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Un Systeme Réactif d’Aide a la Décision pour le
Transport Intermodal de Marchandises

Résumé :

Le transport fluvial de conteneurs constitue une activité économique importante qui sus-
cite un intérét grandissant de la part de scientifiques. Considéré comme durable et
économique, le transport par barge a été identifié comme étant une alternative com-
pétitive pour le transport de marchandises, en complément des modes traditionnels de
transport, routier et ferroviaire. Néanmoins, les travaux de recherche en rapport avec la
planification et le management du transport par barge, en particulier dans le contexte du
transport intermodal, sont encore peu abondants. Le but de cette these est d’apporter une
contribution dans ce domaine, par la proposition de modeles et de méthodes de planifica-
tion et gestion avancées, dans le cadre d’un systéme d’aide a la décision pour le transport
de conteneurs par barge développé pour accompagner les opérateurs de transport. La
méthodologie proposée fait appel a des concepts et principes de gestion du revenu, des
ressources et des services de transport pour la conception de plans de services réguliers
avec horaires, au niveau tactique. Les opérateurs de transport peuvent ainsi offrir des
plans de transport avec des services plus flexibles pour leurs clients, tout en assurant un
meilleur niveau de fiabilité. Plus de demandes de transport pourront ainsi étre satisfaites,
avec globalement une plus grande satisfaction des chargeurs. Une originalité importante
proposée par notre approche est 1'utilisation de principes et techniques de gestion du
revenu (segmentation du marché, classes tarifaires...) aussi bien au niveau opérationnel
de la modélisation qu’au niveau tactique. Les problemes d’optimisation sont formalisés
sous forme de modeles de programmation linéaire mixte en nombres entiers (PLNE), im-
plémentés et testés sous différentes configurations de réseaux de transport et différents
scénarios de demandes, et ce pour chaque niveau de décision. Au niveau tactique, une nou-
velle approche de résolution, combinant la recherche adaptative a voisinage large (ALNS)
et la recherche taboue, est proposée pour résoudre des problemes PLNE de grande taille.
Une plateforme de simulation, qui integre les niveaux tactique et opérationnel de prise de
décision, est proposée pour la validation du systeme d’aide a la décision sous différentes
configurations : différentes topologies du réseau physique, différents parametres pour la
gestion du revenu, différents degrés de précision caractérisant les prévisions de demande.
Pour I'analyse des résultats numériques ainsi obtenus, plusieurs types d’indicateurs de
performance sont proposés et utilisés.

Mots-clés : Transport Intermodal par Barge, Systeme d’aide a la Décision, Géstion
du Revenu, Conception de Réseaux de Services avec Horaires, Programmation Linéaire
en Nombres Entiers, Métaheuristiques, Allocation de Capacité de Réseaux, Simulation

par Evénements Discrets, Indicateurs de Performance






A Reactive Decision Support System for Intermodal
Freight Transportation

Abstract:

Barge transportation is an important research topic that started to draw increasing sci-
entific attention in the recent decade. Considered as sustainable, environment-friendly
and economical, barge transportation has been identified as a competitive alternative for
freight transportation, complementing the traditional road and rail modes. However, con-
tributions related to barge transportation, especially in the context of intermodal trans-
portation, are still scarce. The objective of this thesis is to contribute to fill this gap by
proposing a reactive decision support system for freight intermodal barge transportation
from the perspective of the carriers. The proposed system incorporates resource and rev-
enue management concepts and principles to build the optimal set of scheduled services
plans at the tactical level. Carriers may thus benefit from transportation plans offering
increased flexibility and reliability. They could thus serve more demands and better sat-
isfy customers. One novelty of the approach is the application of revenue management
considerations (e.g., market segmentation and price differentiation) at both operational
and tactical planning levels. The optimization problems are mathematically formalized
and mixed integer linear programming (MILP) models are proposed, implemented and
tested against various network settings and demand scenarios, for each decision level. At
the tactical level, a new solution approach, combining adaptive large neighborhood search
(ALNS) and Tabu search is designed to solve large scale MILP problems. An integrated
simulation framework, including the tactical and the operational levels jointly, is proposed
to validate the decision support system in different settings, in terms of physical network
topology, revenue management parameters and accuracy degree of demand forecasts. To
analyze the numerical results corresponding to the solutions of the optimization problems,
several categories of performance indicators are proposed and used.

Keywords: Intermodal Barge Transportation, Decision Support System, Revenue
Management, Scheduled Service Network Design, Mixed Integer Linear Programming,
Metaheuristics, Network Capacity Allocation, Discrete Event Simulation, Performance

Indicators
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General Introduction

Barge transportation is an important research topic that started to draw increasing sci-
entific attention in the recent decade. Considered as sustainable, environment friendly
and economical, barge transportation has been identified as a competitive alternative
for freight transportation, complementing the traditional road and rail modes. However,
contributions related to barge transportation, especially in the context of intermodal
transportation, are still scarce. The objective of this thesis is to contribute to fill this gap
by proposing a Reactive Decision Support System (R-DSS) for freight intermodal barge
transportation from the perspective of the carriers. To achieve the R-DSS, four related

research problems are proposed and addressed in this thesis.

In the first phase of the study, we propose a revenue management model (DCA-RM)
for the network capacity allocation problem of an intermodal barge transportation system,
at operational level. In the proposed DCA-RM model, two RM policies (i.e., customer
classification and price differentiation) are considered. In terms of customer classification,
three categories of customers are identified according to their business relationships with
the carriers. Their transport requests, therefore, are accordingly treated differently. The
proposed DCA-RM model makes decisions to accept or reject a transport request by
maximizing the expected revenue of current demand and potential future demands over
a given time horizon, taking into account several categories of customers. The considered
potential future demands are characterized by probability distribution functions, with
respect to their volume. Sequential arrivals of transport requests are simulated to validate
and assess the proposed DCA-RM model. A conventional model for dynamic capacity
allocation considering only the feasibility, in terms of network capacity and delivery time

constraints is used as alternative for comparison.

In the second part of the research, we propose what we believe to be, the first com-
prehensive Scheduled Service Network Design model for freight carriers that integrates
both Resource and Revenue Management considerations (SSND-RRM). RM policies are
equally considered in the proposed tactical planning model. To be more precise, cus-

tomers are classified into several categories according to their business relationships with
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the carriers, and are dealt with following different (acceptance/denial) rules. In terms
of resource management, design-balance constraints are considered to ensure the vehicle
flow conservation at each terminal for each time instant. Vehicles repositioning is thus
implicitly considered as the SSND-RRM problems are formulated as a cyclic model. In
addition, upper bounds on the quantity of the resource are also formulated. Freight trans-
shipment between services and freight holding at terminals are also considered, with their
corresponding handling and holding costs. In order to validate RM policies consideration
at tactical level for freight transportation and to assess the performances of the proposed
model, we test the SSND-RRM model in various problem settings, in terms of demand
distribution, network topology, fare classes and quality-of-service (e.g., delivery time).

The optimization problems are solved by feeding a commercial solver.

As the optimization problems addressed at tactical level are NP-hard, we propose a
metaheuristic (MH) to produce high-quality solutions for the SSND-RRM problems in
reasonable time, in a third part of the research study. The proposed solution approach is
composed of four phases. In the first phase, a constructive heuristic is proposed to obtain
an initial feasible solution. The solutions are then iteratively improved in the second
phase following a local search procedure. Adaptive large neighborhood search (ALNS)
and tabu search are combined to guide the search. The other two phases: intensification
and diversification are also included to deeply explore a given region of the solution space
and to direct the search towards non-thoroughly-explored regions of the solution space,
respectively. Moreover, new neighborhood structures are proposed to accelerate the search
by ensuring the design-balance constraints and quick exploration simultaneously. Learning
mechanisms are embedded into the proposed MH and used to guide the search. As no
other solution approach to the proposed SSND-RRM problems exists in the literature,
a commercial solver (IBM CPLEX) is used to compare with, in terms of computational

time and solution quality.

The fourth research problem studied concerns a review of Performance Indicators
(PIs) that could be used to evaluate the proposed R-DSS. Pls found in public sources
and scientific literature are qualified with respect to their relevance to intermodal barge
transportation systems. The analysis is extended with consideration of revenue manage-
ment policies, a topic generally neglected in freight transportation. We then make a first
step towards a taxonomy of PIs. Three categories of Pls, i.e., economic impact, resource
utilization and quality of service, are defined based on their relevance and meaning from
the perspective of both carriers and customers. New Pls, considering both resource and
revenue management, in the context of freight transportation are also proposed for the
three categories. We also propose a methodology to generate test instances, methodology

adopted for the experiments throughout the whole thesis, and adequate for further studies
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of planning issues in a general context of freight barge transportation.

As a part of this fourth research question, we perform some validation tests of the pro-
posed R-DSS, by designing an integrated simulation framework considering both tactical
and operational levels. Given the estimated demands, physical network and potential
services, we first solve the service network design problems at tactical level for a given
schedule length. These selected services are then deployed repeatedly at the operational
level during the planning horizon. Once the service plan is settled on space-time repre-
sentation of the transportation network at the operational level, we simulate sequential
arrivals of transport requests as an iterative process at operational level. Different cases
are designed and tested to evaluate the proposed R-DSS with specified PIs. The proposed
R-DSS is thus compared against traditional decision support systems (with no consider-
ation of RM at tactical level).

In summary, this thesis is devoted to contribute to the design of a reactive decision
support system, which deals with both tactical and operational levels of the transporta-
tion activities planning. The optimization problems are mathematically formalized and
mixed integer programming (MIP) models are proposed, implemented and tested against
various network settings and demand scenarios, for each decision level. RM policies are
considered at both levels to enhance their interaction and information/knowledge ex-
change. Consequently, this will generate more consistent and robust decisions, in terms
of (scheduled) service plans, resource utilization, flow distribution, etc. At the tactical
level, a new solution approach, combining adaptive large neighborhood search (ALNS)
and tabu search is designed to solve large scale SSND-RRM problems. The proposed mod-
els are validated and tested in different settings, in terms of physical network topology,
revenue management parameters and accuracy degree of demand forecasts. To analyze
the numerical results a taxonomy and some new performance indicators are proposed and

used.
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I.1 Background, Motivation & Research Problems

Transportation, as one of the fundamental human activities, is vital to the development of
the economy and society. In addition to providing the mobility of passengers and freights,
it also affects our lives in various aspects, e.g., environment, land use, safety, health
and society equity. Freight transportation, in particular, contributes to the activities of
production, trade and consumption by ensuring the availability of raw materials and end
products, in terms of required both physical movement and time condition [Crainic, 2000].
In 2012, almost 2100 billion tonne-kilometres (tkm) of inland freight were transported
in the EU-28, and accounted for about 5% of gross domestic product (GDP) of EU-
28 [Eurostat, 2015].

However, along with increased energy consumption and human intervention, the ex-
pansion of transportation is considered as one of the three major contributions to the
climate change and arouses the awareness of human wellbeing and environment. The de-
velopment of sustainable economy and the improvement of environment, therefore, drew
the global attention over the last few decades. [European Commission, 2011], in the white
paper of transport, set up a goal to reduce the emissions of greenhouse gases and pollu-
tants by 20% in 2020 and 40% in 2030, compared to the 1990 levels. To achieve that,
increasing the use of more eco-friendly transport mode, among other measures, e.g., de-
veloping renewable energy and increasing vehicle fuel efficiency, are encouraged by the

European Commission.

Compared to the traditional road and rail mode, barge transportation is more eco-
friendly, in terms of both energy consumption and noise emissions. To be more precise,
its energy consumption per tonne-kilometer of transported goods is approximately 17%
of that of road transport and 50% of rail transport. In addition, barge transportation
also contributes to relieving the traffic congestion and reducing the number of accidents
of the road and rail transport networks. Therefore, it offers a competitive alternative
for the road and rail transport. However, according to [Eurostat, 2015], the majority of
the EU-28 inland freight was transported by road (75.5%) in 2002. This share of inland
freight transported by road was more than four times as high as the share transported by
rail (18.3%), while only the remainder (6.2%) of the freight transported was carried by
barges. [European Commission, 2011}, in the white paper of transport, targeted to shift
30% of road freight over 300 km to either rail or barge by 2030, and more than 50% by
2050. In 2012, the corresponding percentage of each transport mode changed slightly, and
became 75.1% (road), 18.2% (rail) and 6.7% (barge). A general upward trend was found in
the share of inland freight transported along waterways during the period of 2002-2012 in
the EU-28, but still far away from the targets set by European Commission. Meanwhile,
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compared to the traditional road and rail modes, which have been intensively studied
(e.g., [Lium et al., 2009, Cordeau et al., 1998 Moccia et al., 2011]), studies targeting barge
transportation are still scarce (e.g, [Sharypova, 2014, Fazi et al., 2015, Frémont and Franc,
2010,Konings, 2007, Konings et al., 2013, Notteboom, 2012, Taylor et al., 2005, Caris et al.,
2011]).

Therefore, in this thesis, we make contributions to building a competitive and effi-
cient transport system by making greater use of more energy-efficient mode, i.e., barge
transportation, in the context of intermodal freight transportation. Generally defined as
moving cargo from its origin to its destination by a sequence of at least two transport
modes (e.g., [Crainic and Kim, 2007, Bektag and Crainic, 2008, SteadieSeifi et al., 2014]),
intermodal freight transportation performs the transfer of cargo from one mode to the
next at an intermodal terminal without handling the cargo directly. The reduced direct
handling of cargo is accomplished by containerization, which means transporting cargo
in the containers with standardized dimensions, e.g., twenty-foot equivalent unit (often
TEU). As cargo is transported in containers for most of the journey, the safety of cargo is
enhanced, e.g., reducing the loss and damage of cargo. Benefiting from the standardized
procedure, containerized intermodal transportation also encourages consolidation, and

consequently produces economies of scale and generates less transport cost.

The original motivation of this thesis is the willingness of the inland waterway infras-
tructure managers, e.g., VNF, and the Port of Dunkirk (GPMD) to work together in order
to develop an innovative solution to shippers doubts regarding the use of inland waterways
transportation for their goods. The initial idea for the TaziBarge concept (as well as the
name) has been brought forward by these two partners, in the framework of their contract
for cooperation in order to better develop their traffics together. The concept was thought
for a fixed and limited inland waterways route, along the Nord-Pas-de-Calais - Wallonie
route from Dunkirk, France to Liege, Belgium (as shown in Figure I.1). As illustrated
by the name of this project, barges would be used to offer taxi-like services, responding
on demand (freight, not passenger) and often for a non-shared trip. To be more precise,
a TaxiBarge responds to a particular customer and offers customized transport service
where the pick-up (origin) and drop-off (destination) terminals are determined by the
customer within the required delivery time. VNF and GPMD then invited the Belgian
Port of Liege (PAL) and the infrastructure manager Service Publique de Wallonie (SPW)
to join them, as they imagined the TaziBarge service on the transborder route between
Dunkirk and Liege. A protocol of understanding and cooperation was signed between
them, and communicated to the press. They then contacted i-Trans competitiveness clus-
ter in order to find help for the realization and possible additional funding for the project.

In order to complete the project and facilitate the progress (as well as finding of funding),
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i-Trans’s newly launched program i-Fret then suggested to add a research part in the

project. The cooperation between i-Trans/i-Fret and LAMIH was thus established.
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Figure 1.1: Inland waterway network of Northern France, Belgium, Netherlands (Source:

VNF?)

The research conducted by LAMIH aims to promote the development of container
traffic on barge in the region of Northern France and Belgium with a set of ports (mar-
itime and inland waterway) involved, in the context of intermodal transportation. It is
true that by offering TaziBarge, carriers may benefit from its flexibility and have bet-
ter customer satisfaction. However, as the services are customized, low capacity usage
of those barges is normally expected and carriers have a high possibility to suffer lower
income. The research topic then evolved. In the evolution, the idea of containerized
multimodal transportation and barge transportation remains, but the offered services are
evolved from customized services to consolidation-based services. In this thesis, barge is
deployed for regular services to encourage consolidation, instead of responding on demand.
Therefore, we propose a Reactive Decision Support System (R-DSS) methodology for in-
termodal freight transportation, aiming to improve the freight transportation planning
and management, in terms of service design, resource utilization, demand uncertainty

consideration, etc. The proposed R-DSS methodology is expected to have an application
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on the northern France inland waterway network.

A freight transportation system can be considered from two main perspectives: de-
mand and supply. Demand comes from the shippers that need to move cargoes to different
locations. These shippers are the purchasers of the freight transportation. Supply, on the
other hand, is mainly provided by the infrastructures operators (e.g., intermodal termi-
nals, locks and dams) and carriers, who move cargoes using resources (e.g., vessels and
crews). In this thesis, we limit the scope of our research and take the perspective of a

single carrier or a group of carriers cooperating with each other.

The structure of the proposed R-DSS is depicted in Figure 1.2.
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Figure 1.2: Structure of the proposed reactive decision support system; Both tactical
and operational planning levels are considered; Revenue Management (RM) policies are
introduced [Bilegan and Crainic, 2012]

Decision making for transportation, conventionally, is composed of three levels, i.e.,
strategic, tactical and operational. This hierarchical structure of decision making corre-
sponds to the planning horizon at each level: long term, middle term and short term,
respectively. Note that, in addition to the characteristics of the decision making process

at each level, there are also mutual influences among different levels.

At strategic level, the most aggregated level of planning, decisions are made to de-
termine general policies, physical infrastructure/network, acquisition of major resources,

etc.

'VNF:Voies Navigables de France; http://www.vnf.fr
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At tactical level, decisions are made to ensure an efficient allocation and utilization of
resources over the middle-term planning horizon. The network of services is designed to
satisfy the forecasted demands, while minimizing total cost or maximizing the revenue.
Typically, at tactical level, two types of major decisions, i.e., service selection and flow
distribution, are made. The first determines the itinerary of each service (if selected) and
the corresponding schedule. The second major type of decisions is the routing of demands
from their origin to destination within the required delivery time (if considered) and the

corresponding operations at terminals.

At operational level, decisions are made to allocate the network capacity, in a highly
dynamic environment considering uncertainty of demands, damage or loss of cargo, delay
of services, etc. In this planning level, the time factor plays an important role. The states
of the transport network, berthing capacity in the terminals, transport requests, etc., vary

through time. Therefore, the adjustment of routing is determined.

In addition, decision and information flows are also emphasized in the hierarchical
structure. Decisions made at each level have influence on the lower level(s). For example,
a solution to a strategic problem may determine the design and evolution of the physical
network, e.g., where new terminals should be built, how big the berthing capacity should
be, how many equipments should be prepared and which terminals should serve as a hub.
Based on the determined physical network from strategic level, decisions are made to
select which services to open with their corresponding schedule and itinerary at tactical
level. At the middle-term planning level, the service network is build for a given schedule
length, e.g., a week, which is then operated repeatedly and proposed to shippers for the
duration of the next planing horizon, e.g., six months. The decision made at tactical level,
i.e., a set of selected services characterized by schedule, itinerary and capacity, is then
fed to the operational planning as input. Based on the determined service network, the
routing of demands is decided and adjusted at operational level. The information flow,
on the contrary, has influence upwards. Essential information, in terms of geographic
location of terminals, customer definition, product definition, etc., at each level of the

hierarchical structure is supplied to the higher level(s) for decision making processes.

As illustrated with the red rectangle in Figure 1.2, the proposed R-DSS covers both the
tactical and operational levels of the operations planning. To be more precise, given the
physical network, potential services and forecasted demands, decisions about the optimal
scheduled service plan are made for the carriers at tactical level. Those selected services
are then deployed at operational level to face transport requests from the shippers (or
customers in this thesis). At operational level, decisions in terms of the acceptance/denial
of each transport request and the corresponding routing (for accepted demands), are made

with the objective of revenue maximization. In order to limit the scope of this research,

10
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a set of assumptions are made as follows:

e The scope of this research is limited to freight transportation, especially container-

ized freight transportation;

e Demand forecasting is out of the scope of this thesis. Information related to demand
forecasting is considered to be available for the decision making. Other required
information, e.g., distance between terminals, speed of vehicles, handling time at
terminals, fixed and variable costs, is also considered to be available for the scope
of the study;

e No traffic congestion, delay of services or damage/loss of cargo is considered; Note
that, the delay of services (here we are talking about short delays, not disaster
ones) could be claimed as considered as part of the time of operations consumed by

a service at terminals;

e No other transport modes are considered explicitly in this thesis. To synchronize the
barge transport mode with other modes in the context of intermodal freight trans-
portation, time dimension is considered. Both demands and services are represented

with time-related characteristics;
e At tactical level:

— To explicitly represent the movement of services and demands in time, and
to synchronize the barge transport mode with other modes in the context of
intermodal transportation, the middle-term planning problems are formulated
on a time-space network. In Figure 1.3, we present a physical network of four
terminals with three services (Figure 1.3a) and the corresponding services with

schedules in a time-space network (Figure 1.3b);

— Different states of services and variety of demands are studied over the schedule
length, which is composed of a certain number of time periods in the time-space

network;

— Operations at terminals, such as loading at origin, unloading at destination,
and transshipment at intermediate stops of a demand, are considered within

the time consumed by services and associated with corresponding costs;
e At operational level:

— Services, that have already been selected and scheduled at the tactical planning

level, are not going to be rescheduled at the operational level;

11
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— The capacities of scheduled services are also fixed since vehicles are already
assigned to services and no extra-vehicles are considered to be available upon
request;

— Transportation activities are also represented on a time-space network;

— The routing of demands is decided and fixed when the acceptance decision is
made. No re-routing of demands is allowed in the first version of operational

mode; Re-routing is allowed in a second version.
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Figure 1.3: a. An example of physical network of four terminals with three services defined;
b. The corresponding three services with schedules presented in a time-space network

In this thesis, we offer the carriers a different perspective (Revenue Management) to
make decisions for freight transportation. Revenue Management, which is composed of
four subproblems: demand forecasting, inventory control, pricing and over-booking deci-
sions, is broadly used in passenger transportation to manage trip prices and reservations
at operational level [Armstrong and Meissner, 2010]. As a set of main characteristics
(e.g., uncertain demands, scarce resources and market segmentation) required for effi-
ciently applying RM polices are also identified in freight transportation, RM recently has
been identified as a desirable feature for freight transportation, including barge intermodal
transportation [van Riessen et al., 2015a]. It helps the carriers to tackle the challenge and
pressure from the market competition, e.g., decreasing costs and improving customers
satisfaction, and make more competitive decisions, in terms of revenue/profit, resource

utilization, etc.

The motivations to integrate the RM polices into the proposed DSS are threefold.
First, RM polices offer the carriers a different viewpoint to make decisions for freight
transportation. Instead of minimizing the cost, which may lower the satisfaction of
the customers and consequently lose the market share, we focus on maximizing the rev-
enue/profit. Second, some useful information derived from the operational level is con-

sidered at the tactical level as a result of the integration of RM polices. Therefore, the

12
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information flow is enhanced and more comprehensive decisions on the selection of ser-
vices are supposed to be made consequently. Third, the integration of RM polices is also
expected to alleviate the negative influence of demand uncertainty and make more robust

plans for the carriers. A better utilization of resource is also expected.

In this thesis, new models are proposed, at both tactical and operational levels to
address the service network design (SND) and dynamic capacity allocation (DCA) prob-
lems, respectively. In addition, a new solution technique is proposed to solve the service
network design problems with consideration of resource and revenue management. Perfor-
mance indicators (PIs) are studied and proposed to evaluate and analyze the the proposed

models.

To build the R-DSS, a set of research questions have to be answered. Therefore, the

R-DSS is decomposed into four main research topics as follows:

e How to integrate RM polices (which polices) with barge transportation at opera-
tional level in order to dynamically allocate the capacity of transport network facing

real transport requests, in the context of intermodal freight transportation;

e How to integrate RM polices (which polices) and resource management consideration
with barge transportation for the service network design problems and how the
selected services might be synchronized with other transport modes, in the context

of intermodal freight transportation;

e How to efficiently solve the scheduled service network design problems while simul-

taneously considering resource and revenue management;

e How to validate and evaluate the decision support system of barge transportation,
in terms of models, solution methods, corresponding results and strategies; are there

some indicators that give insight more than others;

To answer these questions, in the following of this chapter, we first present the re-
search methodology in Section 1.2; the detailed challenges of each research topic and the
contributions of the thesis are then discussed in Section [.3. Note that, the problem char-
acterization and detailed literature review related to each research topic are introduced

in each corresponding chapter.

13
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I.2 Research Methodology

In this section, we present the research methodology used to address the reactive decision
support system introduced in the previous section. At the operational planning level,
we propose a revenue management model (DCA-RM) for the network capacity allocation
problem, extended on [Bilegan et al., 2015]. In addition to the consideration of feasibility,
i.e., available network capacity within the required delivery time, the proposed DCA-
RM model makes decisions to accept or reject a transport request by maximizing the
expected revenue of current demand and potential future demands over a given time hori-
zon, which is called the consideration of profitability. The sequential arrival of transport
requests is simulated as an iterative process, and the decision on each transport request is
made by solving the proposed DCA-RM model with a commercial solver. The total rev-
enue obtained by applying the DCA-RM model through the simulation is calculated and
compared with the total revenue obtained by applying a conventional model considering
only the feasibility. Different negotiation strategies, dealing with the rejected transport
requests, are also embedded in the DCA-RM model and discussed.

Aiming to improve the tactical planning for freight carriers in the context of intermodal
barge transportation, we propose a scheduled service network design with resource and
revenue management (SSND-RRM) model. By integrating the polices of RM, customers
are classified into different categories according to their business relationships with the
carriers and their behaviors. Accordingly, different treatment of demands from different
categories of customers are modeled. Moreover, various fare classes according to the
required delivery service types are also modeled as one of the characteristics of demands.
Various problem settings, in terms of demand distribution, network topology, fare class
and delivery service type, are tested to analyze the performance of the proposed SSND-

RRM model. The optimization problems are also solved by feeding a commercial solver.

As the proposed SSND problems with the consideration of resource and revenue man-
agement are NP-hard, we propose a metaheuristic (MH) to produce high-quality solutions
in reasonable time. The proposed solution approach is composed of four phases: a con-
structive heuristic to obtain an initial feasible solution, a metaheuristic to iteratively
improve the solutions, intensification and diversification. The proposed metaheuristic is
based on adaptive large neighborhood search [Ropke and Pisinger, 2006] and tabu search.
Aiming to accelerate the search, new neighborhood structures considering design-balance
constraints are proposed. Learning mechanisms are embedded in the whole algorithm to
guide the search by identifying good characteristics/attributes of solutions. The obtained
statistical information is also used to diversify and intensify the search when predefined

conditions are met. As no other solution approaches to the new SSND-RRM model exists,

14
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IBM CPLEX is used as comparison, in terms of computational time and solution quality.

In order to qualify the reactive decision support system and evaluate the performance
of the proposed models, performance indicators (PIs), which are broadly used in practice
and research of transportation, are studied, discussed, classified and applied. We first
study and analyze some of the performance indicators generally used for validating and
evaluating service network design models in the literature. A first classification of these
different performance indicators based on their relevance and meaning from the service
providers’ perspective is then proposed. Furthermore, additional performance indicators
for the intermodal freight transportation problems with revenue management considera-
tions are proposed. Some more representative performance indicators from each category
are then selected and applied to assess the performance of the proposed reactive DSS.
Insights into the generation of adequate test instances to study the planning issues in the

general context of freight transportation systems are also provided.

1.3 Contributions of the Thesis

The fundamental contribution (or the first group of contributions) of this thesis is the
integration of revenue management (RM) polices and the barge transportation system in
the context of the intermodal freight transportation. RM, conventionally applied for pas-
senger transportation at operational planning level, is considered when making decisions

on operations planning at both tactical and operational levels in our research.

At operational level, we propose a DCA-RM model for the network capacity alloca-
tion problem of an intermodal barge transportation system in Chapter II. As RM polices
are considered in the proposed DCA-RM model, one of the main challenges is to clas-
sify the customers. According to the business relationship, customers are classified into
three categories: regular customers (R customers), who sign long-term contracts with the
carriers, and thus whose demands (R demands) have to be accepted; on the other hand,
the so-called spot-market customers (P or F customers), who request transportation less
frequently and on an irregular basis, and thus whose demands may be partially accepted
(P demands) or fully accepted/denied (F demands). Another challenge is to differenti-
ate the products. To achieve that, a transport request is characterized by three time

characteristics:

e The reservation time of a transport request, when it is submitted to the booking

system,;
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e The available time of a transport request, when it is ready to be transported at its

origin terminal on the carriers’ transportation network;

e The due time of a transport request, its maximization. delivery time to its destina-

tion;

among other characteristics. The difference between the available time and the reservation
time gives us the so-called booking anticipation of the transport request, and the delivery
type (slow/fast) depends on the required transport distance from origin to destination
and on the requested delivery time (the difference between the due time and the available
time). A pricing policy, related to the booking anticipation and delivery type, is then
applied to differentiate several product fares. The decision to accept or reject a transport
request is made based on a probabilistic mixed integer optimization model maximizing
the expected revenue of the carrier over a given time horizon. To maximize the expected
revenue of carriers, a set of future potential demands are considered and probability
distribution functions are used to account for their uncertainty of these future demands. In
addition, a set of possible negotiation strategies for better satisfying the rejected customers
are studied based on the proposed DCA-RM model.

In Chapter III, we propose, what we believe to be, the first comprehensive tactical
planning model for freight carriers that integrates both revenue and resource manage-
ment considerations. Customer classification and price differentiation, as considered RM
polices, are integrated into the proposed SSND-RRM model. Instead of accepting all
transport requests like most of the deterministic tactical planning models do, transport
requests from spot-market customers, in the proposed SSND-RRM model, are allowed to
be partially or fully rejected aiming to have better resource utilization and maximize the
net profit of the carriers. The different treatments of customers are decided according to
their corresponding customer categories. The same three customer categories as intro-
duced at the operational level (Chapter II) apply. Different fare classes are also defined
according to the required delivery types. Note that, at tactical level, the price policy is
related to delivery type only. Booking anticipation is not considered because the reserva-
tion time is not used to characterize a transport request at tactical level. With respect to
the resource management, design-balance constraints are considered to ensure the balance
of incoming and outgoing vehicles at each terminal for each time instant. Repositioning
of vehicles is also considered implicitly as the SSND-RRM problems are formulated as a
cyclic model. In addition, the limits on the quantity of the resource is also formulated.
Moreover, transshipment of the freight between different vehicles/services and holding
them at terminals for given periods are considered, with corresponding handling and
holding costs. The proposed SSND-RRM model is tested in various problem settings, in

terms of demand distribution, network topology, fare class and quality-of-service (e.g.,
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delivery time), to study and analyze its performance.

The next original contribution of this thesis is an efficient solution approach for solv-
ing the proposed SSND-RRM model (discussed in Chapter IIT). The proposed four-phase
metaheuristic (MH) is introduced in Chapter IV. Design-balanced service network design
problems, as shown in [Pedersen et al., 2009] and [Vu et al., 2013|, are NP-hard. Fur-
ther complexity to the SSND-RRM is added because of the additional demand selection
associated to one of the customer categories defined in the SSND-RRM model (binary
decision variables), competition of different categories of customers for the network capac-
ity with different fares and trade-offs between opening more services with higher revenue
and rejecting more demands with lower total costs. There are challenges even just to
obtain feasible solutions. We then propose a constructive heuristic in the first phase to
obtain initial solutions to the SSND-RRM. Once an initial solution is obtained from the
first phase, the algorithm tries to improve it in the second phase, by iteratively explor-
ing the search space of service selection, demand selection and the combination of both.
The selection of search space is based on a modified adaptive large neighborhood search
(ALNS) inspired by [Ropke and Pisinger, 2006] and tabu search. To explore the search
space of service selection, several heuristics are proposed based on a service cycle related
neighborhood structure. A service cycle is a set of consecutive services using the same
type of vehicle back to the terminal where the sequence of service starts. Moves based on
the new neighborhood structure guarantee the design-balance constraints and diversify
the search simultaneously. To explore the search space of F-demand selection, several
F-selection heuristics are proposed and different strategies are considered to accept or
reject F' demands. Learning mechanisms are embedded into the proposed MH, and used

to guide the search and the other two phases (intensification and diversification).

