014 (Chahbi, 
2016); they include eight, six, six and seven land use classes, respectively (only agricultural 
area is taken into account). These classifications were obtained by applying a multi 
temporal decision tree, which allows the identification of crop types based on NDVI 
thresholds derived from ground truth datasets.  

In order to validate these remotely-sensed classifications, confusion matrix were 
produced for each map by comparing the classification results to actual land use for more 
than 100 validation fields (independent from the training data). Test fields data collection 
(land use, crop characteristics, estimated crop coverage rate, etc.) was a periodic work to 
which I took part since 2014. This analysis showed an overall accuracy of approximately 
97%, 80%, 85% and 88%, for the 2008–2009, 2011-2012, 2012-2013 and 2013-2014 
seasons, respectively.  

The most recent land use map (2013-2014) of the study area, given in figure 2.8, shows 
that the main occupation of agricultural land in the Kairouan plain is non-irrigated olive 
trees that occupy 41% of the plain. The olive tree is particularly adapted to the specific 
characteristics of the arid zones. Irrigated tree crops (4%) and annual crops (12%, mainly 
durum wheat and barley) are the other major land uses. Market gardening crops occupy 
also a significant percentage of areas such as autumn vegetables (4.5%) and summer 
vegetables (4%). During the summer, they consist mostly of tomatoes and peppers, and in 
smaller proportions watermelons and melon, while in autumn many plots are used for 
growing peppers and beans. The percentage of bare soils (rangeland and fallow) is 
important (18.4%) due to the hydric constraint that becomes more and more limiting in 
the plain. The lack of rain often incites farmers to decide not to sow or to abandon the 
plots originally planted in cereals. Moreover, the unfavorable soil characteristics and the 
extension of the zones affected by the salinization are other factors explaining the 
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increase of the uncultivated soils. These soils are vulnerable areas exposed to various 
degradation forms (water and wind erosion). 

 

Figure 2. 8: Land use map of the Kairouan plain obtained by the classification of SPOT 5 multi-
date images for the 2013/2014 agricultural season. 

2.3 Observed irrigation data 

Information on actual irrigation volumes at scales ranging from plot to perimeter is 
essential for the validation of the SAMIR model irrigation estimates. 

a. Perimeter scale 

The dominant structure for irrigation in the Kairouan plain is the Agricultural 
Development Group (Groupement de Développement Agricole, GDA ―in French) 
(Figure 2.9). Monthly irrigation volumes were obtained at the scale of each GDA irrigated 
sector. It was assumed that these data were trustworthy since these entities manage a 
collective well equipped with a meter, providing the water to the plots inside the 
perimeter. However, some plots outside the official perimeter also benefit from this water 
and in the frame of the acquisition of our validation data, they were delineated with the 
help of the irrigation manager. Conversely, no private well is exploited inside the GDAs, 
so that the monthly volumes collected can be reliably linked to the declared cultivated 
area. 
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Figure 2. 9: Geographic location of the GDAs in the study area 

The irrigation data (2008-2015) of three GDAs, Ben Salem II, Mlelsa and Karma II 
extending on 267 ha, 225 ha and 106 ha, respectively, were collected within the 
framework of this thesis (figure 2.10). The pumped volumes are obviously dependent on 
each GDA area, however, the general shape is the same and the peaks are always reached 
in summer with the decrease in rainfall and the summer vegetables requiring a lot of 
water.  

 

Figure 2. 10: Monthly pumped water volume in the Ben Salem II, Mlelsa and Karma II GDAs. 

b. Plot scale  

Field surveys conducted in 2013 in Ben Salem II, Mlelsa and Karma I and Karma II 
GDAs were carried out to collect plot-scale irrigation data. The irrigation volumes 
invoiced to the owners (or farmers) obtained from the managers of the collective 
perimeters (GDA) were combined with the identification of each owner’s plot (or plots) 
carried out in the field thanks to the aid of the managers in charge of the water 
distribution. Thus, one irrigation volume was obtained per "name". The term "name" 
refers to one or more plots belonging to the same owner, or cultivated by the same 
farmer, corresponding to a single invoiced volume. Finally, 106, 76 and 34 "names" were 
identified for the GDAs Mlelsa, Karma I and Karma II respectively. For the GDA of Ben 
Salem II the invoicing was done at the level of only eight blocks. 
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2.4 Remote sensing data  

2.4.1 High-resolution satellite imagery  

Acquisition of SPOT5 image time series were planned over the plain: Nine, six, 
thirteen and nine SPOT5 images were acquired for the 2008–2009, 2011–2012 , 2012–
2013 and 2013-2014 seasons, respectively (Figure 2.11). These images were used to feed 
the SAMIR model with NDVI data allowing the vegetation dynamic monitoring. 

For the 2012-2013 season, we benefited also from images acquired in the frame of the 
SPOT4-Take5 experiment (SPOT4-Take5, 2013) which occurred during the first half of 
2013 and whose main purpose was to simulate the revisit frequency and resolution of 
Sentinel-2 images to help users set up and test their applications and methods before the 
mission is launched. In this frame, SPOT4-Take5 images at 20 meters resolution were 
acquired every 5 days from 3 February to 18 June 2013 over the Kairouan plain, but only 
14 dates were cloud free among the 28 images acquired (Figure 2.11).  

The longest gap in the SPOT4-take5 time series was at the beginning of the period, as 
the first correct image was acquired on 10 March 2015, which means 40 days without 
image data. This is quite long regarding vegetation monitoring and emphasizes the 
limitation of a five-day revisit frequency even in semi-arid areas (frequent cirrus clouds 
can be observed over the study site). However, in our case, this gap was filled using the 
SPOT5 satellite, which successfully acquired two images, thanks to the programming 
capabilities of this sensor and its oblique viewing agility allowing observing areas on cloud 
free days. This is interesting since it shows that combining Sentinel-2 data with other 
sensors (Landsat 8, SPOT6, etc.) may still be necessary in many places to get consistent 
high-resolution time series. Another way to bridge the gaps in the time series would be to 
use fusion methods using medium-resolution images to estimate high-resolution 
signatures (Gao et al., 2006). 

 

Figure 2. 11: Acquisition dates of the SPOT images. 

SPOT images processing 

Those images require processing in order to get rid of geometric and radiometric 
measurement errors. 

a. Geometric corrections 

A raw satellite image is affected by geometrical deformations due to the relative 
movement of the sensor during acquisition, its angle of view, the rotation of the Earth 
and the geometry of the Earth surface (curvature and relief). These images cannot be 
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stacked with maps of the same area. Hence, satellite image geometric correction is 
paramount since it allows remote sensing derived information to be related to other 
thematic information in Geographical Information System. In our case, the coordinate 
system chosen is UTM, 32nd Zone, North. 

The image acquired on 5 November 2012 was first corrected using orthorectification 
and georeferenced using GPS points. This image was used as a reference image for the 
geometric correction of the subsequent SPOT5 campaigns. The subsequent images were 
first orthorectified and then georeferenced regarding the reference image using a first-
degree polynom adjusted on a set of 20-30 points control points selected manually all 
over the image. The resulting Root Mean Square (RMS) was usually less than 0.5 pixel, the 
equivalent of 5 m for SPOT images, which is valid for this type of data. Geometric 
correction was performed using ENVI software. 

b. Radiometric corrections of SPOT5 image time series 

There are three types of radiometric corrections: calibration of sensor values to get 
physical data, correction for the geometric variation in the image acquisition (satellite view 
angle and topography) and atmospheric correction (absorption and scattering of solar 
radiation). 

SPOT5 images (2008-2009 and 2011-2013) were radiometrically corrected to obtain 
top of canopy (TOC) reflectance on the basis of physical modeling corrections using the 
Simplified Method for Atmospheric Corrections (SMAC) algorithm based on the 6S 
radiative transfer model (Rahman and Dedieu, 1994). The SMAC 6S model was applied 
for each image using values of atmospheric optical depth and water content taken from a 
photometer located in the area and part of the AERONET network (Aeronet). The 
corrections for the 2008-2009 and 2011-2012 image time series were done by Zaghouani 
(2013) and for the 2012-2013 and 2013-2014 seasons, pre-processing was done in the 
frame of this thesis.  

The SPOT4-take5 series were provided already corrected using the Multi-sensor 
Atmospheric Correction and Cloud Screening (MACCS) algorithm taking into account 
both temporal and spectral approaches for retrieving the aerosol optical thickness 
(AOT)(Hagolle et al., 2015). 

c. Internal radiometric normalization of 2012-2013 season’s SPOT5 and SPOT4-
take5 images time series  

Due to the uncertainties in the atmospheric parameters, and in order to eliminate time 
profile artifacts due to radiometric correction discrepancies within the time series, an 
additional inter-calibration between images acquired in 2012-2013 was achieved (both 
SPOT5 and SPOT4-take5 time series) and was applied only to the two SPOT bands used 
for the NDVI computation, i.e. XS2 (red band) and XS3 (NIR band). Among the several 
methods of radiometric normalization (Furby and Campbell, 2001), the pseudo-invariant 
features (PIFs) method is widely used (Eckhardt et al., 1990; Paolini et al., 2006; Schott et 
al., 1988; Schroeder et al., 2006). Indeed, the radiative transfer model shows that for a flat 
topography and an assumed spatially homogeneous atmosphere, the reflectance can be 
linearly related to the image digital numbers DNs (Schott et al., 1988). This relative 
approach allows calibrating all images with similar atmospheric conditions with one image 
used as a reference. In our case, the seasonal average image was used. Hence, pseudo-
invariant features were identified for which a constant reflectance value could be assumed 
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over time. Thus, an additional normalization of the image time series was achieved by 
linear correction of the identified inconsistent dates as it was done by Houlès et al. (2006) 
and Simonneaux et al. (2008). 

The PIFs method was applied to the SPOT5 and SPOT4-take5 image time series. 28 
invariant objects were identified manually in the scene by visually comparing pairs of 
distant dates in the SPOT5 2012-2013 image time series (i.e., 5 November 2012 and 10 
June 2013). Then, for these 28 objects, the reflectance of one band at each date is plotted 
against the reflectance of the average image of this band (Figures 2.12 and 2.13). The 
quality of the invariant objects is confirmed by the determination of the linear fit. 
However, whereas in some cases the regression fits the 1:1 line (Figures 2.12a and 2.13a), 
in other cases the regression line is significantly different from the 1:1 line, showing a 
problem in the quality of the atmospheric correction Figures 2.12b and 2.13b). These 
discrepancies are more frequent for the SPOT5 time series, which is not surprising as 
each date was corrected independently, whereas the SPOT4-take5 series was corrected 
using the MACCS algorithm taking into account the temporal dimension of the series. 
When the deviation from the 1:1 line was important, the linear correction was applied to 
the image to match it with the average image.  

For the SPOT5 time series, eight images were corrected while for the SPOT4-take5 
time series, seven dates were linearly corrected, and one date was discarded (20th of 
March) because of the strong scattering of the reflectance due to haze (Figure 2.13c). 
Figures showing the comparison, between each SPOT5 and SPOT4-take5 images and the 
average image of the time series for the 28 invariant sites are given in annex 4.1.  
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(a) 

  
(b) 

  

Figure 2. 12: Comparison between the 2012-2013 SPOT5 images after atmospheric correction 
using SMAC6S and the average reflectance image of this series for the 28 invariant sites, for 
spectral bands XS2 and XS3. Example of (a) an image for which no additional correction is 

required and (b) an image needing an additional correction. 
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(a) 

 
 

(b) 

  

 (c) 

  

Figure 2. 13: Comparison between the SPOT4-take5 atmospherically corrected images and the 
average SPOT4-take5 reflectance for the 28 invariant sites, for spectral bands XS2 and XS3. 
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Example of (a) an image for which no additional correction is required, (b) an image needing an 
additional correction and (c) a hazy image (discarded from the final time series). 

d. Additional 2012-2013 season’s SPOT5 images radiometric normalization 
(SPOT4-take5 images as reference) 

Once the consistency of reflectance levels within the two time series had been checked, 
a similar analysis is performed between the SPOT5 (2012-2013 season) and SPOT4-take5 
images time series by plotting the average reflectance of the invariant objects (Figure 
2.14). A significant bias was observed which can be explained by: 

i) Differences in the atmospheric correction algorithm used; 
ii)  Difference in band definition between SPOT4-take5 and SPOT5; 
iii) The variations in viewing angle between both sets of images. Indeed the 

SPOT4-take5 images were acquired at a fixed angle different from nadir, 
whereas SPOT5 images were acquired at any angle.  

The observed bias had a strong impact on maximum NDVI values observed in the 
images, which was 0.9 for the SPOT4-take5 series, and only 0.7 for the SPOT5 series. 
Considering that fully covering vegetations were certainly present in the area (i.e., cereals 
or forage fields), a realistic maximum NDVI value of 0.9 was expected for all seasons. 
Therefore, the SPOT5 series was linearly normalized to match the SPOT4-take5 
radiometry on the basis of the linear regression established between the reflectance of the 
SPOT5 and SPOT4-take5 average images (Figure 2.14). Figures showing the comparison 
between the reflectance of the 2012-2013 SPOT5 images (after internal normalization 
using the PIFs method) and the average SPOT4-take5 reflectance (after internal 
normalization using the PIFs method) for the 28 invariant sites for all images are given in 
annex 4.2.  

Finally, a NDVI profile was generated for each pixel, for all 2012-2013 SPOT5 and 
SPOT4-take5 images. 

  

Figure 2. 14: Comparison between the average reflectances of the 28 invariants for the 2012-
2013 SPOT5 and SPOT4-take5 time series before correction. 
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e. NDVI standardization of 2008-2009, 2011-2012 and 2012-2013 SPOT5 images 
(SPOT4-take5 images as reference) 

For the 2008-2009 and 2011-2012 seasons, the NDVI time series were already 
computed by Zaghouani (2013) using the XS2 and XS3 bands. Maximum NDVI as well 
as bare soil NDVI were identified for the 2008-2009, 2011-2012 and 2012-2013 SPOT5 
time series images, and an average maximum NDVI and an average bare soil NDVI were 
computed for each season. Then, these values were compared to those obtained with the 
SPOT4-take5 series. As mentioned above, considerable NDVI bias was observed not 
only for the 2008-2009 and 2011-2012 seasons but even for the 2012-2013 season. 
However, intra-annual maximum vegetation and bare soil NDVI are supposed to be the 
same in a context of an irrigated area. Therefore, the NDVI values for the three SPOT5 
series were linearly normalized (based on maximum vegetation and bare soil) to match the 
SPOT4-take5 series (Table 2.1). Although ideally we should have go back to the Red and 
NIR bands for correction, this direct NDVI correction, although approximative, was 
achieved for the sake of simplicity, considering errors remain low. 

Table 2. 1: linear regressions for NDVI standardization 

SPOT campaigns Bare soil 
NDVI 

Maximum vegetation 
NDVI 

Linear regressions 

SPOT5 2008-2009 0.14 0.84               

SPOT5 2011-2012 0.16 0.85               

SPOT5 2012-2013 0.09 0.72               

SPOT4-take5 2012-2013 0.10 0.90  

 

f. Radiometric corrections of 2013-2014 SPOT5 image time series 

Since the SPOT4-take5 image series was taken as reference to radiometrically correct 
the SPOT5 images, we also used it to directly correct the 2013-2014 seasons’ SPOT5 
images series using the PIF approach, without applying the SMAC 6S model. Hence, 31 
invariant objects were identified manually in the scene by visually comparing pairs of 
distant dates, i.e. 26 February 2013 and 15 February 2014. For these 31 objects, the DNs 
of each date were plotted against the reflectance of the average SPOT4-take5 image 
(Figures 2.15). Each date was then linearly corrected to match the SPOT4-Take5 
radiometry based on the established linear regressions. The figure 3.15 shows example of 
two images, all the other figures are given in annex 4.3.  

 

 



Chapter 2: Study area and data processing 

64 

 

(a) 

  
(b) 

  

Figure 2. 15: Comparison between the 2013-2014 SPOT5 images DNs and the average SPOT4-
take5 reflectance for the 31 invariant sites, for spectral bands XS2 and XS3. Example of (a) an 

image in early season and (b) an image in mid-season.  

g. Cloud masking 

The SPOT4-take5 series was delivered with cloud masks that were applied to avoid 
anomalies in the NDVI, while for the SPOT5 images, only two images included small 
cumulus clouds (5 November 2012 and 21 January 2013) which were manually masked. 
The clouds were identified using a simple threshold since they have a strong reflectance in 
the green band. The cloud shadows were also easy to identify because they had the lowest 
reflectance in the near infrared band. As small clouds were rarely at the same place, they 
have limited impact on the resulting NDVI profiles.  

2.4.2 Low-resolution satellite imagery  

To feed the SPARSE energy balance model, we used products of the MODIS sensor 
embarked on board of the satellites Terra (overpass time around 10:30 local solar time) 
and Aqua (overpass time around 13:30 local solar time) (Table 2.2). MODIS products 
were acquired for the study period, from 1 September 2012 to 30 June 2015, at the 
resolution of 1 km. The data used were: land surface temperature (Tsurf), surface emissivity 

(εsurf) and viewing angle (ϕ) (MOD11A1 and MYD11A1 products for Terra and Aqua, 
respectively; NDVI (MOD13A2 and MYD13A2 products for Terra and Aqua, 
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respectively) and albedo (α) (the combined products MCD43B1, MCD43B2 and 
MCD43B3).  

All MODIS products are stored in a hierarchical format of enhanced data, HDF 
(Hierarchical Data Format) files, consisting of multidimensional data tables and 
descriptive metadata. The structure of the MODIS data directory is based on the short 
names of the MODIS products. TERRA MODIS products are abbreviated "MOD", 
AQUA MODIS products are abbreviated "MYD" and the combined products TERRA 
and AQUA MODIS are abbreviated "MCD". Abbreviated names also include the version 
number. The classification of MODIS data (Earth, atmosphere and cryptosphere data) is 
done in a hierarchy of five levels according to the applied processing to these data: 

 Level 0: This is the first level in which the raw data are stored in PDS (Production 
Data Set) format. Raw data are reconstructed, unprocessed instrument and payload 
data at full resolution, with all communications artefacts removed. 

 Level 1A: Reconstructed, unprocessed instrument data at full resolution, time-
referenced, and annotated with ancillary information, including radiometric and 
geometric calibration coefficients and georeferencing parameters computed and 
appended but not applied to Level 0 data. 

 Level 1B: Level 1A data that have been processed to sensor units (not all 
instruments have Level 1B source data).  

 Level 2: This is the level where the geophysical parameters are derived at the same 
resolution and location. These are data of level 1B to which the atmospheric 
corrections have been applied. They are directly exploitable to process the surface 
parameters. 

 Level 3: This is the level at which the data are averaged over a time scale. Variables 
are mapped on uniform space-time grid scales, usually with some completeness 
and consistency. 

 Level 4: Model output or results from analyses of lower-level data (e.g., variables 
derived from multiple measurements).  

The Characteristics of the used MODIS data are detailed in annex 5. 

MODIS images pre-processing 

Most standard MODIS Land products use the Sinusoidal grid tiling system (Figure 
2.16). Tiles are 10 degrees by 10 degrees at the equator. The tile coordinate system starts 
at (0, 0) (horizontal tile number, vertical tile number) in the upper left corner and 
proceeds right (horizontal) and downward (vertical).  
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Figure 2. 16: MODIS sinusoidal tiling system (Source: https://lpdaac.usgs.gov/)  

a. Data reprojection , extraction and temporal interpolation 

The sinusoidal projection is used for the storage of MODIS images at the Land 
Processes Distributed Active Archive Center (LP-DAAC). This projection is not suitable 
for displaying images. The composite data was therefore reprojected using MODIS 
Reprojection Tool (MRT). The MRT free software is developed by the Land Processes 
Distributed Active Archive Centre (LP-DAAC); it enables users to i) read data files in 
HDF format (MODIS Level-2G, Level-3, and Level-4 land data products), ii) specify a 
geographic subset or specific science data sets as input to processing, iii) perform 
geographic transformation to a different coordinate system/cartographic projection, and 
iv) write the output to file formats other than HDF (Dwyer and Schmidt, 2006) 

A MATLAB (matrix laboratory programming language https://fr.mathworks.com/) 
code was used to apply MRT and retrieve the images for each MODIS product in order 
to extract the variables that will be used as input data into the SPARSE model. A 10 km × 
8 km sub-image centered on the scintillometer transect (see section 2.5.3) was extracted 
(Figure 2.17). 

 

Figure 2. 17: Geographic location of the extracted 10 km× 8 km MODIS sub-image (MODIS 
grid)  

https://lpdaac.usgs.gov/
https://fr.mathworks.com/
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The daily MODIS Tsurf and viewing angle, 8-day MODIS albedo, and 16-day MODIS 
NDVI contain some missing or unreliable data; hence, days with missing data in MODIS 
pixels regarding the scintillometer footprint were excluded. Linear temporal interpolation 
of albedo and NDVI data were done to get daily images. For each pixel, only the good RS 
data was taken into account (based on the quality index supplied with the product); hence, 
the temporal interpolation was specific for each pixel. 

b. Remote sensed leaf area index 

 LAI is a key variable functionally related to plant biomass production. Accurate 
estimation of leaf area index (LAI) is important for monitoring vegetation dynamics. 
Indeed, early research showed that there is a strong correlation between a red to near-
infrared transmittance ratio and LAI (Jordan, 1969) and spectral measurements are 
strongly related to the LAI (Tucker, 1979). The NDVI is one of the most extensively 
applied vegetation indices related to LAI, hence, a single equation (Clevers, 1989) was 
used to compute remotely-sensed LAI of all crops in the study area from the MODIS 
NDVI product: 

     
 

 
   

          

              
    (2. 1) 

Soil and vegetation NDVI threshold, NDVI∞ and NDVIsoil, are often difficult to 
obtain, particularly in sparsely or highly vegetated areas (Song et al., 2017). The traditional 
methods for their estimation are: i) maximum and minimum NDVI in a study area 
(Gutman and Ignatov, 1998), ii) the accumulative maximum and minimum over a long-
term series dataset (Zeng et al., 2000) or iii) NDVI∞ and NDVIsoil based on field 
measurements or high-resolution remotely-sensed data (Jiapaer et al., 2011; Zhang et al., 
2013). It has been reported that the underestimation of NDVIsoil in sparse vegetation 
areas may cause the overestimation of LAI as high as 0.2 (Montandon and Small, 2008). 

The calibration of this relationship was done over the Yaqui irrigated perimeter 
(Mexico) during the 2007-2008 growing season using hemispherical LAI measured in all 
the studied fields and NDVI, derived from Formosat-2 images (Chirouze et al., 2014) . 
Calibration results gave the asymptotical values of NDVI, NDVI∞ = 0.97 and 
NDVIsoil = 0.05, as well as the extinction factor k = 1.13. The NDVIsoil obtained by 
Chirouze et al. (2014) over the Yaqui perimeter was different from the bare soil NDVI 
computed using the SPOT images (see sect. 2.4.1 table 2.1). In fact, bare soil NDVI 
depends on the used remotely-sensed data and on the study area which are different in 
our case (SPOT vs. Formosat-2 and Yaqui perimeter vs. Kairouan plain) but it is always 
assumed that NDVI of 0.1 and below correspond to bare soil (Weier and Herring, 2000). 
However, as this relationship was calibrated over a heterogeneous land surface but on 
herbaceous vegetation only, its relevance for trees was checked. For that purpose, clump-
LAI measurements on an olive tree, as well as allometric measurements, i.e. mean distance 
between trees and mean crown size were obtained using Pleiades satellite data (Mougenot 
et al., 2014; Touhami, 2013). We checked that the pixels with tree dominant cover showed 
LAI values close to the results of allometric measurements (of the order of 0.3 given the 
interrow distance of 12 m on average).  
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2.5 In situ data 

2.5.1 Meteorological data  

Half hourly standard meteorological measurements including global incoming radiation 
i.e incident short wavelengths radiation [W.m-2], wind speed [m.s-1], air temperature [°C], 
air humidity [%] and rainfall [mm] have been recorded using an automated weather 
station installed in the study area (delegation of Chebika, Sidi Ali Ben Salem sector) since 
December 2011(Figure 2.18) in the frame of the SudMed programm1. Hereafter, this 
weather station is referred as the Ben Salem meteorological station (35° 33' 1" N; 9° 55' 
18" E). It is an automatic Campbell Scientific (Logan, USA) station. The global radiation 
is measured using a Sr11 pyranometer (Wittich, Netherland). Wind speed and direction [°] 
are measured using a Windvane-Anenometer R.M.010305 (Young, USA); wind speed is 
measured at 2.32m above the ground. The air temperature and air humidity are measured 
using a HMP45C thermo-hygrometer (Vaisala, Finland). Rainfall is measured with a 
Tipping Bucket Raingauge SBS500 (Campbell Scientific, USA). 

 

Figure 2. 18: Ben Salem meteorological station set-up 

Required meteo data over periods prior to the Ben Salem meteorological station 
installation date (from 2008 to 2011) were taken from the nearest weather station referred 
as the INGC (National Institute of Field Crops, Institut National des Grandes 
cultures―in French) meteorological station (35° 37' 14" N; 9° 56' 16"E). This wheather 
station is managed by the National Meteorological Institute (INM, Institut National 
météorologique―in French). 

Processing of meteorological data 

The processing of INGC meteorological data aquired from January 2008 to December 
2011 was done in the frame of Zaghouani (2013) master thesis, while the Ben Salem 
meteorological data sets acquired from December 2011 to June 2015 and used in this 

                                            

1 The SUDMED program has been launched by the CESBIO (Center for Space Studies of the BIOsphere, Centre 
d’Etudes Spatiales de la BIOsphère―in French) to address the issue of improving understanding of the hydrological 
functioning of semi-arid watersheds. Study sites are the Tensift in central Morocco since 2002, the Merguellil 
catchment since 2008 and the Mount Lebanon for snow hydrology since 2011. 
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PhD thesis work required primary processing to make them relevant and usable; thus the 
reliability and accuracy of each climate variable was checked by identifying periods with 
missing data as well as outliers and measurement artefacts. Depending on the nature of 
the errors found, they have been corrected as follows by linear interpolation if only a half 
an hour data is missing or erroneous; otherwise, missing or erroneous data over several 
hours or several days were substituted by data from the Ben Salem flux station or the 
INGC weather station (subject to availability). Thus, for each meteorological variable, a 
complete data set was generated at a half-hour time step, which enabled us to compute 
half hourly reference ET (ETo) using the FAO ‘‘reduced form’’ equation for application 
to both 24-h and hourly or shorter time steps (Allen et al., 2005a; Allen et al., 2006): 

    
                 

  
         

     
            

             
 (2. 2) 

where where ETo is in mm (0.5h)-1 for half hourly time steps, Rn-G [MJ m-2 (0.5h)-1] is 
half hourly available energy, γ [kPa.C-1] is the psychrometric constant, T0.5h [K] is half 

hourly air temperature,   [kPa C-1] is saturation slope vapour pressure curve at T0.5h, U2 
[m.s-1] is average half-hourly wind speed, e°( T0.5h) [kPa] is saturation vapour pressure at 
air temperature T0.5h , ea [kPa] is the average half-hourly actual vapour pressure and Cn 
and Cd are respectively the numerator and denominator constants that change with 

reference type and calculation time step (Cn= 0.5⨯37 and Cd=0.34 (Allen et al., 2006)). 

The relationships allowing calculation of the equation 2.2 parameters are detailed in 
annex 6. Once calculated at the half-hour time step, the daily ETo was computed. The 
following graph (Figure 2.19) represents the two series of daily ETo and rainfall of the 
Ben Salem meteorological station from December 2011 to June 2015, higher values of 
about 10 mm/day are reached in summer. 

 

Figure 2. 19: Daily variation of reference evapotranspiration and rainfall over the period 
December 2011-June 2015 (Ben Salem meteorological station) 

2.5.2 Flux and soil moisture data 

The flux data sets used in this PhD thesis works were measured by three automatic 
Campbell Scientific (Logan, USA) flux stations (Figure 2.20) based on the eddy 
correlation (EC) method. Moreover, soil properties (moisture, temperature and heat flux) 
measurement is carried out in soil pits near the flux towers. 

The first station was installed few tens of meters away from the Ben Salem 
meteorological station, in an irrigated field (delegation of Chebika, Sidi Ali Ben Salem 
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sector) from December 2011 until November 2014. Hereafter, this station is referred as 
the Ben Salem 1 station (35° 33' 1" N; 9° 55' 18" E). It was operated to measure the four 
components of the surface energy budget as well as soil properties of i) an irrigated barley 
from December 2011 to June 2012 and ii) an irrigated wheat from November 2012 to 
June 2013 and iii) an irrigated pepper from June to November 2014. The second station 
was installed in a rainfed wheat field (delegation of Chebika, Sidi Ali Ben Salem sector) 
from January to June 2012. Hereafter, this station is referred as the Ben Salem 2 station 
(35° 33' 32" N; 9° 56' 25" E). The third station was installed in a rainfed olive orchard 
(delagtion of Nasrallah) from March 2012 to September 2016. It consists of two stations: 
one on the olive tree and the other on the bare soil. Hereafter, this station is referred as 
Nasrallah station (35° 18' 17" N; 9° 54' 56" E). The measured parameters as well as the 
measuring sensor are detailed in table 2.3 for the three stations. 

a) b) c) 

   

Figure 2. 20: set-up of a) Ben Salem 1 b) Ben Salem 2 and c) Nasrallah stations 

These three stations measure the convective fluxes exchanged between the surface and 
the atmosphere (H and LE) by the turbulent covariance method, combined with 
measurements of the net radiation Rn and the soil heat flux G (15mn recording time 
step).  

The components of the radiative surface balance which are short wavelength radiations 
(incoming and outgoing) and long wavelength radiations (incoming and outgoing) are 
measured by net radiometer). From these measurements, the net radiation is deduced 
since it represents the balance between short and long wavelengths radiation according to 
the equation 1.19 (see section 1.2.2.1). G is measured by three soil heat flux plates 
uniformly distributed at a soil pit (2-3 cm depth) close to the flux towers of the Ben Salem 
1 and Ben Salem 2 stations. Five soil heat flux plates were used in the  Nasrallah station. 
A correction was performed to bring the soil heat flux measured in depth to a surface 
heat flux by taking into account the heat stored between the surface and the measurement 
depth. H and LE are measured using i) a CSAT3 anemometer recording high-frequency 
fluctuations (20 Hz) of the three components of wind speed; the component u horizontal 
and parallel to the wind direction, the component v horizontal and perpendicular to the 
wind direction and the vertical component w; as well as the air temperature fluctuations 
(20 Hz) from the sound velocity; and ii) an optical hygrometer KH20 recording high-
frequency (20 Hz) fluctuations of water vapor in the atmosphere i.e water vapor. Since the 
KH20 sensor cannot measure the absolute vapor pressure, it is coupled with a thermo-
hygrometer installed at the same height which measures the air humidity and temperature 
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(Table 2.2). Moreover, soil moisture and temperature are measured using respectively five 
thetaprobes and five thermistors (Table 2.2) 

Table 2. 2: Measured parameters and measuring instruments in the Ben Salem 1, Ben Salem 2 
and Nasrallah stations 

Flux stations Measured parameters Sensor Model and Manufacturer  

Ben Salem 1 Flux 
tower 

Wind speed (u, v, w) [m.s-1] 3D Sonic 
Anemometer 
  

 CSAT3 (Campbell Scientific, 
USA) 

Specific air humidity [kg.kg-1] Hygrometer KH20 (Campbell Scientific, 
USA) 

Temperature air [°C] Thermo-
hygrometer 

HMP155 (Vaisala, Finland) 

Relative humidity [%] Thermo-
hygrometer 

HMP155 (Vaisala, Finland) 

Radiations  Net radiation [W.m-2] Net Radiometer NR01 (Hukesflux, Netherlands)  
Infrared temperature [°K] Infrared 

thermometer 
IR120 (Campbell Scientific, 
USA) 

NDVI [-] NDVI sensor SKR1800 (Skye, UK) 

Soil  Soil hat flux [W.m-2] Simple soil heat 

flux plates (⨯4) 

HFP01 (Hukseflux, 
Netherlands) 

Self calibrated 
soil heat flux 
plate  

HFP01SC (Hukseflux, 
Netherlands) 

Soil Temperature [°C] Thermistors 

(⨯5) 

TH108 (Campbell Scientific, 
USA) 

Soil moisture [m3.m-3] Thetaprobes  ML2x (⨯5) and PR2/6 (⨯1) 
(DeltaT, UK) 

Ben Salem 2 Flux 
tower 

Wind speed (u, v, w) [m.s-1] 3D Sonic 
Anemometer 
  

 CSAT3 (Campbell Scientific, 
USA) 

Specific air humidity [kg.kg-1] Hygrometer KH20 (Campbell Scientific, 
USA) 

Air temperature [°C] Thermo-
hygrometer 

HMP155 (Vaisala, Finland) 

Air relative humidity [%] Thermo-
hygrometer 

HMP155 (Vaisala, Finland) 

Radiations  Net radiation [W.m-2] Net Radiometer NRLITE 2 (Kipp&Zonen, 
Netherlands)  

Soil  Soil hat flux [W.m-2] Soil heat flux 

plates (⨯5) 

HFP01 (Hukseflux, 
Netherlands) 

Soil Temperature [°C] Thermistors 

(⨯5) 

TH108 (Campbell Scientific, 
USA) 

Soil moisture [m3.m-3] Thetaprobes 

(⨯5) 

ML2x (DeltaT, UK) 

Nasrallah  
(olive tree)  

Flux 
tower 

Wind speed (u, v, w) [m.s-1] 3D Sonic 
Anemometer 
  

 CSAT3 (Campbell Scientific, 
USA) 

Specific air humidity [kg.kg-1] Hygrometer KH20 (Campbell Scientific, 
USA) 

Air temperature [°C] Thermo-
hygrometer 

HMP155 (Vaisala, Finland) 

Air relative humidity [%] Thermo-
hygrometer 

HMP155 (Vaisala, Finland) 
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Flux stations Measured parameters Sensor Model and Manufacturer 

Nasrallah  
(olive tree) 

Radiations  Net radiation [W.m-2] Net 
Radiometer 

(⨯2)  

CNR4 (Kipp&Zonen, 
Netherlands) and NR01 
(Hukesflux, Netherlands) 

  Infrared temperature [°K] Infrared 
thermometer 

IR120 (Campbell Scientific, 
USA) 

 Soil Soil hat flux [W.m-2] Soil heat flux 

plates (⨯5) 

HFP01 (Hukseflux, 
Netherlands) 

  Soil Temperature [°C] Thermistors 

(⨯5) 

TH108 (Campbell Scientific, 
USA) 

  Soil moisture [m3.m-3] Thetaprobes 

(⨯5)  

ML2x (DeltaT, UK) 

Nasrallah  
(bare soil) 

Flux 
tower 

Air temperature [°C] Humidity and  
Temperature 
Probe 

HMP155 (Vaisala, Finland) 

  Relative humidity [%] Humidity and  
Temperature 
Probe 

HMP155 (Vaisala, Finland) 

  Wind speed [m.s-1] Windvane-
Anenometer 

R.M. 010305 (Young, USA) 

  Wind direction [°] Windvane-
Anenometer 

R.M. 010305 (Young, USA) 

  Rainfall [mm] Raingauge SBS500 (Campbell Scientific, 
USA) 

 Radiations  Infrared temperature [°K] Infrared 
thermometer 

IR120 (Campbell Scientific, 
USA) 

 Soil  Soil hat flux [W.m-2] Soil heat flux 

plates (⨯5) 

HFP01 (Hukseflux, 
Netherlands) 

  Soil Temperature [°C] Thermistors 

(⨯5) 

TH108 (Campbell Scientific, 
USA) 

  Soil moisture [m3.m-3] Thetaprobes 

(⨯5) 

ML2x (DeltaT, UK) 

Processing of flux data 

The processing of the Ben Salem 1 irrigated wheat (2012/2013) flux data was done in 
the frame of this PhD thesis work. The processing of the Ben salem 1 irrigated barley 
(2011/2012) and the Ben Salem 2 rainfed wheat (2011/2012) flux data was done in the 
frame of Zaghouani (2013) master thesis while Nasrallah flux data processing was done 
by Chebbi et al. (2017, in progress) . It is all the same for the irrigated fields soil moisture 
data. 

