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Abstract

This thesis aims to model concrete heterogeneities and their consequences on the

mechanical behavior of concrete or Reinforced Concrete (RC) structures. These

heterogeneities lead to the spatial variability of the concrete tensile strength depending

on the volume of concrete under tension. Thus, the influence of this spatial variability

on the mechanical behavior and concrete cracking pattern is particularly enhanced using

a Stochastic Finite Element (SFE) method accounting for statistical size effect. More

precisely, an analytical size effect law and random fields generation are used in two steps:

First, in order to evaluate the reduction of the mean concrete tensile strength at

different scales, an analytical probabilistic approach of the Weakest Link and Local-

ization (WL2) method (Sellier and Millard [2014]) is proposed. This method is able

to estimate the distribution of the tensile strength, at different scales, accounting for

stress redistributions around the weakest point. However, it depends on a scale length,

whose identification is discussed and identified using experimental concrete series. This

scale length accounts for spatial variability of the concrete tensile strength.

Secondly, the capability of reproducing the size effect on the mean concrete ten-

sile strength, in Finite Element (FE) models, by accounting for the variability of

this parameter is discussed using SFE method. This method consists on generating

discretized autocorrelated random fields realizations, using the mean tensile strength

estimated from the analytical approach of WL2. Moreover, the choice of autocorrelation

parameters, used to define the random fields, is discussed.

The ability of both methods to reproduce the size effect on tensile strength,

more particularly the statistical one, is evaluated using various experimental series.

Furthermore, the SFE method is applied to the concrete of the simplified model of

a containment building. The variability of concrete tensile strength, at this scale, is

modeled using independent autocorrelated random field at each lift, that are identified

from in-situ measurements. The SFE method shows its pertinence in the estimation of

crack positions.

Keywords: tensile strength . size effect . variability . WL2 . stochastic finite

element . random fields . scale length . autocorrelation length
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Résumé de la thèse

Cette thèse contribue à la modélisation des hétérogénéités du béton et leurs conséquences

sur le comportement mécanique des structures en béton ou en béton armé. Ces

hétérogénéités conduisent à la variabilité spatiale de la résistance à la traction, dont

l’effet dépend du volume du béton sollicité en traction. Ainsi, l’influence de cette

variabilité spatiale sur le comportement mécanique et sur la fissuration du béton

est particulièrement étudiée à l’aide d’une méthode d’Eléments Finis Stochastiques

(EFS) reprśentant l’effet d’échelle statistique. En particulier, une loi d’effet d’échelle

analytique et des champs aléatoires sont utilisés en deux étapes :

Premièrement, afin d’évaluer la réduction de la résistance moyenne à la traction

du béton à différentes échelles, une approche analytique probabiliste de la méthode

Weakest Link and Localization (WL2) (Sellier and Millard [2014]) est proposée. Cette

méthode estime la distribution de la résistance à la traction, à différentes échelles,

en tenant compte des redistributions des contraintes autour du point le plus faible.

Cependant, cela dépend d’une longueur d’échelle, dont l’identification est discutée.

Cette longueur d’échelle rend compte du caractère aléatoire de la résistance à la traction

du béton.

Deuxièmement, la capacité de reproduire l’effet d’échelle sur la résistance moyenne à

la traction du béton, dans les modèles EF, en tenant compte de la variabilité de ce

paramètre, est discutée à l’aide de la méthode EFS. La méthode consiste à générer des

réalisations de champs aléatoires autocorrelés discrétisés, en utilisant la résistance à la

traction réduite estimée à partir de l’approche analytique de WL2. En outre, le choix

des paramètres d’autocorrélations, utilisés pour définir les champs aléatoires, est discuté.

La capacité des deux méthodes à reproduire l’effet d’échelle sur la résistance à la

traction, et plus particulièrement l’effet d’échelle statistique, est évaluée à l’aide de

différentes séries expérimentales. En outre, la méthode EFS est appliquée au modèle

simplifié du béton d’une enceinte à double paroi. Les incertitudes sur la résistance à

la traction, à cette échelle, sont modélisées à l’aide d’un champ aléatoire autocorrelé

indépendant à chaque levée et identifiable à partir des données recueillies sur chantier.

La propagation des incertitudes, à l’état initial, montre sa pertinence dans l’estimation

des positions de fissures.

Mots clés: Résistance à la traction . effet d’échelle . variabilité . WL2 . élément fini

stochastique . champs aléatoires . longueur d’échelle . longueur d’autocorrélation
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Chapter 1

General introduction

1.1 Industrial context

France electricity production is based on its majority on nuclear energy. The protection

of radionuclide dispersion in the environment, in case of the breakdown of a nuclear

reactor such as the accident of the power plant of Fukushima-Däıchi, remains a crucial

issue. Therefore, it is important to control the tightness of nuclear power plants, during

their service life that is over 40 years. Two types of nuclear power plant exist, in France:

reactor buildings of 900 MWe with a simple Reinforced Concrete (RC) containment and a

steel liner and reactor buildings of 1300 and 1450 MWe with double RC containments and

without steel liner. Both types of containment must insure the protection of the reactor

from any external impact and protect the environment from any radionuclide leakage.

Hence, to limit the radionuclide leakage, the nuclear power plants are composed by three

barriers: the fuel cladding, the primary cooling system and the nuclear containment

vessel. In case of breakdown of the two first barriers, the 900 MWe nuclear power plant

is constituted of pre-stressed concrete and an inner steel liner. It provides, then, the

reactor and the environmental protection. However, in the case of double wall nuclear

power plant, the environmental protection is insured by the inner pre-stressed concrete

wall and the protection of the reactor is insured by the external RC wall.

Safety analysis of nuclear power plants is provided with a ”Severe accident” loading

(with an internal pressure of 4.2 bars and a temperature of 180oC), instead of ”Lost of

coolant accident” loading. Moreover, a regulatory criterion is imposed on the leakage

rate (1 % per volume per day) of the inner wall of thickness generally equal to 1.2 m.

1
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In the objective of the extension of the operating life of the nuclear power plants, EDF

decided in 2010 to study the aging mechanism of a reactor building of 1300 MWe with

double wall, by mean of a 1/3 scaled mock-up VeRCoRs.

In addition, Ceos.fr [2009] project underlined the necessity to account, in the design codes

(CEN [2005] and Code [2012]), for the influence of Thermo-Hydro-Mechanical (THM)

effect and size effect on the behavior of massive structures, such as nuclear containment.

These effects are crucial for the estimation of load stress and strain and concrete crack

pattern. Following this path, MACENA (MAitrise du Confinement d’une ENceinte en

Accident – Confinement assessment of a vessel during an accident) project was built, in

order to better understand the behavior of nuclear containment, under severe accident.

Research work and experimental comparisons are based on VeRCoRs mock-up. This

mock-up is constructed, in order to study its behavior at early age, the effect of aging

and its influence on the evolution of leak tightness. Moreover, the behavior of this mock-

up under severe accident conditions, modeled by thermo-mechanical loading maintained

several days, is studied (Corbin and Garcia [2015]).

1.2 MACENA project

This PhD thesis is founded by French ANR (Association Nationale de Recherche) and is

part of MACENA project. More specifically, this work is a part of the working package

WP1 (Assessment of structural state before an accident) that aims to develop mechan-

ical models for the initial state of a nuclear containment vessel (before the occurrence

of a severe accident). The major objective of this project is to propose appropriate

methodologies, based on constitutive simplified laws and results from the knowledge of

the structure, to evaluate the mechanical degradation of concrete due to aging and the

residual tension of the pre-stessing cables. WP1 should provide, then, answers on the

influence of the variability of concrete mechanical properties on the mechanical behavior

of a nuclear containment, at initial state (just before an accident). This work should

be included, further in the WP4 package (Structural analysis during an accident). In

particular, the main task of this thesis is to develop scaling methods to propagate un-

certainties, since the behavior of the structure is influenced by the variability of material

characteristics and/or of model parameters. However, time-dependency of aging effect

is not included in the modeling.



Chapter 1. Introduction 3

1.3 Problematic of the thesis

Concrete mechanical properties are generally measured, using conventional tests, on

small specimens tested in laboratory (mean compressive strength at 28 days fcm, mean

direct tensile strength at 28 days fctm, splitting tensile strength fct,sp, flexural strength

fct,fl). However, due to the heterogeneous composition of the concrete, several labora-

tory tests conducted on specimens with the same concrete mix lead to different measured

concrete characteristics. Thus, a main problematic is to study the effect of this vari-

ability (a coefficient of variation on the tensile strength varying from 10 % to 20%),

measured on laboratory tests, on the behavior of large RC structures. In addition, the

heterogeneity of the concrete leads to a reduction of the tensile strength at first crack

observed or measured when the loaded volume is high. This effect, known as size effect,

therefore results in a change of the tensile strength at first crack ft, in large structures,

compared to the mean value of the tensile strength fctm measured at the specimen scale,

which can be divided by 2. This estimation was noticed in Ceos.fr [2009] project, the

work supported by Mefisto [2012] and Sellier and Millard [2014], when dealing with large

structures such as massive beams representative of RC structures, subjected mainly to

direct tension which is the most severe loading for concrete. Hence, the mechanical

properties of concrete, measured at the specimen scale, and more precisely the tensile

strength fctm can not be representative of the tensile strength of concrete at larger scale

ft. Until now, this tensile strength can not be easily measured in situ (destructive or

non-destructive methods). However, it represents one of the most relevant properties in

large concrete or RC structures.

1.4 Objectives and methodology

The main objective of this thesis is then to better characterize the concrete properties

at the structural scale based on the measured mechanical properties obtained on small

laboratory specimens, and more precisely the measured tensile strength fctm, obtained

by conventional tests.

Hence, an analytical method that estimates the average size effect on ft, that should be

introduced in the structure model considering its volume and a numerical method that
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accounts for the spatial variability of ft is proposed.

The methodology used in this PhD thesis can be summarized, then, into two tasks:

• The estimation of the mean, dispersion and distribution of the tensile strength at

first crack, for structures of different sizes.

• The propagation of the variability on the tensile strength in Finite Elements (FE)

models.

Figure 1.1: Different types of studied structures.

Figure 1.1 displays the different structural scales, studied in this thesis, from laboratory

tests to large massive structures. Each scale presents various types of heterogeneities

from material scales (aggregate size and type, cement, porosity ...) to structural scale

that includes construction joints.

Briefly, concrete is a heterogeneous material that induces variability in the measurement

of its mechanical properties. Moreover, this concrete strength variability can be the cause

of the decrease of concrete tensile strength when the structural volume increases (Weibull

[1951], Torrent [1977], Rossi et al. [1994], Sellier and Millard [2014] ...). Therefore, the

focus of this thesis is only on statistical size effect of concrete.
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1.5 Organization of the thesis manuscript

After this introductory chapter, the manuscript is composed by four additional chapters:

• Chapter 2 is a presentation of the state of the art on different existing methods

aiming to solve the problematic raised before. This chapter is divided into three

main sections. The first section presents three different scales of concrete structures

and introduces the tensile strength at first crack, as an important mechanical

property for concrete. The second section focuses on the modeling of size effect

on tensile strength in concrete and presents the different methods developed to

reproduce the size effect in structures of different sizes. The third and final section

elaborates different numerical methods consisting on modeling the variability of

the mechanical properties of concrete using random fields.

• Chapter 3 is dedicated to the proposal of a simplified analytical method for model-

ing size effect in concrete. An analytical probabilistic approach of WL2 method is

developed in order to give a fast estimation of the mean and the dispersion of the

tensile strength at first crack for concrete or reinforced concrete structures, hav-

ing different volumes and subjected to different loadings. For validation purposes,

experimental campaigns, found in the literature, of series of concrete structures

under uniaxial tension, 3-point bending loading and 4-point bending loading are

considered. Moreover, validations on large scale structures, such as Mivelaz an-

chor (Mivelaz [1996]), Malpasset dam (Bažant et al. [2007]) and containments

(Michelle-Ponnelle [2015]) are presented.

• Chapter 4 deals with SFE models using discretized random fields. The proposed

method which consists on modeling the spatial variability of the tensile strength in

concrete is described. A sensitivity analysis is done to characterize the parameters

of the discretized random field. Furthermore, in order to validate the methodology,

it is also applied to series of concrete structures under 4-point bending loading

and 3-point bending loading. Finally, the SFE method using discretized random

fields is applied to a concrete vessel using concrete properties of the 1/3 mock-up

VeRCoRs (but with no reinforcement or presstressed cables).

• Chapter 5 gives conclusions and perspectives of the present work.



Chapter 2

State of the art

Reliability and durability of Reinforced Concrete (RC) or prestressed concrete structures

can be preserved by the control of concrete cracking. Thus, the modeling of concrete

cracking is a key issue, for civil engineering structures and more precisely structures

under tension as nuclear containments. However, concrete is a heterogeneous material.

This heterogeneity is the source of the distribution of different weak zones in concrete

provoking different sensitivity of cracking per zone and variability on the concrete me-

chanical properties. This chapter raises, then, the issue of the influence of concrete

variability on the mechanical behavior of RC structures and their cracking, depending

on the scale study. Size effect on tensile strength of concrete is particularly dealt with.

First, cracking of concrete or RC structures at different scales: the micro, meso and

structural scales of concrete are introduced. Thus, it is shown that the heterogeneities

of concrete at micro-scale induces a scattering of the concrete tensile strength measured

at the meso-scale. Moreover, size effect phenomenon is manifested by the decrease of

the tensile strength of concrete for large scaled structures, in comparison with the value

measured at meso-scale. Therefore, the different existing methods allowing the predic-

tion of the statistical, energetic and energetic-statistical size effects on tensile strength

are presented. Finally, since spatial variability of concrete is directly linked to size effect

phenomenon, stochastic finite element (SFE) methods using discretized random fields

are mentioned, in order to predict the fracture in concrete and RC structures at different

scales.

6
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2.1 Cracking of concrete or RC structures at different scales

Quasi-brittle materials such as rock, ceramics, concrete ... are characterized by micro-

cracking, when increasing loading or deformation is applied. Gradual development of

macroscopic crack can result from the localization of micro-cracking in a narrow region

called Fracture Process Zone (FPZ). Reasonable control of cracking is provided using

the available design codes. Cracks in concrete depend on different parameters, such as

tensile strength of concrete, drying shrinkage, thermal contraction, restraint (external

or internal) to shortening ... Thus, tensile strength is of primary importance to con-

trol concrete cracking. However, tensile strength of concrete ft is characterized by its

scattering at meso and structural scales. This scattering is highly influenced by the

concrete heterogeneities. These heterogeneities can be linked directly to the concrete

mix such as aggregate size, aggregate shape and porosity (Rossi et al. [1994], Van Vliet

and Van Mier [2000]) or to the construction conditions, such as boundary conditions,

friction, reinforcement ratio and construction joints (Momayez et al. [2005], Farra [1994]

and Briffaut [2010]). Figure 2.1 presents the heterogeneities of the concrete at the ma-

terial (aggregates and specimens) and the structural scales. Thus, the heterogeneities of

concrete can be presented at three main scales:

Figure 2.1: Heterogeneities at different scales of concrete: (a) at micro scale (Kanos
et al. [2006]), (b) at meso scale (REV), (c) at structural scale (Mivelaz [1996] anchor),

(d) VeRcoRs (Michelle-Ponnelle [2015]).

• The scale of aggregate, the water/cement ratio (W/C), porosity leading to sig-

nificantly different characteristics for the same mixture. In particular, Interfacial

Transition Zones (ITZ) are considered to be more or less porous areas. Moreover,
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they are known to be often most porous and weak among the phases composing

concrete (Wong et al. [2009], Grassl et al. [2010] and Nemati and Gardoni [2005]).

• The scale of the concrete (Sebsadji and Chouicha [2012], Stroeven et al. [2004] and

Le et al. [2011]), more precisely at the Representative Elementary Volume (REV)

scale (defined in Section 2.1.2.1), having variable mechanical properties, depending

on the distribution of the aggregates in the mix, the porosity. . .

• The scale of the structure on which the mechanical behavior, damage, or widths

and spacing of cracks should be known (Ceos.fr [2009]). The results obtained at

this scale are often deterministic, because of the time-consuming numerical models

which are based on the average values of material parameters.

The variability in the mechanical properties at REV scale is the consequence of the

heterogeneities of concrete at micro-scale. Consequently, this variability stands at several

scales, thus the size effect on ft at the structural scale is highlighted. In the following,

each scale is detailed and explained.

2.1.1 Concrete at micro-scale: a heterogeneous media

Concrete is a composite phase-material which contains mainly aggregates, cement matrix

and voids containing water or air. Thus, the concrete has a heterogeneous structure and

it is considered as brittle or quasi-brittle material. An important scale, in the concrete

specimen, is the scale of its heterogeneities due to the presence of defects, such as voids,

micro-cracks and ITZ. Figure 2.2 shows the different components of concrete and an

example of the occurrence of a crack, thus the evidence of a FPZ in mode I is highlighted.

As coarse aggregates occupy more than one third of the volume of concrete, changes in

coarse aggregates induce changes on the strength and fracture properties of concrete

(Wong et al. [2009]). In addition, cement paste shrinkage, autogeneous shrinkage and

thermal shrinkage can induce micro-cracking in concrete. Also, ITZ present an important

effect on the concrete properties (Nemati and Gardoni [2005]). As this thesis focuses on

the mechanical behavior of concrete, the influence of the aggregates and the ITZ on the

concrete properties are discussed.
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Figure 2.2: Different components of concrete and the occurrence of cracking (Dufour
[2017]).

2.1.1.1 Influence of the Interfacial Transition Zones (ITZ)

The properties of concrete, at the REV scale, are directly linked to the ITZ which

tends to act as the weak link in the chain compared to the bulk cement paste and the

aggregate particles. Indeed, among the phases composing the concrete, ITZ phase is

known to be often more porous and weak, where first micro-cracks occur (Nemati and

Gardoni [2005]). Thus, the low tensile strength and stiffness of concrete can be due to

the low strength and stiffness of the ITZ.

2.1.1.2 Influence of Aggregates size

It is widely understood that a link exists between the structure at micro-scale and the

properties of the structure at macro-scale, rather between micro-cracking and transport

properties. For example, increasing aggregate size at constant aggregate fraction induces

an increase of permeability (Wong et al. [2009]). Thus, the diameter of the aggregate

plays an important role on the prediction of the durability and service life. The aggre-

gate size is directly associated to the length of micro-cracks and the average crack width.

In conclusion, the influence of concrete components, and more precisely the aggregates

and the ITZ, on the appearance of a weak zone is highlighted. Thus, the crack propa-

gation of concrete is linked to the the concrete heterogeneities at the micro-scale.
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2.1.2 Concrete at specimen scale: Variability of material properties

This meso scale level corresponds to the REV of the concrete. The mechanical properties

of concrete (direct tensile strength at 28 days fctm, compressive strength at 28 days

fc and Young’s modulus E) should be determined at this scale. However, at first, a

definition for the REV of concrete should be adopted. Some authors tried to give a

definition for the REV corresponding to cementitious materials (Sebsadji and Chouicha

[2012] and Stroeven et al. [2004]). Conventionally, the size of the REV of the concrete

must be at least 3-5 times the size of the largest aggregate when the measured properties

concern the mechanical behavior of concrete (Le et al. [2011]).

2.1.2.1 What is the REV for concrete?

A REV is considered as a small volume of a heterogeneous material, which is capable

of obtaining an appropriate homogenized behavior. Bornert et al. [2001] stated that the

REV must satisfy these two following conditions:

• Larger than the characteristic size of the heterogeneity (the largest aggregate size,

for example), in order to allow a correct statistical representation of the studied

material.

• Smaller than the characteristic size of a mechanical structure (beam, anchor, struc-

ture, building ...), in order to represent an equivalent homogeneous material.

For example, Wu [2015] estimated a REV equal to 7d3
max as representative of concrete

related to the desorption isotherm, where dmax is the largest aggregate. In addition, it

is worth noting that standard test specimens have a diameter D equal to 150 or 160

mm and a length L equal to three and five times the maximum aggregate size dmax but

is usually larger. Also, the splitting (or Brazilian) test is considered as a standard test

method to measure the splitting tensile strength fct,sp of concrete (ASTM [2004], CEN

[2005] and Code [2012]) since it is the simplest and the most reliable method to estimate

the tensile strength. The direct tensile strength fctm is approximately equal to 0.9fct,sp

(CEN [2005]).

Even though a standard REV is chosen for concrete, performing several compression tests

or splitting tests to same mixture of concrete leads to different curve of stress-strain or
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force-displacement. Generally, the averaging behavior is the only one considered, but

scattering is an important feature that should be taken into account in constitutive

laws. Mesureur [1989] determined the scattering linked to the used test method. He

showed that the tensile strengths measured on N specimens subjected to splitting tests

present a coefficient of variation twice as large as the compressive strengths measured

on N specimens subjected to compressive tests. Simultaneously, the variability of the

mechanical properties of concrete REV is directly linked to the heterogeneities of con-

crete at the micro scale (see Figure 2.3). Table 2.1 gives intervals for the mean values

and the coefficient of variations of the compressive strength, the tensile strength, the

Young’s modulus, the steel yield stress and the concrete density, in the case of concrete.

Hence, the scattering in the mechanical properties of concrete is highlighted. For cur-

Figure 2.3: Scattering in the mechanical response of concrete due to heterogeneities.

rent structures, the scattering of the tensile strength is implicitly taken into account in

Code [2012] and CEN [2005] using the characteristic value fct,0.05 that guarantees that

at most 5 % of the values encountered are less than fct,0.05. This scattering is due not

only to the size of the specimen, but also to its geometry and its boundary conditions

effect. One approach used by Rossi and Piau [1988] consists on considering that the

Table 2.1: Mean values and coefficient of variations of physical and mechanical char-
acteristics in RC structures (Sudret [2007]).

Uncertain Parameter Mean CV (%)

Compressive strength (fc) 30-130 MPa 7-15

Tensile strength (ft) 3-5 MPa 10-20

Young’s modulus (E) 38-47 GPa 5-8

Steel yield stress (fy) 420 MPa 5

Concrete density 2500 kg/m3 10
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mechanical properties of concrete follow a random distribution, before performing the

numerical simulations. Consequently, Breysse [1990] assumed an elastic-brittle behavior

for this representative micro volume, modeled using a spring having a randomly dis-

tributed probability of fracture.

In addition, for concrete specimens subjected to direct tension, Rossi et al. [1994] showed

that the mechanical properties of the concrete (tensile strength ft and Young’s modulus

E) depend on the maximum diameter of the granulate. In consequence, the influence

of the concrete heterogeneity on the macroscopic behavior of the specimen increases for

the small specimens, where micro-structural effects, which depend on the presence or

absence of large aggregates in the critical section, dominate. Consequently, Rossi et al.

Figure 2.4: Experimental dispersion of concrete tensile strength as function of the
diameter of the specimen, for two different concrete mix (Rossi et al. [1994]).

[1994] showed that the mean and the standard deviation of the tensile strength decreases

as the volume of the specimen increases (see Figure 2.4). However, the mean value of

the Young’s modulus was found independent of the size of the specimen. Thus, a size

effect on the tensile strength is observed at this meso-scale.

2.1.2.2 Shape effect on concrete specimens

The concrete specimens used to test the mechanical properties of the concrete differ in

sizes and shapes from country to another and compressive strength showed a dependency

on both size and shape of the used specimen. Some authors experimentally investigated

the effect of the size and shape of the specimen on the compressive strength by conducting

both cubic and cylindrical specimens having different volumes (Del Viso et al. [2007] and

Yi et al. [2006]). Figure 2.5 shows the evolution of the ratio between the compressive
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strength fcy(D) of a cylinder, having a diameter D, and the compressive strength of

standard cylinder (in this case, 15×30 cm2) fc as function of the cylinder diameter

D and the evolution of the ratio between the compressive strength fcu(d) of a cubic

specimen, having a dimension d, and fc as function of the cube size d. The size effect

for cubes was observed to be stronger than cylinders. In addition, Del Viso et al. [2007]

showed an influence of the size shape on the pre-peak and post peak of the curves σ− ε.

Cylinder specimens present a strong failure localization and frictional contact strength

compared to the cubic specimens that present a mild failure localization.

Figure 2.5: Size effect on compressive strength for cylindrical (left) and cubic (right)
specimens (Yi et al. [2006]).

2.1.2.3 Boundary conditions effect on splitting tests

Several authors highlighted the decrease of the splitting tensile strength fct,sp as the

volume of the specimen increases and its boundary condition differs. Thus, the size ef-

fect on the measured value of fct,sp is introduced by Bažant et al. [1991], Torrent [1977],

Hasegawa et al. [1985], Kadleček and Modrỳ [2002], Carmona et al. [1998] and Rocco

et al. [2001]. These tests were conducted on specimens having diameter ranging between

19 and 3000 mm. The maximum tensile strength fct,sp is shown to decrease as the width

bs of the load-bearing strips increases. Rocco et al. [2001] showed, for example, that a

variation of only 4 % of fct,sp is obtained on standardized specimens having bs/D = 12.

In conclusion, REV scale should account for the heterogeneity composition of concrete

at micro-scale.

Consequently, several size effects on concrete such as the boundary layer effect, the
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geometry of the specimen, the randomness of the material strength and the stress redis-

tribution affect the mechanical properties of concrete at the structural scale, as described

hereafter.

2.1.3 Concrete at structural scale: size effects phenomena

The variation of the tensile strength ft with a characteristic size of a structural member

is an important property when dealing with concrete, in which the tensile structural

strength decreases and the material brittleness increases when the element size under

tension increases. In order to highlight the severe problem arising from size effect phe-

nomenon, tensile strength corresponding to specimens and anchors under uniaxial ten-

sion are studied. The used experimental concrete specimen series correspond to Rossi

et al. [1994] and Van Vliet and Van Mier [2000] and the used anchors correspond to

Clement [1987], Farra [1994] and Mivelaz [1996]. Details on each experimental test are

given in Appendix A. Figure 2.6 presents the different results of the tensile strength

obtained on each specimen and tensile strength at first crack for the case of anchors as

function of the smallest dimension of the specimen or anchor. The results are presented

as the ratio between the tensile strength of the considered structure and the reference

tensile strength corresponding to the first specimen of the series. For the case of an-

chors, the refrence tensile strength corresponds to the splitting tensile strength. This

Figure 2.6: Values of the tensile strength for series of specimens or anchors under
uniaxial tension as function of the smallest dimension of the specimen (Rossi et al.
[1994], Van Vliet and Van Mier [2000], Clement [1987], Farra [1994] and Mivelaz [1996]).

figure highlights the size effect on the tensile strength. As underlined before, the tensile

strength ft decreases when the volume increases and it is almost divided by 2 for large

structures.
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Thus, the tensile strength corresponding to the appearance of the first macro-crack rep-

resents one of the most relevant properties in large concrete or RC structures. In the

following, the parameters influencing the global response of the structures at different

scales are discussed.

2.1.3.1 Sources of size effect

The national project Ceos.fr [2009] and the works supported by Mefisto [2012] project

showed that a loss of 50 % of the tensile strength value measured on splitting test

can be obtained when dealing with large structures such as anchors and nuclear con-

tainments, both subjected mainly to direct tension (Sellier and Millard [2014]). Hence,

these projects allow significant advances concerning the prediction of the tensile strength

for large structures. This reduction is the consequence of not only ”the size effect”

phenomenon, but also some other aspects, such as the geometry, the stress state, the

material composition, the boundary effects and the load rate (Bažant [1999], Van Vliet

and Van Mier [2000] and Grégoire et al. [2013]). Figure 2.7 shows the different input

parameters that influence the response variability of the structure. Other than the size

Figure 2.7: Size effect phenomenon: sources and typologies ((a): Hoover and Bažant
[2014a], (b): Michelle-Ponnelle [2015], (c): Bažant [1999]).

effect on ft, there is a size effect on the shape of the postpeak in σ − ε plots. In very

large structures, a snapback may occur. As for small structures, the postpeak curves

decrease slowly. Hence, the ductility of the material is characterized by the shape of the

postpeak curves, as the larger the specimen is smaller the ductility is (Bažant [1999]).