Performance indicators (PIs) are broadly used to characterize the performance of trans-
portation systems and to validate and evaluate models, solution methods, corresponding
results and strategies. Some of these are found in public documents, usually providing
global measures such as total flow volumes, profits and share values. While of great in-
terest, such measures are not sufficient to support a fine analysis of different operation
strategies, commercial policies and planning methods. Therefore, the contributions we
make in Chapter V are as follows. First, we make the first step towards a taxonomy
of PIs. Three categories of Pls, i.e., economic impact, resource utilization and quality
of service, are classified based on their relevance and meaning from the perspective of
both service provider and customer. Second, new Pls considering resource and revenue
management in the context of freight transportation are proposed for all three categories.
In addition, we also provide procedure employed to generate test instances, which are

adopted for the experiments throughout the whole thesis, and adequate for further stud-
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ies of the planning issues in a general context of freight barge transportation.

1.4 Structure of the Thesis

The thesis is composed of five chapters and the remaining is organized as follows. Chapter
IT introduces the proposed revenue management approach for dynamic capacity alloca-
tion of an intermodal barge transportation system. Chapter III presents the scheduled
service network design with resource and revenue management considerations model for
intermodal barge transportation. A metaheuristic for the SSND-RRM is then introduced
in Chapter IV. In Chapter V, we study and classify performance indicators for planning
intermodal barge transportation systems and present test for the assessment of the R-DSS

methodology proposed.
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This chapter is dedicated to the operational level of planning for the proposed R-DSS.
In this chapter, we first propose a revenue management model (DCA-RM) for the network
capacity allocation problem of an intermodal barge transportation system. Accept/reject
decisions are made based on a probabilistic mixed integer optimization model maximizing
the expected revenue of the carrier over a given time horizon. Probability distribution
functions are used to characterize future potential demands. The simulated booking
system solves, using a commercial software, the capacity allocation problem for each new
transportation request. A conventional model for dynamic capacity allocation considering
only the available network capacity and the delivery time constraints is used as alternative

when analyzing the results of the proposed model.

The first part of this chapter was published in Lecture Notes in Computer Science

with the following reference information:

Wang, Y., Bilegan, [.C., Crainic, T.G., Artiba, A.: A Revenue Management Approach
for Network Capacity Allocation of an Intermodal Barge Transportation System. In: A.
Paias et al. (Eds.): ICCL 2016, LNCS, vol. 9855, pp. 243-257. Springer (2016). DOI:
10.1007/978-3-319-44896-1_16.

Note that, in the proposed DCA-RM model, the routing of demand is decided and fixed
when the corresponding acceptance decision is made. We then, in the second part of this
chapter, extend the proposed DCA-RM model by integrating the re-routing of accepted
demands. Preliminary experiments are conducted to examine the extended DCA-RM

model.



Chapter 11 DCA-RM

II.1 Introduction

Barge transportation offers a competitive alternative for freight transportation, com-
plementing the traditional road and rail modes. Moreover, considered as sustainable,
environment-friendly and economical, barge transportation has been identified as in-
strumental for modal shift and the increased use of intermodality in Europe [European
Commission, 2011]. Yet, studies targeting barge transportation are scarce, (e.g., [Fazi
et al., 2015, Frémont and Franc, 2010, Konings, 2007, Konings et al., 2013, Notteboom,
2012, Taylor et al., 2005]), the ones considering the intermodal context being even more
rare (e.g., [Tavasszy et al., 2015, van Riessen et al., 2015a, Zuidwijk, 2015, Ypsilantis and
Zuidwijk, 2013]). An important and recent review of the scientific literature on multi-

modal freight transportation planning can be found in [SteadieSeifi et al., 2014].

Revenue Management (RM), broadly used in passenger transportation to manage
trip prices and bookings (e.g., [Armstrong and Meissner, 2010]), has been identified as
a desirable feature for freight transportation, including barge intermodal services [van
Riessen et al., 2015a]. RM is expected to provide freight carriers with tools to better
manage revenues and enhance service by, in particular, tailoring the service levels and
tariffs to particular classes of customers. In [van Riessen et al., 2015b], the authors study
revenue management in synchromodal container transportation to increase the revenue
of the transportation providers. In their study, several delivery types are provided by
carriers. Each type of delivery is associated with a fare class, characterized by a specific
price and a specific due time. In [Li et al., 2015], authors propose a cost-plus-pricing
policy to determine the price of delivery types in the context of intermodal (truck, rail
and barge) freight transportation. The price associated with each delivery type is the
sum of the operational cost and the targeted profit margin. The price of a delivery type
depends on its urgency as well. Different scenarios, i.e., self-transporting, subcontracting,
and a mix of the two, are studied, with different operational costs and targeted profit
margins. However, in both [van Riessen et al., 2015b] and [Li et al., 2015], only one type
of customers, who sign long-term contracts with the carriers, is considered. Consequently,
no accepting or rejecting decision is made during the operational phase. In [Liu and Yang,
2015], customers are classified into two categories: contract sale (large shippers, which
might be considered regular) customers, and free sale (scattered shippers) customers.
A two-stage stochastic optimal model is then proposed to maximize the revenue. In
the first stage, the revenue is maximized serving contract sale customers only. In the
second stage, the slot capacity after serving contract sale customers is used to serve
the scattered shippers customers through a dynamic pricing method for price settling
and an inventory control method for slot allocation applied jointly in each period of

free sale. The exploration of RM-related issues in freight transportation is still at the
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very early stages, however, as illustrated by the reviews related to air cargo operations
[Feng et al., 2015], railway transportation [Armstrong and Meissner, 2010], and container

synchromodal services [van Riessen et al., 2015a).

We aim to contribute to the field by proposing a DCA-RM model to address the
network capacity allocation problem of an intermodal barge transportation system. As
intermodal barge and rail systems share a number of characteristics, e.g., scheduled ser-
vices, limited transport capacity (resource) and uncertain future demands, the approach is
inspired by the work of [Bilegan et al., 2015] where the authors develop a model to dynam-
ically allocate the rail capacity at operational level. In defining the revenue management
problem for barge transportation we induce novel features to our modeling, however: we
adapt it for the barge transportation space-time network, we enrich it by introducing dif-
ferent categories of customers with the definition of specific treatment for each of them,
including particular accept/reject rules. An important feature offered by the new model-
ing lays in the proposal of a negotiation process based on the optimization model when
dealing with rejected demands, as explained in more details further on. Customers are
classified into different categories as follows. Regular customers, who sign long-term con-
tracts with the carriers/providers, must be satisfied and thus all these regular category of
demands have to be accepted. On the other hand, the so-called spot-market customers,
who request transportation less frequently and on an irregular basis, may be rejected if
needed. The accept/reject mechanism is settled according to an estimation of the prof-
itability of each new incoming demand, given the availability of service capacities at the
time of decision. In order to better consider customer behavior specificities, those spot-
market customers are further classified into partially-spot customers, who would accept
their requests to be partially accepted, and fully-spot customers, whose requests must be
either accepted as a whole or not accepted at all. These acceptance rules are introduced
and used in the new DCA-RM model (through specific decision variables). Moreover,
based on the customer differentiation, and on the associated acceptance rules, different
mechanisms are set out in a new negotiation process model which is implemented and used
when dealing with rejected demands. At the authors best knowledge, this is the first con-
tribution proposing to introduce RM techniques, e.g., price differentiation and customer

classification, at the operational level planning of barge transportation activities.

The application of RM polices requires a booking system to manage transport requests,
and the capability to forecast future demands. In our case, the simulated booking system
performs an accept/reject decision for each new transport request, based on the results
of the proposed optimization model maximizing the expected revenue of the carrier over
a given time horizon. In case of acceptance, the corresponding optimal routing is also

provided by the optimization. Probability distribution functions are used to characterize
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future potential demands for transportation and, thus, the proposed optimization model
takes the form of a probabilistic mized integer program (MIP). A commercial solver is used
to address this model. Simulation is used to analyze the performance of the proposed
optimization model and RM polices, through comparisons with a conventional dynamic
capacity allocation model considering only the available network capacity and the delivery

time constraints.

The remainder of this chapter is organized as follows. In the first part, we briefly
describe the network capacity allocation problem and the considered RM concepts and
strategies for intermodal barge transportation in Section II.2. The proposed DCA-RM
model is introduced in Section II1.3. Simulation and numerical results are discussed and
analyzed in Section I1.4. In the second part of this chapter, the extended DCA-RM model
is presented in Section I1.5 and validated with preliminary experiments. We conclude in
Section II.6.

I11.2 Problem Characterization

We first briefly present the general problem of dynamic capacity allocation for barge
transportation. The mechanisms of the booking system are then discussed, together with

the proposed RM polices. The associated notation is identified as well.

I1.2.1 Dynamic Capacity Allocation Problem

Consolidation-based carriers, such as those operating barge services, plan and schedule
their operations for the “next season” with the goal of jointly maximizing the revenue and
satisfying the forecast regular demand, through efficient resource utilization and opera-
tions. Transport requests fluctuate greatly during actual operations, however, in terms of
origins, destinations, volumes, etc., not to speak of those unforeseen demands the carrier
will try to accommodate. The capability to answer customer expectations of the transport
network is consequently continuously changing as well, together with its efficiency and
profitability. Setting up some form of advanced booking system is the measure generally

adopted to handle this complex situation.

Transport booking requests are traditionally answered on a first-come first-serve (FCFS)
basis. Moreover, a transport request is (almost) always accepted provided the network
currently has the capability to satisfy both the volume and the delivery time specified

by the customer. This has the unwanted consequence that requests coming at a latter
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time might not be accepted, even though they present the potential to generate a higher
revenue, due to a lack of transport capacity, resulting in the loss of additional revenue for

the carrier.

RM-based booking systems operate according to different principles. The booking
system considered in this chapter manages the transport capacity, and the decision to
accept or reject a new demand, considering a set of potential future demands characterized
by different fare classes. To make the final decision, the acceptance and rejection of the
current demand are compared by optimizing the estimated total revenue of all demands,
current and potential future ones. Therefore, in our model, a current transport request
may be rejected if it appears less profitable compared with the estimated profit of future
demands competing for the transport capacity. The resource is then reserved for the
future demands, expecting a higher total revenue. On the other hand, when the booking
system accepts the current transport request and more than one possible routing exist,
a “better” capacity allocation plan can be obtained by considering the future demands.
That is, the capacity available in the future might more closely match future demands,

increasing the possibility of acceptance and the generation of additional revenue.

We formulate the dynamic capacity allocation problem on a space-time network over a
time interval composed of 1, ..., T time instants. The nodes of the G = (N, .A) network are
obtained by duplicating the representation of the physical terminals at all time instants,

i.e., a node n(i,t) € N specifies the physical terminal 7 and the time instant ¢.

A set of already-selected services, each with given schedule, route and capacity, pro-
vides transportation among the nodes in N. Note that, in this research, we assume
that services have already been scheduled at the tactical planning level (i.e., when the
Scheduled Service Network Design problem is solved) and are not to be rescheduled at
the operational level. The capacities of scheduled services are also fixed since vehicles
are already assigned to services and no extra-vehicles are considered to be available upon
request. A service s € S is characterized by its transport capacity cap(s) and set of
legs 1(s). Leg ax(s) € n(s) represents k™ leg of service between two consecutive stops
(i.e., ir(s) and ig1(s)) of service s, and is characterized by its origin and destination
terminals, orig(ax(s)), dest(ax(s)) € N, with the respective departure dep(ax(s)) and ar-
rival arr(ag(s)) times. Let cap(ag(s)) = cap(s) identify the capacity of ax(s), and define
cap__avl(ag(s)), the residual capacity of leg ay(s) after having routed the already accepted

demands.

The set of arcs A is then made up of the sets Ax and Apg representing the transport
and holding arcs, respectively. Set Ay is composed of all the defined service legs, while

Apg arcs link two representations of the same terminal at two consecutive time periods.
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Holding arcs represent the possibility of demand flows to wait at their respective origins
or at intermediate terminals during their journey, to be picked up by services passing by

at later periods.

I1.2.2 RM Policies

Revenue Management groups together a set of concepts and techniques aimed to better
integrate customer behavior knowledge into the optimal capacity allocation models. For
instance, different fares are applied to well-differentiated products/services, and different
market segments are identified and used with the overall objective to maximize expected
revenue. To define RM polices for barge transportation systems, we introduce customer

classification and price differentiation.

Customers are classified into three categories according to the business relationship:
regular customers (R), who sign long-term contracts with the carrier or whom the carrier
trusts; partially-spot customers (P), who contact the carrier infrequently and do not
require that all their demand be accepted; fully-spot customers (F), who also require

service irregularly but their demand must be accepted as a whole or not at all.

Let d be the current booking request. Let D/, be the set of demands accepted before
the arrival of d, and D/ the set of forecasted future demands with direct interactions
in time with d. A transport request 0 € D), U D) U {d} is then characterized by the
volume to be transported in TEUs, vol(9); the origin and destination terminals, orig(d)
and dest(0), respectively; the time res(9) it is submitted to the booking system; the time
avl(d) it becomes available at its origin terminal and the corresponding anticipation time,
O0) = avl(d) — res(d); the due time (latest delivery time) out(d) and the requested
delivery time A(0) = out(d) — avl(d); the unit tariff f(d) according to the fare class of
the demand (defined bellow); and the category cat () of customers (R, P or F). Note that
a future demand d” is considered to be part of the set of potential future demands D}
when it has “direct interactions” with the current booking request d, which is true when

the two time conditions are satisfied:

o res(d’) > res(d)
o [in(d"), out(d")] N [in(d), out(d)] # 0.
Let VM AX(d") be the maximum volume a future demand request d” € D/} may take,

and Py (z) the discrete probability distribution function indicating the probability that
a given value 0 <z < VMAX(d") occurs.
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We define four fare classes for any pair of terminals in the physical network (and the
distance separating them) as the combination of ©(d), early or late booking, and A(d),
slow or fast delivery requested. A demand with the highest fare class thus corresponds
to a late booking and fast delivery request, while a demand with the lowest fare class

corresponds to an early booking and slow delivery request.

The proposed RM policy for barge transportation is then to examine each new trans-
port request, d, and decide on its acceptance, and routing through the network for ac-
cepted ones, by considering its feasibility and profitability, given the current status of the
network and an estimation of future demands. The former means that currently there
is sufficient capacity and time to satisfy d. The latter indicates that the expected total
revenue given the acceptance of d is at least not worse than the one corresponding to
rejecting it, taking into account the potential future demands. The model of Section I1.3

is used to make these decisions.

A rejected request has no influence on the transport network. Similarly, the potential
future demands are only used to calculate the expected total revenue, and do not impact

the status of the network.

1I.3 D CA-RM Model Formulation

We now present the Revenue Management decision model (DCA-RM) that is to be solved

for every arriving request for transportation d. The decision variables are:

e £(d): accept or reject d, where £(d)

— equals 1 when cat(d) = R,
— varies within [0, 1] when cat(d) = P,

— takes the value 0 or 1 when cat(d) = F;
e 2(d,ax(s)): volume of demand d on arc ag(s);

e mazxvol(d”): maximum volume available on the network (at the decision time) to

serve the potential future demand d” € DY;

o z(d",ar(s)): volume of the potential future demand d” € D} on arc a(s).

Obviously, £(d') and z(d', a(s)) variables are fixed on all arcs for the already accepted
demands, which we denote d’, d' € D).
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The objective function of the model with respect to the current demand d maximizes
the sum of its corresponding revenue and the expected revenue computed on the basis of

future demand forecasts:

max (f(d) - £(d) - vol(d) + ¢) (IL.1)

where
mazvol(d'")

¢= > fld) > Py (I1.2)

d"eDl =0

Following [Bilegan et al., 2015], ¢ is linearized by introducing additional binary deci-
sion variables y,4; for each potential future demand d”, where the integer-valued j takes
all the values between 1 and VM AX(d"). Note that VM AX(d") represents the maxi-
mum possible volume of a booking request, which translates mathematically, in terms of
probability distribution, as Py (j) = 0 when j > VMAX(d") + 1. The binary decision
variables yq; are defined to be equal to 1, if no more than volume j of capacity is available
on the network to serve the potential future demand d” and 0 otherwise. In order to make
this definition consistent, for each future demand d”, at most one of the variables yg;
may take the value 1 (since this will correspond to the maximum capacity available on

the network to serve that specific demand). Thus, the objective function becomes:

max (f(d)-§(d) -vol(d) + > f(d") 3. way i(de/«:c))) (IL.3)

d"eDy 1<j<VMAX (d") =0

since mazwvol(d") is defined as follows:

mazvol(d") = > JYar (I1.4)
1<j<VMAX(d")
with
> <1 (IL5)
1<j<VMAX(d")
and

Following this definition, note that the optimal value of maxvol(d") is computed (I11.4)
as a result of the optimization problem. Thus, this optimal value is obtained when
maximizing the expected revenue corresponding to current demand d on the network,
taking into account the entire remaining available capacity and the overall profitability of

the whole set of potential future demands on that specific time window.

The constraints of the model are the usual flow conservation relations at nodes and
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the capacity restrictions imposed by the service network. The latter take the form defined

by (I1.7) for each service leg

> w(d” an(s)) + v(d, ar(s)) < cap_avl(ax(s)), Vay(s) € Ak (IL.7)

11
d"eD)

while the flow conservation constraints for all nodes n(i,t) € Ny are:

E(dyvol(d)  if i = orig(d)
> wlda)— 3 w(da)= | —&(dwol(d) if i = dest(d) (IL.8)

a€AT(n(i,t)) a€A~ (n(i,t)) .
0 otherwise
and
mazvol(d”)  if i = orig(d")
oo a(da)— D> x(d’a) =S —mazvol(d’) if i = dest(d"), Vd" € D}
a€ At (n(it)) a€ A~ (n(i,t))

0 otherwise

(11.9)

where A" (n(i,t)) and A~ (n(i,t)) stand for the sets of outgoing and incoming arcs,

respectively, of node n(i,t) € N.

Finally, the constraints defining the range of the decision variables are:

1, if cat(d) = R
&(d)=1410,1], if cat(d) = P (11.10)
{0,1}, if cat(d) = F
z(d,a) >0, Yaec A (I1.11)
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z(d",a) >0, Vd" € D), Vae A (I1.12)

II.4 Simulation, Numerical Results and Analysis

To validate the proposed DCA-RM model, we use computer simulation. We simulate the
sequential arrival of current demands as an iterative process. As shown in Figure II.1,
before launching the iterative process, an initialization phase is required. Services (with
specified itinerary, schedule and capacity) selected at the tactical planning level are given
as inputs for the initialization to decide the capacity of the transportation network at
operational level. The demand forecasts are also considered to be known and given in
the initialization. Note that, as the length of the simulation is longer than the scheduled
length at tactical level, the selected services are applied repeatedly over the simulation
according to their schedules. We then start to simulate the sequential arrival of current
demands. In the simulation, we randomly generate no more than one current demand
for one time instant. For each current demand, we solve the corresponding optimization
problem. According to the optimal solution, we make the decision to accept/reject the
current demand, and update the status of the network in terms of remaining available

capacity. Then, if the simulation has not been finished, a new iteration is performed.

Initialization

—>!

generation of d

reject

accept or
reject

accept

update network
capacity

global

stopping
criteria

Figure I1.1: Procedure of the simulation
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Several scenarios are used to test and validate the proposed model. We first set up a
scenario with scarce resources and a very limited number of origin-destination (OD) pairs
of transport requests. By using this scenario, we analyze the impact of different price
ratios applied when different fares are introduced, corresponding to different classes of
booking and delivery delays required by the customers. A second scenario, with a more
comprehensive problem setting in terms of number of services, number of possible OD
pairs of demands, is devised. This second scenario is settled to discuss the performance
of the DCA-RM model with respect to different levels of transportation capacity on the
network, as well as with respect to the accuracy of demand forecasts. Based on the
second scenario, possible strategies of negotiation, when a regular demand is rejected,
are equally considered, and numerical results are analyzed. The remaining of this section
is organized as follows. We briefly introduce the scenario settings for the simulation in
Subsection I1.4.1. We then illustrate and analyze the numerical results in Subsection
11.4.2.

I1.4.1 Scenario Settings

For all scenarios, four consecutive terminals, i.e., A, B, C and D, are considered to be
located along the inland waterway with travel times for barges between any two consecu-
tive terminals assumed to be the same. As for the service travel times, all the scheduled
stops of a service (including at its origin and destination), are assumed to have identical
durations as well, these delays corresponding to the time consumption for operations at
port (e.g., loading/unloading containers). The maximum capacity of services is identical
within one set of experiments but is varied from one scenario to another. The residual
capacities of service legs are sequentially updated according to the accepted demands and

their optimal routing. Holding arcs of containers at terminals have unlimited capacity.

Let us recall that any current demand d is characterized by its res(d), vol(d), orig(d),
dest(d), avl(d), out(d), f(d) and cat(d). We discretize the time so that no more than
one reservation request (res(d)) may arrive at each time instant during the simulation;
vol(d) is a discrete random value between 0 and VMAX (the same maximum volume is
assumed for any demand) following a given probability distribution function; vol(d) =
0 indicates that there is no booking request for the current time instant. The origin-
destination pair, thus the values of orig(d) and dest(d), are uniformly generated out of
the set of possible OD corresponding to a scenario. Both anticipation ©(d) and delivery
time A(d) are randomly selected from a predefined pool of possible values, following the
uniform distribution; the generation of the latter is equally related to the distance between
the orig(d) and the dest(d) of the demand. The avl(d) and out(d) are then computed
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accordingly. Thresholds for the anticipation and delivery time are predefined to split
the demands into early/late reservation and slow/fast delivery types, respectively. For
a given distance of an OD, a basic fare p is predefined. The unit transportation price
(per container) is then defined as f(d) = p-reg - ra, where rg and r are the anticipation
ratio and the delivery ratio respectively, and whose values will be set to define particular
instances. Their corresponding values for early reservation and slow delivery are both
set to 1, the others being integer values (factors) greater than one, corresponding to
larger fares charged on high contribution demands requesting higher quality-of-service
transportation. Finally, cat(d) is randomly generated among R, P and F following the

uniform distribution.

For each current demand d, the corresponding set of potential future demands is
generated following the same generation procedure, except for its volume. Indeed, since
the objective function is defined based on the mathematical expectation of the potential
revenue of future demands, this computation is performed considering all the possible
volumes (from 0 to VMAX), weighted by their probabilities. The summation is bounded,
however, by the maximum available capacity (at decision time) on the network to satisfy
each specific future demand d” (mazvol(d”)). Following the same idea, note that the
categories (i.e., R, P or F) of future demands are not needed either when generating
the potential future demands. By doing so, an estimated value of the expected revenue is
obtained by simulation and used to make the decision of accepting or rejecting the current
demand d.

For all the scenarios in the simulation, a FCFS accept/reject policy is conducted as
comparison. No potential future demands are considered for the FCFS model. A current
demand d is accepted when at least one feasible route exists in the space-time network,

without considering the expected revenue and hence, without considering its profitability.

The characteristics of the first scenario are:

Length of the simulated time horizon is 300 time instants;

There are 15 identical services defined, starting every 20 time instants, from A to

D with an intermediate stop at B;

3 different ODs are considered: AB, BD and AD:;

Different experiments are conducted, with different values of the anticipation ratio
(rg) for late reservation and the values of the delivery ratio (ra) for fast delivery:
1,2, 3 and 4.
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The characteristics of the second scenario are:

e Length of the simulated time horizon is 600 time instants;

e There is a total of 30 services running on the network, 15 in each direction: from A

to D and from D to A; they all stop at all terminals;
e All 12 possible ODs are considered;

e Different experiments are conducted, with different capacities of services: 5, 10 and
20 TEUs;

e Different experiments are conducted, based on different forecast accuracies: good

accuracy, underestimation, overestimation.

I1.4.2 Numerical Results and Analysis

As described before, we vary the values of anticipation ratio (rg) for late reservation and
the values of the delivery ratio (ra) for fast delivery in the first scenario. For example,
when r¢ = ra = 2, the price ratio (r) of early reservation with slow delivery, early
reservation with fast delivery, late reservation with slow delivery and late reservation
with fast delivery is denoted as » = 1 : 2 : 2 : 4. Experiments are also conducted
when rg = ra = 1,3 or 4. For each tested price ratio, the simulation was carried out
20 times with random transport requests, which are generated following the procedure
described in the previous subsection. The total revenue obtained by the DCA-RM model
and by the FCFS policy is recorded for each simulation, and the ratio of total revenue
of DCA-RM/FCFS is then calculated. In the simulation, we also counted the number of
rejected transport requests, which are denied according to the DCA-RM model due to
unprofitability or infeasibility .

The average results obtained on the first scenario are illustrated in Figure I1.2. Figure
I1.2 (a) presents the ratio between the total revenue obtained with the DCA-RM model
and the total revenue obtained with the FCFS policy, corresponding to different price
ratios. Figure I1.2 (b) presents the corresponding ratios of the number of nonprofitable
rejected requests over the total number of rejected requests when applying the DCA-
RM model. On the horizontal axis, r indicates the tested price ratios. As expected,
better revenue is always obtained by applying the DCA-RM model when compared with
the FCFS policy. When we increase the price ratio r, the difference in profitability of
low-fare compared to high-fare demands grows as well. A low-fare demand, which has a

feasible routing in the transport network, has then a higher chance to be less profitable
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ratio of total revenue of RM/FCFS (standard deviation)

1.85 (0.33)
[a)

1.41(0.22)

1.18 (0.10)
1.02 (0.06)

r=1:1:1:0 r=1:2:2:4 r=1:3:3:9 r=1:4:4:16
ratio of rejected requests of unprofitability /infeasibility
(1]

1.0 1.035

0.8

0.637

0.4

0.290

0.027

=100 r=1:2:2:4 r=1:3:3.9 r=1:4:4:16

Figure I1.2: Effect of price differentiation on revenue (a) and on rejected requests (b)

compared to a potential future high-fare demand (even if its probability to occur is low)
and consequently will be rejected or not fully accepted. Therefore, as shown in Figure
I1.2 (b), when we increase the price ratio r, more demands are rejected because of this
economic discrimination (unprofitability). Consequently, a boost in revenue, as illustrated
in Figure I1.2 (a), is obtained when we increase the values of anticipation and delivery
price ratios. As the presented average values are calculated over 20 instances, an insight
about the consistency of the simulation (with the corresponding standard deviation in the

parenthesis) is also given in Figure I1.2 (a).

Note that, even without any price differentiation, the DCA-RM model still generates
better solutions in terms of total revenue (Figure 11.2 (a), when r=1:1:1:1). In fact,
the consideration of future demands equally aids in finding a better routing solution
when a demand is accepted. This better routing makes room in the space-time network
for potentially infeasible future demands, and hence convert them to feasible, which is

transformed accordingly into extra revenue.

The ratios between the total revenues generated when applying the DCA-RM model
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Table II.1: Ratio of total revenue of RM/FCFS

Service Cap.=20 Service Cap.=10 Service Cap.=5

Simulate:Estimate=0.5  1.0093 (0.02) 1.0637 (0.06)  1.3293 (0.14)
Simulate:Estimate=1.0 1.0469 (0.03) 1.3134 (0.10) 1.5082 (0.16)
Simulate:Estimate=1.5  1.1426 (0.06) 14130 (0.13) L5245 (0.16)

and when applying the FCFS policy within the second scenario are presented in Table
I1.1. To examine the sensitivity of the DCA-RM model to different forecast accuracy
situations, we carry out three different sets of simulation related to the accuracy of the
demand forecasts, in terms of total volume. In these simulations, if the arrival process
of demands to the booking system follows the same probability distribution function as
considered in the objective function of the DCA-RM model, we say the demand forecast
is accurate (Simulate:Estimate=1.0). Simulate:Estimate=1.5 indicates that the demands
are underestimated by a factor of 0.67, while Simulate:Estimate=0.5 indicates that the
demands are overestimated by a factor of 2. The behavior of the DCA-RM model with
respect to different levels of maximum service capacity is also studied. The values 20, 10
and 5 TEUs for the maximum service capacities are tested in three independent sets of
experiments. For each tested accuracy of demand forecast and service capacity, the simu-
lation was carried out 20 times. The results presented in this table are the average values

over 20 test instances with corresponding standard deviation given in the parenthesis.

As expected, the DCA-RM model generates higher total revenue than FCFS when the
demand forecast is accurate. Moreover, even when demands are not coming as expected
(overestimation or underestimation), DCA-RM model still defeats its competitor. The
better performance of the DCA-RM model is found to overcome the influence of under-
estimation. Underestimated demand forecast here implies more booking requests than
expected, which can be relatively interpreted as a situation with scarce resource. Another
observation from Table II.1 is that the less network capacity we have, the better the
DCA-RM model responds. Therefore, the best revenue ratio (1.5245) is obtained when

the resource is scarce and the demand forecast is underestimated.

The reason why the DCA-RM model generates better solutions can be as follows:
fully or partially denying demands (due to the different customer categories) create the
possibility of saving the precious resource for more profitable (due to higher contribution
fares) future demands; to accept a demand, the best routing is decided by taking into
account the potential future demands. Consequently, the better routing of current demand
may convert some of the potentially infeasible future demands into feasible demands.
Note that, three cases (out of 20), when Service Cap.=20 and Simulate:Estimate=0.5,
are observed with a ratio of total revenue of RM/FCFS less than 1, which means FCFS
model generated better solution than the DCA-RM model. This kind of situation may
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Table I1.2: Number of rejected demands of RM/FCFS

Service Cap.=20 Service Cap.=10 Service Cap.=5

Simulate:Estimate=0.5 8.63/6.89 30.05/19.55 67.15/58.60
Simulate:Estimate=1.0 29.8/26.55 110.5/106.55 182.55/184.90
Simulate:Estimate=1.5 95.95/96.50 242.45/234.80 324.40/328.25

happen when future demands are not coming as expected, especially less demands are
coming. In that case, some transport requests are rejected because they are considered
as unprofitable at the decision time, but the reserved capacity by the DCA-RM model
is not fulfilled later with those expected more profitable demands. It then results into
the unexpected revenue performance (worse than the FCFS). The existence of this kind
of situation implies the importance of demand forecast when applying the RM polices
in practice, which is not the focus in my thesis. However, by applying the proposed
DCA-RM model, even the demand forecast is overestimated, better total revenue is still

obtained in general.

Due to the introduction of RM techniques, some demands are rejected due to their
profitability, even if they are feasible at the decision time. Therefore, compared to the
FCFS models, more demands are expected to be rejected by the DCA-RM model. How-
ever, according to Table I1.2, the number of rejected demands when applying the DCA-RM
model is less than the corresponding number of rejected demands with the FCFS policy
in some cases. This observation indicates that the reserved capacity is taken by future
“infeasible” demands and results in better customer satisfaction. Moreover, given the
same level of accuracy of demand forecast, less demands are rejected with higher network
capacity. However, the difference between the two competitors is slight. For the DCA-
RM model, almost one third of the denied transport requests correspond to regular (R)

customers.

Therefore, we design another set of simulations including a negotiation phase for only
the rejected R category customers. As shown in Figure II.3, the negotiation phase is
triggered once a demand from an R customer is rejected. According to the result of
negotiation (succeed/fail), the remaining available capacity of the transportation network
is updated. According to our problem setting, two main reasons may result in the rejection
of R customers: first, no enough capacity in the network at decision time; and second,
the given delivery time constraint is too tight. Therefore, three possible negotiation
strategies, Nego RM, Nego FCFS and Nego PP, are combined with the proposed RM
approach. The first two strategies try to make the best use of the available capacity in
the network, while the third one tries to loose the delivery time constraint. To be more
precise, both Nego  RM and Nego FCFS strategies consider the rejected R demand as

a P demand. However, the former tries to fit this demand in the transport network
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Figure I1.3: Procedure of the simulation combined with negotiation phase

considering estimated future demands (DCA-RM model), while the later tries to accept
this demand on the transport network in a greedy manner (FCFS model). Instead of
changing the category of the demand, the Nego PP strategy still treats an R customer
as regular. In order to transport it, the delivery delay of this demand is extended and a
lower unit price is charged (as penalty). For all the tests, a FCFS policy is also carried on
as comparison. The effect of different negotiation strategies for rejected R type demands

on the total revenue and the percentage of successful negotiation is illustrated in Table
I1.3.

In Table I1.3, Price Ratio r indicates the tested values of both rg for late reservation
and rp for fast delivery are equal to 2, 3 or 4. Revenue/FCFS indicates the ratio of total
revenue obtained by DCA-RM model with (or without) negotiation phase related to FCFS,
and Successful Nego shows the percentage of successful negotiation corresponding to each
strategy. For each tested negotiation strategy and price ratio, the simulation was carried
out 20 times, and the average values are presented with their corresponding values of stan-
dard deviation. As shown in the table, even combined with negotiation, DCA-RM model
still generates better solutions than FCFS. For a given price ratio, Nego RM always gen-
erates slightly better solutions, in terms of total revenue, compared with Nego FCFS. On
the other hand, the latter always has better performance in negotiation than the former.