The EC processing sequence to calculate turbulent fluxes from raw, high-frequency 
data is complex, depending on the chosen instruments, their deployment, the site 
characteristics and the atmospheric turbulence peculiarities (Fratini and Mauder, 2014). 
Several software programs allowing the calculation of convective flows using the 
turbulent covariance method have been developed and made available to the scientific 
community in recent years (Foken et al., 2012). They allow the application of required 
instrument corrections, applying calibration coefficients if needed, rotating coordinates; 
correcting for time delays; and conducting quality control. The most used are: TK2, 
developed at the University of Bayreuth, Germany (Mauder and Foken, 2011); EDIRE, 
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developed at the University of Edinburgh, UK (Clement and Moncreif, 2007), ECPACK 
developed in the University of Wageningen, Netherlands (Van Dijk et al., 2004), and 
EDDYPRO developed by LI-COR, USA (LI-COR, 2016). In our case, post-processing 
of 20 Hz EC data was done using the EddyPro software in order to get half hourly 
convective fluxes (LE and H).  

In a subsequent step, the energy balance closure was calculated by statistical regression 
of half hourly turbulent energy fluxes against available energy for the irrigated barley 
(2011/2012), the irrigated wheat (2012/2013) and the rainfed wheat (2011/2012) fields. 
The result indicates a lack of closure with an imbalance of 14% (Figure 2.21), 40% (Figure 
2.22) and 20% (Figure 2.23) for the irrigated barley, irrigated wheat and rainfed wheat 
fields, respectively. The low closure value (60%) for the irrigated wheat field can be 
explained by the quality of EC measurements which is influenced not only by possible 
deviations from the theoretical assumptions but also by problems of sensor 
configurations and meteorological conditions (Foken and Wichura, 1996). However, it is 
difficult to isolate the causes of measurement errors. Instrumental errors, uncorrected 
sensor configurations, problems of heterogeneities in the area and atmospheric conditions 
are the main problems that affect data quality (Foken, 2008). Figure 2.24 shows statistical 
regression of half hourly turbulent energy fluxes against available energy of the Nasrallah 
station  

 

Figure 2. 21: Statistical regression of half hourly turbulent energy fluxes against available energy 
of the Ben salem 1 station (irrigated barley 2011/2012) 
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Figure 2. 22: Statistical regression of half hourly turbulent energy fluxes against available energy 
of the Ben salem 1 station (irrigated wheat 2012/2013) 

  

Figure 2. 23: Statistical regression of half hourly turbulent energy fluxes against available energy 
of the Ben salem 2 station (rainfed wheat 2011/2012) 
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Figure 2. 24: Statistical regression of half hourly turbulent energy fluxes against available energy 
of the Nasrallah station (olive orchard 2012-2015) (Source: Chebbi et al. (2017, in progress)) 

Since the energy balance closure found is low, the measured LE was not taken into 
account and a LEres was computed as the residual term of the energy balance equation 
using the EC measurement of H, Rn and G as follows: 

             (2. 3) 

On the other hand, the Bowen ratio (β) method was applied to compute a LEBowen as 
follows: 

  
 

  
           

    

   
 and                

 

    
  (2. 4) 

where LE and H , Rn and G are the half hourly EC measured fluxes.  

Finally, daily LEres and LEBowen were computed from the half hourly LE and an average 
daily observed LE (Figures 2.25, 2.26 and 2.27) was computed and converted from [W.m-

1] to [mm/day], since these observed LE i.e. ET will be used to calibrate the parameters of 
SAMIR model (see sections 3.2 and 4.1) which computes a daily soil water balance. 
Figures 2.28 shows observed daily latent heat flux LE and reference evapotranspiration 
(ETo) of the Nasrallah station (November 2012 to December 2015).  
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Figure 2. 25: Observed daily latent heat flux LE of the Ben salem 1 flux station (irrigated barley 
2011/2012 agricultural season) and reference evapotranspiration (ETo) computed at the Ben 

Salem meteorological station for the same period. 

 

Figure 2. 26: Observed daily latent heat flux LE of the Ben salem 1 flux station (irrigated wheat 
2012/2013 agricultural season) and reference evapotranspiration (ETo) computed at the Ben 

Salem meteorological station for the same period. 

 

Figure 2. 27: Observed daily latent heat flux LE of the Ben salem 2 flux station (rainfed wheat 
2011/2012 agricultural season) and reference evapotranspiration (ETo) computed at the Ben 

Salem meteorological station for the same period. 



Chapter 2: Study area and data processing 

77 

 

 

Figure 2. 28: Observed daily latent heat flux LE and reference evapotranspiration (ETo) of the 
Nasrallah station (olive orchard 2012-2015)  

Processing of soil moisture data and irrigation doses calculation 

Information on irrigation practices at our experimental plots has several shortcomings, 
as the farmer does not always have precise irrigation dates. Thus, half-hourly 
measurements of soil moisture at the flux stations were used to estimate irrigation doses 
and application days. 

At the Ben Salem 1 flux station, there are two sensors for measuring soil moisture 
(Table 2.3); five theta probes ML2x (at 0.05 m, 0.10 m, 0.20 m, 0.40 m and 1.00 m soil 
depth) and one theta probe PR2 (at 0.10 m, 0.20 m, 0.30 m, 0.40 m, 0.60 m and 1.00 m 
soil depth). The half hourly measured soil moisture by the two sensors were processed 
together in order to compare them and thus keep the most reliable data. Soil moisture 
measurements calibration consists in the conversion of these electric measurements 

millivolts (mV) to volumetric water content  vol [% or m3.m-3], based on gravimetric 
measurements (Baize, 2000) and soil bulk density estimation (Duchaufour, 1995) done by 
Gorrab (2016). Calibration parameters coming from gravimetric method as well as soil 
bulk density for each soil depth are detailed in table 2.4.  

Table 2. 3: Calibration coefficients of the measured soil moisture in the Ben Salem 1 flux station 
(irrigated wheat field 2012/2013) 

Measurement depth (m) 0.05 0.10 0.20 0.30 0.40 0.60 1.00 

Soil 
moisture 

sensor 
calibration 
parameters 

Ml2x 
a 0.050 0.036 0.046 - 0.044 - 0.008 

b -3.65 -6.228 -8.188 - -8.928 - 6.801 

PR2 
a - 0.032 0.032 0.049 0.064 0.051 -0.016 

b - -6.298 -7.704 -26.082 -43.247 -34.796 28.98 

Soil bulk density [-] 1.1 1.19 1.28 1.28 1.28 1.34 1.4 

Source: SudMed Project 

Hence, for each sensor, and for each measurement depth, the following relationship 

was applied to compute volumetric soil moisture  vol: 

                              (2. 5) 
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where  p [% or g.g-1] is the moisture content,  el [mV] is the theta probe measured soil 

moisture,  bulk [-] is the soil bulk density and a and b are the calibration coefficients. 

Half hourly soil moisture measurements using the ML2x sensor and the PR2 sensor are 
illustrated in figures 2.27a and 2.27b showing measurements errors in PR2 measurements 
in particular for the measurement depth 60 cm, in addition, peaks of soil moistures are 
sharper with ML2x rather than with PR2. Hence, the Ml2x data, which are a priori more 
reliable, have been chosen for further elaborations.  

a) 

 

b) 

 

Figure 2. 29: Half hourly a) ML2x and b) PR2 soil moisture measurement in the Ben Salem 1 
station from November 2012 to June 2013 and rainfall from the Ben Salem meteorological 

station for the same period. 
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In a subsequent step, daily soil moisture was computed from the half hourly ML2x 
measurements. Since measured soil moisture is a punctual measurement of a specific soil 
depth in which the sensor is put, each measurement was supposed to be representative of 
a soil horizon (referred as i) having a certain depth determined on the basis of the depth 

were the sensor is put, for example, soil moisture measurement at 5 cm ( vol,1) 
corresponds to the moisture of a 0.075 m deep soil horizon , from the soil surface z1,1=0 
cm to z2,1=0.075 cm soil depth. Likewise, the other measurement depths: soil moisture 
measurement at 0.1 m, 0.2 m, 0.4 m and 1 m corresponds to the moisture of z1,2=0.075 m 
to z2,2=0.15 m, z1,3=0.15 m to z2,3=0.30 m, z1,4=0.30 m to z2,4=0.70 m and z1,5=0.70 m to 
z2,5=1.00 m soil horizons, respectively. Thus, water content of each horizon wd [mm] was 
computed as follow: 

                              (2. 6) 

Then, cumulative soil moisture for the total depth (1.00 m) was computed. In order to 
get the daily irrigation doses, the moisture inversion method was used to eliminate the 
moisture peaks corresponding to rainfall. The remaining peaks are assumed to be 
irrigations (Figure 2.30). A subtraction between moisture at the date of the alleged 
irrigation (day j) and humidity at the previous date (day j-1) gives us approximately the 
irrigation dose.  

 

Figure 2. 30: Computed irrigations doses from the cumulative soil moisture in 1.00 m soil deep 
(the Ben Salem 1 soil moisture measurement from November 2012 to June 2013) and rainfall 

from the Ben Salem meteorological station for the same period. 

2.5.3 Extra large aperture scintillomter (XLAS) 

An optical Kipp and Zonen Extra Large Aperture Scintillometer (XLAS) was operated 
continuously for more than two years (1 March 2013 to 3 June 2015) over a relatively flat 
terrain (difference in levels of about 18 m). The scintillometer consists in a transmitter 
and a receiver both with an aperture diameter of 0.3 m. The wavelength of the light beam 
emitted by the transmitter is 940 nm. The transmitter was located on an eastern water 
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tower (coordinates: 35° 34' 0.7" N; 9° 53' 25.19" E; 127 m above sea level) and the 
receiver on a western water tower (coordinates: 35° 34' 17.22" N; 9° 56' 7.30"E; 145 m 
above sea level) separated by a path length of 4 km (Figure 2.31). Both instruments were 
installed at 20 m height. The scintillometer transect was above mixed vegetation canopy: 
trees (mainly olive orchards) with some annual crops (cereals and market gardening).  

Furthermore, two automatic Campbell Scientific (Logan, USA) eddy correlation 
stations were also positioned at the same level on the two water tower top platforms. Half 
hourly turbulent fluxes in the eastern and the western EC stations were measured used a 
sonic anemometer CSAT3 (Campbell Scientific, USA) at a rate of 20 Hz and a sonic 
anemometer RM 81000 (Young, USA) at a rate of 10 Hz, respectively. These EC set-ups 
were used to initialise friction velocity u* values in the scintillometer derived flux 
computation.  

 

Figure 2. 31 : XLAS Set-up : XLAS transect (white), emitter and receiver are located at the 
extremity of each white arrow and half-hourly XLAS footprint for selected typical wind 

conditions (green), MODIS grid (black), trees plots (blue) and the location of the Ben Salem 
meteorological and the Ben Salem 1 flux station. This figure illustrates three colour (red, green, 
blue) composite of SPOT5 bands 3, 2 and 1 aquired acquired on 9th April 2013 and showing in 

red the cereal plots.  

2.5.3.1 Scintillometer derived fluxes 

In order to compute the XLAS sensible heat flux, the refractive index of air integrated 

along the optical path     [m-2/3] was converted to the structure parameter of 
temperature CT

2 [K2 m−2/3] by introducing the Bowen ratio (ratio between sensible and 
latent heat fluxes), hereafter referred to as β, which is a temperature /humidity correlation 
factor. Moreover, the height of scintillometer beam above the surface varies along the 
path. Consequently, Cn

2 and therefore CT
2 are not only averaged horizontally but vertically 

as well. 
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At visible wavelengths, the refractive index is more sensitive to temperature than 
humidity fluctuations Then, we can relate the Cn² to CT² :  

      
            

  
 

 

      
    

 
 
 

 (2. 7) 

with T is the air temperature [°K] and P is the atmospheric pressure [Pa].  

Green and Hayashi (1998) proposed another method to compute the sensible heat flux 
(H) assuming full energy budget closure and using an iterative process without the need 
of the Bowen ratio as an input parameter (Solignac et al., 2009; Twine et al., 2000). Then, 
the similarity relationship proposed by Andreas (1988) is used to relate the CT² to the 
temperature scale T* in unstable atmospheric conditions: 

            
 
 

   
             

      

  
 
 
 
 
  (2. 8) 

and for stable atmospheric conditions: 

            
 
 

   
             

      

  
 

 
 
    (2. 9) 

where LO [m] is the Obukhov length , ZLAS [m] is the scintillometer effective height, and d 
(m) is the displacement height, which corresponds to 2/3 of the averaged vegetation 
height zv (see section 5.2). 

From T* and the friction velocity, u* , the sensible heat flux can be derived as follows: 

           (2. 10) 

where ρ [kg.m−3] is the density of air and cp [J.Kg-1.K-1] is the specific heat of air at 
constant pressure. 

XLAS sensible heat flux (H_XLAS) was computed at a half hourly time step. Negative 
night-time data were set to zero and daytime flux missing data (one to three 30mn-data) 
were gap filled using simple interpolation. Flux anomalies in early morning (around 
sunrise) and late afternoon (around sunset) were corrected on the basis of the ratio 
between sensible heat flux and half hourly incoming short wavelengths radiation (Rg) 
measurements using the Ben Salem meteorological station. Furthermore, aberrant values 
of XLAS sensible heat flux were ruled out. 

2.5.3.2 XLAS footprint computation 

The footprint of a flux measurement defines the spatial context of the measurement 
and the source area that influences the sensors. In case of inhomogeneous surfaces like 
patches of various land covers and moisture variability due to irrigation, the measured 
signal is dependent on the fraction of the surface having the strongest influence on the 
sensor and thus on the footprint size and location. Footprint models (Horst and Weil, 
1992; Leclerc and Thurtell, 1990) have been developed to determine what area is 
contributing the heat fluxes to the sensors as well as the relative weight of each particular 
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cell inside the footprint limits. Contributions of upwind locations to the measured flux 
depend on the height of the vegetation, height of the instrumentation, wind speed, wind 
direction, and atmospheric stability conditions (Chávez et al., 2005).  

According to the model of Horst and Weil (1992), for one-point measurement system, 
the footprint function f relates the spatial distribution of surface fluxes, F0(x,y) to the 
measured flux at height zm, F(x,y,zm), as follows: 

                
                      

    
 

  

 

  

 (2. 11) 

The footprint function f is computed as: 

          
   

  

  
   

      

       
             (2. 12)  

where       is the mean wind speed profile and    is the mean plume height for 
diffusion from a surface source. The variables A, b and c are scale factors and r a scale 
factor of the Gamma function. In the case of a scintillometer measurement, the footprint 
function has to be combined with the spatial weighting function W(x) of the 
scintillometer to account for the sensor integration along its path. Thus, the sensible heat 
flux footprint mainly depends on the scintillometer effective height zLAS (Hartogensis et 
al., 2003), which includes the topography below the path and the transmitter and receiver 
heights, the wind direction and the Obukhov length LO, which characterizes the 
atmospheric stability (Solignac et al., 2009). In a subsequent step, having the half hourly 
footprints (Fp30), daily footprints (Fpday) were computed as a weighted sum by the 
sensible heat flux (H30), as follows: 

      
                
     
       

       
     
       

  (2. 13 )  

Only daytime observations from 10:00 to 16:00 UTC are considered, since the most 
important latent heat fluxes occur during this period. An example of a daily footprint is 
shown in figure 2.32. In the chosen day two wind directions are noted, south wind in the 
morning and then a north wind in the afternoon.  
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a) 

  

b) 

  

d) 

  

Figure 2. 32: Variation in source area contributions for 12 April 2013 at (a) 10:30 South Wind 
and (b) 16:00 North Wind and (c) resultant daily computed footprint 
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2.5.3.3 XLAS derived latent heat flux  

Since the scintillometer only provides spatially averaged sensible heat flux (H_XLAS), 
the latent heat flux (LE_XLAS), energy equivalent of ET, can then be computed as the 
energy balance rest-term, hence, the estimation of a representative value for net surface 
radiation Rn combined with soil heat flux G, as available energy (AE=Rn-G) is always 
crucial for the accuracy of the retrieved values of LE_XLAS.  

Instantaneous (LE_residual_XLASt-FP) and daily (LE_residual_XLASday-FP) XLAS 
derived latent heat flux (i.e residual latent heat flux) of the XLAS upwind area were 
computed assuming 100% energy budget closure of the XLAS measured sensible heat 
flux (H_XLAS) with additional estimations of AE as follows: 

                                    (2. 14) 

                                          (2. 15) 

H_XLASt is the scintillometer sensible heat flux at the time of the satellite overpass 
interpolated from the half hourly fluxes measurements. Daily H (H_XLASday) was 
computed as the average of the half hourly XLAS-measured H. Daily available energy 
(AEday-FP) was computed from instantaneous available energy (AEt-FP) as detailed the 
following paragraphs. The subscripts “day” and “t” refer to daily and instantaneous (at 
the time of Terra and Aqua overpasses) variables, respectively; while the subscript “FP” 
means that the footprint is taken into account i.e. instantaneous or the daily (depending 
on time scale) footprint was multiplied by the variable. 

This assumption of 100% Energy Balance closure is valid only under the similarity 
hypothesis of Monin-Obukhov implying homogenous surface and stationary flows which 
is the case of our study area. In fact, above the XLAS transect, topography is flat, and 
landscape is heterogeneous only from an agronomic point of view since we find different 
land uses (cereals, vegetables and fruit trees mainly olive trees with considerable spacing 
of bare soil); however, this heterogeneity in landscape features at field scale is randomly 
distributed and there is no drastic change in height and density of the vegetation at the 
scale of the XLAS transect (i.e. little heterogeneity at the km scale, most MODIS pixels 
have similar NDVI values for instance). In order to provide a first guess on these relative 
heterogeneities, land use classes within each MODIS pixel of the 10 × 8 km sub-image 
were studied based on the land use map of the 2013-2014 season (see section 5.2). 

a. Instantaneous available energy 

Net surface radiation is the balance of energy between incoming and outgoing 
shortwave and longwave radiation fluxes at the land-atmosphere interface. Remote sensed 
surface radiative budget components provide unparalleled spatial and temporal 
information, thus several studies have attempted to estimate net radiation by combining 
remote sensing observations with surface and atmospheric data. Net radiation was 
computed using the equation 1.17 (see section 1.2.2.1)  

The soil heat flux G depends on the soil type and water content as well as the 
vegetation type (Allen et al., 2005b). The direct estimation of G by remote sensing data is 
not possible (Allen et al., 2011a), however, empirical relations could estimate the fraction 
G/Rn as a function of soil and vegetation characteristics using satellite image data, such 
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as the LAI, NDVI, α and Tsurf. In order to estimate the G/Rn ratio, several methods have 
been tested for various types of surfaces at different locations (Bastiaanssen, 1995; Burba 
et al., 1999; Choudhury et al., 1987; Jackson et al., 1987; Kustas and Daughtry, 1990; 
Kustas et al., 1993; Ma et al., 2002; Payero et al., 2001) . 

Danelichen et al. (2014) evaluated the parameterization of these different models in 
three sites in Mato Grosso state in Brazil and found that the model proposed by 
Bastiaanssen (1995) showed the best performance for all sites, followed by the model 
from Choudhury et al. (1987) and Jackson et al. (1987). Hence, to estimate G, we tested 
three methods: 

Bastiaanssen (1995): 

                                                   (2. 16) 

Choudhury et al. (1987): 

                        (2. 17) 

Jackson et al. (1987) 

                            (2. 18) 

Remote sensing variables α, Tsurf, εs, LAI and NDVI were calculated at the resolution 
of the sensor (MODIS, 1 km resolution). The Ben Salem meteorological station was used 
to provide Rg and Ratm. MODIS Available Energy AEt was computed for a 10 km × 8 km 
sub-image centered on the XLAS transect at Terra-MODIS and Aqua-MODIS overpass 
time, using the three methods estimating G. Since, the measured heat fluxes H_XLAS t 
represents only the weighted contribution of the fluxes from the upwind area to the tower 
(footprint) then instantaneous footprint at the time of Terra and Aqua overpass were 
selected among the two half hour preceding and following the satellite’s time of overpass 
(lowest time interval) and then was multiplied by AEt to get the available energy of the 
upwind area AEt-FP.  

b. Daily available energy 

Most methods using TIR domain data rely on once-a-day acquisitions, late morning 
(such as Terra-MODIS overpass time) or early afternoon (such as Aqua-MODIS overpass 
time). Thus, they provide a single instantaneous estimate of energy budget components, 
since the diurnal cycle of the energy budget is not recorded. In order to obtain daily AE 
from these instantaneous measurements and to reconstruct hourly variations of AE, we 
considered that its evolution was proportional to another variable whose diurnal 
evolution can be easily known.  

The extrapolation from an instantaneous flux estimate to a daytime flux assumes that 
the surface energy budget is “self-preserving” i.e. the relative partitioning among 
components of the budget remains constant throughout the day. However, many studies 
(Brutsaert and Sugita, 1992; Gurney and Hsu, 1990; Sugita and Brutsaert, 1990) showed 
that the self-preservation method gives day- time latent heat estimates that are smaller 
than observed values by 5-10%. Moreover, Anderson et al. (1997) found that the 
evaporative fraction computed from instantaneous measured fluxes tends to 
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underestimate the daytime average by about 10%, hence, corrected parameterization was 
used and a coefficient=1.1 was applied. Similarly, Delogu et al. (2012) found an 
overestimation of about 10% between estimated and measured daily component of the 
available energy thus, a coefficient =0.9 was applied. The Delogu et al. (2012) corrected 
parameterization were tested, but this coefficient did not give consistent results, therefore, 
the extrapolation relationship was calibrated in order to get accurate daily results of AE . 

Thereby, the applied extrapolation method was tested using in situ Ben Salem 1 (2012-
2013) flux station measurements, but only for clear sky days for which MODIS images 
can be acquired and remote sensing data used to compute AE are available. Clear sky days 
were selected based on the ratio of daily measured Rg to the theoretical clear sky radiation 
Rso as proposed by the FAO-56 method (Allen et al., 1998). A day was defined as clear if 
the measured Rg is higher than 85 % of the theoretical clear sky radiation at the satellite 
overpass time (Delogu et al., 2012). Daily measured available energy AEBS-day computed as 
the average of half-hourly measured AEBS-30, was compared to daily available energy 
(AEBS-day-Terra and AEBS-day-Aqua) computed using the extrapolation method from 
instantaneous measured AEBS-t-Terra and AEBS-t-Aqua at Terra and Aqua overpass time, 
respectively (Equations 2.19 and 2.20).  

                           
            
  

       

        
 (2. 19) 

 

                         
           

  
      

       (2. 20) 

where Rgday is the daily measured incoming short wavelengths radiation in the Ben Salem 
meteorological station; Rgt-Terra and Rgt-Aqua are the instantaneous incoming short 
wavelengths radiations measured at Terra and Aqua overpass time, respectively and AEBS-

t-Terra and AEBS-t-Aqua are the instantaneous measured available energy in the Ben Salem flux 
station, at Terra and Aqua overpass time. 

Results gave an overestimation of about 15 % (Figure 2.33). The corrected 
parameterizations of AE (Table 2.5), needed to remove the bias between measured (AEBS-

day) and computed AE (AEBS-day-Terra and AEBS-day-Aqua), were applied to compute daily 
remotely sensed AE (AEday) from instantaneous AE (AEt) following the extrapolation 
method shown in equations 2.19 and 2.20. 
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Figure 2. 33: Comparison of daily AE observed at Ben Salem 1 flux station (2012-2013) and 
daily AE estimated using the scaling method based on Rg. 

Table 2. 4: Corrected parameterizations of available energy extrapolation method 

Terra aTerra 0.85 

bTerra -19.81 

Aqua aAqua  0.87 

bAqua -18.94 

Daily available energy was computed for the 10 km × 8 km sub-image, and then was 
weighted by the corresponding daily footprint to get the daily available energy of the 
upwind area AEday-FP. Finally, estimates of observed daily LE (LE_residual_XLASday-FP) 
were obtained based on the three methods used to compute the soil heat flux G. 

2.6 Synthesis 

In this chapter, the geographic and climatic framework as well as ground and surface 
water resources of our study area was presented. In addition, the experimental set-ups and 
in situ data were described. Experimental measurements are used either for model forcing 
(meteorological data), calibration (Eddy Covariance measurement for SAMIR model) or 
validation (XLAS measurement). 

The different remote sensing data used in this PhD work were also presented; high-
resolution SPOT image time series for four agricultural seasons are used to feed SAMIR 
model with NDVI data while low-resolution MODIS data are used to feed SPARSE 
model with NDVI and TIR data. This chapter detailed also the processing of all in situ 
and remote sensing data in order to get reliable and accurate data 
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3 Chapter 3: Evapotranspiration and 
irrigation volumes estimation at high 

spatial resolution: application of the soil 
water balance model SAMIR 

 

The results of this chapter are taken from the article: 

Saadi, S., Simonneaux, V., Boulet, G., Raimbault, B., Mougenot, B., Fanise, P., Ayari, 
H., Lili-Chabaane, Z., 2015. Monitoring Irrigation Consumption Using High-resolution 
NDVI Image Time Series: Calibration and Validation in the Kairouan Plain (Tunisia). 
Remote Sensing 7, 13005. 

- Posted in « Remote Sensing » journal. 

 

In this chapter, the operationality and accuracy of the SAMIR tool in computing distributed 
water balance components was assessed at both plot scale (calibration based on 
evapotranspiration ground measurements) and perimeter scale (irrigation volumes) when several 
land use types, irrigation and agricultural practices are intertwined in a given landscape. 
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3.1 SAMIR model description 

The SAMIR tool (SAtellite Monitoring of IRrigation) (Simonneaux et al., 2009) is based 

on the coupling of the FAO-56 dual crop coefficient model with time series of high-

resolution NDVI imagery which provide estimates of the actual basal crop coefficient 

(Kcb) and the vegetation fraction cover (fc). 

The basis of SAMIR is the FAO dual crop method under non standard conditions, i.e. 
considering the actual soil water status, as described in the FAO paper 56 (Allen et al., 
1998) and summarized in a subsequent paper (Allen et al., 2005b). The main originality of 
SAMIR lies in the use of remote sensing NDVI time series for the monitoring of 
vegetation development, from which crop coefficients and vegetation fraction covers are 
derived, instead of using standard values. The NDVI, derived from near infra red (NIR) 
and red (R) reflectances, is available from most Earth observation sensors. SAMIR has 
been written in IDL/ENVI language as a plug-in to the ENVI software package, and is 
accessible through a Graphic User Interface. The FAO-56 basis of SAMIR has been 
described in chapter 1. All additional specific features of this tool are described in the 
paper included hereafter (section 3.2, Saadi et al., 2015). 

The input data in SAMIR are (i) meteorological data (i.e. reference evapotranspiration 
and rainfall), (ii) landuse map, (iii) NDVI time series, (iv) soil data and (v) irrigation rules. 

Meteorological data (global radiation, air humidity, wind speed, and air temperature) 
are required to compute the Penman-Monteith reference evapotranspiration ETo (see 
section 2.5.1). SAMIR allows the user to use either uniform (one single station) or 
spatialized (e.g. several stations interpolated) input values of ETo. Rainfall data may also 
be considered homogeneous if a single station is available or spatially interpolated based 
on several stations. 

The knowledge of land use is required for relating NDVI to the vegetation fraction 
cover (fc) and the basal crop coefficient (Kcb) and to define rooting parameters and 
irrigation rules. Since a land use map can usually be obtained only once some images have 
been acquired, which means several days after the beginning of the vegetation cycle, real 
time application would require the use of a land use assumption at the beginning of the 
season, based for example on the maps of the previous year along with crop rotation 
rules. This constraint emphasizes the need for developing new methods for monitoring 
the land use in quasi real time.  

Moreover, the model requires calibrated NDVI time series based on soil reflectances. 
The user defines the NDVI-fc and the NDVI-Kcb or fc-Kcb relationships for each land 
use class. The values are then interpolated at daily step between the dates of imagery. For 
some annual crops, while NDVI drops during senescence due to drying, vegetation 
fraction cover remains high and affects turbulent and radiative transfers (shadowing). To 
account for this phenomenon, the fc profile can be kept steady during a given numbers of 
days after reaching its peak value, or until NDVI drops below a threshold indicating that 
harvest has occurred. For trees, considering the potential impact of the shades on 
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evaporation, we used a formalism defining the effective fraction cover; hypothesis of 
spherical canopies (Allen et al., 1998). 

The water content at field capacity and wilting point (θfc, θwp) are specified by the user. 
They can be considered uniform over the study area or spatialized based on a soil map. 
Following the FAO-56 recommendations, evaporation is controlled by the surface layer, 
whereas transpiration is controlled by the root zone. An additional layer was considered 
below the root compartment to account for deep water storage (Zhang and Wegehenkel, 
2006). In order to allow water stored in this deep layer to be used by the plant, a diffusion 
process was introduced to simulate capillary water movement between deep and root 
layer. For coherence, diffusion was also introduced between the root and evaporation 
layer, allowing evaporation to last longer after a wetting event, and also to the deeper 
layers to keep drying after harvest. These additions to the FAO-56 aim to enable the 
simulation of rainfed cultivation or non-optimal irrigation. Lateral circulation of water 
(overland and subsurface runoff) is assumed negligible. During rainfall or irrigation 
events, the water fills the compartments successively from top to bottom by gravity. 
When all compartments are full, the excess water flows out of the system as deep 
drainage. For each land use class, the user specifies the minimum and maximum rooting 
depths (Zrmin, Zrmax) and the depletion fraction beyond which stress begins (p). The root 
depth Zr varies according to the plant development and is assumed to be linearly linked 
to the vegetation fraction cover (fc) (see section 3.2). 

If irrigation volumes are known at the daily scale for any plot, they can be forced in 
SAMIR, but this is rarely the case, except for some experimental plots. For this reason, a 
set of rules triggering irrigation automatically has been built for SAMIR. These rules have 
to be specified by the user based on the known or assumed farmer’s behaviour. Rules can 
be specific to each land use class and/or any irrigation unit. The main parameters to 
define are (i) the maximum allowable depletion for irrigation triggering, (ii) the irrigation 
depth to apply and (iii) the soil fraction wetted by irrigation (few). Irrigation may be 
triggered based on the level of readily available water (RAW), the level of total available 
water (TAW), for a given depletion of the root zone (Dr) or at any fixed time step. The 
water input depth may be either a fraction of the depletion or a fixed amount. 
Additionally, for annual crops which are not irrigated during senescence, inputs can be 
stopped once the Kcb decreases below a given fraction of the peak value reached. Finally, 
management constrains can give further control on the delivery of water at the seasonal 
scale. These are the maximum cumulated input depth for a plot during the whole season, 
the maximum number of water inputs, the minimum and maximum depth for each water 
input and a minimum time lapse between two inputs. 

The rationale for daily water budget update is summarized as follows:  

 Updating the soil configuration resulting from crop development  

- Updating the root depth (Zr) 

- Updating the soil moisture depletions (root zone depletion Dr and deep layer 
depletion Dd) 

- Updating the water capacities (TAW, RAW and the total available water in the 
deep compartment TDW) 
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 Applying water inputs (rainfall and irrigation)  

- Computing the automatic irrigation (based on irrigation rules) or forcing them 
if known 

- Updating the depletions with rainfall and irrigation 

 Applying evapotranspiration and diffusion  

- Computing the evapotranspiration 

- Computing the diffusive fluxes 

- Updating the depletions with evaporation, transpiration and diffusion. 

Actually, all these processes occur either during the whole day (e.g. evapotranspiration 
and diffusion) or at any random hour of the day (rainfall, irrigation). Thus, the order in 
which they are computed is somewhat arbitrary.  

The output data of SAMIR are distributed daily values of ET [mm], irrigation [mm], 
stress coefficient (Ks), soil moisture [m3/m3] for the three soil layers, and percolation 
below the deeper soil layer (DP). 

3.2 Irrigation volumes results validation at perimeter scale: Published results 
(article) 

The soil water balance model SAMIR was run in our study area for four agricultural 
seasons 2008-2009, 2011-2012, 2012-2013 and 2013-2014 using NDVI time series of 
SPOT images. The following article shows results for only the first three seasons, because 
for the last one the satellite data was not yet available. The simulation was achieved on an 
area of about 18 km × 5 km encompassing three irrigated perimeters (GDAs) of the 
kairouan plain. The irrigation volumes observed in these GDAs were used to validate the 
irrigation volumes estimated using SAMIR. 
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Abstract: Water scarcity is one of the main factors limiting agricultural 

development in semi-arid areas. Remote sensing has long been used as an input 

for crop water balance monitoring. The increasing availability of high-resolution 

high repetitivity remote sensing (forthcoming Sentinel-2 mission) offers an 

unprecedented opportunity to improve this monitoring. In this study, regional crop 

water consumption was estimated with the SAMIR software (SAtellite 

Monitoring of IRrigation) using the FAO-56 dual crop coefficient water balance 

model fed with high-resolution NDVI image time series providing estimates of 

both the actual basal crop coefficient and the vegetation fraction cover. Three time 

series of SPOT5 images have been acquired over an irrigated area in central 
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Tunisia along with a SPOT4 time series acquired in the frame of the SPOT4-

Take5 experiment, which occurred during the first half of 2013. Using invariant 

objects located in the scene, normalization of the SPOT5 time series was realized 

based on the SPOT4-Take5 time series. Hence, a NDVI time profile was 

generated for each pixel. The operationality and accuracy of the SAMIR tool was 

assessed at both plot scale (calibration based on evapotranspiration ground 

measurements) and perimeter scale (irrigation volumes) when several land use 

types, irrigation and agricultural practices are intertwined in a given landscape. 

