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1. Abbreviations

1. ABBREVIATIONS

oKG: a-Ketoglutarate

2-DG: 2-Deoxy-D-glucose

3PG: 3-Phosphoglyceride

6PG: 6-Phosphogluconate

6PGD: 6-Phosphogluconolactone dehydrogenase
6PGL: 6-Phosphogluconolactonase

ACC: Acetyl-CoA Carboxylase

ACLY: ATP Citrate Lyase

Ac-CoA: Acetyl-CoA

ACO: Aconitase

BPTES: Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide
CS: Citrate synthase

DCA: Dichloroacetate

DHAP: Dihydroxyacetone phosphate
DHEA: Dehydroepiandrosterone

E4P: Erytrose-4-phosphate

EGF: Epidermal growth factor

ER: Estrogen receptor

ETC: Electron transport chain

F16BP: Fructose-1,6-biphosphate

F26BP: Fructose-2,6-biphosphate

F6P: Fructose-6-phosphate

FACS: Fluorescence-activated cell sorting
FAD?*: Flavin adenine dinucleotide
FASN: Fatty acid synthase

FH: fumarate hydratase

G1P: Glucose-1-phosphate
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1. Abbreviations

G3P: Glyceraldehyde-3-phosphate

G6P: Glucose-6-phosphate

G6PD: Glucose-6-phosphate Dehydrogenase
GAP: Glyceraldehyde-3-phosphate

GAPDH: Glyceraldehyde-3-phosphate Dehydrogenase
GC-MS: Gas chromatography—mass spectrometry
GDH: Glutamate Dehydrogenase

GLS: Glutaminase

GLUT: Glucose transporter

GSH: Glutathione

GSMM: Genome scale metabolic model

HER2: Human epidermal growth factor receptor 2
HIF1: Hypoxia-Inducible Factor 1

HK: Hexokinase

IDH: Isocitrate Dehydrogenase

IDH1: Isocitrate Dehydrogenase isoform 1

IDH2: Isocitrate Dehydrogenase isoform 2

IGF1: Insulin-like growth factor 1

KEAP1: Kelch-like ECH-associated protein 1

LDH: Lactate Dehydrogenase

MAPK: Mitogen-activated protein kinases

MCT: Monocarboxylate transporter

MDH: Malate Dehydrogenase

ME: Malic Enzyme

ME1: Malic Enzyme isoform 1

ME2: Malic Enzyme isoform 2

MIDA: Mass isotopomer distribution analysis
mTOR: mechanistic target of rapamycin

MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NAD": Nikotinamid adenin diniikleotid
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1. Abbreviations

NADP": Nikotinamid adenin dinikleotid phosphate
NRF2: Nuclear factor erythroid 2-Related Factor 2
NMR: Nuclear magnetic resonance

OAA: Oxaloacetate

OT: Oxythiamine

OXPHOS: Oxidative phosphorylation

PC: Pyruvate carboxylase

PDH: Pyruvate dehydrogenase

PDK: Pyruvate dehydrogenase kinase

PEP: Phosphoenolpyruvate

PFK: Phosphofructokinase

PFKFB2: 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2
PFKFB3: 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
PHD: prolyl hydroxylase domain

PHDGH: D-3-phosphoglycerate dehydrogenase
PI3K: Phosphatidylinositol 3- kinases

PK: Pyruvate kinase

PPP: Pentose phosphate pathway

PTEN: Phosphatase and tensin homolog

Pyr: Pyruvate

R5P: Ribose-5-phosphate

RB: Retinoblastoma

RPE: Ribulose-phosphate 3-epimerase

RPI: Ribose-5-phosphate isomerase

ROS: Reactive Oxygen Species

S7P: Sedoheptulose-7-phosphate

SDH: Succinate dehdyrogenase

SREBPs: Sterol regulatory binding proteins
TALDO: Transaldolase

TCA: Tricarboxylic acid cycle
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1. Abbreviations

TGF-B: Tumor growth factor

TIGAR: TP53-inducible glycolysis and apoptosis regulator
TKT: Transketolase

TKTL1: Transketolase like 1

TNF: Tumor necrosis factor

VEGF-A: Vascular endothelial growth factor A

X5P: Xilulose-5-phosphate
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2. Introduction

2. INTRODUCTION

2.1. CANCER

Cancer can be defined as a term that gathers up many heterogeneous sets of diseases in
which some abnormal cells divide out of the control with a tendency to spread
throughout the body and to found new colonies of cancer cells, which is termed as
metastasis [1]. Metastasis is the major cause of the death from the cancer. Cancer is a
prevalent multi-factorial disease which can be influenced by both environmental factors;
such as, tobacco, infectious organisms, chemicals and radiation, or genetic susceptibility;
such as, inherited mutations, hormones, immune conditions and some metabolic
alterations [2]. Therefore, risk evaluation, diagnosis and treatment of cancer are quite
challenging. It is often characterized by the loss of physiological control and malignant
transformation of the cells and tumor development and progression requires that
malignant cells gain certain functional and genetic abnormalities. Moreover, cancer is a
heterogeneous disease as hundreds of types of cancer exist. World Health Organization
(WHO) estimates that cancer causes more death than heart diseases or strokes [3]. In
2012, 14.1 million new cancer cases and 8.2 million cancer related deaths were reported
worldwide, among which the most commonly diagnosed cancers were lung, breast and

colorectal [4].

2.1.1. Breast Cancer

Breast cancer is the most common type of cancer in women and the second leading
cause of cancer related deaths, next to lung cancer [4-7]; therefore, developing new

therapeutic and preventive means in order to control this disease is a matter of vital
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2. Introduction

importance. Breast is an epithelial organ that develops from galactic band which
remains quiescent until puberty until when the sexual hormonal balance is not active.
Breast cancer is the result of subtle imbalance in the complex regulatory agents to which
the breast tissue is exposed; such as sex hormones, epidermal growth factor and other
agents that influence the normal growth and function. Breast cancer is a quite complex
and heterogeneous disease. Various studies of cellular and molecular mechanisms that
are involved in the onset and development of this disease have contributed significantly
to our understanding of its heterogeneity at a molecular level based on basic measures,
such as histological type, tumor grade, lymph node status and the presence of predictive
markers like estrogen receptor (ER) and human epidermal growth factor receptor 2
(HER2) [8, 9]. There are various symptoms of breast cancer among which lumps, pulled

in nipples, dimpling, dripping, redness/rash and skin changes are the most common ones

[7].

2.1.2. Colorectal Cancer

Colorectal cancer, on the other hand, is the third most prevalent cancer in men and
second in women especially in western world but it has a considerably lower mortality
rate compared to lung or breast cancer [4]. However, further development of
therapeutic and preventive tools of controlling colorectal cancer is also clearly needed.
Colon cancer is the cancer of large intestine, also called colon, which takes place at the
lower part of the digestive system. The cancer in the last centimeters of the colon is
referred as rectal cancer. Combined, they are usually named as colorectal cancer (CRC).
The intestinal colon walls consist of four layers. The inner most layer called mucosa is
where colonic epithelium renews itself. Any mutation which disturbs this self renewal
process can interrupt normal intestinal development triggering apoptotic or DNA repair
mechanisms, which end up in malignancy. Most cases of the colorectal cancer start as
benign polyps, clumps of cells, which are formed in the inner lining of the colon or
rectum and grow toward the center. Certain types of those polyps called adenomas can
further become cancer and form adenocarcinomas, which are the cancers that start in

gland cells [10].
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2. Introduction

2.2. HALLMARKS OF CANCER

Cancer is a disease which involves dynamic changes in the genome. Discovery of
mutations leading to activation of growth promoting genes called “oncogenes” or
deactivation of growth inhibiting genes called “tumor suppressor genes” specific for
different types of cancer was the corner stone of cancer research [11-13]. The
transformation of healthy cells into malignancy (tumorigenesis) is a multistep process
which involves genetic alterations resulting in progressive transformation of healthy
cells into malignant cells [14]. Nonetheless, the research conducted within the last two
decades have demonstrated that there are essential capabilities shared by most cancer
cells to regulate tumorigenesis, which are outlined by Hanahan and Weinberg (2011) as
“hallmarks of cancer” [15]. These essential alterations that together lead malignant

growth of the cells are described below in brief and schematically depicted in figure 2.1.

Cancer cells sustain proliferative stimuli and evade growth suppressors: Noncancerous
cells carry a highly regulated balance between cell proliferation and cell death in order
to maintain the cell biomass homeostasis by carefully controlling the production and
release of growth-promoting signals transuded via signal transduction pathways. These
signals are mostly growth factors binding cell surface receptors with intracellular
tyrosine kinase domains. Cancer cells, however, have altered signaling pathways and
alterations in mitogenic signaling which promotes cell division lead them to proliferate
continuously and autonomously. Cancer cells can either produce growth factor stimuli
themselves or they can send stimulating signals to neighboring healthy cells; so that,

they can supply cancer cells with various growth factors [16].

Cancer cells enable replicative immortality and resist to cell death: Activation of
oncogenes or deactivation of tumor suppressor genes help cancer cells to overcome the
checkpoints of cell division cycle and apoptotic (programmed cell death) mechanisms,
which give them immortality [17-20]. Key oncogenes like myc, AKT and tyrosine kinase
receptors (epidermal growth factor, EGF; insulin like growth factor 1, IGF-1 etc.) can
activate RAS or RAF-mitogen activated protein kinase (MAP kinase), phosphatidylinositol
3- kinases (PI3Ks), mechanistic target of rapamycin (mTOR) pathways or hypoxia induced

factor (HIF). Once activated, those can cause an extreme upregulation of transcription of
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2. Introduction

several genes which encode key enzymes taking place in glycolysis and glutaminolysis
pathways, which are two major pathways in cancer cell energetic metabolism [21]. On
the other hand, tumor suppressors like p53, retinoblastoma (RB), Bax or phosphatase
and tensin homolog (PTEN), which control cell cycle, apoptosis, signal transduction to

inhibit cell proliferation and DNA repair, are usually bypassed in cancer cells [22].
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Figure 2.1. Hallmarks of cancer

This illustration depicts hallmarks of cancer that are main capabilities required for multistep tumor
development and malignancy. In the light of intense research conducted in the last decade, two more
capabilities that cancer cells acquire were defined as emerging hallmarks. Deregulating cellular energetic;
that is metabolic reprogramming, is an emerging hallmark and it is a promising target for the treatment of
cancer since malignant cells exhibits abnormal use of metabolic pathways in order to sustain their
energetic needs. Besides that, also two enabling characteristics are depicted, which facilitate cancer cells
to acquire both core and emerging hallmarks. The figure is adapted from Hanahan, D. and Weinberg R.A,,
Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74, Copyright© 2011, with permission
from Elsevier.
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Alterations in oncogenes and tumor suppressor genes have been observed in the
majority of cancers; however, cancer cells also require infinite proliferation potential for
the tumor formation. After a certain number of cell divisions, normal human somatic
cells enter to a quiescent state named cellular senescence where the cells are non-
proliferative as no active DNA replication takes place. Those cells, eventually, enter to
another state called crisis where the cell death is observed [23]. Nevertheless, enabling
replicative immortality is one of the key hallmarks of cancer cells where the cells acquire
continuous proliferation potential thanks to the telomerase enzyme which plays an
important role in the resistance to the induction of both senescence and crisis [24].
Telomerase is the enzyme which is responsible for the extending the end of the
chromosomes in cell replication and in healthy adults it is active only in germ cells, and
some type of stem cells, such as embryonic stem cells and certain white blood cells [25].
However, malignant cells are reported to show an upregulation of telomerase

expression [26].

Angiogenesis is Induced to Support Tumor Progression: Normal tissues require an
intake of nutrients and oxygen together with continuous evacuation of the metabolic
wastes and carbon dioxide in order to sustain their nature. Neoplastic cells, due to their
ability to proliferate uncontrollably and infinitely, have the same requirements but in
higher rates. During tumor progression, angiogenesis, the development of a new and
more extensive local vasculature, is imperative to be created for the sustenance of the
cells. In adults, the mechanisms of vasculogenesis (the formation of new tubes) and
angiogenesis (sprouting) of new vessels from preexisting ones are quiescent except that
they are switched on as part of some physiologic processes such as wound healing. In
tumors, however, the angiogenic switch is almost always on to sustain massive
neoplastic growth [27]. It has been reported that angiogenic process is the result of a
balance between pro- and anti-angiogenic signals. These signals activate angiogenesis
inducers, such as vascular endothelial grosth factor-A (VEGF-A), which is the gene that

encodes the main ligand involved in the formation of new blood vessel [28].

Cancer cells have active invasion and metastasis mechanisms: The cancer cells are not
content only with above described hallmarks and as part of their immortality, they are
capable of spreading to the parts of the body other than their origin in a process of

25



2. Introduction

invasion and metastasis. This is a multistep process that starts with the biological change
of the cells. Then, local invasion begins and the intravasation by cancer cells into nearby
blood and lymphatic vessels takes place. These cancer cells are transited through the
lymphatic and hematogenous system to escape into the parenchyma of distant tissues
(extravasation). At the new destination, they form small nodules of cancer cells
(micrometastasis), which finally ends up in growth of macroscopic tumors (colonization)
[29]. Through this process, cancer cells undergo several alterations including their
shapes and attachment abilities to the other cells or extracellular matrix (ECM). Of note,
E-cadherin and B-catenin, important cell-to-cell adhesion molecules and metastasis
markers as well, have been reported by several researchers to be downregulated or

inactivated by mutation in human carcinomas [30-32].

When Hanahan and Weinberg first put the common characteristics shared among
various cancer types together in 2000, they pointed out six hallmarks which are
enumerated above [14]. These are acquired functional characteristics that allow tumor
cells to survive, proliferate and disseminate and they are gained in various cancer types
with different mechanisms and at different times during tumor formation. Nevertheless,
when they reviewed their study in 2011 in the light of the intensive research in cancer
over the last years, they suggested two common enabling characteristics which are
considered to be necessary to make the acquisition of these characteristics possible and

two new emerging hallmarks of cancer (see figure 2.1) [15].

The most prominent enabling characteristic is the development of genomic instability in
cancer cells due to some defects affecting DNA maintenance machinery. This instability
generates random mutations involving chromosomal rearrangements which lead to rare
genetic changes, such as over-expression of telomerase, that can take place in the
acquisition of hallmark capabilities [15]. On the other hand, heritable phenotypes such
as inactivation of tumor suppressor genes or activation of oncogenes, may also occur via
epigenetic mechanisms such as DNA methylation or histone modification and cells with
these acquired phenotypes exhibit selective advantages on neighboring cells, enabling
infinite proliferation and other tumor characteristics [33, 34]. The other enabling
characteristic is the inflammatory state of precancerous and cancerous tissues which is

induced by immune system and this may contribute to cancer formation in different
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ways [15, 35]. In fact, inflammation can lead to acquisition of several hallmarks since it
provides tumor microenvironment with bioactive molecules, such as growth factors,
survival factors, proangiogenic factors and inductive signals in order to sustain
proliferative signaling, to facilitate angiogenesis, invasion and metastasis and to activate

the epithelial-mesenchimal transition [36].

Besides enabling characteristics, evading immune destruction has been pointed out as
an emerging hallmark of cancer. The cancer cells are capable of evading both the innate
and adaptive arms of immune system, which are responsible for detection and
elimination of the vast majority of incipient cancer cells and nascent tumors. Even
though this mechanism is still not very clear, there are several factors that aid cancer
cells to evade immune system. Cancer cells secrete abundant tumor growth factor-
(TGF-B) which converts the regulatory immune cells to suppressive forms. Also,
defective antigen presentation, immune suppressive mediators, tolerance and immune
deviation and apoptosis of cytotoxic T cells are among the main scenarios helping cancer

cells to overcome immune system [37].

The second emerging hallmark is the reprogramming in cancer cell metabolism. Cancer
cells have a different metabolism than normal cells and several types of cancer are
characterized by specific metabolic alterations [19]. That is, they must reorganize their
energy metabolism in order to maintain uncontrolled cell proliferation, which is the
main characteristic of cancer cells [18, 38]. Moreover, the microenvironment of cancer
cells is different than that of healthy cells; thus, cancer cells must show quick adaptive
responses to some stress conditions, such as hypoxia and nutrient restriction by
changing their cellular bioenergetics [39]. The study of the tumor metabolic
reprogramming taking place in cancer is the main topic of this dissertation; therefore,
the essential characteristics of this hallmark are discussed in detail throughout the next

section.
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2. Introduction

2.3. UNDERSTANDING CANCER METABOLISM

Metabolism is the sum of all the chemical transformations taking place within a living
cell or organism, which occurs through a series of enzyme-catalyzed reactions that
constitute metabolic pathways. These pathways allow organisms to grow and
reproduce, maintain their structures, and respond to their environments. In order to
carry out these cellular functions, all the cells require certain amount of nutrients and
oxygen. Nutrients can either undergo the degradative phase of the metabolism in which
organic nutrient molecules (carbohydrates, fats, and proteins) are converted into
smaller, simpler end products (such as lactic acid, CO,, NH3) and energy with a process
called catabolism or they are used to built up larger and more complex molecules (such
as lipids, polysaccharides, proteins and nucleic acids) with means of anabolism or

biosynthesis.

To understand cancer, metabolism knowledge has always played a crucial role. At
present, there are more than 16,000 metabolites and over 8,500 reactions defined in
the Kyoto Encyclopedia of Genes and Genomes
(http://www.genome.jp/kegg/pathway.html). Most of these metabolic reactions were
discovered in the first half of 20™ century, including that several decades ago, German
physiologist Otto Warburg has described so-called term “aerobic glycolysis” in which,
cancer cells rather metabolizing glucose with an oxygen independent way even in the
presence of excess oxygen [40-44]. This phenomenon is widely called as the “Warburg
effect” in scientific world. Why tumor cells undergo this dramatic shift has become the
key question of the cancer research, yet this was just the starting. Since cancer is a very
complex and multifactorial disease [45], over many years, the altered cancer metabolism
has lost the interest of researchers and the solution to cancer has been sought in large
and complex projects, mostly focusing on the activation of primary proliferative and
survival signals. Thanks to this approach, the roles of the majority of oncogenes and
tumor suppressor genes, and their proteins, involved in signal transduction pathways,
proliferation, survival and anti-apoptotic processes in carcinogenesis have been widely
elucidated. Also, high throughput technology has revealed new metabolites and the

connections between pathways that were not possible to predict by conventional
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biochemistry [46] and in that way, relevance of metabolism to all other cellular
processes has become a current awareness. Now, it is time to revisit the Warburg's
original and simple metabolic hypothesis for cancer as it can really be the Achilles’ heel

of the cancer [44, 47].

2.3.1. An Emerging Hallmark: Tumor Metabolic Reprogramming

Proliferating cells have higher needs of nutrients to both maintain their metabolic
balance and generate a daughter cell. Due to their highly proliferative nature, cancer
cells often rewire the role of metabolism for growth and proliferation [18]. Tumor cells
also, rely on metabolic reprogramming to proliferate and achieve a fully malignant
phenotype. Energy and macromolecule demand must be satisfied by cell metabolism in
order to provide cancer cells with ATP and building blocks [15, 48]. The prominent
characteristics in metabolic reprogramming of cancer include enhanced glycolysis and
pentose phosphate pathway (PPP), upregulation of the lipid and aminoacid metabolism,
augmented mitochondrial biogenesis, elevated glutamine metabolism and
macromolecule synthesis [48]. Figure 2.2 outlines the key reactions that often take place

in metabolic reprogramming.

With the inspiration taken from Hanahan and Weinberg, Pavlova and Thompson have
outlined the emerging hallmarks of cancer metabolic reprogramming, which are the
main metabolic changes observed in many cancer types, if not all [38]. These metabolic

characteristics are shown in figure 2.3.

During malignant transformation most of the components of the signaling pathways that
control proliferation, survival and metabolic network remain intact. However, an
extracellular stimulation is required by non-tumor cells for the initiation of signaling
while cancer cells often contain mutations that trigger a sustained activation of the
signaling process [49]. These signaling pathways lead cancer cells to reorganize their
metabolism in order to fulfill energetic and bioenergetic requirements. Healthy cells do

not import metabolites constantly even when they are in nutrient rich environments.
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Figure 2.2 Main metabolic pathways involved in tumor metabolic reprogramming

The image outlines the major metabolic pathways involved in the synthesis of macromolecules: The
enzymes involved in these pathways are shown in red. Reductive carboxylation of o-KG by IDH1 and IDH2
produces citrate for lipid synthesis. ACC, acetyl-CoA carboxylase; ACYL, ATP citrate lyase; ACO, aconitase;
Ac-CoA, acetyl coenzyme A; CS, citrate synthase; E4P, erytrose-4-phosphate; FASN, fatty acid synthase;
F1,6BP, fructose-1,6-bisphosphate; F2,6BP, fructose-2,6-bisphosphate; F6P, fructose-6-phosphate; FH,
fumarate hydratase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GLS, glutaminase; GDH,
glutamate dehydrogenase; GSH, glutathione; G1P, glucose-1-phosphate; G3P, glyceraldehyde-3-
phosphate; G6P, glucose-6-phosphate; G6PD, glucose-6-phosphate dehydrogenase; IDH, isocitrate
dehydrogenase; HIF, hypoxia inducible factor; KEAP1, kelch-like ECH-associated protein 1; LDHA, lactate
dehydrogenase A; MCT, monocarboxylate transporters; MDH, malate dehydrogenase; ME,
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Malignant cells, on the contrary, have a constant influx of certain metabolites, especially
glucose and glutamine, due to the genetic alterations in key oncogenes, such as
PI3K/Akt, mTOR1, and c-myc or in the negative regulators such as RB and PTEN [50, 51].
Defective growth factor signaling in cancer cells ends up in elevated expression of
plasma membrane glucose transporter, GLUT1, and hexokinase (HK) which is the first
enzyme of the glycolytic pathway [52]. In the same way, glutamine uptake is facilitated
via transporters coupled to increased glutaminase (GLS) activity, as after conversion to
glutamate by GLS, it cannot exit the cell [53]. Besides this, cancer cells, under scarce
nutrient conditions, may use of opportunistic nutrient acquisitions. When free amino
acids are not available in cells’ environment, cancer cells may recover amino acids via
macropinocytosis of extracellular proteins, entosis of living cells or phagocytosis of

apoptotic bodies [54, 55].

Another emerging hallmark of tumor metabolism is the higher demand of cancer cells
for nitrogen which is mostly generated from amino acids [56]. The high demand of
nitrogen is to fulfill the requirement of producing several macromolecules; such as
nucleotides, non essential amino acids and polyamines so as to keep cancer cells

proliferating.

Growth signals play a pivotal role in cancer cell metabolism; however, metabolic
networks of cancer cells also transmit the information about the cellular metabolic state
to various regulatory enzymes, so that they change epigenetic marks from chromatin.
For example, activation of oncogens in tumor cells alters also metabolite driven gene
regulation and it has been reported that activated Akt signaling leads to increased total
histone acetylation [57]. Methylations, butyrylation or gain of function mutations can

head neoplasma to similar epigenetic variations [58].

malic enzyme; NRF2, nuclear factor (erythroid-derived 2)-like 2; PC, pyruvate carboxylase; PDH, pyruvate
dehydrogenase; PDHK1, pyruvate dehydrogenase kinase; PFK, phosphofructokinase; PHD, prolyl
hydroxylases; PHGDH, phosphoglycerate dehydrogenase; PKM2, pyruvate kinase M2; R5P, ribose-5-
phosphate; ROS, reactive oxygen species; S7P, sedoheptulose-7-phosphate; SCD, stearoyl-CoA desaturase;
SDH, succinate dehydrogenase; TKT, transketolase; TALDO, transaldolase; X5P, xylulose-5-phosphate; 3PG,
3 phosphoglyceride; 6PGL, 6-phosphoglucanolactone; 6PG, 6-phosphogluconate; 6PGD, 6-
phosphogluconate dehydrogenase.
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In order to comprehend better the cancer cell metabolism and be able to compare it
from the metabolism of noncancerous cells in order to get a better understanding of
tumor metabolic rewiring, the major elements of the central carbon metabolism are

elaborated in next sections.

Metabolic
interactions
with the micro-
environment

Alterations in Deregulated
metabolite- uptake of

driven gene glucose and
regulation amino acids

Emerging Hallmarks

of Cancer
Metabolism
Use of
Increased opportunistic
demand for modes of
nitrogen nutrient
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Use of glycolysis
and TCA cycle
intermediates
for biosynthesis

Figure 2.3. The Emerging Hallmarks of Cancer Metabolism

An emerging hallmark of cancer, metabolic reprogramming, has been identified as a strong and promising
target in cancer therapy. Cancer cells utilize excess amount of nutrients to maintain its viability and
proliferate. Cancer associated metabolic reprogramming accompanied to alterations in intracellular and
extracellular metabolites has deep effects on various cellular process including gene expression, cellular
differentiation, and tumor microenvironment. This illustration depicts the known cancer associated
metabolic changes. Many of them are common in various tumors.

2.3.2. Glycolysis and Learnings from Warburg

The biochemical pathways explained in textbooks often contradicts with the metabolism

of proliferating cells, including cancer cells [59]. As mentioned above, contrary to
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healthy cells, neoplastic cells predominantly produce energy via enhanced glucose
fermentation even in the presence of sufficient oxygen to support mitochondrial
oxidative phosphorylation (OXPHOS) [60]. Of note, the amount of ATP produced per
molecule of glucose catabolised through glycolysis is far less efficient compared to
OXPHOS (2 versus 36, respectively) [61]. Even though the reasons of enhanced glycolysis
observed in cancer cells are not fully elucidated, there are several recent works
proposing noteworthy explanations [62, 63]. Four decades ago, it was reported that not
ATP production but ATP consumption is actually limiting glycolysis in proliferating cells,
since glycolytic enzymes, such as phophofructokinase, may be inhibited with elevated
ATP levels [64]. Contrary to what was believed by Warburg [65] and many subsequent
investigators, aerobic glycolysis does not take place because of inefficient or damaged
mitochondria in cancer cells. In fact, it has been recently demonstrated that cancer cells
with depleted mitochondrial DNA show reduced tumorigenic potential both in vivo and
in vitro [66]. Also, in cancer cells, further activation of pyruvate dehydrogenase (PDH) by
inhibiting PDH kinase (PDK) with a specific inhibitor leads to elevated OXPHOS [67],
which proves that cancer cells do not have defective mitochondria. However, in
malignant cells mitochondria are used less actively than in healthy cells. The reason
behind that cancer cells use a less efficient metabolic pathway despite their intense
need of growing and proliferating is now in the major focus: Use of glycolytic and TCA
cycle intermediates for biosynthesis and production of NADPH which is a reducing
equivalent for lipid synthesis and reactive oxygen species (ROS) detoxification. In order
to understand why cancer cells prefer aerobic glycolysis, it is imperative to consider the
specific requirements of a cancer cell and the purpose of cell metabolism as a whole. In
order to proliferate continuously, the vast amounts of various macromolecules are
needed and these molecules are derived from the intermediates of central carbon
metabolism. To avoid excess ATP production, which allostericly regulates carbon
metabolism, cancer cells go through aerobic glycolysis; so that they can maximize the
flux of carbon into macromolecular synthetic pathways and NADPH production [59, 68-

71].

On the other hand, cancer cells need reprogramming their microenvironment to assist

tumor growth and dissemination. The excess lactate generation with the subsequent
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acidification of extracellular matrix favors tumors invasion due to the pH dependent
activation of some proteins that degrade extracellular matrixes and membranes [47, 72].
Furthermore, Warburg effect may lead cancer cells to avoid apoptosis, which is one of
the cancer hallmarks, since it is reported that enhanced mitochondrial metabolism
induces apoptosis [67]; therefore, less actively used mitochondria will produce fewer

sources of apoptotic stimuli.

Nowadays, Warburg effect has been demonstrated in various cancer types and has
successfully formed the basis of tumor diagnosis and staging via positron emission
tomography (PET)-based imaging of the uptake of radioactive fluorine-labeled glucose
analog, 18F—quorodeoxyqucose (*®F-FDG) [73]. In this method, malignant tissues are

detected via imaging as they consume much more glucose than healthy tissue.

2.3.3. Pentose Phosphate Pathway

Glycolysis forms the backbone of central carbon metabolism; however, proliferating
cells also rely highly on pentose phosphate pathway (PPP) in order to synthesize
nucleotides for DNA replication and RNA production. PPP provides an alternative
pathway to glycolysis for the metabolism of glucose, and the percentage of glucose
metabolized through PPP is known to vary from 5 to 30 % depending on the tissue type
[74]. Both DNA and RNA are polymers of nucleotides, which consist of a five-carbon
sugar (ribose or deoxyribose), a nitrogen containing base and a phosphate group. Of
these, five carbon sugars, which are also called pentoses, are mainly synthesized
through the PPP; therefore this pathway is essentially important for nucleotide
synthesis. Furthermore, PPP also produces the reducing equivalents, NADPH, which not
only is involved in the regulation of reactive oxygen species through the maintenance of
reduced glutathione (GSH) pool, but also serves as a cofactor in biosynthesis of several
essential macromolecules; such as lipids and amino acids. Therefore, in tissues with
higher lipid synthesis; such as liver and white adipose tissue, PPP rate might be even
more elevated. [18, 75, 76]. Besides serving as a crucial pathway for the biosynthesis and

the maintenance of redox status, PPP also plays important roles in various aspects
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related to cancer cells viability, including proliferation, apoptosis, invasiveness, drug
resistance, and metastasis [74, 77]. Because of all these important aspects, cancer cells
are known to be significantly dependent on PPP to maintain their highly proliferative
state [76, 78, 79]. The relation between elevated PPP and tumor proliferation has been
studied widely, since PPP mediates cancer cells to meet their anabolic needs together

with overcoming oxidative stress [80].

PPP consists of two different branches that converge in the production of ribose-5-
phosphate, which is essential for the synthesis of nucleotides (figure 2.4). The oxidative
phase of PPP (ox-PPP) is a non-reversible metabolic pathway and it starts with the
transformation of glucose-6-phosphate (G6P) into 6-phosphoglucono-6-lactone, which is
a cyclic and unstable lactone ester of phosphogluconic acid. This reaction is catalyzed by
glucose-6-phosphate dehydrogenase (G6PD) enzyme. G6PD catalyzes the rate-limiting
step in the ox-PPP that generates the first molecule of NADPH; so its expression and
activity are tightly regulated. NADP*/NADPH ratio plays a key role in the regulation of
the activity of this enzyme and when this ratio is low, G6PD stability is negatively
affected [74, 81, 82]. In healthy cells, G6PD usually works at 1-2 % of its maximal
potential as NADPH concentration in quiescent condition is high. However, similar to the
tissues with active metabolism; such as, liver, adipose or mammary glands, tumor cells,
including breast cancer cells, are reported to have high levels of G6PD since cancer cells
have a higher consumption of NADPH compared to quiescent cells [83-85]. On the other
hand, NADPH produced via G6PD is also used in lipid synthesis and it has been reported
that palmitoyl-CoA, a lipogenesis intermediate, also takes place in down-regulation of
this enzyme as a directly binding cofactor [86, 87]. Of note, G6PD deficiency is a very
common enzymopathy which affects more than 400 million people in the world [82]. In
these cases, decrease in NADPH production leads to decrease in cholesterol and fatty

acid synthesis [88], together with less ROS detoxification activity [82].

Due to its fundamental activity in the cells for pentose and NADPH production, there is
no doubt that PPP is also regulated by other oncogenes and tumor suppresser genes. K-
Ras (which is a subfamily of Ras) and PI3K, one of the most frequently activated
oncogenes, increase the activity of G6PD [89]; whereas, tumor suppressor gene p53

downregulates G6PD activity by decreasing its stability upon directly binding to it [90].
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Moreover, transcription factors taking place in response to cellular stress, such as
Nuclear factor (erythroid-derived 2)-like 2 (NRF2), have also reported to regulate G6PD
activity [91]. NRF2 plays a key role in tumorigenesis and it is usually upregulated in
several cancer types which in turn overactivates its target genes; such as G6PD, malic

enzyme 1 (ME1) and isocitrate dehydrogense 1 (IDH1) [87, 91, 92].
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Figure 2.4. Outline of Pentose Phosphate Pathway

The irreversible ox-PPP phase is catalyzed by G6PD, 6PGL (not shown) and 6PGD (6-phosphogluconate
dehydrogenase). This phase produces NADPH, used for ROS detoxification and synthesize fatty acids. The
reversible nonoxidative pathway takes role a carbon exchange between PPP and glycolysis, either
recycling the excess of pentoses or synthesizing ribose from glycolytic intermediates. The main enzymes
involved in this branch are TKT and TALDO. CO,, carbondioxide; E-4-P, erytrose-4-phosphate; F-6-P,
fructose-6-phosphate; GSH, glutathione; GSSG, glutathione disulfide, G-3-P, glyceraldehyde-3-phosphate;
G-6-P, glucose-6-phosphate; G6PD, glucose-6-phosphate dehydrogenase; NADPH, Nicotinamide adenine
dinucleotide phosphate; R-5-P, ribose-5-phosphate; R5PI, ribulose-5-phosphate isomerase; R5PE, ribulose-
5-phosphate epimerase; S-7-P, sedoheptulose-7-phosphate; TKT, transketolase; TALDO, transaldolase; X-
5-P, xylulose-5-phosphate; 6PGD, 6-phosphogluconate dehydrogenase.

36



2. Introduction

In the next step of ox-PPP, 6-phosphoglucono-6-lactone is converted to 6-
phosphogluconate by 6-phosphogluconolactonase (6PGL), the second enzyme of ox-PPP.
Ultimately, 6-phosphogluconate is transformed to ribulose-5-phosphate by 6-
phosphogluconate dehydrogenase (6PGD) with concomitant production of NADPH and
CO,. [87]. 6PGD is also an excellent target since it plays an important role in both the
synthesis of nucleotides and the generation of NADPH required for ROS detoxification
[93]. The importance of 6PGD had till now been overshadowed by G6PD and TKT
(nonox-PPP enzyme) [84, 94], but recent evidences suggest that G6PD alone has minimal
effect on tumor growth of HepG2 and Non-Small cell lung cancer cell lines cells in-vitro
[95, 96]. Moreover, Chan et al. reported that 6PGD has role in cancer cell migration and
c-Met (a tyrosine kinase receptor) signaling, since they observed that reducing the
activity of 6PGD in cancer cells downregulated c-Met receptor activation and cell
migration, in turn [97]. That is, new promising evidences which highlight the potential of
6PGD as a promising therapeutic target in certain forms of cancer have emerged [96,

98].

Ribulose-5-phosphate resulted in ox-PPP is then converted to ribose-5-phosphate by
ribulose-5-phosphate isomerase (RPI) or to xylulose-5-phosphate by ribulose-5-
phosphate epimerase (RPE), which are the enzymes of non-oxidative phase of PPP
(nonox-PPP). Ribose-5-phosphate can further be used for nucleotide synthesis. Nonox-
PPP consists of a set of reversible reactions in which ribose-5-phosphate and xylulose-5-
phosphate are converted to glyceraldehyde-3-phosphate (G3P) and fructose-6-
phosphate (F6P) producing several different carbon length sugar phosphates as
intermediates by the main nonon-PPP enzymes, transketolase (TKT) and transaldolase
(TALDO). G3P and F6P are then cycled into glycolysis [74, 79, 87] (Figure 2.4). Of note,
two isoforms of transketolase has been identified, namely, transketolase (TKT) and
transketolase-like-1 (TKTL1) [99] and it is worth noting that a recent study has
demonstrated that HIF-1 activation induces TKTL1, the rate-limiting enzymes of non-

oxidative phase of PPP, in human colorectal cancer [100].

Among two phases of PPP, ox-PPP is especially interesting because it is able to produce
NADPH, and therefore it also plays a key role in the scavenging of ROS levels. The

balance between ROS production and removal has been demonstrated to be altered in
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some tumors, and has also been proposed to be an attractive therapeutic target on its
own [101]. On the other hand, the pivotal role of G6PD in proliferation and survival has
been the interest of various scientists in the field and in many studies it has been

pointed as a promising target [77, 80, 102].

2.3.4. Mitochondrial Metabolism

Mitochondria are cellular organelles involved in several cellular processes, among which
are the oxidation of nutrients into carbon dioxide through the tricarboxylic acid cycle
(TCA cycle or Krebs Cycle) regulation of metabolic flux, modulation of redox status of the
cells, contribution to biosynthesis of lipids and initiation of apoptosis [103-106].
Increased mitochondrial biogenesis is advantageous for cancer cells [48] and alterations
in mitochondrial function may lead to several anomalies including cardiovascular

dysfunction, neurodegenerative disorders and cancer [104, 107].

Oxidative phosphorylation (OXPHOS) is a metabolic pathway in which the respiratory
enzymes of mitochondria are used to oxidize nutrients in order to produce energy in the
form of ATP. In healthy cells, when oxygen is present, OXPHOS is the most efficient
mechanism to synthesize ATP [108]. OXPHOS takes place with oxidation of reduced
nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH,),
which are produced in TCA cycle, through the electron transport chain (ETC). The ETC is
located in the inner membrane of the mitochondria and is composed of four complexes
(I to IV) which are responsible for the oxidation of the reducing equivalents in the form
of NADH and FADH, together with reduction of O, (the final electron acceptor) to H,0.
During this process, the protons are pumped into the inner membrane space of
mitochondria and this result in a proton gradient that is used by ATPase (complex V) to

synthesize ATP [109].

Especially when the cells prefer aerobic glycolysis, the cells must activate an influx of
carbons for anaplerotic reactions in order to sustain TCA cycle function since it is used as
a hub of macromolecule precursors [110]. For example, the export of citrate for lipid

synthesis is a crucial function of mitochondria or TCA cycle as Ac-CoA derived from
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citrate is the main source of lipid formation. Several mechanisms exist to support
anaplerotic activity of the cells among them pyruvate carboxylase (PC) which converts

pyruvate to oxaloacetate (OAA), a TCA cycle intermediate.

Genetic studies have revealed that various mutations in the genes that encode the TCA
cycle enzymes; such as, citrate synthase (CS), aconitase, isocitrate dehydrogenase (IDH),
succinate dehydrogenase (SDH) and fumarate hydratase (FH) leads to a nonfunctional
TCA cycle, which is associated to some tumor types [111-113]. Besides, SDH and FH have

been reported to be important tumor suppressor genes [114].

Mitochondria have two major nutrient inputs: pyruvate, which enters to TCA cycle after
its conversion to Ac-CoA, derived mostly from glucose via glycolysis and glutamine which
is integrated into TCA cycle by conversion to alpha-ketoglutarate (aKG) [115]. Despite
that dysfunctional mitochondria was believed to be a characteristic of tumor cells and
that was leading them to aerobic glycolysis, recent studies revealed that cancer cells
have fully functional mitochondria and that mitochondria are important parts of cancer
cell metabolism [104]. Cancer cells often switch their bioenergetic requirements from
OXPHOS to glycolysis for several reasons [116] and since glucose is mostly used in
aerobic glycolysis, glutamine becomes the major substrate required for sustaining TCA
cycle in order to produce precursor for biosynthesis of macromolecules. Thus, it will be

useful also to elaborate the glutamine metabolism.

2.3.4.1. Glutamine Metabolism

Glutamine is a non-essential amino acid which has several cellular functions including
donation of nitrogen for nucleotide and protein synthesis, energy production and lipid
synthesis, and production of some other non-essential amino acids [117-119]. It is the
most abundant amino acid and it is consumed at much higher rates than other amino
acids by cancer cells [117, 120]. Even though glutamine is not an essential amino acids, it
has vital importance for proliferation and viability of several tumor cells which have
addiction to glutamine [121]. In 1955, it was first discovered that proliferating cells could

not maintain their viability in the absence of glutamine [122]. Then, glutamine was
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observed to be consumed more than other amino acids by certain cancer cells and that
the carbon dioxide that is released by cells may carry carbon atoms from glutamine
[123]. Ultimately, recent studies revealed that many cancer cells, including some breast
cancer cells, exhibit glutamine addiction habits, which is reliance on glutamine as the
source of energy rather than glucose [124]. That is, glutamine is switched from a
nonessential to essential amino acid and this is particularly interesting since glutamine is
a nonessential amino acid that can be synthesized from glucose. The role of glutamine in

cell metabolism has been widely explored in recent decade [125, 126].

Proliferating cells require nitrogen to synthesize nucleotides and nonessential amino
acids; therefore, it is clear that the most important function of glutamine is to provide
cells with nitrogen for protein and nucleotide synthesis. Glutamine is first converted to
glutamate by deamination reaction catalyzed by glutaminase (GLS) which is a key
enzyme in regulation of glutamine metabolism and it is pointed to be a promising target
in cancer therapy [127]. Glutamate can either be used as a precursor of GSH and non-
essential amino acids, such as, aspartate, proline, alanine and arginine or is converted to
oKG by glutamate dehdrogenase (GDH) or transaminases to foster the TCA cycle (Figure
2.2). aKG is further oxidized to malate and might leave the TCA cycle through conversion
to pyruvate by malic enzyme (ME) which also produces NADPH [125]. When glutamine is
oxidized to pyruvate, the derived NADPH allows tumor cells to reduce the ROS
associated with mitochondrial respiration and rapid cell proliferation. In addition,
glutamine oxidation, as an alternative to glycolysis, provides tumor cells with the
precursors for major anaplerotic processes, such as TCA cycle intermediates, to fulfill

their bioenergetic and metabolic needs.

As an alternative to oxidative metabolism, glutamine can also go through the reductive
carboxylation, in which aKG derived from glutamine is directly converted to citrate by
IDH reversible reaction, especially to sustain cell growth under hypoxic conditions or
when the mitochondrial respiration is impaired [115, 128-132]. The cytosolic NADP"
dependent isoform of isocitrate dehdyrogenase (IDH1) is the main enzyme catalyzing
this reaction; however, IDH2 (mitochondrial isoform) can also carry out reductive
carboxylation also in NADP® dependent manner [128]. In fact, the reductive

carboxylation of glutamine allows cells to produce Ac-CoA for biosynthesis of lipids in a
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glucose-independent pattern, so that, the glucose can be conserved for the biosynthesis

of precursors which are specifically generated from glucose [128].

2.3.5. Amino Acid Metabolism

Amino acids are organic molecules which consist of a specific side chain and both amino
and carboxyl groups which allow them to form proteins by polymerization reactions.
They can also be used as a source of carbon and nitrogen for biosynthesis. 20 different
amino acids are defined and among them 11 are non-essential amino acids which means
that they can be synthesized by our cells while the rest are essential and they must be
supplied by dietary intake. The essential roles of glutamine in cancer cell metabolism has
already been discussed in the previous section but it is worth noting that there are other
amino acids that also have vital role in proliferative metabolism and are required for cell
survival [133, 134]. Non-essential amino acids can be produced from glycolytic
intermediates, such as serine synthesis from 3-phosphoglycerate or alanine synthesis
from pyruvate. Serine can further generate cystein and glycine [133]. Similarly, TCA cycle
intermediates are also used to synthesize non-essential amino acids. For example,
aspartate, aspargine and glutamate are synthesized from OAA and aKG. Also, glutamate

takes role in arginine synthesis via urea cycle [135].

Tumor cells, due to their highly proliferative nature, consume amino acids from external
sources because their capacity of endogenous synthesis is not sufficient to comply their
elevated needs to amino acids [136]. Of note, four amino acid transporters (SLC1A5.
SLC7A5, SLC7A11 and SLC6A14) have been reported to be over expressed in tumor cells
and in that way, they increase the amino acid uptake to fulfill their elevated needs [136].
On the other hand, in cancer cells, some amino acids are consumed far beyond the need
for protein synthesis, thus, it can be assumed that they are used as the metabolic
intermediates to form other amino acids or to take role in other biosynthetic pathways.
To illustrate, glutamine and aspartate are needed for nucleotide biosynthesis and

glutamate also takes role in urea cycle [133].
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Recently, it has been reported that non-essential amino acids serine and glycine support
tumor growth since serine and glycine are required for one-carbon metabolism,
generation of precursors for lipid biosynthesis, proteins and nucleotide, reduction of the
ROS and methylation of proteins and nucleic acids [137, 138]. Serine is reversibly
converted to glycine by cytosolic or mitochondrial serine hydroxymthyltransferase
(SHMT1 and SHMT?2, respectively) and this reaction produces one-carbon units which
enters to the tetrahydrofolate (THF) cycle [139]. A specific study revealed that inhibition
of mitochondrial isoform SHMT2 decreased the proliferation rate of several rapidly

proliferating cancer cell lines [134].

The importance of the amino acids in cellular metabolism can be further emphasized by
understanding the amino acid sensing system that the cells develop through the
mammalian target of rapamycin (mTOR) signaling in order to determine if sufficient
amino acids are available for protein synthesis [140]. Rapamycin is an mTOR inhibitor
which affects the protein synthesis, ribosome biogenesis, cell cycle arrest and autophagy
in the same way as the amino acid starvation. Specifically, amino acids which are
important nitrogen sources such as glutamine, leucine and arginine are key signaling
molecules that activate mTOR pathway and in the situations of amino acid deficiency,
MTOR is rapidly inhibited. mTOR inhibition due to deprivation of nitrogen leads cells to
suppress protein biosynthesis and induce autophagy as a way to maintain a free amino

acid pool for any further amino acid starvation [140-142].

2.3.6. Lipid Metabolism

Lipids are hydrophobic small molecules and contrary to many other large
macromolecules (such as proteins, nucleic acids), they are not formed of several small
homologous molecules linked by chemical bonds [143]. For all living organism, lipids are
essential for maintaining the structure of the cells, providing energy and cellular
signaling [144]. The signaling networks connected by lipid metabolism regulates not only
the growth, survival, proliferation and differentiation of cells, but apoptosis, cell motility

and membrane homeostasis as well [145]. Moreover, alterations in lipid metabolism can
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lead to defects in membrane composition and permeability which could contribute to
the development and progression of several diseases including some types of cancers

[146].

Proliferating cells, including tumors, have high demands of fatty acids to maintain a
constant supply of lipids. Fatty acids can be obtained from dietary sources or they can be
biosynthesized in the cells. Tumor metabolic reprogramming involves an enhanced lipid
biosynthesis since cancer cells need vast amount of lipids as building blocks for
membrane formation due to their high proliferative nature. To this end, they upregulate
many of the enzymes; such as fatty acid synthase (FASN), ATP citrate lyase (ACLY) and
Ac-CoA carboxylase (ACC), involved in de novo fatty acid synthesis [147, 148].
Lipogenesis requires also NADPH; therefore, NADPH generated by conversion of
oxaloacetate to pyruvate (by cytosolic isoform of malic enzyme) or oxidative phase of
pentose phosphate pathway is used for synthesis of lipids. Lipid biosynthesis starts with
the export of mitochondrial citrate to the cytosol, where it is converted to lipogenic
precursor Ac-CoA and oxaloacetate by ACLY [149]. Then, Ac-CoA is converted to
malonyl-CoA by ACC and both acetyl and malonyl groups are charged to the
corresponding thiol groups of FASN. Fatty acid chain is formed by donation of two-
carbon units of activated malonate (coupled to FASN), and at each step a molecule of
CO, is released. In that way, after a cyclical series of reactions, long chain fatty acids are
produced. The final product is a 16 carbon fatty acid, palmitate. Newly synthesized
palmitate can be further elongated and desaturated through the action of elongases and
desaturases [48, 146]. Of note, fatty acids can be degraded in mitochondria via a set of
reactions called B-oxidation which produces large amount of ATP and ROS by oxidative

phosphorylation [150].

2.3.7. Cell Metabolism Plays a Key Role in the Regulation of Redox Status, Cell
Cycle and Apoptosis

Reactive oxygen species (ROS) are heterogeneous molecules with increased reactivity

such as superoxide (0O,-), hydrogen peroxide (H,0,), hydroxyl radical (-OH) and singlet
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oxygen (*0,) and are produced in all cells as normal metabolic by-products. The effect of
ROS on cells depends on its concentration and low ROS concentrations are reported not
only to contribute to cell survival and proliferation as it takes role in post translational
modification of phosphatases and kinases [151, 152] but also to be required for
homeostatic signaling events, cell differentiation and cell mediated immunity. While
moderate ROS levels lead to the expression of some stress responsive genes involving
HIF-1, which in turn triggers the expression of pro-survival proteins [153], high ROS
levels may induce severe damages to several cellular macromolecules involving proteins,
lipids, nuclear and mitochondrial DNA and cause induction of cell senescence or crisis
[154]. High ROS levels may also lead permeabilisation of mitochondria which causes the
release of cytochrome c and in turn, apoptosis [155]. Therefore, in order to prevent any
irreversible cellular damage and restore redox homeostasis the ROS levels must be
carefully controlled and this control is succeeded by modulation of the ROS generation
and elimination of ROS by scavenging systems, such as, superoxide dismutases (SODs),
nuclear factor (erythroid-derived 2)-like 2 (NRF2), catalases, glutathione peroxidases
(GPXs) or peroxiredoxins (PRXs) (see figure 2.5) [156]. Each scavenger has a distinct
mechanism, to illustrate, superoxide dismutase catalyze the dismutation of O2- into
molecular oxygen (02) and H202, and GPXs catalyze the reduction of H202 to water, by
oxidizing reduced glutathione (GSH). Oxidized glutathione is reduced back by glutathione
reductase using electrons from NADPH, which indicates the importance of NADPH for
redox balance [157]. To remember, NADPH can be produced via several ways the most
important of which are ox-PPP and ME ractions [41, 138]. This further emphasizes the

importance of PPP for cancer cell survival and proliferation.

Due to their enhanced proliferation rates, malignant cells need to produce high levels of
ATP which leads to the accumulation of ROS, thus, they have up-regulated antioxidant
systems so as to ensure their survival [158]. The effects of ROS in cancer cell survival and
proliferation has been studied widely and at low to moderate levels, ROS has been
reported to induce tumorigenesis by promoting mutations in DNA or stimulating
signaling molecules, such as mitogen-activated protein kinase (MAPK), extracellular
signal-regulated kinase (ERK) or expression of cyclin D1, which promote tumor growth

and survival [101, 159-161]. ROS, moreover, can reversibly inactivate some tumor
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suppressor genes such as PTEN as it has redox-sensitive cysteine residues in their
catalytic centre [162] On the other hand, since high ROS levels cause cell damage and
death, malignant cells, particularly in the early stages of tumorigenesis need to fight
against elevated ROS levels by mostly developing a stronger antioxidant mechanism to
regulate ROS levels compatible with their metabolism. However, their ROS level remains
higher than healthy cells [158, 163], thus targeting their increased antioxidant defense

mechanisms may be used to selectively kill tumor and tumor initiating cells.

