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Résumé

Les connaissances sur l’origine de Radio Halos (RHs), les émissions radio diffuses de
brillance superficielle bas a échelle de Mpc observées dans les amas de galaxies massives,
ont progressé vers un consensus général sur les dernieres années. Le scénario généralement
accepté pour le mécanisme responsable de ce type d’émission diffuse c’est la ré-accélération
des électrons relativistes par la turbulence générée par les fusions des amas. Sur ce cadre, on
attend des modÃ¨les qu’une fraction plus grande de l’apparition des RHs apparaÃ®tre a z =
0.3-0.4. Cependant, les observations radio des amas de galaxies dans ce régime de redshift
sont encore limitées. Le projet MACS-Planck Radio Halo Cluster Project vise a explorer
l’origine et l’apparition des RH, ainsi que leur lien avec l’état dynamique des systemes hôtes,
en explorant une gamme de redshift plus élevée que les études précédentes. Dans cette these,
je présente les données publiées du sous-échantillon ATCA du projet et les perspectives pour
les travaux futurs.

Abstract

The knowledge on the origin of Radio Halos (RHs), Mpc-scale low surface brightness
diffuse radio emission observed in massive galaxy clusters, has moved towards a general
consensus on the recent years. The generally accepted scenario for the mechanism respon-
sible of this kind of diffuse emission is the re-acceleration of relativistic electrons by the
turbulence generated in cluster mergers. On this framework, it is expected from models that
a larger fraction of RH occurrence may appear at z=0.3-0.4. However, radio observations
of galaxy clusters in this redshift regime are still limited. The MACS-Planck Radio Halo
Cluster Project has the aim of exploring the origin and occurrence of RHs, as well as their
connection with the dynamical state of the host systems by exploring a higher redshift range
than previous studies. In this thesis, I present the published data of the ATCA subsample of
the project and prospects for the future work.



“Lo que nos toca es ser lectores de la historia de la astronomia, para tal vez

algun dia escribir nosotros mismos algunas lineas”

—Camilo Delgado Correal

“However variable its aspects may be, the whole universe obeys a permanent

law and its elements, however variegated they may be, are governed by

harmony.”

—Ibn al-Haitham, d. ca. 1040 c.e.
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Chapter 1

Introduction to Radio Astronomy

Contents

1.1 A brief history of radio astronomy . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The radio sky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

In this introductory chapter, I would like to present a short overview of astronomical
observations in the radio band. As we will see, what we consider contemporary astrophysics
was born a bit more that one century ago, and the very nucleus of this thesis, radio astronomy,
more or less half of the way back. On the way to our times, radio astronomers have found
a good number of totally unexpected objects which opened the window to a new world of
research and understanding of our Universe. I consider that in the dawn of the golden era of
radio astronomy, its worth while recalling this story...

1.1 A brief history of radio astronomy

The astrophysicist Michael Longair considers that the birth of modern astrophysics at the end
of the 19th Century was possible because of four great technological achievements (Longair,
2013). The first one is the invention of photography. By exposing a photographic plate to
an astronomical source for a long amount of time, we are able to integrate the number of
photons coming from the source, allowing us to reach very faint features of celestial objects.
The second achievement is the discovery of spectroscopy. By analysing the spectrum of the
light coming from an astronomical source, astronomers are able to know a great number
of its characteristics, such as its chemical composition, temperature, density, etc. Another
very important astronomical use of spectroscopy is that it also allows to measure the line of
sight speed of the source relative to the observer by measuring the Doppler shift of known
spectral lines. The third achievement is the measurement of stellar parallax. By knowing the
parallax of stars, astronomers are able to estimate their distances, and use this information
to know their absolute magnitudes, for example. This is of great importance as it is one
of the first steps on climbing the "cosmic distance ladder", or the succession of methods
by which astronomers determine the distances to celestial objects. The fourth achievement
is the access to wavelengths and frequencies outside the visible window. The visible band
goes from ∼ 0.4 − 0.7 micrometers. If it is true that it is a very narrow window, we are also
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Figure 1.2: Karl Jansky and the antenna used to make his historical radio observations.
Photo: Bell Telephone Laboratories.

coming from the Sun in 1942 (Longair, 2013), the emission coincided with an unusually
high sunspot activity. The same team discovered in 1946 the first discrete radio source in the
sky. The source became famous with the name Cygnus A; which is a radio galaxy and one
of the brightest radio sources in the sky (Figure 1.3).

Radio astronomy became a field of study on its own right until the mid 1950’s. Since then,
a number of large dish antenna radio telescopes were constructed around the world. Even if
single dish telescopes had excellent sensitivities, the angular resolution θ is limited by the
diameter, D, of the antenna. One way of solving the problem is by the use of interferomety

(Munns, 2013). The resolution of a telescope is given by the Rayleigh criterion θ ≈ λ/D

(Longair, 2013), with λ the wavelength of the incoming wave. By measuring the ampli-
tudes and phases of the incoming radio signals, the distribution of radio brightness across
the sky can be reconstructed. One of the key characters on the development of techniques
in radio interferometry was Martin Ryle (Longair, 2013; Mitton, 2011), who in the mid-
1960s developed a technique known as aperture synthesis. By using the data obtained with
two radio antennas, and changing the distance among them, the resolving power increases
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Figure 1.3: Image of the radio galaxy Cygnus A (3C 405), one of the brightest radio sources
in the sky. Image courtesy of NRAO/AUI

tremendously. A number of radio interferometers were constructed around the world, such
as the Westerbork Synthesis Telescope in Netherlands, The Very Large Array in New Mex-
ico, USA, or the Giant Metrewave Radio Telescope in India. The discoveries in the field of
Radio Astronomy on the last 60 years are among the most fundamental ones in the history of
modern astrophysics. The most remarkable examples are the discovery of quasars, the Cos-
mic Microwave Background (CMB), neutron stars, pulsars, interstellar molecules and other
cosmic objects that we will briefly explore in the following sections.

1.2 The radio sky

Why is the night sky dark? This apparently innocent question have profound cosmological
consequences. The question was formulated by Johannes Kepler and later on by Wilhelm
Olbers, and it is known as Olbers’ paradox (Harrison, 1990). There have been proposed
several solutions to the paradox, and here I would like to propose a radio astronomer’s one:
The night sky is not dark at all!! It is just a matter of observing in the correct frequency.
The radio sky looks totally different to the optical sky, because the origin of the radiation is
of different nature. Being most of the strongest astronomical radio sources of non-thermal
origin, the radio sky looks brighter at lower frequencies. The whole sky will start to glow
at frequencies below ∼100 MHz. If we continue to perform observations at lower frequen-
cies, the radio emission from our own galaxy (see Fig. 1.4) will be indistinguishable from
the background. However, we will notice that at frequencies of tens of MHz, the sky will
become darker because nearby thermal interstellar gas will absorb radio waves. Finally, the
lowest frequency part of the spectrum (below ∼ 10 MHz) is blocked by Earth’s ionosphere,
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Figure 1.4: The radio sky at 408 MHz. Credit: C. Haslam et al., MPIfR, SkyView

preventing ground-based radio observations to be performed. In short, the radio sky will
change depending on the chosen frequency (Verschuur, 2007).

Radiation mechanisms

In all the processes where we observe radio emission we must find a fundamental ingre-
dient: the movement of charged particles. In particular, changes on the velocities of these
particles make them lose energy, which is radiated away in the form of an electromagnetic
wave in the radio band. Radio waves may be produced, for example, by electrons moving
relatively slowly, with speeds of ∼102 km/s found in hot clouds of gas surrounding a star.
Another possibility is the movement of electrons at much higher relativistic speeds on larger
length scales. These two different kind of emission are coined, respectively, thermal and
non-thermal (Verschuur, 2007).

Everything that has temperature shines. This is another way of saying that matter which
has temperature higher than the absolute zero emits thermal radiation. Inter-atomic collisions
of the particles causes their kinetic energy to change, which results effectively in a charge
acceleration, and therefore electromagnetic radiation emission. The emitted radiation from
a thermal origin comes in a wide spectrum of frequencies of emission, as a result of the
wide spectrum of kinetic energy changes (or particle accelerations) involved in the process.
This characterizes the spectrum of thermal radiation as a continuous dispersion of photon
energies. A thermal radiating body can reach thermodynamic equilibrium with its surface,
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and if the surface has perfect absorptivity at all wavelengths, then the body is characterized
as a black body, which follows the Planck’s law of thermal radiation power:

u(ν, T ) =
2hν3

c2
⋅

1

ehν/kBT
− 1

(1.1)

where ν is the frequency, h is Planck’s constant, c is the speed of light, T is the temperature
and kB is Boltzmann’s constant.

The other kind of emission, the non-thermal radiation, is also called synchrotron radia-
tion. This process of emission involves cosmic rays spiralling magnetic field lines because
of the Lorentz force:

qv⃗ × B⃗. (1.2)

where q is the charge of the particle, v⃗ its velocity, and B⃗ the magnetic field. Charged par-
ticles emit photons when accelerated, and if the velocity is relativistic, the radiation can be
particularly intense. Synchrotron radiation is beamed in the direction of the velocity of the
moving particle and can also exhibit polarization if there is large scale coherence of mag-
netic field directions in the source region. The spectrum of synchrotron radiation reflects the
distribution of energies of the radiating particles, usually being a power law:

I =Kν−α (1.3)

where I is the specific intensity, α a dimensionless exponent called spectral index, and K a
proportionality constant. The wavelengths of emission can fall in any of the values across the
electromagnetic spectrum depending on the energy of the particle and on the strength of the
magnetic field. In the following sections, we will briefly explore the most usual astrophysical
radio sources.

The Sun

The Sun is a source of radio signals generated by both the synchrotron process of high
speed electrons spiralling around solar magnetic fields and thermal emission from the move-
ment of electrons in the hot plasma. There is a third mechanism where oscillations of the
solar plasma generate radio emission (Dulk, 1985). The Sun has some radio activity during
the sunspot minimum coming from regions in the low corona. By definition, the radio quiet
sun is observed when there is little violent activity in its surface. There has been observed a
slowly varying component of radio activity which coincides with the rotation of the Sun each
28 days (Hood and Hughes, 2011). In some cases, regions of the solar surface grow hotter
and brighter until a flare explosion occurs. For example, the so-called Solar Radio Bursts
have been observed to occur near this active regions of the Sun (see e.g. Kupriyanova et al.,
2016).

The Moon and the Planets
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The case of the Moon is very interesting for radio astronomers. For example, by timing
occultations by the Moon of radio sources in the sky, their positions can be calculated with
great accuracy. By this method a quasi-stellar radio source was accurately positioned for the
first time (Clarke, 1966). Besides the thermal emission due to its temperature, the Moon
radio emission has also some non-thermal components due to: a) Reflection of Man-made
or Earth-shine radio waves, b) Reflection of galactic emission and c) Reflection of solar
emission (Vedantham et al., 2015).

The Moon, Mercury and Mars are relatively normal sources of thermal radio emission,
being the radio brightness a function of their temperatures. Venus, however, has a relatively
high temperature at its surface because of the greenhouse effect of the carbon dioxide present
in its atmosphere. Among the first measurements of Venus’ temperature were done by per-
forming radio observations of the planet (Young and Young, 1975). Jupiter has a strong radio
activity. The giant planet produces intense bursts with a peak energy concentrated around
20 MHz, even if the parent mechanism is not completely understood (Verschuur, 2007) and
some radiation belts which are the source of non-thermal radio waves have been detected in
the giant planet. Furthermore, new generation radio telescopes, such as LOFAR, are carrying
observational programmes to detect radio emission from exoplanets (Zarka, 2011).

Supernova Remnants

The radio source Taurus A (Tau A) is one of the brightest radio sources in the sky. Also
known as the Crab Nebula, it is the remnant of a supernova observed by Chinese and native
American astronomers in the year 1054. The radio spectrum of Taurus A is non-thermal in
nature and its light is polarized. Another very famous radio source, actually the brightest
in the sky, is another supernova remnant called Cassiopeia A (Cas A). Both Tau A and Cas
A are remnants of the explosions of single massive stars. This explosions, called Type II
supernovae, are the violent end of the life of massive stars (Dubner and Giacani, 2015). When
the pressure on the core of the star cannot longer support its weight they suffer a dramatic
collapse. When the collapse is complete, the central part of the core is converted into nuclear
matter. The nuclear matter is compressed beyond its equilibrium density and then rebounds,
launching a powerful shock wave (Brown and Bethe, 1985). Radio emission from core-
collapse supernovae generally occurs when the forward shock sweeps up the dense, slow-
moving wind generated by a red supergiant progenitor. Radio observations of supernovae
remnants can give crucial information to know, for example, the electron density of the stellar
winds or the mass loss rate of the progenitor star (Callingham et al., 2016).

Nebulae and Star Forming Regions

Stars are formed by the gravitational collapse in dense regions within molecular clouds
in the interstellar space. The created young stars heat the remaining gas of the molecular
clouds which then radiates light, heat and radio waves by thermal emission processes. When
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a UV photon from a hot star hits a hydrogen atom, the energy exchange can free an electron,
ionizing the gas and leaving a free proton and a free electron. A large cloud with a mix of
free protons and electrons emits thermal radiation, and it is known as an HII region. Thermal
radio emission from HII regions can be used to estimate the electron temperature, the electron
density or the ionized volume (NRAO, 2016).

Planetary nebulae

Planetary nebulae account for the majority of compact continuum radio sources in our
Galaxy. We have seen that massive stars end their lifes in core-collapse supernova explo-
sions. However, less massive stars suffer less violent deaths. In this case, when the nuclear
reactions of the center of the star can not longer support the weight of the outer layers, their
gravity toll on the structure of the star and forces the inner parts to contract and heat up. This
temperature increase drives the outer layers of the star away in energetic stellar winds that
last just few thousands of years. At the end of this process, the remaining core is uncov-
ered and it heats the distant and expanded gases, and they start to glow (Jacoby, 2016). As
planetary nebulae are essentially clouds of strongly ionized gas, it is expected that they show
continuous radio emission from thermal origin. However, planetary nebulae are very weak
radio sources (Gurzadyan, 1997), but they are not subject to the the dust extinction suffered
by the optical frequencies. This, plus the fact that they are the most numerous discrete radio
continuum sources, makes planetary nebula useful tools to know, for example, the last stages
of the life of a star or can be used as records of low-mass star formation through the history
of the galaxy (NRAO, 2016).

Interstellar Hydrogen

The interstellar space is filled with diffuse hydrogen and in any lack of energetic sources,
like nearby hot stars, the hydrogen remains cold and neutral. This form of neutral hydrogen
is known as HI. The neutral hydrogen atom is formed by a proton which has an electron in an
orbit around it. It is known from quantum mechanics that both, the proton and the electron,
posses a property called spin, and both spins can point in the same direction (parallel) or
in opposite directions (antiparallel). The proton and the electron are charged particles, and
the fact of having a spin produce magnetic fields. If the electron is in its ground state, this
means, in the closest possible orbit around the proton, the magnetic interaction between the
two particles becomes measurable. If the magnetic axis of the proton and the electron are
parallel, the system is in a higher energy state that if their magnetic axis are antiparallel. The
electron spin can flip from parallel to antiparallel, or from a higher to a lower energy state, and
in this process it emits photons with an energy correspondent to the difference between these
two hyperfine energy levels, with a frequency of 1420 MHz or a wavelength of 21 cm (Ewen,
1953). The study of the 21 cm hydrogen line has been useful to study the movement of neutral
hydrogen in the Milky Way and the Magellanic clouds (Ewen, 1953). Knowing the structure
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of the distribution of hydrogen in detail provides considerable information to the study of
turbulence in interstellar matter and to make direct measurements of the temperature of the
gas clouds. The splitting of radio-absorption lines also offers the possibility of measuring the
very weak magnetic fields in interstellar space (Lilley, 1957). The study of HI is fundamental
to get knowledge on galactic dynamics, since it can give us information about the evolution of
the gas content in galaxies. However, the observation of HI requires high angular resolution
and sensitivities to very low column densities. One of the most promising new generation
radio telescopes, the Square Kilometre Array (SKA), has the study of HI as one of its main
scientific drivers (de Blok et al., 2015).

Interstellar molecules

The existence of molecules in the interstellar space was discovered because they emit
radio waves in the form of spectral lines. Interstellar molecules are found usually in dense
clouds of dust or in shells around stars (Verschuur, 2007). ∼ 190 molecules have been dis-
covered in the interstellar medium or around stars and another ∼ 60 are extragalactic (Koeln
Physikalisches Institut, 2016). Some of these molecules are composed by more than 12
atoms. Moreover, ∼ 500 molecular spectral lines have been detected but not identified (Ver-
schuur, 2007). Between the identified molecules we find carbon monoxide, water, ammonia,
hydrogen sulfide, formaldehyde and methyl alcohol. The knowledge of the chemistry of
space molecules is extremely important specially in the new fields of research on exoplan-
ets and astrobiology. The discovery of complex molecules in space changed the picture of
the physical conditions needed for molecules either to form or to emit (or absorb) spectral
lines. The change of the state of motion of molecules and their electrons result in the emis-
sion or absorption of spectral lines. Molecules trend to rotate around their axis of symmetry.
Changes in this rotation causes the molecule to absorb or emit radiation. The vibration of
the atoms that compose molecules have energy levels associated, and changes on the modes
of vibration also involve the emission or absorption of spectral lines. Finally, the electrons
of the molecules can occupy different orbits, and changes of orbit are also responsible of the
observed spectral lines (Turner, 1973). Instruments such as the Atacama Large Millimeter
Array (ALMA), for instance, has the sensitivity and resolution to perform complete spec-
tral surveys between 2.7 and 3.6 mm, allowing amazingly challenging detections, such as
the discovery of complex organic molecules in gas clouds close to the galactic center (Max-
Planck-Gesellschaft, 2014).

Masers

Astrophysical masers (Microwaves Amplified by Stimulated Emission of Radiation) are
sources of stimulated spectral line emission, typically in the microwave band. Their ori-
gins may vary from planetary or stellar atmospheres, comets or molecular clouds. There
are several cases of astrophysical environments that allow the conditions for maser emission.
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Masers (and their optical equivalent, lasers) arise from a condition coined "population inver-
sion". In this kind of populations, the number of atoms or molecules in a higher-energy state
exceeds the number of those with lower energies. As a result, the response of the population
to an incoming photon is to emit another photon. Each photon emitted triggers the release
of additional photons, resulting in the amplification of the incoming light (Elitzur, 1995).
Just to give an example, masers on stars can provide radio astronomers very high precision
astrometric measurements, giving new insight on the kinematics and evolution of the Milky
Way galaxy and its Local Group neighbours (Green et al., 2015).

Pulsars

We have mentioned that massive stars end their lifes as core-collapse supernova explo-
sions. A so-called neutron star is the remnant of a very massive star after a core collapse
supernova explosion. After the star expands to become a red giant, its nucleus becomes ex-
tremely dense, compressing several solar masses in a radius of several thousand kilometres.
Unable to maintain its own gravitational attraction, in some cases the fundamental particles
that compose the star nucleus -protons and electrons- are squeezed together to create neu-
trons during the collapse. The result is a super dense star of 1.4 solar masses within a radius
of ∼ 10 km (Piran, 1995). Neutron stars posses strong magnetic fields which should emit high
energy charged particles from its magnetic poles (Ostriker, 1971). Moreover, the magnetic
poles should not necessarily coincide with the rotation poles, which creates a "lighthouse
effect", the beam of radiation is just detected if an observer is aligned with the beam re-
sponsible of the emission. The extremely rapid periods of pulsation are due to the fact that
rotating neutron stars retain most of the original angular momentum of the star, and its very
dense composition allows them to rotate at such high rates without being disrupted. The
discovery of pulsars is one of the most remarkable ones in the history of radio astronomy.
The fact of being extremely precise astronomical clocks makes them extremely useful as,
for example, lighthouses to define coordinates in the galaxy, or as laboratories for testing
general relativity predictions (McNamara, 2008). For instance, by performing observations
of a large sample of pulsars spread across the celestial sphere forming a Pulsar Timing Ar-
ray (PTA), makes possible a positive detection of the Gravitational Wave background in the
Galaxy (Manchester, 2010).

Radio Galaxies, Quasars and AGNs

We have seen that a "normal" galaxy, as the Milky Way, will present some radio emission
due to synchrotron radiation from electrons moving through the galaxy and being accelerated
by magnetic fields. It has been observed that the power of radio emission shows a close
relation with two observable parameters that are at the same time related to the last episode
of star formation of the galaxy. These observables are: a) The rate of supernovae occurrence
and b) the emissivity in the far infrared. The most energetic of these kind of galaxies are
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known as starburst galaxies, and their radio emission is composed by synchrotron, free-free
and thermal components. Radio emission is observed in a number of spiral galaxies, but
there are relatively faint compared with Radio Galaxies or Quasars.

Radio Galaxies (RGs) can shine up to 3 kpc across (much farther than the boarders of
the visible galaxies to which they are usually associated). The most common hosts of the
most luminous radio galaxies are sometimes giant ellipticals. The typical structure of radio
galaxies is mainly determined by the presence of energetic jets that interact with ionized
gas surrounding the host galaxy, which is seen in other frequencies, such as in the X-ray
emission of galaxy clusters. The interaction of the electron population present in jets and
lobes with magnetic fields causes radio galaxy emission to be of synchrotron origin (Burke
and Graham-Smith, 2014). RGs are separated in two different luminosity classes according
to their particular radio morphology (Fanaroff and Riley, 1974). The so-called Fanaroff-Riley
(FR) IIs posses radio lobes with very prominent hot spots and bright outer edges, while FR Is
the radio emission is more diffuse. There are fundamental differences between the two types
of RGs, which might arise from a dichotomy in their central engine (see Padovani, 2016,
and references therein), being the FR I type caused by low accretion rate sources and higher
accretion rates responsible of FR II types. There are some newly discovered radio sources
without extended emission and therefore no FR I/II distinction possible. The study of these
FR 0 RGs is still in its infancy but, so far, it looks that this class can be quite heterogeneous
and to explain the physical mechanism responsible for their origin is a challenge for radio-
astronomers.

Radio quasars are much more compact objects (with core dimensions ranging from 1 to
0.01 pc (Burke and Graham-Smith, 2014)). The amount of energy required to feed this com-
pact object was so huge, that it was proposed that supermassive black holes accreting matter
should be responsible for the mechanism (Lynden-Bell, 1969). Therefore, radio quazars are
intrinsically the same sources as RGs. Radio quasars ans Radio galaxies belong to a rich
zoology of objects based on their observational characteristics, which classification is com-
plicated, but that now-a-days are studied in a "unified scheme" of Active Galactic Nuclei
(AGN). In this paradigm, the main source of energy is a disk of baryonic matter infalling
onto a supermassive black hole (Tasse, 2008). An obscuring dusty torus and the inclination
angle of the disk-torus with respect to the observer may account for the different observed
characteristics of the AGN (Urry and Padovani, 1995).

After the discovery of the first quasars it was realized that a number of similar sources
were undetected by radio telescopes and were called Radio-quiet AGNs, although they are
not really radio-quiet, but more accurately "radio faint". They constitute more than 90 % of
the AGN class. The studies on this kind of sources have shown that they are intrinsically
different to Radio loud AGNs, whose emission is dominated by thermal emission instead of
synchrotron (Padovani, 2016)

Relatively strong radio emitters, hosted by spiral and irregular galaxies are the so-called
Star-forming galaxies (SFGs). The radio emission of SFGs is synchrotron emission that re-
sults from the relativistic plasma accelerated by supernova remnants associated with massive



12 Chapter 1. Introduction to Radio Astronomy

star formation, and not from a central AGN as we have seen above. It has been observed that
the fraction of SFGs increases rapidly with redshift. This means that at high redshifts most
galaxies are undergoing star formation, while SFGs are rare in the local Universe. Local RGs
are associated with the concept of starbusrt (SB) galaxies, which are probably triggered by
major mergers or dense SF regions. A correlation between the galaxy’s SF rate (SFR) and
its stellar mass discovered in the last decade and referred as the "main sequence" (MS). This
correlation is used in the modern definition of SFGs, which is redshift dependent, denotes
SFG the ones that belong to the MS, being SB galaxies above the correlation and passive
galaxies below (Padovani, 2016).

Radio Cosmology

Finally, I would like to outline the contributions that radio astronomy have done, and is
still doing, for the study of the Universe in its largest scales, and thus for cosmology. If it
is true that the questions about the origin and composition of the Universe have been in the
minds of human beings since very antique times, it was until the 20th century, with the advent
of General Relativity, that cosmology became finally a field of study on the modern scientific
sense. Combining the theoretical framework with astronomical observations and particle
physics experiments, it is current to find that we are actually living the era of high-precision
cosmology. The standard model of cosmology can be named after its major components:
The Big Bang inflationary lambda cold dark matter (ΛCDM) model.

How can radio astronomy contribute to research in cosmology? At this point, it is worth
mentioning the role that radio-astronomy has played in modern cosmology. For instance, in
previous sections, we have presented quasars and radio galaxies. These astronomical objects
actually have very large radio luminosities, and that is the reason why they can be easily
observed up to very large distances. This property of radio sources makes them extremely
useful as probes of the geometry of the Universe on large scales. It was actually by counting
the distribution of compact radio sources that astronomers tried to measure the geometry of
the Universe before the Big Bang theory was well established (Narlikar and Burbidge, 2008;
Mitton, 2011; Kragh, 1999). These results, however, remained as a matter of controversy
until a major discovery was done:

In 1965 Arno Penzias and Robert Wilson, from the Bell Telephone laboratories (again!) dis-
covered serendipitously the presence of a low temperature cosmic background microwave ra-
diation. The cosmic background radiation consist of electromagnetic waves of thermal origin
that travel from all directions in space with a black body temperature of ∼2.73 K (Harrison,
2000). It is proposed that the Cosmic Microwave Background CMB is the most ancient light
available for astronomers, originating in the distant past, when in a much smaller, hotter and
denser Universe photons were constantly interacting with free electrons in the hot plasma.
Roughly 380,000 years after the Big Bang, the Universe expanded and cooled enough to al-
low the free electrons to combine with protons, and permitting light to travel freely in the
expanding space (Peebles et al., 2009). The CMB contains the imprint of the presence of
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small fluctuations (anisotropies) on its temperature at the level of 1 part in 105, measured by
the Cosmic Background Explorer (COBE) (Smoot et al., 1992), and improved by the Wilkin-
son Microwave Anisotropy Probe (WMAP). These anisotropies are the "seeds" from which
stars, galaxies and galaxy clusters are formed. The study of the CMB improved dramati-
cally in precision after the mission Planck, launched in 2009 by the European Space Agency
(ESA). Planck measurements are throwing light into still open questions in cosmology, such
as the nature of Dark matter and Dark energy, besides providing more robust estimates of the
age, geometry ant temperature of the Universe (Malik, 2012).