Results at plot scale gave after calibration an average Nash efficiency of 0.57 

between observed and modeled evapotranspiration for two plots (barley and 

wheat). When aggregated for the whole season, modeled irrigation volumes at 

perimeter scale for all campaigns were close to observed ones (resp. 135 and 121 

mm, overestimation of 11.5%). However, spatialized evapotranspiration and 

irrigation volumes need to be improved at finer timescales. 

Keywords: Remote sensing; water balance; FAO paper 56; evapotranspiration; 

irrigation; semi-arid Mediterranean; SPOT. 

 

1. Introduction 

In arid and semi-arid regions, water availability is a major limitation for crop production. 

In the Kairouan plain (Central Tunisia), the combined effect of drought spells and the increase 

of irrigated surfaces during the last decades have had a negative impact on the available water 

resources. Efficient agricultural water management is therefore a major issue, especially in 

irrigated areas. The design of tools that provide regional estimates of the water balance may 

help the sustainable management of water resources in these regions. 

Evapotranspiration (ET) is one of the most important fluxes of the water balance in semi-

arid areas; it is a key factor for optimizing irrigation water management [1]. Direct 

measurements of ET are only possible at local scale (single plot) using for example eddy-

covariance devices. Scintillometers measure sensible heat flux along a given path and then 

latent heat flux (ET) is returned as a residual term of the surface energy budget. Furthermore, 

remote sensing (RS) capabilities for monitoring vegetation and its physical properties on large 

areas have been identified for years now (UNEP). It provides spatialized and periodic 

information about some major drivers of ET such as albedo, surface temperature and 

vegetation properties. Several methods for estimating ET using remotely-sensed data have 

been developed [3-7]. Most of them solve the surface energy budget for latent heat using 

thermal imagery. Instantaneous estimates at the time of satellite overpass have been 

successfully used to estimate ET at daily scale [8]. However, the main limitations of these 

methods are the difficulties in obtaining valid estimates of the aerodynamic surface 
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temperature and the atmospheric resistance to heat transfer in single-pixel methods or the 

difficulty in identifying the wet and dry edges when using triangle-based methods (UNEP). A 

further limitation arises when trying to extrapolate ET beyond one day due to the limited 

availability of high-resolution thermal imagery. 

Another possible approach is to use Soil Vegetation Atmosphere Transfer models (SVAT) to 

simulate ET. These models can benefit from remote sensing since the latter provides periodic 

information about the vegetation development which is a primary factor driving 

evapotranspiration. The use of high-resolution image time series for monitoring irrigated crops 

was more recently discussed [10-12]. The low availability of such data, for financial as well as 

technical reasons, combined with the intermittent presence of cloud, has been a restraint to their 

use [13-15]. However, the forthcoming Sentinel-2 mission offers a unique opportunity to 

improve this monitoring thanks to high-resolution (10 m) and high repetitivity (5 days) visible 

and near infrared (VIS-NIR) remote sensing.  

For the operational monitoring of soil-plant water balance, the most common and practical 

approach used for estimating crop water requirement is the FAO-56 method [16]. The FAO 

56 dual crop coefficient approach uses two coefficients to separate the respective contribution 

of plant transpiration (Kcb) and soil evaporation (Ke). However, standard basal crop 

coefficients (Kcb) profiles provided by FAO tables are average values not suited for specific 

growth conditions that can largely differ between plots. Remote sensing is a valuable asset to 

derive those temporal profiles of crop coefficients. It has been shown that the crop 

coefficients were linked to the spectral response of the cover, especially vegetation indices 

[12,17-20]. Ke is linked to the bare soil fraction, complementary of the fractional vegetation 

cover (fc) which can also be related to visible RS data [21]. Although the relations proposed 

between Kcb, fc and vegetation indices are not theoretically fully linear, they can usually be 

approximated by linear relations [22-23]. Moreover, establishing a unique relationship 

between crop coefficient and spectral vegetation indices is an ongoing research topic [24] and 

many empirical linear relationships available in the literature have been derived 

experimentally. 

The FAO-56 method has long been used to monitor water budget at plot scale with tools 

like CROPWAT [25]. The interest for coupling the FAO-56 method with remotely-sensed 

crop coefficients is rising alongside the increasing availability of high-resolution Normalized 

Difference Vegetation Index (NDVI) time series [26-30]. The SAMIR tool (SAtellite 

Monitoring of IRrigation) [31] used in this paper computes spatially distributed estimates of 

ET and crop water budget at regional scale. It is based on the coupling of the FAO-56 dual 

crop coefficient model with time series of high-resolution NDVI imagery (Normalized 

Difference Vegetation Index) providing estimates of the actual basal crop coefficient (Kcb) 

and the vegetation fraction cover (fc). 

In this study, regional evapotranspiration and crop water consumption were estimated over 

an irrigated area located in the Kairouan plain using the SAMIR model fed by SPOT high-

resolution time series. The model was calibrated on the basis of local ET measurements from 

flux towers and was validated at perimeter scale using known irrigation volumes. The objective 
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of the work was to assess the operationality and accuracy of SAMIR outputs at plot and 

perimeter scales, in a context of high land cover complexity (i.e., trees, winter cereals, summer 

vegetables) and limited data available for parameterization. 

2. Material and methods 

2.1. Study Area 

The experimental site is located in the Kairouan plain, a semi-arid region in central Tunisia 

(9°30′E to 10°15′E, 35°N to 35°45′N) (Figure 1), covering an area of more than 3000 km
2
, 

which is part of the Merguellil watershed. The rainfall patterns are highly variable in time and 

space with an average annual rainfall of approximately 320 mm (extreme values recorded in 

Kairouan city are 108 mm in 1950/51 and 703 mm in 1969/70). The mean daily temperature 

in the city of Kairouan is 19.2 °C (minimum of 10°C in January and maximum of 28 °C in 

August). The relative humidity ranges between 70% and 55% in winter and 40% and 55% in 

summer. The mean annual reference evapotranspiration estimated by the Penman-Monteith 

method is close to 1600 mm. Dominant crops in this region are cereals, olive and fruit trees 

and market gardening [32]. 

Water management in the Merguellil basin is characteristic of semi-arid regions with an 

upstream sub-basin that collects surface and subsurface flows to a dam (the El Haouareb 

dam), and a downstream plain supporting irrigated agriculture (Figure 1). Irrigation water 

comes exclusively from the groundwater, except for a very small part of the plain on the edge 

of the dam: the major part of dam water infiltrates to the downstream aquifer. The main user 

of the Kairouan aquifer is agriculture, which consumes more than 80% of the total amount 

extracted each year [1]. Most farmers in the Kairouan plain extract water for irrigation 

directly from private wells, while a few rely on public irrigation schemes based on collective 

networks of water distribution pipelines stemming from a main gauged borehole. Each 

borehole corresponds to one organizational unit named GDA (“Groupement de 

Développement Agricole”). Annual consumption exceeds the annual recharge of the water 

table resulting in a piezometric decrease of between 0.5 m and 1 m per year [33]. 
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Figure 1. The study area 

2.2. Experimental Setup and Data Pre-Processing 

Half hourly meteorological measurements were recorded using an automated weather 

station installed in the study area. It includes measurements of solar radiation, air temperature 

and humidity, wind speed and rainfall. Cumulative precipitation and reference 

evapotranspiration (ETo) values between November and June were respectively 238 mm and 

1008 mm, for the 2008/2009 season, 142 mm and 666 mm for the 2011/2012 season and 97 

mm and 992 mm for the 2012/2013 season.  

A flux station was installed in a plot located in the study area. It measures the various 

energy balance components using the eddy correlation method. Energy fluxes measurements 

were acquired over irrigated barley and irrigated wheat during the 2011–2012 and 2012–2013 

seasons, respectively. These experiments allowed continuous monitoring of actual ET as well 

as soil moisture measurements. Energy balance closure of the EC measurements was checked 

and corrected using the residual method. The low uncorrected value obtained at both sites 

(around 60% of closure) led to discard fast response psychrometer measurements. Few 

isolated inconsistent peaks were also removed. Overall, the quality of eddy covariance 

measurements is mainly affected by instrumental errors, uncorrected sensor configurations or 

problems of heterogeneities in the area and atmospheric conditions [34].  

Time series of SPOT5 image acquisitions were planned over the plain: Nine, six and ten 

SPOT5 images were acquired for the 2008–2009, 2011–2012 and 2012–2013 seasons, 

respectively (Figure 2).The SPOT5 images for the three campaigns were georeferenced using 

orthorectification and then radiometrically corrected to obtain top of canopy (TOC) 
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reflectance on the basis of physical modeling corrections using the Simplified Method for 

Atmospheric Corrections (SMAC) algorithm based on the 6S radiative transfer model [35]. 

The SMAC 6S model was applied for each image using values of atmospheric optical depth 

and water content taken from a photometer located in the area and part of the AERONET 

network [36]. Due to the uncertainties in the atmospheric parameters, and in order to 

eliminate time profile artifacts due to radiometric correction discrepancies within the time 

series, an additional inter-calibration between dates was achieved based on the identification 

of pseudo-invariant features for which a constant reflectance value is assumed over time. 

Indeed, the radiative transfer model shows that for a flat topography and an assumed spatially 

homogeneous atmosphere, the reflectance can be linearly related to the image DNs [37]. 

Thus, an additional normalization of the image time series was achieved by linear correction 

of the identified inconsistent dates [30,38]. For the last season, we also benefited from images 

acquired in the frame of the SPOT4-Take5 experiment which occurred during the first half of 

2013 [39] and whose main purpose was to simulate the revisit frequency and resolution of 

Sentinel-2 images to help users set up and test their applications and methods before the 

mission is launched. In this frame, SPOT4 images at 20 meters resolution were acquired every 

5th day from 3
rd

 February to 18
th
 June 2013 over the Kairouan plain, but only 14 dates were 

cloud free among the 28 images acquired (Figure 2). The SPOT4 series was corrected using 

the Multi-sensor Atmospheric Correction and Cloud Screening (MACCS) algorithm taking 

into account both temporal and spectral approaches for retrieving the aerosol optical thickness 

(AOT) [40]. 

 

Figure 2. Acquisition dates of the SPOT images. 

Monthly irrigation volumes used for validation were obtained at the scale of each GDA 

irrigated sector. It was assumed that these data were trustworthy since these entities manage a 

collective well equipped with a meter, providing the water to the plots inside the perimeter. 

However, some plots outside the official perimeter also benefit from this water and in the 

frame of the acquisition of our validation data, they were delineated with the help of the 

irrigation manager. Conversely, no private well is exploited inside the GDAs, so that the 

monthly volumes collected can be reliably linked to the declared cultivated area. 
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2.3. Method for Evapotranspiration and Irrigation Estimates 

2.3.1. Model Description 

The algorithmic basis of SAMIR is the FAO dual crop coefficient method under stress 

conditions, i.e., considering actual soil water status [16]. This approach has been largely used 

for irrigation scheduling and to compute crop evapotranspiration for operational purpose. It is 

based on the concept of reference evapotranspiration for a standard well-watered grass, 

modulated by crop coefficients to account for the specific development of any vegetation 

cover as well as its actual water status. We present here only the major equations of the model 

and the modifications implemented within SAMIR. The reader should refer to the FAO paper 

N°56 for other equations; we kept for clarity the same notations as FAO paper 56 [16]. The 

actual (adjusted) evapotranspiration ETa of a crop is defined as: 

                      (1) 

where Kcb is the basal crop coefficient representing unstressed crop transpiration, Ke is the 

evaporation coefficient representing soil evaporation and Ks is a stress coefficient accounting 

for the reduction of transpiration due to water shortage in the root zone. 

ET0 was computed following the FAO paper 56 and is thus not presented here. Regarding 

Ke, in order to account for frequent overestimations of bare soil evaporation as observed by 

[41], we used the same formalism as the latter reference to modify the Kr coefficient, i.e., the 

evaporation reduction coefficient accounting for water availability in the evaporation layer 

which is used to compute Ke. 

       
        

         
     (2) 

with TEW the total evaporable water, REW the easily evaporable water and De the 

depletion (water deficit) in the shallow surface layer used to compute soil evaporation. 

The m coefficient lies within [0,1] and allows to further reduce the maximum evaporation 

level when REW = 0 and is functionally equivalent to a minimum surface resistance to 

evaporation of the soil. 

As an extension to the standard FAO-56 formalism, an additional layer of depth Zd was 

considered beyond the root depth Zr to account for capillary flow from below the root zone 

[42]. The total depth of soil involved in crop functioning Zsoil is defined as Zsoil = Zr + Zd. 

To allow the water stored in this deep layer to be used by the plant, a diffusion process was 

introduced in the SAMIR model to simulate capillary flow between deep and root layers 

(Difrd). For coherence, diffusion was also introduced between the root zone and the shallow 

evaporation layer (Difer), allowing especially evaporation to last long after a wetting event, 

and also to the deeper layers to sustain low evaporation fluxes observed after harvest. The 

depth of the root and deep layers evolves dynamically with root growth: when root depth 

increases, a portion of the deep layer is included in the root zone. The total available water in 
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the deep compartment (TDW) is computed similarly to total available water in the root layer 

(TAW) using the following formula: 

                     (3) 

with θfc the water content at field capacity and θwp the water content at wilting point. Water 

diffusion is driven by the water gradient between layers as follows: 

            

          
  

  
           

  
   

  (4) 

            

          
  

   
          

  
   

  (5) 

where De, Dr and Dd are the depletions in the evaporation , root and deep layers, respectively, 

while cdE and cdR are the diffusion coefficients for the transfers between the root zone and 

the surface layer, and the root zone and the deep layer, respectively (mm·day
−1

). 

Regarding the vegetation development, instead of using standard values provided by the 

FAO paper 56, the major specificity of SAMIR is to use remote sensing data to estimate the 

actual basal crop coefficient Kcb using a linear relationship: 

                       (6) 

where NDVI is the Normalized Difference Vegetation Index, depending on near infra red 

(NIR) and red (R) reflectances: 

       
        

       
 (7) 

The NDVI time series is linearly interpolated for each day between the successive dates of 

image acquisition. 

In the same manner, the vegetation fraction cover fc was derived from NDVI using the 

following linear relation: 

                    (8) 

Then the root depth is linked to the vegetation fraction cover using the following formula: 

Zr           
  

     
                 (9) 

where fcmax is the maximum fraction cover for which the maximum rooting depth Zrmax is 

reached and Zrmin is the minimum rooting depth when the vegetation is detected by the 

satellite (fc > 0). 

Finally, the model updates the water content of the three soil layers at a daily time step in 

order to compute the water budget using equations similar to those in the FAO paper 56 [16]. 
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The main difference lies in the added Difer and Difrd terms for water diffusion, and the 

addition of the deep layer. The surface runoff is neglected. 

The water content in the evaporation layer is updated as follows: 

 
                     

  

  
   

  

   
               

             

  (10) 

where Dej is the cumulative depth of evaporation (depletion) at the end of day j (mm), Dej − 1 

is the same variable at the end of day j − 1 (mm), Pj is the precipitation, Ij is irrigation depth, 

Ej is the soil evaporation, Tewj is the depth of transpiration from the exposed and wetted 

fraction of the soil surface layer, all on day j (mm), fw is the fraction of soil surface wetted by 

irrigation and few is the wetted soil fraction exposed to evaporation. 

The water content in the root layer is updated as follows: 

 
                                      

                  
  (11) 

where Drj is the depletion in the root layer at the end of day j (mm), Drj − 1 is the same variable 

on day  

j − 1, ETcj is the soil evaporation on day j (mm). If the water content goes beyond field 

capacity after a heavy rain or irrigation (i.e., Drj < 0), it is assumed that the amount of water 

above field capacity is lost the same day by percolation to the deep layer (DPr j = −Drj) and 

then Dr is set to zero. 

The depletion in the deep layer is computed as follows: 

 
                             

              
  (12) 

where Ddj is the depletion in the deep layer at the end of day j (mm), Ddj − 1 is the same 

variable on day j − 1. In the same manner as for the root zone, if Ddj < 0 then an amount DPdj 

of deep percolation is assumed to be lost for the crop (DPdj = −Ddj) and Ddj is set to zero. 

The water stress of vegetation in the FAO method is expressed by a coefficient Ks related 

to the actual root zone water content. A fraction p of TAW named Readily Available Water 

(RAW) is supposed to be available for the plant without stress (Ks = 1). The stress is 

presumed to start when  

Dr > RAW and is calculated using Equation (13) (Ks < 1). Conversely, when Dr ≤ RAW then 

Ks = 1. 

     
        

         
   

        

           
 (13) 

whereas rainfall inputs can be estimated using meteorological data, the irrigation inputs are very 

variable in space and time and cannot be known practically on large areas. Thus, the SAMIR 

tool simulates irrigations based on the daily soil water balance of the root zone. Irrigation is 

modeled specifically for each land cover class, so as to reproduce the various irrigation 
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practices applied by the farmers on the ground. These practices are described by several 

parameters that the user has to set. A major parameter is the threshold water content in the root 

layer to trigger a water input, defining the management allowable depletion MAD [16], i.e., the 

amount of water which can be depleted between two irrigations. When the root zone depletion 

reaches this value, irrigation is automatically triggered to fill up the soil. Other parameters to set 

are the fraction of soil surface wetted by irrigation (fw) depending on the irrigation system, the 

minimum depth of each input (Min_ir) and the minimum number of days between two water 

inputs (Min_days). Finally, the Kcb threshold to stop irrigation during the senescence stage 

(Kcb stop) is defined as a percentage of the peak Kcb value (maximum development) below 

which irrigation is stopped. In simulating irrigations, SAMIR does not aim at detecting an actual 

vegetation stress at the time it occurs. Instead, the hypothesis is that if a significant stress 

occurs, it will have an effect on the NDVI in the following days which will be accounted for by 

SAMIR. 

2.3.2. Model Calibration and Validation at Plot Scale 

The model was calibrated at plot scale using latent heat flux measurements for two 

seasons. Calibration consists in maximizing the Nash efficiency computed between observed 

and modeled ET. The Nash-Sutcliffe efficiency coefficient is a non-dimensional statistical 

performance index that determines the relative magnitude of the residual variance compared 

to the observed variance [43]. 

           
     

         
      

     

     
                      

     

 (14) 

where ETi
obs

 is the observation of evapotranspiration on day i, ETi
sim

 is the modeled value of 

evapotranspiration on day i and               is the observed mean over the entire growing season. 

The Nash efficiency ranges from −∞ to 1; an efficiency of 1 corresponds to a perfect match 

between model outputs and observations. 

Some of the model parameters were taken from the FAO paper 56 [16] or measured in situ  

(e.g., soil water content), while others were calibrated either because they were not available 

from the bibliography or because the model was particularly sensitive to these parameters. 

The procedure to prescribe each parameter value is detailed in the results section. For 

irrigation, a two-step approach was implemented. First, actual irrigations values resulting 

from soil moisture measurement analysis were used as inputs in the calibration of the model, 

then, known irrigations were removed from the model inputs and the automatic irrigation 

mode was switched on in order to calibrate the irrigation parameters.  

2.3.3. Spatialization of ET and Irrigation. 

SAMIR was run over the whole irrigated plain using the image time series for the three 

seasons to compute spatially distributed estimates of irrigation depths. Water balance components, 

including irrigation, are computed for each pixel. Land use information is required for each pixel 
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since many parameters of the model are crop specific. This is the case for the root zone 

parameters, the irrigation rules and the fc(NDVI) and Kcb(NDVI) relations. Land cover maps 

were available for 2008–2009 [44], 2011–2012 [45] and 2012–2013 [46]; they include eight, six 

and six land use classes, respectively. These classifications were obtained by applying a multi 

temporal decision tree, which allows the identification of crop types on the basis of NDVI 

thresholds derived from ground truth datasets. The SAMIR parameters required for each land use 

class were taken either from the previous calibration step (i.e., for cereals) or from bibliographic 

data since there was no calibration data for market gardening and fruit trees classes. The climatic 

forcing was considered homogeneous over the plain and meteorological data was taken from the 

sole station present in the area. Finally, the irrigation parameterization for crops other than cereals 

was defined from our knowledge of the farmers’ practices, while considering the main differences 

in irrigation practices between classes (e.g., aspersion for cereals, drip irrigation for orchards). In 

order to validate the SAMIR estimates, irrigation depths were cumulated to monthly values at the 

scale of irrigation sectors (GDA) and compared to available official irrigation volumes gathered 

through our ground survey. 

3. Results and Discussion 

3.1. Remote Sensing Data Preprocessing 

For the SPOT4-take5 time series acquired in 2012–2013, the longest gap was at the 

beginning of the period, as the first correct image was acquired on 10/03/2015, which means 

40 days without image data. This is quite long regarding vegetation monitoring and 

emphasizes the limitation of a five-day revisit frequency even in semi-arid areas (frequent 

cirrus clouds can be observed over the study site). However, in our case, this gap was filled 

using the SPOT5 satellite, which successfully acquired two images, thanks to the 

programming capabilities of this sensor and its oblique viewing agility allowing to observe 

areas on cloud free days. This is an interesting result showing that combining Sentinel-2 data 

with other sensors (Landsat 8, SPOT6, etc.) may still be necessary in many places to get 

consistent high-resolution time series. Another way to bridge the gaps in the time series 

would be to use fusion methods using medium resolution images to estimate high-resolution 

signatures [47]. 

We present hereafter the outcome of the images pre-processing for the 2012–2013 season; 

the same approach was applied to the 2008–2009 and 2011–2012 images. After application of 

an atmospheric correction, we identified manually 28 invariant objects in the scene by 

visually comparing pairs of distant dates (i.e., 5 November 2012 and 10 June 2013). Then, for 

these 28 objects, the reflectance of one band at each date is plotted against the reflectance of 

the average image of this band (Figures 3 and 4). The quality of the invariant objects is 

confirmed by the determination of the linear fit. However, whereas in some cases the 

regression fits the 1:1 line (Figures 3a and 4a), in other cases the regression line is 

significantly different from the 1:1 line, showing a problem in the quality of the atmospheric 

correction. These discrepancies are more frequent for the SPOT5 time series, which is not 
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surprising as each date was corrected independently, whereas the SPOT4 series was corrected 

using the MACCS algorithm taking into account the temporal dimension of the series. When 

the deviation from the 1:1 line was important (Figures 3b and 4b), the linear correction was 

applied to the image to match it with the average image. For the SPOT4 series, seven dates 

were linearly corrected, and one date was discarded (20 March) because of the strong 

scattering of the reflectance due to haze (Figure 4c). For the SPOT5 time series, eight images 

were corrected. 

Once the consistency of reflectance levels within the two time series had been checked, a 

similar analysis is performed between the two time series by plotting the average reflectance 

of the invariant objects (Figure 5). A significant bias was observed which can be explained by 

(i) differences in the atmospheric correction algorithm used, (ii) difference in band definition 

between SPOT4 and 5 and (iii) the variations in viewing angle between both sets of images. 

Indeed the SPOT4 images were acquired at a fixed angle different from nadir, whereas 

SPOT5 images were acquired at any angle. The observed bias had a strong impact on 

maximum NDVI values observed in the images, which was 0.9 for the SPOT4 series, and 

only 0.7 for the SPOT5 series. Considering that fully covering vegetations were certainly 

present in the area (i.e., cereals or forage fields), a realistic maximum NDVI value of 0.9 was 

expected for all seasons. Therefore, the SPOT5 series was linearly normalized to match the  

SPOT4-Take5 radiometry on the basis of the linear regression established between the 

reflectance of the SPOT5 and SPOT4-Take5 average images (Figure 5). 
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a) 

  

 

b) 

  

Figure 3. Comparison between the SPOT5 images after atmospheric correction 

using SMAC6S and the average SPOT5 reflectance for the 28 invariant sites, for 

spectral bands XS2 and XS3. Example of (a) an image for which no additional 

correction is required and (b) an image needing an additional correction. 
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a) 

 
 

b) 

 
 

 c) 

 
 

Figure 4. Comparison between the SPOT4-Take5 atmospherically corrected 

images and the average SPOT4 reflectance for the 28 invariant sites, for spectral 

bands XS2 and XS3. Example of (a) an image for which no additional correction is 

required, (b) an image needing an additional correction and (c) a hazy image 

(discarded from the final time series). 
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The SPOT4 series was delivered with cloud masks that were applied to avoid 

anomalies in the NDVI. For the SPOT5 series, two images included small cumulus clouds 

(5 November 2012 and 21 January 2013) which were masked. The clouds were identified 

using a simple threshold since they have a strong reflectance in the blue band. The cloud 

shadows were also easy to identify because they had the lowest reflectance in the near 

infra-red band. As small clouds were rarely at the same place, they have limited impact on 

the resulting NDVI profiles.  

Finally, from the combination of these two time series, a NDVI profile was generated 

for each pixel. 

  

Figure 5. Comparison between the average reflectances of the 28 invariants for 

the SPOT5 and SPOT4-Take5 time series before correction. 

3.2. Plot Scale Calibration of Evapotranspiration Parameters 

In a subsequent step, the NDVI time profile for each flux site was extracted from the SPOT 

time series and was used in the SAMIR model for calibration. The NDVI-fc relationship was 

determined empirically considering that for a bare soil (NDVI = 0.1) the fraction cover was 

null (fc = 0) and that at full coverage (fc = 1) the NDVI was the maximum value observed in 

the image (0.9). The characteristic volumetric soil water contents were determined from soil 

texture analysis (clay loam, θfc = 0.29, θwp = 0.15). An initial water content of 10% was 

considered for the two plots since soils were mostly dry after the summer and before the first 

autumnal rainfalls. The soil fraction wetted by rain or irrigation (fw) was set to one because 

the irrigation technique for cereals was sprinkler irrigation. The depth of the evaporation layer 

(Ze) and the proportion of easily available water (p) were fixed following FAO paper 56 

recommendations [16]. All other parameters were fixed by calibration (REW, m, Zrmax, Zsoil, 

Difer, Difrd, Kcb) and are summarized in Tables 1 and 2. In a second phase, irrigation 

parameters were calibrated by assuming an optimal management to avoid stress (i.e., water 
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input when RAW is empty) and the depth of water inputs was selected in order to fill the 

depletion  

(Dr = 0). The calibration was applied simultaneously to both seasons to get a unique set of 

parameters for cereals. The results (Table 3) show that cereals are irrigated only a short time 

after the vegetation peak is reached (Kcb_stop = 99%) which is consistent with the 

conventional agricultural practice for cereals (no more water is needed after grain filling 

during the maturation stage. 

The results showed that although evapotranspiration simulations are on the whole correct  

(Figure 6), they are better for the barley plot than for the wheat plot (Nash efficiency of 0.6 

and 0.53 respectively and a root mean square deviation RMSD of 0.63 and 0.94 mm 

respectively). However, we also see that this difference might be due to problems in the 

observed data, as it is very clear that the daily variations of observed ET for wheat are much 

stronger than for barley and should be considered with care. However, they might be mainly 

noisy and we see no clue of any significant bias since they reproduce well the seasonal cycle 

and they are also coherent with the independent ET0 measurements. The discrepancies were 

more frequent at the end and at the beginning of the growing season  

(Figure 6), when vegetation cover is low and soil evaporation process dominates. The 

calibrated parameters are shown in Table 1. 

Table 1. Parameters obtained after calibration on observed ET for wheat and barley 

plots. Grey cells show calibrated parameters. 

 Definition Value Data Sources 

Vegetation Parameters   

afc NDVI-fc relation’s slope 1.25 Satellite imagery 

bfc NDVI-fc relation’s intercept −0.13 Satellite imagery 

aKcb NDVI-Kcb relation’s slope 1.35 Calibrated 

bKcb NDVI-Kcb relation’s intercept −0.18 Calibrated 

Soil Parameters   

θfc (m
3
/m

3
) Volumetric water content at field capacity 0.29 Ground observation 

θwp (m
3/m3) Volumetric water content at wilting point 0.15 Ground observation 

Init_RU (%) Soil initial water content 10 Ground observation 

Ze (mm) Height of the surface layer 125 FAO-56 

REW (mm) Readily evaporable water at surface layer 0 Calibrated 

m Coefficient de reduction 0.264 Calibrated 

Zrmin (mm) Minimum root depth 125 FAO-56 

Zrmax (mm) Maximum root depth 1650 Calibrated 

p 
Maximum Root Water Depletion Fraction 

before stress 
0.55 FAO-56 

Zsoil (mm) Total soil thickness 2000 Calibrated 

Difer (%) Diffusion between surface and root layers 10 Calibrated 

Difrd (%) Diffusion between deep and root layers 20 Calibrated 
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Table 2. Relations used for fc and Kcb estimates from NDVI 

NDVI-fc 
NDVI 

min 

NDVI 

max 

fc 

min 

fc 

max 
Relations Sources 

Cereals  0.1 0.9 0 1 

                        
Satellite imagery  

Market 

gardening  
0.1 0.9 0 1 

Fruit trees  0.1 0.8 0 0.9                         

NDVI-kcb 
NDVI 

min 

NDVI 

max 

Kcb 

min 

Kcb 

max 
Relations Sources 

Cereals  - - - -                          Calibration (barley and 

wheat experiment field). 

Market 

gardening  

0.1 0.9 0 0.98                           FAO paper 56 [16] and 

Satellite imagery.  

Fruit trees  - - - -                 Calibration (olive trees 

experimental field in 

Morocco) 
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(a) 

 

(b) 

 

 

Figure 6. Simulations of ET for the (a) barley and (b) winter wheat experiment fields for the calibrated model using observed 

irrigations (Nash = 0.6 and 0.53, respectively). 



                                                                                                                                     Remote Sens. 2015, 7  

 

111 

 

Table 3. Soil and Irrigation parameters used for spatialization. 

 Cereals 
Market 

Gardening 
Fruit Trees 

Soil parameters    

Zrmax (mm) 1650 1000 1600 

p 0.55 0.55 0.65 

Initial RU (%) 2008/2009 10 10 

50  2011/2012 32 32 

 2012/2013 10 10 

Irrigation rules    

Fw, fraction wetted (%) 100 25 100 

MAD, management allowable depletion for irrigation 

triggering 

MAD = 

RAW 

MAD = 0.2 * 

TAW 

MAD = 

RAW 
Kcb_stop, Kcb threshold to stop irrigation (% of Kcbmax) 99 75 0 

Irrigation constraints    

Min_ir, minimum water depth per turn (mm) 20 0 20 

Min_days, minimum number of days between two water turns 7 7 7 

3.3. Validation of Irrigation Volumes at Perimeter Scale 

3.3.1. Model Parameters Setting for Evapotranspiration and Irrigation Spatialization 

Evapotranspiration and irrigation estimates were spatially distributed at perimeter scale for the 

seasons 2008–2009 (December to June), 2011–2012 (November to May) and 2012–2013 

(November to June). Considering the difficulty to get individual parameter values for specific crop 

types, the land cover typology was grouped into three major classes: market gardening (about 35% 

of the GDAs’ areas), cereals (about 17%) and orchards (about 34%, mainly olive trees). The linear 

relationship linking fc and Kcb with NDVI for the market gardening were estimated using the 

FAO paper 56 [16] and satellite data (Table 2). For bare soil conditions, we assumed like [23] that 

fc and Kcb values were zero, with NDVI values for bare soils extracted from the images. For full 

vegetation cover, fc was assumed to be 1 and Kcb was taken as Kcb-mid in the FAO paper 56, 

while NDVI was also extracted from the images. For olive trees, the same method was applied to 

estimate the NDVI-fc relation. For Kcb, a relationship between fc and Kcb was obtained from a 

previous calibration achieved on experimental data for irrigated olive trees in the Haouz plain in 

Morocco (not shown here) which was considered more representative of the Merguellil area than 

using bibliographic data. In absence of a detailed soil map, soil properties (θfc, θwp, REW, Ze, Zsoil, 

Difer, Difrd) were considered homogeneous in the study area and the parameters were taken from 

calibration at plot scale (Section 3.2). Crop specific parameters (Zrmax and p) were set to 

calibrated values for cereals and taken from FAO paper 56 [16] for the other land use classes 

(Table 3). The initial soil water content (Init_RU) for annual crops was estimated considering the 

previous precipitations. For the 2008–2009 and 2012–2013, it was also set to 10% of the soil 

available water (between θfc and θwp) because no significant precipitations were observed since 

summer, while for the 2011–2012 season initial water content was set at a relatively larger value 

of 32% of the soil available water due to 85 mm of precipitations recorded ten days before the 

starting date of the simulation. Higher initial soil filling rate was used for trees (50%) since they 
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are almost continuously irrigated. Regarding irrigation rules (Table 3), market gardening was 

irrigated using drip irrigation which means that less soil surface is wetted (fw = 25%) and 

irrigation lasts longer because vegetable require water until harvest (Kcb_stop = 75%). In 

addition, to reproduce the drip irrigation, MAD was set to a low value (MAD = 0.2 * TAW), 

which triggers frequent irrigation inputs. Trees are mainly irrigated by gravity all year round (fw = 

100%, Kcb_stop = 0). 

3.3.2. Comparison between Modeled and Observed Irrigation Volumes 

After running the SAMIR model using the image time series over the plain for the three seasons  

(Figure 7), the monthly values of modeled irrigation were computed for three irrigated perimeters 

(GDAs) for which validation data were available (Ben Salem II, Mlelsa and Karma II, Figure 8). 

The cumulated ET values are also plotted on the figure in order to scale irrigation totals to the total 

water loss occurring during the month. The seasonal water budget was computed for all campaigns 

(Figure 9) and shows that on the whole the inputs (P and I) are close to evaporative consumption 

(ET) with little water remaining in the soil. 
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a) 

 
b) 

 
c) 

 

Figure 7. Modeled ET over the study area for the (a) 2008–2009, (b) 2011–2012 and (c) 

2012–2013 seasons. 
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(a) 

  

(b) 

  

 
(c) 

  

 

Figure 8. Comparison between surveyed and SAMIR (SAtellite Monitoring of IRrigation) estimated irrigation depth at seasonal scale for 

the (a) 2008–2009, (b) 2011–2012 and (c) 2012–2013 seasons.
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Figure 9. Seasonal water budget for the eight campaigns ( SW is the variation of 

soil water content). 

