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Abstract

This thesis deals with electric grid monitoring of power quality (PQ) disturbances using

parametric signal processing techniques. The first contribution is devoted to the paramet-

ric spectral estimation approach for signal parameter extraction. The proposed approach

exploits the multidimensional nature of the electrical signals. For spectral estimation, it

uses an optimization algorithm to minimize the likelihood function. In particular, this

algorithm allows to improve the estimation accuracy and has lower computational com-

plexity than classical algorithms. An in-depth analysis of the proposed estimator has

been performed. Specifically, the estimator performances are evaluated under noisy, har-

monic, interharmonic, and off-nominal frequency environment. These performances are

also compared with the requirements of the IEEE Standard C37.118.2011. The achieved

results have shown that the proposed approach is an attractive choice for PQ measure-

ment devices such as phasor measurement units (PMUs).

The second contribution deals with the classification of power quality disturbances in

three-phase power systems. Specifically, this approach focuses on voltage sag and swell

signatures. The proposed classification approach is based on two main steps: 1) the signal

pre-classification into one of 4 pre-classes and 2) the signature type classification using

the estimate of the symmetrical components. The classifier performances have been eval-

uated for different data length, signal to noise ratio, interharmonic, and total harmonic

distortion.

The proposed estimator and classifier are validated using real power system data ob-

tained from the DOE/EPRI National Database of Power System Events. The achieved

simulations and experimental results clearly illustrate the effectiveness of the proposed

techniques for PQ monitoring purpose.
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Existing power systems are complex and are facing several challenges due to high pen-

etration of renewable sources. In fact, the intermittent and discontinuous nature of re-

newable energy sources impact the power system and can lead to grid instability or even

its failure. Moreover, power systems are lacking of monitoring, pervasive and effective

communications, and fault diagnostics. To address these challenges, the concept of smart

and self-healing electric power system has emerged.

The advent of smart grids have urged a radical reappraisal of power grid networks and

power quality requirements, and effective use of the network are indexed as the most

important keys for smart grid expansion and deployment. One of the most efficient ways

of effective use of these grids would be to continuously monitor their conditions. This

allows for early detection of power quality degeneration facilitating therefore a proactive

response, prevent a fault ride-through the renewable power sources, minimizing down-

time, and maximizing productivity. Within this context, power quality (PQ) has become

essential to realize the envisioned smart grid. In fact, integration of renewable sources in

a power system is considered as a major source of PQ disturbances. These disturbances

could have a substantial influence on the customer load performance and efficiency. More-

over, they can cause million-dollar losses for industrial consumers. To overcome these

problems, it becomes imperative to develop and integrate new advanced algorithms for

PQ disturbances characterization. The characterization of disturbances can be decom-

posed into two main steps: 1) event detection that is concerned with determining the

starting and ending times of the event. 2) event classification that is concerned with

determining the type/cause of the disturbance.

Over the last decades, many studies have demonstrated the interest to use power quality

monitoring based on voltage parameters. To that end, several studies have proposed to

use signal processing techniques for feature extraction, and pattern recognition techniques

are used to complete the classification process of PQ disturbances. In term of feature ex-

traction stage, the main objective of signal analysis is to estimate relevant parameters

from a signal, such as the frequency and the phasor. Fundamental frequency is the most

important power system parameter for PQ monitoring since it allows to track the system

operation state. Moreover, frequency is considered as the main step for the estimation

of the voltage amplitude and phase angle. Under stationary conditions, the standard

IEC 61000-4-30 proposes a conventional frequency estimator based on a zero-crossing

technique. This is a simple and low-complexity estimator but it is sensitive to distorted

signals and further processing must be considered to minimize the effect of DC compo-

nents, harmonics, inter-harmonics, and other power quality disturbances. Furthermore,

this conventional estimator is statistically suboptimal because it exploits only the infor-

mation contained in a single-phase. To deal with these issues, several techniques based

on the Clarke transform such as the widely linear least mean phase technique or the least

mean squares differentiator have been proposed. Nevertheless, the main limitation of the
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Clarke transform is that its use remains questionable in unbalanced three-phase systems.

Once the fundamental frequency is estimated accurately, the voltage amplitude and phase

angle can be easily estimated. For amplitude estimation, several basic techniques such as

the Root Mean Square (RMS) and peak voltage have been proposed. These techniques

are simple and well-proven, however they provide only the amplitude estimate without

any information of the phase angle parameter. Moreover, these techniques are sensitive

to noise or distortion. To overcome these issues, the discrete time Fourier transform

(DTFT) is the basic technique for spectral analysis. DTFT suffers from leakage effect

and from low-frequency resolution for finite number of samples. Under non-stationary

conditions, more sophisticated techniques have been proposed. Regarding classical time-

scale and time-frequency representations, these techniques also have several limitations

(limited time-frequency resolution, artefacts such as cross terms, etc.). However, statisti-

cal performances of the aforementioned techniques are suboptimal since they do not fully

exploit the three-phase nature of the electrical signals. Moreover, the performances of the

previously published techniques critically degrade under off-nominal conditions.

In term of classification, the estimated parameters can be used as inputs of the classi-

fication techniques whose output is the disturbance type or cause. Several techniques

have been presented, discussed, and applied to the classification of power quality distur-

bances. These techniques can be classified into two classes: 1) classical techniques and

2) pattern recognition techniques. Regarding classical techniques, most of previous works

use two parameters to classify the power quality disturbance type. These two parame-

ters are amplitude or residual voltage and duration of the event. These techniques are

suited for single-phase measurements since they only exploit the rms voltage contained

in a single-phase. However, these techniques are suboptimal since they do not fully use

the phase angle and other parameters. Moreover, they are very sensitive to large vari-

ations in amplitude or phase angle, and a small error in frequency estimation may lead

to an erroneous results. Pattern recognition has been applied in power systems for PQ

disturbances classification, protection, and consumer profile identification. For pattern

recognition techniques, several techniques for pattern recognition of the PQ disturbances

have been proposed. These techniques include: artificial neural network (ANN), fuzzy

expert system, genetic algorithm, and support vector machine (SVM). In fact, the main

advantage of a pattern recognition machine is its capability of learning by examples and

generalization. However, the performances of theses techniques critically depend on the

learning stage and feature extraction process. Furthermore, the learning stage requires

relatively high computational complexity effort.

In this context, this thesis work focuses on electric grid power quality monitoring us-

ing parametric signal processing techniques under non-stationary conditions. The main

objective is the development of new PQ characterization algorithms allowing to ensure

an efficient and reliable diagnosis of the power system state. To this purpose, suitable
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feature extraction techniques are of extreme importance for reliable disturbance detection

and classification. A parametric spectral estimation technique based on voltage param-

eters has been proposed. Compared to the existing estimation techniques, the proposed

technique exploits the multidimensional nature of electrical signals that allows better

estimation performances. Furthermore, an optimization algorithm based on the Newton-

Raphson method has been proposed. This optimization algorithm has lower computa-

tional complexity than classical techniques. Moreover, the performances of the previously

published techniques critically degrade under off-nominal conditions, while the proposed

algorithm achieves good performances. On the other hand, a new classifier for power qual-

ity disturbances based on the analysis of the three-phase signal has been proposed. As

opposed to published classification techniques, the proposed technique is able to provide

a complete classification of voltage sag and swell. Moreover, this technique fully exploits

three-phase information that allow better classification performances. Furthermore, it

has a lower computation complexity and it does not require any training database and no

parameter to be set.

The contributions of this thesis work could be summarized as follows:

• A new techniques for power quality monitoring have been proposed. The first tech-

nique deals with frequency and phasor estimations and the second one is for the

disturbances classification.

• The proposed optimization algorithm and the downhill simplex algorithm are com-

pared for frequency and phasor estimations. Moreover, the performances of the

proposed estimation method are evaluated under various operating conditions, and

are compared with the requirements of the IEEE Std. C37.118.2011. Finally, a

comparison has been performed between the proposed estimation technique and

others estimators, which are the least square and the discrete time Fourier transform

(DTFT) estimators using fminsearch technique and DTFT using Newton-Raphson

algorithm.

• The proposed classifier and two others techniques are compared for PQ disturbance

classification.

• The benefits of the proposed algorithms are highlighted with simulated and real

power system data obtained from the DOE/EPRI National Database of Power Sys-

tem Events.

The thesis manuscript is organized as follows:

• A Chapter I dealing with a critical state of the art of spectral estimation and clas-

sification techniques for power quality monitoring.
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• A Chapter II dealing with a new synchrophasor and frequency estimations technique.

• A Chapter III dealing with a novel algorithm for power quality disturbances classi-

fication based on model order selection.
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Chapter 1. Power Quality Disturbances Characterization: State of the Art Review

T
his chapter presents a review of power quality (PQ) disturbances characteriza-

tion, where a literature review of signal processing and pattern recognition-based

techniques used for PQ disturbances monitoring is given with a focus on the

estimation and classification issues. Several PQ disturbances and their origins and con-

sequences are presented. These disturbances are characterized by international standards

and can be extremely different in terms of characteristics and consequences. Furthermore,

PQ measurement device called phasor measurement unit (PMU) is also presented.

1.1 Introduction

Power quality has become a major industrial topic as PQ disturbances could have a

substantial influence on grid stability, efficiency, operation, and measurements perfor-

mances [5–9]. The increased interest in power quality can also be explained by the fol-

lowing reasons [10]:

• Metering: PQ disturbances affect the power system measurements performances

• Protective relays: PQ disturbances could lead to the protection relays malfunction

• Equipments lifetime: PQ disturbances lead to equipment lifetime reduction and

damage

• Electromagnetic compatibility: power quality disturbances are considered as a source

of electromagnetic noise [11].

This thesis focuses on power quality issues, where the use of signal processing techniques

is required [2,12,13] and leads to the use of advanced algorithms to characterize the power

quality disturbances in order to enhance efficiency and reliability of the power systems.

In this context, the characterization of the power quality disturbances is one of the most

PQ monitoring issue. A power quality characterization diagram is shown in Fig. 1.1, it

involves the following main stages [12].

• Parameters estimation stage: this deals with the estimation of signal parameters

(i.e. frequency and phasor) from the recorded data.

• Parameters detection stage: this involves triggering i.e. determining the starting

and ending points of the disturbance.

• Parameters classification stage: this allows to determine the type of disturbance.
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Figure 1.3: Voltage/Current quality and distributed generation [1].

variations are a PQ variations. While, the PQ event is a large deviation1 from its nominal

value. The supply interruption or outage, voltage sag and swell are the most severe PQ

events [12,37].

1.2.3.1 Voltage variations

This section presents several power quality variations that will be discussed with their

origin and consequences.

1.2.3.1.1 Frequency variations

In real power system, the fundamental frequency value is not always equal to the nomi-

nal value (50 Hz or 60 Hz) with frequency deviation less than ±1 Hz [36]. Frequency is

recorded by the PQ measurements periodically [38]. For example, the measurement esti-

mates frequency once time per second. The number of frequency recorded per week can

be obtained by a simple computation: 7 × 24 × 60 × 60 = 604800 frequency values. This

allows having more information on the probability distribution, such frequency average

and standard deviation. A measured frequency variations illustration is given by Fig. 1.4.

Several consequences of frequency variations are mentioned as follow:

• Motor speed variation: electrical machines, especially motors speed is affected by

frequency variations.

• Rate of change of frequency (ROCOF): a high ROCOF value leads to lose many

generator units. This could lead to lose the energy balance.

1.2.3.1.2 Voltage amplitude variations

The voltage variations are a small variations of the voltage amplitude due to the load

variation, distributed generation, etc. [31]. The amplitude variations could impact the

lifetime and performance of the end-user equipments. These variations can be classified

into two classes that are called overvoltage and undervoltage. Overvoltage or undervoltage

refers respectively to higher or lower voltage than nominal one at which the power system

11
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Figure 1.4: Frequency variations measured in Sweden (top left), in Spain (top center),
on the Chinese east coast (top right), in Singapore (bottom left), and in Great Britain
(bottom right) [2].

can operate effectively. For instance, overvoltage is when the voltage reaches 110%-120%

of the nominal one for a longer than one minute. The consequences of these variations on

the power system and end user equipments can be presented as follows:

• Causing potential equipment overheating.

• Starting torque of induction motors can be reduced due to undervoltage.

• Electronic equipment performances decrease critically due to an undervoltage.

• Light and life of fluorescent and incandescent lamps are critically impacted by the

amplitude variations.

To minimise their effects, the voltage is controlled by several ways such as capacitor banks

and transformer tap changers that are installed on the transmission lines [1]. Figure 1.5

presents an illustration of overvoltage.

1.2.3.1.3 Waveform distortion: harmonic, inter-harmonic, and nonperiodic

distortion

The waveform distortion definition seems to one of voltage or current quality. It is a

deviation of the voltage or current waveform from the nominal value. It causes several

consequences such as transformer overheating, capacitor problems, electronic equipment

malfunction, etc. [17, 39, 40]. The waveform distortion includes many forms that are

harmonic, inter-harmonic, and nonperiodic distortion. The harmonic is the most studied

since it dominants in most case. Harmonics are waveforms at multiples of the fundamental
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Figure 1.5: Overvoltage.

frequency and are caused by nonlinear loads. Harmonic distortion can be decomposed in

two parts, odd harmonic that is dominant in supply voltage and load current and even

harmonic that is normally rather small [41]. The total harmonic distortion (THD) is most

commonly used for quantifying the harmonic amount on the signal and it is defined by

IEC Standard 61000-4-7 [42] as follows

THDF (%) , 100 α

2

√
∞∑

h=2
a2

mh

am

, (1.1)

where amh and am correspond to the amplitude of the hth order harmonic and fundamental

component, respectively. The quantity α > 0 controls THD of the signal.

1.2.3.2 Events

Power quality events are a significant deviations from the nominal values. The three most

severe PQ events are discussed in this section, they are interruptions, voltage sags, and

voltage swells [2].

1.2.3.2.1 Interruption

Interruption is a voltage or current waveform that has amplitude close or equal to zero.

Typical thresholds2 have been defined by several international standards to detect an

interruption that are 1% and 10% of the nominal value [34–36]. Interruptions are caused

by one- or multi-phase disconnection from the power system. Several causes may lead to

2The threshold value is the voltage r.m.s value defined in order to determine the start and end of an
event. It can be expressed in volts or as per unit (percentage) value of the reference voltage.
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Figure 1.6: Interruption due to lightning (Event 2857) [3].

this disconnection such as circuit breaker opening, short circuit, etc. Figure 1.6 presents

an interruption due to lightning. The used real data are obtained from the DOE/EPRI

National Database of Power System Events (event-code: 2857) [3].

During an interruption the voltage at the customer interface or at the measurement

location is zero. To measure an interruption, one has to wait until an interruption occurs.

This is done automatically in most power quality monitors by comparing the estimated

voltage amplitude with the threshold. In the case when the estimated voltage amplitude

is less than the threshold for longer than a certain time, the monitor detects the start

of an interruption. The end of the interruption is detected when the voltage amplitude

rises above the threshold again. The duration of the interruption is obtained as the time

difference between beginning and ending of the event.

1.2.3.2.2 Voltage sag and swell

Voltage sag3 is a decrease in the voltage amplitude between 0.9 and 0.1 pu of the nominal

value for a short time that is between one half-cycle and one minute [34]. Voltage sag

is considered as one of the main power quality issues. In fact, voltage sag critically

degrades the performance and efficiency of customer load. The IEC 61000-4-30 standard

characterizes voltage sag by two parameters: residual voltage and duration. These tow

parameters can not provide a complete explanation of sag behaviour, therefore other

signal characteristics have been introduced in literature such as phase angle jump and

three-phase characteristics. An illustration of voltage sag waveform due to a two-phase

fault is given in Fig. 1.7. The used real data are obtained from the DOE/EPRI National

Database of Power System Events (event-code: 0284) [3].

3The term sag is used mainly in US technical publications, while dip is normally preferred by the
IEC.
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Opposite to sag, swell is an increase in the voltage amplitude between 1.1 and 1.8 pu of

the nominal value. In the next subsection, power quality monitoring and its international

standards will be discussed in more details.

1.2.4 Monitoring

The electrical power system community is trying to address several challenges, including

stability issue [43–45]. In fact, the existing power system can not address this critical

issue due to its hierarchical topology. As a result, this could have a substantial influence

on power quality by affecting voltage and frequency control [5, 16]. In order to overcome

these challenges, the future smart grid is expected to address the limitations of the ex-

isting system. In particular, the control strategies applied to smart grid become of high

interest and should be pervasive [46]. Moreover, the smart grid is required to improve

efficiency, reliability, and safety through automated control and modern communication

technologies. Last but not least, the future smart grid is expected to be self-healing and

resilient to system anomalies [23–26, 47, 48]. In this context, power quality monitoring

is the backbone of control strategies applied to smart grid. PQ monitoring is consid-

ered as the most efficient strategy used to ensure availability, reliability, and safety of

the electrical power systems. Fig. 1.8 illustrates an example of control strategy applied

to smart grid based on phasor measurement units (PMUs). This control strategy can

be decomposed into four tasks that are: measurement-substations that consist in the

extraction of the power quality parameters such frequency, amplitude, and phase angle.

Substation automation refers to use data from intelligent electronic devices (IEDs). IEDs

have several functions within power systems such as controlling and monitoring the power
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Figure 1.7: Voltage sag (Event 0284) [3].

15



Chapter 1. Power Quality Disturbances Characterization: State of the Art Review

PMU 2

PMU 1

PMU 3

Phasor Data

Concentrator (PDC)

Correlates data,

feeds selected

applications,

monitors system

SCADA/EMS: Voltage,

angle, frequency

Other displays: Power

World, etc

Stream Reader

Display and recording

Real-time controls:

Voltage & reactive

stability, interarea

angle limits

V - I - F

Measurement-

substations

Data input &

management

control center

Operations

monitors-display

& alarms

System

controls

Figure 1.8: Example of control strategy applied to power system based on phasor mea-
surement units (PMUs).

system devices and also protecting the personnel and equipments. PMUs, digital relays,

and modern protective relay are the most known IEDs. The supervisory control and data

acquisition (SCADA) infrastructure and energy management system (EMS), installed at

control centers, allowed to monitor the power systems.

In this control strategy, the PQ parameters are extracted using the phasor measurement

units, which are deployed at different substations. Data obtained from several PMUs

are collected by phasor data concentrator (PDC), which is located in the data input &

management control center, for nourishing the SCADA by their scalar data. In operations

monitors, these data are supervised, controlled, and acquiesced for representing the power

system state. Finally, system controls are the act of automatically controlling the power

system via measurement instrumentation and control devices for improving the power

systems stability with the help of state estimation (SE) programs embedded in EMSs.

As mentioned previously, in this thesis work two tasks are chosen to be focused upon

that are the estimation and classification. The estimation task can be applied in the

measurement instruments (PMUs) to estimate the voltage parameters. The classification

task can be applied as a post-processing tool for transient characterization in disturbance

detection in intelligent electronic devices. The other blocks of the control strategy are

beyond of this work scope.

