
HAL Id: tel-01722842
https://theses.hal.science/tel-01722842v1

Submitted on 5 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hypercubes Latins maximin pour l’echantillonage de
systèmes complexes

Kaourintin Le Guiban

To cite this version:
Kaourintin Le Guiban. Hypercubes Latins maximin pour l’echantillonage de systèmes complexes.
Autre. Université Paris Saclay (COmUE), 2018. Français. �NNT : 2018SACLC008�. �tel-01722842�

https://theses.hal.science/tel-01722842v1
https://hal.archives-ouvertes.fr

NNT : 2018SACLC008

Thèse de doctorat
de l’Université Paris-Saclay
préparée à CentraleSupelec

Ecole doctorale n◦580
Sciences et Technologies de l’Information et de la Communication

Spécialité de doctorat: Informatique

par

M. Kaourintin LE GUIBAN

Hypercubes Latins maximin pour l’echantillonage
de systèmes complexes

Thèse présentée et soutenue à Gif-sur-Yvette, le 24 janvier 2018.

Composition du Jury :

M. Jarosław Byrka Docent (Rapporteur)
Uniwersytet Wrocławski, Pologne

M. Tristan Cazenave Professeur (Rapporteur)
Université Paris-Dauphine

Mme Cristina Bazgan Professeur (Président du jury)
Université Paris-Dauphine

M. Yannis Manoussakis Professeur (Examinateur)
Université Paris-Sud

Mme Joanna Tomasik Professeur (Directeur de thèse)
LRI/CentraleSupélec

M. Arpad Rimmel Professeur assistant (Encadrant)
LRI/CentraleSupélec

M. Marc-Antoine Weisser Professeur assistant (Encadrant)
LRI/CentraleSupélec

aaa

Title : Maximin Latin hypercubes for experimental design

Keywords : Latin Hypercube Design, NP-completeness, approximation algorithm, Simulated Annealing

Abstract : A Latin Hypercube Design (LHD) is a set of n points in dimension k with integer
coordinates contained in a hypercube of size nk, such that its points do not share a coordinate on any
dimension. In maximin LHDs the separation distance, i.e. the minimal distance between two points,
is maximal. Maximin LHDs are widely used in metamodeling thanks to their space filling and non-
collapsing properties which make them appropriate for sampling. As most work concerning LHDs focused
on heuristic algorithms to produce them, we decided to make a detailed study of this problem, including
its complexity, approximability, and the design of practical heuristic algorithms.

To conduct this study, we generalized the maximin LHD construction problem by defining the maximin
partial Latin Hypercube completion problem: given a partial LHD (an LHD with missing points), complete
it with the maximum separation distance possible. The subproblem where the partial LHD is initially
empty corresponds to the classical LHD construction problem.

We studied the complexity of the completion problem and proved its NP-completeness for all norms in
dimensions k ≥ 3, and for usual norms (i.e. norms Lp, with p ∈ N and norm L∞) on the plane. As we did
not determine the complexity of the subproblem, we searched for performance guarantees of algorithms
which may be designed for both problems.

On the one hand, we found that the completion problem is inapproximable for all norms in dimensions
k ≥ 3. We also gave a weaker inapproximation result for norm L∞ in dimension k = 2. On the other
hand, we designed an approximation algorithm for the construction problem which we proved using two
new upper bounds we introduced.

Besides the theoretical aspect of this study, we worked on heuristic algorithms adapted for these
problems, focusing primarily on the Simulated Annealing metaheuristic. We proposed a new evaluation
function for the construction problem and new mutations for both the construction and completion prob-
lems, improving the results found in the literature. We observed that the behaviour of the completion
problem changed depending on the number of points in the initial pLHD, calling for the use of different
mutations. Taking advantage of this fact, we enriched the Simulated Annealing algorithm by using a
bandit method to choose the most appropriate mutation on the fly, outperforming both mutations for
intermediate number of points preset.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

aaa

Titre : Hypercubes Latins maximin pour l’echantillonage
de systèmes complexes

Keywords : Hypercube latins maximin, NP-complet, algorithme d’approximation, recuit simulé

Résumé : Un hypercube latin (LHD) est un ensemble de n points en dimension k, à coordonnées
entières, contenus dans un hypercube de taille nk, et tel que les points ne partagent pas de coor-
données sur aucune dimension. Un LHD maximin est un LHD tel que la distance de séparation,
c’est-à-dire la distance minimale entre deux points, est maximale. Les LHDs maximin sont par-
ticulièrement utilisés pour la construction de métamodèles en raison de leurs bonnes propriétés
pour l’échantillonnage. Comme la plus grande partie des travaux concernant les LHD se sont
concentrés sur leur construction par des algorithmes heuristiques, nous avons décidé de produire
une étude détaillée du problème, et en particulier de sa complexité et de son approximabilité en
plus des algorithmes heuristiques permettant de le résoudre en pratique.
Pour conduire cette étude, nous avons généralisé le problème de construction d’un LHD maximin
en définissant le problème de compléter un hypercube latin entamé en respectant la contrainte
maximin: étant donné un LHD partiel (un LHD auquel il manque des points), lui ajouter des
points de manière à obtenir un LHD avec une distance de séparation maximum. Le sous-problème
dans lequel le LHD partiel est vide correspond au problème de construction de LHD classique.
Nous avons étudié la complexité du problème de complétion et avons prouvé qu’il est NP-complet
pour toutes les normes en dimension k ≥ 3, et pour les normes usuelles (i.e. les normes Lp, avec
p ∈ N et la norme L∞) dans le plan. N’ayant pas déterminé la complexité du sous-problème, nous
avons cherché des garanties de performances pour les algorithmes résolvant les deux problèmes.
D’un côté, nous avons prouvé que le problème de complétion n’est approximable pour aucune
norme en dimensions k ≥ 3. Nous avons également prouvé un résultat d’inapproximabilité plus
faible pour la norme L∞ en dimension k = 2. D’un autre côté, nous avons proposé un algorithme
d’approximation pour le problème de construction, et avons calculé le rapport d’approximation
grâce à deux bornes supérieures que nous avons établies.
En plus de l’aspect théorique de cette étude, nous avons travaillé sur les algorithmes heuristiques,
et en particulier sur la méta-heuristique du recuit simulé. Nous avons proposé une nouvelle
fonction d’évaluation pour le problème de construction et de nouvelles mutations pour les deux
problèmes, permettant d’améliorer les résultats rapportés dans la littérature. Nous avons observé
que le comportement du problème de complétion change en fonction du nombre de points initiale-
ment présent dans le LHD partiel, faisant varier la mutation la plus adaptée au problème. Nous
avons pris ce fait en compte et amélioré le recuit simulé en utilisant une méthode de bandit pour
choisir la mutation la plus appropriée pendant le déroulement de l’algorithme, dépassant chaque
mutation individuelle lorsque le nombre de points présents initialement est intermédiaire.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

aaa

Contents

1 Introduction 11

2 Designs 15
2.1 Metamodeling . 15

2.1.1 Metamodeling techniques . 15
Polynomial regression . 15
Response surface . 16
Kriging metamodels . 16
Radial basis function . 17
Conclusion . 17

2.1.2 Sampling techniques . 17
Fractional factorial designs . 17
Orthogonal Array . 18
Latin Hypercube Designs . 18

2.2 Latin Hypercube Designs problems . 18
2.3 Conclusion . 19

3 Problem complexity analysis 21
3.1 State of the art . 21

3.1.1 The LHD-CP . 21
3.1.2 Problems related to the pLHD-CP . 22

3.2 Complexity of the pLHD-CP . 23
3.2.1 Completion of a partial LHD with forbidden coordinates 23
3.2.2 Complexity of the pLHD-CP verifier 27
3.2.3 Definitions concerning completion problems 28
3.2.4 NP-completeness in dimensions k ≥ 3 28

Results for norm L1 . 28
3.2.5 Dimension k = 2 for norms L1 and Lp 32

NP-completeness for norm L1 . 32
Results for any norm Lp . 35

3.2.6 Dimension k = 2 for norm L∞ . 38
NP-completeness for norm L∞ . 38

3.3 Conclusion . 43

4 Guarantees of performance for algorithms 47
4.1 State of the art . 47
4.2 Completion . 48

4.2.1 Dimension k ≥ 3 . 48
4.2.2 Dimension k = 2, norm L∞ . 49

4.3 Construction . 51
4.3.1 Bounds . 51

Bound for large-size LHD. 52

5

Upper bound for LHD of any size. 52
Comparison of the bounds. 53

4.3.2 IES algorithm . 54
Description of the IES algorithm . 54
Complexity of the algorithm . 55

4.3.3 Separation distance . 55
4.3.4 Approximation ratio . 62

Using the bound for large-size LHD. 62
Using the bound for LHD of any size. 63
Using van Dam’s bound. 63

4.3.5 Comparison of the approximation ratios 63
4.4 Generalized algorithms . 64

4.4.1 Fixed-layer extension . 64
4.4.2 Adapted Layers . 65
4.4.3 Computational results . 66

Algorithm used to solve the LHD-CP 67
Experimental settings . 67
Results of IES extensions . 67

4.4.4 Comparison with Simulated Annealing 67
4.5 Conclusion . 70

5 Heuristic algorithms 73
5.1 State of the art . 73

5.1.1 Algorithm components . 73
Evaluation functions . 73
Mutations . 74

5.1.2 Heuristic algorithms . 75
Genetic Algorithms . 75
Iterated Local Search . 75
Translational Propagation . 76
Symmetric LHDs . 76
Periodic LHDs . 77
Simulated Annealing . 77

5.1.3 Conclusion . 77
5.2 Simulated Annealing for the LHD-CP . 78

5.2.1 New mutation for the LHD-CP . 78
Principle of the mutation . 78
Effect of the mutation . 79
Performance Evaluation . 79
Conclusion . 79

5.2.2 New evaluation function targeting Maximin 80
Presentation of a Maximin effect: narrowing the distribution of distances 80
Definition of evaluation function ψ . 82

5.2.3 Tuning of parameter σ and its justification 82
5.2.4 Experimental results . 84
5.2.5 Conclusion . 84

5.3 SA for completion . 84
5.3.1 Mutation targeting “relatively empty” hypercubes 85
5.3.2 Bandit-driven mutation . 87
5.3.3 Numerical experiments . 88

5.4 Conclusion . 90

6

6 Conclusion 91
6.1 Summary of contributions . 91
6.2 Directions for further research . 91

Bibliography 93

7

Symbols and abbreviations

• ∅: the empty set.

• N: the set of all natural numbers.

• N∗: the set of all positive natural numbers.

• LHD: Latin Hypercube Design.

• pLHD: partial Latin Hypercube Design.

• Ja, bK: the set of all integers n such that a ≤ n ≤ b.

• Dkn: the set of all LHDs of size n and dimension k.

• (p(1), p(2), ..., p(m), ..., p(k)): the coordinates of point p in a k-dimensional space.

• ||e||: the length of vector e according to a given norm.

• δ(p1, p2): the distance between points p1 and p2 according to a given norm.

• ∆L(D): the separation distance of LHD D for a norm L.

• L1, L2, and L∞: the Manhattan, Euclidean and Tchebychev norms.

• Lp, with p ∈ N: the norms such that ||(x(1), ..., x(k)|| = p

√∑k
i=1(x(i))p.

8

P
ro

bl
em

s
st

ud
ie

d
in

th
is

th
es

is

N
am

e
A
bb

re
vi
at
io
n

D
efi

ni
ti
on

C
om

pl
ex
it
y

A
pp

ro
xi
m
ab

ili
ty

A
lg
or
it
hm

s
P
ri
nc

ip
al

pr
ob

le
m
s

m
ax

im
in

La
ti
n
H
yp

er
cu

be
C
on

st
ru
ct
io
n
P
ro
bl
em

LH
D
-C

P
P
r.

2.
3

p.
19

N
o
re
su
lt
s

N
/A

Se
c.

4.
3.
2

p.
54

[6
],

[2
2]
,

[5
3]
,

[6
0]
,[
37
],
[5
1]

Se
c.

5.
2

p.
78

m
ax

im
um

m
ax

im
in

La
ti
n

H
yp

er
cu

be
C
on

st
ru
ct
io
n
P
ro
bl
em

m
ax

-L
H
D
-C

P
P
r.

2.
4

p.
19

N
/A

Se
c.

4.
3.
4

p.
62

N
/A

pa
rt
ia
lM

ax
im

in
La

ti
n
H
yp

er
cu
be

C
om

pl
et
io
n
P
ro
bl
em

pL
H
D
-C

P
P
r.

2.
1

p.
19

T
h.

3.
3

p.
27

N
/A

Se
c.

5.
3

p.
84

T
h.

3.
6

p.
31

T
h.

3.
9

p.
32

T
h.

3.
10

p.
32

T
h.

3.
12

p.
37

T
h.

3.
14

p.
43

m
ax

im
um

pa
rt
ia
lM

ax
im

in
La

ti
n

H
yp

er
cu

be
C
om

pl
et
io
n
P
ro
bl
em

m
ax

-p
LH

D
-C

P
P
r.

2.
2

p.
19

N
/A

T
h.

4.
2

p.
48

N
/A

T
h.

4.
4

p.
51

A
ux

ili
ar
y
pr
ob

le
m
s

pa
rt
ia
lM

ax
im

in
La

ti
n
H
yp

er
cu
be

C
om

pl
et
io
n
P
ro
bl
em

w
it
h

fo
rb
id
de

n
co
or
di
na

te
s

pL
H
D
-F
C
-C

P
P
r.

3.
4

p.
23

T
h.

3.
2

p.
27

N
/A

N
ot

co
nc

er
ne

d
T
h.

3.
4

p.
28

T
h.

3.
8

p.
31

T
h.

3.
11

p.
35

T
h.

3.
13

p.
38

M
ax

im
um

pa
rt
ia
lM

ax
im

in
LH

D
co
m
pl
et
io
n
pr
ob

le
m

w
it
h
Fo

rb
id
de
n

C
oo

rd
in
at
es

m
ax

-p
LH

D
-F
C
-C

P
P
r.

3.
5

p.
23

N
/A

T
h.

4.
1

p.
48

N
/A

T
h.

4.
3

p.
49

9

Figure 1: Melancholia I, Albrecht Dürer, 1514. A magic square can be seen in the top right
corner.