The size effect on the postpeak shape is mainly due to the load rate and the boundary

conditions.
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2.1.3.2 Statistical and energetic size effect

The concrete composition, the volume of the specimen and its stress state influence

directly the fracture properties. Thus, the thesis focuses on the size effect due to fracture

mechanics. The boundary conditions and the load rate are not taken into account.

The size effect can be distinguished by two different features; the weakest link theory

analyzed by Weibull [1951] due to material strength randomness (statistical size effect)

and the energy release when a large crack or a large FPZ containing damage material

develops before the maximum load is reached (energetic size effect) (Hillerborg et al.

[1976a]). Consequently, the study of the global behavior of a structure induces the use

of a coefficient of reduction on the tensile strength measured at the specimen scale.

On the one hand, the statistical size effect is observed in structures having different

volume ∆V and subjected to uniform stress field σ. On the other hand, structures

having different volumes ∆V and subjected to non uniform stress ∆σ are affected by

energetic-statistical size effect. Moreover, for the case of splitting tests, cautions should

be taken for the boundary conditions also (see section 2.1.2.3). For example, Figure 2.8

shows very clear size effect trend on the splitting tensile strength for diameters between

50 and 500 mm (Kadleček and Modrỳ [2002]). For specimens having D higher than 500

mm, Bažant et al. [1991] and Hasegawa et al. [1985] showed that the splitting tensile

strength is not influenced by the volume of the specimen. However, when dealing with

Figure 2.8: Experimental results of average splitting tensile strengths deduced from
experiments from Torrent [1977], Bažant et al. [1991], Hasegawa et al. [1985], Kadleček

and Modrỳ [2002] and Carmona et al. [1998].

notched beams or splitting test, the statistical size effect becomes negligible due to the
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strong stress concentration.

Briefly, the study of the mechanical heterogeneities of concrete that lead to the variation

of the tensile strength is of a main interest in the characterization of large massive

structures, at initial state, during severe accident and fluid transfers. Therefore, the

main problem is the definition of a law that predicts the best the tensile strength of

concrete.

2.2 Modeling of size effect on tensile strength in concrete

After Griffith [1921] observations, the statistical size effect was the major interest of

many authors who tried to fit a statistical theory to the problem, which ended up by the

appearance of the weakest-link theory and the extreme value statistics (Peirce [1926],

Tippett [1925], Fisher and Tippett [1928], Fréchet [1928] and Von Mises [1936]).

The weakest-link theory was finally characterized by Weibull [1951], who developed

a law to describe the distribution of the statistical strength by mean of a power law

with a threshold. Until 1985, size effect was only from a statistical origin. Therefore

improvements of the Weibull law and applications to metal and ceramics were conducted

(Lamon and Evans [1983], Kittl and Diaz [1988] and Kittl and Diaz [1990]). Also,

application to concrete specimens in which the size effect is preponderant were one

of the main interest (Carpinteri [1989], Mihashi and Izumi [1977] and Wittmann and

Zaitsev [2013]).

First, the simple scaling applicable to all physical systems (without a characteristic

length) is explained. Then, models that reproduces the statistical or the energetic or

a combination of energetic-statistical size effect, in order to better predict the failure

occurrence of concrete structure, are introduced (e.g. Weibull [1951], Torrent [1977],

Mazars [1984], Lamon [1988], Sellier and Millard [2014],Hoover and Bažant [2014b] and

Carpinteri et al. [1995]). Finally, a synthesis table that resumes the advantages and

disadvantages of each method is given.

2.2.1 Power scaling laws

It is worth noting, at first, that no characteristic length is defined in the power scal-

ing laws. In order to explain these laws, an example of geometrically similar series of
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notched beams subjected to 3-point bending is taken (see Figure 2.9). The objective

is to deduce the response Y (maximum deflection, maximum strength ...) as function

of the structure size D. Thus, (Y0, Y , Y ′) are the responses of the beams having a

depth equal respectively to 1, D and D′. Hence, by taking the smallest beam as the

reference beam, the response of the second and the third beam are defined respectively

by Y/Y0 = f (D) and Y ′/Y0 = f (D′). Since there is no characteristic length, D can

also be taken as the reference size and the response of the third beam can be evaluated

as Y ′/Y = f (D′/D). Therefore, the following equation can be deduced:

f(D′)

f(D)
= f

(
D′

D

)
(2.1)

This equation has the Equation 2.2 as an only solution (the power law solution).

f(D) =

(
D

c1

)s
(2.2)

where s is a constant and c1 is considered as a unit of length measurement.

Figure 2.9: Power scaling laws (Bažant [1999]).

This power scale is applied to failure theories that consider the FPZ as simplified to a

point and no characteristic length is involved (elasticity with a strength limit, elasto-

plasticity, viscoplasticity, linear elastic fracture mechanic (LEFM)). To determine the

power scale laws, exponent s must be estimated. It can be done using the failure cri-

terion of the material. For small sizes, s = 0 represents elasticity with a strength limit

or plasticity with a yield surface. Thus, the response Y represents the nominal stress

at failure. Hence, failure of all geometrical similar structures occurs at the same nom-

inal stress (no size effect). As for large sizes, LEFM is considered with s = −1/2, for

similar geometrical structures with similar notches or cracks. This is resumed in Figure
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2.9, where in a logarithmic scale log σN versus log D (σN is the nominal strength), the

power scale is a straight line and s is the corresponding slope. For quasi-brittle materi-

als, an intermediate relation between the two asymptotes describing the power laws is a

definition of their size effect.

Hillerborg et al. [1976a] introduced a cohesive crack model for concrete characterized by

a softening stress-displacement law for the crack opening. Hence, a deterministic size

effect starts to appear as a main reason for the failure of plain concrete beams. Bažant

[1976] showed a size effect on the post-peak deflection and energy dissipation induced

from the localization of strain-softening damage. Simultaneously, Bažant [1984] devel-

oped, for quasi-brittle materials, a size effect law based on energy released analysis. In

conclusion, very large beams exhibit only statistical size effect as the deterministic size

effect curve has an horizontal asymptote at its end.

2.2.2 Weibull effective volume methods

Weibull effective volume (WEV) method based on the weakest link theory is developed

in order to account for the decrease of the tensile strength in brittle and quasi-brittle

materials. Moreover, many size effect approaches were derived from the WEV method,

in order to improve this latter method and account for the energetic size effect (Highly

stressed volume approach (Kuguel [1961] and Torrent [1977]), Lamon and Evans [1983]

approach, Mazars [1984] approach, Weakest Link and Localisation method (Sellier and

Millard [2014]).

2.2.2.1 Principles

Weibull effective volume (WEV) methods (Kuguel [1961], Quinn [2003a], Quinn [2003b])

have been developed to compare the rupture strength for structures with different types

of solicitation (loaded in tension, pure bending, 3-point and 4-point bending) and differ-

ent volumes. An example that illustrates the WEV concept is a beam loaded in 4-point

bending, as shown in Figure 2.10. The effective volume VE is an equivalent volume with

the same material having the same probability of rupture as the initial volume if it is

subjected to the maximum stress in a uniform way (see Equation 2.3).

VE =

∫
V

(
〈σ〉
σmax

)m
dV (2.3)
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where σ is the applied stress over the volume V and 〈.〉 accounts for the positive part

only, σmax is the maximum value of the principal stresses in the structure and m is the

Weibull modulus (this parameter will be discussed in Chapter 3).

The maximum stress corresponds to the maximum one in a stress field subjected to

given solicitations:

Figure 2.10: WEV concept (Wu et al. [2012]).

σmax = max (σI , σII , σIII) (2.4)

where σI , σII and σIII are the principal stresses in an elastic loading (σI ≥ σII ≥ σIII).

The statistical Weibull distribution is based on the weakest link model and the occur-

rence of failure from a single crack or critical flaw by crack growth. The flaws have

similar shape and orientation, in which the critical flaw is statistically distributed. As

a consequence, the tensile strength seems to be controlled by these flaws. This method

is applicable to brittle materials. The probability of presence of defaults depends on

the size of the structure, i.e. it increases when the size of the structure becomes larger,

which implies the problem of dependency of the tensile strength on the loaded volume,

this phenomenon is called Weibull weakest link theory (Weibull [1951]). The Weibull

theory is considered as a one dimensional chain in which each link can break with the

same probability. The location of the failure is unknown because all the volumes dV are

considered with the same probabilistic weight.

ln
(
1− Pf/v

)
=

∫
V

ln
(
1− Pf/ref

)
Vref

dV (2.5)
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where Pf/v is the probability of failure of a loaded volume V and Pf/ref is the probability

of failure of a reference structure, with Vref its effective volume .

Using the Weibull statistical approach, the rupture probability can be written in the

following form:

P (σ, V ) = 1− exp

(
− 1

Vref

∫
V

(
〈σ〉
ft/ref

)m
dV

)
(2.6)

where ft/ref is the tensile strength of the reference structure.

The WEV approach developed is applicable for structures having different types of

loading. Applications to structures subjected to uniaxial uniform stress field and uniaxial

non uniform stress field will be presented. The effective volume VE , computed using

Equation 2.3 is defined as equal to the volume subjected to uniform stress field, and is

equal to zero if the volume is subjected to compressive stress field. As a result, traction

is the most severe loading mode that leads to the highest probability of rupture.

Therefore, in the case of uniaxial uniform stress field, the effective volume is equal to

the total volume of the structure. Thus, the rupture probability, deduced from Equation

2.6, for two different volumes V 1 and V 2 of samples subjected to uniform stress field is

given by the following equation, for i = 1, 2:

Pfi = 1− exp

(
− V i

Vref

(
f it

ft/ref

)m)
(2.7)

where f it is the tensile strength in the volume V i.

From these previous equations, the following relation can be obtained:

f2
t

f1
t

=

(
V 2

V 1

)−1/m(
ln (1− Pf2)

ln (1− Pf1)

)−1/m

(2.8)

The previous equation can be reduced to the following relation.

f2
t

f1
t

=

(
V 2

V 1

)−1/m

(2.9)

As for the case of non-uniform stress field, the probability of rupture for two different

volumes is expressed as function of the effective volume. Thus, V 1 and V 2, corresponding

to i = 1 and i = 2 in Equation 2.7 are replaced by V 1
E and V 2

E respectively. Therefore,

the volume effect on the rupture stress for a given probability (Pf1 = Pf2) can be written
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using a similar equation deduced in the uniform case:

f2
t

f1
t

=

(
V 2
E

V 1
E

)−1/m

(2.10)

Thus, the rupture strength ratios vary as the inverse of the effective volume ratio. The

effective volume depends the total loaded volume and the severity factor K (Kuguel

[1961], Quinn [2003a], Quinn [2003b]):

VE = KV (2.11)

Thus, the severity factor depends on the type of loading; for traction K = 1, for 3-

point bending K = 1
2(m+1)2

, for 4-point bending K = m+3
6(m+1) and for pure bending

K = 1
2(m+1) .

In conclusion, the original WEV methods present some limits, as:

• The presence of default increases indefinitely as the size of the structure becomes

larger, so a null tensile strength is attributed to very large structures.

• It does not take into consideration the stress redistribution phenomena, i.e the

failure in a limited zone does not lead to the failure of the structure.

• It ignores the deterministic size effect, which makes the Weibull theory valid only

if, as soon as the microcracks become macrocrack, the failure will occur.

2.2.2.2 Highly stressed volume approach

A particular WEV uses the highly and elastically stressed volume as the reference volume

(Kuguel [1961]). This highly stressed volume (HSV) approach is based on the fact that

in the fracture of quasi-brittle materials such as ceramics or concrete-like materials, it is

not necessary to analyze what happens in the whole volume of the specimen, but only

in its most critical area. Therefore, the HSV is defined by the volume where the tensile

stress is greater arbitrarily than 90 or 95 % of σmax (Torrent [1977]), it is equal to the

total volume of a specimen subjected only to tensile strength (see Figure 2.11). Hence,

the definition of the HSV can also be assumed as the definition of the critical section

where the crack leading to failure will occur.
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Figure 2.11: The contour of the highly stressed volume HSV (Wu et al. [2012]).

Table 2.2: Concrete mix compositions (Torrent [1977]), where fc = 42.3 MPa

Water/Cement ratio 0.45 0.55 0.55 0.55 0.67 0.8 0.8

Aggregates type EC FNS EC MNS FNS EC FNS
ft0 (MPa) 7.17 5.92 6.17 5.29 4.4 3.67 3.38
m 10.4 12.2 11.6 13.3 9.5 11.1 9.7

Noticing that the maximum tensile strength of the tested sample will decrease with

increasing HSV, Torrent [1977] fitted an exponential expression such as:

ft = ft0.

(
HSV

HSV0

)−1/m

(2.12)

where ft0 is considered as the tensile strength for a HSV of 1 cm3, denote HSV0.

Torrent [1977] wanted to study the effect of the mix characteristics, mainly the type of

aggregate and W/C ratio, on parameters ft0 and m. He chose to work with mortar and

conducted an experimental campaign of tests by considering 7 mixes and 9 types of test

(splitting cylindrical tests with a diameter D = 50, 100, 150 mm and a slenderness of 2,

beams with different volumes (25 × 25 × 106 mm3, 25 × 25 × 240 mm3, 40 × 40 × 106

mm3, 150 × 150 × 450 mm3) subjected to 3-point bending and one beam having the

same volume as the largest one and subjected to 4-point bending). Table 2.2 provides

numerical values of ft0 and m, fitted from experiments conducted on various beams

and cylindrical concrete specimens, using different concrete mix compositions. Torrent

[1977] showed that parameter m does not depend on the mix characteristics, thus it is a

parameter of the material and characterizes the size effect. Moreover, he showed that the

size effect is closely quantified by the Equation 2.12. These conclusions can be derived

for concrete and validation were conducted by many works (Wright and Garwood [1952],

Malhotra [1970] and Neville [1995]).

For example, Wu et al. [2012] applied original WEV approach and HSV approach on
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concrete specimens subjected to different types of loading (direct tension, splitting test

and 4-point bending) and he showed that HSV approach is more accurate in reproducing

the experimental tensile strength than the WEV approach. Original WEV method tends

to give smaller values of the tensile strength, thus it is an inadequate method to reproduce

the failure of the concrete.

2.2.2.3 Rossi’s approach

For concrete specimens subjected to tensile strength, Rossi et al. [1994] presented a size

effect method based on the WEV method. Under the hypothesis of dependency between

the concrete tensile strength and the cement paste, which is where there are the most

weak points, Rossi et al. [1994] underlined a possible relation between ft and the ratio

volume of specimen to volume of coarsest grain. This ratio presents an estimation of the

quantity of cement paste, thus the presence or not of defaults. Therefore, the size effect

is governed by the quality of cement paste. In conclusion, the size effect is reflected by

those two equations:

µ (ft) = Fα

(
VS
VA

)
(2.13)

Std (ft) = Fβ

(
VS
VA

)
(2.14)

where µ (ft) and Std (ft) are respectively the mean and the standard deviation values

of the tensile strength, VA is the volume of the largest aggregate, VS is the volume of

the specimen and Fα and Fβ are functions of the compressive strength.

Based on an optimization program that aims to fit the best with experimental tests, the

Equations 2.13 and 2.14 are rewritten in the following form:

µ (ft) = a

(
VS
VA

)−1/m

(2.15)

Std (ft) = A

(
VS
VA

)−B
(2.16)

where a = 6.5, A = 0.35 and m and B are functions of the compressive strength, since

the size effect depends directly on this mechanical property. The relation between the

Weibull modulus m and the compressive strength fc is given in Chapter 3 (Equation

3.11).
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2.2.2.4 Mazars’ approach

Mazars [1984] derived from the WEV and HSV methods a size effect approach based on

the strain instead of the stress. A local strain ε̃D is associated for each element ∆V . In

the total volume V of the specimen, the local strains ε̃D are distributed randomly. f (ε̃D)

is the probability density function of the random variable εD. The rupture probability

of the element ∆V is written as follow:

Pf (εD,∆V ) =

∫ ε̃

0
f (ε̃D) dεD (2.17)

The elements ∆V are considered independent and the Weibull function of repartition of

the stress in a volume (f(S) = k(σ − σi)m) is used. Thus, in the case of non uniform

solicitation (denoted Ẽ), the rupture probability is considered as an integral on the total

volume V , as follow:

Pf (Ẽ, V ) = 1− exp

(
−k
∫
ε̃mdV

)
(2.18)

By considering the concrete behavior as linear and elastic before reaching the threshold

strain, the solicitation ε̃ in an element can be considered as function of the maximum

local solicitation ε̃M as shown in Figure 2.12. The function g(x, y, z) depends only on

Figure 2.12: Computation of the effective volume (Mazars [1984]).

the geometry of the specimen and the type of loading. Based on the assumption that the

maximum strain threshold ε̃D0 is reached in the most loaded volume (
∫
V ε̃dV = W0),

the mean value of the strain threshold can be deduced using the following equation:

εD0 =

(
W0∫

V g(x, y, z)mdV

)1/m

(2.19)

where W0 and m are material characteristics.
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2.2.2.5 Lamon’s approach

Lamon [1988] developed a size effect method based on the WEV method and applicable

only to ceramics. His method can be considered as an extension of the WEV method to

the case of multiaxial elementary stress. Since the defaults in a structure have random

orientation with respect to the stress field, the elementary stress is defined as the equiv-

alent stress of the multiaxial stress field subjected to the default or the fracture. It is,

then, a combination of a normal component σn and a tangent one τ . The equation of

the elementary stress σE is given by the following equation:

σE =
(
σ4
n + 6τ2σ2

n + τ4
)1/4

(2.20)

The local stress field (σn, τ) are determined from the imposed loading evaluated using

the principal stresses field (σI , σII , σIII), as shown in Figure 2.13. Furthermore, the

Figure 2.13: Elementary sphere in the principal stresses space for determining the
local stresses (Lamon [1988]).

rupture probability given by the multiaxial elementary stress model is expressed as

function of the maximum stress:

P (σ, V ) = 1− exp

(
− 1

Vref

∫ (
σ

σmax

)m
Iv

(
m,

σII
σI

,
σIII
σI

))
(2.21)

Thus the method of multiaxial stress field defines an effective volume that depends not

only on the state of stress but also on the direction of stress by introducing a parameter

Iv, which depends on the orientation of the defects in all directions.
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2.2.2.6 Weakest link and localization method

Based on the experimental tests done on the Mivelaz anchor (Mivelaz [1996]), Sellier

and Millard [2014] outlined the reduction of the tensile strength for large concrete or RC

structures by 50 % compared to the experimental tensile strength measured on splitting

test. The weakest link and localization method WL2 was developed in the framework of

a finite element (FE) code, in which, the tensile strength is not known at the beginning of

the analysis, it is determined automatically during the step-by-step analysis considering

both the random properties of the material and the current stress state. A weighting

function is introduced in the WL2 theory to balance the probabilistic influence of each

point x of a structure.

Ψ(x, lI) = exp

(
− x2

2.l2I

)
(2.22)

where lI is the length that characterizes the spatial decrease of the probabilistic weighting

function, it was determined by inverse analysis and x is the distance between a current

point M and the integrated point S.

Ψ can be understood as a localization function, which prevents the continually increasing

probability of finding a defect when the volume increases, which is the case of WEV

method, and it allows the stress redistribution around the ”weakest link” by taking into

account the effect of the point S on the current point M as shown in Figure 2.14. In

the case of Ψ = 1 as in Lamon and Evans [1983], the WEV method is applicable to

homogeneous materials such as ceramics in which the crack develops at the presence of

a defect contrary with concrete, where there is possibility of stress redistribution that

prevents the rupture of the specimen.

Thus, the WL2 method gives improvement to the WEV method by introducing the

weighting function in the Weibull integral (Equation 2.23), which leads to:

ln
(
1− Pfv/M

)
=

∫
V

ln (1− Pfref )

Vref
Ψ(x, lI)dv (2.23)

In this method, the chosen reference volume is a cylindrical splitting test of dimensions

11×22 cm2. This assumption is convenient since lI is higher than the dimensions of the

reference volume, estimated in the order of 3× 10−4 m3.

Sellier and Millard [2014] have determined lI by inverse analysis, in the particular case of

a 5 m-long reinforced concrete brace (Mivelaz [1996]), they found an order of magnitude

of lI around 30− 50 cm (see Figure 2.15).
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Figure 2.14: Evolution of the probabilistic weighting function (Sellier and Millard
[2014]).

Figure 2.15: Evolution of the mean tensile strength ft at first crack as function of lI
(Sellier and Millard [2014]).

Briefly, the spatial randomness of the mechanical properties of concrete is the key to

study and predict the size effect. Thus, alternative FE models, based on the assumption

that the tensile strength or the Young’s modulus are not constant values are developed.

2.2.3 Baz̃ant size effect law

In section 2.2.1, quasibrittle materials such as concrete are characterized by two power

scaling laws having no characteristic length: material strength or yield limit character-

ized by σ0 for small sizes and LEFM characterized by the fracture energy Gf for large

sizes. However, the bridging between plasticity and LEFM is satisfied with the presence

of characteristic length. Thus, Irwin [1960] characteristic length lch is a mean to combine

the two power laws.

lch =
E.Gf
σ2

0

(2.24)
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where E is the Young’s modulus.

Bažant [1976] analyzed the crack damage distribution and he showed a deterministic

size effect on the postpeak deflection and the energy dissipation due to the damage

localization into a crack band. In consequence, Bažant [1999] considered the Irwin

length as a material length in the order of the length of the FPZ. Thus, in concrete

materials, characteristic length must be involved to account for size effect due to the

large number of inhomogeneities in concrete.

On the one hand, he developed first a size effect law (SEL), derived from energy release

analysis, for type 2 structures, which contain initially a notch larger than the FPZ.

Thus, the statistical size effect, in this case, is negligible (Bažant [1984]). Therefore, the

bridging between small sizes and large sizes is given by Equation 2.25.

ft =
Bft/ref√
1 +D/D0

(2.25)

where B and D0 are empirical dimensional parameters determined by experimental

fitting.

This equation is the transition between a horizontal asymptote for small structures and

an inclined asymptote of slope −1/2 for large structures, in the size effect plot of log ft vs

logD (see Figure 2.16). Based on the assumption of the importance of the characteristic

length in concrete materials, Equation 2.25 can be rewritten in the following form:

ft =

√
E′Gf

g0D + g′0cf
(2.26)

where E′ is the Young’s modulus (= E for plane stress and = E(1− ν) for plane strain

where ν is the Poisson coefficient), cf = γs.l0 is the characteristic length where γs is

material dependent, g0 and g′0 are energy release rate functions, that depend on the

initial crack or notch (Bažant and Kazemi [1991]).

In addition, Saouma et al. [2003] and Saouma and Fava [2006] gave analytical explanation

of the parameter B based on local stress intensity factors and cohesive stresses. Saouma

and Fava [2006] derived a fractal size effect from the original Baz̃ant SEL.

On the other hand, structures having no notches are subjected either to energetic-

statistical size effect or statistical size effect, depending on the applied stress. This type

of structures, corresponding to type 1, fails when the macrocrack initiates from a smooth

surface. However, for the case of 4-point bending beams for example, the statistical
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size effect is not negligible due to the large part of failure occupied in the structure.

Therefore, to ensure the presence of the Weibull statistical size effect, the size of the

specimen must be larger than the size of the REV equal to 2-3 times the size of material

inhomogeneities in the case of uniaxial tensile loading (Le et al. [2013]). Therefore, for

the case of energetic-statistical size effect, large sizes are defined by an asymptote of

slope −n/m in the logarithmic size effect plot (see Figure 2.16). In conclusion, for Type

Figure 2.16: Logarithmic size effect plot for Type 1 and type 2 according to Hoover
and Bažant [2014b].

1 size effect, two SEL equations are defined:

• Energetic size effect:

ft = fr∞

(
1 +

rDb

D + lp

)1/r

(2.27)

• Energetic-statistical size effect

ft = fr∞

((
ls

ls +D

)rn/m
+

rDb

D + lp

)1/r

(2.28)

where fr∞ is the nominal strength for very large beams (for example flexural strength or

modulus of rupture), Db is approximately equal to the FPZ length. lp is a material char-

acteristic length in the order of 15 cm controlling the point of transition to a horizontal

asymptote of the log (ft) versus the log (D) curve and ls is a statistical characteristic

length, in the order of 28 cm, which refers to the spatial variability of failure probability

(Bažant et al. [2007]).
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Figure 2.16 shows the asymptote corresponding to small and large structures in the stan-

dardized logarithmic plot of size effect for type 2 structures corresponding to notched

beams and type 1 structures. In this figure, the statistical size effect is not negligible in

the type 1 structures.

Hoover and Bažant [2014b] attempted to develop a universal size effect law (USEL),

since the previous attempt to bridge the Type 1 and 2 was not accurate enough. His

attempt to develop USEL was based on strain gradient. The USEL has the following

form:

ft =

(
E′Gf

g0D + (1− λ) cfg
′
0 + λE′Gf/f

2
r∞

)1/2
((

λls
ls +D

)rn/m
+

rλDb

D̄ + lp

)1/r

(2.29)

where λ and D̄ are parameters that depend on strain gradient.

Figure 2.17: Evolution of the nominal strength for beams subjected to 3-point bend-
ing load as function of the height of the beam D (left) and the notch-to-depth ratio α0

(right) (Grégoire et al. [2013]).

Hoover and Bažant [2014b] proved on a series of notched and unnotched beams sub-

jected to 3-point bending that the USEL allows to predict the nominal strength with a

coefficient of variation of only 2.3%. However, it depends on many numerical parameters

that need to be fitted experimentally. In conclusions, Baz̃ant USEL was applied to some

experimental series mainly to beams subjected to 3-point bending. An important ex-

ample corresponds to the study of Grégoire et al. [2013] who conducted tests on beams

under 3-point bending loading, having different sizes and 3 types of notches referred
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to by the notch-to-depth ratio α0, where α0 = 0 corresponds to unnotched beams (see

Appendix A). In Figure 2.17, the curves correspond to the values of the tensile strength

computed using the USEL of Baz̃ant and the experimental values are presented using

vertical bars. The USEL proved to be an accurate law to characterize the size effect as

shown in Figure 2.17. Also, it is worth noting that as the notch-to-depth ratio increases,

the tensile strength decreases.

2.2.4 Carpinteri size effect law

A different model for the size effect is presented by Carpinteri et al. [1995]. Its model

is based on the assumption of the decrease of the effect of microstructural disorder, as

the volume increases. In contrary with Baz̃ant SEL, it is considered, for this fractal

method, that the small structures sizes are governed by LEFM with a slope of −1/2

and large structures are governed by a constant stress, without accounting for fractal

and disorder. Thus, a multi-fractal scaling law (MFSL) is qualitatively postulated, it is

given by the following equation:

ft = fr∞

(
1 +

lch
D

)1/2

(2.30)

In Equation 2.30, fr∞ and lch represent two constants, determined from the best fit

of the experimental data. In Carpinteri and Cornetti [2002], it was observed that the

MFSL is more accurate than Baz̃ant SEL for the cases of unnotched beams, whereas

Baz̃ant SEL is valid when a strong energy-driven fractal process is activated. However,

as seen in Saouma and Fava [2006], the MFSL can be criticized for several reasons. On

the one hand, Irwin [1960] and Hillerborg et al. [1976a] defeated the applicability of

LEFM for small sizes. On the other hand, the MFSL does not have an upper bound for

the tensile strength as size is reduced.

2.2.5 Synthesis

Finally, a synthesis table that resumes the capability of each method to account for either

statistic or energetic or energetic-statistical size effect is given in Table 2.3. Table 2.3

shows that Baz̃ant USEL and Carpinteri MFSL seem to account for the different types

of size effect. However, both methods are based on experimental calibration depending
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on more than 3 empirical constants. In addition, these methods are available only for

geometrically similar structures.