In practical cases is not easy to distinguish between the event and variation, which is

considered as a difficult task to achieve [2]. For instance, the voltage sag (event) can be

considered as an extreme case of the voltage amplitude variation. Therefore, a triggering

mechanism is required to start recording the event by determining its starting and ending

points. In contrast to event, the variation does not require triggering. In this context, the
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rms voltage is used as a basic measurement parameter for voltage sags. In this regard,

the voltage sags post-processing requires rms values and duration that are defined by the

international standards such as EN 50160 and IEEE 1159 [34, 36]. If these parameter

values do not meet the standard limits, then the monitoring instruments record the re-

quired information of the event. In particular, it is difficult to find a suitable triggering

mechanism for some extreme events like transient. A general PQ monitoring scheme is

shown in Fig. 1.9 that consists of several tasks of PQ monitoring, where the conversion

from analag signal to sampled signal is the first task. The measurement device block

includes

• Instrument transformers

• Analogue anti-aliasing filters

• Sampling and digitizing

• Digital anti-aliasing and down sampling

The anti-aliasing is used to avoid all components that their frequencies are above of 1
2

of the

sampling frequency (Nyquist frequency). Power systems have a high voltage and current

values that can not be directly measured. Consequently, an instrument transformers is

required to reduce these high values. This instrument transform is working under a low

frequencies such 50 Hz and 60 Hz. In fact, several PQ disturbances like transient and

harmonic have a high frequency components that require the use of a high frequency

measurements. In such case, Rogowski coils and resistive voltage are capable to achieve

good accuracy with higher frequency components.

Several typical threshold and duration values of a triggering-based on rms voltage for

event detection are given in Fig. 1.10. This figure shows a vertical axis that presents the

reference voltage in percentage of the threshold, where the nominal voltage is considered

as a reference. The duration is given by the horizontal axis that starts at the instant

when the rms voltage exceeds the threshold.

There are two types of power quality monitoring that should be distinguished:

• Monitoring the supply at different locations at the same time by estimating an

average power quality. This is called power quality survey.

• Monitoring the supply at one site by estimating the power quality at that specific

site.

Statistical processing block allows to compute the number of events per year and per

site per year. This can be useful for a power quality surveys. In the case when an

event is detected, a PQ processing computes and storages several indices of this event
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1.2.5 Standards

In the last decades, several international standards have been elaborated, in order to sat-

isfy the PQ requirements of voltage and current in a power system. Specifically, these

standards provide the limits and tolerance variations of the frequency and voltage. Mea-

surement methods and thresholds are also defined to characterize various PQ disturbances.

Appendix A lists various PQ variations and events, their characterization methods and

possible causes.

The increased interest in power quality standards can be explained by the following rea-

sons

• Nominal conditions definition. As mentioned in previous subsections, the fre-

quency and voltage are not exactly equal to 50/60 Hz and 1 pu, respectively. In this

context, it becomes imperative to describe this phenomena by a term such nominal

frequency and voltage. In European standard EN 50160 [36], it could be said that

the nominal frequency and voltage are equal to 50/60 Hz and 1 pu, respectively.

In contrast, this nominal voltage does not give a correct information about the real

voltage value that could have a deviation from the nominal value. Therefore, most

countries use standard that provides acceptance variation in term of rms voltage.

• Terminology definition. Standards provide also a definition of the various phe-

nomena with the characterization method of their parameters. This will facilitate

the comparison and communication between various PQ monitoring systems.

• PQ problems limitation. The main objective of a PQ monitoring is to limit the

number of PQ problems. This objective can be achieved by improving the power

system performance.

In this context, there are two known organisations for developing standards on power

quality, which are the international electrotechnical commission (IEC) and institute of

electrical and electronics engineers (IEEE). For instance, the IEC standard provides a

complete requirements on electromagnetic compatibility (EMC) for power quality. EMC

is defined as the ability of a device, equipment, or system to function satisfactorily in

its electromagnetic environment without introducing intolerable electromagnetic distur-

bances to anything in that environment [49]. IEEE 519 standard describes the require-

ments for harmonic distortion [50].

Several disturbances occur variations in amplitude (or rms values) with respect to nominal

value during an interval time. The IEEE 1159 and European EN 50160 standards classify

the PQ disturbances according to thresholds of the rms values of voltage and current

deviation with respect to nominal values during the time of disturbance as shown in

Tables 1.1 and 1.2. The IEC 61000-4-30 standard [35] provides a description of the
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measurement methods and interpretation of PQ parameters in power system of 50/60 Hz.

The main emphasis in the PQ monitoring is on the extraction of relevant disturbances

parameters. The main disturbance parameters are frequency and phasor (amplitude and

phase angle). For this purpose, PMU is used to estimate power system frequency and

phasor. The following section deals with a description of the phasor measurement unit

with its standard.

1.3 Phasor Measurement Units (PMUs)

In this section, we shall provide an overview of power quality measurement that called

phasor measurement unit and summarize its main points. In the following, we will discuss

the requirements defined by the standards of this measurement.

1.3.1 Definition

Phasor measurement units have become one of the most advanced measurement technol-

ogy applied in the power grid and are predicted to become a very vital part of power

systems state estimation. They can be used to validate system performance and control

equipment settings [38]. Moreover, PMUs can be a stand-alone or functional unit within

another physical unit such as a protective relay or a power system data recorder [51].

Phasor measurement units provide synchrophasor and positive sequence voltages and

currents with respect to the global time reference. Global position systems (GPSs) are

used to provide the time-tags to the PMU measurements [38]. In addition, local frequency

and rate of change of frequency can also be provided by PMU measurements. A general

synchrophasor representation of a sinusoidal waveform can be shown by Fig. 1.11.

The reporting instant, represented by a time-tag (t = 0), defines the reference for the

phasor representation of the measured signal input. The phasor representation is com-

Table 1.1: Power quality disturbances classification.

PQ Disturbance Duration Voltage values

Sag > 1
2

cycles 0.1 to 0.9 pu

Swell > 1
2

cycles 1.1 to 1.8 pu

Outage > 1
2

cycles < 0.1 pu

Flicker > 1
2

cycles 0.9 to 1.1 pu

Harmonic -
THD > 5%

Interharmonic -
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Table 1.2: Interruption definitions in standard documents.

Standard Term Definition

IEEE 1159

Interruption Voltage below 10% of nominal

Sustained interruption Longer than 3 s

Momentary interruption 1
2

cycle to 3 min

Temporary interruption 3 s to 1 min

IEEE 1250

Instantaneous interruption Shorter than 30 cycles

Momentary interruption 1
2

to 2 s

Temporary interruption 2 s to 2 min

Sustained interruption longer than 2 min

EN 50160
Short interruption Shorter than 3 min

Long interruption Longer than 3 min

IEEE 1366
Momentary interruption Shorter than 5 min

Sustained interruption Longer than 5 min

posed of an amplitude equal to the rms value, X, and a phase angle ϕ. If all PMUs use

a common and accurate timing references and related to a common frequency, then their

measurements can be comparable and the phase angle differences between phasors are

accurate. This is the main advantage of PMUs over conventional measurements [52,53].

UTC

Time (GPS)

Phasor

Measurement

Units (PMUs)

X[n] = Xr[n] + jXi[n]

t = 0

time (s)

X[n]

Xr[n]

Xi[n]

w0

ϕ

ϕ

X

Voltage (pu)

Figure 1.11: Synchrophasor representation of a sinusoid signal.
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For ensuring reliability and interoperability among PMUs made by different manufac-

turers, the IEEE commission has defined a PMU industry standards that defines syn-

chrophasor and frequency requirements for compliant PMUs. In the next subsection, this

standard will be described.

1.3.2 Standards

Herein, we describe the standard of phasor measurement units, which is called C37.118.

This standard provide the requirements of phasor, frequency, and rate of change of fre-

quency (ROCOF) measurements under steady state and dynamic conditions. It specifies

also time tag and synchronization requirements for measurement of the three-phase power

system. Moreover, the PMU standard specifies methods for evaluating these measure-

ments and requirements under steady-state and dynamic conditions [52].

The phasor measurements performance and the off-nominal frequencies requirements un-

der steady state conditions have first defined in the 2005 version of the standard, C37.118-

2005 [54,55]. In addition, this standard version does not provide the generalized definition

of synchrophasor or frequency and ROCOF compliance. The PMUs standard has been

reviewed and improved into C37.118.1-2011 [52] (and its amendment C37.118.1-2014 [56])

to utilize dynamic synchronized measurement. The revision version provides a definition

of the synchrophasor, measurement requirements, and test conditions under steady state

and dynamic conditions. This IEEE standard is designed only for phasor measurement

units at the transmission level, while no standard has been developed yet for synchropha-

sor measurement devices at the distribution level.

According to C37.118-2014, the PMU requirements can be classified into two classes:

P-class is intended for measurement applications that requires fast response to dynamic

events, and M-class focuses on the estimation performances. Under off-nominal frequency,

the estimation algorithms used by PMUs have to meet the requirements for a frequency

deviation of ± 5 mHz from the nominal value. The concept of off-nominal frequency is

illustrated in Fig. 1.12, where a sinusoid off-nominal signal frequency is considered and

observed at intervals [0,T0, 2T0,. . . ,NT0]. T0 = 1
f0

corresponds to the fundamental period,

f0 is the fundamental frequency, and [0,X0, 2X0,. . . ,NX0] are the phasors representa-

tion. In the case when the frequency signal (f) is different and less than two times of

the nominal value (fn) (f 6= fn and f < 2f0), the estimated phasor is presented by a

constant amplitude, while the phase angles of the phasors sequence change uniformly. In

this context, the synchrophasor depends on the time, therefore the PMU shall receive

time from an accurate time reference in order to keep all estimation performance criteria

defined by PMU standard within the required limits. A complete process of the phasor

measurement units is presented in Fig. 1.13. The estimation criteria defined in the PMU

standard will be presented in the next subsection.
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1.3.3 Estimation Performances Evaluation

Phasor measurement units shall provide a correct estimation of the signal input parame-

ters such as fundamental phasor (amplitude and initial phase) and frequency under steady

state and dynamic conditions. The standard requirements that are specified by the total

vector error (TVE), frequency error (FE), and the rate of change of frequency (ROCOF)

error (RFE) values for the phasor, frequency, and ROCOF measurements, respectively,

are described in more detail in the next subsections.

1.3.3.1 Frequency and ROCOF measurement evaluation

Considering a signal model of a three-phase voltage system expressed as follows

Xm(t) = am cos(φm(t)), (1.2)

where m ∈ {a, b, c} corresponds to the phase index for three-phase voltage system. am

is the maximum amplitude and φ(t) corresponds to the phase angle at instant t. The

frequency computation can be expressed in terms of the phase angle (φ) as follows

f(t) =
1

2π

dφ(t)

dt
, (1.3)

and the ROCOF is defined as

ROCOF (t) =
df(t)

dt
. (1.4)

The frequency and ROCOF errors are defined by C37.118-2014 standard for evaluating

the frequency estimation performance of the synchrophasor measurement.

time

ϕ0

0
ϕ1

T0
ϕN

NT0

Figure 1.12: Phase angle change under off-nominal frequency conditions.
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Figure 1.13: Complete PMU signal processing model.

The FE is expressed as

FE(t) =
∣∣∣f0(t) − f̂0(t)

∣∣∣ , (1.5)

and the RFE is given by

RFE(t) =

∣∣∣∣∣
df0(t)

dt
−

df̂0(t)

dt

∣∣∣∣∣ , (1.6)

where f0 and f̂0 correspond to the real and estimated frequency.

The phasor measurement units have to meet the FE and RFE requirements specified by

the C37.118-2014 standard. This also defines the test conditions and equipment for steady

state and dynamic conditions. The FE and RFE requirements are specified for each class

(P- and M-classes). If one of this requirement is not respected by PMU, then the PMU is

not compliant with the C37.118-2014 standard. The FE and RFE requirements for both

classes under steady state are given by Table 1.3. Under dynamic conditions, we present

the condition test used for determining the bandwidth of the synchrophasor measurement.

This test uses a sinusoidal amplitude and phase modulation. The signals can be expressed

as follows

Xm(t) = am [1 + kxcos(wt)] × cos [w0t + kacos(wt − π)] , (1.7)

where am corresponds to the amplitude of the input signal, w0 and w are the nominal and

the modulation angular frequencies in rad
s

, respectively. fm = w
2π

is the modulation fre-

quency in Hz, m ∈ {a, b, c} corresponds to the phase index for three-phase voltage system.

Kx and Ka refer to the amplitude and the phase angle modulation factors, respectively.

This modulation tests shall be performed with w, kx, and ka over the frequency ranges

specified in Table 1.4.

We have provided a brief summary of the PMU standard. Several details of the syn-

chrophasor definition and requirement are provided in the standard document [56].
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Table 1.3: Steady-state frequency and ROCOF measurement requirements.

Influence quantity
Reference
Condition

Error requirements for compliance

P-class M-class

Signal
frequency

Frequency = f0

(fnominal)
Phase angle

constant Range: f0 ± 2.0

Range:
f0 ± 2.0 Hz for Fs ≤ 10

±Fs

5
for 10 ≤ Fs < 25

±5.0 Hz for Fs ≥ 25

Max FE Max RFE Max FE Max RFE

0.005 Hz 0.01 Hz
s

0.005 Hz 0.01 Hz
s

Harmonic
distortion

(same as Table 3
in C37.118-2011)
(single harmonic) < 0.2% THD 1% each harmonic up to 50th 10% each harmonic up to 50th

Max Fe Max RFE Max Fe Max RFE

Fs > 20 0.005 Hz 0.01 Hz
s

0.025 Hz 0.01 Hz
s

Fs ≤ 20 0.005 Hz 0.01 Hz
s

0.025 Hz 0.01 Hz
s

Table 1.4: Frequency and ROCOF performance requirements under modulation tests.

Modulation level, reference condition, range
(use the same modulation levels and ranges under the reference

conditions specified in Table 5 in C37.118-2011 standard)

Error requirements for compliance

P-class M-class

Max FE Max RFE Max FE Max RFE

Fs > 20 0.06 Hz 3 Hz
s

0.3 Hz 30 Hz
s

Fs ≤ 20 0.01 Hz 0.2 Hz
s

0.06 Hz 2 Hz
s

1.3.3.2 Total vector error (TVE) evaluation

For simplifying the compliance specification, the standard C37.118-2014 has combined

the amplitude and angle error into total vector error. The total vector error is provided

to evaluate the estimation performance of the synchrophasor measurement. This error

criterion can be expressed in terms of the difference between the real and the estimated

phasor. By considering this synchrophasor representation X̄ = Xr + jXi, the TVE value

is given by

TV E[n] , 2

√√√√√√




(
X̂r[n] − Xr[n]

)2
+
(
X̂i[n] − Xi[n]

)2

X2
r [n] + X2

i [n]


, (1.8)

where Xr[n] and Xi[n] correspond to real and imaginary components of the fundamental

phasor at the instant n, respectively. X̂r[n] and X̂i[n] correspond to the real and imaginary

components of the estimated phasor at the instant n, respectively. This comparison

between the real and estimated phasor must be done at the same time tag. The maximum

value of the TVE is set to 1% by the C37.118-2014 standard. This allowed error is
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Table 1.5: Steady-state synchrophasor measurement requirements.

Influence quantity
Reference
Condition

Minimum range of influence quantity over which PMU
shall be within given TVE limit

P-class M-class

Range Max TVE % Range Max TVE %

Signal frequency
range-fdev

(test applied nominal
+deviation:f0 ± fdev)

Fnominal

(f0) ±2.0 Hz 1

±2.0 Hz for Fs < 10
±Fs

5
for 10 ≤ Fs < 25

±5.0 Hz for Fs25 1

The above signal frequency range tests are to be performed over the given ranges and meet the given
requirements at three temperatures: T = nominal (23◦C), T = 0◦C, and T = 50◦C

Signal voltage
magnitude

100%
rated

80% to 120%
rated 1

10% to 120%
rated 1

Signal current
magnitude

100%
rated

10% to 200%
rated 1

10% to 200%
rated 1

Phase angle with
|fin − f0| < 0.25 Hz

Constant
or slowly
varying
angle ±πradians 1 ±πradians 1

1.4 Spectral Estimation Techniques for Power Qual-

ity Monitoring

In this section, a comprehensive and critical literature review is presented for spectral es-

timation techniques for the estimation of the power quality disturbances parameters. The

required techniques for spectral analysis can be classified into two mean categories: the

non-parametric and parametric methods (also known as model-based methods). Herein,

we focus on these methods under stationary conditions and their extension to non-

stationary conditions.

1.4.1 Non-Parametric Methods

Non-parametric spectral estimation analyses the data without making any assumptions

about the data and hence are called non-parametric.

1.4.1.1 Zero-Crossing transform

The standard IEC 61000-4-30 proposes a frequency estimator based on the zero-crossing

technique. This technique estimates the frequency using the time between two zero cross-

ings of voltage signal. Zero crossing is defined as the change of the signal from positive
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Table 1.6: Synchrophasor measurement bandwidth requirements using modulated test
signals.

Influence quantity
Reference
Condition

Minimum range of influence quantity over which PMU
shall be within given TVE limit

P class M class

Range
Max TVE

(%) % Range
Max TVE

(%)

kx = 0.1,
kx = 0.1
radian

100% rated
signal

magnitude,
fnominal

Modulation
frequency 0.1 to

losser of Fs

10
or 2 Hz 3

Modulation
frequency 0.1 to

losser of Fs

5
or 5 Hz 3

kx = 0,
kx = 0.1
radian

100% rated
signal

magnitude,
fnominal 3 3

to negative value (or vice versa) as shown in Fig. 1.15.

time (s)

V
ol

ta
ge

(p
u
)

Tsc

Tmc

Figure 1.15: Zero-crossing approach illustration.

The first step is based on the computation of the time between two or several zero crossings

in the same direction. From Fig. 1.15, the frequency can be obtained as follows

f̂0 =
1

Tsc

, (1.9)

where Tsc is the time between two consecutive zero crossings in the same direction. In

the case of Nzc zero crossings in the same direction, the frequency can be estimated by

f̂0 =
Nzc

Tmc

, (1.10)

where Tmc is the time between Nzc zero crossing.

Nevertheless, this technique is sensitive to distorted signals, harmonics, inter-harmonics,

28



1.4. Spectral Estimation Techniques for Power Quality Monitoring

and other power quality disturbances [13].

1.4.1.2 RMS and peak voltage techniques

Several classical techniques allow to determine the voltage amplitude. Herein, we interest

by two techniques for voltage amplitude characterization, which are the root mean square

(rms) and peak voltage techniques. The rms technique allows to obtain the amplitude by

using the rms value of the voltage over a multiple of one half-cycle of the power system

frequency. The rms voltage can be expressed in term of the instantaneous voltage, V (t),

over a given period of time T

Vrms =

√√√√ 1

T

ˆ T

0

V 2(t)dt, (1.11)

Alternatively, the peak voltage component allows also to obtain the amplitude. The peak

voltage as a function of time can be obtained as follows

Vpeak = max
0<τ<T

|v(t − τ)| (1.12)

Power quality monitors obtain the rms voltage once every cycle or once every few cycles.

A power quality monitor will usually calculate the rms value once every cycle and thus

will give an overestimation of the event duration such voltage sag [31].

The root mean square and peak voltage techniques are simple and well-proven techniques.

However, these techniques do not provide any estimate of the phase angle parameter and

are quite sensitive to noise. To overcome these issues, many estimation algorithms are

based on Fourier transform (FT).

1.4.1.3 Fourier transform and its extensions

The Fourier transform (FT) is the most widely used computation algorithm for station-

ary signals by extracting spectrum at specific frequencies. The signal to be analysed is

modeled by sum of sinusoids signals with different frequencies. The Fourier transform al-

lows to estimate the frequency components without any information of the time at which

the frequency components appear. Several papers and books are devoted to the Fourier

transforms [57,58].