ROS
Tumorigenic Levels
Cytostatic
Oncogenes LY + SODs
ROS Mitochondrial S @) *  Nrf2 ROS
generators mutations : » Catalase — scavengers
Hypoxia * GSH/GPX
Tumor suppressor *« PRXs
loss

Figure 2.5. Levels of ROS and Cancer

Mitochondrial ROS generation can be activated by oncogenes, unfunctional tumor suppressors, mutations
in mitochondria or hypoxic conditions and this may facilitate tumor formation. Further increase in ROS
level may have cytotoxic effect on cells, so, cancer cells must keep a balanced ROS level. This is achieved
by ROS detoxification systems. Reprinted from BioMed Central, The Open Access Publisher. Sullivan, L.B.
and N.S. Chandel, Mitochondrial reactive oxygen species and cancer. Cancer Metab, 2014. 2: p. 17.
Copyright © 2014

Cell cycle is the period between two mitotic divisions and it consists of a set of processes
resulting in cell growth and division. Cell cycle is formed of two gap phases (G1 and G2),
and a synthesis (S) phase taking place between two gap phases, in which DNA
replication takes place, followed by mitosis (M). Cell growth and division are the
fundamental processes of the biological systems; therefore, elucidation of the
checkpoints and balance that ensure proper cell division has vital importance. Cells

grow, replicate its DNA and divide by cell cycle which is controlled by a set of signaling
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networks. This process also includes a proofreading mechanism in which the committed
errors are corrected and in case of that not being possible, the cells go through
apoptosis [164]. In cancer cells, on the other hand, this mechanism does not work
properly due to genetic mutations, which leads those cells to uncontrolled proliferation.
Therefore, cancer is a proliferation disorder and it is considered to be a disease related
to cell cycle, that is, each tumor lacks one or more aspects of the cell cycle control;
however, cell cycle defects alone are not the cause of cancer [165]. To this end, several

studies are designed targeting cell cycle machinery in cancer therapy research [166].

From metabolic point of view, cell cycle is an energy demanding process which requires
a highly active metabolism in order to fuel the rapid increase of cell mass [167]. Several
proteins including cyclin D1 which has a key role in G1 phase of cell cycle progression
and metabolic enzymes such as 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase,
isoform 3 (PFK/FB3) and glutaminase 1 (GLS1) are reported targets in metabolism-cell
cycle crosstalk [164]. Also, it is worth noting that cell cycle is directly related to PPP as
R5P and NADPH produced via PPP are important elements in nucleotide synthesis and
ROS detoxification. Therefore, stimuli to initiate cell growth also activate PPP genes [80].
Despite that glucose availability being a metabolic check point in cell cycle was observed
few decades ago [168], and that cell cycle elements and regulatory elements have been
elaborated in past years, the connection between cell cycle process, availability of
nutrients, biological intermediates and energetic balance is still to be fully elucidated

[169].

Organisms have evolved in a way that unnecessary or unhealthy cells are eliminated
from the body with a programmed cell death program called apoptosis. Unlike normal
cells, tumors are under constant stress because of activated oncogenes, instable
genome, hypoxia or similar reasons which induce tumorigenesis. Under normal
circumstances, this stress cause apoptotic stimuli; nevertheless, cancer cells, as a
hallmark, have ability to avoid this cellular response [170], supporting that inhibition of
apoptosis has a key role in survival of cancer cells and development of tumors.
Apoptosis can be initiated by extrinsic signaling pathway in which tumor necrosis factor
(TNF) receptor is included, where the death signal is introduced via these receptors. On

the other hand, an intrinsic signaling pathway initiated by mitochondria which is
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independent of receptors may also initiate apoptosis [171]. Enhanced aerobic glycolysis
and decreased mitochondrial respiration, therefore, helps cancer cells also to evade
from apoptosis. In healthy cells for induction of intrinsic mitochondrial pathway
inactivation of anti-apoptotic proteins such as BCL2 which is located in mitochondria is
required. Tumor suppressor p53 gene has role in activating several pro-apoptotic BCL2
signaling proteins such as NOXA and PUMA. However, many cancer cells have defected
intrinsic apoptotic pathway due to the loss of p53 and BCL2 has been reported as an
oncogene in several cancers [172, 173]. This suggests that mitochondrial metabolism is
highly related with cancer cell survival and tumor growth, and modulation of

mitochondrial respiration may have anticancer effects [173].

2.3.8. Crosstalk between Signaling Events and Cancer Metabolism

Cell metabolism is regulated by several means among which are the availability of the
nutrients, levels of certain metabolites and activity of the certain key enzymes of
metabolism. Also, as one of the cancer hallmarks, cancer cells sustain proliferative
stimuli by uncontrolled growth promoting signals transuded by signal transduction
pathway [15]. Studying altered cellular metabolism provides deep information for a
better understanding of the complex networks of oncogenic signaling pathways, which is
the reason laying beneath tumorigenesis. Many oncogenic signaling pathways converge
to adapt cancer cell metabolism to sustain the existence of tumor cells [41]. Also, in the
last years several metabolism based anticancer therapy strategies targeting the relation
between altered cellular metabolism and signaling networks regulating the proliferation
and survival have been suggested [174]. Various oncogenes, tumor suppressor genes
and cell cycle regulators which control cell proliferation and survival are involved in
modulation of key cellular metabolic pathways including glycolysis, PPP, OXPHOS,
lipogenesis, glutaminolysis and several others (Figure 2.6). Mutations causing
oncogenesis or loss of tumor suppressors lead cancer cells to change their energetic and
biosynthetic requirements via interactions between enzymes, metabolites, transporters
and regulators [50]. Thanks to high throughput sequencing data, today it is known that

genetic alterations causing tumor development are much more complex than estimated
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and even tumors with same histopathological features may have different mutational
range [175]. Despite that several metabolic adaptations controlled by oncogenes often
have common characteristics in different cancer cells, metabolic profile can also be
tissue or cell specific [120]. In figure 2.6, some of the most studied oncogenes and tumor
suppressors together with their influence of alteration of metabolism have been

highlighted.
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Figure 2.6. The Effects of Oncogenes and Tumor Suppressors on Metabolic Reprogramming

Tumor metabolic reprogramming is regulated by several oncogenes and tumor suppressor genes by
signaling pathways. This figure outlines the complex regulatory mechanism and key pathway interactions
required for growth and proliferation. Oncogenic pathways are depicted in green and tumor suppressor
pathways are shown in red. Reprinted from Elsevier. Jones, N.P. and A. Schulze, Targeting cancer

metabolism--aiming at a tumour's sweet-spot. Drug Discov Today, 2012. 17(5-6): p. 232-41.Copyright
©2011.

To begin, HIF-1 (hypoxia inducible factor) promotes a metabolic shift from OXPHOS to

glycolysis through the activation of transcription of several genes including glycolytic

48



2. Introduction

enzymes and glucose transporters; so that, lactate production via glycolysis enhances
considerably, which is the key component of Warburg effect [176]. Besides this, HIF-1
also plays role in downregulation of OXPHOS by activating PDK1 to inhibit pyruvate entry
into mitochondria. Additionally, HIF-1 also takes place in inhibition of B-oxidation, ROS
generation, alteration of the expression of tumor suppressor genes and epithelial
mesanchimal transformation of cancer cells [50, 176, 177]. Similarly, Myc oncogene also
activates a transcriptional program that augments the glycolysis by directly targeting
glucose transporters and glycolytic enzyme genes. Even though Myc provides cancer
cells with the metabolic advantages on oxygen dependent mechanisms similar to HIF-1,
the activation of Myc has more important consequences due to the fact that it regulates
also many other biosynthetic pathways, such as glutaminolysis, besides glycolysis [42].
Myc activation provides cancer cells with enhanced glutamine uptake and glutaminolysis
by overexpressing of the glutamine transporter genes and GLS [178]. Moreover, Myc
oncogene regulates both cell cycle and apoptosis. Myc is involved in the activation and
repression of several cyclins including cyclin D1 and cyclin dependent kinases which are
key elements in cell cycle progression. However, the mechanism behind that Myc

induces apoptosis is not fully elucidated yet [179].

Another signaling pathway which is one of the most common oncogene signaling
cascades is PI3K/Akt/mTOR pathway and it is a motivating target in anticancer research
[180]. PI3K/Akt/mTOR pathway is crucial for tumor cell survival and proliferation as it
helps cancer cells to get their high energetical and biosynthesis demands by promoting
metabolic transformation through multiple pathways including an increase in glucose
and amino acid uptake, enhanced glycolysis and lipogenesis and high rates of protein
synthesis via Akt-dependent mTOR activation [141, 181]. Lipid metabolism is modulated
by activation of sterol regulatory element binding proteins (SREBPs) and these proteins
regulate Akt/mTOR signaling pathway [146, 182]. In fact, several genes included in lipid
biosynthesis; such as ACLY, ACC and FASN are targets of SREBPs [183]. Moreover, it has
been reported that PI3K, one of the most frequently activated oncogenes, increases the

activity of PPP by activating G6PD enzyme [89].

Since it has very important roles in tumorogenesis, cell survival, cell cycle and apoptosis

and it is altered in several cancers, p53 (or also called TP53) is probably the most studied
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tumor suppressor gene of the recent years. Its loss of function induces Warburg effect
by activating glycolysis, more specifically, increasing the expression of glucose
transporters and glycolytic enzymes, such as hexokinase (HK). This, in turn, represses
mitochondrial respiration. Moreover, p53 deficiency alters also the TP53-induced
glycolysis and apoptosis regulator (TIGAR) which leads cells to go through tumorogenesis
[184-186]. In addition, p53 regulates the GLS2, mitochondrial glutaminase gene in a way
that any activation of p53 will, therefore, cause an enhanced mitochondrial metabolism
[187] and FASN, the key enzyme of fatty acid synthesis is also indirectly regulated by p53
[188]. On the other hand, p53, when functional, directly binds to dimeric structure of
G6PD and decreases the activity of PPP [90].

There are several other genes which play role as oncogenes or tumor suppressors in
tumor development. For example, mutated tumor suppressor PTEN is the main activator
of the PI3K/Akt/mTOR signaling and this pathway is quite active in bladder cancer [189].
Furthermore, there are recent studies pointing FH, SDH and IDH genes, which are the

main enzymes of TCA cycle, as tumor suppressors [132, 190-193].

2.3.9. Current Approaches in Cancer Therapy Targeting Metabolic Reprogramming

Since the discovery of aerobic glycolysis by Warburg, cancer metabolism has been the
focus of cancer research and high throughput techniques increased our understanding
of tumor metabolism profoundly. Many cancer related pathways and the roles of several
certain enzymes taking place in cancer metabolism have been elucidated and the idea of
targeting tumor metabolic reprogramming in order to identify new therapeutics has
been one of the main focuses in cancer research [194, 195]. In 1950s, the nucleic acid
synthesis [196] and some glycolytic enzymes such as HK, GAPDH and PDK [197] were
already suggested as putative targets in anti cancer therapy and since then, several
metabolic pathways and enzymes have been pointed out and used in cancer therapy
[62]. Among the many anti-glycolytic agents, 2-deoxy-D-glucose (2-DG) is the most
studied one. It is a glucose analog which inhibits glucose uptake leading the glycolysis to

stop after first step [198]. Also, dicloroacetate (DCA) is a strong anti-Warburg effect
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drug. It inhibits PDK so that pyruvate is directed to entry into mitochondria via PDH.
Preclinical studies demonstrated that DCA has additive or synergistic effects when it is
combined with other agents targeting tumor oxidative stress [199]. Another promising
anti-glycolytic chemical is 3-bromopyruvate (3-BrPA) with its ability to deactivate GAPDH
[200]. On the other hand, tumor metabolic reprogramming is also linked to drug
resistance in cancer treatment [201]; therefore, 3-BrPA is a good anti cancer agent due
to its ability to enhance the effects of cytotoxic drugs and overcome drug resistance in

cancer [202].

Under normal circumstances, the enzyme 6-phosphofructokinase/fructose-2,6-
bisphosphatase 2 (PFKFB2) is a bifunctional enzyme with both phosphatase and kinase
activities and it activates 6-phosphofructokinase (PFK1) by generating the allosteric
glycolysis regulator, fructose-2,6-bisphosphate (F26BP) [203]. Most cancer cells,
however, express PFKFB3 isoform, which has very little phosphatase activity and
therefore, they trigger aerobic glycolysis by increased F26BP production [204]. Clem et
al. have reported that some small molecule inhibitors of PFKFB3 decrease the F26BP
formation, so that, they inhibit the growth of cancer cells and xenograft tumors [205].
Similarly, cancer cells express majorly the pyruvate kinase 2 (PKM2) isoform despite that
its activity is lower than PKM1 isoform. In that way, they prevent the production of
excess ATP which is an allosteric regulator of glycolysis. Thus, inhibition of PKM2 isoform
in cancer therapy has been hypothesized to have promising anti-tumor effects [206]. On
the other hand, lactate dehydrogenase (LDH) has long been targeted in anticancer
therapy, yet because of its position being at the end of the glycolytic pathway, LDH-
inhibition based approaches have several challenges and still under wide investigation

[207].

Although glycolysis has been a very prominent pathway to target in cancer therapy,
other metabolic pathways having significant roles in tumor metabolic rewiring have also
been elaborated to encounter new therapeutic targets [194, 208]. With its pivotal roles
at nucleotide biosynthesis and NADPH production for ROS detoxification and lipid
biosynthesis, PPP has been widely studied and the main enzymes of PPP, such as G6PD,
6PGD and TKT have been proposed as potential targets in cancer therapy [94-96]. G6PD

deficiency has been observed in around 400 million people worldwide and its deficiency
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does not have any severe consequences except for mild anemia [209], so, inhibition of
this enzyme in cancer treatment is highly promising. In cancer cells, reduced levels of
G6PD enzyme ends up in decreased proliferation [80]; nonetheless, embryonic stem
cells with knockout G6PD do not perform a decreased proliferation but they show a
stronger sensibility to antioxidants [210]. Moreover, in human foreskin fibroblast cells
decreased G6PD activity leads to reduced growth and induction of cellular senescence

[211].

Also, 6PGD, another important enzyme of ox-PPP has recently taken the interest of the
scientists and reported to be a potential anticancer target. Recent reports have
demonstrated that inhibition of 6PGD decreases the growth of lung cancer cells by
senescence induction [96]. Furthermore, 6PGD has been proven to take role in cell
migration and lung cancer cells with decreased activity of this enzyme showed less
migration activity in vitro [97]. Another recent report have elucidated that decreased
6PGD level in various cancer cell lines lead to reduced lipid and RNA biosynthesis
together with enhanced ROS levels, which in turn attenuated cancer cell proliferation
and tumor growth [212]. There still remains a lot to be explored about this promising

target for cancer therapy.

Targeting ox-PPP in cancer therapy is an interesting approach as it also plays a crucial
role in ROS detoxification in cancer cells. Since cancer cells often have active ROS
detoxification mechanisms in order to deal with enhanced ROS levels, ROS mediated
mechanisms has been proposed to be targeted in therapeutic studies. The balance
between ROS production and removal in cancer cells is very subtle; thus, disruption of
this balance is an interesting approach [101]. Knowing the role of G6PD and 6PGD in ROS
detoxification, inhibition of these enzymes is likely to disrupt this balance and lead to

cell death.

In addition, TKT enzyme has also been studied for its anticancer efficiency and the
studies showed that inhibition of nonox-PPP lead to stronger decrease in tumor
proliferation than the inhibition of ox-PPP [213]. Moreover, chemical inhibition of both
TKT via oxythiamine (OT) and G6PD via dehydroepiandrosterone (DHEA) resulted in a

cell cycle arrest in G1 phase in Ehrlich’s ascites tumor in vivo and the combined
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administration of both chemicals showed a synergic effect [214]. On the other hand,
other nonox-PPP enzymes such as ribose-5-phosphate isomerase (RPIA) and ribulose-
phosphate 3-epimerase (RPE) have also particular role in tumor growth and decrease in
their activity has been reported to decrease tumor growth in xenograft model of KRAS-
induced pancreatic ductal adenocarcinoma [68]. All in all, PPP has strong roles in cancer
cell proliferation and survival and inhibition of the PPP can be a potential strategy in

anticancer therapy.

Inhibiting glutamine metabolism of the cancer cells has also attracted the scientists in
the field and GLS1 has been pointed out to be a promising target in anti-cancer therapy,
especially for the cancer cells with overexpression of Myc, that is, glutamine addicted
cells [121]. Various specific GLS1 inhibitors have recently been discovered among which
compound 968, CB-839 and bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide
(BPTES) are some prominent anti-tumor agents and they have passed several preclinical
tests successfully in various tumor types [215-217]. Furthermore, lipid biosynthesis
pathway has also been studied for encountering any possible target to use in fight
against cancer. To illustrate, three inhibitors, cerulenin, triclosan and orlistat, have been
reported for their activity to inhibit FASN [218] and inhibition of ACLY by RNAi or by
chemical SB-204990 has limited tumor proliferation and survival [110, 219]. Also,
inhibition of fatty acid synthesis by activation of AMPK, a metabolic regulator, by

acadesine or rosiglitazone has been shown to have antitumor effects [220, 221].

On the other hand, targeting oncogenic signaling is also a strong approach in fighting
against cancer. For example, idelalisib which is an inhibitor of PI3K is reported to inhibit
the pro-survival pathways of B-cell lymphoma and decrease the chemotaxis of cancer
cells into protective tissue microenvironment which helps with better chemotherapy
results [222, 223]. Targeting Ras proteins is also studied widely since they control the
signaling pathways which are key regulators of normal cell growth and tumorigenesis.
Some small molecules which suppress the oncogenic Ras signaling in laboratory models
have been discovered; however, complementary studies will be needed to see
effectiveness of these molecules as anticancer drugs [224]. Moreover, Myc is an

important anticancer target since it controls several metabolic pathways including cell
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cycle and apoptosis. Of note, quarfloxin a Myc inhibiting small molecule has been in

phase Il of clinical trials for neuro-endocrinal carcinomas [179].

2.4. TOOLS USED TO STUDY CANCER METABOLISM

Genomics, transcriptomics and proteomics approaches focus on gene, mRNA, and
protein profiles respectively and have provided with broad sets of information for
identification of new biomarkers of certain cancer types, targetable mutations and new
tumor subtypes [225-227]. Similarly, metabolomics which is concentration based
metabolite profiling and fluxomics which refer to quantification of metabolic fluxes
provide investigators with a dynamic portrait of the metabolic status of the living
systems are among the newest “omics” sciences and they have introduced new insights
to understand the environment of the cells and metabolic fluxes as a whole [228].
Particularly fluxomics strategies have been used to quantify and analyze the dynamic
changes in metabolites and metabolic pathways which provided investigators with a
better comprehension of the metabolic rewiring lying beneath tumor development. The
study of tumor metabolism requires consideration of the entire metabolic network and
it has pivotal importance to introduce this data in Systems Biology studies where
different kinds of omics data are integrated to obtain a holistic perspective of the

complex behavior of biological systems [229, 230].

2.4.1. Metabolomics

Metabolomics can be defined as a large study of analysis of complete set of small
molecules, which are known as metabolites, within cells, biofluids, tissues or entire
organisms and it is simply based on profiles arising from their concentrations. [231].
Metabolomics has an edge on other omics strategies due to several advantages it offers.
First of all, metabolomics allows revealing the changes in the cell metabolome (an entire
set of endogenous metabolites and their interaction within a biological system) which is

the final downstream product of the central dogma and is more amplified than
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transcriptome and proteome data [232]. Also, metabolome is directly linked to the
current status of the cells, that is, it reflects better the phenotype of the investigated
biological system and it is cheaper to identify metabolic biomarkers than identifying
MRNAs or proteins. Furthermore, in metabolomics research, comparison of the data
over several biological conditions is easier than other omics, because a certain
metabolite is identical in every cells or organisms contrary to transcript or proteins [233,
234]. Therefore, metabolomics has been started to be used widely to determine the

biomarkers involved in certain diseases or certain stages of a very disease development.

Metabolomics studies can be targeted or untargeted. In the former one, the certain
metabolites which are suspected to be altered in the studied conditions are
investigated. In the latter one; however, a global metabolite profiling which permits to
guantify a vast number of metabolites under related conditions is achieved. A complete
metabolomics study consists of several steps; such as, metabolite extraction,
guantification of the metabolite and analysis and integration of the data by
bioinformatics tools [235, 236]. There are several analytical techniques used for
metabolome analysis depending of the metabolite of interest and nature of the samples
and among which nuclear magnetic resonance (NMR) spectroscopy, gas or liquid
chromatography coupled to mass spectrometry (GC-MS, LC-MS), direct-infusion mass
spectrometry (DIMS), Fourier transform infrared spectroscopy (FTIR) and capillary
electrophoresis (CE) are widely used ones [230, 237, 238]. Among all, mass spectrometry
and NMR are the most powerful and commonly used techniques and table 2.1 gives an
overview of some commonly employed analytical techniques for metabolomics studies

[238].

Despite the fact that metabolomics has several advantages over genomics,
transcriptomics and proteomics the availability of metabolomics data is still scarce and
limited. There are only few repositories of metabolomics data including Human
Metabolome Database which provides structural information of many metabolites of
human cell [239, 240]. On the other hand, the data provided by metabolomics is a static
metabolic map and in order to complete the metabolic view, determination of the
dynamics of the metabolite pools from the many reactions they take role by using

metabolic pathway based approaches are crucial. To this end, a new omic science,
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fluxomics, has arisen in order to analyze the metabolic flux distributions within the cells

[230, 241, 242]. That is, fluxomics has emerged as a complementary tool to

metabolomics and together, they provide with a better comprehension of the

metabolism and tumor metabolic reprogramming lying behind cancer and tumor

progression.

Analytical
method

Advantages

Disadvantages

Comments

GC-MS

* Sensitive

* Robust

e Large linear range

* Large commercial and
public libraries

e Slow

» Often requires
derivaization

e Many analytes thermally-
unstable or too large for
analysis

* Chemical consideration:
on its own will not generally
lead to metabolite
identification. However,
coupled with MS and NMR is
very powerful for analyte
identification

* Chemical bias: solvent

extraction bias: non-polar vs.

polar analytes. Need for
chemical derivatization

* Speed: very useful for
separation, but typically take
10-30 min

LC-MS

* No derivatization
required (usually)

* Many modes of
separation available

* Large sample capacity

* Slow
* Limited commercial
libraries

¢ Chemical consideration:
on its own will not
generally lead to
metabolite identification.
However, coupled with
MS and NMR is very
powerful for analyte
identification

* Chemical bias: solvent
bias means it is usually
more applicable to polar
compounds

* Speed: very useful for
separation, but typically
take 10-30 min

NMR

» Rapid analysis

* High resolution

» No derivatization method
* Non-destructive

* Low sensitivity

» Convoluted spectra

* More than one peak per
component

» Libraries of limited use due
to complex matrix

« Chemical consideration:
gives detailed strucutural
information, particularly
using 2-D-NMR of isolated
metabolites

* Chemical bias: these
methods have little chemical
bias and can be used directly
on the sample

* Speed: few minutes to
hours. Depends on the
strength of the magnet,
sensitivity can be improved
by magic angle spinning

Table 2.1. Comparison of common analytical tools employed in metabolomics studies

FTIR

* Rapid analysis

* Complete fingerprint of
sample chemical
composition

* No derivatization needed

* Extremely convoluted
spectra

* More than one peak per
component

* Metabolite identification
nearly impossible

* Requires samples drying

+ Chemical consideration:
provide limited structural
information, but useful for
identification of functional
groups

* Chemical bias: these
methods have little chemical
bias and can be used directly
on the sample

* Speed: 10-60 s

Adapted from Frontiers, an Open Access Publisher. Vernocchi, P., et al., Integration of datasets from

different analytical techniques to assess the impact of nutrition on human metabolome. Front Cell Infect
Microbiol, 2012. 2: p. 156. Copyright © 2012
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2.4.2. Fluxomics

Fluxomics is a recent strategy used to estimate the metabolic production and
consumption rates in biological systems. Metabolic fluxes are the final consequences of
the interaction of gene expression, protein concentration, enzyme kinetics and
regulations, and metabolite concentrations. By comparison to other omics analyses, the
analysis of metabolic fluxes is named as “fluxomics” and it integrates in vivo or in vitro
measurement results of metabolic fluxes with mathematical models in order to
determine the absolute flux through the metabolic network of a given biological entity.
It offers a better overview of the metabolic phenotypes than other omics and it can be
quite useful to study the aberrant metabolic adaptations in diseases with robust
metabolic components such as cancer [230]. In fluxomics, experimental measurements
are mainly based on the overall rates of the consumption or production of nutrients
such as glucose, glutamine and lactate which define the exchange reactions whose
metabolic fluxes can easily be measured. Moreover, intracellular metabolic fluxes can be
estimated by using metabolomic data obtained from isotope labeling experiments which
are based on the introduction of isotopic tracers, mostly >C labeled substrates (a non-
radioactive and stable isotope of *2C), at specific locations and tracking them by using
MS or NMR based analytical techniques. These experimental measurements of C-
enrichment of metabolites allow the mathematical tools to fit intracellular fluxes [243].
Identification of the distribution of metabolic fluxes employing *C substrates is called

13C based metabolic flux analysis (*C-MFA) [243].

In fact, tracer based data obtained by culturing the cells with tracer substrates; such as
glucose or glutamine, can provide with a descriptive map of the changes in the
metabolic network. In that way, the altered pathways and the contribution of nutrients
to the production of other metabolites can be monitored [244]. The consumption and
production rates of extracellular metabolites can be estimated by measuring
concentration change of the certain metabolites in the extracellular medium in a certain
time. However, the consumption and production of intracellular metabolites keep a
dynamic balance and the reaction balance can easily be estimated by using tracers like

B3¢ [245, 246]. The data obtained from 13C mediated experiments can be used to
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estimate metabolic fluxes by direct interpretation of the labeling patterns; however, the

data can also serve as substrate for computational model based approaches [247].

In order to derive information about the activity of different metabolic pathways within
a cell, stable isotope containing susbtrates (also called tracers), such as 3¢ has long
been used. *C assisted metabolomics experiments are conducted by incubating the cells
with tracers in a time dependent manner and at the end of the required time; the newly
formed metabolites contain **C atoms coming from the initial substrates. The metabolic
pathway followed by a specific tracer can be tracked as *C atoms are incorporated in
unique numbers and positions in the newly synthesized molecules. That is, the different
mass isotopomers (also called isotopologues) and positional isotopomers derived from
the distribution of *C of a specifically labeled precursor provide information about the
metabolic pathways via which they have been formed [230, 248]. Different mass
isotopomers (isomers with a specific number of *C substitutions) refer to molecules that
vary only in the isotopic composition. For example, 2 or 3 C containing lactate
molecules are lactate mass isotopomers independent of their position. Nevertheless, for
the positional isotopomers (isomers with *C substitutions in a specific carbon position)
the position of the 3C incorporated is also important. Therefore, lactate molecules
containing one B3¢ atom in position 1 and one 3¢ atom in position 2 are lactate position
isotopomers [248]. For a specific metabolite with n carbons, the theoretical number of
possible *C mass isotopomers is n+1 and the number of possible *C positional
isotopomers is 2. To illustrate, three carbon metabolites (n=3); such as lactate or serine,
can potentially give 3+1=4 mass isotopomers (m0, m1, m2 and m3 depending on the *C
number) and 23=8 positional isotopomers (for mO: 12C1—12C2—12C3; for m1: 13C1-12C2-12C3,
12C1—13Cz—12C3, 12C1—12C2—13C3; for m2: 13C1—13C2—12C3, 12C1—13Cz—13C3, 13C1—12C2—13C3; and for
m3: 13C1—13C2—13C3). Of note, tracer based experiments carried out via GC/MS give
information only about mass isotopomers whereas NMR can resolve the positional

isotopomer distributions [249, 250].

The selection of the optimum tracers is a major challenge to determine the quality of
metabolic flux analysis results. Therefore, some algorithms have been developed in
order to select the proper tracer for determining the fluxes of interest [251, 252]. The

selected tracer determines the isotopomers to be formed and the sensitivity of their
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measurements related to flux changes [253]. The selection of the optimum tracer
depends on whether the fluxes to be estimated are an overall picture of the metabolism
of the studied biological system or only certain fluxes of interest are sought. It is
important to note that choosing a proper tracer is more complicated in complex
systems; such as mammalian, especially tumor cell systems, because these cells have
requirements of multiple carbon sources and complex media containing multiple
nutrients (e.g. amino acids, nucleotides, lipids) which can compete with tracers [251-

254].

Most mammalian cells can easily metabolize glucose and glutamine; therefore, these

two are widely used substrates in >C based metabolic flux analyses. Several

C-glucose
and *C-glutamine tracers have been evaluated and the following outputs were noted.
[1,2-*C,)-glucose is one of the most informative and widely used tracers since it
provides with a reliable metabolic assessment of glycolysis, PPP, pyruvate
oxidation/carboxylation and lipogenesis (Figure 2.7). On the other hand, [U-Cs]-
glutamine is the most informative for TCA cycle studies, some amino acids’ metabolism
and also lipogenesis (Figure 2.8) [77, 252, 255-257]. In addition, if the fluxes that are
being studied are very specific, some other glucose tracers such as [3,4,5,6—13C4]—glucose

(for PPP fluxes), [2,3,4,5,6-"*Cs]-glucose (for ox-PPP fluxes) or [3,4-3C,]-glucose (for PC
fluxes) could be used [258].

2.4.2.1. Parallel Labeling Approach in *C Assisted Metabolomics Experiments

13C assisted metabolomics experiments can be divided in two major categories; either
single labeling or parallel labeling. In single labeling experiments, a single experiment
with either a single tracer, such as [1,2—13C2]—glucose, or with the mixture various tracers,
such as [1,2—13C2]-glucose and [U—13C5]—glucose or [1,2—13C2]—glucose and [U—13C5]—
glutamine are employed. For parallel labeling experiments, however, two or more tracer
based experiments are carried out in parallel. That is, each experiment is conducted by
one different tracer. The most common one is using [1,2-*C,]-glucose for one set of

samples and [U-*Cs]-glutamine for the other set.
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Figure 2.7. Bc-assisted metabolomics experiments using [1,2-13Cz]-glucose.

Using [1,2-13C2]-glucose permits tracking of several major metabolic pathways such as glycolysis, PPP, TCA
cycle or lipogenesis. i) The mass isotopomer distribution of lactate (Lac) is used to estimate the relative
contribution of glycolysis and PPP to lactate production. [2,3-2°C,)-Lac (m2 lactate) is produced directly by
glycolysis while [3-2Cy)-Lac (m1 lactate) is produced by a combination of glycolysis and PPP pathways,
where [1-%C,]- ribose-5-phosphate (R5P) is reintroduced into glycolysis through the nonox-PPP to produce
m1 labeled glycolytic intermediates (to keep the figure simple, glycolytic intermediates corresponding to
this process are not indicated in the figure). ii) The mass isotopomer distribution of RNA ribose through
the measurement of the percentage of R5P molecules containing one Bc atom (m1 ribose, [1-13C1]-R5P) or
two °C atoms (m2 ribose, [1,2-13C2]-R5P) is used to estimate the contribution of both ox-PPP and nonox-
PPP to the production of R5P, which is needed for nucleotide synthesis. iii) Analyzing mass isotopomer
distribution of glutamate (Glu) reveal the manner of the entry of pyruvate obtained from labeled glucose
into mitochondria. In fact, the positional isotopomer distribution of glutamate varies depending on the
pathway used to include pyruvate into TCA cycle. If pyruvate enters via PDH, [4,5-2C,]-Glu is formed while
entry via PC leads to [2,3-2C,]-Glu formation. iv) Similarly, if pyruvate entry is via PDH, Ac-CoA vyielded for
lipid synthesis will always include two labeled carbons; however, the Ac-CoA produced via PC will have no
tracer carbon (not shown in the figure). In section 4.17, all these procedures are explained in detail. To
make the image clear, only the main isotopomers are represented. G6P, glucose-6-phosphate; G6PD,
glucose-6-phosphate dehydrogenase; 6PG, 6- phosphogluconate; 6PGD, 6-phosphogluconate
dehydrogenase; Ri5P, ribulose-5-phosphate; X5P, xylulose-5- phosphate; TKT, transketolase; TALDO,
transaldolase; F6P, fructose-6-phosphate; F16BP, fructose-1,6-bisphosphate; G3P, glyceraldehyde-3-
phosphate; Pyr, pyruvate; Cit, citrate; OAA, oxalacetate; aKG, alpha-ketoglutarate.
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Then, the data obtained from parallel experiments can be integrated for MFA by fitting
all the data into a single flux model. Of note, the initial culture for the parallel
experiments must be set together in order to minimize the biological variability. On the
other hand, parallel labeling experiments offer many advantages compared to single
labeling ones. First of all, it reduces the length of the labeling experiments toachieve the
isotopic steady-state as it presents multiple entry points for tracers and it is easier to
observe a global network. Also, it improves the precision of specific fluxes and allows
validation of the biochemical network models by placing more stringent constraints on
the network model assumptions, in turn improving the performances of *C-MFA [259-

262].
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Figure 2.8. 3C-assisted metabolomics experiments using [U-BCs]-qutamine.

Using [U-13C5]-glutamine, TCA cycle can be tracked. The incorporation of glutamine carbons into fatty acids
can also be followed. Oxidative (red molecules) and reductive (green molecules) glutamine metabolisms
are depicted here. Of note, the m3 labeled malate which is produced through reductive glutamine
metabolism can be reintegrated into TCA cycle by producing m3 labeled OAA, citrate, isocitrate and m2
labeled aKG, succinate and fumarate.
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2.4.2.2. Mass Isotopomer Distribution Analysis

As explained at above sections, intracellular fluxes in central carbon metabolism can be
estimated by employing C labeled tracer nutrients as cellular substrates. The
metabolization of these substrates leads to a unique rearrangement pattern of the *C
tracers through the corresponding metabolic pathway and this can give us an idea about
the flux distribution of central carbon metabolism [263, 264]. The mass isotopomer
distribution of newly synthesized **C labeled metabolites together with the extracellular
metabolic flux measurements can help to deduce certain intracellular fluxes and the
ratios between them. This is achieved by using simple analytical formulas based on
previous knowledge of the reactions within the metabolic network. In fact, label
propagation has been used widely to elucidate the reactions related to metabolic
pathways so that the flux distribution of two or more experimental conditions can be
compared and the relevant metabolic pathways can be targeted. This comparative
analysis of tracer based metabolomics data is known as mass isotopomer distribution
analysis (MIDA) and it permits metabolic flux distribution analysis without any
bioinformatics tools [230]. For instance, approximate contribution of the oxidative and
nonoxidative phases of PPP can be determined by analyzing the *3C tracer propagation
from [1,2—13C2]—glucose to ribose (figure 2.7). Metabolization of [1,2—13C2]—glucose—6—
phosphate through the oxidative phase results in the loss of one labeled carbon atom,
that is, m1 ribose ([1-"3Cy]-ribose). Nonetheless, if the ribose is synthesized through non-
oxidative phase of PPP where [1,2-13C2]-glucose-6-phosphate is converted to [1,2-13C2]—
glucose-6-phosphate and ends up in m2 ribose ([1,2-3C,]-ribose) [102, 265]. Similarly,
mass isotopomer distribution analysis together with its extracellular concentration
measurements can be used to estimate the flux of glucose to lactate either via direct
glycolysis or via PPP. Also, the flux of lactate synthesized from other sources can be
deduced. Moreover, the percentage of glucose metabolism that is used for fatty acid
synthesis can also be deduced by checking the even-numbered isotopologues, such as
m2, m4, m6... of the fatty acids. In addition, whether the pyruvate entry into
mitochondria is catalyzed by PC or PDH enzymes can be estimated by analysis of *C
propagation from [1,2-*C,]-glucose to glutamate [255, 266] (for details see section

4.17). Hence, MIDA provides a simple and quick way to obtain some metabolic fluxes
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and the relative use of certain metabolic pathways. Of note, the analytically estimated
flux ratios obtained by MIDA can also be used as inputs to obtain a more complete
metabolic flux analysis using the computational modeling based flux estimation

approaches which are explained in the following section.

2.4.2.3. Computational Modeling Based Flux Estimation

The biological systems are highly complex, so relying only on empirical observations to
predict the behavior of these systems are inadequate and new approaches are clearly
needed [267]. The omics revolution has provided new tools enabling the study of many
biological processes at the same time working with large numbers of molecular
components (genes, transcripts, proteins or metabolites), and allows the emergence of a
new discipline: the Systems Biology. Each of these disciplines (from the study of gene
expression to proteomics and metabolomics) provides an overview of biological
phenomena from their point of view [268]. It is known that the overall metabolome of a
cell dynamic is continuously transformed in the cell. In order to characterize the
metabolic networks and their functional states, it is required to know the quantitative
intracellular metabolic fluxes, which can be quantified by analyzing the incorporation of
introduced labeled substrates in metabolic products using the correct bioinformatic

tools [269].

A powerful tool to analyze the intracellular metabolic fluxes complementary to MIDA is
the software “Isodyn” that allows the simulation of the dynamics of the *3C
redistribution in metabolites from central carbon metabolism pathways of living cells. In
order to make these simulations possible, Isodyn uses a classical kinetic model of
metabolic pathways linked to a module that computes the distribution of C
isotopologues in metabolites [269-271]. Isodyn, on the other hand, can be
supplemented with algorithms to demonstrate the compartmentation of intracellular
metabolic reactions from >C isotopologue data [272]. In one part of this study, the
metabolic flux estimation of breast cancer cells with glutamine deprivation or impaired

mitochondria has been realized using this powerful program.
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3. OBIJECTIVES

Over the last decade, comprehensive understanding of metabolic pathways in cancer
has considerably increased. Despite that continuous research activities in the field of
cancer accomplished quite a lot, there are still much to explore in the metabolic profile
of tumors in order to open new venues in cancer treatment. The main aim of this
dissertation is to explore certain metabolic pathways of cancer cells so as to propose
new targets for cancer treatment. To achieve this main aim, four specific objectives are

to be considered:

1. Investigation of the role of pentose phosphate pathway (PPP) within tumor
metabolism and validation of PPP enzymes as potential therapeutic targets using
breast and colon cancer models.

2. Exploration of glutamine metabolism and unveiling the link between PPP and
glutamine metabolism and how they regulate each other using breast and colon
cancer models.

3. Providing various omics data in order to establish a genome scale metabolic
model of different regulatory levels of breast cancer cells in the frame of a
multinational European project (METAFLUX EC-FP7)

4. Characterization of the metabolic reprogramming and potential metabolic
vulnerabilities in the cells with eitger glutamine deprivation or defective

mitochondria using breast cancer model.
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4. MATERIAL AND METHODS

4.1. Cell Culture

Cancer cell lines; MCF7, HT29 and HCT116 were purchased from ATCC and T47D was a
generous gift from Dr. Timothy Thompson’s laboratory (Molecular Biology Institute of
Barcelona, IBMB, CSIC, Spain). Both cell lines were cultured in MEM without phenol red
(Gibco, Thermo Fisher Scientific Inc., Waltham, MA, USA) containing 10% Fetal Bovine
Serum (Gibco), 10mM d-Glucose (Sigma-Aldrich), 1mM Sodium Pyruvate (Biological
Industries), 2mM Glutamine (Gibco), 0.1% antibiotic (Penicillin 10 Units/ml-Streptomycin
10 Units/ml, Gibco), 0.01 mg/ml Insulin (Sigma), and 1% Non-essential amino acids
(Biological Industries). HT29 cells were cultured in DMEM (Gibco) containing 10% Fetal
Bovine Serum (Gibco), 10mM d-Glucose (Sigma-Aldrich), 2mM Glutamine (Gibco) and
0.1% antibiotic (Penicillin 10 Units/ml-Streptomycin 10 Units/ml, Gibco). HCT116 cell
lines were cultured in the mixture of DMEM (Gibco) and HAM-F12 (Biowest) (1:1 v/v)
containing 10% Fetal Bovine Serum (Gibco), 10mM d-Glucose (Sigma-Aldrich), 2mM
Glutamine (Gibco) and 0.1% antibiotic (Penicillin 10 Units/ml-Streptomycin 10 Units/ml,
Gibco). The cells were maintained at 37 °C with 5% CO2 and saturated humidity. Growth

medium was replaced every 2-3 days.

4.2. siRNA Transfection

For the transfection of MCF7 and T47D, cells were seeded at a density of 1x10° cells per
well in a 6-well plate with antibiotic-free growth medium. After 24 hrs, they were
transfected in triplicates with 50 nM of either siNEG or siRNAs against 6PGD using

Metafectene® Pro (Biontex, Ref: T040-1.0) according to manufacturer’s protocol. The
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medium was replaced after 6 hrs with complete medium containing antibiotic. The
siRNA sequences targeted against 6PGD were purchased from Dharmacon and are listed
as follows: si6PGD, ON-TARGET Plus J-008371-06, GAUCAUCUCUUACGCUCAA (si6PGD-
1); si6PGD, ON-TARGET Plus J-008371-08, GAGCAGGCCACUUCGUGAA (si6PGD-2).
Control siRNA (siNEG) was also purchased from Dharmacon: siNEG ON-TARGET Plus
Non-Targeting siRNA D-001810-03-20 (Sequence not provided by the manufacturer).

For the transfection of HT29 and HCT116 cell lines, cells were seeded at a density of
5x10” cells per well in a 6-well plate with antibiotic-free growth medium. After 24 hrs
they were transfected in triplicates with 50 nM of either siNEG pool or siRNA pool
against G6PD using RNAi/Max (Invitrogen) according to manufacturer’s protocol. The
medium was replaced after 6 hrs with complete medium containing antibiotic as well.
The siRNA pool targeted against G6PD was purchased from Dharmacon and is listed as
follows: siG6PD, ON-TARGETPlus SMARTpool L-008181-02-0010 with the sequences:
ACAGAUACAAGAACGUGAA; CCGUGUACACCAACAUGAU; CAGAUAGGCUGGAACCGCA;
AUUCACGAGUCCUGCAUGA. Control siRNA pool (siNEG) was also purchased from
Dharmacon: siNEG ON-TARGET Plus Non-Targeting siRNA D-001810-10-20 (Sequence

not provided by the manufacturer).

4.3. RNAisolation and gene expression analysis

RNA isolation from the transfected cells in order to check the knockdown efficiency was
carried out from fresh or frozen plates using Trizol reagent (Sigma) according to
manufacturer’s protocol. Briefly, Trizol cell homogenates were mixed with chloroform
and centrifuged so that an aqueous phase and an organic phase were obtained. Cold
isopropanol was added to the aqueous phase in order to precipitate RNA and the
samples were incubated overnight at 4 °C. Then, the samples were centrifuged at 12,000
g for 15 min at 4 °C. RNA was purified by washing several times by 75 % cold ethanol and
finally resuspended in RNAse free water. After that, purified RNA was quantified using a
Nanodrop spectrophotometer (ND 1000 V3.1.0, Thermo Fisher Scientific Inc.).

Conversion of RNA into cDNA (Reverse transcription) was carried out at 37 °C using 1 pg
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of RNA added to mixture containing 5x Buffer (Invitrogen), 0.1 M dithiothreitol (DTT)
(Invitrogen), Random Hexamers (Roche), 40 U/uL RNAase inhibitor (Promega, Fitchburg,
WI, USA), 40 mM dNTPs (Bioline, London, UK), 200 U/pL M-MLV-RT (Invitrogen). Gene
expression analysis was performed by RT-PCR system (Applied Biosystems® 7500 Real
Time PCR) in standard protocol provided by the manufacturer employing Tagman®
(Applied Biosystems) gene specific probes for 6PGD (Hs.464071) or G6PD
(Hs00166169_m1). Reactions were performed in a volume of 20 pulL containing 9 uL of
cDNA mixture and 11 pL of corresponding Tagman in Master Mix (Applied Biosystems).
RT-PCR was programmed with the following parameters: i) initial incubation at 50 °C for
2 minutes, ii) denaturalization at 95 °C for 10 minutes, iii) amplification of 40 cycles
alternating between 95 °C for 15 seconds and 60 °C for one minute. The expression
levels were quantified using AACt method using PPIA (Hs99999904 m1, Applied

Biosystems) as a reference gene.

4.4. Cell proliferation and Viability Assays

Proliferation kinetics and viability of the cells were measured using Flow cytometry
combining direct cell counting and Propidium lodide (Pl) staining. 96 hrs after
transfection (if not mentioned differently), cells were trypsinized and resuspended in
500 pL of a solution containing 450 pylL of complete media, 45 pL of Flow-Count
Fluorospheres (Beckman Coulter, Brea, CA, USA) and 5 pL of Pl from the stock of 1 mg
per mL (Bender Medsystem). The analysis was performed using Beckman Coulter®
Epics® XLTM Flow Cytometer adjusted to 1x10* Fluorospheres cut-off and total cell

number was registered allowing discrimination between dead and alive cells.

Cell viability assay when testing any drug that interact with DNA was conducted
described by Mosmann [273] with slight modifications. An increasing concentration of
the drug of interest was added in sextuplicate in 96-well-flatbottomed microtitre plates
where 7.5x10? cells/well had been seeded 24 hrs before. 72 hrs later, 1 mg/mL 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) in PBS was added at a final

concentration of 0.5 mg/mL and the plate was incubated at 37 °C for one hr. Then, the
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supernatant was aspirated and the formazan product was dissolved in 100 pL of
dimethyl sulfoxide (DMSO). The absorbance was measured on an ELISA plate reader
(Tecan Sunrise MR20-301, TECAN, Salzburg, Austria) at 550 nm. Values were normalized
to the absorbance of the cells cultured in media without any drug but with the

proportional amount of the drug vehicle within the same plate.

4.5. Cell Cycle distribution analysis.

For cell cycle analysis, 96 hrs after transfection or inhibition (if not mentioned
differently), cells were harvested by trypsinization and resuspended in 0.2 mL 1X TBS
buffer and fixed. Then the samples were stained with 200 ul of Vindelov-PI solution
containing 10X TBS, RNase (from stock of 10 mg/mL), PI (from stock of 1 mg/mL) and
Igepal CA-630 (Sigma) and incubated at room temperature for 30 mins in the dark.
Fluorescence-activated cell sorter (FACS) analysis was performed at 488 nm employing
Beckman Coulter® Epics® XLTM Flow Cytometer(Coulter Corporation, Hialeah, FL, USA)
with a cutoff at 1x10* cells. Cell cycle distribution analysis was done using FlowJo®
software, through which the percentage of cells in G1, S and G2 phases was obtained. All

experiments were performed three times with three replicates per experiment.

4.6. Apoptosis measurement.

The apoptosis measurement was conducted as previously described [274]. In short, 96
hrs after transfection or inhibition (if not mentioned differently), the cells were washed
twice with PBS and trypsinized. The cells were then collected and incubated in 195 pL of
1X binding buffer (10mM Hepes/NaOH, pH 7.4, 140 mM NacCl, 2.5 mM CaCl2) and 3 pL of
Annexin V coupled with fluorescein isothiocyanate (FITC) (Benders System, MedSystem,
Viena, Austria) for 30 mins in dark, which is recommended at Annexin V-FITC kit’s
instructions. 10 pL of 20 pg/mL Propidium lodide was added to the samples before
analysis and the percentage of apoptotic cells was measured using Beckman Coulter®

Epics® XLTM flow cytometer with a cut-off range of 1x10” cells. Data analysis was carried
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using FlowJo® Software. Experiments were performed in triplicate and repeated three

independent times.

4.7. Enzyme Activity Assays

Fresh cell culture plates were rinsed with PBS and lysed with lysis buffer (20 mM Tris-
HCl, pH 7.5, 1 mM dithiothreitol, 1 mM EDTA, 0.02% (v/v) Triton X-100, 0.02%
(v/v)sodium deoxycholate) supplemented with protease and phosphatase inhibitor
cocktails (Sigma and Thermo Scientific, respectively) for 30 mins at 4 °C. The cells were
scrapped and collected in eppendorf tubes and the cell lysate was disrupted by
sonication using titanium probe (Vibracell, Sonics & Materials Inc., Tune 50, Output 20, 3
cycles of 5 seconds each). Then, the tubes were centrifuged at 12000 g at 4 °C for 20
mins. The supernatant was separated and immediately used for the determination of
specific enzyme activities using COBAS Mira Plus chemistry analyzer (ABX Diagnostics).
All enzymatic activities were determined by monitoring NAD(P)H increment or
decrement at 340 nm wavelength. The enzyme activity for each sample was then
normalized to the total protein content of the samples quantified by BCA Assay at 550

nm (Pierce, Thermo Scientific)

4.7.1. 6-Phosphogluconate  Dehydrogenase (6PGD), Glucose-6-Phosphate
Dehydrogenase (G6PD) Malic Enzyme (ME) and Isocitrate Dehydrogenase
(IDH)

6PGD, G6PD, ME and IDH specific activities were measured by adding samples to a
cuvette containing 0.5 mM NADP+ in 50 mM Tris-HCI (containing 0.2 mM MgCl, for ME
and IDH activities, pH 7.6) at 37 °C. Reaction was initiated by the addition of 6-
phosphogluconate (6PG), glucose-6-phosphate (G6P), malate or isocitrate, respectively,

up to a final concentration of 2 mM.
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4.7.2. Lactate dehydrogenase

LDH specific activity was measured by adding samples to a cuvette containing 0.2 mM
NADH in 100 mM KH,PO4/K;HPO,4, pH 7.4, at 37 °C. Reaction was initiated by the

addition of 10 mM pyruvate up to a final concentration of 0.2 mM.

4.8. Mammosphere formation assay (3D cell culture)

The capability of breast cancer cell lines to grow as single cell colonies in low-attachment
conditions was analyzed by mammosphere formation assay. siRNA transfection was
performed as mentioned at section 4.2 and the transfected cells were trypsinized 24 hrs
after transfection. The cells were reseeded at a density of 7500 cells/well into 24-well
Ultra low attachment plates (Corning Costar, NY, USA) along with 1.5 mL of complete
media supplemented with 20 ng/mL EGF, 20 ng/mL bFGF, 10 pg/mL heparin, B27 (1:50)
and 0.5 pg/mL hydrocortisone. The cells were allowed to grow undisturbed for 10 days
and then checked under microscope for the mammosphere formation. The
guantification of mammosphere formation capability was done using MTT assay [273] by
addition of MTT reagent (5 mg/mL) to a final concentration of 0.5 mg/mL into each well
followed by incubation at 37 °C for 2 hrs. The plates were then scanned using HP Scanlet
G-4010 scanner at a pixel density of 2400 ppp and analyzed using Imagel® Software
(public domain National Institutes of Health, USA, http://rsbweb.nih.gov/ij/).
Quantification of the mammosphere formation capability was done by calculating the

total area occupied by mammospheres with a size greater than 0.000785 cm?.

4.9. Total Protein Extraction from Cell Culture

The cells were seeded and treated according to the experiment carried out. At the end
of the treatment the plates were used either freshly or frozen in liquid nitrogen for later
use. In both cases, cells were washed twice with ice-cold PBS and incubated for 30 mins

on ice with RIPA buffer containing 50 mM Tris (pH 8.0), 150 mM sodium chloride, 1 %
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Triton X-100, 0.5 % sodium deoxycholate, 0.1 % sodium dodecyl sulphate (SDS), 1 %
protease inhibitor cocktail (Thermo Fisher Scientific Inc.) and 1 % phosphatase inhibitor
cocktail (Thermo Fisher Scientific Inc.). Cells were scraped, sonicated and centrifuged at
15,000 g for 20 minutes at 4 °C. Supernatants were recovered and the protein content

was quantified by the BCA kit (Pierce Biotechnology).

4.10. Western Blot

Cell extracts were obtained from either fresh plates or frozen plates using the protocol
mentioned at the above section. Western blot analysis was carried out size-separating
an equal amount of protein by electrophoresis on SDS polyacrylamide gels, and then the
proteins were electroblotted onto polyvinylidene fluoride transfer membranes (PVDF)
(Bio-Rad Laboratories, Hercules, CA, USA). The membranes were blocked with 5 % of
non-fat dry milk in PBS with 0.1% Tween, and then incubated with specific primary
antibodies overnight at 4 °C. Next, membranes were treated with the appropriate
secondary antibody for 1 hr at room temperature. All blots were visualized on Fujifilm X-
ray (VWR International, Radnor, PA, USA) with chemiluminescence detection using
Immobilon ECL Western Blotting Detection Kit Reagent (EMD Millipore, Billerica, MA,
USA). The antibodies used were p53 polyclonal (Merck, Millipore), GGPD (Abcam) and B-
actin (MP Biomedicals). Also, anti-mouse (Dako), Anti-rabbit (Amersham Biosciences)

and anti-goat (Santa Cruz Biotechnology) secondary antibodies were used.