Therefore, carriers can choose the appropriate strategies according to the requirements
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Table I1.3: Effect of different negotiation strategies for rejected R customers

Price Ratio Nego. Strategies Revenue/FCFS  Successful Nego. (%)

RM 1.1361 (0.12) 0
1994 Nego RM 1.1737 (0.07) 12.82
“%% Nego  FCFS 1.1540 (0.08) 18.36
Nego PP 1.0248 (0.07) 50.31

RM 1.3208 (0.17) 0
1339 Nego RM 1.3733 (0.11) 16.42
%7 Nego_ FCFS 1.3476 (0.11) 20.67
Nego_ PP 1.1904 (0.13) 57.14

RM 1.5300 (0.21) 0
i ggyg  Nego RM 1.5905 (0.18) 16.14
Y Nego FCFS 1.5379 (0.19) 22.44
Nego_ PP 1.3466 (0.14) 56.81

of their regular customers. In case that R customers have a relative loose constraint on
the delivery time, Nego PP succeeds more than 50% in the negotiation process for all
tested price ratios. One may argue that there exists other possible ways to compensate.
In fact, we do not claim the proposed negotiation strategies are the best solutions. In-
stead, we put the emphasis on the fact that with the proposed RM approach, we offer to
the carriers a panel of possible ways to simultaneously increase the satisfaction of regular
customers and make more revenue. Different negotiation strategies may be adopted based

on different types of behavior characterizing regular customers.

I11.5 Extended DCA-RM Model

In the proposed DCA-RM model, once a transport request is accepted, simultaneously
the routing of this demand is decided and fixed. However, as the existence of anticipation
time ©(0), re-routing the previously-accepted demands is possible and has the potential

to make better plans, in terms of resource utilization and total revenue.

Therefore, we extend the proposed DCA-RM model by integrating the re-routing of
accepted demands. To achieve that, a demand 0, in addition to other characteristics
discussed in Subsection 11.2.2, is also characterized by dep(?), which indicates the earliest
departure time of any fragment of 9. To be more precise, given an accepted transport
request d € D), the value of {(d') has been fixed since the DCA-RM model decided to
accept d’. When the booking of the current transport request d occurs, if any fragment of
d' has been or is ready to be transported away from its origin terminal orig(d’), namely

dep(d') < res(d), d are not allowed to be re-routed, which means values of z(d’,a)
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variables are fixed on all arcs; Otherwise (i.e., dep(d’) > res(d)), d’ will be re-routed when
the DCA-RM model makes decision to accept or reject the current transport request

d, which means the values of z(d’,a) variables have to be computed again. We define
D(d) = {d' | dep(d') > res(d)} as a subset of D).

To consider those variables, the model presented in Section II.3 is then extended in

the following way. The constraints (I1.7) should be replaced by:

Yoow )+ > x(d" ar(s)) + z(d, ar(s)) < cap_avi(ak(s)), Vax(s) € Ag

d’Eﬁ(d) d”ED”
(11.13)

Two more sets of constraints, with respect to flow conservation and range of decision

variables, are added as well to the previous model.

E(dvol(d)  if i = orig(d)

oo w(da)— ) w(d,a) = —¢(d)wol(d) if i = dest(d'), Vd € D(d)
ac A+ (n(i,t)) a€A= (n(i,t)) .
0 otherwise
(I1.14)
and
z(d,a) >0, Vd € D(d), Ya € A. (I1.15)

In order to examine the extended DCA-RM model, we conduct preliminary exper-
iments. The same set of simulations described in Section 1.4 is used here and a new

scenario is designed and characterized as follows:

Length of the simulated time horizon is 600 time instants;

There is a total of 30 services running on the network, 15 in each direction: from A

to D and from D to A; they all stop at all terminals;

All 12 possible ODs are considered;

The value of anticipation ratio (rg) for late reservation and the value of the delivery
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ratio (ra) for fast delivery are both set at 2;
e The capacity of services is 20 TEUs;
e Demand forecast is considered to be accurate;

e Different experiments are conducted, based on different approaches to accept or
reject demands: DCA-RM model without re-routing of accepted demands (RM),
extended DCA-RM model with re-routing of accepted demands (RM__ReRoute)
and conventional FCFS model considering only feasibility (FCFS).

The simulation was carried out 20 times and the accumulated total revenue (average value
at each simulated time instant) is chosen as performance indicator to evaluate the new

model, and the results are displayed in Figure I1.4.

Accumulated total revenue

20000

5000 e

st t
0 23 46 69 92 115138161184 207230253276 299322345368 391414437 460483 506 529 552575598

— BM_ReRoute - BM FCFS

Figure I1.4: Performance of the extended DCA-RM model; The accumulated total rev-
enues of RM__ReRoute, RM and FCFS are presented

As the greedy acceptance mechanism considers no future demands and profitability,
FCFS model performs better on a very short term than both RM and RM_ ReRoute.
FCFS model and RM model then iteratively have the lead (compared with each other)
in the accumulated total revenue before time instant ¢t = 380, as the warm up of the
simulation. After that, RM model gradually has better performance than FCFS. Before
time instant ¢t = 50, RM and RM__ReRoute have the same total revenue. The decisions
to accept or reject each transport request of both RM and RM__ReRoute before that time
are the same, but with different routings. After ¢ = 50, better total revenue is obtained

by RM_ ReRoute benefiting from the consideration of re-routing of accepted demands.
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Following the time in the simulation, the difference between these three models, in terms

of accumulated total revenue, is getting bigger.

Recall that the DCA-RM model decides the routing of a demand simultaneously when
the acceptance decision of that demand is made. Once the routing of a demand is decided,
it is then fixed. A set of related future demands are also considered, when making routing
plans, so that an intelligent transport capacity allocation is expected with respect to better
resource utilization and profitability. We call a routing procedure like this: predictive
routing, as the decision is made based on a prediction of the future demands. However,
the quality of predictive routing mainly depends on the accuracy of the forecast. The
more accurate the forecast is, the better the routing plan will be. To route demands,
the extended DCA-RM model follows the predictive routing procedure, but allows the
re-routing of some accepted demands. From the perspective of those accepted demands,
forecasts are regularly updated, as the information of some “future” demands is confirmed.
The routing decisions of those accepted demands are then updated regularly corresponding
to the confirmed information of “future” demands. An accepted demand keeps being
re-routed until the departure of its very first container. By taking into account the
re-routing of accepted demands (a more intelligent routing), better transport capacity
allocation is expected. According to the results, it is obvious that the extended DCA-RM
model (RM_ ReRoute in Figure I1.4) performs better and generates higher total revenue
compared with DCA-RM model (RM in Figure 11.4) throughout the simulation.

As Figure I1.4 presents the average accumulated total revenue of each model based
on 20 test instances, we then offer more insights of each test instance by presenting the

possible performance patterns of these three tested models in Figure I1.5.

As shown in Figure I1.5, there are three possible performance patterns: (a) RM __ReRoute >
RM > FCFS, (b) RM > RM__ReRoute > FCFS and (c¢) RM__ReRoute > FCFS >
RM, in terms of total revenue when the simulation is finished. To be more precise, these
three patterns happened 17 times, 2 times and 1 time, in turn, among the 20 test in-
stances. In addition to the expected pattern (a), two more patterns (b) and (c) are also
observed. As shown in Figure I1.5 (b), RM__ReRoute generates less total revenue than
RM after the simulation in this pattern. We notice that, after t = 514, the accumulated
total revenue of RM__ReRoute no more increases. This kind of situation happens, when
current demands in the simulation are encountered either infeasible or unprofitable con-
secutively for the RM_ ReRoute. The same reason also explains the flat segment of RM
in Figure IL.5 (c). However, as shown in Figure I1.5 (c), after the abnormal situation, the
curve of the RM is gradually shrinking its difference compared to FCFS. If the simulation
is carried out for longer, RM is expected to have a better total revenue than FCFS. We

also have the same expectation for RM__ReReoute to obtain the best total revenue among
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Figure I1.5: Examples of the three possible performance patterns of RM_ReRoute, RM
and FCFS

these three models in Figure 11.5 (b).

Note that, as more decision variables are considered, more computational time is
consumed to solve the extended DCA-RM model. Therefore, in the rest of the thesis,
as the purpose is to validate the concept of RM introduction into the proposed reactive

decision support system, experiments are conducted based on the first version of the
DCA-RM model.

II.6 Conclusions

In this chapter, we present a Revenue Management (RM) approach for dynamic capacity
allocation of the intermodal barge transportation network. A new model is proposed

considering the RM polices.

Customers in a deregulated market have different behaviors, requires and willingness to
pay. To model that, in our research, we classify the customer-demand from 2 dimensions.
The first one is contractual category. According to their business relationships with the
carriers, in our research, we assume that customers are classified into two categories,
Regular and Spot. Regular customers, are those customers who sign long-term contracts

with carriers and whose demands must be accepted, if feasible; and Spot customers, are
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those customers who come to the carriers with transport requests from time to time
and consequently whose demands could be rejected. The Spot customers are further
classified into two categories, P and F: P stands for partially acceptance, which means to
be accepted as much as possible, and F stands for fully acceptance, which means to be
either fully accepted or rejected. The second dimension to classify customer-demand is
its required service quality and booking anticipation, which means customers are asking
for normal/slow delivery or fast delivery, with early or late reservation. Note that, this

customer-demand classification is applied throughout the whole thesis.

We conduct a set of experiments to validate the RM approach. Compared with the
first-come first-serve (FCFS) based booking strategy, the DCA-RM model always gen-
erates better total revenue, even with inaccurate demand forecast. Another observa-
tion is that facing scarce resource (small transport capacity), the DCA-RM model easily
outscores its competitor, and this trend grows when resource levels decrease. We also dis-
cuss a set of possible negotiation strategies combined with the proposed DCA-RM model,
and conclude that with slightly lower total revenue the decision support still offers the

possibility to better satisfy loyal (regular) customers and generate more revenue compared
with FCFS.

An extended DCA-RM model considering re-routing of accepted demands is then
proposed and studied. According to the numerical results, the extended DCA-RM model
generates better total revenue, compared to the first version of the DCA-RM model.

Extensive experiments should be conducted to further study and validate this extended
DCA-RM model.

Encouraged by these preliminary results, we are also considering to study how the
penalty or compensation for those denied demands (R, P and F) should be further inte-
grated into the new DCA-RM model proposed.
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In this chapter, we consider the problem of container barge transportation in the con-
text of intermodal freight transportation at the middle-term planning level. A new Sched-
uled Service Network Design model with Resource and Revenue management (SSND-
RRM) is proposed. The same RM policies applied at the operational level (i.e., customer
classification and fare differentiation) in Chapter II, are considered in this model. Given
the information about the physical network, potential services and forecasted demands,
the objective of the proposed SSND-RRM model is to build a scheduled service network
maximizing the net profit of the carriers. The model is solved with a commercial solver
and various problem settings, in terms of demand distribution, network topology, fare
class and quality-of-service (e.g., delivery time), are designed and tested to evaluate it.

According to the results, it is promising to consider RM policies at tactical level.

Based on the material included in this chapter, a working paper is in preparation for
submission to Transportation Science. Different parts of this research have been presented

at several international conferences.



Chapter III SSND-RRM

III.1 Introduction

Intermodal freight transportation is generally defined as moving cargo by a series of at
least two transportation modes, being transferred from one mode to the next at intermodal
terminals, e.g., ports and rail yards, without handling the cargo directly (e.g., [Bektas and
Crainic, 2008, Crainic and Kim, 2007, SteadieSeifi et al., 2014]). Intermodal cargo is thus

generally loaded into containers for most of its journey.

Consolidation-based carriers perform the largest share of intermodal transportation,
rail and navigation companies being particularly active in the long-distance segment. Car-
riers aim to maximize net profits and meet shipper demand and requirements, by setting
up a resource- and cost-efficient service network and schedule given the forecast demand.

The so-called tactical operations planning process yields this network and schedule.

The scheduled service network design (SSND) problem class is the methodology of
choice to build this tactical plan [Crainic and Kim, 2007]. It selects the transportation
services and schedule the carrier that will operate, and propose them to shippers for the
next season (e.g., six months). The schedule is built for a given schedule length (e.g.,
a week), which is then operated repeatedly for the duration of the season. SSND with
resource management models, SSND-RM, also include the determination of the resource
(e.g., vessels, locomotives, etc.) routes supporting the selected services (e.g., [Andersen
et al., 2009a, Crainic et al., 2014]).

Most service network design cases and models in the literature consider a single cat-
egory of customers, making up what is generally identified as reqular demand, which is
expected to represent most of what is serviced during any “normal” period. SSND models
are thus set to minimize the cost of performing the service, which may account for both
operations and the cost of time for resources and cargo. We take a different view and
consider several categories of customers, including regular and so-called spot demands, as
well as several tariffs and operation classes, aiming for the maximization of the net revenue
through the possibility to capture more demand, or higher priced demand, by offering a
different service network. We thus integrate revenue management (RM) considerations
into tactical planning SSND-RM models.

Although identified as a desirable feature for freight transportation [van Riessen et al.,
2015a], RM is rather new to the freight transport planning literature, as illustrated by
the reviews related to air cargo operations [Feng et al., 2015], railway transportation
[Armstrong and Meissner, 2010], and container synchromodal services [van Riessen et al.,

2015a]. Moreover, the few contributions focusing on revenue management and freight
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transportation [Bilegan et al., 2015, Wang et al., 2015] focus on the operational level, the

tactical level being rarely envisaged [Crevier et al., 2012].

Our goal is to contribute closing this gap by studying the incorporation of RM con-
siderations, usually tackled at the operational planning level, into tactical planning mod-
els for consolidation-based freight transportation carriers. Our interest goes beyond the
modeling and algorithmic challenges, to exploring the impact of this integration on the
structure of the service network (e.g., should the carrier increase the offer of service in
order to later be able to capture spot demand?) and the selection of customer demands

to service.

We perform this study within the context of intermodal barge transportation, a field
relatively neglected in the literature. We thus present a scheduled service network design
with resource and revenue management (SSND-RRM) model for the tactical planning of
such carriers, and study its behavior and the structural characteristics of the solutions

obtained through an extensive experimentation campaign.

The contributions of the chapter are:

e Introduce what we believe to be the first comprehensive tactical planning model for

freight carriers that integrates revenue (and resource) management considerations;

e Provide a proof-of-concept by using an off-the-shelf software to solve the correspond-
ing mixed-integer linear programming (MILP) formulation for realistically dimen-

sioned barge intermodal transportation instances;

e Analyze the impact of various problem settings, in terms of, e.g., demand distri-
bution, network topology, and fare and quality-of-service (e.g., delivery time, etc.)

classes, on the structure of the scheduled service network and the carrier revenues.

The chapter is organized as follows. Section III.2 presents the relevant literature
review on service network design and revenue management topics. Section I11.3 describes
the problem setting and discusses issues related to combining tactical planning and RM.
Section I11.4 is dedicated to the revenue management modeling at the tactical level and
the proposed SSND-RRM formulation. The experimental plan and the analysis of the

numerical results are described in Section II1.5, and we conclude in Section III.6.
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I11.2 Literature Review

The section is dedicated to a brief tour of the relevant literature with the goal of relating
our work to the field. We touch on barge transportation, service network design for
consolidation-based freight carriers, and revenue management. [Bontekoning et al., 2004,
Macharis and Bontekoning, 2004, Bektas and Crainic, 2008, SteadieSeifi et al., 2014] offer

general reviews on planning intermodal freight transportation systems.

Barge transportation, or, more generally, river and canal freight navigation, is eco-
nomical in terms of unit transportation cost and eco-friendly in terms of environmental
impacts. Although slower than other land-based transportation modes, barges may thus
play an important role in intermodal transportation, both in exchanges between maritime
ports and the hinterland and among river ports. This role is expanding in Europe, where
the [European Commission, 2011] identifies barge transportation as the instrumental for
modal shift and encouraged its use for intermodal freight transport, as well as elsewhere,
most notably in China [Notteboom, 2012]. Yet, compared to other transportation modes,
studies focusing on barge transportation, particularly in the context of intermodal trans-
portation, are still very few. In most cases, one may class these contributions into one of
two categories. The first category includes descriptive analyses of intermodal transporta-
tion, including barge transport, within a territory or corridor (e.g., [Frémont and Franc,
2010, Caris et al., 2012, Zuidwijk, 2015]). One may also mention within this group, the
work of [Konings et al., 2013], who identify the need for a hub-and-spoke network struc-
ture for intermodal barge transport linked to major sea ports, with the port of Rotterdam
as illustration, and that of [van Riessen et al., 2015a], who examine the issues and research
opportunities related to synchromodal container assignment to available transportation
modes and carriers in the same context. The second group of contributions addresses
mostly operational issues in ports (e.g., [Taylor et al., 2005, Konings, 2007, Douma et al.,
2011]), and in routing and dispatching out of ports (e.g., [Fazi et al., 2015, Braekers et al.,
2013]).

There is a rather rich literature on service network design for consolidation-based
freight carriers [Crainic, 2000], reviewed by, e.g., [Crainic, 2003] for long-haul transporta-
tion, [Cordeau et al., 1998] for rail, [Christiansen et al., 2004, Christiansen et al., 2007] for
maritime, and [Crainic and Kim, 2007] for intermodal transportation. Scheduled service
network design aims to generate the tactical operations plan for a consolidation-based
freight carrier to, generally, minimize its costs or, more rarely, maximize revenues. The
main decisions making up the models address the selection of services and their schedules,
the determination of the terminal policies such as classification and consolidation of cargo

and vehicles and the formation of convoys (when relevant), and the optimization of the
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cargo flow distribution on the resulting network to satisfy the multi-commodity demand.

SSND with resource management models include explicitly into the tactical planning
models some high-level representation of the management of key resources, e.g., power
units, vehicles or crews, necessary to operate the selected services. Encountered initially
in articles targeting particular applications (e.g., [Lai, M.F. and Lo, H.K., 2004, Arma-
cost et al., 2002, Smilowitz et al., 2003]), the SSND-RM problem is formally modeled
by [Pedersen et al., 2009] as a network design problem with design-balance constrains, the
latter imposing that the numbers of services (or resources) entering and leaving terminal-
representing nodes be balanced. Extensions are presented by [Andersen et al., 2009b, An-
dersen et al., 2009a, Crainic et al., 2014] who, among other contributions, model the
time-dependency of decision through time-space networks, enrich the range of resource
management concerns, and emphasize the circular nature of the routes resources must

follow to support the selected services.

We found only one publication addressing the tactical planning of an intermodal barge
fleet [Sharypova et al., 2012]. The authors propose a SSND-RM model for the particu-
lar case of direct services (no intermediate stops), unique customer and service types, a
single container type, and two homogeneous vehicle fleets representing barges and trucks.
The authors propose a continuous-time formulation with particular care being paid to the
modeling of the terminal service synchronization and the associated load /unload /transfer
operations. The numerical results obtained on very small instances are encouraging, par-
ticularly in showing the interest of SSND-RM for planning barge transportation systems.
The formulation we propose, based on a discrete-time representation, takes into account
a significantly richer set of problem characteristics, as well as explicitly including revenue

management aspects.

Indeed, none of these contributions found in the literature addressed the issue of rev-
enue management. Revenue, or yield, management was initially developed for passenger
air transportation, and was latter applied more broadly to passenger rail transporta-
tion, hotel room management, etc. (e.g., [Kasilingam, 1997]).The benefits observed in
these domains appear promising for the freight transport industry as well. Yet, one can-
not simply transpose the models and procedures from one industry to the other. Thus,
e.g., [Kasilingam, 1997] present the characteristics and complexities of air cargo trans-
portation (see for a review of air cargo operations [Feng et al., 2015]) from the perspective
of RM by emphasizing the differences between air cargo and air passenger transportation.
The author point out, in particular, that a correct and relevant model of RM for freight
transportation requires the comprehensive understanding of customers’ behavior, the con-
secutive identification of customer categories, the so-called customer classification, and

the definition of different products and fares charged, i.e., the fare differentiation.
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The contributions integrating RM and freight transportation of which we are aware
address operational-level issues only. Thus, [Crevier et al., 2012] propose a bi-level mixed-
integer formulation to jointly determine fares and the capacity utilization of a given set of
services proposed by a rail freight carrier. [Bilegan et al., 2015] also present a RM model
applied to rail freight transportation in which different fare classes are defined with respect
to how early the booking is performed and how long the delivery time is. [Armstrong and

Meissner, 2010] survey RM applied to railway transportation.

RM-related concepts are found in a number of tactical-planning studies for various
transportation modes, e.g., the possibility not to service all the demand (e.g., [Braekers
et al., 2013, Andersen and Christiansen, 2009, Thapalia et al., 2012]), the maximization of
the net revenue, and the possibility for demands to be only partially accepted (e.g., [Tey-
paz et al., 2010, Agarwal and Ergun, 2008, Gelareh and Pisinger, 2011]), and the segmen-
tation of the transportation requests according the obligation to service them [Stalhane
et al., 2014].

We did not find, however, contributions integrating scheduled service network design,
resource management and revenue management. We propose such an integrated model

in Section III.4 for the intermodal transportation problem described next.

I1I1.3 Problem Statement

We address the problem of setting up the tactical plan of an intermodal freight trans-
portation carrier to maximize its revenues, while satisfying the estimated demand and
requirements of its customers, and making the best use of its resources. The tactical plan
thus determines the transportation services and schedule, together with the assignment
of resources to the selected services, that the carrier will operate for the next cycle of
activities, the next “season” (six months, for example), to answer this demand. The
transportation plan actually specifies how operations are to be performed for a given time
length, e.g., a week, that we call schedule length. The plan is then operated repeatedly

for the duration of the season.

We therefore describe the problem we address along three dimensions. For the first
dimension, we focus on the physical network and resources of a barge/coastal navigation
carrier performing intermodal transportation, including the port infrastructure and facil-
ities, the containers that need to be moved and the vessels that transport them. For the
second one, we describe the customers of the system, that is, the shippers generating the

demand for transportation of various types of containers, together with their requirements
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and expectations in terms of cost and service quality. The last one considers the fares,
services and schedule the carrier is setting up to satisfy this demand and address these
requirements over a medium-term, tactical planning horizon. The challenges and aims
related to the representation of RM activities into the scheduled service network design
with resource management formulation (detailed in Section III.4) are discussed at the

second and third dimension, respectively.

Physical network and resources. A barge intermodal transportation system is
defined over a physical network of rivers and canals plus, eventually, coastal and short-
sea-shipping navigation corridors. A number of physical characteristics often constrain
navigation on this network, e.g., the maximum draft of fully loaded vessels sailing on a
given part of a river or canal, and the number of vessels that may simultaneously navigate,

in both directions, the same part of a river or canal during a given period of time.

A number of ports with container terminals are located along these rivers and canals
or on the sea shore. The layout and physical organization of a terminal, together with
the equipment available and the operation policies (as well as the conventions stating the
working rules for the personnel) constrain the activities that may be performed within
and influence the associated costs and performance measures. Prominent among these
limits and measures for the problem at hand are the maximum draft of fully loaded
vessels berthing at the terminal, the number of vessels and associated length that may
simultaneously berth, the number of containers that may be stored within the terminal
for a given period of time, and the rate of vessel loading and unloading operations in
terms of containers per period of time. Costs are associated to terminal activities and are
charged to carriers using the port. Given the problem addressed in this chapter, we target
particularly the cost of calling at the port, which varies by vessel type and the duration of
the presence in the port, as well as the container loading/unloading (per container) and

holding (per container and time period) costs.

The carrier operates a number of vessels to transport the containers shipped by its
customers. Containers come in several types. They differ in terms of dimensions, 20
and 40-foot long being the standard dimension for maritime and river navigation, while
longer boxes are used within land-based intermodal transportation systems, such as the
53-feet ones found in North America. Containers also differ in scope and requirements,
e.g., insulated, refrigerated, bulk, tank, open top, high cube, and so on and so forth.
For tactical planning purposes, the standard twenty-feet equivalent unit (TEU) measure
is generally used, where 20-foot containers measure 1 TEU, while 40-foot ones account
for 2 TEUs. Vessels also come in several types defined by their characteristics in terms
of dimensions, draft, maximum number of TEUs carried, speed, etc., A limited number

of vessels of each type is available for the next season (vessels may be owned or rented,
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but we will treat them in a similar way in this chapter). Operating a vessel incurs costs.
Other than the port-related costs mentioned above, we consider in this chapter the travel
costs between particular pairs of ports, as well as the cost (maintenance, depreciation,

etc.) associated with not using a vessel for the considered schedule length.

Customer demand. Customers ship loaded and empty containers of given types
among particular pairs of terminals in the network. Shippers have quality and price
requirements for each demand for transportation of a certain number of TEUs. “Quality”
may involve the type of vehicle and handling equipment required for the particular type
of containers involved. It always involves, however, requirements in terms of travel time
and delivery date. In this chapter, we represent the quality requirements as the due
date associated to the demand, that is, the latest date containers have to be delivered at
destination. The price expectations of shippers are related to the value of the cargo and

the urgency of delivery. Obviously, they desire the lowest fare possible.

In traditional settings, including navigation-based intermodal transportation, a single
service type (in terms of delivery time between two terminals in the network) is offered to
shippers, the fare being determined mainly by the distance involved, and the cargo char-
acteristics such as volume, weight, cargo type and handling requirements (e.g., dangerous
goods require special treatment), etc. On these bases, the final price paid by a given
shipper then results from the negotiations it and the carrier engage into, the existence of
long-term contracts or understandings with regular and trustworthy customers strongly

influencing the proceedings.

Following this commercial model, most service network design cases and models in the
literature consider a single category of customers, making up what is generally identified
as reqular demand. One generally finds in this category customers, or groups of customers
in particular zones, that are strongly believed to bring business on a regular basis for the
coming season. This forecast (formal forecasting methods may or may not be involved)
is based on a combination of signed long-term contracts, informal understanding with
long-standing, trustful customers, and market estimation by sales and customer-relation
personnel. Regular demand is expected to make up a good part (a 80% figure is often

mentioned) of what is serviced during any “normal” period.

When revenue management mechanisms are in place, or contemplated, the situation is
different. At a strategic level, one establishes a service and tariff policy, e.g., segmenting
the potential customers and defining a number of traffic/tariff classes and service levels
to attract the targeted customers and volume of demand. One also negotiates long-
term contracts or understandings with important customers to ensure a good level of

regular business, which translates into regular levels of demand and traffic. During actual
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operations, the revenue management mechanisms are used to determine the acceptance
and tariff of each request for transportation and, thus, to adjust the actual demand to
the offer of services with fixed capacities, regular schedules, and so on, which was planned
based on demand forecasts. The questions then are, how to represent such mechanisms
within tactical planning models, and what is the benefit of using RM-based information

and knowledge when building the transportation plan.

Services and schedules. FEach potential service is defined by an origin terminal
and associated departure time within the schedule length, a destination terminal, a route
through the physical network, a sequence of intermediary calls at ports along this route
(the sequence is empty for direct services), and a schedule indicating the arrival and,
for the intermediate stops, the departure times at ports. Without loss of generality,
and because it reflects actual practice for the problem setting we examine, we assume
the longest service duration to be less than the schedule length. A vessel of particular
characteristics is associated to each service. Each service is thus characterized by the
attributes of its designated type of vessel, as well as by the costs to set up and operate

on the links of its route.

Symmetrically, a vessel is assigned to a set of services during the schedule length.
Without loss of generality, we assume vessels return to their home port. Consequently,
each operated vessel supports a circular sequence of services starting and ending at the
same port. These cycling vessel routes, that we call service cycles in the following, ensure

that there are no empty-repositioning movements in the system we study.

The set of services selected by the carrier to efficiently and profitably satisfy the
estimated demand, makes up the transportation plan and defines its service network and
operating schedule. Each customer demand is moved over this service network by one
of the possible itineraries for the particular demand. Remark that the same physical
customer may have several shipments over the schedule length, and that these shipments
may differ in volume, characteristics, and requested service level. We represent such cases
as different customer demands. Remark also that, while demand estimations may be made
individually for major and regular customers, most demands represent an aggregation
of regular and potential customers within a given zone and with similar transportation

requests.

A demand itinerary is then defined by the origin terminal of the shipment and its
availability period (i.e., the time it is supposed to arrive at the origin terminal), the
sequence of services until the associated destination terminal, and the number and type
of containers moved. The sequence of services thus yields the schedule of the itinerary,

i.e., the arrival and departure moments at each port terminal, together with the time
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spent in the terminal to 1) unload the cargo from the incoming service, 2) wait in the
terminal for the next service, and 3) load on that next service. We assume unloading
operations take place immediately after the arrival of the service at the terminal, followed

by loading operations taking place before leaving the terminal.

The SSND-RRM problem. As indicated earlier, the carrier aims to meet demand
and the shipper requirements in the most resource- and cost-efficient way, through planned
operations that maximize its net profit. The aim is thus to 1) select the services, out of a
set of potential feasible ones, and, through their departure times, the schedule to operate,
2) determine the circular asset routes, the service cycles, supporting the selected services,
and 3) identify the demand itineraries. The combination of these three objectives also
yields the loads of vessels during their movements from one stop of the corresponding
service to the next, and the amount of work to be performed on vessels and containers at

each port of call in the network.

The integration of revenue management considerations to tactical planning is per-
formed through two major modifications to the traditional problem setting and modeling

approach.

First, we take the different view of explicitly considering several categories of cus-
tomers, tariff and operation classes. The first category is the regular demand as discussed
above. Two other categories correspond to demand that is potentially there and that the
carrier could accept or not, given the estimated revenue and the capacity it plans to de-
ploy. Such demand is usually explicitly accounted for in fleet [Crainic et al., 1993, Powell,
W.B. and Topaloglu, H., 2005] and revenue management [Bilegan et al., 2015], but is
not normally included into tactical-planning formulations. The challenge of integrating
it into an SSND-RRM formulation comes from the required qualitative and quantitative
translation of the business relationship the carrier holds with its customers into a com-
pact representation adequate for the aggregated tactical level. This translation is logically
performed in terms of demand characterization, starting with customer behavior (segmen-

tation) considerations, but also including service-level (delivery delays) requirements.

Second, contrary to service network design literature, the goal here is the maximization
of the net revenue. The net revenue is computed as the difference between the estimated
profit of servicing the regular and the accepted potential demand and the cost of per-
forming the planned service. The cost accounts both for setting up the services and for
operating vessels and transporting containers. It is also generalized, accounting simul-
taneously for operations and the cost of time for resources and cargo, given the latter’s
service and tariff class (remark that service differentiation was considered in a number of

earlier contributions, e.g., [Crainic et al., 1984, Crainic and Rousseau, 1986, Crainic and

23



Chapter III SSND-RRM

Roy, 1988], without being contrasted to the revenues of the carrier).

The resulting SSND-RRM model may therefore be used both to plan the operations
for the next season and as a tool to evaluate RM policies. It aims, in particular, to pro-
vide the means to answer questions, e.g., is it profitable to increase the level of service
in terms of service frequencies or capacities, resulting in higher fixed and variable costs,
in order to attract more, higher-priced, demand? Are the current or contemplated dif-
ferentiated customer categories, and fare classes with their associated values adequate?
Is the contemplated contract or business relationship for regular demand actually prof-
itable? Which and how much of the potential demand should/could be serviced within a

predefined schedule length, while optimally using the available resources?

We describe in the next section the methodology used to address these issues and

formulate the planning problem at the tactical level.

I1I.4 The SSND-RRM Formulation

We present the formulation of the scheduled service network design with resource and
revenue management (SSND-RRM) model for the tactical planning of intermodal barge
transportation in three steps. We first discuss the representation of the revenue manage-
ment considerations in terms of customer service and fare differentiation (Section II1.4.1).
We then introduce the time-space representation of operations, the demand, and the ser-
vices one has to select in order to satisfy it (Section I11.4.2). The formulation is presented
next (Section I11.4.3).

I11.4.1 Revenue Management Modeling for the SSND-RRM

Let D represent the set of regular and potential customer demands, and the notation
d € D will denote a particular demand. We model customer service and fare differentiation

through a two-dimensional mechanism: business relationship and service requirement.

Business relationship addresses principally the contractual profile of customers, that
is, the commitment to work with the carrier: regular customers with long-term contracts
or understandings, and customers present on the spot market that we may service or not.
The latter correspond to a pool of irregular potential customers, who may arrive to the
system as “short-notice” requests. Individually, these customers could be “small” in terms

of volume and, even, not regularly present but, taken collectively, they form a significant
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and consistent demand in terms of total volume per origin-to-destination pair; Identified
within a given geographical zone - around a port that is the origin of their requests for
transportation - the decision to service them is to be made according to their particular

requirements and the available planned capacity on the transportation network.