The Fourier transform of a continuous time signal x(t) is given by [57,59]

X(f) =

ˆ ∞

−∞

x(t)e−j2πftdt, (1.13)

In sampled data systems, the analysis of signal is performed by the discrete time Fourier

transform (DTFT). The DTFT is usually implemented using the fast Fourier transform
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(FFT) over a short signal length. The FFT is computed at discrete steps in the frequency

domain with an input signal that is sampled at discrete instants in the time domain.

Let assume that the signal length contains the N measurements or samples from a sampled

voltage or current signal in an equal interval tn

tn = n∆t =
nTw

N
, (1.14)

where n is an integer number (n = 0,1, . . . , N -1). N corresponds to the number of samples

within the measurement window Tw. The DTFT phasor estimator is given by

V̂ =
1

N

N−1∑

n=0

x[n]e−jŵn, (1.15)

where the angular frequency, w, estimator is given by

ŵ = arg max
w

1

N

∣∣∣∣∣
N−1∑

n=0

x[n]e−jωn

∣∣∣∣∣

2

. (1.16)

In fact, the use of the DTFT over a finite length of infinite signal can be interpreted as

multiplying an infinitely continuous signal with a rectangular window function defined by

w[n] =





1 if |n| ≤ 1
2
Tw.

0 otherwise.
(1.17)

As mentioned before, the DTFT computation requires the use of data window that implies

truncation of the sampled data. This leads to errors in the Fourier transform computation

from the sampled data, which is known as the leakage effect. In power system applications

is preferred to use a rectangular windowing function due to its simplicity.

The benefits of the DTFT are its simple implementation, low computational complex-

ity, accuracy, and immunity against harmonic components under stationary conditions.

Indeed, DTFT leads to high accuracy estimation under stationary conditions, when the

fundamental frequency is close to the nominal one. However, its accuracy has several

limitations under off-nominal frequency, amplitude, or phase variations [60].

1.4.2 Parametric Methods

The spectral estimation methods of this subsection are based on parametric models, such

as sinusoidal and autoregressive-moving average (ARMA) models. These methods are

known as parametric or model-based methods and they assume that the signal satisfies

a generating model with known functional form. These methods have been developed to

overcome drawbacks of non-parametric methods. The selection of appropriate model for
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the process is based upon:

• A priori knowledge about how the process is generated

• Experimental results indicate that a particular model works well.

Once the signal model is selected, the next step is to estimate the signal parameters from

the given data. The signal’s spectral characteristics of interest are then derived from the

estimated model. In the cases where the used model is a close approximation of the real

model, a highest estimation performances can be obtained over a significantly less data

as compared to those in non-parametric methods. The limitation of these methods only

depends on the matching between the true and theoretical signal model.

The parametric methods can be classified into two parts: 1) parametric methods for

discrete or line spectra such as those associated with sinusoidal signal buried in additive

noise. 2) parametric methods for rational spectra that form a dense set in the class of

continuous spectra.

1.4.2.1 Discrete spectra

The spectral estimation based-parametric model for discrete spectra reduces to the es-

timation of signal parameters and can be decomposed into two steps: 1) the estimation

of the frequency (f0) from the set of observations, which is the main difficult step. 2)

Estimation of the other parameters that can be reformulated as a simple linear regression

problem.

These methods include subspace techniques that are also called high-resolution techniques.

These subspace techniques include MUSIC (MUltiple SIgnal Classification) and ESPRIT

(Estimation of Signal Parameters via Rotational Invariance Techniques) approaches. MU-

SIC approach allows to estimate the frequency components from a sinusoidal model. How-

ever, the drawbacks of this approach are its Failing to resolve closely spaced signals at

low SNRs and its high computational burden. ESPRIT approach has been proposed to

reduce this high computational burden. The ESPRIT method uses also sinusoidal models

and estimates the frequency components. ESPRIT is a signal subspace-based technique,

while MUSIC is noise subspace-based techniques. Both techniques are widely used to

analysis the harmonics and inter-harmonics in the power system. These two methods

have achieved good performance for inter-harmonic estimation [2]. Moreover, they can be

used to estimate frequency for transient voltages and currents [2].

However, both techniques require the knowledge of the number of frequency components in

the signal. Moreover, their performances critically degrade under high noisy environment.
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1.4.2.2 Continuous spectra

In previous subsection, we discussed the spectral estimation for discrete spectra that is

used to characterize the disturbances such harmonic and inter-harmonic. Otherwise, some

disturbances signals could be described by continuous spectra, especially when the number

of harmonic or inter-harmonic is not limited and can be a band-limited distortions. For

instance, this include the current and the high frequency components occurred by an

arc furnace and active rectifiers, respectively. However the main barrier is the limited

knowledge on the cause of high frequency components in power systems [13]. This makes

hence the interpretation becomes difficult. In this subsection, a brief description of the

useful continuous spectra methods is performed.

Autoregressive (AR) model is a simple and used model, where autoregressive moving

average (ARMA) model is more general rational model. For more details, the reader

could refer to [61]. The parametric methods for continuous spectra include the linear

prediction techniques such as Prony. Instead of estimating the signal parameters from

the data, these techniques model the data as the output of a linear system driven by white

noise. Then, the parameters of the linear system can be estimated using ARMA model.

It can be observed that the Prony method performances are equivalent to those of the

MUSIC and ESPRIT [13]. For the theoretical considerations, one can refer to [61, 62].

However, most signals of PQ disturbances possess a discrete spectra, where the frequency

components at discrete frequencies.

1.4.3 Discussion: parametric methods versus non-parametric

methods

The non-parametric methods are well used for the frequency and phasor estimation. These

methods require a long data window for achieving a good resolution, however, this window

leads to the leakage effect. In power quality applications, the recorded signal is finite that

presents the major limitation of the non-parametric methods [13].

On the other hand, the parametric methods or based-model methods require a priori

information about how the process is generated. In the cases where the used model is a

close approximation of the real model, a highest estimation performances can be obtained

over a significantly less data as compared to those in non-parametric methods. However,

the limitation of these methods only depends on the matching between the true and

theoretical signal model.

As highlighted previously, several power quality events are non-stationary signals. In

such conditions, Fourier transform-based techniques are not suitable to analyse these

non-stationary signals. Therefore, PQ estimation is usually performed by using non-

stationary methods. These methods can be classified into two categories: non-parametric
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methods and parametric methods. Non-parametric methods include time-frequency or

time-scale representation [61, 63–67, 70–84]. Parametric methods include non-stationary

high-resolution techniques and non-stationary MLE techniques [2, 85, 86]. These tech-

niques should use a sliding window in order to handle the non-stationarity of the signal.

The signal is considered to be stationary over each window, which is a short duration

of time. The estimation of the time-varying parameters can then be performed over

each block by shifting the data window (block). Therefore, the estimated parameters are

time-varying since they depend on the window number.

Several advanced techniques have been proposed to analyze the PQ disturbances under

non-stationary conditions. Hilbert-Huang transform (HHT) is one of recent advances

in signal processing techniques. HHT is based on Hilbert transform (HT) and Empir-

ical Mode Decomposition (EMD) techniques [70]. Empirical Mode Decomposition is a

time–frequency analysis method that decomposes the signal into number of intrinsic mode

functions (IMFs) [71]. Then, the Hilbert transform analysis these IMFs to estimate the

instantaneous frequency (IF), amplitude (IA), and phase (IP). HT main advantage is that

it requires a single phase signal for extracting the instantaneous frequency and amplitude.

The Hilbert transform can detect the presence of the fault, however it suffers from border

effects that may lead to incorrect information of the event. Moreover, it can be difficult

to interpret under fast signal modulation, i.e. when the Bedrosian condition is not satis-

fied. On the other hand, the EMD presents several drawbacks such as mode mixing that

may lead to a wrong intrinsic mode functions (IMF) decomposition and border effect. A

Hilbert-Huang transform based algorithm for PQ disturbance classification was proposed

in [73]. It has a special focus on the the PQ events that are sag, swell, harmonics, spikes,

notches, flicker, and transients. The probabilistic neural network (PNN) technique is used

to classify the corresponding event. A PQ assessment approach expands a distorted sig-

nal into its intrinsic mode oscillations was proposed in [72]. A comparison is performed

between the proposed technique and S-transform. The obtained results showed a good

classification accuracy for detection of PQ disturbance, such as voltage spike and notch.

Under non-stationary conditions, it is become imperative to separate between different

components of frequency for identify the cause of PQ disturbances. For such purpose, a

combination between EMD and Hilbert transform to detect the cause of voltage sag was

proposed in [74]. Then, PNN classifier is used for identifying the voltage sag cause and

type.
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1.5 Power Quality Disturbances Classification Tech-

niques

Power system complexity does not only require signal processing techniques for identifying

signal parameters, but also for identifying and classifying special class of system behaviour.

The estimated parameters can be used as inputs of the classification techniques whose

output is the disturbance type. PQ disturbances classification is of great important in

the PQ monitoring. Among several techniques of PQ disturbance classification, we focus

on the most commonly techniques. These techniques can be classified into two classes:

1) classical techniques and 2) pattern recognition techniques [87, 88]. In the literature,

others classification techniques have been proposed, and the reader could refer to [89–98].

1.5.1 Classical Techniques

Most classical techniques use two parameters for classifying the power quality disturbances

(i.e., amplitude (residual voltage) and duration) [2]. These techniques do not use the phase

angle and other parameters. Moreover, they are suitable for single-phase measurements.

Electrical power systems are three-phase signals that require the use of classification

techniques for multi-channel measurements through the lowest residual voltage and the

longest duration of all the channels [2]. In this subsection, we describe the commonly

classical techniques for disturbances classification, specifically voltage sags [2, 99, 100].

1.5.1.1 ABC classifier

ABC classification technique is used to classify the unbalanced voltage sags. Regarding

voltage sag, there are seven types that are denoted with letters from A to G and are

defined in [99]. These sags types are illustrated by Fig. 1.16. The dashed arrows present

the balanced three-phase voltages and the solid ones correspond to the sags types caused

by the three-phase system fault(s). For instance, Voltage sags due to symmetrical faults

occur the same sag in the three-phase, which is called balanced sags and is refereed as type

A. The values of voltage sag differ from a complex pre-fault voltage in phase a (E), and

a voltage in the faulted phase or between the faulted phases (V ) [99]. ABC classification

is a simple approach used for voltage sags classification. However, This technique is not

able to extract the voltage sag parameters.

1.5.1.2 Symmetrical component classifier

Symmetrical component classifier allows to identify the six voltage sags among the C and

D types [100]. Regarding sags sub-types, an illustration of the six sag sub-types among

C and D types are illustrated in Fig. 1.17. To classify the corresponding sag sub-type,
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Type A Type B Type C

Type D Type E Type F

Type G

Figure 1.16: ABC classification: voltage sags types.

we use the angle between the drop in positive- and negative-sequence voltages (V1 and

V2) [100]. The angle is given by

T =
1

60◦
arg

(
V2

1 − V1

)
, (1.18)

where T is rounded to the nearest integer. This angle allows to identify the corresponding

sag type

T = 0 Type Ca

T = 1 Type Dc

T = 2 Type Cb

T = 4 Type Da

T = 5 Type Cc

T = 6 Type Db

(1.19)

These classical techniques are very sensitive to large variations in amplitude or phase

angle, and a small error in frequency estimation may lead to an erroneous sag type. In

such conditions, it is imperative to use other advanced classifiers for PQ monitoring. In

the next subsections, a review is performed for the classifiers-based pattern recognition.

1.5.2 Pattern Recognition Techniques

Pattern recognition is the act of taking in raw data and taking an action based on the

category of the pattern. It has been become of great important in electrical engineering

field and it has evolved highly sophisticated neural and cognitive systems for such tasks.
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Type Ca Type Cb Type Cc

Type Da Type Db Type Dc

Figure 1.17: Six sub-types of three-phase unbalanced voltage sags among C and D types.

These techniques can be used for the applications where there is a few knowledge of the

events characteristics and the systems. Hence, data learning is a practical way to analysis

the PQ disturbances. Several techniques for pattern recognition of the PQ disturbances

have been proposed. These techniques include: artificial neural network (ANN), Fuzzy

expert system, genetic algorithm, and support vector machine [89, 92, 101–105]. In fact,

the main advantage of a pattern recognition machine is its capability of learning by

examples and generalization. Pattern recognition has been applied in power systems for

PQ disturbances classification, protection, and consumer profile identification.

1.5.2.1 Artificial neural network

Artificial neural networks have widely been used for classifying several PQ disturbances

and they proved a good performance for solving the PQ disturbances classification. The

multilayer perception (MLP) is the most used structure of the ANN. Figure 1.18 illustrates

network graph of a multilayer perceptron. Neurones are grouped into layers and the

inputs and outputs are grouped in the first and last layers, respectively. Hidden neurons

allow to perform a non-linear transformation of the input data into a new space. The

different classes of the pattern recognition can be separated from each other in this new

space [106]. The main advantage of ANN techniques is their ability to self-learn the

pattern recognition of those relationships and their applicability to several systems. The

classification techniques based-ANN have been applied to harmonic, interruption, and

several PQ disturbances classification.

Several research papers have dealt with PQ monitoring and events classification based on

ANNs [79,107–109,109–113]. In [107] an automatic classifier of the PQ disturbances was

proposed. This classifier is based on the FFT and discrete wavelet transform (DWT) based

MLP neural network. A PQ disturbances classifier based on wavelet transform (WT)

and MLP neural network with three layers was proposed in [108]. In [109], the authors

proposed an adaptive linear network (ADALINE) and FFNN for classifying several PQ

disturbances. ADALINE allows to estimate the harmonic and inter-harmonic components
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Figure 1.19: Illustration of a rule-based expert system architecture.

1.5.2.3 Fuzzy expert systems

Fuzzy logic systems inspired by human reasoning to generalize the binary logic under

uncertainty. Fuzzy set maps the objects in the concern domain to their member ship

values in the set using a function. The triangular and trapezoidal functions are the most

used member ship functions. The particular application of AI used in the diagnostic

module is called an expert system [126]. Fuzzy Expert System (FES) is the one that use

two elements ( i.e., fuzzy sets and fuzzy rule base), instead of boolean sets for reasoning

about data. A fuzzy set can be fully defined by its membership functions and fuzzy rules

offer human-like reasoning capabilities and provide transparent inter face mechanism.

The PQ disturbances classification based on expert systems requires knowledge from hu-

man experts and involves automatically extracting the relevant information by computers.

This knowledge is often heuristic in nature, which is difficult to be used by computer.

The typical structure of an expert system is rule-based expert system as shown in Fig.

1.19. This structure consists of the following blocks: the user interface presents the

interface where input data are sent into system, such the PQ monitoring output. Its

outputs are the classification results. Interface engine performs the reasoning between

the expert system knowledge (or rules) and the data from a particular problem. The

explanation of the reasoning to the user is performed by explanation system. Knowledge

base editor allows a human expert to update or check the rules and the knowledge base

contains all the rules. The data provide by the user is stocked in case-specific data, this

latter includes also partial additional information from the measurements. An illustration

of rule-based expert system for event classification of PQ disturbances is given in Fig. 1.20.

This architecture is able to classify the corresponding event from the input recorded data.

The expert system uses rules from the knowledge base and then it gives the corresponding

event class.

There are several expert systems for PQ disturbances classification [127–138]. The authors

proposed in [127] a disturbances algorithm based on principle component analysis (PCA)
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Figure 1.20: Illustration of rule-based expert system for event classification of PQ distur-
bances.

and neuro-fuzzy classifier. In [128], a PQ events recognition systems that integrated the

noise suppression algorithm, feature extraction based on the Parseval’s Theorem, and

the neuro-fuzzy classifier was developed and tested using both simulated noise-riding

data of various disturbance events and actual field data. In [129], the authors proposed

an algorithm for detection and classification various PQ disturbances, which is based on

fuzzy decision tree. The authors proposed in [130] a disturbance classifier based on DWT,

Kalman filter, and fuzzy expert system.

1.5.2.4 Genetic algorithm

Feature selection or optimization algorithm are used to obtain the suitable feature and

discover the redundant feature of the disturbances. In classifier based-feature selection

algorithms, a feature is selected from the feature extraction stage that has the best suitable

recognition rate. Several algorithms are used in the feature selection process such as

genetic algorithm (GA).

Genetic algorithm is an iterative search heuristic based on the evolutionary ideas of natural

selection [139]. GA is widely used to solve the optimization problems by finding the

optimum solutions [140]. GA uses a string structures that are Chromosomes, which are

a binary digits represent the encoding of the control parameters of a specific problem.

Individual population is repeatedly modified, then a decision is taken using probabilistic

rules. At each generation, GA selects parent that is a random individual from the actual

population, which produces a children for the next generation. The poor solutions are

eliminated by a competitive selection using GA (mutation and cross over). The main

advantage of genetic algorithm is its ability to find the optimal solution over successive

generation [140–146].

The authors proposed in [147] an automatic classifier based on Fuzzy k-nearest neighbour

(FKNN) and genetic algorithms. The selection of the optimal feature is obtained by GA

algorithm that allows to improve the classification accuracy. This accuracy was enhanced
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using 16 better features from 96 features. In [148], a genetic and SVM algorithms were

proposed to classify the PQ disturbances. The authors proposed in [149], a combination

of the genetic algorithm and extension theory. The extension theory allows to provide

a means for distance measurement and GA provides an optimal solution within a wide

space.

However, the performances of all the above-presented techniques critically depend on

the learning stage that requires a training database. The size of this latter must be

sufficiently large to encompass different kinds of power quality conditions, which may be

difficult to obtain in practice. Their performances also depend on many parameters and

on the features extraction process. Furthermore, the learning stage requires relatively

high computational complexity effort.

1.6 Conclusion

In this chapter, a state of the art of power quality disturbances characterization was

performed. In particular, several feature extraction and classification techniques for power

quality monitoring were reviewed.

Power quality involves voltage quality, which presents a voltage deviation from the nom-

inal voltage. It involves also current quality that concerns its deviation from the nominal

current. PQ disturbances can be classified into two main classes: power quality variations

and events. A distinction is made between the variation and the event, where a triggering

mechanism is required to start recording the event by determining its starting and ending

points. In fact, the triggering mechanism detects the event and extract additional infor-

mation. A review of several standards for PQ was performed. These standards provide

guidelines, recommendations, and frequency and phasor limits. The PQ standards allow

to assure compatibility between the power system and the end-user equipments. The

most known organisations for developing standards on power quality are IEC and IEEE.

Regarding power quality monitoring, PMUs are used to extract frequency and phasor

of the voltage at important substations for solving the PQ disturbance problems. Sev-

eral frequency and phasor estimator requirements are provided by the IEEE standard

C37.118.2011. Their performances are evaluated under steady-state and dynamic com-

pliance conditions. Most of previously published techniques in frequency and phasor

estimations are suboptimal, since they do not fully exploit the three-phase nature of the

electrical signals. Moreover, the performances of these techniques critically degrade under

off-nominal conditions.

Extracted parameters can be used as inputs for classification tool and disturbance detec-

tion in power systems. A state of the art of the existing PQ disturbance classification

techniques was reviewed. Specifically, pattern recognition-based techniques (i.e. ANN,
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SVM, etc.) critically depend on a learning stage that requires a training database and on

a features extraction process. Moreover, these techniques particularly suffer from compu-

tation complexity.

To overcome the above-discussed issues and challenges, the use of advanced signal pro-

cessing tool becomes obvious. In this context, the next chapter will deal with a parametric

spectral estimation technique that is used to estimate the phasor and the frequency. The

proposed technique fully exploits the multidimensional nature of the electrical signals and

it is able to achieve good performances even under off-nominal conditions. Moreover, its

design procedure is simple and particularly suitable for power grid monitoring.
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T
his chapter presents a new signal processing-based technique for voltage param-

eters estimations. The proposed technique uses an optimization algorithm that

allows to choose the suitable parameter (i.e. fundamental frequency). The ben-

efits of the proposed estimators are also illustrated with real power system data obtained

from the DOE/EPRI National Database of Power System Events. The above-mentioned

points will be discussed in the next sections.