Chapter 1

Introduction

Complex physical systems often play a large part in engineering processes, and need to be
optimized relatively to their parameters. We take as an example the conception of the front
cradle of a car (the part supporting the engine of the car). The eigenfrequencies of the cradle
need to be optimized to avoid the resonance phenomenon occurring due to the vibrations of
the engine. As it would be impractical to build multiple systems to perform an optimization
process, these systems are simulated. Such a simulation uses a model, which is a function y
of the parameters x = (x1, x2, ..., xk) of the system. In the example of the front cradle of the
car, the eigenfrequencies are the output of the system, while the parameters are the density
of the material used to build the cradle, its stiffness, and the stiffness of the connections
to the rest of the car’s frame. However, this function is usually unknown and simulations
involve complex mathematical computations to produce the output, and thus necessitate
huge amounts of computing time. Despite the advances in computing power, the increasing
complexity of the simulations makes them impractical for performing an optimization process
which needs thousands of simulation runs. To overcome this issue, metamodels, also called
surrogate models, have been developed. A metamodel is a model of the simulation with a
simple output, and thus fast to compute. It can be seen as a function ŷ of the parameters
x = (x1, x2, ..., xk) of the system. The goal is to find a function ŷ approximating y that can
be computed fast. The metamodel is adapted to an optimization process which can then be
performed without a prohibitive cost.
Several techniques exist to build a metamodel. All of them consist in a mathematical model
with parameters to be fitted to the original model, by using a sample of the latter, called
design of computer experiments. A design is a set of points, each representing the parameter
values of one simulation run. The output of each simulation will be used to fit the metamodel
to the original model. As the sample determines the parameters of the metamodel, it is
critical to the metamodeling process. Two properties are needed for a design to be efficient.
The first property is that the points of a design should be evenly spread to have a good
coverage of the parameter space. This allows the metamodel to be accurate in all regions of
this space. On the contrary, if a region of the parameter space does not contain points of
the design, the metamodel is likely to be inaccurate in this region. Designs respecting this
criterion are referred to as space-filling designs.
The second property is that the design points should not collapse. As evaluating the output
of the simulation is costly, we want to evenly cover each parameter with as little evaluations
as possible. As some parameter may not be meaningful, each parameter value should only
be covered with one point to avoid meaningless simulations. This also allows one to diversify
the values of parameters used as more points, and thus more costly simulations, are needed
to cover more values if some values are covered more than once. Designs respecting this
criterion are referred to as non-collapsing designs.
Maximin Latin Hypercube Designs (LHD) form a class of designs possessing both properties
and largely used for sampling in metamodeling. However, building such designs can be

11

difficult, and furthermore, very few results exist on the algorithmic complexity of constructing
maximin LHDs. To this end, we generalized this problem by considering partial LHD, which
we define as LHDs with missing points. The problem then becomes completing a partial
LHD while maximizing the minimal distance between any pair of points. From a sampling
perspective, completing a partial LHD can be seen as completing a set of experiments already
performed.
The goal of this thesis is twofold: on the one hand, study the algorithmic complexity of con-
structing maximin LHDs, and on the other hand, designing new algorithms for constructing
LHDs and improve the performance of existing ones. This document is organized as follows:
In Chapter 2, we give an overview of metamodeling. We describe the most used metamodels:
polynomial regression, the response surface methodology, Kriging metamodels, and radial
basis functions. This survey allows us to highlight the need for sampling method of good
quality which brings us to describe the most popular design techniques: fractional facto-
rial designs, orthogonal arrays, and maximin Latin hypercube designs. While the latter are
widely used due to their good properties, they are difficult to build and only few complexity
results exist. For these reasons, we decide to study this problem from a complexity perspec-
tive. We formulate a generalization of this problem, the completion of partial LHDs, which
are LHDs with missing points. We define the problem of constructing LHDs as a subproblem
of the former.
Chapter 3 begins with a presentation of the existing results concerning the complexity of
constructing LHDs, as well as a presentation of related problems. After this introduction, we
perform an analysis of the complexity of the general problem, finding that it is NP-complete
for norm L1 in dimensions k ≥ 3. We are able to extend this result to all norms in dimensions
k ≥ 3. We then prove that it is NP-complete in the two-dimensional space for norm L1,
norms Lp with p ∈ N and norm L∞.
As the complexity of the subproblem was not found and the generalized problem is NP-
complete, we search in Chapter 4 for algorithms with guarantees of performance. On the
one hand, we show that the generalized problem is inapproximable for all norms in dimensions
k ≥ 3 and also find an upper bound for an approximation ratio in the two-dimensional space
for norm L∞. On the other hand, we describe an approximation algorithm for constructing
LHDs and prove its approximation ratio by giving two new upper bounds for the problem.
Chapter 5 contains our achievements in solving the completion and construction problems
with heuristic algorithms. We start it by describing the various algorithms that have been
used to this effect. We expose genetic algorithms and iterated local search, two metaheuristic
methods which have been adapted to construct maximin LHDs. We follow with heuristics
specific to this problem, the translational propagation algorithm and periodic LHD algo-
rithm. We also describe symmetric LHDs, a subclass of LHDs used for their good separation
distance and the algorithm used to produce them. We then concentrate on the Simulated
Annealing metaheuristic, which have been shown to be the most efficient one. After the
state of the art, we present our contribution to this topic with improvements to the Sim-
ulated Annealing algorithm. We describe a new mutation which makes the search space
smoother by reducing the effect of the mutation over the distances between points before
showing an evaluation function which takes advantage of the shape of the distribution of
distances in good LHDs. Both elements make the Simulated Annealing method construct
LHDs more efficiently. We then adapt the Simulated Annealing algorithm to the completion
problem. We find that the best performing mutation depends on the instances of the prob-
lem, and we design a hyper-heuristic inspired by bandits methods to choose the mutation,
and over-performing each individual mutation in some cases.
Chapter 6 concludes our work by summarizing the contributions we made in this thesis, and
giving directions for future research concerning maximin LHDs and the problems we defined.
One of the objectives of this thesis has been attained: we designed an approximation algo-
rithm for constructing maximin LHDs and improved metaheuristic algorithms by providing

12

a new evaluation function and a new mutation. While the second objective, finding the
algorithmic complexity of constructing maximin LHD has not been entirely met, advances
have been made by defining a more general problem, the completion problem, and prov-
ing its NP-completeness. Additionally, as an approximation algorithm has been found for
constructing maximin LHDs, it is at least approximable.

13

14

Chapter 2

Designs

We give an overview of metamodeling, focusing on the most used metamodeling techniques
and their sensitivity to sampling. We then describe the most used sampling techniques,
paying attention to one in particular, maximin Latin hypercube designs. We finally formally
define the problems of constructing and completing maximin LHDs.

2.1 Metamodeling

Computer simulations of a system often cost high amounts of resources, usually computing
time [10] [23]. This is due to the fact that solving the underlying equations of the system
may require time-consuming methods such as finite elements analysis [43]. When the goal
is to optimize a system, numerous simulations have thus to be performed. To reduce their
cost, a metamodel can be used [39] [33]. The metamodel is a mathematical model of the
original simulation, designed to be faster to compute. It is capable of giving an approximate
result of the simulation for any set of parameters in a much cheaper manner. Thus, it allows
the optimization process to take place in a reasonable amount of time.
The first simulation can be seen as an output function y(x), where x = (x1, x2, ..., xk) is the
set of parameters of the system, each xi taking values in [ai, bi]. The metamodel replaces
y(x) by its approximation ŷ(x). A metamodel has two essential components: the underlying
mathematical model used to approximate y by ŷ and the sample used to train it, i.e. adapt
the parameters of the metamodel to approximate the original model. This sample is called
design.
We give an overview of the most used metamodels, pointing out that their quality depends
on a sample of the original model. We follow by an overview of the most popular techniques
to produce designs.

2.1.1 Metamodeling techniques

A metamodel is a mathematical function ŷ(x) which approximates the output function y(x)
of a system, depending on the values x = (x1, x2, ..., xk) of the k parameters of the system.
We describe commonly used metamodels, starting with polynomial regressions [11], a simple
model which is used as a basis for two other methods we describe next: the response surface
methodology [31] [17] [38] and Kriging metamodels [34] [47] [61]. We also outline radial basis
function methods [16] [42] [55].

Polynomial regression

The model which produces the output is a polynomial function of the parameters of the
model x = (x1, x2, ..., xk). The coefficients of the polynomial function are the parameters of
this metamodel and are to be fitted to the model. The advantage of this approach is that

15

the coefficients directly indicate the importance of each parameter. However, the number of
coefficients to choose is exponential in the degree of the polynomial selected, which makes
this model unfit for non-linear systems requiring high degree polynomials to be appropriately
approximated.
An example of the model with a second order polynomial:

ŷ(x) = β0 +
k∑
i=1

βixi +
k∑
i=1

i∑
j=1

βijxixj .

Each β term is a parameter to be fitted to the original model. A sample of the original
model is therefore needed to this end. This sample will greatly influence the metamodel and
thus its precision.

Response surface

This methodology improves polynomial regression by estimating the importance of each
parameter with a first low degree polynomial regression and eliminating the least significant
parameter, based on the values of the coefficients of the polynomial regression. Indeed, a
parameter for which the coefficients of the polynomial regression is small has little importance
in the original model and can be neglected. This process is iterated until only meaningful
parameters are left. This procedure allows a polynomial regression of higher degree to be
performed, as diminishing the number of parameters drastically decreases the number of
coefficients of the regression. This method requires, however, that the original model does
not have a high number of significant parameters.

Kriging metamodels

One of the issues with polynomial regression is that it does not take into account the noise
of the original system if it exists, nor the noise of the first model if the latter is a stochastic
model. Kriging metamodels solve this by adding a random factor accounting for this noise
to a low order polynomial regression. A Kriging metamodel is defined as follows:

ŷ(x) =
k∑
i=1

βixi + Z(x).

The first term represents a first order polynomial regression and Z(x) stands for a random
function with zero mean. The correlation cor(Z(xi), Z(xj)) is given by:

cor(Z(xi), Z(xj)) = σ2R(xi, xj).

Function R(xi, xj) is a function to be chosen. It is usually a Gaussian Radial Basis Function:

R(xi, xj) = exp(−
k∑

m=1

θm|x(m)
i − x(m)

j |
pm),

where θm and pm are parameters to be fitted to maximize a likelihood function. Note that
the correlation is higher when two sample points are close one to another.
The additional parameters of this method compared to a polynomial regression make it
more flexible, however, they also make it computationally more expensive. The correlation
function is also a significant part of this model and it has to match with the underlying
correlation function of the original system, which necessitates knowledge of this system.

16

Radial basis function

The radial basis function method uses the sample points to interpolate the output of the
system. The output is calculated in function of the distances between the interpolated point
and the sample points. It can be expressed as:

ŷ(x) =
N∑
j=1

wjψ(||x− xj ||2),

where xj are the sample points, wj are the weights and ψ is the basis function. Typical basis
functions are ψ(r) =

√
r2 + d2, ψ(r) = log(r2 + d2) or ψ(r) = r2 log(r), d being a constant.

All these functions are decreasing relatively to the distance between two sample points.
The weights are calculated in such a way that for all sample points xj , ŷ(xj) = y(xj). This
translates into a simple linear system, which can be solved to obtain the weights.

Conclusion

All the above-mentioned techniques include a number of parameters needing to be fitted to
the original model in order to approximate it. The fitting procedure necessitates a sample
of the original model. Consequently, the sample should be carefully chosen, as it will have
a high impact on the accuracy of the metamodel. Multiple techniques are used to obtain a
good sample. We describe them in the next section.

2.1.2 Sampling techniques

After describing various metamodels, we present techniques used to create samples. A design
is the set of parameters values used to run the original simulation to train the model. A design
for a simulation using k parameters can be seen as a set of points in a k-dimensional space,
each dimension representing one parameter. Each point represents a simulation and each
coordinate of a point represents the value of the parameter corresponding to the coordinate’s
dimension. The sample is the set of results obtained after running the simulation for each
combination of parameters contained in the design. We call sampling technique the method
used to produce a design. According to [37] and [28], two properties are needed for a design
that will produce a good model. The first property is the coverage of the space of the
parameters. All directions of this space should be covered and each parameter should have a
high number of values. This property is called the space-filling property. The second is that
they should have good projective properties: two points of the design should be separated
even on a projection of the design. This property is called the non-collapsing property. As
some parameters may be meaningless, two experiments which only differ by such a parameter
would give the same result and would be a waste of computer time. This issue is prevented
by the non-collapsing property. Additionally, as experiments are costly, a design should
not have too many points. We present here three sampling techniques: fractional factorial
designs [12] [54] [13], orthogonal arrays [41] [59] [62], and —finally— Latin hypercube designs
[36] [56] [18] whose construction is the subject of this thesis.

Fractional factorial designs

A full-factorial design is a design containing all combinations of a chosen number l of values
for each parameter. This principle implies that the design has lk points, k being the number
of parameters of the model. A fractional factorial design aims to lower that number by
removing a fraction p of the combination. The hierarchical ordering principle [58] indicates
that high order interactions do not contribute in a significant manner to the system. This
means that the points selected for the design should only vary one from another for a low
number of parameters. The design contains then lk−p points.

17

By construction, most directions of the parameter space is covered. This makes them useful
to determine the significant parameters of the system and the low order interactions between
them. They are used to this end in the surface response methodology. However, the number
of points in the design is very high, even for low values of l. The consequence of this fact
is that only a few values can be selected for each parameter. Additionally, they are highly
collapsing. This makes them not suited to properly train a model and other designs are
usually used instead.

Orthogonal Array

An orthogonal array is a design of n points in dimension k, taking l different values. It
can be seen as an n × k matrix with elements from J0, l − 1K. Moreover, an additional
parameter of this type of designs is its strength t: any submatrix composed of t row contains
a fixed number λ of occurrences of every combination of t parameter values. The number
of experiments for such a design is thus λlt. Considerably less experiments are needed to
get the same number l of parameter values than with fractional design, especially for high
dimensions, since the number of dimensions k does not change the number of experiments
in this type of designs. By construction, they also have very good projective properties, as
a projection is essentially a submatrix composed of a certain number of rows. However, the
construction constraints of orthogonal array limits their space-filling properties.

Latin Hypercube Designs

A Latin Hypercube Design (LHD) of size n is a design of n points such that each parameter
has n different values. For every parameter, each point takes one different value. Among
those designs, maximin LHDs, i.e. LHDs for which the minimum distance between any pair
of points is maximal, are used to properly fill the parameter space. This allows one to have
much more different parameter values than the techniques we presented above, while still
evenly covering the parameter space. While their projective properties are not as good as
orthogonal array, they are more space-filling. This makes Latin hypercube designs widely
used for metamodeling. However, the algorithmic complexity of constructing maximin LHDs
is unknown. As they are important to the metamodeling field and present an interesting
combinatorial problem, we decided to focus our study on them. In the next section, we give
formal definitions of LHDs seen as combinatorial entities.

2.2 Latin Hypercube Designs problems

As LHD is of high interest in the field of metamodeling and as a combinatorial object, they
have been the main topic of this thesis. We start by formally defining them, as well as the
problems under study.
Formally speaking, a Latin Hypercube Design (LHD) of size n and dimension k is a set of
n points pi ∈ J0, n − 1Kk respecting the Latin constraint: points do not share the same
coordinate on any dimension. We note Dkn the set of all LHD of size n and dimension k.
As the designs should be space filling, we try to get maximin LHDs, which are LHDs with
maximum minimal distance between two points. Maximin LHDs are defined for a given
distance. In this thesis, we only consider distances induced by a norm.
For any D ∈ Dkn, we define the separation distance ∆L(D) as the minimal distance (for the
distance induced by norm L) between any pair of points of D.
The maximin LHD of size n and dimension k for norm L is thus an LHD with maximum
separation distance, i.e. D∗ ∈ Dkn such that

D∗ = arg max
D∈Dkn

∆L(D).

18

To help us study the complexity of constructing LHD, we also define partial LHDs. A partial
LHD (pLHD) is an LHD with missing points. Its points can be seen as experiments already
performed. We want to build a complete LHD containing those points while retaining the
highest separation distance possible.
Formally, a partial Latin Hypercube Design of size n and dimension k is a set of m ≤ n
points pi ∈ J0, n− 1Kk respecting the Latin constraint.
The separation distance objective allows us to define the following optimization and decision
problems, which are the main problems studied in this thesis.

Problem 2.1 Partial Maximin LHD Completion Problem (pLHD-CP). Given a pLHD M of
size n in a k-dimensional space with m points and a distance d ∈ N, is it possible to complete
M to obtain D ∈ Dkn such that ∆L(D) ≥ d?

Problem 2.2 Maximum Partial Maximin LHD Completion Problem (max-pLHD-CP).
Given a pLHD M of size n in a k-dimensional space with m points, complete M to obtain
D ∈ Dkn such that ∆L(D) is maximum.

Another way of seeing these two problems is to find another pLHD M
′ such that M ∪M ′ is

an LHD and that ∆L(D) is maximum. Note that when m = 0, the partial LHD is empty.
This means that an LHD is built from scratch.

Problem 2.3 Maximin LHD Construction Problem (LHD-CP). Given a k-dimensional
space,a size n, and a distance d ∈ N, is it possible to construct D ∈ Dkn such that ∆L(D) ≥ d?

Problem 2.4 Maximum Maximin LHD Construction Problem (max-LHD-CP). Given a
k-dimensional space and a size n, construct D ∈ Dkn such that ∆L(D) is maximum.

As we study the complexity of these problems, we need to determine the size of their in-
stances. In particular, as the only entries of the LHD-CP are the positive natural numbers
n and k, the size of one of its instances should be log n+ log k. However, the complexity of
any algorithm producing an LHD is at least the size of the produced output: O(kn log n),
which is exponential as the size of an instance is log n+ log k. Thus we consider that n and
k are encoded in unary, which makes the size of an instance of the LHD-CP equal to n+ k.
As the pLHD-CP additionally contains an input m points with k coordinates whose values
are at most n , the size of its instances become n+ k+ km log n. Since m ≤ n, the instance
size can be simplified as O(kn log n), the same as for the construction problem.

2.3 Conclusion

We started by giving an overview of metamodeling techniques, showing the importance
of the quality of the sampling on their accuracy. We described the most used sampling
techniques, also called designs, and focused on one in particular: Maximin Latin Hypercube
Designs. We formally defined two problems related to this technique, the completion and the
construction problems. After defining these problems, we proceed with their study. We start
by exploring their complexity, focusing on the completion problem. We then find guarantees
of performance for both problems, giving upper bounds and an approximation algorithm for
the construction problem, and finding inapproximation results for the completion problem.
We finish by giving methods to solve these problems with heuristic algorithms, focusing on
the Simulated Annealing metaheuristic.