Understanding of the evolution of the Universe is another of the open questions in modern
coslology. It is thought that the growth of structure in the Universe follows a "bottom-up"
fashion, being the formation of galaxies on the earliest stage on this chain. The energetic
radiation from the first galaxies transformed the intergalactic medium from neutral to ionized
(Zaroubi, 2013). Through power-spectral radio measurements of the highly redshifted 21-
cm "spin-flip" transition line of neutral hydrogen in the primordial intergalactic medium, it
will be possible to direct constrain the topology and evolution of reionization, opening a
unique window into the complex astrophysical interplay between the first luminous objects
and their environments (DeBoer et al., 2017). The study of the epoch of reionization is one
of the main scence drivers for a range of current projects for future radio telescopes, such
as the Squared Kilometre Array (SKA) (and its precursors and pathfinders such as LOFAR,
MWA, PAPER and GMRT, and the planned HERA, see Koopmans et al., 2015) which in
combination with future optical and infrared surveys, such as Euclid or LSST are aimed to
address fundamental open questions in cosmology, such as the nature of Dark Matter, Dark
Energy or the distribution of galaxies in the Large Scale Structure of the Universe, among
others (Jarvis et al., 2015; SKA, 2017).
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The modern research in astrophysics and cosmology meet in the fascinating structures
known as galaxy clusters, and that is why they are sometimes called the "crossroads" between
this two fields. The study of clusters as cosmological probes is extremely important because
they are very sensitive tracers of structure growth, and a census of cluster population as a
function of redshift can test different cosmological models (e.g Borgani and Guzzo, 2001;
Vikhlinin et al., 2003), or values of cosmological parameters (Boehringer and Werner, 2009).
Here, we will briefly discuss the properties of these so-called "largest gravitationally bounded
structures in the Universe".

2.1 Introduction

It is usual to read in a scientific paper on galaxy clusters the following mantra: "Galaxy
clusters are the largest gravitationally bound structures in the Universe". Why is it so? Why
does gravity reaches a halt in binding structures?

It is not so easy to get an intuitive idea of how massive galaxy clusters are. To make
a comparison, a galaxy cluster is more massive relative to a human being than a human
being relative to a subatomic particle (Henry et al., 1998). Since the birth of what is now
called "extragalactic astronomy" it was noticed that galaxies are not evenly distributed in the
observable universe. As early as the 18th Century, the great astronomers Charles Messier and
William Herschel produced the catalogues of what they used to call "nebulae", and noticed
that they tend to accumulate in certain regions of the sky, while other regions are relatively
empty (Biviano, 2000). The controversy of whether this objects belong or not to the Milky
Way lasted until the first quarter of the 20th Century, when Edwin Hubble identified Cepheid
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variable stars in some nebulae, and by calculating their distances concluded that they lie much
farther away than the limits of the Milky Way (Nussbaumer and Bieri, 2010).

Gravity plays a fundamental role on the creation of structures in the Universe. It is the
force behind the shaping of planets, stars, planetary systems, stellar clusters and galaxies.
The so-called "bottom up" scenario (see e.g. Bahcall et al., 1999, and references therein) is
the one favoured by observations to explain the formation of cosmic structures. The ΛCDM
(being Λ the non-zero cosmological constant) cosmology provides us with the framework
for the creation of galaxies, galaxy clusters and large scale structure of the Universe. We
have seen that the CMB contains the footprints of small fluctuations in temperature. This
means that the initial plasma was not perfectly homogeneous, and there were regions of
slightly higher (or lower) density than the average. As the Universe expands, the regions of
higher density acquired still more mass from their surroundings as they had a slightly larger
gravitational force than the average regions. If the gravity is high enough in a denser region,
then the material inside can decouple from the cosmic expansion. From this moment on, the
structure formation start from the bottom-up. In other words, smaller structures form first,
and then merged to form larger ones. In this scenario the first structures emerging from the
collapsed material were of the sizes of dwarf galaxies or globular clusters, this new structures
merge to create galaxies, galaxy groups and ultimately, clusters of galaxies (Gott, 2016).

There is a second reason why in principle we can not find larger gravitationally bound
structures than galaxy clusters right now. It turns that the time of relaxation of a galaxy
cluster, or in other words, the time for the cluster to reach virial equilibrium, is of the order
of ∼ 1010yrs (Gott, 2016). This point in the history of the Universe is just occurring now in
the case of clusters of galaxies (Henry et al., 1998). This means that there is no time enough
in the cosmic history for larger structures to be bounded by gravity.

This doesn’t mean, however, that there are not larger structures present in the Universe.
There have been observed enormous structures coined superclusters -clusters of clusters!-.
Superclusters alternate in space with equally enormous voids; regions of space that contain
very little or no luminous matter. The discovery of superclusters has been a great observa-
tional achievement and it has put together astronomy, cosmology and particle physics (Cour-
tois, 2016). It is believed that Superclusters formed very early in the history of the Universe.
Briefly after the Big Bang, some 13.7 billion years ago, the four forces that rule the Universe
-gravity, electromagnetic, weak and strong forces- were unified in a single force, which at
some point separated in the four that we know today. This separation of forces, together with
the quantum nature of the early Universe, shaped minuscule fluctuations in the density and
temperature of the primordial Universe (Burns, 1986). Superclusters are the fossil records
of this primordial fluctuations that grew with the expansion of the Universe. However, this
structures are not gravitationally bounded structures and will dissolve with the cosmic ex-
pansion.

It has been proposed that there could be gravitationally bounded structures larger than
clusters of galaxies. These are the so-called Superstes clusters (meaning "survivors" in Latin)
(Chon et al., 2015). We have mentioned that even if galaxies in Superclusters are following
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Figure 2.1: Optical image of the galaxy cluster MACSJ0520.7- 1328, one of our clusters from
the MACS-Planck Radio Halo Cluster Project. Credit: Hubble Space Telescope archive.

flows guided by gravity, the gravitational force will lose against the accelerated expansion of
the Universe, "dispersing" the Superclusters. But this will not be the case with some over
densities, where the collapse will occur in the future. Superstes clusters are those structures
that, in principle, will survive the accelerating cosmic expansion and collapse in the future
(Chon et al., 2015), just as galaxy clusters have done up to now.

In 1933, the astronomer Fritz Zwicky first estimated the mass of a cluster of galaxies
(Zwicky, 1933) by measuring the speed of individual galaxies in the Virgo Cluster (Henry
et al., 1998). It was found that in order to explain the measured velocities, a great amount
of missing mass was needed. This is what we call today Dark Matter; a form of matter
which only manifest itself by its gravitational interaction. The second component in terms of
mass of a galaxy cluster is gas. As we will see in in more details in further sections, galaxy
clusters show X-ray emission caused by the presence of hot gas in the so called Intra Cluster
Medium (ICM). This hot gas also leaves a mark on observations of the Cosmic Microwave
Background (CMB) via the Zunyaev-Zel’dovich effect (see section 2.2.3). The masses of
galaxy clusters range from ∼ 1013M⊙ to ∼ 1015M⊙. ∼70-80% of this mass is in the form
of Dark Matter, ∼15-20% is in the form of hot and tenuous gas in the ICM and just ∼5% is
in the form of galaxies. It could be useful to imagine galaxy clusters as huge spheroids of
Dark Matter and hot tenuous gas, where a few hundreds or even thousands of galaxies are
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Table 2.1: Typical quantities of Galaxy Clusters

Mass range ∼ 1013M⊙ - ∼ 1015M⊙
Size ∼Mpc

Gas Temperature 108 K
Gas Number density 10−1-10−4cm−3

Magnetic Field ∼ 1µG

Table 2.2: Mass composition of Galaxy Clusters

Dark Matter ∼ 70-80%
Hot tenuous gas ∼ 15-20%

Mass in forms of galaxies ∼ 5%

embedded like raisins in a cake.

The merging of galaxy clusters are the most energetic events in the Universe since the Big
Bang (Sarazin, 2002). As we have seen, it is thought that galaxy clusters are assembled by
mergers of sub-cluster structures. These collisions occur at velocities of ∼ 2000 km/s. The
gravitational energies released are of orders of ≳ 1064 ergs on timescales of ∼Gyr (Brunetti
and Jones, 2014). The picture is the following: sub-cluster structures, such as smaller galaxy
groups, occasionally join together to form a cluster. Each of these substructures gives hot gas
and dark matter to the cluster, and also enriches it with more galaxies (Henry et al., 1998).
An important consequence of cluster mergers are the shocks driven in the ICM, which are
the main source of heat for the X-ray emission (see Sect. 2.2.2). The shocks can dissipate
energies of ∼ 3 ×1063ergs. Shocks due to mergers have two important effects on the ICM:
on one side they heat and compress the intercluster gas responsible of X-ray emission; this
process increases the entropy of the gas. The other major effect of merger shocks is expected
to be particle acceleration and magnetic field amplification (Keshet and Loeb, 2010). The
presence of relativistic electrons and ions can produce synchrotron radiation in radio frequen-
cies, inverse Compton (IC) extreme ultra violet (EUV), hard X-ray and gamma-ray emission.
As we will see in Sect. 3, cluster mergers may play a fundamental role on the formation of
diffuse radio sources, the main subject of this thesis.

2.2 Detecting Galaxy Clusters

Galaxy clusters can be observed at different frequencies, and each of these frequencies un-
veils different components of the cluster. For instance, the X-ray emission give us infor-
mation about the thermal processes in the ICM, while radio gives us information about the
non-thermal component. Up to now, there are mainly three ways in which we can detect
clusters of galaxies:
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Figure 2.2: Example of the multi-wavelength images of the Coma cluster. In the top left panel
the Planck Sundyaev-Zeldovic image is shown, it looks like a spot of different temperature
in the CMB. The top right panel shows the thermal X-ray emission of the cluster, from the
ROSAT PSPC survey. In the bottom panel we show the ROSAT PSPC X-ray image overlaid
with the optical DSS image of the cluster. Credit: European Space Agency.
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2.2.1 Optical and near infrared

We have seen in Sect. 2.1 that galaxies represent just around ∼5% of the total mass of galaxy
clusters. It was however by the observation of galaxies that the existence of clusters was dis-
covered (see Biviano, 2000, and references therein). The first approaches to detect a galaxy
cluster was to find over-densities of galaxies in particular regions of the sky.

Later on, more accurate definitions for cluster membership were needed. George O. Abell
created a "Northern Survey" of galaxy clusters based on visual inspection of photographic
plates. Abell established some criteria to define the membership to his catalogue (Abell,
1958):

• Richness criterion: Clusters must contain at least 50 members not fainter than 2 mag.
the third brightest member.

• Compactness criterion: Clusters must be sufficiently compacts, so that its fifty or more
members lie within a given radial distance1 from its center.

• Distance criterion: Clusters must be sufficiently distant so that its members do not
extend over more than one plate or, at most, part of an adjacent plate.

• Galactic-latitude criterion:: Clusters must avoid confusion with stars or objects from
the Milky Way.

In the Northern survey, Abell discovered 2712 galaxy clusters, and later on the number
increased to 4073 clusters from observations of the southern hemisphere (Abell et al., 1989).

Even if visual inspection of photographic plates was a successful approach for relatively
nearby clusters, this method suffers the major danger of projection effects, having the pos-
sibility to include false positives in the cluster. Knowledge of spectroscopic redshifts from
galaxies may be useful, but are extremely time consuming up to now. The need for a dif-
ferent approach became evident for farther clusters and larger regions of the sky. In 1996,
Postman et al. (1996) developed a match-filter algorithm to identify cluster candidates by
using simultaneously positional and photometric data. The central regions of galaxy clusters
are populated mainly by red galaxies. In a color-magnitude diagram, such galaxies follow a
prominent linear feature with low scatter called the "red sequence" (e.g., Stott et al., 2009).
Studies based on the red sequence have improved the characterization of cluster members.
There are catalogues as large as containing 13823 nearby clusters (Koester et al., 2007) ex-
tracted from the Sloan Digital Sky Survey (SDSS).

1The radial distance r is arbitrary, as long as it is the same for all clutsers, see Abell (1958)
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2.2.2 X-Ray

We have mentioned that the greatest amount of baryonic matter present in a galaxy cluster is
in the form of hot and tenuous gas. Most of this gas is in the form of Hydrogen and Helium
from the primordial nucleosyntesis. The gas is slurped down by the huge gravitational well
of the cluster. As the captured gas falls down in the gravity well, it is accelerated and crashes
into itself, converting its potential energy into thermal motion of individual atoms (Scharf,
2012). This process is called thermal bremsstrahlung, and can heat the gas as much as ∼108K,
which shines in the X-ray band.

It was discovered by the Uhruru satellite that galaxy clusters were the most common
bright extragalactic sources of X-rays (Sarazin, 1988), with luminosities as large as ∼1043−45

ergs/sec. Launched in 1999, the ROSAT satellite performed an all-sky survey and was later
devoted to pointed observations of selected astrophysical sources (Voges et al., 1999). Satel-
lite X-ray observatories such as Chandra have detected among the most distant galaxy clus-
ters (Chandra, 2016), and more recently the XMM-Newton has made great advancement in
X-ray cluster surveys. It is important to mention that up to now, X-ray observations are still
the most attractive method to detect and characterize galaxy clusters (Böhringer et al., 2007).

2.2.3 The Sunyaev-Zel’dovich effect

An extremely interesting effect of the gas in the ICM is the interaction with photons coming
from the CMB and passing through a cluster of galaxies. Let’s briefly remember that the
Universe posses a background radiation of thermal origin that is isotropic to roughly one
part in 100,000. The photons of this radiation, which appears in the microwave band at z ∼
1100, are scattered to highest frequencies via inverse Compton scattering when they collide
with the hot electrons present in the ICM (Sunyaev and Zeldovich, 1970, 1972). The result of
this scattering is that the spectrum of the CMB seen in the direction of the cluster of galaxies
shifts to higher energies, which decreases the intensity of the radiation in the Rayleigh-Jeans
regime of the Black-body radiation curve and increases it in the Wien regime (see Fig. 2.3).
This effect is known as the Sundyaev-Zeldovic (SZ) effect.

Just as the X-Ray emission on galaxy clusters, the SZ effect its related to the physics of the
hot gas in the ICM. It is worth to notice that the observed radiation is the CMB itself, and not
the cluster of galaxies. This means that the SZ do not suffer the cosmic attenuation of flux that
affects other emissions when the distance to the object grows (Adam, 2015). This makes the
SZ effect to be limited just by the angular resolution and the sensibility of the observations,
which makes it a powerful tool for doing high redshift cosmology (Carlstrom et al., 2002).
Currently, a number of cluster surveys via de SZ effect are ongoing. A paradigmatic example
of galaxy cluster detection via de SZ effect was the Planck mission, which first results were
released in Planck Collaboration et al. (2011b).
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Figure 2.3: The undistorted spectrum of the CMB (dashed line) and the distorted spectrum
by the SZ effect (solid line). The CMB intensity increases at frequencies higher than ∼ 218
GHz (Wien Regime) and decreases for lower frequencies (Rayleigh-Jeans regime). Credit:
ned.ipac.caltech.edu.
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In this chapter my aim is to unify the topics presented on the two previous chapters;
radio astronomy and galaxy clusters. In particular, I will present an overview of the current
knowledge of the non-thermal properties of the ICM. This chapter will present the framework
of the core of our research: diffuse radio sources in clusters of galaxies.

3.1 Introduction

As we have seen in Sect. 2.2.2, great part of the knowledge of the physics of the ICM is
obtained by studying the X-ray properties on galaxy clusters. However, radio observations
have shown that apart from the thermal radiation from the hot tenuous gas, there is also a
non-thermal component. It has been of particular interest the presence of diffuse synchrotron
emission in the center and peripheries of clusters. This emission has shown no obvious
connection with optical counterparts such as galaxies present in the cluster, and it has been
associated to the ICM.

The presence of synchrotron emission on the ICM is considered as evidence of the exis-
tence of two important components of the cluster volume: magnetic fields and a population
of relativistic particles (Feretti et al., 2012). The magnetic fields, which intensities are of
0.1-1µG (see Table 2.1) have been further explored by studies of Faraday rotation on polar-
ized radio galaxies in the cluster or in its background. The population of relativistic particles
has been estimated to have number densities of 10−10cm−3, to possess Lorentz’ factors of
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Figure 3.1: Examples of different kinds of diffuse radio sources in galaxy clusters, shown
as black contours overlaid on the X-ray images of the clusters. From left to right and from
top to bottom: A radio halo in A2219; a halo plus a radio relic in A2744; a radio relic in
A115; a complex halo + relic in A754; relics in A1664 and A548. Finally, a halo in A520;
a radio mini-halo in A2029 and a radio halo + a double relic in RXCJ1314.4-2515. Image
taken from Feretti et al. (2012).
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γ » 1000 (Feretti et al., 2012). Diffuse synchrotron sources are considered useful tools to
explore the physics of the ICM. For instance, it is expected from some physical models that
diffuse radio sources can be tracers of turbulence and shocks in the ICM (Brunetti and Jones,
2014). Based on the estimated values of the magnetic fields and the energies of the rela-
tivistic electrons emitting synchrotron radiation, a lifetime of ∼0.1 Gyr in the ICM has been
calculated. This lifetime is quite short compared with the excessively long time needed for
the Cosmic Ray electrons (CRe) to diffuse to the observed Mpc-scale sizes of some diffuse
sources known as radio halos and relics, which we will discuss below. This fact, known as
the diffusion problem, requires a continuous acceleration or generation in situ of the particles
(Brunetti and Jones, 2014).

The first discovery of a diffuse synchrotron source in present in the center of a galaxy
cluster was the one in the Coma cluster (Large et al., 1959; Willson, 1970), now classified as
a giant radio halo (see Sect. 3.4). Some years after this discovery, it was also noted that on
the periphery of the same galaxy cluster, some diffuse synchrotron emission was also present
(Ballarati et al., 1981; Giovannini et al., 1991).

The different characteristics of diffuse radio sources has led to a main classification. De-
pending on their features, such as their sizes, location in the clusters, dynamical status of
the cluster, etc. diffuse radio sources have been classified in three big groups: radio halos,
radio relics and radio mini-halos (Feretti and Giovannini, 1996, see Figure 3.1). The main
characteristics of each of this groups are going to be discussed in the following sections. A
very interesting fact of diffuse radio sources in galaxy clusters is that they are not ubiquitous,
as has been shown by Giovannini et al. (1999). This poses fundamental questions on the
nature and distribution of the mechanisms responsible of the formation of these objects.

3.2 Radio Relics

Extended low surface brightness diffuse emission present in the periphery of galaxy clusters
are coined Radio Relics. Relics are characterized by a large size (from ∼ 102 - 103 kpc, Fer-
rari et al. (2008)) and a steep synchrotron spectrum (α ≳ 1)1. Being most of them elongated
in shape, with their axis usually found to be perpendicular to the line connecting the relic
with the cluster center, they also show to have relatively strong polarization (∼ 15 - 20 %).
The polarization observed in relics has been interpreted as evidence of the presence of a sig-
nificant anisotropy in the magnetic field on large scales (Brunetti and Jones, 2014). Based
on their polarization degrees, morphologies and location in clusters, it has been suggested
that large scale shocks crossing the ICM during cluster mergers may accelerate a population
of locally injected electrons or re-accelerate some pre-existing energetic electrons to the re-
quired energies for the emission of synchrotron radiation through the so-called Diffuse Shock
Acceleration (DSA) mechanism (Brüggen et al., 2012; Brunetti, 2011; Kang et al., 2012).

In a number of cases, relics appear in pairs on opposite sides of the center of the host

1Throughout this thesis I will use the convention S(ν) ∝ ν
−α, being S(ν) the radio flux density.
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Figure 3.2: LOFAR HBA 120-181 MHz images of a radio relic in the Toothbrush cluster,
one of the brightest radio relic sources known. Credit: van Weeren et al. (2016).

clusters (e.g Bonafede et al., 2014a; van Weeren et al., 2010; Rottgering et al., 1997). Since
merger shocks should occur in such configurations, a shock-relic connection has been pro-
posed (Brunetti and Jones, 2014). To reinforce the shock scenario, there is also evidence of
magnetic field alignment with the long axis of the relic, suggesting that relics probably oc-
cur in regions of compression of the magnetic fields in the shock plane (Clarke and Ensslin,
2006). Moreover, a connection between the X-ray evidence of merger shocks and the pres-
ence of radio relics has been observed in a few cases (Markevitch, 2010; Giacintucci et al.,
2008). There are, however, some problems with the shock re-acceleration models. There is
observational evidence that shocks determined by X-ray measurements are apparently weak
(Markevitch and Vikhlinin, 2007), which is supported by cosmological simulations (Pfrom-
mer et al., 2006). There is also evidence of the presence of shock fronts without detected
relics (Russell et al., 2011). Indeed, it has been showed that the acceleration efficiency at
shocks should be low, preventing the electrons from the thermal pool in the ICM to be accel-
erated to the required energies via the DSA mechanism. In addition, some relics have shown
regions with flat spectra, in disagreement with the Mach numbers measured via X-ray obser-
vations (van Weeren et al., 2017a). The fact that some problems arise from taking DSA as
the only explanation for the generation of radio relics, an "AGN-relic connection" has been
proposed (Bonafede et al., 2014a; Shimwell et al., 2016). The scenario proposes that fossil
relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks, meaning
that radio galaxies play an important role on the creation of relics (van Weeren et al., 2017a).
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3.3 Radio Mini-halos

There is observational evidence that some relaxed cool-core clusters host small scale (∼ 50
- 300 kpc), centrally located diffuse radio emission called mini-halos (Giacintucci et al.,
2014b). This low surface brightness emission surrounds a radio loud dominant galaxy of the
cluster (Bravi et al., 2016), nearly always found in the center of a cool-core cluster. Mini-
halos also posses steep spectra (α>1), and their origin is still debated (Giacintucci et al.,
2017a). It is thought that the active galaxies embedded in mini-halos play a role by injecting
electrons, but the timescales required for their diffusion across the cooling region is much
longer than the radiative cooling timescales. Therefore, injection or re-acceleration in situ of
relativistic particles is needed.

Figure 3.3: 3σ × 2n contours of the 617 MHz GMRT radio map of the cluster RX
J1720.1+2638, overlaid on the optical r-band SDSS image of the same sky region. The
contours show a typical radio mini-halo around the dominant galaxy of the cluster. Credit:
Giacintucci et al. (2014a).

Two physical mechanisms have been proposed to explain the origin of mini-halos. Ac-
cording to the first models, also called re-acceleration of CRe or leptonic models, the origin
of mini-halos is due to the re-acceleration by turbulence of a previously present population
of relativistic electrons in the core of the cluster (Gitti et al., 2002) or by gas sloshing in the
cluster cool core (Mazzotta and Giacintucci, 2008). The second model to explain mini-halos
is the generation of secondary particles via inelastic collisions of Cosmic Ray protons (CRp)
and thermal protons present in the ICM (Pfrommer and Enßlin, 2004). In a recent study,
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Giacintucci et al. (2017a) found on a selected sample of clusters that a large fraction of cool-
core clusters (80%) posses a mini-halo, and the occurrence of mini-halos may be lower in
lower mass cool-core clusters. Moreover, no mini-halos were find in non-cool-core clusters.
With these new evidence provides crucial information on the physical processes required for
the generation of mini-halos.

3.4 Radio Halos

Radio Halos (RHs) are Mpc-scale diffuse emission appearing centred on massive galaxy
clusters. RHs have typical extensions of ∼ 1 Mpc and surface brightness of ∼ 1 - 0.1 µJy
arcsec−2 at 1.4 GHz. The level of polarization of the emitted radiation of RHs is limited to
just a few percentage. The possible interpretation for the difficulty of detecting polarized
emission in halos is the result of two effects. The first one is due to mixture of the ICM
gas with the relativistic plasma generates significant depolarization. The second effect is a
consequence of the extremely low surface brightness of halos that are usually observed with
low spatial resolution, which could result in a decrease of the observed fractional polarization
(Govoni, 2006). This absence of significant observed levels of polarization, together with
their morphological connection with the thermal X-ray emission suggest that the relativistic
plasma that generates the synchrotron radiation occupies a large fraction of the volume filled
by the hot X-ray emitting ICM (Brunetti and Jones, 2014).

Figure 3.4: Contours of diffuse Westerbork Synthesis Radio Telescope (WSRT) 352 MHz
radio emission over ROSAT PSPC diffuse X-ray emission of Coma cluster (see Fig. 2.2), a
typical radio halo. Credit: Brown and Rudnick (2011).

As we have mentioned in Sect. 3.1, diffuse radio sources are not present in every observed
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galaxy cluster. This is a very interesting case for RHs. In seminal works by Giovannini et al.
(1999) and Giovannini and Feretti (2002a) it was found that the detection rate of RHs is actu-
ally quite low: 5 % in a complete cluster sample, and the ratio increasing by considering only
the most X-ray luminous clusters. This evidence has been improved in more recent studies,
Venturi et al. (2007, 2008) showed that RHs appear in ∼30% of radio observed clusters with
X-ray luminosities of Lx[0.1-2.4 keV] > 5 × 1044 erg/seg. Moreover, Cuciti et al. (2015) show
that the fraction of galaxy clusters hosting a RH increases with the selection of the cluster
mass.

Table 3.1: Characteristics of Radio Halos

Size ∼ 1 Mpc
Surface brightness ∼ 1 - 0.1 µJy arcsec−2 at 1.4 GHz
Location on cluster center

Level of polarization < few percentage

There is evidence from observational results showing connections between the radio and
X-ray properties of clusters. This is suggested by the close similarity of RH morphology and
the cluster X-ray emission. The first results pointing in this direction were more qualitative
(e.g. Deiss et al., 1997; Feretti, 1999) and later on in a more quantitative way, by finding
a relation between the point to point surface brightness of the radio and X-ray emission in
the cluster (Govoni et al., 2001a; Feretti et al., 2001). Moreover, there is strong evidence
showing a connection between the presence of RHs and the dynamical state of the host sys-
tems (see Sect. 3.4.2.2). Cassano et al. (2010a) found that clusters with and without RH
can be quantitatively differentiated in terms of their dynamical properties, being the RH host
clusters dynamically disturbed and clusters without a RH more "relaxed" systems. However,
it is worth mentioning some curious exceptions appearing in the literature. Bonafede et al.
(2014b) discovered a Giant RH in the cool-core cluster CL1821+643. The presence of a
cool-core in galaxy clusters may be a likely indication that a major merger hasn’t occurred in
the recent history of the cluster. Therefore, if a merger event is causing the radio emission,
then it should be either a minor one, one off-axis or one in a early phase. However, a re-
cent study of this system by Kale and Parekh (2016) show that CL1821+643 is not a relaxed
system, and the authors propose that the cluster experienced a non-core-disruptive merger.
Russell et al. (2011) on the other hand, have found that the galaxy cluster Abell 2146, despite
showing a complex structure associated with a major merger event (see also White et al.,
2015a), shows no evidence of a RH or any other diffuse radio emission through the deep
GMRT observation at 325MHz. The authors propose that a possible explanation to this lack
of diffuse emission may be the relatively low mass of the cluster.

Spectral measurements of RHs are challenging and still poor in statistics. However, it is
generally known that RHs have usually steep spectra (α>1) Feretti et al. (2012) reports the
following spectral behaviour in the 0.3-1.4 GHz frequency range:
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• Average spectral index α=1.7±0.2 for RHs hosted by clusters with average temperature
less than 8 keV.

• Average spectral index α=1.4±0.4 for RHs hosted by clusters with temperature range
of 8 to 10 keV.

• Average spectral index α=1.2±0.2 for RHs hosted by clusters with temperature greater
than 10 keV.

As we will see in Sect. 3.4.1, spectral behaviour of RHs can give us crucial information
about the mechanism responsible of their origin. Moreover, the distribution of the spectral
index across a RH is a useful tool to understand the variation of the electron energy distribu-
tion and the magnetic field in which they move (Feretti et al., 2012).

3.4.1 Physical models of creation of Radio Halos

There are two different physical mechanisms proposed to explain the origin and observed
properties of RHs. Here, I will present a brief description of the main features and challenges
of each of the two models.