In this thesis, the focus is on structures failing mainly due to tension. Hence, structures

with strong stress concentration, as notched concrete beams and splitting tests are not in

the study domain. Thus, our interest is to model both statistical size effect or energetic-

statistical size effect. Therefore, since WL2 depends only on two parameters and is

capable on reproducing rather statistical size effect and if possible energetic-statistical

size effect (Sellier and Millard [2014] and Ceos.fr [2009]), an analytical-probabilistic

version of this method is developed in Chapter 3.

Table 2.3: Synthesis of the different size effect methods.

SE methods Statistical Energetic Energetic-
statistical

Number of
empirical
constants

Original WEV
method

X × × 1

HSV method X × X 1

Rossi approach X × × 2

Mazars approach X × X 3

Multiaxial elemen-
tary method

X × × 3

WL2 X × X 2

Baz̃ant USEL X X X 5

Carpinteri MFSL X X X 3

2.3 Modeling spatial variability of concrete

Statistical tools and probabilistic approaches have often been developed to model the

behavior of heterogeneous materials. As mentioned previously, the heterogeneities of

concrete at micro-scale (ITZ, aggregates, cement matrix, porosity ...) lead to the vari-

ability of the mechanical properties of concrete at the REV scale and larger (see Figure



Chapter 2. State of the art 34

2.3). Thus, the material properties of concrete are randomly distributed. In the follow-

ing, different methods to describe the spatial variability of concrete will be presented,

particularly Stochastic Finite Elements (SFE) using discretized random fields. There-

fore, random fields are described. Finally, the eventual relation between SFE models

and size effect is discussed.

2.3.1 Methods accounting for spatial variability of concrete

The simplest approach consists on attributing to each volume of material, using Monte-

Carlo procedure, properties (ft and E) which follows a given distribution and then to

perform the numerical simulation. Another way is to consider a given distribution of

defects within the volume of the material. Each defect is supposed to possess a prob-

abilistic elastic-brittle behavior and the macro behavior results as a sum of all these

elementary defects.

Moreover, a possible approach is the one proposed by Breysse [1991], which is based upon

the modelisation of the micro-structural geometry and topology onto a discrete represen-

tation then performing FE simulations. However, analyzing the damage behavior of large

structures and the mapping of the micro-structure becomes almost impossible. Thus,

the material disorder is taken at the macro-scale material properties by considering them

as randomly distributed in space (Carmeliet and de Borst [1995]). As a consequence,

spatial variability of input parameters are represented by random variables or random

fields characterized by autocorrelation functions. Hence, a better representation of the

spatial heterogeneity of the concrete and its effect on the cracking should be taken into

account, both at the scale of the fracturing zone and at the scale of the structure.

Some authors pointed out the usefulness of accounting for the spatial randomness of con-

crete mechanical properties in the FE models, where usually the concrete is supposed

as homogeneous material. Rossi et al. [1996] accounted for the initial heterogeneity of

the material (ft and E) with respect to the size of the structure in order to accurately

represent the crack propagation. As for Tang et al. [2010], he introduced a spatial cor-

relation length factor into Weibull distribution law by defining the mechanical property

as a 2D random field discretized into n finite elements.

As a consequence, SFE models using random fields are used to investigate the uncer-

tainty propagation of the mechanical properties of the concrete (ft or E) on the outputs

of interest parameters (rupture force or strength). In this way the fluctuations of the
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material parameters are modeled by means of random fields and the cracking process

is represented using finite element discretization. Some authors used discretized ran-

dom fields to model the randomness of the concrete properties (Carmeliet and de Borst

[1995], Colliat et al. [2007], Vořechovskỳ [2007], Ma lecki et al. [2007], De Larrard et al.

[2010], Giry [2011] and Syroka-Korol et al. [2013]). Syroka-Korol et al. [2013] modeled

unnotched beams subjected to 3-point bending load, they used a regularization method

and an original technique for the random field generation. It is worth noting that for

unnotched beams under uniaxial tension, the difference in the response between a deter-

ministic material strength and a stochastic strength grew with increasing size. Hence,

the importance of the generation of random fields in FE models rises to represent ma-

terial spatial randomness, and then capture this effect on mechanical behavior such like

tensile strength, damage and crack pattern. Breysse [1991] discussed the choice of the

mechanical property modeled as random field (E orft). Based on this choice, different

behaviors can be obtained. On the one hand, if ft is random, the disorder and the het-

erogeneous behavior will appear only after the rupture of the first element. On the other

hand, if E is random, the material is heterogeneous since the initial phase. However,

Rossi et al. [1994] showed that E is independent of the volume of the specimen. Thus,

in this thesis, ft is chosen to be randomly distributed.

Briefly, the method to model the variability of the tensile strength in concrete, used

in this thesis, is discrete random fields. Therefore, the definition of random filed is

discussed, in the next section.

2.3.2 Random fields

A random field V (x) is defined as a collection of random variables indexed by a con-

tinuous parameter x ∈ Ω, where Ω is an open set of Rd (d = 1, 2, 3) describing the

geometry. The Gaussian random field is completely defined by its mean function µ(x)

and its autocovariance function CV V (x, x′) that depends on an autocorrelation function

ρv(x, x
′), as shown in Equation 2.31.

CV V (x, x′) = Std(x)Std(x′)ρv(x, x
′) (2.31)
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The modeling of the tensile strength of concrete ft requires the use of univariate multi-

dimensional fields, whose autocorrelation function depends only on the relative length,

called autocorrelation length, between two points. The higher the autocorrelation length

is, the stronger the statistical correlation between two points of the field is and for a

very large autocorrelation length, the random field tends to a random variable. Thus,

the dependency of the material characteristics of the concrete is provided by the use

of autocorrelation functions. Different types of autocorrelation functions is found in

the literature, commonly Gaussian, exponential and sinusoidal functions (Carmeliet and

de Borst [1995], De Larrard et al. [2010], Colliat et al. [2007], Giry [2011] and Sudret

[2007]). These autocorrelation functions are detailed in Chapter 4. The main question

to model the spatial variability of the mechanical properties of concrete is the choice of

the autocorrelation function and its corresponding length. Thus, to compare the differ-

ent values of autocorrelation lengths found in the literature and the different shapes of

autocorrelation functions, an equivalence between the different autocorrelation length

must be found.

One used method to find an equivalence between the different autocorrelation lengths

corresponding to different autocorrelation functions is the scale of fluctuation, proposed

by Vanmarcke [2010] and given by the following Equation:

υ = 2

∫ ∞
0

ρ(x)dx (2.32)

Another method that can be used to compare different autocorrelation functions is the

variogram. The variogram is defined using the following equation:

γ (h) =
1

2
var [Z(x+ h)− Z(x)] (2.33)

where Z(x) and Z(x + h) are two random variables considered respectively at x and

x+ h, h is a chosen distance that separate these two random variables.

Thus, the variogram γ(h) is usually presented as function of h. Figure 2.18 is an example

of the theoretical variogram fitted from the experimental measurements of the ultrasonic

pulse velocity (the points) on a wall of a thermal power plant for the national project of

research EVADEOS, in order to evaluate the concrete properties and its spatial random-

ness. This variogram presents, then, the ultrasonic pulse velocity at different locations
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Figure 2.18: Variogram showing the experimental and theoretical variation of the
ultrasonic pulse velocity in a RC wall (Gomez-Cardenas et al. [2015]).

of the wall (Gomez-Cardenas et al. [2015]).

The variogram reaches a level that is equal to 95 % of the variance of the variable for a

distance called characteristic correlation length lcc. In addition, a direct relation between

the variogram and the autocorrelation function is given by the following equation:

γ (h) = Std2 (1− ρ(x)) (2.34)

Thus, for ρ(x) = 0.05, the characteristic correlation length lcc is reached. In consequence,

lcc is considered as another criteria to compare the different types of autocorrelation

lengths. Different methods used for the random field discretization are presented in

Appendix B.

2.3.3 SFE models and size effect

As the decrease of the tensile strength when the volume increases is associated to the

spatial randomness of the local material strength, Weibull [1951] developed the weakest

link concept, which gives a relationship between the volume of the structure and its

average strength which is called size effect. Thus, in FE models, it is necessary to

model the spatial variability of the concrete leading to the localization process and the

redistribution of defects around the micro crack. Thus, random fields are defined as a tool

to reproduce the size effect on tensile strength for quasi-brittle materials (Vořechovskỳ

[2007], Syroka-Korol et al. [2013] and Colliat et al. [2007]). Vořechovskỳ [2007] showed

that modeling spatial variability of local material strength accounts for the statistical

part of the size effect. In addition, Colliat et al. [2007] used random fields as a tool

to model quasi-brittle materials size effect and they demonstrated that probabilistic
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Figure 2.19: Spatial variability of tensile strength and crack patterns for a dog-bone
specimen subjected to direct tension (Vořechovskỳ [2007]) and the central part of a

beam subjected to 3-point bending (Syroka-Korol et al. [2013]).

approach using correlated random fields is capable to link continuum damage mechanics

for small structures and LEFM for larger structures. Figure 2.19 shows examples of

random fields from Vořechovskỳ [2007] (Gaussian random field on ft for Van Vliet and

Van Mier [2000] series) and Syroka-Korol et al. [2013] (Gaussian random fields on ft for

concrete series under 3-point bending loading).

2.3.4 Synthesis

The generation of discretized random fields involves many problems as the choice of

the uncertain parameter, the probabilistic method, the autocorrelation function and the

autocorrelation length. Usually, the random field models the uncertainty propagation

on a parameter corresponding to the material behavior (ft, E, damage threshold in

Mazars damage model εD0 = ft/E, strength related parameter in a microplane model

K1, elastic yield stress σy, gap between the maximum stress and the elastic yield stress ef

...). Table 2.4 presents a brief summary of the characteristics of the discretized random

fields used to characterize the spatial randomness in concrete. It is worth noting that

theses parameters are chosen arbitrary by the authors. As in this chapter, the variability

and the size effect on ft are highlighted, the tensile strength seems to be an important

uncertain parameter, which may influence the global response of the structure and more

precisely its cracking pattern. Therefore, SFE method using discretized random fields
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Table 2.4: Synthesis of the different characteristics of discretized random fields used
by some authors (Carmeliet and de Borst [1995], Vořechovskỳ [2007], Syroka-Korol
et al. [2013], De Larrard et al. [2010], Colliat et al. [2007], Ma lecki et al. [2007] and

Giry [2011]).

Reference Type of
structure

Probabilistic
method

Law Variability Autocorrelation
function and
length

Size
effect
(+m)

Carmeliet
and
de Borst
[1995]

Cylindrical
tensile
specimen

Midpoint Non
Gaussian

εD0 exp
(
− x2

2l2

)
,

l = 5 mm

No

Vořechovskỳ
[2007]

Dog-bone
tensile
specimen

Latin hy-
percube
sampling

Gaussian K1 exp
(
−x2

l2

)
,

l = 8 cm

Yes,
m =
7

Syroka-
Korol
et al.
[2013]

3-point
bending
beams

Latin hy-
percube
sampling

Gaussian ft exp
(
− x2

2l2

)
,

l = 5 cm

Yes,
m =
24 −
48

De Lar-
rard et al.
[2010]

Nuclear
contain-
ment

Karuhnen-
Loève

Lognormal E exp
(
−x2

l2

)
,

l = 30− 60 m

No

Colliat
et al.
[2007]

1D truss
under
tensile
load

Karuhnen-
Loève

Lognormal σy and ef exp
(
−x
l

)
, l =

10 cm
Yes

Ma lecki
et al.
[2007]

RC bar
under
tensile
load

- Gaussian ft - No

Giry
[2011]

Cylindrical
tensile
specimen

Turning
bands

Gaussian εD0 exp
(
−x
l

)
, l =

1 cm
No

on tensile strength is developed in this thesis. Comparisons with experimental results

are carried on to give explanation for the choice of each parameter of the random field.

Moreover, the pertinence of using such SFE method on the reproduction of size effect is

discussed.

2.4 Conclusion

The heterogeneities of concrete at micro-scale are reflected by the variability of its me-

chanical properties at larger scale. Thus, the 16 × 32 cm2 specimens are considered as

a REV for concrete. However, the tensile strength measured on this specimen should
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be used with caution when dealing with large structures. This chapter highlights the

important size effect on tensile strength which should be accounted in massive structures

such as nuclear containments in which the prevision of cracks is a critical issue. Different

size effect methods have been presented in this chapter. These size effect methods suffer

either from the tendency to underestimate the experimental tensile strength for large

structures or the presence of different numerical parameters. One main objective of the

thesis is to estimate the coefficient of reduction of concrete tensile strength in nuclear

containments, mainly subjected to uniaxial tension. Thus, the focus is on statistical size

effect. WL2 method developed by Sellier and Millard [2014] is retained because of its

simplicity and capability of accounting for stress redistribution. Moreover, this method

seems capable of reproducing energetic-statistical size effect. However, the scale length

introduced, in this method, is identified only on an example of Mivelaz [1996] anchor.

Therefore, it is important to identify this parameter on a wider experimental concrete

test series. This numerical method is used in Chapter 3 to develop an analytical proba-

bilistic size effect method.

Moreover, different methods have been used to account for the spatial variability of the

mechanical properties of concrete, in FE models. These methods are mainly based on

random field generations. However, each author works on its own structure type, using

its own random field characterization (generation method, distribution, autocorrelation

function and parameter), due the necessity of defining one random field valid for dif-

ferent types of structures. Therefore, in Chapter 4, the objective is to develop a SFE

method that uses a discretized random field, in which a simple autocorrelation function

and discretization method are chosen and applied to a wide range of case studies.



Chapter 3

Prediction of size effect in

concrete structures using an

analytical approach

A challenge for massive Reinforced Concrete (RC) structures is to identify the tensile

strength corresponding to the first crack at their scale considering the measured tensile

strength obtained in laboratories on concrete specimens. Several models to describe

the dependency of the tensile strength of the sample on its size have been presented in

Chapter 2. The objective is, then, to better understand the crack initiation in structures

of large dimensions, taking into account the size effect, i.e. the reduction on the mean

tensile strength and the associated uncertainties.

This chapter aims to develop an analytical-probabilistic approach of the Weakest Link

and Localization (WL2) method developed by Sellier and Millard [2014]. WL2 method

introduces a nonlocal formulation which allows the redistribution of the stresses at each

step which means that a defect in a small area usually does not lead to a failure of

the structure due to the redistribution capacity around the ”weakest link”. Moreover,

Chapter 2 highlights the relevance of WL2 method, developed as Finite Element (FE), in

accounting for statistical size effect. Our main objective is, then, to derive an analytical

and simple WL2 method, denoted WL2A.

Briefly, the aim is to apply this analytical-probabilistic version WL2A of size effect

41
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method to different types of structures, from concrete structures (specimens under uni-

axial tension, 3-point bending loading and 4-point bending loading) to massive structures

(anchors, dams, nuclear containments ...). Consequently, the method is carried out, in

order to provide tensile strength corresponding to the first macroscopic crack and to

reproduce the main properties of size effect characterized by the decrease of the mean

and the standard deviation of the tensile strength when the volume increases.

This chapter is organized as follows; first, the principle of the analytical-probabilistic

method are described. Then, the different parameters of the method (the properties

of the reference structure, the Weibull modulus m and the scale length lI) are deter-

mined for various experimental tests. The capability of this approach to reproduce the

mean and the standard deviation of the tensile strength at first crack is validated us-

ing concrete specimens under uniaxial tension (Rossi et al. [1994] and Van Vliet and

Van Mier [2000]), 3-point bending loading (Torrent [1977], Hoover and Bažant [2014a]

and Grégoire et al. [2013]) and 4-point bending loading (Koide et al. [2000], Mazars

[1984] and Torrent [1977]). Finally, the method is applied to large massive structures

such as the Mivelaz anchor, the Malpasset dam and nuclear containments vessels.

3.1 Analytical-probabilistic approach WL2A

This section presents the development of the analytical method derived from the WL2

method developed by Sellier and Millard [2014] and denoted hereafter WL2EF . The

principles and originalities of the approach are first introduced. Then, the two unkown

parameters of the method (Weibull modulus m and scale length lI) are discussed. The

Weibull modulus constitutes a main parameter for this method. However, it can be

determined using different methods (empirical formula (Rossi et al. [1994]), Weibull def-

inition (Sellier and Millard [2014]), maximum likelihood (Lamon and Evans [1983]) and

the regression method (Wu et al. [2012])). Thus, the applicability of these three methods

is discussed and a range of validation is proposed for this parameter. In addition, an

interval of validation for the scale length is determined using an inverse analysis based

on experimental results of Rossi et al. [1994] series and Hoover and Bažant [2014a] series.
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3.1.1 Principle of the analytical-probabilistic approach

This approach is based on the WEV method. Recapitulating the definition of an effective

volume VE , it corresponds to a volume subjected uniformly to the maximum principal

stress and having the same probability of failure as the total volume of the structure

subjected to the actual stress field. It can be considered, then, as the volume containing

the heterogeneities of the concrete.

Weibull distribution defines the probability of failure Pf of a structure subjected to non-

uniform multi-axial stress σ, it is given by Equation 2.6.

As mainly loading cases which produce tension in the loaded structures are considered

in this thesis, only the case of non-uniform uniaxial load is considered. Thus, the elastic

principal stresses (σI ≥ σII ≥ σIII) are reduced to only one stress component σI and

the probability of failure can be written as follows:

Pf (σ, V ) = 1− exp

(
− 1

Vref

∫
V

〈
σI(x, y, z)

ft/ref

〉m
dV

)
(3.1)

where 〈.〉 accounts for the positive part, m is the Weibull modulus and Vref and ft/ref

are the volume and the tensile strength of the reference structure respectively. This

volume usually corresponds to a normalized (e.g. cylindrical or cubic (see section 2.1.2))

specimen.

However, a main disadvantage of this theory is that its characteristic length ( 3
√
Vref )

does not seem to account for the stress redistribution phenomenon. In addition, the

failure of concrete can be viewed as a statistical process, since the mechanical properties

of concrete present a spatial randomness character. The ultimate load capacity, then,

depends on the distribution of flaws within the concrete. Thus, a rearrangement of

the Weibull integral can be considered. Hence, the size effect can be described with a

nonlocal formulation of the Weibull theory and the spatial variability of the material

strength (Sellier and Millard [2014]). For this purpose, a weighting function ψ (lI , x)

(Equation 3.2) is introduced to the Weibull integral, in order to balance the probabilistic

influence of each point of a structure by considering its distance x from another point.

ψ (lI , x) = exp

(
− x

2

2l2I

)
(3.2)

where x is the distance between the integrated point and an arbitrary point of the volume

V and lI is a scale length defined in the direction of the first principal stress.



Chapter 3. Prediction of size effect using analytical approach 44

This weighting function is intended to account for the variability of the tensile strength in

concrete. This concrete variability is controlled by the appearance of a weak zone, usually

piloted by the absence of aggregates or the presence of an unexpected porosity. Moreover,

among the phases composing the concrete, the interfacial transitional zone (ITZ) is

known to be porous, weak and the site of initial microcrack occurrence (Nemati and

Gardoni [2005]). The inelastic behavior of concrete often begins before the development

of a macrocrack, and failure starts within this weak local zone. Because concrete is not

perfectly brittle, stress redistribution should therefore occur around this weakest zone. If

another weak zone were to exist in the structure, then crack propagation would depend

on the distance x between two weak points. Hence, scale length lI characterizes the

spatial decrease in the function Ψ (lI , x). This scale length is responsible to account for

the stress redistribution around the weakest spot. As, for stress redistributions, one can

distinguish two cases: the attenuation of the elastic stresses, depending on the distance

to the weak zone or the development of a highly nonlinear zone around the weakest

point (i.e. the development of a fracture process zone FPZ). However, the case of high

concentration of stresses (as in the splitting test or in notched beams) is not taken into

account, in this thesis.

The originality of the method is that it limits the domain of the Weibull integral and

avoids using a too small tensile strength for very large elements. Thus, the probability

of failure is obtained by introducing the Equation 3.2 into the Equation 3.1:

Pf (σ, V ) = 1− exp

(
−
∫
V

〈
σI(x, y, z)

ft/ref

〉m
ψ (lI , x)

dV

Vref

)
(3.3)

Consequently, the effective volume VE , given in Equation 3.4, depends on m, the stress

field, the total volume V of the studied structure and the weighting function Ψ (lI , x).

VE is given by the following equation:

VE =

∫
V

〈
σI(x, y, z)

σmax

〉m
ψ (lI , x) dV (3.4)

where σmax is the maximum value of the principal stresses in the structure.

For the estimation of the first principal stress σI(x, y, z), the Rankine’s formula is used.

Thus, the first principal stress is computed as a relation between normal stress σ11 and

shear stress σ12:

σI =
σ11

2
+

1

2

√
σ2

11 + 4σ2
12 (3.5)
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Finally, using the Weibull weakest-link model, the tensile strength ft can thus be defined

as a strength dependent on component size:

ft = ft/ref

(
Vref
VE

)1/m

(3.6)

The aim of this approach is to predict the tensile strength of a (reinforced) concrete

structure, not only on an averaged basis but also in terms of dispersion. We have opted

to account for uncertainties relative to the tensile strength of the smallest specimen ft/ref

using a random variable Y1 and the Weibull modulus m through a random variable Y2.

The Weibull modulus is directly linked to the mechanical properties of concrete, which

are considered as variables, its estimation will be discussed in the following section. The

tensile strength of the structure thus also becomes a random variable, Z. From Equation

3.6, we deduce:

Z = Y1

(
Vref
VE

)1/Y2

(3.7)

Our focus is not only on the mean but also the coefficient of variation of Z, which de-

pends on the means and coefficients of variation of both Y1 and Y2. In the following

discussion, such uncertainty propagation studies are conducted using Monte Carlo meth-

ods. Moreover, the effective volume depends on the scale length lI , which is directly

correlated with concrete variability, as pointed out in Sellier and Millard [2014]. One

objective of this approach therefore is to identify the scale length lI for series of con-

crete specimens under uniaxial tension (Rossi et al. [1994]) and 3-point bending loading

(Hoover and Bažant [2014a]).

In conclusion, a simplified approach is proposed, in order to estimate:

• The scale length lI from series of concrete specimens under uniaxial tension or

3-point bending loading. For each concrete series, different volumes of concrete

specimens are studied (Vi, Vj ... ). As a consequence, ratios of VEi/VEj are studied

for all the possible couples (ft,i, ft,j), using Equation 3.6. The only unknown

parameter remaining is the scale length lI .

• The mean, the standard deviation and the distribution of the tensile strength, by

propagating the experimental variability of the reference tensile strength ft/ref

and the variability of the Weibull modulus m using Monte-Carlo simulations.
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Furthermore, in order to make it easier to state the size effect for the different studied

geometries and the different loading cases, a reference x-axis has to be chosen. In most

studies, the smallest size of the specimen (usually the diameter in the case of cylindrical

specimens or the height in the case of rectangular beams) is used to emphasize the

size effect in the studied series. Torrent [1977] estimated the Highly Stress Volume

(HSV) (see Chapter 2), which corresponds to the volume that contains 90 or 95 % of

the maximum stress σmax, for different loading cases. Therefore, the use of log HSV as

the x-axis in the size effect plot seems to be more accurate, specially for beams under

3-point and 4-point bending loading, where the stress is not uniform. Figure 3.1 presents

the three different geometries subjected to 3 different types of loading studied in this

chapter (cylindrical specimens (Rossi et al. [1994]), dog bone specimens (Van Vliet and

Van Mier [2000]), and rectangular beams (Hoover and Bažant [2014a], Grégoire et al.

[2013], Torrent [1977], Koide et al. [2000] and Mazars [1984])) and their corresponding

outlined HSV. In the case of cylindrical specimens under uniaxial tension, the HSV is

Figure 3.1: Different studied geometries: cylindrical specimen (Rossi et al. [1994]),
dog bone specimen (Van Vliet and Van Mier [2000]), 3 points bending beams (Torrent
[1977], Hoover and Bažant [2014a], Grégoire et al. [2013]) and 4-point bending beams
(Mazars [1984] and Koide et al. [2000]) and their corresponding HSV (hatched area).

equal to the total volume of the specimen, whereas for dog-bone specimens, the HSV is

equal to a rectangular volume whose cross-section equals that of the central part of the

dog bone (i.e. smallest section) and whose length is that of the specimen. Moreover, in
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the case of 3-point bending beams, Torrent [1977] defined the HSV as a triangle, of a

height and length equal respectively to h = H
40 and l = L

20 , extruded through the beam

width, such that:

HSV =
bHL

1600
(3.8)

where b, H and L are respectively the thickness, the height and the length of the beam.

Finally, in the case of 4-point bending loading, the HSV corresponds to the extrude

over the total width of the beam of the shaded area in Figure 3.1. The shaded area is

composed by a rectangle of height h = H
40 and length equal to the bending length of

the beam Lb and two triangles of height H/40 and length Ls/20 where Ls is equal to

the shear length of the beam, which corresponds to the distance between the support

and the point of application of the force. Thus, the HSV, in the case of 4-point bending

loading could be estimated as follow:

HSV =
bHLb

40
+
bHLs
800

(3.9)

3.1.2 Synthesis of experimental campaigns of concrete structures

This section briefly presents the experimental tests conducted on concrete specimens of

different volumes under uniaxial tension or 3-point bending loading or 4-point bending

loading. In a cylindrical specimen under uniaxial tension, the tensile strength is uniform

and equal to σmax = F
S , where S is the cross-sectional area. In the case of 3-point

bending loading, stress is not uniform in the beam and only the bottom part is under

tension; maximum tensile stress, in the elastic phase, is equal to σmax = 3
2
FL
bH2 , where

L, b, H are the span, the width and the height respectively. As for the case of 4-point

bending, the maximum tensile stress is equal to σmax = 6FLs
bH2 , where Ls is the shear

span.

Table 3.1 gives the different concrete mix compositions for all the studied test series and

their main properties. The details of the series mentioned are presented in Appendix

A. For the case of direct tensile tests, two series of concrete specimens, with different

volumes, are presented; Rossi et al. [1994] series present the advantage of studying two

different concrete mixtures for three volumes of cylindrical specimens, they showed a

decrease of the mean and the standard deviation of the tensile strength as the volume

increases and the lower the compressive strength of the concrete is, the lower the tensile
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Table 3.1: Concrete mix composition and main properties for each test series (Rossi
et al. [1994], Van Vliet and Van Mier [2000],Hoover and Bažant [2014a], Grégoire et al.

[2013], Torrent [1977], Mazars [1984] and Koide et al. [2000]).

Available
data

Rossi
et al.
[1994]

Van Vliet
and
Van Mier
[2000]

Hoover
and
Bažant
[2014a]

Grégoire
et al.
[2013]

Torrent
[1977]

Mazars
[1984]

Koide
et al.
[2000]

Number of
specimens

> 26 > 20 > 128 > 34 unknown > 17 > 45

Geometry Cylind. Dog-
bone

Rect. Rect. Rect. Rect. Rect.

Diameter D
(mm)

30-60-
150

60-120-
240-
480-960

- - - - -

Height H
(mm)

- - 40-93-
215-500

50.6-
101-
200-400

25-25-
40-150

100-220 100-
100-100

Type of
loading

Direct
tension

Direct
tension

3-point
bending

3-point
bending

3-point
bending

4-point
bending

4-point
bending

Length L
(mm)

2D 150-
300-
600-
1200-
2400

96-223-
516-
1200

177-
353-
700-
1400

106-
240-
106-450

300-
1400

600-
800-
1000

Bending
span Lb
(mm)

- - - - - 100-600 200-
400-600

Shear span
Ls (mm)

- - - - - 100-400 200

Thickness b
(mm)

- - 40-40-
40-40

50-50-
50-50

25-25-
40-150

100-150 100-
100-100

dmax (mm) 20 8 10 10 5 10 20

W/C 0.6-0.45 0.5 0.41 0.6 0.55-
0.67-0.8

- -

fc28 (MPa) 35-55.8 37 45.7 42.3 > 44.3 30 30
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strength is. However, Van Vliet and Van Mier [2000] focused on dog bone shape series

that were conducted on concrete cured under varying humidity conditions. In this study,

the size effect was found to depend on three phenomena: the presence or absence of large

aggregates in the critical cross section of small specimens, the classical Weibull statisti-

cal size effect on strength for large specimens and the fluctuation of material strength

when strain or stress gradients occur.