For the 2008–2009 season (Figure 8a), the modeled irrigations are quite close to the 

observed values, although irrigations are small compared to ET, especially in summer. The 

larger discrepancy visible in June can be due to market gardening which dominates at this 

time as cereals are harvested (beginning of June). Indeed the parameters used for these 

crops are rather uncertain. For the 2011–2012 season (Figure 8b), the estimated irrigations 

are also on the whole satisfying with two noticeable exceptions for the first and last months 

of the simulation. Indeed, November exhibits a strong overestimation of irrigation which 

can be due to an error in soil water content initialization but is also at least partially due to 

the fact that late vegetables (e.g., pepper or tomatoes) are not all removed although still 

green and not irrigated. The model is not able to manage such partial vegetation cycles and 

irrigates as if it was the crop that will follow in the crop rotation (i.e., the crop mentioned in 

the land use map). In May, the discrepancy is not clearly explained but can be also due to 

the growing importance of vegetables planted mainly in April. For the 2012–2013 season  

(Figure 8c), irrigations are also on the whole correct but with several exceptions. 

Overestimations in November and December for Karma II and November for Mlelssa are 

linked to previous crops as explained for 2011–2012. The problem of May for Mlessa and 

June for Karma II can be also related to market gardening which is poorly parameterized. 

When aggregated at seasonal scale, the irrigation estimates for the eight campaigns give a 

mean absolute percentage error (MAPE) of 25% (Figure 10) and the overall difference for 

all campaigns is very low (121 mm irrigation observed for 135 mm modeled). This is an 

encouraging result considering the fact that (i) the calibration dataset is minimal, and (ii) the 

calibration protocol affects a limited number of parameters for a limited number of LU 

classes. Progress in parameterization would require ideally crop specific information, e.g., 

flux measurements on vegetables of trees, or at least irrigation volumes collected at plot 

scale so as to be crop specific. However, even with the current irrigation volumes at 
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perimeter scale, it might be possible to achieve a global calibration of some parameters. 

Although there would be too many degrees of freedom to correctly calibrate all parameters 

with such aggregated data, we could focus on irrigation practices which are much uncertain 

though quite sensitive. 

 

 

Figure 10. Comparison between observed and SAMIR modeled seasonal 

irrigation depths. 

4. Conclusions  

We show in this study that the five days acquisition frequency of Sentinel-2, as simulated 

in the SPOT4-Take5 experiment, will not completely solve the problem of cloudiness even 

in semi-arid areas like Tunisia. The combination with other VIS-NIR high-resolution 

sensors like Landsat 8 or SPOT should still be useful. We also showed that although the 

radiometric correction of images was performed with special care using the state-of-the-art 

MACCS algorithm, the invariant analysis proposed here can help improving the time series 

quality, especially in semi-arid areas where such objects can be easily found. Moreover, 

although a cloud masking is performed during the MACCS implementation, the subsequent 

invariant analysis helps identifying and discarding some remaining hazy images. Using 

these high-resolution time series including clear images approximately every 20 days, we 

have shown that with limited local data and literature review it was possible to estimate 

irrigation volumes at perimeters scale. The seasonal volumes estimated by this method 
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appear acceptable, even though results at finer timescales (monthly and below) need to be 

improved, in particular by translating our knowledge of the agricultural practices into 

algorithmic constraints in the model. Despite these shortcomings, we have demonstrated 

that combining HR data and simple water balance modeling offers an interesting method to 

monitor irrigation volumes. 
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3.3 Unpublished results and additional analyzes 

This part presents a set of analyzes and results that are not included 
in the previous publication. 

 SAMIR was also run on the same area for the 2013-2014 season. It was a wet 
season in comparison to the three other ones, which was interesting to assess 
SAMIR in different climatic conditions. 

 The validation of modeled irrigation volumes of the 2012-2013 season was also 
carried out at field-scale using an irrigation dataset collected from field surveys 
conducted in the Ben Salem II, Mlelsa, Karma I and Karma II GDAs. 
Moreover, a comparison was also made between measured groundwater 
withdrawals obtained for some private farms with irrigation volumes estimated 
by SAMIR.  

 For the 2012-2013 and 2013-2014 seasons, SAMIR was also applied on a 10 km 
× 8 km sub-image centered on the XLAS using the same parameters as in the 
article. In this case, the modeled ET was validated using the XLAS derived ET. 

3.3.1 Irrigation volumes results validation at perimeter scale for the 2013-2014 
season 

Evapotranspiration and irrigation estimates were spatially distributed at perimeter scale 
for the seasons 2013-2014 (November to October) following the same approach detailed 
in the paper and applying the same model parameters. Figure 3.1 shows modeled ET over 
the study area for the 2013–2014’s season. This season was the wettest one with a 
cumulated rainfall of about 341 mm. 

 

Figure 3. 1: Modeled ET over the study area for the 2013–2014 season. 

 Then, the monthly values of modeled irrigation were computed for the three GDAs 
and compared to the observed irrigation volume (Figure 3.2).  
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Figure 3. 2: Comparison between surveyed and SAMIR estimated irrigation depth at seasonal 
scale for the 2013–2014’s season. 

The cumulated ET values are also plotted on the figure in order to give a scale to 
irrigation totals. SAMIR overestimates irrigation in November for the three GDAs. This 
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error may be due to an error in soil water content initialization which was estimated 
based only on rainfall during the previous month, without taking into account the 
impact of the previous crops. One other possible explanation is that late vegetables 
(e.g., pepper or tomatoes) are not all removed at the beginning of the simulation in 
November and are still green although no more irrigated. As it was already mentioned, 
SAMIR is not able to manage such partial vegetation cycles and irrigates these remaining 
crops as if it was the crop that will follow in the crop rotation, since only one land use 
map is used for the whole season. 

The figure 10 of the article was redone considering the 2013/2014 results of irrigation 
volume aggregated at seasonal scale and inversing the two axis since traditionally 
observations are plotted on the Y-axis (figure 3.3). All seasonal values were calculated 
using the months available for the four seasons, i.e from November to June. The seasonal 
water budget computed for all campaigns (Figure 3.4) and the observed irrigation volume 
are detailed in the following table: 

Table 3. 1 : Estimated and observed seasonal water budget components for all campaigns  

Campaigns 
Modeled 
irrigation 

(mm) 

Modeled 
ET (mm) 

Rainfall 
(mm) 

 SW 
(mm) 

Observed 
irrigation 

(mm) 

Ben Salem 08-09 98.8 281.2 232.5 50.1 108.3 

Mlelsa 08-09 84.7 283.0 232.5 34.2 112.2 

Ben Salem 11-12 133.6 268.8 142.0 6.8 80.5 

Mlelsa 11-12 126.8 250.3 142.0 18.5 86.0 

Karma II 11-12 129.2 235.2 142.0 36.0 94.0 

Ben Salem 12-13 137.4 237.2 96.9 -2.9 172.9 

Mlelsa 12-13 164.0 259.0 96.9 1.9 136.9 

Karma II 12-13 204.2 274.0 96.9 27.1 173.9 

Ben Salem 13-14 70.4 248.1 340.9 163.1 97.3 

Mlelsa 13-14 77.6 221.3 340.9 197.1 67.6 

Karma II 13-14 76.2 234.1 340.9 183.0 93.2 

Seasonal results (November 
to June) 

118.4 253.8 200.4 65.0 111.2 

 

The irrigation estimates for the eleven campaigns give a mean absolute percentage 
error (MAPE) of 25% and a root mean square error (RMSE) of 30 mm. The overall 
difference for all campaigns decreases as compared to the results based only on the 
eight campaigns: 111 mm of total observed irrigation compared to the 118 mm 
simulated by SAMIR. The regression is also better with R2=0.42. 
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Although the overall results are encouraging, SAMIR always overestimates the 
monthly irrigation volumes at the beginning of the season and the largest discrepancy is 
recorded in November for all campaigns. Hence, we highlight a real problem in the 
initialization parameters, especially parameters linked to the soil water content. Another 
limiting factor is the land use map. One single annual land use map is usually far from 
the reality of the major part of our study area characterized by crop rotation (up to three 
crop per year) and by intercropping of cereals (winter) and vegetables (summer) 
between the rows of irrigated trees fields which can lead to error in model simulation 
since it remains unable to take into account these aspects. 

 

Figure 3. 3 : Comparison between observed and SAMIR modeled seasonal irrigation depths 
(improvement of fig. 10 of (Saadi et al., 2015) paper including the 13-14 season). 
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Figure 3. 4 : Seasonal water budget for the eight campaigns ( SW is the variation of soil water 
content). 

3.3.2 Irrigation volumes results validation at field and farm scales 

Field scale 

Modeled irrigation volumes were also compared to plot-scale irrigation dataset 
collected during field surveys conducted in 2013 in Ben Salem II, Mlelsa and Karma I and 
Karma II GDAs.  

Although the overall difference between simulated and averaged irrigation volumes at 
perimeter scale is coherent (Table 3.2), property-level results (Figures 3.5, 3.6, 3.7 and 3.8) 
are disappointing. The detailed results are presented in Annex 7. However, the 
discrepancies observed are not so surprising considering the complexity of the invoice 
system, the frequent redistribution of water between farmers, and the difficulty to identify 
people in large families. As a clue, we have to say that the names’ list collected during the 
ground survey to map the plots was very different from the list of names corresponding 
to invoices. After discussion with the managers, it was possible to match the two list 
considering family relations and also owner-farmer links, but it seems that it was not so 
successful. We are not surprised to see also that for the Mlelsa GDA the relation between 
estimated and observed irrigation is better, as this GDA was clearly better organized and 
managed (“here we all belong to the same great family” said the manager). 

Table 3. 2: Comparison between simulated SAMIR irrigation and irrigation observed at the 
“name” / block scale for the 2012/2013 season 

GDA “name” / block 
number 

Modeled irrigation 
(mm) 

Observed irrigation (mm) 

Karma I 76 names 196.0 146.4 
Karma II 34 names 278.0 272.1 

Mlelsa 106 names 186.6 148.6 
Ben salem II 8 blocks 145.30 173.75 
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Figure 3. 5: Modeld vs. obsereved irrigation volumes in the GDA Karma I 

 

Figure 3. 6 : Modeld vs. obsereved irrigation volumes in the GDA Karma II 
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Figure 3. 7 : Modeld vs. obsereved irrigation volumes in the GDA Mlelsa 

 

 

Figure 3. 8 : Modeled vs. observed irrigation volumes in the irrigation blocks of the Ben Salem 
II GDA. 

Farm scale  

SAMIR estimates of irrigation volumes were also assessed at farm scale in the frame of 
Fradi (2017) master thesis. The main objective was to report and evaluate the farmers’ 
irrigation practices. A comparison was made between measured groundwater withdrawals 
obtained for three farms in the Kairouan plain, with irrigation volumes estimated by 
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SAMIR. These farms were chosen because they used only a private well for irrigation, and 
it was possible to install a meter on these wells. The results showed first that the tabulated 
standard Kcb values proposed in the FAO-56 paper were far from the remotely sensed 
Kcb values used by SAMIR, showing the advantage of remote sensing for actual 
vegetation monitoring. However, the most interesting results came from the comparison 
between the pumped volumes and the estimated irrigation requirements, showing strong 
discrepancies. Three water consumption scenarios were applied in SAMIR to account for 
uncertainties in parameters, i.e. (1) the economic scenario with minimum Kcb and 
economic irrigation allowing limited stress, (2) a standard scenario with medium 
parameters and optimal irrigation management (irrigation triggered when RAW is empty) 
and (3) a scenario with maximum Kcb and frequent irrigations, without generating 
drainage however. The results showed that actual irrigations were always greater or equal 
even to the maximum water consumption scenario simulations. The over irrigation was 
also observed after rainfall events: while the amount of simulated irrigation depth 
decreases, this drop is not observed on actual farmer’s inputs. This shows that farmers do 
not account much for rainfall events and prefer to secure their production. Over 
irrigation is also recorded in plots using drip irrigation, showing that the use of this 
technique does not always imply an economic irrigation management. 

The differences between modeled and observed irrigation volume may be partially 
explained by the modeling uncertainties. Also, the efficiency of the irrigation scheme may 
be questioned although the short distance between the pump and the plots and the use of 
plastic pipes may limit these losses. However, the fact that even the most water 
consuming parameters’ set doesn’t allow to reach the observed water consumption 
advocates for a clear over irrigation by farmers. This strategy has been confirmed by 
ground enquiries showing that they usually pump water as much as possible, to secure 
their production, and that the cost of pumping is not a limitation. The logic of the famers 
is not only driven by hydrological considerations and constraints.  

3.3.3  Evapotranspiration results validation using the XLAS data 

The daily distributed ET simulated by SAMIR were also validated using the daily 
XLAS derived ET (i.e. LE_residual_XLASday-FP). Daily observed ET was computed using 
the residual method; hence, six estimates of the daily observed ET were obtained by 
combining the two satellite overpasses and three methods to compute G and thus AE 
(see Section 2.5.3.3). From the daily observed ET estimates, minimum and maximum ET 
were selected for each day and minimum and maximum daily ET time series were 
interpolated between successive days based on the preservation of the ratio of the 
available energy (AE) to the global incoming radiation Rg as scale factor (Figure 3.10). On 
the other hand, SAMIR was run for the 10 km × 8 km sub-image centered on the XLAS 
transect (see figure 2.17 section 2.4.2). Computed daily ET was then weighted by the 
corresponding daily XLAS footprint in order to get an ET comparable to XLAS derived 
ET. Figure 3.9 shows two examples of daily footprint overlying the daily modeled ET. 



Chapter 3: Crop water requirements and irrigation volumes estimation at high spatial resolution: 
application of the crop water balance model SAMIR  

 

129 

 

a) 

 

b) 

 

Figure 3. 9 : Daily SAMIR modeled evapotranspiration over the 10 km × 8 km sub-image and 
daily XLAS footprint for (a) 12th April 2013 and (b) 26th May 2014 

 

Figure 3. 10 : Daily SAMIR modeled evapotranspiration vs. observed daily latent heat fluxes. 
Light grey bars show gaps in XLAS data.  
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Observed ET ranged from zero and 2.8 mm and from zero and 3.8 mm for 2012-2013 
and 2013-2014, respectively; this is consistent with the fact that 2013-2014 is a wet season 
in comparison with 2012-2013. The comparison between XLAS derived and SAMIR ET 
values shows better results for 2012-2013 than 2013-2014. Results show a good 
agreement between observed and modeled ET for the first mid-season of cereals crops 
from March to May 2013, and for the subsequent season of market gardening (e.g. 
tomato, water melon, pepper etc.) from May to August 2013. In addition, a good 
agreement is observed for the second market gardening season (May to August 2014). 
However, discrepancies are observed for the remaining periods which may correspond to 
periods when bare soil fraction (fallow and trees fields) outweighs the vegetation covered 
fraction or when evaporation process. Also the discrepancy observed for the second 
wheat period and not for the first may be due to a bad simulation of evaporation 
processes occurring more during the second wet year. This highlights the known 
problems of the FAO method to simulate evaporation from bare soil, mainly the readily 
evaporable water at surface layer REW, as observed during the SAMIR calibration (Saadi 
et al. 2015) and as mentioned by other authors (Torres et Calera, 2010, Odi-Lara, 2016). 

With the current parameterization, SAMIR is not able to well reproduce the ET 
interseasonality and modeled ET range from 0.3 mm and 2 mm for both seasons. The 
average annual levels are not bad but the slight difference between seasons is insufficient, 
given that the two seasons are different in terms of climatic conditions. The transpiration 
component is assumed more stable between years because it is linked to external water 
inputs by irrigation, and thus mainly link to the cropped surfaces. Conversely, the 
evaporation component is more linked to soil surface moisture and thus correlated with 
rainfall events and partially with irrigation. Then, the fact that the contrast between years 
is not well reproduced advocates for a problem with evaporation, in this case an 
underestimation. The fact that the evaporation peaks present in the XLAS derived ET 
after each rainfall event are not observed in the SAMIR ET corroborates this evaporation 
problem. The area below XLAS transect is mainly cropped by trees with considerable 
fractions of bare soil, especially during the dry season (rain-fed cereals did not develop), 
which explains the importance of the contrast observed for ET between years but not 
with SAMIR. 

This problem with evaporation may be because of the REW parameter controlling the 
evaporation rate (REW=0 and m=0.246) has been obtained by the calibration of cereals. 
Having not much information or other crops, and considering this parameter was linked 
mainly to soil properties, we have decided to use this parameter for all crops in the area, 
which may be the reason for the observed problem. Therefore, in order to improve 
SAMIR results, we have decided to revisit the calibration of cereals using more standard 
REW values, and to apply in any case standard REW values (i.e. between 0 and 8) to other 
crops, assuming this parameter cannot be extrapolate simply from one crop to another. 
This will be presented in chapter 4. 
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3.4 Synthesis and partial conclusion 

The major originality of SAMIR relies on the use of remote sensing NDVI time series 
for vegetation monitoring, from which crop coefficients and vegetation fraction covers 
are derived, instead of using standard values. The irrigations are simulated based on the 
soil water budget. Irrigation volume estimates have been evaluated at perimeter, farm and 
field scales. The seasonal volumes estimated at perimeter scale were acceptable, although 
comparison at finer spatial scales (farm and field scales) were not significant. Indeed, at 
plot scale we faced the difficulty to collect accurate information. At farm scale, the 
result gave significant information about the farmer’s behavior but the data set did not 
allow assessing accurately SAMIR estimates themselves. At perimeter scale, it was shown 
that the modeled monthly irrigations are on the whole satisfying with some noticeable 
exceptions pointing out the limitations of SAMIR regarding (1) the initialization of the 
soil moisture, and (2) the impossibility to take into account changes of land use during 
the same season. This last point emphasizes the necessity to develop methods for 
monthly land use mapping instead of the traditional annual or seasonal mapping 
frequency used for now. Finally, SAMIR ET estimates were compared with ET derived 
from XLAS measurements over four kilometers transect during two years. Although the 
values were on the whole coherent, discrepancies revealed some possible problems in 
the evaporation simulations with SAMIR. Therefore, further elaborations are carried out 
to enhance SAMIR parameterization which will be presented in the next chapter.
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4 Chapter 4: Revisiting SAMIR 
parameters setting for evapotranspiration 

and irrigation spatialization 
 

 

The SAMIR overall results of modeled ET and irrigation volumes are encouraging. However, 
with the current parameterization, in the sparsely vegetated area observed by the XLAS, 
SAMIR is not able to well reproduce the seasonal variations of ET and the modeled ET is 
located within the same range for the 2012-2013 and 2013-2014 seasons although XLAS 
measurements are more contrasted, because of significant differences in precipitations for these two 
years. Moreover, the issue of parameterization, regarding mainly the soil water content 
initialization and the soil evaporation (REW), has been already highlighted. Therefore, in order 
to improve SAMIR results, the input parameters are revisited. New cereals parameters calibration 
is carried out based simultaneously on evaporation and soil moisture measurements for the three 
observed plots. A further attempt to get calibrated parameters for trees was performed based on 
ET and soil moisture measurements of the rainfed olive orchard (Nasrallah flux station).  
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4.1 SAMIR model calibration  

4.1.1 Second calibration on cereals fields 

The SAMIR model was recalibrated at plot scale using simultaneously latent heat flux 
and soil moisture measurements (section 2.5.2) of the irrigated barley (20111-2012), 
irrigated wheat (2012-2013) and rainfed wheat (2011-2012) plots. The goal of this 
calibration is to get a unique set of parameters for cereals taking into account irrigated and 
rainfed cereals in order to get a robust parameterization in a context of various cropping 
practices. Another difference with the first calibration described in (Saadi et al., 2015) is 
that the Nash efficiency between observed and modeled values was maximized for both 
ET and soil moisture for the three soil layers (i.e. evaporation layer, root zone and deep 
layer). 

The NDVI time profile for each flux site was extracted from the SPOT time series. 
The NDVI-fc relationship was determined empirically considering that for a bare soil 
(NDVI = 0.1) the fraction cover was null (fc = 0) and that at full coverage (fc = 1) the 
NDVI was the maximum value observed in the image (0.9). The NDVI-kcb relations 
were calibrated. Differently from the first calibration, wilting point (θwp) and field capacity 
(θfc) were determined for each plot on the basis of the soil moisture measurements as the 
upper and lower limits of the soil moisture measurement range. The field capacity was 
determined after discarding the water content peaks observed after strong wetting events 
before soil drainage. An initial water content of 45%, 70% and 10% of the water holding 
capacity was considered for the rainfed winter wheat (2011-2012), irrigated barley (2011-
2012) and irrigated winter wheat (2012-2013) plots, respectively, based on previous 
rainfall as soil water measurements when usually not yet available. For 2012–2013, it was 
set to 10% because no significant precipitations were observed since summer, while for 
the 2011–2012 season, the initial water content was set at a relatively larger value of 45% 
and 70% due to 85 mm of precipitations recorded ten days before the starting date of the 
simulation. Higher percentage was considered for the irrigated barley because this plot is 
irrigated and barley was preceded by a market gardening crop (during summer 2011). The 
soil fraction wetted by rain or irrigation (fw) was set to one because the irrigation 
technique for cereals is sprinkler irrigation. The depth of the evaporation layer (Ze) and 
the proportion of easily available water (p) were fixed following FAO paper 56 
recommendations (Allen et al., 1998). The calibrated parameters (REW, m, Zrmax, Zsoil, 
Difer, Difrd, and Kcb) are summarized in table 4.1. 
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Table 4. 1: Parameters obtained after calibration on observed ET and soil moisture for the three 
cereals plots.  

 Definition Value Data Sources 

Vegetation Parameters   

afc NDVI-fc relation’s slope 1.25 Satellite imagery 

bfc NDVI-fc relation’s intercept −0.13 Satellite imagery 

aKcb NDVI-Kcb relation’s slope 1.31 Calibrated 

bKcb NDVI-Kcb relation’s intercept −0.13 Calibrated 

Soil Parameters   

θfc [m
3/m3] 

Volumetric water content at 

field capacity 
0.22 Rainfed wheat ground observation 

  0.27 Irrigated barley ground observation 

  
0.25 

 

Irrigated wheat ground observation 

 

θwp [m
3/m3] 

Volumetric water content at 

wilting point 
0.07 Rainfed wheat ground observation 

  0.14 Irrigated barley ground observation 

  
0.11 

 

Irrigated wheat ground observation 

 

Init_RU [%] Soil initial water content 45 Rainfed wheat ground observation 

  70 Irrigated barley ground observation 

  
10 

 

Irrigated wheat ground observation 

 

Ze [mm] Depth of the surface layer 125 FAO-56 

REW [mm] 
Readily evaporable water at 

surface layer 
0 Calibrated 

m [-] Coefficient de reduction 0.264 Calibrated 

Zrmin [mm] Minimum root depth 125 FAO-56 

Zrmax [mm] Maximum root depth 800 Calibrated 

p 
Fraction of readily available 

water holding capacity 
0.55 FAO-56 

Zsoil [mm] Total soil thickness 1550 Calibrated 

Difer [%] 
Diffusion coeff. between 

surface and root layers 
5 Calibrated 

Difrd [%] 
Diffusion coeff. between deep 

and root layers 
10 Calibrated 

 

The results showed that the dynamics of ET are on the whole correctly simulated 
(Figures 4.1). One important result is that it was not possible to obtain correct results 
without decreasing the m factor down to 0.264. When trying to keep it to one, even with 
REW at a value of zero, the average Nash decreases significantly around 0.4. This 
confirms that the evaporation process is difficult to described using the standard FAO 
method, and confirms the usefulness of the m factor. However, some important 
discrepancies explain that the final Nash and RMSD values are not so good. For rainfed 
wheat, we see that SAMIR does not reproduces ET peaks due to rainfall events, showing, 
if observations are correct, that the low m factor is not appropriate during this period of 
bare soil and high ET0. SAMIR increases evaporation after harvest (around May, 27th), 
but the raise is not as pronounced as for observations. For the irrigated barley, we see also 
a significant underestimation of ET by SAMIR starting mid-April, which can be explained 
also by soil evaporation problems. Finally, the problem of the irrigated wheat is quite 
different and seems to be linked to measurement errors. Indeed, especially when 
compared with irrigated barley, the strong variability of ET is probably due to errors in 
observed ET, quite obvious considering the dozen of ET values which are not associated 
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with null values of ETo and are anyway not realistic. Calibrating rainfed and irrigated 
crops together appears to be successful here, showing that except the difference in water 
inputs, they have roughly similar behavior. Nevertheless, observed ET for the rainfed 
wheat seems to be lower than modeled one, which could be interpreted by a lower Kcb, 
but this lower value may also be the result of compensation, through the calibration, of 
the higher observed values during the last month. 

The soil moisture simulation for the surface and root layer is correct with Nash values 
better than for ET simulations (Table 4.2). The results for the deep layer soil moisture 
were not considered because calibration was unsuccessful. This can be explained either by 
the complex hydrological behavior of this layer or by soil moisture measurement errors 
(e.g. the raise of moisture in the deep layer for rainfed wheat is quite surprising). In fact, 
the evaporation and root layers have fairly simple behaviors; they are well constrained by 
water inputs (rainfall and/or irrigation) and ET outputs, so basically they look like a tank. 
On the other hand, the deep layer receives by gravity only the excess water drained from 
the above horizons and it is affected by capillarity fluxes with the layers below. These 
processes are more complex to simulate. 

Table 4. 2: NASH efficiencies of SAMIR calibration on observed ET and soil moisture for 
wheat and barley plots. 

NASH  
Irrigated 

barley 2011-
2012 

Rainfed 
wheat 

2011-2012 

Irrigated 
wheat 2012-

2013 
Average 

Evapotranspiration 
Nash 

RMSD 
0.55 
0.66 

0.45 
0.75 

0.53 
0.68 

0.51 
0.70 

Soil 
moisture 

Evaporation 
layer 

Nash 0.66 0.77 0.67 0.70 

Root layer Nash 0.89 0.81 0.77 0.82 

Deep layer Nash -120.76 -26.40 -4.56 - 

Average  0.66 0.62 0.62 0.63 
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a) 

 

b) 

 

c) 

 

Figure 4. 1: Simulations of ET for the (a) rainfed winter wheat (b) irrigated barley and (c) 
irrigated winter wheat experiment fields for the calibrated model (NASH = 0.45, 0.55 and 0.53, 

respectively).  
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a) 

 

b) 

 

c) 

 

Figure 4. 2: Simulations of soil moisture for the (a) rainfed winter wheat, (b) irrigated barley and 
(c) irrigated winter wheat fields for the calibrated model. Average NASH for evaporation and 

root layers: 0.79, 0.77 and 0.72 for the three plots, respectively.  

4.1.2 Calibration for the olive orchard 

In order to better understand tree crops functioning regarding the FAO-56 model, the 
SAMIR model was also calibrated at plot scale using latent heat flux measurements and 
soil moisture of the rain-fed olive orchard (section 2.5.2). One important stake was to get 
insight in the evaporation process that has shown to be tricky in previous results. 
However, calibration on a rain-fed orchard with very low vegetation cover would hardly 
be applicable below the XLAS transect were all trees are denser and irrigated. 

The simultaneous calibration with flux and soil moisture measurements has failed since 
negative NASH efficiencies are always obtained. These problems may be due either to 
measurements problems, or to the fact that water flux for such a rainfed system, with 
deep rooting system, may not be correctly represented by the simple FAO soil model. 
However, calibration using only ET measurement gave a Nash efficiency of 0.40 (Figure 
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4.3); the parameters are shown in Table 4.3. It is interesting to see, although disturbing, 
that it was not possible to get correct calibration without a strong reduction of the 
evaporation intensity, with a null value for REW and a very low m factor (0.108). This 
confirm the evaporation problem with FAO-56, but will not provide any solution to our 
hypothesis that evaporation should be higher under the XLAS transect. So we decided to 
withdraw these results, considering that this rainfed orchard is not representative of our 
XLAS irrigated area. 

 

Figure 4. 3: Simulation of ET for the rainfed olive orchard field for the calibrated model (NASH 
Spatialization of ET and Irrigation) 

 

Table 4. 3: Parameters obtained after calibration on observed ET for the rain-fed olive field.  

 Definition Value Data Sources 

Soil Parameters   

θfc [m
3/m3] Volumetric water content at 

field capacity 

0.22 ground observation 

θwp [m
3/m3] Volumetric water content at 

wilting point 

0.04 ground observation 

Init_RU [%] Soil initial water content 10 Estimation 

Ze [mm] Height of the surface layer 125 FAO-56 

REW [mm] Readily evaporable water at 

surface layer 

0 Calibrated 

m [-] Coefficient de reduction 0.108 Calibrated 

Zrmin [mm] Minimum root depth 1550 FAO-56 

Zrmax [mm] Maximum root depth 1550 Calibrated 

p [-] Fraction of readily available 

water holding capacity 

0.65 FAO-56 

Zsoil [mm] Total soil thickness 5000 Calibrated 

Difer [%] Diffusion between surface and 

root layers 

15 Calibrated 

Difrd [%] Diffusion between deep and 
root layers 

25 Calibrated 
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4.2 Model parameters setting  

The fc-NDVI relations for all land use classes and the Kcb-NDVI relation for market 
gardening were kept unchanged (Table 4.4). The revised calibrated Kcb-NDVI relation 
was used for cereals crops (Table 4.4). For tree crops, the previously relation for fc and 
Kcb achieved on experimental data for irrigated olive trees in the Haouz plain in Morocco 
was questioned. Indeed, this olive orchard with high vegetation cover is well maintained 
and well irrigated leading to high transpiration against limited evaporation. These 
conditions are not verified in our study area context, and although the trees are irrigated, 
they are occasionally subject to water stress (mainly olive trees) especially in dry season 
when they are in competition with more profitable crops such market gardening. A 
literature review on Kcb values was carried out and it was assumed that a NDVI-Kcb 
relation derived from Kcb values provided by (Allen et al., 1998) and (Testi et al., 2004) for 
olive trees was more suitable. 

Soil properties (θfc, θwp, Ze, Zsoil, Difer, Difrd) were considered homogeneous in the 
study area and these parameters were taken from cereal plots calibration. As no other 
accurate information was available, the averaged value of the observed θfc and θwp in the 
three cereals plots were used (Table 4.5). Calibrated value of REW and m was used only 
for cereals crops, while for trees and market gardening crops, because no other reliable 
information was available, we used bibliographic values: m was set to 1 and REW was 
taken from the table 19 of the FAO-56 paper (Allen et al., 1998) based on the estimated 
soil water content (Table 4.5).  

Crop specific parameters (Zrmax and p) were set to calibrated values for cereals and 
taken from FAO paper 56 (Allen et al., 1998) for the other land use classes (Table 4.5). 
For tree crops, maximum root zone depth was set to match the calibrated maximum soil 
depth (Table 4.5). In order to overcome parameters initialization problem, the initial soil 
water content (Init_RU) was also revisited and for all season it was set to 50% of the soil 
available water (between θfc and θwp) for all land use classes except for bare soils where it 
was set to 10% (Table 4.5). These assumptions were done based on field observation of 
our study area, because cereals crops sown at the beginning of the simulation (November) 
are often preceded by an irrigated summer crop which lead to a significant residual soil 
water content. For bare soils, the 10% Init_RU accounts for the fact that these soil 
receive only rainfall and are mostly dry at the end of October. 

The irrigation parameters were also revisited (Table 4.5). Drip irrigation was assumed 
for trees since gravity irrigation become increasingly rare in our study area (fw = 25%, 
MAD = 0.5 * TAW), trees are irrigated throughout the year (no threshold to stop 
irrigation during senescence: Kcb_stop = 0). Market gardening was also irrigated using 
drip irrigation (fw = 25%) and irrigation lasts longer because vegetables require water 
until harvest (Kcb_stop = 50%). This parameter was set to 50% instead of 75% 
previously because farmers tend to irrigate market gardening as long as possible to get 
high fruit caliber for more profit, even against low quality. Cereals irrigation parameters 
were kept unchanged. 
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Table 4. 4: Relations used for fc and Kcb estimates from NDVI 

NDVI-fc 
NDVI 

min 

NDVI 

max 

fc 

min 

fc 

max 
Relations Sources 

Cereals 0.1 0.9 0 1 

                        
Satellite imagery 

Market 

gardening 
0.1 0.9 0 1 

Fruit trees 0.1 0.8 0 0.9                         

NDVI-kcb 
NDVI 

min 

NDVI 

max 

Kcb 

min 

Kcb 

max 
Relations Sources 

Cereals - - - -                          
Calibration (our field 

experiments). 

Market 

gardening 
0.1 0.9 0 0.98                          

(Allen et al., 1998) and 

Satellite imagery. 

Fruit trees - - - -                 
(Allen et al., 1998) and 

((Testi et al., 2004) 

 

Table 4. 5: Soil and crop parameters and irrigation rules used for spatialization. Grey cells show 
calibrated parameters. 

 Cereals 
Market 

Gardening 
Fruit Trees 

Soil parameters 
θfc (m

3/m3) 0.26 
θwp (m

3/m3) 0.11 
Zsoil(mm) 1550 
Difer (%) 5 
Difrd (%) 10 

Initial RU (%) Bare soil  10  
 Cropped soil  50  

REW (mm) 0 6 6 
m 0.264 1 1 

Crop parameters 
Zrmin (mm) 125 125 1550 
Zrmax (mm) 800 1000 1550 

p 0.55 0.55 0.65 

Irrigation rules 
Fw, fraction wetted (%) 100 25 25 

MAD, management allowable depletion for 
irrigation triggering 

MAD = 
RAW 

MAD = 0.2 * 
TAW 

MAD = 0.5 
* TAW 

Kcbstop, Kcb irrigation threshold to stop (% of 
Kcbmax) 

99 50 - 

Irrigation constraints 
Minir, minimum water depth per turn (mm) 20 - - 

Mindays, minimum number of days between two 
water turns 

7 - - 
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4.3 Validation of new modeled irrigation volumes at perimeter scale 

With the new parameter set, evapotranspiration and irrigation estimates were spatially 
computed for the seasons 2008–2009 (December to June), 2011–2012 (November to 
May), 2012–2013 (November to June) and 2013-2014 (November to June). 
Evapotranspiration was validated on the scintillometer transect for the 2012-2013 and 
2013-2014 seasons, and irrigation volumes were validated for the four GDAs. 

The results of the comparison between the modeled and observed monthly irrigation 
volumes show a significant improvement of monthly results for all seasons (Figures 4.4 to 
4.7 and Table 4.6). Moreover, the large discordances observed previously for the 
beginning of the simulation period, i.e. in November and December, were reduced thanks 
probably to the modification of soil moisture initialization. 