19

20

Chapter 3

Problem complexity analysis

In the previous chapter we introduced two maximin LHD problems: its construction, the
LHD-CP, and its completion, the pLHD-CP. We will now study their complexity [48].
This chapter starts by the state of the art which contains a part covering the complexity of
the LHD-CP and a part treating problems related to the pLHD-CP which will be used in
subsequent proofs.
Next, we introduce the concept of forbidden coordinates with the use of which we formulate
a generalization of the pLHD-CP.
We prove that this generalization and the original pLHD-CP are in the same class of com-
plexity. We will take advantage of this fact in our proofs.
Before starting the complexity analysis of the pLHD-CP we state formally two notions con-
cerning coordinate relationships in instances of both completion problems.
We show the NP-completeness of the pLHD-CP in dimensions k ≥ 3, first for norm L1 before
extending this result to all norms. We follow by studying the complexity of this problem on
the plane, proving first its NP-completeness for norms L1 and then, using a similar method,
for norms Lp, with p ∈ N∗. As the proof cannot be extended to norm L∞, we use a different
one for this case. These results are summarized in Table 3.1

Dimension Norm Complexity
k > 2 all norms

k = 2
Lp, p ∈ N∗ NP-complete
L∞

Table 3.1: Complexity of the pLHD-CP

3.1 State of the art

We present the state of the art concerning the complexity of the LHD-CP and the problems
related to the pLHD-CP.

3.1.1 The LHD-CP

As seen in Chapter 2, Maximin LHDs have required properties for metamodeling and have
therefore been extensively discussed in the literature. However, most studies have focused
on methods and algorithms to build such designs. The complexity of the LHD-CP has only
been studied in [51] and [52]. The authors of [51] proved that the LHD-CP is polynomial in
dimension k = 2 for norms L1 and L∞ by giving an exact algorithm for both cases. Both
algorithms are linear and consist in making a regular covering of the square. The same
researchers also found in [52] a polynomial-time algorithm producing optimal solutions for

21

norm L∞ for particular values of n and k such that n = bk. However, the majority of authors
make the assumption that this problem is NP-complete [22], [44].

3.1.2 Problems related to the pLHD-CP

The completion problem, pLHD-CP, can be seen as a sub-problem of the k-dimensional
maximum matching problem [19], defined as the following:

Problem 3.1. k-dimensional Maximum Matching Problem
Given a k-uniform, k-partite hypergraph G = (V,E), find M ∈ E such that for any m1 ∈M
and m2 ∈M , m1 ∩m2 = ∅ and |M | is maximum.

Taking an incomplete LHD M , we construct an hypergraph, which is actually a k-partite
k-uniform hypergraph.
We take an instance I of the pLHD-CP and transform it into an instance of the k-dimensional
matching problem. Each unused parameter value on each dimension is represented by a ver-
tex. We partition the vertices in such a way that each set contains all vertices corresponding
to a parameter value of the same dimension. As adding a point to I is equivalent to choosing
an unused parameter value for each dimension, it is also equivalent to adding an hyperedge
between each of the vertices corresponding to these parameter values to the matching.
In particular, for k = 2, this matching problem becomes a bipartite matching, which is
known to be in P [57]. For k = 3, we obtain the 3-dimensional matching problem which was
proved NP-complete and even APX-complete1 [30], as defined in [4].
However, since the graph is a complete k-partite k-graph, a perfect matching can always be
found. Besides, we are interested in the distance between points, which is not represented
in the matching problem. For these reasons, the k-dimensional matching problem is not
practical to build a reduction from.
We can try to represent the minimum separation distance by adding constraints to the
matching. The maximum matching problem with conflict graph (MMCG), which was shown
to be NP-complete in [15], allows us to forbid pairs of edges and thus we can, for the two-
dimensional case, model our problem as a sub-problem of the former. It is defined as follows:

Problem 3.2 MaximumMatching problem with Conflict Graph (MMCG). Given a bipartite
graph G = (V,E) and a conflict graph Gc = (Vc, Ec) such that the vertices Vc of the conflict
graph represent the edges E of G, find a maximum matching M ∈ E such that no pair of
edges of M is connected in Gc.

While it is easy to reduce the pLHD-CP to the MMCG, the opposite is not true, as the
distance constraint cannot be used in a simple manner to forbid any pair of points to be
chosen simultaneously. However, we will use a similar idea for the polynomial reduction
when demonstrating the NP-completeness of the pLHD-CP on the plane with norm L∞.
Another related problem is the partial Latin square problem, first studied in [29] and [45],
which is the classical puzzle of the same name: a grid with numbers that has to be completed
such that each number is represented once and only once in each row and column. More
formally:

Definition 3.1. A Latin Square (LS) is an n × n matrix containing elements from J1, nK,
and such that each rows and columns contain each number exactly once.

While LHDs are often referred to as Latin squares in the literature, in this thesis Latin
squares only refer to the definition we have just stated.

1APX is the class of all NP optimization problems for which there is a polynomial-time ε-approximation
algorithm, for a certain ε > 0.

22

Problem 3.3 Partial Latin Square Completion Problem (pLS-CP). Given an n × n table
S, each cell being empty or containing an element from J1, nK, is it possible to complete S
(i.e. put an integer from J1, nK in each empty cell) to obtain a Latin square?

This problem is proved to be NP-complete [14]. We use it as a starting point for polynomial
reductions in several proofs of this thesis.
After giving an overview of the problems related to the pLHD-CP, we expose our study of
its complexity.

3.2 Complexity of the pLHD-CP

We prove the NP-completeness of the pLHD-CP for various cases depending on the norm
used and the dimension of the instance. To this end, we define a similar problem, the
pLHD-FC-CP, and show that it belongs to the same complexity class as the pLHD-CP. We
demonstrate that both problems are in NP and give definitions used in proofs of the following
theorems. We then reduce pLHD-FC-CP to the pLS-CP for norm L∞ and any dimension
k ≥ 3, and generalize the reduction to any norm L. We then study the two-dimensional
case, proving the NP-completeness of the pLHD-FC-CP and the pLHD-CP for norm L1,
and using a similar demonstration for norms Lp, for any p ∈ N∗. However, the same method
cannot be used to prove the NP-completeness of the pLHD-FC-CP and the pLHD-CP for
norm L∞. For this reason, we use a reduction from a different problem to prove it.

3.2.1 Completion of a partial LHD with forbidden coordinates

We start by defining another problem that we will use in the proofs: besides points already
fixed by a pLHD M , we introduce forbidden coordinates. A certain number of coordinates
on each dimension cannot be used when completing the pLHD. As the number of forbidden
coordinates is the same on all dimensions and each coordinate can only be forbidden once,
the forbidden coordinates can be modeled as a pLHD F , each point of F containing one
forbidden coordinate on each dimension. Moreover, as the forbidden coordinates cannot be
coordinates of points of M , M ∪ F is also a pLHD and completing M with respect to the
forbidden coordinates means completing M ∪F with a pLHD M ′. However, the points of F
are not actual points and thus are not involved in the computation of the separation distance.
The separation distance is the separation distance of the pLHD M ∪M ′.
We formally define this problem as such:

Problem 3.4 Partial Maximin LHD completion problem with Forbidden Coordinates (pL-
HD-FC-CP). Given a pLHD M of size n in a k-dimensional space with m points, another
pLHD F of size n and dimension k such that F ∩M = ∅ and F ∪M is a pLHD and a
distance d ∈ N, is it possible to complete F ∪M with a pLHDM

′ such that ∆L(M∪M ′
) ≥ d?

We also define the associated maximization problem:

Problem 3.5 Maximum partial Maximin LHD completion problem with Forbidden Coor-
dinates (max-pLHD-FC-CP). Given a pLHD M of size n in a k-dimensional space with m
points, another pLHD F of size n and dimension k such that F ∩M = ∅ and F ∪M is a
pLHD and a distance d ∈ N, is it possible to complete F ∪M with a pLHD M

′ such that
∆L(M ∪M ′

) ≥ d?

The completion problem, pLHD-CP, is a sub-problem of the newly defined pLHD-FC-CP.
Indeed, if we take an instance of the pLHD-CP, it will also be an instance of the pLHD-FC-CP
for which F = ∅.
We intend to prove that a polynomial-time algorithm exists for solving the pLHD-CP if and
only if such an algorithm exists for solving the pLHD-FC-CP. Similarly, an approximation

23

algorithm for the pLHD-CP exists if and only if an approximation algorithm with the same
approximation ratio ε exists for the pLHD-FC-CP.
In order to produce these results, we construct for every instance I of the pLHD-FC-CP an
instance I’ of the pLHD-CP with the same minimal distance and such that any manner to
complete instance I can be used to complete instance I’ with the same separation distance.
Moreover, the size of instance I’ is a polynomial function of the size of instance I.
This goal is attained by constructing consecutive instances of the pLHD-FC-CP with one
forbidden coordinate less on each dimension until no forbidden coordinates are left. This
means that the pLHD containing the forbidden coordinates in the new instance has one point
less than the one in the original instance.

Lemma 3.1. A polynomial function P exists such that for any instance I of the pLHD-FC-
CP of size s(I), an instance I’ of the pLHD-FC-CP of size at most P (s(I)) exists with no
forbidden coordinates and such that any pLHD M completing I with separation distance d
also completes I ′ with the same separation distance d.

Proof. Our reasoning is performed in spaces Rk with any norm L.
We take an instance I of the pLHD-FC-CP of size n in dimension k, pLHD M , and f
forbidden coordinates on each dimension. We note (e1, . . . , ek) the standard basis of Rk, and
∆∗ the maximum separation distance that can be attained when completing M .
We construct a pLHD M1 with f − 1 forbidden coordinates and iterate this construction to
obtain a pLHD Mf with no forbidden coordinates.
We remove a forbidden coordinate on each dimension by putting a point which has a coor-
dinate value equal to this forbidden coordinate on the corresponding dimension. To be able
to remove the forbidden coordinates as described above, without violating the Latin and
separation distance constraints, we need supplementary points. More precisely speaking,
we remove one forbidden coordinate on each dimension by adding 4k2n2 + 1 points to the
initial pLHD, k of which actually use one forbidden coordinate. We give below details of
this procedure together with Fig. 3.1 providing its illustration.
To place those points, we add 4kn2 + 1 coordinates to the pLHD M in each dimension. We
insert them after the already existing coordinates. On each dimension, we thus have the
n previously existing coordinates with values from 0 to n − 1 and then 4k2n2 + 1 “new”
coordinates with values from n to 4k2n2. The strips of added coordinates intersect. We
divide the square obtained by this intersection in the first two dimensions into 16 squares of
size kn2 × kn2. In both dimensions, the central coordinate, n + 2k2n2, separates the strips
formed by two consecutive squares. We then fill four of the squares with LHDs Dn,k of size
k2n2, which are LHDs with a separation distance at least ∆∗.
We now provide the explanation of the Dn,k construction.
To begin with we suppose, without loss of generality, that for norm L, the lengths of the
basis vectors are:

||e1|| ≥ ||e2|| ≥ · · · ≥ ||ek||. (3.1)

Any LHD D ∈ Dkn has a separation distance

∆L(D) ≤ ||e1||+ (k − 1)n||e2||. (3.2)

Indeed, if we take two points of D for which the first coordinate differs by one, their other
coordinates differ by at most n. Then, the triangle inequality along with Eq. (3.1) leads to
Eq. (3.2). Since an LHD of size n can only have a separation distance respecting Eq. (3.2),
we can suppose that ∆∗ ≤ ||e1||+ (k − 1)n||e2||.
The construction of Dn,k is as follows (see Fig. 3.2 for n = 2 and k = 2): for every value of
(i, j) ∈ J0, kn−1K2 we add a point whose first two coordinates are ((i+1)kn−(j+1), i+jkn).
The coordinates of the other points do not matter. This construction ensures that each point
is at a distance at least ∆∗ on at least one dimension from all other points. Indeed, two

24

Dn,k

Dn,k

Dn,k

Dn,k

p2
f2

p1

f1

M

Figure 3.1: The transformation of M , a pLHD with f forbidden coordinates, into M1, a
pLHD with f − 1 forbidden coordinates. Both pLHD can be completed with the same
points, resulting in the same separation distance. Repeating the depicted process f times
results in a pLHD with no forbidden coordinates. In this example, forbidden coordinates f1

and f2 are removed by adding points p1 and p2, which do not reduce the separation distance.

25

Figure 3.2: Construction of Dn,k for n = 2 and k = 2.

different points are created using either different values of i or j, and thus either their first
coordinates or their second coordinates differ by at least kn. The distance between the two
points is then kn||e1||+ ||e2|| ≤ d in the first case and ||e1||+kn||e2|| ≤ d in the second case.
This leads to:

∆∗ ≤ d.

The four squares in which we position our squares Dn,k with the ∆∗ guarantee form an
optimal LHD of size 4×4. We then insert two last points, whose coordinates on the first two
dimensions are (f1, n + 2k2n2) and (n + 2k2n2, f2), f1 and f2 being forbidden coordinates
on the first dimension (for f1) and second dimension (for f2). As we added 4n+ 2k2n2 + 2
points and 4n+ 2k2n2 + 1 coordinates on each dimension, all the points we constructed use
the 4n+ 2k2n2 + 1 new coordinates and one forbidden coordinate on each of the remaining
dimensions. As long as the coordinates of each point on the remaining dimensions are
pairwise different (to respect the Latin constraint), the choice of these coordinates does not
matter. By construction, each of the added points are at distance at least ∆∗ from another,
which means that they will not take part in the separation distance. The result is a pLHD
with f − 1 forbidden coordinates, depicted in Fig. 3.1.
As the completion of this pLHD M1 only adds points inside the copy of pLHD M , adding
the same points to M will result in the same separation distance. Conversely, any pLHD M ′

which completes the initial pLHD M also completes the resulting pLHD M1.
We iterate this process f times, adding 4k2n2+1 new coordinates and removing one forbidden
coordinate in each dimension for each iteration, and obtain a pLHDMf of size n+4fk2n2+f
with no forbidden coordinates. As for M1, any pLHD M ′ completing M also completes Mf

with the same separation distance. Conversely, any pLHD M ′ completing Mf completes M
with the same separation distance.
An instance I ′ of the pLHD-FC-CP is defined byMf , which is a pLHD of size n+4fk2n2 +f ,
dimension k, with all coordinates permitted, giving F = ∅. The bound on the separation
distance is the same as the one of I. The size of I ′ is then

s(I ′) = s(I) + 4fk2n2.

26

The size of instance I ′ is thus polynomial in the size of the instance I, which concludes the
proof.

Theorem 3.1. aaa

• A polynomial-time algorithm exists for solving the pLHD-CP if and only if such an
algorithm exists for solving the pLHD-FC-CP.

• For any ε > 0, an approximation algorithm with an approximation ratio ε for the max-
pLHD-CP exists if and only if an approximation algorithm with an approximation ratio
ε exists for the max-pLHD-FC-CP.

Proof. Suppose that a polynomial-time algorithm A solving the pLHD-CP exists. Let IF
be an instance of the pLHD-FC-CP. As stated in Lemma 3.1, an instance I ′F of the pLHD-
FC-CP with no forbidden coordinates exists such as any pLHD completing it also completes
IF with the same separation distance. Conversely, any pLHD completing IF also completes
I ′F with the same separation distance. This means that IF is a positive instance of the
pLHD-FC-CP if and only if I ′F is a positive instance of the pLHD-FC-CP.
As all coordinates of I ′F are allowed, I ′F is also an instance of the pLHD-CP. This means we
can apply A to solve it and also solve IF since the two instances are either both positive or
both negative.
Again, as the pLHD-CP is a subproblem of the pLHD-FC-CP, any algorithm solving the
latter also solves the former.
The same reasoning also establishes that an ε-approximation algorithm for the max-pLHD-
CP exists if and only if an ε-approximation algorithm exists for the max-pLHD-FC-CP.

As the reader will see in the next section, both problems belong to the NP class.

3.2.2 Complexity of the pLHD-CP verifier

The complexity of the pLHD-FC-CP certificate verification depends on the complexity of
the distance computation.

Theorem 3.2. The pLHD-FC-CP is in NP for all norms L which induce a distance δ(p1, p2)
computed in a polynomial time in the highest coordinate of points p1 and p2.