We define three categories of business relationships (and customers), partitioning the
customer set, D = DR U DP U DF, as follows:

e Regular customer demands, grouped within set DR, representing customers with
long-term contracts or understandings; This class corresponds to the regular demand

in classical SSND formulations and must be always satisfied;

e Proportional-punctual customer demands, set DY, that may be fragmented and only
partly satisfied, which means a fraction of it could be integrated in the demand to
be serviced by the planned services, the rest not being served at all by the carrier;
We model this decision further down in this section through continuous decision

variables yielding the percentage of the demand that is going to be serviced;

o Full-punctual demands, set D, consisting of demands that may be either entirely
accepted and serviced or not accepted at all; Binary selection variables are intro-

duced in the formulation to represent these decisions.

Two service types are defined with respect to the service requirement dimension of the
proposed mechanism, slow/normal and fast delivery reflecting the due times at destination
requested by customers. Fares normally reflect service differentiation, e.g., fast delivery
requests would be priced higher than slow delivery ones. We consequently introduce two

fare classes:

e class(d): Fare class for demand d € D, related to the type of delivery, slow/normal

or fast requested;

e f(d): Unit fare value for demand d € D with fare class class(d).

I11.4.2 Network Modeling

Let the oriented graph GP! = (NP APD) represent the physical network supporting the
operations of the carrier. The set NP" represents intermodal terminals. Each terminal
i € NP!' is characterized by a berthing capacity (); in number of vessels per time period,

and a container holding capacity H; in number of TEUs per time period. The former is
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defined with respect to the average length of the vessels used on the network, which is

reasonable given the rather limited range of vessels used in such systems.

The set APP groups the physical arcs of the network, each representing a possible

14

navigation movement between two “consecutive” ports, that is, no intermediary port
exists between the initial and final nodes of the arc. To simplify the presentation, but

without loss of generality, we assume uncapacitated physical arcs.

Let the schedule length be discretized into T periods of equal length by 7"+ 1 time
instants ¢t € 0,...,T. The period length is generally defined according to the particular
operational context of the application, e.g., average travel time along links or stopping
time at ports, and the schedule length. For a week-long schedule on a river/coastal navi-
gation network, a period length of a couple of hours appears appropriate. By convention,
activities, e.g., demand arrival at terminals and vessel arrivals and departures at and from

ports, occur at the beginning of a period.

Let T" be the set of container types, and the notation v € I' will denote a particular
container type. Then, as discussed above, each demand d € D = DR U D" U DF is

characterized by:

e vol(d): Volume in number of TEUs;

e 7(d): Container type, v(d) € T;

e orig(d): Origin node, orig(d) € NP

e in(d): Period the demand d becomes available for transportation at orig(d);
e dest(d): Destination node, dest(d) € NP

e out(d): Due date at destination, that is, the latest period the cargo may arrive at

the destination terminal;

e cat(d): Category of customer demand (R or P or F), according to whether d € D}

or DY or DF;
e class(d): Fare class, slow/normal or fast;

e f(d): Unit fare value.

The carrier operates vessels of various types, that it owns or rents for the season,
according to the scheduled set of services. The set of vessel types is noted L, each vessel

type [ € L being characterized by:
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e cap(l): Capacity in TEUs;

o speed(l): Speed of vessel of type [ € £ in normal operations, yielding 6;;(1), the

normal travel time of an [ type vessel over arc (i, j) € APY;

e B;: Maximum number of vessels of type [ € L available.

The formulation is defined on a circular time-space network capturing the time-
dependency and repetitiveness of the demand and schedule (services and resource uti-
lization), taking the form of an oriented graph G = (N, A), with node and arc sets N and
A, respectively. The network (and the the transportation plan and schedule) is circular
over the schedule length, which means that any arc in A of length (duration) ¢ that starts

at time ¢, arrives at destination at time (¢ 4+ §) mod 7.

The node set N is obtained by duplicating all physical nodes at all periods in the
schedule length, so that node it € AN corresponds to the physical node i € ANP" at time
instant t, ¢ = 0,...,(T — 1). The set of arcs A is the union of the set of holding arcs
at terminals, and the set of possible movements performed by services. A holding arc
(it,i(t + 1)) captures a one time period waiting at terminal 7 at time ¢ for vessels, cargo
and services. Movements in the time-space network are performed by services traveling
physical paths between two consecutive stops on their respective routes. We call such

movements service legs and these define the mowving arcs of A.

A service s € § is thus defined in the time-space network G by a number of physical

and time-related attributes, illustrated in Figures II1.1 and II1.2, and described as follows:

e orig(s): Physical origin terminal, orig(s) € NP,
e dest(s): Physical destination terminal, dest(s) € NPh;

e 1(s) = {ir(s) € NP' k =0,...,(K —1)}: Ordered set of consecutive stops of the

service, where K = |n(s)| and k indicates the k' stop of the service;
o ai(s) = (ix(s),ixs1(5)): k™ leg of the service, k =0,..., (K —2);
e 7(a(s)) C AP Path of a(s) in the physical network;
e Ji(s): Travel time of leg ay(s);
e wi(s): Stopping time at terminal ix(s);

e ay(s): Arrival time of the service at its terminal ix(s); By convention:
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Availability time Vehicle ready for next service
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Figure II1.1: Time-related attributes of service s

ap(s): Availability time of service s to load at the origin terminal, i.e., wy(s) =

To(s) — ao(s);
ax_1(s): Arrival time at destination;

7x(s): Departure time of the service from its terminal i(s)

k—1

() = T0(s) + D _(6;(s) + wjza(s)) k=1,..., (K —1); (IIL.1)

J=0

Tk—1(s): Time at destination when the vessel is completely unloaded and ready for

the next service, i.e, wx_1(s) = Tk _1(s) — ax_1(s) (by convention);
d(s) = ax_1(s) — 10(s): Total duration of service s;

I(s): Vessel type of service s, [ € L;

cap(l(s)): Capacity of service s, in TEUs;

¢(s): Fixed cost of setting up and operating the service.

Figure III.1 illustrates the time-related attributes of a multi-leg service. Figure I11.2

illustrates a time-space network with 9 time periods and four terminals. Horizontal dashed

arcs are the holding arcs at terminals, while the plain arrows stand for service legs. Two

services are displayed. The first one sq is a three-leg service that originates at Terminal

A and ends up at Terminal D. The two intermediate stops are one and two periods

long, respectively. The second service s; travels from Terminal D to Terminal A with an

intermediary stop of one period at Terminal C. The availability times of both services are

indicated as well.
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Figure II1.2: Time-space representation of the service network with two services

The following unit costs are defined:

o ci(v(d),l(s)): Transportation of a container of type v(d), by a vessel of type [(s),

on the k" leg of service s;
e ¢(i,7(d)): Holding a container of type v(d) at terminal 7 for one period;
e (i,7(d)): Loading/unloading a container of type y(d) at terminal i;
e h(i,l): Holding cost for a vessel of type [ at terminal ¢ for one time period;

e p(l): Penalty for a vessel of type [ that is not used in the optimal plan.

111.4.3 SSND-RRM Model Formulation

We define the following decision variables:

e y(s) = 1if service s is selected, 0 otherwise;

e £(d) € [0,1] = Percentage of the volume of demand (number of containers) d € DF

that is selected and will be serviced;
e ((d) € {0,1} =1 if the demand d € D¥ is selected to be serviced, 0, otherwise;

e 2(l,i,t) = Number of temporarily idle vessels of type [ at terminal i, waiting the

period (¢,t 4 1) out for the departure of the next service it supports;

e v(l): Total number of vessels of type [ used by the service plan; Due to the circular
nature of the schedule, v(l) is the same for all time periods (although, at any given

period, vessels may be moving or be idle in ports);
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e z(d, s, k) = Volume of demand d € D transported by service s on its leg k;

e 1°(d, s, k) = Volume of demand d € D to be unloaded at terminal i;y; when

arriving at time ay41(s) on leg k of service s;

e 7"(d, s, k) = Volume of demand d € D to be loaded on leg k of service s before

leaving terminal iy at time 74(s);

o 2"(d i,t) = Volume of demand d € D on hold at terminal i during time period
(t.t+1);

The SSND-RRM model formulation then becomes:

max Y f(dvol(d) + 3 F(dEdvol(d) + Y F(d)S(dywol(d)

deDR deDP deDF
= > (B —oD)) =D ds)yls) = > D hi,D)z(6,1)
lel seS t€0,...,(T—1) ieNPh (IH 2)
S Y S ab @) k- Y Y S el A d)a i d, i)
s€S ken(s) deD te0,...,(T—1) ieNPh deD
= > > sl v(@) (" (d, s, k) + 2 (d, 5, k)
SES ken(s) deD
Subject to
vol(d), Vd € DR
:Uh"ld(d, orig(d),in(d)) + Z 2"(d, s, k) = ¢(d)vol(d), Vd € THIL3)
€S8tk (s)=orig(d),mx(s)=in(d) F
((d)vol(d), VdeD
vol(d), Vd € DR
> > z®(d, s, k) = S €(d)vol(d), VdeDP  (IIL4)

in(d)<t<out(d) s€S:ir4+1(s)=dest(d),apt1(s)=t

¢(d)vol(d), vd e D

g (d it — 1) + > x°(d, s, k)
€St i1 (s)=t,0p41(s)=t
—zhod(d i, t) — 3 2(d, s, k) =0, (IIL.5)

s€Sti(s)=t,7k(s)=t

V(i t) # (orig(d),in(d)), Vi # dest(d),¥d € D
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" (d, s, k) — z(d, s, k) = 0,Vs € S, i(s) = orig(d), d € D (I11.6)
w(d, s,k —1) —a°(d, s,k —1) =0,Vs € S, ir(s) = dest(s), d € D (IT1.7)
x(d, s,k —1) —2°(d, s,k — 1)+ 2™(d, s, k) — 2(d, s, k) =0, (I1L8)
Vs € S, ix(s) # orig(s),ir(s) # dest(d), d € D ‘
> a(d, s, k) < cap(l(s))y(s), Vs€ S, k=0,...,(K—2) (I11.9)
deD
o(l) = Y 2(L4,0)+ Y y(s), Vel (I11.10)
ieNPh s€Ag
v() < By, VleL (II1.11)
SNy +z(lit—1) =Y yo+2(l,4,t), VIEL, iteN (I11.12)
s€ES, seSt,
Soz(lit)+ > > y(s) < Q;, ViteN (I11.13)
lel leL s€S:ig(s)=i,l(s)=l,ak(s)<t<Tg(s)
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y(s) € {0,1}, Vs€S (T11.14)

¢(d) €[0,1], Vd e D" (IIL.15)

¢(d) € {0,1}, Vd € D" (I11.16)
z(l,i,t) >0, Yle L, iteN (I1.17)
v(l) >0, VIEL (I11.18)
z(d,s,k) >0, YVdeD, s€S, k=0...(K—2) (I11.19)
2(d,s,k) >0, YdeD, s€S, k=0...(K—2) (T11.20)
™(d,s,k) >0, YdeD, s€S, k=0...(K —2) (T11.21)
g (d i t) >0, VdeD, it cN. (111.22)

The objective function (I11.2) maximizes the net profit, where the first three terms cor-
respond to the revenue obtained by servicing the complete demand of regular customers,
the selected proportion of demand of the proportional-punctual customers, and the com-
plete demand of the selected and full-punctual customers respectively. Remark that, for a
given set of demands, the first term (revenue obtained by servicing the complete demand
of regular customers) is a constant. It is kept to make the objective function homoge-
neous. The following terms stand for the activity and time-related costs of operating the
selected service network and resource routes, that is, the penalty cost of having but not
using vessels (never assigned to a service during the entire schedule length), the fixed cost
of setting up and operating services, the cost of the vessels idling at a port waiting for
their next service departure, the cost of transporting containers on services, and the cost

of holding and handling containers in terminals.

Equations (IIL.3), (III.4) and (IIL.5) are flow-conservation constraints for containers
of all customer types, at their particular origins, destinations, and intermediary nodes,
respectively. Similarly, Equations (II1.6), (II1.7) and (IIL.8) enforce the conservation of
container flows, for all customer types, on each service at its origin, destination and
intermediary stops, respectively. Constraints (II1.9) enforce the service capacity on each

leg.

Equation (III.10) computes the number of vessels used in the plan as the sum of
vessels idling in ports or moving between them performing services. Due to the resource
management concerns and the resulting circular vessel routs, v(1) is the same at all periods,
only the relative proportion of idle versus active vessels being different at different time
periods. We therefore compute this number for the first period, i.e., ¢ = 0, the set
Ao ={s € S,l(s) =l|(ax-1(s) mod T) < 19(s) and 7y(s) > 0} C S containing all

services, of the appropriate vessel type, that operate one of its legs during the first period.
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Constraints (II1.11) enforce the fleet size for each vessel type, while Equations (I11.12)
are the so-called design-balance constraints, enforcing the vehicle-flow conservation at
terminals (the number of services and vessels entering a node equals the number exiting

the node), where sets S;; and S},

S = {se€ S |dest(s) =1i,Tx_1(s) =1,1(s) =1} (I11.23)
St o= {seS|orig(s) =i,ap(s) =t,1(s) =1} (I11.24)

group the services of type [ that arrive at their destination or depart from their origin ¢ at
time ¢, respectively. Finally, Constraints (II1.13) enforce the terminal berthing capacity
at each time period, while decision-variable domains are defined by Constraints (II1.14) -

(111.22).

II1.5 Simulation and Numerical Results

In this section, we design and conduct a set of experiments to validate the proposed
Scheduled Service Network Design with consideration of Resource and Revenue Manage-
ment (SSND-RRM) model. Two research questions are discussed: first, the benefits of
differentiating products for decision making at tactical level; and second, the impacts
of customer classification and fare differentiation on the scheduled service plan and the
flow distribution. The rest of this section is organized as follows. We first describe the
procedure of test instance generations in Subsection II1.5.1. Subsection I11.5.2 briefly in-
troduces the experiment plan. We then present and analyze the experiment results, with
respect to each research question, in Subsection I11.5.3 and II1.5.4, respectively. A brief

analysis relative to the computational times can be found in Subsection II1.5.5.

I11.5.1 Test Instances Generation

In this subsection, we present the procedure of test instance generation. Remark that, as
one of the objectives of this chapter is to provide a proof-of-concept, we deliberately choose
small test instances to better understand how the introduction of revenue management
can affect the service network design. Without loss of generality, however, three different
topologies, i.e., Linear 4 (n4): linear network of 4 terminals, Star 6 (n6): hub-and-spoke
network of 6 terminals and General 7 (n7): general network (combination of linear and
hub-and-spoke) of 7 terminals, as illustrated in Figure I11.3, are studied to represent the

reality of different physical networks.
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For a given network, 14 time units (stands for one week) are considered as the schedule
length. Two types of vessels (large and small) are considered. The capacity of a large
vessel is considered to be 2.5 times greater than that of a small one, while the fixed cost
of a large vessel is just 2 times more expensive. Potential services consist of all possible

itineraries in the network, using both types of vessels.

As test instances are generated following the same rules for all the tested topologies,

we describe the generation of test instances with an example of the physical network

Linear 4.
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Figure I11.3: Three physical network topologies considered for the SSND-RRM model
validation

For one instance, in order to generate a well-balanced combination of demands re-
quiring slow and fast delivery, we first generate a set of demands corresponding to only
regular (R) customers. In the instance, we assume that each possible origin-destination
(OD) pair in the network should appear at least twice, and no specific delivery type is
fixed for the moment. The volume of each individual demand is randomly generated,
according to the uniform distribution, with an upper bound of half of the capacity of a
large vessel. Note that the volume of a demand might exceed the capacity of a small
vessel. However, this is not restrictive since demand splitting is allowed. Thus, we fix the
total volume of demands of that instance. Then, the volume of demands requiring fast
delivery is specified by a percentage (p) out of the total volume of demands. We may
thus generate instances with a fixed total volume of demands but with varied proportions
of demands requiring fast and slow delivery. Note that, the different delivery types and
thus the different types of demands are associated with different fare classes. A low fare
corresponds to a slow delivery demand type, and a high fare is associated with a fast

delivery demand type.

When demands from other categories of customers (P or F) are also considered, we
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simply “duplicate” the demands from R customers and change their customer category to
P or F. Therefore, the total volume of a test instance considering R and P (or R and F)
customers is twice that of its corresponding test instance considering only R customers.
Furthermore, we assume that all demands from P customers require slow delivery, whereas
all demands from F customers require fast delivery. For each given total volume, each
specified percentage p and each particular customer category mix, 20 test instances are

randomly generated based on this procedure.

We solve all the optimization problems with the help of a commercial MILP solver
(IBM CPLEX 12.5) on a multi-processor server running under Linux 64-bit with Inter
Xeon X5675, 3GHz and 30 GB of RAM.

II1.5.2 Experiment Plan

In this subsection, we introduce the experiment plan. Two groups of experiments are
set up to study: first, the influences of having different delivery requirements (slow and
fast) from customers on the decisions made at tactical level; and second, the benefits of
considering the customer classification and fare differentiation for the selection of services

and the flow distribution, respectively.

The characteristics of the two groups of experiments are briefly displayed in Table
[II1.1. In the first group, to eliminate the influences of other parameters, only regular (R)
customer demands are considered. Fare differentiation is not applied, even if fast and slow
delivery types are considered. Fast demands are considered to be distributed over the set
of O-Ds in two different fashions: first, customers requiring fast delivery are distributed
evenly, and second, fast delivery is required by customers concentrating at a single main
terminal (the one with the highest throughput), which is either the origin or destination
of a fast demand. The ratio of fast/slow demands (considered as Parameter 1) is varying

in the first group.

Table II1.1: Characteristics of the two groups of experiments

Demand categories Fare differentiation Request for fast delivery Varied parameters

Group 1 only R no spread over the network or con- 1
centrated at a single terminal

Group 2 R+P or R+F yes spread over the network 243

In the second group of experiments, partially spot (P) customer demands and fully

spot (F) customer demands are considered together with R. The total volume of P (or F)
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is equal to the volume of R in each test instance. In addition, fare differentiation is also

applied, and transport requests for fast delivery appear all over the network.

In this second group of experiments, an important parameter (considered as Parameter
2) is used: the degree of freedom of service selection. Three different cases are explored:
fix all services, fix open services and fix no service. The difference among the three cases is
the restriction on the service selection once the initial optimization problem is solved for R
customers only. In the first two cases, we first solve the optimization problem considering
only R demands and obtain a scheduled service plan. In the case of fix all services,
we then fix all services (fix decision variables y(s) = 0 or y(s) = 1) according to the
obtained assignment (for only R) and solve again the optimization problem considering
all demands (R, P and F). In the case of fiz open services, we fix only the open services
(fix decision variables y(s) = 1) according to the obtained assignment, and solve again
the optimization problem. Thus, more services might be open, considering all demands
(R, P and F). The most flexible case is fix no service, in which no additional constraint
is applied and the optimization model has the right to choose the best set of services,

considering all demands from the beginning (no second solving is needed).

Another important parameter (Parameter 3) refers to the mix of customer categories
within the same test instance, with or without fare differentiation. Four different cases

are compared in the second group of experiments:

Case only R: only R demands with no fare differentiation;

Case R+P: R and P demands with no fare differentiation;

Case R+F no price: R and F demands with no fare differentiation;

Case R+F with price: R and F demands with fare differentiation.

All R demands are identical in all four cases. The total volume of spot (P or F) demands is
equal to the volume of R demands. Note that, throughout this whole group of experiments,
all R and P demands ask for slow delivery, while all F demands ask for fast delivery. Fare
differentiation is applied only according to the delivery type, and the price ratio of slow

delivery to fast delivery is 1:1.5.

Performance indicators (PIs) used to analyze the solutions for both groups of experi-

ments are:

e Total cost: Sum of all costs, i.e., fixed cost (opening services) and variable costs
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(holding barges, holding non-used barges, holding containers, transportation and

handling containers);

e Opening services cost: Fixed cost alone corresponds to the maximum transporta-

tion capacity made available in the optimal solution on the whole service network;
e 7 of open services (small): Number of open services with small vessel;
e # of open services (large): Number of open services with large vessel;

e Distance*Capacity usage: Indicator represents the degree of resource utilization;
it is calculated as the ratio of used service distance*capacity over the maximum
possible service distance*capacity according to a given optimal solution; as shown
in equation (II1.25), used service distance*capacity is the sum of all service legs’
used capacity multiplied by their corresponding transport distance, while maximum
possible service distance*capacity is the sum of all service legs’ capacity multiplied

by their corresponding transport distance, for all open services;

S dis(k) * x(d, s, k)
Distance x Capacityusage = - géd@s(m * cap(s)
sk

(I11.25)

e Waiting at origin: Sum of waiting time of all regular demands at their origins,
weighted by their volumes, which is an indicator of the flow congestion level on the

network;

e Transshipment: Sum of waiting time of all regular demands at their intermediate
stops, weighted by their volumes, which is another indicator of the flow congestion

level on the network;

e Slow splitting: When distributing the flow, some demands have to be split to fit
in the residual capacity of services and to derive the optimal flow distribution; this
indicator is the ratio of split R demands (in TEUs) over all R demands, which may

also give an idea about the flow congestion level on the network;

e Relative yield: Computed as the net profit divided by the total cost and used as

an indicator of the profitability for accepted demands;

e Additional TEUs accepted: Total volume of P or F demands accepted by the

model.
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I11.5.3 Experiment Results and Analysis: First Group

As described in the previous subsection, the first group of experiments is dedicated to
the study of the influences of having different delivery requirements (slow and fast) from
customers on the decisions made at tactical level. TablelIl.2 illustrates the results of the
first group of experiments, when customers are requiring fast delivery all over the network
of Linear 4. In Table 1I1.2, the no fast column indicates that all customers are asking for
slow delivery, while the percentages 25%, 50%, 75% and 100% in the following columns
indicate the ratio of total fast demands to all demands (distance*volume). Table I11.3
presents the results of the first group of experiments, when customers are requiring fast
delivery concentrated at only one terminal. In Table III.3, the no fast column also indi-
cates that all customers are asking for slow delivery. The following columns indicate that
in turn, 25%, 50%, 75% and 100% of fast demands concentrate at the highest through-
put terminal. Just to recall, all the values presented here are calculated as the average

according to 20 test instances.

Table II1.2: Topology n4: Fast demands spread uniformly over the network, no fare
differentiation

no fast 25% fast 50% fast 75% fast 100% fast

Total cost 9175.37  9459.17  9946.92 10364.02  10996.47
Opening services cost 4567.5 5040 5557.5  6198.75 6997.5
# of open services (small) 5.7 13.2 17.1 22.15 24.5
# of open services (large) 7.3 4.6 3.8 2.7 3.3
Distance*Capacity usage (%) 70.17 69.34 64.46 59.32 52.62
Waiting at origin 469.05 377.25 347.6 216.25 115.45
Transshipment time 1.60 6.95 3.7 2.45 0
Splitting of slow(%) 27.82 43.46 48.92 56.68 NA

Table II1.3: Topology n4: Fast demands concentrate at one port, no fare differentiation

no fast 25% fast 50% fast 75% fast 100% fast

Total cost 9175.37  9426.67 9619.72  9886.52  10204.87
Opening services cost 4567.5 4927.5 5175 5535 5940
# of open services (small) 5.7 11.7 15.6 19.4 21.6
# of open services (large) 7.3 5.1 3.7 2.6 2.4
Distance*Capacity usage (%) 70.17 69.59 68.27 65.37 61.97
Waiting at origin 469.05 431.4 388.9 335 282.85
Transshipment time 1.60 4.15 3.4 0.7 0.7
Splitting of slow(%) 27.82 38.02 47.06 48.00 48.83

Note that, as the total volume of all test instances, in either Table II1.2 or Table
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I11.3, is identical, and only R demands are considered with no fare differentiation, the
indicators related to profit make no difference when analyzing the solutions. Therefore,

no performance indicator related to profit is used in these two tables.

As shown in Table I11.2, the columns No fast and 100% fast provide the lower and
upper bounds, in terms of total cost, respectively. When the volume of fast demands
increases, the total cost is getting higher. Furthermore, to satisfy more fast demands
(even with the same total volume of demands), more services are needed, which results
in higher cost of opening services. According to the solutions, when we increase the ratio
of fast demands, more small vessels are needed with direct services. As direct services,
which have no intermediate stops, are open to satisfy the restrictive time constraints of
those urgent demands, the remaining capacity of these services can not be used, if not
loaded at their origins. As more transport capacity is open and the total volume of all
demands remains the same, the utilization of resources drops from 70.17% to 52.62%
(distance * capacity usage). Therefore, the profitability of transport capacity per unit
is getting lower without fare differentiation. When looking at the values of PI splitting
of slow demands, we remark that the more fast demands are satisfied, the more slow
demands are fragmented to match the remaining capacity, after satisfying the fast. In
order to satisfy the urgent delivery time of fast demands, some demands are kept at
terminals for several time periods instead of being immediately and directly transported
to their destinations. Most of the waiting (or container holding) take place at demands’
origins to avoid further handling cost, while very few demands are transshipped and being
held at intermediate stops. This phenomenon is due to the fact that 1) given the current
service network, demands with loose time constraints have to give the priority to those
with tight time constraints; and 2) the cost to open new services is higher than the sum

of handling and holding costs for the demands concerned.

Similar trends are also observed in Table II1.3, which is a clear indication that some
demands do consume more resources, and consequently result in higher total cost for
the carriers, than the others in a general case, no matter how the fast demands are
encountered in the network. Therefore, we conclude that offering high service level without
fare differentiation decreases the profitability, which means, for carriers, it is necessary and
promising to charge different fares on different customer services (fast or slow delivery).
Note that, in Table II1.3, as fast demands are concentrated at one port, some of these fast
demands are able to be transported together and benefit from consolidation. Accordingly,
compared to Table I11.2, less services with small vessel are open, and higher capacity usage
and less total cost are also observed. Therefore, even the fast demands do consume more
resources, these demands can still benefit from consolidation, if we organize and transport

them properly, and the proposed SSND-RRM model is able to help the carriers to achieve

69



Chapter III SSND-RRM

that.

The same type of experiments are also conducted on the other two physical networks
(i.e., Star n6 and General n7). Table I11.4 and Table IIL5 illustrate the results of the
first group of experiments for physical network Star n6, and results of the first groups of
experiments for physical network General n7 are shown in Table II1.6 and Table II1.7.
For both Star n6 and General n7, as bigger physical networks are considered, compared
to Linear n4, more demands (or higher total volume of demands) are included in each test
instance. This explains the higher total cost and more consumed resources observed in
Table I11.4-111.7. However, with respect to each tested physical network, the same trends

are observed as those for Linear n4 and result in the same type of conclusions.

Table II1.4: Topology n6: Fast demands spread uniformly over the network, no fare
differentiation

no fast 25% fast 50% fast 75% fast 100% fast

Total cost 20594.80 21469.37 22727.00 24180.60  25889.55
Opening services cost 10811.25 11418.75 12510.00 14175.00  15975.00
# of open services (small) 20.65 26.95 33.70 37.50 39.60
# of open services (large) 13.70 11.90 10.95 12.75 15.70
Distance*Capacity usage (%) 83.09 80.83 74.72 66.53 58.37
Waiting at origin 110.7 81 68.1 27.8 2.15
Transshipment 187.75 170.22 109.35 48.35 3.35
Splitting of slow(%) 33.49 39.79 44.22 45.49 NA

Table II1.5: Topology n6: All fast demands concentrate at one port, no fare differentiation

no fast 25% fast 50% fast 75% fast 100% fast

Total cost 20594.80 20958.70 21510.75 22076.65  22783.55
Opening services cost 10811.25 11002.50 11463.75 11936.25  12757.50
# of open services (small) 20.65 23.40 25.85 26.75 30.60
# of open services (large) 13.70 12.75 12.55 13.15 13.05
Distance*Capacity usage (%) 83.09 82.25 80.32 77.20 73.35
Waiting at origin 110.7 108.9 84.1 75.45 65.8
Transshipment 187.75 191.85 180.8 173.05 126.7
Splitting of slow(%) 33.49 38.38 37.39 37.35 40.26
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Table II1.6: Topology n7: Fast demands spread uniformly over the network, no fare
differentiation

no fast 25% fast 50% fast 75% fast 100% fast

Total cost 22134.75 23129.78 23939.00 24967.10  26461.80
Opening services cost 10552.50 11643.75 12521.25 13995.00 15873.75
# of open services (small) 13.20 30.65 39.65 47.1 53.25
# of open services (large) 16.85 10.55 8 7.55 8.65
Distance*Capacity usage (%) 77.91 76.43 73.11 66.62 58.83
Waiting at origin 64.1 59.5 58 32.51 5.8
Transshipment 209.9 153.5 144.8 67 9.95
Splitting of slow(%) 33.36 48.91 56.5 59.33 NA

Table I11.7: Topology n7: All fast demands concentrate at one port, no fare differentiation

no fast 25% fast 50% fast 75% fast 100% fast

Total cost 22134.75 22596.10 23018.00 23394.95  23879.40
Opening services cost 10552.50 11002.50 11418.75 11857.50  12465.00
# of open services (small) 13.20 21.1 24.25 30.2 34.9
# of open services (large) 16.85 13.9 13.25 11.25 10.25
Distance*Capacity usage (%) 77.91 76.97 75.84 74.31 71.64
Waiting at origin 64.1 71.35 84.75 88.45 64.35
Transshipment 209.9 192.65 187.25 1374 138.65
Splitting of slow(%) 33.36 40.14 40.92 44.94 43.31

II1.5.4 Experiment Results and Analysis: Second Group

As described in the experiment plan (Subsection II1.5.2), in this subsection, we study
the impacts of considering customer classification and fare differentiation for the selection
of services and the flow distribution. Parameter 2 (freedom of service selection) and
parameter 3 (mix of customer categories within the same test instance, with or without
fare differentiation) are discussed within this group of experiments. Table I11.8 presents

the results of second group of experiments for physical network Linear n4.

As shown in Table II1.8, interesting observations, with respect to mizx of customer

categories within the same test instance, with or without fare differentiation, are as follows:

e When comparing R+P with only R, higher relative yield is obtained by serving
the additional demands with services’ residual capacity (same total fixed cost with

different revenue);

e When comparing R+P with R+F without fare differentiation, as P demands may
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Table II1.8: Topology n4: Experiment group 2

only R R+P R+F no price R+F with price

fix all services 0.13 0.24 0.22 0.33
Relative Yield fix open services 0.13 0.25 0.23 0.46
fix no service 0.13 0.29 0.26 0.51
fix all services 5.7 5.7 5.7 5.7
# of open services (small) fix open services 5.7 7.2 9.5 11.7
fix no service 5.7 0.8 2.1 3.8
fix all services 7.3 7.3 7.3 7.3
# of open services (large) fix open services 7.3 12.9 11.6 14.5
fix no service 7.3 15.6 15.3 17.5
fix all services 0 173.65 135.35 151
Additional TEUs accepted fix open services 0 4884 446.75 576.1
fix no service 0 503.25 480.75 577.55

be fragmented, but F demands cannot (in terms of acceptance), R+P always results

in higher relative yield with more accepted additional TEUs;

e When comparing R+P with R+F with fare differentiation, even if P demands may
be split, better relative yield is still observed in R+F with fare differentiation; Note
that, for the case of fiz all services, R+F with fare differentiation generates even

better relative yield with less additional TEUs accepted;

e As expected, when comparing the two cases of R+F, because of the higher price
charged for the fast delivery, better relative yield is obtained by R+F with fare

differentiation, which shows that fare differentiation makes a difference.

Note that, when we fix all services, even with higher price, less F demands are served
than P demands with the same price, because P demands fit easily (even if not entirely)

into the residual capacity while F demands do not.

With respect to freedom of service selection, in the case fiz open services and fix no
services, when resources are relatively abundant, more F demands (with higher price)
are accepted compared to P demands. Based on this observation, we may conclude
that customer classification has more impacts on additional demand acceptance when
resources are limited, while fare differentiation influences more the selection of additional
(spot) demands when there is more flexibility in opening services. It also indicates that a
good understanding of the behavior of different customers (especially when resources are
scarce) and charging different fares on different products, at the tactical level, result in
a better resource utilization and extra profits for the transport companies. Nevertheless,

in practice, higher price may drive the customers away because of the very competitive
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environment of the market. Therefore, pricing should be done based on a deep analysis

of customers behavior, which is not the focus of this chapter.