In the case of 3-point bending tests, Hoover and Bažant [2014a] and Grégoire et al.

[2013] conducted experimental tests on both notched and unnotched beams, they both

showed a dependency between the tensile strength and the structure size (height of the

beam) and a difference between notched and unnotched specimens response. Moreover,

Torrent [1977] conducted tests on unnotched beams having various mixes of concrete

with different W/C ratios. In this study, only three mixes are used

However, the literature presents few experimental series on concrete beams subjected to

4-point bending. For example, Koide et al. [2000] studied the influence of scaling the

bending span on the flexural resistance. Experiments correspond to 3 types of beams

subjected to 4-point bending. For each type of beams, the same cross section and shear

span are kept and only the bending span is scaled. Koide et al. [2000] emphasized the

decrease of flexural resistance when the bending span increases. However, the three

beams present the same tensile strength. In addition, Mazars [1984] conducted two

beams having the same geometry but different cross section, shear span and bending

span and subjected to 4-point bending. These two beams have the same characteristics

of concrete. He showed that the bigger beam is weaker in term of tensile strength.

Figures 3.2 and 3.3 present the evolution of the tensile strength as function of log HSV

for the case of the studied concrete specimens under uniaxial tension and the studied

concrete beams under 3-point bending loading respectively. In both cases, the prob-

lematic of size effect on the tensile strength at first crack is emphasized. Thus, it is

important to develop a simple method to estimate this mechanical property.

In all concrete series tested, the crack corresponds to a mode I mechanism in tension.

A crack thus appears whenever the first principal stress σI reaches the local randomly-

distributed tensile strength ft (Rossi and Ulm [1997]):

σI ≤ ft (3.10)
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Figure 3.2: Mean values of the tensile strength as function of log HSV for specimens
under uniaxial tension (Rossi et al. [1994] and Van Vliet and Van Mier [2000]).

Figure 3.3: Mean values of the tensile strength as function of log HSV for beams
under 3-point bending loading (Hoover and Bažant [2014a], Grégoire et al. [2013] and

Torrent [1977]).

3.1.3 Estimation of the Weibull modulus

Modulus m is widely used in studies dedicated to the size effect in brittle materials such

as ceramics but also in (reinforced) concrete structures. m is correlated with the shape of

the tensile strength statistical distribution. The greater the value of m, the less scatter

in the data. It is also well-known that estimating such a parameter is a tricky endeavor.

A Weibull distribution is not expected to be valid for brittle materials containing bi- or

multi-modal flaw distributions, displaying a high defect density. Estimations of m also

change slightly with the type of test: 3 or 4-point bending vs. direct tensile tests (Warren

[2001]). In addition, Afferrante et al. [2006] showed that the Weibull modulus depends

on interactions between the crack distribution and the stress field. Moreover, Bergman

[1984] demonstrated that the coefficient of variation of tensile strength decreases with

an increasing value of m. In these latter cases, the Weibull modulus depended on the
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applied stress amplitude and was no longer a constant.

To estimate the Weibull modulus, several methods can be found in the literature, in-

cluding the maximum likelihood (Lamon and Evans [1983]), the regression method (Wu

et al. [2012]), the Weibull definition (Sellier and Millard [2014]), and Rossi et al. [1994]

formula. Even though m is considered as a statistical parameter (Le et al. [2011], Le

et al. [2013]), beams under 3-point bending loading can still be considered affected by the

energetic-statistical size effect and a value of m can be assessed to this type of loading.

For example, m was evaluated at 10 for a series of beams under 3-point bending loading

in Sellier and Millard [2014]. A brief explanation of the methods used to evaluate m is

given hereafter.

Rossi et al. [1994] showed that this modulus depends on the compressive strength fc

of concrete, based on series of cylindrical concrete specimens under direct tensile tests

and having different concrete compositions and volumes (30 < fc < 130 MPa and

30 < D < 160 mm), plus a maximum aggregate diameter equal to 20 mm, according to

the following formula:

m = (0.25− 3.6× 10−3 × fc + 1.3× 10−5 × f2
c )−1 (3.11)

It is also possible to deduce the Weibull modulus directly from experimental results

since it depends statistically on the mean value and coefficient of variation of the tensile

strength. The relation between the Weibull modulus m and the coefficient of variation of

the experimentally measured tensile strength CV (ft) is given by the following equation

and illustrated in Table 3.2 (Sellier and Millard [2014]):

CV =

√
Γ(1 + 2

m)− Γ2(1 + 1
m)

Γ(1 + 1
m)

(3.12)

where Γ is the Gamma function.

Also, Figure 3.4 gives the evolution of the Weibull modulus m as function of CV (ft).

Therefore, the Weibull modulus depends on the concrete mix, which explains the rele-

vance of considering this modulus as variable in Equation 3.7.

Other widespread statistical methods for estimating m are the maximum likelihood and

regression methods (Lamon and Evans [1983], Wu et al. [2012]). It is worth noting that

these last two statistical estimations require a sufficient amount of data, which tends

not to be available in most cases. Danzer et al. [2007] studied the effect of the number
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Figure 3.4: Evolution of m as function of CV (ft) (Sellier and Millard [2014]).

Table 3.2: Weibull modulus estimation for usual values of coefficients of variation of
ft using Equation 3.12

CV (ft) 23 19 17 15 13 12 11 10 9.4 8.7 8.2 7.7 6.9 6.2 5.2 4 2.6

m 5 6 7 8 9 10 11 12 13 14 15 16 18 20 24 31 48

of strength tests on estimating the mean of m: for a set of 30 tests, the 90% confidence

interval of m is typically ±30% around the mean value.

In conclusion on the choice of the Weibull modulus, Table 3.3 summarizes the values

estimated from various methods, and confidence intervals are proposed for each exper-

imental series. A value of m between 6 and 12 seems on average to be reasonable for

ordinary concrete, since it reproduces a coefficient of variation of ft varying from 10 to

20 %. Let’s note that this result raises suspicion about the choice of values, such as 24

or 48, that can be found in other works (Bažant et al. [2007], Syroka-Korol et al. [2013]

...). Moreover, Table 3.2 shows that m = 24 − 48 refers to a coefficient of variation of

a tensile strength varying between 2.6 and 5.2 %, which does not represent the reality

for concrete material (whose coefficient of variation for tensile strength lies on the order

of 10%). In addition, Bažant and Novak [2000] estimated a value of m equal to 24

using an iterative nonlinear optimization algorithm, with three optimized parameters of

the energetic-statistical SEL and reliance on different experimental series under 3-point

and 4-point bending loading. However, an advantage of the estimation, done in this

thesis, is the use and comparison of three methods to estimate m for each experimental
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Table 3.3: Weibull modulus estimation for each series of tests (Hoover and Bažant
[2014a], Grégoire et al. [2013], Torrent [1977], Van Vliet and Van Mier [2000])

Torrent
[1977]

Hoover
and Bažant
[2014a]

Grégoire
et al. [2013]

Van Vliet
and
Van Mier
[2000]

Rossi et al. [1994]
formula

10.1 8.9 8.23 7.4

Torrent 9-13 - - -

Maximum likeli-
hood

6.5 7.9 7.1 6.5

Regression method 6 7.8 6.1 6

Weibull definition < 12 8.5 6.5 7

Proposed range 6.5-12 8-9 6-8 6.5-7.5

series, with a consistent value of m being found for each series. Thus, the values of m

estimated by Bažant and Novak [2000] are questionable and the values of m equal to 24

or 48 should not be used to describe the concrete material having variable mechanical

properties. In conclusion, m is a material parameter linked to the variability on concrete

tensile strength and it can be estimated independently for each experimental series, i.e.

for each concrete mix.

3.1.4 Experimental identification of the scale length

In order to estimate the scale length, an inverse analysis has been carried out on series

of concrete specimens under uniaxial tension (Rossi et al. [1994]) as well as on series

of unnotched concrete beams loaded in 3-point bending (Hoover and Bažant [2014a]).

Table 3.4 summarizes the main results of these 2 series where µ(ft) and Std(ft) are

respectively the mean and the standard deviation values of the tensile strength. The

underlying notion here is to simply study the ratio of all specimen couples i and j (see

Figure 3.5) to volumes (VE,i, VE,j) using Equation 3.6, which corresponds to the strength

couple (ft,i, ft,j).

First, Rossi et al. [1994] series is used. In the case of a direct tensile load on cylindrical

specimens, stress is uniformly distributed within the volume. Equation 3.4 can thus be
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Table 3.4: Experimental results for Rossi et al. [1994] and Hoover and Bažant [2014a]

Rossi et al. [1994] Rossi et al. [1994] Hoover and Bažant [2014a]
(fc=35 MPa) (fc=55.8 MPa) (fc=45.7 MPa)

D
(mm)

30 60 150 30 60 150 40 93 215 500

µ(ft)
(MPa)

4.8 3.2 2.4 5.1 4.3 3.1 7.8 7.2 6.9 5.7

Std(ft)
(MPa)

1 0.6 0.2 1 0.7 0.2 0.6 0.3 1.1 0.5

Figure 3.5: Two different sizes of specimens.

rewritten in the following form:

VE = πD2 ×
∫ L

0
exp

(
− x

2

2l2I

)
dx (3.13)

where D and L are respectively the diameter and the length of the cylinder.

In the case of the cylindrical specimens of Rossi et al. [1994], the ratio between the

tensile strengths of two different specimens is reduced to the following equation:

ft,i
ft,j

=

D
2
j ×

∫
Lj

exp

(
− x2j

2.l2I

)
dx

D2
i ×

∫
Li

exp
(
− x2i

2.l2I

)
dx


1/m

(3.14)

In order to have accurate evaluation of the mean and the standard deviation of the tensile

strengths ratios, we suppose that the tensile strength follows a log-normal distribution

law, thus the ratio of two tensile strengths follows a lognormal distribution law (Mesureur

[1989]) and its mean µ
(
ft,i
ft,j

)
and its standard deviation Std

(
ft,i
ft,j

)
can be calculated

using the following equations:

µ

(
ft,i
ft,j

)
=
µ (ft,i)

√
1 + CV (ft,j)

2

µ (ft,j)
√

1 + CV (ft,i)
2

√(
1 + CV (ft,i)

2
)(

1 + CV (ft,j)
2
)

(3.15)
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Std2

(
ft,i
ft,j

)
=
((

1 + CV (ft,i)
2
)(

1 + CV (ft,j)
2
)
− 1
)
× µ2

(
ft,i
ft,j

)
(3.16)

where CV (ft,i) and CV (ft,j) are the coefficient of variations of the tensile strength

corresponding respectively to specimen i and specimen j.

Moreover, the Weibull modulus is defined using Equation 3.11, which is directly deduced

from this concrete series based on compressive tests performed on 16×32 cm2 cylindrical

concrete specimens. The value of m equals 7.4. For example, Figure 3.6 shows the

numerical evolution of
ft,3
ft,1

(i.e. ratio of tensile strengths corresponding to the highest

and lowest volumes) as a function of parameter lI . The horizontal line establishes the

experimental mean value of the ratio
ft,3
ft,1

; like for the dotted lines, this indicates the

experimental confidence interval for the given ratio. As seen in Figure 3.6, the analytical

approach WL2A reproduces the experimental mean value of
ft,3
ft,1

for a scale length equal

to 0.2 m. From the two concrete mixes of Rossi et al. [1994] study, a mean scale length

of 0.2 m and a standard deviation of 0.1 m are deduced.

Figure 3.6: Evolution of the ratio of
ft,3
ft,1

for fc = 35 MPa (case of Rossi et al. [1994]

series) as function of the scale length lI .

Secondly, an inverse analysis was applied to the case of unnotched beams under 3-point

bending loading, with different volumes and a constant thickness. The Hoover and

Bažant [2014a] series are studied to evaluate the scale length lI corresponding to this

case of loading.

However, in this case, the stress is not uniform as in the case of direct tensile load.

As mentioned before, the aim of this analytical method is to be applied in the elastic

domain and for mode I rupture, thus the Rankine criteria (maximum-principal stress

criteria) is chosen to ensure these hypothesis. Therefore, it is important to evaluate the

first principal stress, in the case of a rectangular beam under 3-point bending loading.
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Consequently, σI depends on both the normal stress σ11 and the shear stress σ12, as

seen in Figure 3.7. Moreover, the shear stress is affected by a correction factor α, which

depends on the ratio width-to-depth (b/H) of the rectangular section (Barretta and

Barretta [2010]). Under such hypothesis, Equation 3.17 gives an estimation of the α

coefficient.

α =
7

10
+

3

10

b

H
(3.17)

Figure 3.7: Evolution of the normal stress σ11 and the shear stress σ12 in a rectangular
section subjected to 3-point bending.

As the effective volume depends only on the positive part of the first principal stress σI , it

is not the same under and above the neutral axis (x = 0). Thus, using Equations 3.4 and

3.5 and by recalling the maximum stress in the case of 3-point bending (σmax = 3FL
2bH2 ),

the effective volume is deduced:

• For 0 < y < H/2:

VE = b×
∫ H/2

0

∫ L

0

 1

HL

Ly +

√
L2y2 + 4α2

(
D2

4
− y2

)2
m

exp

(
− x2

2.l2I

)
dxdy

(3.18)

• For −H/2 < y < 0:

VE = b×
∫ 0

−H/2

∫ L

0

(
2α

HL

(
H2

4
− y2

))m
exp

(
− x2

2.l2I

)
dxdy (3.19)

In the following, the same steps, done in the case of tensile load, are repeated for this

Hoover and Bažant [2014a] series. The six different strength couples, which correspond

to the Hoover and Bažant [2014a] series, are estimated using three different estimations

of the Weibull modulus. Thus, in the case of 3-point bending loading, a mean value of

0.2 m and a standard deviation of 0.18 m can be derived for the scale length. Moreover,
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the method chosen to estimate the Weibull modulus exerts negligible influence on the

scale length. The increase in standard deviation of the scale length, in the case of 3-point

bending loading compared to the uniaxial case, may be ascribed to the occurrence of a

stress concentration and to the small thickness of the studied beams (b =40 cm).

3.2 Prediction of the size effect for various series of con-

crete structures

In this section, the analytical-probabilistic approach WL2A is applied to different types

of structure subjected to direct tension (Rossi et al. [1994] and Van Vliet and Van Mier

[2000]), 3-point bending (Torrent [1977], Hoover and Bažant [2014a] and Grégoire et al.

[2013]) and 4-point bending (Koide et al. [2000] and Mazars [1984]). The mean and

the standard deviation of the tensile strength at first crack are predicted for different

series of concrete specimens or beams. Then, the method is applied to large massive

structures.

3.2.1 Prediction of the mean of the tensile strength

Different studies have been conducted to emphasize the size effect of series of concrete

specimens having different geometries. The aim of this study is to predict the tensile

strength to be used for the different concrete specimens using Equation 3.6 by taking

into account the tensile strength of the smallest specimen and its effective volume as the

reference input parameters (ft/ref , Vref ).

3.2.1.1 Series under uniaxial tension

Van Vliet and Van Mier [2000] series are studied herein. The analytical size effect

approach is applied to the dry dog-bone series by considering the smallest specimen as

the reference volume. The purpose of this study is to estimate the tensile strength of

larger specimens using different values for both the scale length and the Weibull modulus

(based on its proposed range of validity given for each series in Table 3.3). Figure 3.8

shows the different estimations of tensile strength for the four concrete specimens in this

series, with various scale lengths lI ranging between 0.1 m and 0.2 m and two values
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Figure 3.8: Estimation of the tensile strength as function of the HSV of the specimens
(D=100, 200, 400, 800 and 1600 mm) for different values of the scale length lI and the

Weibull modulus m

of m corresponding to the minimum and maximum of the interval in Table 3.3. It

is worth noting, first, the small number of tests experimentally done. For the second

specimen for example, where the scattering in the results is the most obvious, only four

specimens were tested. By comparing just the Weibull modulus, we first deduce that

m = 7.5 is capable of more accurately reproducing the experimental results. This value

corresponds to Rossi’s formula, which considers m as a material parameter since it is

related to fc (Equation 3.11). Therefore, since Rossi et al. [1994] and Van Vliet and

Van Mier [2000] concrete compositions are close to one another, Equation 3.11 provides

the appropriate method for the case of Van Vliet and Van Mier [2000] test series. The

scale length is studied next. The best fit with experimental results corresponds to a value

of approximately 0.15 m. This decrease in scale length is perhaps due to a concentrated

deformation gradient stemming from the dog-bone geometry.

3.2.1.2 Series under 3-point bending loading

The first series studied correspond to the work by Torrent [1977], who studied different

concrete types featuring different water/cement (W/C) ratios. The HSV concept was

applied to various experimental tests and revealed that Equation 2.12 quantifies the size

effect phenomenon quite accurately. Torrent [1977] estimated the Weibull modulus m

for each concrete mix as a function of W/C ratio as shown in the Table 3.5. A constant

scale length equal to 0.2 m and three Weibull modulus estimation methods are used in
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this section to highlight the influence of m on the tensile strength prediction. Tables 3.6,

3.7 and 3.8 provide the ratios of numerical to experimental tensile strength values for the

three Torrent mixes using three m estimations for each mix. The choice of m estimation

method exerts an influence on tensile strength. When the parameter is estimated by

Weibull and the maximum likelihood method, the tensile strength is underestimated

for the largest volume. For the two smallest beams, both the maximum likelihood

method and Weibull definition are able to predict a mean tensile strength close to the

experimental results, yet these two methods yield tensile strength values very close to

one another. The choice of m estimation method thus seems to have negligible influence.

Table 3.5: Fitting of the Weibull modulus m by Torrent [1977]

Mix A Mix B Mix C

W/C 0.55 0.67 0.8
m 12.2 9.5 9.7

The final test series stem from Hoover and Bažant [2014a] and Grégoire et al. [2013].

Table 3.6: Estimation of the ratio of the numerical and experimental tensile strength
for the mix A of Torrent series using three methods to estimate m

ft(V2)num
ft(V2)exp

ft(V3)num
ft(V3)exp

ft(V4)num
ft(V4)exp

m = 12.2 (Torrent) 1.1 1.13 1.1
m = 12 (Weibull) 1.05 1.08 0.85
m = 6.5 (Max likelihood) 1.03 1.07 0.86

Table 3.7: Estimation of the ratio of the numerical and experimental tensile strength
for the mix B of Torrent series using three methods to estimate m

ft(V2)num
ft(V2)exp

ft(V3)num
ft(V3)exp

ft(V4)num
ft(V4)exp

m = 9.5 (Torrent) 1.05 1.03 1.06
m = 12 (Weibull) 1 0.99 0.75
m = 6.5 (Max likelihood) 1.03 1 0.9

Table 3.8: Estimation of the ratio of the numerical and experimental tensile strength
for the mix C of Torrent series using three methods to estimate m

ft(V2)num
ft(V2)exp

ft(V3)num
ft(V3)exp

ft(V4)num
ft(V4)exp

m = 9.7 (Torrent) 0.95 0.9 0.9
m = 12 (Weibull) 0.95 0.89 0.83
m = 6.5 (Max likelihood) 0.95 0.9 0.96
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These series offer the advantage of larger test specimens (up to 1.4 m in length). The

same procedure implemented for the Van Vliet and Van Mier [2000] series was applied

to these series. In the case of Hoover and Bažant [2014a] series, the first beam was

rejected due to its very small dimensions (96 × 40 mm2) with respect to the largest

aggregate (dmax=10 mm), and the second beam was chosen as the reference volume.

In addition, the mean of the tensile strengths corresponding to the three beams of the

series are estimated using the HSV method, the WEV method and the USEL of Baz̃ant

(Hoover and Bažant [2014b]). Figure 3.9 shows the different estimations of the mean

of the tensile strength using HSV method, WEV method, USEL of Baz̃ant and the

analytical approach WL2A with two different values of lI . On the one hand, the HSV

method and the WEV method tend to decrease continually the tensile strength as the

volume increases and underestimate the tensile strength for the largest beams. On the

other hand, the USEL of Baz̃ant reproduces the size effect for this series. However,

this method requires the optimization of different numerical parameters (see Equation

2.27). As for the analytical approach WL2A, lI=0.1 m represent the best fit for this

experimental series.

Figure 3.9: Estimation of the tensile strength as function of log HSV for Hoover and
Bažant [2014a] series for different values of the scale length

In the case of Grégoire et al. [2013] series where dmax = 10 mm, the first beam having

(177.1 × 50.6 × 50 mm3) as dimensions is chosen to be the reference volume. For this

case, a comparison with the HSV and the WEV methods is done. As seen for the case

of Hoover and Bažant [2014a] series, the HSV and the WEV methods are not able to

reproduce the mean of the tensile strength for the largest beams (see Figure 3.10). As
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for the WL2A approach, only the highest value of m in its proposed range given by

Table 3.3 is used and two values of lI are considered. A very slight difference between

the results obtained using lI = 0.2 m and lI = 0.3 m is observed in Figure 3.10.

Figure 3.10: Estimation of the tensile strength as function of log HSV for Grégoire
et al. [2013] series for different values of the scale length

3.2.2 Prediction of the dispersion of the tensile strength

For the identification of the standard deviation of the tensile strength, the variabilities

on the reference tensile strength and the Weibull modulus must be known. For the

Weibull modulus, a coefficient of variation equal to 30 % is considered (Danzer et al.

[2007]). As for the variation of the reference tensile strength, it varies from one concrete

series to another. After the identification of these parameters, Monte-Carlo simulations

are used to propagate the variabilities of ft/ref and m using Equation 3.7.

First, the standard deviation of tensile strength is identified for Rossi et al. [1994] series.

The chosen reference volume is the first concrete specimen. The concrete mix having

a compressive strength equal to 35 MPa has a coefficient of variation of the reference

tensile strength equal to 20.8 %. As for the second concrete mix with a compressive

strength equal to 55 MPa, the coefficient of variation of the reference tensile strength

is equal to 19.6 %. The used scale length is equal to 0.2 m. Consequently, Figures

3.11 and 3.12 present the numerical and experimental dispersion for Rossi et al. [1994]

series corresponding respectively to fc = 35 MPa and fc = 55 MPa. The vertical bar in

theses figures correspond to the dispersion of ft estimated using the analytical approach

WL2A and the red rectangles correspond to the experimental values. Thus, the results

obtained by the analytical approach WL2A are in good agreement with the experimental
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Figure 3.11: Estimation of the mean and dispersion of the tensile strength as function
of log HSV for Rossi et al. [1994] series corresponding to a concrete mix having fc = 35

MPa.

Figure 3.12: Estimation of the mean and dispersion of the tensile strength as function
of log HSV for Rossi et al. [1994] series corresponding to a concrete mix having fc = 55

MPa.

results.

Moreover, the dispersion of the tensile strength corresponding to Hoover and Bažant

[2014a] and Grégoire et al. [2013] series are estimated. The coefficient of variation of

the reference tensile strength for Grégoire et al. [2013] series is based on only two tests

and it is equal to 13 %. As for Hoover and Bažant [2014a] series, the latest coefficient

is equal to 5 % based on 6 specimen tests. The scale length lI is equal to 0.1 m in the

case of Hoover and Bažant [2014a] series and 0.2 m in the case of Grégoire et al. [2013]

series (see section 3.2.1.2). Figures 3.13 and 3.14 show the tensile strength dispersion,

respectively, for Hoover and Bažant [2014a] series and Grégoire et al. [2013] series.

Figure 3.13 shows that the standard deviation of tensile strength for the Hoover and

Bažant [2014a] series does not decrease as the volume increases. This result may be
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Figure 3.13: Evolution of the tensile strength as function of log HSV for Hoover and
Bažant [2014a] series.

Figure 3.14: Evolution of the tensile strength as function of log HSV for Grégoire
et al. [2013] series.

ascribed to the relatively small thickness (40 cm) of the beams. However, the analytical

size effect approach does appear to reproduce the decrease of the standard deviation of

the tensile strength for both concrete series.

3.2.2.1 Influence of the choice of the reference volume

Sellier and Millard [2014] proposed the splitting test as a reference structure. Indeed,

splitting tensile strength fct,sp and uniaxial compressive strength fc have been widely

measured on laboratory tests. Arιoglu et al. [2006] proposed a relation between fct,sp

and fc (see Equation 3.20) that seems of rather large validity.

fct,sp = 0.387f0.63
c (3.20)
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This equation is obtained from hundreds tests on various compressive strengths (4-120

MPa), with respectively 5.6, 4.8 and 2.3 % errors for 20-40, 40-60 and 60-80 MPa,

for 0-30oC curing temperatures, Type I, III, cement/fly ash, cement/bottom ash and

cement/silica fumes concretes. The ratio water/cement (W/C) was between 0.25 and

0.55. Moreover, Figure 3.15 highlights the HSV, as well as the effective volume in the

Figure 3.15: Cylinder splitting test and its outlined HSV (Torrent [1977]).

case of the splitting test. Torrent [1977] gave an estimation of the HSV for this case

(Equation 3.21).

HSV = 0.0475D2L (3.21)

As mentioned in Chapter 2, a cylindrical specimen under splitting test is compressed

along two diametrically opposed generators so that a nearly uniform tensile stress is

induced in the loading plane. Usually, two thin strips having a width equal to bs are

placed between the loading platens and the specimen to distribute the load and avoid

local failure in compression. The splitting tensile strength obtained depends directly

on the ratio of the width of the load-bearing strips bs to the diameter of the cylinder

D (Rocco et al. [2001]). However, as shown in Equation 3.21, the HSV is estimated as

independent of bs/D and equal to 3.8 × 10−4 m3 for a cylindrical specimen having a

diameter D equal to 16 cm and a length L equal to 32 cm. Moreover, Sellier and Millard

[2014] estimated that the effective volume for a cylinder (D = 11 cm and L = 22 cm)

is in the order of 3 × 10−4 m3 and this value is quasi-independent of the choice of the

scale length lI .

An objective is to study the influence of ratio bs/D on the value of the effective volume of

a cylinder (with D=16 cm and L=32 cm) subjected to splitting test. A 2D cylinder was

modeled numerically using Cast3m (CEA [2015]). The concrete used has a compressive

strength fc equal to 30 MPa and a Young’s modulus equal to 40 GPa. Mazars isotropic
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damage model was used to model the concrete. As for the strips, they are considered

as wood and their behavior is elastic. Four different ratios of bs/D are studied: 1/6,

1/10, 1/15 and 1/20. For each ratio, the contouring of the major stress field at the time

Figure 3.16: Evolution of the effective volume VE as function of the ratio bs/D and
the illustration of the major stress field at the time of rupture for the studied cylinders

(D = 16 cm and bs/D = 1/20, 1/15, 1/10, 1/6).

of rupture is deduced, in order to estimate the effective volume for each case. Figure

3.16 presents the evolution of the effective volume of the split test as function of bs/D

and the illustration of the major stress field for each ratio. It is shown that the effective

volume slightly depends on the width of the strip and a reference volume in the order

of 3× 10−4 m3 can be generated for the case of splitting test having diameters equal to

11 and a length equal to 22 cm or a diameter of 16 cm and a length equal to 32 cm.

Figure 3.17: Estimation of the mean and dispersion of the tensile strength as function
of log HSV for Rossi et al. [1994] series corresponding to a concrete mix having fc = 35

MPa, in the case of a splitting test reference volume.
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Figure 3.18: Estimation of the mean and dispersion of the tensile strength as function
of log HSV for Rossi et al. [1994] series corresponding to a concrete mix having fc = 35

MPa, in the case of a splitting test reference volume.