Proof. Let L be a norm whose distance δ between two points p1 and p2 whose coordinates
are all lower than an integerm can be computed in L(m) operations, where L is a polynomial
function. Let IM be a positive instance of the pLHD-FC-CP for L, with a lower bound for
the separation distance dmin, pLHD M of size n, and forbidden coordinates F .
Since IM is a positive instance, M ∪F can be completed into an LHD with a pLHD Mc, the
separation distance of M ∪Mc being ∆ ≥ dmin.
The partial LHD Mc is a certificate for IM : indeed, it suffices to verify that M ∪Mc ∪ F is
an LHD of size n (n operations to check the size of M ∪Mc ∪F and kn(n−1)

2 L(n) operations
to check that all coordinates are pairwise different) and the separation distance of M ∪Mc

∆ ≥ dmin. The latter takes n(n−1)
2 L(n) operations, where L(n) is the number of operations

needed to compute the distance δ between two points whose coordinates are all smaller than
n.

Theorem 3.3. The pLHD-CP is in NP for all norms L which induce a distance δ(p1, p2)
computed in a polynomial time in the size of p1 and p2.

Proof. As the pLHD-CP is a subproblem of the pLHD-FC-CP, this result is immediate.

27

3.2.3 Definitions concerning completion problems

After proving that both problems, the pLHD-CP and the pLHD-FC-CP, are in NP, we give
two definitions and which will be used to prove the NP-completeness of the pLHD-FC-CP
and the pLHD-CP in dimensions k ≥ 3.

Definition 3.2. A free coordinate for a given dimension is a value which a point can take
in this dimension as it is neither used by points already set nor forbidden.

Note that because of the Latin constraint, there is as many free coordinates in each dimension
as points to be constructed. Moreover, each free coordinate must be taken by one point
inserted.
We also introduce a notion of closeness between two points or coordinates on a dimension:

Definition 3.3. Two points or coordinates are (d,m)-close if their coordinates on dimension
m differ by at most d.

From a geometric point of view, if two points are (d,m)-close, it means that they are both on
a strip of width d on dimension m. Note that two points (d,m)-close on all dimensions m are
indeed close to each other, according to the usual definition. By contrast, points (d,m)-close
on all dimensions but one may be far from each other (according to the distance).
These definitions are used in the proofs of the following sections.

3.2.4 NP-completeness in dimensions k ≥ 3

We demonstrate that the LHD completion problem for dimension k ≥ 3 is NP-complete. We
will first prove this fact for norm L1 and, next, extend this result to all norms on Rk.

Results for norm L1

We start by studying the problem for norm L1. The choice of this norm is arbitrary as the
reduction we use would be similar to the reductions for other usual norms.
After stating that the pLHD-FC-CP is NP-complete for k = 3, we extend this result to
k ≥ 3, and subsequently use it to prove that the pLHD-CP is also NP-complete for k ≥ 3
by taking advantage of the fact that the pLHD-CP and the pLHD-FC-CP are equivalent in
terms of the complexity (Theorem 3.1 in Section 3.2.1).

Theorem 3.4. The pLHD-FC-CP is NP-complete for k = 3 and norm L1.

Proof. To prove the NP-completeness we reduce the pLS-CP (Problem 3.3) to the pLHD-
FC-CP. Let S be an instance of the pLS-CP of size n × n. We construct a corresponding
instance M of the pLHD-FC-CP in a three-dimensional space.
We note dmin a minimal separation distance between points in M which will be determined
later.
Each tile of S will be represented by a gadget. Each gadget will be composed of a number of
points in a specific region of the hypercube we construct, placed in such a way to force the
positions of the points to be added when completing M . Since S contains n×n tiles, M will
be constructed with n × n gadgets. Each gadget will initially have one missing point, and
for each tile of S containing a number, we add to the corresponding gadget a point coding
that number.
We note M0 the pLHD containing the gadgets before adding a coding point to them.
We build a gadget which represents a tile of S. This gadget is a square cuboid coding the
value inside the corresponding tile, while its position codes the position of the tile. The
square side of this cuboid is its orthogonal projection on the plane spanned on the second
and third dimensions of M0. In the remainder of this proof we will refer to this projection as

28

a block. The third side of this cuboid will have the same size as a full side of M0. The initial
pLHD M0 is an n × n square (in the second and third dimensions) of gadgets positioned
in the same way as the tiles of S they represent and separated one from another by dmin

forbidden coordinates.
In the first dimension of M0, we have n2 free coordinates whose values differ by dmin + n4.
They are also free coordinates for the gadgets.
We will proceed with the construction of these gadgets. An illustration of this process is
given in Fig. 3.3.
On a block, we have n free coordinates in both dimensions. Our goal is twofold: to force
points to be put on the block diagonal and to avoid putting more than one point per block.
Once we have done that, the position of a point on the diagonal will code the value of the
corresponding tile inside the partial Latin square.
We achieve this goal by putting n2 points (n4, 2)-close and (n4, 3)-close to each intersection
of rows and columns whose coordinates are free, except for the intersections on the diagonal
of this block. For these intersections, we put only n2−1 points (n4, 2)-close and (n4, 3)-close.
We count the number of points (n4, 2)-close (or (n4, 3)-close) to one free coordinate. A free
coordinate crosses a line of n blocks. In each block, this coordinate intersects with n others.
We put n2 points (n4, 2)-close (or (n4, 3)-close) to each intersection on both dimensions.
Therefore, we have n4 points (n4, 2)-close (or (n4, 3)-close) to this coordinate. This means
we can put the points within a distance of n4 from each intersection.
Now let us consider the expansion of points laying on the plane into the three-dimensional
space. We place all the n2 points we constructed for each intersection (n4, 1)-close to a free
coordinate of the first dimension. For the intersections on the diagonal, we put one point
less, which means that one free coordinate of the first dimension has no point (n4, 1)-close
to it. This coordinate is the same for each point on the diagonal of a same block but differs
from one gadget to another.
Each free coordinate differs from another by at least dmin +n4. Note that if we put one point
on the diagonal of a block and we choose for the first coordinate the free coordinate with no
points (n4, 1)-close to it, this point will be at distance at least dmin of all other points. If
two or more points are on the diagonal of each block, or if a point is not on the diagonal, at
least two points will be at a distance at most 3n4.
Observe that each point is distant from at least dmin from any other. Finally, for each gadget,
we add one point on the block diagonal on position (a, a) if the corresponding tile of the
Latin square contains value a. If the tile is empty, we do not do anything. This point is the
coding point, and codes the value a.
Now suppose that we can complete the Latin square S. As long as we take dmin such that
dmin > 3n4, it is possible to put one point on the block diagonal of each gadget. Thus, the
separation distance is greater than dmin. Similarly, if we can complete the gadget structure
keeping a separation distance greater than dmin, we only put points on the diagonal of each
block and complete S.
As the pLHD-FC-CP is in NP for L1 (Theorem 3.3 in 3.2.2), we obtain its NP-completeness.

We extend this result to all dimensions k > 3:

Theorem 3.5. The pLHD-FC-CP is NP-complete for k ≥ 3 and norm L1.

Proof. We perform the same construction as in the proof of Theorem 3.4 with dimensions
added. We put all the constructed points and free coordinates (n6 + n2,m)-close on all
additional dimensions m. Since the number of points we construct is n6 and the number of
free coordinates is n2, we can put them all (n6 + n2,m)-close to each other. In this case, we
chose dmin = (k− 3)(n6 + n2) + 3n4, where k is the number of dimensions. The reduction is

29

9
pts

9
pts

8
pts

9
pts

8
pts

9
pts

8
pts

9
pts

9
pts

dmindmindmindmin n4n4n4

dmin

dmin

dmin

dmin

n4

n4

n4

fr
ee

fr
ee

fr
ee

free

free

free

Figure 3.3: Dimensions 2 and 3 of a gadget (a block) for the reduction for n = 3 and
k = 3. The intersection of free coordinates outside of the block diagonal (dark gray areas)
are (n4, 2)-close and (n4, 3)-close to 32 = 9 points. The intersections on the block diagonal
(light gray areas) are (n4, 2)-close and (n4, 3)-close to 8 points. The big point represents the
coding point which codes here the value 2.

30

immediate: completing the pLHD we obtained with a separation distance dmin is equivalent
to completing the Latin square.

We go back to the original problem:

Theorem 3.6. The pLHD-CP is NP-complete for k ≥ 3 and norm L1.

Proof. The straightforward consequence of Theorems 3.1 and 3.4.

We extend the previous results to all norms on Rk by using the norm equivalence in a
finite-dimensional space theorem [26]:

Theorem 3.7 (taken from [26]). Let L and L′ be two norms on Rk, and δ and δ′ the distances
induced by them.
Then, it exists c1 > 0 and c2 > 0 such that for any point p1 ∈ Rk and p2 ∈ Rk, we have

c2δ
′(p1, p2) ≥ δ(p1, p2) ≥ c1δ

′(p1, p2). (3.3)

This theorem will be used in the proof of the following one:

Theorem 3.8. The pLHD-FC-CP is NP-complete in spaces of dimension k ≥ 3 for any
norm.

Proof. We use Theorem 3.7 to prove that the pLHD-FC-CP remains NP-complete for any
norm.
Let L be a norm and δ the distance induced by it. In particular, we note δ1 the distance for
norm L1.
Let S be an instance of the pLS-CP and M be an instance of the pLHD-FC-CP for norm
L constructed with the same method as in the proof of Theorem 3.4. We show that this
construction is also a reduction for norm L with an appropriate choice of dmin and of the
lower bound on the separation distance.
The distance chosen for the construction of M is dmin = c2

c1
(3n4 + 1). Note that since

c2
c1
≥ 1, then dmin ≥ 3n4 + 1. We select as a lower bound for the separation distance

∆min = c2(3n4 + 1).
Suppose that we can complete S. The proof of Theorem 3.4 ensures that we can complete
M into an LHD Mc with separation distance ∆1 ≥ dmin for norm L1 and ∆ for norm L.
Let p1, p2 ∈Mc be two points such that δ(p1, p2) = ∆. We know that δ1(p1, p2) ≥ ∆1 ≥ dmin.
Combining it with inequality (3.3) we obtain:

δ(p1, p2) ≥ c1dmin,

and thus
∆ ≥ c2(3n4 + 1).

Now suppose that we can complete M into an LHD Mc with separation distance ∆ ≥ ∆min

for norm L and ∆1 for norm L1. If we show that ∆1 ≥ 3n4 + 1, we will be able to complete
S into a Latin square in the same way as in the proof of Theorem 3.4.
As before, let p1, p2 ∈ Mc be two points such that δ1(p1, p2) = ∆1. As before, δ(p1, p2) ≥
∆ ≥ ∆min, which, together with inequality (3.3), gives:

∆1 = δ1(p1, p2) ≥ δ(p1, p2)

c2
≥ ∆min

c2
,

31

and finally:
∆1 ≥ 3n3 + 1.

Thus, we can complete S into a Latin square.
To conclude the proof, we use Theorem 3.3 in Section 3.2.2.

Theorem 3.9. The pLHD-CP is NP-complete in spaces of dimension k ≥ 3 for any norm.

Proof. The straightforward consequence of Theorems 3.1. and 3.8.

3.2.5 Dimension k = 2 for norms L1 and Lp
After treating dimensions k ≥ 3, we focus on dimension k = 2. We start by proving the
NP-completeness of the pLHD-CP for norm L1. The result is next extended for norms Lp.

NP-completeness for norm L1

The proof of the following theorem consists in reducing the pLS-CP to the pLHD-CP.

Theorem 3.10. The pLHD-CP is NP-complete in the two-dimensional space with norm L1.

Proof. Let S be an instance of the pLS-CP of size n.
We start by constructing a pLHD which codes S then verify that what our construction
produced is indeed a pLHD with a certain separation distance. We finish by proving that it
is possible to complete the constructed pLHD with a certain separation distance if and only
if S can be completed into a Latin square.
We build a pLHD M composed of n × n gadgets. Each gadget is a 4n × 4n square block
which contains a point coding the value inside the corresponding tile. The size of M is thus
4n2 × 4n2. A gadget is illustrated in Fig. 3.4. The gadgets are arranged in M in the same
way as the tiles of thatS they code.
When building a gadget, we pay attention to the four square blocks of size n × n on its
antidiagonal. We index them bottom-up noting them B1, B2, B3, and B4. Any of the
middle blocks may be used to code the value of a tile of S. We arbitrarily chose block B2

to this effect. The point inside B2 is called a coding point. The other blocks are used to
constrain the positions we can choose when adding a coding point and to ensure we can
combine the gadgets together to build M .
In order to code a tile value, we force the points of B2 to be on its diagonal. This allows
us to use the Latin constraint to prevent other gadgets, either on the same line or the same
column, from coding a tile with an identical value.
To ensure that the point of B2 is on its diagonal, we put a point on the diagonals of B1,
B3, and B4. The distance constraint will force us to put a point on the diagonal of B2. The
coordinates of this point in the n× n block will code the value in a tile of the Latin square
S. If the corresponding tile is empty, this block will remain empty too. If it is not, we put
a point in position (a, a), where a is the value of the corresponding tile in S.
We arrange n2 gadgets in a grid of size n×n. This construction guarantees that the original
Latin square can be completed if and only if we can complete the constructed pLHD into an
LHD with separation distance dmin = 2n. We explain this fact formally.
We note p(b, i, j) the point put in block Bb in the gadget at position (i, j). Into blocks
b = 1, 3, and 4 of a gadget at position (i, j) we insert the following points:

p(b, i, j) = (4ni+ (b− 1)n+ 1 + (i+ j) mod n, 4nj + bn− 1− (i+ j) mod n).

These points constrain the positions on which the remaining points can be added. Note
that the remaining points must be placed in the coding blocks of the gadgets, as all other

32

B1

B2

B3

B4

Figure 3.4: Construction of a gadget for the reduction for n = 3, k = 2, and norm L1. Block
B2 contains a coding point. In this example, it codes the value 2. The gray areas indicate
the positions where a point would be closer than dmin = 2n = 6 to the points in B1 or B3.

33

coordinates have been already taken by the points we have just inserted into B1, B3, and
B4.
We note S(i, j) the value of the tile (i, j) of S, if it exists. The point coding this tile value
is:

p(2, i, j) = (4ni+ n+ S(i, j)− 1, 4nj + 2n− S(i, j)).

After finishing our construction, we should verify whether all added points form a pLHD M
and are separated one from another by a distance at least 2n. We start by computing the
distance between points.
Let p1 = p(b1, i1, j1) and p2 = p(b2, i2, j2) be two different points ofM separated by distance
δ1(p1, p2). If both points are in the same gadget, i1 = i2 = i, j1 = j2 = j and b1 6= b2 then
p1 = p(b1, i, j) and p2 = p(b2, i, j). We note R(t)

s = p
(t)
s mod n, where p(t)

s signifies the tth

coordinate of ps. This notation is used to express the distance between p1 and p2:

δ1(p1, p2) = |4ni+ (b1 − 1)n+R
(1)
1 − 4ni− (b2 − 1)n−R(1)

2 |+

|4nj + (b1 − 1)n+R
(2)
1 − 4nj − (b2 − 1)n−R(2)

2 |,

which may be rewritten as:

δ1(p1, p2) = |(b1 − b2)n+R
(1)
1 −R

(1)
2 |+ |(b1 − b2)n+R

(2)
1 −R

(2)
2 |.

Knowing that |R(1)
1 − R

(1)
2 | < n and |R(2)

1 − R
(2)
2 | < n, we can remove these terms from the

absolute value and group them differently:

δ1(p1, p2) = 2|b1 − b2|n+R
(1)
1 +R

(2)
1 − (R

(1)
2 +R

(2)
2).

If b1 6= 2 then R(1)
1 = i+j mod n and R(2)

1 = n−1−(i+j mod n) and thus R(1)
1 +R

(2)
1 = n−1.

Similarly, if b2 6= 2 then R(1)
2 +R

(2)
1 = n− 1.

If b1 = 2, we get R(1)
1 = S(i, j)− 1 and R(2)

1 = n− S(i, j) and thus R(1)
1 + R

(2)
1 = n− 1. In

the same way, if b2 = 2 then R(1)
2 +R

(2)
2 = n− 1.

The distance between points p1 and p2 becomes:

δ1(p1, p2) = 2|b1 − b2|n ≥ 2n.

After checking the distance, we verify that M is indeed a pLHD by establishing that any
two points do not share a coordinate. As before, p1 = p(b1, i1, j1) and p2 = p(b2, i2, j2) are
two different points of M . We need to examine several cases:
First case, both points are in different blocks, b1 6= b2: in this situation,

p
(1)
1 mod 4n 6= p

(1)
2 mod 4n

p
(2)
1 mod 4n 6= p

(2)
2 mod 4n.

Thus, we get p(1)
1 6= p

(1)
2 and p(2)

1 6= p
(2)
2 .