The relative yield obtained from the second group of experiments is also illustrated in
Figure I11.4, where the vertical axis stands for the relative yield. As shown in the figure, it
is obvious that the consideration of a mix of regular and spot demands (R+P and R+F)
results in better relative yield, compared with considering only the regular demands.
Relative yield also grows when fare differentiation is introduced into the model. From the
perspective of the freedom of service selection, it becomes clear that, in order to achieve
a better relative yield, no additional constraints should be taken into account and the
SSND-RRM model should take the full responsibility for the decisions, in terms of service

selection. Therefore, we conclude that it is profitable to include revenue management
consideration into tactical SSND plan.

0.6
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0.1 : ;
fix no service

fix open services

Only R

R+P fix all services

) R+F with price ratio 1.5
M fix all services M fix open services fix no service

Figure III.4: Relative yield obtained in the second experiment group

As the experiments conducted on the other physical network topologies show the same
trends and consequently result in the same type of conclusions, numerical results for the

other physical networks are presented in Table II1.9 for Star n6 and Table II1.10 for
General n'7, respectively, without further analysis.
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Table II1.9: Topology n6: Experiment group 2

only R R+P R+F no price R+F with price

fix all services 0.14 0.25 0.22 0.31
Relative Yield fix open services 0.14 0.26 0.23 0.46
fix no service 0.14 0.30 0.27 0.52
fix all services 20.65 20.65 20.65 20.65
# of open services (small) fix open services  20.65 25.10 29.15 38.95
fix no service 20.65 9.9 14.55 20.10
fix all services 13.70 13.70 13.70 13.70
# of open services (large)  fix open services  13.70 25.80 23.55 27.00
fix no service 13.70 32.45 31.30 34.05
fix all services 0 310.25 233.35 246.65
Additional TEUs accepted fix open services 0 1033.05 933.75 1191.1
fix no service 0 1063.2 1034.7 1210.7

Table I11.10: Topology n7: Experiment group 2

only R R+P R+F no price R+F with price

fix all services 0.29 0.40 0.38 0.49
Relative Yield fix open services 0.29 0.39 0.37 0.64
fix no service 0.29 0.42 0.39 0.68
fix all services 13.20 13.20 13.20 13.20
# of open services (small) fix open services  13.20 15.50 21.25 31.90
fix no service 13.20 1.9 8.70 13.10
fix all services 16.85 16.85 16.85 16.85
# of open services (large)  fix open services  16.85 34.55 31.45 32.65
fix no service 16.85 39.55 37.6 40.2
fix all services 0 386.6 337 372.45
Additional TEUs accepted fix open services 0 1411.95 1308.75 1487.5
fix no service 0 1406.45 1346.75 1489.4

I11.5.5 Computational Time

As described in Subsection II11.5.1, all the MILP optimization problems are solved with
the help of a commercial solver (IBM CPLEX 12.5) on a multi-processor server running
under Linux 64-bit with an Inter Xeon X5675, 3GHz and 30 GB of RAM. In Table III.11,
we present the statistics of the computational time for the 180 test instances in experiment
group 1 of topology n4. As the size of the tested instances is not too large (4 terminals,
616 potential services and around 60 demands), most of them have a computational time

less than 10 minutes to obtain the optimal solution.

Another set of test instances of more realistic scale are designed to test the compu-
tational power of the commercial solver. To generate the test instances, we first fix the

number of demands for each test instance. Then, all the characteristics of a demand
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Table ITI.11: Statistics of computational time for 180 test instances in group 1 of topology
Linear n4

Running time (s) 1-200 201-400 401-600 600+
# of test instances 171 7 1 1

are generated randomly according to the uniform distribution. The commercial solver
(CPLEX 12.5) is set with a maximum running time of 10 days. The size, the compu-
tational time and the corresponding status of optimality of six particular test instances
are presented in Table II1.12. In the table, |NP"|, |S|, |D| and |D¥| indicate number of
physical terminals, number of potential services, number of total demands and number
of F demands. respectively. Remark that, decisions with respect to service selection and
F demand selection are formulated as binary decision variables, from where the compu-
tational difficulties come. Numbers of decision variables and constraints generated for
each test instance according to the SSND-RRM model are also presented in column #
DVs and column # Constraints, respectively. As shown in Table II1.12, computational
difficulties are encountered when solving the SSND-RRM problems of realistic scale. For
the last three test instances, no optimal solution can be obtained after 10 days with the

commercial solver.

Table 1I1.12: Computational time and size of large instances on topologies of Linear n/,
Star n6 and General n7

Test instance [NP"| |S| |D| |DF| # DVs # Constraints Time consumption Optimality

1 4 616 480 180 119858 104703 27.6 minutes yes
2 4 616 960 307 230238 202045 36.7 minutes yes
3 6 1848 150 66 77866 66225 26.8 hours yes
4 6 1848 300 107 144686 122180 10 days no
) 7 4200 210 79 265354 222719 10 days no
6 7 4200 420 130 546397 450447 10 days no

III.6 Conclusions

In this chapter, we proposed what we believe to be the first comprehensive tactical plan-
ning model for barge freight carriers that integrates both revenue and resource manage-
ment considerations (SSND-RRM). In the proposed model, revenue management (RM)
policies: customer classification and fare differentiation, are considered. In terms of re-
source management, design-balance constraints and limits on the quantity of resources are

formulated. To synchronize with other transport modes, scheduled services are planned
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to answer to demands with time-delivery constraints.

We tested the model on various problem settings, in terms of network topologies,
fare classes and quality-of-service (e.g., delivery time). According to results, when we
increase the ratio of fast demands for a given set of demands, more small vessels are
needed with lower capacity usage to satisfy those urgent demands. It also results in some
slow traffic to be split. It is obvious that fast demands consume more resources and
violate the idea of consolidation-based service, which encourages demands from different
customers to be transported together. Therefore, those demands, which result in more
costs, should be discriminated by charging different prices. In addition, by classifying
customer into different categories and having different treatments accordingly, carriers
may benefit from consolidation, obtain a better resource utilization and consequently
gain better revenue. Our results indicate that, higher relative yield (or profitability) and
better resource utilization for the carriers are always obtained, regardless of the physical
network topology, by considering RM policies when designing the network of scheduled
services. It is thus promising to classify customers and differentiate fare-products at

tactical level.

Further research may be carried out to extend the proposed model. For example,
different price policies could be applied. In the current SSND-RRM model, the price
policy is only related to the required delivery type. A different price policy can be also
considered according to the customer categories. To be more precise, the unit price
charged on the regular (R) customers should be lower than that charged on the spot
(P and F) customers, with respect to the same delivery type. The lower price here,
is applied to encourage the establishment of solid business relationship (or long-term
contract) between the carriers and customers. Even though the lower price seemingly
decreases the potential revenue of the carriers, it actually reduces the uncertainty of
demands, in terms of volume, OD and even delivery time, due to the signed long-term
contract. Therefore, it may result in better service plans, in term of resource utilization
and relative yield (profitability). Furthermore, within the spot customers, as P customers
fit in the residual capacity better, they should be charged with lower price, compared with
F customers. Thus, more P customers could be attracted. Another interesting perspective
is to formulate the stopping time of each service at each terminal as decisions in the SSND-
RRM model. Facing the uncertain demands, in terms of available time, and/or delayed
services, better service plans are expected, if the stopping time of a service at each terminal
is decided by the model, instead of fixed as a predefined value. Moreover, it is also
interesting to explicitly consider the uncertainty of demands, based on their customer
categories. For example, demands from regular customers are more predictable, while

demands from spot customers are more uncertain, in terms of volume, available time, etc.
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As one of the objectives of this chapter is to prove the concept of integration of revenue
(and resource) management considerations into tactical planning model, no deep insight
is offered with respect to the analysis of customer classification and fare differentiation.
Therefore, it is more convincible, especially for the carriers, to validate the SSND-RRM
model in case studies with real data and have a discussion on the market segmentation and
service qualification. In addition, the computational difficulties encountered when solving
the proposed problems of large scale urges that efficient solution approaches should be

proposed and developed.
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Revenue management is seldom considered when planning consolidation-based freight
transport services. In the previous chapter, we formalized and addressed the scheduled
service network design problems with resource management and revenue management
considerations (SSND-RRM). As the proposed SSND-RRM problems are NP-hard, in
this chapter, we propose a metaheuristic (MH), which is composed of four phases, to
efficiently solve the SSND-RRM problems, especially for the large-scale instances. In the
first phase, a constructive heuristic is proposed to obtain initial solutions, which are then
iteratively improved in the following phases. Adaptive large neighborhood search (ALNS)
and tabu search are combined to guide the iterative search in the second phase. New
neighborhood structures are proposed to explore in the search space of service selection,
based on service-cycles, producing high-quality solutions quickly. The other two phases
considered are intensification and diversification. Given some interesting characteristics
of services, small regions of solution space are identified based on the global best solutions
and are deeply explored (intensification). Diversification, on the other hand, is called to

direct the search towards non-thoroughly-explored regions of solution space.

A previous version of this research work has been presented at CORS/INFORMS

International Conference, 2015 with the following reference information:

Wang Y., Crainic T.G., Bilegan I.C., Artiba A. (2015). A Metaheuristic for Service
Network Design with Revenue Management for Freight Intermodal Transport. CORS/IN-
FORMS International Conference, Montreal, Canada, June.

Based on the material included in this chapter, a working paper is in preparation for

submission to an international journal.
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IV.1 Introduction

Service network design (SND) is a core problem and is widely used as a generic model
to formulate network design problems faced in the fields of telecommunication, logistics,
transportation, etc. In the field of freight transportation, SND models generally consist of
selection and scheduling of services, and routing demands with the selected services while
minimizing the total cost. [Crainic, 2000, Crainic, 2003] offer an introduction to service
network design in freight transport. In addition to selection and scheduling of services, and
routing demands, managing limited key resources (or assets), e.g., power units, vehicles,
crews or containers, is also integrated within SND problems (e.g., [Pedersen et al., 2009,
Andersen et al., 2009b, Andersen et al., 2009a,Crainic et al., 2014]). Due to the increasing
competition (e.g., decreasing costs and improving customer satisfaction) on carriers from
the market, different polices are taken in the literature to make “better” plans tackling the
tactical planning problems. For example, maximizing the net profit (or revenue) instead of
minimizing the total costs (e.g., [Agarwal and Ergun, 2008, Teypaz et al., 2010,Gelareh and
Pisinger, 2011]), rejecting some demands instead of accepting all demands at tactical level
(discrimination on customers/customer classification) (e.g., [Andersen and Christiansen,
2009, Thapalia et al., 2012, Braekers et al., 2013, Stalhane et al., 2014]). Although not
explicitly identified, these different polices are Revenue Management (RM) related. RM,
which was initially applied to passenger airline transportation, starts to draw attention
in research nowadays for freight transportation, as illustrated in the reviews related to
air cargo operations [Feng et al., 2015], railway transportation [Armstrong and Meissner,
2010], and container synchromodal services [van Riessen et al., 2015a]. However, the few
contributions considering both RM and freight transportation [Bilegan et al., 2015, Wang
et al., 2015] focus on the operational level, while the tactical level is rarely envisaged
[Crevier et al., 2012].

Therefore, in the previous chapter, we proposed a Scheduled Service Network Design
model with consideration of both Resource and Revenue Management (SSND-RRM) to
solve the tactical planning problems for freight carriers. To integrate resource management
into the SSND-RRM, design-balance constraints, which ensure the balance of incoming
and outgoing vehicles at each terminal for each time instant, and limits on the quantity of
resource (vehicles) are formulated. In terms of RM policies, various fare classes according
to the required delivery types are modeled. Moreover, customers are classified into three
categories, i.e., Regular customers (R), Proportional-punctual customers (P) and Full-
punctual customers (F'). According to their business relationships with the carriers and
their behaviors, demands from different customers are treated differently. To be more
precise, demands from R must always be satisfied, while demands from P can be partially

accepted and demands from F may be either entirely accepted or not accepted at all.
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Therefore, in addition to the selection of scheduled services and routing of demands,
decisions related to the selection of demands to transport are also made in the proposed
SSND-RRM. Further complexity to the SSND-RRM problems is added because of the
competition of different categories of customers for the network capacity with different
fares and trade-offs between opening more services with higher revenue and rejecting more

demands with lower total costs.

As shown in Chapter III, introducing resource and revenue management considera-
tions into the SND formulations poses great computational challenges. The goal of this
chapter is to propose a solution approach to efficiently identify good-quality feasible so-
lutions for the SSND-RRM problems of large scale. The contributions of this paper are
threefold: First, we propose a Metaheuristic (MH) that combines adaptive large neighbor-
hood search (ALNS) and Tabu search, and utilizes long and short-term memory structures
for addressing the SSND-RRM. Second, new neighborhood structures considering design-
balance constraints are introduced to accelerate the search in the space of service selection.
Third, we study the efficiency of the proposed solution approach through comprehensive

experiments and benchmark against a state-of-the-art commercial solver.

The rest of this chapter is organized as follows. Following a brief literature review
in Section IV.2, we recall the statement of the problem and present the model of SSND-
RRM in Section I'V.3. Section IV .4 is dedicated to introduce the solution approach, while
computational results are presented and analyzed in Section IV.5. We conclude with

perspectives in Section I'V.6.

IV.2 Literature Review

In SND problems, continuous and binary variables are used to represent commodity flows
throughout the designed network and the selection of services, respectively. With two
of the most common constraints, i.e., network capacity constraints and flow conservation
constraints, SND problems are considered as a fixed-charge capacitated multicommodity
network design problem (CMND).

Considerable efforts directed towards investigating and developing effective solution
techniques, in particular, metaheuristics and hybrid approaches, are proposed for the
problems of CMND/SND. [Crainic et al., 2000] propose a hybrid approach for CMND,
combining a tabu search method with pivot-like neighborhood moves and column genera-
tion. The work is continued by [Ghamlouche et al., 2003] and a more efficient cycle-based

neighborhood structure for CMND is proposed. In their study, two paths (sequence of
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design arcs) connecting the same origin-destination nodes in the network constitute a
cycle. As no resource management is considered, a generated cycle is used to redirect flow
from one path to another and contribute to the selection of design variables simultane-
ously. Neighborhood moves proceed by redirecting flow around cycles, and closing and
opening design arcs accordingly. [Ghamlouche et al., 2004] later enhance the approach
of [Ghamlouche et al., 2003] by combining the cycle-based neighborhood structure and
the mechanism of path-relinking, introduced by [Glover, 1997]. Promising attributes of a
set of elite solutions (called the reference set) are used to guide the local search (as well

as the intensification and diversification).

[Pedersen et al., 2009] study more generic service network design models in which the
resource balance constraints are considered. A multi-start metaheuristic, based on tabu
search, is developed and tested. With respect to the resource balance constraints, infea-
sible solutions (with unbalanced resource) are allowed in the exploration phase. Arc-add
moves are therefore included to restore the balance of resource and to lead the search
towards feasible solutions. [Vu et al., 2013] and [Chouman and Crainic, 2014] in their
proposed solution approaches, also allow infeasible solution and have an additional pro-
cedure to restore the feasibility with respect to the design-balance constraints. Various
mechanisms within a guided local search framework to solve the design-balanced SND
problems are investigated by [Bai et al., 2012]. Compared with [Pedersen et al., 2009],
the proposed tabu assisted local search approaches obtain solutions of the same qual-
ity, with a reduction of 30% in the computational time. [Chouman and Crainic, 2014]
propose a matheuristic for the design-balanced SND problems. In the proposed algo-
rithm, a cutting-plane procedure is applied to compute the lower bounds. Memories on
characteristics of promising solutions are built when tightening the lower bounds and are
used in a variable-fixing heuristic to reduce the size of the problem by fixing a number
of design variables. After an extensive computational study, the authors point out that
appropriate learning mechanisms and variable-fixing techniques are able to identify high
quality solutions rapidly. [Crainic et al., 2014] propose a solution approach that combines
column generation, meta-heuristic and exact optimization techniques to their new design-
balanced SND model. In the proposed model, the limit on the resources at each terminal

is considered.

Exact algorithms can also be found in the literature [Andersen et al., 2011, Meng
et al., 2012, Bektag et al., 2010]. However, as the problems are NP-hard, exact methods
reach their limits rather rapidly as the size of the instances grows. It has been proved
that solving realistic instances of such planning problems are difficult. For example,
[Andersen et al., 2011] study a branch and price method for the design-balance SND
problems. Although the proposed algorithm finds solutions of higher quality than the
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previous methods, the 10-hour computational time required by the algorithm indicates a
great challenge for its practical applications. Therefore, the focus of our research in this
chapter is not on exact algorithms. For those who are interested in exact algorithms, we

refer to [SteadieSeifi et al., 2014] as an overview.

Little effort has been dedicated, however, to solving scheduled service network design
problem while simultaneously considering resource management and revenue manage-

ment. This chapter aims to help fill this gap.

This chapter is organized as follows. In Section IV.3, we recall the statement of the
problem and the model of SSND-RRM. Section 1V .4 is dedicated to introduce the solution
approach, while computational results are presented and analyzed in Section IV.5. We

conclude with perspectives in Section IV.6.

IV.3 Problem Statement and Formulation of SSND-
RRM

In this section, we first briefly present the tactical planning problem with consideration

of resource and revenue management. The formulation of SSND-RRM is then presented.

As described in Chapter III, we first assume the demands D = {d} from customers
and services S = {s} offered by carriers follow a repetitive pattern during the middle-term
planning horizon (e.g., a season). A scheduled service plan is then built up for a given
schedule length (e.g., a week) and then repeatedly operated over the planning horizon to

satisfy demands.

We then formulate the SSND-RRM problem on a circular time-space network G =
(M, A). The node set N is obtained by duplicating all physical terminals (of rivers,
canals, etc.) at all periods in the schedule length T, so that node it corresponds to the
physical terminal i at time instant ¢, t = 0,...,(T — 1). The set of arcs A is composed

of two subsets of arcs: holding arcs at terminals and moving arcs performed by services.

Customers are classified, according to their business relationships with the carriers,
into three categories, i.e., Regular customers (R), Proportional-punctual customers (P)
and Full-punctual customers (F'). Accordingly, demands from different customers are
treated differently. Demands D requested from regular customers R must always be
satisfied, while demands D? from P can be partially accepted and demands D from F

may either be entirely accepted or not accepted at all. Then, each demand d € D =
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DR U D” U DY is characterized by: the requested volume vol(d) in TEUs; the origin
and destination terminals, orig(d) and dest(d), respectively; the time in(d) it becomes
available for transportation at its origin terminal; the last time out(d) it may arrive
at its destination terminals; the category cat(d) of customers; the fare class class(d),

slow/normal or fast; and unit fare value f(d).

Vessels £ owned or rented by the carriers are operated for the scheduled services. Each
vessel type | € L is characterized by: capacity cap(l) in TEUs; and maximum number B,

of vessel type [.

A service s € S is thus characterized by: the origin and destination terminals, orig(s)
and dest(s), respectively; Ordered set of consecutive stops n(s) = {ir(s) € NPV k =
0,..., (K —1)} of the service, where K = |(s)| and k indicates the k' stop of the service;
k™ leg ay(s) = (ix(s), irs1(s)) of the service; arrival and departure time at and from its
terminal ix(s), ag(s) and 7(s), respectively; vessel type l(s) of the service; capacity

cap(l(s)) of the service; and fixed cost ¢(s) of setting up and operating the service.

A set of unit costs are also defined: transportation cost ¢ (y(d),(s)) of a container of
type v(d), by a vessel of type I(s), on the k' leg of service s; holding cost c(i,7y(d)) of a
container of type 7(d) at terminal i for one period; Loading/unloading cost (i, 7y(d)) of a
container of type y(d) at terminal i; Holding cost h(i,1) for a vessel of type [ at terminal
i for one time period; and penalty p(l) for a vessel of type [ that is not used in the plan.
For an in-depth statement and detailed notation explanation of the problem, we refer to
Chapter III.

We now present the formulation of the scheduled service network design with resource
and revenue management (SSND-RRM) model for the tactical planning of intermodal
barge transportation. To avoid repetition, for decision variables defined for the SSND-
RRM model and the SSND-RRM model formulation, we refer to Chapter III as well.

IV.4 Solution Approach

To solve the capacitied multicommodity network design (CMND) problems, a conven-
tional methodology adopted in the literature is to consider a CMND problem as two
related components: a). determine “optimal” design variables ) (selection of open arcs
/ services); and then b). for a given feasible design variable vector ), search the optimal

flow distribution X'()). Here, compared to the CMND problems, further complexity is
added to the SSND-RRM problem due to, among other factors, the additional decisions
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on F-demand selection (which are binary decision variables) and resource management

(design-balance constraints and limits on the quantity of resource).

As described in Section IV.3, a solution to the SSND-RRM is composed of ser-
vice selection y(s), vehicle holding z(l,4,t), F-demand selection ((d) and P-demand se-
lection £(d), flow distribution vector X, whose components are the decision vectors
x(d, s, k), 2(d, s, k), x°"*(d, s, k), 2"°'4(d, i,t). According to the design-balance constraints
(II1.10), the decision variables z(l,4,t) are related to y(s) and their values can directly be
calculated from the values of y(s). Moreover, the decision variables £(d) are continuous
and can be determined when the flow distribution problem is solved. Therefore, a SSND-
RRM problem can be considered as three components: a). identify promising F-demand
selection variables F; and then b). for a given vector F, search promising design vari-
ables ) (service selection); and then c). for given vectors F and ), determine the optimal
flow distribution X'(F,Y). The motivation of considering SSND-RRM as a sequence of
three successive components is that by fixing some parts of the solution, one may work
on some other part of the solutions. As the service selection and F-demand selection are
formulated as binary decision variables and the flow distribution as continuous variables,
one of the most difficult challenges to obtain the optimal solution is to identify promising
Fand ).

Therefore, we propose a metaheuristic (MH) framework that combines adaptive large
neighborhood search (ALNS) and Tabu search, and utilizes long- and short-term memory
structures for addressing the SSND-RRM. The intuition of the proposed MH is to improve
the solutions by iteratively exploring the search space of F-demand selection, service
selection or the combination of both. The mechanism of choosing the search space on
which to concentrate is inspired by a modified ALNS strategy. To be more precise, to
explore the search space of service selection, a set of )-selection heuristics are introduced.
New neighborhood structures considering the design-balance constraints are proposed to
accelerate the search. The proposed neighborhood structures are based on a concept of
service cycle, which is a set of consecutive services using the same type of resource/vehicle,
and going back to the same terminal where the first service starts, with or without vehicle
holding arcs. Meanwhile, to explore the search space of F-demand selection, a set of F-
selection heuristics are introduced. Moreover, as the first two components of SSND-RRM
are not independent, these two sets of heuristics are also able to be combined to explore
the integrated search space of both F-demand selection and service selection. Short-term
memory is maintained to record the performance of each heuristic, whereas long-term
memory (called trajectory lists in this chapter) is maintained to record the influence of
each F demand and service on the solutions. Short-term memory tabu lists are also

maintained to prevent repeatedly visiting a particular set of solutions.
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The overview of the proposed MH is illustrated in Algorithm 1. The number next
to each step indicates the corresponding section where the step is discussed. As shown,
the proposed MH consists of two main phases. We first obtain an initial solution by
applying a constructive heuristic, and then improve the obtained solutions by iteratively
exploring the search space of service selection, F-demand selection or the combination of

both. Phases of intensification and diversification are also included.

1 Phase 1: Initialization > Section IV.4.1

2 Solve the relaxed SSND-RRM with all F demands rejected;

3 Round up the selection of services;

4 Rebalance the resources;

5 Restore the feasibility of limit on the resources;

6 Intensification;

7 Phase 2: Improvement > Section 1V.4.2

8 while stopping criteria are not met do

9 Choose one F-selection heuristic; > Section 1V.4.2.2

10 Choose one Y-selection heuristic; > Section I1V.4.2.1

11 Set up the candidate list of neighbors;

12 Identify the best neighbor;

13 if the new solution is better than the global best then > Section 1V.4.2.3,
IV.4.2.4

14 Update trajectory list and reward chosen heuristics; > Section 1V.4.2.5

15 Update global best;

16 Set new solution as incumbent;

17 else if the new solution is better than incumbent or not 10% worse than the
global best then

18 Update trajectory list and reward chosen heuristics;

19 Set new solution as incumbent;

20 end

21 if conditions are met then > SectionlV.4.2.6, IV.4.2.7

22 ‘ Conduct intensification and diversification;

23 end

24 end

Algorithm 1: Overview of the proposed MH

In the first phase, to facilitate the construction, a subset of Y-selection heuristics
are applied to build up the design variables. Design-balance constraints and limit on
the quantity of resources are guaranteed by the procedures indicated at line 4 and 5,
respectively. In the second phase, an attempt is made to improve the solutions by applying
the proposed F-selection heuristics and Y-selection heuristics according to tabu search
and a modified Adaptive Large Neighborhood Search (ALNS) strategy inspired by [Ropke
and Pisinger, 2006]. Short-term memory tabu lists are maintained to prevent repeatedly
visiting a particular set of solutions (see Section IV.4.2.8), and the modified ALNS strategy
(see Section IV.4.2.3 and 1V.4.2.4) is used to guide the search in different directions with
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different neighborhoods. In each iteration, we first choose one F-selection heuristic, and
then one Y-selection heuristic. As the neighborhoods applied in this chapter are very large,
a list of promising neighbors, called candidate list of neighbors, are generated to accelerate
the search. The iterative exploration continues until the global stopping criteria are met.
As no infeasible solution is allowed in the second phase, to escape from a local optimal,
moves that worsen the solutions are also accepted. A procedure is applied to diversify the
incumbent solution when predefined number of consecutive no-feasible-neighbors situation
is met (see Section IV.4.2.6). When predefined number of no-global-improvement situation
is encountered, another procedure is applied to intensify the current global best solution
by addressing the corresponding reduced-size problems with a commercial MILP solver
(see Section 1V.4.2.7). Long-term memory, i.e., trajectory F list and trajectory service list
(explained in Section IV.4.2.5), is maintained to record the influence of each F demand

and service on the solutions, respectively

IV.4.1 Initialization

As the proposed SSND-RRM is NP-hard, we first propose an initialization phase to effi-
ciently obtain an initial feasible solution sol, which will be used to start the improvement

phase.

To obtain sol, the first step is to solve the relazed SSND-RRM with all F demands
rejected. The reason to reject all F demands is that as ((d) are binary variables, fixing
the values of all ((d) can reduce the dimension of the optimization problem. According
to the solution to the relaxed SSND-RRM, in the second step, we round up the selection
of services. More precisely, if no flow is found on any leg of a service s, we set y(s) to

0; otherwise, it is set to 1. In the third step, the indegree Y y(s)+ z(l,i,t — 1) and

SE€ES,

outdegree > y(s)+ z(l,4,t) of each node (i,t) in the time-space network for each type

+
5€5,

of vehicle are calculated to verify the balance of resources. If unbalance is found, we
first eliminate the unbalanced nodes among the same terminals by adding vehicle holding
arcs. If there are still some unbalanced nodes from different terminals, we then open extra
services to connect the unbalanced nodes until all nodes are balanced. Note that, after the
second and third steps, constraints II1.11 may be violated, which indicates that the limit
on the quantity of resources may be exceeded. In such a case, a specific step, is conducted
to restore the feasibility of the resource limit, as illustrated in Algorithm 2. Only three
basic Y-selection heuristics, i.e., drop one service cycle, replace large with small service
cycle and replace small with large service cycle, are applied in this algorithm. The first

heuristic is chosen to reduce the number of planned resources, while the last two are chosen
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1 while constraints I11.11 are still violated do

2 Randomly choose one )-selection heuristic;

3 Modify Y accordingly:

4 Fix Y and FO (all {(d) = 0);

5 Solve the flow distribution problem without constraint I11.11;
6

end
Algorithm 2: Restore the feasibility of the limit on resources

to balance the numbers of different kinds of resources and contribute to diversifying the
solution. The three heuristics are selected, from the proposed eight Y-selection heuristics,
for this step in the interest of simple and fast reduction of the number of open design
variables. In addition, all the three heuristics have the same probabilities to be chosen
in Algorithm 2. The detailed explanation of the three heuristics, among others, are
introduced in Section IV.4.2. A valid selection of design variables ) for the SSND-RRM
is supposed to be obtained after this step.

IV.4.2 Improvement

Given an initial solution, in this phase, we try to iteratively improve the solutions by
exploring in the search space of service selection, F-demand selection and the combination
of both, according to tabu search and a modified Adaptive Large Neighborhood Search
(ALNS) strategy. To explore the search space of F-demand selection and service selection,
seven JF-selection heuristics and eight )-selection heuristics are introduced, respectively.
The iterative exploration continues until the global stopping criteria are met. In each
iteration, we first choose one F-selection heuristic. One Y-selection heuristic is then
chosen from a predefined associated set of )Y-selection heuristics. To be more precise,
the proposed F-selection heuristics can be briefly classified into two categories: reject
accepted F' demands and accept extra F demands. As the intuitions of reject accepted F
demands and accept extra F' demands are not the same, not all Y-selection heuristics are of
equal interest according to a given JF-selection heuristic. The set of V-selection heuristics
associated to each F-selection heuristic is discussed later in this section and presented
in Table IV.3. According to the selected heuristics, if changes have to be made on both
F and ), we explore the integrated search space of both F-demand selection and service
selection. Otherwise, if the chosen JF-selection heuristic is “change no F”, we explore the
search space of service selection; or if the chosen YV-selection heuristic is “change no Y,
we explore the search space of F-demand selection. The selection among all heuristics
is guided by a modified ALNS strategy depending on the historical performance of each

heuristic.
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As the applied neighborhoods are very large and not all neighbors are of equal interest,
according to the chosen Y-selection heuristic, we generate a candidate list of neighbors
by limiting the number of service cycles generated. Each neighbor in the list is then
evaluated by solving the corresponding flow distribution problem with fixed F and Y, and
the “best” neighbor is chosen as the new solution. In each iteration, if the new solution
is better than the global best, update the global best and set it as the incumbent; if
the new solution is not better than the global best, but better than the incumbent or
not 10% worse than the global best, set it as the incumbent solution, then continue.
Note that, it is possible that all neighbors in the list have no feasible solution during the
procedure. When this happens, we keep the incumbent solution and proceed to the next
iteration. As no infeasible solution is allowed in the this phase, to escape from a local
optimal, moves that worsen the solutions are also accepted and diversification is applied
when necessary (see Section 1V.4.2.6). Learning mechanisms are embedded to guide the
search by identifying good characteristics/attributes of solutions, i.e., promising service
and F-demand selection. Intensification is also included by addressing the corresponding

reduced-size problems with a commercial MILP solver (see Ssection 1V.4.2.7).

In the following of Section IV.4.2, we first introduce the proposed F-selection heuristics
and Y-selection heuristics. Consequently, the modified ALNS is discussed, following with

learning mechanism. The diversification and intensification are then introduced.

IV.4.2.1 Y-selection Heuristics

The set of proposed Y-selection heuristics is composed of eight competing heuristics.
Without considering the F-selection heuristics, all the Y-selection heuristics explore the
search space of service selection. One basic neighborhood move to search the space of de-
sign variables of CMND problems is defined by changing one, or sometimes two decision
variables at a time. However, [Ghamlouche et al., 2003], in their study, point out that
this conventional neighborhood move is not efficient to solve the CMND problems. They
justify that changing one arc in the network at a time has limited impact and generally
results in equivalent solutions. Therefore, they propose cycle-based neighborhoods, in
which a set of design variables are changed at a time to accelerate the search. However,
design-balance constrains are not considered in their study and the cycle-based neigh-
borhoods are proposed from the perspective of redirecting the flow, not resource manage-
ment. [Pedersen et al., 2009], in their study, consider resource management by introducing
the design-balance constraints, and propose a tabu search metaheuristic framework for
the arc-based formulation. The proposed metaheuristic first explores the search space of

design variables by dropping or adding arcs. Infeasible solutions, with respect to design-
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Figure IV.1: An example of service cycles

balance constraints, are allowed in the exploration phase. A post-phase is then conducted
to reconstruct a feasible solution from by rebalancing the resources. [Vu et al., 2013] in
their proposed three-phase matheuristic also apply an additional phase to restore feasibil-
ity, with respect to the design-balance constraints. Indeed, allowing infeasible solutions
helps to diversify the search and to escape from local optimal. Conducting an additional
phase to rebalance the resources, however, is time consuming and sometimes degenerates

the solutions, in terms of objective-function values.