• The "re-acceleration" model

The first model considers the re-acceleration of relativistic particles by Magnetohydro-
dynamic (MHD) turbulence in the ICM (Brunetti and Jones, 2014) created in the cluster
volume during merger events (Cassano and Brunetti, 2005).

In this scenario it is assumed that cluster mergers generates strong turbulence in the in-
tracluster gas. Among the different possible sources of turbulence in the ICM, the most
important one to accelerate particles and amplify the magnetic fields on large scales is the
merger of clusters (Roettiger et al., 1999). A fraction of the total energy dissipated in the
merger event goes into the re-acceleration of CRe via the so-called Fermi II-type mecha-
nisms, where cosmic rays are accelerated primarily by collisions against moving magnetic
fields (Fermi, 1949). However, it has been calculated (Petrosian and East, 2008) that MHD
turbulence is quite inefficient in accelerating CRs directly from the thermal pool in the ICM.
Therefore, an initial "seed" of CRs need to be re-accelerated by turbulence in order to reach
the needed relativistic speeds. This re-acceleration in situ potentially solves the slow dif-
fusion problem (see Sect. 3.1), by keeping the acceleration to the needed timescales of ∼
1 Gyr. One of the most important predictions of this model is a tight connection between
the dynamical state of the cluster and the presence or absence of a RH. It is also expected
from this model that RHs could have spatially varying, complex and potentially very steep
spectra (see Sect. 3.4) due to the complex morphology of the spatially varying acceleration
and cooling of the emitting CRe (Brunetti and Jones, 2014). These USSRHs are particularly
difficult to detect at higher frequencies. Indeed, a number of Ultra Steep Spectrum (USS)
radio halos have been reported in the literature (Brunetti et al., 2008; Macario et al., 2010)
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in concordance with the prediction, but lacking proper statistical studies. Another observa-
tional milestone in favour of the re-acceleration model is the fact that most of known RHs
appear in dynamically disturbed clusters, as we discussed in Sect. 3.4.

• The "hadronic" model

The other mechanism proposed to explain the origin of RHs is known as the hadronic
model. This model is based on the fact that an important number of CRe are generated as
secondary particles because of inelastic collisions between the thermal protons present in
the ICM and CRp. One of the virtues of this model is that it also solves the slow diffusion
problem, because the collisions result in a population of relativistic secondary electrons and
positrons formed in situ on the cluster (Mpc) scale (Dennison, 1980). The decay chain from
the inelastic proton-proton collision is (Brunetti and Jones, 2014, and references therein):

p + p Ð→ π0 + π+ + π− + anything
π0 Ð→ γγ

π± Ð→ µ± + νµ(ν̄µ), µ± Ð→ e± + ν̄µ(νµ) + νe(ν̄e).

Where e accounts for electrons (or positrons), p for protons, µ for muons, π for pions, ν for
neutrinos and γ for gamma ray photons.

Another of the strengths of this model is that it explains naturally the correspondence
between the X-ray and RH coincidence in morphologies. In fact, this model proposes that
the thermal protons which are responsible for the X-ray emission are actually the pool from
which the relativistic electrons are subtracted as the result of the hadronic collisions (Brunetti
and Jones, 2014).

This model has, however, some drawbacks that are worthwhile mentioning. As we have
seen, one of the products of the hadronic collisions are gamma ray photons due to the decay
of the π0. In this scenario, the γ-ray luminosity is dependent on the strength of the magnetic
field on the ICM (Brunetti and Jones, 2014), and current upper limits on γ-ray detections
performed with the Fermi-LAT Gamma-ray Space Telescope are in tension with the derived
values of magnetic fields measured by Faraday rotation (Brunetti, 2009; Jeltema and Pro-
fumo, 2011; Brunetti et al., 2012).

• "Hybrid" models?

It is fair to say at this point that current radio and γ-ray detectors suffer from serious sen-
sitivity constrains and the data that they have provided is not enough to firmly discriminate
between the two previous scenarios. For instance, it is expected that hadronic models should
act at some level, because it is certain that CRp exist and interact with the thermal protons in
the ICM. Therefore, all clusters should have low-level radio emission from secondary elec-
trons. There are indeed some attempts to detect the "off-state" radio emission from clusters
(Brown et al., 2011b). Therefore, some hybrid models have been proposed, where RHs are
assumed to be created by the re-acceleration via merger turbulence of secondary particles
(Brunetti and Lazarian, 2011; Brunetti and Blasi, 2005), while relaxed clusters should have
some radio emission marginally smaller than current upper limits of radio detection.
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3.4.2 Observational constraints

3.4.2.1 Scaling Relations

A number of correlations between observed thermal and non-thermal properties of galaxy
clusters have been find in the last years, suggesting physical connections between them. Con-
cerning the observed properties of RHs, the increase of their monochromatic radio power at
1.4 GHz (P1.4) with the cluster’s X-ray luminosity, temperature and total mass, are of par-
ticular interest (see e.g. Feretti, 2002; Govoni et al., 2001a; Cassano et al., 2006, 2013, and
references therein). These scaling relations are not a surprise, but they are expected from the
theoretical models of RH formation (Cassano et al., 2013).

A fundamental work that shows the thermal/non-thermal correlations by using homoge-
neous radio, X-ray and SZ measurements is the one performed by Cassano et al. (2013). In
Figs. 3.5 and 3.6 we show, respectively, the scaling relations of P1.4 with X-ray luminosity
L500 and cluster mass M500 derived from the SZ signal of the cluster within R500

2.

An interesting feature from Figs. 3.5 and 3.6 apart from the scaling relations is the bi-
modality in the distribution of clusters into two different populations: on one side we have
the "radio loud" X-ray luminous (Massive) clusters following the correlation, and the second
population of "radio quiet" clusters, appearing as upper limits, well below the correlation.
USSRHs lie in an intermediate region, a bit under-luminous with respect to the correlation.

Even if both, re-acceleration and hadronic models predict scaling relations, the scaling
predicted by hadronic models are flatter than the ones observed (Cassano et al., 2013). Re-
acceleration models, on the other side, predict slopes that are in good agreement with obser-
vations. Another problem for hadronic models is that it can’t explain the bi-modality, which
arises naturally in the re-acceleration models, as we will see in the following section.

3.4.2.2 Radio Halo - Merger connection

As we have mentioned in Sect. 3.4, a significant number of works in the literature have found
evidence that RHs appear mainly in clusters with complex gas temperature distributions or
signs of complex substructure in their X-ray morphologies (Schuecker et al., 2001; Govoni
et al., 2004; Cassano et al., 2010a). The first quantitative comparison of the dynamical states
of clusters possessing radio halo was provided by Buote (2001), where the author finds a
correlation between P1.4 and the magnitude of the dipole power ratio (P1/P0), where Pm is
the square of the mth multipole of the two-dimensional pseudo-potential generated by the
X-ray surface brightness evaluated over a circular aperture centred in the peak of the X-
ray image (see Buote, 2001). More specifically, the correlation implies that the strongest
radio halos appear only in those clusters currently experiencing the largest departures from
a virialized state (P1.4 ∝ P1/P0), and are more common in X-ray luminous clusters.

2
R500 is the radius at which the mean mass density is 500 times the critical density at the cluster redshift.

Similarly L500 corresponds to the X-ray luminosity within the same radius
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Figure 3.5: Distribution of galaxy clusters in the P1.4-L500 diagram. The blue filled dots
corresponds to halos belonging to the EGRHS (see sect. 4.1), while radio powers taken from
the literature are shown as open black dots. Halos with USS are shown in green. Blue arrows
are radio upper limits and magenta arrows are upper limits for cool-core clusters. The black
line is the best fit relation for RHs. The green line also fits USSRHs. The shadowed region
is the 95% confidence region for the black line fit. Credit: Cassano et al. (2013).

Based on an X-ray selected sample (Lx ≥ 5 × 1044 erg/s and 0.2 ≤ z ≤ 0.32), Cassano
et al. (2010a) show that RH loud and RH quiet clusters can be segregated in a quantitative
way by characterizing their dynamical states. The authors confirm the association of RHs to
disturbed clusters, while RH quiet clusters are generally more relaxed.

For their analysis the authors make use of several methods to characterize the X-ray sub-
structures:

• The power ratios P3/P0 as defined abobe.

• The centroid shifts (e.g. Mohr et al., 1993; Poole et al., 2006; Maughan et al., 2008;
Böhringer et al., 2010), computed in a series of circular apertures, all centred in the
X-ray peak. In Cassano et al. (2010a), the apertures are decreased in steps of 5% from
Rap = 500 kpc to 0.05Rap. The centroid shift is denoted by w, and it’s defined as the
standard deviation of the projected separation between the peak and the centroid in
unit of Rap, or:
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Figure 3.6: Distribution of galaxy clusters in the P1.4-M500 plane. The symbols are the same
as in Fig. 3.5. Credit: Cassano et al. (2013).

w = [ 1

N + 1∑(∆i − ⟨∆⟩)2]
1/2

× 1

Rap

(3.1)

where ∆i stands for the distance between the X-ray peak and the centroid of the ith
aperture. The centroid shift was found to be sensitive to the dynamical state of clusters
in numerical simulations of cluster mergers (Poole et al., 2006).

• The X-ray brightness concentration parameter (Santos et al., 2008), defined as the ratio
of the peak over the ambient surface brightness, S , or:

c =
S(r < 100kpc)
S(< 500kpc) (3.2)

The concentration parameter is used to discriminate between cool-core and non cool-core
clusters, and in terms of the dynamical state it discerns between cores not disrupted from a
recent merger event from the ones that are disturbed from a recent merger event.

In Fig. 3.7 the main results of Cassano et al. (2010a) are presented. A clear correlation
between the centroid shift w and the power ratio P3/P0 (Fig. 3.7 b), and two anti-correlations,
one between the concentration parameter c and w and another between c and P3/P0 (Figs.
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3.7 a and c, respectively). Moreover, by choosing the median values of each parameter (w
≃ 0.012, c ≃ 0.2 and P3/P0 ≃ 1.2 × 10−7) the sample of clusters hosting a RH and clusters
without RH is splitted into regions, being most of RHs in the quadrants corresponding to the
disturbed clusters.

Figure 3.7: a) Concentration parameter c versus centroid shift w plane; b) w vs. power ratio
P3/P0; c) c vs P3/P0. Clusters hosting a RH are represented as red dots. Black, open dots
are RH quiet clusters. gray filled dots are clusters of z > 0.32 and blue open dots are mini
halos. The dashed line values are the median values of each parameter (see text), splitting
the diagrams into regions of "relaxed" and "disturbed" clusters. Most clusters hosting RHs
fall into the disturbed quadrants. Credit: Cassano et al. (2010a).
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Name M500 z Radio Power at 1.4 GHz References
(× 1014M⊙) (× 1024W /Hz)

A209 8.4642+0.2837−0.3160 0.206 2.19 ± 0.17 1
A399 5.2393+0.2917−0.2321 0.0722 0.21 ± 0.03 2
A401 6.7458+0.2207−0.1721 0.0739 0.23 ± 0.01 1
A520 7.8003+0.4033−0.4131 0.203 4.32 ± 0.29 1
A521 7.2556+0.4743−0.4887 0.2475 1.31 ± 0.14 1
A523 - 0.1036 1.21 ± 0.07 3
A545 5.3940+0.4059−0.4098 0.154 1.57 ± 0.09 1
A665 8.8590+0.3230−0.3202 0.1818 4.01 ± 0.28 1
A697 10.9984+0.3716−0.3671 0.282 2.29 ± 0.29 1, 4, 5
A746 5.3352+0.3917−0.4028 0.2323 3.03 ± 0.69 4
A754 6.8539+0.1249−0.1277 0.0542 0.62 ± 0.03 1
A773 6.8474+0.3362−0.3110 0.2172 1.86 ± 0.22 1
A781 6.1307+0.4596−0.4955 0.2952 6.16 ± 1.57 6
A800 - 0.2223 1.56 ± 0.16 7
A851 - 0.4069 2.41 ± 0.30 1
A1213 - 0.0469 0.38 ± 0.02 1
A1300 8.9713+0.4587−0.4537 0.3075 7.57 ± 0.95 1
A1351 6.8676+0.3799−0.3812 0.322 14.63 ± 1.73 1
A1550 5.8776+0.3809−0.4243 0.254 1.62 ± 0.35 7
A1656 7.1652+0.0674−0.1073 0.0231 0.65 ± 0.06 1
A1689 8.7689+0.3368−0.3368 0.1832 7.46 ± 0.52 9
A1758 8.2173+0.2727−0.2824 0.2799 1.03 ± 0.13 1
A1914 7.2358+0.2582−0.2612 0.1712 5.99 ± 0.39 1
A1995 4.9242+0.3773−0.3691 0.3179 1.47 ± 0.28 1
A2034 5.8503+0.2294−0.2337 0.113 0.46 ± 0.04 1
A2061 3.5898+0.2076−0.2122 0.0777 0.27 ± 0.07 10
A2065 4.0811+0.1863−0.1900 0.0723 0.43 ± 0.14 10
A2069 5.3074+0.2212−0.2396 0.1145 1.01 ± 0.25 10
A2142 8.7713+0.1858−0.2093 0.0894 1.31 ± 0.13 10
A2163 16.1164+0.2968−0.2922 0.203 18.76 ± 1.00 1
A2218 6.5851+0.1598−0.1642 0.1709 0.42 ± 0.02 1
A2219 11.6918+0.2500−0.2743 0.228 12.24 ± 0.93 1
A2254 5.5870+0.3597−0.3548 0.178 3.14 ± 0.22 1
A2255 5.3828+0.0586−0.0612 0.0809 0.96 ± 0.06 1
A2256 6.2107+0.1012−0.0915 0.0581 0.86 ± 0.02 1
A2294 5.9829+0.3671−0.3741 0.178 0.54 ± 0.05 1
A2319 8.7351+0.1132−0.1240 0.0557 1.13 ± 0.06 1,10
A2744 9.8356+0.3947−0.3754 0.3066 17.32 ± 1.57 1
A3411 6.5925+0.3094−0.3106 0.1687 0.38 ± 0.04 11
A3444 7.3676+0.3637−0.3686 0.2542 3.08 ± 0.29 1
A3562 2.4429+0.2133−0.2442 0.049 0.12 ± 0.01 1

Table 3.2: Collection of clusters known to host a radio halo. See continuation in Table 3.3
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Name M500 z Radio Power at 1.4 GHz References
(× 1014M⊙) (× 1024W /Hz)

PLCKG147.3-16.6 - 0.65 5.22 ± 1.59 12
PLCKG285.0-23.7 8.3925+0.3332−0.3404 0.39 1.72 ± 0.22 This work
PLCKG171.9-40.7 10.7102+0.4931−0.4963 0.27 4.98 ± 0.58 13

PSZ1G108.18-11.53 7.7387+0.5694−0.5996 0.336 2.23 ± 0.41 14
RXCJ0949.8+1708 8.2387+0.4644−0.4561 0.38 1.75 ± 0.76 15
RXCJ0107.7+5408 5.8478+0.3030−0.3117 0.1066 1.62 ± 0.15 4
RXCJ1314.4-2515 - 0.2439 3.89 ± 0.28 1
RXCJ1514.9-1523 8.8607+0.4054−0.4578 0.2226 1.64 ± 0.50 16
RXCJ2003.5-2323 8.9919+0.4444−0.4885 0.3171 12.47 ± 1.20 1

MACSJ1149.5+2223 10.4178+0.5207−0.5451 0.545 2.54 ± 1.22 17
MACSJ0417.5-1154 12.2503+0.5253−0.5502 0.443 ∼ 20 18
MACSJ0717.5+3745 11.4871+0.5347−0.5482 0.546 157.54 ± 6.82 19
MACSJ1752.0+4440 6.7475+0.4377−0.4543 0.366 11.84 ± 1.56 17
MACSJ0553.4-3342 8.7720+0.4399−0.4629 0.431 6.87 ± 2.96 17
MACSJ0416.1-2403 - 0.396 1.14 ± 1.43 20
CIZAJ1938.3+5409 7.5779+0.2876−0.2809 0.26 0.36 ± 0.16 15

CL0016+16 9.7937+0.5293−0.5314 0.5456 7.43 ± 1.63 21
CL0217+70 - 0.0655 0.62 ± 0.01 22
CL1446+26 - 0.37 4.75 ± 0.49 1
CL1821+643 - 0.299 2.85 ± 1.20 23
1E0657-56 13.1003+0.2874−0.2931 0.2965 23.68 ± 2.30 1
El Gordo 10.7536+0.4781−0.4721 0.87 10.20 ± 0.99 24

Table 3.3: Collection of clusters known to host a radio halo. Col. 1: Cluster name; Col.
2: SZ mass proxy M500 (Planck Collaboration et al., 2016b); Col. 3: Redshift; Col. 4.
Radio power of the RH at 1.4 GHz; Col. 5: References. (1) Giovannini et al. (2009); (2)
Murgia et al. (2010);(3) Giovannini et al. (2011); (4) van Weeren et al. (2011); (5) Govoni
et al. (2011); (6) Macario et al. (2011); (7) Govoni et al. (2012); (9) Vacca et al. (2011);
(10) Farnsworth et al. (2013); (11) van Weeren et al. (2013); (12) van Weeren et al. (2014);
(13) Giacintucci et al. (2013); (14) de Gasperin et al. (2015); (15) Bonafede et al. (2015);
(16) Giacintucci et al. (2011); (17) Bonafede et al. (2012); (18) Dwarakanath et al. (2011);
(19) Bonafede et al. (2009); (20) Pandey-Pommier et al. (2015); (21) Giovannini and Feretti
(2000); (22) Brown et al. (2011a); (23) Bonafede et al. (2014b); (24) Lindner et al. (2014).
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In this chapter I introduce the project in which I was involved during my thesis: The
Macs-Planck Radio Halo Project. I will present the aims of the project, as well as the sample
selection and the observations, data reduction and image reconstruction strategies. Finally,
I will describe the radio images processing in search for diffuse sources and the approach
followed to set upper detection limits.

4.1 Introduction

In recent years, the knowledge of the physical mechanisms responsible for the generation of
RHs has moved towards a general consensus. The re-acceleration of relativistic electrons by
the large scale turbulence generated in cluster mergers has now the status of the preferred
scenario to explain the origin of RHs (see Sect. 3.4.1) . However, we still need to fully
test the correlation between mergers and RHs and to answer fundamental questions about
the micro-physics of electron acceleration and transport mechanisms to fully understand the
complex non-thermal processes in the ICM. An important attempt to solve this mystery are
statistical studies of RHs and their connection with the dynamical state of their host systems.
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Figure 4.2: Predicted fraction of galaxy clusters hosting a RH observable at ∼GHz frequen-
cies as a function of virial mass in two different redshift bins. The calculations are obtained
from turbulent acceleration models. Notice that the fraction of RHs in the redshift window
z = 0.3-0.4 (shown in black) is larger than in the local bin z = 0-0.1 (plotted in red) for larger
virial masses.

uv-coverage with the GMRT. This sample is however effectively limited to z < 0.3. Although
a number RHs have been discovered at z > 0.3, a complete statistical sample is missing in
this redshift regime (see Feretti et al., 2012).

Moreover, apart from the lack of statistical studies, another motivation to explore higher
redshifts, based on some current turbulence acceleration models (see Cassano et al., 2004,
2006) is the expectation that a larger fraction of RH occurrence may appear at the redshift
range z = 0.3-0.4 (Fig. 4.2). The reason for this is that most of the energy budget in the
hierarchical grow of clusters is dissipated via massive mergers in this redshift range. In
addition, at higher z stronger IC losses are expected to occur. It is then necessary to fill the
observational gaps in order to complete the panorama on the nature of RHs. The aim of our
work is to contribute in the filling of the redshift observational gap by extending the currently
redshift limited statistics of RHs up to z=0.45.
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4.2 Sample selection

The MACS-Planck Radio Halo Cluster Project (RHCP) was conceived as a continuation of
the E-GRHS project (see Sect. 4.1). Our sample consists of a total 48 galaxy clusters, all
of them taken from the MACS Brightest Cluster X-ray catalogue (Ebeling et al., 2010) and
the list of newly discovered Planck SZ clusters confirmed with the XMM-Newton validation
program available at the time of the proposal (see Planck Collaboration et al., 2011b). For
the project, all the clusters from both samples that are located in the range z = 0.3-0.45 were
selected (see Fig. 4.3), resulting in 33 MACS clusters and 15 Planck SZ clusters.

Figure 4.3: X-ray luminosity (0.1-2.4 keV) vs redshift for the MACS-Planck sample. Empty
blue triangles correspond to XMM-Newton-Planck subsample and magenta filled circles are
the MACS subsample. For comparison, different samples at lower redshifts are plotted in
black. Open red circles indicate clusters hosting a RH.

From the total number of selected clusters, 32 were lacking public radio information until
this project started. The declination range of the clusters in our sample required observations
to be done with two different telescopes, depending on the declination of the targets. Based
on the sources visibility and the uv-coverage constrains to achieve the desired sensitivities
for detecting diffuse radio emission, the total sample was divided into two groups:
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a) Those lying in the range of δ > -40○ (25 clusters in total) were observed with the GMRT
at ∼ 325 MHz.

b) The remaining seven galaxy cluster with δ < -40○ wer observed with the ATCA tele-
scope. These observations are centred at 2.1 GHz with a bandwidth of 2000 MHz. The
analysis of the ATCA sub-sample is the main object of this thesis.

4.3 The ATCA sub-sample

4.3.1 Observations and data reduction

The main information of the galaxy clusters from the ATCA sample appear in Table 4.1. In
order to achieve the desired spatial scales sampled by the uv-coverage, radio observations
of the ATCA sample were done with three separate array configurations for each observed
cluster (Table 4.2) using the Compact Array Broadband Backend (CABB) correlator with a
central frequency of 2.1 GHz and spanning 1.1-3.1 GHz (project ID C2679). Observations
were carried out in continuum mode with the correlator set to produce 2000 × 1 MHz chan-
nels. Details of the observations can be found in Table 4.2. The primary flux scale was set
relative to the unresolved source PKS B1934-638 for which the detailed spectral behaviour is
well understood. The amplitude gain variations were checked during the calibration of each
observation for each sub-band image so as to be not higher than ∼2%.1

Radio frequency interference (RFI) and bad channels were excised manually from pri-
mary and secondary calibrators, as well as the target, by using a combination of clipping
algorithms and visual inspection via the MIRIAD task PGFLAG (Sault et al., 1995). It was
necessary to perform calibration on narrower frequency intervals due to the nature of CABB
data. After a number of trials, we determined that 4 sub-bands of ∼500 MHz produce the
optimal results for these data. Thus, the target, primary and secondary calibrator data were
divided into the required sub-bands coined Block 1 (from 2.631 GHz to 3.100 GHz), Block
2 (from 2.131 GHz to 2.630 GHz), Block 3 (from 1.631 GHz to 2.130 GHz) and Block 4
(from 1.130 GHz to 1.630 GHz). Each sub-band was then self-calibrated in MIRIAD by
using the task SELFCAL. Finally, the self-calibration solutions were saved by using the task
UVAVER.

The data reduction followed the same procedure for all the galaxy cluster images of the
sample except for PSZ2 G284.97-23.69 were it was promptly noticed the presence of diffuse
radio emission in the cluster center. In this particular case, the self-calibration process was
not applied as we noticed that the self-calibration process gives a bit higher rms noises. To
excise phase errors we performed a detailed analysis of the uv-data. It was found that the
data from the 6D array suffered from a bandpass ripple of unknown origin which persisted
for 75 minutes on all baselines associated with antennas 5 and 6. This data was removed and

1see http://www.atnf.csiro.au/observers/memos/d96783 1.pdf.
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Table 4.1: Information of the clusters of the MACS-Planck ATCA sample. The names and
alternative names of the clusters appear in Cols. 1 and 2. RA and DEC correspond to the
coordinates for centring the ATCA observations (Cols. 3 and 4). The Planck Mass, X-ray
luminosity and Redshift (Cols. 5, 6 and 7, respectively) are taken from Planck Collaboration
et al. (2011b). ⋆ See Sect. 5.4.2 for a deeper discussion on PLCK G334.8-38.0.

Cluster name Alternative name(s) RA DEC M500 (SZ) L500 Redshift
(h m s) (○ ’ ") (× 1014 M⊙) (× 1044 erg/s)

PSZ2 G285.63-17.23 PSZ1 G285.62-17.23 08 43 44.40 -71 13 14.00 6.64±0.40 4.45±0.08 0.35
PLCK G285.6-17.2

PSZ2 G262.73-40.92 PSZ1 G262.72-40.92 04 38 17.20 -54 19 25.10 7.46±0.36 9.94±0.47 0.421
SPT-CLJ0438-5419
ACT-CL J0438-5419
PLCK G262.7-40.9

PSZ2 G277.76-51.74 PSZ1 G277.75-51.71 02 54 16.70 -58 56 44.00 9.69±0.38 9.46±0.07 0.438
SPT-CLJ0254-5857
PLCK G277.8-51.7

PSZ2 G286.28-38.36 PSZ1 G286.27-38.39 03 59 10.20 -72 04 46.10 5.94±0.40 4.07±0.02 0.307
PLCK G286.3-38.4

PSZ2 G271.18-30.95 PSZ1 G271.18-30.95 05 49 19.50 -62 05 16.00 7.37±0.32 18.95±0.16 0.37
SPT-CLJ0549-6205
PLCK G271.2-31.0

PSZ2 G284.97-23.69 PLCKESZ G284.99-23.70 07 23 18.40 -73 27 20.60 8.39±0.34 16.91±0.27 0.39
PLCK G285.0-23.7

PLCK G334.8-38.0⋆ - 20 52 16.80 -61 12 29.40 - - 0.35
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Table 4.2: Details of the observations towards the clusters selected for observations with
ATCA. Cluster name (Col. 1); dates of observations (Col. 2) with different array configura-
tions (Col. 3); Observation time (Col. 4); phase calibrator (Col. 5). The central frequency
is at 2.1 GHz and the total observed bandwidth is 2 GHz.

Cluster name Date Config. Observation Calibrator
time (min.)

PSZ2 G285.63-17.23 2015-Jun-12 1.5C 549 PKS B0606-795
2012-Jun-29 750A 442 PKS B0606-795

2012-Jun-07-08 6D 1132 PKS B0637-752

PSZ2 G262.73-40.92 2013-Mar-05 6A 353 PKS B0420-625
2013-Feb-02 750C 354 PKS B0420-625
2012-Nov-23 1.5C 354 PKS B0420-625

PSZ2 G277.76-51.74 2013-Sep-03-04 1.5A 1140 PKS B0302-623
2013-Jul-31 750D 1061 PKS B0302-623
2013-Aug-01 750D 152 PKS B0302-623

2013-May-11-12 6C 1188 PKS B0302-623

PSZ2 G286.28-38.36 2013-Mar-05 6A 384 PKS B0252-712
2012-Feb-02 750C 354 PKS B0252-712
2012-Nov-23 1.5C 413 PKS B0252-712

PSZ2 G271.18-30.95 2013-Mar-05 6A 354 PKS B0420-625
2013-Feb-02 750C 294 PKS B0420-625
2012-Nov-23 1.5C 353 PKS B0420-625

PSZ2 G284.97-23.69 2012-Jun-08 6D 704 PKS B1036-697
2012-Jun-09 6D 523 PKS B0606-795
2012-Jun-29 750A 531 PKS B0606-795
2013-Sep-06 1.5A 804 PKS B0606-795

PLCK G334.8-38.0 2013-Sep-03-04 1.5A 1131 PKS B0302-623
2013-Jul-30 750D 1203 PKS B1934-638

2013-May-12 6C 1297 PKS B1934-638
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This creates a new uv-data set which was re-imaged. Again, none of the seven clusters showed
the obvious presence of diffuse emission in the central area in the source subtracted high res-
olution images.