Figure 3.19: Evolution of the tensile strength as function of log HSV for Hoover and
Bažant [2014a] series, in the case of a splitting test reference volume.

In order to validate this choice of reference volume, the analytical approach WL2A is

applied to Rossi et al. [1994] series and Hoover and Bažant [2014a] series by considering

a reference volume equal to 3× 10−4 m3 and a reference tensile strength equal to fct,sp.

In this case, the coefficient of variation of Y1 associated to ft/ref is considered equal to

a 10 % of variability on fc (Rossi et al. [1994]). Figures 3.17, 3.18 and 3.19 show the

evolution of the experimental tensile strength and the results obtained by the analytical

approach WL2A as function of the HSV for respectively Rossi et al. [1994] series with

fc = 35 MPa, Rossi et al. [1994] series with fc = 55 MPa and Hoover and Bažant [2014a]

series. For the Hoover and Bažant [2014a] series, Baz̃ant SEL is also applied. It seems

that the splitting test can be considered as a reference volume in the analytical approach

WL2A.
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Series under 4-point bending loading The bending span in beams subjected to

4-point bending, which corresponds to the length between the two forces, is subjected

to direct tension and has the same characteristics as an anchor having uniform loading.

Thus, the statistical size effect is predominant in this case of loading. The size effect

on the flexural resistance of concrete and RC beams should be studied by scaling the

cross section and/or the bending span. Hence, the scaling of bending span highlights

the statistical size effect in the beams. However, this loading case suffers from the lack

of experimental test series in the literature, specially for concrete series having different

volumes. Many authors such as Tanaka and Shimomura [2010], Zhang and Tan [2007]

and Adachi et al. [1995] studied the size effect on the shear strength of deep RC beams

subjected to 4-point bending. However, the analytical approach WL2A predicts the

tensile strength at first crack of concrete. Therefore, the analytical approach WL2A is

only applied to the two beams of Mazars [1984] and the beams of Koide et al. [2000].

Koide et al. [2000] highlighted a considerable decrease of the flexural resistance when

the bending span Lb increases. However, since these three beams have the same section

(100 × 100 mm2) and the same shear span Ls (200 mm), they reproduced a constant

tensile strength ft equal to 2.9 MPa. Due to the lack of the number of beams having

different volumes and subjected to 4-point bending, only the two beams of Mazars [1984]

and the smallest beam of Koide et al. [2000] (L = 600 mm) are chosen. Since the two

compositions of concrete are close and the compressive strength is the same for the two

compositions (fc=30 MPa), the chosen reference volume is a splitting test having fc

equal to 30 MPa. Thus, the Weibull modulus is computed using Rossi et al. [1994]

formula and it is equal to 6.5. Figure 3.20 shows the predicted dispersion of the tensile

strength for the three beams and their corresponding experimental mean value. It is

shown that the analytical approach WL2A is capable of reproducing the mean and the

standard deviation of the tensile strength for the case of 4-point bending.

3.3 Application to large structures

The analytical probabilistic approach is applied to the Mivelaz anchor (Mivelaz [1996]),

the Malpasset Dam and nuclear containments vessels. For simplification purposes, the

cross-section of the reinforced concrete structure is assumed to have been homogenized

(S = [1 + r(n− 1)]hb, where r, n, h and b are respectively the reinforcement ratio,
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Figure 3.20: Evolution of the tensile strength as function of log HSV for the two
beams of Mazars [1984] and the smallest beam of Koide et al. [2000] under 4-point

bending loading.

the ratio between Young’s modulus values for steel and concrete, and the cross-section

height and thickness).

3.3.1 Mivelaz anchor

The Mivelaz [1996] anchor is a structure 0.42×1×5 m3 in dimension with a reinforcement

ratio of 0.86% (see Figure 3.21); it shows a strength reduction of around 50% with

respect to the measured tensile strength by means of a splitting test (Sellier and Millard

[2014]). The anchor is subjected to uniform loading; the effective volume is defined using

Equation 3.4 by considering a homogeneous section and a uniform stress.

Figure 3.21: Mivelaz anchor (Mivelaz [1996]).

In order to apply the analytical size effect approach, the Weibull modulus has been

estimated at 8 according to Equation 3.11, as based on the compressive strength of the
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Table 3.9: Characteristics of Mivelaz anchor Mivelaz [1996]

h (m) b (m) L (m) fc (MPa) r (%) Eb (GPa) Es(GPa)

0.42 1 5 39.4 0.86 33.4 200

Table 3.10: Estimation of the tensile strength for the Mivelaz anchor

Exp WL2EF (m = 10) WL2A (m = 8)

µ(ft) (MPa) 1.48 1.48 1.46
Std(ft) (MPa) - - 0.1

anchor (Table 3.9). The chosen reference volume Vref corresponds to that studied by

Sellier and Millard [2014]: it is the loaded volume of a normalized specimen subjected to

the splitting test, i.e. estimated equal to 3×10−4 m3 (see Section 3.2.2.1). Equation 3.7

has been used. Since in this case the splitting test is the chosen reference volume, the

coefficient of variation of Y1 thus corresponds to a 10% coefficient of variation associated

with fc. Y2 corresponds to a random variable on m on the order of 30% (Danzer et al.

[2007]). lI is set equal to 0.2 m. Table 3.10 lists the tensile strength of the Mivelaz anchor

deduced from experimental tests and two numerical methods (WL2EF and WL2A). It

is shown that the analytical size effect method is capable of predicting tensile strength

in both mean and dispersion.

3.3.2 Malpasset dam

Various reasons explain the collapse of this dam, including failure of igneous and meta-

morphic rocks as the foundation, very poor properties identified through geotechnical

testing both in situ and in the lab, technical rules regarding lift not respected, and failure

to execute an independent state control (Gagg [2014], Duffaut [2013]). Two additional

causes for the Malpasset accident were the personalities involved in the design and con-

struction of the dam and the rock in the wedge which disappeared from the left bank

(Post and Bonazzi [1987]). Figure 3.22 represents an illustration of the Malpasset dam.

Moreover, at the time of construction, the size effect was not being studied for concrete.

Bažant et al. [2007] demonstrated that the mean tolerable abutment displacement of

the Malpasset Dam would today be about 50% of the value considered safe according

to the standard design method in use during the early 1950’s. It should be pointed out

that in his studies, Baz̃ant introduced 3 values for m, equal to 12, 24 and 48. In this



Chapter 3. Prediction of size effect using analytical approach 70

Figure 3.22: Malpasset dam Gagg [2014].

dam, the concrete displays a compressive strength and Young’s modulus of 32.5 MPa

and 31.3 GPa, respectively. To apply the analytical probabilistic approach WL2A, the

dam is considered as a large fixed arch capable of being simplified to the case of a beam,

of height equal 1 m, fixed at one end by a sliding hinge and at the other end by a fixed

hinge and subjected to pure bending (see Figure 3.23) (Bažant et al. [2007]).

Figure 3.23: Sketch of the simplified studied dam.

This hypothesis models the collapse of the arch due to a horizontal abutment displace-

ment. The stress field σI is therefore given by the following simplified equation:

σI(x) =
2y

b
σmax (3.22)

where σmax = (6Mmax) /b2, with Mmax equal to the maximum bending moment and b

is the thickness of the dam (b = 6.78 m, 0 < y < b
2).

Due to the large dam dimensions compared to the scale length, the integral of the

weighting function in the effective volume equation (Equation 3.4) can be simplified to:
√

2πlI (Ceos.fr [2009]). After these simplifications, the effective volume is deduced, for
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Table 3.11: Estimation of the tensile strength for the Malpasset dam

Bažant et al.
[2007] (m = 12)

Bažant et al.
[2007] (m = 24)

WL2A (m = 7)

µ(ft) (MPa) 1.9 2.65 1.96
Std(ft) (MPa) - - 0.7

1 m height, using Equation 3.23:

VE =

√
2πlIb

m+ 1
(3.23)

As for the parameters of Equation 3.7, the Weibull modulus is estimated as equal to

7 according to Equation 3.11. The reference volume and uncertainties in this case are

arbitrarily the same as in the case of the Mivelaz anchor. Table 3.11 summarizes the

tensile strength of the Malpasset dam, as deduced from Baz̃ant SEL and the analytical

approach. Table 3.11 shows that numerical predictions are in good agreement with

reference values for the tensile strength of the Malpasset dam, with less use of empirical

parameters.

3.3.3 Application to a containment

The applicability of the proposed methodology to a large-scale civil engineering struc-

ture is evaluated using a simplified model of a containment having the same dimensions

as the 1/3 mock-up of a double-wall containment building of a nuclear reactor (VeR-

coRs). This mock-up is realized by EDF (electricity of France), in order to improve the

understanding of aging phenomena in nuclear containments. It is constituted of rein-

forced and prestressed concrete. VeRcoRs is realized using two mock-ups, an internal

and an external one. The internal part is constituted of different parts, the main ones

being the raft, the gusset, the hatched area and the dome. It has a height of 22 m, an

internal radius of 7.3 m, an external diameter of 7.7 m and a thickness of 40 cm. The

casting of concrete was done by lifts. In total, the mock-up is constituted of 16 lifts of

height around 1.2 m each. For each lift, three cylindrical concrete specimens of length

22 cm and diameter 11 cm was casted and tested using the splitting test method. Thus,

in the following, the mechanical properties of concrete (fc, E and fct,sp) correspond to

the values obtained for each lift of VeRcoRs. Hence, the coefficient of variation of the
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Table 3.12: Characteristics of the concrete at three lifts of VeRcoRs.

fc (MPa) fct,sp (MPa) ft (MPa) Reduction co-
efficient (%)

Lift at the Gusset 38.5 4 2.24 38
Ordinary lift 48 4.78 3 30
Lift at the hatch 50 4.67 2.1 50

tensile strength ft can be evaluated for each lift of the containment. The analytical ap-

proach WL2A is applied to two lifts situated each at the gusset part and the hatch area

part and one ordinary lift (not presenting a severe heterogeneity as the hatched areas).

Since the nuclear containment is subjected to an internal pressure, it can be simplified,

as in the case of a dam, to a beam, having a height equal to 1 m, fixed at one end

by a sliding hinge and at another end by a fixed hinge and subjected to pure bending

(see Figure 3.23). However, since severe heterogeneities exist in VeRcoRs, the lift at

the hatched area should be considered as subjected to the most severe loading, which

is direct tension. Thus, in this case, the effective volume is reduced to the following

relation:

VE =
√

2πlIb (3.24)

where b is the thickness of the interior mock-up of VeRcoRs.

As a consequence, coefficient of reductions of the tensile strength are concluded for the

three chosen lifts. Table 3.12 resumes the compressive strength fc and the splitting

tensile strength fct,sp measured at the specimen scale, the tensile strength at the chosen

lift and the corresponding coefficient of reduction. It is concluded that a coefficient of

reduction varying between 30 and 50 % can be observed for large structures.

Finally, the aim of this study is to evaluate the coefficient for different volumes of

containments. The concrete characteristics of the ordinary lift of VeRcoRs is considered

and different thickness are taken into account (40, 60, 80 and 1.2 m). Figure 3.24 shows

that a full scaled nuclear containment can reach a coefficient of reduction of the tensile

strength ft of 43 % from the original measured fct,sp on splitting test. This reduction of

the tensile strength should be taken into account in the construction, in order to avoid

any rupture probability of the containments.
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Figure 3.24: Evolution of the coefficient of reduction of ft as function of the thickness
b of a containment.

3.4 Conclusions

This work has consisted of developing an analytical probabilistic method, based on the

WL2 size effect law (weakest link and localization, Sellier and Millard [2014]), to predict

the failure of various series of concrete specimens and structures. This method offers

the advantage of accounting for stress redistribution due to the attenuation of elastic

stresses, depending on the distance to the weak zone. The originality of this study lies

in the following proposals.

1. The identification of a scale length that is linked with the variability of concrete

tensile strength, through the use of various experimental results, collected on dif-

ferent concrete specimens under uniaxial tension and 3-point bending loading. An

interval for the scale length has been deduced ([0.1-0.3] m), thus confirming the

estimations by Sellier and Millard [2014] and Bažant et al. [2007].Therefore a mean

scale length equal to 20 cm and equivalent to a scale of fluctuation of 50 cm is

concluded.

2. The propagation of uncertainties, such as the reference tensile strength ft/ref and

Weibull modulus m. A sensitivity analysis has been conducted on m using four

methods, applied to experimental data, allowing for deduction of a confidence

interval on the order of 7-12. While this interval is consistent with the statistical

variability of about 20-30%, which serves to deduce a size effect law in dispersion,

it also tends to confirm the value of 12 used in various studies, instead of values

of 24 or 48 for the same type of concrete.
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3. The reference volume proposed in the analytical approach WL2A may be the small-

est volume in the series, if dimensions are not on the order of aggregate diameter.

For the case of larger structures however, the recommended reference volume of

Sellier and Millard [2014] from the cylindrical splitting test can be used.

4. The prevision of a reduction coefficient associated to the tensile strength of concrete

for large structures. The analytical probabilistic approach WL2A is applied to

large structures such as Mivelaz anchor, the Malpasset dam and containments.

This method proved to be capable of predicting the coefficient of reduction of the

tensile strength ft of the structure, using the cylindrical splitting test as a reference

volume. These results are in agreement with Ceos.fr [2009] project, which proved

the necessity of attributing a coefficient of reduction to the tensile strength of

concrete, when dealing with large structures.

In continuation, the next chapter studies the effect of accounting for the spatial vari-

ability of concrete in FE models using random fields and thus, the possible relations

between the identified scale length and the autocorrelation length of discretized random

fields generated on the input mechanical properties of concrete (ft, E) that could be

used in FE structural models.



Chapter 4

Accounting for size effect in FE

models of RC structures

Size effect is a relevant phenomenon influencing cracking in large massive Reinforced

Concrete (RC) structures. It is important, then, to consider this effect in Finite Ele-

ment (FE) models. Moreover, Chapter 3 enhanced the importance of accounting for the

variability of the tensile strength in order to reproduce the size effects phenomena and

mainly the statistic one. Thus, modeling spatial variability of tensile strength in FE

models can be a method to account for size effect on ft. Hence, this chapter aims to

propose a Stochastic Finite Element (SFE) method, based on the generation of realiza-

tions of discretized random fields. First, the appropriate autocorrelation characteristics

of the random field are chosen based on experimental results of concrete beam series un-

der 4-point bending loading (Koide et al. [2000]). Secondly, under these hypotheses, the

method is applied using SFE simulations to series of concrete beams under 4-point bend-

ing loading (Mazars [1984]) and 3-point bending loading (Hoover and Bažant [2014a])

and to an anchor under uniaxial tension (Clement [1987]). Eventually, the capability of

reproducing the size effect on the tensile strength using SFE method is discussed.

Moreover, since this thesis is a part of MACENA project aiming to study the behavior of

a massive RC structure, an application to the simplified model of a concrete containment

is done.

75
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4.1 Proposed method

One of the main objective of the thesis is to predict the beginning of cracking in RC

structures and to estimate, using FE models, the position of the first crack and the

spacing between the cracks. Moreover, a SFE method that accounts for the size effect

in large massive structures is developed. This method consists on modeling the spatial

variability of the tensile strength in concrete by defining it using discretized random field

in FE models. Therefore, the method is summarized by the following steps:

Figure 4.1: Sketch for the proposed SFE method.

• prepare a reference deterministic FE model;

• identify the theoretical random field that characterizes ft;

• generate realizations of discretized random fields on a 2D or 3D grid;

• project the discretized random field realizations on the FE mesh.

Figure 4.1 presents a sketch for the different steps needed to define the discretized

random field. Each step of the method is presented in the following sections.
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4.1.1 Reference deterministic FE model

The FE model is built at different scales using the FE code Cast3m (CEA [2015]). The

structures are modeled in 2D under plane stresses or in 3D. The concrete behavior is

modeled using Mazars isotropic damage model (Mazars [1986]), which despite its simplic-

ity is known for its efficiency to describe the concrete behavior and a non-local method

is used: the stress-based regularization method (Giry et al. [2011]). Deterministic FE

calculations, at different scales, are first done in order to best fit Mazars parameters

with the experimental results.

Mazars model has been widely used to represent an elastic isotropic damage behavior

(Mazars [1986]). This model is characterized by a single damage scalar D and presents

the advantage of distinguishing the tensile and compressive damages. Thus, the load

surface is controlled by a state variable U and an equivalent strain εeq =
√∑3

i=1 〈εi〉
2
+,

where 〈εi〉+ are the positive parts of the principal strains (ε1, ε2, ε3), as shown in the

following Equation:

f (εeq, U) = εeq − U (4.1)

The variable U is initially taken equal to the strain threshold εD0 (defined as ft/E in the

model). Then, during loading, it is equal to the maximum between the equivalent strain

and the damage threshold. The asymmetry of the mechanical response of the material

between tension and compression is taken into account using the damage variable D,

which represents a combination of traction damage Dt and compression damage Dc

(D = αcDc + αtDt). Since, structures failing due to tension are modeled, in this thesis,

the estimation of the traction damage is a main interest (Equation 4.2).

Dt = 1− εD0 (1−At)
U

− At
exp (Bt (U − εD0))

(4.2)

where εD0, At and Bt are parameters that should be identified using experimental results.

Furthermore, the Stress-Based Non-Local (SBNL) method is used. Giry et al. [2011]

developed this non-local regularization method, that consists on taking into account the

stress state in the medium by averaging a mechanical quantity in its neighborhood using

a weight function, defined in Equation 4.3.

φ (x− s) = exp

(
−
(

2||x− s||
lcρ (x, σprin(s))

)2
)

(4.3)
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where ρ (x, σprin(s)) is equal to the radial coordinate of the ellipsoid associated with the

stress state of the point located at s in the direction (x− s) and lc is an internal length

usually taken equal to 3 times the maximum aggregate (the size of FPZ).

In this manner, the SBNL approach allows describing the progressive decrease of nonlocal

interactions across the FPZ during failure. Thus, damage and strain, at failure, are well

localized. Results are then supposed to be mesh independent.

Once the deterministic FE model is built, the definition of the discretized random fields

can start.

4.1.2 Identification of the theoretical random field

First, the theoretical random field V (x) (x ∈ Ω, where Ω is an open set of Rd (d = 1, 2, 3)

describing the geometry), that is considered as the key point to build a SFE model,

should be defined (Baroth [2005]). The random field V (x) is completely described by

its mean µ, variance Std2 and covariance matrix (CV V (x, x′) = Std(x)Std(x′)ρv(x, x
′),

where ρv is an autocorrelation function). The description of the random field is detailed

in the section 2.3.2. The SFE method is characterized by defining the spatial variability

of the tensile strength ft of the concrete, thus a random field modeling ft. As a con-

sequence, for the first part of the method, the mean and the standard deviation of ft

should be determined. Moreover, an appropriate autocorrelation function and autocor-

relation length should be defined. The modeling of the tensile strength of concrete ft

requires the use of univariate multidimensional and stationary fields. This means that

the random field takes values in a countable subset (x1, x2... ∈ Rd, where d is higher

than 1). Moreover, it does not depend on time.

Usually, the value of the tensile strength fctm, used in the FE models, is taken equal to

90 % of the value of the splitting tensile strength measured on a cylindrical specimen

fct,sp (CEN [2005]). However, in Chapter 3, the decrease of the measured fctm when

dealing with large structures is highlighted and an analytical approach allowing to esti-

mate the reduction of this value is developed. Thus, the influence of attributing or not a

coefficient of reduction on the direct tensile strength measured on laboratory specimen,

in FE models, is studied in the following sections. The reduced tensile strength ft is

evaluated using the analytical probabilistic approach WL2, denoted WL2A.

As for the coefficient of variation of the tensile strength CV (ft), the experimentally

estimated value is directly used.
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In addition, for the definition of the theoretical random field V (x), the use of auto-

correlation functions is required to model the spatial variability of the tensile strength

ft. Various types of autocorrelation functions and different associated autocorrelation

lengths (a, b or c) exist in the literature (Carmeliet and de Borst [1995], De Larrard

et al. [2010], Colliat et al. [2007] and Giry [2011]). The main autocorrelation functions

are:

• Gaussian autocorrelation function (Type A): ρA(x) = exp
(
−
(
x
a

)2)
• Exponential autocorrelation function (Type B): ρB(x) = exp

(
−
(
x
b

))
• Sinusoidal autocorrelation function (Type C): ρC(x) =

sin(−(x
c ))

(−(x
c ))

Therefore, we aim to choose the autocorrelation function which fits best with the exper-

imental results.

In order to compare the different autocorrelation functions, an equivalence between their

lengths should be defined. The scale of fluctuation υ criteria (see Equation 2.32) can

be used. For example, Figure 4.2 allows to compare the shapes of the three types of

Figure 4.2: Autocorrelation functions (scale of fluctuation υ = 50 cm).

autocorrelation functions, with a constant scale of fluctuation (arbitrarily υ = 50 cm).

This figure shows that Type B autocorrelation function, used in most of SFE applica-

tions, suffers from its lack of smoothness and the need of more refined mesh (Sudret

[2007]). Thus, it is not used in the following work. Hence, in the following, Type A

and Type C autocorrelation functions are compared. Also, Gaussian and log-normal

distributions are discussed. Table 4.1 gives the values of the Gaussian and sinusoidal

autocorrelation lengths, respectively a and c, corresponding to a scale of fluctuation

equal to 50 cm. Indeed, this value of scale of fluctuation has been selected in Chapter
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3 to account for the spatial variability of the tensile strength. Comparisons with other

values of autocorrelation length are discussed in the following section.

Table 4.1: Estimation of the Gaussian and sinusoidal autocorrelation lengths equiv-
alent to a scale of fluctuation equal to 50 cm.

Function Scale of fluctuation (υ = 50 cm) Autocorrelation
length

Type A
√
π × a a = 28 cm

Type C π × c c = 16 cm

4.1.3 Discretized random field

Secondly, the theoretical random field representing the spatial randomness of the tensile

strength is spatially discretized on a 2D or 3D grid with nG nodes (Equation 4.4).

A discretization method consists of approximating the original random field V (x) by

an approximated finite set of random variables ṼG(x) gathered in a random vector

{VGk
, k = 1, . . . , nG}:

V (x)
Discretization→ ṼG(x) = {VGk

, k = 1, . . . , nG} (4.4)

Covariance function CV V (x, x′) is transformed to a covariance matrix Cij , using Cholesky

decomposition, which is applied to the covariance matrix. This covariance matrix, given

by the Equation 4.5, is an assembly of the values of the covariance function computed be-

tween two points i and j of the discretized random field, whose positions are respectively

xi and xj .

CV V (x, x′)
Discretization→ Cij = Std2.ρv (xi − xj) (4.5)

Briefly, Cholesky decomposition consists on expressing the vector ṼG(x) as a sum of the

expected mean value of the random field and a linear combination of standard Gaussian

random variables Y = {Yk, k = 1, . . . , nG}, having a unit variance and zero mean:

ṼG(x) = µ+BY (4.6)

where B is a square matrix such as Cij = BBT .

This methodology can be seen as a simplification of the Karhunen-Loève decomposi-

tion used in some applications as in De Larrard et al. [2010], Colliat et al. [2007] and
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Vořechovskỳ [2007]. This method is detailed in appendix B. Moreover, Cholesky decom-

position method is already implemented in Cast3m (CEA [2015]).

An advantage of the Cholesky decomposition is the capability of generating also log-

normal random fields. A way to generate log-normal random fields is done using two

steps: since in Equation 4.6, the random variables Yk are stochastically independent, first

the discretization of the random field can be done using the decomposition of Cholesky

and a Gaussian random vector of independent coefficients. Then, the Gaussian realiza-

tion is transformed into a log-normal one using the following relation: K̃G = exp
(
ṼG

)
.

It is well known that a disadvantage of the point discretization methods is their depen-

dency on the density of the studied grid, more precisely the dependency between the

autocorrelation length (a or c) and the grid density (Li and Der Kiureghian [1993]).

In order to avoid the error due to the choice of the density of the random field grid,

this latter is supposed equal at least to a/2 or c/2 depending on the chosen type of the

autocorrelation function, which means that a smaller autocorrelation length requires a

refined grid density.

4.1.4 Projection of the discretized realization on the FE mesh

The concept of projection method is highlighted, hereafter. The discretized random

field defined on a 2D or 3D grid is projected onto the different FE meshes, built for the

deterministic case (e. g. beams at different scales). Thus, the dependency between the

FE mesh and the autocorrelation length is eliminated. The number of nodes in the FE

mesh is denoted nFE . This projection procedure prevents the problem of defining bound-

ary conditions or considering boundary layer effects. In addition, the FE mesh density

nFE does not depend directly on the autocorrelation length, since this dependency is

considered on the grid in which the discretization is done.

ṼG(x) = {VGk
, k = 1, . . . , nG}

Projection→ ṼFE(x) =
{
VFEp , p = 1, . . . , nFE

}
(4.7)

As to better explain the concept of projection of discretized random field, an example is

done on a square FE model of dimensions 100× 100 cm2. The objective is to estimate

the error on the mean and standard deviation of the random field values between the

grid nodes and the FE mesh nodes. Therefore, the tensile strength is defined arbitrary

by a theoretical random field with a mean of 2.9 MPa, a standard deviation of 0.29 MPa,
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a Gaussian autocorrelation function (Type A) and an autocorrelation length equal to 28

cm. Then, the random field is discretized on a grid of dimensions 120× 120 cm2 and a

density equal to 10 cm (< 28/2 cm). Finally, the discretized random field is projected on

the FE mesh. Different densities are chosen for the FE mesh. The coefficient N presents

the ratio between the grid density dG and the FE mesh density dFE (N = dG
dFE

). µ(ṼG)

and Std(ṼG) represent respectively the mean and the standard deviation of the random

field discretized on the grid. µ(ṼFE) and Std(ṼFE) define respectively the mean and the

standard deviation of the projected discretized random field on the FE mesh. Thus, the

error on the mean and standard deviation of the random field between the grid and the

FE mesh are estimated using the following equations:

Err(µ) =
µ(ṼG)− µ(ṼFE)

µ(ṼG)
× 100 (4.8)

Err(Std) =
Std(ṼG)− Std(ṼFE)

Std(ṼG)
× 100 (4.9)

Figure 4.3: The discretized random field on a grid (left) and the evolutions of the
error on the mean and standard deviation for different values of N .

Figure 4.3 displays one realization of the discretized random field on the grid and its

projection on the different FE meshes. Also, the evolutions of the error on the mean and

on the standard deviation for different values of N are plotted. In this case, that the

projection method keeps the properties of the discretized random field from a coefficient

N equal to 0.7 (error on the mean and the standard deviation, respectively equal to 0

% and 4 %).
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4.2 Reference SFE model

The previously developed SFE method consists of generating realizations of discretized

random fields on a 2D or 3D grid, which will be projected, then, to the FE mesh of the

studied structure. First, the investigation of the role of spatial variability of the tensile

strength on the size effect is done on series of 4-point bending beams (Koide et al. [2000]),

having the same geometry, the same section (S = 100× 100 mm2), the same shear span

Ls = 200 mm and scaled along bending length (Lb = 200−400−600 mm) (see Appendix

A). The different parameters of the random field (covariance function and probability

distribution law) are characterized using these series of beams. These series are chosen,

since experimental CDFs of the rupture force, for each beam, are provided. Thus, the

objective is to compare the results obtained from SFE simulations and the experimental

obtained results.

4.2.1 Reference FE model

As mentioned before, Koide et al. [2000] series of beams are chosen for the characteri-

zation of the discretized random field. Deterministic FE models of the three beams are

considered as the reference FE models. These beams are modeled in 2D under the hy-

pothesis of plane stresses. For each beam, quadrilateral mesh of size 8 mm is used. The

same concrete having a compressive strength fc, at 28 days, of 30 MPa is used for the

three beams. The Mazars isotropic damage model Mazars [1986] is applied to concrete.