4.11. ROS level Measurement

Fresh cells with around 70 % of confluence were washed once with warm PBS and
incubated with 5 uM 2’-7’-dichlorodihydrofluorescein diacetate (H,DCFA) (Sigma) in PBS
supplemented with glucose and glutamine for 30 mins at 37 °C. Afterwards, PBS was
replaced with complete growth medium and cells were incubated for another 30 mins at
37 °Cand 5 % CO,. Next, cells were trypsinized and resuspended thoroughly in a solution

containing 50 uM H,DCFA and 20 ug/mL propidium iodide. Internalized probes reacted
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with ROS and emitted fluorescence when excited at 492 nm. Emitted fluorescence was
recorded employing Epics XL flow cytometer (Coulter Corporation, Hialeah, FL, USA) at
520 nm. For ROS analysis, data of DCF fluorescence intensity from 1X10* Pl-negative
cells were considered and analyzed using Multicycle program (Phoenix Flow Systems,

San Diego, CA, USA).

4.12. Biochemical Assays

In order to measure the concentration of each metabolite, media samples were
collected at the beginning and at the end of the experiments, and frozen until being
analyzed. Glucose, lactate, glutamine and glutamate concentrations were determined
by using spectrophotometer (COBAS Mira Plus, Horiba ABX) from frozen cell culture
medium as previously described [275-277]. Extracellular glucose concentration for each
time point was measured by calculating the NAD(P)H concentration decrease after the
conversion of total glucose by hexokinase and conversion of resulting glucose-6-
phosphate into D-gluconate-6-phosphate by G6PDH using coupled enzymatic reactions
(ABX Pentra Glucose HK CP, HORIBA ABX, Montpellier, France). Lactate concentration
was determined by lactate dehydrogenase (LDH) reaction which was carried out at 37 °C
by adding media to a cuvette containing 1.55 mg/mL NAD+ and 87.7 U/mL LDH in 0.2 M
hydrazine 12 mM EDTA buffer (pH 9). Measuring the change in NADH concentration
helps to estimate the concentration of extracellular lactate in medium. Similarly, the
glutamate concentration was analyzed by measuring the change in NADH concentration
which is produced by glutamate dehydrogenase (GDH) reaction converting glutamate to
a-ketoglutarate in the presence of ADP. This reaction was also carried out at 37 °C and
took place by adding media samples to 2.41 mM ADP (Sigma), 3.9 mM NAD" (Sigma) and
39 U/mL of GDH (Roche) in 0.5 M glycine/0.5 M hydrazine buffer (pH 9). To measure
glutamine concentration, glutamine was first converted to glutamate by glutaminase
(GLS) reaction and then glutamate concentration was quantified as described above. GLS
reaction was performed by agitating the media samples with 125 mU/mL GLS in 125 mM
acetate buffer (pH 5) for 30 mins at 37 °C. All the absorbances were measured at 340

nm. Metabolite consumption/production rates in the cells were analyzed by measuring
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the decrease or increase in concentration of the extracellular concentration in the media
at the time of interest, compared to the initial concentration of the metabolite, with
respect to the total cell number at each time point. The results are expressed in umoles

of metabolite consumed or produced per hour and per million cells.

Essential and non-essential amino acids (alanine, aspartate, asparagine, proline, glycine,
serine, arginine, cysteine, threonine, isoleucine, leucine, lysine, methionine, valine,
tryptophan, histidine, phenylalanine, tyrosine, glutamate and glutamine) concentrations
in cell media were measured by ion-exchange chromatography with a Biochrom 30
amino acid analyser (Pharmacia Biochrom Ltd, Cambridge, UK). 70 pL of 150 uM
norleucine were added to 500 pL of medium as an internal standard. Later, the samples
were dried by SpeedVac (Thermo Fisher Scientific Inc.), resuspended in 500 pL of lithium
citrate buffer (pH 2.2) and filtrated with 0.22 um filter. 30 uL of each sample was
injected into the Biochrom 30 lithium system according to the manufacturer’s protocol.
As mobile phase, a set of lithium citrate buffers were used for separation during 115
mins and post column derivatisation realized with ninhydrin allowed amino acid
detection at 570 nm and 440 nm. Amino acids were identified by the retention time of
the peak on the chart and were quantified using the area under the peak of
corresponding amino acid. Amino acid consumption/production rates in the cells were
analyzed by measuring the decrease or increase in concentration of the extracellular
concentration in the media at the time of interest, compared to the initial concentration
of the metabolite, with respect to the total cell number at each time point. The results
are expressed in nanomols of metabolite consumed or produced per hour and per

million cells.

4.13. Transcriptomic analysis

Frozen plates with cells were used to isolate total RNA by Trizol reagent (Sigma) and the
RNeasy Mini Kit (Qiagen, Hilden, Germany) as recommended by the manufacturer. Lab-
on-a-chip technology on the BioAnalyzer 2100 (Agilent, Palo Alto, CA, USA) was used to

test the integrity of isolated RNA. RNA was used to produce biotinylated cRNA that was
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hybridised to Affymetrix GeneChipR human genome U133 Plus 2.0 arrays (Affymetrix
Inc., Santa Clara, CA, USA) following the manufacturer’s instructions. This array chip
contains over 55,000 probe sets representing over 47,000 transcripts derived from
approximately 39,500 human genes. Comparative transcriptomic analyses between
control cells, oligomycin treated and glutamine deprived cells were performed on
independent triplicate samples and raw data were exported to multiple .CEL files. Those
files were uploaded to the R-Project Bioconductor statistical tools package and
standardized using the Robust Multi-array Average (RMA) method [278]. In that way,
the background was corrected, normalization to remove systematic errors and biases
was managed and combination of multiple probe intensities from a probe set was
summarized. Then, simpleaffy package [279] was used to compute the RMA expression
values (signal intensities (SI) on the base 2 logarithm scale (log2Sl) representing gene
expression levels) and the differential gene expression was assessed using the limma
package [280] from Bioconductor. Multiple testing adjustment of p-value was performed
[281]. A fold change (FC) value is provided based on this normalization criterion. Fold
changes quantification of differential expression for a probe set were defined as the
ratio of normalized intensity values in oligomycin treated cells or glutamine deprived
cells relative to normalized intensity values in control cells. The following formula was
used to calculate the FC: 27(mean (experimental condition replicates in
log2Sl))/(2*mean (Control replicates in log2Sl) if the expression was upregulated; -
1x27(mean (Control replicates in log2Sl))/(2*mean (experimental condition replicates in

log2Sl) if the expression was downregulated.

4.14. 3C Mediated Metabolomics

For the experimental part, 1x10° MCF7 cells were seeded in each p100 plate using
comlete MEM as explained in section 4.1. 48 hrs later, the medium was changed with an
adaptation medium, DMEM without phenol red (Gibco) containing 10 % Dialyzed Fetal
Bovine Serum (Sigma) and other supplements mentioned at section 4.1. After 24 hrs of
incubation with adaptation medium, the plates were introduced the same medium

containing [1,2-*C,]-glucose (Sigma) or [U-*Cs]-glutamine (Sigma) together with either
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oligomycin (1 uM) or deprivation of glutamine. Oligomycin is dissolved in pure ethanol
so the other conditions were introduced the same concentration of ethanol as vehicle.
The cells were counted at 0, 8 and 24 hrs after tracer introduction. The plates or cell
pellet and media were immediately frozen to use in later analysis. Glucose, lactate,
glutamine and glutamate concentrations were measured as mentioned at section 4.12
from culture media. Also, mass isotopomer distribution of glucose, lactate and
glutamate were determined by using culture media. The pellets were used for analysis
of ribose and fatty acids’ mass isotopomer distribution. Cultured plates were used to

determine the mass isotopomer distribution of TCA cycle elements.

Mass isotopomer distribution analyses of all intracellular and extracellular metabolites
were done by gas chromatograph coupled to mass spectrometry (GC-MS). All GC-MS
analysis was carried out using an Agilent 7890A GC equipped with HP5 capillary column
connected to an Agilent 5975C MS. Only GC-MS analysis of fatty acids was carried out
using a GCMS-QP 2012 Shimadzu coupled with bpx70 (SGE) column. For all
measurements, 1 pL of sample was injected at 250 °C, helium being the carrier gas, at a
flow rate of 1 mL per minute. Each metabolite or metabolite set has different isolation,

derivatization and detection procedures as explained below.

4.14.1. Glucose

Glucose was isolated by using a tandem set of Dowex-1X8 / Dowex 50WX8 ion-exchange
columns from frozen cell culture media and eluted with water. Then, water was
completely evaporated to dryness under continuous airflow and isolated glucose was
derivatized by adding 2 % (v/v) hydroxylamine hydrochloride in pyridine and incubating
at 100 °C for 30 mins. After that, acetic anhydrade was added and 1 hr of incubation was
carried out at the same conditions. The excess solvents were evaporated under
continuous N, flow and derivatized glucose was dissolved in ethyl acetate to analyze
with GC-MS under chemical ionization mode [266]. Sample injection was performed at
250 °C. Oven temperature was kept at 230 °C until 2 mins after injection and then

increased to 260 °C at a rate of 10 °C per min. The detector was run at SIM mode and ion
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abundance of C1 to C6 in the range of 327-336 m/z was recorded. The retention time at

which the peak was observed was 3.8 mins.

4.14.2. Lactate

Lactate was isolated by first acidification of the sample media by addition of HCl and
straight after, ethyl acetate was added to extract lactate. The solvent part was
completely evaporated under continous N, and dried lactate was incubated at 75 °C for
one hour after adding dimethoxypropane and methanic chloride. Later, n-propilamine
was added to the reaction mixture and the samples were incubated at 100 °C for one
hour. The samples were evaporated completely to dryness under continuous N, flow
and the precipitates were dissolved in dichloromethane and heptafluorobutyric
anhydrade. After 10 mins of incubation at room temperature, samples were evaporated
completely to dryness under continuous N, flow and resuspended in dichloromethane to
analyze by using GC-MS [266]. The analysis was performed under chemical ionization
mode. Sample injection was performed at 200 °C. Oven temperature was kept at 100 °C
until 3 minutes after injection and then increased to 160 °C at a rate of 20 °C per min.
The detector was run at SIM mode and ion abundance of C1 to C3 in the range of 327-
332 m/z was recorded. The retention time at which the peak was observed was 5.4

mins.

4.14.3. Glutamate

Glutamate was isolated by using Dowex 50WX8 (H+) columns from cell culture media
and eluted from the column with 2N NH;OH. Then, the solution was completely
evaporated to dryness under continuous airflow. In order to separate the glutamate
from glutamine, the amino acid mixture was passed through a Dowex-1X8 (C,H305)
column, where the glutamine was washed with water and glutamate was collected with
0.5N acetic acid. The acid fraction which contains glutamate was evaporated to dryness

under the airflow and the dried glutamate was dissolved in butanolic-HCI and kept at
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100 °C for one hour. Then, the mixture was evaporated under continuous N, flow to
dryness and the precipitate was first dissolved in methylene chloride and then
trifluoroacetic anhydride was added. After that, the samples were evaporated under
continuous N, flow and derivatized glutamate was dissolved in methylene chloride to be
analyzed with GC-MS under electron impact mode. Sample injection was performed at
250 °C. Oven temperature was kept at 215 °C until 2 mins after injection and then
increased first to 225 °C at a rate of 9 °C per min and then to 233 °C at a rate of 3 °C per
min. The detector was run at SIM mode and ion abundance of two different glutamate
fragments; C2 to C4 in the range of 151-157 m/z and C2 to C5 in the range of 197-203

m/z, was recorded. The retention time at which the peak was observed was 3.9 minutes.

4.14.4. Alanine, Glycine, Aspartate/Aspargine, Glutamate/Glutamine, Serine,

Proline, Methionine

Amino acids were isolated by using Dowex 50WX8 (H+) columns from cell culture media
and eluted from the column with 2N NH4OH. Following, the solution was completely
evaporated to dryness under continuous airflow. The samples were dissolved in
butanolic-HCI and kept at 100 °C for one hour. Then, the mixture was evaporated under
continuous N, flow to dryness and the precipitate was first dissolved in dichloromethane
and then trifluoroacetic anhydride was added. After that, the samples were evaporated
under continuous N, flow and derivatized amino acids were dissolved in
dichloromethane to be analyzed with GC-MS under chemical ionisation mode. Sample
injection was performed at 250 °C. Oven temperature was kept at 110 °C until one
minute after injection and then increased first to 125 °C at a rate of 10 °C per min, then
to 153 °C at a rate of 5 °C per min, next to 216 °C at a rate of 50 °C per min (held at 216
°C for 1 min) and finally to 250 °C at a rate of 50 °C per min. The detector was run at SIM

mode and ion abundance of various amino acids (listed below) was measured.
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Metabolite RT (min) m/zrange
Alanine 5.3 241-246
Aspartate/Aspargine 11.5 341-348
Glutamate/Glutamine 12.8 383-390
Glycine 5.7 227-231
Methionine 10.8 329-336
Proline 9.6 295-302

Serine 6.6 353-358

4.14.5. Ribose

The ribose from RNA was isolated from frozen cell pellets using the aqueous phase after
addition of Trizol® (Invitrogen) as described in the section 4.3. Purified RNA was
dissolved in 2N HCI for hydrolization and incubated at 100 °C for 2 hrs. The solvent was
evaporated to complete dryness under continuous airflow and the precipitate was
derivatized in the same way as glucose (Section 4.14.1) and analyzed with GC-MS under
chemical ionization mode [282]. Sample injection was performed at 250 °C. Oven
temperature was kept at 150 °C until 1 minute after injection and then increased first to
275 °C at a rate of 15 °C per min and then to 300 °C at a rate of 40 °C per min. The
detector was run at SIM mode and ion abundance of C1 to C5 in the range of 256-261

m/z was recorded. The retention time at which the peak was observed was 5.3 minutes.

4.14.6. Palmitate and Stereate

The inter- and lower phases of the trizol extract whose protocol was described at section
4.3 was used to isolate fatty acids from the pellets that were used to extract ribose.
Those phases were added 100 % EtOH and 30 % KOH and were incubated overnight at
100 °C. Free fatty acids were isolated with petroleum ether and the samples were
evaporated completely under continuous N, flow. To derivatize, 0.5 N methanolic-HCI
was added to samples and incubated at 70 °C for one hour [283]. Then, the samples
were analyzed with GC-MS under chemical ionization mode. Sample injection was

performed at 250 °C. Oven temperature was kept at 120 °C until one minute after
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injection and then increased to 220 °C at a rate of 5 °C per min. The detector was run at
SIM mode and ion abundance of palmitate (C16) within the range of 269-279 m/z and
stearate (C18) within the range of 297-307 were recorded. The retention times at which

the peaks were observed were 9.2 and 11.9 minutes respectively.

4.14.7. TCA Cycle Intermediates

The liquid nitrogen frozen cultured plates were used to isolate TCA cycle intermediates
by scrapping on ice after addition of 100 % MeOH:H20 (1:1) mixture. Next, the cell
extracts were sonicated using a titanium probe (VibraCell, Sonics & Materials Inc., Tune:
50, Output: 30) and agitated at 4 °C for 30 mins. Later, the samples were centrifuged
and the upper aqueous phase was separated and evaporated to complete dryness under
continuous airflow at RT. For derivatization, 2 % (v/v) methoxyamine in pyridine was
added to samples and the samples were incubated at 37 °C for 90 mins. After that, the
samples were incubated at 55 °C for one hour after N-methyl-N-(tert-
butyldimethylsilyl)trifluoroacetamide (MBTSTFA) + 1% tert-butyldimetheylchlorosilane
(TBDMCS) addition and analyzed with GC-MS under electron impact mode. Sample
injection was performed at 270 °C. Oven temperature was kept at 100 °C until 3 mins
after injection and then increased first to 165 °C at a rate of 10 °C per min, then to 225
°C at a rate of 2.5 °C per min, later, to 265 °C at a rate of 25 °C per min and finally to 300
°C at a rate of 7.5 °C per min. The detector was run at SIM mode and ion abundance of

different TCA cycle intermediates (listed below) was measured.

Metabolite Empirical Formula RT (min) m/zrange

Pyruvate C6H1203NSi 8.2 173-177
Citrate C20H3906Si3 37.6 458-466
o-ketoglutarate ~ C14H2805NSi2 24.6 345-352
Fumarate C12H23045Si2 18.2 286-292
Malate C18H3905Si3 27.6 418-424
Aspartate C18H4004NSi3 28.9 417-423
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4.15. GC-MS Data Reduction

Spectral data derived from mass spectrometry represents simply the distribution of the
ions of a compound or its fragments with varying molecular weights. The value from
each observed m/z value is the sum of the experimental isotope incorporation, the
presence of isotopes in heteroatoms, the presence of *C in the background, and when
corresponds, the '°C isotope impurity in the *C labeled precursors (i.e. glucose and
glutamine). Moreover, the reagents used for derivatizing may also contain isotopes
contributing to the mass isotopomer distribution of the derivitized compound such as
silicon. In order to determine the amount of isotope incorporation and its distribution in
the compound of interest, it is important to do a correction by subtracting these
impurities. This correction is managed by using in-house developed software which uses
regression analysis [284]. The algorithm used corrects all the previously mentioned
contributions over the observed spectral intensities of each ion cluster, providing us
with the distribution of mass isotopomers in the metabolite of the study owing to the
incorporation of *3C atoms from the tracer precursor. Results of the mass isotopomers in
any of the ion clusters were reported as fractional enrichments of molecule
isotopomers, which are defined as the fraction of molecules having a certain number of
isotope substitutions. They are designated as m0, m1, m2 etc. where the number shows
the labeled carbon (**C) number in the corrected molecule as explained above. The sum

of all mass isotopomers of the ion clusters is equal to 1 or 100 %.

4.16. Data Analysis and modeling by using Isodyn

Our in-house developed software, Isodyn, was used to simulate the transfer of the
tracers from [1,2—13C2]-glucose or [U-13C5]-glutamine medium into intracellular
metabolites. Isodyn is a program written in C++ and designed to analyze the data from
stable isotopic tracers [269-272, 285]. This is a program that automatically constructs
and solves a large system of ordinary differential equations which describe the evolution
of isotopomer concentrations of metabolites produced in glycolysis, TCA cycle and PPP.

All the reactions of non-oxidative branch of PPP catalyzed by transketolases or
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transaldolases are counted, considering pentose-5-phosphates as a single pool. Similarly,
the reactions of oxidative branch of PPP are assumed as one reaction converting G6P to
pentose-phosphates. Initially, all the metabolites except for introduced labeled
substrates with known isotopomer composition in the medium are considered to be
non-labeled and initial total concentrations of intracellular metabolites are calculated as
a function of model parameters assuming a steady state at the initial moment. There is a
function designed specifically for each type of reaction (i.e. carboxylation,
decarboxylation) and these functions simulate transformation of carbon skeleton
(specific transition of labeled carbon) and consumption and production rates of each
isotopomer in the considered system. These transformations redistribute >C isotopes in
all metabolites, so that, individual rates which determine the values of the derivatives
for the isotopomers are calculated for each isotopomer. To solve this system, a method
of numerical integration is chosen arbitrarily (Runge-Kutta, BDF, Dassl). Isodyn simulates
a real-time course of label propagation starting from the initial values of experimental
conditions of incubation. As it compares the experimental and computed data for

corresponding time points, reaching an isotopic steady state is not necessary.

4.17. Mass isotopomer distribution analysis (MIDA)

Mass isotopomer distribution analysis (MIDA) allows us to estimate the contribution of
specific metabolic pathways to the synthesis of certain metabolites based on the mass
isotopomer results. Contribution of specific metabolic pathways to the synthesis of a
certain compound can be estimated using some ratios and calculations with mass
isotopomer results (m0, m1, m2, etc.). Some of these calculations are explained along
with the results part yet some are detailed here owing to the numerous equations that

must be taken into account.
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4.17.1. Calculation of pathway specific production of lactate

The amount of lactate produced from glucose via glycolysis, PPP or other pathways can
be calculated by combining lactate concentrations and the mass isotopomer distribution
of lactate in cell culture media, using [1,2-°C,]-glucose as a tracer. Calculating pathway
specific lactate, it is assumed that MCF7 cells only produce (do not consume) lactate
under the experimental conditions conducted (with glucose and/or glutamine
availability). Therefore, any lactate present in the medium in the beginning of the
experiment contributes to only mO lactate as no 3C labeled lactate is present in the
medium. In our case, there was no lactate in the initial medium and dialyzed FBS also
does not include any lactate, so mO lactate pool is also completely produced by any of
the lactate producing pathways. Therefore, the absolute mass isotopomer distribution
of accumulated lactate in mM at the end of the incubation ([Lactota(mO,m1,m2,m3)]i¢
(mM)) was obtained from the product of the produced lactate concentration ([Lac]i=

(mM), and its mass isotopomer distribution (Lactota(m0,m1,m2,m3)-¢ (%)) (Equation i).
[Lacrota(mO,m1,m2,m3)]:s (mM) = [Lac]s-f (MM) x LaCrota(m0,m1,m2,m3).-s (%) (i)

Under normal circumstances, in order to obtain the produced lactate in mM which does
not contain tracer ([Lacpoa(mO)] (mM), the initial lactate concentration ([Lac]i-o) is to be
subtracted from the concentration of total lactate mO [Lactota(mMO)]i=¢ (MM) (Equation ii).
However, as our initial medium does not contain any lactate, this substraction will not

change the result of the equation ii.
[Lacproa(mO)] (mM) = [Lacrotai(mO)]e=f (MM) - [Lac]s=; (mM) (ii)

Next, relative mass isotopomer distribution of produced lactate
(Lacprod(mO,m1,m2,m3)s (%)) was recalculated by dividing the absolute mass
isotopomer distribution of produced lactate ([Lacproq(mMmO,m1,m2,m3) i+ (mM)) by total
produced lactate ([Lacpoq]l (MM)) (Equation iii), which in turn was obtained by
subtracting initial lactate concentration ([Laclis (mM)) from final lactate concentration
([Lac]i=t (mM)) (Equation iv). It is worth noting down these equations but in our case,

having no initial lactate will eliminate the need of the first four steps of the calculations.
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Laceroa(m0,m1,m2,m3).—¢ (%) = [LacCproa(mO,m1,m2,m3) Jy-s (mM) / [Lacproa] (MM) (iii)
[Lacproa] (MM) = [Lac]s-s (mM) - [Lac]:-; (mM) (iv)

The percentage of lactate coming from glucose through direct glycolysis (glycolytic tax,
GT) was derived from the recalculated mass isotopomer distribution of produced lactate

(Equation v).
GT = Lactprod(M2)i=r (%) x 2 / Gle(m2),=; (%) (v)

Here, Glc(m2); (%) is the percentage of [1,2-3C,]-glucose in culture medium at the
beginning of the experiment. Then, maximum feasible amount of lactate coming from
glycolysis ([Lacprogalycd] (MM)) was obtained from the product of glycolytic tax and

produced lactate ([Lacprog] (mMM)) (Equation vi).
[LaCProdGlyc] (mM) = GT x [Lacprod] (MM) (vi)

The Pentose Cycle (PC) parameter is defined as the relative amount of glucose
metabolised through glycolysis related to the glucose metabolised through PPP [283]. To
estimate the amount of lactate from glucose coming through PPP, PC parameter using

values of mass isotopomer distribution of total lactate was calculated first (Equation vii).

PC= (LacTotal(ml)t=f/ LaCTotal(mz)t=f)/(3 + LacTotal(ml)t=f/ LaCTotal(mz)t=f) (V”)

Then, lactate from glucose coming through PPP ([Lacprodppp] (MM)) was obtained from
the product of PC and the maximum feasible amount of lactate coming from glycolysis

([LaCProdGlyc] (mM)) (Equation V“')
[Lacprodprr] (MM) = PC x [Lacprodalyc](mMM) (viii)

Finally, to calculate the amount of lactate produced from other sources than glucose
([Lacprodos] (MM)), the maximum lactate produced from glycolysis ([Lacprogciyc] (MM)) and
lactate coming from glucose through PPP ([Lacprogrrr] (MM)) were subtracted from

produced lactate ([Lacprog] (MM)) (Equation ix).

[Lacerodos] (MM) = [LaCproa] (MM) - [LaCprodalyc] (MM) - [LaCprogpee (MM) (ix)
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4.17.2. Calculation of glucose contribution to Mitochondria (via PC or PDH)

Glucose can enter to TCA cycle in two ways; either via pyruvate dehaydrogenase (PDH)
which converts pyruvate to acetyl-CoA, or via pyruvate carboxylase (PC) which
transforms pyruvate to oxaloacetate by addition of one carbon. With PDH, acetyl-CoA is
combined with oxaloacetate via citrate synthase (CS) to produce citrate and citrate will
be oxidized to a-ketoglutarate which is in equilibrium with glutamate. When a molecule
of [1,2—13C2]—glucose enters to TCA cycle with PDH, [1,2-13C2]-acetyI—CoA will be obtained
and this molecule will end up in glutamate as [4,5 —13C2]-glutamate. However, when PC
mediates pyruvate entrance to TCA cycle, oxaloacetate derived from a molecule of [1,2-
B3¢,]-glucose will yield [2,3 -*C,]-glutamate (figure 4.1). Therefore, the pathway used to
make glucose enter to TCA cycle can be estimated by analyzing the mass isotopomer
distribution of glutamate molecule fragments C2-C4 and C2-C5 as described in the below

table.

Then, the relative contribution of both PDH and PC pathways (%) to glucose entrance

into TCA cycle was calculated as previously reported [286] (Equation x and xi).

% PDH = (Glucz.calm2)- Glucy.cs(m2)) / Gluca-cs(m2) (x)
% PC = Glucs-ca(m2) / Glucz.csim2) (xi)

C2-C5 Fragment C2-C4 Fragment

— i 8 ! [4,5-13C,]- glutamate u u
C2-C5 Fragment C2-C4 Fragment

Glucose Pyruvate ‘[ }
[2,3-13C,)-glutamate ! !

C2-C5
C2-C4

C2-C5
C2-C4

Figure 4.1: Glucose contribution to mitochondria either by PDH or PC
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4.17.3. Calculation of glucose and glutamine contribution to fatty acid synthesis

In order to calculate the relative contribution of glucose or glutamine to fatty acid
synthesis, first, the fraction of *C-Ac-CoA (which is denoted as g) in total Ac-CoA pool of
the cells cultured with either [1,2-°C,]-glucose or [U-"*Cs]-glutamine was calculated
[287, 288]. Determination of *C-Ac-CoA fraction of fatty acids was done as follows

(Equation xii):
Fa(m4)wy/ Fa(m2)e¢ = (n-1)/2%(p/q) (xii)

In this equation, n stands for the number of acetyl units in the fatty acid chain which is
being analysed (n=8 for palmitate and n=9 for stearate). g is the labeled fraction and p is

un labeled fraction, where p+g=1.

To estimate the contribution of glucose or glutamate to synthesis of fatty acids, the
theoretical fraction of *C-Ac-CoA of cells cultured with labeled inputs should first be
calculated. For [1,2—13C2]—glucose input, it is the percentage of [1,2-13C2]—glucose at the

beginning of the tracer based metabolomics experiment (Equation xiii).
Theoretical Fraction of >C-Ac-CoA = Glc(m2) (%) (xiii)

For glutamine, it is more complicated to calculate the theoretical fraction of **C-Ac-CoA.
As demonstrated at figure 4.2, Ac-CoA can be produced from glutamine in two ways;
either via oxidative glutamine metabolism (OGM) where m0 Ac-CoA is produced, or via
reductive glutamine metabolism (RGM) where m2 Ac-CoAis produced. Theoretically,
also malate dehdyrogenase (MDH) and malic enzyme (ME) can produce m2 Ac-CoA,
nevertheless, in our experiments the glutamine incorporation to pyruvate was less than
0.1 %, which can be ignored. Figure 4.2 also shows that OGM produces m4 citrate while
RGM produces m5 citrate. Hence, the following equation is used to calculate the

theoretical fraction of **C-Ac-CoA from glutamine (Equation xiv):

Theoretical Fraction of C-Ac-CoA = RGM/(RGM+OGM) = Cit(m5).-¢/(Cit(m5),f
+Cit(m4):) (xiv)
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Now that the theoretical fractions are calculated, the rate of glucose or glutamine

contribution to fatty acid synthesis was calculates as shown in equation xv.

% of Contribution = q / Theoretical Fraction of >C-Ac-CoA (xv)
Oxidative Glutamine Reductive Glutamine
Metabolism Metabolism

Gflc Glc

v Fatty Acid Synthesis ! Fatty Acid Synthesis

d
Q0 000
43 Pyr I

v ME DH '
CO— 000 — — 9999 00 gA
Ac-CoA Pyr Mal Oaa MO Ac-Con/ OO @8O ‘—
Ac-CoA  Pyr Oaa

| — 1/

/————~\

W )

00000 ——— 00000 .....
Glu Gln Glu

Figure 4.2: Contribution of glutamine to Ac-CoA synthesis (Red arrows show the active pathway)

4.17.4. Calculation of Approximate Flux ratio of Glutamate Dehydrogenase (GDH)

to Isocitrate Dehdrogenase (IDH)

As explained above, glutamine can be metabolized in TCA cycle either with oxidative
way in which glutamate (derived from glutamine) is converted to aKG and subsequently
to succinate and so on, or with reductive metabolization where oKG is converted to
isocitrate [289]. The influx of [U-*C] glutamine into the TCA cycle via glutamate
dehdyrogenase (GDH) produces m5 mass isotopomer of aKG, while the flux of citrate to

aKG via isocitrate dehdyrogenase (IDH) produces m1 - m4 labeled aKG. Therefore,, the
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ratio between m5 and m1 - m4 mass isotopomers for akKG corresponds roughly to the

flux ratio of GDH to IDH (eqution xvi).

GDH/IDH = aKG(m5) /oKG(m1 — m4) (xvi)

4.18. Statistical analysis

For statistical analysis, parametric unpaired two-tailed independent samples Student’s t-
test was used. In all figures, bars represent mean * SD, and number of samples (n) is
indicated in each case. One asterisk (*) denotes p-value<0.05, two asterisks (**) denote

p-value<0.01 and three asterisks (***) denote p-value<0.001.

In the case of metabolic flux estimation using Isodyn, an annealing algorithm was used
to minimize the difference between calculated and experimental data (x%). The goodness
of best fit which corresponds to the minimal deviation of calculated isotopomer
fractions of experimental ones was checked based on the x* value and number of degree
of freedom. According to that checking, in the case that the fit was deemed acceptable,
the metabolic fluxes which correspond to the best fit were accepted as consistent with

the measured isotopomer distributions [272].
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5. Results and Discussion (Chapter 5.1)

Chapter 5.1

5.1. The Role of 6-Phosphogluconate Dehydrogenase (6PGD) in
Breast Cancer Cells: A Novel Therapeutic Target Against Breast

Cancer

5.1.1. Introduction

Cancer cells are known to show a wide variety of metabolic alterations [15]. Many
observations made during the early period of cancer biology research revealed
metabolic changes like the Warburg effect to be a common feature of cancer cells [40,
290]. Nowadays, multiple molecular mechanisms both intrinsic and extrinsic are known
to play a vital role in reprogramming cellular metabolism in order to fulfill the three
basic needs for cancer cell survival: i) maintenance of energy status, ii) increased
biosynthesis of macromolecules, and iii) maintenance of appropriate redox status [291].
Nevertheless, many mechanisms regulating metabolic reprogramming are still unknown,
and the search for new tumor-specific metabolic dependencies exploitable in the

impairment of neoplastic proliferation is a growing field in cancer research.

In the introduction part of this dissertation, it has been shown that tumor metabolism
highly depend on PPP to maintain their highly proliferative state [76, 78, 79], since PPP
plays important roles in not only nucleotide biosynthesis and redox detoxification, but
also many other aspects related to cancer cells’ viability, including proliferation,
apoptosis, invasiveness, drug resistance, and metastasis [74, 77]. Therefore, the

therapeutic potential of targeting PPP has attracted the interest of researchers in the
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field and both oxidative and non-oxidative phases of this metabolic pathway have been

of keen interest to be used as therapeutic drug targets [77, 98, 102].

The oxidative branch of PPP is especially interesting because it is able to produce
NADPH; therefore, it plays a key role in the regulation of reactive oxygen species (ROS)
levels. The balance between ROS production and removal has been demonstrated to be
altered in some tumors, and has also been proposed to be an attractive therapeutic
target on its own [101]. Unpublished data obtained within our group have revealed that
inhibition of glucose-6-phosphate dehydrogenase (G6PD) has important effects; such as
decreased cell proliferation, increased cell death and ROS together with cell cycle arrest
on MCF7 breast cancer cells’ metabolism. As a complement to previous studies carried
out in our group, we further inhibited another important enzyme in this pathway in
MCF7 breast cancer cells: 6-Phosphogluconate dehydrogenase (6PGD), the third enzyme
of the ox-PPP which catalyzes the conversion of 6-phosphogluconate (6-PG) to ribulose-

5-phosphate whose results are shown in this section.

We suggest 6PGD as a better target than G6PD for various reasons. First, despite that
the entire PPP is regulated by several factors, being the rate limiting enzyme of PPP as it
catalyzes the irreversible  conversion of  glucose-6-phosphate to  6-
phosphogluconolactone, G6PD is much more tightly regulated by means of several levels
involving transcriptional, translational, post-translational, and metabolic regulations
[292]. Besides, NADPH/NADP" ratio is an important regulator of G6PD and since up to 75
% NADPH required for de-novo lipid synthesis in cellular organisms is produced by G6PD,
this enzyme is also considered as a part of lipogenic enzyme family and it is further
regulated by hormone and nutritional factors [293]. Therefore, altering the function of
G6PD is more challenging than other PPP enzymes. On the other hand, inhibition of
6PGD leads to the accumulation of 6-PG which is an important glycolysis regulator [294].
6-PG takes role directly in the activation of glycolytic enzyme phosphofructokinase (PFK)
[295], pyruvate kinase (PK) [296] and phosphoglucomutase (PGM) which takes role in
glycogen breakdown [297]. Moreover, glycolytic enzyme phosphoglycerate mutase 1
(PGAM1) is reciprocally regulated by 6-PG in a way that 3-phosphoglycerade (3-PG), the
substrate of this enzyme, is also a competitive inhibitor of 6PGD [294]; therefore,

accumulation of 6-PG affects the activity of PGAM1.
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In short, in this study we have characterized the metabolic reprogramming induced by
the knockdown of 6PGD by RNAi mediated silencing, in order to further explore this
enzyme’s potential as a therapeutic drug target in two breast cancer cell lines. In
addition, knowing that p53 has several vital functions in cellular metabolism among
which are cell cycle regulation, apoptosis induction and regulation of glycolysis and PPP
[90], we speculated that any effect induced by 6PGD knockdown might be related to p53
activation; therefore, we also aimed to investigate the relation between p53 activation
and PPP. Because of the high reliance of breast cancer cells on PPP and their
dependence on ROS detoxification to manage their oxidative stress and maintain their
survival [76, 298], we chose breast cancer cell lines as models in which to target 6PGD
enzyme. On the other hand, for a better and more critical understanding of the effects
of 6PGD inhibition on breast cancer cells, we employed another breast cancer cell line,

T47D, which has similar characteristics to MCF7 cells [9].

5.1.2. Results

5.1.2.1. 6PGD Knockdown in MCF7 and T47D Cells

In order to test the dependence of breast cancer cells on oxidative phase of PPP, we
tested two different siRNA sequences targeting different exonic regions of 6PGD gene
for their RNAi machinery expression at mRNA level. Also, a non-targeting siRNA sequence
(siNEG) was used as negative control in all experiments in order to obtain a coherent
comparison. The knockdown of 6PGD was measured at mRNA level 72 hrs after
transfection and both siRNA sequences showed moderate level of inhibition on both cell
lines, with a decrease in fold change of around 60 % when compared to the cells
transfected with siNEG (see figure 5.1.1A). On the other hand, the knockdown of 6PGD
activity was also assesed 96 hrs after transfection by measuring specific enzyme activity.

At protein level, both siRNA sequences induced an inhibition of around 25 % of enzyme
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activity in T47D cells, while for MCF7 cells the inhibition of enzyme activity was closer to

50 % (figure 5.1.1B).
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Figure 5.1.1. Knockdown of 6PGD enzyme with two different siRNA sequences targeting 6PGD

A) 6PGD mRNA expression 72 hrs after transfection with non-targeting siRNA (siNEG) or siRNA’s against
6PGD. Fold change was calculated with respect to siNEG. B) 6PGD enzyme activity levels 96h post
transfection using either non-targeting siRNA or siRNAs against 6PGD. Fold change was quantified relative
to siNEG. The bars correspond to mean + SD of n = 3. Statistically significant differences between 6PGD
inhibited and control cells were indicated at p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).

5.1.2.2. Inhibition of 6PGD Reduces in vitro Proliferation of Breast Cancer Cells

PPP is an anabolic pathway that has critical role in cell proliferation. Therefore, we
tested the functional role of 6PGD in breast cancer cells’ proliferation using MCF7 and
T47D cells as models. The effect of 6PGD knockdown on the proliferation rates of both
cell lines was measured via flow cytometry, combining direct cell counting and
propidium iodide (Pl) staining. Notably, 96 hrs after transfection, 6PGD knockdown had
a clear effect over MCF7 cells proliferation rates: cell number was around 25 % lower
compared to siNEG transfected cells. The effect was less dramatic in the case of T47D
cells, since final cell number for si6PGD-transfected cells was only 10% lower compared
to cells transfected with non-targeting siRNA (figure 5.1.2A). In any case, our results
prove that the altered cellular metabolism that results from 6PGD knockdown entails a
reduction in cell proliferation rates. It is worth noting that the reduction in both cell
lines’ proliferation rates results from a limited decrease of 6PGD enzyme’s activity (close

to 50 % in the case of MCF7 cells, and only around 25 % in the case of T47D cells), which
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highlights the importance of 6PGD activity in breast cancer cells’ proliferation. This could
be explained because 6PGD inhibition entails a decrease in pentose biosynthesis
capability, which is essential to synthesize DNA; and therefore, is indispensable and of
great importance for proliferating cells. Besides, the knockdown of 6PGD is also
expected to provoke an accumulation of 6-phosphogluconate (6PG), which has been
reported to cause a slower proliferation of cells by a mechanism which has not yet been
elucidated [96]. We suppose that a stronger inhibition of this gene is expected to lead to

decrease the proliferation of breast cancer cells at more significant levels.

5.1.2.3. 6PGD Knockdown Leads to Cell Cycle Arrest and Apoptosis Induction

Taking into account that one of the essential roles of ox-PPP is to provide cells with
nucleotides and NADPH to maintain cell proliferation, and that G6PD was reported to be
upregulated during the G1 and S phases of the cell cycle [77], we hypothesized that
6PGD knockdown might also induce a cell cycle arrest in G1 or S phase. Decreased cell
proliferation rate in MCF7 and T47D cells upon 6PGD knockdown may be due to a cell
cycle arrest in either S or G1 phase of cell cycle. To study the effect of 6PGD knockdown
over the cell cycle distribution, the cells were stained with vindelov-PI solution after
fixation and were analyzed by FACS to quantify their DNA content. Analysis of cell cycle
distribution after 96 hrs of 6PGD knockdown demonstrated a significant arrest in S
phase and a subsequent decrease in G1 phase in MCF7 cells. T47D cells, on the other
hand, showed only slight decrease in G1 phase with no significant variation in the

distribution of the cells across various cell cycle phases (figure 5.1.2B).

Cell cycle is a process through which cells grow and proliferate and any alteration in cell
cycle may induce apoptosis [299]. To check whether together with the arrest in cell
cycle, any apoptosis has been induced in either MCF7 or T47D cells we carried out
apoptosis assays 96 hrs after inhibiting 6PGD gene expression with the two different
siRNA sequences. FACS analysis using annexin-V and Pl has been used to assess the
presence of non-apoptotic cells (no interaction with neither annexin-V nor PI), early

apoptotic cells (interaction with only annexin-V), and late apoptotic or necrotic cells
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(interaction with both annexin-V and Pl) [274, 300]. Our results demonstrated that the
knockdown of 6PGD in MCF7 caused a significant increase in the number of late
apoptotic and necrotic cells, whereas, 6PGD knockdown in T47D cells slightly increased
the number of early apoptotic cells (Figure 5.1.2C). Although the 6PGD-knockdown
achieved with si6GPD is similar in both cell lines at RNA level, final effect over 6PGD
enzyme activity is higher in MCF7 cells, which might explain why the induction of cell

cycle arrest and apoptosis induction is higher in MCF7 than in T47D cells.
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Figure 5.1.2. The role of PPP enzyme 6PGD in cell survival, cell cycle, apoptosis and p53 activation.

A) Flow cytometric measurements of cell proliferation, 96 hrs after transfection, for 6PGD-knockdown
cells and cells transfected with siNEG. B) Cell cycle distribution analysis of MCF-7 and T47D cells after 96h
of siRNA transfection. The percentage of cells in the different cell cycle phases was calculated using
FlowJo® software. C) Percentage of apoptotic cells out of a 1x10" cells, measured by flow cytometry using
Annexin V FITC kit, 96 hrs after transfection. D) Western blot analysis of p53 expression in cells transfected
with si6PGD vs. cells transfected with siNEG, 120 hrs after transfection. The bars correspond to mean = SD

of n = 3. Statistically significant differences between 6PGD inhibited and control cells were indicated at p <
0.05 (*), p<0.01 (**) and p < 0.001 (***).

5.1.2.4. 6PGD Knockdown Upregulates p53

Tumor suppressor gene p53 has been proven to have effects on the regulation of cell

cycle arrest and apoptosis [19]. Moreover, it is reported to suppress PPP which takes an
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important role in tumor cell growth and proliferation [90]. Taking this into account, we
decided to assess if the inhibition of 6PGD activity could have an effect on p53
expression. As demonstrated in figure 5.1.2D, western blot analysis has demonstrated
that there is an increase in p53 protein expression after the inhibition of 6PGD gene in
both MCF7 and T47D cells. MCF7 cells are known to have wild type p53 gene [301, 302],
and therefore we can conclude that p53 over expression resulting from 6PGD inhibition
eventually leads to cell cycle arrest and apoptosis induction, which in turn slows down
proliferation rates in MCF7 cells. On the contrary, p53 gene is mutated on T47D cells,
which further explains why p53 over expression resulting from 6PGD inhibition does not
entail a significant cell cycle arrest or a high level of apoptosis induction in this cell line.
This is also consistent with a lower effect of 6PGD inhibition over T47D cells
proliferation, when compared to MCF7 cells. Taken together, these results highlight an
interesting connection between 6PGD activity and p53 expression, although further
studies will be needed to elucidate the relation between these proteins in a more

detailed manner.

5.1.2.5. NADPH Produced by 6PGD does not Take Role in ROS Detoxification

As it has been mentioned earlier, the NADPH produced in PPP provides reducing
equivalents for protecting the cells against the toxicity of ROS by regenerating reduced
glutathione (GSH) [74]. Since redox homeostasis plays a very important role in tumor
survival, particularly in breast cancer cells, we speculated that inhibiting 6PGD, which is
involved in NADPH production, might provoke changes in breast cancer cells’ ROS level.
However, the measurement of ROS using H2DCFA probes in MCF7 and T47D cells
transfected with si6PGD did not show any significant changes in their ROS production
compared to cells transfected with siNEG (Figure 5.1.3), thus indicating that 6PGD might
not be involved in maintenance of redox status of these cell lines or that the cells are
able to resort to alternative pathways to maintain their required NADPH levels. In any
case, our results indicate that the antiproliferative activity resulting from G6PD

inhibition is probably not related to the existence of an enhanced oxidative stress.
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5.1.2.6. Central Carbon Metabolism is Reprogrammed in Response to 6PGD

Inhibition.

Cancer is not only a disorder of proliferation but also a metabolic disease. Therefore,
metabolic changes that occur in cancer cells are considered to have a vital role in
explaining tumor formation. In order to obtain deeper information about the
implications of PPP in cancer cell metabolism, we performed some basic metabolic flux
measurements. To this end, we measured the extracellular fluxes of certain metabolites
such as glucose, lactate and glutamine. The analysis of consumption and production
rates of extracellular glucose and lactate showed a slight decrease in glucose
consumption 96 hrs after knockdown of 6PGD gene in both cell lines. Similarly, the
lactate production was found to be reduced, but in a slightly higher rate (figure 5.1.4A).
Figure 5.1.4B shows the decrease in glycolytic efficiency in both cell lines with 6PGD
knockdown, calculated as lactate produced (in moles) divided into the glucose
consumed (in moles) [261, 303]. A decreased rate of glucose to lactate could be due to a
shift from glycolysis towards TCA cycle for the production of energy and other TCA cycle
intermediates needed for bioenergetics reactions and cells’ survival. This result is
concordant with the reduced lactate dehdyrogenase (LDH) enzyme activity when 6PGD
gene is inhibited, as shown in figure 5.1.5A. LDH is the enzyme catalyzing the conversion
of the pyruvate into lactate, and reduced LDH activity means that glucose might be
directed to TCA cycle; therefore, an increase the key activities of this pathway is

expected.
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While glucose is the main nutrient for many biological systems, glutamine has also
pivotal role in metabolism of various cells, particularly for tumor cells. Glutamine is an
abundant and very important amino acid which plays role in energy formation, redox
homeostasis, synthesis of various macromolecules and several signaling pathways
relevant in cancer cells [121, 304]. Among them, redox homeostasis has close
connection with PPP pathways as one of the main functions of the latter is also the
same; therefore, impaired PPP is expected to alter glutamine consumption flux in the
cancer cells. To this end, we measured the effect of 6PGD knockdown over glutamine
flux of breast cancer cells. We observed an altered glutamine metabolism when the cells

were subjected to 6PGD knockdown, especially in MCF7 cells, since glutamine
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Figure 5.1.4. The effect of 6PGD inhibition on glucose, lactate and glutamine metabolism

A) Consumtion of glucose and glutamine, and production of lactate were measured 96 hrs after
transfection either by si6PGD or siNEG. B) Glycolytic activity which shows the conversion rate of glucose to
lactate C) Consumption rate of glutamine over glucose. The bars correspond to mean + SD of n = 3.
Statistically significant differences between 6PGD inhibited and control cells were indicated at p < 0.05 (*),
p <0.01 (**)and p < 0.001 (***).
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consumption rate augmented and the ratio between glutamine and glucose

consumptions was higher after 6PGD inhibition in these cells (see figure 5.1.4A and C).

Above, we indicated that knockdown of 6PGD gene did not cause any noticeable
accumulation of ROS in neither of the breast cancer cell lines (figure 5.1.3). Therefore,
we hypothesized that the increased consumption of glutamine could be used in order to
produce NADPH via malic enzyme (ME) and isocitrate dehydrogenase (IDH), and in that
way, the cells maintained the reductive capacity of the cells to compromise after 6PGD
inhibition. We observed that 6PGD knockdown increased ME and IDH activities in MCF7
cells (Figure 5.1.5B and C), which is consistent with our hypothesis. Nonetheless, we did
not observe any strong alteration of ME or IDH activity in T47D cells. It has also been
reported that MCF7 cells are more dependent on glutamine than glucose compared to

T47D cells [305], which explains why T47D cells show less alteration in glutamine flux.
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Figure 5.1.5. 6PGD inhibition alters the activity of glycolyisis and glutaminolysis enzymes

A) Lactate Dehydrogenase, B) Malic enzyme and C) Isocitrate Dehydrogenase activity levels measured at
96 hrs post transfection using either siRNAs against 6PGD or non-targeting siRNA. Fold change was
quantified as a percentage relative to enzyme activity levels in siNEG-transfected cells. The bars
correspond to mean * SD of n = 3. Statistically significant differences between 6PGD inhibited and control
cells were indicated at p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).
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5.1.2.7. 6PGD Knockdown Alters 3D in vitro Culture of Breast Cancer Cells

One of the biggest challenges in the clinical treatment of tumors is cancer resurrection, a
phenomenon occurring due to stem cell like properties of cancer cells [306]. Despite
that PPP is involved in several essential processes in healthy and cancer cells, there is
not many proven links between PPP and stem cell like characteristics of tumors.
Therefore, we decided to check whether targeting 6PGD could be an effective approach
to disrupt the acquisition of stem cell like properties in breast cancer cells. The ability to
form single cell colonies is one of the characteristic features of cancer stem cells (CSC)
[30], so the effect of 6PGD inhibition over the stem cell characteristics of MCF7 and
T47D cells was assessed by measuring their mammosphere formation capability after
seeding the transfected cells to low attachment plates and using a supplemented

medium that triggers the formation of mammospheres. Our results showed that
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Figure 5.1.6. 6PGD knockdown reduces mammosphere formation capacity of breast cancer cells

A) Mammosphere formation capability of MCF7 and T47D cells after treatment with siNEG or siG6PD
siRNA. The total mammophere area for each condition was represented as a percentage relative to the
total mammosphere area of siNEG-transfected cells. B) Representative photographs showing the different
shape, size of mammospheres in each experimental condition. The bars correspond to mean + SD of n = 3.
Statistically significant differences between 6PGD inhibited and control cells were indicated at p < 0.05 (*),
p <0.01 (**) and p < 0.001 (***).
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mammosphere formation capability of MCF7 cells decreased around 50 % when the cells
were transfected with si6PGD, while T47D cells’ mammosphere formation capability
decreased around 25 % in the same conditions (Figure 5.1.6A). Besides, the size of the
mammospheres was found to be smaller in cells with reduced 6PGD expression,
compared potential of 6PGD as a promising drug target. to those with no knockdown in
6PGD (Figure 5.1.6B). This indicates that 6PGD has an important role in maintaining the
stem cell characteristics of these luminal breast cancer cell lines. The fact that inhibition
of 6PGD decreases mammosphere formation capability highlights the potential of 6PGD

as a promising drug target.

5.1.3. Discussion

This study reveals 6PGD as a key ox-PPP enzyme, with an important role in the
metabolism of breast cancer cell lines MCF7 and T47D and that it is modulated by p53.
Several previous studies have highlighted the importance of PPP in breast cancer
tumors, especially those in advanced states, such as MCF7 [85, 307, 308]. Also, former
studies carried out in our group have supported the idea that investigating the PPP is
noteworthy. Previously, we have inhibited the G6PD (the first enzyme of the oxidative
phase of PPP) and TKT (an enzyme of nonoxidative phase of PPP) in MCF7 cells and we
observed that especially G6PD had marginal effects on the cell proliferation and cell
cycle arrest but strong effects on ROS detoxification. Moreover, inhibition of either
G6PD or TKT led breast cancer cells to reprogram their metabolism (data not published).
Therefore, we focused our attention to investigate the role of the 6PGD, another
dehdyrogenase enzyme on oxidative phase of PPP. We included another breast cancer
cell line, T47D, which has similar characteristics to MCF7 (ER positive, hormone
dependent breast cancer cells) except that T47D carries mutated p53. In that way, we
were able to compare not only the effects of 6PGD inhibition on different cell lines but

the functional role of p53 tumor suppressor in the regulation of PPP as well.