Therefore, in this chapter, we propose a new neighborhood structure in which the
design-balance constraints are considered. As to our knowledge, no such neighborhood
structure exists in the literature. The proposed neighborhood structure is based on a
“new” concept of service cycles. A service cycle is a set of consecutive services using the
same type of resource/vehicle, and going back to the same terminal where the first service
starts, with or without vehicle holding arcs. Figure I'V.1 illustrate a valid design of services
with resource management. Two service cycles can be identified in Figure IV.1. The first
one is composed of sy, s; and two holding arcs (presented as dashed arcs), and the second
one is composed of four services (from sy to s;) without holding arcs. Note that, all
nodes in the time-space network related to a given service cycle are resource balanced.
Therefore, moves based on service cycles always ensure the design-balance constraints.
The basic idea of add/drop/swap is the intuitive scheme to define moves around service
cycles. Consequently, service cycles could be added, dropped, replaced or improved by
swapping a subset of services in the cycles. The motivation of exploring around service
cycles is twofold: First, to ensure the design-balance constraints; Second, to explore the

search space more efficiently by changing one set of services at a time.

To search in service-cycle-based neighborhoods, the first step is to identify service cy-

cles. However, a solution to a problem of realistic size may involve a huge number of
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service cycles. The enumeration of all possible service cycles and the exhaustive explo-
ration are not practical for most situations. Moreover, not all service cycles are of equal
interest for different purposes. For example, in order to decrease the total transport ca-
pacity by dropping a service cycle, there is a higher possibility to find a better solution by
dropping a service cycle with the lowest capacity usage than dropping the cycle featuring
the highest capacity usage. Thus the specific way, a candidate list of promising neighbors

is determined, will be presented later in this section.

Before describing the eight Y-selection heuristics, we first introduce how service cycles

are identified.

IV.4.2.1.1 Identify service cycles To identify a service cycle, we apply an adapted
labeling algorithm (shortest-path like). Let G = (N, .A) be a graph where N is the set
of all nodes and A is the set of all arcs in G. Here, n € N represents a node, while
(i,j) € A represents an arc when i,j € N, and dis_a(i,j) is the length of arc (i,j). Let
path(i,j) represent the set of arcs leading the path from node i to node j, and the length
of path from node i to node j is denoted by Dis_n(i,j). Given a start node and an end
node 0,0 € N, the labeling algorithm used to generate the shortest path from o to 0 is
presented in Algorithm 3.

Set 0 as the current node n;
for each node n € N' do
| Set Dis_n(n.,n) = +o0;
end
marker:
for each arc (n.,1),i € N and (n,i) & path(o,n.) do
if Dis_n(o,n.) + dis_a(n.,i) < Dis_n(o,i) then
Dis_n(o,i) = Dis_n(o,n.) + dis_a(n,i);
Update path(o,1i);
end

© 00 N o Uk W N =

=
o

end
Find the current smallest Dis_n(o,j);
if ) == 0 then
‘ The “shortest” path from o to 0 is found;
else
Set j as the current n;
Goto marker;

I
N 0 A W N R

end

Ju
v 4

Algorithm 3: Adapted labeling algorithm

In our problem setting, A is the set of all nodes in the time-space network, and
therefore a node n(i, t) in the time-space network is presented by its corresponding physical

terminal ¢ and time instant ¢; while A is composed of services and vehicle holding arcs.
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The “length” of each arc (a service or a vehicle holding arc) is defined by its corresponding

estimated contribution, which is explained later in this section.

To identify a service cycle by applying the adapted labeling algorithm, we follow the
procedure illustrated in Algorithm 4. First, we define the “length” of each arc according to
the chosen Y-selection heuristic. As shown in Table IV.1, average capacity usage, average
residual capacity or estimated profit is defined as the “length”, or estimated contribution,
of each arc, according to the category of decrease capacity, increase capacity or other,
respectively. Average capacity usage of a service s, cap usage(s), is calculated accord-
ing to equation (IV.7). For a vehicle holding arc decision variable z(l,i,t), the average
capacity usage is 0, if z(l,4,t) > 0 according to the current solution; otherwise, it is 1.
Furthermore, the average residual capacity residual__usage(s) is calculated according to
equation (IV.1).

residual_usage(s) = 1 — cap__usage(s); (IV.1)

The estimated profit of a service s, profit(s), is calculated according to equation (IV.2),
in which the first term is the estimated revenue of s and the following three terms are
fixed costs, transport costs and handling costs, respectively. Note that, to calculate the
estimated revenue of s serving d, the transport volume of d and transport distance are
considered. For a vehicle holding arc decision variable z(l,i,t), the estimated profit is
—h(i, 1), if z(1,i,t) > 0; otherwise, (7" — 1)h(i,l). Further explanation can also be found
in the description of each neighborhood.
profit(s) = >, 2 f(d)x(d,s ) dis(ori;lzzgf?iest(d))

ken(s) deD

—o(s)— > > a(y(d),l(s))z(d, s, k) (IV.2)

ken(s) deD

— 3 S k(i (d) (@(d, 5, k) + 2°U(d, 5, k)

ken(s) deD

After defining the length of each arc, we then identify a pair of 0 and 9 in the time-space
network. These two nodes are identified by selecting a start arc, i.e., a service s. According
to the selected s, the end node (dest(s), Tk —1(s)) and start node (orig(s), ap(s)) of s are
set as 0 and 0, respectively. After identifying o and 9, we apply Algorithm 3 to identify
the shortest path from o to 0. The start arc s and all arcs (services and holding arcs) of

the shortest path(o,9) then constitute the service cycle.

An identified service cycle, consequently, is dropped, replaced or improved by swap-
ping one or a subset of services in the cycle according to different )-selection heuristics.
For a given solution, the number of all possible service cycles is large, because the num-

ber of services is large and one service can be used to construct different service cycles.
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[uny

Define the length of each arc (service and vehicle holding arc);

Select a start arc (service s);

Set end node (dest(s), 7k —1(s)) and start node (orig(s), ap(s)) of s as o and ?,
respectively;

Identify the shortest path from o to 0; > Algorithm 3
5 Construct the service cycle;

Algorithm 4: Identify a service cycle in time-space network

w N

'y

Table IV.1: Definition of estimated contribution of arcs to each Y-selection heuristic

Section Category Y-selection heuristic Estimated contribution
IV.4.21.2 Drop a service cycle
IV.4.2.1.3 Decrease capacity Replace large with small service cycle  Average capacity usage
IV.4.2.1.6 Integrate two service cycles
V4214 . Replace small with large service cycle . .
V4917 Increase capacity Split one service cycle Average residual capacity
IV.4.2.1.5 Improve one service cycle »
IV.4.2.18 Other Add service cycles Estimated profit
IV.4.2.1.9 Fake Change no Y NA

Moreover, not all service cycles are of equal interest. Therefore, for each Y-selection
heuristic, only a set of promising service cycles are generated to limit the search. We
identify the promising service cycles by specifying a set of start arcs (services), which
have interesting characteristics. Each start arc are then used to generate only one service
cycle by applying Algorithm 3. Selected start arcs with interesting characteristics for
each Y-selection heuristic are presented in Table IV.2. To be more precise, for those -
selection heuristics belonging to the category “decrease capacity”, lowest capacity usage
is an interesting characteristic for selecting service. On the contrary, for those )-selection
heuristics belonging to the category “increase capacity”, highest capacity usage is an in-
teresting characteristic. For heuristic improve one service cycle, least estimated profit is
an interesting characteristic. Moreover, least estimated profit and lowest influence are
the interesting characteristics for all Y-selection heuristics mentioned. Note that, in ad-
dition to start arcs with interesting characteristics, randomly selected start arcs are also
applied for all Y-selection heuristic to enrich and diversify the search. In Table IV.2, two
YV-selection heuristics, i.e., Change no Y and add service cycles are not included. The first
one is not presented in the Table, because it is a fake heuristic and nothing needs to be
done. The second one is not presented, because different start arcs are applied. Details

of the start arcs to add service cycles are discussed in its corresponding section.

To set up the candidate list of promising neighbors, we follow the procedure illustrated
in Algorithm 5. After generating the set of promising service cycles, a set of neighbors

is defined for each identified service cycle. Even with limited number of service cycles,
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Table IV.2: Start arcs with interesting characteristics to each Y-selection heuristic

Section Y-selection heuristic Start arcs
V4212 Drop a service cycle Service with lowest capacity usage (small & large)
IV.4.2.1.3 Replace large with small service cycle  Service with lowest capacity usage (large vehicle)
IV.4.2.1.4 Replace small with large service cycle Service with highest capacity usage (small vehicle)

IvV.4.2.1.5 Improve one service cycle Service with least estimated profit

IV.4.2.1.6 Integrate two service cycles Service with lowest capacity usage

IvV.4.2.1.7 Split one service cycle Service with highest capacity usage
Service with least estimated profit

All above All above Service with lowest influence in the trajectory list

Service chosen randomly

the complete evaluation of all possible neighbors rapidly becomes computationally de-
manding, as the number of neighbors is still huge. To simplify and accelerate the search,
for each service cycle, we keep evaluating its neighbors until the very first neighbor with
improvement is identified. This neighbor is considered as the candidate proposed by
the corresponding service cycle. Therefore, the candidate list of promising neighbors are

determined for a given )-selection heuristic.

1 for each specified start arc do

2 ‘ Generate a service cycle; > Algorithm 4
3 end

4 A set of promising service cycle are identified;

5 for each identified promising service cycle S¢ do

6

7

8

9

Identify a set of neighbors; > see each Y-selection heuristic
for each neighbor do
Evaluate this neighbor;
if improvement is found on the incumbent then
10 Update the local best neighbor;
11 Break;
12 else
13 ‘ Update the local best neighbor;
14 end
15 end
16 if a local best neighbor is found then
17 ‘ Set this neighbor as the promising neighbor for §¢;
18 else
19 ‘ No promising neighbor is identified for S¢;
20 end
21 end

22 A candidate list of promising neighbors are determined;
Algorithm 5: Set up the candidate list of promising neighbors

In the following of Section IV.4.2.1, we introduce the proposed eight Y-selection heuris-

tics.
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IV.4.2.1.2 Drop one service cycle The move of this heuristic is defined by drop-
ping a service cycle from the incumbent solution. It attempts to improve the solution
by reducing the total transport capacity. If dropping a service cycle could improve the
solutions, it implies that the total transport capacity is sufficient, or even more than nec-
essary. Therefore, the low-capacity-usage service cycles are more interesting than others.
As illustrated in Table IV.1, the estimated contribution of each arc is consequently defined
as the average capacity usage. Promising service cycles are generated with specified start
arcs, which are presented in Table IV.2. According to the definition of the neighborhood

move, there is only one neighbor for each identified service cycle.

IV.4.2.1.3 Replace large with small service cycle The move of this heuristic
is defined by replacing a large-vehicle service cycle &’ with a small-vehicle service cycle
S. In addition to reducing the total transport capacity, this heuristic also contributes to
diversifying the search. According to Algorithm 5 (line 6), for a given large-vehicle service
cycle &', we identify a set of neighbors following the procedure illustrated in Algorithm
6. To be more precise, for each service s’ in §’, a corresponding alternative list S* is
generated. A related s* of s is characterized from three aspects: first, s* is a service using
small vehicle; second, s* has the same start and end terminal as s’; last, both start time
and end time of s* are no more than +1 time period away from those of s’. By choosing
one service for each s’ € S’ from its corresponding alternative list, we obtain a possible
S. Therefore, all the possible S are generated by the enumeration of all service-selecting
combinations from the alternative lists. These possible S are then sorted decreasingly
according to the sum of influence of each s* € S, according to the trajectory service list.

To evaluate an S, we calculate the estimated revenue of it by restoring the flow of D',

1 for each s’ € §' do

2 for each related s* of s’ do

3 if s* #£1 in ) then

4 ‘ s* is considered as a possible alternative of s’
5 end
6
7
8

end
end
Enumerate all the possible S by choosing one service for each s’ € S’ from its
corresponding alternative list;

Algorithm 6: Identify a set of neighbors for a given &’ (Replace large with small)

which is transported by S’ in the current solution. A basic greedy algorithm is applied
to calculate the estimated revenue of S: sort all d € D’ decreasingly according to their
revenue; for each d € D', if S and the residual capacity of the network without S’ is able

to serve it, update the flow distribution plan accordingly and the estimated revenue of S.
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After evaluating all possible S, if no S is able to restore the whole flow of D', the small-
vehicle service cycle with the highest estimated revenue is chosen to define the promising
neighbor for S’. During the evaluation of all possible S, if one small-vehicle service cycle
is identified to be able to restore the whole flow of D', stop the evaluation procedure and

use this small-vehicle service cycle to define the promising neighbor for S’.

IV.4.2.1.4 Replace small with large service cycle The move of this heuristic is
defined by replacing a small-vehicle service cycle &' with a large-vehicle service cycle S.
The motivations behind this move are threefold: first, it increases the total transport
capacity, therefore, the profitable demands which are denied in the current solution can
be accepted to increase the total profit; second, it offers more possibilities for the selection
of Fs and Ps, and the flow distribution as well; third, it also contributes to diversifying
the search. As illustrated in Table IV.1, the estimated contribution of each arc is defined
as the average capacity usage, which means we are identifying small-vehicle service cycles
with highest capacity usage and then replace them with large-vehicle service cycles. Note
that, the presented heuristic proceeds as the previous one except for two things: first,
the choice of vehicle types is the opposite, which means replace a small-vehicle service
cycle with large one; second, when calculate the estimated revenue of each possible S,
a set of extra F demands selected by F-selection heuristics, if necessary, should also be

considered.

IV.4.2.1.5 Improve one service cycle The move of this heuristic is defined to
improve a service cycle S’ by swapping one service in S’. It has the potential to improve
the flow distribution and the selection of F and P demands. With respect to the adapted
labeling algorithm for identifying interesting service cycles, the estimated contribution of
each arc is the estimated profit. Therefore, the neighborhood move can be interpreted
as identifying a service cycle with the lowest total estimated profit and improving the
solution by changing one service in the cycle. For a given service cycle §¢, to identify
a set of neighbors and evaluate these neighbors, we follow the procedure illustrated in
Algorithm 7. For a given service cycle &', we first sort all services increasingly in the
cycle with respect to the estimated profit. For each s € §’, an alternative list S* of s’ is
then identified, following the same rules described in the previous Section 1V.4.2.1.3, but
with the same type of vehicle. Before choosing the next s’ and generate the corresponding
alternative list, we calculate the estimated revenue of each s* € §* earned by restoring
the flow of D’ transported by s’ and extra F demands, if necessary. Only s* with the
highest estimated revenue is evaluated by solving the flow distribution problem. If a
better solution than the incumbent one is found, stop exploring around S’; otherwise,

continue.
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1 Sort all & € §;

2 for each s’ € 8’ do

3 Identify an alternative list S* of s';

4 for each s* € §* do

5 ‘ Calculate the estimated revenue of s*;

6 end

7 Evaluate only the s* with the highest estimated revenue;
8 if improvement is found on the solution then
9 promising neighbor of &’ is identified;

10 break;

11 end

12 end

Algorithm 7: Identify and evaluate neighbors (improve one service cycle)

IV.4.2.1.6 Integrate two service cycles The move of this heuristic is defined by
integrating two service cycles into one. The intuition of this searching direction is to get
rid of the redundant services, to improve the selection of F and P demands, and the flow
distribution. Let us consider a physical network of three terminals A, B and C, and 4
services transporting from A to B, from B to A, from B to C and from C to B, respectively.
The first two services constitute a service cycle and the last two constitute another service
cycle. To integrate those two service cycles into one, for instance, the services transporting
from C to B and from B to A could be replaced by a service transporting from C to A,
with or without B as an intermediate stop. Therefore, integrating two services cycles
into one is able to be considered as integrating two services into one. Consequently, the
move of this heuristic is interpreted as integrating two services in a service cycle into one
service. With respect to the labeling algorithm, the estimated contribution of each arc
in this neighborhood is defined as the average capacity usage. Given an identified service
cycle composed of s, s and s3, instead of generating the alternative list for each service,
we generate alternative lists for s; + so, s + s3 and s3 + sy, respectively. An alternative
s* for particular two services, e.g., s; + so, must use the same type of vehicle as s; and
s9, and is selected according to the start node of s; and the end node of s,. Moreover, if
s1 is the start arc when the service cycle is identified, the order to explore the alternative
lists is first s; + s, then sy + s3 and last s3 + s;. The same procedure as Algorithm 7 is

applied.

IV.4.2.1.7 Split one service cycle The move of this heuristic is defined by splitting
one service cycle into two. It can be considered as the opposite move of the previous
heuristic. The validity of this neighborhood move indicates the total transport capacity
may not be enough. However, it also has the potential to improve the selection of F

and P demands, and the flow distribution. With respect to the labeling algorithm, the
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average residual capacity is defined as the estimated contribution of each arc. Without
repeating all the similarities, in this heuristic, the differences come from how to generate
the alternative list and how to identify the candidate for each service cycle. Given a
service cycle, we first sort all the services increasingly with respect to the influence in
trajectory list. The exploration of alternative lists follows that increasing order. For
each service in the cycle, to generate the alternative list, two types of replacement could
happen: ABC replaced by AB+BC (opposite case of previous heuristic) or AB replaced
by AC+CB with extra F demands related to C.

IV.4.2.1.8 Add service cycles The heuristic is defined by adding cycles. It is called
after only “profitable acceptance” and “random acceptance” F-selection heuristic. One
service cycle, which is made of closed services according to the current ), is generated
to transport the new accepted F demands by those two JF-selection heuristics. Keep
generating service cycles until all new accepted F demands are satisfied. Note that,
without serving more new demands, this heuristic is going to degenerate the quality of
the solution, in terms of objective value, and that is why this heuristic is only triggered

by the F-selection heuristics of profitable acceptance and random acceptance.

IV.4.2.1.9 Change no Y This is a fake YV-selection heuristic. When it is chosen, no
change is applied on the service selection. In other words, we only explore the search
space of F-demand selection. Note that, this fake heuristic is not in the associated set of

change no F heuristic.

IV.4.2.2 F-selection Heuristics

The proposed F-selection heuristics can be briefly classified into two categories: reject
accepted F' demands and accept extra F demands. In addition, a “fake” heuristic, change
no F, is also considered separately. In each iteration, if the change no F heuristic is

chosen, we fix F and explore only in the search space of service selection.

To reject a set of accepted F demands, three heuristics are applied, i.e., random rejec-
tion, minimal profit rejection and worst record rejection. All three reject heuristics need
an integer p € [1, M AX] as input, where p indicates the number of accepted F demands
to be rejected and M AX stands for the total number of accepted F demands according
to the current F.

Random rejection: The random rejection heuristic simply selects p accepted F
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demands at random and change their value from 1 to 0 in the current F.

Minimal profit rejection: Given a feasible solution to the SSND-RRM, we calculate
the estimated profit of each accepted demand d € DY as follows:

profit(d) = revenue(d) — cost(d) (IV.3)

where revenue(d) is the revenue of accepting whole d, and cost(d) is the estimated total
cost of d:
revenue(d) = f(d)vol(d) (IV.4)

Calculated by equation (IV.5), cost(d) is the sum of transport costs, holding costs, han-
dling costs and total estimated fixed costs, i.e., estimate(¢(d)), of d:

cost(d) =D 3" c(y(d), 1(s)x(d, s, k) + > > (i, y(d)x""(d, i, t)

seS ken(s) teT jeN'rh

+ Z Z (i, 7(d))(x™(d, s, k) + 2°(d, 5, k)) + estimate(p(d))

s€S ken(s)

(IV.5)

where estimate(p(d)) = Y ,c5 estimate(¢(s(d))) is the total estimated fixed cost that d is
supposed to pay for all the services used for the routing of d. To calculate the estimated
fixed cost that d is supposed to pay for s, i.e., estimate(¢(s(d))), we take into account
two factors: a). for the used service s, the lower the capacity usage of s, the more d should
share the fixed cost; b). the more capacity of s used for transporting d, the more d should

share the fixed cost. Therefore, estimate(¢p(s(d))) is calculated according:

> a(d, s, k)

‘ B o(s) 4 ken(s)
estimate(¢(s(d))) = cap_usage(s) 2l cap(l(s))

(IV.6)

where capacity usage cap_usage(s) of s is calculated as the ratio of used distance ca-
pacity over the mazrimum possible distance capacity according to the current solution,
illustrated in equation (IV.7). Used distance capacity is the sum of all legs’ used capacity
multiplied by their corresponding transport distance dis(k), while mazimum possible dis-
tance capacity is the sum of all legs’ capacity multiplied by their corresponding transport
distance.

> X X dis(k)x(d, s, k)

s€S ken(s) deD

> X dis(k)cap(i(s))

s€S ken(s)

cap_usage(s) = (IV.7)

All accepted F demands are then sorted in ascending order according to their estimated
profit. The first p demands in the list are then rejected and their corresponding values in
the F are changed.
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Wost-record rejection: As learning mechanism is embedded: the influence of each
F demand on the solutions is recorded in a trajectory F' list. In the trajectory F list, each
F demand is associated with an influence, which is calculated according to the historical
performance of that F demand. Details about the trajectory F' list are discussed in Section
IV.4.2.5. Each time, p accepted F demands have to be rejected, all accepted F demands
are sorted in an ascending order according to their influence in the trajectory list. The
first p demands in the list are then rejected and their corresponding values in the F are

changed.

Moreover, to accept extra F demands, three heuristics are applied, i.e., basic greedy
acceptance, profitable acceptance and random acceptance. For the last one, an integer q is
needed to indicate the number of extra accepted F demands. For the first two, however,

no such input is required. We now introduce the three accept extra F demands heuristics.

Basic greedy acceptance: The basic greedy acceptance heuristic accepts extra F
demands according to the residual capacity of the current solution. The selection of extra

F demands to be accepted follows the basic greedy algorithm described in Algorithm 8:

1 Sort all non-accepted F demands in descending order, according to their revenue;
2 for each F demand do

3 if residual capacity is able to serve it then
4 Accept this F demand;

5 Update residual capacity;

6 end

7 end

Algorithm 8: Basic greedy algorithm to select accepted F demands

Note that, as the selection of extra accepted F demands depends on the residual

capacity of current ), no additional services are needed.

Profitable acceptance: To apply the profitable acceptance heuristic, we first fix
Y, accept all accepted F demands, and relax the binary decision variables ((d) of all
rejected F demands, according to the current solution. An LP solver is then called to
solve the “modified” flow distribution problem and obtain a new solution sol’. For each
rejected F demand according to F, if it has a positive value of ((d) in sol’, we change its
corresponding value in F. Additional services may be needed to satisfy the extra accepted

F demands.

Random acceptance: Given the current solution, we are able to identify the port i
that has the highest transport requests of all rejected F demands, and the number, M, of
total number of rejected F demands around port i. We then give an integer ¢ € [1, M],

randomly select g rejected demands around port ¢, and change their corresponding values
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in F. Additional services may be needed to satisfy the extra accepted F demands.

In the current implementation of the proposed MH, both p and ¢ are generated ran-
domly. As the intuitions of reject accepted F demands and accept extra F demands are
not the same, not all Y-selection heuristics are of equal interest according to a given
F-selection heuristic. For example, after rejecting p accepted demands, we know that the
total transport capacity is sufficient for all the accepted demands. In this case, V-selection
heuristics, which intend to increase the total transport capacity, should not be selected
and vice versa. Moreover, even F-selection heuristics in the same category (rejection or
acceptance) are not serving the same purposes. Therefore, for each F-selection heuristic,
we define an associated set of V-selection heuristics. Each time a F-selection heuristic is
chosen, only Y-selection heuristics in its associated set can be chosen. The association
table of F-selection heuristics with Y-selection heuristics is illustrated as Table IV.3. In
the column of “Associated Y-selection heuristics”, the number indicates the section, where

we present the associated Y-selection heuristics.

Table IV.3: Association table of each F-selection heuristic with YV-selection heuristics

No. Category JF-selection heuristic Associated Y-selection heuristics
1 Random
2 Reject Minimal profit IV.4.21.2,1V.4.2.1.3; IV.4.2.1.5; IV.4.2.1.6; IV.4.2.1.9
3 Worst record
4 Basic greedy 1V.4.2.1.4;1V.4.2.1.5; IV.4.2.1.7; IV.4.2.1.9
5 Accept Profitable 1V.4.2.1.4; 1IV.4.2.1.5; IV.4.2.1.7; IV.4.2.1.8
6 Random 1IV.4.2.1.4;1V.4.2.1.5; 1V.4.2.1.7, IV.4.2.1.8
7 Fake Change no F all except IV.4.2.1.8 and IV.4.2.1.9

IV.4.2.3 Choosing one F-selection heuristic and one )-selection heuristic

The proposed metaheuristic is composed of a number of competing heuristics for both
F-selection and Y-selection. The heuristics are selected by a roulette wheel mechanism
based on their historic performance. Each heuristic is associated with a weight. Heuristics
that have successfully found new improving solutions have a higher weight and therefore
a higher probability to be chosen again. Note that, in each iteration, one F-selection
heuristic and one Y-selection heuristic are selected. Both of these two heuristics are
rewarded the same, because we do not know whether it is the F-selection heuristic or )-
selection heuristic that results in the improvement. But the probability of each heuristic

to be chosen is calculated in group separately. For each group, either F-selection or
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Y-selection, the probability of a heuristic to be chosen is calculated as follows:

(IV.8)

In equation (IV.8), 7 indicates the selected heuristic and n indicates the total number of

heuristics in the given group.

IV.4.2.4 Adaptive weight and score adjustment

The probabilities of all heuristics to be chosen are the same in the beginning. Furthermore,
the probabilities are recalculated after each m iterations according to the weight of each
heuristic, as illustrated in equation (IV.9).

score;

(IV.9)

C— w1 — o
Wi wz( r) + Tcounteri

In equation (IV.9) [Ropke and Pisinger, 2006], score; is the score of each heuristic
and counter; is the number of times that the heuristic ¢ is selected during the last m
iterations, and r is a number between 0 and 1. If » = 0, we do not change the weight of
v; if r = 1 the weight of i totally depends on its performance during the last m iterations.
Otherwise, the weight of ¢ depends on both its performance during the last m iterations

and the performance before.

The initial score for each heuristic is 0. Each time we get a new feasible solution,
the score of the heuristic that results in the new feasible solution is updated as shown in
Algorithm 9, in which objs(opt), objs(incum) and objs(new) denotes the objective value
of the global best, the incumbent and the new feasible solution, respectively. Note that,
each time after recalculating the weight of each heuristic, the score of each heuristic score;

is reset as 0.

if objs(new) > objs(opt) then

‘ score; = score; + 2 * objs(new) — objs(incum) — objs(opt);
else if objs(new) > objs(incum) then

| score; = score; + objs(new) — objs(incum);
end

[ B U VN

Algorithm 9: Score the chosen heuristics
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IV.4.2.5 Trajectory service list and F list

Trajectory service list and trajectory F list are the long-term memory learning mecha-
nism for evaluating the influence of each service or each F demand on the quality of the
solutions, respectively. To be more precise, when a new solution sol is found better than
then current global best solution sol’, we reward each open service and each accepted F

demand in sol as
dif f (objs)
card(sol)

where 7 is the index number of a service or an F demand accordingly, and j indicates the

(IV.10)

reward; j =

index number of an improvement found on current global best, dif f(objs) is the difference
between the two objective values, namely sol — sol’, and card(sol) is the number of open
services for the service list and number of accepted F demands for the F list in sol,
respectively. Besides that, the closed services and rejected F demands are rewarded with

0. The influence of a service or an F demand, is then calculated as

J
i fluence; = Z reward; ;
j=J—c

counter; (IV. 1 1)

C

where 7 is the index number of a service or an F demand; j is the index number of an
improvement found on the current global best, and .J is the total number of improvement;
counter; is the number of i'" service/F demand that appear in the last ¢ times of current
global best. The influence of i service/F demand is the sum of its rewards in the last
¢ times multiplied by the ratio of it that appears in the current global best in the last ¢
times. Note that, a reward of a service/F demand is calculated and updated each time

an improvement is found on the global best solution.

IV.4.2.6 Diversification

When a predefined number g of consecutive no-feasible-neighbor situation is met, a pro-
cedure is conducted to diversify the incumbent solution. The basic idea of diversification
is to identify a set of closed “umpromising” services and force them to be open in the
new solution, aiming to escape from the current searching area. Based on the current
Y, among all y(s) = 0, we choose the service with the lowest influence according to the
trajectory service list. The chosen service is then used as the start arc of the adapted label-
ing algorithm to identify a service cycle to add in the incumbent solution. The estimated
contribution (or length) of each arc to identify the shortest path is its corresponding in-
fluence in the trajectory service list. After identifying the service cycle, we fix y(x) and

¢(d), then solve the flow distribution problem and set the new solution as the incumbent
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for the search procedure.

IV.4.2.7 Intensification

As the exploration in the search space of ) is around service cycles, a set of services are
modified in one move so that the optimal solution maybe missed. In addition, the pace
of exploration in the search space of F is also big. Therefore, it is quite necessary to have
this intensification phase in the proposed MH. The goal of this phase is to find better
solutions by intensifying the search in regions of the solution space, where interesting

characteristics of services are identified.

Given a feasible solution (F,Y, X (F,))), two types of intensification are applied in
this proposed solution approach. The first type of intensification calls the MILP solver to
solve a reduced SSND-RRM problem, in which only open services in ) can be chosen to
serve all demands. This type of intensification is called right after the Initialization phase
in order to feed the improvement phase with a promising start point. The second type of
intensification first identifies a promising service cycle from the closed services according
to ) of current global best solution. Influence of closed services in the trajectory service
list is considered to aid identifying the promising service cycle. The MILP solver is then
called to choose the best design variables among the open services and the identified service
cycle, serving all demands. This type of intensification is called each time a consecutive
b times of no-global-improvement situation is encountered. The solution obtained by the

intensification is then set as the incumbent for the search procedure.

IV.4.2.8 Tabu Lists

Three short-term memory tabu lists are maintained to record generated service cycles for
different purposes. The first one is used for the Y-selection heuristics, to avoid the same
service cycle to be dropped or replaced. The second one and the third one, is used for
diversification and intensification to avoid adding back the same service cycle, respectively.

The size of all three tabu lists are set as 30 for now.

IV.5 Computational Results and Analysis

The purpose of this section is to study the effectiveness of the proposed solution approach.

After introducing the procedure of test instance generation in Subsection IV.5.1, we cal-
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ibrate all the parameters applied in the proposed MH in Subsection 1V.5.2. Then the
performance of the proposed MH is benchmarked, in Subsection 1V.5.3, against a com-
mercial MILP solver. Finally, we analyze the solution approach on extensive experiments

in order to identify the effectiveness of each algorithmic component in Subsection I1V.5.4.

The only considered parameter is r, which indicates how the weight of a heuristic
depends on its historical performance, is calibrated based on just one test instance with
one repetition. A complete calibration based on a set of test instances with a large number
of repetitions for each is under way. In Subsection IV.5.3, we present a preliminary result
of only six test instances with one repetition. More test instances, with respect to different
physical networks, number of potential services, number of demands, etc., are currently
under study. As there are many random elements, each instance will be tested a large
number of times with the proposed MH. A more comprehensive analysis will be presented

in further work based on the extensive study.

IV.5.1 Test Instance Generation

In this subsection, we present the procedure of test instance generation. Three different
topologies, i.e., Linear 4, Star 6 and General 7 as illustrated in Figure IV.2, are studied.
From the perspective of supply for the freight transportation system, two types of vehicles
(large and small) are considered. Moreover, all possible itineraries in the network are

covered by the potential services, using both types of vehicles.
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Figure IV.2: Three considered physical network topologies

In terms of demand, all three customer categories are considered (R, P and F). For a
given physical network, we indicate the number of demands generated for each possible
OD pair in one test instance with f. In addition, the volume of each individual demand

is randomly generated, according to uniform distribution, with an upper bound of half of
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the capacity of a large vehicle. All the other characteristics of a demand are randomly

generated according to uniform distribution.

All experiments are performed on a multi-processor server running under Linux 64-bit
with an Inter Xeon X5675, 3GHz and 30 GB of RAM. In addition, CPLEX 12.5 is the
commercial solver that we used for solving LP and reduced MILP in the proposed MH.