2.1 Introduction

Parameters estimation of the voltage signal, i.e. frequency and phasor, are of special

interest in electric power systems. As it was mentioned in the previous chapter, voltage or

current signals are expected to be pure sinusoidal waveforms at the fundamental frequency

(50/60 Hz). However, the increasing amount of renewable energy sources will lead to

unacceptable levels of power quality by producing additional disturbances. Therefore,

each PQ disturbance has a substantial influence on the voltage and current signals. In

this context, it becomes imperative to identify the cause of each disturbance by estimating

their parameters. Motived by this, spectral analysis of signals is a suitable approach for

the power quality characterization.

In the literature, several techniques have been proposed to deal with the voltage spec-

tral estimation (see section 1.4). Indeed, Fourier transform-based techniques are used to

estimate the frequency and phasor of voltage. However, these techniques lead to poor

estimation under noisy environment and require long data to achieve good resolution.

Moreover, their performances critically degrade under off-nominal conditions. To over-

come these limitations, parametric methods allow to achieve highest estimation perfor-

mances over a significantly decreased data amount as compared to those in non-parametric

methods.

In this context, this chapter describes a novel estimation technique based on a paramet-

ric method. This technique fully exploits the multidimensional nature of the electrical

signals. The proposed technique is devoted to fundamental frequency and phasor pa-

rameters estimation. It is based on the least squares method, which is equivalent to

the maximum likelihood estimator (MLE) under additive white Gaussian noise. It has

been demonstrated that the maximum likelihood estimator is an asymptotically optimal

estimator [150]. MLE performs better than traditional methods with highest statistical

performance. This proposed technique requires the maximization of a 1-dimensional cost-

function. For this purpose, we propose an optimization algorithm based on the Newton-

Raphson optimization technique. This technique allows improving the performance of

the frequency and phasor estimators and has lower computational complexity than clas-

sical techniques. The proposed estimator can be applied for real-time characterization
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Figure 2.1: Flowchart of the proposed algorithm.

of processes since it uses the discrete-time signals. The proposed algorithm is illustrated

by Fig. 2.1, where X is the measurements matrix for the three-phase voltage system, f̂0

corresponds to the estimated fundamental frequency, and V̂a, V̂b, and V̂c are the estimated

complex phasors, respectively.

In PMU standard C37.118 [52, 56], several frequency and phasor estimator requirements

have been defined. The performance of the phasor, frequency, and rate of change of

frequency (ROCOF) estimators are evaluated under steady-state and dynamic compliance

conditions, with several criteria such as the Total Vector (TVE), Frequency (FE), and

ROCOF (RE) Errors. In this chapter, we will focus on M-class that requires TVE and FE

smaller than 1% and 5 mHz, respectively. A comparison of the TVE and FE performances

according to the IEEE Std. C37.118.2011 requirements has been performed.

This chapter is organised as follows: first, the three-phase signal model and the proposed

angular frequency and phasor estimators are presented including the maximum likelihood

method. Then, an extension to non-stationary signals of these estimators is performed.

Afterwards, the proposed optimization algorithm used for the frequency estimation is

given. Finally, the benefits of the proposed estimators are illustrated with real power

system data obtained from the DOE/EPRI National Database of Power System Events.
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2.2 Parameters Estimations

In this study, a stationary signal over a small time window is used with additive noise.

The IEEE 1159 standard recommends the use of half-cycle for the voltage sag and swell.

In the forthcoming subsections, a signal and phasor models under noisy environment are

presented. Based on the phasor model, we also describe the proposed maximum likelihood

angular frequency and phasor estimators with their extension to non-stationary case.

2.2.1 Study hypotheses

In this study, we make the following hypotheses:

• H1: the input signal on phase m ∈ {a, b, c} is modelled as a sine wave that is

corrupted by an additive noise.

• H2: the additive noise, as an approximation, is supposed to be a white Gaussian

noise with zero mean and variance σ2. This should be a good approximation for

the electrical noise picked up in the wiring and signal conditioning circuits [151].

Moreover, white Gaussian noise is widely considered in the research of power quality

issues [110].

• H3: the three-phase signals have the same fundamental frequency f0.

• H4: the signal does not contain any harmonics1.

2.2.2 Signal model and phasor expression

Under the hypotheses H1-H4, the discrete time signal of phase m (m ∈ {a, b, c}) in a

three-phase voltage system can be expressed as (see [152])

Vm[k] = am cos (kw0 + φm) + bm[k], (2.1)

where am and φm are respectively the amplitudes and initial phases of each fundamental

component of the three-phase voltage system. w0 = wn + δ = (2πf0) corresponds to

the fundamental angular frequency, wn is the nominal angular frequency, and δ refers to

angular frequency deviation from the nominal angular frequency (i.e., 100π or 120π rd/s).

f0 is the fundamental frequency. Finally, bm[k] refers to the additive noise. The complex

phasor of phase m can be expressed as follows

Vm = amejφm . (2.2)

1If it is not the case, we use a low pass-filter to respect this hypothesis.
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It should be mentioned that under nominal conditions, the phase shift between phases is

equal to 120◦ and am = 1 pu. If one of these requirements is not satisfied, the system is

considered as unbalanced [31,33].

In practice, the signal parameters could be estimated from the measured three-phase volt-

age. Let consider that the voltage sensors record N consecutive samples of the electrical

signal Vm[k], where k = 0, 1, · · · , N −1. Using matrix notations, the signal model in (2.1)

can be expressed as

X = G(w0)S + B, (2.3)

where

• X and B are N ×3 matrices containing the recorded and noise samples, respectively.

These matrices are defined by

X =




xa[0] xb[0] xc[0]
...

...
...

xa[N − 1] xb[N − 1] xc[N − 1]


 , (2.4)

B =




ba[0] bb[0] bc[0]
...

...
...

ba[N − 1] bb[N − 1] bc[N − 1]


 , (2.5)

• G(w0) is a N × 2 matrix that only depends on the unknown fundamental angular

frequency w0. This matrix is defined as

G(w0) =




1 0

cos(w0) sin(w0)

. .

. .

. .

cos(w0(N − 1)) sin(w0(N − 1))




. (2.6)

• S is a 2 × 3 real-valued matrix containing the amplitudes and initial phases of the

three-phase voltage system. This matrix is defined by

S =


 aacos(φa) abcos(φb) accos(φc)

−aasin(φa) −absin(φb) −acsin(φc)


 . (2.7)

In the next section, we propose a parametric estimators that uses the three-phase signal

model in (2.1). This proposed estimators allow to estimate the angular frequency (w0)

47



Chapter 2. Phasor and Frequency Estimations

and phasor (Vm) from the input three-phase signals X.

2.2.3 Least squares estimations

The main objective of this present section is to estimate the voltage parameters, i.e.

angular frequency and phasor, from the input three-phase signals, X. In this context,

we propose the use of Maximum Likelihood estimator (MLE). MLE corresponds to least

square estimator when the noise is white Gaussian noise. This spectral estimation based-

parametric model can be decomposed into two steps: first, the estimation of angular

frequency from X is the main difficult step. Then, the estimated phasor can be obtained

once the angular frequency is estimated. These two steps are described in the next

subsections.

2.2.3.1 Angular frequency estimation

This frequency estimator, based on the maximum likelihood principle, is the most popu-

lar approach to obtaining practical estimator. Moreover, its performance is optimal for a

small recorded data. The maximum likelihood estimator is defined as the value of angu-

lar frequency (w0) that maximizes the log-likelihood function. In the case when a closed

form expression for MLE can not be found, then a grid search or an iterative maximiza-

tion of the log-likelihood function can be exploited. If the grid search is not practical,

then the iterative approaches such as Newton-Raphson can be used. The value that is

maximizing the asymptotic log-likelihood function is the estimated angular frequency.

The optimization algorithm based on the Newton-Raphson method is described in the

forthcoming section. In particular, the estimation of w0 (ŵ0) is obtained by the following

maximization

{ŵ0, Ŝ} = arg max
w,S

L(X; w, S), (2.8)

where Ŝ is the estimation of S and L(X; w, S) = log(p(X; w, S)) is the log-likelihood

function of X. p(X; w, S) is the probability density function (pdf) of X that is given by

p(X; w, S) =
1

(2πσ2)
N

2

× exp
[
−

1

2σ2
(X − G(w0)S)T (X − G(w0)S)

]
, (2.9)

where (.)T denotes the matrix transpose. It is assumed that the signal is corrupted by a

white Gaussian noise (hypothesis H2 is hold). In particular, the maximization of L(w)

with respect to w reduces to the following minimization

{ŵ0, Ŝ} = arg min
w,S

L(X; w, S) = arg min
w,S

‖X − G(w)S‖2
F , (2.10)
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where ‖.‖2
F is the Frobenius norm. By simplifying the cost function, we obtain

‖X − G(w)S‖2
F = (X − G(w)S)T (X − G(w)S)

=
(
XT − ST GT (w)

)
(X − G(w)S)

= XT X − ST GT (w)X − XT G(w)S + ST GT (w)G(w)S,

(2.11)

The first-derivative of the cost-function with respect to S is given by (please refer to

reference [153])
∂L(X; w, S)

∂S
= −2GT (w)X + 2GT (w)G(w)S. (2.12)

Finally, by setting the derivative in (2.12) to 0, we obtain the maximum likelihood esti-

mator of S. It is defined as follows

Ŝ =
(
GT (w)G(w)

)−1
GT (w)X, (2.13)

where (.)−1 denotes the matrix inverse. The most challenge step for estimating the phasors

S is the estimation of w0. By replacing the S by Ŝ in the equation (2.10), we obtain

L(X; w, S) = XT
(

IN − G(w)
(
GT (w)G(w)

)−1
GT (w)

)
X (2.14)

By neglecting the terms XT X, which is not depending on w0, it can be checked that the

estimation of w0 is obtained by

ŵ0 = arg max
w

J (w), (2.15)

where

J (w) , Tr[XT G(w)(GT (w)G(w))−1GT (w)X], (2.16)

and Tr[.] is the trace of an N -by-N square matrix, and is defined to be the sum of the

elements on the main diagonal.

Regarding the angular frequency estimation, the main challenge step relies on the opti-

mization of the cost function defined in (2.15). In this context, numerical methods could

be used for estimating the w0 and then phasors (S) since the maximum can not found

analytically. Initially, this estimator requires the maximization of a cost-function in a

7-dimensional space. However, as the phasors S are linearly separable, the estimation of

w0 and S can be decoupled into two steps [154]. First, the nonlinear parameter w0 can

be obtained by maximizing a 1-dimensional function. In the forthcoming section, we pro-

pose an iterative algorithm based on Newton-Raphson for the cost-function optimization.

Then, the estimation of S can be derived using a simple closed form expression. This pro-

posed estimator based on ML method leads to highest performance under white Gaussian
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noise and even under colored noise [61]. In special cases, this estimator overcomes the

classical technique such discrete time Fourier transform in term of frequency resolution.

It is worth mentioning that the computation of J (w) requires matrix inversion of GT (w)G(w).

The G(w) could be large matrix, therefore matrix inverse needs more computational time.

It should be mentioned that an approximate form expression of the MLE can be obtained

when the signal length is multiple to half-cycle or it is large. Using the expression of

G(w) in (2.6), GT (w)G(w) can be decomposed as [155]

GT (w)G(w) =
1

2

N−1∑

k=0


1 + cos(2kw) sin(2kw)

sin(2kw) 1 − cos(2kw)




=
N

2
I22 +

1

2


ℜe(q(w)) ℑm(q(w))

ℑm(q(w)) −ℜe(q(w))


 ,

(2.17)

where I22 is the identity matrix of size 2 × 2 and q(w) is defined as

q(w) =
N−1∑

k=0

e2jωk =
sin(Nw)

sin(w)
ejω(N−1). (2.18)

In the case when the number of samples, N, is equal to an integer multiple of the funda-

mental half-period, we have

N =
lFs

2f
=

lπ

ω
l ∈ N, (2.19)

then

sin(Nw) = sin(lπ) = 0 (2.20)

Using (2.20), the scalar q(w) defined in (2.18) is equal to

q(w) =
sin(Nw)

sin(w)
ejω(N−1) = 0. (2.21)

In the case when N is sufficiently large and N 6= lFs

2f
, the scalar q(w) is generally non-zero

but can be neglected as compared to N
2

when ω is not near 0 or 1/2 [150]. Using this

result, GT (w)G(w) can be approximated by

GT (w)G(w) ≈
N

2
I22. (2.22)

Note that this approximation is exact when N = lFs

2f
. Using (2.22), the cost-function in
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(2.16) can be computed without any matrix inversion and can be approximated by

J (w) ≈
2

N
Tr

[
XT G(w)G(w)T X

]
=

2

N
‖GT (w)X‖2

F . (2.23)

The approximate cost-function expression can be simplified using the definition of G(w)

and X, then we obtain

J (w) ≈
2

N
∥∥∥∥∥∥

N−1∑

k=0


xa[k] cos(kw) xb[k] cos(kw) xc[k] cos(kw)

xa[k] sin(kw) xb[k] sin(kw) xc[k] sin(kw)



∥∥∥∥∥∥

2

F

= 2
3∑

m=1

Pm(w),

(2.24)

where Pm(w) corresponds to the periodogram of xm[k] and is defined as

Pxm
(w) ,

1

N

∣∣∣∣∣
N−1∑

k=0

xm[k]e−jωk

∣∣∣∣∣

2

. (2.25)

By maximizing (2.24) instead of (2.16), the resulting estimator is called the DTFT an-

gular frequency estimator. In the case when signal length is equal to a multiple of the

fundamental half-period or it is sufficiently large, the cost-function can be reduced to a

sum of discrete time Fourier transform. In such conditions, the approximate cost-function

is considered as an attractive choice since it has a much lower computation complexity

than the ML cost-function. Indeed, the ML cost-function involves many matrix multipli-

cation operations that need more time burden, while the approximate one involves less

number of matrix multiplication operations. Finally, when the signal length is a multiple

of a half-cycle, the approximate cost-function is an attractive choice for PQ applications,

where the periods of transients in power system is very short. Indeed, it leads to the same

performance as the ML cost-function with a much lower computational cost. However,

the performance of the DTFT critically depend on the signal length N.

2.2.3.2 Phasor estimation

Once the fundamental frequency is estimated, the maximum likelihood estimator of the

phasors, S, is given by [154,156]

Ŝ =
(
GT (ŵ0)G(ŵ0)

)−1
GT (ŵ0)X, (2.26)

51



Chapter 2. Phasor and Frequency Estimations

where ŵ0 corresponds to the ML (or DTFT) estimator of ω0. Using the definition S, the

ML estimator of the phasor is therefore given by

[V̂a, V̂b, V̂c] =
[

1 −j
]

Ŝ. (2.27)

Similarly to the angular frequency estimator, it is also possible to derive a low complexity

estimator by using the approximation (2.22) in (2.26). After some simplifications, we

obtain

V̂m ≈
2

N

N−1∑

k=0

xm[k]e−jŵ0k. (2.28)

This approximate estimator is called the DTFT phasor estimator.

2.2.4 Extension to non-stationary case

In the previous section, we considered disturbances that are statistical time invariant

or stationary. The presented method is based on the stationary assumption. In fact,

stationary signals are not existing in real power systems since the three-phase signals are

affected by small and large variations (events). In such conditions, the signal parameters

are time-varying. These small and relatively slow statistical changes can be addressed

by using a short-time analysis as illustrated by Fig. 2.2. In Fig. 2.2, the analysis is

performed on several signal blocks with a window length of Ns samples. The signal is

considered to be stationary over each window, which is a short duration of time. Then,

the signal parameters are estimated over each window by a shifting in time of the window.

Therefore, the estimated parameters are time-varying since they depend on the window

number. By considering an overlapping parameter 0 ≤ q < 1 , the lth signal block can be

modeled as

Xl = G(wl)Sl + Bl, (2.29)

where

• Xl and Bl are Ns × 3 matrices containing the recorded and noise samples, respec-
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Figure 2.2: Concept of sliding window under quasi-stationary conditions.

tively. These matrices are defined by

Xl =




xa[Nb] xb[Nb] xc[Nb]
...

...
...

xa[Ne] xb[Ne] xc[Ne]


 , (2.30)

Bl =




ba[Nb] bb[Nb] bc[Nb]
...

...
...

ba[Ne] bb[Ne] bc[Ne]


 , (2.31)

where Nb = lNs(1 − q), Ne = lNs(1 − q) + Ns − 1.

• G(wl) is a Ns × 2 matrix that only depends on the unknown fundamental angular

frequency wl. This matrix is defined as

G(wl) =




cos(wlNb) sin(wlNb)
...

...

cos(wlNe) sin(wlNe)


 , (2.32)

• Sl is a 2 × 3 real-valued matrix containing the amplitudes and initial phases of the
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three-phase voltage system. This matrix is defined by

G(wl) =


 aalcos(φal) ablcos(φbl) aclcos(φcl)

−aalsin(φal) −ablsin(φbl) −aclsin(φcl)


 . (2.33)

Under non-stationary conditions, the estimation problem can be modeled as a statistical

problem by using splitting the signal (X) into small signal blocks (Xl). The estimation

of the fundamental angular frequency wl using MLE can be obtained by

ŵl = arg max
w

J (wl), (2.34)

where

J (wl) , Tr[XT
l G(wl)G

†(wl)Xl], (2.35)

where G†(wl) is the pseudo-inverse of G(wl) i.e. G†(wl) = (GT (wl)G(wl))
−1GT (wl).

The proposed estimator can estimate the fundamental angular frequency under non-

stationary conditions since the signal is divided into small window lengths. Then, the

phasors can be estimated by the following expression

[V̂al, V̂bl, V̂cl] =
[

1 −j
]

Ŝl. (2.36)

Regarding the estimation of the angular frequency and phasors in (2.15) and (2.27),

one should note that the most challenging step is the maximization of the non-linear

cost-function J (w). In the next section, we propose an iterative approach based on the

Newton-Raphson iterative technique to perform this task.

2.3 Cost-Function Optimization Method

This section is concerned with the problem of cost-function optimization, i.e. finding the

maximum value of the cost-function. This is due the fact that the fundamental angular

frequency is determined as the maximum of the cost-function. Indeed, this function is

one-dimensional parameter that will be optimized. In this study, w0 should be positive

and close to the nominal angular frequency. Then, the safest way to maximize the exact

(or approximate) cost-function J (w) is to perform a grid-search over an interval [a, b] as

shown in the Fig. 2.3. An enough small spacing between w values guarantee to obtain

the best solution (ŵ0).

In the consecutive subsections, we will present two optimization methods, i.e. Downhill

Simplex and an iterative approach-based Newton-Raphson methods. These methods will

explicit use of 1 dimensional minimization.
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w

J (w)

a bŵ0 w0

Figure 2.3: Grid search over the [a, b] interval.

2.3.1 Downhill Simplex Method

For optimizing the one-dimensional function is to use the Downhill simplex optimization

method. This method is due to Nelder and Mead [157] and it is commonly applied for

finding the minimum or maximum of a one- or multi-dimensional cost-function. Downhill

simplex is used to nonlinear optimization problems that do not require any derivative

information. It is heuristic search method, which does not guaranteed to be optimal

[158,159].