Mazars parameters AT and BT are inspired from Dufour et al. [2012], they are equal

to 0.9 and 20 × 103 respectively. However, the deterministic simulations are not able

to reproduce the experimental decline of the rupture force as the length of the beam

increases even after trying to fit AT and BT (see Figure 4.4). This error can be linked

to the randomness of the concrete parameters (statistical size effect). Moreover, using

deterministic computation, two symmetrical cracks are formed, unlike the experimental

results where only one crack appears first (see Figure 4.5). Thus, the tensile strength is

chosen to be modeled as a random field, in the following section.
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Figure 4.4: Evolution of the rupture force obtained by experimental results (Koide
et al. [2000]) and deterministic simulations.

Figure 4.5: Equivalent strain evolution obtained for each beam.

4.2.2 Influence of the autocorrelation parameters

By applying the WL2A approach, the mean of the tensile strength µ (ft) is found constant

for the three beams and equal to 2.9 MPa, which corresponds to 90% of the splitting

tensile strength calculated using Equation 3.20. Therefore, the tensile strength of these

series of beams are not affected by a coefficient of reduction. Furthermore, a coefficient

of variation of 14 % is experimentally observed by Koide et al. [2000]. Thus, the same

random field is considered for the three beams (µ(ft) =2.9 MPa and CV (ft) =14 %). Al-

though tensile strength is not affected by the size effect phenomenon, this concrete series
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is chosen since it provides experimental CDFs of the rupture force for each beam (based

on around 50 tests for each beam). Therefore, comparison with experimental results can

be done to better characterize this random field. The influence of the autocorrelation

length, the autocorrelation function and the probability law are, then, studied.

4.2.2.1 Influence of the autocorrelation length

First, the choice of the autocorrelation length is studied. In this study, Gaussian dis-

cretized random fields are generated on the tensile strength with type A autocorrelation

function. Four possible autocorrelation lengths a are studied. The first chosen autocor-

relation length corresponds to the scale of fluctuation of 50 cm, which is equivalent to

the 20 cm scale length deduced in the WL2A approach. This autocorrelation length a is

equal to 28 cm (see Table 4.1). Also, two autocorrelation lengths a equal to 1 and 8 cm

are chosen. The 1 cm autocorrelation length is used by Giry [2011] for the definition of

random fields in cylindrical tensile specimens. As for the 8 cm autocorrelation length, it

is adopted by Vořechovskỳ [2007] for the definition of random fields in dog-bone speci-

mens under uniaxial tension. Finally, Sellier and Millard [2014] deduced a 40 cm length

that models the variability of concrete. Thus, the possibility of using this length as an

autocorrelation length in random field generation is studied. It is worth noting that the

grid density changes from one autocorrelation to another and it is equal to a/2. Figure

Figure 4.6: Examples of random field realizations on ft obtained using four different
autocorrelation lengths a and corresponding to the third beam.

4.6 presents four realizations of discretized random fields, on the FE model, with differ-

ent autocorrelation lengths a, corresponding to the third beam. As seen in this figure,

the FE mesh density is kept constant and equal to 8 mm. 30 random fields realizations

of the tensile strength are generated for each autocorrelation length to ensure the con-

vergence of the statistics (mean, standard deviation and coefficient of variation). Figure
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Figure 4.7: Evolution of the experimental CDFs (Koide et al. [2000]) and the numer-
ical ones obtained using various autocorrelation lengths (a = 1, 8, 28 and 40 cm) for the

three beams.

4.7 presents the CDFs corresponding to the numerical and experimental results for the

three beams. It shows that, for small structures, the choice of the autocorrelation length

is insignificant and more precisely, the use of discretized random field is unnecessary. By

studying the influence of the autocorrelation length on the output of interest (rupture

force) in the two larger beams, it is shown first that the 1 cm and 8 cm autocorrelation

lengths tend to decrease the mean of the rupture force with increasing structural vol-

ume. This result seems to show that the used discretized random field does not aim to

reproduce the heterogeneities of concrete in terms of aggregates. Also, the 28 cm and
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40 cm autocorrelation lengths seems to give numerical results closer to the experimental

ones, which can be related to the physical meaning of the random field, aiming to model

the variability of the tensile strength. Therefore, in order to be in agreement with the

result obtained in Chapter 3, the autocorrelation length a = 28 cm can be generated for

the three volumes. Hence, the weighting function used in the analytical approach WL2A

and autocorrelation function of the random field used in SFE method account both for

the spatial variability of ft. WL2A method leads to an average size effect, whereas the

random field generation is related to crack position.

4.2.2.2 Influence of the autocorrelation function

The influence of the autocorrelation function is also studied. Only types A and C are

considered. Comparisons are done on the third beam. Thus, 30 realizations of discretized

autocorrelated random fields are generated using type C autocorrelation function. The

previous section shows that a = 28 cm and equivalent to a scale of fluctuation of 50

cm (see Table 4.1) seems to be accurate to model the spatial variability of the tensile

strength. Thus, for this scale of fluctuation, an equivalent parameter c equal to 16 cm is

estimated for the type C autocorrelation function. Figures 4.8 and 4.9 show two realiza-

tions of discretized random fields, using respectively Type A and Type C autocorrelation

functions and their corresponding fracture position. Unlike the deterministic case, using

SFE method, the first crack happens at a weak point in the sense of the variability of the

mechanical properties of concrete, thus only one crack appears at the peak load. Figure

4.10 illustrates the evolution of the experimental and numerical CDFs corresponding to

both types A and C. From this figure, a negligible effect on the rupture force is observed.

Thus, to better understand the influence of the autocorrelation functions, the errors

Figure 4.8: Two realizations of random field on ft on the third beam, using type A
autocorrelation function and their corresponding fracture positions.
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Figure 4.9: Two realizations of random field on ft on the third beam, using type C
autocorrelation function and their corresponding fracture positions.

Figure 4.10: Evolution of the experimental and numerical CDFs obtained for type A
and C autocorrelation functions for the largest beam (with υ = 50 cm).

between the mean and the standard deviation of the tensile strength estimated on the

grid and the FE mesh are evaluated. Therefore, errors on the mean and the standard

deviation are estimated, respectively, using Equations 4.8 and 4.9.

Thus, for the type A autocorrelation function, the errors on both mean and standard

deviation are respectively in the order of 0.5 % and 3 %. As for the type C autocorre-

lation function, the error on the mean remains low with a value of 0.5 %, but the error

on the standard deviation increases to around 10 %.

Another criteria to compare the two autocorrelation functions is the number of realiza-

tions which provides the numerical convergence of the SFE simulations, i.e. the number

of realizations that provides satisfying relative errors on the mean and the standard de-

viation of the output of interest (rupture force). Figure 4.11 shows the evolutions of the

relative error on the mean and the standard deviation of the rupture force as functions

of the number of realizations for both types of autocorrelation functions. For type A,

the relative error on the mean and the standard deviation of the rupture force slightly
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Figure 4.11: Evolution of the relative error on the mean and the standard deviation
of the rupture force as function of the number of realization for type A autocorrelation

function (left) and type C autocorrelation function (right).

decrease from around 15 realizations, which seem to be enough to ensure the numerical

convergence of the SFE simulations. However, for type C, more than 25 realizations

are necessary to reproduce the convergence on the statistics of the rupture force. It has

been checked that using other series of 30 simulations th same relative error evolutions

are obtained.

Therefore, the type A autocorrelation function is conserved due to the negligible errors

found on the mean and the standard deviation of the projected discretized random field

on the FE mesh and the lower number of realizations required to ensure the numerical

convergence.

4.2.2.3 Influence of the probability law

One can consider also the log-normal field K̃G (K̃G = exp
(
ṼG

)
). Equations 4.10 and

4.11 provide respectively the mean and the standard deviation of the Gaussian dis-

tributions as function of the mean and the coefficient of variation of the log-normal

distributions (De Larrard et al. [2010]). In these equations, µ(ṼG) and Std(ṼG) are the

expected mean value and the standard deviation of the Gaussian field. µ(K̃G), Std(K̃G)

and CV (K̃G) are the mean, the standard deviation and the coefficient of variation for

the log-normal field.

µ(ṼG) = ln

 µ(K̃G)√
1 + CV (K̃G)2

 (4.10)

Std(ṼG)2 = ln
(

1 + CV 2
K̃G

)
(4.11)



Chapter 4. Accounting for size effect in FE models 90

In addition, a relation between the autocorrelation length of the Gaussian distribution

aṼG and the autocorrelation length of the log-normal distribution aK̃G
is defined in

Equation 4.12 (De Larrard et al. [2010]).

aṼG = −

(
ln

(
1

Std(ṼG)2

(
ln

(
Std(K̃G)2

µ(K̃G)2
exp

(
− 1

a2
K̃G

)
+ 1

))))− 1
2

(4.12)

By applying this equation, the difference between the autocorrelation lengths of the

Gaussian distribution and the log-normal distribution is insignificant. Thus, a = 28

cm is taken for both Gaussian and log-normal distribution. Therefore, the log-normal

Figure 4.12: Evolution of the experimental and numerical CDFs obtained for Gaus-
sian and log-normal distributions on the third beam.

field is applied to the third beam with an autocorrelation function of type A and an

autocorrelation length a equal to 28 cm. Also, 30 realizations of random fields on

ft are used for the mechanical FE calculation. Figure 4.12 shows the evolution of the

experimental and numerical calculations corresponding to both Gaussian and log-normal

distributions. It is highlighted that the choice of the probability law seems to show a

negligible effect on the rupture force. For the sake of simplicity, the Gaussian law is

arbitrarily chosen in the following.

4.2.3 Statistical size effect

The idea of this study is, mainly, to test if the modelisation of the spatial variability

of the tensile strength in FE models is a mean to characterize the size effect. After
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choosing to characterize the discretized random field using a Gaussian law with the type

A autocorrelation function and a scale of fluctuation of 50 cm, a mean and a standard

deviation of the rupture strength can be deduced from the 30 SFE realizations conducted

on each beam. Figure 4.13 shows that the SFE simulations are able to reproduce the

experimental values of the rupture force on the contrary of the deterministic simulations.

SFE simulations can, also, provide CDFs of the rupture strength for the three beams.

Figure 4.13: Size effect in the three 4-point bending beams from experimental results,
deterministic and SFE simulations. The vertical bars correspond to the mean ± the
standard deviation of the rupture force, obtained from the random field simulations.

Moreover, the analytical approach WL2A is a mean to plot CDFs of the rupture strength,

using Equation 3.3. In order to apply this equation, a scale length lI equal to 20 cm and

a parameter m equal to 8.5 (using Equation 3.12) are chosen. The analytical CDFs of

the rupture strength for the three beams are plotted and compared with the obtained

one from the SFE simulations (see Figure 4.14). The SFE simulations show a slight

size effect on the rupture strength as the analytical approach WL2A do not show any

size effect on the tensile strength. It is worth noting that only a slight size effect on

the rupture force is experimentally observed on this beam series, which may be related

to the constant shear span considered for the three beams. Nevertheless, both methods

are able to reproduce the experimental CDFs for this beam series. Also, SFE method

shows to be a solution to model size effect in FE models.
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Figure 4.14: CDFs of the 3 beams obtained from the SFE simulations and the ana-
lytical approach of WL2 (WL2A).

4.3 Application to series of concrete structures

After the study of the influence of the autocorrelation function and the probability law of

the random field on the output parameters, Gaussian autocorrelated random fields with

a scale of fluctuation of 50 cm seem to accurately model the spatial variability of the

tensile strength of concrete. Thus, SFE method using discretized random fields needs

to be validated for different types of structures under different loading cases. Moreover,

in order to validate the capability of SFE method using discretized random fields to

reproduce the size effect, it is applied to series of beams having the same geometry and

different volumes. Briefly, the method is applied to Mazars [1984] series of beams under

4-point bending loading and Hoover and Bažant [2014a] series of beams under 3-point

bending loading.

4.3.1 Application to series of beams under 4-point bending

Due to the lack of the investigation on the size effect of concrete beams under 4-point

bending loading, only two beams, with different sizes, were found in Mazars [1984]. The

first beam has a section equal to 100× 100 mm2, a length equal to 300 mm and a shear

span equal to 100 mm. As for the second beam, it has a section equal to 150 × 220

mm2, a length equal to 1400 mm and a shear span equal to 400 mm. Both beams are

casted using the same concrete having a compressive strength fc (at 28 days) equal to
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30 MPa and a maximum aggregate size equal to 10 mm. Thus, a third numerical beam,

having the same concrete characteristics as the beams of Mazars [1984], a section equal

to 250 × 250 mm2, a length equal to 1800 mm and a shear span equal to 500 mm, is

numerically modeled.

4.3.1.1 Reference FE model

The beams are modeled in 2D using quadrilateral meshes of size 1 mm. Mazars isotropic

damage model (Mazars [1986]) is used to describe the concrete behavior. First, determin-

istic FE computations are done to estimate the best experimental fit for the parameters

At and Bt, found equal respectively to 0.8 and 20000. Moreover, in order to ensure the

localization, stress based non-local method is used with a characteristic length equal to

3 cm.

For the deterministic case, the tensile strength value should be defined. One method

consists on using directly the value deduced from the splitting test conducted on a cylin-

der specimen with a compressive strength equal to 30 MPa. Thus, the tensile strength,

in this case denoted fctm, is equal to 2.9 MPa (90 % of the value of the splitting tensile

strength calculated using Equation 3.20). Another method consists on considering for

each beam a reduced value of the tensile strength ft, evaluated using the analytical

approach WL2A. The value of the tensile strength for the two beams of Mazars [1984]

are estimated, using the analytical probabilistic approach WL2A, equal to 2.79 MPa

for the small beam and 1.92 MPa for the second beam (see Chapter 3). The cylinder

splitting test is considered as the reference volume (Vref = 3 × 10−4 m3). Hence, the

mean tensile strength corresponding to the third numerical beam is also estimated using

the analytical probabilistic approach WL2A, by considering the same reference volume

chosen for Mazars beams. The deduced tensile strength for the numerical beam is, then,

equal to 1.66 MPa.

Thus, for each beam, two deterministic FE simulations are done; deterministic FE simu-

lations with fctm deduced from splitting test (2.9 MPa) and deterministic FE simulations

with ft evaluated using the WL2A approach. Figure 4.15 presents the values of the ten-

sile strengths obtained from these deterministic simulations. This figure highlights that

by using a reduced tensile strength, deterministic FE simulation reproduce the decrease
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Figure 4.15: Evolution of the tensile strength of the three beams resulting from the
experiments and the numerical simulations: deterministic simulation with ft reduced

and deterministic simulation with fctm deduced from splitting test.

of the tensile strength when the volume increases, on the contrary of the case of deter-

ministic FE simulations with fctm.

In the following, the SFE method is used in order to obtain different crack positions.

4.3.1.2 Application of SFE method

The SFE method using discretized random fields, is applied to the three beams. Thus,

the tensile strength is modeled using a discretized random field. Moreover, the aim

of this study is to investigate the importance of attributing a coefficient of reduction

to the mean of the tensile strength of concrete. Hence, as in the case of deterministic

simulations, two choices can be taken for the mean tensile strength of the random field:

• Case 1: the mean values of the random fields are not the same for the three

beams and they are equal to the mean tensile strength calculated using the WL2A

approach for each beam.

• Case 2: the mean values of the random fields are equal to the direct tensile strength

fctm deduced from the splitting test.

Moreover, in order to estimate the standard deviation for each beam, the experimental

coefficient of variation of the tensile strength must be known. As this information is
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not found in Mazars [1984], a coefficient of variation of the tensile strength equal to 10

% is arbitrarily considered for the three beams. Thus, for the case 1, the mean and

the standard deviation of the tensile strength, used to define the random field for each

beam, are resumed in Table 4.2. As for the second case, it is applied only to the second

Table 4.2: The values of the mean and the standard deviation of the tensile strength
used in the definition of the random fields corresponding to case 1 for the two beams

of Mazars [1984] and the numerical beam (beam 3).

µ(ft) (MPa) Std(ft) (MPa) CV (ft) (%)

Beam 1 (L = 300 mm) 2.79 0.3 10
Beam 2 (L = 1400 mm) 1.92 0.2 10
Beam 3 (L = 1800 mm) 1.66 0.17 10

beam of Mazars [1984] and the numerical beam. Both beams are affected by the same

random field on the tensile strength, having a mean equal to 2.9 MPa and a standard

deviation equal to 0.3 MPa.

Gaussian autocorrelated random field with a scale of fluctuation equal to 50 cm are

considered for both cases. For each SFE simulation, 30 realizations of Gaussian random

fields are conducted. Figure 4.16 presents two realizations of random field on the tensile

strength, corresponding to the case 1, for the bigger beam of Mazars [1984] and their

corresponding crack position. In the case of 4-point bending loading, the statistical size

effect is preponderant, due to the homogeneous stress state between the two applied

force. Thus, the crack position is different from one realization to another, depending

on the position of the weakest point.

Figure 4.16: Two examples of random fields on the tensile strength corresponding to
the second beam of Mazars [1984] and their fracture position.

Figure 4.17 shows the dispersion of the tensile strength for the three beams under 4-point

bending loading. The case where the mean tensile strength is affected by a coefficient of

reduction corresponds to the legend ”ft reduced” and the case where the mean tensile
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strength is equal to the direct tensile strength estimated on a splitting test corresponds

to the legend ”fctm splitting test”. From Figure 4.17, it seems obvious that the mean

Figure 4.17: The dispersion of the tensile strength for the three beams under 4-point
bending loading for the case where ft is reduced and the case where fctm is used.

tensile strength used in the definition of the random field should be calculated using

the WL2A approach, in order to better estimate the size effect. Thus, the random field

generations alone are not capable on reproducing the decrease of the structural tensile

strength.

Thus, after showing that the case 1 should be taken into account, Figure 4.18 resumes

the confidence interval obtained from both WL2A approach and SFE simulations. It is

shown that both methods are capable of reproducing the decrease of the mean and the

standard deviation of the tensile strength as the volume increases. Moreover, the rupture

Figure 4.18: Computation of the size effect for the two beams of Mazars [1984] and
the numerical beam, using WL2A approach and SFE simulations.
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probability CDFs are plotted using both WL2A approach and the SFE simulations.

Therefore, Equation 3.3 is used to plot the CDFs of the rupture probability of the three

beams under 4-point bending loading. The reference volume used is the splitting test

corresponding to a compressive strength equal to 30 MPa. As for the Weibull modulus,

the Weibull definition method is used, since few informations are found on the concrete

characteristics Mazars [1984] beams. Thus, a Weibull modulus equal to 12 corresponds

to a coefficient of variation of the tensile strength of 10 % (Table 3.2). Figure 4.19

shows the CDFs obtained for the three beams under 4-point bending loading, from SFE

simulations and WL2A.

Figure 4.19: CDFs of the 3 beams under 4-point bending loading obtained from the
SFE simulations and the analytical approach of WL2 (WL2A).

From this figure, we can deduce that both methods reproduce almost the same rupture

probability distributions, using a scale of fluctuation equal to 50 cm. Hence, the link

between the size effect phenomenon and the spatial variability of the tensile strength

seems to be highlighted.

4.3.2 Application on series of beams under 3-point bending loading

SFE simulations are done on 3-point bending beams corresponding to Hoover and Bažant

[2014a] series. These beams are all geometrically similar with a constant thickness of 40

mm and a length-to-depth ratio of 2.4, and their depths are 40, 93, 215 and 500 mm,

corresponding to a size range of 1:12.5 (see Appendix A). This experimental series showed

a strong size effect on the mean and the standard deviation of the tensile strength. In

this case, statistical and mainly energetic size effect are involved. The aim of this study
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is to test the relevance of modeling the material randomness by means of random field to

reproduce the size effect on ft for this type of loading. As in Chapter 3, the first beam is

not considered due to its very small dimensions 96× 40 mm2 compared to the diameter

of the maximum aggregate (dmax = 10 mm). In the previous section, it is shown that

the tensile strength of concrete, for each beam, must be affected by a coefficient of

reduction. Thus, the reduced tensile strength is calculated using WL2A approach, for

each beam of the series. By considering the second beam as the reference volume, the

mean of the tensile strength of each beam, computed in Chapter 3, is summarized in

Table 4.3 (the used Weibull modulus is equal to 9). As for the coefficient of variation

of the tensile strength, an experimental coefficient of variation of 13 % is observed.

At first, deterministic FE calculations are done for the three beams. These beams are

Table 4.3: The values of the mean, the standard deviation and the coefficient of
variation of the tensile strength used in the definition of the random fields for the three

beams of Hoover series Hoover and Bažant [2014a].

µ(ft) (MPa) Std(ft) (MPa) CV(ft) (%)

Beam 2 7.2 0.93 13
Beam 3 6.3 0.8 13
Beam 4 5.7 0.74 13

also modeled in 2D, using quadrilateral meshes of size 4 mm. The concrete is modeled

using Mazars isotropic damage model (Mazars [1986]). For each beam, different strain

thresholds εD0 are used depending on the value of the corrected tensile strength using

WL2A approach. The FE calculations are done using stress based non-local method

(Giry et al. [2011]) with a characteristic length equal to 3 cm which is relative to three

times the maximum aggregate. The deduced tensile strength from the deterministic

simulation and the experimental interval of the tensile strength for the three studied

beams are given in Figure 4.20. On the contrary of the case of 4-point bending loading,

it is shown, that only by using, for each beam, the value of the tensile strength deduced

from WL2A approach as an input parameter in the FE model, deterministic models

are capable of reproducing the experimental results. However, in order to predict the

dispersion of the tensile strength, the use of a probabilistic approach (analytical or

numerical with SFE simulations) is required. Therefore, random field realizations, for

each beam, are generated by considering the first and the second statistical moment as

respectively the mean µ(ft) and the standard deviation Std(ft) of the tensile strength,

given in Table 4.3. Gaussian discretized random fields with an autocorrelation function
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Figure 4.20: Experimental and deterministic evolution of the tensile strength for the
four beams.

of type A and a scale of fluctuation υ = 50 cm are used. Also, 30 realizations of random

fields are generated for each beam. Figures 4.21 and 4.22 show two different realizations

of the random field with their corresponding fracture positions, respectively for the third

and fourth beam. Unlike the case of 4-point bending, 3-point bending load induces a

stress concentration able to force the position of the first crack. Thus, all the random

field realizations induce a crack at the center of the beam.

Figure 4.21: Two realizations of random field on the tensile strength for the third
beam with the corresponding equivalent strain.

Consequently, the capability of SFE simulations on reproducing the size effect, in the

case of 3-point bending, is studied. As Hoover and Bažant [2014b] developed a Univer-

sal Size Effect (USE) law, their method is applied to this experimental series. Figure

4.23 presents different methods to compute for the size effect in these series of 3-point
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Figure 4.22: Two realizations of random field on the tensile strength for the fourth
beam with the corresponding equivalent strain.

bending load (USE law (Hoover and Bažant [2014b]), WL2A approach and SFE simu-

lations). On the one hand, Baz̃ant USE law is able to estimate the mean of the tensile

strength, but the standard deviation of the tensile strength is not evaluated. However,

the evaluation of the tensile strength using the USE law is complicated and depends

on many numerical parameters that can be obtained by fitting. On the other hand,

both WL2A approach and SFE simulations are able to reproduce the dispersion of the

tensile strength. In addition, the CDF of the tensile strength are obtained using WL2A

Figure 4.23: Computation of the size effect for the three beams of Hoover and
Bažant [2014a] using probabilistic simulations, the USEL of Baz̃ant (Hoover and Bažant

[2014b]) and the analytical approach of WL2 (WL2A).

approach (Equation 3.3) and the SFE simulations. In the case of WL2A approach, the

reference structure, on which the reference volume and reference tensile strength are
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evaluated, is the second beam. The scale length lI is taken equal to 0.3 m and m=9

(see chapter 3). Figure 4.24 shows the CDFs of the third and fourth beams estimated

using WL2A and the SFE simulations. It is shown that the CDFs of rupture strength

obtained from both methods are not similar. It is worth noting that the SFE simulations

using discretized random fields seem to be unnecessary for the case of 3-point bending

where the stress concentration is preponderant on the spatial randomness of the concrete

properties. Thus, for this case of loading, deterministic FE models using ft estimated

by the analytical approach WL2A are enough to account for the size effect phenomenon.

Figure 4.24: CDFs of the 3 beams obtained from the SFE simulations and the WL2A
approach with the horizontal bars corresponding to the experimental values of the

tensile strength (Hoover and Bažant [2014a]).

4.4 Application to RC structures

After the application of SFE method on series of concrete structures, the aim in view is

also to apply this method to large complex structures. First, the method is applied to

Clement [1987] anchor, since it provides confidence interval of the position of the first

crack. Moreover, the SFE method is applied to a simplified model of a containment.

4.4.1 Application to Clément’s anchor

An anchor subjected to direct tension is influenced mostly by the randomness of the

material properties, since the applied stress is homogeneous. Therefore, the usefulness

of the SFE simulations can be validated for this type of loading. Clement [1987] tie is



Chapter 4. Accounting for size effect in FE models 102

chosen to be numerically modeled, since it provides informations on the position of the

first crack.

Before testing the 0.1× 0.1× 0.68 m3 RC tie (composition given in Appendix A), three

tests on 16 × 32 cm2 cylindrical concrete specimens provided the nominal strength in

tension and compression (characteristics given in Appendix A). The steel reinforcement

is described by only one steel bar of diameter 10 mm. The tests on the tie under direct

tensile load are performed by imposing monotonically an increasing displacement at

each part of the steel bar. For each test, a single crack appears. The position of this

single crack, measured from the edge of the tie, is between 21 and 31.5 cm for the three

experimental tests (Figure 4.25.a). Furthermore, the distance between two cracks can

be computed using the formula of EC2 (CEN [2005]):

Sr0 =
φ

4
r
fctm
fbd

(4.13)

where φ is the diameter of the bar (0.01 m), r is the reinforcement ratio (7.85× 10−3),

Figure 4.25: Fracture positions: a) Experimental model (Clement [1987]), fracture
between 21 et 31.5 cm from the edge of the tie, b) EC2 model, Fracture at 28 cm from

the edge (90 % confidence interval varying from 23 to 36 cm).

fctm is the mean value of the tensile strength of the concrete (2.8 MPa) and fbd is the

adhesion stress of the concrete-steel (3.2 MPa).

A distance of 27.8 cm is obtained between the edge of the tie and the crack. A prob-

abilistic analysis of the Equation 4.13 is conducted considering the parameters φ, fctm

and fbd as log-normal random variables, in order to obtain an interval for the crack

position. A mean of 27.8 cm from the edge of the anchor and a 90 % confidence interval

varying from 23 to 36 cm are deduced.

For the numerical modelisation, Clément’s tie test (Clement [1987]) was modeled in a

3D representation using the FE code Castem (CEA [2015]). It is modeled over its entire

length and over a quarter of its section with 3D tetrahedral linear elements. A displace-

ment is imposed on each side of the steel, to be as close as possible to the actual boundary

conditions imposed by the experiment. The FE model is composed using four sections:

the concrete, modeled with the Mazars damage model (Mazars [1986]), the steel bar,
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modeled with an elasto-plastic model, a concrete layer with a thickness of 1 cm, which

models the steel/concrete interface and two elastic bands, modeled on both sides, which

allow a regular load repartition. Figure 4.26 compares the force-displacement evolutions

for the experimental tests and the deterministic FE local model. Three distinct zones

Figure 4.26: Force-displacement evolution for the experimental tests and the FE
calculation.

can be identified: an elastic zone reaching a displacement of 0.25 mm, where the tensile

stresses are distributed in the concrete and steel; a plastic zone, where only the steel

supports loading and a sudden drop in the applied force, corresponding to the appear-

ance of a macro crack. The first macro crack occurs in the reference model for a similar

loading for the three experimental tests but corresponds to a lower steel elongation. One

should note the difficulty of getting a displacement measure for such a test, as elonga-

tion of the steel can go on after the crack occurrence. FE elongation corresponds to the

damage. Figure 4.27 allows the visualization of the damage field at the appearance of

Figure 4.27: Fracture position in deterministic FE calculation.

the first crack. From the distribution of the damage, the exact positions of two theo-

retical macro-cracks can be estimated: a first crack extends between 0.22 and 0.29 m
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from the left edge of the tie, the same for the second crack located on the right side of

the tie (see Figure 4.27). The specific loading of the tie creates a plane of symmetry at

the center. The distance between the two theoretical cracks, thus, corresponds to the

average spacing deduced by the EC2 and the experimental tests.