In order to investigate the possible presence of low-surface brightness radio emission in
the clusters, the point source subtracted visibilities were re-imaged with a robust=0.5 weight-
ing and applying a ∼ 9 kλ Gaussian tapering. Traditionally, measurements of flux densities
of RHs are reported at the central frequency of 1.4 GHz. It is worth noticing that from typical
spectral behaviour of radio halos (α ≳ 1 synchrotron spectral index2) it is expected to have
lower luminosities for higher frequencies. Even if the Block 4 sub-band would be ideal to do
flux density measurements because of its lower central frequency, it is also strongly affected
by RFI (50-60 % of the data was flagged). In our images we have comparable rms sensitivi-
ties for the frequency range running from Block 3 to Block 1. This set of conditions makes
Block 3 centred at ∼ 1.9 GHz the most suitable sub-band to do flux density measurements.
In Table 5.1 we report the main features for the set of the source subtracted Block 3 tapered
images.

4.3.2.3 Upper limit determination

Cluster radio images that showed no evidence of the presence of diffuse sources were used
to set detection limits for possible diffuse radio emission. In order to set the detection upper
limits, we took a similar approach to that used in, e.g., Venturi et al. (2008). Specifically, our
procedure consists of the following steps:

1) We simulated a diffuse source with the MIRIAD task IMGEN. The model consist of 5
low surface brightness concentric disks, the biggest with a diameter of 1 Mpc. To reproduce
the typical profile of a RH, these disks area percentages are from largest to smallest:100%,
60%, 33%, 25% and 12%. These disks contribute, respectively, the following percentage of
the total flux of the simulated source: 72%, 20%, 5%, 2% and 1%.

2) The simulated source was added into the compact source subtracted uv-data of the cor-
responding observation on the sub-set coined Block3 (∼500 MHz wide, see Sect. 4.3.1) for
each galaxy cluster. This step was done by using the MIRIAD task UVMODEL, which gen-
erates a new uv-data set of the real data plus the simulated source. To perform the injection
of the disk models we picked the 1 Mpc diameter circle centred on the cluster coordinates
and five 1 Mpc areas inside the primary beam, without any trace of point sources and where
there is no appearance of 3σ contours due to artefacts on the original image plane. We made
this choice under the considerations that there are more chances to have radio emission in
the cluster area, and the injection of the model would enhance the real emission. The other
5 areas were chosen as "control" areas, to avoid as much as possible, to be affected by the
presence of real sources or errors on the image reconstruction.

3) The model injected uv-data were re-imaged at low resolution applying a taper with the

2In this paper we use the convention S(ν) ∝ ν
−α, being S(ν) the radio flux density.
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following parameters on the MIRIAD task invert: FWHM=20, robust=0.5, cell=4, in order
to achieve more sensitivity to the kind of emission of the simulated halos, as we have done
in Sect. 4.3.2.2.

4) The injected fluxes of the different modelled disks were increased until we noticed that
3σ contours appear uniformly on the injection areas.

It is worth noticing that we were able to recover from ∼50% to ∼70% of the original injected
flux by measuring the total flux density in the areas of the image plane where the injections
were done.

4.4 The GMRT sub-sample

4.4.1 Observations and data reduction

Observations of the GMRT sub-sample were carried out by recording the data each 16.1 sec-
onds, covering bandwidths of 32 MHz with 256 channels. Details of the clusters belonging to
the GMRT sub-sample appear in Table 4.3. The data reduction of the complete GMRT sub-
sample was already performed by Huib Intema when this thesis project started (see Macario
et al., 2014). The data was processed by using both the NRAO Astronomical Processing Sys-
tem (AIPS) package and the Source Peeling and Atmospheric Modelling (SPAM) software
(Intema et al., 2009). The basic funtionality needed was provided by AIPA for the largest
part of the data reduction and SPAM was used to derive and apply the direction-dependent
calibration during imaging. An effective bandwidth of 31.2 MHz, centred at 323 MHz, re-
mains after the edition of the data. After applying the amplitude calibration to the target
field, additional RFI flagging and frequency averaging to 24 channels (1.3 MHz each) was
performed.

The target field was then self-calibrated with a simple point source model obtained from
the NVSS (Condon et al., 1998) and WENSS (Rengelink et al., 1997). Several rounds of
wide-field imaging, CLEAN deconvolution and self-calibration were needed, and only in
the final round an amplitude calibration was applied in order to get corrections for antenna
gain amplitude variations, by using a 1-minute time scale.

The gains per antenna were normalized before applying, by using only the target field
scan closest in time to the flux calibrator scan. This enforces the correct flux scale across
the whole observation run. Ionospheric calibration and imaging were applied to the data by
using SPAM. We estimate that the average residual amplitude errors are ≲ 8% . When the
calibration solutions converged, the final full resolution images were obtained, as well as the
residual visibilities used to perform the diffuse source search and the fake halo injection.
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Table 4.3: Information of the clusters of the MACS-Planck GMRT sample. RA and DEC
correspond to the coordinates for centring the observations (Cols. 2 and 3). The X-ray (0.1
- 2 keV) Luminosity and Redshift (Cols. 4 and 6) are taken from the sample proposal, while
the S-Z mass proxy M500 (Col. 5) was taken from Planck Collaboration et al. (2011b).

Cluster name RA DEC Lx M500 Redshift
(h m s) (1044 erg/s) (1014 M⊙)

MACSJ0011.7-1523 00h 11m 42.9s -15 23 22 9.8 5.06+0.58−0.63 0.379

MACSJ0035.4-2015 00h 14m 18.9s -20 15 48 13.1 n/a 0.352

MACSJ0152.5-2852 01h 52m 34.5s -28 53 36 9.5 5.93+0.52−0.59 0.413

MACSJ0159.8-0849 01h 59m 49.4s -08 49 59 18.0 7.2+0.61−0.68 0.406

MACSJ0242.5-2132 02h 42m 35.9s -21 32 26 15.6 7.64+0.48−0.51 0.314

MACSJ0257.6-2209 02h 57m 41.1s -22 09 18 7.7 6.06+0.56−0.59 0.322

MACSJ0404.6+1109 04h 04m 33.3s +11 07 58 4.7 7.71+0.66−0.77 0.352

MACSJ0429.6-0253 04h 29m 36.0s -02 53 08 12.0 n/a 0.399

MACSJ0520.7-1328 05h 20m 42.0s -13 28 50 8.7 6.24+0.52−0.54 0.336

MACSJ0547.0-3904 05h 47m 01.5s -39 04 26 7.0 4.95+0.51−0.54 0.319

MACSJ1206.2-0847 12h 06m 12.2s -08 48 01 23.2 11.18+0.48−0.48 0.439

MACSJ1319.9+7003 13h 20m 08.4s +70 04 37 4.6 4.11+0.39−0.43 0.327

MACSJ1427.6-2521 14h 27m 39.4s -25 21 02 4.5 n/a 0.318

MACSJ1720.2+3536 17h 20m 16.8s +35 36 26 11.2 6.09+0.56−0.59 0.387

MACSJ1731.6+2252 17h 31m 39.1s +22 51 52 10.2 8.27+0.54−0.54 0.389

MACSJ1931.8-2634 19h 31m 49.6s -26 34 34 21.7 6.97+0.53−0.56 0.352

MACSJ2049.9-3217 20h 49m 56.2s -32 16 50 6.7 5.37+0.59−0.64 0.323

MACSJ2140.2-2339 21h 40m 15.2s -23 39 40 12.2 n/a 0.313

MACSJ2229.7-2755 22h 29m 45.2s -27 55 37 11.0 n/a 0.324

MACSJ2245.0+2637 22h 45m 04.6s +26 38 05 8.4 n/a 0.301

PLCK G241.2-28.7 05h 42m 56.8s -35 59 55 7.4 7.36+0.50−0.49 0.420

PLCK G272.9+48.8 11h 33m 10.5s -09 28 52 13.6 5.75+0.61−0.66 0.400

PLCK G250.0+24.1 09h 32m 13.8s -17 38 07 3.7 6.65+0.52−0.56 0.400

PLCK G100.2-30.4 23h 22m 14.9s +28 31 14 3.69 n/a 0.310

PLCK G214.6+36.9 09h 08m 49.5s +14 38 29 6.97(a) n/a 0.450
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4.4.2 Tapering, diffuse source search and upper limit determination

The final residual uv-data FITS files provided by Huib Intema were converted to MIRIAD
format by using the task fits and we performed the same tapering procedure described in
Sect. 4.3.2.2. This means, the visibilities were re-imaged with a robust=0.5 weighting and
applying a ∼ 9 kλ Gaussian tapering. We then performed the same procedure as the one
described in Sect. 4.3.2.3 for the injection of the fake halos on the residual visibilities in
order to obtain the detection limits for the GMRT sub-sample.

In the next chapter we will see the results obtained from the complete analysis of the
ATCA sub-sample, while in Chapter 6, I will present the preliminary results obtained from
a first analysis of the already available GMRT data.
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Cluster name RA DEC Lx M500 z Radio
(h m s) (1044 erg/s) (1014 M⊙) Info.

MACSJ0014.3-3022 00 14 18.9 -30 23 22 14.9 9.84+0.39−0.38 0.308 1 (RH)

MACSJ0308.9+2645 03 08 55.8 +26 45 37 16.2 10.76+0.63−0.65 0.356 2

MACSJ0358.8-2955 03 58 54.4 -29 55 32 20.8 7.20+0.52−0.50 0.425 2

MACSJ0417.5-1154 04 17 34.7 -11 54 33 32.0 12.25+0.53−0.55 0.443 3 (RH)

MACSJ0947.2+7623 09 47 13.0 +76 23 14 22.0 5.62+0.45−0.46 0.354 4

MACSJ0949.8+1708 09 49 51.7 +17 07 08 11.6 8.24+0.46−0.46 0.384 5

MACSJ1115.8+0129 11 15 52.0 +01 29 55 15.9 6.86+0.53−0.54 0.355 5

MACSJ1131.8-1955 11 31 54.4 -19 55 42 14.4 8.97+0.46−0.45 0.306 5 (RH)

MACSJ2228.5+2036 22 28 34.0 +20 37 18 14.6 8.27+0.43−0.45 0.411 5

MACSJ1532.8+3021 15 32 53.8 +30 20 58 21.8 n/a 0.363 5 (mH)

MACSJ2243.3-0935 22 43 21.1 -09 35 43 16.7 9.99+0.44−0.44 0.447 2

MACSJ2311.5+0338 23 11 33.1 +03 38 07 14.2 7.48+0.41−0.46 0.305 6

MACSJ2211.7-0349 22 11 46.0 -03 49 47 26.0 10.50+0.50−0.49 0.397 2

PLCK G287.0+32.9 11 50 49.2 -28 04 37 18.9 14.69+0.39−0.42 0.39 7 (dR)

PLCK G292.5+22.0 12 01 05.3 -39 52 26 6.00 7.93+0.44−0.46 0.30 8

PLCK G205.0-63.0 02 46 25.8 -20 33 17 4.28 7.64+0.48−0.51 0.31 8

Table 4.4: Clusters from the MACS-Planck Radio Halo Cluster Project with available deep
radio public information. TheLx is in the [0.1 - 2 keV] band. References of radio information:
(1) Govoni et al. (2001b), (2) GMRT archive, (3) Dwarakanath et al. (2011),(4) Gitti et al.
(2006), (5) Venturi et al. (2008), (6) VLA archive, (7) Bagchi et al. (2011), (8) 21009.
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In this section I present the results obtained after the analysis of the radio observations
from the ATCA sub-sample. The main results obtained during the work of my PhD thesis
appear in this chapter. The results were published in: Martinez Aviles et al. (2016) and
Martinez Aviles et al. (Submitted).

5.1 Radio image analysis

5.1.1 Full resolution maps

As described in the previous chapter, we have produced both the full resolution and tapered
images for each galaxy cluster observed with the ATCA. The radio contours of the central
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Table 5.1: Properties of the full resolution band-width radio maps in centred at 2.1 GHz.
Col. 1: cluster name; Col. 2: rms noise; Col. 3: beam size and Col. 4: position angle

Cluster name rms noise Beam Size PA
(µJy/beam) (”×”) (deg)

PSZ2 G285.63-17.23 22.4 6.85 × 4.07 -8.13
PSZ2 G262.73-40.92 19.7 6.39 × 4.15 -2.45
PSZ2 G277.76-51.74 15.4 5.55 × 4.25 1.99
PSZ2 G284.97-23.69 11.3 5.20 × 4.38 -42.31
PSZ2 G286.28-38.36 19.4 5.00 × 4.46 -11.00
PSZ2 G271.18-30.95 22.1 5.80 × 4.21 -1.30
PLCK G334.8-38.0 16.1 3.19 × 2.20 9.96

area from our full resolution images are overlaid on the XMM-Newton X-ray images in Fig.
5.1 (yellow contours). In Figs. A.1 and A.2 we show the high resolution ATCA radio maps
for the wide field (∼ 34 arcmin2) and the zoomed cluster regions (∼ 9 arcmin2). The final
deep ATCA images root mean squared (rms) noise is measured with AIPS TVSTAT at the
field centre in regions inside the primary beam without any trace of point sources or diffuse
emission. The information of the images (rms noises and resolutions) is shown in Table
5.1. A visual inspection of the central area (where the clusters lie) of each of the seven full
resolution images does not reveal obvious presence of diffuse radio emission.

5.1.2 Compact source subtracted tapered images

In Table 5.2 we report the main features for the set of the source subtracted Block 3 tapered
images. In search of residual diffuse emission in the cluster areas we set the classical 3σ
contours in the tapered images. In some cases, we did find contours that correspond to po-
sitions of point sources visible in the full resolution maps, due to an imperfect point source
subtraction or to the presence of some extended emission candidates.

Apart from the full resolution radio contours, in Fig.5.1 we show the radio contours for
the tapered images where we discovered the presence of possible diffuse sources overlaid on
the XMM-Newton X-ray images. The analysis of these set of images led us to suspect the
presence of diffuse sources in two out of our seven ATCA clusters: PSZ2 G284.97-23.69
(top-right panel in Fig. 5.1, see Sect. 5.3.1) and PSZ2 G262.73-40.92 (Sect. 5.3.2, top-left
panel in Fig.5.1).
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Table 5.2: Information of source subtracted Block 3 tapered images. The rms noises of the
corresponding maps are presented in Col. 2. and the beam sizes and position angles appear
in Cols. 3 and 4 respectively.

Cluster name RMS Beam Size PA
(µJy/Beam) (”×”) (deg)

PSZ2 G285.63-17.23 92 43 × 17 89.07
PSZ2 G262.73-40.92 83 32 × 25 -7.67
PSZ2 G277.76-51.74 65 35 × 28 58.04
PSZ2 G286.28-38.36 57 28 × 26 -46.47
PSZ2 G271.18-30.95 74 31 × 25 -28.70
PLCK G334.8-38.0 71 34 × 23 2.96

PSZ2 G284.97-23.69 51 31 × 23 -81.17

5.2 X-ray dynamical state of the ATCA clusters

The present X-ray analysis was performed by my collaborators Jessica Democles, Gabriel
Pratt and Monique Arnaud, whom I warmly thank for the results appearing in this section.
All the clusters of the ATCA sample benefit from X-ray observations from the XMM-Newton

space telescope as part of the validation program of Planck cluster candidates. For the pro-
cessing, the background of the X-ray images has been subtracted. The X ray images are
corrected from surface brightness dimming with redshift, divided by emissivity in the en-
ergy band, taking in account absorption from the Galaxy and the response of the instrument.
The full X-ray data processing is detailed in Planck Collaboration et al. (2011b). The cluster
mass, M500, and corresponding R500, are derived iteratively using the low scatter M500–YX

scaling relation from Planck Collaboration et al. (2011b), where YX is the product of the gas
mass within R500 and the X-ray temperature in the [0.15 − 0.75]R500 aperture. The den-
sity profiles were derived from the surface brightness profile centered on the X–ray emission
peak, using the PSF-deconvolution and deprojection method of Croston et al. (2008). From
this analysis, we compute two morphological parameters :

a) The surface brightness concentration parameter C:

C =
SX(< Rin)
SX(< Rout) (5.1)

the ratio of the surface brightnesses SX within an inner aperture Rin and a global aperture
Rout. SX is the PSF-corrected surface brightness, derived from the emission measure profile.
Introduced in Santos et al. (2008) using Rin = 40 kpc and Rout = 400 kpc, this parameter
have been widely used to probe the core properties of clusters up to high redshift (e.g. Santos
et al., 2010; Hudson et al., 2010; Pascut and Ponman, 2015). Here we choose to use scaled
apertures since the clusters of our sample cover a wide redshift range, with Rin = 0.1 ×
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R500, corresponding to the typical size of the cool-core, and Rout = 0.5 × R500, which is a
characteristic size for the total flux.

b) The X-ray centroid-shift w, as defined in, for example, Böhringer et al. (2010) within 10
circular apertures from 0.1 to 1 R500 excising the first central aperture:

w = [ 1

N + 1∑(∆i − ⟨∆⟩)2]1/2 × 1

R500

(5.2)

where ∆i is the distance between the emission weighted centroid within the ith aperture and
the X-ray peak, N the number of apertures

The centroid-shift is computed on the background-subtracted, exposure-corrected co-
added X-ray count images in the 0.3-2 keV energy band after removal and refilling of the
point sources as in Böhringer et al. (2010).

The results are visualized in Fig. 5.2, where we overplot for comparison the positions of
objects from the REXCESS (open grey circles; see Böhringer et al., 2010, for the centroid-shift
values). Fig. 5.2 includes also the systems in common between the samples of Cassano et al.
(2013) and Planck Collaboration et al. (2011a) (blue points), for which we have computed
the concentration parameter and the centroid-shift values as described above for the RHCP-
ATCA sample.

The horizontal and vertical dashed lines of Fig. 5.2 indicate characteristic threshold val-
ues of each parameter that are typically used to separate out, respectively, cool-core and
morphologically disturbed systems. Following Pratt et al. (2009), we use a value of w > 0.01
as indicative of a morphologically disturbed system. Similarly, we define targets with C >
0.35 (equivalent to the central density criterion used by Pratt et al. (2009)) as being centrally
peaked and thus cool-core systems.

We stress here that the limits indicated with dashed lines in Fig.5.2 were obtained for the
local REXCESS sample. Also the sample analysed by (Cassano et al., 2013) is mostly made
up by lower redshift clusters compared to our targets. In addition, we recall that, instead of
using scaled apertures, Cassano et al. (2013) adopted fixed physical sizes for computing the
two parameters w (500 kpc) and C (Sx(<100 kpc)/Sx(500 kpc)). Their choice was based
on the theoretical consideration that, for a typical ∼1 Mpc-size RH, 500 kpc is expected to
delimitate the region where the energy of the merger is dissipated in particle acceleration.
These factors are however not expected to make our analysis significantly different from the
approach of Cassano et al. (2013), since recent works have proven that the adopted morpho-
logical parameters neither depend significantly on the size of the central region selected to
estimate them (e.g. good agreement between w measured within R500 and 0.5 R500), nor are
limited by resolution issues up to z ∼1 clusters (e.g. Bartalucci et al., 2017, Lovisari et al.,
private communication). Our new estimates of the C and w parameters, however, indicate
that one of the radio-loud clusters in Cassano et al. (2013) falls in the relaxed part of the plot.
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Figure 5.2: Concentration parameter C vs. centroid shift w for the galaxy clusters of the
ATCA-RHCP sample analysed in this paper (red filled circles). For comparison, we also
show the clusters in the sample of Cassano et al. (2013) that appear in the sub-sample of
Planck clusters studied by Planck Collaboration et al. (2011a) (PEPXI-C13, blue filled cir-
cles) for which we applied our algorithm to compute the w values within R500. The size
of the circles is proportional to the log(M500), in the range [14.67–15.3], and clusters with
detected radio haloes are marked with a cross. The characteristic thresholds indicating cool-
cores and morphologically disturbed systems (dashed lines) are from the REXCESS study
(Böhringer et al., 2007). The REXCESS clusters are shown as open circles.
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Figure 5.4: Zoom in the HST-ACS image of PSZ2 G284.97-23.69 central field (available in
the HST archive). For reference, the 3 σ contour of the ATCA tapered image centred at 1.867
GHz is shown in black. The blue contours indicate sources of significant radio emission in
the full-resolution deep ATCA image of the cluster (i.e. 5 × rms of the final wide-band ATCA
map shown in Fig. A.2).

extension and of elongation (with a main axis along the east–west direction). PSZ2 G284.97-
23.69 is the second more luminous and more massive cluster in the sample (see Table 4.1).
Based on its disturbed morphology (w = 0.028 ± 0.001) and concentration parameter (C
= 0.317 ± 0.005) it falls in a quadrant of dynamically disturbed systems (Fig. 5.2), with a
relatively high C parameter, though. The same contours are overlaid on the 4.6 micron WISE
image (bottom, right panel of Fig. 5.3), where we can see the presence of galaxies inside the
contours. This galaxies, however do not show any obvious counterparts in the full resolution
wide band ATCA radio image (top, right panel).

As explained in Sect. 4.3.2.2, we now examine the radio flux density of the diffuse source
on the tapered image relative to Block 3, i.e. the image centred at 1.867 GHz and charac-
terised by an average rms noise level of 51.1 µJy/beam (Table 5.2). The total flux density was
first measured on the Block 3 tapered image without compact source subtraction, by integra-
tion over the source image within 3σ contours using the AIPS task TVSTAT. By overlaying
the 5σ contours corresponding to the full-resolution wide-band radio map on the optical im-
age of the cluster central region, we identify two point-like significant objects lying within
the region occupied by the diffuse source on the low-resolution radio map. The two com-
pact radio sources show quite clear optical counterparts (see Fig. 5.4). We measured their
flux densities using the AIPS verb JMFIT and we subtracted them from the total flux den-
sity measured inside the 3σ contours of the tapered image. To verify that large-scale diffuse
emission is not caused by the blending of discrete sources and to get a complementary mea-
surement, we calculated the flux density of the residual diffuse emission by integrating the
surface brightness in the same region considered before, i.e. within the 3σ level of the non-
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Images ID Angular size Physical size Flux
(’×’) (kpc × kpc) (mJy)

ID 1 2.34 × 1.34 742 × 425 2.02±0.25
ID 2 " " 2.11±0.26

ID 2 ss " " 1.95±0.25

ID 1 2.98 × 1.60 945 × 507 2.37±0.34
ID 2 " " 2.53±0.35

ID 2 ss " " 2.17±0.44

Table 5.3: Physical properties of the diffuse radio source at 1.867 GHz from tapered images.
Col. 1 gives the identification numbers of the tapered images on which we have performed
the measurements: ID 1: Image with source subtraction in uv-data; ID 2: Image without
source subtraction in uv-data; ID 2 ss: Image of ID2 after removing by hand the flux of
point sources identified in the image plane. Col. 2 and Col. 3 correspond to the angular and
physical size of the source, respectively (see text). Col. 4 reports the flux of the diffuse radio
sources as measured with TVSTAT within the 3 σ contours of the map with ID 2 (top), with
TVSTAT within the 3 σ contours calculated by PyBDSM for the map with ID 2 (bottom).

point source subtracted tapered map (ID 1 in Table 5.3). The results of these flux density
measurements are given in the top part of Table 5.3. The error in flux density is calculated
following the formula:

∆F =
√(σrms)2Nbeam + 0.01F 2 (5.3)

where F is the measured flux density and Nbeam is the number of beams contained in the
measured area.

Table 5.3 shows the results of the different flux density measurements; all the values
are consistent within the error bars. The flux measurement that we adopt in our following
analysis is the one measured in the tapered map with point source subtracted from the uv-
plane labelled in the following ID1 (see Table 5.3), for which we obtain a flux density of
2.02±0.25 mJy at 1.867 GHz.

In order to get an estimate of the size of the diffuse radio source, we measured the smallest
ellipse that fully contains the 3σ contours of the Block 3 tapered map without point source
subtraction (ID2 in Table 5.3). We obtain an angular extent of 2.34’ × 1.34’, which, for our
cosmology, corresponds to a major and minor axis of ∼ 742 kpc and 425 kpc, respectively
(see Table 5.3).

Finally, we measured with TVSTAT the total flux density on the ID1 and ID2 maps by fol-
lowing the contours of the significant islands of emission identified by the automatic source
finder software PyBDSM around the diffuse source (dashed contours in Fig. 5.3; see 5.3.1.1
for details on the use of PyBDSM). The results obtained following this final method are given
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sponding to the diffuse radio source that we found by visual inspection and analysis on the
maps (see e.g. Fig. 5.5).

We used the threshold technique of the PyBDSM process_image task1, which locates
islands of emission above some multiple of the noise in the image (thresh_isl parameter,
set to 3σ here). This determines the region where fitting is done. In addition, we set to 5σ
the source detection threshold in number of sigma above the mean (thresh_pix parameter).
Finally, we activated the wavelet module of process_image (i.e. atrous_do=True), which
improves the detection of diffuse sources by doing wavelet transforms at increasing scales of
the residual image after subtraction of the initial fitted Gaussians. The modelled Gaussians
are shown in the bottom right panel of Fig. 5.5, while the top right panel shows the islands of
significant emission (cyan) and the position of the fitted Gaussians. Violet ellipses indicate
the sources identified on the input radio map (top left), while the red empty ellipse shows
the extended source recovered through the wavelet analysis. As shown in the residual maps
(bottom left), we nicely managed to fit most of the source components, in particular the
central diffuse source.

The final output catalogs of PyBDSM give a list of all the Gaussian functions fitted to
model the significant emission within the input radio maps and give a source list where dif-
ferent Gaussians are grouped together if they satisfy objective criteria to be considered as a
single source. For each detected source, PyBDSM provides the values of the FWHM of the
major and minor axis and the total integrated Stokes I flux density. To subtract by hand the
contribution of point sources from the ID2 map (case reported as ID2ss in Table 5.3), we ran
PyBDSM on the full-resolution Block 3 image of the cluster. The values of the flux densities
of compact sources obtained in this way and contained within the cyan region of Fig. 5.5
were then subtracted from the value of the total flux density of the diffuse source obtained in
the ID 2 case.

The size and flux density of the newly detected radio halo are given as an output of
PyBDSM, being 5.76 arcmin × 4.34 arcmin (914 kpc × 689 kpc) and 4.91 ±0.04 mJy for the
map with ID1. In the case of ID2 and ID2ss, we obtained a halo size of 4.48 arcmin × 2.70
arcmin, and flux densities of 4.08 ± 0.07 mJy and 3.72 ± 0.16 mJy, respectively.