This presented method could search a one-dimensional minimizer that finds a minimum

for a problem specified by

min
w

J (w) where, w1 < w < w2. (2.37)

The Nelder-Mead technique is provided with MATLAB R© environment by the Fminsearch

algorithm. This standard algorithm allows to use an arbitrary values, which describe the

simplex movement in the merit space. Simplex is a geometric construct that is used

to achieve the optimization of the function (i.e., minimization). Fminsearch obtains

the minimum by making a simplex around the initial guess w0 by adding 5% of each

component w0(i) to w0. A search of the unknown parameter is performed by a moving

simplex. Three factors are used by this method to move the simplex that are alpha

(reflection moves), beta (contraction moves), and gamma (expansion moves).

• Reflection moves compute the reflection point xr := c + α(c − xh) and Jr := J (xr).

If Jl ≤ Jr < Js, accept xr and terminate the iteration.
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• Expansion moves compute expansion point xe := c + γ(xr − c) and Je := J (xe). If

Je ≤ Jr, accept xe and terminate the iteration. Otherwise, if Je ≥ Jr, then they

accept xr and terminate the iteration.

• Contraction moves compute the contraction point xc by using the better of the two

points xh and xr.

– Outside, if Js ≤ Jr < Jh, compute xc := c + β(xr − c) and Jc := J (xc). If

Jc ≤ Jr, accept xc and terminate the iteration. Otherwise, we should perform

a shrink transformation.

– Inside, if Jr ≥ Jh, compute xc := c + β(xh − c) and Jc := J (xc). If Jc < Jh,

accept xc and terminate the iteration. Otherwise, we should perform a shrink

transformation.

• Shrink computes n new vertices xj := xl + δ(xj − xl) and Jj := J (xj), for j =

0, . . . , n, with j 6= l.
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This optimization method is considered as robust one, but it has a limited convergence

speed compared to other modern methods. It focuses on continuous numerical methods

and can lead to local solutions [160, 161]. Unfortunately, this method can be computa-

tionally prohibitive.

2.3.2 Newton-Raphson Method

We concluded the previous subsection by showing how the Downhill simplex method

could be used to solve the optimization problem. The method developed was suitable and

safest to optimize the cost-function, but it can be computationally prohibitive to obtain

an accurate estimation of w0. To reduce the computational time, we propose to use an

iterative maximization procedure called the Newton-Raphson algorithm (NRA).

An initial estimate of the root is found by drawing a graph of the function in the neigh-

bourhood of the root. This estimate is then improved by using a technique known as the

Newton-Raphson method. The method is based upon a knowledge of the tangent to the

curve near the root. It is an iterative method that can be used repeatedly to continually

improve the accuracy of the root.

2.3.2.1 Newton-Raphson iteration

Once reason for the great interest in Newton-Raphson method is the importance of being

able to obtain the solution in few iterations. In fact, the evaluation of an iterative method

invariably focuses on how quickly the iterates (wk) converge. This could reduce the

computation time, which makes it as an attractive choice for short transient analysis. If

the initial value is close to the true maximum, the Newton-Raphson algorithm can reach

the maximum of J (w) in several iterations [162].

This method can maximize the cost-function when the derivative function is zero. This

can be expressed as follows

∇J (w) = 0, (2.38)

where, ∇J (w) corresponds to the first-derivative of the cost-function.

For the solution in (2.38), we assume that there is an initial guess that is w0. In the case
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when ∇J (w) is linear near initial guess, then it could be approximated by

∇J (w) ≈ ∇J (w0) + ∇2J (w)|w=w0
. (2.39)

Using the (2.39) to solve for the zero w1, then ∇J (w0) is equal to zero and solving for

w1, we obtain

ŵ1 = w0 −
∇J (w)

∇2J (w)

∣∣∣∣∣
w=w0

, (2.40)

We consider again the new guess w1, then we repeat the same procedure for finding the

new zero. Figure 2.4 shows that with several iterations the guesses converge to the real

zero of ∇J (w). Generally, this algorithm is defined as

ŵn+1 = wn −
∇J (w)

∇2J (w)

∣∣∣∣∣
w=wn

, (2.41)

where, ∇2J (w) corresponds to the second-derivative of the cost-function. These deriva-

tives are defined by

∇J (w) =
∂J (w)

∂w
, (2.42)

and

∇2J (w) =
∂2J (w)

∂w2
. (2.43)

An initial guess close to the maximum is required, in order that the iteration converges

to this maximum. In the next subsections, we focus on the first- and second-derivative of

the exact and approximate cost-functions defined in (2.16) and (2.23), respectively.

2.3.2.2 Derivatives of the exact cost-function

Let us focus on the exact cost-function in (2.16). The first-derivative of the inverse A−1(w)

is given by [153]

∇A−1(w) = −A−1(w)
∂A(w)

∂w
A−1(w). (2.44)

Using this result, the first-derivative of the cost-function can be obtained as follows

∇J (w) =Tr

[
XT

(
2

∂G(w)

∂w
Y−1(w)GT (w)

− G(w)Y−1(w)W(w)Y−1(w)GT (w)
)

X
]

,

(2.45)

where Y(w) = GT (w)G(w) and W(w) = ∂Y(w)
∂w

is the first-derivative of Y(w) with respect

to the fundamental angular frequency. Regarding the second-derivative, it can be checked
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Figure 2.4: Newton-Raphson method for finding a function zero.

that

∇2J (w) =Tr

[
XT

(
2

∂2G(w)

∂w2
Y−1(w)GT (w)

+2
∂G(w)

∂w
Y−1(w)

∂G(w)

∂w

T

−4
∂G(w)

∂w
Y−1(w)W(w)Y−1(w)GT (w)

+2G(w)Y−1(w)W(w)Y−1(w)W(w)Y−1(w)GT (w)

− G(w)Y−1(w)
∂W(w)

∂w
Y−1(w)GT (w)

)
X

]
.

(2.46)

The computation of the first- and second-derivative requires the evaluation of the deriva-

tives of G(w) and Y(w). Using the definition of G(w) in (2.6), it can be verified that

[
∂G(w)

∂w

]
k+1,1

= −ksin(kw),
[

∂G(w)
∂w

]
k+1,2

= kcos(kw).
(2.47)
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and [
∂2G(w)

∂w2

]
k+1,1

= −k2cos(kw),
[

∂2G(w)
∂w2

]
k+1,2

= −k2sin(kw).
(2.48)

where [.]u,v corresponds to the matrix element located at the uth row and vth column.

As Y(w) = GT (w)G(w), the matrix Y(w) can be decomposed as

Y(w) =




N−1∑
k=0

1+cos(2kw)
2

N−1∑
k=0

sin(2kw)
2

N−1∑
k=0

sin(2kw)
2

N−1∑
k=0

1−cos(2kw)
2


 . (2.49)

It follows that the first- and second-derivative of Y(w) are respectively given by

W(w) =




−
N−1∑
k=0

ksin(2kw)
N−1∑
k=0

kcos(2kw)

N−1∑
k=0

kcos(2kw)
N−1∑
k=0

ksin(2kw)


 , (2.50)

∂W(w)

∂w
=




−
N−1∑
k=0

2k2cos(2kw) −
N−1∑
k=0

2k2sin(2kw)

−
N−1∑
k=0

2k2sin(2kw)
N−1∑
k=0

2k2cos(2kw)


 . (2.51)

2.3.2.3 Derivatives of the approximate cost-function

Let us focus on the approximate cost-function in (2.23). The first-derivative of the ap-

proximate cost-function is given by

∇J (w) =
4

N
Tr

[
XT ∂G(w)

∂w
GT (w)X

]
, (2.52)

where ∂G(w)
∂w

is the first-derivative of matrix G(w). The second-derivative of the approxi-

mate cost-function can be shown to be

∇2J (w) = 4
N

Tr
[
XT

(
∂2G(w)

∂w2 GT (w) + ∂G(w)
∂w

∂G
T (w)

∂w

)
X
]

, (2.53)

where the first- and second-derivative of the matrix G(w) are provided in (2.47) and

(2.48), respectively.

2.4 Simulation and Experimental Results

In this section, the performances of the two proposed estimators are compared: the first

estimator is based on the exact cost-function and is provided in (2.16) and (2.27), while

the second estimator is based on the approximate cost-function and is provided in (2.24)
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Table 2.1: Simulation parameters.

aa ab ac φa φb φc

1 pu 1 pu 1 pu 0◦ 120◦ 240◦

and (2.28). For the sake of brevity, these two estimators are called LS and DTFT in

the next subsections. Regarding the cost-function optimization, two algorithms are also

compared: the downhill simplex method (fminsearch) with a termination tolerance of

10−4 [157], and the proposed Newton-Raphson algorithm with 4 iterations.

2.4.1 Monte Carlo Simulation Results

Monte Carlo simulations have been carried out to evaluate the estimators performances.

As recommended by the IEEE Standard C37.118 [52, 56], the performance of the phasor

and frequency estimators is evaluated using the TVE and FE criteria. Under additive

white Gaussian noise, the following simulations present the mean of the TVE and FE cri-

teria. These criteria are evaluated through Nmc = 1000 Monte Carlo trials by generating

signals according to signal model (2.1). In each simulation, the fundamental frequency is

set to f0 = 55 Hz, which is the worst case value reported in the IEEE Standard C37.118,

and the sampling frequency is set to Fs = 48 × fn = (48 × 60) Hz = 2880 Hz, where fn is

the nominal frequency. The amplitudes and initial phases of the three complex phasors

are given in Table 2.1. Then, the mean TVE for the phase m and the mean FE are

estimated by

TV Em,mean ,
1

Nmc

Nmc∑

n=1

∣∣∣Vm − V̂m[n]
∣∣∣

|Vm|
, (2.54)

and

FEmean ,
1

Nmc

Nmc∑

n=1

∣∣∣f̂0[n] − f0

∣∣∣ , (2.55)

where V̂m[n] and f̂0[n] corresponds to the estimated phasor and estimated frequency for

the nth Monte Carlo trial. In the next subsections, the mean TVE for the first phase

and FE of the proposed estimators are analyzed for different signal lengths, harmonic

and inter-harmonic distortion, off-nominal frequency deviation, and Signal to Noise Ratio

(SNR), where the SNR is defined as

η =
1

6σ2

2∑

k=0

a2
k, (2.56)

and σ2 corresponds to the noise variance.
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Figure 2.5: Mean FE versus N with noiseless signals (SNR = 150 dB): comparison between
LS and DTFT using NRA with LS using fminsearch estimations.

2.4.1.1 Frequency error. Effect of the number of samples N

Figure 2.5 presents the Average Frequency Error (FEmean) versus N. This figure clearly

shows that the LS-NR estimator outperforms the other techniques. The FEmean obtained

with the LS-fmin estimator is slightly above the FEmean obtained with the LS-NR method

whatever the signal length is. For particular values of N, we observe that the LS-NR and

DTFT-NR techniques have similar performance. Indeed, as demonstrated in Section II,

the exact cost-function (2.16) is equal to the approximate cost-function (2.23) when N is

equal to a multiple of the half-period or when it is large. This figure also shows that the

accuracy requirement of the IEEE Standard [52, 56], which is set to 5 mHz, seems to be

respected on average for the LS-NR and LS-fmin estimators whatever the signal length

is.

2.4.1.2 Frequency error. Effect of signal to noise ratio (SNR)

Figure 2.6 illustrates the influence of the SNR on the estimator performances when N

= 240 samples. We observe that the LS-NR estimator seems to outperform the other

techniques whatever the SNR is. We also note that the FEmean of the proposed estimators

decreases when the SNR increases. The LS-NR and LS-fmin estimators lead to a mean FE
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Figure 2.6: Mean FE versus SNR for N = 240 samples: comparison between LS and
DTFT using NRA with LS using fminsearch estimations.

lower than 5 mHz when the SNR is greater than 70 dB. While, the DTFT estimator leads

to a frequency error more than 5 mHz whatever the SNR is. It can be also noted that for

a SNR lower than 70 dB, the mean FE is larger than the IEEE standard limit. For the

low-SNR scenario, a larger number of samples N is required to meet the requirement of

the IEEE standard.

2.4.1.3 Total vector error. Effect of off-nominal frequency deviation

This subsection evaluates the influence of the frequency error on the phasor estimator

performance. In the following simulation, the (normalized) angular frequency is set to

w0 = ωn + δ where ωn = 120π
Fs

corresponds to the nominal angular frequency and δ refers

to the angular frequency deviation. The phasor estimation is obtained by setting ω̂0 = ωn

in (2.26) or (2.28). Under noiseless conditions, it is demonstrated in Appendix G that the

TVE expression at off-nominal frequency can be approximated by

TV Em =
‖M(wn, δ)sm‖

am

, (2.57)

where sm = [am cos(φm), −am sin(φm)]T and M(wn, δ) = I22 −
(
GT (wn)G(wn)

)−1
GT (wn)

G(wn + δ) for the ML phasor estimator, or M(wn, δ) = I22 − 2
N

GT (wn)G(wn + δ) for the
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Figure 2.7: TVE and Mean TVE versus frequency deviation for N = 144 samples and
SNR = 50 dB: comparison between LS and DTFT estimations.

DTFT phasor estimator.

Figure 2.7 shows the mean TVE and the theoretical TVE values of the proposed estimators

versus fundamental frequency deviation for N = 144 samples and at SNR = 50 dB. The

TVEmean values are evaluated through Monte Carlo simulations while the theoretical ones

are computed from (2.57). It is obvious that all the experimental TVE mean and the

theoretical TVE increase steadily when the frequency deviation increases. Under nominal

conditions (f0 = 60 Hz), the estimation error of the LS and DTFT technique is due to the

Gaussian noise. Under off-nominal conditions, we observe that the frequency deviation

drives the estimation error. Therefore, these simulations emphasize the importance of the

frequency estimation before phasor estimation.

2.4.1.4 Total vector error with frequency estimation. Effect of off-nominal

frequency deviation

Figure 2.8 shows the mean TVE of LS- and DTFT-NR estimators versus fundamental fre-

quency deviation for N = 144 samples under noiseless conditions (SNR = 150 dB). The

fundamental frequency is first estimated by using the LS-NR or DTFT-NR algorithm

before phasor estimation. In this context, it is clear that the LS-NR estimator outper-
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Figure 2.8: Mean TVE versus frequency deviation for N = 144 samples: comparison
between LS and DTFT using NRA estimations.

forms the DTFT-NR technique. It can also be observed that the fundamental frequency

deviation critically degrades the DTFT-NR estimator performance even with frequency

estimation.

2.4.1.5 Total vector error with frequency estimation. Effect of the number

of samples N

Figure 2.9 shows the mean Total Vector Error (TVEmean) versus N. It can be observed

that the LS-NR estimator seems to outperform the other estimators. When the number

of samples N is close to a multiple of the half of signal period (N = 209 or N = 236

samples), it can be seen that the DTFT-NR estimator performs well. Indeed, it is possible

to prove that the exact cost-function (2.16) is equal to the approximate cost-function in

(2.23) for these particular values of N . This simulation also shows that both LS-NR

and LS-fmin techniques seem to respect on the average the accuracy limit defined by the

IEEE standard, which is equal to TV E < 1%. When, the number of samples is close

to a multiple of the half of signal period, the DTFT-NR estimator can also meet this

requirement.
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Figure 2.9: Mean TVE versus N with noiseless signals (SNR = 150 dB): comparison
between LS and DTFT using NRA with LS using fminsearch estimations.

2.4.1.6 Total vector error with frequency estimation. Effect of signal to noise

ratio (SNR)

Figure 2.10 shows the mean Total Vector Error (TVEmean) versus SNR for N = 240

samples. It can be observed that the LS-NR and LS-fmin estimators achieve the higher

performances. It can be seen that for moderate SNR levels (≥ 48 dB), the LS-NR and LS

using fminsearch estimators meet on the average the standard requirements. In particular,

the TVEmean of these two estimators becomes negligible for a high SNR value. Regarding

the DTFT technique, this estimator does not seem to meet the standard requirements

even for high SNR values.

2.4.1.7 Total vector error with frequency estimation. Effect of harmonics

and inter-harmonics

In power systems, harmonics are mainly due to nonlinear loads and constitute a big issue

that should be taken in consideration [163]. By adding harmonics in (2.1), we obtain the
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Figure 2.10: Mean TVE versus SNR for N = 240 samples: comparison between LS and
DTFT using NRA with LS using fminsearch estimations.

following signal model

xm[k] = am cos (kw0 + φm)

+ α


 ∑

h=2,3,4...

amh cos (hkw0 + φmh)


+ bm[k],

(2.58)

where amh and φmh correspond to the amplitude and initial phase of the hth order har-

monic, respectively. The quantity α > 0 controls the Total Harmonic Distortion (THD)

of the signal. IEC Standard 61000-4-7 defines the THD as the ratio of the Root Mean

Square (rms) sum of all the harmonic components to the RMS value of the first harmonic

or fundamental [42]. This value is known as THDF and is given by

THDF (%) , 100 α

2

√
∞∑

h=2
a2

mh

am

. (2.59)

In the following simulation, a constant three-phase amplitudes am = 1 pu are assumed.

The standard IEEE C37.118.2011 requires that each harmonic up to 50th should be added

to the fundamental signal. Their amplitudes and the sampling frequency are set to amh =
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Table 2.2: TVE versus inter-harmonic components for N = 192 samples and SNR = 150
db.

LS-NR LS-fmin DTFT-NR

fih1 = 30 Hz 0.73% 0.76% 1.14%

fih2 = 85 Hz 0.71% 0.80% 1.10%

10% pu and Fs = 144 × 60 Hz, respectively. Figure 2.11 shows the TVEmean of the

proposed estimators versus harmonic level for N = 72 samples and at SNR = 80 dB. The

performances of these estimators are evaluated for different THDF values by varying α. It

is shown that the performances of the proposed estimators are impacted by the presence

of harmonic components. It is observed that LS-NR and LS-fmin estimation errors are

steadily increasing when the THDF increases. Indeed, this is due to model mismatch.

It is also shown that the proposed LS-NR estimator outperforms the other estimators

whatever the THDF value is. Finally, LS-NR and LS-fmin estimators lead to a phasor

error on the average less than 1%, while the DTFT technique does not seem to respect

the standard limit (on the average).

In order to analyze the effect of inter-harmonics on the proposed estimators, two inter-

harmonic components have been added to the fundamental sinusoid. The amplitudes of

the two inter-harmonic components are set to aih = 5% pu and their frequencies are equal

to fih1 = 30 Hz and fih2 = 85 Hz, respectively. Table 2.2 shows the TVE of the proposed

estimators for N = 192 samples with noiseless signals. This table shows that the LS-NR

and LSE using the fminsearch outperform the DTFT-NR. Finally, this figure shows that

the accuracy requirement defined in the IEEE Standard for maximum phasor error (1%)

is only respected for LS-NR and LS-fmin proposed estimators.

2.4.1.8 Computation complexity

Figure 2.12 compares the computational complexity (in seconds) between the Newton-

Raphson with 4 iterations and fminsearch algorithms. Both algorithms computational

complexity are evaluated through 1000 Monte Carlo trials. The Newton-Raphson algo-

rithm has lower computational complexity than the fminsearch technique whatever the

number of samples N is. Furthermore, it can be seen that the computation time does not

increase with the same rate. In particular, the computation complexity of the fminsearch

technique highly increases with the number of samples N .

2.4.1.9 Comparative study

In this section, we propose a comparison between the LS-NR and zero-crossing estimators.

Figure 2.13 presents the Average Frequency Error (FEmean) of estimators versus N at
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Figure 2.11: Mean TVE versus harmonic level for N = 76 samples: comparison between
LS and DTFT using NRA with LS using fminsearch estimations under harmonic envi-
ronment.