Second case, both points are in the same block, b1 = b2 = b: we either have i1 6= i2 or
j1 6= j2. We examine here these two sub-case.
In the first sub-case, the quotients of the division of p(1)

1 and p(1)
2 by n are different, which

means that p(1)
1 6= p

(1)
2 . Similarly, in the second sub-case, the quotients of the division of p(2)

1

and p(2)
2 by n are different and therefore p(2)

1 6= p
(2)
2 .

We still have to prove that i1 6= i2 and j1 = j2 = j leads to p(1)
1 6= p

(1)
2 , and symmetrically,

j1 6= j2 and i1 = i2 = i gives p(2)
1 6= p

(2)
2 .

34

When b 6= 2, we have i1 + j1 6= i2 + j2, and thus p(1)
1 mod n 6= p

(1)
2 mod n, which gives

p
(1)
1 6= p

(1)
2 . The same reasoning allows us to prove the symmetrical part.

If b = 2, then
p

(1)
1 mod n = S(i1, j),

p
(1)
2 mod n = S(i2, j).

In this situation, if p(1)
1 = p

(1)
2 , we would have S(i1, j) = S(i2, j), which is impossible as S is

a partial Latin square. Similarly, as

p
(2)
1 mod n = n− S(i, j1)

p
(2)
2 mod n = n− S(i, j2),

if p(2)
1 = p

(2)
2 , we would have S(i, j1) = S(i, j2), which is impossible.

We conclude that M is a pLHD with separation distance dmin = 2n.
We now prove the equivalence of completing S and completingM with a separation distance
dmin = 2n.
We now suppose that S can be completed into a Latin square Sc. We then put points in the
empty blocks B2 to represent values in the tiles of Sc and we get a complete LHD of size 4n2

with separation distance dmin = 2n.
Starting from the pLHD-CP, we suppose that M can be completed in an LHD of size 4n2

with separation distance d = 2n. The construction described above ensures that coding
points can be placed only on the diagonal of the block B2 of each gadget. Indeed, a point
outside of this block would share a coordinate with another point. Moreover, points in this
block, but outside its diagonal, would be at a distance less than 2n of any other point. The
distance constraint also prevents us from putting more than one point in each block. As
the coding points are on the diagonal of a block B2, their coordinates inside that block are
(a, a). We put the value a in the corresponding, initially empty, tile of S. Since M lacks a
point for each empty tile of S, and two coding points either on the same line or on the same
column cannot code the same value, S is completed into a Latin square.

The construction made in the proof above can be extended to demonstrate that the pLHD-
CP is also NP-complete for all norms Lp.

Results for any norm Lp

In the two-dimensional space the pLHD-CP is NP-complete for any norm Lp. We perform
a similar reduction from the pLS-CP as for norm L1 in the proof of Theorem 3.10.
Points which are at the same distance from a given point according to the metrics derived
from norms Lp form a "classical circle" when p = 2 and a hyper-circle which becomes more
and more alike a square with rounded corners when p goes up. The proof of the following
theorem takes advantage of certain concepts elaborated in the proof of Theorem 3.10 for
norm L1 for which a "circle" is actually a square whose diagonals lie on the vertical and
horizontal axes of the Cartesian system.

Theorem 3.11. The pLHD-FC-CP is NP-complete for any norm Lp with p ∈ N∗ and k = 2.

Proof. In the reduction, we use the pLHD-FC-CP to forbid certain coordinates in the pLHD
we will construct (as we did in the proof of Theorem 3.6). The idea is to have a distance dmin

large enough to approximate the circle for norm Lp as a straight line, so the only places where
we can put a point are on the diagonal of the block of free coordinates, as it was naturally
the case for norm L1 in the previous construction. Once this is done, we can use the same

35

method as in the proof of Theorem 3.10 to reduce the pLS-CP into the pLHD-FC-CP. As in
the above-mentioned proof, a gadget is a square containing a coding point. The position of
this point codes a value inside a tile of a Latin square, while the position of the gadget codes
the position of the tile. The complete pLHD will be an n× n array of gadgets separated by
dmin forbidden coordinates. The gadgets are thus sufficiently far one from another to prevent
two points from different gadgets from intervening in the separation distance.
We build three blocks n × n on the antidiagonal of each gadget. To make a gadget large
enough to approximate a circular arc by a line segment inside it, we separate its consecutive
antidiagonal blocks by f forbidden coordinates. The middle block has n free coordinates (see
Definition 3.2) in each dimension. This block contains a coding point if the corresponding
tile of the partial Latin square has a value inside it. We put this point on the diagonal,
in position (a, a), where a is the value inside the tile, as we did for the reduction to prove
Theorem 3.10. This construction is illustrated in Fig. 3.5.
The two other squares contain a point on their diagonal. To be sure that a coding point
can be inserted only on the diagonal of the block in the middle of any gadget, we check the
distance between a coding point on the diagonal in position (i, i) in the coding block and a
fixed point in position (j, j) in one of the two other square blocks of the gadget:

di,j = p
√

(f + n+ i− j)p + (f + n+ j − i)p.

The shortest distance is obtained when i = j:

dmin = p
√

(f + n)p + (f + n)p.

We also check the distance between a point in position (i, j), i 6= j, and the closest fixed
point in position (k, k) in a corner square. We suppose without loss of generality that i < j:

di,j,k = p
√

(f + n+ i− k)p + (f + n+ k − j)p.

The greatest distance is reached for i = 0, j = 1, k = n− 1:

dmax = p
√

(f + 2n− 1)p + (f + 1)p.

If we prove that dmin > dmax, the reduction will be accomplished, as completing the pLHD
we constructed in an LHD with separation distance dmin will be equivalent to complete the
partial Latin square in the same manner as in the reduction in the proof of Theorem 3.10.
We consider the polynomial: P (f) = dpmin − d

p
max. We rewrite it as:

P (f) = 2(f + n)p − (f − 1)p − (f + 2n− 1)p. (3.4)

Let us represent P (f) as
p∑
i=0

aif
i. We examine its coefficients in order to determine its degree.

We first consider the coefficient of the term of degree p:

ap = 2− 1− 1 = 0.

We continue with the coefficient of the term of degree p− 1:

ap−1 = 2pn+ 2p− (2pn− 2p) = 4p.

The highest degree term of P (f) is thus 4pfp−1. Observe that P (f) > 0 for any f beyond the
greatest root rmax. To bound rmax with polynomial coefficients we use the Rouché theorem
which allows us to say that for any root r:

|r| ≤ 1 +
1

ap−1
max

(
|a0|, |a1|, ..., |ap−2|

)
.

36

f

f

f f

Figure 3.5: Construction of a gadget for dimension k = 2 and norm L2. The squares in bold
are intersections of free coordinates. The coding point represents here the value 2. The gray
areas represent the area in which a coding point would be at a distance shorter than dmin

from one of the points either in the bottom left or in the upper right squares.

The Newton binomial theorem applied to Eq. (3.4) for i ∈ J0, p − 2K provides us with the
coefficients of P (f):

ai = 2

(
p

i

)
np−i −

(
p

i

)
(−1)p−i −

(
p

i

)
(2n− 2)p−i.

Knowing that
(
p

i

)
< 2p, we get the bound on all the coefficients:

|ai| < 2p2pnp + 2p = 22pnp + 2p.

Therefore, the choice of fp = 2 + 22pnp

2p + 1 would lead to dmin > dmax for all n.
We thus have a pLHD with the same properties as in the proof of Theorem 3.10. Indeed,
the distance constraint forces us to put points on the diagonal of the central block. The
Latin constraint prevents us from coding the same value more than once in the same line
or same column. Coding points can be put on the diagonal if and only if the corresponding
Latin square can be completed and therefore this construction is a reduction of the pLS-
CP instances to a subset of those of the pLHD-FC-CP. Note that p is not an entry of the
problem, and thus the size of M is still polynomial.

We now go back to the original pLHD-CP.

Theorem 3.12. The pLHD-CP is NP-complete for any norm Lp with p ∈ N∗ and k = 2.

Proof. The straightforward consequence of Theorems 3.1. and 3.11.

37

3.2.6 Dimension k = 2 for norm L∞
We proved that the pLHD-CP is NP-complete for all norms Lp by adapting the reduction
used for norm L1. This result, however, cannot be extended to norm L∞. While we could
use the fact that for any norm Lp the circle has a tangent with a diagonal slope at certain
points in order to adapt the reduction used for norm L1, this is not the case for norm L∞.
To prove the NP-completeness of the pLHD-CP for this norm, we reduce from a different
problem.

NP-completeness for norm L∞

The proof of the following theorem contains a reduction from the (3, B2)-SAT problem which
is an NP-complete variant of the 3-SAT problem, where each variable appears four times,
twice negated and twice not negated [9]. As for Theorems 3.6 and 3.12, we build a reduction
for the pLHD-FC-CP.

Theorem 3.13. The pLHD-FC-CP is NP-complete for norm L∞ on the plane.

Proof. Let S be an instance of the (3, B2)-SAT problem with C clauses and n variables xi,
i = 1, 2, ..., n. We consider a certain distance dmin which will be determined later. First of
all, we need a specific notation to address the elements of S:

• Cj — the jth clause of S,

• lrj — the rth literal of clause Cj , r = 1, 2, 3,

• xi — the ith variable of S,

• xmi — the mth occurrence of the literal xi, m = 1, 2,

• x̄mi — the mth occurrence of the literal x̄i, m = 1, 2.

To reduce the pLHD-FC-CP to the (3, B2)-SAT problem, we use an intermediate represen-
tation for S. It will be seen as an array containing elements from {0, 1}. This array will be
transformed into a pLHD M. The lines and columns of S will be reduced to free coordinates
in M. Consequently, the entries of S become intersections of free coordinates in M. The ’1’s
will become points in M, while intersections with ’0’ cannot accept a point as they would be
too close to another point. The following construction is illustrated in Fig. 3.6.
Lines of S are numbered by clauses and their three literals. More precisely speaking, a line
corresponding to Cj is followed by three lines of its literals l1j , l

2
j and l3j . Line Cj together

with lines l1j , l
2
j , l

3
j form a horizontal group.

Columns are also organized in groups. Each vertical group is composed of three columns and
corresponds either to the first occurrence of literals xi and x̄i or to their second occurrence.
Columns of the group representing the first occurrence of xi and x̄i are noted x1

i , c
1
i and x̄

1
i .

We attract the reader’s attention to the extra column c1
i in the middle. The three-column

bands corresponding to the second occurrence of variable xi are organized in the same way:
x2
i , c

2
i and x̄2

i .
The vertical groups of the array are, in a natural way, aligned according to the schema:
groups x1

i , c
1
i and x̄1

i for all variables xi, followed by the groups x2
i , c

2
i and x̄2

i for all xi,
i = 1, 2, ..., n.
The necessity of transformation of S into an instance M of the pLHD-FC-CP determines the
method of filling up S.
First of all, the Latin constraint has to be respected, which means that array S may contain
at most a single ’1’ in each line and each column. Additionally, the distance constraint of

38

M is represented by the groups in S: two ’1’s cannot be located in a single intersection of a
vertical and horizontal groups.
Figure 3.6 illustrates the fragment of M relative to variable x1, which includes the free
coordinates corresponding to the two groups of columns referencing x1 and the four groups
of lines corresponding to the clauses containing x1, which we assumed to be C1, C2, C3, and
C4.
Despite the fact that the lines and columns we defined are already sufficient to code the SAT
instance, we need to inflate our array, composed of 4C lines and 6n columns at the moment,
into a square array.
We add 3n lines and n+C columns outside of groups, placing them arbitrarily at the "ends"
of the array. They will be considered individually.
As S contains each variable four times, it means that it has 4n literals. We also know that
each clause is composed of three literals, which means that S contains 3C literals, hence
4n = 3C. We conclude that S is a square array which has 3n+ 4n+ C = 7n+ C lines and
columns.
We need to represent the satisfaction of a clause Cj of S. We use line Cj to this effect: it
contains a ’1’ if the corresponding clause is satisfied by giving a logical value to the variable
corresponding to the column of the ’1’. We also need to avoid assigning the opposite values
to the same variable.
To reach this goal, we put the value ’0’ in every entry of array S except the intersections
between:

• line Cj and column x1
i if clause Cj contains x1

i ,

• line Cj and column x̄1
i if clause Cj contains x̄1

i ,

• line Cj and column c2
i if clause Cj contains either x2

i or x̄2
i ,

• line lkj and column c1
i , if literal l

k
j is either x1

i or x̄1
i ,

• line lkj and column x2
i , if literal l

k
j is either x1

i or x2
i .

• line lkj and column x̄2
i , if literal l

k
j is either x̄1

i or x̄2
i .

The intersections of 3n supplementary lines are treated differently. We do not put ’0’ in the
intersections between:

• the first n supplementary lines and columns x1
i ,

• the next n supplementary lines and columns x̄1
i ,

• the last n supplementary lines and columns c2
i .

For the supplementary columns we refrain from putting ’0’ on the intersections between:

• the first n supplementary columns, indexed for sake of clarity x3
i , and lines lkj , if literal

lkj is either x2
i or x̄2

i ,

• the last C supplementary columns and all 3n supplementary lines.

Suppose that S can be satisfied. As in each clause Cs there is at least one literal which makes
it be satisfied, we select this literal. If it is its first occurrence (i.e. either x1

k or x̄1
k) we put

’1’ in line Cs and the column indexed by it. In contrast, if it is the second occurrence, we
put ’1’ in column c2

k.
Logical values assigned to literals of clause Cs are expressed by ’1’s in lines lrs and column:

• if lrs = x1
k, column x2

k for xk = T and column c1
k for xk = F ,

39

l34

l24

l14

C4

l33

l23

l13

C3

l32

l22

l12

C2

l31

l21

l11

C1

x1
1 c1

1 x̄1
1 x2

1 c2
1 x̄2

1

Figure 3.6: Lines, columns, and intersections for variable x1 in S. Seen as M: dotted lines and
columns are its free coordinates. Gray squares represent intersections in which it is possible
to put a point in M, as the corresponding entries in S do not contain ’0’s.

40

• if lrs = x̄1
k, column c1

k for xk = T and column x̄2
k for xk = F ,

• if lrs = x2
k, column x3

k for xk = T and column x2
k for xk = F ,

• if lrs = x̄2
k, column x̄2

k for xk = T and column x3
k for xk = F .

In each supplementary line there is exactly one intersection either with column x1
k or with

column x̄1
k or with column c2

k. If the corresponding column does not have a ’1’ already, we
insert ’1’ in this place, otherwise we insert it in the first supplementary column without ’1’.
Since C columns among those numbered with x1

k, x̄
1
k or c2

k are already filled before we start
to fill the supplementary 3n lines, we can fit a ’1’ in each of them. We then put ’0’ in each
entry which is still empty. Note that no intersection of groups of lines and columns contains
more than one ’1’, and each line and column contains exactly one ’1’.
Now suppose that we can complete array S while respecting both the Latin and distance
constraints.
By construction, each ’1’ is in a previously empty entry. Moreover, only one ’1’ can be put
in each intersection of groups of lines and columns. Since each line contains one ’1’, we
have one point in each line Cs. We then assign the value T to the literals corresponding to
the column of the ’1’ in each line noted Cs. Thus, we have an assignment that satisfies S.
However, we still have to check that we did not assign T to a variable and its negation. This
verification is illustrated on Fig. 3.7.
We show this by using the Latin and distance constraints multiple times to prove that if a
’1’ is in the intersection between line Cs and column x1

k (which means that we assign T to
variable xk), there is no ’1’ in neither the intersection between line Cu and column x̄1

k, nor
in the intersection between line Cu and column ck2.
Suppose we have a ’1’ in line Cs in column x1

k. We thus do not have a point in line lrs (if
literal lrs = x1

k) in column c1
k, since they would be in the same intersection of groups. This

means that we have a ’1’ in line ltu (if ltu = x̄1
k) and column c1

k, since there are only two empty
entries in column c1

k. This implies that there is no ’1’ in line Cu in column x̄1
k because this

’1’ is in the same intersection of groups containing ltu and c1
k, which means that we cannot

assign T to x̄1
k. This also means that there is no ’1’ in column x̄2

k in line ltu. Therefore, there
is a ’1’ in column x̄2

k in line lvw (if lvw = x̄2
k). This means that there is no ’1’ in line Cw in

column c2
k (because they are in the same intersection of groups containing column x̄2

k and
line lvw), which leads to the impossibility of assigning T to x̄2

k.
The same reasoning prevents us from assigning T either to x1

k or to x2
k if x̄1 = T .

Finally, if there is a ’1’ in line Cj (which contains x2
k) and column c2

k, there is no ’1’ in line
Cj′ in column c2

k (if Cu contains x̄2
k), which ensures that we cannot assign T to both x2

k and
x̄2
k.