We note here that, compared to classical measurements performed “by hand” (Sect. 5.3.1
and Table 5.3), PyBDSM gives systematically higher values of both source sizes and total
flux densities. This is because with classical methods we integrate the surface brightness of
the diffuse source within a region delimited by the 3σ contours, while this same region is
used by PyBDSM as a support to fit one (or multiple) Gaussian function(s) giving the total
flux density of the source(s) whose size is reconstructed based on moment analysis. This
last method tends to include flux density coming from regions outside the original islands of
significant emission, in particular when the wavelet module, which decomposes the residual
image that results from the normal fitting of Gaussians into wavelet images of various scales,

1See http://www.astron.nl/citt/pybdsm/process_image.html#

general-reduction-parameters for detailed instructions of process_image.

http://www.astron.nl/citt/pybdsm/process_image.html#general-reduction-parameters
http://www.astron.nl/citt/pybdsm/process_image.html#general-reduction-parameters
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is activated2.
Both methods are based on different assumptions. In the case of classical “by-hand”

measurements, for instance, it is assumed that the mean value of the surface brightness of
all pixels within 3σ contours multiplied by the number of synthesised beams within the con-
sidered region is a proper measurements of the integrated flux density for the whole RH.
Instead, in the case of PyBDSM, it is assumed that sources are correctly modelled by one or
more Gaussian functions of increasing size. We do not conclude that one method is better
than the other since they are based on different approaches, but we definitely recommend
not directly comparing results obtained through a mix of the two different methods when
producing plots such as our Fig. 5.12.

5.3.1.2 Radio luminosity vs. cluster mass correlation

We calculated the power of the newly discovered diffuse radio source and compared it with
radio powers of previously discovered halos. We selected objects firmly classified as giant
radio halos (i.e. with diffuse emission extending beyond the cluster core), whose flux density
has been measured through radio interferometric observations and with a point source iden-
tification and subtraction strategy very similar to ours, and with information about M500 in
the PSZ2 cluster catalog Planck Collaboration et al. (2015). The list of sources is presented
in Appendix C.1 Table 4.

In order to convert all values to the cosmology adopted in this paper and to take into
account some inconsistencies found for published radio powers, such as use of different cos-
mologies or the lack of the application of the k-correction, we compiled the total flux densities
of RHs reported in the literature (see Tables 3.2 and 3.3). We then calculated radio powers
using the formula:

Lν = 4πD
2

LSν(1 + z)α−1 (5.4)

where DL is the luminosity distance of the cluster. Whenever a measured value of the
spectral index is not available, we adopted α=1.3.

Traditionally RH powers are reported at 1.4 GHz; however, owing to the lower quality
of the Block 4 image centred at 1.381 GHz, we considered the most reliable sub-band map
(centred at 1.867 GHz) and then extrapolated to obtain the 1.4 GHz radio power. As the
spectral index of the radio source is too uncertain over the ATCA band due to the very low
surface brightness of the object, we undertake this extrapolation assuming the value ofα=1.3.
We obtain a value for the radio power at 1.4 GHz of 1.72 ± 0.22 ×1024 W/Hz.

In Fig. 5.12 we plot the radio power vs. cluster mass for the RH in PSZ2 G284.97-23.69
(shown as a red star) as compared to all halos included in Appendix C.1, Table 4, which
are indicated by triangles (colour-coded based on the redshift of their host clusters), except
when they are classified as ultra steep spectrum (USS) radio halos and/or when their flux was

2atrous_do parameter set to True. See http://www.astron.nl/citt/pybdsm/process_image.

html#a-trous-wavelet-decomposition-module

http://www.astron.nl/citt/pybdsm/process_image.html#a-trous-wavelet-decomposition-module
http://www.astron.nl/citt/pybdsm/process_image.html#a-trous-wavelet-decomposition-module
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(2007); Murgia et al. (2009). Although it is a massive cluster (M500 ∼ 8.39×1014M⊙), PSZ2
G284.97-23.69 hosts a quite small radio halo of radius

√
a ∗ b ∼ 281 kpc, where a and b

are the semi-major and semi-minor axis derived in Sect. 5.3.1. However, if we consider the
correlation between the size of the radio halos and the virial radius of their hosting clusters
(Fig. 5.7), we see that PSZ2 G284.97-23.69 (red point) follows the trend of other radio loud
clusters. This probably occurs because PSZ2 G284.97-23.69 is at a relatively high redshift
(z ∼ 0.39), which means that its virial radius, and thus its radio halo, is smaller (owing to the
cosmological growth and virialisation of galaxy clusters) than those of nearby clusters with
the same mass.

Figure 5.7: Correlation between radio halo sizes and the virial radius of their host clusters
[see Cassano et al. (2007)]. The newly detected radio halo in PSZ2 G284.97-23.69 is indi-
cated in red.
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5.3.2 Diffuse radio source in the cluster PSZ2 G262.73-40.92.

The tapered compact source subtracted image on the field of the cluster PSZ2 G262.73-40.92
shows the presence of a candidate diffuse source close to the cluster central coordinates.
The high resolution image reveals the presence of a very faint point source in the region
of the diffuse emission, with a possible counterpart on the IR map (Fig. 5.8), for which
we measured a flux density of 0.33 mJy. We measured the total flux density inside the 3σ
contours (shown in cyan color in Fig. 5.8) of the diffuse emission in the compact source
subtracted tapered image in Block 3, characterized by a rms noise of 83 µJy/beam (see Table
5.1). We obtained a flux density of 1.18 mJy inside the 3σ contours. The region shows
an elliptical shape, with a major axis of 63 arcseconds and a minor axis of 50 arcseconds,
which for our cosmology corresponds to a physical size of 349 kpc × 277 kpc at the cluster
redshift. According to the X-ray morphological analysis, PSZ2 G262.73-40.92 is a merging,
but probably moderately disturbed cluster, lying close to our cut line of cool-core clusters,
with a concentration parameter C= 0.348 ± 0.005 and a centroid shift w = 0.016 ± 0.001 (see
Fig. 5.2). It is important to note that the diffuse source present in the residual map follows
the emission from the galaxies in the WISE images (Fig. 5.8), and is offset from the cluster
X-ray emission (Fig. 5.1, top, left panel). Some similar results have been found by Govoni
et al. (2012), where the authors find cases where the diffuse radio emission can be quite
asymmetric with respect to the X-ray gas distribution, and tend to follow more closely the
galaxy distribution rather than the intra-cluster gas distribution. Given the size and position
of the source, plus the close-to-relaxed dynamical state of the host cluster, a classification of
the source is challenging with our data.
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Figure 5.8: WISE 4.6 microns image of the central area of PSZ2 G262.73-40.92. The center
of the X-ray emission is marked as a white cross. 3σ × (1,

√
2,2) contours of the compact

source subtracted tapered radio image appear in cyan, while yellow contours are the same
contour levels from the high resolution Block 3 radio map.

5.4 Clusters without diffuse radio emission

5.4.1 The Cool-core cluster PSZ2 G271.18-30.95

PSZ2 G271.18-30.95 has the highest X-ray luminosity of the ATCA sample, although it is
not the most massive cluster(see Table 4.1). Within the sample it has also the highest con-
centration parameter (C = 0.509 ± 0.004) and the lowest centroid shift (w = 0.005 ± 0.001).
This positions it as a clear cool-core non disturbed cluster. Unsurprisingly, as in ∼70% of
cool-core clusters (Gitti et al., 2015) our high resolution radio map shows the presence of
a strong radio source coincident with the cluster center (see Fig. 5.1 top middle panel and
Fig. A.2 bottom panels), with a flux density of ∼ 10 mJy at ∼ 1.9 GHz. From the Hubble
space telescope optical image there is an evident connection between the radio source and
the BCG. Moreover, by measuring the flux densities of the central source in the different sub-
bands (Blocks 1 to 4, see Sect. 4.3.1) we estimate a spectral index for the central compact
source of α ≈ 0.6.
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It is known that radio mini-halos are usual in the center of cool-core clusters, surrounding
the central active radio galaxy and extending to the radius of the cluster cooling region (see
e.g. Giacintucci et al., 2017b, and references therein). To further investigate the possible
presence of a radio mini-halo, we did several tests by imaging at ∼ 10 arcsec resolution
without compact source subtraction and using different weighting for the tapering. None of
our maps show evidence of extended diffuse emission at the typical mini-halo scales. We
point out, however, that the presence of the compact source at the cluster center and the
presence of a strong source close to the cluster made the imaging and the compact source
subtraction problematic in this particular case.

Figure 5.9: HST archive image of the central area of PSZ2 G271.18-30.95 with 3σ × (1, 2,
3) full band high resolution contours of the central radio source overlaid in red.

5.4.1.1 Highly disturbed clusters without radio emission

Three of the seven galaxy clusters of the ATCA sample showed evidence of being both highly
disturbed (see Fig. 5.1 lower panels and the three red circles in the bottom right of Fig. 5.2)
and with low concentration parameters. PSZ2 G277.76-51.74, the most massive cluster of
the sample, has also the lowest concentration parameter (C = 0.102 ± 0.002) and shows a
centroid shift w = 0.042 ± 0.001. On the other hand, PSZ2 G285.63-17.23 has the highest
centroid shift (w = 0.081 ± 0.003, C = 0.124 ± 0.006). Finally PSZ2 G286.28-38.36 shows
also signs of being highly disturbed (w = 0.078 ± 0.005, C = 0.137 ± 0.008). None of these
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clusters show hints of diffuse radio emission on our maps.
We have mentioned in Sect. 3.4 that there are actually cases of disturbed clusters lacking

radio halos. Russell et al. (2011) show that A2146 posses no diffuse emission despite being
clearly a merging cluster (see also White et al., 2015b, for a delailed study of the dynamical
status of the cluster). However, in this particular case the mass of the cluster is quite low
(4.3 × 1014M⊙) which could be the reason for the lack of a radio halo. This explanation
could not be necessarily the case for our three non-detections. Our three radio quiet clusters
are more massive (see Table 4.1) than at least six detected radio loud clusters (A545, A746,
A1995, A2034, A2254, A2255), all of them with masses M500 < ∼ 5.9 × 1014 M⊙, but also at
lower redshifts (z < 0.318). Moreover, the X-ray analysis of our three ATCA non-detections
show that they lie among the most disturbed and with lowest concentration parameters in our
sample (see Fig. 5.12). The implications of this section will be discussed in Sect. 5.5.

5.4.2 The triple system of low mass clusters PLCK G334.8-38.0

Among the radio quiet clusters of our sample, one has not been analysed in the same way as
the other six. PLCK G334.8-38.0 consist of three X-ray components visible in the XMM-
Newton image separated by ∼7’. The redshift of the system has been obtained from the Fe
L complex detection in the spectral analysis one of the components, obtaining a value of z
= 0.35, and assuming to be the same for the three components. By using limited statistics,
temperatures in the (2-3)keV bands were obtained, suggesting masses of (1.55, 0.91 and 0.92)
× 1014M⊙. It is important to notice, however, that the measurements of redshift and masses
for this triple system are quite challenging, and the case deserves further investigation (see
Planck Collaboration et al., 2016a). For these reasons we can not analyse the system by
proceeding in the same way we have done for the other clusters of the sample. We notice,
however, that the mass of the components, even taken all together (M ∼ 3.4 × 1014M⊙), is
significantly lower than the typical mass of radio loud systems.

Although our radio images do not show the presence of any significant diffuse radio
emission in either of the triple system regions, we noticed the presence of a tailed radio
galaxy coincident with X-ray region "C" in Figure 5.10. We show the source on Figure
5.11. There is evidence that tail radio galaxies can be used as tracers of galaxy clusters (e.g.
Fomalont and Bridle (1978); Burns and Owen (1979); Blanton et al. (2001); Smolčić et al.
(2007); Giacintucci and Venturi (2009)). The interaction of the radio lobes with the ICM
causes in general some distortion on their geometry (Smolčić et al., 2007). In the case of the
tail radio galaxy detected in the field of PLCK G334.8-38.0, the bending of the radio lobes
is minor, being the orientation of the bending opposite to the direction connecting two of the
members of the triple system (A and C in Fig. 5.10).
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Figure 5.10: XMM-Newton wavelet filtered [0.3-2] keV image of the triple system PLCK
G334.8-38.0. Extended components found in the XMM-Newton image are marked with
letters. The circles denote the estimated R500 radius for each component. Credit: Planck
Collaboration et al. (2011b)

Figure 5.11: High resolution radio image at 2.1 GHz of a tailed radio galaxy corresponding
to the X-ray source "C" of Figure 5.10. The green contours are from the XMM image of the
corresponding region.

5.4.2.1 Detection limits

In Fig. 5.12 we show the upper limits for the non-detections on the ATCA sample, obtained
as illustrated in Sect. 4.3.2.3, as red arrows on the P1.4GHz vs. M500 plot. We compare
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our calculated values with those obtained by Venturi et al. (2008) and Kale et al. (2013)
(blue arrows in Fig. 5.12), measured using GMRT images, with the modelled halo injections
performed at 610 MHz. Our calculated ATCA upper limits appear higher in the plot as a
consequence of the combination of two effects. The first one is that the redshift range of
our sample is higher than previous studies (these being effectively limited to z < 0.3, see
Sect. 4.1). In our calculation of the radio power, we have the luminosity distance factor that
scales as DLum(z)2. The second and most important effect is the frequencies of the ATCA
observations. We recall that our upper limit injections were done at ∼ 1.9 GHz, and by
assuming a typical spectral behaviour of RHs (with spectral index α=1.3), we obtain higher
values for the radio power when we rescale the flux density from 1.9 GHz to 1.4 GHz. The
values of our calculated upper limits appear in Table 5.4. It is worth mentioning that the
power of the giant RH discovered in PSZ2 G284.97-23.69 and some other RHs reported in
the literature lie close (or even below) the radio power regime of the upper limits obtained
for our ATCA observations. This could imply that the measured flux density of our detected
sources could be underestimated.

Table 5.4: Upper limits obtained for the ATCA cluster images without traces of diffuse radio
emission. The calculated logarithm of the radio power at 1.4 GHz, by assuming a spectral
index of 1.3, for the total flux density of the injected fake radio halo model in the Block 3
sub-band (1.9 GHz) appears in Column 2.

Cluster name Log P1.4GHz

(WHz−1)
PSZ2 G285.63-17.23 24.46
PSZ2 G277.76-51.74 24.57
PSZ2 G286.28-38.36 24.19
PSZ2 G271.18-30.95 24.39

5.5 Conclusions

With our high-sensitivity wide-band (1.1 - 3.1 GHz) ATCA observations we present a com-
plete analysis in search of diffuse radio emission on the ATCA sub-sample of the MACS-
Planck RHCP. Moreover, we performed an X-ray analysis of the sample in order to relate the
non-thermal emission with the dynamical state of the clusters. Among the seven targets, only
two clusters show a confirmed or tentative diffuse radio emission. We reported the presence
of a giant radio halo in PSZ2 G284.97-23.69 and found a new candidate diffuse source in
PSZ2 G262.73-40.92. The X-ray morphological analysis based on XMM-Newton observa-
tions indicates that those objects are most likely disturbed systems, based in particular on the
centroid shift indicator (w), with a concentration parameter (C) not far from the threshold
adopted to separate merging and relaxed clusters.
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In the case of PSZ2 G284.97-23.69, both the diffuse nature of the source, which is not
related to blending of compact radio objects, and the comparison of our high-sensitivity
tapered radio map to the X-ray image of the cluster allow us to classify the detected emission
as a classical RH. First, the morphology and size of the diffuse radio source indicate a very
similar distribution of the non-thermal ICM and the thermal component, traced by its X-ray
bremsstrahlung radiation. Similarly to most known RHs, our newly detected halo is thus
hosted by a massive cluster (8.4 × 1014M⊙). The detected RH seems to be slightly under-
luminous compared to objects hosted by clusters in a similar mass range, as shown in the
P1.4GHz vs M500 plot (purple star in Fig. 5.12); although it is not a clear outlier like the
RH discovered by Bonafede et al. (2015). It is, however, one of the lowest luminosity radio
halos detected at z > 0.35. It is expected that radio halos and their hosting clusters develop
complex patterns with time in the radio–mass (or X-ray luminosity) diagram as a result of the
evolution of cluster dynamics and particle acceleration and spectra (e.g. Donnert et al., 2013).
For most of their lifetimes these systems are expected to be “off-state” (i.e. under-luminous)
or in the region spanned by the correlation leading to an apparent bimodality (e.g. Brunetti
et al., 2009; Cassano et al., 2013). In this respect under-luminous systems are expected to
be generally associated with both young or old mergers (Donnert et al., 2013); naively PSZ2
G284.97-23.69 could be in one of these stages. On the other hand the spectrum of radio
halos also plays a role, with ultra-steep-spectrum radio halos, which are expected in less
powerful mergers and at higher redshift (as a result of stronger IC losses), being statistically
under-luminous (Cassano et al., 2006; Brunetti et al., 2008; Cassano et al., 2010b).

The classification of the candidate diffuse radio source in PSZ2 G262.73-40.92 is more
challenging, given it’s size, position with respect to the X-ray emission and the dynamical
state of the host cluster, being just in our cut line for cool-core/non cool-core clusters. We
noticed, however, that the radio emission seems to follow the emission of the cluster galaxies
in the WISE image, as have been found by other RHs in previous studies (Govoni et al.,
2012).

Our sample contains one clearly relaxed cool-core cluster. The wide band full resolution
radio image of PSZ2 G271.18-30.95 shows the presence of a compact radio source, which
coincides with the cluster BCG visible in the Hubble image of the cluster. We performed
several trials in search of the presence of a radio mini-halo surrounding the central radio
galaxy, by imaging at mini-halo scale resolutions and with different weighting in the tapering.
We didn’t find evidence of a mini-halo in our images. However, we noticed that the compact
source subtraction was challenging with our data, probably because the presence of some
calibration errors.

The triple system of low mass clusters PLCK G334.8-38.0 lacked the presence of diffuse
radio emission and the low statistics for the X-ray analysis prevented us to perform the di-
agnosis of it’s dynamical state. In concordance with previous studies (Fomalont and Bridle,
1978; Burns and Owen, 1979; Blanton et al., 2001; Smolčić et al., 2007; Giacintucci and
Venturi, 2009), we discovered the presence of a tail radio galaxy coincident with one of the
components of the triple system.
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(see also White et al., 2015b, for a delailed study of the dynamical status of the cluster).
However, in this particular case the mass of the cluster is quite low (4.3 × 1014M⊙) which
could be the reason for the lack of a radio halo. We noticed that a number of clusters with
lower masses than those of our three highly disturbed radio quiet cluster host radio halos, but
all of them at lower redshifts.

The calculated upper limits indicated in Fig. 5.12 are significantly higher compared to
other works (Cassano et al., 2013), even if the rms sensitivities reached in all these analyses
are comparable. These is explained by the fact that previously published upper limits are
based either on lower-frequency (mostly 610 MHz) observations (Venturi et al., 2008; Kale
et al., 2013) or on lower-redshift ATCA cluster samples (Shakouri et al., 2016, , Shakouri
et al. submitted). In the first case (and keeping in mind that we convert radio powers to
the reference frequency of 1.4 GHz), the same rms sensitivity at 1.9 GHz and 610 MHz
translates to a higher 1.4 GHz radio halo luminosity upper limit for the 1.9 GHz case, due
to the spectral steepness of radio halos (we rescaled by assuming a spectral index α=1.3 to
be consistent with Cassano et al., 2013). In the second case, the clusters are observed at the
same frequency, but located at z∼0.15, which, due to the DLum(z)2 factor, translates into ∼10
higher upper limits in radio power compared to lower redshift ATCA observations.

To be able to distinguish between "radio-quiet" or "under-luminous" diffuse emission in
the three disturbed galaxy clusters in our sample, it is clear that more sensitive and lower-
frequency radio observations are needed. In Fig. 5.13 we compare the detection upper limits
obtained for our ATCA observations (red triangles) with previous upper limits taken with the
GMRT at 610 MHz (blue triangles) as a function of redshift. The green and blue lines show
the minimum power at 1.4 GHz of detectable radio halos in the Evolutionary Map of the
Universe (EMU) survey for different signal to noise levels as derived in Cassano et al. (2012)
(see Sect. 5 and Eqs. 9 and 10 in their paper). The EMU survey will produce a deep radio
continuum survey of the Southern Sky with rms noises of ∼ 10µJy/beam, comparable to our
best rms noise of ∼11µJy/beam, but with lower resolution (∼ 10 arcseconds, Norris et al.,
2011), resulting in a better sensitivity at lower frequencies (1.3 GHz). From Fig. 5.13 we
note that EMU will have the sensitivity to discover possible halos in clusters that presently
are undetected in both GMRT and ATCA samples.
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In this chapter I present a first analysis on the radio maps available for the GMRT sub-
sample and the results for the upper limits obtained from the fake halo injections performed
in the available residual visibilities. The main idea of this chapter is to show the state of art
of the already available radio information and to pave the way on the work needed to publish
all the data of the MACS-Planck RHCP.

6.1 Full resolution and tapered residual radio maps

In Sect. 4.4.1 we described the procedure of data reduction and image reconstruction for the
GMRT sub-sample. In Table 6.1 we show the main features (rms noise and resolution) for
the corresponding full resolution images. The images themselves are shown in Appendix.
The main characteristics of the residual tapered images appear in Table 6.2. From these set
of images we were able to perform a first analysis on the presence of diffuse emission on the
GMRT sub-sample.

6.2 X-ray-optical dynamical analysis of GMRT sub-sample

19 out of our 25 clusters of the GMRT sub-sample benefit from a homogeneous analysis of
their dynamical state. In their analysis, the authors followed a different approach that the one
we took on Sect. 5.2.
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Table 6.1: Characteristics of high resolution GMRT radio maps.

Cluster name RMS noise Beam Size PA
(µJy/beam) ("×") (deg)

MACSJ1720.2+3536 58.25 9.61 × 7.85 54.63

MACSJ1931.8-2634 113.34 11.81 × 7.60 5.15

MACSJ2140.2-2339 60.11 13.62 × 7.97 13.06

MACSJ2229.7-2755 130.31 14.01 × 9.03 0.87

MACSJ2245.0+2637 101.65 9.81 × 8.72 49.07

MACSJ0011.7-1523 73.88 13.63 × 7.37 52.39

MACSJ0159.8-0849 100.44 12.26 × 7.96 67.90

MACSJ0242.6-2132 106.78 10.70 × 8.62 15.38

MACSJ0429.6-0253 223.75 10.59 × 10.05 59.58

MACSJ0547.0-3904 112.07 15.06 × 7.45 11.46

MACSJ1427.6-2521 73.60 12.11 × 7.82 10.04

MACSJ0520.7-1328 125.96 12.49 × 7.95 12.03

MACSJ1206.2-0847 102.12 11.27 × 7.62 44.96

MACSJ1319.9+7003 63.97 13.73 × 8.19 -23.01

MACSJ0257.6-2209 119.82 13.41 × 8.57 19.13

MACSJ2049.9-3217 69.75 15.04 × 7.38 4.58

MACSJ0035.4-2015 343.42 10.98 × 7.76 50.16

MACSJ0404.6+1109 85.57 9.85 × 7.78 66.79

MACSJ1731.6+2252 60.24 10.44 × 7.36 65.13

MACSJ0152.5-2852 177.21 12.09 × 7.40 22.32

PLCK G100.2-30.4 141.16 11.22 × 8.74 15.30

PLCK G272.9+48.8 52.16 9.70 × 8.33 19.56

PLCK G250.0+24.1 234.20 11.25 × 8.87 27.95

PLCK G214.6+36.9 208.98 10.25 × 8.80 55.76

PLCK G241.2-28.7 136.02 16.61 × 8.82 -2.55
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Table 6.2: Characteristics of residual tapered GMRT radio maps.

Cluster name RMS noise Beam Size PA
(µJy/Beam) ("×") (deg)

MACSJ1720.2+3536 420.40 35.91 × 28.36 62.49

MACSJ1931.8-2634 526.42 36.77 × 30.31 37.33

MACSJ2140.2-2339 273.45 34.61 × 32.60 42.39

MACSJ2229.7-2755 431.98 41.52 × 33.48 49.76

MACSJ2245.0+2637 420.19 35.26 × 32.79 1.26

MACSJ0011.7-1523 299.22 39.83 × 31.97 28.30

MACSJ0159.8-0849 411.71 34.26 × 30.27 61.74

MACSJ0242.6-2132 416.89 38.20 × 30.20 49.08

MACSJ0429.6-0253 722.29 37.15 × 31.97 -86.85

MACSJ0547.0-3904 427.22 38.51 × 25.54 31.72

MACSJ1427.6-2521 420.31 43.48 × 36.42 25.41

MACSJ0520.7-1328 815.88 40.27 × 30.11 22.82

MACSJ1206.2-0847 868.71 42.33 × 34.46 15.03

MACSJ1319.9+7003 565.69 41.21 × 31.70 -9.68

MACSJ0257.6-2209 604.62 39.83 × 32.70 64.03

MACSJ2049.9-3217 344.50 39.97 × 29.16 36.63

MACSJ0035.4-2015 1263.40 43.79 × 28.95 61.98

MACSJ0404.6+1109 527.77 38.57 × 33.29 75.71

MACSJ1731.6+2252 261.00 35.01 × 28.94 64.70

MACSJ0152.5-2852 956.13 36.13 × 26.48 41.08

PLCK G100.2-30.4 942.45 39.22 × 33.45 36.37

PLCK G272.9+48.8 316.40 36.42 × 31.57 71.57

PLCK G250.0+24.1 763.20 37.28 × 33.74 57.07

PLCK G214.6+36.9 745.13 39.75 × 30.49 53.14

PLCK G241.2-28.7 574.16 43.06 × 31.47 27.37



80 Chapter 6. A first analysis of the GMRT sub-sample

In Mann and Ebeling (2012), the authors performed an X-ray-optical classification of
cluster mergers from a sample of 108 of the most X-ray luminous clusters observed with
Chandra, and with optical data obtained with the UH2.2m telescope, the Sloan Digital Sky
Survey (SDSS), the Digitalized Sky Survey (DSS) and the Hubble Space Telescope (HST).
The approach followed by the authors considers that, on cluster scales, the member galaxies
can be considered to be fast-moving particles with a very small cross section for collision.
On the other side, the intra-cluster gas is highly collisional and will be subject to intense
ram pressure and shock heating during a merger. The result of this will be that the strongly
self-interacting gas is slowed during the merger, while the galaxies will pass through, slowed
only by gravity via the process of dynamical friction. This implies that a pronounced spatial
segregation of gas and galaxies provides evidence of a recent or an ongoing merger (e.g.
Smith et al., 2005; Shan et al., 2010). On the other hand, an excellent alignment of the intra-
cluster gas distribution and the BCG is considered typical of relaxed systems. In this analysis,
Mann and Ebeling (2012) identified the BCG-X-ray offset by using the location of the X-ray
peak and the overall centroid of the diffuse X-ray emission. A third qualitative diagnosis
of the dynamical state of the clusters was the visual classification of the morphology of the
X-ray contours and the degree of alignment of the BCG and the X-ray peak. The assigned
codes and classification criteria from relaxed to extremely disturbed are (Mann and Ebeling,
2012):

• (1) Pronounced cool core, perfect alignment of X-ray peak and single BCG.

• (2) Good optical-X-ray alignment, concentric contours.

• (3) Non concentric contours, obvious small scale substructure.

• (4) Poor X-ray-optical alignment, multiple peaks, ambiguous BCG.

The classification of each of the 19 MACS-Planck RHCP GMRT sub-sample appear
in Table 6.3. The quantities appearing in the table taken from Mann and Ebeling (2012)
correspond to the X-ray peak-BCG separation (Col. 2); the X-ray-centroid-BCG separation
(Col. 3) and the classification criteria in different numerical codes described above (Col.
4). In the following sections we will divide the GMRT sample based on the classification
appearing in Column 4 and provide a short description of their radio properties.
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Table 6.3: Morphological data for the MACS clusters from Mann and Ebeling (2012).