SNR = 150 dB. This figure clearly shows that the LS-NR estimator outperforms the zero-

crossing technique. The FEmean obtained with the zero-crossing estimator is above the

one obtained with the LS-NR estimator whatever the number of samples is. It can be

observed that the accuracy requirement of the IEEE standard C37.118.2011 seems to be

respected on average for the LS-NR and zero-crossing estimators whatever the number of

sample is.

2.4.2 Experimental Results

In this section, the LS-NR, DTFT-NR, LS-fmin, and DTFT-fmin estimators performances

are evaluated using real power system data obtained from DOE/EPRI National Database

of Power System Events [3]. The disturbance event has the code 2911 and was collected

on August 10, 2006. This disturbance corresponds to a voltage sag and swell caused

by a transmission power fault. The window length N was set to 64 samples to allow

69



Chapter 2. Phasor and Frequency Estimations

Samples Number (N)
100 200 300 400 500 600 700 800

C
om

p
u
ta
ti
on

T
im

e
(s
ec
)

10-5

10-4

10-3

10-2

10-1

100

Time-NR

Time-fminsearch

Figure 2.12: Computation time versus N for SNR = 55 dB: comparison between Newton-
Raphson and fminsearch algorithms.

the DTFT-NR and DTFT-fmin estimators working under favorable conditions. For this

event, phasor parameters obtained with LS-NR, LS-fmin, DTFT-NR, and DTFT-fmin

estimators are shown in Figs. 2.14 to 2.16. It can be observed that the system is working

under balanced conditions before 0.04 s and after 0.12 s, and under unbalanced condi-

tions between 0.04 s and 0.12 s. Under balanced conditions (pre-fault: before 0.04 s),

all estimators seem to provide good estimations. After 0.12 s (post-fault), the LS-NR

and LS-fmin estimators quickly converge to the nominal value with high estimation per-

formance compared to the performance of the DTFT-NR and DTFT-fmin estimators.

Under unbalanced conditions, the LS-NR and LS-fmin estimators show less fluctuations

on the frequency, amplitudes, and phases estimations as compared to the DTFT-NR and

DTFT-fmin. These fluctuations are mainly due to unbalanced conditions.

2.5 Conclusion

This chapter dealt with frequency and phasor estimations for electric power grid monitor-

ing purposes. A new approach based on Maximum Likelihood estimator that exploits the

multidimensional nature of the electrical signals, has been proposed. Regarding the fre-

quency estimation, two techniques have been proposed: the Maximum Likelihood and the

70



2.5. Conclusion

120 125 130 135 140 145 150 155 160 165 170
0

1

2

3

4

5

6

7

8

9

10

N (Samples number)

F
E
m
ea
n
(m

H
z)

 

 

FE mean−LS−NR

FE mean−Zero Crossing

FE Threshold

Figure 2.13: Mean FE versus N for SNR = 150 dB: comparison between LS using NRA
with zero-crossing estimations.

DTFT techniques. These techniques require the maximization of a 1-dimensional cost-

function. To maximize this cost function, it has been proposed an optimization algorithm

based on the Newton-Raphson method.

Simulation and experimental results have shown that the Maximum Likelihood-based

Newton-Raphson estimator has better statistical performance than the DTFT approach,

when the number of samples is not equal to a multiple of the fundamental half-period.

These results have also proven that the proposed estimator clearly outperforms the DTFT

approach in terms of TVE and FE, whatever the SNR, harmonics, inter-harmonics, and

off-nominal frequency deviation are. Furthermore, simulation results have also shown

that the proposed estimator and DTFT technique exhibit similar performances when the

number of samples is equal to a multiple of the fundamental half-period. Regarding the

requirements of the IEEE Standard C37.118, simulation results have proven that the

proposed technique meets, on the average, the M-class requirements in terms of TVE and

FE under steady-state conditions.

71



Chapter 2. Phasor and Frequency Estimations

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−1.5

−1

−0.5

0

0.5

1

1.5

Three-Phase Voltages

Time (sec)

V
o
lt
a
g
e
(p
.u
)

 

 
Va
Vb
Vc

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
50

55

60

65

70

Fundamental Frequency Estimation

Time (sec)

F
re
q
u
en
cy

(H
z)

 

 
f0 LS-NR
f0 DTFT-NR
f0 LS-fmin
f0 DTFT-fmin

Figure 2.14: Three-Phase voltages and estimated frequency: comparison between LS and
DTFT using NRA and fminsearch estimations.
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Figure 2.15: Amplitude variation of phasors: comparison between LS and DTFT using
NRA and fminsearch estimations.
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Figure 2.16: Phases variation of phasors: comparison between LS and DTFT using NRA
and fminsearch estimations.

74





Chapter 3

Power Quality Disturbances

Classification based on Model Order

Selection

75
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T
his chapter presents a new technique for power quality disturbances classification.

The proposed technique focuses on voltage sags and swells signatures. First, the

input signal is pre-classified into one of four pre-classes that depend on the

number of non-zero symmetrical components. In this regard, several sag/swell signatures

can be found in each class. Afterwards, the corresponding signature can be selected using

the estimated symmetrical component values. In this study, the pre-classification task

can be reformulated as a pure model order selection problem. To solve this problem, two

pre-classifiers based on Information Theoretical Criteria are proposed. The former yields

the highest statistical performances, while the latter has a lower computation complexity.

The achieved simulations and experimental results clearly illustrate the effectiveness of

the proposed algorithms for voltage sag and swell classification.

3.1 Introduction

This chapter proposes a new PQ classification technique based on the analysis of the

three-phase signal. The proposed classifier can be applied as a post-processing tool for

transient characterization and disturbance detection in power systems [164]. Similarly to

the technique described in [165], the proposed classifier is based on model order selection.

Nevertheless, unlike the method in [165], which mainly focuses on the detection problem,

the proposed technique emphasizes on the classification problem. Specifically, the pro-

posed classifier is able to identify the number of non-zero symmetrical components and

to pre-classify the signal into four classes under quasi-stationary conditions. Indeed, it

uses the estimate of the noise variance, σ2, under different constraints that correspond

to different symmetrical component configurations (which are described by classes C1, C2,

C3, and C4). For the estimation of the noise variance, a Maximum Likelihood estimator

has been proposed. This estimator exploits four ML noise variance estimates, where each

estimate corresponds to a particular symmetrical component configuration and provides

information about the three-phase configuration, as depicted in Fig. 3.1.

Once the correct class is selected, the corresponding sag or swell can be identified using

the estimated symmetrical components. The performances of the proposed algorithm are

evaluated with synthetic and experimental data. Thus, an in-depth analysis of its sensi-

tivity is carried out for different signal lengths, noisy environments, and quasi-stationary

conditions. Then, its robustness is evaluated for different Total Harmonic Distortion

(THD) values. After that, the classifier computation complexity is analyzed. Finally,

a comparison is carried out between the proposed technique and two other classifiers,

namely the symmetrical components and the three-phase three-angle algorithms.

This chapter is organized as follows. Section II presents the signal and phasor models.

Section III describes the classification method for sags and swells signatures, then Section
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These matrices are defined by

X =




x0[0] x1[0] x2[0]
...

...
...

x0[N − 1] x1[N − 1] x2[N − 1]


 , (3.4)

B =




b0[0] b1[0] b2[0]
...

...
...

b0[N − 1] b1[N − 1] b2[N − 1]


 , (3.5)

• A is a N × 2 real-valued matrix which is defined by

G =




1 0

cos(w0) sin(w0)
...

...

cos((N − 1)w0) sin((N − 1)w0)




, (3.6)

• C is a 2×3 real-valued matrix containing the real and imaginary parts of the phasors

and is defined by

S =


 a0 cos(ϕ0) a1 cos(ϕ1) a2 cos(ϕ2)

−a0 sin(ϕ0) −a1 sin(ϕ1) −a2 sin(ϕ2)


 . (3.7)

In order to analyse the recorded signals X, a vectorized version of matrix X is presented.

The vectorization operator, denoted as vec(.), is described by a linear transformation that

converts the matrix into a column vector. More precisely, n × m matrix can be vectorized

by a nm × 1 column vector that is obtained by stacking the columns of the matrix on top

of one another. Using the properties of the vectorization operator, the three-phase signal

x , vec(X) can be expressed into a 3N × 1 column vector as

x = (I3 ⊗ G) s + b, (3.8)

where b = vec (B), s , vec(S), I3 is the 3 × 3 identity matrix, and ⊗ corresponds to the

Kronecker product.

3.2.2 Phasor Model and 4-Classes

This subsection deals with the analysis of phasors configuration. In power systems, the

symmetrical components method has a great interest to analysis the three-phase power

systems under balanced and unbalanced conditions. In particular, an asymmetrical sys-

tem can be described through symmetrical components method [166]. In three-phase
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power systems, the symmetrical components are denoted by the zero-sequence z0, positive-

sequence z1, and negative-sequence z2. Indeed, the power system analysis becomes more

simpler since the obtained expressions are linearly independent. Within this context, the

complex phasors s0, s1, and s2 are decomposed using the symmetrical components method

using Fortescue transform, the complex phasors s0, s1, and s2 can be expressed as [167]




s0

s1

s2


 =




1 1 1

1 e4jπ/3 e2jπ/3

1 e2jπ/3 e4jπ/3







z0

z1

z2


 . (3.9)

The main advantage of decomposing the complex phasors into symmetrical components

domain is to identify the power system state. Under balanced conditions, the phase shift

between phases is equal to 120◦ and am = 1 pu. In such conditions, the symmetrical

components are sparse i.e. z0 = z2 = 0. Based on the three symmetrical components, we

propose four different classes that are described as

• C1: Zero- and negative-sequences are equal to 0 i.e. z0 = z2 = 0.

• C2: Zero-sequence is equal to 0 i.e. z0 = 0.

• C3: Negative-sequence is equal to 0 i.e. z2 = 0.

• C4: All sequences are different from 0.

For the 4 classes, the real-valued vector s in (3.8) that contains the real and imaginary

parts of the complex phasors can be rewritten with respect to the real and imaginary

parts of the symmetrical components as

s = Wkdk, (3.10)

where the matrix Wk and the augmented symmetrical components dk depend on the class

number. For example, for Class C1, the vector s can be decomposed as

s =




Q0

Q1

Q2




︸ ︷︷ ︸
W1


ℜe(z1)

ℑm(z1)




︸ ︷︷ ︸
d1

, (3.11)

where

Qk =


ℜe(e2jkπ/3) ℑm(e2jkπ/3)

ℑm(e2jkπ/3) −ℜe(e2jkπ/3)


 . (3.12)

For the classes, C1 to C4, the expressions of Wk and dk are presented in Table 3.1.
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Table 3.1: Expressions of Wk and dk with respect to class Ck.

Class C1 C2 C3 C4

k 1 2 3 4

Wk




Q0

Q1

Q2







Q0 Q0

Q1 Q2

Q2 Q1







Q0 Q0

Q0 Q1

Q0 Q2







Q0 Q0 Q0

Q0 Q1 Q2

Q0 Q2 Q1




dk


ℜe(z1)

ℑm(z1)







ℜe(z1)

ℑm(z1)

ℜe(z2)

ℑm(z2)







ℜe(z0)

ℑm(z0)

ℜe(z1)

ℑm(z1)







ℜe(z0)

ℑm(z0)

ℜe(z1)

ℑm(z1)

ℜe(z2)

ℑm(z2)




The proposed classification technique can be applied to the ABC classification [99]. This

later provides seven sag signatures of three-phase unbalanced power system. These sig-

natures are denoted with letters from A to G [99]. This classification has been extended

by two other signature types H and I that correspond to a rise of the voltage in the non-

faulted phase(s) [4]. All signatures are characterized by a complex pre-fault voltage, E,

and a complex post-fault voltage, V [99]. Figure 3.2 illustrates the phasor configuration

for each signature, where the dashed and solid arrows present the phasor configuration

before and after fault, respectively. Each signature presents a voltage sag caused by a

particular fault. Voltage sags A, B, and E are caused by three-phase, single-phase, and

double-phase to ground faults, respectively, measured at the fault point. Sag C may be

caused by phase-to-phase or by propagation of sag D via a transformer. Sags D and F

are obtained from the propagation of sags C and E respectively via transformers or are

provided from phase-to-phase measurements of sags B and E at the fault location. Sag G

usually results from the propagation of sag F [168]. Type H is caused by phase to ground

fault and type I is caused by double phase to ground fault.

Within this context, the nine signatures are pre-classified into 4-classes, where each class,

Ck, has at least two sag/swell signatures. Table 3.2 presents the link between the pro-

posed classification technique and the nine sag/swell signatures. Once the correct class is

selected, a symmetrical components-based classification technique can be used to select

the corresponding sag or swell signature.

3.2.3 General Vectorized Signal Model

In this subsection, the general vectorized version of signal model is presented. By replacing

the real-valued vector s in (3.8), by its expression in (3.10), we obtain

x = (I3 ⊗ G) Wkdk + b, (3.13)
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Type A Type B Type C

Type D Type E Type F

Type G Type H Type I

Figure 3.2: Sags and swells signatures illustration [4].

Table 3.2: Link between the proposed technique and sag/swell signatures.

Type z0 z1 z2 Class

Balanced 0 E 0
C1

A 0 V 0

C 0 V +E
2

E−V
2

C2

D 0 V +E
2

V −E
2

F 0 2V +E
3

V −E
3

G 0 2V +E
3

E−V
3

H V − E E 0
C3

I 3(E−V )
2

E 0

B V −E
3

V +2E
3

V −E
3 C4

E E−V
3

2V +E
3

E−V
3

then, the general form of the signal model can be described as

x = Mkdk + b, (3.14)

where k refers to the class number and

Mk , (I3 ⊗ G) Wk. (3.15)

The proposed classification technique can be decomposed into two steps: 1) we focus on

the determination of the phasor configuration that is the class number k, from the three-

phase signals x. 2) Once the phasor configuration is determined, then we can classify the
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corresponding signature.

It is important to note that in the following sections, we introduce theoretical methods

that are based on stationary assumption. The presented methods can also be performed

under non-stationary conditions. For this purpose, short-time analysis can be used as a

straightforward solution when the parameters of signal are time-varying. This short-time

analysis can be performed using consecutive blocks of signals with a sliding window that

has a length of Ns samples. Moreover, an overlapping parameter can be also considered

0 ≤ q < 1. In such conditions, the lth signal block is given by

Xl =




x0[Nb] x1[Nb] x2[Nb]
...

...
...

x0[Ne] x1[Ne] x2[Ne]


 , (3.16)

where Nb = lNs(1− q), Ne = lNs(1− q)+Ns −1. In this context, the lth vectorized block,

xl = vec (Xl), is given by

xl = Mkdkl + bl, (3.17)

where skl corresponds to the lth augmented time-varying symmetrical components. By

using a small window length Ns, the signal parameters and the class number k can be

tracked over time.

3.3 Proposed Classifier based on Information Theo-

retic Criteria

This section deals with the description of the decision-tree of the proposed classifier and

the decision algorithms that aim to classify the input signal into one of the nine considered

classes.

3.3.1 Decision Tree

As shown in Fig. 3.3, the proposed decision tree is decomposed into two stages: 1) the pre-

classification of input signal into one of the 4 pre-classes (C1, C2, C3, and C4), one should

note that the 4 pre-classes are nested1. 2) Then, the classification of the corresponding

class from the nine sag/swell signatures.

Regarding the pre-classification stage, it can be reformulated as a pure model order se-

lection problem. Model selection is defined as a task that allows to select a statistical

model from given models. In our context, model order refers to the size of the vector

1For example, the pre-class C1 is a particular case of the pre-class C3
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Figure 3.3: Flowchart of the proposed classification algorithm.

sk. By identifying the model order, we can select the corresponding pre-class as shown

in Table 3.1. It can be noted that the sk size is equal to 2 for the pre-class C1, 4 for

the pre-classes C2 and C3, and 6 for the pre-class C4. For this end, a detection technique

that is based on the application of the Information Theoretic Criterion can be used to

determine the model order [169].

For the classification stage, once the pre-class is selected, the corresponding signature

class can be obtained using the symmetrical components values. It is important to note

that these values are unknown, then we propose to use an estimation technique based

on the Maximum Likelihood technique. Maximum likelihood is by far the most used

general method of estimation, due to its good statistical performances. Indeed, it has

been demonstrated that the Maximum Likelihood Estimator (MLE) is an asymptotically

optimal estimator since it minimizes the Root Mean Squared Error (RMSE) [150]. Once

the symmetrical components values are estimated, then the corresponding signature class

can be selected by analysing these estimated values. For the particular case of signature

A, when the pre-class C1 is selected, we can discriminate between this signature and that of

the balanced power system (BPS), by a simple comparison of |ẑ1| with the pre-fault value,

i.e. 1 pu. However for other pre-classes, the classification process is as follows: if the pre-

class C2 is selected, two steps are required to discriminate between signatures C, D, F, and

G. First, the signature C is obtained if the value of |ẑ1 + ẑ2| is less than the pre-fault value.
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Otherwise, by analyzing the value of |ẑ1 − ẑ2|, we can discriminate between signatures D,

F, and G. If pre-class C3 is selected, then the real part of ( ẑ0

ẑ1

), ℜe( ẑ0

ẑ1

), allows identifying

the signature I or H. Finally, if the last pre-class (C4) is selected, a comparison between the

value of |ẑ1 − ẑ0| and pre-fault value can be performed to discriminate between signatures

B and E. In this proposed decision tree, it is not possible to discriminate between the

signatures F and G.

3.3.2 Proposed Classifier Expression

The goal of this subsection is to pre-classify the input signal in one of the four pre-classes.

For this purpose, the Information Theoretic Criteria is investigated.

For selecting the corresponding pre-class Ck, a pre-classification technique based on In-

formation Theoretical Criteria allows to select Ck by minimizing the following penalized

likelihood function [156]

k̂ = arg min
k=1,2,3,4

−2lnp(x, d̂k) + γk, (3.18)

where lnp(x, d̂k) refers to the log-likelihood function of x for the pre-class k. d̂k is the ML

estimator of dk. The penalty function, γk, relies on two parameters that are the number

of free parameters and total number of samples.

3.3.2.1 Expression of the log-likelihood function

We note that when the noise is Gaussian with mean zero and variance, σ2, the log-

likelihood function is expressed as [169]

− 2lnp(x, d̂k) = constant + 3N lnσ̂2
k, (3.19)

where σ̂2
k is the estimate of the noise variance using the Maximum Likelihood technique

under the assumption that the signal comes from class Ck. One should note that the

noise variance estimator, σ̂2, allows to provide a measure of the fit goodness. This later

competes models with the same model order such as C2 and C3. The estimator of noise

variance is mathematically given by

σ̂2
k =

1

3N
‖x − Mkd̂k‖2, (3.20)

where d̂k is the estimate of the vector dk using Maximum Likelihood technique. As

d̂k = (MT
k Mk)−1MT

k x, it follows that

σ̂2
k = xT P⊥

k x, (3.21)
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where P⊥
k denotes the orthogonal projector onto the null space of Mk that is given by [170]

P⊥
k , I3N − Mk(MT

k Mk)−1MT
k . (3.22)

We note that the computation of P⊥
k requires matrix inversion of MT

k Mk. This matrix

inverse is generally difficult to obtain analytically. Nevertheless, it should be mentioned

that an approximate form expression of this matrix inverse can be obtained in particular

cases. In the case when the samples number is multiple of a half-cycle (N = kπ/ω0)

or when it is sufficiently large (N ≫ 1), it is proved that GT G = N
2

I. Moreover, as

WT
k Wk = 3I, we obtain that MT

k Mk ≈ 3N
2

I. Therefore, the orthogonal projector, P⊥
k , is

approximated as

P⊥
k ≈ I3N −

2

3N
MkMT

k . (3.23)

Based on the exact and approximate values of P⊥
k , two pre-classifiers are proposed for

selecting the appropriate pre-class. The first pre-classifier is called the Maximum Like-

lihood (ML) pre-classifier and is obtained by using the exact orthogonal projector P⊥
k

(3.22) in (3.21), (3.19), and (3.18). The second one is called the Approximate (App)

pre-classifier and is computed from the approximated projector (3.23) in (3.21), (3.19),

and (3.18). Compared to the ML pre-classifier, the App pre-classifier has a lower compu-

tational complexity since it does not require any matrix inversion and involves a smaller

matrix multiplications number. To summary, the estimated classes for the ML and App

pre-classifiers are respectively expressed as

k̂ML = arg min
k=1,2,3,4

3N ln
(
xT P⊥

k x
)

+ γk (3.24)

k̂App = arg min
k=1,2,3,4

3N ln
(

‖x‖2 −
2

3N
‖MT

k x‖2
)

+ γk, (3.25)

where ‖x‖2 , xT x is the squared norm of x.