108



5. Results and Discussion (Chapter 5.1)

Here, we have first demonstrated that 6PGD has a pivotal role in the proliferation of
MCF7 cells, while it has only marginal effects on the proliferation of T47D cells. The high
dependency of these cells to 6PGD is clear considering the fact that partial inhibition of
the activity of this enzyme (around 50 % for MCF7 cells and around 25 % for T47D cells)
led to around 25 % and 10 % decrease in cell proliferation for MCF7 and T47D cells
respectively. There are several scenarios which might have taken role in the attenuation
of breast cancer cells when 6PGD is impaired. First, decreased nucleotide and NADPH
synthesis with inhibition of PPP leads to decrease in proliferation since nucleotides are
needed for the biosynthesis of genetic material and NADPH is needed for lipid
biosynthesis and redox balance. Moreover, we suggest that the accumulation of
glycolytic pathway metabolites due to the inhibition of 6PGD might have taken role in
lower proliferation rate of breast cancer cells. Besides accumulation of glycolysis
metabolites, 6PGD inhibitions also results in accumulation of 6-phosphogluconate and 6-
phosphogluconolacton, which in turn alters the proliferation of MCF7 and T47D cells.
Even though the exact mechanism of act of 6PGD is not totally elucidated, its
importance in cell proliferation has been reported in several studies [96, 212] and a
permanent and stronger knockdown of this gene using small-hairpin RNA (shRNA) is
expected to result in even more significant reductions of the proliferation kinetics of the

breast cancer cells.

Furthermore, cell cycle was also altered in 6PGD inhibited breast cancer cells. For MCF7
cells, an arrest at G1 phase was observed as expected, since nucleotide synthesis was
partly impaired. T47D cells did not show any strong arrest in any phase, however, the
inhibition of 6PGD managed in T47D cells was less than MCF7 cells, which may explain
why a successful cell cycle arrest did not occur. Also, T47D cells have much higher
activity of cyclin dependent kinase 1 (CDK1) [309], which takes role in transition from
various phases in cell cycle and this may also be the reason for not seeing a strong arrest
in this cell line. Similarly, 6PGD knockdown has also induced apoptosis in breast cancer
cell lines. In MCF7 cells this induction was visible on late apoptosis/necrosis level, while
for T47D, the population of the cells in early apoptosis phase was bigger. That inhibition
of 6PGD could not be managed at the same level in both cell lines is an important reason

to observe different results. On the other hand, it has been reported that these two cell
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lines have kinetically different apoptotic mechanisms as MCF7 does not possess caspase-
3 which plays a central role in apoptotic events, while T47D cells are caspase-3 positive
and that in MCF7 cells, the programmed cell death events occur quicker than T47D cells
[309, 310]. Thus, we can assume that 6PGD inhibition leads to apoptosis in pathway
independent manner. On the other hand, we showed that p53 is augmented in both cell
lines with 6PGD inhibition, which confirms our hypothesis that 6PGD knockdown

decrease proliferation of breast cancer cells in a way which is mediated by p53.

Knowing that p53 has important roles in modulation of cell cycle and apoptosis [19] and
also knowing that MCF7 cells have wild type p53 contrary to T47D cells [302], we can
expect different effects of 6PGD knockdown on these cell lines regarding cell cycle
progression and apoptosis induction. Since MCF7 cells have wild type of this tumor
suppressor, the increase in p53 levels resulted through 6PGD inhibition led MCF7 cells to
alter cell cycle progression with an arrest in G1 phase. However, T47D cells have mutant
copies of this gene; therefore, the increase of p53 levels due to 6PGD knockdown didn’t
result in any strong arrest in cell cycle in this cell line. Moreover, different apoptotic
mechanisms when 6PGD is inhibited in these two cell lines may also be explained
depending on having mutant or wild type copy of p53 gene. Thus, we can conclude that
PPP enzymes including 6PGD are regulated by p53 since PPP inhibition affects in a

greater degree the cells with wild type p53 than those with mutated p53.

Next, we observed that 6PGD knockdown did not change the ROS level of either of the
cell lines. Filosa et al. previously demonstrated that G6PD-knockdown mouse embryonic
fibroblasts encountered another source of NADPH production to rescue ROS [311]. We
assume that 6PGD inhibition in our cell lines also recover the missing NADPH for redox
detoxification from other sources; such as glutaminolysis and that the decreased
proliferation rate with inhibited 6PGD has a NADPH independent mechanism. Other
reports, including not published studies within our group demonstrated that G6PD
enzyme does not have strong effect on cellular proliferation, but it is crucial for defense
against oxidative stress [312]; nonetheless, our findings prove the importance of
functional 6PGD activity for cell survival contrary to G6PD activity. On the other hand,
Sukhatme et al. showed that 6PGD inhibition increased G6PD activity considerably in

lung cancer cells [96]. Even though in our cell lines 6PGD ablation didn’t cause a strong
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G6PD activity augmentation (data not shown), knowing that breast cancer cells have a
very active PPP and that especially MCF7 cells have very high G6PD levels, we assume
that NADPH produced by G6PD together with increased glutaminolysis is enough to
compensate the decrease of NADPH redulting from 6PGD inhibition and in that way,

cells with reduced 6PGD activity do not present elevated ROS levels.

In order to have a more complete idea about the effect of 6PGD ablation in breast
cancer, we assessed some flux measurements related to glucose and glutamine
metabolism. Similar to previously reported studies [96], in our cells also glucose
consumption and lactate production decreased leading to a lower glycolytic efficiency in
both cell lines with reduced 6PGD activity. Also, LDH activity decreased in both cell lines,
thus, we estimate that 6PGD inhibition caused a shift from glycolysis to TCA cycle. Tumor
suppressor p53 has functional roles in the regulation of glycolysis [185]. Taking into
account that T47D cells have mutant p53 gene while MCF7 cells have wild type p53, it is
reasonable that the effects of 6PGD knockdown in decreased glucose consumption and
lactate production in MCF7 cells are greater than in T47D cells. On the other hand, 6-PG
accumulation has been reported to activate glycolytic enzymes PFK and PK in hepatic
cells to carry the excess glucose away from PPP in order to produce pyruvate for lipid
biosynthesis [295, 296]. Nevertheless, we observed reduced glucose consumption in
MCF7 and T47D cells with 6PGD inhibition which might be due to the fact that glucose

metabolism in malignant cells are distinct from that of non-transformed cells.

On the other hand, this study uncovers a link between PPP and glutaminolysis due to the
fact that cells with reduced 6PGD activity consumed more glutamine compared to
control cells. Also, the ratio of glutamine consumption rate over glucose consumption
rate was significantly increased. As we discussed before, increased glutamine
metabolism must be taking place in order to compensate both the missing NADPH and
nucleotides caused by 6PGD inhibition. Our results also reveal that inhibiting 6PGD
entails the upregulation of ME and IDH, which probably constitutes an adaptive
mechanism that breast cancer cells undergo in order to produce NADPH even after the
oxidative phase of PPP has been blocked. Interestingly, this could propose an alternative
metabolic vulnerability that could be targeted in order to hamper breast cancer cells’

adaptation to 6PGD inhibition. The simultaneous inhibition of 6PGD together with ME or

111



5. Results and Discussion (Chapter 5.1)

IDH therefore represents a promising strategy to deprive tumor cells of their ability to
compensate oxidative stress through NADPH production. In fact, a recent publication
showed that even though 6PGD enzymatic activity is not indispensable, the inhibition of
6PGD together with any enzyme of nonoxidative PPP (transketolase, transaldolase,
ribulose epimerase or ribulose isomerase) is not endured [313]. That is, targeting other
metabolic targets along with 6PGD could result in the development of better therapies

against breast cancer cells [208, 314] and 6PGD forms a good pair in synthetic lethality.

One of the most striking findings in this study is the uncovered link between PPP and
cancer stem cell characteristics. The results provided in this chapter clearly show that
6PGD inhibition decreased considerably not only the mammosphere formation
capability, but also the size and number of formed mammospheres in both cell lines.
That is, to best of our knowledge, this is the first study conducted to reveal that an
enzyme of oxidative phase of PPP has significant effect on diminishing the stem cell like
characteristics of breast cancer cells. This could be not only efficient in preventing breast
cancer growth, but also helpful in addressing the very serious problem of cancer
reappearance which is one of the most challenging problems faced by many of the
currently targeted therapies. The fact that inhibition of 6PGD decreases mammosphere
formation capability highlights the potential of 6PGD as a promising drug target and
targeting 6PGD could also sensitize cells to current chemotherapeutics, thus improving

the efficacy of the most used clinical approaches [315].

All in all, the experimental evidences presented in this work highlight the potential of
6PGD as a putative therapeutic drug target in breast cancer treatment. Targeting 6PGD
not only decreases cell proliferation through cell cycle arrest and apoptosis induction,
but also activates p53 (one of the most important tumor suppressor genes) and
decreases the stem cell like characteristics of breast cancer cells. Moreover, the cells
with reduced 6PGD activity show increased fluxes of glutamine metabolism. Besides our
results, a recent study indicated that 6PGD played an important role in the migration of
tumor cells in vitro [97]. Therefore, validation of this proof of concept in vivo through
xenograft experiments will have to be conducted in order to further assess the potential
of G6PD inhibition as a therapeutic strategy in breast cancer treatment, and our results;

nevertheless, highlight the interesting potential of this new approach.
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Chapter 5.2

5.2. A study to Unveil the Adaptation Mechanisms Used by MCF7

Cells Related to Their Glutamine Dependency

5.2.1. Introduction

Metabolism knowledge has always played a crucial role in the study of the molecular
mechanisms underlying cancer, ever since the discovery of one of its main metabolic
shifts, the aerobic glycolysis [40-44]. Tumor cells rely on metabolic reprogramming to
proliferate and achieve a fully malignant phenotype: the increased energy and
macromolecules demand of proliferating cells must be satisfied by cell metabolism,
which has to adapt to be able to provide cancer cells with the ATP and molecular
building blocks that they need [15, 48]. Additionally, complex tumor microenvironment
where hypoxic and low-nutrient zones arise forces cells to rewire metabolism in order to
grow and survive in those atypical and harsh conditions. Therefore, in oncogenic-driven
tumorigenesis, metabolic networks are reorganized so as to fulfill tumor cells’ needs. In
this way, the metabolic network associated to cancer progression becomes a valuable
study field and opens new avenues in the research of potential therapeutic targets [316-

318].

The omics revolution has given us new tools which allow the study of many biological
processes at the same time, by analyzing large numbers of molecular components
including genes, transcripts, proteins or metabolites. Each of these disciplines (from
transcriptomics to proteomics and metabolomics) provides an overview of biological
phenomena from their point of view. However, without combining different approaches

it is not possible to obtain a more integrated view of the more complex biological
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problems. Under this premise, the discipline of Systems Biology arises, providing a new
way of understanding biological mechanisms. This new approach to biology includes the
parallel study of genes, proteins and metabolites, and the use of bioinformatics as an
integrative agent responsible for the joint interpretation of these layers of highly

heterogeneous information [268].

In the previous chapter we explored the functions of one of the most important ox-PPP
enzymes, 6PGD, in the survival and metabolic reprogramming of breast cancer cells. One
of the noteworthy metabolic alterations observed in response to 6PGD inhibition was
the decrease of glucose consumption and increase of glutamine consumption,
suggesting a modulation of the Warburg phenomenon. Many cancer cells, including
MCF7 cells, exhibit glutamine addiction habits; that is, they rely on glutamine as the
main source of energy rather than on glucose [124]. The switch from glucose to
glutamine as the main energy substrate in many tumors is considered an adaptive
mechanism that confers cancer cells with survival and proliferating advantages in the
tumor microenvironment [41]. Nevertheless, this glutamine dependence can at the
same time be considered a cancer-specific vulnerability with the potential to be

exploited therapeutically.

The study performed in this chapter intents to provide a comprehensive, genome-scale
computational model of different regulatory levels of breast cancer cells in the frame of
a multinational European project (METAFLUX EC-FP7), in order to elucidate the way that
these regulatory levels affect or determine each other. In this multinational project, a
genome-scale metabolic model (GSMM) of MCF7 cell line will be built using
transcripomics, proteomics, phosphoproteomics, metabolomics and fluxomics data.
Transcriptomics, metabolomics and fluxomics data to be used in the GSMM creation are
provided by our group, and they form the subject of this chapter. Another of the groups
involved in this project is responsible for producing proteomics and phospho-proteomics
data, while the third group is expert in modeling strategies and they will take part in

building the GSMM to deeply study the regulation of breast cancer metabolism.

A good GSMM should predict the system’s response to any perturbations applied;

therefore, different incubation conditions should be tested in order to generate
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different metabolic profiles that will help to validate if the generated model of breast
cancer metabolism is working well [319]. Therefore, the aim of this section was to
generate transcriptomics, metabolomics and fluxomics data to be used in the
construction of a GSMM of MCF7 cells in the presence of two different perturbations.
Considering glutamine addiction habits in this cell line, in order to further explore the
mechanisms regulating glutamine dependence and adaptation to glutamine deprivation
in MCF7 cells, we decided to study glutamine deprivation as the first perturbation
applied. Moreover, taking into account that that breast cancer cells, including MCF7,
have elevated mitochondrial activity [320, 321], and considering hypoxia is a common
condition in the tumor environment which also affects mitochondrial function, the study
of mitochondrial metabolism in the presence of strong stress conditions such as hypoxia
is also particularly interesting. In this regard, we applied oligomycin A (an ATP synthase
inhibitor which therefore suppresses OXPHOS and mimics hypoxia) [116] to MCF7 cells
as the second perturbation applied. While the raw data obtained from this study is on
itself an essential part of the construction of the GSMM, we also used the same data to
explore the metabolic adaptations that MCF7 cells undergo when glutamine is scarce in

the microenvironment or when they need to grow and survive in hypoxic conditions.

When studying metabolic reprogramming under different conditions, it is necessary to
consider that the overall metabolome of a cell is dynamic and the metabolites are
continuously transformed over time. In order to characterize the metabolic networks
and their dynamic functional states, it is required to know the state of the intracellular
metabolic fluxes, which can be quantified by analyzing the incorporation of introduced
labeled substrates in metabolic products using the right bioinformatic tools [269].
Considering this, we performed a parallel labeling approach using [1,2-*C;]-glucose or
[U-*Cs]-glutamine as tracers [261], analyzed isotopomer distribution by GC-MS, and
guantified metabolic fluxes in the different conditions using our in-house developed
software, Isodyn [269-272, 285] in order to generate fluxomics data to be used in the
GSMM of MCF7 cells either with the deprivation of glutamine or in the presence of
oligomycin. To better adjust our generated model of metabolic flux network we also
included measurements of concentrations of main carbon source metabolites present in

the culture media, such as glucose, lactate, glutamine, and glutamate, together with
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several amino acid concentrations measured by HPLC. Besides providing data for the
construction of a GSMM which intents to study the multi-layer regulation of breast
cancer metabolism, this chapter also provides with new data on its own for a better
understanding of the role of glutamine metabolism in breast cancer adenocarcinoma,
and of the metabolic network adaptations that MCF7 cells undergo to circumvent
glutamine deprivation and general mitochondrial impairment/hypoxia. This study also
highlights the importance of Systems Biology approaches to comprehend the molecular
mechanisms underlying complex multifactorial diseases in order to point out new

potential therapeutic targets.

5.2.2. Results

5.2.2.1. Gene Expression Profile of MCF7 Cells

To study the effects of glutamine deprivation and oligomycin supplementation in MCF7
cells, we performed transcriptomics analysis as described in the section 4.13. When
MCF7 cells were subjected to glutamine deprivation, high-throughput transcriptomics
analysis using Affymetrix GeneChip arrays identified 319 upregulated and 396
downregulated genes whose expression differed >1.5 fold compared to control cells.
When the cells were treated with oligomycin, on the other hand, microarray analysis
provided with 971 upregulated and 947 downregulated genes with fold change >1.5
compared to non-treated cells. This transcriptomics data that we generated was used as
the first layer for the construction of a GSMM in the frame of a multinational European
project, in order to study the multi-layer regulation of breast cancer metabolism
(Significantly upregulated and downregulated genes with glutamine deprivation or

oligomycin supplementation are listed in appendix ).
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5.2.2.2. Glucose, Lactate, Glutamine and Glutamate Production/Consumption

Rates

To observe the effect of glutamine deprivation on MCF7 cells and the metabolic changes
that take place when the cells don’t have fully functional mitochondria, we first cultured
the cells for 8 or 24 hrs with a medium either deprived of glutamine or supplemented
with oligomycin. We then measured the extracellular concentrations of glucose,
glutamine, lactate and glutamate, and calculated the consumption and production rates

of each metabolite after each incubation time (only 24 hrs measurements are exhibited
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Figure 5.2.1. Metabolite consumption and production rates.

A) Proliferation rate of MCF7 cells under glutamine deprivation or oligomycin supplementation conditions.
B) Glucose and glutamine consumption rates and lactate and glutamate production rates are calculated as
pumoles consumed by 1 million cells per hour. C) Glycolytic activity which shows the conversion rate of
glucose to lactate. D) Ratio between cumulative consumptions of glutamine over glucose. The bars
correspond to mean # SD of n = 3. Statistically significant differences between glutamine deprived /

oligomycin supplemented and control cells were indicated at p < 0.05 (*), p < 0.01 (**) and p < 0.001
(***).
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in this section, 8 hrs measurements results can be found at appendix Il). As shown in
figure 5.2.1A, the proliferation of cells cultured in the absence of glutamine or in the
presence of oligomycin is halted, indicating that both glutamine and fully functional
mitochondria are requisites for MCF7 cells’ proliferation. Surprisingly, glutamine
deprivation also causes a considerable decrease in glucose consumption and lactate
production rates (figure 5.2.1B), while also causing a decrease in the percentage of the
consumed glucose which is converted to lactate (figure 5.2.1C). For the cells treated
with oligomycin, on the other hand, a significant increase in glucose consumption and
lactate production was observed, and glucose was found to be redirected from entering
the TCA cycle into lactate production (figure 5.2.1B and C). Furthermore, after 24 hrs of
incubation with oligomycin the cells consumed less glutamine than control cells,
although the produced glutamate amount did not show any significant differences
(figure 5.2.1B), thus indicating that glutamine carbons were used for biosynthesis.
Finally, oligomycin treatment directed MCF7 cells to significantly decrease the ratio
between glutamine and glucose consumption rates (figure 5.2.1D) indicating that cells

depended more on glucose than glutamine for their survival.

5.2.2.3. Isotopologue distribution of extracellular and intracellular metabolites

after incubation with [1,2-3C,]-glucose or [U-'3Cs]-glutamine

Glucose and glutamine are the two major sources of both energy and building blocks for
the biosynthesis of macromolecules in living organisms. We observed clear changes in
the metabolism of these two molecules under either glutamine deprivation or
oligomycin administration, and consequently we sought to explore the differences in the
utilization of carbons from both substrates through the main metabolic pathways
involved in the central carbon metabolism of MCF7 cells. To this end, we conducted B
based metabolic flux analysis in order to characterize the alterations in the metabolic
fluxes that MCF7 cells undergo in each experimental condition. To do this, we first
incubated the cells with the tracer substrates for 8 hrs and 24 hrs, under either
glutamine withdrawal or oligomycin supplementation. Then we measured the label (**C)

enrichments in several metabolites by GC-MS, and performed mass isotopomer
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distribution analysis (MIDA) in order to estimate the differences in the fluxes through a
selection of central carbon metabolism pathways under the different conditions. The
label enrichments of several metabolites were also used in order to calculate a complete
set of fluxes of central carbon metabolism by using Isodyn software (see appendix Ill for

the detailed *C measurement results).

5.2.2.4. Llactate, ribose and glutamate production

GC-MS analysis allows the determination of the *C enrichment of different metabolites,
as well as their isotopologue distributions. The percentages of the different **C
isotopologues in lactate, ribose and glutamate after incubations with [1,2-3C,]-glucose
are presented in figures 5.2.2A, C, and E. We did not observe any significant changes in
the enrichment of lactate (m2) when the cells were deprived of glutamine. However, *C
enrichment in lactate (m2) was higher after oligomycin treatment. By using mass
isotopomer distribution analysis, we calculated the pathway specific lactate production
percentages as explained in section 4.17.1 (figure 5.2.2B), and observed that only
oligomycin treatment increased the production of lactate from glucose, which is in
concordance with the results of section 5.2.2.1. Furthermore, we observed that both
glutamine deprivation and oligomycin supplementation decreased the activity of PPP,
and much less lactate was produced from PPP-cycled glucose. On the other hand, when
using *C-enriched glutamine as our labeled substrate, label incorporation was observed

neither in lactate nor in ribose (data not shown).

Figure 5.2.2C and D show ribose isotopologue distribution and total label enrichment
after the addition of “*C-enriched glucose. We observed that ribose enrichment
decreased considerably after both glutamine deprivation and oligomycin treatment. This
result is concordant with the decreased PPP activity suggested in figure 5.2.2B for both
conditions. On the other hand, we calculated the relative contribution of both pyruvate
dehydrogenase (PDH) and pyruvate carboxylase (PC) enzymes to glucose entrance into
TCA cycle as previously reported [286], considering the m2 label pattern in glutamate

molecule fragments C2-C5 and C2-C4 as explained in section 4.17.2. We observed that,
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when MCF7 cells are deprived of glutamine or don’t have fully functional mitochondria,
they favor PC over PDH when introducing glucose-derived pyruvate into the TCA cycle

(figure 5.2.2E, F).
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Figure 5.2.2. Mass isotopomer distribution analysis (MIDA) of lactate, ribose and glutamate derived
from *c glucose

A,C,E) Enrichments of the different isotopologues of lactate, ribose, and glutamate, respectively. B)
Pathway specific lactate production percentages. D) Total ribose 3¢ enrichment rates. F) Rate of pyruvate
entry into the TCA cycle via PDH or PC enzymes. The bars correspond to mean + SD of n = 3. Statistically
significant differences between glutamine deprived / oligomycin supplemented and control cells were
indicated at p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).

5.2.2.5. TCA cycle intermediates

After characterizing the metabolic reprogramming triggered by glutamine deprivation or
oligomycin treatment in the upper part of the carbon metabolism, we decided to also

explore the metabolic alterations caused by these conditions downstream of pyruvate.
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In order to address this, we applied a parallel labeling approach [262] to obtain deep
information about the metabolic changes occurring in the mitochondria of MCF7 cells
with these induced mitochondria impairments. We incubated the cells in parallel with
medium containing 100 % [1,2-2C,]-glucose (applying either glutamine deprivation or
oligomycin treatment), or with medium containing 100 % [U-"3Cs]-glutamine together
with oligomycin treatment, for either 8 hrs or 24 hrs. The results of 8 hrs of incubation
and 24 hrs of incubation were quite similar, and in the sake of simplification only the
results obtained after 24 hrs of incubation are shown in this section (see appendix Il for

the measurement results obtained after 8 hrs of incubation).
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Figure 5.2.3. Label incorporation in TCA cycle

A) Carbon atom transition map in TCA cycle intermediates when using [1,2-13C2]-g|ucose as a tracer.
Pyruvate entry into mitochondria can take place in two ways: via PDH (red molecules) or via PC (green
molecules). B) Carbon atom transition map in TCA cycle intermediates when using [U-13C5]-g|utamine asa
tracer. For each metabolite, red molecules demonstrate the *C labeling pattern corresponding to the first
cycle of oxidation. On the other hand, green molecules indicate the reductive carboxylation pathway
followed by glutamine B3¢ atoms (indicated by blue arrows). Reductive glutamine metabolism may
produce m5 labeled TCA cycle intermediates, such as isocitrate and citrate, and m3 labeled TCA cycle
intermediates, such as malate, fumarate and aspartate. For clarity reasons, only the first turn of TCA cycle
is depicted here for both schemes.
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First, we explored the glucose utilization in mitochondria by analyzing the isotopologue
distributions of various TCA cycle elements. Figure 5.2.3A depicts the fundamental
possibilities of label incorporation in TCA cycle intermediates derived from labeled
glucose depending on whether the entrance of pyruvate into the TCA cycle is done via
PC or PDH enzymes. Because the cells were incubated in the presence of [1,2-13C2]-
glucose, metabolites of TCA cycle were expected to have m2 labeling in higher
proportions. However, because pentose cycle can produce ml pyruvate and we
incubated the cells with 100 % labeled glucose, we also expected to see certain levels of
m1, m3 and m4 labeling. We analyzed the isotopologue distributions of citrate, a-

ketoglutarate, malate, fumarate, and aspartate, and in general we observed that while
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Figure 5.2.4. Label incorporation in TCA cycle intermediates derived from 3¢ —labelled glucose

Isotopologue distribution of TCA cycle molecules 24 hrs after culturing the cells with the medium
containing 100 % [1,2-13C2]-glucose. A) Citrate, B) a-ketoglutarate, C) Malate, D) Fumarate, E) Aspartate
label enrichments are presented here. The bars correspond to mean + SD of n = 3. Statistically significant
differences between glutamine deprived / oligomycin supplemented and control cells were indicated at p
<0.05 (*), p<0.01 (**)and p < 0.001 (***).
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glutamine deprivation led to more glucose incorporation into the TCA cycle, oligomycin
treatment decreased glucose incorporation into TCA cycle considerably (figure 5.2.4).
The exception to this trend was the aspartate molecule, since the label incorporation

from glucose decreased significantly in both conditions.

Results indicate that when cells are deprived of glutamine, more glucose is used to fuel
the TCA cycle. More label incorporation was observed in citrate than in a-ketoglutarate,
indicating that a portion of the glucose-derived carbons that enter the TCA cycle are
dispensed through other metabolic pathways such as lipid biosynthesis. Moreover,
malate, fumarate and aspartate (synthesized from oxaloacetate) possessed less label
incorporation than a-ketoglutarate, which hints to the fact that glucose may also be
used to synthesize glutamate (figure 5.2.4). This is concordant with the higher label
incorporation from glucose in glutamate when the cells are deprived of glutamine
(figure 5.2.2E). On the other hand, when the cell mitochondria are impaired with
oligomycin, we see a dramatic decrease in the incorporation of labels coming from
glucose in TCA cycle intermediates, which is concordant with glucose being redirected
into lactate production. This decrease is much stronger in a-ketoglutarate than citrate,
indicating that oligomycin treatment also leads MCF7 cells to redirect citrate out of the
TCA cycle for the biosynthesis of other metabolites (such as lipids). Nevertheless, and
unlike the condition of glutamine deprivation, the following elements of TCA cycle show
similar label incorporation than a-ketoglutarate, which points out that when the cells
are cultured in the presence of oligomycin, glucose-derived carbons are not directed to
the synthesis of glutamate. The fact that labeled aspartate levels decreased considerably
in both conditions indicates that oxaloacetate may be used in other metabolic events

such as pyruvate cycling [322].

Our results show that glucose significantly supplements mitochondria, although
glutamine usually remains the main substrate of the mitochondrial metabolism. In order
to better understand the alterations that the glutamine metabolism of MCF7 cells
undergoes after mitochondrial impairment, we cultured the cells in medium containing
100 % [U-"3Cs]-glutamine. Figure 5.2.3B demonstrates the integration of glutamine
carbons into mitochondrial metabolism. Glutamine is first transformed into glutamate

by GLS, and then converted into a-ketoglutarate which is subsequently decarboxilated
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Figure 5.2.5. Label incorporation in TCA cycle intermediates derived from glutamine

Isotopologue distribution of TCA cycle molecules 24 hrs after culturing the cells with 100 % [U-13C5]-
glutamine. A) Citrate, B) a-ketoglutarate, C) Malate, D) Fumarate, E) Aspartate label enrichments are
presented here .F) The flux ratio of reductive vs oxidative glutamine metabolism was roughly calculated as
the ratio between m5 labeled aKG which is estimated to be produced by GDH and m1 — m4 labeled oKG
which is estimated to be produced by IDH. The bars correspond to mean + SD of n = 3. Statistically
significant differences between oligomycin supplemented and control cells were indicated at p < 0.05 (*),
p <0.01 (**) and p < 0.001 (***).

into succinate [323]. Thus, the TCA cycle intermediates directly obtained from uniformly
labeled glutamine will contain 4 atoms of 13C (m4). On the other hand, the addition of a
carbon atom can transform a-ketoglutarate into isocitrate, which can be later converted
into citrate by the mechanism known as reductive carboxylation [128] (figure 5.2.3B,
green molecules). Reductive carboxylation of glutamine will therefore produce m5
labeled citrate and m3 labeled TCA cycle elements derived from oxaloacetate, such as
malate, fumarate and aspartate. When using [U-">Cs]-glutamine as our tracer substrate,

we studied only the effects of oligomycin treatment on MCF7 cells since the glutamine
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deprivation condition was not applicable. In the oligomycin supplementation condition,
we measured a significant increase in the proportions of m5 isotopologues of citrate and
a-ketoglutarate and m3 isotopologues of other TCA cycle intermediates, indicating that
oligomycin strongly favors reductive carboxilation of glutamine (figure 5.2.5A-E).
Moreover, we calculated the approximate flux ratio of GDH to IDH as explained in
section 4.17.4 [261] and we observed an increase in the GDH metabolism when the cells
are treated with oligomycin (figure 5.2.5F). This further evidences that oligomycin
causes MCF7 cells to alter their glutamine metabolism in order to favor the reductive

carboxylation of glutamine.

5.2.2.6. Lipid synthesis

Besides producing energy, mitochondrial metabolism also provides intermediates for
the synthesis of various macromolecules such as lipids, which are fundamental for cell
proliferation. Therefore, changes in lipid metabolism can be an interesting aspect of the
metabolic reprogramming associated to glutamine deprivation and mitochondrial
impairment in MCF7 cells. Citrate can be exported to the cytoplasm and cleaved to Ac-
CoA and oxaloacetate by means of ATP citrate lyase (ACLY), with the generated Ac-CoA
being further used to fuel lipogenesis [128]. In order to explore the metabolic changes
occurring in the lipogenesis of MCF7 cells after glutamine deprivation or oligomycin
treatment, we performed isotopologue distribution analysis of palmitate (the first
synthesized fatty acid in lipid biosynthesis), using either glucose or glutamine as a *C-
enriched tracer. Both for glutamine deprivation and oligomycin treatment conditions, a
notable decrease in label incorporation derived from [1,2—13C2]—glucose was observed
(figure 5.2.6A). Similarly, a parallel decrease was observed when the cells were
incubated with [U-*Cs]-glutamine in the presence of oligomycin (figure 5.2.6B).
Furthermore, the increase in the levels of m6 and m8 isotopologues evidences that
lipogenesis is supported by reductive carboxylation of glutamine when the mitochondria

of the MCF7 cells are impaired with oligomycin.
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Figure 5.2.6. Label incorporation into the fatty acids derived from glucose or glutamine

Isotopologue distribution of palmitate 24 hrs after culturing the cells with the medium containing A) 100
% [1,2-13C2]-glucose or B) 100 % [U-13C5]-glutamine. The bars correspond to mean * SD of n = 3. Statistically
significant differences between glutamine deprived / oligomycin supplemented and control cells were
indicated at p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).

5.2.2.7. Estimation of metabolic fluxes using Isodyn

The data obtained from spectrophotometric measurements and **C assisted
metabolomics experiments has given us information about many metabolic alterations
of MCF7 cells when subjected to glutamine deprivation or oligomycin treatment.
However, in order to get a complete picture of the dynamic state of the metabolic
fluxes, a Systems Biology approach is needed. In this way, we can simulate the dynamics
of isotopologue distribution in central metabolic pathways using tools and algorithms
which facilitate the transition between various analyzed metabolic schemes, in order to
obtain a complete map of the flux alterations that occurr in MCF7 cells under different
disturbances. We introduced all the data obtained from the different measurements
that we carried out into our in-house developed software, Isodyn, in order to determine
the metabolic flux profiles of MCF7 breast cancer cells in the different conditions. Figure
5.2.7 summarizes the qualitative changes in the metabolites and their inferred by Isodyn
(data analysis using Isodyn has been explained in detail at section 4.16). Concordant
with spectrophotometric measurements and isotopologue distribution analysis, Isodyn
demonstrated a decrease in the fluxes of glycolysis, lactate production, PPP activity, TCA
cycle utilization and fatty acid synthesis when the cells are deprived of glutamine.
Moreover, increased pyruvate cycle, which is the conversion of pyruvate to oxaloacetate

via PC followed by its conversion to malate and consequently back to pyruvate via malic
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enzyme, was emphasized as a metabolic alteration occurring in MCF7 cells when
cultured without glutamine. On the other hand, when the cells are grown in the
presence of oligomycin, increased glycolysis, lactic acid fermentation and pyruvate cycle
were estimated, together with decreased TCA cycle activity, PPP and lipogenesis. All of

the measured fluxes and their values are listed in appendix IV.
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Figure 5.3.7. Metabolic flux changes in MCF7 cells with not fully functional mitochondria

Metabolic flux map of MCF7 cells under glutamine deprivation or oligomycin treatment. The flux values
were estimated by Isodyn software. In each condition, the calculated flux was normalized against the
control condition flux, in order to calculate its net change.

5.2.3. Discussion

The importance of bioenergetics and cellular metabolism reprogramming in cancer is
receiving renewed interest of the scientist in the field [44, 324]. Thanks to abundant
advances in high-throughput technologies, “omics” sciences can now quantify a great

abundance of various biological molecules and determine the difference between
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various biological states on the levels of transcription (transcriptomics), protein
(proteomics), metabolite (metabolomics), dynamic state of molecules level (fluxomics)
and so on [325]. Nevertheless, the deep complexity and inter-connectivity of biological

I “

systems makes individual “omics” approaches unable to explain the gap between
genotype and phenotype. Therefore, to obtain a complete picture of living organisms,
multi-omics approaches which are able to integrate multiple layers of information
derived from different omics sciences are needed [326]. Several multi-omics studies
have been performed in order to understand multi-level regulations of bacterial systems
[327-329]; however, no such models are commonly available to understand human
cancer cell metabolism from a holistic point of view. Accordingly, we decided to
construct a genome scale metabolic model (GSMM) which is able to combine various

layers of different omics data, in order to reveal the mechanisms regulating the

metabolic adaptations of breast cancer cells.

To generate different conditions able to validate the accuracy of the predictions of our
model, we applied different conditions and studied the metabolic adaptations
undergone in response by breast cancer cells. Glutamine is, along glucose, the main
carbon source of the mitochondria [125], but there is still a lack of information available
regarding the functional importance of glutamine in cancer cells. The amount of
consumed glutamine is known to be increased during aerobic glycolysis or under hypoxic
conditions, but the regulation and use of glutamine by cells whose mitochondria is not
fully functional is not fully elucidated [128]. Therefore, to understand the role of
glutamine metabolism in breast cancer cells and their adaptation to its deprivation, we
chose glutamine deprivation as the first challenging condition in our model. On the
other hand, functional mitochondria are essential for cancer cells, since proliferating
cells require to build macromolecules from certain precursors which are provided by
mitochondrial metabolism [59]. Nevertheless, hypoxia is a common feature of tumor
microenvironment, and elucidating the mechanisms adopted by cancer cells to survive
after hypoxia-like mitochondrial impairment could be another challenging condition to
test our model. Construction of GSMM:s is costly and usually the collaboration among
various research groups is needed. Therefore, as one part of this multinational European

project, we generated the needed transcriptomics, metabolomics and fluxomics data
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from MCF7 breast cancer cells in normal conditions and after they were deprived of

glutamine or supplemented with oligomycin (to mimic hypoxia).

In any case, our results are able on their own to explain an important part of the
metabolic adaptations that MCF7 cells undergo when glutamine is scarce in the culture
medium or when their mitochondria are impaired. In this chapter, we explored the
metabolism of MCF7 breast cancer cells employing “*C-assisted metabolic flux analysis
with parallel labeling experiments, and applied a Systems Biology approach that allowed
us to estimate the state of the metabolic fluxes under both glutamine deprivation and
mitochondrial impairment (achieved through oligomycin supplementation) conditions.
To do this, we grew MCF7 cells in parallel, in the presence of either [1,2-**C,]-glucose or
[U-*Cs]-glutamine as the *C-labeled tracers, since they are reported to be optimal for
measuring glycolytic and TCA cycle fluxes [251, 254, 262]. Next, we measured the
production and consumption rates of certain metabolites such as glucose, glutamine,
lactate and amino acids, and we performed a comprehensive analysis of the
isotopologue distributions of many intracellular and extracellular metabolites by GC-MS.
In order to demonstrate the metabolic alterations that MCF7 cells undergo under
deprivation or glutamine or in the presence of oligomycin, we conducted flux analysis
using a detailed metabolic network model which consists of all major central carbon

metabolic pathways.

Our results show that glucose metabolism of MCF7 cells is altered in the absence of
glutamine. Both consumed glucose and produced lactate fluxes were decreased with
regards to the cells cultured in control conditions. When the cells were deprived of
glutamine, lactic acid fermentation was hindered and pyruvate was fostered to enter
into the TCA cycle, so conversion rate of glucose to lactate was decreased. Glutamine is
a vital metabolite for MCF7 cells as they show addiction to it and redirection of glucose
into TCA cycle may be to supply cells with biomolecules that are scarce due to glutamine
deprivation. When the cells were treated with oligomycin in order to mimic hypoxia, on
the other hand, spectrophotometric flux measurements demonstrated an increased
level of glucose consumption and lactate production. Previous reports have indicated
that under hypoxic conditions, glutamine consumption of the cells might be elevated

[128], but even though oligomycin mimics the major characteristics of hypoxic condition,
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here we showed that oligomycin impairment of mitochondria function entails a
decrease in glutamine consumption rates. On the other hand, with oligomycin
supplementation, the amount of produced glutamate did not show any diffirence which
indicate that use of glutamine was mostly for providing carbon backbone and due to
decreased cell proliferation, less amount of bioprecursors produced from glutamine

were needed.

The analysis of isotopologue distributions of different metabolites yielded concordant
results. Pathway specific lactate production calculations and ribose enrichment data
showed that MCF7 cells have a less active PPP when they are deprived of glutamine or
have mitochondrial impairment, which concurs with similar results in other cancer cells
under hypoxia [330]. PPP has vital importance not only for nucleotide synthesis, but also
for NADPH production, and therefore it could be hypothesized that MCF7 cells subjected
to glutamine deprivation/oligomycin supplementation may be either more sensitive to
oxidative stress or able to activate alternate sources for NADPH production. On the
other hand, both glutamine deprivation and oligomycin treatment lead cells to have
lower fluxes of TCA cycle reactions. Considering that OXPHOS is an important source of
ROS [331], it is deducible that under these conditions cells need less NADPH than
complete growth conditions. Moreover, both glutamine deprivation and oligomycin
treatment halted MCF7 cells proliferation (figure 5.2.1A); therefore, both ribose
required for DNA synthesis and NADPH required for lipid synthesis decreased, in further
correlation with PPP flux reduction. Finally, isotopologue distribution analysis revealed
that both glutamine-deprived and oligomycin-treated cells show a higher pyruvate cycle
activity (figure 5.2.7A), which in turn may provide the cells with an alternate NADPH-
producing mechanism through malic enzyme[332]. This increase in the fluxes of the
pyruvate cycle may be a mechanism cells use to compensate the decrease in NAPDH
levels produced by a reduced flux through the oxidative branch of PPP. Mass isotopomer
distribution analysis also showed that both glutamine deprivation and oligomycin
treatment increased the pyruvate carboxylase (PC) activity in detriment of pyruvate

dehdyrogenase (PDH) activity.

Next, we performed “*C-assisted metabolic flux analysis through parallel labeling

experiments using either [1,2-°C,]-glucose or [U-*Cs]-glutamine as the “*C-labeled
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substrates. We observed an increased proportion of m2 isotopologues derived from
labeled glucose in TCA cycle intermediates when the cells were deprived of glutamine.
This indicates that, in the absence of glutamine, MCF7 cells rearrange their metabolism
so that TCA cycle is fostered with carbon atoms derived from glucose. Isotopologue
distribution analysis of glutamate showed that when glutamine is withdrawn from the
culture medium, MCF7 cells tend to greatly increase the glutamate produced from
glucose-derived carbons. This glutamate could be used by the cells as a precursor for the
synthesis of other macromolecules, which would be built using glucose carbons as a
response to the lack of glutamine available. On the other hand, when the mitochondria
of MCF7 cells were impaired by oligomycin treatment, the m2 label incorporation in TCA
cycle intermediates decreased significantly, which concurs with an expected decrease in

TCA cycle activity.

Glutamine, when introduced to TCA cycle, is converted to glutamate, then to akG, and
subsequently oxidatively decarboxylated to succinate. Nonetheless, several works
maintain that some cells may reductively carboxylate aKG molecule to produce citrate
through enzyme IDH2 [132, 257, 289]. When glutamine was used as tracer, we observed
an increase in the proportion of m5 citrate isotopologue, together with an increase in
the proportion of m3 isotopologues of other TCA cycle intermediates such as malate and
fumarate. Our results strongly suggest that MCF7 cells have reductive carboxylation
activity, which is further increased in the presence of oligomycin. In this reductive
carboxylation pathway, NADPH dependent IDH2 (mitochondrial isoform) and IDH1
(cytosolic isoform) enzymes are used to produce citrate, and which is a substrate to
produce both Ac-CoA for lipid synthesis and other four carbon intermediates related to
macromolecular precursors [333]. This increase in reductive carboxylation in the
presence of oligomycin can be interpreted as a mechanism MCF7 undergo to overcome
the impairment of normal mitocohondrial oxidative function, thus maintaining synthesis
of the TCA cycle intermediates needed to support cell growth in a mechanism that
seems to be dominant in several malignant cells with defective mitochondria [128]. It is
interesting to point out that this increase in reductive carboxylation needs a
contribution of NADPH, which would further explain the observed increase in the fluxes

of pyruvate cycle after oligomycin treatment, in order to generate NADPH through malic
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enzyme. According to this results, targeting IDH isoenzymes and/or malic enzyme
together with ordinary mitochondrial activity could potentially halter MCF7 cells’
adaptive mechanisms to mithocondrial impairment, therefore affecting growth and

proliferation in a more efficient way.

Mitochondrial metabolism is the main source of precursors required for the biosynthesis
of lipids. When using glutamine as the *C-labelled substrate, we observed increased
label incorporation in palmitate (especially in the proportion of M6 and MS8
isotopologues) after oligomycin treatment, which furthers strengthens the hypothesis
that MCF7 cells activate reductive carboxylation to mediate lipogenesis when the
mitochondrial oxidative function is impaired. Lipids are essential for creating new cell
membranes, but since the cells attenuated their proliferation rate when they were
treated with oligomycin (figure 5.3.1A), the exact fate of the fatty acids newly
synthesized from glutamine after oligomycin treatment is not clear. However, lipids are
also essential for maintaining cell structure, providing energy and cellular signaling
[144]. Another possible explanation for this result may be the activation of the recycling
of lipids via B-oxidation, which would generate a futile cycle with lipogenesis. Besides,
newly synthezised fatty acids might have been secreted into the culture medium, since

extracellular fatty acid concentration was not measured.

Consumption and production rates of different metabolites measured extracellularly
together with isotopologue distribution meaurements have been combined using a
computationally-assisted Systems Biology approach in order to obtain a dynamic view of
the metabolic flux maps and their rearrangement under glutamine deprivation or
oligomycin supplementation. This has provided us with the fluxomics data to be
introduced into the GSMM to be built in order to explore the regulation of breast cancer
metabolism. We used our in-house developed software Isodyn to quantitatively analyze
the metabolic flux distributions in MCF7 cells, in order to further explore the
mechanisms these cells can use to compensate for their glutamine dependency when
adapting to glutamine deprivation or mitochondrial impairment. Analyses was
conducted assuming a metabolic steady state (not an isotopic steady state), and rapid
mixing of isotopic isomers of the same metabolite throughout different intracellular

compartments. The high initial glucose or glutamine concentration ensured the excess
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availability of these metabolites for cells to uptake the required amount. The other
incubation conditions didn’t change; therefore it is reasonable to assume a metabolic
steady state. Rapid mixing of isotopic isomers of the same species throughout the cell is
accepted for analyses of stable isotopes’ data [334]. The fitting of the experimental data
(spectrophotometric measurements of extracellular molecules and mass isotopomer
distributions) in a model of central carbon metabolism revealed the state of a set of
metabolic fluxes for each condition, which has allowed us to better understand the way
MCF7 cells adapt to glutamine deprivation or mithocondrial impairment and confirm
some of the the metabolic observations directly inferred from the spectrophotometric
measurements or isotopologue distribution analysis (figure 5.3.7). When glutamine was
withdrawn from the incubation medium, glycolytic and PPP fluxes decreased
significantly, while TCA cycle fluxes also showed a decrease. When cells were
supplemented with oligomycin, on the other hand, glycolytic fluxes for lactic acid
fermentation increased while PPP and TCA cycle fluxes showed a decrease. Pyruvate
cycle, however, showed a dramatic increase in both cases. As it has been already
discussed, one possible reason for this rearrangement is the generation of NADPH,
which might be needed to compensate a decreased NADPH production through PPP and

also to sustain an increase in reductive glutamine carboxylation.

In the previous chapter we underlined the role and importance of glutamine molecule in
breast cancer models, and in this chapter we confirmed its importance in breast cancer
cells by applying metabolic flux analysis. Besides their glutamine addiction habits [124],
breast cancer cells are also reported to contain intratumoral hypoxial regions where O,
availability is strongly reduced [335]. Under these circumstances, their mitochondria are
not fully functional and they might also be subjected to nutrient availability restrictions.
Therefore, it is important to thoroughly characterize the metabolic adaptations induced
in these cells under glutamine deprivation and hypoxia-mimicking conditions. The
mechanisms related to these metabolic adaptations might be exploited therapeutically
as part of novel combined therapies, in order to hinder the survival of the cells in the

tumoral microenvironment.
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Chapter 5.3

5.3. Glucose 6-Phosphate Dehydrogenase (G6PD) Expression and

Function are regulated via Glutamine in Colon Cancer Cells

5.3.1. Introduction

In many tumors, energy metabolism is strictly reprogrammed in order to generate
sufficient energy required for uncontrolled growth which defines cancer [15, 336].There
are different strategies to counteract metabolic changes associated to cancer cell
proliferation. On account of its roles in fundamental cellular needs such as nucleotide
biosynthesis and anti-oxidative defense, PPP has been a promising target to further
investigate in cancer cell metabolism [76, 78]. In the previous studies performed within
our team using breast cancer cell lines, we demonstrated that inhibition of glucose 6-
phosphate dehydrogenase (G6PD), the first enzyme of ox-PPP, leads to a decrease in cell
proliferation and alterations in the central carbon metabolism. Similarly, in the first
chapter of this thesis, we found out that 6-phosphogluconate dehydrogenase (6PGD),
the third enzyme of ox-PPP, had also significant importance in the proliferation of breast
cancer cells. In particular, we discovered that besides leading to cell cycle arrest and
induction of apoptosis, 6PGD inhibition also affected the metastatic potential of the cells
which is characterized as the capacity to grow in suspension. Moreover, we observed a
significant link between PPP and glutamine metabolism in breast cancer cells, since the
inhibition of 6PGD enzyme led to enhanced glutaminolysis and increased activities of
some enzymes involved in glutamine metabolism such as malic enzyme (ME) and

isocitrate dehydrogenase (IDH).
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Similar to PPP, glutamine metabolism is also involved both in redox detoxification and
nucleotide synthesis [118], implying a possible crosstalk between both pathways. In the
second chapter of this dissertation, as part of a multinational European project aiming to
build a genome scale metabolic model (GSMM) to explore deeply the regulations of
breast cancer metabolism, we investigated the effects of glutamine deprivation on
breast cancer cells using high-throughput omics technologies and we demonstrated a
link between PPP and glutamine metabolism. We expect that once completed, the
GSMM will uncover among all, the exact mechanism through which PPP and glutamine

metabolism regulate each other in breast cancer cells.

However, while construction of GSMM goes on, we wanted to further validate this link
in other cell models. Being one of the most prevalent causes of cancer related deaths
along with breast cancer in Western world [4] and having also high reliance on PPP [76],
we also decided to study the effect of reduced PPP activity and the link between
glutamine metabolism and PPP in colon cancer cells. Therefore, in this chapter we
investigated whether the inhibition of oxidative phase of PPP had any effects on the
proliferation and the other vital activities of colon cancer cells. Moreover, we also
wanted to validate whether the cross regulation between PPP and glutamine

metabolism in breast cancer cells can be generalized to colon cancer cells as well.

In short, in this chapter we have analyzed the metabolic alterations induced by the
knockdown of G6PD enzyme by RNAi-mediated silencing and the deprivation of
glutamine, in order to elucidate the potential of this enzyme to be used as a therapeutic
target in cancer therapy and the relationship between glutamine metabolism and ox-
PPP in colon cancer cells. We used HT29 cell line as a study model and we confirmed our

key results by employing another colon cancer cell line, HCT116.
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5.3.2. Results

5.3.2.1. G6PD Inhibition Alters the Proliferation of HT29 Cells

In order to test the reliance of HT29 cells on oxidative phase of PPP for proliferation and
other cellular functions, we inhibited G6PD using a pool of small interference RNA
(siRNA) containing four different sequences targeting different exonic regions of G6PD
gene. In order to obtain a relative comparison, we used as a negative control (siNEG)
which also contains a pool of four different siRNA sequences that did not target any
specific region of the genome. The analysis of G6PD gene expression 72 hrs after
transfection confirmed a successful inhibition at the mRNA level in HT29 cells, with a
decrease in fold change of more than 90 % when compared to cells transfected with
non-targeting siRNA pool (control cells) (see figure 5.3.1A). Moreover, the protein level
of G6PD was assessed 96 hrs after transfection by measuring the specific enzyme activity
and further confirmed through western blot (see figure 5.3.1B and C). We found that in
HT29 cell line siG6PD pool decreased G6PD enzyme activity around 80 % and western
blot analysis further demonstrated a visible decrease in the protein levels of this

enzyme.

Several studies including the results that we presented in the first chapter of this thesis
have shown that PPP has an important role in cell growth and proliferation [102, 212,
313, 337]. Taking this into account, we examined the role of G6PD enzyme in the
proliferation of HT29 colon cancer cell model. The effect of G6PD knockdown on the
proliferation rate of HT29 cells was measured via flow cytometry combining direct cell
counting and propidium iodide (PI) staining 120 hrs after transfection against G6PD or
control siRNA pools. Significantly, G6PD knockdown caused a reduction of approximately
25 % in the proliferation of HT29 cells compared to control cells (figure 5.3.3D). This
result indicates that HT29 colon cancer cells with altered metabolism through reduced
G6PD activity have a decreased proliferation rate compared to those with fully

functional PPP.
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Figure 5.3.1. G6PD knockdown caused the inhibition of G6PD activity and reduced the proliferation of
HT29 cells

A) G6PD mRNA expression 72 hrs after transfection with non-targeting siRNA pool (siNEG) or siRNA pool
against G6PD. Fold change was calculated with respect to cells transfected with siNEG pool. B) Total G6PD
enzyme activity normalized to intracellular protein content measured 96 hrs after transfection using either
non-targeting siRNA pool or siRNA pool against G6PD. Fold change was quantified relative to cells
transfected with siNEG pool. C) G6PD protein levels 96 hrs post transfection using either non-targeting
siRNA pool or siRNA pool against G6PD. D) Effect of G6PD knockdown on cell proliferation measured by
flow cytometry 120 hrs after transfection, for G6PD inhibited cells and cells transfected with siNEG pool.
Fold change was quantified relative to cells transfected with siNEG pool. The bars correspond to mean *
SD of n = 3. Statistically significant differences between G6PD inhibited and control cells were indicated at
p <0.05 (*), p<0.01 (**) and p < 0.001 (***).