As the stress supported by the concrete is gradually transmitted to the steel through the

interface, the transfer length depends directly on the mechanical characteristics of this

interface. The space between two cracks is then conditioned by the quality of the inter-

face. Therefore, the first crack will happen at a weak point in the sense of the variability

of the mechanical properties of concrete (Young’s modulus or tensile strength). Thus,

it becomes useful to model the tensile strength ft, using a discretized random field.

Gaussian random fields using Gaussian autocorrelation function with a scale of fluctu-

ation equal to 50 cm are used. First, to determine the mean of the tensile strength,

used to define the random field, the WL2A approach is applied to the tie. The splitting

tensile strength fct,sp equal to 2.8 MPa is considered as the reference tensile strength

and a corresponding reference volume equal to 3 × 10−4 m3 is used. Since an experi-

mental coefficient of variation on ft equal to 9 % was observed, the Weibull modulus m

is computed using Weibull definition (Table 3.2) and it is equal to 13. Thus, the mean

tensile strength is evaluated equal to 2.2 MPa, using the WL2A approach. Moreover,

the standard deviation of ft, used in the definition of the random field, is equal to 0.2

MPa (based on CV (ft)=9 %).

After defining the mean and the standard deviation of ft, the SFE simulations are ap-

plied to Clément’s anchor. Thus, 30 random fields of the tensile strength are generated.

Figure 4.28 presents relative errors for the means and standard deviations of the rupture

force as function of the number of random field realizations. An average of 21 kN (corre-

sponding to ft equal to 2.1 MPa) and a standard deviation of 2.5 kN are obtained on the

rupture force which corresponds to the experimental results that has a mean value equal

to 22 kN. So for a coefficient of variation of 9 % for the tensile strength, a coefficient

of variation of 11 % for the rupture force is obtained. In addition, 15 realizations are

sufficient to obtain a relative error on the mean of 0.3 % and a relative error on the

standard deviation of 9 % (see Figure 4.28).

Figure 4.29 shows two realizations of random field on the tensile strength and their cor-

responding crack position. A single crack, corresponding to the weak point, is obtained,

in the case of SFE simulations. Furthermore, a study of the crack position is possible.
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Figure 4.28: Evolution of the relative error for the mean and the standard deviation
of the maximum rupture force as function of the number of realizations.

Figure 4.29: Two realizations of random field on the tensile strength and their cor-
responding crack position.

From 30 realizations of random fields, the mean value of the position of the crack from

the edge of the tie is equal to 21 cm. The minimum and maximum values of the position

of the crack from the edge of the tie correspond, respectively, to 19 and 31 cm. Thus,

a valid interval for the crack position is reproduced, using SFE simulations, due the

necessity of such a model to better predict the crack pattern in RC structures.

4.4.2 Application to a containment vessel

One major objective is to apply the developed SFE method using discretized random

fields to the case of large concrete structures. More specifically, this method is applied

to the case of a concrete containment vessel, in order to evaluate the capability of such
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method to give information on damage and thus cracks position for such structure. This

study is based on VeRCoRs mock-up. To simplify our study, we choose to focus on the

concrete mechanical property. Thus, the chosen containment has the same dimensions

and concrete characteristics as VeRCoRs, since information on its concrete mechanical

properties are provided. As a consequence, this exercise gives quantitative estimation of

the size effect on the tensile strength.

4.4.2.1 Reference FE model

A brief description on the dimensions of the mock-up is done in Chapter 3. The height

of the containment is 20 m. However, the pouring of concrete in massive structures is

not continuous; it is casted on 15 lifts having a height equal to 1.2 m each. Table 4.4

resumes, at each lift, the external temperature, the mean and standard deviation of the

Young’s modulus and the mean and standard deviation of the tensile strength. The

concrete characteristics are deduced from splitting tests on three 11× 22 cm2 cylinders,

casted for each lift. Table 4.4 shows a variation in concrete properties from one lift to

Table 4.4: Characteristics of the concrete at each lift.

T oC µ(E) GPa Std(E) GPa µ(ft) MPa Std(ft) MPa

Lift 14 0.4 35 1.85 4.7 0.25
Lift 13 8.3 31.3 3.25 3.7 0.1
Lift 12 8.8 37.1 2.67 3.7 0.17
Lift 11 8.5 37.2 1.36 4.9 0.21
Lift 10 3.6 37.2 0.97 5 0.21
Lift 9 10.9 37.2 1.13 4 0.23
Lift 8 10.1 36.2 0.63 4.2 0.1
Lift 7 9 35.8 0.98 4.8 0.2
Lift 6 14.1 38.9 1.42 4.3 0.15
Lift 5 16.7 37 2.06 3.9 0.42
Lift 4 14.4 36.9 2.58 4.3 0.35
Lift 3 20.6 40.3 0.57 4.3 0.43
Lift 2 29.6 45.5 0.9 4.5 0.15
Lift 1 20.6 34.3 0.53 4.1 0.15
Raft 30.9 36.8 1.7 3.6 0.21

another. Therefore, a main objective is to study the effect of accounting for concrete

variabilities on the appearance of fracture, at early age.

The method, then, consists on defining, at each lift, the tensile strength as autocorrelated

Gaussian random field. These random fields are supposed independent from one lift to
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another. Thus, a simplified cylinder is modeled using Cast3m CEA [2015], with a height

of 20 m, an internal radius of 7.3 m and a thickness of 40 cm. Note that only concrete

is modeled, prestressed cables and reinforcement are not considered.

First, a deterministic model is conducted. This model consists on defining at each lift

the tensile strength to the mean values given in Table 4.4. As for the Young’s modulus,

in order to reduce the environmental effect, it is considered equal, at each lift, to the

deduced Young’s modulus at 20oC using the formula of the CM2010 (Code [2012]):

Eci =
Eci(T )

1.06− 0.003T
(4.14)

where Eci is the Young’s modulus at 20 oC and Eci(T ) is the Young’s modulus at tem-

perature T , at lift i.

It is worth noting that the aim of this qualitative study is to show the effect of applying

the SFE method on large structures, since it allows to model the spatial variability of

the weakest spot of the concrete.

Mazars isotropic damage model is used to describe the behavior of concrete (Mazars

[1986]). Table 4.5 resumes the parameters of Mazars used in the FE model. The strain

Table 4.5: Parameters of Mazars isotropic damage model.

ν AT BT AC BC

0.2 0.9 104 1.1 1300

threshold εD0 = ft
E is not defined in the table, since it is not a constant and it takes dif-

ferent values from one lift to another, depending on the values of ft and E. The cylinder

is considered subjected to internal pressure of 4.9 bar. Also, the raft is considered fixed

and its stiffness is increased to neutralize the damage in this area.

Figure 4.30 shows the values of the strain threshold at each lift and the damage occur-

rence after a deterministic calculus. It is shown that the damage occurs in three lifts

corresponding to lifts 5, 9 and 13. These three lifts have a low strain threshold equal to

1× 10−4.
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Figure 4.30: The evolution of the strain threshold (right) and the damage occurrence.

4.4.2.2 Application of SFE method

Since the deterministic FE model is not capable of predicting the crack position and gives

an estimation only of the position of the weakest lift, SFE method using discretized ran-

dom fields may be a solution. Therefore, at each lift, the tensile strength is defined as

autocorrelated Gaussian discretized random field with an autocorrelation length equal to

40 cm (having a volume higher than 1 m3). The used autocorrelation length is increased

to 40 cm, instead of 28 cm, because in section 4.2.2.1, it seems that an autocorrelation

length equal to 40 cm can be considered valid for large structures. The mean of the

tensile strength, is estimated, for each lift, using the analytical approach WL2A, where

the reference tensile strength is equal to the values given in Table 4.4 from cylindrical

specimen (see Section 3.3.3)

As at each lift the tensile strength of concrete is modeled using discretized random

fields, the strain threshold value (εD0 = ft
E ) defined in Mazars isotropic damage model

is also modeled using random field generations. Thus, Figure 4.31 shows an example

of a random field realization on εD0 at the sixth lift of the containment. This example

corresponds to the random field grid. For this calculation, only 10 realizations of ran-

dom fields are conducted. The objective is to estimate the number of damaged zones,

the mean, the maximum and the minimum angle between two ”cracks” (e.g. locally

damaged zones). Figure 4.32 shows two realizations of random fields on the grid and

their projection on the FE mesh and their corresponding damage fields. On the contrary
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Figure 4.31: Realization of random field on εD0 at the sixth lift of the concrete
containment vessel.

of the deterministic case, SFE simulations are able to reproduce an estimation of the

position of the crack. Table 4.6 presents the numerical number of damaged zones, mean,

minimum and maximum angle between two cracks. Therefore, SFE simulations allow

Figure 4.32: Two realizations of random fields on the grid, their projection on the
FE mesh and their corresponding damage field.

Table 4.6: Numerical values of the number of damage zone, the mean, the maximum
and the minimum angle between two cracks.

Number of damaged
zones

µ(Sr) max(Sr) min(Sr)

SFE simulations 14 21o 79o 6o
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a preliminary estimation of the number of damaged zones and the position of cracks.

4.4.2.3 Sensitivity analysis

De Larrard et al. [2010] used discretized random fields to define the spatial variability

of the Young’s modulus of concrete in a simplified FE model of a nuclear containment.

In their simulations, De Larrard et al. [2010] adopted autocorrelation lengths varying

from 10 to 60 m and Karhunen-Loève discretization method. Therefore, two sensitivity

analysis that seem important are: the effect of the autocorrelation length and the effect

of considering the Young’s modulus modeled as a random field instead of the tensile

strength.

Influence of the autocorrelation length In the previous section, an autocorre-

lation length of 40 cm was associated to Gaussian autocorrelation function defined to

model the variability of the tensile strength. To study the influence of the autocorre-

lation length, three different values of a are investigated: 60, 80 and 150 cm. For each

case, 30 realizations of discretized random fields are associated to the variation of the

tensile strength ft. Figure 4.33 presents three different random field realizations corre-

sponding to the three autocorrelation lengths. As in the previous section the number

Figure 4.33: Examples of random fields realizations for different autocorrelation
lengths a.

of damaged zones, the mean, minimum and maximum distance between two cracks are

summarized in Table 4.7. It is shown that the lowest the autocorrelation length is, the
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higher is the number of damage zones, since the weakest zones are more concentrated

when the autocorrelation length decreases.

Table 4.7: Experimental and numerical values, corresponding to the three different
autocorrelation length, of the number of damage zone, the mean, the maximum and

the minimum angle between two cracks.

Number of damaged
zones

µ(Sr) max(Sr) min(Sr)

a = 60 cm 16 18o 84o 6o

a = 80 cm 14 21o 90o 6o

a = 160 cm 11 25o 112o 6o

Young’s modulus modeling as random field Table 4.4 shows a variability on

the Young’s modulus, at each lift. Its mean values are varying from 31 to 46 GPa and

its standard deviations are varying between 0.5 to 3 GPa, giving a coefficient of varia-

tion of around 5 % on each lift. Thus, the variability on E is investigated by defining

discretized random field on this mechanical property. Hence, as in the case of random

fields on ft, independent autocorrelated random fields are defined on E at each lift. The

standard deviation of E is defined, for each lift, in Table 4.4. As for its mean value, it is

calculated using Equation 4.14. Gaussian autocorrelation function with a scale of fluc-

tuation equal to 58 cm (corresponding to a = 40 cm) are used to define the discretized

random fields. Figure 4.34 presents an example of two different random field realizations

on the Young’s modulus and their corresponding damage fields. Table 4.8 shows that

Table 4.8: Numerical values, corresponding to random fields defined on E, of the
number of damage zone, the mean, the maximum and the minimum angle between two

cracks.

Number of damaged
zones

µ(Sr) max(Sr) min(Sr)

SFE simulations 16 18o 84o 6o

modeling the variability on E is also a possible solution for running SFE simulations.

However, the Young’s modulus is a value influenced by external temperature and en-

vironmental conditions. Thus, its estimation is complicated, since the measured values

must be decorrelated from external conditions.

Briefly, this study is done on a concrete containment vessel without considering the
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Figure 4.34: Examples of random fields realizations on E with their corresponding
damage fields.

prestressed cables and the reinforcement. Its objective is only to demonstrate the pos-

sibility of obtaining the spatial distribution of the concrete heterogeneities and its effect

on reproducing the damage field in the structure and its crack position. Therefore, the

SFE method demonstrate to be an effective method in modeling the spatial variability

of the tensile strength of concrete and thus different crack positions are obtained.

4.5 Conclusions

The use of discretized random fields to model the spatial variability of the tensile strength

of concrete in FE models is explored. For this, discretized autocorrelated random field

using Cholesky decomposition are generated. This methodology allows the estimation

of the size effect on the tensile strength. However, the definition of the random field

depends on various parameters. Experimental results from test series of concrete beams

under 3-point bending loading and 4-point bending loading are used to validate the

methodology. Mazars isotropic damage model is used to model the concrete behavior
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and the non-local stress based method is adopted to limit the spreading of non-local

damage.

First, the discretized random field used to model the variability of the tensile strength

in concrete is characterized. Its parameters are chosen based on experimental CDFs

of the rupture force for the three beams of Koide et al. [2000] under 4-point bending

loading. The influence of parameters such as the law, the autocorrelation function and

the autocorrelation length are studied. Hence, the influence of the autocorrelation length

is investigated on the three beams. It is shown that a decimeter autocorrelation length

is required. A scale of fluctuation of 50 cm is chosen. In addition, the choice of the

autocorrelation function is studied. The Gaussian autocorrelation function proves to be

more convenient than the exponential and the sinusoidal autocorrelation functions. Also,

two laws of random fields distribution are compared (the Gaussian and the log-normal)

and negligible differences between the two distributions are highlighted. Thus, Gaussian

random fields with Gaussian autocorrelation function and a scale of fluctuation of 50

cm are chosen. Therefore, the link between the size effect and the definition of concrete

tensile strength variability is validated.

Secondly, SFE method using discretized random fields are applied on two campaigns

of experimental test series subjected to two types of loading (Mazars [1984] series and

Hoover and Bažant [2014a] series). First, it is shown on Mazars [1984] series that the

mean of the tensile strength used in the theoretical random field must be reduced by

applying WL2A approach. Thus, different random fields are built for each structural

size. SFE simulations seem to be necessary to reproduce the experimental results in the

case of 4-point bending loading. However, as in the case of 3-point bending loading the

applied force induces a strong stress concentration, deterministic FE simulations with

reduced tensile strength seem to be sufficient to reproduce the experimental values of

the tensile strength. Moreover, the SFE method seems able to account for size effect.

The applicability of discretized random field to characterize the variability of the tensile

strength on RC structures such as Clement [1987] anchor is also studied. The SFE

model of Clement [1987] anchor highlights the importance of applying SFE simulations

to estimate the position of the first crack. The use of proper model that accounts for

steel-concrete bond behavior is required to study the post-peak behavior. Finally, SFE

method using discretized random field is applied to a large concrete containment vessel

using the concrete properties of VeRCoRs. This containment has no reinforcement

or prestressing. The aim of this last study is to demonstrate the necessity of using
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random fields in order to model the variability of concrete. Thus, the effect of accounting

for concrete variabilities on the appearance of crack position is highlighted by defining

independent autocorrelated random fields on each lift of the containment. Finally, SFE

simulations were able to estimate the number of locally damaged zones, the mean, the

maximum and the minimum angle that separate two cracks. The sensitivity of the scale

of fluctuation has also been studied.



Chapter 5

Conclusions and perspectives

5.1 Conclusions and results

This thesis deals with the problematic of using the concrete characteristics measured

at the specimen scale with lab tests to estimate the concrete mechanical parameters to

be used in models representative of structural scale. Particularly, the tensile strength

of concrete shows direct dependency with the structural size, more precisely with the

considered volume under tensile stresses (this idea is detailed in Chapter 2). Therefore,

first, an analytical simplified version of WL2 (Sellier and Millard [2014]), denoted WL2A,

is developed. This approach aims to estimate with an analytical method the decrease

of the tensile strength when the loaded concrete volume increases. Then, the variability

on the tensile strength is propagated using a Stochastic Finite Element (SFE) method

based on discretized random fields.

In Chapter 3, the WL2A approach, allowing a fast estimation of the distribution of

concrete tensile strength at first crack is proposed. Thus, using this method, the de-

crease of the mean and standard deviation of the tensile strength as the volume increases

is evaluated. This approach is applied to structures failing in mode I mechanism. It

introduces a weighting function to the Weibull integral and thus accounts for the stress

redistributions due to the attenuation of the elastic stresses around the weakest point.

Therefore, one originality of this analytical method lies on the estimation of a scale

length in the weighting function, based on various experimental databases. This scale

length is related to the spatial variability of ft in a homogeneous concrete, it does not

115



Chapter 5. Conclusions and perspectives 116

correspond, then, to the granulate heterogeneities. As this simplified method aims to

identify the dispersion on the tensile strength, the uncertainty on the Weibull modulus

and the experimental uncertainty on the reference tensile strength are taken into ac-

count. Each parameter of the method is identified through experimental concrete series

under different types of loading. Two possible choices have been considered for the ref-

erence structure; the smallest specimen from the tested concrete series or the 16 × 32

cm2 splitting cylindrical specimen. Another focal point of this method is the estima-

tion of the Weibull modulus using four different methods found in the literature. The

concluded interval of validity of the Weibull modulus (between 7 to 12) made some es-

timations proposed in the literature questionable (24-48). This modulus is concluded to

be a material parameter and depends on the concrete mechanical properties, that is why

it is considered as variable. Its mean value is estimated using an appropriate method,

depending on the concrete mix or the experimental results. As for the scale length, it

is determined using an inverse analysis done on series under uniaxial loading and series

under 3-point bending loading. Thus, a mean value equal to 20 cm, equivalent to a scale

of fluctuation equal to 50 cm, and a standard deviation equal to 10 cm are deduced.

This variation of the scale length can be assessed to the geometry of the structure, its

stress state or to the lack of experimental statistics ...

The method is applied to the concrete of large RC structures, such as Mivelaz [1996]

anchor, Malpasset dam (Bažant et al. [2007]) and a containment. A coefficient of re-

duction of the tensile strength varying from 20 % to 50 % is concluded for the case of

containments (by considering a simplified concrete containment).

After showing that accounting for variability of the concrete tensile strength is a mean to

model the size effect, a SFE method allowing to define the spatial variability of concrete

tensile strength using discretized random field is developed in Chapter 4. This method

is able to account for size effect in FE models of concrete or RC structures and gives an

estimation of the crack pattern.

First, the reference (deterministic) FE model is built, using Mazars mechanical dam-

age model and the stress based non local approach. Secondly, the theoretical random

field on the tensile strength is defined. Then, Cholesky method is used to discretise

the random field on a 2D or 3D grid, whose mesh refinement depends on the chosen

autocorrelation length. Finally, the discretized random field is projected onto the FE
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mesh. The characteristics of the random field (probability law, autocorrelation func-

tion and autocorrelation length) are determined using Koide et al. [2000] experimental

concrete series under 4-point bending loading. Gaussian autocorrelated random fields

with a scale of fluctuation of 50 cm provided results in agreement with the experimen-

tal results. The originality of this method lies in the justification of the autocorrelated

parameters, which are found to be different from an author to another (see Chapter

2). Furthermore, it is shown that the mean tensile strength, used in the definition of

the random field must be calculated using the WL2A approach. As for the standard

deviation of the tensile strength, it is supposed equal to the experimental coefficient of

variation of the tensile strength. In conclusion, the deduced discretized random field is

consistent with the weighting function defined for the analytical approach, since both

functions requires the use of the same scale of fluctuation.

Moreover, the capability of both methods to reproduce the size effect is discussed for

the concrete test series, studied in this chapter. They, both, seem to be capable on

reproducing the size effect. The analytical approach WL2A gives a fast estimation of

the size effect on ft. As for the SFE method, it uses the WL2A approach to calculate

the reduced tensile strength used as a mean value in the random field generation. It

allows to both estimate for the size effect on ft in FE models and obtain an estimation

for the crack position. However, the necessity of using a SFE method for the case of

3-point bending loading is questionable, since the stress concentration induced in this

type of loading is important. Thus, for this loading case, deterministic FE models with

the reduced tensile strength evaluated using the analytical approach can be used to re-

produce the experimental results.

Finally, the behavior of a concrete containment vessel (no reinforcement or prestressing)

having the same concrete properties as the 1/3 mock-up VeRCoRs is studied using the

SFE method, in order to show the capability of random fields in modeling the variability

of concrete. For each lift of the structure, an independent autocorrelated random field

is defined on the tensile strength of concrete. Using this method, the weakest lift can

be identified, as well as an estimation of the number of damaged zones, the minimum,

the maximum and the mean angle between two cracks.

In conclusion, a method accounting for concrete size effect resulting from the spatial

variability of ft is introduced in the mechanical FE modeling of large massive struc-

tures. Therefore, a better characterization of the crack pattern in RC structures is
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obtained.

5.2 Improvements of the proposed methods

On the one hand, the WL2A approach presents a limited study domain (only uniaxial

loading). Thus, a generalization of this method is discussed hereafter. On the other

hand, the possibility of coupling between the SFE method using discretized random fields

and other effects influencing the crack pattern in large massive structures is highlighted.

5.2.1 Generalization of the WL2A method

The WL2A method is limited to the size effect on ft, for the case of structures failing

in mode I. Hence, this variability is taken into account using a scale length lI defined in

the direction of the first principal stress σI . In the case of more complex failure modes,

a multiaxial stress state should be perhaps introduced using scale lengths defined in the

directions of the three principal stresses (σI ,σII ,σIII). Thus, the weighting function can

be rewritten, in the following form:

ψ1 = ψ (lI , x)ψ (lII , y)ψ (lIII , z) = exp

(
−1

2

(
x2

l2I
+
y2

l2II
+

z2

l2III

))
(5.1)

Also, in this analytical method, heterogeneities linked only to the concrete mix prop-

erties are considered. However, other heterogeneities exist in the structures, related to

stress concentration, geometry discontinuities, the presence of steel and/or pre-stressed

steel (reinforcement ratio r), the loading rate ε̇ that can influence the value of the

Weibull modulus, the boundary conditions ... Thus, an idea is to introduce regular-

ization functions able to model each heterogeneity (ψ1 (∆σ) modeling the stress state,

ψ2 (∆ε̇) modeling the influence of the loading rate, ψ3 (r) modeling the effect of r ...).

VE =

∫
V

〈
σI + σII + σIII

σmax

〉m
ψ1 (∆σ)ψ2 (∆ε̇)ψ3 (r) dV (5.2)

5.2.2 On the definition of discretized random fields

The modeling of the tensile strength using a discretized random field showed to be a

tool to represent its consequence on crack pattern in concrete. However, a limit of the
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Figure 5.1: Mean, maximum and minimum theoretical and experimental (Gomez-
Cardenas et al. [2015]) variograms corresponding to ultrasonic pulse velocity measure-

ments done on a nuclear containment wall, using non-destructive techniques.

SFE method is the absence of experimental measures on the local in field mechanical

properties of concrete, done on a defined surface of a massive structure. These exper-

imental measures could be directly used for the estimation of an appropriate random

field. For example, EVADEOS project presents an optimal methodology to estimate

concrete mechanical properties, using non-destructive techniques, in the field of a real

structure. Using this method, an experimental variogram of the measured quantities

with non-destructive techniques is provided. The idea is then to reproduce the ex-

perimental variogram using random fields, that can be used later in the SFE models.

Gomez-Cardenas et al. [2015] gives the variogram distribution of ultrasonic pulse ve-

locity measurements, done on a nuclear containment wall. From this variogram, the

autocorrelation function and its corresponding length can be deduced, using the corre-

lation length criteria (see Chapter 2). Then, a fit between experimental and numerical

variograms is possible after generating 30 random fields with the deduced type of auto-

correlation function and autocorrelation length. However, the remaining question is the

link between the measured values, such as ultrasonic pulse velocity and the mechanical

properties of concrete (E and ft).

Figure 5.1 shows the maximum, minimum and mean theoretical and experimental vari-

ograms. It is shown that the experimental variograms can be reproduced. Thus, more

realistic random field generations are evaluated.
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5.3 Perspectives

For massive structures, more precisely for nuclear containment vessels, crack pattern and

crack widths are important factors to estimate the leakage rate. Using SFE simulations,

a prediction of the crack width should be possible. Bouhjiti et al. [2017] demonstrates

that taking a coefficient of variation of 10 % on ft leads to 18 cracks occurrence, which is

more or less in agreement with our study that predicted 16 potential damaged zones. In

addition, he showed that a 60 % increase on the value of the crack width can be obtained

with probabilistic simulations. Furthermore, the recent study carried by Bouhjiti et al.

[2017] considers a Thermo-Hydro-Mechanical (THM) coupling at early age. In their

method, Bouhjiti et al. [2017] use a regularization method, based on the principles of

WL2, to estimate the reduced tensile strength that should be used in the FE calculus.

Therefore, the mechanical study developed for the initial state of the structure can be

generated for large massive structures including a coupling with the thermal and hydra-

tion behavior of concrete.

In addition, various proposals could allow improvements to the methodology developed

in this thesis:

• Both tensile strength and Young’s modulus are variable concrete mechanical prop-

erties. Indeed, spatial variability on Young’s modulus, rather than the tensile

strength is considered by other authors (e. g. Breysse [1991] and De Larrard

et al. [2010]). Therefore, the effect of accounting for the variability of the Young’s

modulus seems to be necessary, since it is an important parameter for the def-

inition of the elastic behavior of concrete. Bouhjiti et al. [2017] have chosen to

model the variability on the Young’s modulus rather than the tensile strength in

their study on a nuclear containment behavior. Moreover, modeling the variabil-

ity on the Young’s modulus or the tensile strength in Mazars isotropic damage

model, should induce various influence on the output response, depending of ran-

dom fields characteristics and their correlation. Thus, Bouhjiti et al. [2017] studies

the possible correlation between these two parameters.

• Lamon and Evans [1983] present a size effect approach applied to ceramics under

multiaxial loading. In their approach, the effective volume is influenced by both

the stress state and the direction of the applied stress. A parameter accounting
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for the direction of the applied stress is, then, introduced in the effective volume

formula (Equation 3.4). Thus, this method can be generalized to concrete like

materials. Hence, different characteristic lengths defined in the direction of the

applied stress (σI , σII , σIII) can be involved in size effect methods and these char-

acteristic lengths can influence the crack propagation in the structure. Therefore,

the characterization and the modeling of the interactions between the different

characteristic lengths involved in crack propagation mechanisms could be studied

in a new PhD research (F. Vilette, 3SR, 2017-2020). The experimental campaign

in this PhD thesis will be carried on papers, which present fibrous aggregates that

are created during its manufacture.

• The case of structures, where high stress concentrations exist such as in splitting

tests and notched beams, are not presented in this thesis. The study of such type

of structures requires special care for the chosen characteristic length, used in the

weighting function (Equation 3.2). Hence, the weighting function, in this case of

loading, is linked directly to the Fracture Process Zone (FPZ). This centimeter

value can be obtained when fitting the WL2A approach with series of notched

beams or splitting tests.

• For the case of RC structures, the reinforcement ratio is taken into account, using

the formula of a homogenized section. However, the presence of steel can increase

the scale length value. Thus, it is important to study series of RC beams, such

as Tanaka and Shimomura [2010]. In this case, different rupture modes can be

obtained and the analysis is not limited only to mode I rupture.

• The definition of the WL2A approach as function of strain state, such as Mazars

[1984] approach, rather than stress state is possible.