Cluster name Peak Separation (σ) Centre separation (σ) Morphological
(kpc) (kpc) code

MACSJ1720.2+3536 1.5 (4.2) 22.2 (2.14) 1

MACSJ1931.8-2634 15.3 (4.8) 3.9 (0.61) 1

MACSJ2140.2-2339 0.5 (2.1) 7.8 (1.10) 1

MACSJ2229.7-2755 3.9 (4.4) 7.3 (0.61) 1

MACSJ2245.0+2637 8.8 (3.9) 8.0 (2.40) 1

MACSJ0011.7-1523 3.8 (4.4) 7.1 (1.56) 1

MACSJ0159.8-0849 2.8 (3.6) 7.2 (2.93) 1

MACSJ0242.6-2132 7.1 (3.8) 4.1 (0.19) 1

MACSJ0429.6-0253 12.8 (4.6) 19.5 (2.31) 1

MACSJ0547.0-3904 0.6 (2.7) 9.9 (0.98) 1

MACSJ1427.6-2521 0.7 (2.7) 2.5 (0.08) 1

MACSJ0520.7-1328 8.4 (3.7) 10.2 (0.39) 2

MACSJ1206.2-0847 8.3 (5.2) 33.8 (0.59) 2

MACSJ1319.9+7003 7.6 (4.3) 37.7 (2.24) 2

MACSJ0257.6-2209 2.6 (3.7) 18.0 (0.46) 2

MACSJ2049.9-3217 18.0 (4.0) 25.5 (6.53) 3

MACSJ0035.4-2015 15.7 (3.9) 11.8 (0.28) 3

MACSJ0404.6+1109 58.6 (4.9) 69.7 (3.17) 4

MACSJ1731.6+2252 66.7 (4.9) 31.4 (3.18) 4
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6.3 Radio properties of GMRT sub-sample

6.3.1 Classification 1 clusters

MACSJ1720.2+3536 is classified as morphological code 1, despite having a relatively large
centre separation (22.2 kpc, see Table 6.3). The full resolution GMRT radio map shows
the presence of a strong (∼ 11 mJy) compact source coincident with the cluster BCG. It is
however visible in the full resolution map the presence of some diffuse emission, probably
related to the compact central source, in the west direction. The residual tapered map shows
the presence of 3 σ contours surrounding the central radio source, and the presence of a large
scale, north-south oriented elongated structure (∼ 876 kpc) towards the east direction.

MACSJ1931.8-2634 has the highest peak separation (15.3 kpc) for the MACS clusters
with morphological code (1). The full resolution radio map shows the presence of very strong
activity from radio galaxies in the central coordinates. It is visible from the low resolution
residual map that some 3 σ contours appear in the NW-SE direction across the clusters area.
It is however difficult to asses the reliability of this residual emission because the quality of
the image, as we noticed some phase errors present in very bright sources in the radio map.

MACSJ2140.2-2339 has the lowest peak separation (0.5 kpc) from all the clusters with
morphological classification. The full resolution radio map shows the presence of compact
sources in the central area with some diffuse emission related. The tapered residual map 3
σ contours in the cluster area are always associated to very faint radio emission, probably
diffuse, but related to the activity of radio galaxies.

MACSJ2229.7-2755 shows the presence of some diffuse emission always related to the
activity of radio galaxies in the full resolution map and no significant emission in the residual
maps that could led us to suspect of the presence of any RH, relic or mini-halo.

MACSJ2245.0+2637 has a bright central radio source in the full resolution map and
shows some contours in the residual tapered radio map. The central low resolution 3 σ

contours are obviously related to the presence of the central compact radio source, which
could give us a hint of the presence of a radio mini-halo, while there are other two roundish
3 σ contours which are difficult to classify.

MACSJ0011.7-1523 presents two bright compact radio sources in the cluster center in
the full resolution radio map. In the tapered map it is noticed the presence of radio contours
close to one of this radio sources, and probably related to it. The second visible 3 σ contour
in the cluster area appears in towards the north, ∼ 0.5 Mpc away from the center, roundish in
shape (∼ 255 kpc diameter). Again, it is difficult to classify the diffuse sources in one of our
three main categories.

A central radio source is present in the full resolution image of MACSJ0159.8-0849
which is probably related to the 3 σ contour visible in the tapered residual radio map. This
cluster shows no obvious evidence of diffuse radio sources that are independent from the
activity of radio galaxies.
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MACSJ0242.6-2132 full resolution map has a bright radio source in the central coordi-
nates, whose subtraction was problematic due to the presence of errors in the uv-data. This
makes the low resolution map not reliable for our search for diffuse sources.

The full resolution radio image of our last three galaxy clusters with morphological code
(1) shows that these three clusters contain a compact central radio source. However, no con-
tours appear in the correspondent residual tapered map: This is the case for MACSJ0429.6-
0253, the second largest peak separation (12.8 kpc) for our morphological code 1 MACS
clusters, also with a relatively high centre separation (19.5); MACSJ1427.6-2521, the one
with the lowest centre separation, and finally the cluster MACSJ0547.0-3904, with relatively
low values for both peak and centre separation.

It is important to notice that the full resolution radio images of all of our MACS clus-
ters classified (1) by Mann and Ebeling (2012) show the presence of a central radio source
and none of them shows obvious presence of a RH, as expected from the turbulence mod-
els. There are, however, some candidates to host a radio relic (check!) or radio mini-halos
(check!), synchrotron radio phenomena that are thought to be related to the interaction of the
ICM with radio galaxies present in the cluster center or peripheral regions.

6.3.2 Classification 2

MACSJ0520.7-1328 full resolution map shows the presence of a compact source in cen-
ter. Although the cluster region doesn’t show interesting features concerning diffuse radio
sources, a peripheral diffuse source was discovered at ∼ 8 arcminutes south-east of the cluster
center. A following Chandra archival X-ray analysis, together with optical/IR data, allowed
to the discovery of a new galaxy cluster called 1 WGA 0521. Although difficult to classify
as a RH or relic, the importance of this discovery is the fact that the analysis led to the dis-
covery of a previously unknown cluster. A full analysis of this cluster appeared in Macario
et al. (2014).

MACSJ1206.2-0847 has a compact radio source in center, where there is clear presence
of some errors in the uv-data. The low resolution tapered map shows the presence of 3 σ

roundish contour in the cluster peripheries, which are not reliable given the quality of the
data.

MACSJ1319.9+7003 low resolution residual tapered map showed no presence of 3 σ

contours in the cluster centred Mpc diameter circle.

MACSJ0257.6-2209 shows some hints of possible diffuse radio source in the cluster cen-
ter in the full resolution map. Interestingly, the tapered residual map contains 3 σ contours
on Mpc scale size, centred in the cluster central coordinates, making MACSJ0257.6-2209 a
good candidate for hosting a Giant RH.
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6.3.3 Classification 3 and 4

MACSJ2049.9-3217 shows the presence of large scale 3 σ contours in the residual tapered
map, coincident with the cluster center. The full resolution map shows the presence of a
faint compact radio source inside the contours, but probably not completely responsible for
the emission visible in the tapered residual map. We then propose MACSJ2049.9-3217 as a
candidate for hosting a RH.

MACSJ0035.4-2015 full resolution map shows no presence of compact sources in the
cluster area. It is however notable from bright sources in the field that some errors in the
uv-data are still present. Indeed, the tapered residual map has the highest rms noise in our
GMRT sub-sample (1263 µJy/beam), showing the presence of two roundish 3 σ contours
inside the cluster Mpc diameter circle. Given the quality of the data, it is difficult to asses
the status of MACSJ0035.4-2015 as a candidate for hosting diffuse radio sources.

MACSJ0404.6+1109 full resoluton map shows the presence of a compact source in center
despite being classified as (4), meaning a "highly disturbed" cluster. However, the tapered
residual map showed no evidence of any diffuse radio source in the cluster area.

MACSJ1731.6+2252 shows very interesting activity of radio galaxies in the cluster area
in the full resolution map. Moreover, some arc-like features were also noted, probably being
due to some gravitational lensing on the cluster. Unfortunately, the subtraction of the compact
sources in the cluster area showed the presence of some errors, making the classification of
MACSJ1731.6+2252 as a candidate host for diffuse radio emission challenging with our
available data.

6.3.4 Clusters with missing dynamical state analysis

MACSJ0152.5-2852 full resolution map shows the presence of a group of faint compact
radio sources inside the Mpc diameter circle centred on the cluster. It is visible from bright
compact sources in the same map that there are still some errors in the uv-data, making the
rms noise of the residual tapered map relatively high (∼ 956 µJy/beam). This map, however,
shows no presence of 3 σ contours in the cluster area.

PLCK G100.2-30.4 shows the presence of small scale 3 σ contours in the residual tapered
map, with no obvious relation with radio galaxies visible in the full resolution map. Despite
having a relatively high rms noise in the tapered residual map (∼ 942 µJy/beam), we consider
PLCK G100.2-30.4 as a candidate to host a diffuse source, although difficult to classify.

PLCK G272.9+48.8 tapered residual map has elongated contours inside the central Mpc
diameter circle, with no obvious correspondence with radio galaxies. We classify PLCK
G272.9+48.8 as a candidate for being a host for diffuse radio emission, although we can’t
classify the kind of source.

PLCK G250.0+24.1 tapered residual map shows the presence of roundish 3 σ contours
inside the cluster area, with probable relation with a faint compact radio source present in the
full resolution map, and the presence of 3 σ contours in peripheral regions of the cluster, with
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some probable relation with faint compact sources. We can suspect of PLCK G250.0+24.1
being a candidate to host a double radio relic.

PLCK G214.6+36.9 shows no hint of diffuse emission either in the full resolution or in
the tapered residual maps.

PLCK G241.2-28.7 presents elongated 3 σ contours offset towards the north of the cluster
center, without obvious relation with radio galaxies in the full resolution radio map. We
classify PLCK G241.2-28.7 as a candidate to host a radio relic.

6.4 Detection limits

Regardless of the status of the galaxy cluster as a candidate to host a radio source, we per-
formed the injections of the fake RH in the whole GMRT sample, with the exception of
MACSJ0520.7-1328, being the only image of our sample with an already confirmed radio
source (see 6.3.2). The values for the upper limit radio powers rescaled at 1.4 GHz appear in
Table 6.4.

In Fig. 6.1 we show the classical P1.4 vs M500 plot, the same as Fig. 5.12, but this time
including our new calculated upper limits for the GMRT sub-sample. Most of our new upper
limits (green dots in Fig. 6.1) lie in the same radio power range (∼3×1023 - ∼ 1024W /Hz)
as those obtained by Venturi (2008) & Kale (2013) (blue dots) with the exception of four
upper limits a bit super-luminous with respect to the rest of the GMRT sub-sample. In Fig.
6.2 however, we can notice that two of our calculated upper limits already reach some of the
limits expected from the EMU survey (green triangles over blue bottom line), which means
that with a good combination of redshift and data quality, the GMRT can provide with some
examples of the results expected from new generation radio telescopes.
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Table 6.4: GMRT upper limits

Cluster name Upper limit
Log(P1.4)

MACSJ1720.2+3536 23.84

MACSJ1931.8-2634 24.11

MACSJ2140.2-2339 23.56

MACSJ2229.7-2755 23.59

MACSJ2245.0+2637 23.85

MACSJ0011.7-1523 23.61

MACSJ0159.8-0849 23.83

MACSJ0242.6-2132 23.56

MACSJ0429.6-0253 23.97

MACSJ0547.0-3904 23.73

MACSJ1427.6-2521 23.33

MACSJ1206.2-0847 23.92

MACSJ1319.9+7003 23.76

MACSJ0257.6-2209 23.74

MACSJ2049.9-3217 23.59

MACSJ0035.4-2015 24.01

MACSJ0404.6+1109 23.84

MACSJ1731.6+2252 23.54

MACSJ0152.5-2852 24.24

PLCK G100.2-30.4 23.88

PLCK G272.9+48.8 23.57

PLCK G250.0+24.1 24.15

PLCK G214.6+36.9 24.10

PLCK G241.2-28.7 24.02







Chapter 7

Conclusion and Perspectives

In this thesis, I showed the results of my collaboration on the MACS-Planck Radio Halo
Cluster Project. The aim of my work was to finish the analysis of the seven intermediate
redshift (z=0.3-0.45) galaxy clusters observed with the ATCA in search for diffuse radio
sources and the relation of the non-thermal emission with the dynamical state of the clusters
by performing an X-ray analysis.

Our radio analysis allowed us to discover a new giant Radio Halo and a candidate diffuse
source, both in disturbed clusters according to the X-ray analysis and both with relatively
high values of the concentration parameter. Our ATCA sub-sample contained one cool-
core cluster, which radio analysis doesn’t reveal the presence of a mini-halo. Three of our
analysed clusters showed evidence of being highly disturbed, and none of them showed traces
of hosting a diffuse radio source in our data. The X-ray analysis of a low-mass triple system
was impossible given the low X-ray statistics available for the system for which we didn’t
find evidence of a diffuse radio source. We were able to calculate upper limits for possible
RHs in the case of the non-detections. Our upper limits are ∼ 10 times higher than previously
calculated upper limits, given the combination of the higher redshift of the sample compared
to previous works and the higher frequencies of observation with the ATCA. Finally, we were
able to perform a first analysis of the already available GMRT sub-sample of the MACS-
Planck RHCP.

In our analysis we do not have a clear trend of any dependency of P1.4 vs M500 correlation
as a function of redshift (Fig. 5.12). We also noted that the claimed bi-modality of "radio
load" clusters hosting a RH and "radio quiet" clusters start to be questioned at the light of
recent discoveries such as the outlier discovered by Bonafede et al. (2015) and a number of
halos with ultra steep spectrum. It is, however, still difficult to obtain a strong conclusion
because of the lack of statistics. New generation surveys, such as EMU, are expected to in-
crease the number of diffuse radio sources, and therefore provide better statistics. I naively
speculate that more sources would also make things more difficult to classify, revealing fea-
tures of the ICM, or beyond, that are actually hidden from our observation capabilities (see
e.g. Giovannini et al., 2015, and references therein). Better observations may also reveal
cases of RHs that are related to the activity of cluster galaxies, as it can be the case of PSZ2
G262.73-40.92 in our ATCA sub-sample, has been found by other authors (e.g. Govoni et al.,
2012; Bonafede et al., 2014a), and probably it is the case for a number of the cases in the
GMRT sub-sample described in Sect. 6.3.

Based on the conclusions of my work it is evident that it would be necessary to go to lower
frequencies and higher sensitivities. New exciting results in this direction are being achieved
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by LOFAR. For instance, the LOFAR Two-metre Sky Survey (LoTSS) is a deep 120-168
MHz imaging survey that will eventually cover the entire northern sky. In the release of the
preliminary images, an excess of 44 000 sources are detected in an area of over 350 square
degrees. It is expected that LoTSS will reveal many new examples Rhs and other kind of
diffuse radio sources, and to unveil hidden features of the already known examples. In the
preliminary data release more than 30 massive detected galaxy clusters lie within the mapped
region, giving the possibility of performing studies of interesting objects and provides an
unbiased sample needed to better understand the prevalence of Rhs and other diffuse sources
in galaxy clusters (Shimwell et al., 2017). One of the main scientific motivations for LoTSS
is the detection of radio emission associated with the ICM of 100 galaxy clusters at z > 0.6
(Enßlin and Röttgering, 2002; Cassano et al., 2010a).

Detection of new sources will demand the need to update the P1.4 vs M500 plot. A big
number of other RHs have been discovered since the time for the publishing of Cassano et al.
(2013), although measured in frequencies different then 1.4 GHz (This is particularly true
in the case of ongoing LOFAR surveys). With all the new expected knowledge, a revision
of the scaling relations for giant RHs will be urgent. During the experiments performed in
the work done for this thesis, we found that plotting every RH find in Tables 3.2 and 3.3
we still recognize a trend, but with a considerable dispersion of the points. The difficulty
of interpreting this plot is that these sources have been detected by different instruments
and at different frequencies of observation. Therefore, it is extremely important to perform
observations with the same instrument in order to be able to do fair comparisons of, for
instance, flux density measurements of different objects.

We have mentioned the need of low frequency observations in the search for diffuse syn-
chrotron sources. But it is as important to have higher frequency observations, for instance,
to be able to perform spectral index studies. In this case, in this moment, a very adapted in-
strument is the Karl G. Jansky Very Large Array (JVLA) covering the frequency range from
1 to 6.5 GHz (e.g. van Weeren et al., 2017b) for follow up pointed observations, without
forgetting the EMU survey that will cover the whole southern hemisphere, and part of the
northern hemisphere (up to δ = 30○ ).

Make measurements of flux densities in a more uniform way, either by using automatic
tools or by following an approach that is not reduced to the measurements inside 3 σ contours.
For instance it could be very important to follow systematically a method similar to the one
adopted by Murgia et al. (2009) for mini-halos. In this case the radio surface brightness
profile of the diffuse source is fitted with an exponential law and integrated within a certain
physical distance from the cluster center. In the case for RH, it would be necessary then to
find the best function to fit the surface brightness profile.

Connecting with the mentioned big surveys, the need of large numbers statistics, etc., and
based on my experience on reducing the ATCA data for this work, an inevitable conclusion
is that the need of automatic data reduction methods is urgent. Apart for the time saving,
and the decrease of the computational cost, these techniques will have the virtue of being ho-
mogeneous, avoiding to introduce a human bias in the measurements related to the different
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approaches adopted for the data reduction.
An important part of this work was the relation between the non-thermal emission and

the dynamical state of the host cluster. In this thesis we have seen different approaches to
obtain a diagnosis of the clusters dynamical state, mainly based on the X-ray/Optical infor-
mation. There are still some controversies on what are, for instance, the boarders between
cool-core/non-cool-core or relaxed/disturbed clusters. In our ATCA sample we found that
slightly different choices for measurements, or threshold values, can change the diagnosis of
the dynamical state of the cluster. Actually, this issue was highly discussed internally with
our collaborators, and one of the "hot topics" in the Physics of the Intra-Cluster Medium
(PICM) 2017 conference. I hope that better understanding of diffuse radio sources will shed
light on this issue in the near future.

I believe that we are currently living the end of an age in the studies of diffuse synchrotron
sources related to the ICM, and the beginning of a new one. I am sure that new generation
powerful radio telescopes will transform our understanding of these sources in unexpected
ways by showing us all what is below the surface: we have just seen the tip of the iceberg.
A promising instrument that will unveil a lot of the radio "secrets" of the Universe is the
SKA. We do not have time here to discuss all the scientific goals included in this ambitious
project, but I would like to mention the expectations in the matter of non-thermal emission
from galaxy clusters. Based on realistic simulated observations of 2-years all-sky survey
with the first phase SKA1, in combination with newly developed deconvolution algorithms
based on sparse representations and optimised for the detection of faint diffuse astronomical
sources, it is expected that a completely independent catalog of new candidates of diffuse
cluster sources up to z ∼ 0.7 can be obtained (Ferrari et al., 2015). From predictions for
SKA1 surveys at low (100-300 MHz) and mid (1-2 GHz) frequencies assuming the expected
sensitivities and spatial resolutions of SKA1, it is expected to discovery of 1000 ultra-steep-
spectrum halos and to detect for the very first time "off state" RHs. It is also expected that
at least 2500 giant RHs will be discovered by SKA1-LOW surveys up to z ∼ 0.6. Moreover,
SKA1 surveys will be highly competitive with present and future SZ-surveys in the detection
of high-redshift massive objects (Cassano et al., 2015). We are living, beyond any doubt, the
renaissance of radio astronomy.
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Figure A.1: Final full-resolution, wide-band ATCA images of the cluster sample. Left pan-

els: Full field image centred on cluster coordinates. The outer circle denotes the boundary
of the primary beam with a radius of ∼0.22 degrees. The central 1 Mpc-diameter region is
indicated by the inner, blue smaller circle. Right panels: Zoom into the central area with 3 σ

contours of the corresponding map overlaid in red .Top: PSZ2 G262.73-40.92; Middle:PSZ2
G286.28-38.36 ; Bottom:PSZ2 G285.63-17.23.
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Figure A.2: Same as Fig. A.1. Top: PSZ2 G277.76-51.74; Middle: PLCK G334.8-38.0;
Bottom: PSZ2 G271.18-30.95.
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Figure B.1: Same as Fig. A.1. Top: MACSJ0011.7-1523 ; Middle: MACSJ0035.4-2015;
Bottom: MACSJ0152.5-2852.
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Figure B.2: Same as Fig. A.1. Top: MACSJ0159.8-0849 ; Middle: MACSJ0242.6-2132;
Bottom: MACSJ0257.6-2209.
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Figure B.3: Same as Fig. A.1. Top: MACSJ0404.6+1109; Middle: MACSJ0429.6-0253;
Bottom: MACSJ0520.7-1328.
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Figure B.4: Same as Fig. A.1. Top: MACSJ0547.0-3904; Middle: MACSJ1206.2-0847;
Bottom: MACSJ1319.9+7003.
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Figure B.5: Same as Fig. A.1. Top: MACSJ1427.6-2521; Middle: MACSJ1720.2+3536;
Bottom: MACSJ1731.6+2252.
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Figure B.6: Same as Fig. A.1. Top: MACSJ1931.8-2634; Middle: MACSJ2049.9-3217;
Bottom: MACSJ2140.2-2339.
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Figure B.7: Same as Fig. A.1. Top: MACSJ2229.7-2755; Middle: MACSJ2245.0+2637;
Bottom: PLCK G214.6+36.9.
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Figure B.8: Same as Fig. A.1. Top: PLCK G241.2-28.7; Middle: PLCK G272.9+48.8;
Bottom: PLCK G100.2-30.4.
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Figure B.9: Same as Fig. A.1. PLCK G250.0+24.1.
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ABSTRACT

Aims. We investigate the possible presence of diffuse radio emission in the intermediate redshift, massive cluster PLCK G285.0-
23.7 (z=0.39, M500 = 8.39 × 1014 M⊙).
Methods. Our 16cm-band ATCA observations of PLCK G285.0-23.7 allow us to reach a rms noise level of ∼ 11 µJy/beam on the
wide-band (1.1–3.1 GHz), full-resolution (∼ 5 arcsec) image of the cluster, making it one of the deepest ATCA images yet published.
We also re-image visibilities at lower resolution in order to achieve a better sensitivity to low-surface-brightness extended radio
sources.
Results. We detect one of the lowest luminosity radio halos known at z>0.35, characterised by a slight offset from the well-studied
1.4 GHz radio power vs. cluster mass correlation. Similarly to most known radio-loud clusters (i.e. those hosting diffuse non-thermal
sources), PLCK G285.0-23.7 has a disturbed dynamical state. Our analysis reveals a similarly elongated X-ray and radio morphology.
While the size of the radio halo in PLCK G285.0-23.7 is smaller than lower redshift radio-loud clusters in the same mass range, it
shows a similar correlation with the cluster virial radius, as expected in the framework of hierarchical structure formation.

Key words. galaxies: clusters: general – galaxies: clusters: individual: PLCK G285.0-23.7 – galaxies: clusters: intracluster medium
radiation mechanisms: non-thermal – radio: continuum: galaxies

1. Introduction

Radio halos (RHs) are Mpc-scale diffuse synchrotron sources
observed in the central regions of galaxy clusters (see e.g. Feretti
et al. 2012, for a recent observational review). Radio halos are
found in about one-third of massive clusters (see Cuciti et al.
2015, for an updated study) and are located in merging systems
(e.g. Cassano et al. 2013; see Bonafede et al. 2014 for a case of
radio halo in an apparently relaxed system).

It is generally believed that turbulence induced by mergers
in galaxy clusters can reaccelerate the relativistic electrons re-
sponsible for the origin of radio halos (see e.g. Brunetti et al.
2001; Petrosian 2001; Brunetti & Jones 2014, for reviews). This
scenario naturally explains the connection between radio halos
and mergers; however, it also poses fundamental questions on
the micro-physics of the mechanisms that are responsible for
the acceleration and transport of these relativistic electrons (see
Miniati 2015; Brunetti & Lazarian 2016, for recent discussions).

The study of the connection between radio halos and the ther-
mal properties of the hosting clusters sheds light on these mech-
anisms and in general on the interplay between thermal and non-
thermal components in these systems.

⋆ Gerardo.Martinez-Aviles@oca.eu

Several correlations between thermal and non-thermal prop-
erties of galaxy clusters have been found (P1.4–LX , P1.4–Mass,
P1.4–Y500; where P1.4 and Y500 are, respectively, the radio power
of halos at 1.4 GHz and the cluster integrated SZ signal within
the radius at which the mean mass density is 500 times the
critical density at the cluster redshift R500; see e.g. Basu 2012;
Cassano et al. 2013). In this respect radio follow up of X-ray
or mass-selected samples of galaxy clusters provide a unique
way to probe the formation of radio halos and their connection
with cluster mergers. Models predict that the bulk of radio halos
should be generated at z=0.2-0.4 (e.g. Cassano et al. 2006), yet
current statistical studies are available only for a limited range
of masses and redshifts (e.g. Cuciti et al. 2015).

In this framework, this work is part of the MACS-Planck
Radio Halo Cluster Project (Macario et al. 2014) conceived to
explore the origin and occurrence of RHs and their connection
with the dynamical state of the host systems by extending previ-
ous studies to a higher redshift range. Feretti et al. (2012) show
that the redshift distribution of clusters hosting RHs is homoge-
neous up to z=0.35, but statistically incomplete at higher red-
shifts. Our sample includes 32 intermediate redshift clusters (0.3
< z < 0.45), which are being analysed through deep ∼ 325 MHz
GMRT or ∼ 2.1 GHz ATCA observations, depending on the dec-
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Fig. 2. Final full-resolution, wide-band image of PLCK G285.0-23.7. The outer, big circle denotes the boundary of the primary beam with a radius
of ∼0.22 degrees. The central 1 Mpc diameter region is indicated by the inner, smaller red circle. The rms noise of this image is 11.3 µJy/beam
and the resolution is 5".

over 100 mJy sitting just outside of the primary beam were diffi-
cult to clean. They were modelled and subtracted from all of the
visibility data and the sub-bands were re-imaged. Details of the
resultant sub-band images are presented in Table 2. The first 200
MHz of the band is strongly affected by RFI meaning the image
at 1.3 GHz has the lowest sensitivity.

The sub-band images were convolved with a Gaussian to
a common resolution, slightly lower than the lowest resolution
sub-band image. The sub-band images were then added together
to create a final wide-band image (see Table 2). As the noise lev-
els in the sub-band images are mostly identical for the three high-
est bands and only differed marginally in the lowest frequency
band, it was not necessary to weight the images relative to the
sensitivities in the mosaicing process. The final deep ATCA im-
age achieves a root mean squared (rms) noise of ∼11 µJy/beam
measured with AIPS TVSTAT at the field centre in regions inside
the primary beam without any trace of point sources or diffuse
emission. We get a dynamic range of 10,000:1, making it one of
the deepest, highest dynamic range ATCA images yet published,
equal to the recent image of the Bullet Cluster at 11µJy/beam
(Shimwell et al. 2014, 2015). The image is shown in Fig. 2.