However, bad results are still found for the 2011-2012 season for the three GDAs 
(Figure 4.5). Observed irrigation data may hardly be questioned since the overestimation 
is observed for the three independent GDAs. As the revisited parameters provide good 
results for the other seasons, we are more inclined to question the quality of the land use 
map for this season, especially the problem already mentioned in chapter 3 regarding crop 
changes occurring at this period of the year which are not captured by unique annual land 
use maps. The larger discrepancies are generally visible in June (e.g. Mlelsa 2008-2009, 
Karma II 2011-2012, Karma II 2012-2013), which can be due to land cover changes 
which are not managed by SAMIR, i.e. to market gardening appearing at this time after 
winter cereals harvest (beginning of June). Moreover, even for market gardening present 
in the land cover map, the parameters for these crops are rather uncertain.  

The seasonal results for all campaigns are summarized in table 4.6 and plotted in 
Figure 4.8. Despite the improvements observed for the monthly distribution (Table 4.6), 
the overall results remain almost the same: the average seasonal modeled irrigation depth 
is now of 120 mm (118 mm previously), as compared to the observed value of 111 mm. 
However, the regression is less good than for the previous calibration with R2=0.31.  
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Figure 4. 4: Comparison between surveyed and SAMIR estimated irrigation depth at seasonal 
scale for the 2008–2009 season 
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Figure 4. 5: Comparison between surveyed and SAMIR estimated irrigation depth at seasonal 
scale for the 2011–2012 season 
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Figure 4. 6: Comparison between surveyed and SAMIR estimated irrigation depth at seasonal 
scale for the 2012–2013 season 
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Figure 4. 7: Comparison between surveyed and SAMIR estimated irrigation depth at seasonal 
scale for the 2013-2014 season 
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Table 4. 6: Estimated and observed seasonal water budget components for all campaigns. 
Irr. is irrigation; Obs. Irr. and Mod. Irr. are the monthly observed and modeled irrigation 

volumes, respectivelely; Mod. ET is the modeled evapotranspiraion 

Campaigns 
Mod. 
Irr. 

(mm) 

Mod. 
ET 

(mm) 

Rainfall 
(mm) 

 SW 
(mm) 

Obs. 
Irr. 

(mm) 

Monthly 
Irr. RMSE 

Old 
parameters 

Monthly 
Irr. RMSE 

Revisted 
parameters 

Ben Salem 08-09 109.0 463.6 232.5 -122.1 108.3 9.0 3.7 
Mlelsa 08-09 87.1 467.9 232.5 -148.3 112.2 9.0 6.6 

Ben Salem 11-12 136.3 353.0 142.0 -74.6 80.5 21.0 12.6 
Mlelsa 11-12 143.1 387.9 142.0 -102.8 86.0 20.8 14.2 

Karma II 11-12 145.3 378.5 142.0 -91.2 94.0 19.2 13.8 

Ben Salem 12-13 123.7 497.7 96.9 -277.1 172.9 8.7 8.3 
Mlelsa 12-13 151.4 543.4 96.9 -295.1 136.9 12.5 6.4 

Karma II 12-13 212.6 521.9 96.9 -212.4 173.9 22.3 14.3 

Ben Salem 13-14 53.3 430.3 340.9 -36.1 97.3 10.2 6.9 
Mlelsa 13-14 73.4 386.3 340.9 28.0 67.6 11.8 7.8 

Karma II 13-14 86.0 416.2 340.9 10.7 93.2 13.3 4.0 

Seasonal results 
(November to 

June) 
120.1 440.6 200.4 -120.1 111.2 14.3 9.0 

 

 

Figure 4. 8: Comparison between observed and SAMIR modeled seasonal irrigation depths 
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4.4 New evapotranspiration results validation using the XLAS data 

The daily-distributed ET simulated by SAMIR using the old and the new parameters 
was compared to the daily XLAS derived ET (figure 4.9). Results were enhanced for the 
2013-2014 season and the new-modeled ET matches well the observed one. On the other 
hand, a strong degradation is obtained for 2012-2013. Although more ET peaks 
corresponding to rainfall events were recorded for this season in comparison with the old 
parameters, there is a clear overestimation of ET. It is important to keep in mind that 
despite this bad result for ET, the 2012-2013 irrigation volumes were correctly estimated. 
There are several possible explanations for this discrepancy. First, the area concerned is 
not the same as for GDAs and errors in land cover are possible in the XLAS area. Indeed, 
the land cover maps for the two seasons where not obtained by the same methods, which, 
added to the usual errors in such maps, could increase the bias between the two years. 
Indeed, the class statistics computed on the XLAS area for the two seasons show a clear 
incoherence, with two times more trees 2012-2013 than in 2013-2014 (Table 4.8), which 
is not realistic for these permanent crops. This problem emphasize the difficult task of 
land use mapping in semi arid areas where crops cycles are not synchronous, vegetation 
cover are sometimes very low especially for trees and intercropping is widely encountered 
(Simonneaux et al., 2008). The second possible explanation for the ET errors at 2012-
2013 is that SAMIR does not account for actual irrigation but simulates them with the 
same rules, and the possible variation of stress level between years. Thus, the contrast of 
performance between the two seasons can be linked to the also contrasted hydrological 
functioning of these years, due to climate and possible variations of irrigation practices. 
We know that in this area irrigation is not only driven by actual crop requirements but 
also but by water availability and farmers behavior. Thus, it is possible that the already 
mentioned failures of evaporation modeling depend on the hydrological regime. One clue 
corroborating both hypotheses is that despite a dryer year, the averaged ET is higher for 
2012-2013. If we assume that the vegetation amount evolution is correctly controlled by 
NDVI time series, this anomaly can be linked to errors in the soil evaporation process or 
to land use errors having impact on crop water budget simulation. Finally, although the 
ET problem is not solved yet, the comparison between the two parameterizations, 
affecting mainly the evaporation parameters, shows the high impact of this factor in such 
sparsely vegetated semi-arid areas. Further work is necessary to improve this aspect. 

Table 4. 7: Land use statistics of the XLAS area (%) 

 
2012-2013 2013-2014 

Cereals 5 14 

Market gardening 20 28 

Tree crops  37 17 

Bare soil 31 41 
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Figure 4.9: Observed daily latent heat fluxes vs. daily SAMIR modeled evapotranspiration 
obtained with the old and the revisited parameters 

4.5 Synthesis and partial conclusion 

The overall results of the water balance spatialization by the SAMIR model are 
encouraging. Although the modeled irrigation volumes remain almost the same in 
comparison to previous parameters setting, monthly results improved significantly. Strong 
overestimation of irrigation in the first two months of the simulation was corrected. 
Regarding the ET estimates, although we still did not get yet a good agreement 
simultaneously for both seasons, we have identified the levers to fix this issue, namely 
the evaporation parameters and the land cover characterization. However, it is still 
difficult to determine reliable evaporation parameters without calibration or validation 
data, which may be a problem in areas with high bare soil fractions.  

Our results are difficult to compare to previous works in the Mediterranean context. 
Indeed, at plot scale, several studies validated ETa estimates using eddy correlation 
measurements, but it is difficult to compare the RMS values obtained. The average RMS 
that we obtained for the three plots (0.7 mm day-1) was of the same order of magnitude 
of the values obtained by Cammalleri et al. (2013) on olive orchards (RMS between 0.3 
and 0.5 mm day-1), or by Padilla et al. (2011) 0.8 and 0.67 mm day-1 respectively) or by 
Mateos et al. (2013) on irrigated fields located in southern Spain (RMS of 0.75 mm day-1). 
Generally, the FAO-56 approach coupled with remote sensing simulates well ETa at 
plot scale, as it was the case for our cereal plots, especially when a calibration is applied. 
The discrepancies are often specific of the crops studied and of the quality of the data 
used (meteorological data, ground measured ETa and remote sensing data quality), so 
that it is difficult to compare the RMS figures between study cases. 

Actually, the problems arise when trying to extend from plot to regional scale 
irrigation estimates. Besides, several studies compare between variants of ETa 
estimation methods based on the coupling of FAO-56 and remote sensing, but they 
don’t actually compare the results to ground measured ETa or irrigation volumes 
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(Guermazi et al., 2016), so that it is difficult to compare with our work. However, Akdim 
et al. (2014) used the penman monteith equation forced by remote sensing data (NDVI 
derived from SPOT4 and Landsat8 images) to estimate irrigation water requirements in 
the semi-arid region of Doukkala (Morocco). The comparison between these monthly 
irrigation requirements and sensed monthly water delivery provided by the irrigation 
office showed discrepencies much larger than ours. 

The main originality of our study is to achieve validation of ETa and irrigation volumes 
on large areas using ground data.. However, the main limitation of crop water balance 
models fed by HR RS data in estimating the water balance components rely in the high 
number of inputs parameters required by those models, whose estimation is largely 
uncertain remains the main drawback of these models. For this reason, ET estimation in a 
context of heterogeneous landscape is often achieved using SEB approaches based 
models, such as the SPARSE model. 
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Saadi, S., Boulet, G., Bahir, M., Brut, A., Mougenot, B., Fanise, P., Simonneaux, V., 
and Lili Chabaane, Z.: Assessment of actual evapotranspiration over a semi-arid 
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with energy balance model: comparison to extra Large Aperture Scintillometer 
measurements, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-
454, in review, 2017 
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In this chapter, the operational use of the SPARSE model and the accuracy of the modeled 
sensible heat flux (H) and daily ET over a heterogeneous semi-arid landscape with a complex 
land cover (i.e. trees, winter cereals, summer vegetables) was assessed. 
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5.1 SPARSE model description 

The SPARSE model (Boulet et al., 2015) constraints the surface energy budgets of both 
the soil and the vegetation (considered as the main heat and vapor sources) with a 
remotely-sensed radiative surface temperature in order to retrieve instantaneous 
evaporation and transpiration rates. It also computes those two components in any 
prescribed water stress conditions, from fully stressed to potential rates. Those values are 
used as bounding terms in order to secure realistic outputs of the model. 

5.1.1 Input data 

SPARSE input data are RS and meteorological data. RS data are radiative surface 
temperature as well as green or total Leaf Area Index (LAI) and vegetation height; both 
can be deduced from NDVI estimates and, if possible, land use type. Meteorological data 
are half hourly to hourly estimates of incoming solar radiation, wind speed, air 
temperature and humidity at reference level. 

5.1.2 Algorithm 

SPARSE is a two-sources model made of two independent versions; “layer” and 
“patch” (Figure 5.1) and two modes; “retrieval” and “prescribed”, which can be also used 
independently. The “patch” approach assumes that the soil and the vegetation interact 
almost independently with the atmosphere corresponding to a parallel resistance scheme 
while the “layer” approach assumes that soil vegetation and atmosphere are tightly 
coupled corresponding to a series resistance scheme. In this PhD dissertation, the “Layer 
approach” was used, based on the results obtained by Boulet et al. (2015). The algorithm 
is very close to the soil–plant–atmosphere interface of the SiSPAT model (Braud et al., 
1995). The full set of equations can be solved either in prescribed conditions (for 
example, in fully stressed or potential conditions) to compute transpiration and 
evaporation rates for given stress levels or in retrieval (or inverse) mode, identically to 
TSEB (Norman et al., 1995).  
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Figure 5. 1: Resistance scheme showing the series and parallel model approaches (Source: Boulet 
et al. (2015)) 

The SPARSE model computes the equilibrium surface temperatures of the soil (Ts) 
and the vegetation (Tv) at the meteorological time step as a signature of the energy budget 
equations of each source. Five main equations are solved simultaneously. The first two 
express the continuity of the sensible and latent heat fluxes from the soil and the canopy 
to the aerodynamic level and above, the third and the fourth represent the energy budget 
of the soil and the vegetation, and the fifth describes the link between the radiative 
temperature as observed by the satellite and its two component temperature sources (soil 
Ts and vegetation Tv). 

 
 
 

 
 

       
          

            
          

     
 

         

   (5. 1) 

H [W.m-2] is the total sensible heat flux; Hs [W.m-2] and Hv [W.m-2] are the sensible 
heat flux from the soil and the canopy, respectively; LE [W.m-2] is the total latent heat 
flux; LEs [W.m-2] and LEv [W.m-2] are the latent heat flux from the soil and the canopy, 
respectively; G [W.m-2] is soil het flux; Rns [W.m-2] and Rnv [W.m-2] are net radiation over 
the soil and the canopy, respectively; Trad is the radiative temperature, σ [W.m-2.K4] is 
Stefan-Boltzmann constant, Ratm [W.m-2] is the incoming atmospheric radiation and Ran 
[W.m-2] is the net longwave radiation which depends on Ts and Tv.  
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Radiative temperature is linked to the land surface temperature Tsurf and the surface 
emissivity εsurf as follows: 

     
             

                (5. 2) 

 

Figure 5. 2: Flowchart of the SPARSE algorithm; Trads, Hss , Hvs LEss and LEvs are radiative 
surface temperature, soil sensible heat flux , vegetation sensible heat flux, soil latent heat flux and 
vegetation latent heat flux at stressed conditions, respectively; Tradp, Hsp, Hvp, LEsp and LEvp 
are radiative surface temperature, soil sensible heat flux , vegetation sensible heat flux, soil latent 
heat flux and vegetation latent heat flux at potential conditions, respectively (Source: Boulet et al. 

(2015), modified) 

The latent heat flux components for the soil (LEs) and the vegetation (LEv) are 
representative averages for the surface as a whole. The continuity of the latent heat and 
sensible heat fluxes below and above the aerodynamic level implies that the first two 
continuity equations (Eq. 5.1) can be written as follows:  

 
 
 

 
       

     
   

       
     
   

             
     
  

    
   

 
  
           

   
     

   

 
  

           
   

             
   

 

     
  

  
(5. 3) 

 

where ρ.cp [m-3.J. K−1] is the product of air density and specific heat,   [K.Pa.C-1] is the 
psychrometric constant, T0 [K] is the aerodynamic temperature, Ta [K] is the air 
temperature, esat (Ts) and esat (Tv) are the saturated vapour pressure at soil temperature Tv 
[K] and vegetation temperature Tv [K], respectively, e0 is the partial pressure of vapour at 
the aerodynamic level, ras [m.s-1] is the aerodynamic resistance between the soil and the 
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aerodynamic level, rav [m.s-1] is the aerodynamic resistance between the canopy and the 
aerodynamic level, ra is the aerodynamic resistance between the aerodynamic level and the 
reference level, ras is the soil to aerodynamic level resistance and rvv is the minimum total 
resistance for latent heat exchange between the vegetation and the aerodynamic level. 
Efficiencies βx (x referring to “s” for soil, “v” for vegetation, and left blank for the total 
evapotranspiration flux) are functionally equivalent to surface resistances. Their range of 
validity is [0,1]: if βv= 1, then the vegetation transpires at the potential rate, and if βs= 1, 
the soil evaporation rate is that of a saturated surface, while βv= 0 or βs= 0 corresponds 
to a non-transpiring or non-evaporating surface, respectively. 

In order to reduce the computational cost of solving the system for all unknown 
variables including Ts and Tv, non-linear expressions in LEs and LEv equations are 
linearized though Taylor expansion around air temperature (Eqs. 5.3 and 5.4) so that the 
model can be solved through a simple matrix inversion. This is especially useful when 
SPARSE is run for a large number of pixels. 
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(5. 5) 

where   [kPa C-1] is the slope of the saturation vapour curve at air temperature Ta. 

The expression of the various resistances according to Shuttleworth and Gurney (1990) 
are as follows: 
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 (5. 9) 

where ua [m.s-1] is the wind speed measured at height z, zv [m] is the vegetation height, d 
[m] is the displacement height, zom the roughness length for momentum exchange, 

nSW=2.5, w (Fassnacht et al.) is the width of the leaves, o=0.005, rstmin [m.s-1] is the 
minimum stomatal resistance and zom,s=0.005 m is the roughness length for momentum 

exchange over bare soil.    
              

    
  is the stability correction (Richardson 

number); m=0.75 in unstable conditions and m=2 in stable conditions. f represent the 
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product of weighting stress functions related to environmental factors affecting the 
stomatal resistance (temperature, solar radiation, vapour pressure deficit) and are taken 
from Braud et al. (1995). The rule of thumb applies: zom=0.13*zv and d=0.66*zv.  

Net radiation is computed according to the radiative transfer scheme of Merlin and 
Chehbouni (2004) which takes into account the multiple reflections between the soil and 
the vegetation layer in the shortwave and longwave domains, hence: 

           
     
      

    
     
      

             
     
      

    
     
      

 

            

(5. 10) 

 

where Ass [W.m-2] is the forcing term of the soil net radiation for the series model, Avv 
[W.m-2] is the forcing term of the vegetation net radiation for the series model, rradss [m.s-1] 
is the soil radiative resistance for the soil net radiation in the series model, rradsv [m.s-1] is 
the canopy radiative resistance for the soil net radiation in the series model, rradvs [m.s-1] is 
the soil radiative resistance for the vegetation net radiation in the series model and rradvv 

[m.s-1] is the canopy radiative resistance for the vegetation net radiation in the series 
model.  

The soil heat flux G is a fraction ξ of the net radiation available for the whole of the 

soil surface (       ). If the model is run at the same time of the day, for instance with 
surface temperatures acquired with a sun-synchronous satellite, ξ depends mostly on the 
bare soil fraction cover.  

The resulting energy balance for the soil and the canopy for the series model (the third 
and the fourth equation of the system 5.1) can be written as follows: 
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Finally, the final equation of system 4.1 is linking radiative surface temperature Trad to 
the net longwave radiation components Ratm and Ran which depends on Ts and Tv and 
can be expressed as follows: 
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Forcing terms Ass, Avv and Aatm as well as radiative resistances of the net radiation 
model for the series version of SPARSE are detailed in annex 8. Consequently, the fifth 
equation of system 4.1 is written as: 
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Prescribed mode 

If the soil and the vegetation efficiencies i.e stress levels (named s and v [0,1]) are 
known, then the model is run in a forward mode from prescribed water stress conditions 
(from fully stressed to potential). In that case the system is solved for the following 
unknowns: Trad, Ts, Tv, e0 and T0 (Figure 5.2). Trad in this prescribed mode is then an 
output of the system computed from Eq. (5.12) after solving the other four equations 
(Eqs. 5.2 and 5.9) for Ts, Tv, e0 and T0. This mode has two direct applications. It can be 
used independently of the retrieval mode to generate an equilibrium surface temperature 
at the time of the satellite overpass in order to assimilate surface temperature 
measurements from known βs and βv values computed at the daily or sub-daily time steps 
from a hydrological model. It is also implemented as a final step in the retrieval mode to 
provide theoretical limits corresponding to maximum reachable levels of sensible heat 
(fully stressed conditions) or latent heat (potential conditions) for each component (the 
soil and the vegetation). Output fluxes from the retrieval run are bounded by those 
limiting cases. In full potential conditions, βs= βv= 1, while in fully stressed conditions, 
βs= βv= 0. 

Retrieval mode 

In retrieval conditions, Trad is known and is derived from satellite observations or in 
situ measurements in the thermal infra-red domain. In order to compute the various fluxes 
of the energy balance, the full set of five equations for the series model (Eq. 5.1) must be 
solved simultaneously by inverting the same matrix corresponding to Eqs. (5.3), (5.11) 
and (5.13). In that case, contrarily to the prescribed mode, the problem is initially ill-posed 
since the system includes six unknowns: evaporation LEs and transpiration LEv, surface 
temperature components Ts and Tv, and aerodynamic level conditions e0 and T0. 

LEs and LEv values are directly converted into stress levels βs and βv using Eqs. (5.4) 
and (5.5). In order to downsize the number of unknowns, SPARSE carries out the same 
rationale as the TSEB model: as a first guess, the vegetation is supposed to transpire at 
potential rate; therefore, βv is set to 1, and the system is solved for unknown LEs (thus 
βs), Ts, Tv, e0 and T0. If negative LEs is obtained, then the assumption of an unstressed 
canopy proves to be inconsistent with the observed surface temperature level. In that 
case, one assumes that the vegetation is suffering from water stress. This means that root 
zone soil moisture is depleted under critical levels, and that, most probably, the soil 
surface is already long dry. Therefore, βs is set to 0 and the system is solved for LEv (thus 
βv) instead of LEs. Finally, if LEv is negative, fully stressed conditions are imposed for 
both the soil and the vegetation independently of Trad. Finally, in order to ensure that LEs 
and LEv outputs are within realistic bounds, their values obtained by running SPARSE in 
“retrieval” conditions are limited by the evapotranspiration components in potential 
conditions (βs=1, βv=1) computed by SPARSE in prescribed potential conditions (Figure 
5.2). Moreover, LEs is set to minimum positive threshold for vegetation stress detection 
of 30 W.m-2 instead of LEs=0. This threshold accounts for the small but non neglectable 
vapor flow reaching the surface (Boulet et al., 1997). 
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5.2 Validation of instantaneous and daily SPARSE model estimates using 
the XLAS data: Published results (article) 

The “layer” version of the energy balance model SPARSE was run to compute distributed 
energy balance componentsn for three agricultural seasons 2012-2013 , 2013-2014 and 

2014-2015. Simulation concerned an area of 10 km  8 km centered on the XLAS 
transect. SPARSE instantaneous estimates of H, LE and stress factor at the time of Terra-
MODIS and Aqua-MODIS overpasses, after being weighted by the instantaneous XLAS 
footrpint, were validated using XLAS measured H , XLAS derived LE and observed 
stress index, respectively. Furthermore, three methods were tested to carry out the 
extrapolation from instantaneous to daily LE based on the stress index, the evaporative 
fraction and the residual approach. And then, daily modeled LE, weighted by the daily 
XLAS footprint, was compared to daily XLAS derived LE. Finally, in order to highlight 
seasonal variation of ET, monthly modeled ET with the SPARSE model was computed 
and compared to monthly observed ET (XLAS derived LE) and also to monthly ET 
modeled by SAMIR model.  
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Abstract.  

In semi-arid areas, agricultural production is restricted by water availability; hence 

efficient agricultural water management is a major issue. The design of tools providing 

regional estimates of evapotranspiration (ET), one of the most relevant water balance fluxes, 

may help the sustainable management of water resources.  

Remote sensing provides periodic data about actual vegetation temporal dynamics (through 

the Normalized Difference Vegetation Index NDVI) and water availability under water stress 

(through the surface temperature Tsurf) which are crucial factors controlling ET.  

In this study, spatially distributed estimates of ET (or its energy equivalent, the latent heat 

flux LE) in the Kairouan plain (Central Tunisia) were computed by applying the Soil Plant 

Atmosphere and Remote Sensing Evapotranspiration (SPARSE) model fed by low resolution 

remote sensing data (Terra and Aqua MODIS). The work goal was to assess the operational 

use of the SPARSE model and the accuracy of the modeled i) sensible heat flux (H) and ii) 

daily ET over a heterogeneous semi-arid landscape with a complex land cover (i.e. trees, 

winter cereals, summer vegetables). 

SPARSE was run to compute instantaneous estimates of H and LE fluxes at the satellite 

overpass time. The good correspondence (R
2
= 0.60 and 0.63 and RMSE=57.89 Wm

-2
 and 

53.85 Wm
-2

; for Terra and Aqua, respectively) between instantaneous H estimates and large 

aperture scintillometer (XLAS) H measurements along a path length of 4 km over the study 

area showed that the SPARSE model presents satisfactory accuracy. Results showed that, 

despite the fairly large scatter, the instantaneous LE can be suitably estimated at large scale 

(RMSE=47.20 Wm
-2

 and 43.20 Wm
-2

; for Terra and Aqua, respectively and R
2
= 0.55 for both 

satellites). Additionally, water stress was investigated by comparing modeled (SPARSE) and 

observed (XLAS) water stress values; we found that most points were located within a 0.2 

confidence interval, thus the general tendencies are well reproduced. Even though 

extrapolation of instantaneous latent heat flux values to daily totals was less obvious, daily ET 

estimates are deemed acceptable. 

KEYWORDS: Evapotranspiration, Remote sensing, SPARSE model, scintillometer, water 

stress. 
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1 Introduction 

In water scarce regions, especially arid and semi-arid areas, the sustainable use of water by 

resource conservation as well as the use of appropriate technologies to do so is a priority for 

agriculture (Amri et al., 2014; Pereira et al., 2002). 

Water use rationalization is needed especially for countries actually suffering from water 

scarcity, or for countries that probably would suffer from water restrictions according to 

climate change scenarios. Indeed, the Mediterranean region is one of the most prominent “hot 

spots” in future climate change projections (Giorgi and Lionello, 2008) due to an expected 

larger warming than the global average and to a pronounced increase in precipitation inter-

annual variability. The major part of the southern Mediterranean countries, among others 

Tunisia, already suffer from water scarcity and show a growing water deficit, due to the 

combined effect of the water needs growth (soaring demography and irrigated areas 

extension), and the reduction of resources (temporary drought and/or climate change). This 

implies that closely monitoring the water budget components is a major issue (Oki and Kanae, 

2006).  

The estimation of evapotranspiration (ET) is of paramount importance since it represents 

the preponderant component of the terrestrial water balance; it is the second largest 

component after precipitation (Glenn et al., 2007); hence ET quantification is a key factor for 

scarce water resources management. Direct measurement of ET is only possible at local scale 

(single field) using the eddy covariance method for example; whereas, it is much more 

difficult at larger scales (irrigated perimeter or watershed) due to the complexity not only of 

the hydrological processes (Minacapilli et al., 2007) but also of the hydro-meteorological 

processes. Indeed, at landscape scale, surface heterogeneity influences regional and local 

climate, inducing for example cloudiness, precipitation and temperature patterns differences 

between areas of higher elevation (hills and mountains surrounding the Kairouan plain) and 

the plain downstream. Moreover, at these scales, land cover is usually heterogeneous and this 

affects the land-atmosphere exchanges of heat, water and other constituents (Giorgi and 

Avissar, 1997). ET estimates for various temporal and spatial scales, from hourly to monthly 

to seasonal time steps, and from field to global scales, are required for hydrologic applications 

in water resource management (Anderson et al., 2011). Techniques using remote sensing (RS) 

information are therefore essential when dealing with processes that cannot be represented by 

point measurements only (Su, 2002).  

In fact, the contribution of RS in vegetation’s physical characteristics monitoring on large 

areas have been identified for years (Tucker, 1978); RS provides periodic data about some 

major ET drivers, amongst others, surface temperature and vegetation properties (e.g. 

Normalized Difference Vegetation Index NDVI and Leaf Area Index LAI) from field to 

regional scales (Li et al., 2009; Mauser and Schädlich, 1998). Many methods using remotely-

sensed data to estimate ET are reviewed in Courault et al. (2005). ICARE (Gentine et al., 

2007) and SiSPAT (Braud et al., 1995) are examples of complex physically based Land 

Surface Models (LSM) using RS data. They include a detailed description of the vegetation 

water uptake in the root zone, the interactions between groundwater, root zone and surface 

water. However, the lateral surface and subsurface flows are neglected. This can lead to 

inaccurate results when applied in areas where such interactions are important (Overgaard et 

al., 2006). 
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Moreover, RS can provide estimates of large area fluxes in remote locations, but those 

estimates are based on the spatial and temporal scales of the measuring systems and thus vary 

one from another. Hence, one solution is to upscale local micrometeorological measurements 

to larger spatial scales in order to acquire an optimum representation of land-atmosphere 

interactions (Samain et al., 2012). However, such up-scaling process is not always possible 

and results might not be reliable in comparison to the RS distributed products.  

Water and energy exchange in the soil-plant-atmosphere continuum have been simulated 

through several land surface models (Bastiaanssen et al., 2007; Feddes et al., 1978). Among 

them, two different approaches use remote sensing data to estimate spatially distributed ET 

(Minacapilli et al., 2009): one is based on the soil water balance (SWB) and one that solves 

the surface energy budget (SEB). The SWB approach exploits only visible-near-infrared 

(VIS-NIR) observations to perceive the spatial variability of crop parameters. The SEB 

modeling approach uses visible (VIS), near infrared (NIR) and thermal (TIR) data to solve the 

SEB equation by forcing remotely sensed estimates of the SEB components (mainly the 

surface temperature Tsurf). In fact, there is a strong link between water availability in the soil 

and surface temperature under water stress, hence, in order to estimate soil moisture status as 

well as actual ET at relevant space and timescales, information in the TIR domain (8–14 µm) 

is frequently used (Boulet et al., 2007). The SWB approach has the advantage of high 

resolution and frequency VIS-NIR remote sensing data availability against limited availability 

of high resolution thermal imagery for the SEB approach. Indeed, satellite data such as 

Landsat or Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

provide field scale (30–100 m) estimates of ET (Allen et al., 2011), but they have a low 

temporal resolution (16 day-monthly) (Anderson et al., 2011).  

The RS-based SWB models provide estimates of ET, soil water content, and irrigation 

requirements in a continuous way. For instance, at field scale, estimates of seasonal ET and 

irrigation can be obtained by SWB modeling using high resolution remote sensing forcing as 

done in the study with the SAtellite Monitoring of IRrigation (SAMIR) model by Saadi et al. 

(2015) over the Kairouan plain. However, for an appropriate estimation of ET, the SWB 

model requires knowledge of the water inputs (precipitation and irrigation) and an assessment 

of the extractable water from the soil (mostly derived from the soil moisture characteristics: 

actual available water content in the root zone, wilting point and field capacity), whereas, 

significant biases are found mainly when dealing with large areas and long periods, due to the 

spatial variability of the water inputs uncertainties as well as the inaccuracy in estimating 

other flux components such as the deep drainage (Calera et al., 2017). Hence, the major 

limitation of the SWB method is the high number of needed inputs whose estimation is highly 

uncertain especially over a heterogeneous land surface due to hydrologic processes 

complexity. Moreover, spatially distributed SWB models, typically those using the Food and 

Agriculture Organization-FAO guidelines (Allen et al., 1998) for crop ET estimation, 

generally parameterize the vegetation characteristics on the basis of land use maps (Bounoua 

et al., 2015; Xie et al., 2008), and different parameters are used for different land use classes. 

Nevertheless, SWB modelers generally do not have the possibility to carry out remote 

sensing-based land use change mapping due to time, budget, or capacity constraints and use 

often very generic classes potentially leading to modeling errors (Hunink et al., 2017). In 

addition, the lack of data about the soil properties (controlling field capacity, wilting point and 
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the water retention) as well as the actual root depths, lead to limited practical use of the SWB 

models (Calera et al., 2017). The same apply to the soil evaporation whose estimation 

generally rely on the FAO guidelines approach (Allen et al., 1998). Although, it was shown 

that under high evaporation conditions, the FAO-56 (Allen et al., 1998) daily evaporation 

computed on the basis of the readily evaporable water (REW) is overestimated at the 

beginning of the dry down phase (i.e. the period after rain or irrigation where the soil moisture 

is decreasing due to evapotranspiration and drainage, Mutziger et al., 2005; Torres and Calera, 

2010). Hence, to improve its estimation a reduction factor proposed by Torres and Calera 

(2010) was applied to deal with this problem in several studies (e.g. Odi-Lara et al., 2016; 

Saadi et al., 2015). Furthermore, SWB models such as SWAP (Kroes, 2017), Cropsyst 

(Stöckle et al., 2003), AquaCrop (Steduto et al., 2009) and SAMIR (Simonneaux et al., 2009) 

are able to take irrigation into account, either as an estimated amount provided by the farmer 

(as an input if available) or a predicted amount through a module triggering irrigation 

according to, say, critical soil moisture levels (as an output). However, the limited knowledge 

of the actual irrigation scheduling is a critical limitation for the validation protocol of 

irrigation requirements estimates by SWB modeling. Therefore, SWB modelers must deal 

with the lack of information about real irrigation which induces unreliable estimations.  

Consequently, ET estimation at regional scale is often achieved using SEB approaches, by 

combining surface temperature from medium to low resolution (kilometer scale) remote 

sensing data with vegetation parameters and meteorological variables (Liou and Kar, 2014). 

Recently, many efforts have been made to feed remotely sensed surface temperature into ET 

modeling platforms in combination with other critical variables, e.g., NDVI and albedo 

(Kalma et al., 2008; Kustas and Anderson, 2009). A wide range of satellite-based ET models 

were developed, and these methods are reviewed in (Liou and Kar, 2014). The majority of 

SEB-based models are single-source models; their algorithms compute a total latent heat flux 

as the sum of the evaporation and the transpiration components using a remotely sensed 

surface temperature. However, separate estimates of evaporation and transpiration makes the 

dual-source models more useful for agrohydrological applications (water stress detection, 

irrigation monitoring etc.) (Boulet et al., 2015).  

Contrarily to SWB models, most SEB models are run in their most standardized version, 

using observed remote sensing-based parameters such as albedo in conjunction with a set of 

input parameters taken from literature or in situ data. On the other hand, the SEB model 

validation with enough data in space and time is difficult to achieve, due to the limited 

availability of high resolution thermal images (Chirouze et al., 2014). Therefore, it is usually 

possible to evaluate SEB models results only at similar scale (km) to medium or low 

resolution images. Indeed, the pixel size of thermal remote sensing images, except for the 

scarce Landsat7 images (60 m), covers a range of 1000 m (Moderate Sensors Resolution 

Imaging Spectroradiometer MODIS), to the order of 4000 m (Geostationary Operational 

Environmental Satellite GEOS). However, direct methods measuring sensible heat fluxes 

(eddy covariance for example) only provide point measurements with a footprint considerably 

smaller than a satellite pixel. Therefore, scintillometry techniques have emerged as one of the 

best tools aiming to quantify averaged fluxes over heterogeneous land surfaces (Brunsell et 

al., 2011). They provide area-averaged sensible heat flux over areas comparable to those 

observed by satellites (Hemakumara et al., 2003; Lagouarde et al., 2002). Scintillometry can 

provide sensible heat using different wavelengths (optical and microwave wavelength ranges), 
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aperture sizes (15-30 cm) and configurations (long-path and short-path scintillometry) 

(Meijninger et al., 2002). The upwind area contributing to the flux (i.e. the flux footprint) 

varies as wind direction and atmospheric stability, and must be estimated for the surface 

measurements in order to compare them to SEB estimates of the flux which are representative 

of the pixel (Brunsell et al., 2011). Assessing the upwind area contributing to the flux can be 

done using several footprint models (Schmid, 2002). Although footprint analysis ensures ad 

hoc spatial intersecting area between ground measurements and satellite-based surface fluxes, 

the spatial heterogeneity at subpixel scale should be further considered in validating low 

resolution satellite data (Bai et al., 2015). The LAS technique has been validated over 

heterogeneous landscapes against eddy covariance measurements (Bai et al., 2009; Chehbouni 

et al., 2000; Ezzahar et al., 2009) and also against modeled fluxes (Marx et al., 2008; Samain 

et al., 2012; Watts et al., 2000). Few studies dealt with eXtra Large Aperture Scintillometer 

(XLAS) data (Kohsiek et al., 2006; Kohsiek et al., 2002; Moene et al., 2006). Historical 

survey, theoretical background as well as recent works in applied research concerning 

scintillometry are reviewed in De Bruin and Wang (2017). Since the scintillometer provides 

large-scale area-average sensible heat flux (H_XLAS), the corresponding latent heat flux 

(LE_XLAS) can then be computed as the energy balance residual term (LE_XLAS =Rn-G-

H_XLAS), hence, the estimation of a representative value for the available energy (AE =Rn-

G) is always crucial for the accuracy of the retrieved values of LE_XLAS. This assumption is 

valid only under the similarity hypothesis of Monin-Obukhov (MOST) (Monin and Obukhov, 

1954), i.e. surface homogeneity and stationary flows. These hypothesis are verified in our 

study area where topography is flat, and landscape is heterogeneous only from an agronomic 

point of view since we find different land uses (cereals, market gardening and fruit trees 

mainly olive trees with considerable spacing of bare soil); however, this heterogeneity in 

landscape features at field scale is randomly distributed and there is no drastic change in 

height and density of the vegetation at the scale of the XLAS transect (i.e. little heterogeneity 

at the km scale, most MODIS pixels have similar NDVI values for instance).  