IV.5.2 Calibration

Before launching the extensive computational study to evaluate the proposed MH, we
first conduct a small set of experiments to calibrate the parameters used in the proposed
solution approach. Test instances used for this set of experiments are generated following
the procedure introduced in [Wang et al., 2014] on a physical network of four terminals
with a schedule length of 14 Time Units (TUs). Just to recall, all the parameters required

to be decided are as follows:

r: is a number between 0 and 1. It indicates how the weight of a heuristic depends

on its historical performance;

e m: indicates the number of iterations, after which the probability of each heuristic

to be chosen is recalculated;

e g: indicates the condition for triggering diversification. In the improvement phase,

after g consecutive no-feasible-neighbors, we conduct diversification;

e b: indicates the condition for triggering intensification. In the improvement phase,

after b consecutive no-global-improvement, we conduct intensification;

e c: indicates the memory length for the trajectory lists, i.e., how many times of
performance of a given service (or F demand) should be considered to evaluate its

influence on the solution

Four values of r are tested: » = 0, 0.1, 0.5 and 1. As described in IV.4.2.4: r =0
indicates that the weight of a given heuristic for calculating the chosen probability is
not changed; r = 1 indicates that the weight of a given heuristic totally depends on its
performance during the last m iterations; » = 0.5 is a moderate consideration of both
its performance and the current weight; » = 0.1 is a value recommended by [Ropke and
Pisinger, 2006]. As shown in Figure IV.3, given the same number of iterations, r = 0.5

results in the best solution, in terms of the objective value.
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Figure IV.3: Calibration of parameter r

The complete calibration results in the following parameter vector (r,m,g,b,c) =
(0.5,30,5,10,50). We then conduct further computational study with this parameter

vector.

IV.5.3 Benchmarking against an MILP Solver

To determine the effectiveness of the proposed MH, experiments of six test instances are
conducted. Each test instance is labeled as nfv, where n is the number of terminals,
f indicates the quantity of demands, and v is the number of considered vehicle types.
To be more precise, three different physical network topologies are tested, i.e., Linear 4,
Star 6, and General 7, as shown in Figure IV.2. Given a physical network, we use f to
indicate how many demands are generated for each possible OD pair. In our experiments,
the number of potential services are 616, 1848 and 4200 for topology of Linear 4, Start 6
and General 7, respectively. Two types of vehicles (large and small) are considered when

assigned to services.

As no other solution approach to the SSND-RRM problems exists in the literature, we
benchmark the performance of our MH against a commercial MILP solver (CPLEX 12.5)
on all test instances. Table IV.4 presents the details of the solutions to all test instances
obtained by CPLEX with a maximum computational time of 24 hours. As shown, only
the two test instances with four terminals reach optimality within 24 hours. For the
other four test instances with bigger physical network and problem size, the optimality
of the obtained feasible solutions is not proved. The corresponding values in column Gap
indicate the quality of the obtained best feasible solutions compared to the upper bounds
given by CPLEX (as the objective is to maximize the net revenue). We then run the

proposed MH to solve the same set of test instances with time limits of one hour and ten
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Table IV.4: Details of the solutions to all test instances obtained by CPLEX after one
day

Test instance Optimal solution obtained or not Gap
n4f40v2 yes 0%
n4f80v2 yes 0%
n6f5v2 no 0.48%
n6f10v2 no 116.04%
n7f5v2 no 67.56%
n7f10v2 no 50.13%

Table IV.5: Numerical results obtained by the proposed MH with CPLEX as comparison

Test instance MH 1h/CPLEX 1h (%) MH 1h/CPLEX 10h (%) MH 10h/CPLEX 10h (%)

n4f40v2 6.4 6.4 6.4
n4f80v2 7.31 7.31 4.69
n6f5v2 -4.9 4.8 1.8
n6f10v2 -39.5 -0.01 -161.7
n7f5v2 -571.5 15.56 -27.42
n7f10v2 -7.6 14.4 -22.9

hours, respectively. The numerical results obtained by the proposed MH are presented
in Table IV.5, with CPLEX as comparison. As shown, we compare solutions obtained
by MH in 1 hour with those obtained by CPLEX in 1 hour, solutions obtained by MH
in 1 hour with those obtained by CPLEX in 10 hours, and solutions obtained by MH
in 10 hours with those obtained by CPLEX in 10 hours. The figures illustrated in the
table are calculated as solutions obtained by CPLEX subtract solutions obtained by MH,
and then divide by the absolute value of solutions obtained by CPLEX, for each given
computational time limit. Therefore, positive numbers indicate that CPLEX obtains

better solutions than MH, while negative values indicate that MH performs better.

As shown in Table IV.5, the proposed MH does not reach the optimality as its com-
petitor when tackling problems of relative small size. Nevertheless, the proposed solution
approach yields solutions with small gaps (less than 8%) compared to CPLEX. When
facing problem of more realistic size, however, the proposed MH is superior to CPLEX.
Within the same time limits, i.e., column MH 1h/CPLEX 1h and MH 10h/CPLEX 10h,
better solutions are always obtained by MH. The only exception happens when we com-
pare solutions to test instance n6 f5v2 obtained by MH and CPLEX in 10 hours, but with
a very small gap (1.8%). For test instance n6f10v2, MH, in one hour, even obtains a
solution better than that obtained by CPLEX in ten hours. In addition, for all other test

instances, our solution approach, in one hour, also obtains solutions which have almost
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the same quality as those obtained by CPLEX in ten hours.

IV.5.4 Analysis of the Impact of Each Algorithmic Component

The promising performance of the proposed MH comes from the new service-cycle-based
neighborhood structures, especially when the size of the problem is large. As a set of
services are changed in each iteration, searches are prevented from being stuck in a re-
stricted neighborhood. Long-term learning mechanisms (i.e., trajectory service list and
trajectory F' list) are applied to identify interesting characteristics of solution components
(open services and accepted F demands). When combining this with a phase of inten-
sification, solutions of good quality are then identified efficiently in the reduced region
of solution space. During the exploration around the service-cycle-based neighborhoods,
short-term memory tabu lists are maintained to prevent searching in restricted neigh-
borhoods. Moreover, given the fact that the SSND-RRM model takes into account the
resource management, a separate phase aiming to repair the design-balance constraints is

no more necessary benefiting from the service-cycle-based moves.

Note that, as one of the objective of this chapter is to offer the proof-of-concept for
the new service-cycle-based neighborhood structure, only low-level heuristics are used to
explore the search space of service selection and F-demand selection. In the future, more
advanced heuristics and learning mechanism could be adopted to improve the performance
of the MH.

Further experiments should also be designed and tested to fine tune all the parameters
and precisely identify the influence of each algorithmic component, on the behaviors,

trajectories and the overall performance of the proposed MH.

IV.6 Conclusions and Future Work

In this chapter, we propose a new solution approach for the scheduled service network
design with resource management and revenue management problem. The proposed so-
lution approach is composed of four phases. In the first phase, a constructive heuristic
is proposed to obtain initial solutions to the SSND-RRM. Once an initial solution is ob-
tained from the first phase, we then try to improve the solutions in the second phase
by iteratively exploring the search space of service selection, F-demand selection and
the combination of both. The selection of search space is based on a modified adaptive

large neighborhood search (ALNS) inspired by [Ropke and Pisinger, 2006]. To explore
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the search space of service selection, eight )-selection heuristics are proposed based on
a service-cycle related neighborhood structure. This service cycle based neighborhood
structure allows the changes of a set of services in each iteration and guarantees the
design-balance constraints simultaneously. Short-term memory tabu lists are maintained
to avoid searching in the same restricted neighborhoods. To explore the search space of
F-demand selection, seven F-selection heuristics are proposed and different strategies are
considered to accept or reject F demands. Long-term memories are maintained to record
the influence of each service and each F demand on the solution, and are then used to

identify interesting characteristics of the components of the solutions.

The performance of the metaheuristic is compared with a state-of-the-art solver by
solving a set of generated test instances. According to the numerical results, the proposed
metaheuristic does not guarantee to find global optimal solutions, however, it can often
find good solutions with less computational effort than its competitor, especially when

facing problems of realistic scale.

However, research related to this chapter is still in progress. In our future research,
a complete calibration of all the parameters will be done. Extensive experiments, in
terms of different physical networks, number of potential services, number of demands,
etc., are going to be conducted. We shall also examine why the MH does not reach
optimality when applied on small problems and how to improve it. One of our guesses is
the existence of the symmetric structures in the solution, for example, different services
or accepted demands which result in the same objective values. To address this challenge,

the concept of column generation could be introduced.
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Various indicators are used to qualify the performance of intermodal transportation
systems. Some of these are found in public documents, e.g., annual company reports,
usually providing global measures such as total flow volumes, profits, and share values.
While of great interest, such measures are not sufficient to support a fine analysis of
different operation strategies, commercial policies, and planning methods. A number of
additional measures are therefore used in the scientific literature to address these issues.
In this chapter, our first goal is to review the performance indicators (PIs) found in public
sources and scientific literature, and to qualify them with respect to tactical planning of
intermodal barge transportation systems. We extend this analysis to include revenue
management policies, e.g., market segmentation and differential pricing, a topic generally
neglected in freight transportation. A first classification of these different Pls is proposed
and adequate Pls for analyzing the proposed R-DSS are identified for each category.
We also discuss procedures to generate problem instances that provide the means to
analyze planning methods and system behavior based on these PIs. The proposed R-DSS
methodology is then assessed in an integrated simulation framework with the help of a
set of Pls.

Material related to part of this chapter was published in Transportation Research

Procedia with the following reference information:

Wang Y., Bilegan 1.C., Crainic T.G., Artiba A. (2014). Performance Indicators for
Planning Intermodal Barge Transportation Systems. Transportation Research Procedia,
3, pp. 621-630. ISSN 2352-1465.
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V.1 Introduction

Intermodal freight transportation is generally defined as moving cargo loaded into some
type of boxes, the well-known containers, by a series of at least two transportation modes
or carriers, without handling the cargo, containers being moved from one mode (vehicle)
to the next in intermodal terminals, e.g., ports and rail yards [Bektag and Crainic, 2008,
Crainic and Kim, 2007]. It is a core economic activity supporting for a large part national
and international trade. As such, it is a well-known and intensely investigated application
field in operations research and transportation science. Planning and management of
activities at the strategic (e.g., market development, and location and dimensioning of
facilities), tactical (e.g., service and capacity planning) and operational (e.g., dispatching
and resource management) are both essential to the economic and operation efficiency
of intermodal transportation systems and stakeholders, and complex processes in their
own right. This resulted into a rather rich collection of models and methods aiming to
optimize operations, service and resource utilization for intermodal freight transportation
carriers. Not all components of the industry received equal treatment, however. We
are thus particularly interested in such a less-studied branch of the field, namely barge
intermodal freight transportation systems (river/in-land vessel transportation), which is

gaining in interest as a component of environment-friendly modal shifts.

The study we undergo, and the results presented here, focus on the tactical level
decision-making problems and concern, in particular, the scheduled service network de-
sign (SSND) with asset management considerations. There are very few service network
design models and methods proposed for barge transportation yet, but one observes rais-
ing interest for the topic, including within freight forwarders and carriers, mainly due
to modal-shift public policies and increasing concerns in the public and shippers alike
with respect to the environmental impact of other modes of freight transportation. This
translates for barge carriers into a new motivation and willingness to have a higher level
of competitiveness, to devise a different way of designing their services, and to explore

new customer-service strategies offered by the revenue-management concepts.

Many studies assess existing decision-support tools, policies and practice or proposed
SND models and solution techniques, generally through comparison of optimization or
numerical simulation results. The transportation system is generally modeled through
network-based formulations with assumptions regarding the underlying physical network
and infrastructure, characteristics of available assets (fleets of vehicles, terminal resources,
capacities, etc.), and future demands (demand forecasts). Test instances are then gener-
ated, hopefully with reference to actual practice, the corresponding SSND formulations

are solved, and solutions and characteristics of the corresponding operation plans are an-
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alyzed and performances are evaluated. Performance indicators thus play an important

role in the analysis of models, methods, results, and corresponding policies.

Performance indicators are broadly used, in practice and research, to characterize the
performance of a given transportation system under current (e.g., the annual activity
and financial reports of carriers) or proposed (e.g., optimization and simulation studies)
operating conditions. They are, of course, also widely used to validate and evaluate
models and solution methods, as well as the corresponding results and strategies. Many
such indicators are found in official documents and the scientific literature, as shown in
the following. Yet, there is no general framework for analyzing the interest of particular
performance indicators in the context of specific problem settings, generating appropriate
problem instances, and choosing the most representative indicators. Nevertheless, it is
commonly accepted that, some indicators give more insights than others when evaluating
the performances of a transportation system or methodology, and some critical ones may
be singled out. In the same time, the performance indicators can only be computed if
specific information and data are collected for this purpose. Our goal is to contribute

toward addressing this issue.

One of the contributions of the research presented here therefore is to propose a clas-
sification and analysis of the performance indicators generally used to evaluate tactical
planning solutions in freight transportation, aiming to identify adequate ones for SSND
with revenue management considerations. The performance indicators analyzed herein
may be applied to assess performances of different modes (maritime, rail, etc.) support-
ing container transportation systems; we illustrate our study with an inland navigation
system. We also give some insights in the way the necessary test instances are generated

for a general network barge transportation system.

Another contribution of this chapter is the assessment of the proposed R-DSS method-
ology. The two proposed Revenue Management (RM) model, i.e., DCA-RM (in Chapter
IT) and SSND-RRM (in Chapter III), are examined in an integrated simulation frame-
work to study the influence of the introduction of RM policies in the intermodal freight

transportation.

The structure of the chapter is as follows. We give a brief description of the general
SSND problem in Section V.2, together with corresponding literature and specific issues
related to the introduction of revenue management considerations in the tactical planning
problem. Section V.3 gives the first steps toward a general classification of performance
indicators and identifies a number of particular ones related to the problem studied here.
The description of a general procedure to generate problem instances for SSND models

of general barge transportation networks is the focus of Section V.4, followed by Section
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V.5 where numerical results and an analysis of the different performance indicators are
presented. In Section V.6, we assess the proposed R-DSS with the help of a set of Pls.

The chapter ends with conclusions about the presented study.

V.2 Problem Characterization

Service network design formulations [Crainic, 2000] are extensively used to address plan-
ning issues within many application fields, in particular for the tactical planning of oper-
ations of consolidation-based modal and multimodal carriers (e.g., [Bektag and Crainic,
2008, Christiansen et al., 2007,Cordeau et al., 1998, Crainic, 2003, Crainic and Kim, 2007]).
Building such a plan involves principally selecting the services to operate and their sched-
ules or frequencies, and routing the demand through the selected service network. Most
service network design models proposed in the literature consider the resources required
to perform the services (vehicles, power units, drivers, etc.) and the different types of cus-
tomers only indirectly, however, which is increasingly inadequate to reflect the operation

strategies of a broad range of transportation systems.

One observes a recent trend in the field aiming to introduce more explicit resource-
management considerations into tactical planning models (e.g., [Andersen et al., 2009b,
Andersen et al., 2009a, Crainic et al., 2014, Agarwal and Ergun, 2008, Lai, M.F. and Lo,
H.K., 2004, Pedersen et al., 2009, Sharypova et al., 2012, Smilowitz et al., 2003]). These
so-called scheduled service network design with resource (or asset) management take the
form of mixed-integer formulations defined on time-space networks (except [Sharypova
et al., 2012], working with continuous time). The schedule length (e.g., a week), which
will be repeated during the planning horizon (e.g., the season), is divided into periods
(e.g., the day), and the terminals are duplicated to have a time-labeled copy within each
such period. The set of time-labeled terminals makes up the set of nodes of the graph. In
the basic problem setting, demand is then defined in terms of commodities, that is, given
quantity of freight available at an origin node at a given period to be moved to a given
destination node within some duration restrictions. Potential services (mode, speed, etc.,
may further characterize the service) from a terminal at a given period (departure time)
to a different terminal and time period are making up the set of design arcs of the model.
Holding arcs, for freight and resources waiting at a given terminal for one period, are
included between two consecutive copies of the same terminal. Service arcs are generally
characterized by a capacity limiting the total quantity of flow transported (sometimes,
commodity-specific capacities are also included), as well as by a fixed cost to be paid if

the service is included in the final design (i.e., it will operate) and a unit commodity cost.
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Only the latter characterizes holding arcs. Resources, vehicles of a single or a low number
of types, support the operations of the services. In the current state-of-the-art, a unit of
resource is required to operate each selected service, and it may operate at most a service
at each time period. Resources are allocated to terminals out of which they operate and
where they return according to various rules and restrictions (e.g., the number of periods

they may be out of their home terminal).

The scheduled service network design (SSND) with resource management formula-
tion then includes three sets of variables representing decisions on service selection (arc,
binary), demand transportation (arc-based continuous commodity-specific flows), and
resource-to-service assignment (binary; path/cycle formulations have also been proposed,
e.g., [Andersen et al., 2009a, Crainic, 2003, Pedersen et al., 2009]). The objective function
generally minimizes the total cost of the system made up of the total fixed cost of selecting
services, the total cost of flowing the demand, the total fixed cost of the used resources,
and their respective operating costs. Other than the application-specific restrictions (e.g.,
number of resources by terminal), the constraints making up the formulation are enforcing
the conservation of flow and the balance of services (number of services/resources incom-
ing at a node equal the number departing the node) at nodes, the linking (and capacity)
relations between flows and services, the assignment of a single resource to a service and
of at most a service to each resource, the time limits on the route of a resource and the

transportation of demand.

To perform our experiments in the present study, we use the SSND-RRM model pro-
posed in Chapter III. The model follows this general framework but also includes a rep-
resentation of the revenue management strategy used by the firm. Revenue management
is a well-known set of concepts, strategies, and methods aiming to determine the most
appropriate fare for each customer at the moment the reservation is made [Talluri and
van Ryzin, 2004]. Used broadly for passenger transportation and in the tourism industry,
its utilization within freight transportation is still in its infancy [Bilegan et al., 2015].
Consequently, there is little expertise on how to include such concepts into the tactical-
planning methodology. In Chapter III, we propose to proceed by including several types
of customers (on the demand side) and several levels of delivery service (on the provider
side). Each level of delivery service (e.g., fast or slow delivery) is associated with a specific
fare for each origin-destination pair of terminals in the system. The overall objective of

the SSND model proposed is to maximize the net profit.

Therefore, two types of customers, and consequently two types of demand are consid-
ered in the present study, regular — corresponding to the regular traffic on the network
(following long-term contracts or advance bookings with customers); this demand has to

be always satisfied —, and punctual or “spot” demand. We stress here that the main
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difference between the two types of customers lays in the degree of confidence associated
to each. We consider the former, the regular customers, to be quite sure (this is the clas-
sical assumption of most traditional SSND models); we consider the latter, the punctual
or “spot” customers, to be associated to a higher degree of uncertainty (the values used
could come from the aggregation of several small and sporadic customers using the trans-
portation capacity of the network in place). Consequently, the solution of the model will
never deny regular demands but, in addition, will allow for part of the “spot” customers
to be integrated at the tactical level, to offer more flexibility to the proposed solutions.
Two types of “spot” demands are considered depending whether a punctual demand must
be served in its entirety when accepted (full punctual demand) or whether only a frac-
tion of the punctual demand could be accepted (partial punctual demand). The relative
ratios of punctual to regular demand volumes, as well as the ratio of the fares (e.g., fast
delivery fare with respect to the slow delivery fare), are normally determining factors for
the profitability of the firm and they are addressed when analyzing numerical results in
Section V.5.

V.3 A First Step towards a Taxonomy of Perfor-

mance Indicators

In this section, we present an analysis of some of the performance indicators generally
used for validating and evaluating service network design models, and the corresponding
results and strategies. In order to keep the presentation short, only a few recent scientific
papers are cited. We select those with a high relevance to the present study, in particular
those developing models for intermodal barge transportation at the tactical level. We
consider them to be quite representative of the existing literature in this field, although

we do not claim having performed an exhaustive search in this direction.

[Andersen and Christiansen, 2009] use a set of performance indicators to qualify rail
freight services. The authors compute the number of contracts served and the number
of vehicles used. The total profit is also given, computed as total costs subtracted from
the total revenue obtained from the served contracts. [Andersen et al., 2009b] also use
the number of vehicles in use, as well as the number of service departures per week and
the duration (number of hours or time periods) of service operations, repositioning moves,
and holding vehicles at nodes. [Braekers et al., 2013] focused on the average cost reduction
and vessel capacity utilization, as well as on weekly profit and cost, the weekly number of
transported containers, and the percentage of empty containers transported. It is worth

noticing that, in addition, they use a particular indicator giving the percentage of volume
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transported by barge out of the total volume of demand, since some of the demands could
be transported by road in their setting. In [Caris et al., 2011], average and maximum
waiting times, and average turnaround time at the port of Antwerp are used as indicators.
The authors also compute the average and maximum capacity utilization at the port of
Antwerp in terms of berthing capacity of the port. [Sharypova et al., 2012] calculate
the ratio between the number of vehicles used and the total number of vehicles in the
fleet, the percentage of containers transshipped between vehicles with respect to the total
number of containers transported in the system, and the percentage of direct services
out of the total number of services chosen as optimal solution of the SSND model. [Lai,
M.F. and Lo, H.K., 2004] develop a two-phase stochastic program formulation for ferry
service network design with stochastic demand for passenger transportation. They use
the notion of service reliability to differentiate demands and introduce uncertainty into
the mathematical model. Total cost is used in comparing their new formulation with the
conventional one. They also decompose it by different secondary indicators: ad hoc cost
(cost of ad-hoc services added only when needed, subcontracted or outsourced to a third
party), waiting cost (passenger waiting time penalties), and regular services operation

costs.

We propose a first classification of these different performance indicators based on their
relevance and meaning from the service providers’ perspective, as well as from the cus-
tomers’ perspective. Thus, we consider that the first and most important category is the
one grouping indicators directly giving information about the economic impact of the tac-
tical planning decisions (e.g., costs, profits). The second one includes resource-utilization
performance indicators, giving information particularly useful to service providers and
other stakeholders directly involved in transportation and handling activities. Last but
not least, a third important category, especially from the customers’ point of view, is
the one concerning quality-of-service performance indicators. Inspired by the set of per-
formance indicators cited above, we present a classification based on these three main
criteria in Table V.1. The performance indicators collected in the preliminary analysis
are to be found in the upper part of the table, while the lower part displays additional
indicators responding to the need of evaluating SSND models with revenue management

considerations, as explained in more detail hereafter.

When differentiating types of customers and fares, we need to understand how the
system behaves when different values of some key parameters are used (e.g., different
ratios of Regular/Punctual customers, different ratios of slow/fast delivery type, etc.).
This type of analysis also provides a better understanding of what are the most suitable
circumstances under which revenue management policies should be applied to obtain the

best results. This is why, when introducing revenue management concepts in service net-
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Table V.1: A first classification of performance indicators used for tactical planning of
intermodal barge transportation systems

Economic impact Resource utilization Quality-of-service
Total profit Number of vehicles in use Number of contracts served
Total cost Number of open services Waiting time in intermodal terminals
Average cost reduction Operating hours of services Waiting time at other terminals
Ad hoc services cost Operating hours for repositioning Average turnaround time
Waiting time cost Duration of holding vehicles at nodes Time on intermodal services
Regular services cost Number of vehicles used/fleet size Handling in intermodal terminals
Vessel capacity utilization Waiting time at borders
Berthing capacity utilization Containers transported by barge
Number of direct services/total services Empty containers transported
Ratio of transshipped containers
Net profit increase Number of less-used vehicles Volume of rejected partial punctual demands
Number of empty vehicles Volume of rejected full punctual demands

work design models, new performance indicators are needed, in particular for evaluating
their absolute/relative economic performance, the resource utilization and the improve-
ment of the quality-of-service offered (e.g., the ratio of accepted demand with respect to
the total demand, etc.). Moreover, in order to develop more insights into the behavior of
the system, several different indicators can be calculated with the purpose of understand-
ing where the effectiveness of the solution comes from, how resources are distributed and

used, how freight consolidation is performed, etc.

When analyzing the way resources are used, we focus particularly on the number of
empty and less-used vehicles. The empty vehicles are the vehicles used in the transporta-
tion plan without any cargo (repositioning moves); the less-used vehicles indicate vehicles
whose average capacity usage is less than 20% (the value of this parameter may be changed
with respect to the service provider requirements). The service suppliers could decide not
to open services whose capacity is less used, which would probably lead to a different
solution and plan; this could be confirmed by introducing the corresponding constraints

in the mathematical model and by comparing the subsequent solutions thus obtained.

Another indicator that has to be introduced is the percentage of accepted/rejected
punctual demands (TEUs) out of the total volume of demands (regular and punctual).
As we differentiate demand by category of customers, we are looking at how much of the
demand, in terms of TEUs, is accepted/rejected in each category of punctual demands
(partial and full punctual demands). This indicator is related to the quality-of-service
offered by the carrier, and gives an idea of the capability of the system to discriminate

between high-profit and low-profit demands.
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V.4 Test Instance Generation

We now turn to how the problem instances are set up and how the data characterizing
the transportation system are randomly generated. To represent the reality of a general
network, we consider a set of ports and the physical links (water navigation infrastructure)
between them representing the physical network, like the one represented in Figure V.1.
Without loss of generality, we classify ports into two categories, i.e., main ports and
secondary ports. The main ports stand for the deep-sea ports (e.g., port A in Figure V.1)
and the secondary ports represent the inland ports. An Origin-Destination (OD) pair is
called a main OD pair if it is related to at least one main port. It is considered a secondary
OD pair otherwise. We make the assumption that all ports have enough berthing capacity
to hold vehicles (in operation or not), and sufficient space to store containers. We also
assume that the handling machinery at each port is efficient enough and the duration of
servicing a vehicle, for loading and/or unloading activities, is equal to one time period.
A single type of vehicle is considered with a capacity equal to 100 TEUs. We make the
assumption that the transit time from one port to any other consecutive port is one time
period (the distance between any consecutive ports in the physical network is considered

to be almost the same). The fleet size is assumed big enough to satisfy all demands.

. S S
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Figure V.1: A general physical network

Every demand is characterized by an OD pair (its origin and destination ports), its
availability time at origin (the earliest time the demand is available and ready for trans-
portation), a delivery type (slow or fast) characterizing the maximum delivery time within
which the demand has to be transported to its destination (in number of time periods),
a volume (in TEUs), and a category differentiating the type of customer or the type of

contract (regular or punctual, as explained in Section V.2).

We assume that demands between main OD pairs occur more often than demands
between secondary OD pairs. In terms of availability time in port, demands for main
OD pairs may arrive at each time instant. To restrict the problem size, demands for
the secondary OD pairs may occur at time instants belonging to a specified set (e.g.,
every two time periods). Moreover, we allow only 10% of the secondary OD pairs to be
chosen in a test instance. These 10% are randomly picked up with a uniform distribution
from the complete list of possible OD pairs. For each OD pair and availability time in

port (randomly generated), two demands, one with fast delivery and the other with slow
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delivery type, are set. This results in a balanced number of demands requiring fast and

slow deliveries within the same test instance.

The volume of each demand is randomly generated between (0 and a maximum value
(usually less than the capacity of a vehicle) according to the uniform distribution. In
order to generate a well-balanced combination of regular and punctual demands within
a test instance, we generate first the set of demands to be used, without specifying their
category. Thus, we fix the total volume of demand in the instance. Then, the volume of
punctual demands is specified by a proportion (p) over the total volume of demand, the
remaining proportion (1 — p) corresponding to the total volume of regular demands. We
may thus generate instances with a fixed total demand but with varying proportions of

main to secondary and regular to punctual ratios.

The maximum delivery time for each demand is computed (in terms of time periods)
according to the distance between the origin and destination of the demand and the
corresponding delivery type (fast or slow). As a general rule, we assume that a demand
associated to a slow delivery would accept to be delivered within a time twice longer than
the delivery time required by a fast demand between the same origin and destination. We
set the fast delivery time by ensuring feasibility with respect to some of the less time-
consuming potential services that could serve that demand. The different delivery types
and thus the different types of demands are associated to different fares classes. A low
fare corresponds to a slow delivery demand type, and a high fare is associated with a fast

delivery demand.

In the following section we give some numerical results obtained when solving the
SSND problem for random test instances with data sets generated by this type of proce-

dure.

V.5 Numerical Results and Analysis

We now illustrate how, using a set of problem instances generated as described above,
the performance indicators may help analyze the output of an SSND model with asset
and revenue management considerations. We compare two mathematical models, a tradi-
tional one in which demands are not differentiated, called SSND in the following, and the
proposed SSND-RRM in Chapter III, integrating revenue management concerns, namely
different categories of customers and different fare classes. The main difference between
the two models is that the first one deals with regular demands only (all the demand has

to be satisfied), while the second takes into account both regular and punctual demands,
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which allows potential performance increase by refusing partially or totally some of the
less profitable demands. We follow the procedure described in Section V.1. The demands
are generated randomly for each test instance, and we run the program and solve the

service network design problem for 20 different instances.

The performance indicators used here are a selection of indicators from Table V.1,
for each of the three main categories identified: economic impact, resource utilization
and quality of service. The main indicators used are the net profit and total cost. For
the latter, we also identify and calculate some of its components. In terms of fixed
service operating costs, we use the cost of opening a service, called service-start cost. In
terms of unit costs we use container-transportation, container-handling, container-holding
(holding in the storage yard of a terminal), and in-port vehicle-holding costs. In terms
of resource utilization, we compute the number of empty and less-used vehicles, as well
as classical indicators such as the number of open services, the number of vehicles used
by these services, and the average used capacity of those vehicles. Finally, we add two
particular indicators required to study the incorporation of revenue management into the
SSND related to the different categories of demands, which can be either partially or fully
accepted or denied. The percentage of rejected volume of partial punctual demands and
of full punctual demands out of the total volume of demands is denoted p/all and f/all

respectively.

The average values (over the 20 instances) are displayed in Table V.2. These relative
values of the performance indicators denote an increase or a decrease of the corresponding
absolute value of an indicator when the solution of the SSND-RM problem is compared
with that of the classical SSND.

The proportion of regular and punctual demands out of the total volume was varied
in this set of instances. The five columns of the table correspond to five different ratios
for the regular versus punctual demand categories. For example, “R=4P” indicates that
the corresponding column displays the values of the performance indicators when in the
SSND-RM setting the total volume of regular demands is 4 times as large as punctual
demands. In the same way, “R=P” means that the volume of regular demands is almost
equal to the volume of punctual demands and, for the last column, “4R=P” means that we
have 4 times as large volume for the punctual demands as for the regular ones. Recall that
the total volume of demands (regular plus punctual) is maintained equal, and that only
the ratio between the two general categories is varied. As shown in the table, the SSND-
RRM model always provides a better solution with respect to the performance indicators
calculated here. This trend is even more accentuated when we increase the proportion of
punctual demands. Figure V.2 shows that the same hierarchy in the value level of the

different measures is observed for the five different ratios of regular to punctual demands,
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Table V.2: Performance indicators (relative values) with fare ratio (fast delivery/slow
delivery) = 1.5 for five regular-punctual ratios

R=4P R=2P R=P 2R=P 4R=P

Total cost decrease (%) 4.00 6.91  10.18 12.85  16.83
Transportation cost decrease (%) 2.79 5.16 7.42 9.14 12.05
Handling cost decrease (%) 3.08 5.37 8.03 9.62 13.15
Holding-containers cost decrease (%)  2.90 -5.19  4.79 6.28 23.36
Holding-barges cost decrease (%) -33.33  -27.85 -51.90 -39.56  -53.25
Service-start cost decrease (%) 5.60 10.23  14.05 1828  21.78
Net profit increase (%) 2.68 4.07 6.28 8.42 10.29
Capacity usage increase (%) 3.54 5.00 6.92 9.30 10.87
# Open services decrease (%) 5.60 10.23  14.05 1828  21.78
# Used vehicles decrease (%) 5.17 9.41 13.44  17.12  20.53
# Empty vehicles decrease (%) 24.66  34.25 55.07 6324 7297
# Less-used vehicles decrease (%) 10.83 2733 3648  48.67  54.72

Rejected demands volume p/all (%) 1.39 2.30 3.92 4.33 6.36
Rejected demands volume f/all (%) 1.55 2.84 3.66 4.82 5.96

for almost all the performance indicators considered. This is a direct confirmation of the

consistency of the system’s behavior and of the test instances used when computing the

results.
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Figure V.2: The value hierarchy of demand category ratios (R/P) for different performance
indicators

To be more precise, Figures V.3 and V.4 present trends of relative values of costs and
profits. As shown in Figure V.3, the SSND-RRM strategy always offers better solutions,
in terms of cost decrease and profit increase. A rising trend appears when we increase
the proportion of punctual demands as well. Furthermore, the slope of profit increase is
smaller than that of cost decrease. This phenomenon comes from the fact that less money

is obtained from the satisfied demands, as more demands are refused when increasing the
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ratio of punctual demands.
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Figure V.3: The trends of total cost decrease and net profit increase when increasing the
ratio of punctual demands

We present in Figure V.4 the trends of different cost components when increasing the
ratio of punctual demands out of the total volume of demand. One can notice that some
of the cost indicators have very similar behavior compared to total cost decrease: service-
start cost, transportation cost and handling cost relative value indicators. This implies
that the analysis of only one type of indicator (e.g., the total cost decrease) gives reliable
and consistent information about the behavior of the system and the related components

having the same trend do not necessarily need to be calculated.