On the other hand, it has been reported that G6PD is more actively involved in the
maintenance of the reduced pool of glutathione used for ROS detoxification than in the
production of pentose phosphates used for nucleotide synthesis [338]. Therefore, we
speculated that investigating the effects of G6PD inhibition on cell proliferation under a
strong stress-causing condition, such as hypoxia [339], which may further enhance the
activity of G6PD [340], would further highlight the importance of this enzyme in colon
cancer cells. To test our hypothesis, we transfected HT29 cells either with siRNA pool

targeting G6PD or non-targeting siRNA pool and cultured them under normal conditions
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for 72 hrs. Then, we induced hypoxia for another 72 hrs by shifting the cells to a culture
condition harboring only 1 % of O,. Nevertheless, we did not observe any significant
difference in the effects of G6PD knockdown on proliferation between the cells

subjected to high stress by hypoxia and the ones cultured under normoxic conditions

(figure 5.3.2).
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Figure 5.3.2. G6PD knockdown decreased HT29 cells proliferation both in normoxia and hypoxia

72 hrs after transfection with either siG6PD or siNEG pool, HT29 cells were incubated in normoxia or
hypoxia (1% O,) for another 72 hrs. Then, cell proliferation was determined by flow cytometry. Fold
change was quantified relative to cells transfected with siNEG pool. The bars correspond to mean * SD of
n = 3. Statistically significant differences between G6PD inhibited and control cells were indicated at p <
0.05 (*), p <0.01 (**) and p < 0.001 (***).

5.3.2.2. Glutamine Deprivation Increases G6PD Activity and Reduces Cell

Proliferation

Even though oxidative phase of PPP is the major source of NADPH required for redox
detoxification and several other key biosynthetic processes, the cytosolic isoform of the
malic enzyme (ME1) and NADP-dependent isocitrate dehydrogenase (IDH) are additional
sources of NADPH in the cells, playing also a major role in glutamine metabolism [71].
Associated with this, Jiang et al. have recently demonstrated that inhibition of both
oxidative phase of PPP and IDH enhances ROS levels in lung cancer cells [289].
Moreover, in the previous chapters, we observed a crosstalk between glutamine

metabolism and ox-PPP in breast cancer cells. Thus, we hypothesized that there might
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be a relation between G6PD and glutamine-dependent reactions for NADPH production.
Since colon cancer cells have highly active glutamine metabolism, inhibition of
glutaminase (GLS) has been reported to lead some colon cancer cells, including HT29
cells, to suppress cell proliferation and induce apoptosis [341]. GLS is the enzyme that
generates glutamate from glutamine; therefore, when it is inhibited, glutamine cannot
be metabolized in the cells. Besides inhibition of glutamine metabolism enzymes, there
are several other strategies to study glutamine metabolism such as deprivation of the

cells of glutamine [342], which we used in our study.

Taking this into account, we first wanted to uncover whether there is a direct link
between glutamine deprivation and G6PD expression level. To this end, we incubated
HT29 cells with glutamine-free medium for several time points and measured the
expression levels of G6PD gene at each time point. Interestingly, we observed a
significant increase in G6PD expression with glutamine deprivation in HT29 cells starting
after 72 hrs of deprivation (figure 5.3.3A). Similarly, we measured the effect of
glutamine deprivation on G6PD enzyme activity and, as showed in figure 5.3.3B, we also
observed an increased activity of G6PD enzyme with the absence of glutamine in the
culture medium of HT29 cell line at various time points. These results show evidence of
a metabolic relation between G6PD and glutamine metabolism in HT29 colon cancer cell
model. Knowing that glucose is vital for cancer cell survival due to their high dependence
on aerobic glycolysis, we also decided to see the effect of glucose deprivation on G6PD
levels in HT29 cells at 72 hrs in order to compare it with the effect of glutamine
withdrawal. Even though glucose deprivation also led to overexpression of both G6PD
expression and enzyme activity, the increase observed at mRNA and protein levels was

at a lesser extent than glutamine deprivation (figure 5.3.3C).

Next, we wanted to observe the effect of glutamine and glucose deprivations on the
proliferation of HT29. To this end, 24 hrs after seeding the cells, we deprived the cells of
glutamine or glucose during several time intervals. As shown at figure 5.3.3D, HT29 cells
deprived of either glutamine or glucose decreased their proliferation rate compared to
those cultured with complete medium. On the other hand, cells deprived of glutamine
did not show an increased death rate while cells cultured without glucose showed a

significantly higher death rate (figure 5.3.3E). Interestingly, unlike glucose withdrawal,
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glutamine deprivation led HT29 cell line to decrease its proliferation without increasing

cell death.
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Figure 5.3.3. Both glutamine and glucose deprivations lead to overexpression of G6PD enzyme and alter
the proliferation of HT29 cells

A) 6PGD mRNA expression after different time points of glutamine deprivation in HT29 cells (-Q). Fold
change was calculated with respect to cells cultured in the medium containing glutamine (+Q). B) Total
G6PD enzyme activity normalized to intracellular protein content measured after different time points of
depriving HT29 cells of glutamine. Fold change was quantified relative to cells cultured in the medium
containing glutamine. C) G6PD mRNA expression and total G6PD enzyme activity after 72 hrs of incubation
of HT29 cells in glucose-free medium (-Glc) compared to the cells cultured in complete medium (+Glc) D)
Cell proliferation rate of HT29 cells at 24,48,72,96 and 120 hrs after withdrawal of glutamine or glucose
from culture medium. E) Cell death rate of HT29 cells at 24,48,72,96 and 120 hrs after withdrawal of
glutamine or glucose from culture medium. The Bars correspond to mean + SD of n = 3. Statistically
significant differences between glutamine or glucose deprived cells and control cells were indicated at p <
0.05 (*), p<0.01 (**) and p < 0.001 (***).
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5.3.2.3. HCT116 Colon Cells Responds to G6PD Knockdown and Glutamine

Deprivation in a Similar Pattern as HT29 Cells

Above, we showed not only that both G6PD inhibition and glutamine deprivation have
significant effects on cell proliferation but also a strong relation between the PPP
enzyme G6PD and glutamine availability in HT29 colon cancer cells. To see if the effects
of both G6PD inhibition and nutrient deprivation observed in this cell line can be also
generalized to other cell lines, we decided to employ HCT116 cells as another colon
cancer cell model with similar characteristics to HT29 cells. In order to test the
dependence of HCT116 cells on ox-PPP for their proliferation, we transfected the cells
using either siG6PD or siNEG pool. The analysis of G6PD expression after transfection
confirmed a successful inhibition at the mRNA level (with a decrease in fold change of
gene expression greater than 90 %) and at protein level (with a decrease in fold change
of enzyme activity greater than 80 %) when compared to HCT116 cells transfected with
non-targeting siRNA pool. Western blot analysis further confirmed the successful G6PD

inhibition in these cells (see figure 5.3.4A-C).

Next, we observed that similar to HT29 cells, G6PD inhibition significantly decreased the
proliferation of HCT116 cells (figure 5.3.4D). Also, both glucose and glutamine
deprivations lead to an alteration in the proliferation of HCT116 cells in a similar pattern
as HT29 cells. While both the decrease in proliferation and the increase in cell death
were solely marginal in the absence of glutamine, glucose deprivation led to a strong
decrease in proliferation and an increase in the death of HCT116 cells (figure 5.3.4E, F).
On the other hand, the link between glutamine deprivation and the enhancement of
G6PD expression was also present in HCT116 cells since glutamine deprivation
augmented both gene expression and enzyme activity of G6PD (figure 5.3.4G). In fact,
HCT116 cells showed similar characteristics to HT29 but the effects were weaker than
the latter cells; therefore, we continued performing the rest of the study using only

HT29 cell line.
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Figure 5.3.4. G6PD inhibition and glutamine deprivation affects HCT116 colon cancer cells in the same
way as HT29 cells.

A) G6PD mRNA expression in HCT116 cells 72 hrs after transfection with non-targeting siRNA pool (siNEG)
or siRNA pool against G6PD. Fold change was calculated with respect to cells transfected with siNEG pool.
B) Total G6PD enzyme activity in HCT116 cells normalized to intracellular protein content measured 96 hrs
after transfection using either siNEG or siG6PD pool. Fold change was quantified relative to cells
transfected with siNEG. C) G6PD protein levels in HCT116 cells 96 hrs post-transfection using either siG6PD
or siNEG pool. D) Effect of G6PD knockdown on proliferation of HCT116 cells measured by flow cytometry
120 hrs after transfection, for G6PD inhibited cells and cells transfected with siNEG pool. E). Cell
proliferation rate of HCT116 cells 72 and 96 hrs after withdrawal of glutamine or glucose from the culture
medium. F) Cell death rate of HCT116 cells 72 and 96 hrs after withdrawal of glutamine or glucose from
the culture medium. G) G6PD mRNA expression and total G6PD enzyme activity after 72 hrs of incubation
of HCT116 cells in glutamine-free medium. The bars correspond to mean + SD of n = 3. Statistically
significant differences between G6PD inhibited and control cells or glutamine- / glucose- deprived cells
and control cells were indicated at p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).

5.3.2.4. Both G6PD Inhibition and Glutamine Deprivation Leads to Cell Cycle

Arrest and Induction Apoptosis in HT29 cells

PPP is essential for the biosynthesis of the nucleic acids required for cell proliferation
and is associated with cell cycle progression through G6PD, which has been described to

be regulated through the development of cell cycle, showing the highest activity at G1
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and S phases [77, 343]. Similarly, glutamine metabolism has also been linked to cell cycle
machinery by means of redox detoxification, nucleotide biosynthesis and other
metabolic activities [344]. Therefore, we speculated that G6PD enzyme and glutamine
availability might play an important role on the progression of cell cycle. To this end, we
analyzed the population of HT29 cells in each cell cycle phase upon G6PD knockdown or
glutamine deprivation. To do this, 96 hrs after transfecting the cells with siG6PD/siNEG
pools or depriving them of glutamine, we stained the cells with vindelov-Pl solution after
fixation and analyzed them using FACS in order to quantify the DNA content. The
analysis of cell cycle distribution 96 hrs after G6PD inhibition indicated a significant
arrest in S and G2 phases and a subsequent decrease in G1 phase. On the other hand,
glutamine withdrawal led HT29 cells to an arrest in G1 phase with a decrease in the

population of the cells in S phase (figure 5.3.5A).

As we mentioned before, alterations in cell cycle may induce apoptosis since cell cycle
allows cell growth and proliferation [299]. In order to check whether, besides an arrest
in cell cycle, apoptosis has been induced in HT29 cells with either G6PD inhibition or
glutamine deprivation, we conducted apoptosis assays 96 hrs after each treatment.
FACS analysis using annexin-V and Pl can assess the presence of non-apoptotic cells (no
interaction with neither annexin-V nor PI), early apoptotic cells (interaction with only
annexin-V), and late apoptotic or necrotic cells (interaction with both annexin-V and PI)
[274, 300]. Our results showed that both G6PD inhibition and glutamine withdrawal led
to an increase in the population of apoptotic cells; however, the mode of apoptosis was
distinct in both conditions. While G6PD inhibition induced late apoptosis/necrosis,
glutamine deprivation led to an increase in the population of the HT29 cells in early
apoptosis (figure 5.3.5B). Different apoptotic cell populations may be obtained
depending on the different pathways of apoptosis induced by each of two stress-causing

conditions that we applied in HT29 cells.
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Figure 5.3.5. G6PD Knockdown and Glutamine Deprivation Result in Cell Cycle Arrest and Induce
Apoptosis

A) Cell cycle distribution analysis of HT29 cells 96 hrs after transfection against G6PD or glutamine
deprivation. The percentage of cells in the different cell cycle phases was calculated using FlowJo®
software. B) Percentage of HT29 cells at different apoptosis modes 96 hrs after transfection against G6PD
or glutamine deprivation. 1x10* cells were measured by flow cytometry using Annexin V FITC kit. The bars
correspond to mean + SD of n = 3. Statistically significant differences between G6PD inhibited / glutamine
deprived and control cells were indicated at p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).

5.3.2.5. Glutamine Availability Regulates G6PD by Means of NRF2 activation

The above explained results evidenced that there is an interaction between glutamine
availability and G6PD enzyme. Thus, we wanted to explore the mechanism underlying
the increase of G6PD activity after glutamine deprivation in HT29 cell line. Nuclear factor
(erythroid-derived 2)-like 2 (NRF2) protein has been described as a transcription factor
regulating the expression of antioxidant proteins in order to protect the cells against
oxidative damage [345]. In addition, it has been reported that cells with activated RAS
pathway, such as HT29 cells, have elevated levels of NRF2 expression [92, 346].

Moreover, it is known that G6PD is regulated by NRF2 transcription factor [91]. In fact,
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NRF2 is further regulated by Kelch-like ECH-associated protein 1 (KEAP1) in a way that
under normal circumstances, NRF2 is constantly ubiquitinated by KEAP1 for its
degradation; however, under oxidative stress conditions KEAP1 is inactivated, so that
NRF2 is released and migrates to the nucleus to activate an antioxidant response
program involving several PPP genes [347]. Besides, we showed that glutamine
deprivation enhances G6PD expression in HT29 cells. Considering all this, we
hypothesized that glutamine deprivation might trigger a genetic program that is initiated

by elevated intracellular ROS levels and modulated by NRF2.

To test this, we first wanted to confirm that glutamine deprivation has a correlation with
ROS levels in HT29 cells. So, we measured the cellular ROS production using H2DCFA
probes in cells deprived of glutamine for various time points (figure 5.3.6A). We
observed that starting from 24 hrs of glutamine deprivation, there is a significant
increase in ROS levels of HT29 cells cultured without glutamine, indicating that
glutamine is involved in the maintenance of the redox status of this cell line. In redox
detoxification, as it has been mentioned earlier, glutamine is not only involved in the
production of NADPH but in the production of glutathione (GSH) as well [323].
Therefore, the elevated ROS levels observed in HT29 cells with glutamine deprivation

are expected and strengthen our hypothesis.

Next, to explore the NRF2 activation with glutamine deprivation, we measured the
expression level of NRF2 gene (codified as NFE2L2) and some other validated NRF2
target genes; such as NQO1 [91] and HMOX1 [92] in HT29 cells cultured with or without
glutamine by using quantitative real time PCR. We found out that, in cells cultured
without glutamine, not only G6PD (see figure 5.3.3A), but also both of the NRF2 target
genes (HMOX1 and NQO1) were upregulated. On the other hand, the expression levels
of NRF2 did not change (see figure 5.3.6B). Taking into account that NRF2 is constantly
ubiquitinated by KEAP1 for its degradation, we speculated that we might observe the
activation of NRF2 at protein level by performing western blot analysis. As seen in figure
5.3.6C, 24 hrs after glutamine withdrawal from the culture medium of HT29 cells, an
enhanced expression of NRF2 protein was observed. This clearly demonstrates the
activation of a genetic response mediated by NRF2 in the absence of glutamine. To sum

up, we found that glutamine deprivation in HT29 cells elevates ROS levels, which in turn
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increase the oxidative stress. Increased oxidative stress inactivates KEAP1 leading to the
release and accumulation of NRF2 transcription factor which, in turn, triggers the

increase of G6PD expression to balance the increased oxidative stress.
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Figure 5.3.6. G6PD is Regulated by Glutamine Availability

A) Relative ROS levels measured by flow cytometry using H,DCFA probes. ROS levels of HT29 cells cultured
without glutamine (-Q) are compared as fold change with respect to cells cultured with glutamine (+Q). B)
NRF2, HMOX1 and NQO1 mRNA expression levels 72, 96 or 120 hrs after depriving HT29 cells of
glutamine. Fold change was calculated with respect to cells cultured with medium containing glutamine.
C) NRF2 protein level 24 hrs after withdrawal of glutamine from the culture medium. The bars correspond
to mean * SD of n = 3. Statistically significant differences between glutamine deprived and control cells
were indicated at p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).
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5.3.3. Discussion

Several tumors have higher dependence on PPP, particularly on oxidative phase of PPP,
compared to non-transformed cells [77, 78, 265]. G6PD is a rate-limiting metabolic
enzyme that catalyzes the first step of ox-PPP and is highly expressed in various cancers,
including colon cancer [348]. The function of G6PD is highly impacted and to illustrate,
G6PD deficient erythrocytes have a life span much shorter than healthy ones [349]. In
fact, G6PD has been proposed as an attractive therapeutic target in the fight against
cancer in several studies [95, 348] as it plays an important role in the biosynthesis of
ribose and the production of NADPH, which is vital for regulation of ROS levels [350].
However, the entire mechanism by which G6PD inhibition impacts on cancer
progression is not fully elucidated [351]. One popular approach is that taking into
account that the redox detoxification system is altered in several types of tumors [101],
it has been reported that G6PD knockdown renders HepG2 liver cancer cells susceptible
to apoptosis in ROS dependent manner [95]. On the other hand, a recent study has
revealed that G6PD knockdown decreases migration of Hela cells by changing the

biophysical cell properties, thus indicating that G6PD also takes role in metastasis [351].

Glutamine, on the other hand, is a versatile nutrient having vital importance for most
cancer cells [118]. In fact, there are both in vivo and in vitro studies conducted
previously that demonstrate the importance of glutamine for cancer cells [352]. In
addition, the cytoplasmic isoform of glutaminase (GLS1), which catalyzes the first step of
glutamine metabolism, is highly expressed in colon cancer [341]. Despite the fact that
many studies have been conducted to unveil the metabolism of glutamine in tumors,
there is much to be explored yet. Unpublished data within our group have demonstrated
the importance of G6PD together with glutamine availability in breast cancer cells which
are highly dependent on PPP and have glutamine dependence. To see whether these
results are reproducible in other cell models, we decided to explore the functional
importance of G6PD and its regulation by the presence of glutamine in colon cancer cell

models.

Here, we first showed that G6PD has an important role in the proliferation of HT29 colon

cancer cells. G6PD gene expression was reduced more than 90 % by employing RNA
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interference technology, which in turn reduced the activity of this enzyme about 80 %.
This reduction led HT29 cell line to a decrease in proliferation about 25 %, which
highlights the importance of this enzyme in the proliferation of colon cancer cells.
Considering that in non-transformed cells G6PD usually works only around 2 % of its
maximum potential [353] while in cancer cells this percentage is significantly higher, it is
vital to highlight the key role of G6PD in the proliferation of tumor cells. Several other
studies in various tissues also demonstrated the importance of G6PD in cell viability
[354-356]; thus, our results showing the effect of G6PD activity on the proliferation of
HT29 is not to be underrated. It has been reported that inhibition of G6PD activity by
dehydroepiandrosterone (DHEA) in colon cancer cells augmented the flux of
nonoxidative phase of PPP by increasing the transketolase (TKT) activity for ribose
synthesis [102], which evidences the metabolic flexibility of PPP. Moreover, G6PD has
been reported to be more involved in redox detoxification than in the biosynthesis of
nucleic acid precursors [338], which agrees with our findings that G6PD inhibition alters
the proliferation of HT29 cells with a mechanism involving increased ROS levels. Taking
this into account, we considered that increasing the cellular stress would augment the
decrease in proliferation of colon cancer cells with reduced G6PD activity. However, the
combination of hypoxic culture conditions and G6PD knockdown did not decrease the
proliferation of HT29 cells in comparison to normoxic culture conditions (figure 5.3.2).
Despite the fact that G6PD activity was reduced up to 80 %, apparently the cells still
exhibit enough G6PD activity to cope with increased cellular stress. Therefore, we can
assume that the observed decrease in proliferation is not only caused by the increased
ROS levels resulting from the reduction on NADPH generation, but also by other factors

that might include reduced lipid biosynthesis in which also NADPH takes important role.

NADPH used to cope with the cellular stress is produced through several pathways,
among them PPP [74] and glutamine metabolism [323] are the most important ones. In
previous studies within our group, we observed an increased glutamine consumption
rate in breast cancer cells with reduced G6PD activity. Similarly, in the first chapter of
this thesis, we found out that inhibition of 6PGD (the third enzyme of oxidative phase of
PPP) also resulted in an increase in the glutamine consumption. So, we speculated that

there might be a crosstalk between oxidative PPP and glutamine metabolism. Moreover,
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in chapter two, we observed a clear modulation of PPP by glutamine availability in
breast cancer cells. On the other hand, G6PD activity was also reported to be regulated
by glucose availability in some cell lines [357]. Therefore, we also wanted to explore the
effects of glucose deprivation on G6PD activity and viability of HT29 cells to compare
them with the effects caused by glutamine deprivation. To this end, we deprived cells of
glutamine or glucose and observed that glutamine withdrawal led to an increase in both
the expression and the enzyme activity of G6PD at different time points, while glucose
withdrawal caused much milder effects (data not shown). Hence, we evidenced a strong
link between G6PD and glutamine or glucose availability. Interestingly, when testing
whether glutamine and glucose had effects on the viability of HT29 cells, we observed
that both glutamine and glucose withdrawal significantly reduced the proliferation of
colon cancer cells at various time points. The cells proliferate for 48 hrs after glucose
deprivation and then significantly reduced their proliferation. A recent report has
demonstrated that colon cancer cells, including HT29, increase their glutamine
metabolism when glucose is scarce in the microenvironment in order to support survival
[358]. Therefore, we can assume that cells cultured without glucose consume glutamine
and other nutrients present in the culture medium to proliferate; however, when
nutrients are scarce, the cells start to die. In contrast, cells cultured without glutamine
do not use other nutrient sources of the culture medium to maintain the proliferation

rate, since they just enter a quiescent state without exhibiting cell death.

To broaden our study, we performed the same analysis using HCT116 cells, a colon
cancer cell line with similar characteristics to HT29 cells, and we observed that the
effects of G6PD inhibition and glutamine/glucose deprivation on cell proliferation were
in the same direction as on HT29 cells but to a lesser extent. Moreover, both glutamine
and glucose deprivation in HCT116 cells enhanced the expression levels of G6PD as in
HT29 cells. Nevertheless, since the effects of glucose deprivation were similar but
weaker than those from glutamine deprivation and the responses of HCT116 cells to
G6PD inhibition or nutrient deprivation were less prominent than in HT29 cells, we

centered our study on HT29 cells and glutamine deprivation.

Cell cycle is the period between two mitotic divisions that covers a set of processes

through which cell growth and division takes place. Cell cycle progression consists of
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three phases; S phase where DNA is replicated and two gap phases before and after S
phase, called G1 and G2, respectively. The nucleotides produced by PPP are used in S
phase for DNA replication. We measured the population of the cells in each phase of the
cell cycle and we observed that HT29 cells with reduced G6PD activity were arrested in
the S and G2 phases of the cell cycle. In fact, since cells must have enough nucleotides to
overcome the checkpoint at G1 phase [77], the decreased rate of precursors for
nucleotides synthesized in the PPP must have been compensated by the activation of
the non-oxidative pathway of PPP. Besides that, Saqcena et al. reported that DNA
damaging agents induce apoptosis selectively in cancer cells arrested in S and G2 phases
of cell cycle, implying that phase specific cytotoxic drugs in combination with G6PD
inhibitors may create synthetic lethality that can be a novel therapeutic approach in the
combat against cancer [359]. On the other hand, we observed that glutamine
withdrawal arrested HT29 colon cancer cells in G1 phase, which is in concordance with
the described key roles of glutamine in the transition from G1 to S phase in cell cycle and

the nucleotide synthesis [63].

Among others, alterations in cell cycle and increased oxidative stress are strong
apoptosis inducers [156]. Since both of the experimental conditions we have studied
altered cell cycle progression and are oxidative stress stimulants, we expected to see an
apoptosis induction in HT29 cells with experimental conditions of the study. In order to
confirm the decreased proliferation of HT29 cells with G6PD inhibition or glutamine
deprivation, we assessed apoptosis assay. In both conditions, we observed a decrease in
non apoptotic cells; nonetheless, G6PD inhibition resulted in an increase in late
apoptotic and necrotic cell population, while upon glutamine deprivation, the
population of early apoptotic cells was bigger. This might be caused by an earlier
response to apoptotic signals in the cells with G6PD knockdown compared to those
cultured without glutamine. Moreover, each stress causing factor may induce a different
apoptotic pathway [360]; thus explaining the different apoptotic populations in G6PD-
inhibited and glutamine-deprived HT29 cells.

NRF2 is a pivotal transcription factor taking role in protection against oxidative stress. It
is negatively regulated by KEAP1 protein, which constantly ubiquitinates NRF2 for its

degradation through proteosomes. In the presence of enhanced oxidative stress, KEAP1
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is inactivated which in turn releases NRF2 and then, NRF2 orchestrates a ROS
detoxification program [91]. Moreover, G6PD expression and activity is controlled by
many factors, among them is also NRF2 [361]. In fact, NRF2 regulates G6PD promoter via
its antioxidant response elements (ARE) [347]. Apart from that, Son et al. has previously
reported that besides feeding mitochondrial reactions, glutamine is also a substrate for
malic enzyme which converts malate to pyruvate in return of NADPH production, and
withdrawal of glutamine from the cell environment, therefore, increases the ROS level
[362]. In our case, both expression and enzyme activity of G6PD and the level of ROS in
HT29 cells increased upon deprivation of glutamine in the culture medium. Reasonably,
we hypothesized that the augmentation of G6PD might be mediated by NRF2. To test
this, we checked the gene expression level of NRF2 and some of its target genes, HMOX1
and NQO1. Despite that NRF2 expression level was constant; its target genes had a great
increase in fold change. Checking at the protein level by western blot, we observed an
overexpression in the NRF2 protein. Thus, we confirm a direct relation between
glutamine availability and G6PD activity mediated by NRF2 transcription factor. The
expression level of NRF2 gene was constant even upon glutamine withdrawal as its
transcription and translation is constantly active and its synthesized proteins are
dominated by KEAP1. However, KEAP1 is inactivated by increased oxidative stress and
the amount of free NRF2 protein increases (figure 5.3.6C) which in turn, leads to
activation of G6PD. To best of our knowledge, this is the first study unveiling a direct

relation between glutamine metabolism and PPP enzymes.

In this chapter we manifestly showed the importance of the PPP enzyme G6PD, as well
as glutamine for the proliferation of colon cancer cells. We demonstrated that both
G6PD inhibition and glutamine deprivation led HT29 cells in cell cycle arrest and a
subsequent induction of apoptosis. Also, we unveiled the relation and regulation
between glutamine availability and the enzymes of the oxidative phase of the PPP. We
showed that G6PD is overexpressed in HT29 cells upon glutamine withdrawal as a
consequence of the increase of ROS and the induction of NRF2. Together with the
results of the previous chapters, we exhibited the potential of oxidative PPP enzymes as

therapeutic targets in the combat against cancer.
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6. GENERAL DISCUSSION

Cancer is a broad term that defines several diseases characterized by the uncontrolled
proliferation of cells, which eventually form tumors. Acquirement of different functional
and genetic abnormalities may lead non-transformed cells to escape proliferation
control mechanisms, leading to tumorigenesis and tumor progression. These abnormal
cells can aquire the capability to spread throughout the body and start a new tumorin a
distant tissue in a process called metastasis [1], which is the main reason of cancer
related deaths. The latest global cancer statistics report indicated that in 2012, 14.1
million new cancer cases and 8.2 million cancer caused deaths were detected
worldwide. Among those, the most commonly diagnosed cancers were lung (1.82
million), breast (1.67 million) and colorectal (1.36 million) [4]. These statistics show that
cancer is one of the most important causes of death worldwide, and therefore it is vital
to better understand cancer cell biology in order to design new therapeutic strategies

against the disease.

Research conducted within the last two decades has demonstrated that cancer cells
share common essential capabilities required for malignant transformation which are
sequentially acquired during tumor formation. These characteristics, defined by
Hanahan and Weinberg as hallmarks of cancer [14, 15], include a process of metabolic
reprogramming. This implies that, in order to meet the increased requirements of
energy and molecular building blocks related to accelerated cell growth, cancer cells
need to adapt their metabolism by augmenting key metabolic pathways such as
glycolysis, pentose phosphate pathway (PPP), glutaminolysis, and amino acid, lipid and
nucleic acid synthesis pathways [18, 48]. Activation of oncogenes or deactivation of
tumor suppressor genes lead tumor cells to overcome the check points of cell cycle and
induction of apoptosis, and these give them immortality [17-20]. Key oncogenes and

tumor suppressor genes which control cell cycle, apoptosis, cell proliferation and DNA
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repair have been reported to be involved in the modulation of cancer cell metabolic
reprogramming, including Myc, hypoxia inducible factor 1 (HIF1), phosphoinositide-3-
kinase (PI3K), protein kinase B (Akt), the mechanistic target of rapamycin (mTOR), p53,
retinoblastoma (RB), Bax or phosphatase and tensin homolog (PTEN)[21, 22, 41, 363].
Considering this, the study of the metabolic adaptations of cancer cells and their
connection with different oncogenic signaling pathways is a key strategy to identify new

targets for cancer therapy.

The oxidative branch of PPP is a metabolic pathway directly related with nucleotide
biosynthesis and redox detoxification, but it also has important roles in many other
aspects related to the viability of cancer cells, including proliferation, apoptosis,
invasiveness, drug resistance, and metastasis [74, 77]. Thus, the the targeting of this
pathway as a potential therapeutic approach against cancer has been considered an
interesting possibility [77, 98, 102]. Previous studies performed within our team have
demonstrated that the inhibition of one of the most important enzymes of this pathway,
glucose-6-phosphate dehydrogenase (G6PD), has important effects over MCF7 breast
cancer cells cancer cells, including decreased cell proliferation, increased cell death,
increased ROS concentrations, cell cycle arrest and altered central carbon metabolism
(data not published). In the first chapter of this Thesis, we evaluated the role of 6-
Phosphogluconate dehydrogenase (6PGD), the third enzyme of the ox-PPP which
catalyzes the conversion of 6-phosphogluconate (6-PG) to ribulose-5-phosphate, over
MCF7 and T47D breast cancer cells. We chose those cell models because of the high
reliance of breast cancer cells on PPP and their dependence on ROS detoxification to
manage their oxidative stress and maintain their survival [76, 298], and because we
wanted to investigate the possible link between 6PGD and p53 (T47D carrying a mutant copy

of p53 gene, contrary to MCF7 cells [9])

In order to explore the potential of 6PGD as a therapeutic drug target in breast cancer,
we evaluated the effect of the inhibition of 6PGD enzyme by RNA interferase (RNAI)
mediated silencing in those cell lines. Inhibition of 6PGD gene expression resulted in a
significantly decreased proliferation rate, cell cycle arrest, and induction of apoptosis in
both cell lines, with stronger effects in MCF7 cells. Inhibition of 6PGD was also shown to

provoke an increase in the activaton of p53, which provides a link between the enzyme
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and the tumor suppressor factor, and explains the higher effects of 6PGD inhibition over
MCF7 cells in comparison with MCF7 cells. Strikingly, 6PGD knockdown also altered stem
cell characteristics of both breast cancer cell lines by decreasing mammosphere
formation capabilities, and altered central carbon metabolism by increasing glutamine
consumption and increasing the activities of malic enzyme and isocitrate
dehydrogenase. These metabolic alterations probably constitute an adaptive mechanism
that breast cancer cells undergo in order to produce NADPH even after the oxidative
phase of PPP has been blocked, and therefore the simultaneous inhibition of 6PGD
together with ME or IDH may represent a promising strategy to deprive tumor cells of
their ability to compensate oxidative stress through NADPH production. All in all, the
experimental evidences presented in this work highlight the potential of 6PGD as a
putative therapeutic drug target in breast cancer treatment, to be exploited alone or in

combination with other simultaneous treatments.

In the light of the results of chapter one, which revealed that breast cancer cells might
depend on glutamine consumption to increase cell survival in harsh conditions, in
chapter two we decided to characterize the metabolic adaptations induced in breast
cancer cells under glutamine deprivation. Since breast tumors also contain intra-tumor
hypoxic regions where oxygen availability is considerably reduced [335] and
mitochondrial functionality is therefore impaired, we also decided to characterize the
metabolic adaptations induced in breast cancer cells under hypoxia-mimicking
mitochondrial impairment conditions. The study of the metabolic adaptations
undergone by cancer cells under those conditions might reveal new dependancies that
could be exploited in therapy, in order to reduce the metabolic flexibility of breast
cancer cells thus reducing their survivability. In this regard, we observed an increase in
the activity of pyruvate cycle with glutamine deprivation, thus indicating that targeting
the enzymes of this pathway such as malic enzyme could be a promising approach
combined with inhibition of glutaminase (GLS) enzyme. On the other hand, we observed
that mimicking hypoxia through oligomycin treatment redirected breast cancer cells to
increase reductive carboxylation. Considering that hypoxia is a common condition in the
tumor environment, targeting reductive carboxylation mechanism could be a novel

strategy to fight against cancer.

157



6. General Discussion

Furthermore, in order to perform a systemic study of the regulation of breast cancer
metabolism in the frame of a multinational European project, the trasncriptomics,
metabolomics and fluxomics data generated in chapter 2 will be combined with the
proteomics and phosphoproteomics data generated by a partner group in the project, in
order to produce a multi-layer Genome-Scale Metabolic Model (GSMM) which will allow
us to study the regulation of breast cancer metabolism from an holistic point of view.
This systems biology approach will allow us to study the metabolic adaptations in
response to glutamine deprivation providing information that the inhibition of individual

genes on its own is not possible to reveal [364].

In the first two chapters we unveiled the important role of PPP and glutamine in the
proliferation, survival and adaptation of breast cancer cells. Considering the promising
results, which could pave the way for the development of new combined treatments
against breast cancer, we decided to apply the same strategy on a different cell model.
In the third chapter of this Thesis, we studied to study the effects of PPP inhibition and
glutamine deprivation in HT29 colon cancer cells. After inhibiting Glucose-6-phosphate
Dehydrogenase (one of the most important enxymes of the pentose phosphate
pathway) by using RNAi mediated silencing, we observed that G6PD inhibition not only
caused a significant decrease in the proliferation rates of colon cancer cells, but also
resulted in an arrest in cell cycle and a subsequent induction of apoptosis-mediated cell
death. The effectos of G6PD inhibition over HT29 colon cancer cells were similar to the
ones observed previously in our research group when using MCF7 breast cancer cell
lines as a model (data not published), despite the fact that the achieved inhibition of
G6PD gene expression in colon cancer cells was much higher than the one previously
obtained with breast cancer cells (92 % and 60 % respectively). Considering that i) p53
inhibits G6PD by binding to it to impede its dimer formation [87], and ii) MCF7 cells carry
mutated p53 while HT29 has wild type p53 [9, 365], we can conclude that HT29 cells
have much higher G6PD activity and therefore a much stronger G6PD inhibition is

needed to get the same phenotypic results than with MCF7 cells.

Regarding glutamine dependency in HT29 colon cancer cells, we showed that while both
glucose and glutamine deprivation led to a decrease in HT29 cells proliferation,

glutamine deprivation had a much higher effect in the increase of G6PD expression
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levels. We investigated the mechanism relating glutamine deprivation and G6PD
overexpression, and we showed that G6PD is overexpressed in HT29 cells upon
glutamine withdrawal in a process involving ROS augmentation and the induction of
NRF2 transcription factor. This role of glutamine in PPP regulation suggests that
combining glutamine metabolism inhibition with the PPP inhibition might be a promising
approach in the development of new therapies against cancer, an hypothesis that is
strengthened by the fact that chemotherapy carried out during fasting has been proven

to be more effective than chemotherapy alone [366].

Throughout the different chapters of this dissertation, the analysis of tumor metabolic
reprogramming in different cancer cells has highlighted new potential targets for cancer
treatment. In this regard, we have studied and proposed pentose phosphate pathway
(PPP) enzymes as putative therapeutic targets against both breast and colon cancers,
and we have demonstrated the relationship between glutamine availability and the
regulation of the oxidative branch of PPP, highlighting the potential of novel combined
therapies. We have also explored the glutamine metabolism in breast cancer cells and
the metabolic network adaptations that they undergo in order to circumvent glutamine
deprivation and general mitochondrial impairment, highlighting novel putative
therapeutic targets to reduce cancer cells survivability in hypoxic conditions, which are
common in many different tumors. Moreover, we have generated a large amount of
data to be used for the construction of a genome scale metabolic model (GSMM), in
order to obtain a global view of the regulation of metabolic alterations in breast cancer

cells using a Systems Biology approach.

Taken together, all the results provided in this thesis demonstrate the importance of
metabolic reprogramming in cancer cell proliferation and survival, and the potential of
studying it to unveil novel therapeutic targets and design more effective combined
treatments. This work also highlights the importance of Systems Biology approaches to

comprehend the molecular mechanisms underlying complex multifactorial diseases.
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7. CONCLUSIONS

1)

1)

1)

6PGD knockdown decreases both cell proliferation through cell cycle arrest
and apoptosis induction mediated by activation of p53 tumor suppressor
gene and the stem cell like characteristics in MCF7 and T47D breast cancer
cells. G6PD inhibition also alters central carbon metabolism by increasing
glutamine consumption and the activities of malic enzyme and isocitrate
dehydrogenase, in which probably constitutes an adaptive mechanism that
breast cancer cells undergo in order to produce NADPH even after the
oxidative phase of PPP has been blocked. This highlights the potential of
6PGD as a putative therapeutic drug target in breast cancer treatment, on its
own or as part of combined treatments, and the importance of glutamine

consumption in cancer cells’ adaptation to stress conditions.

Glutamine deprivation causes an increase in the activity of pyruvate cycle in
MCF7 cells, suggesting that targeting enzymes such as malic enzyme in
combination with glutaminase could be a promising therapeutic approach.
Mimicking hypoxia through oligomycin treatment redirected breast cancer
cells to increase reductive carboxylation, suggesting that targeting reductive
carboxylation mechanism could be a novel strategy to reduce cancer cells

survivability in hypoxic conditions, which are common in many tumors.

Both G6PD enzyme and glutamine have important roles in the proliferation
and survival of HT29 colon cancer cells, highlighting the importance of PPP
and glutamine dependence in different types of cancer. Glutamine
deprivation leads to overexpression of G6PD through a mechanism involving

increased ROS levels and NRF2 transcription factor induction, which
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constitutes a previously undescribed connection between PPP and glutamine

metabolism.
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Appendix I-A: Gene Expression Profile of MCF7 Cells with Oligomycin Supplementation

Transcript

Cluster ID Fold Change Gene Symbol Description

16725041
16841575
16877451
16651801
16651535
16771534
16999070
16716507
16841561
16988902
17078981
16650469
17121916
17078870
16983456
17043152
16955822
17064848
16721675
17119208
16841530
16975458
16678343
17104519
16881863
16653299
16653401

FAM111B family with sequence similarity 111, member B

PPP1R3C protein phosphatase 1, regulatory subunit 3C
PMP22 peripheral myelin protein 22
KIAA1024L KIAA1024-like

MMP16 matrix metallopeptidase 16 (membrane-inserted)

ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9

MIR548H3 microRNA 548h-3

RNY4P23 RNA, Ro-associated Y4 pseudogene 23




16998661
17079293
17085558
16656889
16701398
16828886
16857921
17042860
16994703
16939509
16970465
16906636
17005884
16771478
16781386
16707695
16920006
16650927
16702571
16907902
17013809
16677201
17055501
17094656
16652191
16800355
16988874
17100691
17120346
16916958
16900225
17085217
17085489
17085543

CCNE2

SMYD3-IT1

GINS2

GPER
CDH18

FAT4

OR2B6

HELLS

MCM10
MIR548F2
ESR1
DTL
AGR2

WDR76
ADAMTS19

PCNA
ANKRD20A8P

ANKRD20A4

cyclin E2

SMYD3 intronic transcript 1 (non-protein coding)

GINS complex subunit 2 (Psf2 homolog)

G protein-coupled estrogen receptor 1
cadherin 18, type 2

FAT tumor suppressor homolog 4 (Drosophila)

olfactory receptor, family 2, subfamily B, member 6

helicase, lymphoid-specific

minichromosome maintenance complex component 10
microRNA 548f-2
estrogen receptor 1
denticleless E3 ubiquitin protein ligase homolog (Drosophila)
anterior gradient 2 homolog (Xenopus laevis)

WD repeat domain 76
ADAM metallopeptidase with thrombospondin type 1 motif, 19

proliferating cell nuclear antigen
ankyrin repeat domain 20 family, member A8, pseudogene

ankyrin repeat domain 20 family, member A4



17094284
16650843
17078976
16651115
16681891
17105401
16674578
16850477
17020237
16774130
16802677
16805151
16998648
16656857
16708728
16970762
16654917
16767851
16823199
16869588
16704154
16752132
17120344
16988801
16653671
16655129
16658192
16837348
16857258
17016110
17122168
16726790
16784135
17010760

PRAMEF3
CENPI

TYMS

FREM2

SFXN2
PCDH10

E2F7

ASF1B
RET
MUCL1

SLC12A2

TP73
MAP2K6
UHRF1
DCDC2

POLA2
RN5S385
NT5E

PRAME family member 3
centromere protein |

thymidylate synthetase

FRAS1 related extracellular matrix protein 2

sideroflexin 2
protocadherin 10

E2F transcription factor 7

ASF1 anti-silencing function 1 homolog B (S. cerevisiae)
ret proto-oncogene
mucin-like 1

solute carrier family 12 (sodium/potassium/chloride transporters), member 2

tumor protein p73
mitogen-activated protein kinase kinase 6
ubiquitin-like with PHD and ring finger domains 1
doublecortin domain containing 2

polymerase (DNA directed), alpha 2, accessory subunit
RNA, 5S ribosomal 385
5'-nucleotidase, ecto (CD73)



16702982
16968521
17023465
16655599
16754177
16832852
16904780
17096205
16857932
16907863
17017174
16803616
16942038
16998549
17015637
16657055
16743405
16977350
16650841
16785509
16897144
16953279
17021792
17078969
17112623
16889743
16679411
16921724
16714504
16755900
16770780
16804631
16911823
16918976

C100rf112
MIR4451

TMEM19
ATADS
SPC25

ZNF367

ERBB4

RN5S5188
ELOVL2

CDC25A
EPHA7

SYTL4

EXO1

NCAM2

ZWINT

C150rf42

DSN1

chromosome 10 open reading frame 112
microRNA 4451

transmembrane protein 19
ATPase family, AAA domain containing 5
SPC25, NDC80 kinetochore complex component, homolog (S. cerevisiae)
zinc finger protein 367

v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian)

RNA, 5S ribosomal 188
ELOVL fatty acid elongase 2

cell division cycle 25 homolog A (S. pombe)
EPH receptor A7

synaptotagmin-like 4
exonuclease 1
neural cell adhesion molecule 2
ZW10 interactor

chromosome 15 open reading frame 42

DSN1, MIND kinetochore complex component, homolog (S. cerevisiae)



16970118
17094313
16992347
17045103
16771532
16857917
16824583
16914952
16941871
16954154
16957170
16849379
16924190
16790256
16655959
16669944
16742636
16950987
16987298
17104408
16653717
16826160
16911330
17022610
17070705
17100679
17100729
16771551
16655549
16794437
16998639
17121990
16984032
17020019

SYNPO2

FGF18

GPR139
IL17RB
AMIGO3, GMPPB

KIAA1524
TK1

PDZK1

ANKRD32

SHCBP1
LOC100128668

SKP2
MCM3

synaptopodin 2

fibroblast growth factor 18

G protein-coupled receptor 139
interleukin 17 receptor B
adhesion molecule with Ig-like domain 3, GDP-mannose pyrophosphorylase B

KIAA1524
thymidine kinase 1, soluble

PDZ domain containing 1

ankyrin repeat domain 32

SHC SH2-domain binding protein 1
uncharacterized LOC100128668

S-phase kinase-associated protein 2, E3 ubiquitin protein ligase
minichromosome maintenance complex component 3



17062359
17065047
16855168
16652773
16654525
16715738
16796414
17028037
16654129
16655121
16786607
16957285
16962661
16740572
16654595
16693996
16794313
16907979
17080630
16651571
17006313
16903491
17050381
17052935
16678327
17079427
16650273
16778067
16871000
16911108
17067963
16934609
16651469
16879721

DDy EEE

2.01
2.01
2.01
2.01
2.01
2.01
2.02
2.02
2.02
2.02
2.02
2.03
2.03
2.04
2.04
2.04
2.04
2.04
2.05
2.05
2.05
2.05
2.05
2.05
2.06
2.06

RNF148

DUSP13

SYNE3

Céorf48

JDP2

CLDN1

THBS3
ABCA12

SNTB1

RND3
IFRD1
OR2A20P, OR2A9P

DCLK1

SMOX
EIF4EBP1

EPAS1, LOC100652809

ring finger protein 148

dual specificity phosphatase 13
spectrin repeat containing, nuclear envelope family member 3
chromosome 6 open reading frame 48

Jun dimerization protein 2

claudin 1

thrombospondin 3
ATP-binding cassette, sub-family A (ABC1), member 12

syntrophin, beta 1 (dystrophin-associated protein A1, 59kDa, basic component 1)

Rho family GTPase 3
interferon-related developmental regulator 1
olfactory receptor, family 2, subfamily A, member 20 and 9 pseudogenes

doublecortin-like kinase 1

spermine oxidase
eukaryotic translation initiation factor 4E binding protein 1

endothelial PAS domain protein 1, uncharacterized LOC100652809



17028041
16759346
16866849
17089525
17090296
17120402
16654535
16716918
16832350
16959441
17079210
16993405
16755526
16652973
16845336
17123894
16821479
16654413
17083614
17107118
16747661
16876517
16663809
16651371
17097560
16653127
17079417
17127647
16652863
16910618
17101126
17115881
17126254
16992467

PP PSPPI DD DD DD DD DD PP DD D DD DD H

2.06
2.07
2.07
2.07
2.07
2.07
2.08
2.08
2.08
2.08
2.08
2.08
2.08
2.09
2.09
2.09
2.1
2.11
2.11
2.11
2.12
2.12
2.12
2.13
2.14
2.15
2.15
2.16
2.17
2.17
2.17
2.17
2.17
2.18

C6orf48

MKNK2

LCN2
ASS1

BLNK
KSR1
AMOTL2
GEM

VAT1

ATP2C2

LURAP1L

ZNF449
MIR200C

AKNA

RBCK1

LOC100293744
LOC100293744

CREBRF

chromosome 6 open reading frame 48

MAP kinase interacting serine/threonine kinase 2
lipocalin 2
argininosuccinate synthase 1

B-cell linker
kinase suppressor of ras 1
angiomotin like 2
GTP binding protein overexpressed in skeletal muscle

vesicle amine transport protein 1 homolog (T. californica)
ATPase, Ca++ transporting, type 2C, member 2
leucine rich adaptor protein 1-like

zinc finger protein 449
microRNA 200c

AT-hook transcription factor

RanBP-type and C3HC4-type zinc finger containing 1
uncharacterized LOC100293744
uncharacterized LOC100293744

CREB3 regulatory factor



17075392 4 2.8

16709128 {}‘ 2.19 DUSP5 dual specificity phosphatase 5

16974968 4r 2.19 SEL1L3 sel-1 suppressor of lin-12-like 3 (C. elegans)
16656491 4 2.2

16818610 4 2.2 GPT2 glutamic pyruvate transaminase (alanine aminotransferase) 2
16961551 {}‘ 2.2 PLD1 phospholipase D1, phosphatidylcholine-specific
17104049 @ 2.2 SNORA11, MAGED2 small nucleolar RNA, H/ACA box 11, melanoma antigen family D, 2
16650269 4 2.21

16655099 4 2.21

16656629 4 2.21

16872966 4r 2.22 PSG9 pregnancy specific beta-1-glycoprotein 9
16796412 {}‘ 2.23 LINC00341 long intergenic non-protein coding RNA 341
16934238 4 2.23

16700673 {}‘ 2.25 IRF2BP2 interferon regulatory factor 2 binding protein 2
16948540 4F 2.25 B3GNT5 UDP-GIcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5
17096457 {}‘ 2.25 CORO2A coronin, actin binding protein, 2A

16654463 4 2.26

16681827 {}‘ 2.27 DHRS3 dehydrogenase/reductase (SDR family) member 3
16827764 4r 2.28 AARS alanyl-tRNA synthetase

16661544 4 2.3 SESN2 sestrin 2

16873060 @ 2.3 PLAUR plasminogen activator, urokinase receptor
16652769 4 2.31

16705810 4r 2.31 UNC5B unc-5 homolog B (C. elegans)

16858137 {}‘ 2.33 ICAM1 intercellular adhesion molecule 1

16970068 4 2.33 SNHGS8 small nucleolar RNA host gene 8 (non-protein coding)
16914812 4 2.34 CEBPB CCAAT/enhancer binding protein (C/EBP), beta
16917004 4 2.34 GPCPD1 glycerophosphocholine phosphodiesterase GDE1 homolog (S. cerevisiae)
16859819 4 2.36

16687875 @ 2.39 JUN jun proto-oncogene

16694361 {}‘ 2.39 ARHGEF2 Rho/Rac guanine nucleotide exchange factor (GEF) 2
16718241 4 241

16752877 4 2.42 INHBE inhibin, beta E

16796694 4 2.44 WARS tryptophanyl-tRNA synthetase

16962022 {}‘ 2.45 LAMP3 lysosomal-associated membrane protein 3



16999575 4  2.45

16735141 4 2.45

17021596 4 2.46 RRAGD Ras-related GTP binding D

17085901 ﬂ\" 2.46 ANXA1 annexin Al

16999580 4P 2.46

16863877 {,\r‘ 2.47 PPP1R15A protein phosphatase 1, regulatory subunit 15A
17123236 4 247

17125360 4 2.47

16755528 4  2.48

16865681 4 2.48

16751518 {} 2.49 KRT86 keratin 86

16681304 {,\r‘ 2.5 ERRFI1 ERBB receptor feedback inhibitor 1
17013195 {} 2.51 RN5S221 RNA, 5S ribosomal 221

17119472 4 251

16652771 4 2.52

16670479 {,\r‘ 2.53 Clorf51 chromosome 1 open reading frame 51
16948572 {} 2.53 KLHL24 kelch-like 24 (Drosophila)

16914117 {,\r‘ 2.54 PABPCI1L poly(A) binding protein, cytoplasmic 1-like
17106526 4 2.54 LONRF3 LON peptidase N-terminal domain and ring finger 3
16919158 {,\r‘ 2.55 TGM2 transglutaminase 2

16846291 {} 2.58 HOXB9 homeobox B9

17044253 {,\r‘ 2.58 GPNMB glycoprotein (transmembrane) nmb
16657013 4  2.59

16651383 4 2.63

16669389 4 2.65 PHGDH phosphoglycerate dehydrogenase
16841907 {,\r‘ 2.66 RASD1 RAS, dexamethasone-induced 1
16919547 4 2.66 SLPI secretory leukocyte peptidase inhibitor
16738512 {,\r‘ 2.68 SLC43A1 solute carrier family 43, member 1
16665932 4F 2.69 GADDA45A growth arrest and DNA-damage-inducible, alpha
16782548 {,\r‘ 2.69 PCK2 phosphoenolpyruvate carboxykinase 2 (mitochondrial)
16840723 4F 2.69 SAT2 spermidine/spermine N1-acetyltransferase family member 2
16931763 4 2.69