• The application of the SFE method to splitting tensile tests is being processed.

However, for this case of test, the 50 cm scale of fluctuation is not valid any-

more, since the aggregate distribution is more pertinent. Hence, a smaller scale of

fluctuation is required.

• When applying SFE method to RC structures, an appropriate steel-concrete bond

model is required. The coupling between these two models should give a better

estimation of the crack pattern. Hence, the estimation of crack position is not

limited only to the first crack.



Appendix A

Synthesis of experimental

concrete or RC series or

structures

In this Appendix, the different test series studied and mentioned, in this thesis, are pre-

sented and described. These test series are divided into different categories, depending

on their type of loading (direct tensile loading, 3-point bending or 4-point bending).

A.1 Series of concrete specimens under uniaxial tension

A.1.1 Rossi et al. [1994] series

The aim of the conducted experimental series by Rossi et al. [1994] is to investigate the

size effect in direct tensile tests. Thus three sizes of cylinders, with a slenderness ratio

equal to 2 and diameters equal to 30, 60, 150 mm were cored from large rectangular

blocks of concrete. To investigate the effect of material properties on the scale effect,

three concrete compositions were tested. The composition of the three types of con-

crete are summarized in Table A.1. Consequently, Table A.2 resumes the number N of

specimens for each geometry, the mean µ and the standard deviation Std of the tensile

strength ft and the Young’s modulus E for the three different concrete compositions.

122
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Table A.1: Compositions of the three types of concrete with dmax = 20 mm (Rossi
et al. [1994]).

Compositions Concrete 1 Concrete 2 Concrete 3

Crushed silico-calcareous
gravel, 5/20 mm

1114 1236

Calcareous gravel 4/20 mm - - 1265
Silico-calcareous sand 0/4 mm 774 - 652
Silico-calcareous sand 0/5 mm - 667 -
Cement 300 (CPJ 45) 350 (CPA HP) 421 (CPA

HTS)
Water 185 158 112
Silica-fume - - 42.1
Superplasticizer - 7 7.6

Table A.2: Results for concrete 1, 2 and 3 (Rossi et al. [1994]).

Concrete 1 Concrete 2 Concrete 3

D (mm) 30 60 150 30 60 150 30 60 150
N 15 15 16 18 8 9 12 17 7
µ(ft) (MPa) 4.8 3.2 2.4 5.1 4.3 3.1 6.4 6.0 6.0
Std(ft) (MPa) 1 0.6 0.2 1 0.7 0.2 0.9 0.7 0.2
µ(E) (GPa) 35.6 39.0 39.8 42.4 44.2 45.3 52.3 51.8 53.9
Std(E) (GPa) 3.4 1.8 0.8 3.1 1.8 1.5 2.7 1.6 1.1

A.1.2 Van Vliet and Van Mier [2000] series

The experimental results of the ”dog bone” specimens of Van Vliet and Van Mier [2000]

showed that the tensile strength depends not simply on the specimen dimensions but

also on the curing conditions. In order to investigate the size effect on strength and

fracture energy of concrete and sandstone, Van Vliet and Van Mier [2000] performed

many uniaxial tension experiments on specimens having six different dimensions in a

scale range of 1:32, having all the same dog bone shape (see Figure A.1). The behavior

incorporated by the dog bone shape is similar to the behavior of a notched specimen.

However, the dog bone shape presents many advantages, by applying circular bays, the

cross section in the middle is reduces, thus the stress concentrations are smaller and easy

to reproduce for many specimen sizes. Also, in the case of dog bone specimens, the area

where failure may occur is larger compared to notched specimens. Failure is therefore

more likely to occur at the weakest spot in the material. The choice of concrete mixture

depends on the size of the smallest specimen chosen that is related to the maximum

aggregate size. The concrete chosen has an average cube compressive strength fc of 50
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Figure A.1: Specimens geometry (Van Vliet and Van Mier [2000]).

MPa and a maximum aggregate diameter dmax of 8 mm. Concrete compositions are

given in Table A.3. The strength and the stiffness of small concrete specimens can vary

Table A.3: Compositions of concrete (Van Vliet and Van Mier [2000]).

Compositions Unit content
(kg/m3)

Aggregate size 8/4 mm 540
Aggregate size 4/0 mm 363
Aggregate size 2/1 mm 272
Aggregate size 1/0.5 mm 272
Aggregate size 0.5/0.25 mm 234
Aggregate size 0.25/ 0.125 mm 127
Portland cement, type B 375
W/C 0.5

strongly with the presence or absence of large aggregates in the smallest cross section.

Besides of the effect of the largest aggregate in the smallest cross section, the small

specimen presents a distinct wall effect, so the results of the specimen A are not reliable.

The size effect on the strength ft for the dry series is presented in the Table A.4. A

Table A.4: Mean valuesand standard deviation for the tensile strength of the concrete
tests of the dry series (Van Vliet and Van Mier [2000]).

Type A B C D E F

N 10 4 7 5 4 4
µ(ft) (MPa) 2.54 2.97 2.75 2.3 2.07 1.86
Std(ft) (MPa) 0.41 0.19 0.21 0.09 0.12 0.16

wet test was performed to five specimens of type A, B, C and D. Only four strength

results are obtained due to glue failure. In addition to the lower strength obtained,

also the size effect on strength varied from wet to dry series. The concrete cured under
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water has a lower strength than the concrete cured in air. Table A.5 gives the concrete

strength for the different type of dog-bone. In conclusion, this series showed that drying

Table A.5: Mean values and standard deviation for the tensile strength of the concrete
tests of the dry series (Van Vliet and Van Mier [2000]).

Type A B C D

N 5 5 5 4
µ(ft) (MPa) 2.17 2.23 2.48 2.37
Std(ft) (MPa) 0.25 0.13 0.16 0.06

is an important phenomenon that should be well understood to avoid problems during

concrete casting. Temperature and humidity rate influences the curing process of the

concrete, which may induces map cracking. In the figure A.2, the size effect is reflected

for the two dry and wet series.

Figure A.2: Individual value (left) and mean value (right) of ft vs D for dry and wet
series (Van Vliet and Van Mier [2000]).

A.1.3 Clement [1987] anchor

The first studied anchor is done by Clement [1987]. The structure studied is a cuboid

anchor of the following dimension 0, 1 × 0, 1 × 0, 68 m3 (see Figure A.3). The steel

reinforcement is described by only one steel bar of diameter 10 mm. The tests performed

on this anchor reproduce the realistic behavior of an anchor under uniaxial tension at

each part of the steel bar by imposing monotonically increasing displacement. The steel

and concrete deformations are first measured, then the displacements at the border of

the steel bar are measured. Finally, the tensile strength is deduced. The composition of

the concrete used is given in the Table A.6, in which the aggregate size is lower than 10

mm.
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Figure A.3: A sketch of Clement’s anchor (Clement [1987]).

Table A.6: Compositions of the concrete (Clement [1987]).

Components Density mass
(kg.m−3)

%

Sand 0.1 625 26.5
Sand 1.4 155 6.5
Gravel 4.1 1019 43.3
Cement (CPJ 45) 365 15.5
Water 194 8.2

Before testing the RC anchors, 3 tests on 16 × 32 cm2 cylindrical concrete specimens

provide the nominal strength in traction and compression of the concrete (see Table

A.7). Finally, after the test conducted on the anchor, a mean rupture force equal to 22

kN is found.

Table A.7: Concrete Characteristics (Clement [1987]).

fc (MPa) fct,sp (MPa)

Test 1 29.15 2.76
Test 2 28 3.02
Test 3 33.42 2.58
Mean 30.2 2.8
CV 9.5 7.9

A.1.4 Farra [1994] anchors

Farra [1994] studied the effect of reinforcement ratio on the mechanical behavior of

the anchor. 135 cuboid anchors of the following dimensions 1.15 × 0.1 × 0.1 m3 were

casted, with a single steel bar at the center (see Figure A.4). Steel bars S500 were

used in the experiments; the steel bar was tested to verify its quality. The steel Young’s

modulus varies between 192 and 206 GPa. 16 different types of concrete were used in this

study. The results corresponding for N20 concrete are selected, in which N corresponds

to Portland cement CPN, the first number corresponds to the cement dosage, i.e the

number 2 corresponds to 300 kg/m3 and the second number corresponds to the dosage
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Figure A.4: Test on RC anchor (Farra [1994]).

of silica, i.e. 0 corresponds to 0 %. Thus, only concrete of type N20 with steel bars of

diameters 10, 14 and 20 mm are considered. The main components and characteristics

of N20 concrete are given in Tables A.8 and A.9 respectively. Finally, the rupture

Table A.8: Compositions of the concrete (Farra [1994]).

Components Mass (kg)

Sand 0-3 29.4
Gravel 3-8 16.4
Gravel 8-16 16.4
Gravel 16-32 37.7
Cement (CPN) 300
Water 148.8

Table A.9: Characteristics of the concrete (Farra [1994]).

Mean Standard deviation

fc (MPa) 35.7 3.37
E (GPa) 29.2 1.69

strength obtained for each reinforcement ratio r is shown in Table A.10.

Table A.10: Rupture strength of the anchor (Farra [1994]).

Reinforcement ratio r (%) Tensile strength ft (MPa)

0.8 1.8
1.5 1.9
3.1 2.1
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A.1.5 Mivelaz [1996] anchors

The last studied anchor corresponds to the Mivelaz [1996] anchor. Two types of concrete,

three reinforcement ratios and two different distributions of the steel bars were tested.

The studied anchor, in this thesis, has 0.42 × 1 × 5 m3 dimensions and it represents a

massive structure. The steel distribution of the studied anchor is described in Figure

A.5, where the reinforcement ratio corresponds to 0.86 %. The concrete used is IBAP

Figure A.5: Reinforcement in the Mivelaz anchor and transversal section with longi-
tudinal reinforcement (Mivelaz [1996]).

concrete, which corresponds to an ordinary concrete of class C30/C37 in Eurocode2

(CEN [2005]). The principal components of this concrete are given in Table A.11.

The main characteristic of the IBAP concrete is given in Table A.12. The anchor was

Table A.11: Compositions of the concrete (Mivelaz [1996]).

Components Mass (kg)

Sand 0-3 587
Gravel 3-8 329
Gravel 8-16 329
Gravel 16-32 755
Cement (CPN) 300
Water 148

subjected to axial traction forces. The first meter from each border of the anchors is

reserved to the penetration of forces only, so the deformation measurement is limited at

only 3 m in the longitudinal direction. Finally, a rupture strength equal to 1.48 MPa is

deduced.
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Table A.12: Characteristics of the concrete (Mivelaz [1996]).

Mean Standard deviation

fc (MPa) 37.9 4.4
fctm (MPa) 2.6 0.3
E (GPa) 31.8 1.2

A.2 Series of concrete beams under 3-point bending load-

ing

A.2.1 Hoover and Bažant [2014a] series

The US department of transportation provided major funding to conduct a series of

concrete fracture tests. 164 concrete specimens were casted from the same batch of

mixed concrete, thus the material properties of all the specimens were the same. 128

beams of 4 different sizes were also casted, these beams are all geometrically similar and

have a constant thickness of 40 mm and a length-to-depth ratio of 2.4, and their depths

were equal to 40, 93, 215 and 500 mm, corresponding to a size range of 1:12.5. Notches

of 1.5 mm wide and five different relative depths α = a/D = 0.025, 0.075, 0.150 and

0.3 were cut into the beams, where a is the notch depth (Hoover and Bažant [2014a]).

The properties of the concrete used in theses fracture tests are presented in Table A.13.

The tensile strength was calculated for all the beams from the measured dimensions,

Table A.13: Compositions of the concrete (Hoover and Bažant [2014a]).

Concrete properties Values

Compressive strength 3 1.03 MPa
Maximum aggregate diameter 10 mm
Water/Cement ratio 0.41
Water/binder ratio 0.35

particularly the actual thickness of each beam over the ligament, which deviated slightly

from the design thickness. The average overall thickness of the beams is equal to 39.74

mm with a standard deviation of 1.61 mm and coefficient of variation of 4.06 %. The

statistics for family of unnotched beams (α = 0) are shown in Table A.14.
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Table A.14: Mean, standard deviation and coefficient of variation of the tensile
strength of each beam of Hoover and Bažant [2014a] series.

Depth D (mm) µ(ft) (MPa) Std(ft) (MPa) CV (ft) (MPa)

400.1 5.68 0.46 8.3
200 6.99 1.1 15.7
100.9 7.19 0.35 4.9
50.6 7.85 0.61 7.7

A.2.2 Grégoire et al. [2013] series

The aim of this study is to model geometrically similar beams with and without notches,

having different volumes and under 3-point bending loading. Figure A.6 presents the

different volumes and notches used for this series of beams. Four different volumes are

cured with a constant thickness of 50 mm, a depth varying from 50 to 400 mm and a

span-to-depth ratio equal to 2.5. As for the notches, three notch-to-depth ratios are

considered: 0, 0.2 and 0.5. In total, 34 concrete beams were casted. The concrete

mixture used is the same for all the beams and its characterization is presented in Table

A.15. Moreover, to characterize the mechanical behavior of the concrete, standardized

compressive tests and splitting tests are carried out on 51 standard cylinders. Table A.16

presents the mean, standard deviation and the coefficient of variation of the compressive

strength, the Young’s modulus, the Poisson ratio and the splitting tensile strength. As

only unnotched beams are modeled in this thesis, only mean and standard deviation of

the tensile strength corresponding to this case are summarized in Table A.17.

Figure A.6: Beams geometry (Grégoire et al. [2013]).
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Table A.15: Concrete mixture formulation(Grégoire et al. [2013]).

Product Designation Mass (kg)

Sand Cemex 0/4 740
Aggregates Durruty 4/10 1140
Cement Calcia CEM II/A 286
Admixture Axim Cimplast 115 1
Water Clarified water 179

Table A.16: Concrete mechanical properties (Grégoire et al. [2013]).

µ Std CV

Compressive strength 42.3 MPa 2.8 MPa 6.6 %
Young modulus 37 GPa 0.9 GPa 2.4 %
Poisson ratio 0.21 0.02 8.7 %
Splitting tensile strength 3.9 MPa 0.2 MPa 6 %

Table A.17: Means, standard deviations and coefficient of variations of the tensile
strength, corresponding to each beam of Grégoire et al. [2013] series.

Depth D (mm) µ(ft) (MPa) Std(ft) (MPa) CV (ft) (MPa)

400.1 4.6 0.2 4.4
200 5.3 0.41 7.7
100.9 6 0.4 6.7
50.6 7 0.91 13.1

A.2.3 Torrent [1977] series

Different experimental tests conducted on splitting tests, 3-point bending and 4-point

bending are carried out in Torrent [1977]. The objective of these experimental tests

is to apply the highly stressed volume approach to different types of tests. Specimens

are casted with mortar having different water/cement ratios and different types of ag-

gregates. The cement used has a flexural modulus equal to 8.04 ± 0.35 MPa and a

compressive strength of 44.3± 1.5 MPa, measured on RC mortar at 7 days. To test the

effect of the type of aggregate, fine natural sand, medium natural sand and expanded

clay 0-1 mm are used. In this thesis, only three mixes with the same type of aggregates

(fine natural sand) and three different water/cement ratios 0.55, 0.67 and 0.8 corre-

sponding respectively to Mix A, Mix B and Mix C are considered. Also, only 3-point

bending tests are studied. These tests are done on rectangular beams having different

volumes: 25×25×106 mm3, 25×25×240 mm3, 40×40×106 mm3 and 150×150×450

mm3. For each mix type, mean and standard deviation values of the tensile strength

corresponding to the four different volumes are presented in Table A.18.
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Table A.18: Means and standard deviations of tensile strength for three different
volumes and corresponding to three different mixes (Torrent [1977]).

Volumes Mix A Mix B Mix C
µ(ft)
(MPa)

Std(ft)
(MPa)

µ(ft)
(MPa)

Std(ft)
(MPa)

µ(ft)
(MPa)

Std(ft)
(MPa)

25×25×
106

8.23 0.07 6.43 0.15 4.52 0.0.7

25×25×
240

7.14 0.17 5.9 0.26 4.39 0.07

40×40×
106

6.69 0.19 5.59 0.09 4.5 0.09

150 ×
150×450

5.12 0.26 3.66 0.06 3.02 0.03

A.3 Series of concrete beams under 4-point bending

A.3.1 Koide et al. [2000] series

Koide et al. [2000] aimed to study the size effect on the flexural resistance of concrete

beams from a point of the length of the beam. Therefore, series of concrete beams, with

various bending span (Lm = 200, 400 and 600 mm), under 4-point bending loading are

conducted. The shear span (200 mm) and the cross section (100 × 100 mm2) are kept

constant for all the three different beams studied. Figure A.7 shows the three different

Figure A.7: Geometries of Koide beams (Korol [2012]).

geometries of the beams. 120 beams from the same batch of concrete were made and

tested. The maximum diameter of aggregate is 20 mm and the compressive strength

is equal to 30 MPa. However, concrete properties are not found in the literature. A
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Figure A.8: Experimentally determined probability distribution functions (Koide
et al. [2000]).

load-control method was applied and the bending moment obtained in the pure bending

span is equal to 2.4 Nm/s. Figure A.8 presents the three cumulative density functions

corresponding to the three different beams studied.



Appendix B

Probabilistic modelisation of

uncertain parameters

B.1 Definition

The definition of random variables and random fields are presented in this Appendix.

First, a probability space (Θ, F, P) needs to be defined:

• Θ is a set of outcomes.

• F is a collection of all the considered events.

• P is a function returning an event’s probability.

B.1.1 Random variables

In probability and statistics, a random variable, aleatory variable or stochastic variable

is a variable whose value is subjected to variations due to chance. A random variable

X : (Θ, F, P ) → R is a measurable function from the set of possible outcomes Θ to

some set R. fx and Fx are respectively the probability density function and the cumu-

lative distribution function. The expected value (mean) and the variance are given by

Equations B.1 and B.2 respectively.

µ (x) = E [X] =

∫ +∞

−∞
x.f(x)dx (B.1)

134
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σ2
x = E [X − µx] =

∫ +∞

−∞
(x− µx)2 .f(x)dx (B.2)

The most familiar measure of dependency between two variables is the correlation coef-

ficient that can be obtained by dividing the covariance of two variables by the product

of their standard deviations. The correlation coefficient is defined as:

ρ (XY ) =
cov [X,Y ]

σXσY
=
E [(X − µx) (Y − µy)]

σXσY
(B.3)

B.1.2 Gaussian random field

A random field V (x) is defined as a collection of random variables indexed by a con-

tinuous parameter x ∈ Ω, where Ω is an open set of Rd (d = 1, 2, 3) describing the

geometry. The Gaussian random field is completely defined by its mean function µ(x)

and its autocovariance function CV V (x, x′) that depends on an autocorrelation function

ρv(x, x
′).

CV V (x, x′) = σ(x)σ(x′)ρv(x, x
′) (B.4)

The variance function is defined by σ2(x) = CV V (x, x).

The values in a random field are often spatially correlated. A random field is univariate

or multivariate, depending on the nature of V (x) attached to x, which could be a random

variable or a random vector. Also, according to the dimension d of x (d = 1 or d > 1), it

is called one-dimensional or multidimensional. In consequence, for modeling the spatial

variability of the mechanical properties of the concrete, univariate multidimensional

random fields are used. Moreover, a random field is homogeneous if it does not depend

on the time; its corresponding autocorrelation function depends only on the relative

length between two points:

ρv
(
x, x′

)
= ρv

(
x− x′

)
(B.5)

B.2 Different methods of discretized random fields

A discretization method consists on approximating the original random field V (x) by

an approximated finite set of random variables {Vk, k = 1, . . . , n} grouped in a random
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vector Ṽ (x) (Sudret and Der Kiureghian [2000]):

V (x)
Discretization→ Ṽ (x) = {Vk, k = 1, . . . , n} (B.6)

Different discretization methods are presented in the literature. These methods can be

divided into three main groups:

• Point discretization methods: the random variables Vk are specified values defined

on a number of selected points xi (the nodes of the FE mesh, for example).

• Average discretization: the random variables Vk are weighted integrals over a

domain Ve (the volume of an element in a FE mesh, for example).

• Series expansion methods: the random variables are defined using series which

contain also deterministic spatial functions. The discretization results from the

truncation of the series.

B.2.1 Point discretization methods

These methods are usually used in the FE context, where the approximation of the

mechanical response of the structures is evaluated by a spatial discretization on the

mesh (nodes xi or elements Ve).

Midpoint method (MP) This method consists on the discretization of the random

field at the centroid xc of the element Ve, by defining a single random variable (Ṽ (x) =

V (xc)). Thus, the random field is simplified by the following random vector, defined on

the centroids of all the elements (Ne is the number of elements):

V (x)
Discretization→ Ṽ (x) =

{
V (x1

c), . . . , V (xNe
c )
}

(B.7)

Shape function method (SF) The approximation of V (x) is done, at each element

having q number of nodes, using nodal values xi and shape functions, as follow:

Ṽ (x) =

q∑
i=1

Ni (x)H (xi) (B.8)
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where xi is the coordinate of the node i and Ni is the associated shape function. In

this case, the approximated random field is a set of q random variables, where q is the

number of nodes in the mesh.

Optimal linear estimation method This method is also called ”Kriging method”.

In this context, nodal discretization is considered for the approximated field Ṽ (x). Thus,

a linear function of nodal values X = {V (x1), . . . , V (xq)}.

Ṽ (x) = a(x)

q∑
i=1

bi(x)Xi = a(x) + bT (x)X (B.9)

where q is the number of nodes, a(x) and bi(x) are functions determined by minimizing

in each point x the variance of the error (V ar
[
V (x)− Ṽ (x)

]
), by considering that Ṽ (x)

is an unbiased estimator of V (x) in mean (E
[
V (x)− Ṽ (x)

]
= 0).

Thus, by solving this minimization problem point-wise for bi(x), the variance of the error

is considered the same as the error of the variance or the difference between the variances

of V (x) and Ṽ (x). Therefore, the approximated field is always under-estimated, since

the error variance is a positive value. Moreover, the error and the approximated field

should be uncorrelated, in order to minimize the error variance.

B.2.2 Average discretization method

Spatial average (SA) In the FE context, this method provides an approximated

field at each element computed as the average of the original field V (x) over the element:

Ṽ (x) =

∫
Ωe
V (x)dΩe

Ωe
x ∈ Ωe (B.10)

Thus, the random field is a vector of constant values, defined at each element using

Equation B.10:

V (x)
Discretization→ Ṽ (x) = {V1, . . . , VNe} (B.11)

This method is applied, only for the case of rectangular elements.
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B.2.3 Series expansion method

Karhunen-Loève expansion The key idea of this method is to expand any realiza-

tion of V (x), defined by the eigenvalue problem:

V (x, θ) = µ(x) +
∞∑
i=1

√
λiξi(θ)ϕi(x) (B.12)

Equation B.12 has two main terms, where µ(x) is the expected value of the random field

and the second term accounts for the stochastic and the spatial dependency. The random

variables ξi account for the stochastic dependency and the covariance kernel eigenmodes

(λi, ϕi), where λi are the eigenvalues and ϕi are the eigenvectors, accounting for the

spatial dependency. The eigenvalues and eigenvectors are computed, using the Equation

B.13, where CV V (x, x′) is the covariance function for the random field V .

∫
V
CV V (x, x′)ϕi(x

′)dVx′ = λiϕi(x) (B.13)

It is possible to compute the eigenvalues in a descending series converging to zero.

Thus, a set of the largest eigenvalues and their corresponding eigenvectors should be de-

termined. Consequently, the truncated Karhunen–Loève expansion, defined using Equa-

tion B.14, gives an approximation for any second-order random field. M is the number

of chosen modes, which can be considered as optimal. In Equation B.14, the random

variables ϕi, for Gaussian distributions, are normally distributed with an expected value

of 0 and a variance equal to 1.

Ṽ (x, θ) = µ(x) +
M∑
i=1

√
λiξi(θ)ϕi(x) (B.14)

Orthogonal series expansion method This method consists on defining a set

of orthogonal functions hi(x)∞i=1 and presents the advantage of avoiding solving the

eigenvalue problem. The set of orthogonal functions is considered as orthonormal. Thus,

the random field V (x, θ) is defined by the expected mean function µ(x) and an expansion

by means of the orthogonal functions and zero-mean random variables Xi(θ).

V (x, θ) = µ(x) +

∞∑
i=1

Xi(θ)hi(x) (B.15)
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With the hypothesis of orthogonality, for a Gaussian random field V (x), the set Xi
∞
i=1 is a

set of zero-mean Gaussian random variables, which also may be considered as correlated.

Consequently, the approximated random field is deduced by choosing the number of

terms kept for the discretization M .

Ṽ (x, θ) = µ(x) +
M∑
i=1

Xi(θ)hi(x) (B.16)
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armé - Caractérisation – Modélisation. PhD thesis, Université Paris VI.
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335(8):430–435.

Corbin, M. and Garcia, M. (2015). International benchmark, VeRCoRs: Overview,

synthesis and lessons learnt. EDF Septen, 65.



Bibliography 143

Danzer, R., Supancic, P., Pascual, J., and Lube, T. (2007). Fracture statistics of

ceramics–weibull statistics and deviations from weibull statistics. Engineering Frac-

ture Mechanics, 74(18):2919–2932.

De Larrard, T., Colliat, J., Benboudjema, F., Torrenti, J., and Nahas, G. (2010). Effect

of the Young modulus variability on the mechanical behaviour of a nuclear contain-

ment vessel. Nuclear Engineering and Design, 240(12):4051–4060.

Del Viso, J., Carmona, J., and Ruiz, G. (2007). Size and shape effects on the compres-

sive strength of high strength concrete. In 6th International Conference on Fracture

Mechanics of Concrete and Concrete Structures, pages 1297–1304.

Duffaut, P. (2013). The traps behind the failure of Malpasset arch dam, France, in 1959.

Journal of Rock Mechanics and Geotechnical Engineering, 5(5):335–341.

Dufour, F. (2017). Advanced concrete mechanics course. Master 2 Geomechanics civil

engineering and risk.

Dufour, F., Legrain, G., Pijaudier-Cabot, G., and Huerta, A. (2012). Estimation of crack

opening from a two-dimensional continuum-based finite element computation. Inter-

national journal for numerical and analytical methods in geomechanics, 36(16):1813–

1830.

EN, N. (2001). 12390-8: Norme: Essai pour béton durci–partie 8: Profondeur de
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Hillerborg, A., Modéer, M., and Petersson, P.-E. (1976b). Analysis of crack formation

and crack growth in concrete by means of fracture mechanics and finite elements.

Cement and concrete research, 6(6):773–781.
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Syroka-Korol, E., Tejchman, J., and Mróz, Z. (2013). FE calculations of a deterministic

and statistical size effect in concrete under bending within stochastic elasto-plasticity

and non-local softening. Engineering Structures, 48:205–219.

Tanaka, Y. and Shimomura, T. (2010). Role of diagonal tension crack in size effect of

shear strength of deep beams. Proceedings Framcos-7, pages 198–206.

Tang, X., Zhou, Y., Zhang, C., and Shi, J. (2010). Study on the heterogeneity of concrete

and its failure behavior using the equivalent probabilistic model. Journal of materials

in civil engineering, 23(4):402–413.

Tippett, L. H. C. (1925). On the extreme individuals and the range of samples taken

from a normal population. Biometrika, 17(3-4):364–387.

Torrent, R. (1977). A general relation between tensile strength and specimen geometry

for concrete-like materials. Matériaux et Construction, 10(4):187–196.

Van Vliet, M. and Van Mier, J. (2000). Experimental investigation of size effect in

concrete and sandstone under uniaxial tension. Engineering Fracture Mechanics,

65(2):165–188.

Vanmarcke, E. (2010). Random fields: analysis and synthesis. World Scientific Publish-

ing Co Inc.

Von Mises, R. (1936). La distribution de la plus grande de n valeurs. Rev. math. Union

interbalcanique, 1(1).
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