A somewhat different behavior is observed for holding-container cost and holding-
barge cost decrease, which have irregular trends. For the holding-barge cost decrease,
its irregularity can be explained by the fact that, barges are active (in-service) most of
the time. Hence, only a small amount of the total cost is spent on holding barges in
ports. The relative values of this performance indicator being computed on such small
values, the fluctuation is larger compared to other indicators. We can also notice some
correlation between the holding-containers cost and holding-barges cost, their trends being

in opposite directions.

For the resource utilization, as more demands can be denied, more services and vehicles

can be saved. For the same reason, the routing of demands on services is more flexible and
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Figure V.4: The trends of different cost component indicators when increasing the ratio
of punctual demands
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Figure V.5: The trends of resource utilization and quality-of-service indicators when
increasing the ratio of punctual demands

efficient. Therefore, the number of empty barges is getting smaller and the capacity usage
is increased. All these trends are shown in Figure V.5, where the resource utilization and
quality-of-service performance indicator values and trends are displayed. In this figure, we
can also observe that more punctual demands (both partial and full punctual demands)

are rejected to maximize the revenue associated to the SSND solution.

When comparing the two strategies and models, we evaluate the performances in
terms of costs, revenues, resource utilization and quality-of-service. The conclusion is
that the introduction of Revenue Management concepts results in better network and asset
utilization. Using a large range of performance indicators, a better understanding of the
system behavior is obtained. The numerical results presented in this section confirm our
intuition that an important increase in net profit results from better resource utilization,
and more flexible flow distribution and demand satisfaction, while maintaining a high

quality-of-service.

V.6 R-DSS Assessment

In this section, we assess the proposed R-DSS within an integrated simulation framework
with the help of a set of PIs. In this framework, scheduled service plans made at tactical
level are deployed repeatedly at the operational level. An example is given to illustrate
how selected services, i.e., sl,s2, from tactical level (Figure V.6a) within a small time-

space network are deployed at operational level (Figure V.6b).

To select the scheduled services at tactical level, the proposed SSND-RRM model
(Chapter IIT) and SSND-RM model (without consideration of revenue management) are,
in turn, applied. Information about the physical network, potential services and forecasted

demands is considered to be available. At the operational level, decisions with respect
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Figure V.6: An example of service deployment from tactical to operational level

to the acceptance/denial of transport requests and the corresponding routing for those
accepted are made according to the proposed DCA-RM model (Chapter II). Sequential

arrivals of transport requests are simulated at the operational level as an iterative process.

In the rest of this section, we first introduce the procedures to generate test instances
for the proposed simulation framework in Subsection V.6.1. Numerical results are then

displayed and analyzed in Subsection V.6.2.

V.6.1 Simulation Framework

We now describe the simulation framework and introduce the procedure to generate test

instances used for the simulation.

In terms of physical network, four consecutive terminals located along the inland
waterway are considered. As a similar topology is also studied in the previous chapters,
the same assumptions related to the physical network and terminals as in Chapter II and

Chapter III are adopted here.

In terms of services, all possible itineraries with respect to the physical network are

considered with two types of vehicles (large and small). The same assumptions related to
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services and vehicles as in Chapter II and Chapter III are also adopted here.

At tactical level, the schedule length is considered to be 14 time units long (e.g., one
week). A test instance (a set of forecasted demands) is supposed to be composed of an
equal number of transport requests from each of all the three customer categories (i.e.,
R, P and F). In addition, each possible Origin-Destination (OD) pair is requested 4 times
by each category of customers. With respect to the other characteristics of demand, e.g.,
volume, delivery type and available time at origin, the values are generated randomly

(uniform distribution within predefined limits).

Time is discretized at the operational level into a number of time instants, so that
at each time instant there is no more than one transport request. At operational level,
when we simulate the sequential arrivals of transport requests, at each time instant, one
transport request is generated randomly following the same procedure as that introduced
in Chapter II. As analyzed in both Chapter II and Chapter III, the values of price ratio
between fare classes have an important impact on the performance of RM models. The
higher the price ratio is, the better the RM model performs. Therefore, in this exper-
imentation, we set the values of the price ratios for both delivery type (fast/slow) and
booking anticipation (late/early reservation) to 1.5. In practice, better performance of the
proposed R-DSS, in terms of the robustness of plans, is expected, when applying higher

values of price ratios than 1.5.

V.6.2 Preliminary Assessment

Two groups of experiments are conducted to assess the proposed R-DSS. The first group
of experiments is designed to study how the proposed R-DSS reacts, in terms of profit,
resource utilization, etc., when facing inconsistent demand forecasts between tactical and
operational levels. A second group of experiments are then settled with the assumption
that demand forecasts between tactical and operational levels are consistent, to evaluate
the performance of the proposed R-DSS with respect to different tactical strategies and

accuracy degree of demand forecasts at operational level.

As described previously, at tactical level, both SSND-RRM (with RM consideration)
and SSND-RM (without RM consideration) are applied, in turn, to design the service net-
work. When we make decisions to select open services, forecasted demands are required.
Obviously, the accuracy of demand forecasts is important. However, it is a hard task
to obtain precise demand forecasts. Moreover, according to the business relationships

between the carriers and customers (shippers), the behaviors of customers are different.
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Accuracies of demand forecasts, with respect to different categories of customers, are
thus different. For example, as long-term contracts are signed with the regular customers
(R), demands from R are predictable (or the demand forecasts could be considered as
accurate). On the contrary, demand forecasts, with respect to the spot customers, could
be considered as less accurate. Freight carriers, normally, could make a choice between
being greedy (to trust demand forecasts with respect to all customers and take the corre-
sponding risks) and being protective (to trust only the demand forecasts with respect to
regular customers and lose potential market), when making tactical plans. However, by
taking into account RM polices, carriers are offered with a different viewpoint, in which
customers are classified into different categories (in the decision making process) with
different treatments. Carriers, thus, are able to make decisions between being greedy and

protective, and consequently take less risks and win more potential market shares.

Therefore, when the SSND-RM model is applied, two different situations are consid-
ered. Given a test instance defined for the SSND-RRM (i.e., considering three different
customer categories: R, P and F), either all demands are labeled as “R” (SSND-RM(AIl
R), being greedy), or only R demands are kept, the others (P and F) being discarded
(SSND-RM(Only R), being protective). As stated before, at operational level, only DCA-
RM is applied and solved. Selected Performance Indicators (PlIs) used to analyze the

performance of the R-DSS are described as follows:

# of TEUSs: is the total number of containers requested to be transported;

# of accepted TEUs: is the total number of accepted containers;

# of open services: is the number of services selected at tactical level using small

or large vehicles;

e Capacity usage: is calculated as the ratio of used Distance*Capacity over the
maximum possible Distance*Capacity according to the flow distribution plan; it

indicates the resource utilization;
e Revenue: is the total revenue obtained;

e Estimated net profit: is calculated as Revenue subtracted by the fixed costs and

variable costs.

In Table V.3, we first briefly illustrate the output of the tactical planning in the
simulated framework. As shown in the table, SSND-RM(AIl R) generates a plan with the
largest number of open services (26) as all demands have to be satisfied. On the contrary,

SSND-RM(Only R) generates the smallest service network (with 8 open services) as only R
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Table V.3: Output of the tactical planning with different strategies

SSND-RRM SSND-RM
All R Only R
# of TEUs 1847 1847 063
# of accepted TEUs 1447 1847 563
# of open services 16 (all large) 26 (2 small, 24 large) 8 (all large)
Capacity usage (%) 91.75 82.38 78.17

demands are considered. Benefiting from the customer classification, SSND-RRM denies
some of the demands and consequently obtains a moderate service network with the
highest capacity usage. Services selected by those three strategies are applied in turn at
the operational level to evaluate the corresponding impact of each of them, when tested

in similar operational conditions.

At operational level, in order to better understand the behavior of the proposed R-
DSS, simulation was carried out 20 times for each tested demand accuracy and for each
tactical planning strategy. The procedure used to generate the sequential arrival of the
current transport requests here is the same as we introduced in Chapter 1. Average values
of the numerical results obtained from the simulation of the first group of experiments
are illustrated in Table V.4. Scale in the first column of the table indicates the number
of potential transport requests received at operational level during one time period of the
schedule length (of the tactical level). As shown in Table V.4, when scale = 80 and 90,
the total volume requested by the customers at operational level is 1655.45 and 1891.05,
respectively. These values are within a close range of the total volume estimated at tactical
level (1847). Therefore, when the value of scale is 80 or 90, we consider that the demand
forecast at tactical level is accurate (or the demand forecasts between the two planning
levels are consistent). When the value of scale is less than 80, the demand forecast at
tactical level is considered to be overestimated, and on the contrary, the demand forecast
at tactical level is considered to be underestimated (scale > 90). Both over- and under-
estimation of demands at tactical level implies the inconsistency of demand forecasts
between tactical and operational levels. Corresponding values for each PI obtained by

applying the three different tactical strategies are displayed in the last three columns.

As opening the largest number of services, SSND-RM(AIl R) always accepts the highest
number of TEUs and consequently generates the highest revenue in all the test instances,
compared to the other two planning strategies. However, as the open capacity is too
large, even SSND-RM(AIl R) always accepts the most volume of demands, it still has the
lowest capacity usage. In terms of estimated net profit, SSND-RM(AIl R) even earns the
least money, when the number of transport requests at operational level is low (scale =

50 and 60), because of its high fixed cost. Compared to SSND-RM(AIl R), the SSND-
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Table V.4: Assessment of the proposed R-DSS: Group 1
SSND-RRM SSND-RM
All R Only R
# of TEUs 1059.3
# of accepted TEUs 869.05 978.3 589.7
Scale = 50  Capacity usage (%) 30.60 21.65 41.34
Revenue 17736.13 19818.43 11137.38
Estimated net profit 3852.98 1261.03 3100.8
# of TEUs 1265.3
# of accepted TEUs 1060.05 1164.1 658.1
Scale = 60  Capacity usage (%) 36.1 25.67 45.97
Revenue 21147.65 23742.1  12459.95
Estimated net profit 6048.2 3806.9 3914.43
# of TEUs 1456.1
# of accepted TEUs 1187.5 1338.25 719.55
Scale = 70  Capacity usage (%) 40.63 29.6 50.23
Revenue 23379.85 26975.88  13388.2
Estimated net profit 7317.35 5731.25  4382.28
# of TEUs 1655.45
# of accepted TEUs 1304.85 1521.35 744.35
Scale = 80  Capacity usage (%) 44.81 33.76 52.1
Revenue 25531.73 30939.18 13900.93
Estimated net profit 8580.98 8314.65  4703.5
# of TEUs 1891.05
# of accepted TEUs 1396.1 1709.75 787.15
Scale =90  Capacity usage (%) 47.92 38.04 54.43
Revenue 26996 34686  14501.88
Estimated net profit 9365.35 10641.58  5006.75
# of TEUs 2110.3
# of accepted TEUs 1827.21 1993.32 830.55
Scale = 100  Capacity usage (%) 62.02 43.65 56.39
Revenue 36438.25 41137.88  15098.7
Estimated net profit 15636.48 15049.58  5316.08
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RRM generates more robust plans when facing inaccurate demand forecasts. To be more
precise, SSND-RRM always obtains a better capacity usage (around 10% higher) than
SSND-RM(AIl R), when scale < 100. When more demands than expected are coming
(scale = 100), the capacity usage of SSND-RRM is almost 20% better than that obtained
by SSND-RM(AIl R). It is obvious that the idea of discrimination on customers, i.e.,
different treatments on different customer categories, helps the carriers to have a better
resource utilization. In addition, even with less demands served in the simulations, SSND-
RRM still generates better estimated net profit than SSND-RM(AIl R), except when
scale = 90. However, even for the only exception, SSND-RRM still generates competitive
estimated net profit. The better profit performance observed on SSND-RRM, besides
customer classification, is also due to the consideration of the profitability of transport
requests. By introducing the RM polices at both planning levels, resources of the carriers
are better used to satisfy the more profitable demands. Another interesting observation
is also found with respect to SSND-RM(Only R). Since it is opening the smallest number
of services, SSND-RM(Only R) has the best resource utilization, except when scale =
100, in which SSND-RRM has the highest capacity usage. It performs well, in terms of
estimated net profit, when there is very few transport requests (scale < 70) exist in the
market, compared to SSND-RM(AIl R). However, when the number of transport requests
is moderate or high, SSND-RM(Only R) loses in the competition (and may lose its market
share in the future). Note that, the capacity usage is quite low at operational level, even
when the total volume of TEUs is almost at the same level as the one predicted at tactical
level. This phenomenon can be explained, as the generation of demands is random, in

terms of OD, available time at origin, delivery type, etc.

In the second group of experiments, to guarantee the consistency of demand forecasts
between the two levels, we use test instances (scale = 90) at the operational level with a
total volume within a close range to the one used for the test instances at the tactical level.
When the demands arrival process follows the same probability distribution function as
considered in the objective function of the RM model, we say the demand forecast is
accurate (Simulate:Estimate = 1.0). Simulate:Estimate = 1.5 indicates that the demands
are underestimated by a factor of 0.67, while Simulate:Estimate = 0.5 indicates that the
demands are overestimated by a factor of 2. Numerical results with respect to group 2
are presented in Table V.5. As shown in Table V.5, when demands are overestimated,
less demands, in terms of TEUs, are accepted by all three strategies as expected, and
consequently lower capacity usage and less estimated net profit are obtained. In addi-
tion, when demands are underestimated, more accepted demands, in terms of TEUs, are
observed also with higher capacity usage and more estimated net profit for all three strate-
gies. Compared to SSND-RM(Only R), SSND-RRM always generates higher estimated

net profit, and the difference between these two strategies is getting bigger when more
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Table V.5: Assessment of the proposed R-DSS: Group 2

SSND-RRM SSND-RM

AR Only R
# of TEUs 900.5
. s - # of accepted TEUs 822.89 867.21 487.73
Stmulate:Estimate=0.5 ¢, . i usage (%) 28.25 193 33.72
Estimated net profit 2563.98 -146.28  1732.87
# of TEUs 1891.05
. s B # of accepted TEUs 1396.1 1709.75  787.15
Stmulate:Estimate=1.0" ¢, 0 i vsage (%) 47.92 38.04  54.43
Estimated net profit 9365.35 10641.58 5006.75
# of TEUs 2760.93
. N _ # of accepted TEUs 2158.7 2521.45 1145.28
Simulate:Estimate=1.5 ¢, ity usage (%) 74.09 5.1 78.19

Estimated net profit 18413.94 21034.55 8922.57

demands have to be satisfied. Compared to SSND-RM(AIl R), better resource utilization
is always observed by SSND-RRM. In terms of estimated net profit, SSND-RRM earns
more than SSND-RM(AIl R) when demand forecast is overestimated. When demand
forecast is considered to accurate or underestimated, SSND-RRM still generates compet-
itive profit, compared to SSND-RM(AIl R), with almost 400 TEUs less accepted. Note
that, even SSND-RM(AIl R) has the best performance, in terms of net profit, when Sim-
ulate:Estimate = 1 and Simulate:Estimate = 1.5, it actually loses money when transport
requests are overestimated. Therefore, we conclude that, in the simulated framework,
compared to the other two planning strategies, SSND-RRM generates the most robust

plans when facing different accuracies of demand forecasts.

V.7 Conclusions

Performance indicators are broadly used to characterize the performance of transportation
systems, and to validate and evaluate models and solution methods, corresponding results
and strategies. It is also known that some indicators give more insight than others and
one would like to single out the critical ones for particular problem settings. This is
particularly meaningful when new problem settings are analyzed, as are the emerging
needs for tactical planning for container barge transportation with revenue management
strategies. Yet, there is no general framework for analyzing the interest of particular
performance indicators in the context of specific problem settings, generating appropriate

problem instances, and choosing the most representative indicators.

We proposed a first classification and analysis of performance indicators generally
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used to evaluate tactical planning solutions in freight transportation, and we identified
a number of adequate ones for scheduled service network design models with resource
and revenue management considerations. We also provided insights into the generation of
adequate test instances to study these planning issues in the general context of container

barge transportation systems.

The numerical analysis of the results of comparing a classical SSND formulation and a
model integrating revenue management strategies has shown the interest of the instance-
generation procedure and performance-indicator study in the context of SSND-RM for
container barge transportation. The initial insights provided by the study into the behav-
ior of such systems under varying conditions of demand stratification and customer-service
strategies (in terms of load acceptance) are a clear indication of this interest. They are also
a first step towards more comprehensive studies of such intermodal systems and modeling

approaches, studies that we plan to undertake in the near future.

An integrated framework considering both the tactical and operational models is im-
plemented to assess the R-DSS. In this framework, selected services at tactical level are
applied at the operational level and no extra-vehicles or rescheduling of services is consid-
ered. Simulations at operational level are then conducted to evaluate the decisions made
at tactical level, and consequently validate the proposed Reactive Decision Support Sys-
tem (R-DSS). Compared to the decision support systems with no revenue management
consideration at tactical level, the proposed R-DSS generates more robust decisions, in
terms of net profit and resource utilization. The introduction of Revenue Management
strategies at tactical level improves the interaction and information/knowledge exchange
between tactical and operational levels of decision making for the intermodal barge trans-

portation system studied.
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Barge transportation, in the recent years, has increasingly received global attention with
the intensified emphasis on the relationship between transportation and environmental
impact. Compared to the other transport modes, e.g. road and rail, barge transportation
is more environment-friendly, in terms of both energy consumption and noise emissions.
In addition, it also contributes to relieving the traffic congestion and reducing the number
of accidents of the road and rail transport networks. Therefore, in Europe, the adoption
of barge transportation (or more generally, river and canal freight navigation) has been
encouraged by the [European Commission, 2011] in the context of intermodal freight
transportation. However, compared to other transport modes, contributions related to

barge, especially in the context of intermodal transportation, are still scarce.

This thesis, therefore, studies the freight intermodal barge transportation from a car-
rier perspective. A reactive decision support system (R-DSS) covering both middle-term
and short-term planning of operations is then proposed to make more robust decisions,
in terms of scheduled services plan, resource management, flow distribution, etc. Four
related research problems are addressed to achieve the R-DSS: modeling the optimiza-
tion problems for intermodal barge transportation activities at tactical planning level,
at operational planning level, proposing a new solution approach to solve the large scale
MILP problems defined at tactical level, and classifying and introducing new performance

indicators, together with a methodology to generate test instances for the validation of

the proposed R-DSS.

In addition, the fundamental contribution of this thesis is the introduction of Revenue
Management (RM) concept and polices into the freight intermodal barge transportation
system. To be more precise, for both planning levels (tactical and operational), the best
decisions (scheduled services and capacity allocation) are made with respect to the given
forecasted demands. However, in a deregulated market, customers have different be-
haviors, different requires and different willingness to pay. These perspectives of demand
uncertainty then challenge those best decisions in practice, and may endanger the benefits

of the carriers. Therefore, it is critical and stands for a great challenge to understand the
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behaviors of customers and take this information into account when making decisions to
alleviate the influence of demand uncertainty. RM, which is naturally used in marketing
competition, offers us the techniques to tackle this challenge. By integrating the RM po-
lices, e.g., customer classification and fare differentiation, carriers plan and offer different
services, and charge different fares according to the behaviors, requires and willingness of
customers. As naturally used in practice at operational level for passenger transportation,
RM is rather new to the freight transportation and very few contributions exist in the
literature. However, according to the numerical results, it is promising to consider RM
polices when making decision at each planning level for freight intermodal barge trans-
portation system. Higher revenue and better resource utilization are obtained at each
planning level when tested separately. Furthermore, by considering RM polices at both
levels, more robust scheduled service plans are made, compared to those made without
consideration of RM at tactical level. To be more precise, when demand forecasts are
accurate, higher revenue and better resource utilization are observed. In addition, when
demand forecasts are inaccurate, the quality of solutions, in terms of income and resource
utilization, remains at a high level by considering RM polices, compared to those obtained

by the other tested planning strategies.

In the rest of this chapter, we first summarize the results of the thesis for each research

problem, and then present future research perspectives.

Summary of the Results

In this subsection, we review the four research problems proposed in Chapter 1. The

results of each study is summarized accordingly, and an overall summary is also made.

Research topic 1: How to integrate RM policies (which policies) with barge transporta-
tion at operational level and dynamically allocate the capacity of transport network facing
transport requests sequentially arriving in the system, in the context of intermodal freight

transportation.

In Chapter II, we first propose a Revenue Management model (DCA-RM) for dy-
namically allocating the capacity of the intermodal barge transportation network. To be
more precise, according to the business relationship, customers are classified into three
categories, whose transport requests are accordingly treated differently. Different fare
classes are proposed to customers, in relation with their booking anticipation and re-
quested delivery type (fast or slow), to differentiate the transportation solutions offered
by the carrier. In order to validate the DCA-RM model proposed, a set of experiments
are conducted. The obtained results show that the DCA-RM model always generates bet-
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ter total revenue, when compared with the first-come first-serve (FCFS) based booking
strategy, which has no consideration of profitability. This tendency of the results holds
even if demand forecasts are inaccurate (i.e., in case of under- or over-estimation of future

demands).

A set of possible negotiation strategies for denied demands coming from regular cus-
tomers are also studied within the proposed DCA-RM model. By considering the nego-
tiation strategies, better satisfaction from the regular customers is achieved with slightly
lower total revenue, which, however, is still higher than the revenue obtained when ap-

plying the FCFS strategy.

The proposed DCA-RM model is then extended by integrating the re-routing of some
of the accepted demands. Preliminary experiments are conducted to examine the ex-
tended DCA-RM model. The obtained results indicate that it is interesting to take into
account re-routing of already accepted demands when making the operational plans, as
the extended DCA-RM model generates better total revenue, when compared with the

basic version.

Research topic 2: How to integrate RM and resource management concepts with barge
transportation for service network design problems and how to ensure synchronization with

other transport modes, in the context of intermodal freight transportation.

In Chapter III, we propose a scheduled service network design model with consid-
eration of both resource and revenue management (SSND-RRM) for intermodal barge
transportation. The same type of RM policies as those applied at the operational RM
model (i.e., customer classification and price differentiation) are considered in this model.
Note that, at tactical level, as no booking anticipation is considered, the price policy is
only related to the required delivery type, e.g., slow or fast delivery. In terms of resource
management, design-balance constraints and upper bounds on the quantity of resource are
formulated. To synchronize with other transport modes, scheduled services are proposed
and time-related characteristics are explicitly associated with demands. Various problem
settings, in terms of demand distribution, network topology, fare classes and quality-of-
service (e.g., delivery time), are designed and tested to evaluate the proposed SSND-RRM
model. According to the results, we conclude that it is promising to consider RM poli-
cies at tactical level. By classifying customers and differentiating product-fares, higher
net profits and better resource utilization are observed, compared with the conventional

SSND-RM model without consideration of revenue management.

Research topic 3: How to efficiently solve the scheduled service network design problems

while simultaneously considering resource and revenue management.
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In Chapter IV, we propose a metaheuristic (MH) to efficiently solve large scale SSND-
RRM problems (introduced in Chapter III). The new solution approach includes four
phases. In the first phase, a constructive heuristic is proposed to obtain initial solutions for
the SSND-RRM optimisation problem. In the second phase, starting from such an initial
solution, the algorithm tries to improve the solutions by iteratively exploring the search
space of service selection, F-demand selection or the combination of both. The selection
of the search space is based on a modified adaptive large neighborhood search (ALNS). To
explore the search space of service selection and F-demand selection, a set of V-selection
heuristics and JF-selection heuristics are designed, respectively. Historical performance
of these proposed heuristics is recorded to guide the search. Phases of intensification
and diversification are also included. Moreover, the proposed Y-selection heuristics are
based on service cycle related neighborhood structures, in which a service cycle is a set of
consecutive services using the same type of vehicle back to the terminal where the sequence
of services starts. Moves based on the new neighborhood structures guarantee the design-
balance constraints and diversify the search simultaneously. Long-term memory is used
to record the influence of each service and F demand on the solutions, and to identify
promising services and F demands. To avoid exploring repeatedly the same region of
search space, short-term memory tabu lists of service cycles are maintained. Compared to
a commercial solver (CPLEX), the performance of the proposed MH is superior, in terms

of both solution quality and time consumption, when dealing with large scale problems.

Research topic 4: How to validate and evaluate the decision support system of barge
transportation, in terms of models, solution methods, corresponding results and strategies;

Are there some indicators that give more insights than others.

In Chapter V, we first review the Performance Indicators (PIs) found in public sources
and scientific literature, and qualify them with respect to the intermodal barge transporta-
tion. The analysis is then extended with RM considerations. Based on their relevance
and meaning, these Pls are classified into three categories, i.e., economic impact, resource
utilization and quality of service. All these Pls are applied and tested with respect to
the tactical planning of intermodal barge transportation system. New Pls considering
both resource and revenue management, in the context of freight transportation, are also
proposed for the three categories and tested. According to the results, for each category,
some Pls do offer more insights than others. These Pls are thus identified to evaluate
the proposed R-DSS, and could be used for a more general evaluation of any intermodal

freight transportation system.

In addition, we also provide insights into the generation of adequate test instances
to study the planning issues in the general context of intermodal barge transportation

systems. The proposed R-DSS is then assessed within an integrated simulation framework
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(both tactical and operational levels are considered) with specified Pls.

Overall, the consideration of RM policies for both middle-term and short-term plan-
ning of intermodal barge transportation enhances the interaction and information / knowl-
edge exchange between the two decision levels and consequently generates more consistent
and robust decisions. More revenue (net profit) and better resource utilization are ob-
served by applying the proposed R-DSS, compared with its competitors, which have no
consideration of RM at tactical level. Carriers, therefore, could benefit from the pro-
posed R-DSS, in terms of net profit, resource utilization, customer satisfaction, etc., and

consequently obtain a better market share.

Perspectives

Given the limited time and the scope of the research carried out for this thesis, ex-
tensive experiments have not been conducted for all the studies. For some of them, only
preliminary results are presented. To thoroughly validate the proposed R-DSS, therefore,
more work should and could be done. In this subsection, we discuss future research with

respect to each research study conducted in this thesis.

Operational Planning of Intermodal Barge Transportation System (DCA-RM): As dis-
cussed in Chapter II, by introducing RM policies into operational planning for freight
transportation, carriers are able to obtain better total revenue. Considering both prof-
itability of demands and feasibility with respect to the transportation network, decisions
made for the capacity allocation are more robust. In addition, applying different treat-
ments to different categories of customers also contributes to generating robust decisions.
However, as the situation faced by carriers in practice is highly dynamic, it is possible (as
illustrated in Chapter II) for some of the demands requested by regular customers to be
rejected. The rejection of regular (or even spot) customers may result in the decrease of
customer satisfaction and consequently loss of market share. Therefore, it is interesting,
and also stands for a great challenge, to consider the uncertainty of demands. In the
research study in Chapter II, we have already shown that it is possible and promising to
have a negotiation phase combined with the proposed DCA-RM model. A future research
path could be the integration of different negotiation strategies into the proposed DCA-
RM model to better satisfy the regular (or even the spot) customers. Moreover, proposing
more comprehensive models to implicitly reduce the degree of uncertainty of demands is
also a promising research topic. Two perspectives are then possible to achieve that: ro-
bustness and flexibility. In terms of robustness, no further resource is available. Better
plans need to be made within the given transport capacity. As shown in the preliminary

experiments on the extended DCA-RM model, re-routing some of the accepted demands
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does result in better solutions, in terms of total revenue. Flow distribution is continuously
improved by making decisions based on regularly updated forecasts. In terms of flexibil-
ity, outsourcing, paying penalty (could also be interpreted as outsourcing) or re-routing
of services should be considered for these denied transport requests of all categories of
customers. It would also be interesting to consider the uncertainty of demands directly
into the DCA-RM model, for example, flexible available time at origin or due time at
destination, or even a stochastic model to formulate all the situations mentioned above.
As this thesis attempts to make contributions to the freight transportation on the North-
ern France inland waterway, a real case study should be more convincible to validate the
proposed new DCA-RM model with real carriers in practice. With real data, in terms of
unit costs, price, handling time, berthing capacity, etc., we could also better analyze the
performance of the proposed DCA-RM model and help carriers to win a better market

share.

Tactical Planning of Intermodal Barge Transportation System (SSND-RRM): Exten-
sive experiments have already been conducted in Chapter I1I. With respect to the numer-
ical results, better solutions, in terms of net profit, resource utilization, etc., are obtained
by applying the SSND-RRM model at tactical level. Further studies are also carried out in
Chapter V to validate the service plan (made at tactical level) within an integrated frame-
work for the proposed R-DSS. According to the results of simulations at operational level,
more robust decisions are observed when applying SSND-RRM model at tactical level. It
is promising that without the explicit consideration of uncertainty of demands (demands
at tactical level are considered to be known), robust decisions are made by introducing
RM policies. The aggregation of customer behavior (customer classification) does improve
the information/knowledge flow from operational level to tactical level. Meanwhile, it also
reveals another set of research questions: what if we consider the RM policies for demand
forecasting at tactical levels, what are the characteristics of demands to be considered
with respect to the RM policies applied, etc. It would be also interesting to formulate the
stopping time of each service at each terminal as decision variables in the SSND-RRM
model. Better service plans are expected, in terms of flexibility and robustness, if the
stopping time of a service at each terminal is decided by the model, instead of fixed as
a predefined value. Those better plans are also expected to result in higher net profit,
when facing the uncertain demands, in terms of available time. By making decisions on
the stopping time of each service at each terminal, the delay of services could also be for-
mulated in the SSND-RRM model, which is another practice and interesting perspective.
In addition, the research questions we had at operational level could also apply at tactical

level.

Metaheuristics for the SSND-RRM Problems: As the research studies related to this
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chapter are still in progress, several tasks should be conducted as follows:

A complete calibration on all the parameters applied in the MH should be done,
and an analysis of the impacts of each parameter on performance of the MH should

be made;

e Further experiments should be designed and tested to identify the influences of each

algorithmic component;

e Extensive experiments should be conducted to study the performance of the MH.
Test instances, with respect to different physical networks, number of potential

services, number of demands, etc., are going to be examined;

e Further experiments can be designed to analyze the performance of the proposed
MH, especially when solving problems of small scale. Improvement should be made
on the MH, so that the proposed solution approach could achieve the optimality
faster. By now, one of our guesses for not obtaining the optimal solutions is the
existence of the symmetric structures in the solution. For example, different open
services or accepted demands which result in the same objective values. To address

this challenge, the concept of column generation could be introduced;

e A more sophisticated algorithm should be designed to tune the values of all the
parameters applied for the modified adaptive large neighborhood search (ALNS). A

very first attempt could be simulated annealing;

In addition, how the proposed MH could be modified and applied as a general algorithm
solving other related SSND problems also arises as a great challenge. As a set of services
are changed in each iteration, the balance between continuously searching in different
neighborhoods (not “close” to each other) and exploring for optimal solutions within a
given neighborhood is hard to be measured. A more intelligent algorithm should make the
choices by considering the interesting characteristics of solution components and historical

performance of all algorithmic components.

Performance Indicators (Pls): With respect to this research study, more comprehen-
sive studies of PlIs for general intermodal freight transportation systems are going to be
undertaken. Another important and interesting category of Pls, i.e., Environment im-
pact, should also be considered. COy emission, energy consumption and other indicators
should be classified into this category. Inspired by Environment impact, PIs belonging to
this category, e.g., COy emission, could be considered and formulated as one type of costs

when we are making decisions for the scheduled service network and capacity allocation.
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According to the numerical results, the consideration of RM policies in the intermodal
freight transportation systems is able to make robust plans for the carriers, in terms of
scheduled service plan, resource utilization, flow distribution, etc., even when encountering
inaccurate demand forecasts. So far, the reactive decision support system is composed of
two optimization models for tactical and operational level, respectively. It is an interesting
topic to propose a stochastic model at tactical level facing uncertain demands with the
help of RM policy considerations, and the concept of outsourcing. More flexible and
robust decisions, in terms of total revenue, resource utilization, etc. are expected. We
could then study the importance of flexibility and robustness for barge transportation
in different cases, in terms of physical network topologies, accuracy of demand forecasts,

competitions from other carriers, and different pricing policies.
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