16722445 4 271

16656649 4 2.72



16678348
16844509
17095703
17080788
16705961
16852683
16860644
16711343
16791219
16890207
16725783
16686201
16918074
16910609
16971420
16739208
16821737
16847771
17090320
17120106
16934608
16874097
16697196
16830577
17086193
17019484
17126054
17126164
16985950
17009093
17022736
17125034
16975302
17060061

N T L T T T L L L L & L LT T T T S S ey

2.73
2.75
2.75
2.78
2.81
2.81
2.85
2.88
2.94
2.94
2.95

3.07
3.11
3.14
3.14
3.2
3.25
3.26
3.27
3.28
3.35
3.35
3.41
3.46
3.47
3.47
3.55
3.64
3.64
3.7
3.86
4.04

KRT23
NFIL3
FBX032
DDIT4
PMAIP1
CEBPG
AKR1C2
TGM1
MAP2
BEST1
SLC6A9

TRIB3

FTH1
LOC100506670
ERN1

HSD17B14
FAM129A
CD68
PSAT1
GTPBP2

MAP1B
VEGFA
TUBE1

ASNS

keratin 23 (histone deacetylase inducible)
nuclear factor, interleukin 3 regulated
F-box protein 32
DNA-damage-inducible transcript 4
phorbol-12-myristate-13-acetate-induced protein 1
CCAAT/enhancer binding protein (C/EBP), gamma
aldo-keto reductase family 1, member C2

transglutaminase 1 (protein-glutamine-gamma-glutamyltransferase)

microtubule-associated protein 2
bestrophin 1

solute carrier family 6 (neurotransmitter transporter, glycine), member 9

tribbles homolog 3 (Drosophila)

ferritin, heavy polypeptide 1
uncharacterized LOC100506670
endoplasmic reticulum to nucleus signaling 1

hydroxysteroid (17-beta) dehydrogenase 14
family with sequence similarity 129, member A
CD68 molecule
phosphoserine aminotransferase 1
GTP binding protein 2

microtubule-associated protein 1B
vascular endothelial growth factor A
tubulin, epsilon 1

asparagine synthetase (glutamine-hydrolyzing)



16859800
16799739
16825371
17125036
17125030
16811684
17125028
16769481
16931766
17125032
16850663
16766578
16929562
16979917
16980051
16873686
17013657

Do

4.2
4.25
4.31
4.41
4.49
5.13
5.26
5.44
5.46
5.61
5.84

6.4
6.74
6.83
7.82
7.97

12.39

MIR3189 microRNA 3189
CHAC1 ChaC, cation transport regulator homolog 1 (E. coli)
NUPR1 nuclear protein, transcriptional regulator, 1
CYP1A1 cytochrome P450, family 1, subfamily A, polypeptide 1
ALDH1L2 aldehyde dehydrogenase 1 family, member L2
KLHDC7B kelch domain containing 7B
MGC11082 uncharacterized LOC84777
DDIT3 DNA-damage-inducible transcript 3
HMOX1 heme oxygenase (decycling) 1
SLC7A11 solute carrier family 7 (anionic amino acid transporter light chain, xc- system
CLGN calmegin

ULBP1 UL16 binding protein 1



Appendix I-B: Gene Expression Profile of MCF7 Cells with Glutamine Deprivation

Transcript

Fold Change Gene Symbol Description
Cluster ID g Yy ipti

16655785
16678343
16769753
16650765
16939509
16652995
17043152
16835635
16771470
16678323
16771532
16650285
16722387
16651697
16835617
16764106
16934243
16656835
16651031
16771468
16657077
16722401
16769742
17104408
16769734
16924190
17121916




16674578
16770461
16650733
16651207
16735804
16990143
17127661
16771538
16654231
16654477
16939508
16655365
16654229
17090320
16880240
16898486
16678348
17092738
16771448
16669389
17125030
16889717
17006313
17073244
17104049
17125036
16769481
16855164
16934238
17120106
16735141
17013195
17119472
17086193

PIDDDD DD DD DD D DD DD DD P ppepopop o o o) =) LSS

-2.07
-2.07
-2.05
-2.03
-2.02

2.02
2.02
2.04
2.08
2.08
2.13
2.15
2.15
2.15
2.16
2.16
2.18
2.19
2.22
2.25
2.29
2.3
2.35
2.38
2.46
2.49
2.5
2.53
2.54
2.55
2.61
2.61
2.67

PHGDH

SNORA11, MAGED2

ALDH1L2

RN5S221

PSAT1

phosphoglycerate dehydrogenase

small nucleolar RNA, H/ACA box 11, melanoma antigen family D, 2

aldehyde dehydrogenase 1 family, member L2

RNA, 5S ribosomal 221

phosphoserine aminotransferase 1



16799739
16807312
17125028
16650925
16811684
17125034
17060061
17017207
16934608
16975302
16979917
17125032
16873686
17013657

T L L

2.68
2.68
2.7
2.71
2.74
2.78
2.96
3.18
3.33
3.35
3.4
3.67
4.07
4.74

CHAC1

CYP1A1

ASNS

SLC7A11

ULBP1

ChaC, cation transport regulator homolog 1 (E. coli)

cytochrome P450, family 1, subfamily A, polypeptide 1

asparagine synthetase (glutamine-hydrolyzing)

solute carrier family 7 (anionic amino acid transporter light chain, xc- system), member 11

UL16 binding protein 1
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APPENDIX II: Complete spectrophotometer measurements results presented in chapter 5.2

Spectrophotometric measurements (umol-millioncell'l-h'l)

Glucose Consumption Lactate Production Glutamine Consumption (x5) Glutamate Production (x20)
Mean 0.9950 1.2066 2.2358 0.2805
Control SD 0.1256 0.0376 0.1971 0.0682
Mean 0.9145 0.6868
8 hrs
-Q SD 0.0254 0.0131
data
Mean 1.8198 2.6139 2.9514 0.9066
Oligomycin SD 0.0262 0.0413 0.4890 0.0094
Mean 0.9248 1.2680 1.9800 0.7226
Control SD 0.0310 0.0348 0.0350 0.0735
Mean 0.6852 0.8533
24 hrs
-Q SD 0.0491 0.0275
data
Mean 1.8775 3.2092 1.5350 0.7378
Oligomycin SD 0.0370 0.0102 0.0500 0.0183
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APPENDIX Ill: Suplementary data for mass isotopomer distribution of metabolites presented in chapter 5.2

Lactate
8 Hrs Data 24 Hrs Data
Tracer Condition MO [\ M2 M3 M MO [\ M2 M3 M
Mean 0.575 0.025 0.394 0.006 0.425 0.589 0.043 0.321 0.017 0.411
Control SD 0.007 0.002 0.010 0.002 0.007 0.032 0.020 0.014 0.003 0.032
[1,2 13 | Mean 0.589 0.025 0.380 0.006 0.411 0.602 0.031 0.308 0.004 0.398
’ 2 -Q SD 0.003  0.005 0.005 0.002 0.003 0.036 0.012 0.019 0.001 0.036
glucose
Mean 0.554  0.009 0.434 0.002 0.446 0.548 0.011 0.440 0.001 0.452
Oligomycin SD 0.002 0.001 0.004 0.001 0.002 0.020 0.001 0.022 0.001 0.020
Mean 0.984 0.006 0.004 0.006 0.016 0.981 0.009 0.002 0.007 0.019
Control SD 0.002 0.001 0.000 0.002 0.002 0.008 0.007 0.001 0.001 0.008
[U-"C5)-
glutamine Mean 0.995 0.001 0.002 0.003 0.005 1.000 0.000 -0.001 0.001 0.000
Oligomycin SD 0.001 0.001 0.000 0.001 0.001 0.003 0.001 0.000 0.001 0.003




Glutamate (C2-C4)

8 Hrs Data 24 Hrs Data
Tracer Condition MO [\ M2 M3 M MO [\ M2 M3 M
Mean 1.012 0.000 0.000 0.000 0.000 0.993 0.005 0.002 0.001 0.007
Control SD 0.006  0.005 0.001 0.001 0.006 0.001 0.001 0.000 0.000 0.001
12.5¢ | Mean 0.845 0.117 0.019 0.020 0.155 0.809 0.121 0.052 0.018 0.191
[1,2-7C,]- -Q SD 0.061 0.046 0.006 0.009 0.061 0.004 0.003 0.001 0.002 0.004
glucose
Mean 1.007 0.000 -0.001 0.000 0.000 0.994 0.004 0.001 0.001 0.006
Oligomycin SD 0.006  0.005 0.001 0.001 0.006 0.001 0.000 0.000 0.000 0.001
Mean 0.076  0.015 0.021 0.888 0.924 0.059 0.009 0.033 0.898 0.941
Control SD 0.004 0.004 0.000 0.008 0.004 0.000 0.000 0.000 0.000 0.000
[U-"C5)-
glutamine Mean 0.081 0.014 0.021 0.884 0.919 0.067 0.008 0.035 0.891 0.933
Oligomycin SD 0.003 0.003 0.000 0.006 0.003 0.004 0.000 0.000 0.004 0.004




Glutamate (C2-C5)

8 Hrs Data 24 Hrs Data
Tracer Condition MO [\ M2 M3 M4 M MO /K M2 M3 M4 M
Mean 0.996 0.000 0.001 0.000 0.002 0.004 | 0.996 0.000 0.004 0.001 0.000 0.004
Control SD 0.004 0.000 0.000 0.000 0.004 0.004 | 0.000 0.000 0.000 0.000 0.000 0.000
[12 13 | Mean 0.971  0.008 0.016 0.002 0.002 0.029 | 0.825 0.053 0.080 0.027 0.015 0.175
e -Q SD 0.003 0.000 0.000 0.002 0.002 0.003 | 0.000 0.001 0.000 0.000 0.002 0.000
glucose
Mean 1.000 0.000 0.001 0.000 0.000 0.000 [ 0.997 0.000 0.004 0.000 0.000 0.003
Oligomycin SD 0.000 0.000 0.000 0.000 0.000 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000
Mean 0.050 0.002 0.010 0.027 0.911 0.950 | 0.057 0.004 0.015 0.036 0.887 0.943
Control SD 0.002 0.000 0.000 0.000 0.002 0.002 | 0.000 0.000 0.000 0.000 0.000 0.001
[U-"C5)-
glutamine Mean 0.055 0.002 0.010 0.027 0.906 0.945 | 0.064 0.003 0.016 0.036 0.880 0.936
Oligomycin SD 0.002 0.000 0.000 0.000 0.001 0.002 | 0.003 0.000 0.000 0.000 0.003 0.003




Ribose

8 Hrs Data 24 Hrs Data
Tracer Condition MO [\ M2 M3 M4 M5 M MO [\ M2 M3 M4 M5 IM
Mean 0.876 0.074 0.014 0.025 0.009 0.001 0.124| 0.762 0.108 0.034 0.074 0.022 0.002 0.238
Control SD 0.005 0.004 0.000 0.001 0.001 0.000 0.005| 0.005 0.003 0.001 0.001 0.001 0.000 0.005
[12 13 | Mean 0.930 0.041 0.009 0.015 0.005 0.000 0.070| 0.923 0.003 0.022 0.037 0.013 0.001 0.077
,I oo -Q SD 0.007 0.003 0.001 0.002 0.001 0.001 0.007| 0.005 0.003 0.001 0.001 0.000 0.000 0.005
glucose
Mean 0.958 0.022 0.004 0.011 0.005 0.000 0.042| 0.974 0.000 0.011 0.034 0.013 0.001 0.026
Oligomycin SD 0.001 0.001 0.000 0.000 0.001 0.001 0.001| 0.001 0.000 0.000 0.001 0.000 0.000 0.001
Mean 0.992 0.003 0.000 0.004 0.000 0.000 0.008| 1.104 0.000 -0.002 0.000 -0.001 0.000 -0.104
Control SD 0.009 0.006 0.005 0.008 0.002 0.002 0.009| 0.001 0.001 0.000 0.000 0.000 0.000 0.001
[U-"C5)-
glutamine Mean 1.000 0.000 0.001 -0.001 0.001 0.000 0.000| 1.104 0.000 -0.003 -0.001 -0.001 0.000 -0.104
Oligomycin SD 0.001 0.001 0.000 0.000 0.001 0.000 0.001| 0.005 0.002 0.000 0.000 0.001 0.001 0.005




Citrate

8 Hrs Data 24 Hrs Data
Tracer Condition MO [\ M2 M3 M4 M5 M6 M MO /K M2 M3 M4 M5 M6 M
Mean 0.664 0.054 0.286 0.014 0.000 0.000 0.000 0.336] 0.433 0.082 0.335 0.065 0.072 0.012 0.002 0.567
Control SD 0.004 0.001 0.003 0.002 0.001 0.000 0.000 0.004 | 0.005 0.001 0.004 0.002 0.001 0.000 0.000 0.005
[12 13 | Mean 0.593 0.075 0.308 0.027 0.013 0.000 0.000 0.407 | 0.383 0.099 0.334 0.076 0.092 0.013 0.003 0.617
,I oo -Q SD 0.014 0.006 0.002 0.003 0.003 0.000 0.000 0.014 | 0.003 0.003 0.000 0.000 0.001 0.001 0.000 0.003
glucose
Mean 0.900 0.002 0.151 0.000 0.000 0.003 0.000 0.100 | 0.656 0.047 0.251 0.003 0.038 0.006 0.000 0.344
Oligomycin SD 0.025 0.025 0.049 0.018 0.002 0.002 0.001 0.025| 0.001 0.003 0.005 0.005 0.002 0.001 0.001 0.001
Mean 0.579  0.099 0.063 0.074 0.178 0.026 0.000 0.421 | 0.457 0.117 0.142 0.079 0.167 0.036 0.002 0.543
Control SD 0.006  0.002 0.002 0.002 0.001 0.004 0.000 0.006 | 0.004 0.002 0.011 0.002 0.006 0.003 0.000 0.004
[U-"C5)-
glutamine Mean 0.630 0.033 0.027 0.102 0.167 0.058 0.000 0.370 | 0.481 0.058 0.100 0.100 0.145 0.114 0.003 0.519
Oligomycin SD 0.022 0.015 0.003 0.011 0.005 0.019 0.000 0.022 | 0.019 0.005 0.005 0.005 0.004 0.008 0.001 0.019




a-Ketoglutarate

8 Hrs Data 24 Hrs Data
Tracer Condition MO [\ M2 M3 M4 M5 M MO [\ M2 M3 M4 M5 IM
Mean 0.832 0.043 0.115 0.015 0.000 0.000 0.171| 0.635 0.073 0.209 0.046 0.032 0.004 0.365
Control SD 0.014 0.004 0.010 0.000 0.001 0.000 0.014| 0.003 0.000 0.002 0.001 0.001 0.000 0.003
12.5¢ | Mean 0.734 0.072 0.152 0.031 0.014 -0.002 0.269] 0.516 0.107 0.243 0.074 0.053 0.009 0.484
: ,I G -Q SD 0.016  0.002 0.011 0.002 0.001 0.001 0.016( 0.018 0.008 0.007 0.001 0.004 0.001 0.018
glucose
Mean 0.940 -0.002 0.072 0.001 -0.008 -0.002 0.062| 0.848 0.018 0.108 0.014 0.010 0.002 0.152
Oligomycin SD 0.026  0.005 0.020 0.002 0.001 0.000 0.026| 0.004 0.002 0.003 0.001 0.001 0.001 0.004
Mean 0.419 0.075 0.043 0.129 0.009 0.326 0.255| 0.314 0.096 0.076 0.147 0.021 0.346 0.686
Control SD 0.032 0.004 0.007 0.006 0.001 0.016 0.017| 0.004 0.002 0.002 0.001 0.000 0.003 0.004
[U-"C5)-
glutamine Mean 0.204 0.041 0.063 0.142 0.023 0.527 0.269| 0.207 0.035 0.064 0.123 0.031 0.540 0.793
Oligomycin SD 0.009 0.002 0.001 0.006 0.000 0.004 0.005| 0.020 0.005 0.004 0.006 0.002 0.014 0.020




Fumarate

8 Hrs Data 24 Hrs Data
Tracer Condition MO [\ M2 M3 M4 M MO /K M2 M3 M4 M
Mean 0.805 0.053 0.118 0.022 0.002 0.195 | 0.744 0.073 0.165 0.012 0.006 0.256
Control SD 0.013 0.001 0.003 0.007 0.002 0.013 | 0.001 0.001 0.001 0.001 0.000 0.001
[12 15 | Mean 0.713  0.070 0.191 0.021 0.004 0.287 | 0.719 0.100 0.222 0.000 0.002 0.281
R -Q SD 0.007 0.007 0.014 0.001 0.000 0.007 | 0.012 0.004 0.002 0.000 0.018 0.012
glucose
Mean 0.875 0.027 0.080 0.017 0.002 0.125 [ 0.873 0.029 0.097 0.000 0.002 0.127
Oligomycin SD 0.005 0.002 0.003 0.007 0.001 0.005 | 0.007 0.002 0.000 0.005 0.000 0.007
Mean 0.457 0.089 0.135 0.105 0.213 0.543 |0.418 0.103 0.157 0.100 0.222 0.582
Control SD 0.009 0.002 0.002 0.005 0.002 0.009 | 0.013 0.002 0.003 0.004 0.004 0.013
[U-"C5)-
glutamine Mean 0.448 0.038 0.111 0.201 0.201 0.552 | 0.389 0.040 0.127 0.218 0.226 0.611
Oligomycin SD 0.018 0.005 0.004 0.004 0.005 0.018 | 0.006 0.003 0.003 0.007 0.001 0.006




Malate

8 Hrs Data 24 Hrs Data
Tracer Condition MO [\ M2 M3 M4 M MO /K M2 M3 M4 M
Mean 0.812 0.051 0.123 0.014 0.000 0.188 | 0.741 0.070 0.159 0.025 0.005 0.259
Control SD 0.001 0.000 0.001 0.000 0.000 0.001 | 0.004 0.001 0.003 0.000 0.000 0.004
[12 15 | Mean 0.755 0.056 0.172 0.015 0.002 0.245 | 0.712 0.068 0.188 0.024 0.008 0.288
R -Q SD 0.015 0.006 0.008 0.002 0.000 0.015 | 0.009 0.003 0.005 0.001 0.001 0.009
glucose
Mean 0.884 0.026 0.082 0.007 0.000 0.116 | 0.876 0.025 0.090 0.008 0.002 0.124
Oligomycin SD 0.007 0.002 0.005 0.000 0.000 0.007 | 0.003 0.001 0.002 0.000 0.000 0.003
Mean 0.486  0.096 0.141 0.099 0.178 0.514 | 0.478 0.105 0.149 0.094 0.175 0.522
Control SD 0.002 0.001 0.001 0.001 0.001 0.002 | 0.040 0.006 0.011 0.011 0.012 0.040
[U-"C5)-
glutamine Mean 0.462 0.047 0.122 0.197 0.172 0.538 [ 0.408 0.046 0.125 0.234 0.188 0.592
Oligomycin SD 0.012 0.003 0.003 0.009 0.004 0.012 | 0.000 0.000 0.000 0.004 0.003 0.000




Aspartate

8 Hrs Data 24 Hrs Data
Tracer Condition MO [\ M2 M3 M4 M MO /K M2 M3 M4 M
Mean 0.867 0.038 0.084 0.011 0.001 0.133 | 0.784 0.062 0.129 0.022 0.004 0.216
Control SD 0.006  0.002 0.004 0.002 0.000 0.006 | 0.005 0.001 0.003 0.001 0.000 0.005
[12 15 | Mean 0.963 0.011 0.030 -0.004 0.000 0.037 [ 0.940 0.018 0.041 0.000 0.001 0.060
e -Q SD 0.004 0.002 0.006 0.008 0.000 0.004 | 0.003 0.000 0.001 0.002 0.000 0.003
glucose
Mean 0915 0.019 0.059 0.006 0.001 0.085 | 0.936 0.014 0.046 0.002 0.001 0.064
Oligomycin SD 0.010 0.002 0.007 0.001 0.000 0.010 | 0.000 0.000 0.000 0.000 0.000 0.000
Mean 0.660 0.068 0.097 0.061 0.115 0.340 | 0.586 0.089 0.120 0.067 0.137 0.414
Control SD 0.007 0.002 0.003 0.002 0.002 0.007 | 0.008 0.002 0.002 0.001 0.003 0.008
[U-"C5)-
glutamine Mean 0.698 0.031 0.074 0.096 0.101 0.302 | 0.748 0.023 0.056 0.094 0.080 0.252
Oligomycin SD 0.026  0.001 0.005 0.012 0.007 0.026 | 0.009 0.001 0.002 0.006 0.001 0.009




Palmitate

Time Tracer Condition MO M1 M2 M3 M4 M5 M6 M7 M8 M
Mean | 0.907 0.001 0.018 0.007 0.022 0.009| 0.020 0.006 0.011 0.093
Control SD 0.000 0.001 0.000 0.000 0.000 0.000| 0.000 0.000 0.000 0.000
12.55¢ Mean | 0.934 0.000 0.013 0.005 0.016 0.006| 0.014 0.004 0.008 0.066
[1,2-7C,]- -Q SD 0.002 0.000 0.000 0.000 0.000 0.000| 0.001 0.000 0.000 0.002
glucose
Mean | 0.954 0.000 0.013 0.002 0.013 0.002| 0.010 0.001 0.005 0.046
8 Hrs Data Oligomycin| SD 0.009 0.000 0.002 0.000 0.002 0.000| 0.002 0.000 0.002 0.009
Mean | 0.932 0.002 0.036 0.005 0.015 0.002| 0.005 0.001 0.001 0.068
Control SD 0.001 0.000 0.001 0.000 0.000 0.000| 0.000 0.000 0.000 0.001
[U-"Cs)-
glutamine Mean | 0.947 0.001 0.018 0.002 0.015 0.002| 0.010 0.001 0.004 0.053
Oligomycin| SD 0.001 0.001 0.000 0.000 0.000 0.000| 0.000 0.000 0.000 0.001
Mean | 0.794 0.004 0.030 0.014 0.046 0.021| 0.046 0.017 0.028 0.206
Control sD 0.011 0.001 0.002 0.001 0.002 0.001| 0.002 0.001 o0.001 0.011
[1,2 15 ] Mean | 0.858 0.003 0.022 0.010 0.032 0.015| 0.030 0.011 o0.018 0.142
’ 2 -Q SD 0.012 0.001 0.002 0.001 0.003 0.001| 0.002 0.001 0.001 0.012
glucose
Mean | 0.892 0.002 0.029 0.005 0.031 0.006| 0.021 0.003 0.010 0.108
24 Hrs Data Oligomycin| SD 0.001 0.000 0.000 0.000 0.000 0.000| 0.000 0.000 0.000 0.001
Mean | 0.877 0.006 0.065 0.010 0.027 0.004| 0.008 0.001 0.002 0.123
Control SD 0.007 0.000 0.005 0.001 0.002 0.000| 0.001 0.000 0.000 0.007
[U-"Cs)-
glutamine Mean | 0.901 0.001 0.028 0.003 0.028 0.004| 0.021 0.002 0.012 0.099
Oligomycin| SD 0.013 0.001 0.003 0.000 0.003 0.000| 0.003 0.000 0.002 0.013




APPENDIX IV

217



218



APPENDIX IV: Suplementary data for the measured fluxes presented in chapter 5.2

Absolute Fluxes (umol-million cells*-h?)

Reaction By means of
Control (-Q) Oligo
Glycolysis-Glyconeogenesis
Glc - G6P HK 0.92500 0.68500 1.87800
F6P - F16BP PFK 0.90018 1.01668 1.88337
F16BP - F6P FBPase 0.04782 0.37451 0.11875
F16BP - T3P Aldolase (f) 1.60939 1.48197 2.35636
T3P - F16BP Aldolase (r) 0.75704 0.85010 0.62602
F16BP - T3P Aldolase (net flux) 0.85236 0.63187 1.73035
T3P > > PEP Low glycolysis (f) 1.72229 1.27374 3.50095
PEP - T3P Low glycolysis (r) 0.00033 0.00031 0.00022
T3P ->-> PEP Low glycolysis (net flux) 1.72196 1.27343 3.50073
PEP -> Pyr(cyt) PK 1.71688 1.26065 3.50009
Pyr(cyt)) = Pyr(mit) Pyruvate Transport (f) 0.32178 0.06800 0.07220
Pyr(mit) - Pyr(cyt) Pyruvate Transport (r) 0.00250 0.01226 0.00651
Pyr(cyt)) = Pyr(mit) Pyruvate Transport (net flux) 0.31928 0.05574 0.06570
Pyr(cyt) >Lac LDH (f) 1.58931 1.53494 3.67047
Lac = Pyr(cyt) LDH (r.) 0.00184 0.00100 0.04143
Pyr(cyt) >Lac LDH (net flux) 1.58747 1.53394 3.62903
Krebs Cycle Intermediates
Pyr(mit) - Ac-CoA PDH 0.42714 0.10320 0.14094
(Oaa+Ac-CoA) - Cit (mit) CS (citrate Synthase) 0.33669 0.13356 0.21734
Cit (mit) - Cit (cyt) Citrate Transport (f) 0.53485 0.34518 0.76519
Cit (cyt) = Cit (mit) Citrate Transport (r) 0.34149 0.23369 0.60515
Cit (mit) - Cit (cyt) Citrate Transport (net flux) 0.19336 0.11150 0.16005
Cit (mit) >-> aKG (mit) Multiple Enzymes 0.07129 0.01907 0.03631
aKG(mit) = aKG(cyt)/Glu(cyt) aKG Transport (f) 0.47719 0.74918 0.91378
aKG(cyt)/Glu(cyt) > aKG (mit) aKG Transport (r) 0.72995 0.78238 1.25771
aKG(mit) = aKG(cyt)/Glu(cyt) oKG Transport (net flux) -0.25276 -0.03320 -0.34394
aKG (mit) =-> Fum(mit) Multiple Enzymes 0.31494 0.05190 0.31338
Fum(mit) - Mal(mit) Fumarase (f) 0.31445 0.06011 0.41322
Mal(mit) - Fum(mit) Fumarase (r) 0.02914 0.00830 0.15071
Fum(mit) - Mal(mit) Fumarase (net flux) 0.28530 0.05181 0.26251
Mal(mit) - Oaa(mit) MDH (f) 0.61049 0.42115 9.74136
Oaa(mit) > Mal(mit) MDH (r) 0.41855 1.70690 9.76261
Mal(mit) > Oaa(mit) MDH (net flux) 0.19194 -1.28575 -0.02126
Pyr(mit) > Oaa(mit) PC 0.14491 1.42278 0.27596
Mal(mit) = Pyr(mit) ME (Malic Enzyme) 0.16828 1.38581 0.28468
Mal(mit) = Mal(cyt) Malate Transport (f) 0.01483 0.01098 0.09019
Oaa(cyt) - Mal(mit) Malate Transport (r) 0.10512 0.07178 0.14730
Mal(cyt) = Pyr(cyt) ME (Malic Enzyme) 0.00116 0.00070 0.00804




Absolute Fluxes (umol-million cells™*-h™)

Reaction By means of
Control (-Q) Oligo
Glutaminolysis - Lipid Synthesis - Oxidation
GIn = Glu(cyt) Glutaminase 0.04822 0.00000 0.05669
Glu(cyt) = GIn GS (Glutamine Synthetase) 0.00000 0.00000 0.00000
GIn = Protein Protein synthesis 0.21699 0.00000 0.09070
Glu(ext) = Glu(cyt) Glutamate Transport (f) 0.34411 0.00000 0.48269
Glu(cyt) - Glu(ext) Glutamate Transport (r) 0.11959 0.00000 0.19454
Glu(ext) = Glu(cyt) Glutamate Transport (net flux) 0.22453 0.00000 0.28815
aKG(cyt)/Glu(cyt) >-> cyt (cyt) Multiple Enzymes (f) 0.00979 0.00018 0.02086
cyt (cyt) >—> aKG(cyt)/Glu(cyt) Multiple Enzymes (r) 0.03244 0.03746 0.03574
aKG(cyt)/Glu(cyt) >-> cyt (cyt) Multiple Enzymes (net flux) -0.02265 -0.03728 -0.01488
Ac-CoA(cyt) - Lipids Multiple Enzymes 0.10388 0.06609 0.10584
Lipids = -> AcCoA(mit) Multiple Enzymes 0.04110 0.03043 0.07718
Amino Acids
Pro(ext) = Pro(cyt) Proline Transport (f) 0.04255 0.02980 0.00000
Pro(cyt) - Pro(ext) Proline Transport (r) 0.01338 0.00801 0.00292
Pro(ext) = Pro(cyt) Proline Transport (net flux) 0.02917 0.02178 -0.00292
Pro(cyt) - Protein Protein synthesis 0.00080 0.00056 0.00000
Pro(cyt) = Glu(cyt) Proline Oxidase 0.00000 0.00000 0.00000
Ala(cyt) - Ala(ext) Alanine Transport (f) 0.06735 0.04168 0.11381
Ala(ext) = Ala(cyt) Alanine Transport (r) 0.27792 0.36520 0.30566
Ala(ext) - Ala(cyt) AlanineTransport (net flux) 0.21057 0.32353 0.19184
Ala(cyt) = Protein Protein synthesis 0.00208 0.00097 0.00504
Trp (cyt) >—> Ala(cyt) Multiple Enzymes 0.00500 0.00019 0.00939
Cys(ext) = Cys(cyt) Cystein Transport 0.01188 0.00794 0.02230
Ser(ext) - Ser(cyt) Serine Transport 0.00000 0.00000 0.00000
T3P - Ser(cyt) Multiple Enzymes 0.00812 0.00355 0.00399
Ser(cyt) = Protein Protein synthesis 0.00776 0.00829 0.00000
Ser(cyt) = “Pyr(cyt) Serine Dehyratase 0.12311 0.08764 0.04476
Asp(cyt) - Asp(ext) Aspartate Transport (f) 0.00363 0.00185 0.00677
Asp(ext) > Asp(cyt) Aspartate Transport (r) 0.00000 0.00000 0.00000
Asp(ext) - Asp(cyt) Aspartate Transport (net flux) -0.00363 -0.00185 -0.00677
Asp(ext) - Protein Protein synthesis 0.01852 0.01367 0.00214




Reaction

By means of

Absolute Fluxes (Umol-million cells™*-h™")

Control (-Q) Oligo

Pentose Phosphate Pathway

G6P > R5P(cyt)

R5P(cyt) > R5P(metabolized)
R5P(Metabolized) -—> R5P(cyt)

S7P > F6P
F6P - S7P
F6P - G3P
S7P > E4P

XUSP >S7pP
S7P > XUSP
F6P > XUSP
XUSP ->F6P
F6P > S7P
S7P > F6P
XUSP -> G3P
F6P > E4P
R5P - S7P

Transaldolase:

Transketolase:

Multiple Enzymes

Metabolism
Metabolism

TALD
TALD
TALD
TALD

TKT
TKT
TKT
TKT
TKT
TKT
TKT
TKT
TKT

0.07250857 0.042479349 0.113079502
0.01246857 0.008767824 0.005619906

0.0000710 0.0000035 0.0001571
0.0000190 0.0000111 0.0000342
0.0000248 0.0032662 0.0000452
0.0000191 0.0000111 0.0000343
0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000
0.0343197 0.0258169 0.0663955
0.0039965 0.0059109 0.0095775
0.0000000 0.0000002 0.0000000
0.0000249 0.0001229 0.0000517
0.0000000 0.0000020 0.0000000
0.0000642 0.0002645 0.0001257
0.0378317 0.0313862 0.0752556
0.0000000 0.0000024 0.0000000
0.0974107 0.0675354 0.1830376
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Review
Mini-Focus Issue: Systems biology

For reprint orders, please contact reprints@future-science.com

Cancer cell metabolism as new targets for
novel designed therapies

Metabolic processes are altered in cancer cells, which obtain advantages from
this metabolic reprogramming in terms of energy production and synthesis of
biomolecules that sustain their uncontrolled proliferation. Due to the conceptual
progresses in the last decade, metabolic reprogramming was recently included as one
of the new hallmarks of cancer. The advent of high-throughput technologies to amass
an abundance of omic data, together with the development of new computational
methods that allow the integration and analysis of omic data by using genome-scale
reconstructions of human metabolism, have increased and accelerated the discovery
and development of anticancer drugs and tumor-specific metabolic biomarkers. Here
we review and discuss the latest advances in the context of metabolic reprogramming

and the future in cancer research.

Cancer is still one of the major causes of
death worldwide and the statistics are dev-
astating. According to the WHO the global
burden of cancer has risen to 14.1 million
new cases and 8.2 million cancer deaths in
2012 and the estimates predict that it could
increase in its global incidence [1].

It was proposed 15 years ago by Hanahan
and Weinberg that cancer development relies
on the following basic biological capabili-
ties, known as the ‘hallmarks of cancer’ that
are acquired during the multistep process of
tumor development: the capability to sus-
tain proliferative signaling, resistance to cell
death, evasion of growth suppression, ability
of replicative immortality, tumor-promoting
inflammation, genome instability and muta-
tion, induction of angiogenesis and activation
of invasion and metastasis. Owing to concep-
tual progress in the last decade, two new hall-
marks, metabolic reprogramming and
evasion of immune destruction, have been
identified (Figure 1) [2].

Nowadays, it is widely recognized that
metabolic reprogramming is essential to sus-
tain tumor progression. Several metabolic
adaprations described in cancer cells, such
as the metabolization of glucose to lactate in

the presence of oxygen (Warburg effect), are
quite common among different cancer types.
These changes are promoted by genetic and
epigenetic alterations producing mutations
or alterations in the expression of key meta-
bolic enzymes that modify flux distributions
in metabolic networks, providing advantages
to cancer cells in terms of energy production
and synthesis of biomolecules [3,4].

Understanding the mechanisms that trig-
ger metabolic reprogramming in cancer cells
and its role in tumoral progression is crucial,
not only from a biological but also from a
clinical stance, since this can be the basis
towards improving existing cancer therapies
or developing new ones.

In this review, we discuss the role of: the
crosstalk between oncogenic signaling path-
ways and metabolism; the influence of non-
genetic factors, such as tumor microenviron-
ment, on metabolic reprogramming of cancer
and stromal cells; the changes in isoenzymes
patterns as potential therapeutic targets; and
the new computational tools used by a sys-
tems biology approach in drug-target and bio-
marker discovery based on genome-scale
metabolic models (GSMMs). Finally,

we also discuss the future challenges in
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Induction of
angiogenesis

Activation of invasion
and metastasis

Tumor-promoting
inflammation

Ability of replicative
immortality

Genome instability
and mutation

Evasion of immune
destruction

Resistance to
cell death

Metabolic
reprogramming

Capability to sustain
proliferative signaling

Evasion of growth
supression

Figure 1. Hallmarks of cancer. The hallmarks of cancer comprise ten capabilities required during a multistep tumor pathogenesis to
enable cancer cells to become tumorigenic and ultimately malignant. Metabolic reprogramming has been identified as an emerging
hallmark and as a promising target for the treatment of cancer as there is a deregulation of bioenergetic controls and an abnormal

use of metabolic pathways to sustain their biosynthetic and energetic needs.
Reproduced with permission from [2] © Elsevier.
developing new strategies and methods to drug and
biomarker discovery, exploiting the reprogramming of
metabolism that sustains cancer progression.

Crosstalk between oncogenic signaling
events & cancer cell metabolism

Through a better understanding of the complex net-
works of oncogenic signaling pathways, altered cellular
metabolism emerges as one of the major routes through
which oncogenes promote tumor formation and pro-
gression. Many key oncogenic signaling pathways con-
verge to adapt tumor cell metabolism in order to support
their growth and survival. The identification of new

Metabolic reprogramming: Process in which the

cellular metabolism evolves in order to adapt to new
environmental conditions and perturbations. In the case of
tumor, the energy metabolism is reprogrammed in order to
sustain the high proliferative rate of cancer cells.

Genome-scale metabolic models: Those models that
summarize and codify the information known about
the metabolism of an organism based on the literature
and databases. These models represent the metabolic
reaction encoded by an organism’s genome and can be
transformed into a mathematical formulation in order to
study the metabolic cell behavior.

metabolic coordination mechanisms between altered
metabolism and regulators of cell signaling networks,
controlling both proliferation and survival, triggers the
interest for new metabolism-based anticancer therapies.
Several oncogenes, tumor suppressor genes and cell
cycle regulators controlling cell proliferation and sur-
vival are intimately involved in modulating glycolysis,
mitochondrial oxidative phosphorylation (OXPHOS),
lipid metabolism, glutaminolysis and many other meta-
bolic pathways (Figure 2). The accumulation of genetic
abnormalities required for oncogenesis leads to changes
in energetic and biosynthetic requirements that in turn
affects the metabolic signature of cancer cells through
interactions between enzymes, metabolites, transport-
ers and regulators. High-throughput sequencing data
reveals that the mutational events causing tumorigen-
esis are much more complex than previously thought
and that the mutational range can vary even among
tumors with identical histopathological features [s].
Some of the metabolic adaptations driven by onco-
genic signaling events have been described as common
to different tumors, but metabolic profiles can be sig-
nificantly tissue/cell specific [6]. Here, we will high-
light some of the most prevalent examples of crosstalks
between oncogenic signaling events and pivotal meta-
bolic pathways. HIF-I is a key regulator that initiates

1792 Future Med. Chem. (2014) 6(16)
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a coordinated transcriptional program activated by
hypoxic stress (in response to low-oxygen conditions),
to promote the metabolic shift from mitochondrial
OXPHOS to glycolysis (Figure 2) through the induction
of several genes, including glucose transporters and gly-

Nongenetic metabolic
regulation
Adipocytes

Lactate )

e Pyruvate

l

Glycolysis

HIF

MYC
PIBK/AKT/mTOR
p53 ——

Lactate <—— Pyr

Ac-CoA

HIF —————
p53

Oxphos

Glucose og

Fru¢-6P \_)
T ———— p53

Fru-1,6diP PPP

colytic enzymes, leading to an increased flux of glucose
to lactate [7). Additionally, HIF-I actively downregulates
the OXPHOS flux by activation of PDK1, which inhib-
its the conversion of pyruvate to acetyl-CoA catalyzed
by the tricarboxylic acid (TCA) cycle enzyme PDH.

Tumor microenvironment

Hypoxia stresses

Acidosis

y Starvation

Oxidative stress

Imunne cells

~— Ras -

Glu-6P =—>R-5P _  H|F N

MYC

Fatty acids
Lipids
<~—— SREBPs

Citrate ed ) A
\—<, Lipogenesis
Ac-CoA

aKG  Glu Gin MYC

Glutaminolysis

Review

C

Figure 2. Nongenetic and oncogenic influences on tumor metabolic reprogramming. The nongenetic component
(the tumor microenvironment) influences metabolic changes in tumor cells as a result of gradients of oxygenation
and pH, nutrient availability, oxidative stress and the intercellular communication with stromal cells by means of
metabolites such as lactate, pyruvate, fatty acids and glutamine. Combined with tumor microenvironment, the
genetic component (oncogenes and tumor suppressors) plays a key role in metabolic reprogramming to ensure
metabolites are shunted into pathways that support the energetic requirements and the biosynthesis of structural
components, achieved by maintaining high rates of glycolysis and/or glutaminolysis, promoting the pentose
phosphate pathway, slowing mitochondrial metabolism (oxidative phosphorylation) and utilizing tricarboxylic acid
intermediates for biosynthetic precursors (e.g., fatty acids and lipids).

CAF: Cancer-associated fibroblastic cell; PPP: Pentose phosphate pathway; SREBP: Sterol regulatory element
binding protein.
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Similar to HIF-1, oncogenic activation of Myc also
triggers a transcriptional program that enhances gly-
colysis by directly inducing glucose transporters and
glycolytic enzymes. Indeed, there is a crosstalk between
HIF-1 and Mpyc, whereby they cooperate to confer
metabolic advantages to tumor cells by oxygen-depen-
dent mechanisms, with a difference that, contrary to
HIF-1, Myc upregulation has more significant conse-
quences for many cells as it alters not only glycolysis but
also glutaminolysis (Figure 2) and many other biosyn-
thetic pathways [s]. The Myc oncogene stimulates gluta-
mine uptake and glutaminolysis by inducing glutamine
transporters directly and GLS, the enzyme that con-
verts glutamine to glutamate, indirectly [9]. Besides gly-
colysis, glutaminolysis is another important metabolic
pathway in cancer cells, which contributes not only as
a source to replenish the TCA cycle, but also to control
the redox potentials through generation of reductive
equivalents, such as NADPH. In addition to glucose,
a vast amount of glutamine is consumed by cancer
cells. Glutamine is converted to glutamate and then to
o-ketoglutarate (0-KG), which feeds the TCA cycle.
Some tumors that show an upregulation of glutamine
metabolism have been reported to exhibit ‘glutamine
addiction’, that is, glutamine becomes essential during
rapid growth. However, glutamine consumption and
addiction are dependent on the metabolic profile of the
cancer cells and in particular on the oncogene/tumor
suppressor involved in tumor progression [10].

Activated PI3K/AKT/mTOR pathway is one of the
most common signaling cascades altered in tumor
cells and this pathway is one of the most heavily tar-
geted to develop anticancer therapies. Many cancers
are driven by aberrations in the PI3K/AKT/mTOR
pathway promoting metabolic transformation through
multiple metabolic pathways, including an increase
in glucose and amino acid uptake (Figure 2), upreg-
ulation of glycolysis and lipogenesis and enhanced
protein translation through Akt-dependent mTOR
activation [11].

In cancer cells, the increased rate of de novo lipid
biosynthesis is an important aspect of the metabolic
reprogramming during oncogenesis. Lipid metabo-
lism is regulated via activation of the sterol regulatory
element binding proteins (SREBPs) (Figure 2), which
are important regulators of the Akt/mTOR signaling
pathway [12]. Indeed, various genes coding for enzymes
involved in fatty acid and cholesterol biogenesis are

Tumor heterogeneity: Variability among different
tumors in the same organ (intertumoral heterogeneity)
or the variability among cells in a tumor (intratumoral
heterogeneity).

targets of SREBPs, including ATP-citrate lyase, acetyl-
CoA carboxylase and fatty acid synthase [13]. Lipogen-
esis is also controlled by the RAS oncogene through
the action of HIF-1, which has been reported to induce
the expression of fatty acid synthase in human breast
cancer cell lines [14]. However, the RAS oncogene also
modulates mitochondrial metabolism roughly increas-
ing the activity of Myc and HIF-1 [4), glycolysis and
the pentose phosphate pathway (PPP) [15). Prolifer-
ating cells, such as tumors, require high amounts of
pentose phosphates for biosynthesis of macromolecules
and NADPH for redox homeostasis maintenance [16].
Therefore, PPP plays a fundamental role in defining
the metabolic phenotype of tumor cells. Hence, there
are also examples of coordinated crosstalk between the
main enzymes that control the PPP during oncogenesis
and oncogenic signaling pathways. K-RAS and PI3K
signaling have been shown to positively regulate G6PD,
whereas p53, which is a transcription factor and regula-
tor of the cell cycle and apoptosis, physically interacts
with G6PD to negatively modulate its activity [17], and
thereby downregulates PPP. On the other hand, active
HIF-1 signaling has been linked to both TKT and
TKTL1, the enzymes catalyzing the rate-limiting step
of the non-oxidative branch of the PPP [1s].

In addition, alterations in p53 are frequent events in
tumorigenesis. The loss or inactivation of p53 down-
regulates OXPHOS by inducing aerobic glycolysis
through inhibiting glucose transporters and the gly-
colytic enzyme PGM and inducing TP53-induced
glycolysis and apoptosis regulator, a negative regulator
of glycolysis [19]. On the other hand PHF20 stabilizes
and upregulates p53 resulting in a gain of functionality
that drives the reprogramming of the metabolism of
certain cancers cell lines, such as U87 (glioblastoma)
or MCF7 (breast cancer) [20].

Other examples of oncogene-mediated metabolic
reprogramming include mutations in genes encoding
FH and succinate dehydrogenase, which are loss-of-
function mutations and behave as tumor suppressor
genes [21]. On the other hand, mutations in IDH-1 and
IDH-2, do not result in inactivation of normal IDH
enzymatic function but generation of novel gain-of-
function mutation that enables the conversion of a-KG
to D2-HG, which may act as an ‘oncometabolite’ by
inhibiting multiple a-KG-dependent dioxygenases
involved in epigenetic regulation [22].

Tumorigenesis occurs as a consequence, not only of
the dysregulation of numerous oncogenic pathways,
but also due to many nongenetic factors, including
tumor microenvironment stresses, such as hypoxia, lac-
tic acidosis and nutrient deprivation. The integration
of these nongenetic factors within the genetic frame-
work of cancer is the next logical step in understanding
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tumor heterogeneity. Research over the years has
elucidated the cellular and molecular interactions
(including metabolic reprogramming) occurring in the
tumor microenvironment and are closely linked to the
processes of angiogenesis and metastasis.

Tumor microenvironment

Since the discovery of immune cells in tumor samples
by Rudolf Virchow in 1863, various studies have shown
the linkage of cancer to inflammation, vascularization
and other conditions, which suggest that tumors do
not act alone. Without its ‘neighborhood’ the survival
of tumor cells could be a big question mark. The cellu-
lar heterogeneity in this microenvironment is complex
and comprises of extracellular matrix, tumor cells and
non-transformed normal cell types that co-evolve with
the tumor cells (e.g., cancer-associated fibroblastic cells
[CAFs], infiltrating immune cells and endothelial cells
that constitute the tumor-associated vasculature) that
are embedded within this matrix and nourished by the
vascular network. In addition, there are many signaling
molecules and chemicals, such as oxygen and protons,
all of which can influence tumor cell proliferation,
survival, invasion, metastasis and energy metabolism
reprogramming. CAFs, one of the most abundant stro-
mal cell types in different carcinomas, are activated
fibroblasts that share similarities with fibroblasts, stim-
ulated by inflammatory conditions or activated during
wound healing. But, instead of suppressing tumor for-
mation, CAFs can significantly promote tumorigenesis,
invasion and de novo cancer initiation by some unique
growth factors and cytokines secretion (e.g., EFG,
FGF, IL6, IL8, VEGEF etc), extensive tissue remodel-
ing mediated by augmented expression of proteolytic
enzymes (e.g., matrix metalloproteinases), deposition
of extracellular matrix and pathogenic angiogenesis by
liberating pro-angiogenic factors within the matrix [23].
Significant cell plasticity exists within this cell popula-
tion, as both mesenchymal-to-epithelial and epithelial-
to-mesenchymal transitions are known to occur, fur-
ther enhancing stromal heterogeneity. Moreover, CAFs
can enhance proliferation and invasion by inducing
the epithelial-to-mesenchymal transitions on tumor
cells [24.25]. Immune cell recruitment and localization
in the tumor milieu vary widely in the lesions. Het-
erogeneity of tumor immune contexture is influenced
by various factors, including those secreted by CAFs,
the extension and permeability of the vasculature, and
the tumor cells themselves. Importantly, macrophages
comprise the most abundant immune population in the
tumor microenvironment and are responsible for the
production of cytokines, chemokines, growth factors,
proteases and toxic intermediates, such as nitric oxide
and reactive oxygen species [26]. Their contribution to

tumor initiation, progression and metastasis can be
attenuated by antioxidant treatments, such as butyl-
ated hydroxyanisole, as reactive oxygen species levels
have been reported to regulate the differentiation and
polarization state of macrophages. Endothelial cells
that are ‘hijacked” by the tumors play an important
part in forming a transport system, although ineffec-
tive, but essential for its survival and growth. In addi-
tion, blood vessel formation needs a protein matrix for
the endothelial cells to be attached to and also it needs
pericytic cells to strengthen these vessels. But, since the
pericytes are not known to function very well in tumor
vessel formation, the vessels are always malformed and
leaky 27].

In the last few years the concept of cancer stem
cells (CSC), a small minority of cells in the tumor,
has evolved to be a possible cause and source of tumor
heterogeneity. Currently there are two models that
describe tumor cell heterogeneity: the hierarchical
CSC model, where self-renewing CSCs sustain the
stem cell population while giving rise to progenitor
cells that are not capable of self-renewal and can give
rise to differentiating clones that contribute to over-
all tumor heterogeneity, and the stochastic (tumor
microenvironment-driven). model in which cancer
cells are clonally evolved, and virtually every single cell
can self-renew and propagate tumors. In this model,
the self-renewal capability of each cell is determined
by distinct signals from the tumor microenvironment.
Recent studies have suggested that tumor heterogene-
ity may exist in a model coordinating with both the
CSC and the stochastic concepts [28].

Metabolic reprogramming associated with
cancer & stromal cell interaction

Recently, the relationship between tumor microenvi-
ronment and metabolic reprogramming has been high-
lighted and there has been extensive research about
metabolic symbiosis between cancer and stromal cells.
Among these interactions, it was shown that epithe-
lial cumor cells induce oxidative stress in the normal
stroma, inducing aerobic glycolysis in CAFs, as well as
changes in inflammation, autophagy and mitophagy
(Figure 2). As a consequence of this rewiring in CAFs
metabolism, energy-rich metabolites (such as lactate,
pyruvate and ketones) are secreted, feeding adjacent
cancer cells. This tumor—stroma metabolic relation-
ship is referred to as the ‘reverse Warburg effect’. CSCs
that are present within the tumor also rely more heav-
ily on glycolysis, even in the presence of oxygen (War-
burg effect), and decrease their mitochondrial activity
in order to limit reactive oxygen species production.
As these glycolytic and mitochondrial signatures help
to maintain the CSC phenotype, recent studies have
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focused their attention to these metabolic weaknesses
to be combined with traditional chemotherapy that,
alone, usually fails to target CSCs [2930]. In addition,
other stromal cells, such as adipocytes, are able to act
as energy sources, transferring fatty acids that come
from lipolysis to ovarian tumor cells for B-oxidation
(31]. Deregulated lipogenesis has been shown to play an
important role in the interactions between cancer cells
and the surrounding stromal cells. Studies suggest that
it affects the epithelial cell polarity during the early
stages of cancer development [32], inducing cancer cell
migration [33] and activation of angiogenesis involv-
ing signaling lipids (e.g., diacyl glycerides, lysophos-
phatidic acid and prostaglandins), fatty acid synthesis
enzymes and overof the monoglyceride-lipase [34-36].

Loss of stromal caveolin-1 in CAFs has been asso-
ciated with tumor progression and metastasis [37] and
causes oxidative stress and induction of autophagy,
which results in increased levels of glutamine and
ammonia in the stromal microenvironment. This glu-
tamine could be consumed by cancer cells for energy
and anaplerotic reactions and ammonia acts as a potent
inducer of autophagy, creating a vicious cycle [37]. The
migration stimulating factor, a truncated isoform of
fibronectin identified to be overexpressed by CAFs
and other ‘activated’ fibroblasts, has been shown to
increase lactate production in the stromal environ-
ment and decrease mitochondrial activity, suggesting
a shift towards glycolysis during hypoxia in addition
to promoting tumor growth without affecting tumor
angiogenesis [38].