A visual inspection of our full-resolution ATCA image of
PLCK G285.0-23.7 shows no obvious presence of diffuse radio
emission in the central area where the cluster lies (see Fig. 2
and Fig. 3 for a zoomed version on the cluster). In order to in-
vestigate the possible presence of low-surface-brightness dif-
fuse sources in the cluster, visibilities were re-imaged with a

robust=0.5 weighting and a ∼ 9 kλ Gaussian tapering was ap-
plied allowing a FWHM of ≈ 30 arcsec (see Table 2). Again, data
were imaged in each of the four sub-bands with the taper applied
and then mosaicked into a single deep map (see Table 2). A dif-
fuse, low-surface-brightness source is detected coincident with
the cluster core.

3. Results

3.1. Detection and characterisation of a radio halo in
PLCK G285.0-23.7

Contours of the low-resolution radio map of PLCK G285.0-
23.7 are overlaid on the X-ray XMM image of the same sky
region in Fig. 4. The morphology of the diffuse radio source
matches very closely the thermal ICM X-ray emission in terms
of extension and of elongation (with a main axis along the east–
west direction). This, together with the disturbed dynamical state
of the cluster suggested by its X-ray morphology and density
profile (Planck Collaboration et al. 2011), allows us to confi-
dently classify the diffuse source in PLCK G285.0-23.7 as a clas-
sical RH.

We now examine the radio flux density of the diffuse source
on the tapered image relative to Block 3 (ID 2 in Table 3), i.e.
the image centred at 1.867 GHz and characterised by an aver-
age rms noise level of 51.1 µJy/beam (Table 2), as it shows the
best sensitivity to the diffuse radio emission. Owing to the typi-
cal spectral behaviour of radio halos (with synchrotron spectral
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Fig. 3. Contours of the ATCA tapered image centred at 1.867 GHz are overlaid on the ATCA wide-band tapered (left) and full-resolution maps
(right). Dashed contours correspond to the islands of significant emission detected by PyBDSM on the Block 3 tapered map (cyan contours in

Fig.A.1). The continuous curves trace instead “classical” 3, 3 ×
√

2, 6 σ contours (i.e. with the 51.1 µJy/beam rms value of the map estimated by
hand on the Block 3 tapered map at ∼ 30 arcsec resolution; see Table 2).

Fig. 4. Radio contours of the ATCA tapered image centred at 1.867 GHz
overlaid on the smoothed raw XMM image in the [0.3-2.0] keV energy
band of PLCK G285.0-23.7 (Planck Collaboration et al. 2011). Contour
levels are the same as in Fig. 3.

index α &1)1, the rms sensitivity of our maps is comparable from
Block 1 to Block 3; however, a lower luminosity is expected
for the diffuse radio source at the higher frequencies sampled
by Blocks 1 and 2. In terms of sensitivity to steep synchrotron
sources, Block 4 would have been the optimal frequency range
in which to measure the radio halo flux density, if it had not been
badly affected by RFI (∼60% of the data were flagged).

The total flux density was first measured on the Block 3 ta-
pered image by integration over the source image within 3σ con-
tours using the AIPS task TVSTAT. By overlaying the 5σ con-
tours corresponding to the full-resolution wide-band radio map
on the optical image of the cluster central region, we identify
two point-like significant objects lying within the region occu-
pied by the diffuse source on the low-resolution radio map. The
two compact radio sources show quite clear optical counterparts
(see Fig. 5). We measured their flux densities using the AIPS

1 In this paper we use the convention S(ν) ∝ ν−α, with S(ν) being the
radio flux density.

Images ID Angular size Physical size Flux
(’×’) (kpc × kpc) (mJy)

ID 1 2.34 × 1.34 742 × 425 2.02±0.25
ID 2 " " 2.11±0.26

ID 2 ss " " 1.95±0.25

ID 1 2.98 × 1.60 945 × 507 2.37±0.34
ID 2 " " 2.53±0.35

ID 2 ss " " 2.17±0.44

Table 3. Physical properties of the diffuse radio source at 1.867 GHz
from tapered images. Col. 1 gives the identification numbers of the ta-
pered images on which we have performed the measurements: ID 1:
Image with source subtraction in uv-data; ID 2: Image without source
subtraction in uv-data; ID 2 ss: Image of ID2 after removing by hand
the flux of point sources identified in the image plane. Col. 2 and Col. 3
correspond to the angular and physical size of the source, respectively
(see text). Col. 4 reports the flux of the diffuse radio sources as mea-
sured with TVSTAT within the 3 σ contours of the map with ID 2 (top),
with TVSTAT within the 3 σ contours calculated by PyBDSM for the
map with ID 2 (bottom).

verb JMFIT and we subtracted them from the total flux density
measured inside the 3σ contours of the tapered image.

To verify that large-scale diffuse emission is not caused by
the blending of discrete sources and to get a complementary flux
measurement, we then produced an image of the diffuse clus-
ter emission by subtracting compact sources in the uv-plane. We
first identified the clean components of the discrete sources by
using only the longest baselines (uv-range 3.6-40.0 kλ). These
components were then subtracted from the original data set in
the uv-plane by using the MIRIAD task UVMODEL. At this
point, we calculated the flux density of the residual diffuse emis-
sion by integrating the surface brightness down to the same re-
gion considered before, i.e. within the 3σ level of the non-point
source subtracted tapered map (ID 1 in Table 3). The results of
these flux density measurements are given in the top part of Ta-
ble 3. The error in flux density is calculated following the for-

mula ∆F =
√

(σrms)2Nbeam + 0.01F2, where F is the measured
flux density and Nbeam is the number of beams contained in the
measured area.
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Fig. 5. Zoom in the HST-ACS image of PLCK G285.0-23.7 central field
(available in the HST archive). For reference, the 3 σ contour of the
ATCA tapered image centred at 1.867 GHz is shown in black. The
blue contours indicate sources of significant radio emission in the full-
resolution deep ATCA image of the cluster (i.e. 5 × rms of the final
wide-band ATCA map shown in Fig. 2).

Table 3 shows the results of the different flux density mea-
surements; all the values are consistent within the error bars. The
flux measurement that we adopt in our following analysis is the
one measured in the tapered map with point source subtracted
from the uv-plane (ID1 in Table 3), for which we obtain a flux
density of 2.02±0.25 mJy at 1.867 GHz.

In order to get an estimate of the size of the diffuse radio
source, we measured the smallest ellipse that fully contains the
3σ contours of the Block 3 tapered map without point source
subtraction (ID2 in Table 3). We obtain an angular extent of 2.34’
× 1.34’, which, for our cosmology, corresponds to a major and
minor axis of ∼ 742 kpc and 425 kpc, respectively (see Table 3).

Finally, we measured with TVSTAT the total flux density on
the ID1 and ID2 maps by following the contours of the signifi-
cant islands of emission identified by the source finder software
PyBDSM around the diffuse source (dashed contours in Fig. 3;
see Appendix A for details on the use of PyBDSM). The results
obtained following this final method are given in the bottom part
of Table 3.

3.2. Radio luminosity vs. cluster mass correlation

We calculated the power of the newly discovered diffuse radio
source and compared it with radio powers of previously discov-
ered halos. We selected objects firmly classified as giant radio
halos (i.e. with diffuse emission extending beyond the cluster
core), whose flux density has been measured through radio in-
terferometric observations and with a point source identification
and subtraction strategy very similar to ours, and with informa-
tion about M500 in the PSZ2 cluster catalog (Planck Collabora-
tion et al. 2015). The list of sources is presented in Table 4.

In order to convert all values to the cosmology adopted in this
paper and to take into account some inconsistencies found for
published radio powers, we compiled the total flux densities of
RHs reported in the literature (see Table 4). We then calculated
radio powers using the formula Lν = 4πD2

L
S ν(1+z)α−1, where DL

is the luminosity distance of the cluster. Whenever a measured
value of the spectral index is not available, we adopted α=1.3.

Traditionally RH powers are reported at 1.4 GHz; however,
owing to the lower quality of the Block 4 image centred at 1.381
GHz, we considered the most reliable sub-band map (centred at
1.867 GHz) and then extrapolated to obtain the 1.4 GHz radio

power. As the spectral index of the radio source is too uncertain
over the ATCA band owing to the very low surface brightness of
the object, we undertake this extrapolation assuming the value of
α=1.3. We obtain a value for the radio power at 1.4 GHz of 1.72
± 0.22 ×1024 W/Hz.

In Fig. 6 we plot the radio power vs. cluster mass for the
RH in PLCK G285.0-23.7 (shown as a red star) as compared
to all halos included in Table 4, which are indicated by trian-
gles (colour-coded based on the redshift of their host clusters),
except when they are classified as ultra steep spectrum (USS)
radio halos and/or when their flux was not measured at ≈1.4
GHz (see Table 4), in which case they appear as dots (keeping
the same colour code). Analogously to Cassano et al. (2013), we
fit a power-law relation using linear regression in the log–log
space and adopt a BCES–bisector regression algorithm (Akritas
& Bershady 1996). For the fitting, shown as a red line in Fig. 6
and characterised by a slope of 4.24 ± 0.14, we consider only
the RHs represented as triangles in Fig. 6. The best fit derived
by Cassano et al. (2013), traditionally reported in the literature,
has a slope of 3.77± 0.57. For completeness we also derived the
value for the slope using all radio powers of halos present in Ta-
ble 4 for the best fit, which is 4.05 ± 0.09. The three results are
consistent within the error bars. The RH in PLCK G285.0-23.7 is
slightly under-luminous with respect to the best-fit relation, but
is within the scatter of the observed data points. We also point
out that, based on the present radio data, we do not find a clear
trend with redshift of the P1.4 − M500 correlation.

Following Cassano et al. (2007), we show in Fig. 7 the po-
sition of the newly detected radio halo on the plot of radio
halo sizes as a function of the virial radius of their host clus-
ters. There is evidence that powerful radio halos are also big-
ger and hosted by more massive systems (e.g. Giovannini &
Feretti 2000; Kempner & Sarazin 2001; Cassano et al. 2007;
Murgia et al. 2009). Although it is a massive cluster (M500 ∼
8.39 × 1014 M⊙), PLCK G285.0-23.7 hosts a quite small radio

halo of radius
√

a ∗ b ∼ 281 kpc, where a and b are the semi-
major and semi-minor axis derived in Sect. 3.1. However, if we
consider the correlation between the size of the radio halos and
the virial radius of their hosting clusters (Fig. 7), we see that
PLCK G285.0-23.7 (red point) follows the trend of other radio
loud clusters. This occurs because PLCK G285.0-23.7 is at a
relatively high redshift (z ∼ 0.39), which means that its virial
radius, and thus its radio halo, is smaller (owing to the cosmo-
logical growth and virialisation of galaxy clusters) than those of
nearby clusters with the same mass.

4. Discussion and conclusions

We present high-sensitivity and wide-band (1.1 – 3.1 GHz)
ATCA observations of the galaxy cluster PLCK G285.0-23.7,
which reveals the presence of a diffuse radio source with an ex-
tension (major axis) of ≈ 700 kpc and a total 1.4 GHz power
of ≈1.7 ×1024 W/Hz, as extrapolated from measurements in the
500 MHz-wide sub-band centred at 1.867 GHz.

Both the diffuse nature of the source, which is not related
to blending of compact radio objects, and the comparison of our
high-sensitivity tapered radio map to the X-ray image of the clus-
ter allow us to classify the detected emission as a classical RH.
First, the morphology and size of the diffuse radio source indi-
cate a very similar distribution of the non-thermal ICM and the
thermal component, traced by its X-ray bremsstrahlung radia-
tion. Similarly to most known RHs, our newly detected halo is
thus hosted by a massive cluster (8.4 × 1014M⊙), and there are
strong indications that it is a merging system.
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Fig. 7. Correlation between radio halo sizes and the virial radius of their
host clusters (see Cassano et al. 2007). The newly detected radio halo
in PLCK G285.0-23.7 is indicated in red.

2013). For most of their lifetimes these systems are expected to
be “off-state” (i.e. under-luminous) or in the region spanned by
the correlation leading to an apparent bimodality (e.g. Brunetti
et al. 2009; Cassano et al. 2013). In this respect under-luminous
systems are expected to be generally associated with both young
or old mergers (Donnert et al. 2013); naively PLCK G285.0-
23.7 could be in one of these stages. On the other hand the spec-
trum of radio halos also plays a role, with ultra-steep-spectrum
radio halos, which are expected in less powerful mergers and at
higher redshift (as a result of stronger IC losses), being statisti-
cally under-luminous (Cassano et al. 2006; Brunetti et al. 2008;
Cassano et al. 2010) (see Fig. 6).

The new generation of more sensitive radio telescopes will
allow us to discriminate between these two possible scenarios
in the case of PLCK G285.0-23.7 and similarly weak radio loud
clusters through deeper multi-frequency radio observations.

Acknowledgements. We thank the referee for providing constructive comments
and help in improving the contents of this paper. We warmly thank Gianluca
Castignani for very useful discussions and Gabriel Pratt, Monique Arnaud, and
Iacopo Bartalucci for supplying the X-ray images. GMA is supported by the
Erasmus Mundus Joint Doctorate Program by Grants Number 2013-1471 from
the agency EACEA of the European Commission. GMA, CF, and MJ-H ac-
knowledge financial support from Programme National Cosmologie et Galaxies

(PNCG) and Université de Nice-Sophia Antipolis – Programme Professeurs In-

vités 2015. MJ-H acknowledges the Marsden Fund administered by the Royal
Society of New Zealand on behalf of the Ministry of Business, Innovation and
Employment. LP is funded via Marsden Funding to MJ-H. The Australia Tele-
scope Compact Array is part of the Australia Telescope National Facility, which
is funded by the Australian Government for operation as a National Facility man-
aged by CSIRO. The results of this paper are partially based on data retrieved
from the ESA Planck Legacy Archive, NASA SkyView, and the Hubble Legacy
Archive, which is a collaboration between the Space Telescope Science Insti-
tute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-
ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

References

Akritas, M. G. & Bershady, M. A. 1996, ApJ, 470, 706

Bacchi, M., Feretti, L., Giovannini, G., & Govoni, F. 2003, A&A, 400, 465
Basu, K. 2012, MNRAS, 421, L112
Bonafede, A., Brüggen, M., van Weeren, R., et al. 2012, MNRAS, 426, 40
Bonafede, A., Intema, H., Brüggen, M., et al. 2015, MNRAS, 454, 3391
Bonafede, A., Intema, H. T., Brüggen, M., et al. 2014, MNRAS, 444, L44
Brunetti, G., Cassano, R., Dolag, K., & Setti, G. 2009, A&A, 507, 661
Brunetti, G., Giacintucci, S., Cassano, R., et al. 2008, Nature, 455, 944
Brunetti, G. & Jones, T. W. 2014, International Journal of Modern Physics D,

23, 30007
Brunetti, G. & Lazarian, A. 2016, MNRAS, 458, 2584
Brunetti, G., Setti, G., Feretti, L., & Giovannini, G. 2001, MNRAS, 320, 365
Cassano, R., Brunetti, G., & Setti, G. 2006, MNRAS, 369, 1577
Cassano, R., Brunetti, G., Setti, G., Govoni, F., & Dolag, K. 2007, MNRAS, 378,

1565
Cassano, R., Ettori, S., Brunetti, G., et al. 2013, ApJ, 777, 141
Cassano, R., Ettori, S., Giacintucci, S., et al. 2010, ApJ, 721, L82
Clarke, T. E. & Ensslin, T. 2006, Astronomische Nachrichten, 327, 553
Cuciti, V., Cassano, R., Brunetti, G., et al. 2015, A&A, 580, A97
Dallacasa, D., Brunetti, G., Giacintucci, S., et al. 2009, ApJ, 699, 1288
Donnert, J., Dolag, K., Brunetti, G., & Cassano, R. 2013, MNRAS, 429, 3564
Farnsworth, D., Rudnick, L., Brown, S., & Brunetti, G. 2013, ApJ, 779, 189
Feretti, L., Fusco-Femiano, R., Giovannini, G., & Govoni, F. 2001, A&A, 373,

106
Feretti, L., Giovannini, G., Govoni, F., & Murgia, M. 2012, A&A Rev., 20, 54
Giacintucci, S., Dallacasa, D., Venturi, T., et al. 2011, A&A, 534, A57
Giacintucci, S., Kale, R., Wik, D. R., Venturi, T., & Markevitch, M. 2013, ApJ,

766, 18
Giacintucci, S., Venturi, T., Cassano, R., Dallacasa, D., & Brunetti, G. 2009, ApJ,

704, L54
Giovannini, G., Bonafede, A., Feretti, L., et al. 2009, A&A, 507, 1257
Giovannini, G. & Feretti, L. 2000, New A, 5, 335
Govoni, F., Feretti, L., Giovannini, G., et al. 2001, A&A, 376, 803
Govoni, F., Murgia, M., Feretti, L., et al. 2005, A&A, 430, L5
Kempner, J. C. & Sarazin, C. L. 2001, ApJ, 548, 639
Kim, K.-T., Kronberg, P. P., Dewdney, P. E., & Landecker, T. L. 1990, ApJ, 355,

29
Liang, H., Hunstead, R. W., Birkinshaw, M., & Andreani, P. 2000, ApJ, 544, 686
Lindner, R. R., Baker, A. J., Hughes, J. P., et al. 2014, ApJ, 786, 49
Macario, G., Intema, H. T., Ferrari, C., et al. 2014, A&A, 565, A13
Macario, G., Markevitch, M., Giacintucci, S., et al. 2011, ApJ, 728, 82
Miniati, F. 2015, ApJ, 800, 60
Mohan, N. & Rafferty, D. 2015, PyBDSM: Python Blob Detection and Source

Measurement, Astrophysics Source Code Library
Murgia, M., Govoni, F., Markevitch, M., et al. 2009, A&A, 499, 679
Norris, R. P., Afonso, J., Bacon, D., et al. 2013, PASA, 30, e020
Norris, R. P., Hopkins, A. M., Afonso, J., et al. 2011, PASA, 28, 215
Petrosian, V. 2001, ApJ, 557, 560
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2015, ArXiv e-prints

[arXiv:1502.01598]
Planck Collaboration, Aghanim, N., Arnaud, M., et al. 2011, A&A, 536, A9
Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, in Astronomical Society of

the Pacific Conference Series, Vol. 77, Astronomical Data Analysis Software
and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes, 433

Shakouri, S., Johnston-Hollitt, M., & Pratt, G. W. 2016, MNRAS
Shimwell, T. W., Brown, S., Feain, I. J., et al. 2014, MNRAS, 440, 2901
Shimwell, T. W., Markevitch, M., Brown, S., et al. 2015, MNRAS, 449, 1486
Steer, D. G., Dewdney, P. E., & Ito, M. R. 1984, A&A, 137, 159
Vacca, V., Govoni, F., Murgia, M., et al. 2011, A&A, 535, A82
van Weeren, R. J., Brüggen, M., Röttgering, H. J. A., et al. 2011, A&A, 533, A35
van Weeren, R. J., Fogarty, K., Jones, C., et al. 2013, ApJ, 769, 101
van Weeren, R. J., Röttgering, H. J. A., Brüggen, M., & Cohen, A. 2009, A&A,

505, 991
Venturi, T., Giacintucci, S., Dallacasa, D., et al. 2013, A&A, 551, A24

Article number, page 7 of 11



A&A proofs: manuscript no. 28788_16

Table 4. Collection of clusters known to host a giant radio halo (see Sect. 3.2). Clusters marked with U host USS radio halos. Col. 1: Cluster name;
Col. 2: SZ mass proxy (M500) from the last PSZ2 Planck cluster catalog (Planck Collaboration et al. 2015); Col. 3: Redshift from PSZ2 Planck
cluster catalog (Planck Collaboration et al. 2015); Col. 4: Radio flux density at frequency given in Col. 5; Col. 6: Radio Power at 1.4 GHz; Col. 7:
References to the radio flux density.

Name MSZ z Flux density Freq. Power at 1.4 GHz References

(×1014M⊙) (mJy) (GHz) (×1024WHz−1)

A209 8.4642+0.2837
−0.3160

0.206 16.9±1 1.4 2.19±0.17 1

A520 7.8003+0.4033
−0.4131

0.203 34.4±1.5 1.4 4.65±0.63 2

A521U 7.2556+0.4743
−0.4887

0.2475 6.4±0.6 1.4 1.44±0.14 3

A545 5.3940+0.4059
−0.4098

0.154 23±1 1.4 1.55±0.09 4

A665 8.8590+0.3230
−0.3202

0.1818 43.1±2.2 1.4 4.03±0.28 5

A697U 10.9984+0.3716
−0.3671

0.282 5.2±0.5 1.4 1.53±0.15 6

A746 5.3352+0.3917
−0.4028

0.2323 18±4 1.382 3.03±0.69 6

A754U 6.8539+0.1249
−0.1277

0.0542 83±5 1.4 0.60±0.04 7

A773 6.8474+0.3362
−0.3110

0.2172 12.7±1.3 1.4 2.50±0.36 2

A1300U 8.9713+0.4587
−0.4537

0.3075 130±10 0.325 3.55±0.35 8

A1351 6.8676+0.3799
−0.3812

0.322 32.4±3.2 1.4 11.97±1.51 9

A1656 7.1652+0.0674
−0.1073

0.0231 720±130 1.0 0.69±0.13 10

A1689 8.7689+0.3368
−0.3368

0.1832 91.6±2.7 1.2 7.46±0.52 11

A1758 8.2173+0.2727
−0.2824

0.2799 16.7±0.8 1.4 4.42±0.37 1

A1914 7.2358+0.2582
−0.2612

0.1712 64±3 1.4 5.91±0.38 4

A1995 4.9242+0.3773
−0.3691

0.3179 4.1±0.7 1.4 1.47±0.28 1

A2034 5.8503+0.2294
−0.2337

0.113 13.6±1.0 1.4 0.46±0.04 1

A2163 16.1164+0.2968
−0.2922

0.203 155±2 1.4 20.58±1.17 12

A2219 11.6918+0.2500
−0.2743

0.228 81±4 1.4 12.24±0.65 4

A2254 5.5870+0.3597
−0.3548

0.178 33.7±1.8 1.4 3.14±0.22 2

A2255 5.3828+0.0586
−0.0612

0.0809 56±3 1.4 0.93±0.06 13

A2256 6.2107+0.1012
−0.0915

0.0581 103.4±1.1 1.4 0.87±0.02 14

A2294 5.9829+0.3671
−0.3741

0.178 5.8±0.5 1.4 0.54±0.05 1

A2319 8.7351+0.1132
−0.1240

0.0557 328±28 1.4 2.45±0.21 15

A2744 9.8356+0.3947
−0.3754

0.3066 57.1±2.9 1.4 19.28±2.76 2

A3411 6.5925+0.3094
−0.3106

0.1687 4.8±0.5 1.4 0.38±0.04 16

A3888 7.1948+0.2639
−0.2590

0.151 27.57±3.13 1.867 1.89±0.22 17

PLCKG285.0-23.7 8.3925+0.3332
−0.3404

0.39 2.02±0.25 1.867 1.72±0.22 18

PLCKG171.9-40.7U 10.7102+0.4931
−0.4963

0.27 18±2 1.4 4.98±0.58 19

RXCJ0949.8+1708 8.2387+0.4644
−0.4561

0.38 21.0±2.2 0.323 1.75±0.76 20

RXCJ0107.7+5408 5.8478+0.3030
−0.3117

0.1066 55±5 1.382 1.62±0.15 6

RXCJ1514.9-1523 8.8607+0.4054
−0.4578

0.2226 102±9 0.327 1.56±0.48 21

RXCJ2003.5-2323 8.9919+0.4444
−0.4885

0.3171 35±2 1.4 12.54±0.75 9

MACSJ1149.5+2223U 10.4178+0.5207
−0.5451

0.545 29±4 0.323 2.54±1.22 22

MACSJ0717.5+3745 11.4871+0.5347
−0.5482

0.546 41.5±4.1 1.4 51.45±8.43 23
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Table 4. continued.

Name MSZ z Flux density Freq. Power at 1.4 GHz References

(×1014M⊙) (mJy) (GHz) (×1024WHz−1)

MACSJ1752.0+4440 6.7475+0.4377
−0.4543

0.366 164±13 0.323 11.84±1.56 22

MACSJ0553.4-3342 8.7720+0.4399
−0.4629

0.431 62±5 0.323 6.87±2.96 22

CIZAJ1938.3+5409 7.5779+0.2876
−0.2809

0.26 11.0±1.2 0.323 0.36±0.16 20

CL0016+16 9.7937+0.5293
−0.5314

0.5456 5.5±0.5 1.4 7.43±1.63 5

1E0657-56 13.1003+0.2874
−0.2931

0.2965 78±5 1.4 23.68±2.30 24

El Gordo 10.7536+0.4781
−0.4721

0.87 2.43±0.18 2.1 10.20±0.99 25

References. (1) Giovannini et al. (2009); (2) Govoni et al. (2001); (3) Dallacasa et al. (2009); (4) Bacchi et al. (2003); (5) Giovannini & Feretti
(2000); (6) van Weeren et al. (2011); (7) Macario et al. (2011); (8) Venturi et al. (2013); (9) Giacintucci et al. (2009); (10) Kim et al. (1990);
(11) Vacca et al. (2011); (12) Feretti et al. (2001); (13) Govoni et al. (2005); (14) Clarke & Ensslin (2006); (15) Farnsworth et al. (2013);(16) van
Weeren et al. (2013);(17) Shakouri et al. (2016); (18) This paper; (19) Giacintucci et al. (2013); (20) Bonafede et al. (2015); (21) Giacintucci et al.
(2011); (22) Bonafede et al. (2012); (23) van Weeren et al. (2009); (24) Liang et al. (2000); (25) Lindner et al. (2014).
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Appendix A: Detection of the source using PyBDSM

The use of packages for the automatic detection of radio sources
is becoming more and more necessary and common, especially
in the era of the new generation of deep and wide radio surveys
that will ultimately bring to the SKA a revolutionary view of the
long-wavelength sky (see e.g. Norris et al. 2013). In this frame-
work, and in order to get a complementary measure of the total
flux density of the diffuse radio source, we ran the automatic
source finder PyBDSM (Mohan & Rafferty 2015) on the tapered
images with and without point source subtraction from the uv-
data. It is worth noting that PyBDSM finds significant emission
in both maps, corresponding to the diffuse radio source that we
found by visual inspection and analysis on the maps (see e.g.
Fig. A.1).

We used the threshold technique of the PyBDSM
process_image task2, which locates islands of emission above
some multiple of the noise in the image (thresh_isl parame-
ter, set to 3σ here). This determines the region where fitting is
done. In addition, we set to 5σ the source detection threshold
in number of sigma above the mean (thresh_pix parameter).
Finally, we activated the wavelet module of process_image
(i.e. atrous_do=True), which improves the detection of diffuse
sources by doing wavelet transforms at increasing scales of the
residual image after subtraction of the initial fitted Gaussians.
The modelled Gaussians are shown in the bottom right panel of
Fig. A.1, while the top right panel shows the islands of signif-
icant emission (cyan) and the position of the fitted Gaussians.
Violet ellipses indicate the sources identified on the input radio
map (top left), while the red empty ellipse shows the extended
source recovered through the wavelet analysis. As shown in the
residual maps (bottom left), we nicely managed to fit most of the
source components, in particular the central diffuse source.

The final output catalogs of PyBDSM give a list of all
the Gaussian functions fitted to model the significant emission
within the input radio maps and give a source list where different
Gaussians are grouped together if they satisfy objective criteria
to be considered as a single source. For each detected source,
PyBDSM provides the values of the FWHM of the major and
minor axis and the total integrated Stokes I flux density. To sub-
tract the contribution of point sources in the ID2ss case reported
in Table 3, we ran PyBDSM on the full-resolution Block 3 image
of the cluster. The flux densities of compact sources obtained in
this way and contained within the cyan region of Fig. A.1 were
then subtracted from the total flux density of the diffuse source
obtained in the ID 2 case.