In this study, spatially distributed estimates of surface energy fluxes (sensible heat H and 

latent heat fluxes LE) over an irrigated area located in the Kairouan plain (Central Tunisia) 

were obtained by the SEB method, using the Soil Plant Atmosphere and Remote Sensing 

Evapotraspiration (SPARSE) model (Boulet et al., 2015) fed by 1-km thermal data and 1-km 

NDVI data from MODIS sensors on Terra and Aqua satellites. The main objective of this 

paper is to compare the modeled H and LE simulated by the SPARSE model with, 

respectively, the H measured by the XLAS and the LE reconstructed from the XLAS 

measurements acquired during two years over a large, heterogeneous area. We explore the 

consistency between the instantaneous H and LE estimates at the satellite overpass time, the 

water stress estimates and also ET derived at daily time step from both approaches. 

2 Experimental site and datasets 

2.1 Study area 

The study site is a semi-arid region located in central Tunisia, the Kairouan plain 

(9°23ʹ−10°17ʹE, 35°1ʹ−35°55ʹN, (Figure 1). The landscape is mainly flat, and the vegetation 

is dominated by agricultural production (cereals, olive groves, fruit trees, market gardening, 

http://www.mdpi.com/2072-4292/7/1/747/htm#fig_body_display_remotesensing-07-00747-f001
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Zribi et al., 2011). Water management in the study area is typical of semi-arid regions with an 

upstream sub-catchment that transfers surface and subsurface flows collected by a dam (the El 

Haouareb dam), and a downstream plain (Kairouan plain) supporting irrigated agriculture 

(Figure 1). Agriculture consumes more than 80% of the total amount of water extracted each 

year from the Kairouan aquifer (Poussin et al., 2008). Most farmers in the plain uses their own 

wells to extract water for irrigation (Pradeleix et al., 2015), while a few depends on public 

irrigation schemes based on collective networks of water distribution pipelines all linked to a 

main borehole. The crop intensification in the last decades, associated to increasing irrigation, 

has led to growing water demand, and an overexploitation of the groundwater (Leduc et al., 

2004). 

 

Figure 1: The study area: the downstream Merguellil sub-basin is the so called Kairouan plain; 

MODIS grid is the extracted 10 km × 8 km MODIS sub-image and in red the scintillomter 

XLAS transect 

2.2 Experimental set-up and remote sensing data 

An optical Kipp and Zonen Extra Large Aperture Scintillometer (XLAS) was operated 

continuously for more than two years (1 March 2013 to 3 June 2015) over a relatively flat 

terrain (maximum difference in elevation of about 18 m). The scintillometer consists in a 

transmitter and a receiver both with an aperture diameter of 0.3 m, which allows longer path 

length. The wavelength of the light beam emitted by the transmitter is 940 nm. The 

transmitter was located on an eastern water tower (coordinates: 35° 34' 0.7" N; 9° 53' 25.19" 
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E; 127 m above sea level) and the receiver on a western water tower (coordinates: 35° 34' 

17.22" N; 9° 56' 7.30"E; 145 m above sea level) separated by a path length of 4 km (Figure 

2).  

The scintillometer transect was above mixed vegetation canopy: trees (mainly olive 

orchards) with some annual crops (cereals and market gardening) and the mean vegetation 

height is estimated about 1.17m along the transect. Both instruments were installed at 20 m 

height as recommended in the Kipp & Zonen instruction manual for LAS & XLAS 

(KIPP&ZONEN, 2007). At this height and for a 4-km path length, the devices are high 

enough to minimize measurement saturation and assumed to be above or close to the blending 

height where MOST applied.  

Furthermore, two automatic Campbell Scientific (Logan, USA) eddy covariance (EC) flux 

stations were also positioned at the same level on the two water tower top platforms. Half 

hourly turbulent fluxes in the western and the eastern EC stations were measured used a sonic 

anemometer CSAT3 (Campbell Scientific, USA) at a rate of 20 Hz and a sonic anemometer 

RM 81000 (Young, USA) at a rate of 10 Hz, respectively. The western station data were more 

reliable with less measurement errors and gaps, hence, the western EC set-up was used to 

initialise friction velocity u* values and the Obukhov length Lo in the scintillometer flux 

computation (sect.3.1).  

Half hourly standard meteorological measurements including incoming long wave 

radiation i.e. global incoming radiation (Rg30), the incoming longwave radiation i.e 

atmospheric radiation (Ratm-30), wind speed (u30), wind direction (ud-30mn), air temperature (Ta-

30) and relative humidity (RHa-30) and barometric pressure (P30) were recorded using an 

automated weather station installed in the study area (Figure 2), referred as the Ben Salem 

meteorological station (35° 33' 1.44" N; 9° 55' 18.11"E). Meteorological data were used either 

to force the SPARSE model or as input data in XLAS derived sensible and latent heat flux. 

The global incoming radiation was also used in the extrapolation method to scale 

instantaneous observed (sect. 3.3.2) and modeled (sect. 4.2) available energy as well as 

modeled sensible heat flux (sect. 4.2) to daily values.  

In addition, an EC flux station, referred as the Ben Salem flux station (few tens of meters 

away from the meteorological station) was installed from November 2012 to June 2013 in an 

irrigated wheat field (Figure 2) measuring half hourly convective fluxes exchanged between 

the surface and the atmosphere (HBS-30 and LEBS-30) combined with measurements of the net 

radiation RnBS-30 and the soil heat flux GBS-30. Net radiation and soil heat flux measurements 

were transferred to the meteorological station from June 2013 till June 2015. Since, there are 

no Rn and G measurements in the two water towers EC stations, RnBS and GBS measurements 

were among the inputs data to derive sensible and latent heat fluxes from the XLAS 

measurements. In addition, measured available energy (AEBS=RnBS―GBS) and HBS were used 

to calibrate the extrapolation relationship of the available energy and the sensible heat flux, 

respectively (sect. 3.3.2 and 4.2). 

Remotely sensed data were acquired for the study period (1
st
 September 2012 to 30

th
 June 

2015) at the resolution of the MODIS sensor at 1 km, embarked on board of the satellites 

Terra (overpass time around 10:30 local solar time) and Aqua (overpass time around 13:30 

local solar time). Downloaded MODIS products were (i) MOD11A1 and MYD11A1 for Terra 

and Aqua, respectively (surface temperature Tsurf, surface emissivity εsurf and viewing angle 
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ϕ), (ii) MOD13A2 and MYD13A2 for Terra and Aqua, respectively (NDVI) and (iii) 

MCD43B1, MCD43B2 and MCD43B3 (albedo α). These MODIS data provided in sinusoidal 

projection were reprojected in UTM using the MODIS Reprojection Tool. Then, sub-images 

of 10 km × 8 km centered on the XLAS transect (Figure 1) were extracted. The daily MODIS 

Tsurf and viewing angle, 8-day MODIS albedo, and 16-day MODIS NDVI contain some 

missing or unreliable data; hence, days with missing data (35% of all dates) in MODIS pixels 

regarding the scintillometer footprint (see later footprint computation in sect.3.2) were 

excluded. Albedo products (MCD43) are available every 8 days; the day of interest is the 

central date. Both Terra and Aqua data are used in the generation of this product, providing 

the highest probability for quality input data and designating it as a combined product. 

Moreover, the 1km/16days NDVI products (MOD13A2/MYD13A2) are available every 16 

days and separately for Terra and Aqua. Algorithms generating this product operate on a per-

pixel basis and require multiple daily observations to generate a composite NDVI value that 

will represent the full period (16 days). For both products, data are linearly interpolated over 

the available dates in order to get daily estimates. For each pixel, the quality index supplied 

with each product is used to select the best data. 

 

Figure 2: XLAS set-up: XLAS transect (white), for which the emitter and the receiver are 

located at the extremity of each white arrow, half-hourly XLAS footprint for selected typical 

wind conditions (green), MODIS grid (black), orchards (blue) and the location of the Ben Salem 

meteorological and flux stations. Background is a three color (red, green, blue) composite of 

SPOT5 bands 3 (NIR), 2 (VIS-red) and 1(VIS-green) acquired on 9th April 2013 and showing in 

red the cereal plots.  
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3 Extra Large aperture scintillometer (XLAS): data processing 

3.1 Scintillometer derived fluxes 

Scintillometer measurements are based on the scintillation theory; fluxes of sensible heat 

and momentum cause atmospheric turbulence close to the ground, and create, with surface 

evaporation, refractive index fluctuations due mainly to air temperature and humidity 

fluctuations (Hill et al., 1980). The fluctuations intensity of refractive index is directly linked 

to sensible and latent heat fluxes. The light beam emitted by the XLAS transmitter towards 

the receiver is dispersed by the atmospheric turbulence. The scintillations representing the 

intensity fluctuations are analyzed at the XLAS receiver and are expressed as the structure 

parameter of the refractive index of air integrated along the optical path     (m
-2/3

) (Tatarskii, 

1961). The sensitivity of the scintillometer to     along the beam is not uniform and follows a 

bell-shape curve due to the symmetry of the devices. This means that the measured flux is 

more sensitive to sources located towards the transect centre and is less affected by those 

close to the transect extremities.  

In order to compute the XLAS sensible heat flux, Cn
2
 was converted to the structure parameter 

of temperature turbulence CT
2
 (K

2
m

−2/3
) by introducing the Bowen ratio (ratio between 

sensible and latent heat fluxes), hereafter referred to as β, which is a temperature /humidity 

correlation factor. Moreover, the height of the scintillometer beam above the surface varies 

along the path. In our study site, the terrain is very flat leading to little beam height variation 

across the landscape, except for what is induced by the different roughness of the individual 

fields. Since the interspaces between trees are large, the effective roughness of the orchards is 

not significantly different from that of annual crops fields. Consequently, Cn
2
 and therefore 

CT
2
 are not only averaged horizontally but vertically as well. 

At visible wavelengths, the refractive index is sensitive to temperature fluctuations. Then, 

we can relate the Cn² to CT² as follows: 

      
            

  
 

 

      
    

 
 
 

  (1) 

with T the air temperature (°K) and P the atmospheric pressure (Pa).  

Green and Hayashi (1998) proposed another method to compute XLAS sensible heat flux 

(H_XLAS) assuming full energy budget closure and using an iterative process without the 

need of β as an input parameter. This method is called the “β-closure method” (BCM, Twine 

et al., 2000). In the calculation algorithm, β is estimated iteratively with the BCM method, as 

described in Solignac et al. (2009) with initial guess using RnBS and GBS from the Ben Salem 

flux station and initial u* coming from the western water tower EC station. 

Then, the similarity relationship proposed by Andreas (1988) is used to relate the CT² to the 

temperature scale T* in unstable atmospheric conditions as follows: 
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And for stable atmospheric conditions: 

            
 
 

   
           

      

  
 

 
 
   (3) 

where LO (m) the Obukhov length , ZLAS (m) the scintillometer height, and d (m) the 

displacement height, which corresponds to 2/3 of the averaged vegetation height zv.  

From T* and the friction velocity u* (computed based on an iteration approach in the BCM 

method), the sensible heat flux can be derived as follows: 

            (4) 

where ρ (kgm
−3

) the density of air and cp (Jkg
-1

K
-1

) the specific heat of air at constant 

pressure. 

 H_XLAS was computed at a half hourly time step. Before flux computation, a strict 

filtering was applied to the XLAS data to remove outliers depending on weak demod signal. 

Negative night-time data were set to zero and daytime flux missing data (one to three 30 mn-

data) were gap filled using simple interpolation. Furthermore, half hourly H_XLAS aberrant 

values due to measurement errors and values higher than 400 Wm
-2

, arising from 

measurement saturation, were ruled out (3% of the total measurement throughout the 

experiment duration). Finally, daily H_XLAS was computed as the average of the half hourly 

H_XLAS.  

3.2 XLAS footprint computation 

The footprint of a flux measurement defines the spatial context of the measurement and the 

source area that influences the sensors. In case of inhomogeneous surfaces like patches of 

various land covers and moisture variability due to irrigation, the measured signal is 

dependent on the fraction of the surface having the strongest influence on the sensor and thus 

on the footprint size and location. Footprint models (Horst and Weil, 1992; Leclerc and 

Thurtell, 1990) have been developed to determine what area is contributing to the heat fluxes 

as well as the relative weight of each particular cell inside the footprint limits. Contributions 

of upwind locations to the measured flux depend on the height of the vegetation, height of the 

instrumentation, wind speed, wind direction, and atmospheric stability conditions (Chávez et 

al., 2005).  

According to the model of (Horst and Weil, 1992), for one-point measurement system, the 

footprint function f relates the spatial distribution of surface fluxes, F0(x,y) to the measured 

flux at height zm, F(x,y,zm), as follows: 
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The footprint function f is computed as: 

          
   

  

  
   

      

       
              (6) 

where       the mean wind speed profile and    the mean plume height for diffusion from a 

surface source. The variables A, b and c are scale factors and r a scale factor of the Gamma 

function. In the case of a scintillometer measurement, the footprint function has to be 

combined with the spatial weighting function W(x) of the scintillometer to account for the 

sensor integration along its path. Thus, the sensible heat flux footprint mainly depends on the 

scintillometer effective height zLAS (Hartogensis et al., 2003), which includes the topography 

below the path and the transmitter and receiver heights, the wind direction and the Obukhov 

length LO, which characterizes the atmospheric stability (Solignac et al., 2009). In a 

subsequent step, daily footprints were computed as a weighted sum of the half hourly 

footprints by the XLAS sensible heat flux.  

In fact, there is an issue with the MODIS pixel heterogeneity and notably the distribution 

of the land use classes at the intersection between the square pixel and the XLAS footprint 

(Bai et al., 2015). Hence, in order to provide a first guess on these relative heterogeneities, 

land use classes within each MODIS pixel of the 10 km × 8 km sub-image were studied based 

on the land use map of the 2013-2014 season (Chahbi, 2016). The average footprint of all half 

hourly footprints for the whole study period was computed and overlaid on the MODIS grid 

in order to identify the MODIS pixels partially or totally covered by footprint (Figure 3).  

 

Figure 3: MODIS pixels partially or totally covered by XLAS source area 

The percentage of land use classes was computed for i) the part of each pixel that lies 

within the footprint, and ii) the complementary part of the pixel located outside of the 

footprint (Figure 4). Results show that difference in percentages of each land use classes for 

the pixel fractions located within or outside the footprint is low with 1.8%, 1.7%, 1.0% and 

3.5% for cereals, market gardening, trees and bare soil, respectively. Moreover, the major part 

of the area above transect is covered by fallow and orchards. The land use classes’ partition 

inside the 13 MODIS pixels totally covered by the average footprint is comparable. 
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Figure 4: Land use classes’ percentage of the MODIS pixels within or outside the footprint 

3.3 XLAS derived latent heat flux  

Instantaneous (LE_residual_XLASt-FP) and daily (LE_residual_XLASday-FP) XLAS derived 

latent heat flux (i.e. residual latent heat flux) of the XLAS upwind area were computed using 

the energy budget closure of the XLAS measured sensible heat flux (H_XLAS) with 

additional estimations of remotely sensed net surface radiation Rn and soil heat flux G, as 

available energy (AE=Rn-G), as follows: 

                                    (7) 

                                           (8) 

H_XLASt and H_XLASday are respectively the instantaneous and daily measured H at the 

time of the satellite overpass interpolated from the half hourly fluxes measurements. Daily 

available energy within the footprint (AEday-FP) was computed from instantaneous available 

energy (AEt-FP) as detailed in Sect. 3.3.1 and Sect. 3.3.2. The subscripts “30”, “day” and “t” 

refer to half hourly, daily and instantaneous (at the time of Terra and Aqua overpasses) 

variables, respectively; while the subscript “FP” means that the footprint is taken into account 

i.e. instantaneous or the daily (depending on time scale) footprint was multiplied by the 

variable. 

3.3.1 Instantaneous available energy 

Net surface radiation is the balance of energy between incoming and outgoing shortwave 

and longwave radiation fluxes at the land-atmosphere interface. Remotely sensed surface 

radiative budget components provide unparalleled spatial and temporal information, thus 

several studies have attempted to estimate net radiation by combining remote sensing 

observations with surface and atmospheric data. Net radiation equation can be written as 

follows: 
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      α                         
   (9) 

where Rg the incoming shortwave radiation (W.m
-2

), Ratm the incoming longwave radiation 

(W.m
-2

), α the albedo, ɛsurf the surface emissivity, Tsurf the surface temperature (°K) and σ 

Stefan-Boltzmann constant (W.m
-2

.K
4
) .The soil heat flux G depends on the soil type and 

water content as well as the vegetation type (Allen et al., 2005).The direct estimation of G by 

remote sensing data is not possible (Allen et al., 2011), however, empirical relations can 

estimate the fraction ξ=G/Rn as a function of soil and vegetation characteristics using satellite 

image data, such as the LAI, NDVI, α and Tsurf. Generally, G represents 5-20% of Rn during 

daylight hours (Kalma et al., 2008). In order to estimate the G/Rn ratio, several methods have 

been tested for various types of surfaces at different locations. The most common methods 

parameterize ξ as a constant for the entire day or at satellite overpass time (Ventura et al., 

1999), according to NDVI (Jackson et al., 1987; Kustas and Daughtry, 1990), LAI 

(Choudhury et al., 1987; Kustas et al., 1993; Tasumi et al., 2005), vegetation fraction (fc ) 

(Su, 2002), Tsurf and α (Bastiaanssen, 1995), or only Tsurf (Santanello Jr and Friedl, 2003). 

These empirical methods are suitable for specific conditions; therefore, estimating G, 

especially in this type of environment where NDVI values are low and thus G/Rn values are 

large, is a critical issue. The approach adopted here was drawn on Danelichen et al. (2014) 

who evaluated the parameterization of these different models in three sites in Mato Grosso 

state in Brazil and found that the model proposed by (Bastiaanssen, 1995) showed the best 

performance for all sites, followed by the model from Choudhury et al. (1987) and Jackson et 

al. (1987):  

Bastiaanssen (1995): 

                                                 (10) 

Choudhury et al. (1987): 

                       (11) 

Jackson et al. (1987) 

                            (2) 

 

Hence, these three methods were tested for the Ben Salem flux station measurements, by 

comparing the measured GBS-t and the computed G using measured RnBS-t, Tsurf-BS-t, αBS, 

NDVIBS and LAIBS at Terra and Aqua overpass time (results not shown). The best results are 

issued from Bastiaanssen (1995) method with a Root Mean Square Error (RMSE) of 0.09 

(average value of the two satellites overpass time) followed by Jackson et al. (1987) and 

Choudhury et al. (1987) with RMSE values of 0.15 and 0.2, respectively. Moreover, daily 

measured GBS-day was computed and a G accumulation is generally found as it has been 

already mentioned by (Clothier et al., 1986) who showed that G is neither constant nor 

negligible on diurnal timescales, and can constitute as much as 50% of Rn over sparsely 

vegetated area. Since G estimation was the most uncertain variable, the three above methods 

were tested to compute the distributed remotely sensed AE. The Ben Salem meteorological 
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station was used to provide Rgt and Ratm-t. Remote sensing variables α, Tsurf, ɛsurf and NDVI 

came from MODIS products. Remotely sensed LAI was computed from the MODIS NDVI 

using a single equation (Clevers, 1989) for all crops in the study area: 

     
 

 
   

    ∞     

    ∞         
    (13) 

The calibration of this relationship was done over the Yaqui irrigated perimeter (Mexico) 

during the 2007-2008 growing season using hemispherical LAI measured in all the studied 

fields (Chirouze et al., 2014). Calibration results gave the asymptotical values of NDVI, 

NDVI∞ = 0.97 and NDVIsoil = 0.05, as well as the extinction factor k=1.13. As this 

relationship was calibrated over a heterogeneous land surface but on herbaceous vegetation 

only, its relevance for trees was checked. For that purpose, clump-LAI measurements on an 

olive tree, as well as allometric measurements i.e. mean distance between trees and mean 

crown size done using Pleiades satellite data (Mougenot et al., 2014;Touhami, 2013) were 

obtained. Clump LAI is the value of the LAI of an isolated element of vegetation (tree, 

shrub...); if this element occupies a fraction cover f and is surrounded by bare soil, then the 

clump LAI value is equal to the area average LAI divided by f. Hence, we checked that the 

pixels with tree dominant cover show LAI values close to what was expected (of the order of 

0.3 to 0.4 given the interrow distance of 12 m on average).  

Remote sensed available energy was computed for the 10 km × 8 km MODIS sub-images 

at Terra-MODIS and Aqua-MODIS overpass time, using the three methods estimating G. 

Since the measured heat fluxes H_XLASt represent only the weighted contribution of the 

fluxes from the upwind area to the tower (footprint), then instantaneous footprint at the time 

of Terra and Aqua overpass were selected among the two half hour preceding and following 

the satellite’s time of overpass (lowest time interval) and then was multiplied by the 

instantaneous remote sensed available energy AEt to get the available energy of the upwind 

area AEt-FP.  

3.3.2 Daily available energy 

Most methods using TIR domain data rely on once-a-day acquisitions, late morning (such 

as Terra-MODIS overpass time) or early afternoon (such as Aqua-MODIS overpass time). 

Thus, they provide a single instantaneous estimate of energy budget components. In order to 

obtain daily AE from these instantaneous measurements and to reconstruct hourly variations 

of AE, we considered that its evolution was proportional to another variable whose diurnal 

evolution can be easily known.  

The extrapolation from an instantaneous flux estimate to a daytime flux assumes that the 

surface energy budget is “self-preserving” i.e. the relative partitioning among components of 

the budget remains constant throughout the day. However, many studies (Brutsaert and 

Sugita, 1992; Gurney and Hsu, 1990; Sugita and Brutsaert, 1990) showed that the self-

preservation method gives day-time latent heat estimates that are smaller than observed values 

by 5-10%. Moreover, (Anderson et al., 1997) found that the evaporative fraction computed 

from instantaneous measured fluxes tends to underestimate the daytime average by about 

10%, hence, a corrected parameterization was used and a coefficient=1.1 was applied. 

Similarly, Delogu et al. (2012) found an overestimation of about 10% between estimated and 
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measured daily component of the available energy thus, a coefficient =0.9 was applied. The 

corrected parameterization proposed by Delogu et al. (2012) was tested, but this coefficient 

did not give consistent results, therefore, the extrapolation relationship was calibrated in order 

to get accurate daily results of AE . 

Thereby, the applied extrapolation method was tested using in situ Ben Salem flux station 

measurements. The incoming short wavelengths radiation was used to scale available energy 

from instantaneous to daily values; but only for clear sky days for which MODIS images can 

be acquired and remote sensing data used to compute AE are available. Clear sky days were 

selected based on the ratio of daily measured incoming short wavelengths radiation Rgday to 

the theoretical clear sky radiation Rso as proposed by the FAO-56 method (Allen et al., 1998). 

A day was defined as clear if the measured Rgday is higher than 85 % of the theoretical clear 

sky radiation at the satellite overpass time (Delogu et al., 2012).  

Daily measured available energy AEBS-day computed as the average of half-hourly 

measured AEBS-30, was compared to daily available energy (AEBS-day-Terra and AEBS-day-Aqua) 

computed using the extrapolation method from instantaneous measured AEBS-t-Terra and AEBS-t-

Aqua at Terra and Aqua overpass time, respectively (Equation 14).  

                           
            
         

        

(1 4) 

                         
           

        
       

where Rgday is the daily measured incoming short wavelengths radiation in the Ben Salem 

meteorological station; Rgt-Terra and Rgt-Aqua are the instantaneous incoming short wavelengths 

radiations measured at Terra and Aqua overpass time, respectively and AEBS-t-Terra and AEBS-t-

Aqua are the instantaneous measured available energy in the Ben Salem flux station, at Terra 

and Aqua overpass time. 

Results gave an overestimation of about 15 %. The corrected parameterizations of AE 

(Table 1), needed to remove the bias between measured (AEBS-day) and computed AE (AEBS-

day-Terra and AEBS-day-Aqua), were applied to compute daily remotely sensed AE (AEday) from 

instantaneous AE (AEt) following the extrapolation method shown in equation 14. 

Table 1: Corrected parameterizations of available energy for the diurnal reconstitution 

Terra aTerra 0.85 

bTerra -19.81 

Aqua aAqua  0.87 

bAqua -18.94 

 

Then AEday was multiplied by the weighting coefficients ranging from zero and one of the 

corresponding daily footprint to get the daily available energy of the upwind area AEday-FP. 

Finally, estimates of Terra and Aqua observed daily LE (LE_residual_XLASday-FP) were 

obtained based on the three methods used to compute G. 
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4 SPARSE model 

4.1 Energy fluxes derived from SPARSE model 

The SPARSE dual-source model solves the energy budgets of the soil and the vegetation. 

Here we use the “layer approach”, for which the resistance network relating the soil and 

vegetation heat sources to a main reference level through a common aerodynamic level use a 

series electrical branching. Main unknowns are the component temperatures, i.e. soil (Ts) and 

vegetation (Tv) temperatures. Totals at the reference height (the measurement height of the 

meteorological forcing), as well as the longwave radiation budget, are also solved so that 

altogether a system of five equations can be built: 

 
 
 

 
 

       
          

            
          

           
               

   (15) 

where Ratm the atmospheric radiation (Wm
-2

), Ran net longwave radiation which depends 

on Ts and Tv (Wm
-2

), Tsurf and εsurf are respectively the surface temperature (°K) and 

emissivity as observed by the satellite; indexes “s” and “v” designate the soil and the 

vegetation, respectively. 

The first two (Eq. (15)) express the continuity of the latent and sensible heat fluxes from 

the sources to the aerodynamic level through to the reference level, the third and the fourth 

(Eq. (15)) are the soil and vegetation energy budgets, and the fifth (Eq. (15)) relates the 

surface temperature Tsurf to Ts and Tv. 

The SPARSE model system of equations is fully described in Boulet et al. (2015). 

SPARSE is similar to the TSEB model (Kustas and Norman, 1999) but includes the 

expressions of the aerodynamic resistances of Choudhury and Monteith (1988) and 

Shuttleworth and Gurney (1990). This system can be solved in a forward mode for which the 

surface temperature is an output (prescribed conditions), and an inverse mode when the 

surface temperature is an input derived from satellite observations or in situ measurements in 

the thermal infra-red domain (retrieval conditions). Figure 5 illustrates a diagram showing the 

flowchart of the model algorithm. System (15) is solved step-by-step by following similar 

guidelines as in the TSEB model: the first step assumes that the vegetation transpiration (LEv) 

is maximum, and evaporation (LEs) is computed. If this soil latent heat flux (LEs) is below a 

minimum positive threshold for vegetation stress detection of 30 Wm
-2

, the hypothesis that 

the vegetation is unstressed is no longer valid. In that case, the vegetation is assumed to suffer 

from water stress and the soil surface is assumed to be already long dry. Then, LEs is set to 30 

Wm
-2

. This value accounts for the small but non negligible vapor flow reaching the surface 

(Boulet et al., 1997). The system is then solved for vegetation latent heat flux (LEv). If LEv is 

also negative, both LEs and LEv values are set to zero, whatever the value of Tsurf. The system 

of equation can also be solved for Ts and Tv only if the efficiencies representing stress levels 

(dependent on surface soil moisture for the evaporation, and root zone soil moisture for the 

transpiration) are known. In that case the sole first four equations are solved. This prescribed 

mode allows computing all the fluxes in known limiting soil moisture levels (very dry, e.g. 
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fully stressed, and wet enough, e.g. potential). It limits unrealistically high values of 

component fluxes, latent heat flux values above the potential rates or sensible heat flux values 

above that of a non-evaporating surface. The potential evaporation and transpiration rates 

used later on are computed using this prescribed mode with minimum surface resistance to 

evaporation and transpiration, respectively.  

 

Figure 5: Flowchart of the SPARSE algorithm; Ts, Hss , Hvs LEss and LEvs are surface 

temperature, soil sensible heat flux, vegetation sensible heat flux, soil latent heat flux and 

vegetation latent heat flux in fully stressed conditions, respectively; Tp, Hsp, Hvp, LEsp and LEvp 

are surface temperature, soil sensible heat flux , vegetation sensible heat flux, soil latent heat flux 

and vegetation latent heat flux in potential conditions, respectively. 

 Some of the model parameters were remotely sensed data while others were taken from 

the bibliography or measured in situ. Remotely sensed data fed into SPARSE are Tsurf, εsurf, ϕ, 

NDVI, LAI and α. A grid of the vegetation height (zv) was also necessary as input in the 

SPARSE model; for herbaceous crops, vegetation height was interpolated with the help of 

NDVI time series between fixed minimum (0.05 m) and maximum (0.8 m) values, while for 

trees, the roughness length (zom) was linked to the allometric measurements (mentioned 

before) and computed as a function of canopy area index, drag coefficient and canopy height 

using the drag partition approach proposed by Raupach (1994) for tall sparse vegetative 

environments. Then, since SPARSE deals with vegetation height and not roughness length, 

the same simple rule of the thumb as the one used in SPARSE was used to reconstruct zv for 

the tree cover types (zv=zom/0.13). In a final step, to get spatial vegetation height, zv was 

averaged over the MODIS pixels. In situ parameters used in SPARSE were mainly 

meteorological data: Rg, Ratm, Ta, Ha and u. No calibration was performed on the model 

parameters shown in Table 2. 
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Table 2. SPARSE parameters  

 Definition Value Data Sources 

Remote sensing parameters   

NDVI Normalized Difference Vegetation Index  Satellite imagery 

Tsurf (K) Surface temperature (K)  Satellite imagery 

α Albedo   Satellite imagery 

εsurf Surface emissivity   Satellite imagery 

Φ (rad)  View zenith angle   Satellite imagery 

Meteorological parameters    

Rg (Wm
−2

) Incoming solar radiation   In situ data 

Ratm (Wm
−2

) Incoming atmospheric radiation  In situ data 

Ta (K) Air temperature at reference level   In situ data 

RHa (%) Air relative humidity  In situ data 

ua (ms
-1

) Horizontal wind speed at reference level  In situ data 

Fixed parameters   

za (m) Atmospheric forcing height  2.32 In situ data 

zv (m) Vegetation height  
Derived from land 

cover 

βpot  
Evapotranspiration efficiency in full potential 

conditions 
1.000  

βstress 
Evapotranspiration efficiency in fully stressed 

conditions 
0.001  

rstmin (sm
-1

) Minimum stomatal resistance 100 
(Boulet et al., 

2015)  

w (m) Leaf width  0.05 (Braud et al., 1995)  

εv Vegetation emissivity 0.98 (Braud et al., 1995)  

αv Vegetation albedo 0.25 Estimation  

Constants    

ρcp 

(J.kg
−1

.K
−1

) 
Product of air density and specific heat 1170 (Braud et al., 1995) 

σ (W. m
-

2
.k

4
) 

Stefan–Boltzmann constant 
5.66. 

10
-8

 
(Braud et al., 1995) 

γ (Pa.K
−1

) Psychrometric constant  0.66 (Braud et al., 1995) 

zom,s(m) 
Equivalent roughness length of the underlying 

bare soil in the absence of vegetation  
5.10

-3
 (Braud et al., 1995) 

nSW 

Coefficient in rav (Aerodynamic resistance 

between the vegetation and the aerodynamic 

level)  

2.5 
(Boulet et al., 

2015) 

ξ 
Ratio between soil heat flux G and available net 

radiation on the bare soil Rns 
0.4 (Braud et al., 1995) 
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The retrieval and prescribed modes of the SPARSE model were run for the 10 km × 8 km 

sub-images at the time of Terra and Aqua overpasses, to get instantaneous modeled fluxes 

H_SPARSEt, LE_SPARSEt and AE_SPARSEt as well as sensible heat flux (Hs-t =Hss-t +Hvs-t) 

in fully stressed conditions and latent heat (LEp-t =LEsp-t +LEvp-t) and sensible heat (Hp-t =Hsp-t 

+Hvp-t) fluxes in potential conditions. Modeled values were then multiplied by the nearest half 

hourly footprint to the satellite overpass time, in order to get fluxes corresponding to the 

upwind area: H_SPARSEt-FP, LE_SPARSEt-FP, AE_SPARSEt-FP, Hs-t-FP, Hp-t-FP and LEp-t-FP. 

 In a subsequent step, the prescribed mode of SPARSE model at potential conditions was 

run at a half hourly time step using the half hourly meteorological measurements to get half 

hourly latent heat flux at potential conditions LEp-30. This potential LE weighted by the 

corresponding half hourly footprint (LEp-30-FP) is used later when computing daily LE based 

on the stress factor method (section 4.2). 

4.2 Reconstruction of daily modeled ET from instantaneous latent heat flux 

Daily ET is usually required for applications in hydrology or agronomy for instance, 

whereas most SEB methods provide a single instantaneous latent heat flux because the energy 

budget is only computed at the satellite overpass time (Delogu et al., 2012). In order to scale 

daily ET from one instantaneous estimate, there are various methods relying on the 

preservation, during the day, of the ratio of the latent heat flux to a scale factor having known 

diurnal evolution. Either the stress factor SF (Eq. (16)) or the evaporative fraction EF (Eq. 