Angiogenesis has been long known to play a major
role in supporting cancer cell growth in the tumor
microenvironment. But since the newly formed blood
vessels are mostly defective there is always a nutrition
deficiency and acidosis in these areas (Figure 2). A bio-
marker study in the gastric cancer environment where
a quantitative analysis of the organic acids that are the
end products of metabolism, using GC-MS, showed
an increase in glycolytic end-products, such as pyruvic
and lactic acids, with respect to normal tissues [39]. The
pattern of high acidification in the tumor microenvi-
ronment due to the accumulation of glycolytic end-
products results in a nutrient-deficient environment.
In addition, metabolic reprogramming of tumor-
associated endothelial cells has been showing up wide
interests. Upon tumor angiogenic activation, endothe-
lial cells are pushed to a state of metabolic stress for
increasing their proliferation rate to form new blood
vessels, although the resulting network is abnormal and
inefficient. These normal cells show higher glycolytic
enzyme activities and lactate production, even in the
presence of oxygen [40], and they continue proliferat-
ing even in the presence of hostile conditions and high

nutrient deficiency [41]. Also it has been shown that
endothelial cells, similar to tumor cells, have a high
expression of monocarboxylate transporter 1 required
for the lactate influx, revealing that these cells seek
alternative metabolites in a nutrition-deficient environ-
ment [42]. Moreover, the inhibition of glycogenolysis in
human umbilical vein endothelial cells has been shown
to decrease cell viability and migration, elucidating the
importance of glycogen for the survival of these cells
(43]. The role of the PPP in cell viability has also been
demonstrated, in that, the direct inhibition of GGPDH
has been shown to decrease endothelial cell survival
(43]. When tumor cells choose the less energy-efficient
metabolic pathways, such as glycolysis and glutaminol-
ysis, both leading to the production of lactic acid, the
pH of the tumor microenvironment decreases. It has
been shown that endothelial cells behave in a similar
fashion while forming new tumor blood vessels. While
this phenomenon is known, it has also been found that
the decrease in pH in the surrounding microenviron-
ment actually increases cancer survival by immune
suppression. Loss of T-cell function has been reported
under low pH environment, while restoring the pH
to normal conditions has been found to restore T-cell
function [44]. Similarly, the lactic acid generated has
shown to increase the proliferation of endothelial cells
by increased interleukin8/CXCL8 production [41,45].
From a therapeutic point of view, targeting the altered
metabolic pathways leading to lactic acid accumula-
tion in tumor microenvironment could inhibit tumor
growth as this mechanism would restore the impaired
immune response and also a combinatorial therapy
with antiangiogenesis drugs could reduce the prolifera-
tion of endothelial cells and formation of new blood
vessels [46].

An important event that occurs during the changes
in tumor microenvironment, as the cancer progresses,
is the metastasis of some selected cancer cells to dis-
tant sites. A receptive microenvironment is required for
tumor cells to engraft distant tissues and metastasize.
Although several studies have indicated the formation
of a premetastatic niche in the secondary sites before
the primary tumor metastasizes (47], we have to con-
sider how metastatic cells are able to adapt to their new
metabolic environment, which can differ to a greater
or lesser extent with respect to its nutrient and oxygen
availability. Metastatic cells should exhibit a remark-
able and dynamic flexibility that enables them to
rapidly switch between metabolic states [48]. In addi-
tion, the homeostasis of the sites for metastasis can be
disrupted as consequence of the metabolic activity of
metastatic cells. This has been observed in bone, where
metastatic prostate cancer cells secrete glutamate into
their extracellular environment as a side effect of cel-
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lular oxidative stress protection, promoting the devel-
opment of pathological changes in bone turnover [49].
Further studies are required to analyze these metabolic
interplays between metastatic cells and tumor microen-
vironment in order to obtain more specific treatments
and therapies.

Isoenzymes: therapeutic targets in cancer
The technological advances that have occurred over
the past decade and the increasing number of evidences
that have emerged from previous studies show a wide
array of metabolic rewiring in cancer cells. Many met-
abolic enzymes that are specific to important metabolic
pathways and those altered in cancer cells have been
identified. These enzymes have a key role in mediating
the aberrant metabolism of cancer cells and could serve
as a promising source of novel drug targets. Isoforms of
many of these metabolic enzymes are found to be spe-
cifically expressed in tumor cells affecting important
pathways of the energetic metabolism. The current
research is being refocused on specifically targeting
these isoforms that has shown to be a promising strat-
egy to develop new anticancer treatments. In this part,
we will highlight some of the most important, altered
pathways and the specific isoenzymes, that could be
used for drug targeting, in cancer disease.

Glycolytic isoenzymes

Glycolytic pathway serves as the principal energetic
source for a cell. The higher dependency of cancer
cells upon glycolytic metabolism for the production
of ATP provides a greater motive to target glycolytic
enzymes (Figure 2). Many isoforms of these enzymes
have been found to be specifically expressed in tumor
cells and are being exploited as potential candidates to
be used as drug targets. The transport of glucose across
the plasma membrane is regulated by various isoforms
of glucose transporters (GLUT1-14 or SLC2A1-14).
GLUT]1, -3 and -4 are found to be expressed at higher
levels in cancer [50). GLUT3 and other transporters
could be targeted by the use of specific antibodies or
drugs, such as phloretin or ritonavir, causing the cells
to starve by blocking their nutrient uptake through
these transporters.

Another important metabolic enzyme of the gly-
colytic pathway is HK, which regulates the first rate-
limiting step of glucose metabolism. Cancer cells are
heavily dependent on HK isoforms, such as HK2 [s1).
The specific expression of HK2 in adipose tissue and
skeletal muscles provides an opportunity to target this
enzyme without having the risk of affecting other tis-
sues. Compounds such as methyl jasmonate isolated
from plants have been shown to disrupt the associa-
tion between mitochondria and HKs (HK1 and -2).

involved in regulating apoptosis (52 and have shown to
be lethal to cancer cells i vitro [53].

Recent publications suggest a key role of PK isoen-
zyme — PKM2 — in mediating the Warburg effect in
cancer cells [54], proving its prospective as an enzymatic
anticancer drug target. The enzyme activity of PKM2
is inhibited downstream of cellular growth signals [ss].
Cell proliferation and aerobic glycolysis in tumors are
greatly dependent on this ability to inhibit the activ-
ity of the PKM2 enzyme. Many approaches using
small-molecule inhibitors and small-hairpin RNA-
based inhibition of PKM2 have been shown to cause
cell death and slow down cell proliferation in vitro
(54.56]. The PFKFB3 isoform is shown to be important
in RAS-mediated tumors and inhibition of PFKFB3
by small-molecule inhibitors has been shown to have
cytostatic effect on the growth of cancer [57]. Inhibition
of LDHA using FX11 or oxamate has been shown to
induce oxidative stress and cause cell death in cancer
cells [58,59]. Targeting LDHA combined with NAMPT
inhibitors has been shown to slow down tumor regres-
sion and thus making it a potential candidate for drug
targets [59].

TCA isoenzymes/mitochondrial complex
PDK phosphorylates PDH and inhibits the conver-
sion of pyruvate to acetyl-CoA, a key metabolite in the
TCA cycle (Figure 2). Isoenzyme PDK3 is induced by
upregulation of HIF-1a under hypoxic conditions and
results in cells undergoing glycolysis instead of TCA
for energy production. Inhibition of PDK3 increases
the susceptibility of tumor cells towards anticancer
drugs and causes inhibition of hypoxia-induced glycol-
ysis [60]. Thus PDK3 could be used as a drug target to
overcome drug resistance and improve chemotherapy.
Isoforms of IDH1 and -2 are found to be mutated in
glioma and acute myeloid leukemia [61.62]. Mutations
in IDHI and -2 result in the overexpression of both
of these enzymes and the production of 2-HG, which
inhibits 0-KG-dependent dioxygenase enzymes. Asso-
ciation between high levels of 2-HG and tumorigenic-
ity is yet to be established, but interestingly the levels
of several TCA metabolites remain unaltered, sug-
gesting an alternate pathway that could be acting in
normalizing the metabolite levels in cells with IDH1
mutations.

Isoenzymes of the PPP

Cancer cells are in a constant demand for greater
amounts of purines and pyrimidines to maintain their
high proliferative nature (Figure 2). The key enzyme
for the oxidative PPP, the G6PDH enzyme, is over-
expressed in certain types of cancers and it has been
shown to transform fibroblasts and help in tumor cell
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proliferation [63]. On the other hand, the overexpres-
sion of TKTLI in many forms of cancer could increase
the concentration of glyceraldehyde-3-phosphate and
help in mediating the Warburg effect in cancer cells
(64]. Combinatorial approach of targeting GGPDH and
TKTLI can help overcome drug resistance and may
cause cell death [¢5].

Targeting isoenzymes of glutamine metabolism
Recent findings that point to the use of glutamine as
a carbon source for the TCA cycle [¢6] in cancer cells
encouraged researchers to consider enzymes of glu-
tamine metabolism as potential therapeutic targets.
6-diazo-5-oxo-L-norleucine- or bis-2-(5-phenylacet-
amido-1,2,4-thiadiazol-2-yl)ethyl ~sulphide-mediated
inhibition of GLS or siRNA-induced silencing of GLS
and GDH have been shown to inhibit the activation
of mTORCI [67). Thus, combinatorial targeting of
GLS and GDH along with chemotherapy may prove
to be more effective in cancer treatment. The differ-
ential expression of these cancer-associated isoenzymes
can be used as potential biomarkers for early cancer
prognosis or as enzymatic drug targets. However,
the role and importance of these mutations in the
reprogramming of the energetic metabolism observed
in cancer cells is not always obvious. This makes it
extremely difficult to evaluate the effects of these
mutations in the cancer metabolism qualitatively or
quantitatively. Additionally, the effects of these isoen-
zymes on metabolism can be attenuated or enhanced
by compensatory and regulatory mechanisms. Taking
into account these rationales, the need for a tool that
permits a holistic analysis of the metabolic system is
essential, in order to qualitatively evaluate the effects of
a single or combination of different mutations within
the whole metabolic network system. In the last few
years, genome-scale metabolic network models have
demonstrated their suitability for the integrated analy-
sis of large and complex metabolic networks providing
new clues for identifying drug targets.

GSMMs as new tools emerging from

systems biology approach to drug discovery
In the previous sections, we have presented evidences
that support cancer onset and that the progression relies
on metabolic abnormalities to balance energy demand
and biomolecular synthesis (metabolic reprogram-
ming) [68). GSMMs are emerging as a potential solu-
tion to decipher the molecular mechanisms underlying

Enzymatic drug target: A component in a metabolic
pathway to which some other entity, such as a drug, is
directed and/or binds.

cancer in the context of systems biology [69]. GSMMs
represent the metabolic reaction complement encoded
by an organism’s genome. These models are built
based on the literature and databases and enable one to
summarize and codify information known about the
metabolism of an organism.

Over 100 GSMMs have been built for different spe-
cies, ranging from archea to mammals [70-84]. Recon-
structions of human metabolism, such as Reconl [s1],
Edinburgh Human Metabolic Network 82] or the most
recent reconstructions of human metabolism, Recon2
(83], are widely used to study the mechanism of diseases
with a strong metabolic component, such as cancer or
diabetes [85-88].

This systems biology tool enables the mathematical
representation of biotransformations and metabolic
processes occurring within the organism and offers
an appropriate framework to integrate the increas-
ing amount of ‘omic’ data generated by the different
high-throughput technologies.

The transformation into a mathematical formula-
tion is mostly driven by constraint-based modeling
(CBM) [89] and allows the systematic simulation of
different phenotypes, environmental conditions, gene
deletion and so on. This approach allows for model-
ing the complexity of cancer metabolism and tackling
more problematic biological questions, such as the role
of metabolism in cancer disease [90].

Genome-scale constraint-based metabolic models
have been used for a variety of applications, involving
studies on evolution [91], metabolic engineering [92-94],
genome annotation [95] or drug discovery [96], with a
high relevance in cancer research.

Indeed, GSMMs can efficiently capture the com-
plexity of cancer metabolism in a holistic manner and
permit to improve existing therapies or develop new
ones [97].

In this chapter we discuss methods for building
GSMMs and computational approaches to analyze
and integrate ‘omic’ data into these large-scale meta-
bolic network models. Finally, we introduce some of
the most relevant softwares and algorithms developed
for drug-target discovery that can be used in cancer
research.

GSMM reconstruction

Genome-scale metabolic reconstructions are created
in a bottom-up manner based on genomic and bib-
liomic data and, thus, represent a biochemical, genetic
and genomic knowledge base for the target organism
(81-83]. However, to date we are still not able to com-
pletely and automatically reconstruct high-quality
metabolic networks (Figure 3A) [98]. Genome-scale
reconstruction starts with the generation of a draft,
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automated reconstruction based on the genome anno-
tation and biochemical databases of the target organ-
ism. This task can be achieved by using software tools,
such as Pathways tool [99]. The genomic sequence of
the targeted organism is coupled with the most recent
annotations available from databases [100], such as
GOLD or NCBI Entrez Gene databases [101,102].

Metabolic reactions can be associated with the
annotated metabolic genes by using enzyme commis-
sion (E.C.), ID and biochemical reaction databases
(e.g., KEGG [103] and BRENDA [104]). This process
permits both linking metabolic genes with their cor-
responding encoded enzymes and determining the
stoichiometric relationship of metabolic reactions
with the metabolites and cofactors that they consume
and/or produce.

The gene—protein-reaction association (GPR). is
represented as Boolean relationships in which isoen-
zymes that catalyze the same reaction have an “OR”
relation (only one of the genes that encode the dif-
ferent isoenzymes is required to have the reaction
active) and the complexes that catalyze a reaction
have an “AND?” relation (all the genes that encode the
different complex subunits are necessary to have the
reaction active) [81]. GPR associations enable the map-
ping of transcriptomics or proteomics to the level of
reactions.

Reactions can be located into different subcellular
compartments based on protein location [81]. Reac-
tion directionality can be determined from thermo-
dynamic data. Additionally, artificial reactions, such
as biomass reaction that define the ratio at which bio-
mass constituents are produced (nucleic acids, lipid,
proteins, etc) or exchange reactions that define the
overall rate of nutrients consumption or production,
are also defined in the reconstruction. These artificial
reactions are necessary to predict or impose certain
phenotypic conditions on the mathematical model.

Next, it is necessary to manually curate and refine
the draft, automated reconstruction. The main objec-
tive of curation is to identify and correct incomplete
or erroneous annotation, add reactions that occur
spontaneously and remove gaps and metabolites that
cannot be produced or consumed [81] through search
on the literature and other databases.

Once the model is curated, it is evaluated and vali-
dated in an iterative fashion by using mathematical
tools [105]. The aim of the validation process is to eval-
uate if the model is stoichiometrically balanced, find
gaps in the network and search for candidate reactions
for gap filling, quantitative evaluation of biomass pre-
cursor production and growth rate, compare predicted
physiological properties with known properties and
determine the metabolic capabilities of the model.

It is worth noting that once a GSMM has been con-
structed, it can be used in future reconstructions in
order to expand and refine the model (s1.83].

Constraint-based methods as tools for tumor
metabolism characterization

Aswas previously mentioned, GSMMs include stoichio-
metric details for the set of known reactions in a given
organism. These large scale metabolic models require
computational methods to be qualitatively analyzed.
Traditionally, approaches based on ordinary differential
equation have been used for characterization of dynamic
cell states. However, this full-scale dynamic modeling is
frequently infeasible for large-scale networks because of
a paucity of necessary parameter values.

Constraint-based methods (CBMs) permit the anal-
ysis of large-scale biochemical systems under conditions
where kinetic parameters need not be defined (steady
state). Genome-scale constraint-based metabolic mod-
els can be used to predict or describe cellular behaviors,
such as growth rates, uptake/secretion rate or intracel-
lular fluxes [89]. Flux balance analysis (FBA) is one of
the most widely used CBMs for the study of biochemi-
cal networks. The variables used in FBA include the
fluxes through transport and metabolic reactions and
model parameters include reaction stoichiometry, bio-
mass composition, ATP requirements and the upper
and lower bounds for individual fluxes, which define
the maximum and minimum allowable fluxes of the
reactions.

The first step in FBA is the mathematical representa-
tion of the metabolic reactions in the form of a numeri-
cal matrix, with stoichiometric coefficients of each
reaction (stoichiometric matrix), where the metabolites
are represented in rows and reactions in columns. FBA
employs mass actions formalism for the mathematical
representation of the metabolic networks: dC/Dt = S.v.,
where v and C are vectors of reaction fluxes and metab-
olite concentration respectively, t is time and S is the
stoichiometric matrix (Figure 3A).

The nextstep is to impose constraints to the metabolic
network. Constraints are fundamentally represented in
two ways:

*  Steady-state mass-balance imposes constraints on
stoichiometry and network topology on the meta-
bolic fluxes through the network. Additionally,
steady state assumption also imposes constraints
that narrow the space of solutions. By defini-
tion, the change in the concentration of a certain
metabolite over time at steady state is 0: dC/Dt = 0,
thus: S.v = 0. These constraints ensure that for each
metabolite in the network the net production rate
equals the net consumption rate;
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Figure 3. Genome-scale metabolic model building and analysis (facing page). (A) GSMM reconstruction starts with a draft automated
version based on literature and databases, finally this version is manually curated in order to refine the model. Typically, these models
are analyzed by using flux balance analysis, assuming steady state. (B) GSMMs can be used as a platform to integrate and combine omic
data from multiple layers. In these models, metabolomics data can be associated with metabolites, while genomics, transcriptomics and
proteomics can be associated with metabolic reactions, these associations are established through gene-protein-reaction associations.
The phenotypic assays can constrain properties of the network, such as growth rate under certain experimental conditions. (C) By
integrating omic data into a GSMM we can determine either tumor-specific biomarkers or anticancer drug-targets and reconstruct
cancer-specific GSMM. (D) Cancer-specific reconstructions can be used to determine synthetic lethals specific for each cancer type for
which the non-tumor cells are insensitive (ROOM and MOMA methods), Additionally if we reconstruct an initial GSMM describing
metastatic phenotype and a target GSMM describing non-metastatic phenotype we can determine the actors that would permit to

revert the metastatic phenotype into a non-metastatic one (MTA method).
FBA: Flux balance analysis; GSMM: Genome-scale metabolic model; Ret.: Retention.

* Inequalities that impose bounds on the system: every
reaction can also be given upper and lower bounds.
These restrictions are based on measured rates (e.g.,
metabolite uptake/secretion rates) or reaction revers-
ibility (e.g., irreversible fluxes have a zero lower
bound) and are used to define the environmental
conditions in a given simulation, such as nutrient
or O, availability, which can be related with a spe-
cific tumor microenvironment or stages in tumor
progression.

Finally it is necessary to define a phenotype in the
form of a biological objective that is relevant to the
problem being studied (objective function). Typically,
objective functions are related to growth rate prediction.
GSMMs define this phenotype by an artificial biomass
production reaction, that is, the rate at which metabolic
compounds are converted into biomass constituents
(nucleic acids, lipid, proteins, etc). The biomass reaction
is based on experimental measurements of biomass com-
position and is unique for each organism or cell type.
Thus, an objective function could be the maximization
of growth rate that can be accomplished by calculating
the set of metabolic fluxes that result in the maximum
flux through biomass production reaction. Since uncon-
trolled cell growth is the basis of tumor progression, this
approach is widely used in the simulation of cancer cell
metabolism. The objective function can be adapted to
the specific cell type or organism; however, the objec-
tive that better defines our case of study is not always
obvious, especially in multicellular organisms [106].

Taken together, the mathematical representation of
the metabolic reactions and of the objective function, is
defined as a system of linear equations that are solved by
a number of algorithms and software developed for this
purpose [105]. Predictions of values for these fluxes are
obtained by optimizing for an objective function, while
simultaneously satisfying constraint specifications.

Omic data integration

The advent of high-throughput technologies have trans-
formed molecular biology into a data-rich discipline by
providing quantitative data for thousands of cellular

components across a wide variety of scales. However,
extraction of ‘knowledge’ from this ocean of omic data
has been challenging [107]. GSMMs have emerged as an
advantageous platform for the integration of omic data
(e.g., [108]; Figure 3B). In this framework cellular and
molecular phenotypes are simulated allowing the devel-
opment of biological hypotheses and discoveries [109].
Metabolic reconstruction of the human metabolism has
been successfully used for a variety of analyses of omic
data, including applications in data visualization [110],
deducing regulatory rules [111], network medicine [112],
constructing tissue-specific models [113] or multicellular
modeling [114]. Thus, omic data can be used to further
constrain the non-uniqueness of constraint-based solu-
tions space and thereby enhance the precision and accu-
racy of model prediction (Figure 3A-C) [109]. To achieve
this aim a number of FBA-driven algorithms that inte-
grate omic data into GSMMs have been developed.
Table 1 highlights some of the most relevant approaches
recently developed to incorporate experimental omic
data into GSMMs [86,87,113,115-117]

Drug-target & biomarker discovery

Cancer cells maintain their high proliferation rate by
adapting their metabolism based on the environmental
conditions, such as pH, O, availability, vascularization
or nutrient availability [118]. The elucidation of diverse
metabolic alterations for the identification of biomarkers
and novel drug targets has, therefore, been increased in
recent years. An increasing number of methods and algo-
rithms have been recently developed to integrate tumor-
specific omic data into GSMMs. It has enabled the gain
of further biological and mechanistic understanding
of how cancer benefits from metabolic modifications
(90]. This model-driven approach allows the discovery

Omic data integration: Computational process in

which multi-omic data obtained from different high-
throughput technologies, considering different aspects of
the molecular biology, are integrated into genome-scale
metabolic models in order to unveil emergent properties of
the biological systems.
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Table 1. Computation method for integrating omic data into global-scale metabolic models.

Name Input Description Ref.
iMAT Gene expression data Seeks to maximize the similarity between the gene [115]
expression and the metabolic profiles
mCADRE Gene expression and Uses tissue-specific data to identify a set of core [86]
metabolomic data reactions. Seeks to build a consistent network using
all the core reactions and the minimum number of
non-core reactions
GIM3E Gene expression and Builds a network that satisfies an objective function [116]
metabolomic data while penalizing the inclusion of reactions catalyzed
by genes with expression below a certain threshold.
It can be further constrained to produce certain
metabolites based on experimental evidences
INIT Gene expression and Seeks to build a model prioritizing the addition of [87)
metabolomic data reactions with strong evidence of their presence
based on gene expression data. Can be forced
to produce metabolites that have been detected
experimentally
MBA Transcriptomic, Uses tissue-specific data to identify high and (113]
proteomic, moderate probability core reactions. Seeks to build a
metabolomic, network with all the high-probability core reactions,
bibliomic data the maximum moderate probability core reactions
and the non-core reaction required to prevent gaps
Fastcore Transcriptomic, Identify a set of core reactions based on tissue- [117]
proteomic, specific data. Seeks to build a network that contains
metabolomic, all reactions from the core set with the minimum set
bibliomic data of additional reactions necessary

of potential biomarkers and drug targets [87.97.119]. The
identification of new biomarkers is of major importance
to biomedical research for early diagnosis and monitor-
ing treatments efficiently. The identification of cancer
biomarkers is possible due to aberrant metabolism of
tumors that alters the profile of absorption and nutrients
secretion.

Omic data of clinical samples (mainly transcrip-
tomics data) can be used to infer the exchange rates
of different metabolites for each individual sample via
GSMM analysis (alterations in exchange reactions in the
model). Thus, those metabolites that significantly dif-
fer between two clinical groups in their exchange rates
are then considered as potential biomarkers. However,
this task is especially challenging in the case of cancer
owing to metabolic abnormalities resulting from com-
plex and elaborate genetic and epigenetic alterations that
modify the expression of a variety of cancer-associated
isoenzymes. In order to determine potential biomarkers
in cancer, several computational approaches has been
developed. For example, the metabolic phenotypic anal-
ysis (MPA) method uses GPR association to integrate
transcriptomic and proteomic data within a GSMM to
infer metabolic phenotypes [88]. MPA was used to study
breast cancer metabolism and predict potential biomark-
ers. These predictions, wich include amino acid and cho-

line-containing metabolites, are supported by a number
of experimental evidences [120]. Another recently devel-
oped algorithm is mCADRE, which has been used to
systematically simulate the metabolic function of 26
cancer cell types (among other cell types) 86]. This algo-
rithm has been able to identify several pathways, such
as folate metabolism, eicosanoid metabolism, fatty acid
activation and nucleotide metabolism, that are enriched
in tumor tissue compared with their corresponding nor-
mal tissue. Many enzymes involved in these pathways are
already used as chemotherapy targets. Other approaches,
such as flux variability analysis [121] or sampling analy-
sis [122], are also suitable to predict metabolic biomarker
candidates by integrating omic data into a GSMM. The
novel drug discovery is based on the abnormalities exist-
ing in various reactions/pathways of cancer metabolism.
These differences can be used as drug targets to attack
specific weaknesses of the tumor and hence compromis-
ing its viability, but not that of non-cancerous cells [123].
For example, the INIT method (87 was used to identify
characteristic metabolic features of cancer cells by infer-
ring the active metabolic network of 16 different can-
cer types and compare them with the healthy cell types
where they come from. These metabolic differences may
play an important role in proliferation of cancer cells
and could be potential drug targets. This method found
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significant differences in polyamine metabolism, the iso-
prenoid biosynthesis and the prostaglandins and leukot-
rienes pathways in cancer cells compared with healthy
cells. Some of the reactions that were found that have
different activity in cancer cells, are already used in the
clinical practice as therapeutic targets [124.125]. Based on
the rationale that the differences between normal and
tumoral cells can be potential therapeutic targets, several
approaches have been developed that consider different
aspects of cancer metabolism for the discovery of new
drug targets:

Antimetabolite

One of the most common anticancer drugs are antime-
tabolites. An antimetabolite is structurally similar to a
certain metabolite but it cannot be used to produce any
physiologically important molecule. Antimetabolite-
based drugs act on key enzymes preventing the use of
endogenous metabolites, resulting in the disruption
of the robustness of cancer cells and reduction or sup-
pression of cell growth. For example, antimetabolites,
such as antifolates or antipurines, mimic folic acid and
purines [126]. The GSMM approach can be used to sys-
tematically simulate the effect of potential antimetabo-
lites in cancer research. To achieve this, methods such
as the tINIT (Task-driven Integrative Network Infer-
ence for Tissues) algorithm have been developed [97).
This method has been used to reconstruct personalized
GSMMs for six hepatocellular carcinoma patients based
on proteomics data and the Human Metabolic Reac-
tion database [87] and identify anticancer drugs that are
structural analogs to targeted metabolites (antimetabo-
lites). The tINIT algorithm was able to identify 101
antimetabolites, 22 of which are already used in cancer
therapies and the remaining can be considered as new
potential anticancer drugs.

Synthetic lethal

The genetic lesions occurring in cancer not only pro-
mote the oncogenic state but are also associated with
dependencies that are specific to these lesions and absent
in non-cancer cells. Two genes are considered ‘synthetic
lethal’ if the isolated mutation on either of them is com-
patible with cell viability but the simultaneous mutation
is lethal [127]. Analogously, two genes are considered
to interact in a ‘synthetic sick’ fashion, if simultaneous
mutation reduces cell fitness below a certain threshold
without being lethal [127].

Enzymes encoded by genes that are in synthetic
lethal or sick interactions with known, non-druggable
cancer-driving mutations can be potential anticancer
drug targets. This approach has two main advantages:
first, we can indirectly target non-druggable cancer-
promoting lesions by inhibiting druggable synthetic

lethal interactors and secondly we can achieve a high
selectivity by exploiting true synthetic lethal interactions
for anticancer therapy. This is especially remarkable in
the case of cancer-specific isoenzymes, which are emerg-
ing as one of the most promising anticancer drug targets.
GSMMs provide an excellent tool for the systematic
simulation of specific pairs of gene knock-out (KO) to
unveil those combinations that compromise the viability
of cancer cells (synthetic lethal). By definition, gene KO
is simulated by giving value zero to gene expression and
the effect of gene deletion is transferred to the metabolic
reaction level by GPR association. Thus, for instance,
the flux through a reaction that is associated only to one
knocked-out gene would be zero. If the reaction is cata-
lyzed by isoenzymes or complexes, the effect of a gene
deletion is more complex.

However, predicting the metabolic state of a cell after
a gene KO is a challenging task, because after the gene
KO the system evolves into a new steady-state that tends
to be as close as possible to the original steady-state
(128]. To overcome these difficulties several algorithms
have been developed. For example, the MOMA algo-
rithm minimizes the euclidean norm of flux differences
between metabolic states of the KO compared with the
wild type [129]. The ROOM method minimizes the total
number of significant flux changes from the wild type
flux distribution [129].

In other words, MOMA minimizes the changes in
the overall flux distribution while ROOM minimizes
the number of fluxes to be modified after the gene KO
(Figure 3D). As an example of employing the concept
of synthetic lethality in cancer, a GSMM approach has
been used to develop a genome scale network model of
cancer metabolism (119]. The model predicted 52 cyto-
static drug targets (40% of which were known) and
further predicted combinations of synthetic lethal drug
targets, which were validated using NCI-60 cancer cell
collection. In a remarkable example, synthetic lethality
between heme oxygenase and fumarate hydratase was
predicted by the GSMM approach and was also experi-
mentally validated [130]. The number and the quality of
these predictions prove the capabilities of this approach
to identify synthetic lethal pairs of genes as potential
novel drug target in cancer.

Future perspective

Metabolism represents the essence of how cells inter-
act with their environment to provide themselves with
energy and the essential building blocks for life. In this
review, we highlighted the role of a wide range of factors
that trigger the malignant transformation of cancer
metabolism as well as experimental and computational
approaches to develop new therapies. Despite the
encouraging achievements and improvements in cancer
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research, there still exist limitations that need to be
overcome in order to enhance the effectiveness of drug
therapies in cancer disease.

One of the major challenges in targeting key met-
abolic pathways is the lack of clear understanding of
how the cancer cell metabolic profile varies from a
non-tumor proliferating cell and the potential toxic-
ity risk associated with targeting metabolism. A better
understanding of how the metabolism differs in a spe-
cific type of cancer or within the same type may help
us predict and identify targets without affecting non-
tumor cells. In this context, combination of metabolic
and signaling pathway inhibitors has been proposed
as one of the rational approaches [131]. Using compu-
tational approaches permits the systematic simulation
of gene perturbations, either metabolic and/or non-
metabolic, that could contribute to unveil novel key
signaling nodes resulting in potential anticancer drug
targets. Recently developed algorithms, such as PROM
(111, allow the integration of transcriptomic data into
GSMMs while considering the gene regulatory net-
work structure of a given organism. This approach has
been developed for predicting metabolic changes that
result from genetic or environmental perturbation in
Escherichia coli. However, it is obvious that algorithms
accounting for both gene regulatory and metabolic net-
works could be used to analyze more precisely the effect
of perturbations on oncogenes in cancer metabolism.

Tumor heterogeneity represents a hurdle that must
be overcome in order to develop new and more efficient
anticancer therapies. One of the factors triggering intra-
tumoral heterogeneity is the tumor microenvironment,
which interferes with the ability of drugs to penetrate
tumor tissue and reach the entire tumor cells in a poten-
tially lethal concentration. In addition, heterogeneity
within the tumor microenvironment leads to marked
gradients in the rate of cell proliferation and to regions
of hypoxia and acidity, all of which can influence the
sensitivity of the tumor cells to drug treatment. Better
understanding of how tumor microenvironment pro-
tects cancer cells, during and immediately after chemo-
or radiotherapy is imperative to design new therapies
aimed at targeting this tumor-protective niche [132,133].
The use of drug delivery systems can improve the
pharmacological properties of traditional chemothera-
peutics by altering pharmacokinetics and biodistribu-
tion to overcome the harsh conditions of the tumor
microenvironment. Moreover, the co-administration
of chemotherapeutics and tumor-associated stromal-
depleting drugs helps to target the fibrous structure of
the modified extracellular matrix, which can result in a
less penetrable tumor microenvironment [134].

Another interesting approach considers therapies
that interfere in the metabolic co-operation between

cancer cells and stromal cells in their microenviron-
ment [135] or between intratumoral subpopulations.
The study of the metabolic coupling between differ-
ent cellular populations as potential drug targets can be
achieved by reconstructing an artificial tumor microen-
vironment by using GSMMs approach. To date several
algorithms have been developed that integrate omic
data into a GSMM reconstruction that permit to com-
pute the secretion and uptake rates of nutrients (Table 1)
and hence study the complementary secretomes within
a heterogeneous cellular community. However, test and
validation of a metabolic model becomes more com-
plex if it considers a heterogeneous cellular population.
Nevertheless, recent studies on artificial microbial eco-
systems have demonstrated the potential of this type
of approach to study synergies in heterogeneous cellu-
lar communities [136] that could be extrapolated to the
study of cancer to unveil the mechanisms underlying
the cooperation between tumoral and stromal cells, as
well as between intratumoral subpopulations.

The intratumoral microenvironment also confers an
extreme flexibility and adaptation capability to cancer
cells that enhances tumor progression and represents a
challenge for target-directed therapies [(137]. The intra-
tumoral heterogeneity is driven by two main processes:
epithelial-to-mesenchymal transitions, by which epithe-
lial cells gain invasive properties and lose at least part of
their epithelial phenotypes [138]; and mesenchymal-to-
epithelial transitions, by which mesenchymal cells can
revert to an epithelial gene program displaying strong
self-renewal and survival properties [138-140]. Drug tar-
gets that repress these processes have been proposed to
significantly reduce tumoral progression.

Anti-angiogenic therapy has been proposed for a
long time as an interesting approach to reduce tumor
growth. Tumor blood vessels are surrounded by a very
hostile environment, with a high amount of acidosis,
low oxygen regions, weak pericyte—endothelial cell
interaction, leading to its tortuous and leaky vessels
with gaps that allow easy escape of invading tumor
cells [141,142]. Additionally, restoring the blood vessels
to a ‘normal’ state would get the tumor vessels back on
track to its proper functional form, reducing hypoxia-
induced metastasis and improving the effects of che-
motherapy [143,144]. Also it is expected to reduce the
spreading of cancer cells, because pericytes that are
required to strengthen blood vessels would be acting
more efficiently and hence prevent the intravasation of
the cancer cells through the gaps found in the normally
leaky tumor vessels.

Therapies based on both metastatic targets arresting
cancer cells in a non-metastatic stage and angiogenic
targets normalizing tumor vessels are promising
strategies to design new anticancer therapies. Coupling
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this strategy with associated key metabolic pathways
is a good approach in cancer treatment and requires
computational tools to identify the putative targets.
Recently developed methods, such as the ‘metabolic
transformation algorithm’ allows the identification
of the actors involved in metabolic transformations
(145). This methodology identifies targets that alter the
metabolism retrieving the cells back from a given met-
abolic state to another metabolic state (Figure 3D). This
method has been successfully used to find drug targets
that revert disrupted metabolism focused on aging.
However, this approach could be suitable to determine
drug targets arresting tumor in a non-metastatic stage,
normalize tumor vessels or prevent tumor intravasa-
tion, resulting in a reduction of tumor progression.
Additionally, GSMM predictions could be refined by
integrating information from dynamic *C FBA [146].
Moreover, combinatorial therapies, targeting
angiogenesis and metastatic targets, have been pro-
posed as a way to enhance anticancer therapies [27].
Traditionally, these approaches has been focused on

Combinatorial therapies: Strategy that takes profit
of the synergistic effects of two therapeutic treatments
targeting different processes of the cellular biology.

targeting signaling pathways, such as the VEGF inhi-
bition or VEGF receptors (R1/R2) blockade [147,148]
and CXCR4 protein, which is involved in tumor col-
onization, or the cytokine PIGF, which prepares the
metastatic niche in bone marrow for the cells invading
from breast cancer [149]. However, studies on the meta-
bolic reprogramming in endothelial cells have opened
new avenues to explore the combinatorial therapies of
targeting both tumors and their angiogenesis, in the
context of metabolism.

The approaches reviewed here provide a guideline to
improve the anticancer drug-target therapies focused
on metabolic reprogramming. However, the lack of a
proper model depicting the complete map of metabolic
reactions, regulatory processes as well as tumor hetero-
geneity and synergistic cooperation between cellular

Executive summary

Background

energy production and synthesis of biomolecules.

Tumor microenvironment

Isoenzymes: therapeutic targets in cancer

targets.

discovery

organism.

anticancer therapies.

e Nowadays, it is widely recognized that metabolic reprogramming is essential to sustain tumor progression.
These changes are promoted by genetic and epigenetic alterations producing mutations in key metabolic
enzymes that modify flux distributions in metabolic networks, providing advantages to cancer cells in terms of

Crosstalk between oncogenic signaling events & cancer cell metabolism

e Many key oncogenic signaling pathways, such as HIF, Myc, PI3K/AKT/mTOR or SREBPs, converge to adapt
tumor cell metabolism in order to support their growth and survival. They are intimately involved in
modulating glycolysis, mitochondrial oxidative phosphorylation, lipid metabolism and glutaminolysis.

e The tumor microenvironment is complex and comprises the extracellular matrix, tumor and stromal cells (e.g.,
epithelial cells, fibroblasts and inflammatory cells) that are embedded within this matrix and nourished by
vascular network. The tumor heterogeneity, signaling molecules and chemicals, such as oxygen and protons,
can influence tumor cell proliferation, survival, invasion, metastasis and energy metabolism reprogramming.

¢ |soforms of many of the enzymes specific to important metabolic pathways are found to be overexpressed
in tumor cells affecting important pathways of the energetic metabolism. These isoforms have a key role
in mediating the aberrant metabolism of cancer cells and could serve as a promising source of novel drug

e These tumor-specific isoforms can be involved in important pathways, such as glycolysis, tricarboxylic acid
cycle, pentose phosphate pathway and glutamine metabolism, among other important energetic pathways
Genome-scale metabolic models as new tools emerging from systems biology approach to drug

e Genome-scale metabolic models are emerging as a potential solution to decipher the molecular mechanisms
underlying cancer in the context of systems biology. These models represent the metabolic reactions encoded
by an organism’s genome and summarize and codify information known about the metabolism of that

e These models use constraint-based methods for the mathematical representation of biotransformations and
metabolic processes occurring within the organism and offer an appropriate framework to integrate the
increasing amount of ‘omic’ data generated by the different high-throughput technologies.

e Genome-scale metabolic models approaches have allowed to identify a number of tumor-specific biomarkers,
anticancer drug-target and synthetic lethal genes opening a promising avenue in the development of new
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communities, makes selecting the best possible tar-
get combinations difficult. Thus, in order to develop
more efficient anticancer therapies, more efforts need
to be made in developing new methods to study tumor
metabolism and obtain a better understanding of the
molecular processes underlying tumor progression and
invasion.
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Selenium supplement has been shown in clinical trials to reduce the risk of different cancers includ-
ing lung carcinoma. Previous studies reported that the antiproliferative and pro-apoptotic activities of
methylseleninic acid (MSA) in cancer cells could be mediated by inhibition of the PI3K pathway. A better
understanding of the downstream cellular targets of MSA will provide information on its mechanism of
action and will help to optimize its use in combination therapies with PI3K inhibitors. For this study, the
effects of MSA on viability, cell cycle, metabolism, apoptosis, protein and mRNA expression, and reactive
oxygen species production were analysed in A549 cells. FOXO3a subcellular localization was examined
in A549 cells and in stably transfected human osteosarcoma U2foxRELOC cells. Our results demonstrate
that MSA induces FOXO3a nuclear translocation in A549 cells and in U20S cells that stably express
GFP-FOXO03a. Interestingly, sodium selenite, another selenium compound, did not induce any significant
effects on FOX03a translocation despite inducing apoptosis. Single strand break of DNA, disruption of
tumour cell metabolic adaptations, decrease in ROS production, and cell cycle arrest in G1 accompanied
by induction of apoptosis are late events occurring after 24 h of MSA treatment in A549 cells. Our findings
suggest that FOX03a is a relevant mediator of the antiproliferative effects of MSA. This new evidence on
the mechanistic action of MSA can open new avenues in exploiting its antitumour properties and in the
optimal design of novel combination therapies. We present MSA as a promising chemotherapeutic agent
with synergistic antiproliferative effects with cisplatin.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Lung cancer is a leading cause of cancer-related mortality and
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has one of the lowest cure rate worldwide [1]. In early stages of
the disease, surgery is the common choice while chemotherapy is
the main treatment in advanced lung cancer. The search for new
synthetic or natural drugs with low systemic toxicity and high effi-
ciency holds great promise to decrease the morbidity and mortality
of cancer. The trace element selenium (Se) in various chemical
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forms is nutritionally essential for humans but has toxic activity
at higher levels [2,3]. To date, the antioxidant and chemopreven-
tive role of different Se agents as a dietary supplement has not been
completely elucidated [4]. Se compounds such as sodium selenite
(NaySe03) [5,6] and methylseleninic acid (CH3SeO,H, abbreviated
as MSA) have also been studied as potential anticancer agents. MSA
is a synthetic precursor of methylselenol (CH3SeH) which induces
several cellular, transcriptional and biochemical responses that dif-
fer from those induced by selenium forms that are transformed via
hydrogen selenide, such as sodium selenite [7,8].

As a constituent of the selenocysteine-containing selenopro-
teins, selenium has a key role in redox regulation and defence
against oxidative stress by greatly enhancing the activity of some
antioxidant enzyme systems [9]. Several selenoenzymes, including
thioredoxin reductase, iodothyronine deiodinase and glutathione
peroxidase, may be associated with cancer development and
progression by modulating cell proliferation, transformation,
migration and protection against oxidative damage [2]. Selenium
deficiency has also been linked to cancer development since it was
observed that populations with low selenium intake had greater
cancer incidence. Numerous studies and clinical trials have shown
that supranutritional doses of individual and mixed selenium com-
pounds inhibit proliferation of cancer cells, induce tumour cell
apoptosis, suppress tumour formation and metastasis in animal
models and reduce the risk of prostate, lung, breast, and colorectal
cancers in humans [9-11]. However, not all selenium compounds
have efficacy in chemoprevention, as in a recent large clinical trial
(SELECT), selenomethionine was concluded to be ineffective in
reducing the risk for prostate cancer development [12].

Using a stable isotope-resolved metabolomic (SIRM) approach,
Fan et al. [13] reported that several metabolites, including lac-
tate, glutathione and glutamate are depleted in A549 lung cancer
cells by selenite but not by selenomethionine, suggesting multi-
ple perturbations of the central metabolic networks. Interestingly,
the reduction in glycolysis, tricarboxylic acid cycle (TCA) and pen-
tose phosphate pathway (PPP) fluxes observed is opposite to those
observed when phosphoinositide-3-kinase (PI3K) pathway is acti-
vated [14], pointing to the hypothesis that Se agents target this
signalling pathway. Among the selenium compounds with anti-
cancer properties, it has been reported that MSA is a potent
inhibitor of the growth and survival of human umbilical vein
endothelial cells (HUVECs) and that this antiproliferative effect
could be enacted through the PI3K pathway [15,16]. Studies with
prostate cancer LNCaP, PC-3 (high basal Akt activity) and DU145
cells (low basal Akt activity) have also shown that Akt plays an
important role in regulating apoptosis sensitivity to MSA [17]. How-
ever, the molecular mechanism of action of MSA is still not fully
elucidated.

PI3K/Akt pathway has been shown to be activated in numer-
ous tumours, including lung cancer [18], as it is essential for cell
proliferation and survival. Akt is a serine-threonine kinase that
is regulated via activation of PI3K. Forkhead box O (FOXO) tran-
scription factors are direct targets of Akt that modulate cellular
differentiation, cell cycle, growth, survival, apoptosis, metabolism,
DNA repair, resistance to oxidative stress and tumour suppres-
sor pathways [19]. In mammals, FOXO1, FOX0O3a and FOXO0O4 are
ubiquitously expressed while FOXO6 is expressed predominantly
in neural cells. As transcription factors, FOXO proteins activate
or repress the transcription of their target genes through nuclear
translocation regulated by post-translational modifications such
as phosphorylation, acetylation and ubiquitination [20]. FOXO
phosphorylation by Akt impairs its DNA binding activity and pro-
motes its interaction with the chaperone protein 14-3-3, resulting
in nuclear exclusion, cytoplasmic accumulation and ubiquitin-
proteasome pathway-dependent degradation, thus promoting cell
survival. In contrast, FOXO proteins are activated and released

from 14-3-3 in the presence of oxidative stress through Jun N-
terminal kinase (JNK) signalling [19,21,22]. A hallmark of most
cancers where the PI3K pathway is hyperactivated (caused by RAS,
PTEN or PI3K mutations) is inactivation of FOXO proteins [23]. In
contrast, PI3K depletion results in a significant activation of FOXO
transcription factors, induction of apoptosis, decrease of cell via-
bility and G1 cell cycle arrest with inhibition of CDK4/6, cyclin D
and accumulation of p27 [24]. Therefore, the search for compounds
that promote activation and relocalization of FOXO from the cyto-
plasm to the nucleus is a promising therapeutic approach for cancer
treatment and prevention [25].

In this study, using A549 and U2foxRELOC cells expressing
a GFP-FOXO03a fusion protein, we have demonstrated that MSA
induces FOXO3a dephosphorylation and nuclear translocation.
These findings provide a molecular mechanism to the cytotoxic-
ity, apoptosis, ROS detoxification, cell cycle arrest and metabolic
changes observed in A549 cells and implicate FOXO3a as a relevant
mediator of MSA antitumour effects.

Moreover, since it has been reported that the antitumour effects
of cisplatin are enhanced when it is combined with FOXO nuclear
export inhibitors [26-29] and that MSA synergistically sensitized
cancer cells in combination with certain chemotherapeutic drugs
[30,31], we hypothesized that combined treatment of MSA with
cisplatin could be a promising new strategy in cancer therapy.

2. Methods

All products were purchased from Sigma-Aldrich Co. (St Louis,
MO, USA), unless otherwise specified.

2.1. Chemicals

MSA was supplied by Dr. Fan (University of Kentucky, KY, USA).
Sodium selenite was purchased from Sigma-Aldrich. Stock solu-
tions of 10 mM were prepared with Dulbecco’s phosphate buffered
saline (PBS). The PI3K inhibitor LY294002 was purchased from
Calbiochem (San Diego, CA, USA), antibiotic (10,000 U mL~! peni-
cillin, 10mgmL-! streptomycin), PBS, Trypsin EDTA solution C
(0.05% trypsin —0.02% EDTA) from Biological Industries (Kibbutz
Beit Haemet, Israel) and Fetal Bovine Serum (FBS) from Invitrogen
(Carlsbad, CA, USA).

2.2. Cell culture

Human lung carcinoma A549 cells (ATCC, Manassas, VA, USA)
were grown in RPMI-1640 medium with L-glutamine and 10 mM
D-glucose prepared following the manufacturer’s instructions.
Human osteosarcoma stably transfected U2foxRELOC cells (a gift
from Dr. Wolfgang Link), human osteosarcoma U20S cells, human
large cell lung cancer NCI-H460 cells, human ovary adenocarci-
noma OVCAR3 cells, human embryonic kidney 293 (HEK293) cells
and adipocyte-like differentiated 3T3-L1 cells (ATCC) were grown
in DMEM with L-glutamine and 25 mM p-glucose. Human colorec-
tal carcinoma HCT116 cells (ATCC) were cultured in DMEM:HAM
F12 (1:1) with L-glutamine and 12.5 mM D-glucose. Human breast
adenocarcinoma MCF7 cells (ATCC) were cultured in MEM medium
without phenol red (Gibco, Thermo Fisher Scientific Inc., Waltham,
MA, USA) containing 10 mM bp-glucose, 2 mM L-glutamine, 1 mM
pyruvate (Biological Industries), 0.01mgmL~! insulin and 1%
non-essential aminoacids (Biological Industries). Media were sup-
plemented with 10% heat-inactivated FBS, penicillin (50UmL™1)
and streptomycin (50 wgmL~!). U2foxRELOC cells, which express
a resistance to Geneticin, were incubated with G418 (Gibco) at
100 pgmL~1. 3T3-L1 pre-adipocyte cells were grown in DMEM
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with 0% FBS, 10% NCS and 0.5% streptomycin/penicillin. Cells were
incubated at 37°C in a humidified atmosphere with 5% CO,.

2.3. 3T3-L1 differentiation

Pre-adipocyte 3T3-L1 cells were seeded in 96-well-flat-
bottomed microtitre plates. Medium was changed two days after
confluence with DMEM containing 0% NCS, 10% FBS and induction
cocktail (250 wM isobutylmethylxanthine, 1 wM dexamethasone
and 0.98 p.M insulin). After 72 h, medium was replaced with 10%
FBS DMEM containing 0.98 wM insulin and cells were incubated for
72 h. Then, medium was replaced with 10% FBS DMEM. Cells were
fully differentiated into adipocytes within 48 h and cell viability
assay was performed on them.

2.4. Cell growth inhibition

The assay was performed using a modified method described
by Mosmann [32]. Increasing concentrations of the inhibitor were
added in sextuplicate in 96-well-flat-bottomed microtitre plates
where 2 x 103 A549 cells/well had been seeded 24 h before. MSA
was added to 3T3-L1 cells once the differentiation process was
completed. MSA was depleted after >24 h of treatment, so media
was refreshed every day. After 24, 48 or 72h, 1mgmL-! 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) in
PBS was added at a final concentration of 0.5mgmL~!. After 1h,
supernatant was removed and the formazan product was dissolved
in 100 pL of dimethyl sulfoxide (DMSO). The absorbance was mea-
sured on an ELISA plate reader (Tecan Sunrise MR20-301, TECAN,
Salzburg, Austria) at 550 nm. Concentrations that caused 50% of
inhibition of cell growth (IC5g) were calculated using Graphpad
Prism 6 software (La Jolla, CA, USA).

2.5. Cell cycle analysis

A 5x10% A549 cells/well were seeded in 6-well plates and
treated 24 h later with MSA for 24, 48 and 72 h. Both adherent and
detached cells were collected by centrifugation after trypsinization,
resuspended in 0.5 mL PBS and added dropwise to 4.5 mL 70% (v/v)
cold ethanol. Cells were stained in PBS containing 50 mg mL~! pro-
pidium iodide (PI), 0.2 mgmL~! DNAse free RNAse (Roche, Basel,
Switzerland) and 0.1% Triton X-100. Fluorescence-activated cell
sorter (FACS) analysis was carried out at 488 nm in an Epics XL
flow cytometer (Coulter Corporation, Hialeah, FL, USA). Data of
1 x 104 cells were collected and analysed using multicycle program
(Phoenix Flow Systems, San Diego, CA, USA). All experiments were
performed three times with three replicates per experiment.

2.6. Apoptosis assay

Cells were seeded and treated as described in the cell cycle
analysis assay. After centrifugation, cells were washed and resus-
pended in binding buffer (10 mM Hepes pH 7.4, 140 mM sodium
chloride, 2.5 mM calcium chloride). Annexin V coupled with fluo-
rescein isothiocyanate (FITC) was added according to the Annexin
V-FITC kit (Bender System MedSystem, Viena, Austria). Following
30 minofincubation at room temperature in darkness, Plwas added
at 20 pgmL~! 1 min before FACS analysis. Experiments were per-
formed in triplicate and repeated three independent times. Data
from 2 x 10% cells were collected and analysed in each experiment.

Apoptosis was also assessed using the membrane-permeable
fluorescent dye bisbenzimide Hoechst. After 24 h in the absence
or presence of 72M[Csy MSA, cells were harvested by mild
trypsinization, collected by centrifugation and fixed with 3.7%
paraformaldehyde for 10 min at —20°C. Cells were washed with
PBS, 0.5% Triton X-100 was added for 5min at 4°C and cells were

stained with 50 ng mL~! Hoechst 33342 dye for 15 min before plac-
ing them onto slides and mounting the coverslips with Mowiol
4-88. Chromatin condensation was visualized by fluorescence
microscopy.