After excluding the possibility of assigning the opposite logical values to a variable, we build
a pLHD M from array S. We construct it in the following manner: each line and each column
from S is represented by a free coordinate. Two lines (or columns) inside the same group are
(dmin, 1)-close (or (dmin, 2)-close), according to Definition 3.3, with the number 1 attributed
to the vertical axis and the number 2 attributed to the horizontal axis, which means that
these free coordinates differ by less than dmin. Additionally, we forbid each intersection whose
corresponding entry in S contains a ’0’ by adding a point at a distance lower than dmin from
all these intersections. Another way to see it is that we need to cover these intersections
with circles of radius dmin, which are, as a matter of fact, squares for norm L∞. We thus
have to cover the forbidden intersections with squares such that the center of each square is
not covered by any other square.
The method of covering intersections depends on the configuration of the group of lines and
the group of columns the intersections belong to.
Lines come either in groups of 4 or alone. Similarly, columns come either in groups of 3 or
alone. Obviously, the configurations of intersections are: 4× 3, 4× 1, 1× 3, and 1× 1.

41

l34

l24

l14

C4

l33

l23

l13

C3

l32

l22

l12

C2

l31

l21

l11

C1

x1
1 c1

1 x̄1
1 x2

1 c2
1 x̄2

1

Figure 3.7: Lines, columns, and intersections for variable x1 in M. We verify that assigning
T to x1 and using it to satisfy clause C1 (putting a point in line C1 and column x1

1) prevents
from using it to satisfy clauses C2 and C4 containing its negation. The arrows represent
constraints, vertical and horizontal arrows representing the Latin constraint and diagonal
arrows representing the distance constraint. A solid black dot inside an intersection means
that a point has to be put in it. A cross means that no point can be put in the intersection.
An empty circle means that a point can be put in the intersection but is not necessary.

42

The last three configurations allow at most one intersection. We cover them using either one
square to cover the whole configuration if no intersection is allowed or two squares if one
intersection is allowed, this allowed intersection is produced by the edges of both squares.
The last type is the 4×3 configuration, obtained by the intersection of groups of the initial 4C
lines and 6n columns. In configurations of this type, we have either none, one or two allowed
intersections, which are on different lines and columns. Additionally, if two intersections are
allowed, one of those is in the upper line (Cj) of the group. Since the configurations are
three lines wide and we have two points on different columns, one of the points is on the
border of the configuration.
If no intersection is allowed, we can put one point in the middle of the configuration. Since
each line and each column of this configuration are either (dmin, 1)-close or (dmin, 2)-close,
the distance between them is smaller than dmin, and thus each intersection of this group will
be covered by that point.
If one and only intersection is allowed, we put one point in each direction at a distance dmin

from the allowed point, on a line or column (dmin, 1)-close (or (dmin, 2)-close) to the allowed
point. Each intersection but the allowed one is at a distance less than dmin from at least one
of the added points.
If two intersections are allowed, we put two points such that the square of size dmin is tangent
to both of them. If the allowed intersection in line Cj is not in the center column, we put the
squares in such a way that they are both tangent to the second intersection, one vertically
and the other horizontally. This case is illustrated on Fig. 3.8. If the allowed intersection
in line Cj is in the center column, we put one square vertically tangent to it, and the last
square horizontally tangent to the second intersection. This case is illustrated on Fig. 3.9.
We still have to choose dmin. Since we have to put at most four points to cover each group,
and we have (3n+ C)2 groups, we can choose dmin = 4(3n+ C)2 + 1.
Since pLHD M respects the same constraints as S, it can be completed with separation
distance dmin if and only if S can be satisfied. We have a reduction from (3, B2)-SAT to the
pLHD-FC-CP.

The equivalence of the pLHD-FC-CP and the pLHD-CP allows us to formulate the following:

Theorem 3.14. The pLHD-CP is NP-complete for norm L∞ on the plane.

Proof. The straightforward consequence of Theorems 3.1 and 3.13.

3.3 Conclusion

We proved the NP-completeness of the pLHD-CP for the following cases: for all norms in
dimensions k ≥ 3, and on the plane for norms L∞ and norms Lp, with p ∈ N∗. This ensures
that , unless P=NP, no polynomial-time exact algorithm exists to solve this problem. In the
next section, we continue this study with the search for performance guarantees, including
upper bounds and approximation algorithms. On the one hand, we show an approximation
algorithm for the LHD-CP and two new upper bounds we use to prove the approximation.
On the other hand, we prove that no approximation algorithm exists for the pLHD-CP in
dimension k ≥ 3. We also give a bound for the approximation ratio of an approximation
algorithm for completing a pLHD in the plane for norm L∞.

43

Cj

l1j

l2j

l3j

x2
k c2

k x̄2
k

Figure 3.8: Configuration 4×3 of intersections covered by four gray squares (circles according
to L∞). The dashed square is a circle of radius dmin centered in the allowed intersection
between c2

k and l2j : the centers of the four covering squares are outside of it.

44

Cj

l1j

l2j

l3j

x1
k c1

k x̄1
k

Figure 3.9: Configuration 4 × 3 of intersections covered by four squares (circles according
to L∞). The dashed square is a circle of radius dmin centered in the allowed intersection
between x̄1

k and l2j : the center of the covering squares are outside it.

45

46

Chapter 4

Guarantees of performance for algorithms

After proving the NP-completeness of the pLHD-FC-CP and the pLHD-CP, we search for
guarantees of performances of algorithms for both problems, in the form of upper bounds
and approximation ratios. We start by finding out that the pLHD-CP and the pLHD-FC-CP
are inapproximable for dimensions k ≥ 3, and we give an upper bound for an approximation
ratio in dimension k = 2 for norm L∞. These results are summarized in Table 4.1 [48]. We
follow by studying the LHD-CP, focusing on norm L2. We show two new upper bound and
use them to prove an approximation algorithm [49].

Norm Dimension Approximability
Any norm k ≥ 3 No ε−approximation for ε > 0

Norm L∞ k = 2
No ε−approximation for ε ≥ 2

3
Other norms No results

Table 4.1: Approximability of the pLHD-CP

4.1 State of the art

Optimal algorithms have been designed for the LHD-CP on the plane for norms L1 and L∞
in [51], making this problem P for this subcases. Both algorithms have a linear complexity
O(n), and are based on a regular covering: each point is placed in a regular manner, along
almost horizontal lines for norm L∞ and along diagonal lines for norm L1. The authors of [51]
also proposed an upper bound for L2 by applying Oler’s theorem [40] to the square. However,
no polynomial optimal algorithm has been found, nor any approximation algorithm.
In [52], numerous upper bounds have been formulated for norms L1, L2 and L∞. For each
of these norms, an upper bound tight when the number of dimensions is high relatively to
the size of the LHD, has been proposed. The bound for norm L2 was found thanks to the
fact that the sum of squared distances, and thus their mean, is constant among all LHDs of
the same size and dimension. The squared minimal distance has to be lower than the mean.
The bound obtained is:

d2
min ≤

⌊
n(n+ 1)k

6

⌋
.

The same principle is used to find an upper bound for norm L1, without squaring the
distance. This gives:

dmin ≤
⌊

(n+ 1)k

3

⌋
.

A similar idea is used for norm L∞ by counting the number of points that can be separated
by a certain distance on each dimension, and stating that this number multiplied by the

47

number of dimensions has to be higher than the number of points. The minimal distance
has to respect the following inequality:

k(n− dmin)(n− dmin + 1) ≥ n(n− 1).

Additionally, the authors of [52] have shown an upper bound for L∞ that is tight when the
size n of the LHD is close to bk, b being a positive integer, by using a bound for unrestricted
maximin designs found in [5], obtaining that

dmin ≤
⌊
n− 1
k
√
n− 1

⌋
.

They also proposed an optimal algorithm for the case where n = bk, based on a mapping from
J0, b−1Kk to an LHD. Moreover, they constructed an upper bound for the three-dimensional
space. Their idea to this construction is as follows: if an LHD has a separation distance d,
then the projection on two dimensions of a layer of width d−1 (i.e. all the points whose third
coordinate is between some value m and m+ d− 1) is an incomplete LHD with separation
distance d.
While several bounds have been found and algorithms have been developed for specific cases,
notably norms L1 and L∞, no approximation algorithm has been found for the general case
of the construction problem. The completion problem was never studied before. We continue
with the study of its approximability.

4.2 Completion

We prove that the pLHD-CP is inapproximable for all norms in dimensions k ≥ 3. We first
prove this fact for norm L1 and use the norm equivalence as we did in the proof of Theorem 3.8
to extend this result to all norms. We next give an upper bound for an approximation ratio
in dimension k = 2 for norm L∞ [48].

4.2.1 Dimension k ≥ 3

The completion problem does not admit an approximation algorithm in spaces with norm
L1. To prove this fact we first prove the inapproximability of the completion problem with
forbidden coordinates (the max-pLHD-FC-CP).

Theorem 4.1. There is no polynomial ε-approximation algorithm for the max-pLHD-FC-CP
for k ≥ 3 and norm L1 for any ε > 0.

Proof. The proof is based upon the reductio ad absurdum argumentation. Let us suppose
that there is an ε-approximation algorithm for this problem. Let S be an instance of pLS-
CP. We construct a corresponding instance M of the completion problem according to the
scheme described in the proof of Theorem 3.6 taking

dmin =
(k − 3)(n6 + n2) + 3n4

ε
+ 1.

If the result of the approximation algorithm has a separation distance

∆ > (k − 3)(n6 + n2) + 3n4,

there will be one and only one point on the diagonal of each block. Consequently, it is
possible to complete the Latin square. If the result has a separation distance

∆ ≤ (k − 3)(n6 + n2) + 3n4,

48

the best separation distance we can attain is

∆∗ ≤ (k − 3)(n6 + n2) + 3n4

ε
< dmin.

In this case we cannot obtain the pLHD with a separation distance ∆ = dmin, which means
that we cannot complete the Latin square S.

Next, we use the theorem above to prove the following one which addresses the max-pLHD-
CP inapproximability.

Theorem 4.2. There is no polynomial ε-approximation algorithm for the max-pLHD-CP
for k ≥ 3 and norm L1 for any ε > 0.

Proof. The consequence of Theorems 3.1 and 4.1.

4.2.2 Dimension k = 2, norm L∞
We follow the same methodology as in the previous section: the main theorem (Theorem 4.3)
is formulated for the completion problem with forbidden coordinates. The theorem concern-
ing the completion problem (Theorem 4.4) is its direct consequence thanks to Theorem 3.1.
The reduction described in Theorem 3.13 can be modified to produce an upper bound on
the ratio of an approximation algorithm solving the max-pLHD-FC-CP on the plane for
norm L∞.

Theorem 4.3. There is no polynomial
(

2
3 + ε

)
-approximation algorithm for the max-pLHD-

FC-CP for k = 2 and norm L∞ for any ε > 0.

Proof. Once again, the proof is based upon the reductio ad absurdum argumentation. Let S
be an instance of the (3, B2)-SAT. We suppose that we have a polynomial-time approximation
algorithm for the max-pLHD-FC-CP with an approximation ratio ε, ε > 2

3 . We show that
this approximation algorithm could be used to solve (3, B2)-SAT.
We build M, a pLHD with the same structure as the one described in the proof of Theo-
rem 3.13, except that we transpose lines Cj with lines l1j and do not choose dmin yet. We
need to proceed with a series of verification to show that the algorithm, whose existence was
assumed, gives the optimal solution. The Latin constraint still holds, thus we only need to
verify the distance constraints. This means that we need to check that we can still cover
the intersections which cannot contain a point (corresponding to ’0’ in array S defined in
the proof of Theorem 3.13), and that each intersection configuration can only contain a sin-
gle point. Next, we show that we can still cover the 4 × 3 configurations modified by the
aforementioned line transposition.
To verify the covering we observe that we can have none, one or two free intersections. The
first two cases are exactly the same as without the line transposition, and we cover them as
we did in the proof of Theorem 3.13. In the third case, we distinguish two sub-cases: either
the two free intersections are on lines Cj and l2j , or they are somewhere else. In the latter, the
cover can be made with four squares (which are actually circles with L∞), as it is equivalent
to the covering used in the aforementioned proof and illustrated in Figs. 3.8 and 3.9. In the
first sub-case, we need five points to cover all forbidden intersections, as shown in Fig. 4.1.
After describing the covering of intersections that cannot contain a point, we study the
separation distance given by the approximation algorithm whose existence is supposed.
We note d the distance between two consecutive free coordinates inside a group (of columns
or of lines). We can choose any value for d under the condition that we have enough space
to put the covering points. Since we have at most five points to cover each configuration
and there is (3n+C)2 configurations to be covered, we can choose any d > 5(3n+C)2. We

49

l1j

Cj

l2j

l3j

xmk cmk x̄mk

Figure 4.1: Configuration 4× 3 of intersections covered by five squares (circles according to
L∞). The order of lines l1j and Cj follows the construction made in the proof of Theorem 4.3.
The light gray areas represent circles of radius dmin, while dark gray areas represent circles
of radius εdmin. Points representing intersections are covered by either both or none of the
two circles.

50

also fix dmin = 3d. We now suppose that the minimum distance given by the approximation
algorithm is da < dmin. This result may be produced by one of these two methods:

• adding two points close to each other (i.e. at a distance da < dmin from each other)
and being in the same configuration, separated by at most 2d,

• adding a point close to a covering point (i.e. at a distance da < dmin from it) , in
which case they are separated by a distance 2d+ c with c ≤ 5(3n+ C)2.

We thus obtain using the second case:

da
dmin

≤ 2d+ c

3d
=

2

3
+

c

3d
.

After setting d = 5(3n+C)2

3(ε− 2
3

)
we get:

da
dmin

≤ 2

3
+

15(3n+ C)2(ε− 2
3)

15(3n+ C)2
,

and after simplification:
da
dmin

<
2

3
+

(
ε− 2

3

)
= ε.

Now let dmax be the maximum separation distance for instance M . Since da ≥ εdmax, then
dmax < dmin.
Suppose that S is a positive instance of (3, B2)-SAT. The construction ensures that dmax ≥
dmin and we have just shown that the separation distance found by the algorithm is da ≥ dmin.
Similarly, if S is a negative instance, the separation distance found by the algorithm is
da ≤ dmax < dmin.
Consequently, this approximation algorithm is a polynomial time algorithm for (3, B2)-SAT
which is impossible unless P=NP.

Theorem 4.4. There is no polynomial
(

2
3 + ε

)
-approximation algorithm for the max-pLHD-

CP for k = 2 and norm L∞ for any ε > 0.

Proof. The consequence of Theorems 3.1 and 4.3.

4.3 Construction

After studying guarantees of performance for the completion problem, we study the maximin
LHD construction, concentrating on norm L2. We start by giving two upper bounds, before
presenting an approximation algorithm and prove its approximation using the bounds we
designed [49].

4.3.1 Bounds

We give two upper bounds, both based upon the idea of representing an LHD by non-
overlapping hyperspheres whose centers are the points of the LHD. We then compare the vol-
ume of these hyperspheres with the volume of a hypercube that contains them (see Fig. 4.2).
The first bound is valid for all LHD of size large enough compared to its dimension, while
the second is valid for LHDs of all sizes and dimensions.

51

n

n+ d∗

n

Figure 4.2: Illustration of the construction of the bounds for n = 5, k = 2, for large LHD
on the left (Section 4.3.1), for any size LHD on the right (Section 4.3.1). The bounds are
obtained by observing that the dark gray area is smaller than the light gray area.

Bound for large-size LHD.

Let L be a maximin LHD of size n and dimension k, with a separation distance d∗. We
consider n hyperspheres of dimension k, with radius d∗

2 and centered on the points of L, as
shown in Fig. 4.2. We construct a hypercube of size n+ d∗ and dimension k, which contains
the hyperspheres. We compare the sum of the volumes of these hyperspheres with the volume
of this hypercube. In Fig. 4.2, on the left, the light gray color indicates the volume of the
hypercube and the dark gray color is attributed to the volume of the spheres. Thus we have
the following inequality:

(n+ d∗)k ≥ nC(k)

(
d∗

2

)k
,

where C(k) is the volume of the unit sphere of dimension k. After simplification and taking
the kth root we obtain:

n+ d∗ ≥ d∗

2
k
√
nC(k).