(17)) are assumed invariant during the same day, the diurnal modeled fluxes are accounted for 

by recovering the diurnal course of either potential ET or available energy.  

      
             

        
    (16) 

   
             

             
  (17) 

 Stress Factor (SF) method 

Assuming that the stress factor is constant during the day, the daily modeled ET 

(LE_SPARSEday-FP) can be expressed as the product of the instantaneous estimate of SF at the 

satellite overpass time and the daily potential evapotranspiration : 

                                 (18) 

LEp-day-FP was calculated as the sum of the half hourly modeled latent heat fluxes at 

potential conditions LEp-30-FP.  

 Evaporative Fraction method 

The daily modeled ET (LE_SPARSEday-FP) can be expressed as the product of the 

instantaneous estimate of EF at the satellite overpass time and the daily modeled available 

energy: 
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                                   (19) 

AE_SPARSEday was computed from instantaneous modeled available energy 

(AE_SPARSEt) using the same approach detailed in Sect. 3.3.2 and applying equation (14). 

AE_SPARSEday was weighted by the corresponding daily footprint to get the daily modeled 

AE of the upwind area AE_SPARSEday-FP. 

 Residual method 

Besides, daily modeled ET (LE_SPARSEday-FP) was also estimated as a residual term of the 

surface energy budget using daily modeled sensible heat flux (H_SPARSEday-FP) and available 

energy (AE_SPARSEday-FP) as follows: 

                                               (20) 

H_SPARSEday was computed from modeled sensible heat flux (H_SPARSEt) following the 

same extrapolation method used for the available energy (see Sect. 3.3.2). The corrected 

parameterizations of H were got from the comparison of daily measured sensible heat flux 

HBS-day computed as the average of half-hourly measured HBS-30 and daily sensible heat flux 

(HBS-day-Terra and HBS-day-Aqua) computed using the extrapolation method from instantaneous 

measured HBS-t-Terra and HBS-t-Aqua at Terra and Aqua overpass time, respectively (Equation 21).  

                ′          
           

         
  ′      

(21) 

               ′         
          

        
  ′     

where HBS-t-Terra and HBS-t-Aqua are the instantaneous measured sensible heat flux in the Ben 

Salem flux station. 

Therefore, the corrected parameterizations of H (Table 3), needed to remove the bias 

between measured (HBS-day ) and computed H (HBS-day-Terra and AEBS-day-Aqua), were applied to 

compute daily modeled H ( H_SPARSEday) from instantaneous modeled H (H_SPARSEt) 

following the extrapolation method shown in equation 21. Finally, H_SPARSEday was 

weighted by the corresponding daily footprint to get the daily modeled H of the upwind area 

H_SPARSEday-FP. 

Table 3: Corrected parameterizations of sensible heat flux for the diurnal reconstitution 

Terra a’Terra 1.02 

b’ Terra -17.31 

Aqua a’Aqua  1.00 

b’Aqua -14.83 
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5 Water stress estimates 

Water stress estimation is crucial to deduce the root zone soil moisture level using remote 

sensing data, (Hain et al., 2009). Water stress results in a drop of actual evapotranspiration 

below the potential rate. Its intensity is usually represented by a stress factor as defined in 

Sect. 4.2, ranging between 0 (unstressed surface) and 1 (fully stressed surface).  

Modeled values of SF at the time of Terra and Aqua overpass (SFmod) have been computed 

from modeled potential LE (LEp-t-FP) as follows: 

         
             

        
    (22)  

where LE_SPARSEt-FP and LEp-tFP are the modeled latent heat fluxes in actual and potential 

conditions, respectively.  

Furthermore, surface water stress factor derived from XLAS measurement, named SFobs, at 

the time of Terra and Aqua overpass was computed as follows (Su, 2002):  

       
               

                 
   (23) 

where Hs-t-FP and Hp-t-FP are the modeled sensible heat flux in actual and potential 

conditions, respectively; and H_XLASt is the XLAS sensible heat flux at the satellite overpass 

time. 

6 Results and discussion 

6.1 XLAS and model derived instantaneous sensible heat fluxes  

Our primary focus is the comparison between scintillometer measurements and the 

modeled sensible heat fluxes computed using the Terra and Aqua remotely sensed data. The 

scintillometer H at the time of the two satellites overpass (H_XLASt) are interpolated from 

the half hourly H measurements. Heat flux determination was possible for typically about 

87% of the daytime measurements during the summer, availability of XLAS heat flux values 

was lower during the cold season due to poor visibility and/or stable stratification. 

H_SPARSE was weighted by the XLAS footprint in order to be able to compare the 

modeled values (H_SPARSEt-FP) with the XLAS measurements (H_XLASt). Therefore, due 

to XLAS and remote sensing data availability, we got 175 and 118 values for Terra and Aqua 

respectively. In order to highlight H inter-seasonality between the drier 2012-2013 and the 

wetter 2013-2014 seasons, we present an example of two days each in one season, DOY 

2013-083 shows H value ranging between 25 Wm
-2

 and 757 Wm
-2

 while DOY 2014-185 

shows H value ranged between 128 Wm
-2

 and 470 Wm
-2

 (Figure 6). The colored area shows 

the modeled flux and the contours shows the surface source area contributing to the 

scintillometer measurements. The Day 2013-86 (24
th
 March 2013) is chosen in the cold 

season while day 185-2014 (4
th

 July 2014) is in the warm season to focus on land cover 

impact on Tsurf and thus on modeled H, (trees and cereals in winter vs. only irrigated trees and 

market gardening in summer). Moreover, the first day experiences a strong southern wind 
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while there is a light northern wind during the second day. Generally, a little number of 

MODIS pixels brings a high contribution to the signal; among them two are hot pixels (pixel 

with high Tsurf and low NDVI) in which the land use is mainly arboriculture.  

Prediction performance is assessed using RMSE and the coefficient of determination (R
2
). 

Results for the sensible heat flux are illustrated in figure 7 and show good agreement between 

modeled and measured H at the time of satellites overpass. This is illustrated by linear 

regressions of H_SPARSEt-FP = 1.065 H_XLASt -14.788 (R
2
 = 0.6; RMSE = 57.89 Wm

−2
) 

and H_SPARSEt-FP = 1.12 H_XLASt -10.57 (R
2
 = 0.63; RMSE = 53.85 Wm

−2
) for Terra and 

Aqua, respectively. This result is of great interest considering that the SPARSE model was 

run with no prior calibration. However, we noted that bias is a function of the flux level and 

most outliers are recorded for H greater than 200 Wm
-2

. This can be explained by (i) the 

XLAS measurement saturation (according to the "Kipp & Zonen LAS and XLAS instruction 

manual” (KIPP&ZONEN, 2007), for a path length of 4 km and a scintillometer height of 20 

m, saturation measurement problem starts from H values higher than 300 Wm
-2

), (ii) 

uncertainties on the correction of stability using the universal stability function and (iii) 

potential inconsistencies between the area average MODIS surface temperature and the air 

temperature measured locally at the meteorological station. 

Whereas there are several studies dealing with large aperture scintillometer (LAS) data 

whose measurements are compared to modeled fluxes, in the few studies dealing with extra 

large aperture scintillometer (XLAS) data, the comparison is generally done with Eddy 

Covariance station measurements (Kohsiek et al., 2002; Moene et al., 2006). Indeed, our 

results are in agreement with those found by Marx et al. (2008) who compared LAS-derived 

and satellite-derived H (SEBAL was applied with NOAA-AVHRR images providing maps of 

surface energy fluxes at a 1 km × 1 km spatial resolution), and found that modeled H is 

underestimated with a RMSE of 39 Wm
−2

 for the site Tamale and 104 Wm
−2

 for the site 

Ejura. Moreover, Watts et al.(2000) compared the satellite (AVHRR radiometer) estimates of 

H to those from LAS over semi-arid grassland in northwest Mexico during the summer of 

1997. They found RMSE values of 31 Wm
−2

 and 43 Wm
−2

 for LAS path lengths of 300 m and 

600 m respectively and showed that LAS measurements are less good than those derived from 

a 3D sonic anemometer. They also suggested longer LAS path length (greater than 1.1 km) 

since the LAS is rather insensitive to the surface near the receiver and the emitter. 
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b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: : Model derived sensible heat fluxes and footprints for (a) DOY 2013-082 at Aqua time 

overpass and (b) DOY 2014-185 at Terra time overpass. The colored area shows the modeled 

flux and the contours shows the surface source area contributing to the scintillometer 

measurements. 
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Figure 7: Modeled vs. observed sensible heat fluxes at Terra and Aqua time overpass 

6.2 XLAS and model derived instantaneous latent heat fluxes  

In a subsequent step, SPARSE derived LE (LE_SPARSEt-FP) was compared to observed 

LE (LE_residual_XLASt-FP). Results are illustrated in figure 8 showing a good agreement 

between modeled and observed LE. However, these results are less good than for the H 

results, as shown by the linear regressions: LE_SPARSEt-FP =0.94 LE_residual_XLASt-

FP + 12.47 (RMSE = 47.20 Wm
-2

) and LE_SPARSEt-FP = 0.85 LE_residual_XLASt-FP +11.51 

(RMSE = 43.20 Wm
-2

) for Terra and Aqua respectively, with an overall R
2
 of 0.55 for both 

satellites. We note a greater scatter for latent heat flux than for the sensible heat flux (Figure 

7), which can be explained by the fact that LE is here a residual term affected by estimation 

errors in both AE and H. Despite this moderate discrepancy, the good agreement between 

both approaches indicates that the methodology adopted in SPARSE for estimating H and AE 

using MODIS imagery is appropriate for modeling latent heat fluxes.  
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Figure 8: : Modeled vs. observed latent heat fluxes at Terra and Aqua time overpass 

6.3 Water stress 

The scattered values of the Stress Factor as shown in figure 9 are consistent with previous 

studies such as Boulet et al. (2015). SEB retrieval of stress is limited by the scale mismatch 

between the instantaneous estimate of the surface temperature during the satellite overpass 

(which can be influenced by high frequency turbulence) and the aggregated values of other 

forcing data which are derived from half hourly averages (Lagouarde et al., 2013; Lagouarde 

et al., 2015). However, general tendencies are well reproduced, with most points located 

within a 0.2 confidence interval (illustrated by dotted lines along the 1:1 line) as found by 

Boulet et al. (2015) at field scale, which is encouraging in a perspective of assimilating ET or 

SF in a water balance model for example. Moreover, it is noted that results include small LE 

and LEp values having the same order of magnitude as the measurement uncertainty itself. 

Most outliers having greater water stress (~1) correspond to high evaporation from bare soil 

since the dominant land use in the study area is arboriculture, but also, this could be due to 

saturation of scintillation which led to an underestimation of H XLAS measurements as 

pointed by Frehlich and Ochs (1990) and Kohsiek et al. (2002). 
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Figure 9: : Modeled vs. XLAS derived stress index SF at Terra and Aqua time overpass 

 Modeled and observed stress index at Terra and Aqua time overpass show a consistent 

evolution with daily rainfall (Figure 10), although the modeled stress show a greater 

dispersion than the observed one. During a rainy episode (or an eventual irrigation period), 

the surface temperature decreases towards the unstressed surface temperature, thus marking 

an unstressed state, and SF tends to 0. Conversely, after a long dry down, the water stress 

appears and the surface temperature increases towards the equilibrium surface temperature 

computed by SPARSE under stressed conditions, and SF tends towards 1. Besides, it is noted 

that modeled stress indexes computed on the basis of Aqua MODIS’s Tsurf are often greater 

than those computed used Terra MODIS’s Tsurf due to higher Tsurf (higher global solar 

radiation) at the time of Terra overpass (around midday). 
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Figure 10: Modeled and observed stress index evolution at Terra and Aqua time overpass 

compared to daily rainfall  

6.4 XLAS and model derived daily latent heat fluxes 

Daily observed ET, i.e. LE_residual_XLASday-FP, was computed using the residual method; 

hence, six estimates of the daily observed ET were obtained by combining the two satellite 

datasets and three methods to compute G and thus AE (see Sect. 3.3). Only the residual 

method was used to estimate daily observed ET for two reasons; on the first hand, to reduce 

the computations approach since, already, three methods to compute AE have been tested and 

on the other hand, the application of the EF method was not possible because we do not have 

a measured spatially distributed potential evapotranspiration (only point potential 

evapotranspiration data at the Ben Salem meteorological station are available). From daily 

observed ET estimates, minimum and maximum ET were selected for each day and minimum 

and maximum daily ET time series were interpolated between successive days based on the 

self preservation of the ratio of AE to Rg as scale factor (Figure 11).  

In addition, three methods were used to compute SPARSE daily ET for the Terra and Aqua 

overpasses (see Sect. 4.2), providing six estimates of the daily modeled ET. For each day 

average ET was plotted (260 days) with error bars figuring minimum and maximum values, 

along with precipitation to understand the rainfall impact on the ET evolution (Figure 11).  

Despite the uncertainty in reconstructing the daily ET from instantaneous ET, overall 

results show a good agreement between XLAS derived and SPARSE derived ET values with 

similar seasonal dynamics. Daily observed and modeled ET over the whole study period were 

both in the range of 0-4 mmday
-1

 with an RMSE of 0.7 mmday
-1

 which is consistent with the 

land use present in the XLAS path: mainly trees spaced by a considerable fraction of bare soil, 

and less herbaceous soil-covering crops (see Sect.3.2). As expected, ET rates decrease 

significantly during dry periods (summers) since arid conditions limit the latent heat flux in 

favor of sensible heat flux and increase immediately after rainfall events due to the high 

amount of water evaporated from soil. The rainfall peaks that occurred on 3
rd

 September 2013 
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(about 10 mm), 6
th

 October 2013 (about 20 mm), 15
th
 March 2014 (about 100 mm) and 22

nd
 

April 2014 (about 25 mm) are followed by well-reproduced drydowns. 

At seasonal scale, we note a good agreement between modeled and observed daily ET for 

the 2013-2014 and 2014-2015 seasons, especially when vegetation cover was more 

developed: from March to July 2014 and from March to Mai 2015; these periods correspond 

to cereals vegetation peak in some plots (March-April) and to market gardening crops (e.g. 

tomato, water melon, pepper, etc.) cultivated generally from spring to the beginning of 

autumn in the interrow area of trees plots, which is a common farming practice in the 

Kairouan plain. However, the 2012-2013 season was dry compared with the two other ones, 

and less accurate results were obtained. Some points with little to null ET were recorded from 

May to July 2013 which can be explained by the very dry conditions and scattered vegetation 

cover with a considerable amount of bare soil. This behavior was not observed in the same 

period of 2014, because 2014 was a rainy year in comparison to 2013, therefore, even 

supposing that the farmers have the same attitude and cultivate the same crop types between 

the two years (which is not true in the context of our study area and farmers always change 

crop types), precipitations favor the growth of spontaneous vegetation over fallows which 

contribute to ET rise. On the other hand, since this year experiences more rain, farmers 

cultivate a larger part of the land and diversify the crop types; the vegetation cover is denser 

and contributes to an overall increase in ET. Overall, lower ET values are recorder in autumn 

(October and November) which correspond to evapotranspiration from trees only, since the 

latest summer crops (market gardening crops) have been already harvested and the winter 

crops (mainly cereals) are not yet sown. 

Moreover, it can be seen that occasionally SPARSE overestimated ET. As example, three 

dates can be selected in August 2013 (15
th
, 25

th
 and 29

th
 August 2013) for which modeled ET 

were 3.30 mm, 3.80 mm and 2.80 mm while maximum observed ET were 2.0 mm, 2.40 mm 

and 1.20 mm, respectively; broader amplitude between modeled (4.00 mm) and observed ET 

(1.40 mm) was also recorded on the 18
th

 of May 2013. SPARSE also overestimates ET 

throughout ten days in August 2014 with an average difference of 1.1 mm and a maximum 

difference of 1.60 mm recorded in 23
rd

 August 2014. These discrepancies are always recorded 

under wet conditions (minimum stress factor) which show the difficulty in representing 

accurately the conditions close to the potential ET. This might be related to the theoretical 

limit of the model for low vegetation stress especially when coupled with low evaporation 

efficiencies (i.e. dry soil surface) as already reported by Boulet et al. (2015) for senescent 

vegetation. Average difference between SPARSE and XLAS derived LE estimates when both 

are available indicate that SPARSE can predict evapotranspiration with accuracies 

approaching 5% of that of the XLAS. 
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Figure 11: Modeled vs. observed daily latent heat fluxes. Dark grey color shows minimum and maximum daily observed LE. Light grey vertical bars 

show gaps in XLAS data. Error bars for the modeled ET show the minimum and the maximum daily ET resulting from the three methods used to 

compute daily ET from instantaneous modeled ET. 
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7 Conclusions 

This study evaluated the performances of the SPARSE model forced by MODIS remote 

sensing products in an operational context (no model calibration) to estimate instantaneous 

and daily evapotranspiration. The validation protocol was based on an unprecedented dataset 

with an extra large aperture scintillometer. Indeed, up to our knowledge, this is the first work 

based on XLAS measurements acquired during more than 2 years, as compared to three 

months in previous works (Kohsiek et al., 2002; Moene et al., 2006). The estimates of the 

sensible heat flux derived from the SPARSE model are in close agreement with those 

obtained from the XLAS. These results indicate that the XLAS can be fruitfully used to 

validate large-scale sensible heat flux derived from remote sensing data (and residual latent 

heat flux), in particular for the results obtained at the satellite overpass time, providing a 

feasible alternative to local micrometeorological techniques for measuring the sensible heat 

flux and validating satellite-derived estimates (i.e. eddy correlation). Furthermore, the 

extrapolation from instantaneous to daily evapotranspiration is less obvious and three 

methods were tested based on the stress index, the evaporative fraction and the residual 

approach. The daily latent heat fluxes derived from the XLAS agreed rather well with those 

modeled using SPARSE model, which shows the potential of the SPARSE model in water 

consumption monitoring over heterogeneous landscape in semi-arid conditions, and especially 

to locate areas most affected by water stress. However, the precision in ET prediction with the 

SPARSE model is restricted by several assumptions and uncertainties. For instance, the 

instantaneous remote sensing data and mainly Tsurf which is paramount in stress coefficient 

computation are assumed to be reliable. Moreover, there is an issue with the MODIS pixel 

heterogeneity and notably the distribution of components at the intersection between the 

square pixel and the XLAS footprint. Uncertainties are also due to half hourly forcing 

(meteorological and flux data) and XLAS data as well as to the extrapolation method from 

instantaneous to daily results. Furthermore, the empirical estimation methods of soil heat flux 

G (three methods were tested) as well as the possible daily heat accumulation lead to possible 

errors in available energy estimation and in turn in residual LE estimation. 

Even if overall results are encouraging, further work is needed to improve results by i) 

being most efficient in the SPARSE model application using calibrated input data specific to 

our study area, especially input parameters to which the model is particularly sensitive such as 

the mean leaf width and the minimum stomatal resistance, ii) taking into account the 

heterogeneity of the 1km MODIS pixel by applying MODIS footprint, which is determined 

by the sensor's observation geometry and (iii) using a Land Surface Model applied at the field 

scale (Etchanchu et al., 2017) to analyze the scaling properties from the field to the footprint 

of the XLAS and the MODIS pixels similarly. 

Finally, in a future work, we plan to take advantage of the complementarities between the 

Soil Water Balance and Surface Energy Balance approaches (i.e. continuous but uncertain 

estimates using SWB due to poor soil water content control on one hand and sensitivity of 

SEB to the actual water stress on the other hand) to implement an assimilation scheme of the 

remotely sensed surface temperature into land surface models. In fact, in order to provide 

further information about distributed soil water status over the studied areas, the TIR-derived 
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evapotranspiration products could be assimilated directly either in land surface or 

hydrological models.  
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5.3 Synthesis and partial conclusion  

In order to analyze an independent estimate of ET from the SEB approach, SPARSE 
model computed ET for three agricultural seasons 2012-2013, 2013-2014 and 2014-2015 
over the 10 km × 8 km sub-image centered on the scintillometer XLAS transect. Overall 
results of the SPARSE energy balance spatialization are encouraging, in particular for the 
results obtained at the satellite overpass time, hence the interest of low spatial resolutions 
satellite data for crop monitoring under water stress conditions and water stress indicators 
assessment over heterogeneous surface. However, the extrapolation from instantaneous 
to daily evapotranspiration was less obvious and three methods were tested based on the 
stress index, the evaporative fraction and the residual approach. Daily ET estimates were 
deemed acceptable and the daily LE derived from the XLAS agreed rather well with those 
modeled using SPARSE model. Nevertheless, ET prediction with the SPARSE model is 
restricted by several assumptions and uncertainties (remote sensing data, meteorological 
and flux data, XLAS data, etc).  

Several earlier studies were conducted in the Mediterranean context dealing with the 
integration of remotely sensed data into energy balance models to better estimate all 
energy budget fluxes, they show good agreement with SPARSE results mainly 
instantaneous ones. A physically based method for the energy budget partitioning 
following the Two Source model has been applied over a heterogeneous agricultural area 
located in southern Spain by Andreu et al. (2011) the comparison between instantaneous 
H and LE estimates to eddy covariance data of five plots gave a RMSD of 14 and 29 Wm -

2, respectively. Daytime ET showed a relative error of 10%. Furthermore, Calcagno et al. 
(2007) tested the performance given of the SEBAL model using MODIS images on areas 
characterized by different physiographic and vegetative conditions (sparse vegetation, 
crop canopy and high mountain vegetation) in southern Italy. The distributed results 
obtained for different days from summer 2004 to summer 2006 pointed out generally 
good ET predictions in the eddy covariance sites RMSE of 46 and 29 Wm-2 for H and 
LE, respectively.  
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6 General conclusion and perspectives 
 

Water scarcity is one of the main factors limiting agricultural development in semi-arid 
areas. This work deals with the spatial estimation of actual evapotranspiration and 
irrigation volumes using water balance and energy balance models forced by 
optical remote sensing data (VIS / NIR / TIR). It aims at estimating the regional 
crop water consumption based on physical and empirical models adapted to the available 
distributed information: in situ and multi-sensor/multi-resolution remote sensing data. 

During this thesis, we enhanced several methodological developments (data forcing 
and assimilation, soil water balance models, surface energy balance models) around the 
estimation of evapotranspiration and irrigation with a spatio-temporal resolution adapted 
to the water resources management in semi-arid regions (field and irrigated perimeter 
scales). These methods have been applied to our study area: the Kairouan Plain in central 
Tunisia; where efficient agricultural water management is a major issue since the main 
user of the overexploited Kairouan aquifer is agriculture.  

The major innovative aspect of this thesis is the development of methods to estimate 
the crop water budget and its related hydrological variables at different scales by valuing 
both high and low remote sensing data into soil water balance surface and energy balance 
modelization. Results are in synergy with previous works dealing with water resources 
management in the emblematic site of the Merguellil watershed. Since this study provides 
information about irrigation water consumption, and therefore implicitly about water 
pumping from the Kairouan aquifer, its results complement the previous works dealing 
either with hydrogeology, agronomy or water policy and management. Moreover, the 
results presented here can be improved based on results of other previous and current 
studies as it is detailed in the perspective section (e.g. radar synergy to better constraint 
soil evaporation). 

 Major findings 

The first part of this PhD thesis was dedicated to the spatialization of 
evapotranspiration (ET) and irrigation volumes over the study area using the SAMIR 
model for four agricultural seasons. The input data in SAMIR are meteorological data, 
land use map, NDVI time series, crop and soil parameters, and irrigation rules. SAMIR 
operates on a daily basis and simulates water balance components according to the 
formalism developed by the FAO-56 with a simplified description of the soil in three 
horizons (surface, root and deep horizons). Crop and soil parameters for cereals crops 
were calibrated based on eddy covariance measurement of ET in irrigated barley and 
irrigated wheat fields. Crop specific parameters were set to calibrated values for cereals 
and taken from literature for the other land use classes. In absence of a detailed soil map, 
soil properties for all land use classes were considered homogeneous and the parameters 
were taken from calibration. The climatic forcing was considered homogeneous over the 
plain and meteorological data was taken from the sole station present in the study area. The 
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major originality of SAMIR relies on the use of remote sensing NDVI time series for 
vegetation monitoring, from which crop coefficients and vegetation fraction covers are 
derived, instead of using standard values. In order to establish a high-resolution water 
balance, SAMIR was fed with time series of SPOT images. Four time series of SPOT5 
images (2008-2009, 2011-2012, 2012-2013 and 2013-2014) have been acquired over the 
study site along with a SPOT4 time series acquired in the frame of the SPOT4-Take5 
experiment, which took place during the first half of 2013. A special attention was paid to 
the SPOT5 time series pre-processing based on the SPOT4-Take5 data. The irrigation 
volume estimates have been evaluated on three irrigated sectors (total area of about 600 
ha) and compared to observed irrigation volumes. It was shown that the modeled 
monthly irrigations are on the whole satisfying with two noticeable exceptions for the 
first (November) and last (June) months of the simulation. When aggregated to the 
whole season, modeled irrigation volumes at perimeter scale for all campaigns were close 
to observed ones (resp. 118 and 111 mm; RMSE of about 35 mm for average irrigations 
of about 118 mm). SAMIR simulations were also analysed for 2012-2013 and 2013-2014 
seasons over a 10 km × 8 km sub-image centered on the scintillometer XLAS transect 
along a path length of 4 km. Modeled ET weighted by the XLAS footprint was validated 
using daily ET estimates derived from the XLAS observations. Better results are obtained 
for 2012-2013 than 2013-2014, and it is shown that current SAMIR parameterization does 
not allow the simulation of interseasonal variations in ET. Moreover, results show a good 
agreement between observed and modeled ET especially in the mid-season of cereals 
crops (March to May) for both seasons; and during the cropping period of market 
gardening crops (cultivated generally from spring to the beginning of autumn). However, 
less accurate results are obtained when bare soil fraction (fallow and trees fields) 
outweighs the vegetation covered fraction i.e. at the beginning of both seasons. 

In the second part, based on a more regional evaluation of the model performance 
with the XLAS dataset, the parameterization of SAMIR was revisited; parameters 
concerning the soil evaporation and related to the soil hydrodynamic properties were 
reevaluated. A new SAMIR parameters calibration was obtained from ET and soil 
moisture measurements of three irrigated and rainfed cereals fields. SAMIR was run over 
the study area for the four agricultural seasons; calibrated soil and crop parameters were 
only used for cereals while for the other land use classes parameters were derived from 
the FAO-56. Furthermore, the previous Kcb-NDVI relation for trees was discussed and 
replaced by another relation enabling a more realistic evapotranspiration. The irrigation 
rules were also revised and both market gardening and fruit trees were irrigated using drip 
irrigation which means that less soil surface is wetted. In addition, to reproduce the drip 
irrigation practice, manageable allowable depletion (MAD) was set to a low value (MAD 
= 0.2TAW and MAD=0.5TAW for both market gardening and fruit trees, respectively), 
which triggers frequent irrigation inputs. Although the overall results of modeled 
irrigation volumes remain almost the same (120 mm; RMSE of about 37 mm), monthly 
results improved significantly. Strong overestimation of irrigation in the first two months 
of the simulation was corrected. However, if the ET estimates agreed with XLAS 
observed ET for the wettest 2013-2014 season with significant improvement of 
modeled ET in the beginning of the simulation, we also observe a strong degradation 
for the 2012-2013 season.  
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In order to analyze an independent estimate of ET with the SEB approach, in the 
third part, a distributed energy balance model computed ET for three agricultural seasons 
2012-2013, 2013-2014 and 2014-2015 using the “layer” version of the two-sources energy 
balance model SPARSE over the 10 km × 8 km sub-image centered on the scintillometer 
XLAS transect. Some of SPARSE parameters were remotely-sensed data while others 
were taken from the bibliography or taken from routine in situ data (meteorological data). 
Remotely-sensed data were acquired at the resolution of the MODIS sensor at 1 km, 
embarked on board of the satellites Terra and Aqua. No calibration was performed on the 
model parameters. SPARSE instantaneous estimates of sensible heat flux (H), latent heat 
flux (LE) and stress factor (SF) at Terra-MODIS and Aqua-MODIS overpass time, after 
being weighted by the instantaneous XLAS footrpint, were validated using XLAS 
measured H as well as XLAS derived LE and stress index, respectively. The good 
correspondence (R2= 0.60 and 0.63 and RMSE=57.89 Wm-2 and 53.85 Wm-2; for Terra 
and Aqua, respectively) between instantaneous H estimates and XLAS H measurements 
showed that the SPARSE model presents satisfactory accuracy. Results showed that, 
despite the fairly large scatter, the instantaneous LE can be suitably estimated at large 
scale (RMSE=47.20 Wm-2 and 43.20 Wm-2; for Terra and Aqua, respectively and R2= 
0.55 for both satellites). Additionally, the comparison of modeled and observed water 
stress showed that most points were located within a 0.2 confidence interval, thus the 
general tendencies are well reproduced. Furthermore, the extrapolation from 
instantaneous to daily evapotranspiration was less obvious and three methods were tested 
based on the stress index, the evaporative fraction and the residual approach. Daily ET 
estimates were deemed acceptable and the daily LE derived from the XLAS agreed rather 
well with those modeled using SPARSE model (RMSE of 0.7 mmday-1), which shows the 
potential of the model in water consumption monitoring over heterogeneous landscapes 
in semi-arid conditions, and especially to determine the average water stress. 

 Limitations of the methods and models 

In summary, the results of the present work show that remote sensing based on 
multispectral images may be used, with a correct degree of accuracy and spatial 
representation, to calculate crop water and irrigation requirement. These results are in 
agreement with several previous studies with the same focuses in the Mediterranean 
region or under the Mediterranean climate. However, the methods developed in this 
thesis are, nevertheless limited by several corresponding assumptions. It is therefore 
useful to identify their applicability in order to allow them to be applied in appropriate 
cases and to identify possible improvement of these methods. 

SAMIR model limitations 

Despite the advantage of the SAMIR model in estimating the water balance 
components at field or perimeter scale with high spatial resolution, the high numbers of 
needed inputs whose estimations are likely uncertain at large scales remain the main 
drawback of this model.  
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For an appropriate estimation of ET, the SWB model requires knowledge of the water 
inputs (precipitation and irrigation) and an assessment of the extractable water from the 
soil, mostly derived from the soil moisture characteristics, whereas, significant biases are 
found mainly when dealing with large areas and long periods, due to the spatial variability 
of the water inputs uncertainties as well as the inaccuracy in estimating other flux 
components such as the deep drainage. Moreover, unknown initial soil moisture is a real 
issue in SAMIR parameters setting. Spin-up could be used to force the net change in soil 
moisture from the beginning to the end of agricultural season as it was shown in several 
researches (e.g.Lim et al., 2012; Rodell et al., 2005; Yang et al., 2011). 

In addition, the absence of a detailed soil map and the assumption of homogeneous 
soil properties for all land use classes is one of the main limitations of the SAMIR model. 

The agricultural practices, especially irrigation, are difficult to parameterize. Indeed, the 
lack of information about real irrigation can induce unreliable estimations since irrigation 
is modeled by SAMIR as a predicted amount through a module triggering irrigation 
according to critical soil moisture levels. Moreover, the limited knowledge of the actual 
irrigation scheduling is a critical limitation for the validation protocol of modeled 
irrigation volumes.  

Furthermore, the land use map is a crucial input data of SAMIR since all parameters 
setting is based on the land use classes. However, due to unavailability, one annual land 
use map was considered per season which does not take into account crop rotation which 
is common practice in the Kairouan plain (up to three crops per agricultural season). 
Hence, the strong overestimation of irrigation by SAMIR during the two first months of 
the simulation can be explained by the fact that late vegetables (e.g., pepper or 
tomatoes) are not completely removed while they are still green and not irrigated. The 
SAMIR model is not able to manage such partial vegetation cycles and irrigates as if it 
was the crop that will follow in the crop rotation (i.e., the crop mentioned in the land 
use map).  

Furthermore, the calibration dataset is minimal and the calibration protocol affects a 
limited number of parameters for a limited number of land uses classes. During this work, 
we noticed that the readily evaporable water (REW) parameter which constrains the soil 
evaporation is very sensitive parameter of SAMIR in our study context. In fact, in semi 
arid regions, the bare soil fraction (fallows and fruit trees interspaces) in a cropped area is 
considerable, especially during dry seasons. The estimation of this parameter generally 
relies on the FAO guidelines approach (Allen et al., 1998). Although it was shown that 
under high evaporation conditions, the FAO-56 daily evaporation computed based on 
REW, is overestimated at the beginning of the dry down phase. Hence, to improve its 
estimation a reduction factor (m) proposed by Torres and Calera, (2010) and derived 
from the cereals crops calibration was applied for all land use class to deal with this 
problem in our case. However, for the fruit trees and market gardening crops, the 
calibrated REW was not a successful choice and gave less accurate results of ET estimates 
in comparison to the XLAS derived ET. Hence, this parameter was revisited and 
calibrated value was kept only for cereals crops while literature values were used for the 
other land use classes. Hence, results at monthly timescale were clearly improved but it 
remains that we have no clear idea of the way to reliably determine this parameter.  
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Finally, even though SPOT5 images were carefully pre-processed in order to get 
accurate remote sensing data, there could also be some uncertainties related to RS data. 
The fc-NDVI and Kcb-NDVI determination for each land use class was not an easy task 
and several assumptions (e.g. minimum NDVI of bare soil, maximum NDVI for fully 
covering crop, maximum Kcb, etc.) were necessary. 

SPARSE model limitations 

The precision in ET prediction with the SPARSE model is restricted by several 
assumptions and uncertainties. For instance, the instantaneous remote sensing data and 
mainly Tsurf are assumed reliable. Moreover, there is an issue with the MODIS pixel 
heterogeneity and notably the distribution of components at the intersection between the 
pixel and the XLAS footprint. Uncertainties are also due to half hourly forcing 
(meteorological and flux data) and XLAS data as well as to the extrapolation method 
from instantaneous to daily results.  

In addition, H estimation depends mainly on Tsurf and near surface air temperature 
(Tair). There is a strong relationship between Tsurf and Tair, although the two temperatures 
have different physical meaning and responses to atmospheric conditions. In complex 
terrain, these differences are amplified; yet it is in these environments that remotely 
sensed Tsurf may be most valuable in prediction and characterization of spatial-temporal 
patterns of Tair. Furthermore, the empirical estimation methods of soil heat flux G (three 
methods were tested) as well as the possible daily heat accumulation lead to possible 
errors in available energy estimation and in turn in residual LE estimation.  