2.7. Single cell gel electrophoresis (SCGE)

A 3 x 10 A549 cells/well were seeded in 6-well plates and
treated the next day with 72MICsy MSA, hydrogen peroxide 100 wM
(positive control) and vehicle (negative control). After 24, the
comet assay was carried out according to Tice et al. [33]. Briefly,
6 x 10° cells mL~! were mixed with 140 L of 1% low-melting-point
agarose and 70 L were spread onto pre-coated microscope slides
(1% of normal-melting-point agarose). Glass cover slips (Menzel-
Glaser, Braunschweig, Germany) were placed on the gels, which
were allowed to set at 4°C. Then, cover slips were removed and
cells embedded in agarose were lysed for 1h by immersion in
2.5M NaCl, 100 mM Na,-EDTA, 10 mM Trizma-HCI (pH 10) and 1%
Triton X-100 at 4 °C. The slides were placed on a horizontal gel elec-
trophoresis tank and the DNA was allowed to unwind for 40 min
in freshly prepared alkaline electrophoresis buffer (300 mM NaOH
and 1 mM Na,-EDTA, pH > 13). Electrophoresis was carried out in
the same buffer for 30 min at 25 Vin anice bath condition. The slides
were rinsed 3 x 5min with 400 mM Trizma (pH 7.5) to neutral-
ize the excess alkali, washed in water (10 min), stained with 25 pL
of 4,6-diamidino-2-phenylindole (DAPI) (invitrogen) and covered
with a cover. DAPI stained nuclei were evaluated with a Nikon
Eclipse TE 300 fluorescence microscope (Nikon, Tokyo, Japan). A
total of 100 comets on each gel were visually scored and classified
as belonging to one of five classes according to the tail intensity.
Each comet class was given a value between 0 (undamaged) and
4 (maximum damage). Total score was calculated by the following
equation: (percentage of cells in class 0 x 0) +(percentage of cells in
class1 x 1)+ (percentage of cellsin class 2 x 2) + (percentage of cells
in class 3 x 3)+(percentage of cells in class 4 x 4). Consequently,
the total score was in the range from 0 to 400. Experiments were
performed in triplicate.

2.8. [U-13C]-glucose tracer experiments

A549 cells were seeded in 10 cm plates and grown in the RPMI
medium as described above for 24-36 h before the medium was
changed to the RPMI medium with dialyzed FBS and [U-13C]-
glucose, and in the absence (control) or presence of 5 WM MSA. Cells
in the tracer medium were grown for another 24 h before harvest by
trypsinization, followed by 2 washes in excess cold PBS to remove
medium components. The final cell pellet obtained from spin at
1700 g,4°C for 5 min was flash-frozen in liquid N, before extraction
with ice-cold 10% trichloroacetic acid, as described previously [34].
The polar extracts were aliquoted and lyophilized for analysis by
GC-MS and 1D '3C-edited HSQC NMR at 14.1 T: 20°C using a 5 mm
HCN triple resonance cold probe (Agilent Technologies, Santa Clara,
CA). For GC-MS analysis, the extracts were derivatized in MTBSTFA
before analysis, and for NMR analysis, the extracts were dissolved
in 100% D0, as described previously [35].

2.9. A549 transient transfection with FOXO3a-GFP reporter
plasmid

A549 cells were grown on the surface of cover slips (Menzel-
Glaser, Braunschweig, Germany) placed in 6-well plates. When
confluence reached 80%, cells were transiently transfected with
a previously incubated (30 min) mix containing 2 pg of the GFP-
FOXO03a reporter plasmid and 2 pL of X-tremeGENE HP reagent
(Roche) in 200 pL medium.
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2.10. FOXO translocation assay

Twenty four hours after seeding U2foxRELOC cells in 6-well
plates containing cover slips or 21 h after transfection in the case
of A549 cells, media were replaced with media containing MSA,
sodium selenite, LY294002 20 wM (positive control) or vehicle
(negative control). After 6h of incubation, media were replaced
with fresh media containing 1 wM CellTracker Red (invitrogen) and
incubated for 10 min. Then, media were removed and the cover
slips containing the cells were washed 3 x 5min with PBS, fixed
with paraformaldehyde for 15min and washed again 3 x 5min
with PBS containing 20 mM glycine. The cover slips were then
mounted on slides using 20 pL ProLong Gold (invitrogen). After
16 h, the slides were visualized in a TCS SPE Leica confocal micro-
scope (Leica Microsystems, Wetzlar, Germany) and the intensity of
the GFP fluorescence in nuclei and cytoplasm was measured from a
minimum of 50 random cells per condition using Image] software
(public domain National Institutes of Health, USA, http://rsbweb.
nih.gov/ij/).

2.11. Time course relocalization assay and data analysis

The U2foxRELOC-based assay was performed as described pre-
viously [36]. All liquid handling for compound treatment, washing,
fixing and staining steps was performed by a robotic workstation
[37]. Briefly, 1 x 10° cells mL~! were seeded in black-walled clear-
bottomed 96-well microplates (BD Biosciences, San Jose, CA, USA)
in a final volume of 200 wL/well using a multidrop automatic dis-
penser. After 12h, cells were treated with 5 uM MSA for 1.5, 3,
6, 11 or 24h and 10 wM LY294002 (positive control) and vehicle
(negative control) for 1.5 h. Cells were washed with PBS, fixed in
paraformaldehyde, washed again and stained with DAPI for 20 min
at room temperature to define the nucleus. Assay plates were read
on the BD Pathway 855 Bioimager (BD Biosciences) equipped with
a488/10 nm EGFP excitation filter, a 380/10 nm DAPI excitation fil-
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ter,a 515 LP nm EGFP emission filter and a 435 LP nm DAPI emission
filter. Images were acquired in the DAPI and GFP channels of each
well by using 20Q dry objective. Data was exported from the BD
Pathway Bioimager as text files and imported into the data analysis
software BD Image Data Explorer (BD Biosciences) for processing.
Cells presenting nuclear accumulation of the fluorescent reporter
above 60% of the signal obtained from wells treated with 10 uM
LY294002 were considered as hits.

2.12. Total protein extraction

A 3 x 10° A549 cells per well were seeded in 6-well plates and
treated the next day with MSA, sodium selenite, LY294002 or vehi-
cle at the specified concentrations for 6 and 24 h. At the end of the
treatment, cells were washed twice with ice-cold PBS, incubated for
30 minonice in lysis buffer containing 20 mM Trizma Base (pH 7.5),
1 mM dithriothreitol, 1 mM EDTA, 0.0002% Triton X-100, 0.5 mM
sodium deoxycholate, 0.4 mM PMSF, 1% protease inhibitor cocktail
and 1% phosphatase inhibitor cocktail (Thermo Scientific, Thermo
Fisher Scientific Inc., Waltham, MA, USA). Cells were scraped, son-
icated and centrifuged at 16,000 g for 20 min at 4 °C. Supernatants
were recovered and the protein content was quantified by the bicin-
choninic acid (BCA) kit (Pierce Biotechnology, Rockford, IL, USA).

2.13. Cytosolic and nuclear protein extracts

A549 cells were cultured and treated as described in total
protein extraction section. In this case, cells were incubated for
10 min on ice with hypotonic buffer containing 20 mM HEPES (pH
7.6), 10mM NacCl, 1.5mM MgCl,, 0.2 mM EDTA, 20% (v/v) glyc-
erol, 0.1% (v/v) Triton X-100, 1% protease inhibitor cocktail and
1% phosphatase inhibitor cocktail. Cells were scraped and pipet-
ted into cooled eppendorf tubes and then centrifuged at 1000 rpm
in a swinging-bucket centrifuge at 4°C. Supernatant was the cyto-
plasmic extract and the pellet contained the nuclei. To extract

* * H Control
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Fig. 1. MSA effects on cell viability and cell cycle in A549 cells. (A) Growth inhibition of MSA on A549 lung cancer cells after 24, 48 and 72 h measured by MTT assay.
Exponentially growing cells were treated with the indicated concentration of MSA for 24, 48 and 72 h. The assay was carried out using six replicates and repeated three times.
Data are represented as mean + SD. (B) Cell cycle analysis of MSA-treated cells. A549 cells treated for 24, 48, 72 h with 1.3 uM MSA presented a G1 arrest. Cell cycle analysis
was conducted after propidium iodide staining. Values represent mean + SD and statistically significant differences between treated and control cells at p <0.05 are indicated
with an asterisk (*). (C) Western blot analysis showed a significant CDK4 and CDK6 inhibition at 6 h treatment with 5 uM MSA. Protein expression levels were quantified
using Image] software and are expressed as mean band intensity normalized to (3-actin and relative to control condition (* p <0.05).
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Fig. 2. Apoptosis assays in A549 cells. (A) Flow cytometry analysis of Annexin V-FITC staining and propidium iodide accumulation after exposure of A549 cells to MSA and
sodium selenite at their respective 72"ICsy concentrations for 24, 48 and 72 h. PI staining at 488 nm is represented on the y-axis and annexin V-FITC staining at 488 nm
on the x-axis. Quadrant 4 (PI-/FITC™) represents non-apoptotic cells, early apoptosis is shown in right bottom quadrant (PI-/FITC*) and quadrants 1 and 2 (PI*) depict late
apoptotic/necrotic cells. Plots illustrate the percentage of cells in early apoptosis and late apoptosis/necrosis. Values are expressed as mean + SD of three experiments in
triplicate. Differences between treated and control groups were considered statistically significant at p <0.05 (*). (B) DAPI staining of A549 cells DNA after electrophoresis in
agarose gel (single-cell gel electrophoresis, comet assay). Control condition treatment with vehicle showed no induction of single strand breaks while 24 h MSA exposure at
72hC5o concentration caused DNA fragmentation in A549 cells. (C) Morphological changes in nuclei were examined after 72 h MSA treatment at 72"ICs, concentration.



M. Tarrado-Castellarnau et al. / Pharmacological Research 102 (2015) 218-234 223

the nuclear proteins, the pellet was resuspended in five times its
volume with hypertonic buffer (hypotonic buffer adding 500 mM
NaCl), rocked for one hour at 4°C and spinned at maximum speed
at 4°C for 5min. The nuclear extract was the supernatant. Both
cytosolic and nuclear extracts were assayed for protein concentra-
tion using the BCA kit.

2.14. Western blot analysis

An equal volume of protein was size-separated by elec-
trophoresis on SDS-polyacrylamide gels and electroblotted onto
polyvinylidene fluoride transfer membranes (PVDF) (Bio-Rad Lab-
oratories, Hercules, CA, USA). After 1h of blocking at room
temperature with 5% skim milk in PBS 0.1% Tween, blots were incu-
bated with the specific primary antibodies overnight at 4°C. Then,
membranes were treated with the appropriate secondary antibody
for 1 h at room temperature. All blots were treated with Immobilon
ECL Western Blotting Detection Kit Reagent (EMD Millipore, Biller-
ica, MA, USA) and developed after exposure to an autoradiography
film (VWR International, Radnor, PA, USA). The primary antibod-
ies used were Phospho-Akt (#9271), Akt (#9272), Phospho-mTOR
(#5536) and procaspase 3 (#9662 ) from Cell Signaling (Beverly, MA,
USA); FOX03a (#06-951) from Upstate (EMD Millipore); Phospho-
FOXO03a (sc-101683), Phospho-]NK (sc-6254), FOXM1 (sc-500),
Bax (sc-493), CDK4 (sc-260), CDK6 (sc-177), ERK 2 (sc-154) and
Lamin B (sc-6217) from Santa Cruz Biotechnology (Santa Cruz, CA,
USA); Phospho-PRAS40 (#44-1100) from BioSource International
(Camarillo, CA, USA); PARP (#556493) and cytochrome c (#556433)
from BD Pharmingen (BD Biosciences); p27 (#610242) from BD
Transduction Laboratories (BD Biosciences) and [3-actin (#69100)
form MP Biomedicals (Santa Ana, CA, USA).

2.15. FOXO1 gene expression. RNA extraction, quantification,
retrotranscription and quantitative reverse
transcription-polymerase chain reaction (QRT-PCR)

RNA was isolated from frozen plates using trizol reagent (invit-
rogen) following the manufacturer’s instructions. Briefly, Trizol cell
homogenates were mixed with chloroform and centrifuged, obtain-
ing an aqueous phase and an organic phase. In order to precipitate
RNA, cold isopropanol was added in the aqueous phase and cen-
trifuged at 12,000 g for 15 min at 4 °C. RNA was purified by several
cold 75% ethanol washes and finally resuspended in RNAse free
water. RNA was quantified using a Nanodrop (ND 1000 V3.1.0,
Thermo Fisher Scientific Inc.). Reverse transcription was carried out
with 1 wgRNA at37 °Cfor 1 hwith the following reagents: Buffer 5x
(invitrogen), DTT 0.1 M (invitrogen), Random Hexamers (Roche),
RNAsin 40U uL-! (Promega, Fitchburg, WI, USA), dNTPs 40 mM
(Bioline, London, UK), M-MLV-RT 200U pL~! (invitrogen). Gene
expression analysis was performed on an Applied Biosystems 7500
Real-Time PCR System according to the manufacturer’s protocol,
using Tagman gene specific sequences (FOX01: Hs01054576_m1,
Applied Biosystems, Thermo Fisher Scientific Inc.). Reactions were
performed in 20 L volume, using 9 L of the cDNA mixture and
11 L of the specific Tagman in Master Mix (Applied Biosystems).
Real-time PCR was conducted according to the following parame-
ters: an initial incubation at 50°C for 2 min, a denaturalization at
95 °C for 10 min, followed by 40 cycles at 95 °Cand 60 °C for 15 s and

1 min, respectively. Expression was quantified by ADCt method
using Cyclophilin A (PPIA: Hs99999904_m1, Applied Biosystems)
as reference gene.

2.16. Determination of intracellular reactive oxygen species
(ROS) levels

A549 cells were grown on 6-well plates to 70% confluence,
washed once with warm PBS, and incubated with 5uM 2'-7'-
dichlorodihydrofluorescein diacetate (H,DCFDA, Invitrogen) in PBS
supplemented with 5.5mM glucose. After 30 min at 37°C, PBS
was replaced with complete culture medium and incubated for
another 50 min at 37 °C. Finally, cells were trypsinized and resus-
pended thoroughly with 0.4 mL of PBS, H,DCFDA (50 M) and PI
(20 wg mL~1). Intracellular internalized probe reacts with ROS and
emits fluorescence when excited at 492 nm. Emitted fluorescence
was recorded by flow cytometry at 520 nm using an Epics XL flow
cytometer (Coulter Corporation, Hialeah, FL, USA). Data of DCF
fluorescence concentrations from 1 x 104 PI negative cells were
collected and analysed using multicycle program (Phoenix Flow
Systems, San Diego, CA, USA).

2.17. Stable shRNA cell line generation

U20S and HEK293 stable FOX0O3a knockdown cell lines were
generated by Effectene (Qiagen, Hilden, Germany) reagent-
mediated transfection with three different FOXO03a shRNA
constructs originated from The Netherlands Cancer Insti-
tute (NKI) shRNA library [38]. FOX0O3a shRNA sequences
FOX03a KD#1 (GCAGGCCTCATCTCAGAGCTCTCTTGAAGCTCT-
GAGATGAGGCCTGC), FOX0O3a KD#2 (CTGCGACGGCTGACT-
GAAATCTCTTGAATTTCAGTCAGCAGTCGCAG) and FOXO3a KD#3
(CCTGATGGGGGAAANANCTCTCTTGAANCTCTGANATGANGC-
CTGC) were cloned into pRetroSuper vector (NKI, Amsterdam,
The Netherlands). Empty pRetroSuper vector was used for control
cells (Ctrl). Cells were selected in complete medium containing
1 pgmL-! puromycin.

2.18. Data analysis and statistical methods

Experiments were carried out at least in triplicate and repeated
three times. To evaluate the effects of combined drug treatments
the multiple drug-effect analysis of Chou and Talalay [39] was used
with the CompuSyn software (ComboSyn, Inc., Paramus, NJ, USA).
MSA interactions with cisplatin and carboplatin were quantified
by determining the Combination Index (CI), where CI<1, Cl=1,
and CI>1 indicate synergism, additivity, and antagonism, respec-
tively. All data are expressed as mean + standard deviation (SD).
Statistical analyses were performed using statgraphics statistical
package (Statgraphics Centurion XVI, StatPoint technologies Inc.,
Warrenton, VA, USA). Control and treatment measurements were
compared using Kruskal-Wallis, ANOVA and two-tailed indepen-
dent sample Student’s t-tests. Differences were considered to be
significant at p <0.05.

Hoechst stained nuclei were evaluated with a fluorescence microscope (200 and 400x, scale bar 3 um) to detect increased condensation and margination of chromatin to
the nuclear envelope and the formation of apoptotic bodies (white arrows). Apoptotic bodies were not observed in control condition. (D) Cells were incubated with MSA,
sodium selenite and LY294002 at the indicated concentrations for 24 h and observed using an inverted phase contrast microscope. (E) Western blot analysis of total protein
fractions of A549 cells. Protein expression was determined by densitometry analysis using Image] software and is represented as mean band intensity normalized to 3-actin
and related to untreated controls. MSA apoptosis activation is represented by enhancement of Bax and cytosolic cytochrome c expression, decrease of procaspase 3 levels
and PARP cleavage (* p <0.05). Sodium selenite induced changes in the same direction but to a significantly lower extent.
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Fig. 3. MSA perturbs glycolysis, TCA cycle and nucleotide biosynthesis. A549 cells were grown in 0.2% [U-'3C]-glucose in the presence or absence of 5 WM MSA for 24 h. The
polar metabolites were extracted in ice-cold 10% trichloroacetic acid and analysed by 1D HSQC NMR ((A): acquired at 14.1 T, 20 °C) and GC-MS (B). (A) Representative 1D HSQC
NMR spectrum. The abundance of the ribosyl unit of adenine (>C-1'-AXP) and uracil (*C-1'-UXP) nucleotides was significantly attenuated 24 h after MSA treatment, relative
to the control treatment. (B) The GC-MS analysis revealed reduced synthesis of TCA cycle metabolites, [2-13C]-malate (Mal), [2-'3C]-aspartate (Asp), [2-1>C]-glutamate (Glu)
and [2-13C]-citrate (Cit), in addition to the glycolytic product, [3-13C]-lactate (Lac). p-values <0.05 (*) were considered statistically significant.

3. Results

3.1. MSA inhibits cell proliferation and causes G1 arrest in human
lung carcinoma A549 cells

The effect of MSA on human lung carcinoma A549 cell prolif-
eration was examined using the MTT (3-[4,5-dimethylthiazol-2-
yl]-2,5-diphenyltetrazolium bromide) colorimetric viability assay.
Significant dose-dependent growth inhibition was observed in this
cell line after treatment with 10 different concentrations of MSA
for 24, 48 and 72 h (Fig. 1A).

The MSA concentrations required for achieving a 50% growth
inhibition on A549 cells after 24, 48 and 72 h of treatment (24MCs,
48hIC50 and 72MC50) were 2.2+ 0.3 M, 1.6+0.2 and 1.3+0.1 uM,
respectively.

Flow cytometric analyses of cell cycle distribution of A549 cells
that had been exposed to 72M[Csq MSA showed an increase of the
G1 population at 24, 48 and 72 h of treatment as compared to con-
trol cells (increasing by 41% at 72 h). With the same treatment, a
concomitant decrease was also observed in the percentage of cells
in the S phase after 24, 48 and 72 h of treatment with respect to the
untreated cells (38% decrease at 72 h), suggesting a GO/G1 arrest
(Fig. 1B). Areduction in the percentage of cells in the G2 phase was
also observed at all times.

The interphase cyclin-dependent kinases CDK4 and CDK6 con-
trol cell cycle re-entry and progression through G1 phase. In
response to mitogenic stimuli, CDK4/6-cyclin D complexes phos-
phorylate the retinoblastoma (RB) protein family leading to their
partial inactivation and relieving the transcriptional repression
mediated by the RB-E2F complex [40]. Accordingly, MSA-induced
cell cycle arrest could result from negative regulation of CDK4/6-
cyclin D complexes. To test this idea, CDK4 and CDK6 protein
expression was analysed after incubating A549 cells with 5uM
MSA for 6 h. A significant decrease in the protein levels of CDK4/6
was observed in MSA-treated cells (Fig. 1C).

To determine whether the concentrations of MSA used in the
present study can acidify the media, we measured the pH val-
ues before and after the addition of MSA at 1.3 and 5 pM final
concentrations. We also assessed the pH values after the addi-
tion of acetic acid, which is a weak acid with an acid dissociation
constant (K;) of 1.8 x 10> and a similar molecular structure as
MSA. While the addition of acetic acid at 5uM decreased the
pH of the medium by 0.5 units, the same concentration of MSA
did not cause any significant effects. Therefore, we conclude that
the media were not acidified by the doses of MSA used in this
study.

3.2. MSA induces apoptosis in A549 cells

Apoptosis was assessed in A549 cells after 24, 48 and 72 h of
treatment with 1.3 uM MSA (72MICsq for growth inhibition). FACS
analysis using annexin V-FITC staining and PI accumulation was
performed to differentiate non-apoptotic cells (annexin V- and
PI-), early apoptotic cells (annexin V* and PI~) and late apop-
totic/necrotic cells (PI*).

To determine if MSA effects were specific or general to other
selenium compounds, sodium selenite was included in our analysis
(Fig. 2A). MSA treatment for 24 h caused no significant effect on
A549 cell apoptosis, while at 48 and 72 h, MSA exposure generated
an increase in early apoptotic cells. In contrast, the apoptotic effect
of sodium selenite was visible at 24 h and greatly enhanced at 48
and 72 h (reaching around 40% for early apoptotic cells) whereas the
percentage of late apoptotic and necrotic cells remained constant
at the three time points. Therefore, the extent of apoptosis caused
by MSA was much reduced compared to that induced by sodium
selenite, which can be due to different mechanisms of apoptosis
activation.

Apoptotic cells undergo a series of characteristic morphologi-
cal changes, such as shrinkage of the cell, chromatin condensation,
apoptotic body formation and internucleosomal fragmentation of
genomic DNA [41]. In order to evaluate DNA integrity, a single-
cell gel electrophoresis was performed (Comet assay). Single strand
break of DNA was observed after 24 h treatment with 1.3 wM MSA
(Fig. 2B). Total Comet score of treated and untreated cells were
199 and 74, respectively. The presence of apoptotic bodies follow-
ing 72 h MSA treatment at 72MCsq concentration was detected by
Hoechst 33342 staining (Fig. 2C). Other typical apoptotic features
such as rounding, shrinkage, detachment and loss of contact with
adjacent cells were observed in MSA-treated cells (Fig. 2D) using
an inverted phase contrast microscope.

Activation of the caspase pathway plays an important role in
apoptosis. Caspases are constitutive cysteine proteases that are
normally present as inactive proenzymes. Their enzymatic activity
is induced during apoptosis in a self-amplifying cascade. Cleaved
upstream caspases (caspases 2, 8, 9 and 10) activate effector cas-
pases (caspases 3, 6 and 7) by proteolysis initiating the apoptotic
cascade of events [41]. The intrinsic apoptosis pathway involves
the release of cytochrome c into cytosol and the formation of the
apoptosome complex by association with APAF-1. This complex
activates caspase 9 which in turn cleaves procaspase 3, implicated
in the proteolysis of poly (ADP-ribose) polymerase (PARP).

To elucidate the mechanisms involved in MSA or sodium
selenite-mediated induction of apoptosis in A549 cells, whole-cell
lysates were extracted and Western blot analyses were performed.



M. Tarrado-Castellarnau et al. / Pharmacological Research 102 (2015) 218-234

FOXO03a-GFP Celltracker Merge

Sodilin?: Silnenite MSA 5 uM MSA 1.3 uM LY294002 20 uM Control
u

Sodium Selenite
5umMm

Nucleus int./Cytoplasm int.

% cells with Nucleus int./Cytoplasm int. >3.5

225
40
*
30
*
B8 *
a o
20 H 8
" (N C ]
+
#ﬂ % %
0
Control LY294002 MSA MSA Sodium Sodium
20 uM 1.3 uM 5uM selenite selenite
1.3uM 5uM
120
* *
100 - - p
- -
80
60
40
20
o | mim i B
Control LY294002 MSA MSA Sodium Sodium
20 uM 1.3uM 5umM selenite selenite
1.3 puM 5um
100
z
3
]
S 50
8
R
o 2
12 10 -08 06 04 -02 00 02 04 06 08 10 12
log ([MSA];pM)

Fig. 4. Nuclear translocation of GFP-FOXO following MSA treatment in U2foxRELOC cells. U2foxRELOC cells stably expressing GFP-FOXO fusion protein were treated with
vehicle, LY294002 (PI3K pathway inhibitor), MSA or sodium selenite for 6 h. (A) Representative confocal microscopy images for U2foxRELOC cells. Left row (green) indicates
the subcellular location of FOXO3a-GFP. Celltracker location (red) identifies the cytoplasm. Scale bar, 5 wm. (B) Box and whiskers plot for the correlation between the nuclear
and cytoplasmic green fluorescence intensity. Higher values represent a higher FOX0O3a-GFP presence in the nucleus compared to the cytoplasm. Bar graph shows the
percentage of the cells in each condition exhibiting nuclear/cytoplasmic ratios of fluorescence intensity greater than 3.5. MSA and LY294002 treatments display statistically
significant differences (*) with the control condition using a multiple rang test (Kruskal-Wallis test) with 99% confidence. (C) Viability assay with MSA in U2foxRELOC cells
at 72 h. Exponentially growing cells were treated with the indicated concentration of MSA for 72 h. The assay was carried out using six replicates and repeated three times.
Data are represented as mean =+ SD. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The effects of LY294002, a known PI3K inhibitor [42], were also
assessed. As shown in Fig. 2E, incubation with 5 wM MSA enhanced
the expression of pro-apoptotic Bax and cytosolic cytochrome c,
decreased the level of procaspase 3 and caused PARP cleavage.
Sodium selenite 5uM treatment induced changes in the same
direction but to a significantly lower extent (sodium selenite
72h|C5, in A549 cells is 5.5 + 0.4 WM, data not shown).

3.3. MSA blocks glycolysis, TCA cycle and nucleotide biosynthesis

The effect of MSA on A549 cell metabolism was examined
using the stable isotope-resolved metabolomics (SIRM) approach
[43-45]. A549 cells were treated with uniformly 13C-labeled glu-
cose ([U-13C]-glucose) in the absence (control) or presence of 5 wWM
MSA for 24 h. The glucose transformation products were analyzed
by 1D HSQC NMR and GC-MS, as shown in Fig. 3. MSA-treated
A549 cells had reduced synthesis of 13C labelled lactate (glycolytic

product), malate, aspartate, glutamate, citrate (TCA cycle metabo-
lites), as well as adenine and uracil nucleotides (with the ribose
unit derived from the PPP), relative to untreated A549 cells. These
results suggest that MSA attenuates the activity of glycolysis, TCA
cycle, PPP and/or nucleotide biosynthesis.

3.4. MSA causes nuclear translocation of FOX03a in U2foxRELOC
cells

Taking into account the arrest of cell cycle (G1), apoptosis
induction, the metabolic effects of MSA on A549 cells and their
correlation with those described for the PI3K inhibition [14], and
the observed effects of MSA on PI3K signalling, we evaluated
the effect of MSA on FOXO factors known to be the major tran-
scriptional downstream effecter proteins of the PI3K/Akt signal
transduction pathway [46]. As the activity of FOXO factors is mainly
regulated by their subcellular localization [47], we first investi-
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gated if MSA induced FOXO nuclear translocation. To this end, we
used U2foxRELOC cells, a previously established cell system based
on U20S osteosarcoma cells that stably express a GFP-FOX03a
reporter [36,48,49)].

In order to select the optimal MSA concentration for analyzing
its effects on FOXO translocation, the MSA 72"[Csq in U2foxRELOC
cells was determined by incubating the cells with 10 different con-
centrations of MSA for 72 h and performing colorimetric viability
assay. The values for dose-dependent growth inhibition were simi-
lar to the results obtained for A549 cells (Fig. 4C). We next analyzed
the spatio-temporal kinetics of FOXO nuclear translocation upon
MSA treatment. We exposed U2foxRELOC cells to 5 M MSA for
1.5, 3, 6, 11 and 24 h and determined subcellular localization of
the fluorescent FOXO reporter protein. MSA treatment induced
GFP-FOXO03anuclear translocation from 1.5 to 24 h, reaching a max-
imum effect between 3 and 6 h (data not shown).

With the assay conditions optimised, U2foxRELOC cells were
treated with 1.3 and 5 M MSA for 6 h and the subcellular local-
ization of GFP-FOX0O3a was monitored by confocal microscopy.
Vehicle was used as a negative control and LY294002 (20 wM) as a
positive control. As shown in Fig. 4A, GFP-FOX03a was present in
the cytosol of untreated cells as well as in the nucleus, whereas
in MSA- and LY294002-incubated cells GFP-FOX03a was local-
ized almost exclusively in the nuclei. The percentage of cells in
which GFP-FOX03a nuclear intensity was at least 3.5 times higher
than GFP-FOXO03a cytoplasmic intensity was less than 6% for con-
trol cells, more than 95% for LY294002-treated cells and more
than 94% for MSA-treated cells (at both concentrations) (Fig. 4B).
To determine whether FOX03a nuclear translocation was specif-
ically driven by MSA or was a general characteristic of selenium
compounds, U2foxRELOC cells were also incubated with sodium
selenite at the same concentrations as MSA. The intracellular dis-
tribution of GFP-FOX03a remained unaltered in the presence of
sodium selenite (Fig. 4A). These results support our hypothesis that
MSA specifically induces FOX0O3a nuclear translocation.

3.5. MSA induces GFP-FOX03a nuclear translocation and
increases nuclear FOX03a in A549 cells

To further confirm our hypothesis and test if the translocation
effect of MSA is also relevant for lung cancer cells, the effect of
MSA on FOX03a in A549 cells was analyzed. To this end, we tran-
siently transfected GFP-FOXO into A549 cells and exposed them to
MSA. Fig. 5A and B illustrate the results obtained after 6 h incu-
bation with 5 uM MSA, 20 wM LY294002 or vehicle. MSA induced
nuclear accumulation of FOX03a in A549 cells, resulting in over
90% of cells exhibiting nuclear fluorescence intensity at least 1.5
times greater than cytoplasmic fluorescence intensity, compared
to less than 2.5% of cells for the control conditions. To confirm the
nuclear translocation of endogenous FOX03a in non-transfected
A549 cells in response to MSA treatment, Western blot assays of
cells incubated in the same conditions were performed. As shown
in Fig. 5C, MSA causes an increase in nuclear FOX03a concentra-
tion and a decrease in the levels of cytoplasmic phosphorylated
FOXO03a at the Ser253 residue (a known Akt phosphorylation site),
consistent with our aforementioned results.

Since it is been described that FOXO1 transcription is stimulated
by FOX03a in a positive feedback loop [50,51], the effect of MSA
on FOXO1 mRNA levels was analyzed. Cells were incubated with
5 M MSA for different time periods from 1 h up to 24 h. Induction
of FOXO1 expression was detected from 2 h to 24 h and increased
in a time-dependent manner (Fig. 5D).

To validate the results obtained with confocal microscopy of
U2foxRELOC cells treated with MSA and sodium selenite, the lev-
els of active FOX03a in non-transfected A549 cells were analysed
by Western blot. As shown in Fig. 6, MSA induced FOX03a expres-

sion while sodium selenite caused its inhibition. To confirm this
observation, FOXM1 protein expression was examined as previ-
ous studies have reported that FOXO3a is a negative regulator
of FOXM1 at the transcriptional level [52,53]. In agreement with
these observations and further supporting MSA’s mode of action
through FOX03a activity, MSA treatment significantly decreased
FOXM1 expression while sodium selenite enhanced the level of this
transcription factor (Fig. 6).

In order to identify the mechanisms involved in FOXO subcellu-
lar redistribution, changes in FOXO-regulating signal transduction
pathways in response to MSA treatment were studied. It was pre-
viously reported that cell cycle arrest induced by FOXO proteins is
mediated by enhanced transcription and protein expression of the
cyclin-dependent kinase inhibitor p27 [54,55] and reduced pro-
tein expression of cyclins D1 and D2 [56]. Both cases result in an
impaired capacity of CDK4 and CDK6 to hyperphosphorylate the RB
protein family, leading to G1 arrest [40]. Moreover, while FOX03a
has been reported to induce the transcription of p27, PI3K/Akt path-
way is known to suppress its expression in order to proceed with
cell cycle [57]. To investigate whether MSA-induced G1 cell cycle
arrest is associated with Akt and FOXO signalling, p27 and phos-
phorylation of Akt on Ser 473 status were analysed by Western blot.
Six-hour treatment with MSA (at both 1.3 and 5 M) significantly
suppressed Akt phosphorylation without affecting its total protein
level (Fig. 6). These results suggest that FOXO3a dephosphoryla-
tion and nuclear accumulation in response to MSA are mediated
by Akt inactivation. The PI3K inhibitor LY294002 showed the same
behaviour as MSA while sodium selenite increased Akt phospho-
rylation in a dose-dependent manner. The overactivation of Akt
mediated by sodium selenite could account for the depletion in
FOXO03a levels observed (Fig. 6). PRAS-40, an Akt substrate, fol-
lowed the same phosphorylation pattern, further supporting our
hypothesis (Fig. 6). mTOR pathway was downregulated by MSA as
phosphorylated mTOR levels were reduced significantly after MSA
treatment while sodium selenite activated this signalling pathway
by increasing P-mTOR level. Dephosphorylation of Akt and FOXO
activation preceded the caspase-mediated apoptosis and the tran-
scription of FOXO3a target genes such as p27 (Fig. 6). As expected,
p27 levels were notably increased after exposure to 5 WM MSA and
20 M LY294002 for 24 h, even though p27 level was only slightly
enhanced by exposure to 1.3 wM MSA. These data corroborate with
previous results that showed MSA and sodium selenite inducing
distinct biochemical and cellular responses [7,58,59].

3.6. MSA elicits ROS detoxification

FOXO proteins have been reported to induce detoxification of
reactive oxygen species (ROS) by up-regulating free radical scav-
enging enzymes, including manganese superoxide dismutase and
catalase [25]. FOXO transcription factors regulate two aspects of
cellular resistance to stress: repair of damages caused by ROS and
detoxification of ROS [19]. Given that MSA causes FOX0O3a translo-
cation to the nucleus, we measured ROS levels in A549 cells. The
results show that 1.3 uM MSA caused a significant decrease in the
levels of ROS at 24 and 48 h (Fig. 7). This decrease is consistent with
the increased cellular free thiol levels observed by Poerschke et al.
[60] after 24 h MSA incubation. Cells incubated with MSA for 72 h
had similar ROS level to control cells. In contrast, sodium selen-
ite inhibited ROS production at 24 h but enhanced it at 48 and
72h.

Previous studies described the role of JNK as a FOXO activator
mediating the phosphorylation of 14-3-3 proteins, thus releasing
FOXO factors and trigging their nuclear relocalization [61-63]. As
shown in Fig. 6, MSA incubation resulted in an increase in P-JNK,
which is consistent with FOXO activation by Akt dephosphory-
lation. Sodium selenite enhancement in P-JNK levels could be a
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of the references to color in this figure legend, the reader is referred to the web version of this article.)
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consequence of selenite-induced ROS production since JNK cascade
can be independently activated by environmental stresses [64].
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Fig. 7. ROS detoxification by MSA treatment. (A) decrease in ROS levels was
observed in MSA-treated A549 cells. This reduction was only statistically significant
after 24 and 48 h (* p<0.05). Cells treated with sodium selenite for 24 h presented
similar ROS level to MSA-treated cells but significantly enhanced the production of
ROS in a time-dependent manner after 48 and 72 h incubations.

3.7. FOX03a knockdown attenuates MSA effects

In order to confirm the role of FOX0O3a as a mediator of MSA
antitumour effects, we stably silenced FOXO03 in two different
cell lines using shRNA vectors. We established U20S and HEK293
cells that stably expressed three different hairpin sequences and
validated the efficiency of FOXO3a knockdown by Western blot.
The results revealed that FOX03a KD#1 construct exhibited the
strongest knockdown effect, followed by FOX03a KD#2 (Fig. 8 A).
Hence, the U20S cell lines transfected with these two constructs
and the FOX03a KD#1HEK293 cell line were selected to perform
the following experiments.

We incubated Ctrl (empty vector) and FOX03a knockdown cells
with 1 wM MSA or vehicle (PBS) and measured cell proliferation,
cell cycle and apoptosis after 72 h (Fig. 8B-G), and ROS after 48 h
treatment (Fig. 8H-I). The results showed that MSA effects were
attenuated or even abolished by FOX03a knockdown. In fact, the
observed antiproliferative effect of MSA was significantly reduced
after FOXO3ainhibition, while no differences in cell cycle, apoptosis
and ROS levels were found between untreated and MSA-treated
FOXO03a knockdown cells. These results further confirm that the
antitumour response of MSA treatment is mediated by FOXO3a.
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3.8. MSA as a promising chemotherapeutic agent

Cisplatin-based therapy is a conventional chemotherapeutic
treatment for cancer. However, its clinical efficacy is compro-
mised by acquired resistance and dose-limiting side effects [65].
Consequently, the search for combination therapies and chemosen-
sitizing agents to cisplatin is essential for improving its treatment
outcome. Given that previous studies reported the enhancement
of cisplatin’s antitumour effects in combination with FOXO nuclear
export inhibitors [26-29], we hypothesized that combined treat-
ment of MSA with cisplatin could be a promising new strategy in
cancer therapy.

To quantify the synergy of dose-dependent effect on cell via-
bility, we used the combination index (CI) equation of Chou and
Talalay [39]. We examined the synergistic effects of MSA and
cisplatin in A549, HCT116 (colorectal carcinoma), MCF7 (breast
adenocarcinoma) and OVCAR3 (ovary adenocarcinoma) cells which
are considered to present cisplatin-resistance, exhibiting ICsq
values higher than 10uM [66] (http://www.cancerrxgene.org/
translation/Drug/1005). The combination of MSA and cisplatin
treatment in a wide dose range showed a significant synergism
in the antiproliferative effects with a CI<1 in each tested cell line
(Table 1).

In addition, we studied the synergism of MSA and carboplatin, a
derivative of cisplatin commonly used in conventional chemother-
apy with similar efficacy, in the same cell lines. Likewise, the
combination of MSA and carboplatin treatment in a wide dose range
exhibited a synergistic (CI < 1) antiproliferative effect in each tested
cell line (Table 2).

Compared with cisplatin or carboplatin single treatments,
dosage of these conventional chemotherapeutics could be remark-
ably reduced in combination therapy with MSA to gain the same
inhibitory effect on cell proliferation. Therefore, the synergism
observed in HCT116, MCF7, A549 and OVCAR3 cells suggests the
combined MSA/cisplatin or carboplatin treatment as an efficient
strategy to decrease the chemotherapeutic doses and consequently,
mitigate the overall toxicity.

In order to determine if MSA treatment obtained similar growth
inhibitory results in other cancer cell lines, the effect of MSA on cell
viability in NCI-H460 (large cell lung cancer) and HCT116 (colorec-
tal carcinoma) cell lines was measured. The 72M1Csq values obtained
were in the same range as for A549 cells, being 1.7 £0.2 M and
1.9+ 0.2 uM for NCI-H460 and HCT116 cells, respectively (Fig. 9A).
To investigate if FOXO activation mediated by MSA is a general
mechanism and not cell-dependent, HCT116 cell line was used
to evaluate FOXO1 mRNA expression, which showed a significant
increase in a time-dependent manner beginning at 2 h with 5 uM
MSA treatment (data not shown).

To test the selective cytotoxicity of MSA for cancer cells, a MTT
colorimetric viability assay using a non-tumour non-proliferating
cell line was performed. Differentiated 3T3-L1 adipocytes were
incubated for 72 h with 9 different MSA concentrations and the
effect on cell proliferation and the 72P[Cs, value were determined
(Fig. 9A). 72hICsq for MSA in 3T3-L1 cells was three to five times the
value for all tumour cell lines that have been studied (Fig. 9B), sup-
porting MSA as a promising chemotherapeutic agent with selective
antiproliferative effects on cancer cells.

Table 1
Synergistic antiproliferative effect of MSA and cisplatin combination treatment.

(A) A549 cells, ratio 1:10

MSA (M) Cisplatin (uM) Viability (%) CI Value
0.05 0.5 91.1+1.8 0.570
0.1 1 789 £ 1.1 0.447
0.3 3 56.5 + 2.0 0.631
0.5 5 411+ 34 0.707
0.75 7.5 279 £2.6 0.751
1 10 173 £ 0.5 0.729
1.3 13 8.5+ 0.5 0.663
1.5 15 42 £ 0.5 0.578
2 20 1.8+ 05 0.595
(B) HCT116 cells, ratio 1:5

MSA (M) Cisplatin (M) Viability (%) ClI Value
0.75 3.75 745 +£ 49 0.717
1 5 62.8 + 3.9 0.667
1.5 7.5 451+ 3.0 0.669
2 10 349 + 39 0.725
2.5 12.5 260+ 2.4 0.750
3 15 16.8 £ 2.1 0.716
3.5 17.5 11.0+ 1.3 0.695
4 20 3.6 +0.7 0.517
5 25 2.6 £ 0.6 0.579
(C) MCF7 cells, ratio 1:4

MSA (nM) Cisplatin (uM) Viability (%) CI Value
0.5 2 780 £ 1.2 0.275
0.75 3 746 £23 0.363
1 4 741 + 2.1 0.476
1.5 6 70.2 £ 0.5 0.629
2 8 66.6 + 0.1 0.753
2.5 10 495+ 23 0.608
3 12 39.5+3.2 0.575
3.5 14 199 +£ 2.1 0.392
4 16 135+ 14 0.350
(D) OVCARS3 cells, ratio 1:5

MSA (M) Cisplatin (uM) Viability (%) CI Value
0.75 3.75 498 +£29 0.431
1 5 36.7 +£ 2.6 0.446
1.5 7.5 25.5+23 0.523
2 10 184 + 1.1 0.573
2.5 12.5 11.6 £ 0.7 0.555
3 15 7.4 + 0.6 0.530
35 17.5 6.9+ 04 0.597
4 20 4.6 £ 0.2 0.557
5 25 2.7+0.6 0.538

Cells were treated for 72 h at the indicated concentrations of MSA and cisplatin in a
constant ratio. (A) A549 cells, ratio 1:10. (B) HCT116 cells, ratio 1:5. (C) MCF7 cells,
ratio 1:4. (D) OVCARS3 cells, ratio 1:5. The CI results obtained with CompuSyn soft-
ware revealed a synergy (CI<1) in the antiproliferative effects of MSA and cisplatin
at each dose combination tested.

4. Discussion

Selenium is an essential trace element fundamental to human
health with pivotal structural and enzymatic functions in seleno-
proteins. Selenium deficiency has been acknowledged as a
contributing factor to a series of distinct pathophysiological condi-
tions, including cancer. Several selenium compounds have shown
cancer chemopreventive and chemotherapeutic activities in both
animal models and humans [11,67,68]. It is important to note that
both dose and chemical form of selenium are crucial for the anti-
tumour activity. MSA and sodium selenite are among the forms
with high anticarcinogenic activity while selenomethionine used

after 1 WM MSA incubation for 48 h of (H) U20S shRNA transfected cells and (I) HEK293 shRNA transfected cells. Results are expressed as percentage of mean fluorescent
intensity relative to untreated Ctrl shRNA cells. In all cases, values represent mean + SD and statistically significant differences between treated and control cells at p<0.05

are indicated with an asterisk (*).
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in the SELECT trial was ineffective in cancer prevention in humans
[11,69,70].

There are several in vivo studies involving dietary selenium sup-
plementation for cancer therapy and prevention. The evaluation
of the effects of different diets containing MSA, sodium selenite
or selenomethionine in tumour xenografts in mice has led to the
conclusion that MSA exhibits a superior in vivo inhibitory efficacy
against human prostate and breast cancers over selenomethion-
ine or sodium selenite [8,10,71]. Indeed, dietary supplementation
with MSA significantly inhibits xenograft tumour growth and
reduces angiogenesis and spontaneous metastasis [8,10,71-73].
Importantly, supplementation with MSA does not affect neither
the animal body weight nor the food consumption when com-
pared with control diet animals, and histological alterations in
organs are not observed, altogether indicating a good tolerance
to the used dosage of MSA without adverse side effects [8,71,72].
Moreover, MSA supplementation results in less accumulation of
selenium both in liver and primary tumour when compared with
selenomethionine, while causes no increment in kidney selenium
levels relative to controls [8,10,71]. These results are consistent
with the fact that MSA is efficiently transformed into methylselenol
which in turn can be methylated and excreted [ 74]. Therefore, MSA
treatment presents superior in vivo antitumour efficacy with good
tolerance results over other selenium derivates [8,10,71,72].

The fact that the molecular mechanism underlying MSA’s anti-
tumour properties has not been fully elucidated is a bottle neck
in designing combination therapies with MSA. In this study, we
described that lung carcinoma A549 cells are very sensitive to
MSA treatment, in terms of growth inhibition, cell cycle arrest

in G1 phase, attenuated intracellular ROS levels and apoptosis.
However, some studies have described selenium derivatives as pro-
oxidant products at higher doses than those used in this study
[13]. This property could be due to dose dependence: at low con-
centrations MSA could serve as an antioxidant product, while at
higher concentrations it could act as a pro-oxidant compound
[69]. The antioxidant function could be mediated via the synthe-
sis of selenocysteine, which is an essential residue of important
ROS-detoxifying selenoproteins, such as glutathione peroxidases,
thioredoxin reductases and possibly selenoprotein P [75]. Our
results suggest distinct redox modulations of the two selenocom-
pounds tested and thus different mechanisms of action. Heightened
levels of ROS generated by sodium selenite can cause damage to
DNA and mitochondria, leading to apoptosis. Considering these
and previous results [6], sodium selenite induces apoptosis through
generation of ROS while MSA-mediated apoptosis is regulated by a
different molecular pathway like FOXO activation.

We have also shown that MSA induces FOXO translocation to
the nucleus after 1.5h of a 5 wM treatment and this localization is
maintained for atleast 24 h. In addition, we have demonstrated that
FOXO translocation after 1.5 h is the early event that occurs before
the observed molecular and metabolic effects of MSA. Moreover,
we have shown that the inhibition of the PI3K pathway through Akt
and FOX03adephosphorylation could be the molecular mechanism
underlying inhibition of cell proliferation, disruption of tumour cell
metabolic adaptations, induction of apoptosis, ROS detoxification
and cell cycle arrest in A549 cells. Indeed, FOX0O3a knockdown
attenuated or even abolished the antiproliferative effects of MSA.
It is worth noting that although MSA activity is mediated through
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Table 2
Synergistic antiproliferative effect of MSA and carboplatin combination treatment.

(A) A549 cells, ratio 1:6

MSA (nM) Cisplatin (nM) Viability (%) CI Value
0.5 3 81.2 +4.1 0.408
0.75 4.5 713 £5.2 0.642
1 6 61.2 +£ 04 0.637
1.5 9 482 + 14 0.775
2 12 30.7 £ 3.2 0.781
25 15 193 £ 0.9 0.626
3 18 12.8 £ 2.1 0.792
3.5 21 105+ 1.3 0.816
4 24 8.1+0.5 0.887
(B) HCT116 cells, ratio 1:10

MSA (M) Cisplatin (M) Viability (%) CI Value
0.25 25 89+ 13 0.306
0.5 5 77 £ 19 0.398
1 10 72 +£0.2 0.661
1.5 15 55 + 0.6 0.731
2 20 38+ 34 0.711
25 25 22 +£20 0.674
3 30 14 + 0.6 0.692
35 35 12+15 0.752
4 40 44238 0.608
5 50 2406 0.567
(C) MCF7 cells, ratio 1:6

MSA (M) Cisplatin (M) Viability (%) CI Value
0.5 3 849 £ 54 0.295
0.75 45 703 £ 3.9 0.299
1 6 63.5 £ 5.0 0.347
1.5 9 55.2 +£2.0 0.445
2 12 46.7 £ 4.3 0.510
25 15 36.1 £5.0 0.523
3 18 15.8 £ 4.2 0.381
35 21 134+ 13 0.408
4 24 11.2 £ 0.7 0.424
5 30 8.7+0.7 0.469
(D) OVCARS3 cells, ratio 1:6

MSA (nM) Cisplatin (M) Viability (%) CI Value
0.75 4.5 85.1+1.8 0.668
1 6 775 +£5.1 0.697
1.5 9 66.9 + 0.5 0.908
2 12 444 + 0.0 0.862
25 15 371+£1.0 0.966
3 18 24.7 £ 0.6 0.937
3.5 21 149 + 0.1 0.874
4 24 6.5+ 2.0 0.719
5 30 32+06 0.686

Cells were treated for 72 h at the indicated concentrations of MSA and carboplatin in
a constant ratio. (A) A549 cells, ratio 1:6. (B) HCT116 cells, ratio 1:10. (C) MCF7 cells,
ratio 1:6. (D) OVCARS3 cells, ratio 1:6. The CI results obtained with CompuSyn soft-
ware revealed a synergistic (CI< 1) antiproliferative effect of MSA and carboplatin
at each dose combination tested.

inhibition of Akt, it does not have an effect on other signalling
pathways such as MAPK [7].

FOXO proteins are potentially key targets for new therapeutic
strategies for blocking tumourigenesis due to their ability to con-
trol cell cycle and promote apoptosis [76]. The tumour suppressor
properties of FOXO factors are inhibited mostly by overactivation of
their inhibitory signalling, in contrast to other tumour suppressors,
whose activities are abrogated by genetic or epigenetic changes.
These characteristics call for strategies on rescuing FOXO activ-
ity by its reactivation and targeting of its inhibitors [25]. As such,
MSA is well-suited to serve as an anticancer agent by inhibiting
the PI3K/Akt/mTOR axis and activating JNK signalling pathway,
leading to FOXO nuclear relocalization and restoration of its gene
expression. Moreover, combination therapies that target PI3K/Akt
pathway and promote nuclear FOXO retention are considered to be

a promising approach to treat several tumour types. For example,
in recent studies it has been proposed that cytotoxicity of cisplatin
in sensitive cells can be enhanced and drug resistance in unrespon-
sive cells reversed by using agents that target the PI3K/Akt/FOXO
pathway in combination with cisplatin [26-29]. Our studies sup-
port such hypothesis as MSA both synergised with cisplatin and
its derivative carboplatin in blocking A549, HCT116, MCF7 and
OVCARS3 cell proliferation. Thus, the combination of MSA with
either cisplatin or carboplatin could represent a promising new
approach to lung cancer treatment in terms of reducing platinum
derivatives doses or toxicity as well as drug resistance.

5. Conclusions

Our data support a strong antiproliferative action of MSA in the
low micromolar range on A549 cells, which is mediated by block-
ing G1 progression and triggering apoptosis. These MSA effects
are associated with the inhibition of the Akt pathway, leading to
dephosphorylation of FOXO proteins and their nuclear transloca-
tion, which in turn activate the expression of FOXO target genes.
The time course data suggest that FOXO dephosphorylation and
relocalization to the nucleus are early events that activate the
antiproliferative response of A549 cells to MSA. By targeting the
PI3K/Akt/FOXO pathway, MSA could synergise with cisplatin in
combination therapy to reduce the commonly observed toxicity
and resistance development of cisplatin-based chemotherapy.
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