The size and flux density of the newly detected radio halo
are given as an output of PyBDSM, being 5.76 arcmin × 4.34
arcmin (914 kpc × 689 kpc) and 4.91 ±0.04 mJy for the map
with ID1. In the case of ID2 and ID2ss, we obtained a halo size
of 4.48 arcmin × 2.70 arcmin, and flux densities of 4.08 ± 0.07
mJy and 3.72 ± 0.16 mJy, respectively.

We note here that, compared to classical measurements per-
formed “by hand” (Sect. 3.1 and Table 3), PyBDSM gives sys-
tematically higher values of both source sizes and total flux den-
sities. This is because with classical methods we integrate the
surface brightness of the diffuse source within a region delimited
by the 3σ contours, while this same region is used by PyBDSM
as a support to fit one (or multiple) Gaussian function(s) giving
the total flux density of the source(s) whose size is reconstructed
based on moment analysis. This last method tends to include flux

2 See http://www.astron.nl/citt/pybdsm/process_image.

html#general-reduction-parameters for detailed instructions of
process_image.

density coming from regions outside the original islands of sig-
nificant emission, in particular when the wavelet module, which
decomposes the residual image that results from the normal fit-
ting of Gaussians into wavelet images of various scales, is acti-
vated3.

Both methods are based on different assumptions. In the case
of classical “by-hand” measurements, for instance, it is assumed
that the mean value of the surface brightness of all pixels within
3σ contours multiplied by the number of synthesised beams
within the considered region is a proper measurements of the
integrated flux density for the whole RH. Instead, in the case of
PyBDSM, it is assumed that sources are correctly modelled by
one or more Gaussian functions of increasing size. We do not
conclude that one method is better than the other since they are
based on different approaches, but we definitely recommend not
directly comparing results obtained through a mix of the two dif-
ferent methods when producing plots such as our Fig. 6.

3 atrous_do parameter set to True. See http://

www.astron.nl/citt/pybdsm/process_image.html#

a-trous-wavelet-decomposition-module
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ABSTRACT

Aims. A fraction of galaxy clusters host diffuse radio sources whose origin is investigated through multi-wavelength studies of cluster
samples. We investigate the presence of diffuse radio emission in a sample of 7 galaxy clusters in the largely unexplored intermediate
redshift range (0.3 < z < 0.44).
Methods. In search for diffuse emission, deep radio imaging of the clusters are presented from wide band (1.1-3.1 GHz), full resolution
(∼5 arcsec) observations with the Australia Telescope Compact Array (ATCA). The visibilities are also imaged at lower resolution
after point source modelling and subtraction and after a taper is applied in order to achieve better sensitivity to low surface brightness
diffuse radio emission. In case of non-detection of diffuse sources, we set upper limits for the radio power of injected diffuse radio
sources in the field of our observations. Furthermore, we discuss the dynamical state of the observed clusters based on a X-ray
morphological analysis with XMM-Newton.
Results. We detect a giant Radio Halo in PSZ2 G284.97-23.69 (z=0.39) and a possible diffuse source in the nearly relaxed cluster
PSZ2 G262.73-40.92 (z=0.421). Our sample contains three highly disturbed massive clusters without clear traces of diffuse emission
at the observed frequencies. We were able to inject modelled radio halos with low values of total flux density to set upper detec-
tion limits, however, with our high-frequency observations we cannot exclude the presence of RH in these systems because of the
sensitivity of our observations in combination with the high z of the observed clusters.

Key words. galaxies: clusters: general – galaxies: clusters: individual: PSZ2 G284.97-23.69, PSZ2 G285.63-17.23, PSZ2 G262.73-
40.92, PSZ2 G277.76-51.74, PSZ2 G286.28-38.36, PSZ2 G271.18-30.95, PLCK G334.8-38.0 – galaxies: clusters: intracluster
medium radiation mechanisms: non-thermal – radio: continuum: galaxies

1. Introduction

Observations of diffuse synchrotron radio emission in clusters
of galaxies provide evidence of the interactions between ultra-
relativistic particles and magnetic fields in the Intra Cluster
Medium (ICM). At present, there are three main classes of large-
scale diffuse radio emission in clusters; relics, haloes and mini-
haloes.

Radio relics are large (∼1 Mpc) polarized diffuse sources
generally elongated in shape, present in the peripheral regions
surrounding galaxy clusters. The mechanism responsible for
their creation is associated with shocks generated in the ICM

⋆ Gerardo.Martinez-Aviles@oca.eu

caused by a merger (Brunetti & Jones 2014), although recently
some relic-radio galaxy association has been discovered (see e.g.
van Weeren et al. 2017). Radio mini-haloes are much smaller
(∼100 - 500 kpc) roundish sources present in cool-core clusters
(Giacintucci et al. 2017), surrounding a radio-loud active galac-
tic nucleus (AGN) present in the brightest cluster galaxy (BCG)
(Govoni et al. 2009). The origin of mini-halos is explained by
a population of relativistic particles re-accelerated in the turbu-
lence generated in the ICM by the mechanically-powerful AGN
or by gas sloshing in the cluster cool core (Mazzotta & Giacin-
tucci 2008), although these explanations are still debated.

Finally, radio halos (RHs) are Mpc-scale, low-surface bright-
ness radio sources observed to be centered in galaxy clusters,
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Table 1. Information of the clusters of the MACS-Planck RHCP ATCA sample. The names and alternative names of the clusters appear in Cols.
1 and 2. RA and DEC correspond to the coordinates for centring the ATCA observations (Cols. 3 and 4). The Planck Mass, X-ray luminosity
and Redshift (Cols. 5, 6 and 7, respectively) are taken from Planck Collaboration et al. (2016). ⋆ See Sect. 2 for a deeper discussion on PLCK
G334.8-38.0.

Cluster name Alternative name(s) RA DEC M500 (SZ) L500 Redshift

(h m s) (◦ ′ ′′) (× 1014 M⊙) (× 1044 erg/s)

PSZ2 G285.63-17.23 PSZ1 G285.62-17.23 08 43 44.40 -71 13 14.00 6.64±0.40 4.45±0.08 0.35
PLCK G285.6-17.2

PSZ2 G262.73-40.92 PSZ1 G262.72-40.92 04 38 17.20 -54 19 25.10 7.46±0.36 9.94±0.47 0.421
SPT-CLJ0438-5419
ACT-CL J0438-5419
PLCK G262.7-40.9

PSZ2 G277.76-51.74 PSZ1 G277.75-51.71 02 54 16.70 -58 56 44.00 9.69±0.38 9.46±0.07 0.438
SPT-CLJ0254-5857
PLCK G277.8-51.7

PSZ2 G286.28-38.36 PSZ1 G286.27-38.39 03 59 10.20 -72 04 46.10 5.94±0.40 4.07±0.02 0.307
PLCK G286.3-38.4

PSZ2 G271.18-30.95 PSZ1 G271.18-30.95 05 49 19.50 -62 05 16.00 7.37±0.32 18.95±0.16 0.37
SPT-CLJ0549-6205
PLCK G271.2-31.0

PSZ2 G284.97-23.69 PLCKESZ G284.99-23.70 07 23 18.40 -73 27 20.60 8.39±0.34 16.91±0.27 0.39
PLCK G285.0-23.7

PLCK G334.8-38.0⋆ - 20 52 16.80 -61 12 29.40 - - 0.35

with similar morphologies to the X-ray emission. Giant RH are
the focus of this paper. In recent years, the knowledge of the ori-
gin of RHs has moved towards a general consensus. The gener-
ally accepted scenario for the mechanism responsible of this kind
of diffuse emission is the re-acceleration of relativistic electrons
by the large scale turbulence generated in cluster mergers (see
e.g. Brunetti et al. 2001; Petrosian 2001; Brunetti & Jones 2014).
In agreement with this model, it is known that RHs tend to oc-
cur more frequently in massive galaxy clusters (see Cuciti et al.
2015, for a recent discussion), and most of them show evidence
of being merging systems. Moreover, a series of scaling rela-
tions between the thermal and non-thermal properties of galaxy
clusters (P1.4-Lx, P1.4-Mass, P1.4-Y500; where P1.4 and Y500 are,
respectively, the radio power of haloes at 1.4 GHz and the clus-
ter integrated Sunyaev-Zel’dovich (SZ) signal within R500

1) have
also been found (see e.g Basu 2012; Cassano et al. 2013). The
connection between mergers and the presence of a RH depends
on a complex combination of mechanisms and energy budgets.
There are a few cases reported in the literaure of the presence of
RHs in cool-core clusters, or clusters being minor mergers (see
e.g. Kale & Parekh 2016; Bonafede et al. 2014, 2015; Sommer
et al. 2017), and there is also evidence of merging clusters with-
out detected RHs (Cassano et al. 2010; Russell et al. 2011).

Fundamental questions about the micro-physics of electron
acceleration and transport mechanisms need still to be answered
to characterise the non-thermal physics of clusters. Statistical
studies of RHs and their host systems can shed light on the mech-
anisms needed to complete the picture of the physics of RHs

1 R500 is the radius at which the mean mass density is 500 times the
critical density at the cluster redshift.

and their connection with cluster mergers. Current knowledge of
RHs is mostly based on high mass galaxy cluster samples. An
important study on RH ocurrence is the Giant Metrewave Radio
Telescope (GMRT) Radio Halo Survey (GRHS) (Venturi et al.
2007, 2008) and the extended sample (E-GRHS) (Kale et al.
2013, 2015), with the aim of exploring the origin and ocurrence
of RHs, as well as their connection with the dynamical state of
the host systems. The authors picked galaxy clusters with a red-
shift range z = 0.2-0.4, X-ray luminosities Lx (0.1-2.4 keV) > 5
× 1044 erg s−1 and declinations δ > -31◦ to ensure a good uv-
coverage with the GMRT. This sample is however effectively
limited to z < 0.33. Mass-based selections are motivated by the
assumption that the selection of high X-ray luminosity merging
systems have more chances of detection of diffuse radio sources.
To start filling this observational gaps, previous works investi-
gated the presence of diffuse radio emission with an unbiased
sample on X-ray morphology and in a wide range of masses
(Shakouri et al. 2016, Shakouri et al. submitted).

Although a number RHs have been discovered at z > 0.3,
a complete statistical sample is missing in this redshift regime
(see Feretti et al. 2012). On the other hand, it is expected from
models (see Cassano et al. 2004, 2006) that a larger fraction of
RH occurrence may appear at z=0.3-0.4. This is simply because
most of the energy budget in the hierarchical grow of clusters
is dissipated via massive mergers in this redshift range. In this
paper, we present the results of a series of radio observations of
seven galaxy clusters in this redshift regime performed with the
ATCA telescope, together with an X-ray analysis of the dynam-
ical status of the target clusters.

This work is organized in the following way: Sect. 2 de-
scribes the criteria for the sample selection. In Sect. 3 we present
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the observations together with the data reduction and the image
reconstruction strategy. The analysis of the high resolution, ta-
pered and compact source subtracted radio images appears in
Sect. 4. In Sect. 5 we present the X-ray morphological analysis
of the cluster sample. The results of the paper appear in Sect. 6.
Finally, the discussion and conclusions are presented in Sect. 7.
Throughout this paper, we adopt the ΛCDM cosmology with the
values Ho=70 km s−1 Mpc−1, ΩM=0.3, ΩΛ=0.7.

2. Sample selection

This paper presents the results of a sub-sample of the MACS-
Planck Radio Halo Cluster Project (RHCP). The project was
conceived as a continuation of the E-GRHS project (see Sect.
1) by extending the statistics of RHs up to z=0.45. The Macs-
Planck RHCP consists of a total 48 galaxy clusters, all of them
taken from the MACS Brightest Cluster X-ray catalogue (Ebel-
ing et al. 2010) and the list of newly discovered Planck SZ
clusters confirmed with the XMM-Newton validation program
(available at the time of the proposal, see Planck Collaboration
et al. 2011b). For the project, all the clusters from both samples
that are located in the range z = 0.3-0.45 were selected. In our
sample we have a total of 33 MACS clusters and 15 Planck SZ
clusters. The scope of this paper is to publish the analysis of the
ATCA sub-sample. Information about the complete sample will
appear in a forthcoming paper (Venturi et al., in prep.).

From the total number of selected clusters, 32 were lacking
published radio information. The declination range of the sample
required observations to be done with two different telescopes,
depending on the declination of the targets. Based on the targets
visibility and the uv-coverage constraints to achieve the desired
sensitivities to detect diffuse radio emission, a threshold of δ =
-40◦ was defined. This threshold divided the total sample into
two groups:

a) Those lying in the range of δ > -40◦ (25 clusters in total)
were observed with the GMRT at ∼ 325 MHz, and the results of
these observations will appear in a forthcoming paper (Venturi
et al., in prep.).

b) The remaining seven galaxy clusters ATCA observations
are centred at 2.1 GHz with a bandwidth of 2000 MHz. Informa-
tion about the clusters from the ATCA sample appears in Table
1. It is worth mentioning that it was a matter of pure chance that
all the clusters observed with the ATCA were Planck clusters.

It is important to mention that the measurements of redshift
and mass for PLCK G334.8-38.0 are quite challenging being a
low-mass triple system. Having very poor X-ray statistics we can
not analyse the system by proceeding in the same way we have
done for the other clusters of the sample. We notice, however,
that the mass of the components, even taken all together (M ∼
3.4 × 1014M⊙), is significantly lower than the typical mass of
known radio loud systems.

3. Radio observations and data reduction

Radio observations of the ATCA sample were done with three
separate array configurations for each observed cluster (Table 2)
using the Compact Array Broadband Backend (CABB) correla-
tor with a central frequency of 2.1 GHz and spanning 1.1-3.1
GHz (project ID C2679). Observations were carried out in con-
tinuum mode with the correlator set to produce 2000 × 1 MHz
channels. Details of the observations can be found in Table 2.
The primary flux scale was set relative to the unresolved source

PKS B1934-638 for which the detailed spectral behaviour is well
understood. The amplitude gain variations were checked during
the calibration of each observation for each sub-band image so
as to be not higher than ∼2%.2

Radio frequency interference (RFI) and bad channels were
excised manually from primary and secondary calibrators, as
well as the target, by using a combination of clipping algorithms
and visual inspection via the MIRIAD task PGFLAG (Sault et al.
1995). It was necessary to perform calibration on narrower fre-
quency intervals due to the nature of CABB data. After a number
of trials, we determined that 4 sub-bands of ∼500 MHz produce
the optimal results for these data. Thus, the target, primary and
secondary calibrator data are divided into the required sub-bands
coined Block 1 (from 2.631 GHz to 3.100 GHz), Block 2 (from
2.131 GHz to 2.630 GHz), Block 3 (from 1.631 GHz to 2.130
GHz) and Block 4 (from 1.130 GHz to 1.630 GHz). Each sub-
band is then self-calibrated in MIRIAD by using the task SELF-
CAL. Finally, the self-calibration solutions were saved by using
the task UVAVER.

4. Radio analysis

4.1. High resolution images

Four images were created, one for each of the 4 sub-bands, out to
the primary beam by using the task INVERT and a Steer CLEAN
(Steer et al. 1984) was applied to all sources within the primary
beam. The sub-band images were then convolved to a common
size by application of a Gaussian corresponding to the lowest
resolution image and then added together to create a final wide-
band image (see Table 3). The noise levels in the sub-band im-
ages are very similar for the three highest bands and only dif-
fered slightly in the lowest frequency band; it was not necessary
to weight the images relative to the sensitivities in the mosaicing
process.

The radio contours of the central Mpc diameter area from
our high resolution images are overlaid on the XMM-Newton X-
ray images in Fig. 1 (yellow contours). In Figs. A.1 and A.2 we
show the high resolution ATCA radio maps for the wide field
and the zoomed cluster regions3. The final deep ATCA images
root mean squared (rms) noise is measured with AIPS TVSTAT
at the field centre in regions inside the primary beam without
any trace of point sources or diffuse emission. The information
of the images (rms noises and resolutions) is shown in Table 3.
A visual inspection of the seven high resolution images does not
reveal obvious presence of diffuse radio emission in the central
area where the clusters of the sample lie.

4.2. Tapering and diffuse source search

We proceeded to subtract the compact radio sources from the
uv-data. Using the self-calibrated data, we imaged the visibili-
ties for the longest baselines (uv-range from 3.6 to 40 kλ, which
translates to angular scales from ∼5 to ∼57 arcseconds) and
subtracted the corresponding clean components from the self-
calibrated uv-data by using the MIRAD task UVMODEL. This
creates a new uv-data set which was re-imaged. Again, none of
the seven clusters showed the obvious presence of diffuse emis-
sion in the central area in the compact source subtracted high
resolution images.

2 see http://www.atnf.csiro.au/observers/memos/d96783 1.pdf.
3 The high resolution images from PSZ2 G284.97-23.69 have been
published in Martinez Aviles et al. (2016).
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Table 2. Details of the observations towards the clusters selected for observations with ATCA. Cluster name (Col. 1); dates of observations (Col.
2) with different array configurations (Col. 3); Observation time (Col. 4); phase calibrator (Col. 5). The central frequency is at 2.1 GHz and the
total observed bandwidth is 2 GHz.

Cluster name Date Config. Observation Calibrator
time (min.)

PSZ2 G285.63-17.23 2015-Jun-12 1.5C 549 PKS B0606-795
2012-Jun-29 750A 442 PKS B0606-795

2012-Jun-07-08 6D 1132 PKS B0637-752

PSZ2 G262.73-40.92 2013-Mar-05 6A 353 PKS B0420-625
2013-Feb-02 750C 354 PKS B0420-625
2012-Nov-23 1.5C 354 PKS B0420-625

PSZ2 G277.76-51.74 2013-Sep-03-04 1.5A 1140 PKS B0302-623
2013-Jul-31 750D 1061 PKS B0302-623

2013-Aug-01 750D 152 PKS B0302-623
2013-May-11-12 6C 1188 PKS B0302-623

PSZ2 G286.28-38.36 2013-Mar-05 6A 384 PKS B0252-712
2012-Feb-02 750C 354 PKS B0252-712
2012-Nov-23 1.5C 413 PKS B0252-712

PSZ2 G271.18-30.95 2013-Mar-05 6A 354 PKS B0420-625
2013-Feb-02 750C 294 PKS B0420-625
2012-Nov-23 1.5C 353 PKS B0420-625

PSZ2 G284.97-23.69 2012-Jun-08 6D 704 PKS B1036-697
2012-Jun-09 6D 523 PKS B0606-795
2012-Jun-29 750A 531 PKS B0606-795
2013-Sep-06 1.5A 804 PKS B0606-795

PLCK G334.8-38.0 2013-Sep-03-04 1.5A 1131 PKS B0302-623
2013-Jul-30 750D 1203 PKS B1934-638

2013-May-12 6C 1297 PKS B1934-638

Table 3. Properties of the full resolution and the Block 3 compact source subtracted tapered 2000 MHz band-width radio maps centred at 2.1 GHz.
The rms noise of the images appears in Col. 2, while the resolutions and position angles are shown in Cols. 3 and 4, respectively.

Cluster Name
rms noise (µJy/beam) Beam size (′′ × ′′) PA (deg)

Full resolution Taper Full resolution Taper Full resolution Taper

PSZ2 G285.63-17.23 22.4 92 6.85 × 4.07 43 × 17 -8.13 89.07

PSZ2 G262.73-40.92 19.7 83 6.39 × 4.15 32 × 25 -2.45 -7.67

PSZ2 G277.76-51.74 15.4 65 5.55 × 4.25 35 × 28 1.99 58.04

PSZ2 G286.28-38.36 19.4 57 5.00 × 4.46 28 × 26 -11.00 -46.47

PSZ2 G271.18-30.95 22.1 74 5.80 × 4.21 31 × 25 -1.30 -28.70

PSZ2 G284.97-23.69 11.3 51 5.20 × 4.38 31 × 23 -42.31 -81.17

PLCK G334.8-38.0 16.1 71 3.19 × 2.20 34 × 23 9.96 2.96

In order to investigate the possible presence of low-surface
brightness radio emission in the clusters, the point source sub-
tracted visibilities were re-imaged with a robust=0.5 weighting
and applying a ∼ 9 kλ Gaussian taper. Traditionally, measure-
ments of flux densities of RHs are reported at the central fre-
quency of 1.4 GHz. It is worth mentioning that from the typi-
cal spectral behaviour of radio halos (α & 1 synchrotron spec-
tral index4) it is expected lower luminosities for higher frequen-
cies. Because of its lower central frequency, the Block 4 sub-
band would be ideal to do flux density measurements, but it is
also strongly affected by RFI (50-60 % of the data was flagged).

4 In this paper we use the convention S(ν) ∝ ν−α, being S(ν) the radio
flux density.

In our images we have comparable rms sensitivities for the fre-
quency range running from Block 3 to Block 1. This set of con-
ditions makes Block 3 centred at ∼ 1.9 GHz the most suitable
sub-band to do flux density measurements. In Table 3 we report
the main features for the set of the source subtracted Block 3
tapered images.

In search of residual diffuse emission in the cluster areas we
set the classical 3σ contours in the compact source subtracted
Block 3 tapered images. In some cases, we did find contours
that correspond to positions of point sources visible in the high
resolution maps, due to an imperfect point source subtraction
or to the presence of some extended emission candidates (see
Sect. 6). Radio images that showed no evidence of the presence
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In the range of rms noises and resolutions of our images (see
Table 3), we determined that RH models with a total flux den-
sity of 3-5 mJy are the lowest values that can be injected in our
images to be considered as upper limits of detection. The radio
powers for the detection limits calculated at 1.4 GHz by using
the whole injected flux densities, assuming a spectral index of
1.3, are shown in Table 4.

5. X-ray dynamical state of the ATCA clusters

All the clusters of the ATCA sample benefit from X-ray ob-
servations from the XMM-Newton space telescope as part of
the validation program of Planck cluster candidates. The X-
ray data processing is detailed in Planck Collaboration et al.
(2011b). The cluster mass, M500, and corresponding R500, are
derived iteratively using the low scatter M500–YX scaling rela-
tion from Planck Collaboration et al. (2011b), where YX is the
product of the gas mass within R500 and the X-ray temperature
in the [0.15 − 0.75] R500 aperture. The density profiles were de-
rived from the surface brightness profile centered on the X–ray
emission peak, using the PSF-deconvolution and deprojection
method of Croston et al. (2008). From this analysis, we compute
two morphological parameters :

a) The surface brightness concentration parameter C:

C =
S X(< Rin)

S X(< Rout)
(1)

the ratio of the surface brightnesses S X within an inner aper-
ture Rin and a global aperture Rout. S X is the PSF-corrected sur-
face brightness, derived from the emission measure profile. In-
troduced in Santos et al. (2008) using Rin = 40 kpc and Rout =

400 kpc, this parameter has been widely used to probe the core
properties of clusters up to high redshift (e.g. Santos et al. 2010;
Hudson et al. 2010; Pascut & Ponman 2015). Here we choose
to use scaled apertures since the clusters of our sample cover a
wide redshift range, with Rin = 0.1 × R500, corresponding to the
typical size of the cool-core, and Rout = 0.5 × R500, which is a
characteristic size for the total flux.

b) The X-ray centroid-shift w, as defined in, for example,
Böhringer et al. (2010) within 10 circular apertures from 0.1 to
1 R500 excising the first central aperture:

w =

[

1

N + 1

∑

(∆i − 〈∆〉)2

]1/2

× 1

R500

(2)

where ∆i is the distance between the emission weighted centroid
within the ith aperture and the X-ray peak, N the number of aper-
tures

The centroid-shift is computed on the background-
subtracted, exposure-corrected co-added X-ray count images in
the 0.3-2 keV energy band after removal and refilling of the point
sources as in Böhringer et al. (2010).

The results are shown in Fig. 2, where we overplot for com-
parison the positions of objects from the REXCESS (open grey
circles; see Böhringer et al. 2010, for the centroid-shift values).
Fig. 2 includes also the systems in common between the samples
of Cassano et al. (2013) and Planck Collaboration et al. (2011a)
(blue points), for which we have computed the concentration pa-
rameter and the centroid-shift values as described above for the
ATCA sample.

Fig. 2. Concentration parameter C vs. centroid shift w for the galaxy
clusters of the RHCP sample analysed in this paper (red filled circles).
For comparison, we also show the clusters in the sample of Cassano
et al. (2013) that appear in the sub-sample of Planck clusters studied by
Planck Collaboration et al. (2011a) (PEPXI-C13, blue filled circles) for
which we applied our algorithm to compute the w values within R500.
The size of the circles is proportional to the log(M500), in the range
[14.67–15.3], and clusters with detected radio haloes are marked with
a cross. The characteristic thresholds indicating cool-cores and mor-
phologically disturbed systems (dashed lines) are from the REXCESS

study (Böhringer et al. 2007). The REXCESS clusters are shown as
open circles.

The horizontal and vertical dashed lines of Fig. 2 indicate
characteristic threshold values of each parameter that are typ-
ically used to separate out, respectively, cool-core and morpho-
logically disturbed systems. Following Pratt et al. (2009), we use
a value of w > 0.01 as indicative of a morphologically disturbed
system. Similarly, we define targets with C > 0.35 (equivalent to
the central density criterion used by Pratt et al. (2009)) as being
centrally peaked and thus cool-core systems.

We stress here that the limits indicated with dashed lines in
Fig.2 were obtained for the local REXCESS sample. Also the
sample analysed by (Cassano et al. 2013) is mostly made up
by lower redshift clusters compared to our targets. In addition,
we recall that, instead of using scaled apertures, Cassano et al.
(2013) adopted fixed physical sizes for computing the two pa-
rameters w (500 kpc) and C (S x(<100 kpc)/S x(500 kpc)). Their
choice was based on the theoretical consideration that, for a typi-
cal ∼1 Mpc-size RH, 500 kpc is expected to delimitate the region
where the energy of the merger is dissipated in particle acceler-
ation. These factors are however not expected to make our anal-
ysis significantly different from the approach of Cassano et al.
(2013), since recent works have proven that the adopted mor-
phological parameters neither depend significantly on the size of
the central region selected to estimate them (e.g. good agreement
between w measured within R500 and 0.5 R500), nor are limited by
resolution issues up to z ∼1 clusters (e.g. Bartalucci et al. 2017,
Lovisari et al., private communication). Our new estimates of the
C and w parameters, however, indicate that one of the radio-loud
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partially based on data retrieved from the ESA Planck Legacy Archive, NASA
SkyView and the Hubble Legacy Archive, which is a collaboration between the
Space Telescope Science Institute (STScI/NASA), the Space Telescope Euro-
pean Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data
Centre (CADC/NRC/CSA).
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Fig. A.1. Final full-resolution, wide-band ATCA images of the cluster sample. Left panels: Full field image centred on cluster coordinates. The
outer circle denotes the boundary of the primary beam with a radius of ∼0.22 degrees. The central 1 Mpc-diameter region is indicated by the inner,
blue smaller circle. Right panels: Zoom into the central area with 3σ contours of the corresponding map overlaid in red. Top: PSZ2 G262.73-40.92;
Middle: PSZ2 G286.28-38.36; Bottom: PSZ2 G285.63-17.23.
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Fig. A.2. Same as Figure A.1. Top: PSZ2 G277.76-51.74; Middle: PLCK G334.8-38.0; Bottom: PSZ2 G271.18-30.95.
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