Dividing both sides of the equation above by k
√
C(k)− 2

k√n , we get the bound we wanted:

d∗ ≤ 2n
k−1
k

k
√
C(k)− 2

k√n

∼
n→∞

2n
k−1
k

k
√
C(k)

. (4.1)

The consequence of this division is that this bound is only valid for high values of n, such
that n > 2k

C(k) . This is due to the fact that when n grows and k is fixed, n grows faster than
d∗. On the other hand, when k grows and n is fixed, the volume of the outer hypercube
grows faster than the total volume of the hyperspheres. The volume of an hypersphere is

C(k) = π
k
2

Γ(k
2

+1)
[46].

Upper bound for LHD of any size.

We make the same assumptions as in the previous subsection. This time, however, we
consider a smaller hypercube, of size n and dimension k. We represent this on the right of
Fig. 4.2. The light gray shading represents the volume of the hypercube, and the dark gray

52

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70

V
a
lu

e
 o

f
th

e
 b

o
u
n
d

n

k=3

bound for large-size LHD
bound for any size LHD

van Dam's bound

Figure 4.3: Values of the bounds for k = 3

shading represents the part of the volume of the spheres that is always inside the hypercube.
The worst bounding arises when exactly 1

2k
of the hypersphere volume is contained inside the

hypercube. This phenomenon occurs when a sphere is centered in a corner of the hypercube
(the example on the right of Fig. 4.2 illustrates the worse bounding). We then compare
the volume of the parts of hyperspheres lying inside the hypercube with the volume of the
hypercube itself. We get the following inequality:

nk ≥ n 1

2k
C(k)

(
d∗

2

)k
,

which leads to
n ≥ d∗

4
k
√
nC(k).

The bound is thus

d∗ ≤ 4n
k−1
k

k
√
C(k)

. (4.2)

Comparison of the bounds.

In [52], the following upper bound was proved:

d∗ ≤

√⌊
n(n+ 1)k

6

⌋
. (4.3)

It was obtained using the average distance between points of an LHD. We compare this
bound, which we refer to as van Dam’s bound, with our volume-based bounds.
We observe in Figs. 4.3 and 4.4 that regardless of the dimension, the bound for a large-size
LHD is better for high values of n. Van Dam’s bound is lower for small values of n with
regard to k. Depending on the dimension k, the bound for an LHD of any size can be better
than the two other bounds for intermediate values of n. This is explained by the fact that
van Dam’s bound is of O(n), so while it is tight for low values of n, it will become worse than
the other two which are of O(n

k−1
k). The bound for LHDs of any size is obviously worse than

53

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1000 2000 3000 4000 5000

V
a
lu

e
 o

f
th

e
 b

o
u
n
d

n

k=7

bound for large-size LHD
bound for any size LHD

van Dam's bound

Figure 4.4: Values of the bounds for k = 7

the bound for large-size LHD when n takes high values. However, it outperforms the large-
size LHD bound when the latter’s bounding hypercube contains a lot of space unoccupied
by hyperspheres (see Fig. 4.2). This occurs for intermediate values of n if k ≥ 7.

After showing these upper bounds, we describe an approximation algorithm. We start by
giving an algorithm for specific cases, prove it and give its approximation ratio. We then
extend it to all cases, and compare it with the best heuristic algorithms to produce maximin
LHDs described in the literature.

4.3.2 IES algorithm

We address a sub-problem of the maximin LHD problem in which n = bk, where b and k
are natural numbers. Algorithm 1, that we call Inflate, Expand and Stack (IES), produces
solutions whose quality can be guaranteed (Subsection 4.3.4). It will be a starting point to
design algorithms solving the maximin LHD problem for any k and n presented in Section 4.4.

Description of the IES algorithm

Simply put, the algorithm recursively constructs a smaller LHD of one dimension less, and
uses it as a core layer which will be duplicated and stacked in order to obtain the final LHD.
The base case for this recursion is the two-dimensional LHD. In this case, we use a regular
grid. We rotate the grid counterclockwise around its center with angle arctan 1

b in order to
have an LHD (see Fig. 4.5). This operation is handled in lines 2–5 of Algorithm 1. The
existence of such a regular grid is ensured by our assumption n = b2.
For the recursive case, we use b layers of size bk−1. Each of these layers will be constructed
recursively, using an LHD of size bk−1 and dimension k − 1.
To construct the first layer, we start by taking an LHD of size bk−1 and dimension k − 1,
obtained recursively. We then add to each point a coordinate whose value is duplicated
from the last coordinate of that point. We call this phase the inflate phase (line 9 of
Algorithm 1), as we add one dimension.
Next, we expand each layer by multiplying each coordinate but the last by b. We call this
the expand phase (line 12) as the size of layers increases which expands distance between

54

8
7
6
5
4
3
2
1
0

X X X

X X X

X X X
0 1 2 3 4 5 6 7 8

−→

8
7
6
5
4
3
2
1
0

X
X

X
X

X
X

X
X

X
0 1 2 3 4 5 6 7 8

Figure 4.5: Algorithm for k = 2 and n = 32 = 9 applied to the grid on the left produces the
grid on the right. The grid is rotated counterclockwise around (4, 4) with angle arctan 1

3 .

points.
Finally, we stack the layers by copying the first layer and adding an offset to each coordinate.
For the k − 1 first coordinates, the offset is the index of the layer, with the layer’s indexing
starting with zero. For the last coordinate, the offset will be bk−1 times the index of the
layer. We call this the stack phase (line 14). As the reader might already observe, layers
are piled up in such a way that a separation distance is preserved between the points of
consecutive layers.
The algorithm is illustrated using the example in three-dimensional space, k = 3, b = 2,
n = b3 = 8, shown in Fig. 4.6. To be able to represent a three-dimensional LHD on a
two-dimensional surface, we use the first two coordinates of a point to find its position on
the surface. The third coordinate is explicitly written. It may be seen as "the height" of the
point in the cube. The objects in bold typeface highlight the transformations used by the
algorithm.
Let us take the point (2, 3). We first give the two-dimensional point a third dimension (inflate
phase). This point then becomes (2, 3, 3). The expand phase places the point on a bigger
LHD. In our example, the point coordinates become (2× 2, 3× 2, 3) = (4, 6, 3). We then use
this point multiple times during the stack phase. We then obtain in our example two points,
(4 + 0, 6 + 0, 3 + 0× 4) = (4, 6, 3) and (4 + 1, 6 + 1, 3 + 1× 4) = (5, 7, 7), which correspond
to 3 and 7 in the upper right-hand corner of Fig. 4.6.

Complexity of the algorithm

We note C(n, k) the time-complexity of the algorithm in function of n and k. For k = 2, we
set b points with a constant number of arithmetic operations. Therefore, as n = b2

C(b2, 2) = O(b2).

For the general case, k > 2, we run the algorithm for IES(bk−1, k − 1) and then have a
constant number of operations for all k coordinates of all n = bk points. Thus C(bk, k) =
C(bk−1, k − 1) +O(kbk) which gives C(bk, k) = O(k2bk). Put differently:

C(n, k) = O(nk2). (4.4)

4.3.3 Separation distance

The IES algorithm returns an LHD whose separation distance (for norm L2) dmin can be
written as a function of n and k, bearing in mind that n = bk.

dmin =

√
n

2(k−1)
k + k − 1. (4.5)

55

3
2
1
0

XX
X

X
X

0 1 2 3

7
6
5
4
3
2
1
0

77
33

6
2

5
1

4
0

0 1 2 3 4 5 6 7y Inflate
x Stack

3
2
1
0

33
2

1
0

0 1 2 3

−→
Expand

7
6
5
4
3
2
1
0

33

2

1

0
0 1 2 3 4 5 6 7

Figure 4.6: Algorithm in three dimensions for n = 23 = 8, b = 2. Point (2, 3) is gradually
transformed into (2, 3, 3) by inflation, to (4, 6, 3) by expansion and to (4, 6, 3) and (5, 7, 7)
by stacking.

Algorithm 1 IES(n,k)

Input: Size n and dimension k respecting n = bk, b ∈ N, k ≥ 2

Output: An LHD with separation distance dmin =

√
n

2(k−1)
k + k − 1

1: X ← ∅
2: if k = 2 then
3: for i ∈ J0, b− 1K do
4: for j ∈ J0, b− 1K do
5: X ← X ∪ {(b(i+ 1)− (j + 1), i+ bj)}
6: else
7: Y ←IES(bk−1,k − 1)
8: Layer ← ∅
9: for xi ∈ Y do

10: Layer ← Layer ∪ {(x(0)
i , x

(1)
i , . . . , x

(k−1)
i , x

(k−1)
i)}

11: ExpLayer ← ∅
12: for xi ∈ Layer do
13: ExpLayer ← ExpLayer ∪ {(bxi,(0) , bx

(1)
i , . . . , bx

(k−1)
i , x

(k)
i)}

14: for xi ∈ ExpLayer do
15: for j ∈ J0, b− 1K do
16: X ← X ∪ {(x(0)

i + j, x
(1)
i + j, . . . , x

(k−1)
i + j, x

(k)
i + jbk−1)}

17: return X

56

We prove this fact by induction in the rest of this section.
The property "IES(bk,k) builds an LHD with separation distance dmin given by Eq. (4.5)"
is expressed by a predicate noted as H(k). To start the induction, we need the following
lemma:

Lemma 4.1. IES(b2,2) returns an LHD with separation distance dmin =
√
b2 + 1.

Proof. Let k = 2. We verify that the result obtained is an LHD of size n in two dimensions
and with a separation distance dmin =

√
b2 + 1. Let X be the output of IES(b2,2). We

consider two different points of X, x1 and x2. We express x1 and x2 as a function of
variables i1 and j1 as stated in line 5 of Algorithm 1:

x1 = (b(i1 + 1)− (j1 + 1), i1 + bj1),

x2 = (b(i2 + 1)− (j2 + 1), i2 + bj2),

where i1, i2 and j1, j2 correspond to the loop controlling variables i and j in Algorithm 1
(lines 3 and 4).
As x1 6= x2, we have i1 6= i2 or j1 6= j2. Additionally, we have i1, i2 < b and j1, j2 < b. Noting
the coordinate index as a superscript we can write x(1)

1 6= x
(1)
2 and x(2)

1 6= x
(2)
2 . Moreover, our

design X has b2 points and is thus an LHD. We still have to prove that δ(x1, x2) ≥
√
b2 + 1.

Expressing the squared Euclidean distance L2
2 between x1 and x2 as a function of their

coordinates, we get:

δ(x1, x2)2 = (b(i1 − i2) + j2 − j1)2 + (i1 − i2 + b(j1 − j2))2,

δ(x1, x2)2 ≥ (b(i1 − i2))2 + (j2 − j1)2 + (i1 − i2)2 + (b(j1 − j2))2,

δ(x1, x2)2 ≥ (b2 + 1)
(
(i1 − i2)2 + (j1 − j2)2

)
.

As i1 6= i2 or j1 6= j2, we have (i1 − i2)2 + (j1 − j2)2 ≥ 1 which leads to:

δ(x1, x2)2 ≥ b2 + 1,

δ(x1, x2) ≥
√
b2 + 1.

There are two particular, mutually exclusive situations, the first one for i1 = i2 and j1 = j2±1
and the second one for j1 = j2 and i1 = i2 ± 1, where (i1 − i2)2 + (j1 − j2)2 = 1 is satisfied,
which leads to:

δ(x1, x2) =
√
b2 + 1.

The inductive step is made for k > 2. According to the inductive hypothesis, H(k−1) holds.
Let design X be the output of IES(bk,k). First we check that X is an LHD of size bk.

Lemma 4.2. If H(k − 1) holds, then design X is an LHD of size bk.

Proof. According to the construction ofX we add b points for each point of Y = IES(bk−1,k−
1), as stated in lines 14–16 of Algorithm 1. Design Y has bk−1 points as H(k−1) is satisfied.
Thus design X has bbk−1 = bk points.
We also verify that for each coordinate, each of its possible values is only present in a single
point. Let x1 and x2 be two different points of design X, as noted above. We observe their
kth coordinate x(k)

1 and x(k)
2 , respectively. If we note

i1 = x
(k)
1 mod bk−1, i2 = x

(k)
2 mod bk−1, and j1 =

⌊
x

(k)
1

bk−1

⌋
, j2 =

⌊
x

(k)
2

bk−1

⌋
,

57

we will observe that i1 and i2 are the indices of the points of IES(bk−1,k−1) used to construct
x1 and x2 (lines 9, 12 and 14), and that j1 and j2 are the values of the loop controlling variable
j of the algorithm, and thus the layer numbers of x1 and x2, respectively (lines 15 and 16).
In the example given in Fig. 4.6, i corresponds to the vertical position of the point in both
the 4× 4 grids. This is also the position on the boldly typed 2× 2 parts of the 8× 8 grids.
In the same example, j corresponds to the vertical or horizontal position of the points in the
2× 2 grid which are inside one square of the boldly typed grid in the last phase. Resuming
our example, for point 3 in the upper right-hand corner of Fig. 4.6, we have i = 3 and j = 0.
Let y1 and y2 be the points of Y = IES(bk−1,k − 1) used to construct x1 and x2. For the

first k − 1 coordinates, we see that the mth coordinate, y(m)
1 =

⌊
x
(m)
1
b

⌋
and j1 = x

(m)
1 mod b

(respectively y(m)
2 =

⌊
x
(m)
2
b

⌋
and j2 = x

(m)
2 mod b) .

Additionally, we have j1 6= j2, or i1 6= i2, because we put x1 6= x2. Moreover, if i1 6= i2,

we have, thanks to the induction hypothesis, y(m)
1 6= y

(m)
2 . Thus either

⌊
x
(m)
1
b

⌋
6=
⌊
x
(m)
2
b

⌋
or

x
(m)
1 mod b 6= x

(m)
2 mod b, which leads to: x(m)

1 6= x
(m)
2 .

We still have to prove that the kth coordinates of x1 and x2 are different. As above, we note
that j1 and i1 (respectively j2 and i2) are the quotient and the remainder of the Euclidean
division of x(k)

1 (respectively x(k)
2) by bk−1.

As j1 6= j2 or i1 6= i2, we have x(k)
1 6= x

(k)
2 . Thus X is an LHD of size bk.

To complete the induction, we need to show that if H(k − 1) holds, then the separation
distance of the LHD X is:

dmin =
√
b2(k−1) + k − 1. (4.6)

Eq. (4.6) is, indeed, Eq. (4.5) with n replaced by bk.
In order to prove this equation, we show that the distance between two different points x1

and x2 is at least dmin. We investigate several cases, depending on the relative position of the
points in the layers, and treated in three separated lemmas. We can have either two points
of the same layer (Lemma 4.3), or two points of adjacent layers (Lemma 4.4), or two points
of non-adjacent layers (Lemma 4.5). If the two points are in adjacent layers (Lemma 4.4),
we have multiple cases again, where either the two points are constructed starting from the
same point of the LHD of dimension k − 1, or they are not. In the latter case, we have
two additional sub-cases depending on the distance between the two points of the LHD of
dimension k − 1 we used to construct our two original points. The above-mentioned cases
to be treated, together with the numbers of the auxiliary theorems which covers them, are
illustrated in Fig. 4.7. We remind the reader that j1 and j2 represent the same j as in
Algorithm 1, and thus the layer numbers of x1 and x2 (lines 15 and 16).
We start by treating the case where the points x1 and x2 are in the same layer:

Lemma 4.3. If H(k−1) holds and x1 and x2 are in the same layer, then δ(x1−x2) > dmin.

Proof. In this case, x1 and x2 are from the same LHD Y = IES(bk−1,k − 1) of dimension
k− 1, which means that j1 = j2. Let y1 and y2 be the points of Y used to construct x1 and
x2:

δ(x1, x2)2 = b2δ(y1, y2)2 + (x
(k)
1 − x

(k)
2)2.

Since xk1 6= xk2, we have (xk1 − xk2)2 ≥ 1. We then obtain:

δ(x1, x2)2 ≥ b2d2
min,k−1 + 1.

As H(k − 1) is valid, we have

d2
min,k−1 = b2(k−2) + k − 2.

58

Same layer
j1 = j2

Lemma 4.3

Adjacent layers
|j1 − j2| = 1
Lemma 4.4

Non-adjacent layers
|j1 − j2| > 1
Lemma 4.5

x1 and x2 built
from the same point

i1 = i2

x1 and x2 built
from different points

i1 6= i2

y1 and y2 distant
δ(y1, y2) > dmax

y1 and y2 close
to each other
δ(y1, y2) ≤ dmax

Figure 4.7: Sub-cases treated in Lemmas 4.3, 4.4 and 4.5 Lemma 4.6

Combining the two previous formulæ, we get:

δ(x1, x2)2 ≥ b2(k−1) + b2(k − 2) + 1,

δ(x1, x2)2 > b2(k−1) + k − 1 = d2
min.