3.3.2.2 Expression of γk

The objective of the penalty term γk is to encourage simplicity over complexity. Math-

ematically, the log-likelihood function is penalized with respect to 3N , samples number,

and nk, and estimated parameters. In the literature, several penalty terms have been

proposed based on different motivations [169, 171–173]. In this study, we evaluate the

performance of the two commonly used penalty terms: the Akaike Information Criterion

(AIC) γAIC
k = 2nk, and the Bayesian Information Criterion (BIC) γBIC

k = nkln(3N).

Let assume that lk denotes the size of ŝk. The number of estimated parameters is equal

to nk = lk + 1 for the pre-class k. Knowing that the number 1 is due to the noise

variance estimation. For pre-classes C1, C2, C3, and C4, The AIC and BIC criteria values

85



Chapter 3. Power Quality Disturbances Classification based on Model Order Selection

are summed up in Table 3.3.

Regarding the classification stage, the estimates of the symmetrical components allow

to determine the corresponding signature. Statistically, we can obtain the Maximum

Likelihood Estimator of ẑ0, ẑ1, and ẑ2 from the MLE of dk. Then, we propose two

estimators of dk that are respectively called the exact and approximate estimators. These

estimators are respectively given by [156]

d̂
ML

k =
(
MT

k Mk

)−1
MT

k x (3.26)

d̂
App

k =
2

3N
MT

k x. (3.27)

Then, the expression of the vth symmetrical component, denoted ẑv, can be obtained from

d̂
ML

k , or d̂
App

k , by constructing the complex value

ẑv = [d̂k]2u + j[d̂k]2u+1, (3.28)

where [d̂k]u refers to the uth element of d̂k. It should be mentioned that the index v

depends on the pre-class Ck. By using Table 3.1, it can be proved that v = 1 when u = 0

for class C1, v = u + 1 for class C2, and v = u for classes C3 and C4.

In the next section, we present the simulation and experimental results of the proposed

classifiers.

3.4 Simulation and Experimental Results

This section objective is to evaluate the performance of the proposed classifiers through

synthetic and real signals. The first classifier uses respectively the exact ML pre-classifier

and estimator obtained from (3.24) and (3.26) and it is denoted by the ML classifier. The

second classifier uses respectively the approximate pre-classifier and estimator obtained

from (3.25) and (3.27) and it is denoted by the App classifier. Moreover, the perfor-

mance advantages over other classification techniques will be performed in the following

subsection.

In the next, we present Monte Carlo simulation that uses repeated sampling to determine

the behaviour of the proposed classifiers.

Table 3.3: Penalty function with respect to class Ck.

Class C1 C2 C3 C4

nk 3 5 5 7

γAIC
k 6 10 10 14

γBIC
k 3ln(3N) 5ln(3N) 5ln(3N) 7ln(3N)
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3.4.1 Monte Carlo Simulation Results

The objective of using synthetic signals is to evaluate the classifiers performances under

specific conditions since the reference values are known a priori. In this study, we evaluate

the proposed classifiers performance through the average probability of correct classifi-

cation using the above-presented penalty terms, AIC and BIC. For each class Ck, 1000

Monte Carlo trials, Nmc = 1000, is used to estimate the average probability of correct

classification (P̂a). For each simulation trial, the proposed classifiers are tested with syn-

thetic signal that is generated in concordance with the presented model in (2.1) and the

following parameters: ω0 = 2πf0/Fs, where f0 = 50 Hz and Fs = 48 × f0 = 2400 Hz. The

amplitudes and initial phases of the three complex phasors for 4-classes and signatures

types are given in Tables 3.4 and 3.5.

The average probability of correct classification can be estimated as

P̂a =
1

4Nmc

4∑

k=1

Nc∑

n=1

δ(k − k̂n), (3.29)

where k̂n refers to the estimated class for the nth trial, and δ(l) corresponds to the Kro-

necker delta and it is given by

δ(l) =





1 if l = 1.

0 otherwise.
(3.30)

In the following subsections, different signal lengths, N, and Signal to Noise Ratio (SNR),

defined in equation (2.56), are used to analyse the the average probability of correct

classification.

3.4.1.1 Probability of correct classification versus number of samples

In this subsection, the classifiers performances are evaluated for different number of sam-

ples. In Fig. 3.4, we can analysis the influence of the samples number on the the average

probability of correct classification (P̂a) at SNR = 15 dB. On the whole, we observe

that the ML pre-classifier outperforms the approximate pre-classifier. In particular, we

can observe that both pre-classifiers achieve same results for particular values of N. As

Table 3.4: 4-Classes: Simulation parameters.

C1 C2 C3 C4

s0 0.5∠ − 20◦ 1∠ − 20◦ 0.5∠ − 20◦ 1∠ − 20◦

s1 0.5∠ − 140◦ 0.66∠ − 159.10◦ 1.32∠ − 159.10◦ 0.5∠ − 140◦

s2 0.5∠100◦ 0.66∠119.11◦ 1.32∠119.11◦ 0.5∠100◦
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Table 3.5: Signatures types: simulation parameters.

s0 s1 s2

A 0.50∠ − 20◦ 0.50∠ − 140◦ 0.50∠100◦

B 0.50∠ − 20◦ 1∠ − 140◦ 1∠100◦

C 1∠ − 20◦ 0.66∠ − 159.11◦ 0.66∠119.11◦

D 0.50∠ − 20◦ 0.90∠ − 126.11◦ 0.90∠86.10◦

E 1∠ − 20◦ 0.50∠ − 140◦ 0.50∠100◦

FG 0.50∠ − 20◦ 0.76∠ − 129.11◦ 0.76∠89.11◦

H 0.50∠ − 20◦ 1.32∠ − 159.11◦ 1.32∠119.11◦

I 1.75∠ − 20◦ 0.90∠ − 93.90◦ 0.90∠53.90◦

demonstrated previously, the exact pre-classifier is equal to the approximate pre-classifier

when N is a multiple of a half cycle i.e. N = 24k samples or when it is sufficiently large

(N ≫ 1). In this regard, it should be mentioned that the phasor measurement units

(PMUs) record 50/60 Hz signals (voltages or currents) at a rate of a multiple of a cycle

i.e. N = 48 samples per cycle.

Regarding the penalty factors, it can be observed that the ML pre-classifier or App

pre-classifier using BIC penalty term outperforms respectively the ML pre-classifier or

App pre-classifier using AIC penalty term regardless the number of samples. In the case

when N is sufficiently large, the pre-classifier using BIC penalty term leads to an average

probability of correct classification equal to 1. On the other hand, the pre-classifier using

AIC penalty term leads to an average probability less than 1. Finally, we can observe that

the pre-classifier using BIC penalty term has a faster response time than the pre-classifier

using AIC penalty term.

3.4.1.2 Probability of correct classification versus noise variance

A high level noise with a signal to noise ratio between 0 to 5 dB is used to evaluate the noise

immunity and capabilities of the proposed pre-classifiers. Figure. 3.5 shows the SNR’s

effect on the average probability of correct classification for two values of N i.e. N = 72

and 480 samples (multiple of a half-cycle). In such conditions, both ML and App pre-

classifiers lead to the same average probability. Regarding the values of N, when N = 72

samples, the ML pre-classifier using BIC penalty term leads to an average probability of

1 when SNR > 3 dB. In the case when N = 480 samples, the ML pre-classifier using BIC

penalty term leads to an average probability of 1 when SNR > 0.5 dB. These results prove

that the proposed pre-classifier is not sensitive under highly noisy environment. The P̂a

of the pre-classifier using AIC penalty term is less than 1 whatever samples number and

SNR are. This limitation is deeply investigated by the pre-classifiers confusion matrices

presented in Tables 3.6 and 3.7 when N = 480 samples and at SNR = 5 dB.

For the BIC ML pre-classifier, it can be observed that the confusion matrix only contains
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Figure 3.4: Average probability of correct classification versus samples number for SNR =
15 dB.

Table 3.6: AIC criterion: ML pre-classifier confusion matrix.

C1 C2 C3 C4

C1 741 135 124 0

C2 0 874 0 126

C3 0 0 861 147

C4 0 0 0 1000

diagonal elements, which shows that each trial is correctly classified. For the AIC ML pre-

classifier, it can be observed that the confusion matrix is upper triangular and contains

non-diagonal elements. This structure of upper triangular highlights that the AIC penalty

term seems leading to the model order overestimation.

On the other hand, tables 3.8 to 3.11 present the classifiers confusion matrices when

N = 105 samples and SNR = 15 dB. For the ML classifier using BIC penalty term, we

observe that each trial is correctly classified since confusion matrices contain only diagonal

elements. The ML classifier uses the AIC penalty term and the App classifier uses BIC

and AIC penalty terms, we observe that the confusion matrices contain non-diagonal

elements. Finally, it can be observed that the App classifier seems overestimating the

model order when the number of samples is not a multiple of the half of period. The AIC

penalty term seems overestimating the model order whatever the number of samples is.
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Figure 3.5: Average probability of correct classification versus SNR for N = 72 and N =
480.

Table 3.7: BIC criterion: ML pre-classifier confusion matrix.

C1 C2 C3 C4

C1 999 0 1 0

C2 0 1000 0 0

C3 0 0 1000 0

C4 0 0 0 1000

3.4.1.3 Robustness of the proposed classifier

In this subsection, the classifier performances are evaluated under harmonic environments.

For this purpose, harmonic components are introduced in the signal model in (2.1). The

signal model under harmonic environment is given by

xm[n] = am cos (nw0 + φm)

+
∑

h=3,5,7...

α (amh cos (hnw0 + φmh)) + bm[n],
(3.31)

where amh and φmh are respectively the amplitude and initial phase of the hth order

harmonic. The quantity α > 0 refers to the harmonic parameter. The amplitudes of
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Table 3.8: AIC criterion: ML classifier confusion matrix.

A B C D E FG H I

A 742 0 0 0 18 129 0 111

B 0 1000 0 0 0 0 0 121

C 0 0 860 0 140 0 0 0

D 0 0 0 861 139 0 0 0

E 0 0 0 0 1000 0 0 0

FG 0 0 0 0 159 841 0 0

H 0 141 0 0 0 0 859 0

I 0 0 0 0 150 0 0 850

Table 3.9: BIC criterion: ML classifier confusion matrix.

A B C D E FG H I

A 997 0 0 0 0 2 0 1

B 0 1000 0 0 0 0 0 0

C 0 0 997 0 3 0 0 0

D 0 0 0 998 2 0 0 0

E 0 0 0 0 1000 0 0 0

FG 0 0 0 0 1 999 0 0

H 0 0 0 0 0 0 1000 0

I 0 0 0 0 6 0 0 994

harmonic are set to am5 = 0.06 pu, am7 = 0.05 pu, am11 = 0.015 pu, am11 = 0.03 pu,

and am13 = 0.03 pu.

In Fig. 3.6, the P̂a of pre-classifiers is shown versus the Total Harmonic Distortion (THD)

when N = 144 samples and at SNR = 5 dB. By varying the amplitudes of harmonics

through the scalar α, we can control the value of Total Harmonic Distortion. For a high

THD value, it can be observed that the pre-classifiers performances decrease. For a THD

value less than 50%, the pre-classifier using BIC penalty term can lead to a constant

P̂a = 1. In contrast, performance of the pre-classifier using AIC penalty term increases

when the THD increases. Furthermore, both pre-classifiers P̂a decreases when the THD

increases due to the model mismatch.

3.4.1.4 Computation complexity

The goal of this subsection is to give the results that have been achieved by studying

the computation complexity of the proposed classifiers. In Fig. 3.7, a comparison of the

computation complexity (in second) is performed between the ML and App classifiers.
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Table 3.10: AIC criterion: approximate classifier confusion matrix.

A B C D E FG H I

A 2 0 0 0 146 852 0 0

B 0 1000 0 0 0 0 0 0

C 0 0 491 0 509 0 0 0

D 0 0 0 952 48 0 0 0

E 0 0 0 0 1000 0 0 0

FG 0 0 0 0 75 925 0 0

H 0 996 0 0 0 0 4 0

I 0 0 0 0 985 0 0 15

Table 3.11: BIC criterion: approximate classifier confusion matrix.

A B C D E FG H I

A 63 0 0 0 0 936 0 0

B 0 1000 0 0 0 0 0 0

C 0 0 853 0 147 0 0 0

D 0 0 0 1000 0 0 0 0

E 0 0 0 0 1000 0 0 0

FG 0 0 0 0 0 1000 0 0

H 0 892 0 0 0 0 108 0

I 0 0 0 0 879 0 0 121

In this test, the computation times of the proposed classifiers are evaluated by averaging

the execution time through 1000 Monte Carlo trials. The obtained results show that

the computation time of both classifiers are increasing proportionally to samples number.

However, the App classifier has a lower computation complexity than the ML classifier

since this later slope is bigger than that of the approximate classifier. In the case when

the signal length N is a multiple of a half-cycle, the approximate classifier leads to the

same statistical performance as the ML classifier and has a lower computation cost. In

such conditions, the approximate classifier can be considered as an attractive choice for

the pre-classification applications.

3.4.1.5 Comparative study

In this section, we propose a comparison between the ML classifier using the BIC penalty

term (BIC-ML) and two others techniques, namely the symmetrical components (SCA)

and the three-phases three-angles algorithms (TP-TAA).
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Figure 3.6: Harmonic effect on the proposed classifier. Comparison between ML classifiers
using BIC and AIC penalty terms.

3.4.1.5.1 Symmetrical component algorithm (SCA)

The symmetrical component algorithm allows to identify the six sags sub-types among

the C and D types [100]. Regarding sags sub-types, an illustration of the six sag sub-types

among C and D types are illustrated in Fig. 1.17. In this case, we use the angle between

the drop in positive- and negative-sequence voltages to classify the corresponding sag

sub-type. This angle is defined as

T =
1

600
arg

(
V2

1 − V1

)
, (3.32)

where T is rounded to the nearest integer value and used to identify the voltage sag as

follows

T =





0 → sag type Ca

1 → sag type Dc

2 → sag type Cb

3 → sag type Da

4 → sag type Cc

5 → sag type Db.

(3.33)
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Figure 3.7: Computation time versus N : Comparison between ML and approximate clas-
sifiers.

3.4.1.5.2 Three-phases three-angles algorithm (TP-TAA)

This classifier allows also to identify the above-mentioned C and D voltage sag sub-

types [174]. This classifier uses the following parameters for classifying the corresponding

sag sub-type: the inverse remains voltage (IRV), the remains root means square voltage

(RV), the delta inverse remains voltage (△IRV), and the three angles α, β, and γ. These

parameters are given by the below-detailed equations.

The three angles are given by





α = ∠Va − ∠Vb

β = ∠Vb − ∠Vc

γ = ∠Vc − ∠Va.

(3.34)

The RV voltage is the voltage drop amplitude given in pu by

RVm =| 1 − Vm | . (3.35)

The IRV voltage is the ratio of the RV in each phase compared to the lowest value of the
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Table 3.12: Voltage sags type C: comparison of the proposed classifier with SC and TP-TA
algorithms.

Case C C C

V̂a 0.85∠ − 20◦ 0.85∠ − 20◦ 0.85∠ − 20◦

V̂b 0.56∠ − 118◦ 0.46∠ − 110◦ 0.65∠ − 168◦

V̂c 0.56∠160◦ 0.65∠168◦ 0.46∠110◦

SCA Dc Dc Ca

TP-TAA Ca Ca Dc

BIC ML C C C

RV voltages (RVmin)

IRVm =
RVm

RVmin

. (3.36)

The two higher values of the IRV voltage (IRVmax1 and IRVmax2) are used to compute

the (△IRV)

△ IRV = IRVmax1 − IRVmax2. (3.37)

The TPTA algorithm uses the voltage △ IRV and the angles to identify the voltage sag

type as follows 



RVmin = 0 → sag type Dm

△IRV ≥ 3 and θ ≥ 120◦ → sag type Dm

△IRV < 3 and θ < 120◦ → sag type Cb,

(3.38)

where θ is the angle opposed to the RVmax, when the voltage sag is type D, and it is

opposed to RVmin, when the voltage sag is type C. m corresponds to the same phase of

RVmin, when △IRV< 3 and RVmin = 0. It corresponds to RVmax phase, when △IRV≥ 3.

3.4.1.5.3 Numerical examples

The classification algorithms performances are evaluated using the phasor configurations

presented in [174]. For each technique, we use the ML estimator-based half-cycle window

length in (3.26) for estimating the phasors.

It can be observed from Tables 3.12, 3.13, 3.14, and 3.15 that the proposed classifier (BIC

ML) shows good classification accuracy in all cases, while the two other algorithms (SCA

and TP-TAA) exhibit erroneous results. Indeed, this is due to large-phase angle jump

and amplitude. The obtained results show that the BIC ML algorithm leads to higher

classification accuracy.
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Table 3.13: Voltage sags type C: comparison of the proposed classifier with SC and TP-TA
algorithms.

Case C C C

V̂a 0.85∠ − 20◦ 0.85∠ − 20◦ 0.92∠0◦

V̂b 0.78∠ − 177◦ 0.65∠ − 168◦ 0.80∠ − 122◦

V̂c 0.34∠104◦ 0.46∠110◦ 0.80∠123◦

SCA Ca Dc Ca

TP-TAA Ca Ca Ca

BIC ML C C C

Table 3.14: Voltage sags type D: comparison of the proposed classifier with SC and TP-TA
algorithms.

Case D D D

V̂a 0.87∠ − 20◦ 0.10∠84.29◦ 0.70∠0◦

V̂b 0.40∠ − 131◦ 0.81∠ − 90.71◦ 0.92∠ − 114◦

V̂c 0.82∠133◦ 0.91∠90.63◦ 0.92∠110◦

SCA Db Da Da

TP-TAA Db Da Cb

BIC ML D D D

3.4.2 Experimental Tests

This section objective is to evaluate the performances of the proposed ML classifiers using

BIC and AIC penalty terms using real data. The used real data are obtained from the

DOE/EPRI National Database of Power System Events [3]. In this study, five recorded

events are used, which correspond to the following event-code: 2825, 2827, 2802, 2786,

and 2911. Indeed, each recorded event corresponds to voltage sag or/and swell. For the

classifier setting, we set the length of window and overlap to a half-cycle i.e. 64 samples.

Table 3.15: Voltage sags type C and D: comparison of the proposed classifier with SC
and TP-TA algorithms.