In situ data limitations 

Although the scintillometer XLAS provides a feasible alternative to local 
micrometeorological techniques for measuring the sensible heat flux and validating 
satellite-derived estimates, it provides measurements of only large-scale area-average H 
but not the latent heat flux. Computation of LE as the energy balance residual term 
assumes that the Monin-Obukhov (MOST) similarity hypothesis (Monin and Obukhov, 
1954), i.e. surface homogeneity and stationary flows are verified in our study area where 
topography is flat. This assumption can lead to possible uncertainties in observed ET 
computation. 

 Perspectives and future plans 

 Operational perspectives 

Regarding the impact on operational management of water, the main outcomes of this 
work are a potential contribution to decision support tools for decision makers in the 
Kairoun region. They could be applied at the GDA or the CRDA (“Commissariat 
Regional de Developpement Agricole”, agricultural development regional office) scales, 
which are entities managing respectively groups of fields and groups of irrigated 
perimeters.  

Indeed, irrigation requirement estimation in the irrigated perimeters (GDA) can be a 
valuable source of information for watershed arrangement, since it provides estimates of 



3 General conclusions and perspectives 

 

202 

 

the volumes of pumped water from the overexploited Kairouan aquifer. Moreover, water 
consumption in irrigated fields outside the GDAs limits, when associated with land use 
surveys and confronted to the known lawful drilling cartography, can help the CRDA 
water resources administrators to better locate the undeclared drillings. In addition, 
irrigation water consumption in the irrigated perimeters managed by the CRDA help 
assessing the efficiencies of these perimeters (Kharrou et al., 2013). Furthermore, the 
adopted approach and methodologies in this PhD thesis can be applied at the national 
level or tested in other Tunisian regions. However, it should be mentioned that the 
outcomes of this work do not specifically target the field scale level, i.e. tools to be used at 
the farm level. Indeed, due to hypothesis regarding irrigation simulation, SAMIR results 
are not accurate enough at plot scale to provide actual irrigation requirements. In this 
respect, farmers can benefit from the SAT-IRR tool (Le Page, 2015), a Web tool that 
addresses the needs of irrigators. The main goal of this online application is to propose a 
date and dose of irrigation at plot scale. The theoretical bases and operational modus 
operandi of SAT-IRR are similar to those of SAMIR model with the major difference that 
the farmer interacts with the system to introduce the actual water inputs applied, a 
condition to compute the actual water budget of the plot. A water balance very close to 
the one described in the FAO-56 (Allen et al., 1998) is calculated by combining satellite 
imagery as well as weather data and forecasts or projection into the future for crop 
development.  

Finally, the following question must be asked: how to technically implement this 
potential information system (server, interface ...)? Presumably, it should be centralized at 
national level, with user interfaces at regional level in the CRDAs, etc. Moreover, the issue 
of decision makers and even farmers awareness about the research outcomes and their 
practical use should be mentioned. This can be achieved through meetings and training 
sessions on the information system data (e.g. estimated evapotranspiration, irrigation 
consumption…) that administers and farmers can use. Indeed, in the frame of 
AMETHYST project, a training session of SAMIR software was held in the CRDA of 
Kairouan, and a winter school was organized in which researchers, and administrators 
working on the Kairouan plain participated.  

 Scientific perspectives 

The increasing availability of high-resolution high repetitively remote sensing data (e.g. 
Sentinel-2 mission) offers an unprecedented opportunity to improve crop water balance 
monitoring. The Copernicus Sentinel-2 program makes it possible to have a full coverage 
of the major part of the Earth at least every 5 days in 13 different multispectral bands. 
This temporal resolution can allow real-time monitoring of crop development and its 
water status through the use of vegetation indices such as NDVI and/or Normalized 
Difference Water Index (NDWI), hence of the crop water consumption estimation. On 
the other hand, the possible cloudiness problem even in semi-arid areas like Tunisia can 
be resolved by combination of VIS-NIR high-resolution data of different sensors like 
Landsat8 or SPOT in a kind of “virtual constellation” of sensors. 

Progress in SAMIR parameterization would require ideally crop specific information. 
Setup of flux measurements on vegetables and trees would allow parameters calibration 
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on these land use classes. In addition, careful consideration should be given to irrigation 
practices which are much uncertain although quite sensitive.  

Improving the parameterization of the ET partition into transpiration and evaporation 
and further analysis of the evaporation coefficient Ke is an important research path 
especially over areas covered with trees; this is currently done by Chebbi et al. (2017, in 
progress) in a rainfed olive orchard in the Kairouan plain. This partition is generally 
studied at field scale for annual crops (e.g.Aouade et al., 2016; Wu et al., 2016; Xiao et al., 
2016) or orchards (e.g. Er-Raki, 2009; López-Olivari et al., 2016). However, global- and 
regional-scale partitioning of ET is not accurately known since large-scale observations of 
ET, notwithstanding its partitioning, are not available. Perhaps, consequently, few 
researchers have diagnosed ET partitioning issues in land surface schemes, even though a 
better knowledge on this information would provide a powerful constraint on model 
physics, and is also of major interest for water management.  

Moreover, efforts are undertaken to establish methods allowing the elaboration of 
seasonal land use maps (summer and winter maps) of the Kairouan plain using the 
Sentinel-2 images (Mabrouki, 2018 in progress). This would allow overcoming the 
problem of the only one land use map as input data of SAMIR.  

Since SAMIR allows the use of either uniform or distributed soil properties data, the 
clay content map at 100 m spatial resolution produced by Shabou et al. (2015), which 
covers the Kairouan plain, can be used to enhance realism of the soil properties. The 
soil moisture and texture map produced by Gorrab et al. (2015) at the spatial resolution of 
the radar TerraSAR-X data (9m), but within a limited area (9 km × 5 km) of the Kairouan 
plain, can be also used. Efforts are undertaken to improve this work and reproduce soil 
moisture and texture map of the whole Kairouan plain using the high-resolution high 
repetitively Sentinel-1 data (Bousbih, 2018 in progress). 

On the other hand, SPARSE results can be improved by i) being more efficient in the 
SPARSE model application using calibrated input data specific to our study area, 
especially input parameters to which the model is particularly sensitive such as the mean 
leaf width and the minimum stomatal resistance, ii) taking into account the heterogeneity 
of the 1km MODIS pixel by applying MODIS footprint, which is determined by the 
sensor's observation geometry and (iii) using a Land Surface Model applied at the field 
scale (Etchanchu et al., 2017) to analyze the scaling properties from the field to the 
footprint of the XLAS and the MODIS pixels.  

In addition, since agrometeorological models are sensitive to meteorological data, 
distributed meteo data can be used instead of single weather station data. Spatial 
interpolation of meteo data can be achieved based on meteorological measurements of 
one or more weather stations according to a Digital Elevation Model (Li and Heap, 2008). 
Otherwise, forcing agrometeorological model with the latest global atmospheric reanalysis 
ERA-Interim (Dee et al., 2011) weather data is rather a promising research path. First 
efforts are undertaken by Farhani (2017) to statistically analyze these data in the 
Kairouan plain context and confront them to several meteorological stations data. The 
forcing of the SPARSE model by ERA-Interim data showed satisfactory results 
(instantaneous and daily ET) in comparison to those obtained using meteorological 
stations data.  
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Moreover, ET estimation by the SPARSE model depends mainly on TIR remote 
sensing data availability. Hence, the combination of TIR low-resolution data of different 
sensors such as MODIS and Sentinel-3 with high-resolution TIR data (when available) 
from sensors like Landsat8 can enhance the temporal continuity of ET estimates.  

In fact, in order to provide further information about distributed soil water status over 
the studied areas, the TIR-derived ET products could be assimilated directly either in land 
surface or hydrological models. Moreover, the estimation of water stress coefficient Ks in 
the FAO-56 crop coefficient approach requires computing daily water balance for soil 
and root zone, including several parameters whose estimation is not straightforward. 
Consequently, Ks can be derived from remote sensing data using surface temperature 
derived from thermal infrared observations, since surface temperature and water status 
are intimately linked (Moran, 1994). TIR remote sensing data were assimilated into several 
SVAT models (Boegh et al., 2004; Pellenq and Boulet, 2004), but also into FAO-56 
method (Er-Raki et al., 2008) on which is based the SAMIR model. Because of the 
complexity of most land surface models as well as the difficulty to specify the observation 
error on Tsurf, , assimilation of TIR data in the SAMIR model to get actual soil water 
status remains very challenging. 

However, in a future work, we plan to take advantage of the complementarities 
between the Soil Water Balance and Surface Energy Balance approaches (i.e. continuous 
but uncertain estimates using SWB due to poor soil water content control on one hand 
and sensitivity of SEB to the actual water stress but infrequent Tsurf observations, on the 
other) to implement an assimilation scheme of the remotely-sensed surface temperature 
into land surface models. Therefore, since SAMIR is a state-space model, simulating 
continuous water balance components, in case of failure in estimating accurate values of 
ET, modeled actual ET using the observation model SPARSE, can be directly assimilated 
into SAMIR. SPARSE estimates corresponding to a high-resolution thermal infrared 
image acquisition (e.g. Landsat image, the 50-100 m/2-3 days mission project TRISHNA) 
would be specifically of high importance in order to likely steer the SAMIR model 
estimates to the right path.  
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7 Annexes 

Annex 1: TIR missions 

o Landsat satellites  

The Landsat program is an important images base of the Earth's surface; it is the oldest 
one since 1972. With the launch of Landsat 5 in 1984, the thermal band in the Thematic 
Mapper (TM) sensor appeared with a spatial resolution of 120 m (Table A.1). The TM 
sensor was operational for 27 years and was stopped in November 2011. Landsat 6 failed 
to reach its orbit and was lost. Landsat 7 was launched in 1999 and has also a thermal 
band thanks to the Enhanced Thematic Mapper Plus (ETM +) sensor, which is an 
enhanced version of the TM sensor. The thermal band has an improved spatial resolution 
at 60 m and the satellite covers the entire globe in 16 days. Landsat 7 is still operational 
but has suffered a failure and the images of the ETM + sensor acquire only 75% of each 
scene data.NASA successfully launched the Landsat 8 satellite on February 2013 and its 
operation was transferred to the United States Geological Survey (USGS). The data 
collected by the new thermal sensor, Thermal Infrared Sensor (TIRS), are freely available. 
The spatial resolution is now 100 m with an overall coverage of 16 days.However, for the 
three missions, the Tsurf product is not yet systematically available for downloading, so it is 
necessary to apply an atmospheric correction model, for example, the joint use of the 
MODTRAN model and the re-analysis atmospheric data from ERA-Interim (Tardy et al., 
2016). 

o Advanced Spaceborne Thermal Emission Reflection radiometer (ASTER) 

The ASTER radiometer is one of five instruments on NASA's TERRA satellite. It 
provides on request maps with high spatial resolution in the visible (15 m), the near 
infrared (30 m) and in the thermal infrared (90 m). With its 5 bands in the thermal 
infrared (wavelength between 8 and 12 μm), ASTER allows the inversion of Tsurf and 
spectral emissivity at 90 m resolution (Abrams, 2000). In the best case, the temporal 
resolution is 16 days (Table A.1). ASTER surface temperature product (AST08) is 
obtained using the same algorithm as for the surface emissivity product. 
The Tsurf is thus estimated by applying Planck's law from the estimated values of the 
Temperature Emissivity Separation (TES) algorithm developed by (Gillespie et al., 1998). 
The ASTER Tsurf data are corrected for radiometric, atmospheric and geometric effects.  

o MODerate resolution Imaging Spectroradiometer (MODIS) 

The MODIS instrument is a radiometer using 36 spectral bands ranging from 0.4 to 
14.4 μm. MODIS is embarked on two satellites: TERRA launched in December 1999 and 
AQUA in May 2002. Aqua crosses the equator at 1:30 am and 1:30 pm local time, and 
Terra crosses the equator at 10:30 am and 10:30 pm, which means that MODIS data are 
generally available 4 times a day (if there are no clouds) with a resolution of 1 km, this 
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combination makes it possible to have a daily average Tsurf closer to the real field. MODIS 
data are free and can be downloaded via http://lpdaac.usgs.gov/main.asp. 

The surface temperature (Tsurf) and emissivity daily data are retrieved at 1km pixels by 
the generalized split-window algorithm and at 6km grids by the day/night algorithm. In 
the split-window algorithm, emissivities in bands 31 and 32 are estimated from land cover 
types, atmospheric column water vapor and lower boundary air surface temperature are 
separated into tractable sub-ranges for optimal retrieval. In the day/night algorithm, 
daytime and nighttime Tsurf and surface emissivities are retrieved from pairs of day and 
night MODIS observations in seven TIR bands. The product is comprised of Tsurf, quality 
assessment, observation time, view angles, and emissivities. 

Table A. 1: Satellite-based thermal datasets 

Satellite  Sensor  Thermal Band Spectral band Spatial 
resolution 

Temporal 
resolution 

Landsat 8 TIRS  B10 (Medium 
infrared) 

10.30 – 11.30 µm 100 m 16 days 

B11(Medium 
infrared) 

11.50 – 12.30 µm 

Landsat 7 ETM+ Band 6 - TIR 10.4 – 12.5 µm 60 m 16 days 

Landsat 5 TM Band 6 - TIR 10.40 – 12.50 µm 120 m 16 days 

Terra  ASTER Band10- TIR 8.12 – 8.47 µm 90 m On request 

Band11- TIR 8.47– 8.82 µm 

Band12- TIR 8.92 – 9.27 µm 

Band13- TIR 10.25 – 10.95 µm 

Band14- TIR 10.95 – 11.65 µm  

Terra, 
Aqua 

MODIS Band 31- TIR 10.78 – 11.28 µm 1 km 1-2/day 

Band 32- TIR 11.77 – 12.27 µm 

NOAA AVHRR Band 4- TIR 10.3 – 11.3 µm 1 km 2/day 

Band 5- TIR 11.5 – 12.5 µm 

GEOS GEOS 
imager 

Band 4- TIR 10.2 – 11.2 µm 4 km 1-3 hour 

Band 5- TIR 11.5 – 12.5 µm 

 

 

http://lpdaac.usgs.gov/main.asp
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Annex 2: VIS-NIR missions 

There are several multispectral (VIS-NIR) high-resolution missions, here after, we cite 
some European Space Agency (ESA) missions: 

o SPOT (“Satellite Pour l’Observation de la Terre”, Satellite for observation of Earth) is a 
commercial high-resolution optical imaging Earth observation satellite system 
operating from space. It is run by Spot Image, based in Toulouse, France. It was 
initiated by the CNES (“Centre national d'études spatiales”, the French space agency) 
in the 1970s. It has been designed to improve the knowledge and management of the 
Earth by exploring the Earth's resources, detecting and forecasting phenomena 
involving climatology and oceanography, and monitoring human activities and natural 
phenomena. The SPOT system includes a series of satellites: SPOT-1 (1986-1990) 
with 10 panchromatic and 20 meter multispectral picture resolution capability; SPOT-
2 (1990-2009) ; SPOT-3 (1993-1997); SPOT-4 ( 1998-2013); SPOT-5 (2002-2015) 
with 2.5 m, 5 m and 10 m capability; SPOT-6 launched on September 2012 and 
SPOT-7 launched on June 2014. Compared to its predecessors, SPOT-5 offered 
greatly enhanced capabilities due to SPOT-5's improved 5-metre and 2.5-metre 
resolution. The satellite provided an ideal balance between high-resolution and wide-
area coverage. SPOT-5's other key feature was the unprecedented acquisition 
capability of the on-board HRS imaging instrument, which had the ability to take 
stereo pair images quasi-simultaneously. SPOT sensors, spectral and spatial resolution 
and applications are detailed in Table A.2. At the end of life of SPOT-4 and SPOT-5 
satellites, the Take 5 experiment was set up: satellite orbit was lowered by 3 kilometres 
to put it on a 5 day repeat cycle orbit; hence, the satellite flew over the same places on 
Earth every 5 days. This experiment used SPOT-4 and SPOT-5 as a simulator of the 
time series that Sentinel-2 mission provide. 45 and 150 sites have been observed every 
5 days, by SPOT-4 and SPOT-5, respectively. 

 

o Sentinel-2 is a polar-orbiting, multispectral high-resolution imaging mission for land 
monitoring to provide, for example, imagery of vegetation, soil and water cover, 
inland waterways and coastal areas every 5 days. Sentinel-2 can also deliver 
information for emergency services. Sentinel-2A was launched on 23 June 2015 and 
Sentinel-2B followed on 7 March 2017. Sentinel-2 spectral and spatial resolutions as 
well as applications are detailed in Table A.2. 
 

o Pleiades is a constellation of two very-high-resolution satellites; Pleiades-HR 1A and 
Pleiades-HR 1B, launched in December 2011, capable of acquiring imagery of any 
point on the globe in less than 24 hours for civil and military users, at a resolution of 
just 70 cm every day. Pleiades spectral and spatial resolutions as well as applications 
are detailed in Table A.2. 
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Table A. 2: Characteristics of SPOT-4, SPOT-5, Sentinel-2 and Pleiades satellites  

Satellites Sensors Mode Band Spectral band Spatial resolution Applications 

SPOT-4 HRVIR Multispectral B1 (green) 0.50 - 0.59 µm 20 m  Telecommunications;  
Land use and Planning; 
Infrastructure planning; 
Environmental assessment. 

B2 (red) 0.61 - 0.68 µm 20 m  

B3 (near IR) 0.78 - 0.89 µm 20 m  

MIR (middle IR) 1.58 - 1.75 µm 20 m  

Panchromatic PAN 0.61 - 0.68 µm 10 m  

Vegetation Multispectral B0 (blue) 0.43 - 0.47µm 1165 m  Oceanographic applications; 
Atmospheric corrections. 

B2 (red) 0.61 - 0.68 µm 1165 m  Vegetation photosynthesis activity. 

B3 (near IR) 0.79 - 0.89 µm 1165 m  

MIR (middle IR) 1.58 - 1.75 µm 1165 m  Ground and vegetation humidity. 

SPOT-5 HRG Multispectral B1(green)  0.50 - 0.59 µm 10 m  Telecommunications; 
Land use and Planning; 
Infrastructure planning; 
Environmental assessment; 
Marine studies; 
Agriculture; 
Mapping; 
Civil Engineering; 
Mapping Natural Resources; 
Mining and Exploration Oil and 
Gas. 

B2 (red) 0.61 - 0.68 µm 10 m  

B3 (near IR) 0.78 - 0.89 µm 10 m  

SWIR 1.58 - 1.75 µm 10m x 10m 

Panchromatic PAN 0.51 - 0.73 µm 5m x 5m 

Vegetation 2  Remains unchanged in comparison to the one installed on board SPOT-4 sensor. 

 

 

 

http://eoedu.belspo.be/en/satellites/spot.htm#vegetation
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Satellites Sensors Mode Band Spectral band Spatial resolution Applications 

Sentinel-2 MSI (Imaging 
multi-spectral 
radiometers 

Multispectral Band 1 – Coastal 
aerosol 

0.42 - 0.46 µm 60 m Monitoring land cover change for 
environmental monitoring; 
Agricultural applications. such as 
crop monitoring and management 
to help food security; 
Detailed vegetation and forest 
monitoring and parameter 
generation (e.g. leaf area index. 
chlorophyll concentration. carbon 
mass estimations). 

Band 2 – Blue 0.42 - 0.55 µm 10 m 

Band 3 – Green 0.52 - 0.60 µm 10 m 

Band 4 – Red 0.63 - 0.69 µm 10 m 

Band 5 – Vegetation 
Red Edge 

0.69 - 0.85 µm 20 m 

Band 5 – Vegetation 
Red Edge 

0.72 - 0.89 µm 20 m 

Band 5 – Vegetation 
Red Edge 

0.76 - 0.80 µm 20 m 

Band 8 – NIR 0.73 - 0.96 µm 10 m 

Band 8A – Narrow 
NIR 

0.84 - 0.88 µm 20 m 

Band 9 – Water 
vapour 

0.92 - 0.96 µm 60 m 

Band 10 – SWIR – 
Cirrus 

1.35 - 1.40 µm 60 m 

Band 11 – SWIR 1.52 - 1.7 µm 20 m 

Band 12 – SWIR 2.01 - 2.37 µm 20 m 

Pleiades HiRI (High-
resolution 

optical imagers) 

Multispectral Band 1 – Blue  0.43 - 0.55 µm 2 m Defense or civil security missions; 
Critical geophysical phenomena 
survey (volcanic eruptions; 
Detailed Mapping especially in 
urban area. 

Band 2 – Green  0.49-0.61 µm 2 m 

Band 3 – Red  0.60-0.72 µm 2 m 

Band 4 – NIR 0.75-0.95 µm 2 m 

Panchromatic PAN 0.47-0.82 µm 0.5 m  
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Annex 3: Summary table of vegetation indices determined in recent years 

Groups Vegetation index Formula Authors Commentaries 

Simpe 
indices 

 

Difference 
Vegetation Index 

          (Bacour et al., 2006) They are very sensitive to atmospheric 
variations, as well as to the spectral 
contribution of soils. In addition, when the 
vegetation is very dense, the reflectance in the 
red band becomes very low, resulting in a 
saturation of the RVI index.values. 

Ratio Vegetation 
Index" 

       
   (Jordan, 1969) 

Normalized 
Difference 

Vegetation Index 

     
     

     
 

(Rouse Jr et al., 1974; 
Tucker, 1979) 

Reference vegetation index and the most used 
one. NDVI values are theoretically in the 
range of -1 (areas other than plant cover, such 
as snow, water or cloud) to +1 (vegetation). 
The highest NDVI values correspond to the 
densest vegetation cover. 
NDVI allows the analysis of the vegetation 
cover dynamic. 

Moisture Stress 
Index 

& 
Normalized 

Difference Water 
Index 

       
     

     
       

       
 

(Gao, 1996; Hunt and 
Rock, 1989) 

They vary depending on the water content of 
the leaves. They allow detecting the 
vegetation water stress and are therefore very 
useful for crop monitoring in dry zone. 

Indices 
taking into 
account the 

soils 
influence 

Perpendicular 
Vegetation Index 

    
 

     
           

a and b are respectively the slope and the 
ordinate at the origin of the soils line. 

(Richardson and 
Wiegand, 1977) 

It is based on the use of the soils line which 
becomes a reference to determine the density 
of the vegetation (the more a pixel is far from 
the line, the more its coverage is dense). 

Soil-Adjusted 
Vegetation Index 

     
     

       
      

(Huete, 1988) It characterizes the soil and its vegetation 
coverage rate. The parameter L is a constant 
taking the value of 0.25 for a high density and 
1 for a very low density of vegetation. 
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Transformed Soil-
Adjusted Vegetation 

Index  

     

 
           

                   
 

(Baret et al., 1989) It has the same characteristics as the PVI 
except the addition of a corrective constant 
of the soil effect (0.08). 

Indices 
taking into 
account the 

effects of 
soils and the 
atmosphere 

Atmospherically 
Resistant Vegetation 

Index 

     
      

      
 

RB = R – γ (B – R) 
γ: Atmospheric auto correction factor. 

(Kaufman and Tanre, 
1992) 

It takes into account the atmosphere effects. 
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Annex 4.1: Internal radiometric normalization of 2012-2013 season’s SPOT5 and SPOT4-take5 images time series 

 2012-2013 season’s SPOT5 images 
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 2012-2013 season’s SPOT4-Take5 images 
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Annex 4.2: Additional 2012-2013 season’s SPOT5 images radiometric normalization (SPOT4-take5 average image 
as reference) 
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Annex 4.3: Radiometric corrections of 2013-2014 SPOT5 images time series 

 

 



5 Annexes 

 

253 

 

 

 



5 Annexes 

 

254 

 

 

 



5 Annexes 

 

255 

 

Annex 5: Characteristics of the used MODIS data 

Products Spatial 
resolution/ 
Temporal 
resolution 

Processing 
level 

Bands Projection 
system 

Processing Type 

MOD11A1 

MYD11A1 

1 km/Daily  Level 3 31 (1078-
1128 nm) 

32 (1170-
1227 nm) 

Sinusoidal The product is comprised of Tsurf, quality assessment, observation time, 

view angles, and emissivities. The Land Surface Temperature (Tsurf) and 

emissivity daily data are retrieved at 1km pixels by the generalized split-
window algorithm in which emissivities in bands 31 and 32 are estimated 
from land cover types; atmospheric column water vapor and lower 
boundary air surface temperature are separated into tractable sub-ranges 
for optimal retrieval. The surface temperature is computed from the 
measurements of luminance recovered in the thermal infrared.  

MOD13A2 

MYD13A2 

1 km/16 
days 

Level 3 1 red (620-
670 nm) 

2 NIR (841-
876 nm) 

3 blue (459–
479 nm)  

7 SWIR 
(2105-
2155 nm) 

Sinusoidal It is the MODIS vegetation index (VI) product. Two VI are derived from 
atmospherically-corrected reflectance in the red, near-infrared, and blue 
wavebands; NDVI and EVI (Enhanced Vegetation Index). The two 
products more effectively characterize the global range of vegetation states 
and processes. The VI are retrieved from daily, atmosphere-corrected, 
bidirectional surface reflectance; from the two highest NDVI values it 
selects the pixel that is closest-to-nadir. Because the MODIS sensors 
aboard Terra and Aqua satellites are identical, the VI algorithm generates 
each 16-day composite eight days apart (phased products) to permit a 
higher temporal resolution product by combining both data records.  
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MCD43B1 

MCD43B2 

MCD43B3 

1 km/16 
days 

Level 3 Seven 
spectral 
bands spaced 
throughout 
the solar 
shortwave 
spectrum : 
0.4-3.0 µm 

 

Three broad 
band: 

 0.4-0.7 µm 

 0.7-3.0 µm 

0.4- 3.0 µm 

Sinusoidal 

 

These products are part of the MODIS BRDF/ALBEDO product that 
combines registered, multi date, multiband, atmospherically corrected 
surface reflectance data from the MODIS and MISR (multi-angle imaging 
spectroradiometer) instruments to fit a Bidirectional Reactance 
Distribution Function (BRDF) in seven spectral bands at a 1km spatial 
resolution on a 16-day cycle. 

The albedo measures are a directional hemispherical reflectance (black sky 
albedo) obtained by integrating the BRDF over the existence hemisphere 
for a single irradiance direction, and a bihemispherical reflectance (white 
sky albedo) obtained by integrating the BRDF over all viewing and 
irradiance directions. Both Terra and Aqua data are used in the generation 
of this product, providing the highest probability for quality input data. 

The BRDF/Albedo parameters provide:  
 (i) coefficients for mathematical functions that describe the BRDF of 
each pixel in the seven MODIS 'Land' bands (1- 7);  
 (ii) albedo measurements derived simultaneously from the BRDF for 
bands 1-7 as well as three broad bands (0.4-0.7, 0.7-3.0, and 0.4- 3.0 
micrometers). 
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Annex 6: Calculation of reference evapotranspiration using FAO Penman-Monteith 
equation (Allen et al., 1998) 

    
                    

  
         

     
            

                
 

Psychometric constant (γ) is calculated by equation: 

γ =0.665∙10-3 ∙ P         [kPa °C-1] 

where: P – atmospheric pressure       [kPa]  

5 26
293 0 0065

101 3
293

.
. z

P .
  

   
   

where : Z – altitude above sea level        [m] 

Slope vapour pressure (Δ) curve is a function of half hourly temperature (T0.5h): 

  
               

             

           
 

          
       [kPa °C-1] 

Saturation vapour pressure (es) half hourly temperature (T0.5h) was calculated by equation: 

                        
           

           
      [kPa] 

Actual vapour pressure (ea) was calculated from half hourly relative humidity RH0.5h:  

            
      

   
        [kPa] 

Net radiation at the crop surface (Rn) is equal to the difference between shortwave and 
longwaveradiation: 

Rn = Rns – Rnl         [MJ m-2 0.5h-1] 

Net shortwave radiation is calculated from equation: 

Rns = (1 – α)Rs         [MJ m-2 0.5h-1] 

where α represent albedo (0.23) 

Net longwave radiation was calculated by equation: 

             
                )      

  

   
 0.35)   [MJ m-2 0.5h-1] 

where :  

   is Stefan-Boltzman constant:  = (4.903/24)*0.5 * 10-9 [MJ m-2 0.5h-1] 

  Rso – clear sky solar radiation [MJ m-2 0.5h-1], 

  Rs – solar radiation [MJ m-2 0.5h-1]. 

  
 50 75 2 10Rso . z Ra    
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where: Ra – extraterrestrial radiation [MJ m-2 0.5h-1]. 

   
      

 
                         δ            δ                      

where : Gsc – solar constant, 0.0820 [MJ m-2 min-1],   – latitude [rad], dr – relative distance 
Earth—Sun [rad], δ – solar declination,  1 – solar time angle at beginning of period [rad] 
and  2 – solar time angle at end of period [rad].  

 

where: J – the number of the day in the year 

 

     
   

  
  and      

   

  
   

where   solar time angle at midpoint of half hourly period [rad], tl length of the 
calculation period [half hour]: i.e., 0.5 for a 30-minute period. 

The solar time angle at midpoint of the period is: 

  
 

  
            

       

  
         

Where t standard clock time at the midpoint of the period [half hour], Lz longitude of the 
centre of the local time zone [degrees], Lm longitude of the measurement site [degrees] 
and Sc seasonal correction for solar time [hour]. 

The seasonal correction for solar time is:  

                                            

  
        

   
 

Soil heat flux (G)  

Half hourly G can be approximated during daylight periods as: 

         

and during nighttime periods as:  

         

 

Wind speed correction  

 

where: Uz – wind speed measured at Z m above ground. 

2
1 0 033

365

π
dr . cos J

 
    

 

2
0 409 1 39

365

π
δ . sin J .

 
    

 

 2

4 87

67 8 5 42
z

.
u u

ln . z .
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Annex 7: Comparison between modeled irrigation volumes by SAMIR 
and observed irrigation at the ownership / block scales for the 

2012/2013 season 

GDA 
ownership / 

block 
Seasonal modeled irrigation 

SAMIR (mm) 
Seasonal observed irrigation 

(mm) 

K
ar

m
a 

1
 

1 305.3 178.0 

2 110.8 129.6 

3 284.3 175.8 

4 378.3 229.3 

5 155.1 69.0 

6 317.3 248.2 

7 343.8 0.0 

8 36.2 179.9 

10 164.3 0.0 

11 402.4 679.2 

13 44.0 253.1 

14 285.3 0.0 

15 236.9 318.3 

16 358.7 307.9 

17 104.5 86.9 

18 1.3 40.1 

20 179.6 260.9 

21 266.8 84.0 

22 328.6 198.4 

23 267.0 101.7 

24 230.2 183.3 

25 482.0 400.7 

27 23.3 1940.4 

28 394.7 208.4 

33 136.3 18.6 

34 344.6 319.0 

35 238.0 34.4 

36 516.0 567.8 

38 264.1 38.5 

39 286.3 8.7 

40 45.7 31.1 

42 160.0 95.1 

43 43.9 69.7 

48 134.1 39.3 

49 114.1 79.9 

51 127.1 52.6 
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53 92.9 49.1 

54 59.2 49.1 

55 420.6 320.8 

56 149.1 106.7 

57 225.1 404.4 

60 72.8 202.9 

61 13.7 81.6 

64 189.4 7.3 

65 0.0 52.1 

66 159.2 34.5 

67 72.6 17.1 

68 154.8 82.5 

69 89.2 46.4 

74 42.4 44.4 

75 133.0 254.6 

76 35.9 23.6 

K
ar

m
a 

2
 

1 510.4 643.0 

2 184.2 121.3 

3 321.9 246.1 

4 105.1 235.9 

5 93.9 247.7 

6 201.7 147.1 

7 271.2 158.3 

8 442.2 119.7 

9 235.5 75.0 

10 5.1 339.4 

11 46.4 579.1 

12 401.8 174.5 

13 339.4 650.7 

15 285.7 151.7 

16 334.8 175.0 

17 300.7 406.8 

18 360.0 274.4 

19 357.2 160.6 

20 427.9 782.7 

21 466.9 493.4 

22 461.5 27.3 

23 237.5 116.1 

24 418.4 510.0 

25 7.4 244.4 

26 388.5 257.9 

27 411.4 283.2 
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29 98.9 321.9 

30 284.7 113.9 

31 137.9 27.6 

32 417.0 326.1 

34 63.7 23.6 

M
le

ls
a 

1 233.0 201.5 

2 372.4 315.5 

3 296.0 285.3 

5 395.0 166.4 

6 474.6 429.0 

7 272.6 247.5 

9 139.4 176.6 

10 176.9 144.5 

11 246.9 36.4 

12 114.5 60.1 

13 32.7 125.4 

14 328.2 555.6 

15 417.6 294.5 

16 106.3 168.6 

17 82.9 69.2 

19 185.4 147.9 

20 196.8 66.2 

21 148.4 175.7 

22 267.3 47.6 

23 269.7 163.7 

24 223.6 150.7 

25 291.1 91.5 

28 360.2 466.9 

30 127.3 189.7 

32 301.4 156.6 

33 91.2 86.8 

34 80.6 45.6 

35 27.8 82.6 

36 174.3 44.4 

37 137.8 12.5 

38 191.1 36.6 

39 120.4 77.1 

40 244.0 330.0 

43 209.6 208.8 

44 322.8 266.8 

45 305.2 98.2 

46 140.3 31.6 



5 Annexes 

 

262 

 

47 101.3 121.2 

48 270.3 118.9 

49 406.1 479.3 

50 101.0 64.9 

52 190.4 20.2 

53 52.5 60.3 

54 171.1 115.0 

56 427.2 274.9 

57 16.2 147.5 

58 100.9 87.3 

59 245.0 244.0 

60 61.1 108.6 

61 161.1 55.1 

62 173.3 112.8 

63 164.5 86.3 

65 132.3 139.3 

67 70.9 65.6 

69 35.8 109.1 

70 309.9 533.9 

77 45.6 39.1 

79 155.8 64.3 

80 362.1 51.0 

81 68.4 144.3 

83 69.7 174.7 

85 213.5 43.7 

86 120.9 104.0 

87 206.7 42.1 

89 100.0 50.0 

91 172.6 82.5 

92 84.1 131.9 

93 76.8 164.0 

97 104.4 98.9 

98 89.8 41.8 

106 84.1 119.3 

B
en

 S
al

em
 2

 

Bloc 1 169.80 210.76 

Bloc 2 177.81 183.64 

Bloc 3 134.58 196.50 

Bloc 4 200.72 170.86 

Bloc 5 132.43 170.82 

Bloc 6 108.32 138.32 

Bloc 7 189.01 205.43 

Bloc 8 49.73 113.66 
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Annex 8: SPARSE forcing terms 
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différentes échelles.  

Cette thèse vise à développer des techniques et des méthodes efficaces pour estimer les variables hydrologiques 
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