Case C D D

V̂a 1∠0.6◦ 0.92∠06◦ 0.70∠0◦

V̂b 0.81∠ − 152◦ 0.92∠ − 130◦ 0.92∠ − 114◦

V̂c 0.47∠126◦ 0.70∠120◦ 0.92∠110◦

SCA Ca Dc Da

TP-TAA Ca Ca Cb

BIC ML C D D
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The event signals, estimated phasors amplitudes, the classified pre-class and signatures

for the above-presented events are showed by Figs. 3.8 to 3.12.

Regarding the first event presented by Fig. 3.8, it can be observed that the BIC and AIC

pre-classifiers lead to the same result under balanced and unbalanced conditions. More

precisely, under balanced conditions, null zero- and negative-sequences (C1) are selected

by both pre-classifiers. Under unbalanced conditions, they select a non-null symmetrical

sequence (C4). Both pre-classifiers seem leading to good classification accuracy under

balanced and unbalanced conditions. For the second event (Fig. 3.9), a null zero- and

negative-sequences (C1) are selected under balanced conditions by both pre-classifiers.

Under unbalanced conditions, we observe that different classification result are obtained.

The pre-classifier using AIC penalty term achieves a non-null symmetrical-sequence (C4),

while the pre-classifier using BIC penalty term achieves a null zero-sequence (C2). The

BIC pre-classifier seems achieving good results of classification after 0.12 s, while the
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Figure 3.8: Event 1 (2827): Voltage sag and swell classification. Comparison between ML
classifiers using BIC and AIC penalty terms.
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AIC penalty term seems leading to erroneous classification results. Indeed, the AIC pre-

classifier gives a type FG instead of type A. Concerning the third event (Fig. 3.10),

different results of classification are obtained by these two pre-classifiers. Under balanced

conditions, null zero- and negative-sequences (C1) are selected by the BIC pre-classifier,

while null zero-sequence (C2) is selected by the other one. Under unbalanced conditions,

a null zero-sequence (C2) is obtained by the BIC pre-classifier, while the AIC pre-classifier

gives non-null symmetrical-sequences (C4). Moreover, both pre-classifiers give the same

result after 0.10 s. For the firth event (Fig. 3.11), different classification results are

obtained under balanced conditions (C1 and C3), while they lead to the same results after

0.03 s. For the fifth event (Fig. 3.12), same result is obtained except between 0.03 s and

0.04 s.

Finally, It can be observed that the classifier using BIC penalty term seems achieving
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Figure 3.9: Event 2 (2825): Voltage sag and swell classification. Comparison between ML
classifiers using BIC and AIC penalty terms.
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Figure 3.10: Event 3 (2802): Voltage sag and swell classification. Comparison between
ML classifiers using BIC and AIC penalty terms.

good classifications under balanced and unbalanced conditions compared to those of the

classifier using AIC penalty term. According to the Monte Carlo results, the ML classifier

using BIC penalty term provides accurate results than other classifier even for a small

number of samples.

3.4.3 Discussion

In the previous sections, the performances of the ML and App classifiers using BIC and

AIC penalty terms were assessed under the influence of the following parameters on the

performance: signal length, noise level, harmonics, and window length (overlap). The

achieved simulation results have clearly shown that higher classification performance is

reached by the proposed ML classifier using BIC penalty term regardless the signal length,
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Figure 3.11: Event 4 (2786): Voltage sag and swell classification. Comparison between
ML classifiers using BIC and AIC penalty terms.

N, and SNR.

The statistical performances of the ML and App classifiers depend on the signal length and

on the SNR. Particularly, the ML classifier performances can be increased by increasing

the signal length and SNR. Furthermore, a comparison was performed between both

ML and App classifiers. Based on simulation results, the best classification performance

generally can be obtained by the ML classifier. However, the performance of the ML

classifier can be reached by the App classifier for particular values of N. Especially, in

the case when the signal length is a multiple of a half-cycle. We have also compared the

ML and App classifiers using two different penalty terms BIC and AIC. Most simulation

results have clearly shown that the ML classifier using the BIC penalty term achieves a

higher classification performance compared to those of the ML classifier using the AIC

penalty term. Indeed, the AIC penalty term seems overestimating the true values of
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Figure 3.12: Event 5 (2911): Voltage sag and swell classification. Comparison between
ML classifiers using BIC and AIC penalty terms.

non-zero symmetrical components.

Concerning the computation complexity, the performed test has shown that the App

classifier has a lower computation time compared to the ML classifier. Indeed, the ML

classifier involves more matrix multiplications and matrix inversion than the approximate

classifier. Nevertheless, the App classifier performance critically relies on the signal length.

In the case when the signal length is not a multiple of a half-cycle, the performance of

the App classifier is rapidly degrading.

Regarding the case when the parameters of signal are time-varying (quasi-stationary

conditions), small length of sample window is required for tracking the corresponding

sag/swell signature. Indeed, there is a natural trade-off between the statistical perfor-

mance and tracking. For meeting the minimum duration of sag/swell defined in the

standard IEEE std. 1159, a half-cycle window must be chosen. According to Monte
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Carlo simulation, the approximate classifier leads to a higher classification performance

for a half-cycle window and it has a lower computation complexity. To easily meet this

criterion, it is advised to set the sampling frequency to Fs = Nf0, where N >> 2 and f0

corresponds to the fundamental frequency (f0 = 50 Hz or f0 = 60 Hz).

3.5 Conclusion

This chapter has described a new technique for power quality disturbances classification

applied to voltage sags and swells. The proposed technique is based on Information

Theoretical Criteria and it is mainly decomposed into two steps: 1) The pre-classification

of input signal into one of the four pre-classes that depend on the number of non-zero

symmetrical components. Various types of sag and swell can be found in each class. 2)

The classification of the corresponding sag/swell signature using the ML estimate of the

symmetrical components.

Afterwards, the use of two Information Theoretical Criteria, i.e. the AIC and BIC, have

been investigated. In terms of average probability of correct classification, the achieved

simulation results have clearly shown that the ML and App classifiers using BIC penalty

term outperform respectively the ML and App classifiers using AIC penalty term whatever

the signal length and SNR are. Specifically, a confusion matrix analysis has shown that the

AIC seems slightly overestimating the true number of non-zero symmetrical component

even for a large signal length or SNR. Under harmonic environment, the classifier using the

BIC penalty term has shown a good robustness for a moderate Total Harmonic Distortion

(THD < 50%).

The proposed approximate classifier can be considered as an attractive choice for classifi-

cation application requiring lower computation complexity since small number of matrix

multiplications is needed. Based on the achieved simulation and experimental results,

the ML classifier allows having better statistical performances compared to those of the

approximate classifier in most of the cases. However, in case when the signal length is

a multiple of a half-cycle, the approximate classifier has a lower computation complexity

and can reach the ML classifier performances.
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Conclusions

Power quality monitoring applied to the electric grid becomes of high interest for the elec-

trical power system community. Indeed, PQ monitoring is considered as the most efficient

strategy used to ensure availability, reliability, and safety of the electric grids. In essence,

the future power system needs to provide the utility companies with full visibility and

pervasive control. Moreover, it is expected to be self-healing, performing energy trans-

actions across the system, and resilient to system anomalies and disturbances. For this

purpose, it becomes imperative to integrate advanced algorithms to characterize PQ dis-

turbances. These characterization algorithms should allow an accurate and effective event

detection and classification at an early stage. As previously reported in chapter 1, several

techniques have been proposed for PQ characterization. However, feature extraction of

these techniques lead to poor estimation under high noisy environment and require long

data to achieve good resolution. Moreover, their performances critically degrade under

off-nominal conditions. Regarding classification, classical techniques are very sensitive to

large variations in amplitude, phase angle, or frequency. Moreover, they can not provide

a complete sag and swell classification. For pattern-recognition-based techniques, the per-

formances critically depend on the learning stage, that requires a training database, and

on feature extraction process.

In this context, this thesis has proposed parametric spectral-based approaches for PQ

disturbances estimation and classification.

For the estimation approach, frequency and phasor estimator based on the Maximum

Likelihood (ML) method has been proposed. As opposed to most of the previous works,

the proposed estimator fully exploits the multidimensional nature of electrical signals.

Regarding frequency estimation, we have presented ML and discrete time Fourier trans-

form (DTFT) techniques. Both techniques require the maximization of a 1-dimensional

cost-function. For this purpose, an optimization algorithm based on the Newton-Raphson

method has been proposed. As illustrated by the simulation and experimental results in

chapter 2, this optimization algorithm allows to improve frequency and phasor estimations

accuracy and has lower computational complexity than the downhill simplex algorithm.
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Furthermore, the proposed ML-based Newton-Raphson estimator achieves good perfor-

mances even under off-nominal conditions compared to the DTFT approach, when the

signal length is not equal to a multiple of the fundamental half-period. Indeed, it has been

demonstrated that the proposed estimator can be implemented using the DTFT when the

signal length is equal to a multiple of the fundamental half-period. Simulation results have

also shown that the proposed estimator meets, on the average, the M-class requirements

of the IEEE standard in terms of TVE and FE under steady-state conditions.

Concerning the classification approach, we have proposed a PQ disturbances classifica-

tion approach with a particular focus on voltage sags and swells signatures. The proposed

algorithm was able to provide a complete sag and swell classification. Specifically, it is

based on Maximum Likelihood and Information Theoretic Criteria methods, where we

have investigated the use of AIC and BIC criteria. As illustrated in the simulation and

experimental results in chapter 3, the BIC criterion outperforms the AIC one in terms

of average probability of correct classification. As compared to pattern recognition-based

classifiers, the proposed classifier does not require any training database and no parame-

ter to be set. Furthermore, the proposed classifier fully exploits three-phase information

that allow better classification performances as compared to most of the PQ disturbance

classification techniques. The achieved results have clearly shown that the proposed al-

gorithm has higher classification performances as compared to classical classifiers i.e. the

symmetrical components and three-phases three-angles algorithms. For applications re-

quiring a low computational complexity, we have also proposed an approximate classifier

that involves fewer matrix multiplications and no matrix inversion. However, this ap-

proximate classifier damages the classification performance when the number of samples

is not a multiple of a half-cycle.

The proposed approaches have been tested, compared, and validated with simulation

under different faulty environments and using real power system data obtained from

DOE/EPRI National Database of Power System Events. The achieved simulations and

experimental results have clearly illustrated the effectiveness of the proposed estimator as

compared to the DTFT approach, regardless of the window length. Furthermore, these

results have shown that the proposed classifier has higher classification performance than

the symmetrical components and three-phases three-angles algorithms for voltage sags

and swells.

Perspectives

In this thesis, the performances of the proposed estimator were evaluated in steady-

state testing conditions recommended by the IEEE Std. C37.118.2011. The proposed

estimator performances should however be evaluated under dynamic conditions reported
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by this standard. In this regard, its performances should be evaluated according to the

requirement of PMU standard through the Rate of Change of Frequency Error (RFE).

Further investigations should focus on the reliability and robustness of the proposed classi-

fier under other critical disturbances. In particular, the impact of frequent fault caused by

renewable energy on the proposed algorithms should be highlighted. Moreover, we should

deal with the evaluation of the proposed classifier performances for the classification of

other critical PQ disturbances, such as the transient and the flicker (Table A.1).

Fault location becomes of great interest among intelligent monitoring that could lead

to the realization of self-healing networks, which is an important feature of smart grids.

Therefore, forthcoming studies should deal with intelligent algorithms of fault location

for transmission and distribution power systems.
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Appendix A

Power Quality Variations and Events Characterization

and Methods

Table A.1 lists various PQ variations and events, their characterization methods, and

possible causes.

Table A.1: Classification of the power quality disturbances and their causes.

Broad Categories Specific Categories Characterization methods Typical causes

Transients

Impulsive Peak magnitude, rise Lightning strike, transformer

time and duration energization, capacitor switching

Oscillatory Peak magnitude, Line or capacitor or load

frequency components switching

Short duration

Sag Magnitude, duration Ferroresonant transformers,

voltage variation

single line-to-ground faults

Swell Magnitude, duration Ferroresonant transformers,

single line-to-ground faults

Interruption Duration Temporary (self-clearing) faults

Long duration

Undervoltage Magnitude, duration Switching on loads, capacitor

voltage variation

de-energization

Overvoltage Magnitude, duration Switching off loads, capacitor

de-energization

Sustained Duration Faults

interruption

Voltage
Symmetrical Single-phase loads, single-

imbalance
components phasing condition

Waveform

Harmonics THD, Harmonic Adjustable speed drives and

distortion

spectrum other nonlinear loads

Notching THD, Harmonic Power electronic converters

spectrum

DC offset Volts, Amps Geo-magnetic disturbance,

half-wave rectification

Voltage

Frequency of Arc furnace, arc lamps

flicker

occurrence, modulating

frequency
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Appendix B

Major Components of Phasor Measurement Unit

Major components of a phasor measurement unit are shown in Fig. B.1. The analog-

to-digital (A/D) converter allows converting the analog inputs into digital data. First,

each cycle of the input signal (voltage or current) is sampled and then the fundamental

frequency is estimated using the discrete Fourier transform, which is one of the most

common frequency and phasor estimation algorithm used by PMUs measurements. The

voltage or current phasor is obtained by converting the sampled data to a complex num-

ber. A combination of the three-phase phasors allows providing the zero-, positive-, and

negative-sequences. This figure shows also an anti-aliasing low-pass filter (LPF) and an

analog-to-digital (A/D) converter [175]. Data obtained from several phasor measurement

units at same time-tags are collected by a phasor data concentrator (PDC). Hierarchy of

the phasor measurement systems and levels of phasor data concentrators (PDC) is given

by Fig. B.2.
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Figure B.1: Flowchart of a phasor measurement unit.

Figure B.2: Phasor measurement systems hierarchy and phasor data concentrators (PDC)
levels.
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Appendix C

TVE Expression for Off-Nominal Frequency

By neglecting the influence of the noise in (2.1), the signal model can be approximated

by

xm[k] = am cos(w0k + φm), (C.1)

where w0 = (wn + δ), wn corresponds to the nominal angular frequency and δ refers to

the angular deviation. Using matrix notations, X = G(w0)S and the ML estimator of Ŝ

can be expressed as

Ŝ =
(
GT (wn)G(wn)

)−1
GT (wn)X (C.2)

=
(
GT (wn)G(wn)

)−1
GT (wn)G(wn + δ)S. (C.3)

Let us introduce the following decompositions S = [sa, sb, sc] and Ŝ = [ŝa, ŝb, ŝc]. For

phase m, the estimation error can be expressed as

sm − ŝm = M(wn, δ)sm. (C.4)

where M(wn, δ) is a 2 × 2 matrix, which is defined as

M(wn, δ) , I22 −
(
GT (wn)G(wn)

)−1
GT (wn)G(wn + δ) (C.5)

Finally, the TVE for the phasor m can be expressed as

TV Em =
‖sm − ŝm‖

am

=
‖M(wn, δ)sm‖

am

(C.6)

where sm = [am cos(φm), −am sin(φm)]T . If the fundamental frequency is equal to the

nominal frequency (f0 = fn = 60 Hz), then the matrix M(wn, δ) = 0 and so TV Em = 0.

When δ 6= 0, one can note that TV Em > 0.

For the DTFT estimator (Ŝ = 2
N

GT (wn)X), the expression of the TVE is simply obtained

by replacing M(wn, δ) with MDT F T (wn, δ) , I22 − 2
N

GT (wn)G(wn + δ) in (C.6).
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Contribution)à)la)Surveillance)de)la)Qualité)de)l’Energie)du)Réseau)Electrique)

à)l’aide)de)Techniques)Paramétriques)de)Traitement)du)Signal)

Résumé—Cette thèse porte sur la surveillance des perturbations de la qualité de l’énergie d’un réseau électrique 

via des techniques paramétriques de traitement du signal. Pour élaborer nos algorithmes de traitement du signal, 

nous avons traité les problèmes d’estimation des différentes grandeurs du réseau électrique triphasé et de 

classification des perturbations de la qualité d'énergie. Pour ce qui est du problème d’estimation, nous avons 

développé une technique statistique basée sur le maximum de vraisemblance. La technique proposée exploite la 

nature multidimensionnelle des signaux électriques. Elle utilise un algorithme d’optimisation pour minimiser la 

fonction de vraisemblance. L’algorithme utilisé permet d’améliorer les performances d’estimation tout en étant d’une 

faible complexité calculatoire en comparaison aux algorithmes classiques. Une analyse plus poussée de l’estimateur 

proposé a été effectuée. Plus précisément, ses performances sont évaluées sous un environnement incluant entre 

autres la pollution harmonique et interharmonique et le bruit. Les performances sont également comparées aux 

exigences de la norme IEEE C37.118.2011. La problématique de classification dans les réseaux électriques triphasés 

a plus particulièrement concerné les perturbations que sont les creux de tension et les surtensions. La technique de 

classification proposée consiste globalement en deux étapes : 1) une pré-classification du signal dans l’une des 4 pré-

classes établis et en 2) une classification du type de perturbation à l’aide de l’estimation des composants symétriques. 

Les performances du classificateur proposés ont été évaluées, entre autres, pour différentes nombre de cycles, de 

SNR et de THD. L’estimateur et le classificateur proposés ont été validés en simulation et en utilisant les données 

d’un réseau électrique réel du DOE/EPRI National Database of Power System Events. Les résultats obtenus 

illustrent clairement l’efficacité des algorithmes proposés quand à leur utilisation comme outil de surveillance de la 

qualité d’énergie. 

Mots)Clés—Réseau électrique, qualité de l’énergie, surveillance, perturbations, creux de tension et surtensions, 

estimation de la fréquence et du phaseur, Phasor Measurement Units (PMUs), IEEE C37.118.2014, classification, 

composantes symétriques, système électrique déséquilibré. 

On)Electric)Grid)Power)Quality)Monitoring)using)Parametric)Signal)Processing)

Techniques)

Abstract—This thesis deals with electric grid monitoring of power quality (PQ) disturbances using parametric 

signal processing techniques. The first contribution is devoted to the parametric spectral estimation approach for 

signal parameter extraction. The proposed approach exploits the multidimensional nature of the electrical signals. 

For spectral estimation, it uses an optimization algorithm to minimize the likelihood function. In particular, this 

algorithm allows to improve the estimation accuracy and has lower computational complexity than classical 

algorithms. An in-depth analysis of the proposed estimator has been performed. Specifically, the estimator 

performances are evaluated under noisy, harmonic, interharmonic, and off-nominal frequency environment. These 

performances are also compared with the requirements of the IEEE Standard C37.118.2011. The achieved results 

have shown that the proposed approach is an attractive choice for PQ measurement devices such as phasor 

measurement units (PMUs). The second contribution deals with the classification of power quality disturbances in 

three-phase power systems. Specifically, this approach focuses on voltage sag and swell signatures. The proposed 

classification approach is based on two main steps: 1) the signal pre-classification into one of 4 pre-classes and 2) the 

signature type classification using the estimate of the symmetrical components. The classifier performances have 

been evaluated for different data length, signal to noise ratio, interharmonic, and total harmonic distortion. The 

proposed estimator and classifier are validated using real power system data obtained from the DOE/EPRI 

National Database of Power System Events. The achieved simulations and experimental results clearly illustrate the 

effectiveness of the proposed techniques for PQ monitoring purpose. 

Keywords—Electric grid, power quality, monitoring, disturbances, voltage sags and swells, frequency and 

phasor estimations, phasor measurement units (PMUs), IEEE C37.118.2014, classification, symmetrical 

components, unbalanced power system. 
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