We conclude that H(k) holds in this case.

We now treat the case where the points x1 and x2 are in two adjacent layers:

Lemma 4.4. If H(k− 1) holds and x1 and x2 are in adjacent layers, then δ(x1, x2) ≥ dmin.

Proof. In this case, x1 and x2 are in two adjacent layers, which means that |j1 − j2| = 1.
Let i1, i2 be such that

i1 = x
(k)
1 mod bk−1 and i2 = x

(k)
2 mod bk−1.

In this situation, i1 and i2 are the indices of the points y1 and y2 of IES(bk−1,k− 1) used to
construct x1 and x2 (lines 9, 12 and 14 of Algorithm 1). Two cases occur: either i1 = i2 or
i1 6= i2.

• Case i1 = i2:
Each coordinate of x1 and x2 differs by 1, except the last one, which differs by bk−1:

δ(x1, x2)2 = b2(k−1) + k − 1 = d2
min.

This is the case where the equality holds.

59

For the second case, i1 6= i2, we distinguish two sub-cases: either y1 and y2 are far enough
from each other (more than a certain distance dmax still to be defined) to get the result we
want directly, or they are closer than this distance and we will have to use the last coordinate
of x1 and x2 to prove that they are still farther than dmin.

• Case i1 6= i2:

For the first k − 1 coordinates, we have:

b(y1 − y2) = (x1 − x2)k−1 ± 1k−1,

where 1k−1 is the vector of size k − 1 with all elements equal to 1. Using the triangle
inequality and noting as δ(x1, x2)k−1 the distance between x1 and x2 computed with
the k − 1 first coordinates, we get:

bδ(y1, y2) < δ(x1, x2)k−1 +
√
k − 1,

which leads to:
δ(x1, x2)k−1 > bδ(y1, y2)−

√
k − 1.

Let

dmax =

√
b2(k−2) +

k − 1

b2
+

√
k − 1

b2
. (4.7)

– If the points are too far apart, δ(y1, y2) > dmax:

δ(x1, x2)k−1 > bdmax −
√
k − 1.

The function of b and k describing dmax is given by Eq. (4.7). We insert it in the
inequality above, obtaining:

δ(x1, x2)k−1 > b

(√
b2(k−2) +

k − 1

b2
+

√
k − 1

b2

)
−
√
k − 1,

δ(x1, x2)k−1 >
√
b2(k−1) + k − 1 +

√
k − 1−

√
k − 1.

This allows us to bound δ(x1, x2):

δ(x1, x2) > δ(x1, x2)k−1 >
√
b2(k−1) + k − 1 = dmin.

– If the points are too close to each other, δ(y1, y2) ≤ dmax, we have |y(k−1)
1 −

y
(k−1)
2 | < dmax. Consequently:

|x(k)
1 − x

(k)
2 | = bk−1 − |y(k−1)

1 − y(k−1)
2 | > bk−1 − dmax.

For the first k−1 coordinates, δ(x1, x2)k−1 > bδ(y1, y2)−
√
k − 1. Using H(k−1),

we have:
δ(x1, x2)k−1 > bdmin,k−1 −

√
k − 1.

We rewrite the Euclidean distance:

δ(x1, x2)2 = δ(x1, x2)2
k−1 + |x(k)

1 − x
(k)
2 |

2.

Putting together the two formulæ above, we write:

δ(x1, x2)2 >
(
bdmin,k−1 −

√
k − 1

)2
+
(
bk−1 − dmax

)2
.

60

We show that the right-hand side of the above equation is greater than d2
min if

b ≥ 3 or (b = 2 and k ≥ 6).

Let A =
(
bdmin,k−1 −

√
k − 1

)2
+
(
bk−1 − dmax

)2 − d2
min.

We will show that A > 0:

A =
(
b
√
b2(k−2) + k − 2−

√
k − 1

)2
+(

bk−1 −
(√

b2(k−2) + k−1
b2

+
√

k−1
b2

))2

− b2(k−1) − k + 1,

which gives after developing:

A = b2(b2(k−2) + k − 2) + k − 1− 2
√

(k − 1)(b2(k−2) + k − 2) + b2(k−1)

+ b2(k−2) +
k − 1

b2
+
k − 1

b2
+ 2

√
k − 1

b2
(b2(k−2) +

k − 1

b2
)

− 2bk−1

√
b2(k−2) +

k − 1

b2
− 2bk−1

√
k − 1

b2
− b2(k−1) − k + 1.

After the simplification, the suppression of positive terms and the use of the
inequality

√
x+ y <

√
x+
√
y, we get:

A > b2(k−1) − 2
√
k − 1bk−2 − 2(k − 1) + b2k−4 − 2b2k−3 − 2

√
k − 1bk−2

− 2
√
k − 1bk−2,

A > b2k−4(b2 − 2b+ 1)− 6
√
k − 1bk−2 − 2(k − 1),

which gives:

A > b2k−4

(
(b− 1)2 − 6

√
k − 1

bk−2
− 2k − 2

b2k−4

)
.

Let f(b, k) = (b− 1)2− 6
√
k−1

bk−2 − 2k−2
b2k−4 . Substituting b = 3, k = 3 and b = 2, k = 6

in this formula we obtain that f(3, 3) > 0 and f(2, 6) > 0. We will show that f is
increasing with respect to k and b for b ≥ 2 and k ≥ 3. We will use this property
of f to conclude that f > 0 for (b, k) ∈ J6,+∞J×J2,+∞J∪J3,+∞J×J3,+∞J,
and that we then have A > 0.
We observe that f is increasing with respect to b as the positive terms are increas-
ing and the negative terms are decreasing (when b ≥ 1). Let f1(b, k) = −6

√
k−1

bk−2

and f2(b, k) = − 2k−2
b2k−4 . We note that

∂f

∂k
=
∂f1

∂k
+
∂f2

∂k
,

∗ ∂f1
∂k (b, k) =

ln(b)
√
k−1− 1

2
√
k−1

bk−2 > 0 for b ≥ 2 and k ≥ 3,

∗ ∂f2
∂k (b, k) = 2(2k−2) ln(b)−2

b2k−4 > 0 for b ≥ 2 and k ≥ 3.

Thus f is increasing with respect to k and b. As A > f(b, k) and f(b, k) > 0 when
b ≥ 3 as well as when b = 2 and k ≥ 6, we have A > 0 in these cases.
Thus

δ(x1, x2)2 > d2
min.

We checked that the algorithm returns an LHD of dimension k and size bk with
a separation distance dmin for the cases (b, k) = (2, 3), (2, 4) and (2, 5).

61

We finish by examining the case where the points x1 and x2 are in two different and non-
adjacent layers:

Lemma 4.5. If H(k − 1) holds and x1 and x2 are on two different, non-adjacent layers,
then |x1 − x2| > dmin.

Proof. The proof in this case is trivial as x1 and x2 are separated by at least one layer of
size bk−1 and thus are separated by more than dmin.

We summarize the three previous lemmas:

Lemma 4.6. If H(k − 1) holds, then the separation distance of the LHD X is:

dmin =
√
b2(k−1) + k − 1.

Proof. This proof is immediate as the veracity of Lemmas 4.3, 4.4, and 4.5 ensures that the
distance between any pair of points is at least equal to the one given by Eq. (4.6).

These lemmas allow us to state the following theorem:

Theorem 4.5. IES(bk,k) returns an LHD with separation distance

dmin =

√
n

2(k−1)
k + k − 1.

Proof. Proof of Theorem 4.5 Assuming b ≥ 2, we proved that H(2) holds (Lemma 4.1), and
that if H(k−1) holds, then H(k) holds too (Lemmas 4.2 and 4.6). Thus, by induction, H(k)
holds for every k ≥ 2 which concludes the proof.

4.3.4 Approximation ratio

We use the upper bounds presented above to calculate approximation ratios for the IES
algorithm. As this algorithm is only defined for values of n and k such that n = bk, with
b ∈ N, the approximation ratio is only computed for such values of n and k.

Using the bound for large-size LHD.

We suppose n = bk, with b ≥ 1 and k > 2. As we address the quality of IES for large
instances we also put n > 2k

C(k) . Our algorithm returns an LHD of size n with a separation
distance dmin given by Eq. (4.5). Let ρ = dmin

d∗ . With the bound of d∗ from Eq. (4.1) we
obtain:

ρ ≥

√
n

2(k−1)
k + k − 1

2n
k−1
k

k
√
C(k)− 2

k√n

=
1

2

(
k
√
C(k)− 2

k
√
n

)√
1 +

k − 1

n
2(k−1)
k

−→
n→∞

k
√
C(k)

2
. (4.8)

We want to find an equivalent of k
√
C(k) = k

√
π

1
2

Γ(k
2

+1)
. We know that

Γ(x) = xx−
1
2 e−x

√
2π

(
1 +O

(
1

x

))
,

62

thus

k

√
Γ

(
k

2
+ 1

)
=

(
k

2
+ 1

) 1
2

+ 1
2k

e−(1
2

+ 1
k

) 2k
√

2π k

√√√√1 +O

(
1

k
2 + 1

)
,

which gives

k

√
Γ

(
k

2
+ 1

)
=

(
k

2
+ 1

) 1
2

e−
1
2

(
k

2
+ 1

) 1
2k

e−
1
k

2k
√

2π k

√√√√1 +O

(
1

k
2 + 1

)
.

We note that (
k

2
+ 1

) 1
2k

e−
1
k

2k
√

2π k

√√√√1 +O

(
1

k
2 + 1

)
−→
k→∞

1.

Thus:
k

√
Γ

(
k

2
+ 1

)
∼
√

k

2 e
,

which finally gives
k
√
C(k) ∼

√
2π e

k
. (4.9)

This allows us to obtain using Eq. (4.8):

ρ ≥ f ∼
√
π e

2k
.

, where f is the expression described in Eq. (4.8). The approximation (4.9) will also be
useful when computing the approximation ratio for LHDs of any size.

Using the bound for LHD of any size.

We suppose n = bk, with b ≥ 1 and k > 2. The separation distance dmin from Eq. (4.5)
together with the bound of d∗ from Eq. (4.2) yield:

ρ ≥

√
n

2(k−1)
k + k − 1

4n
k−1
k

k
√
C(k)

=
1

4
k
√
C(k)

√
1 +

k − 1

n
2(k−1)
k

>
k
√
C(k)

4
∼
√
π e

8k
. (4.10)

Using van Dam’s bound.

The separation distance dmin given by Eq. (4.5) together with van Dam’s bound, Eq. (4.3),
give us:

ρ ≥

√√√√√n
2(k−1)
k + k − 1⌊
n(n+1)k

6

⌋ ≥

√
6

k

n

n+ 1

1
k
√
n2

+
6(k − 1)

n(n+ 1)k
. (4.11)

4.3.5 Comparison of the approximation ratios

The applicability of the three approximation ratios is conditional on the size n and dimension
k of the maximin LHD considered. As shown in Fig. 4.8, the first approximation ratio,
Eq. (4.8), is the best for high values of n, the last one, Eq. (4.11), is the best for low values
of n. The second one, Eq. (4.10), can be better than the others for medium values of n,
depending on the dimension k.

63

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1000 2000 3000 4000 5000

a
p
p
ro

x
im

a
ti

o
n
 r

a
ti

o

n

Comparison of IES approximation ratios for k=7

using the bound for large-size LHD
using the bound for any size LHD

using van Dam's bound

Figure 4.8: Comparison of the approximation ratios

4.4 Generalized algorithms

IES is designed for n = bk, where b is a natural number, which limits its practical application.
To overcome this restriction we have designed algorithms that find a satisfactory LHD for
any n and k. We take as a starting point the IES algorithm.

4.4.1 Fixed-layer extension

One extension to the IES is to build an LHD using the IES algorithm for b = b k
√
nc, and

continue to add layers until reaching at least n points. The LHD obtained may have more
than n points. Some points are to be removed afterwards, to obtain the desired number of
points.
We first count the number of layers we need, by dividing n by the size of the layers. We
then have d n

bk−1 e layers. We modify the expand phase so that we multiply the coordinates
of each point by the number of layers.
Once we have finished the three IES phases, we may end up with too many points. We
therefore remove points from the last layer to have n points. We start by deleting the last
constructed point and decrement the coordinates of each point greater than the corresponding
coordinates of the previously deleted point. We repeat this two-phase (removal-adjustment)
operation until the number of points n is reached. As a result we get an LHD of n points with
the same separation distance as the one obtained with the IES algorithm. The algorithm
design implies that its approximation ratio may be given. We name this extension IES-FL
(Fixed Layer).
The first part of this algorithm, before we start removing points, has the same complexity as
the IES algorithm (see Eq. (4.4)). The number of points to be removed is at most equal to
the layer size, i.e. n

k−1
k . To remove a point, we have to check each coordinate of each other

point. We thus have to execute O(nk) operations for each point to be deleted. The part
of the algorithm that "wipes out" surplus points costs O(kn1+ k−1

k) operations. The total
complexity of IES-FL is therefore

CFL(n, k) = O(k2n1+ k−1
k).

64

As the IES-FL algorithm preserves the separation distance of the IES algorithm, we can
calculate the ratio between the two separation distances in the worst case which happens
when the size n is "almost" equal bk, n = bk − 1.
On the one hand, an LHD of size n = bk − 1 produced by the IES-FL algorithm has a
separation distance which is, according to Eq. (4.5):

dIES =
√

(b− 1)k−1 + k − 1.

On the other hand, the IES algorithm builds an LHD of size n+1 whose separation distance
dIES is explicitly given by Eq. (4.5). Therefore, if ρIES is an approximation ratio for the IES
algorithm,

ρIES-FL =
dIES-FL
dIES

ρIES

is an approximation ratio for the IES-FL algorithm. The fact that the IES-FL ratio is lower
than the IES ratio is not astonishing:

dIES-FL
dIES

=

√
(b− 1)2(k−1) + k − 1√
b2(k−1) + k − 1

≥ (b− 1)k−1

bk−1
. (4.12)

With the approximation ratios from Subsection 4.3.4 (Eqs. (4.8), (4.10), and (4.11)), we
give three approximation ratios for this algorithm.

• For large-size LHD (n > 2k

C(k)):
With ρIES given by Eq. (4.1) and with Eq. (4.12) we obtain:

ρIES-FL ≥
1

2

(b− 1)k−1

bk−1

(
k
√
C(k)− 2

k
√
n

)√
1 +

k − 1

n
2(k−1)
k

.

• Similarly, with ρIES for an LHD of any size from Eq. (4.10) we get:

ρIES-FL ≥
(b− 1)k−1

4bk−1
k
√
C(k)

√
1 +

k − 1

n
2(k−1)
k

>
k
√
C(k)

4
.

• Finally, with ρIES according to van Dam’s bound given by Eq. (4.3), we have:

ρIES-FL ≥
(b− 1)k−1

bk−1

√
6

k

n

n+ 1

1
k
√
n2

+
6(k − 1)

n(n+ 1)k
.

4.4.2 Adapted Layers

The IES algorithm may be subject to another modification enabling it to treat instances
with any values of n and k. In this case, we change the size of the layers, increasing the
separation distance. We call this algorithm IES-AL (Adapted Layers) because the idea is to
change the size of the layers rather than simply adding more fixed-size layers. To achieve this
goal, we take a bigger LHD of dimension k − 1 as our core layer. Once a certain threshold
is reached, we add a new layer instead of increasing the current layer size.
Let b = b k

√
nc. Either n ≤ b(b+ 1)k−1, in which case we use b layers, or n > b(b+ 1)k−1, in

which case we use b+ 1 layers.
In the first case, n ≤ b(b+ 1)k−1, we have b layers, some of them sized dnb e and some of them
sized dnb e − 1. We construct the layers using an LHD of dimension k − 1 and size dnb e with
the same layer construction procedure as the IES algorithm. For the layers smaller in size,
we remove the last constructed point of the layer using the same procedure as for IES-FL.

65

4
3
2
1
0

XX
X

X
X

X
0 1 2 3 4

−→

8
7
6
5
4
3
2
1
0

44
8

3
7

2
6

1
5

0
0 1 2 3 4 5 6 7 8

Figure 4.9: IES-AL in three dimensions for n = 9. The bolded point becomes only one point
in two dimensions, the last layer is incomplete.

7
6
5
4
3
2
1
0

X X

X X X

X X X
0 1 2 3 4 5 6 7

−→

7
6
5
4
3
2
1
0

X
X

X
X

X
X

X
X

0 1 2 3 4 5 6 7

Figure 4.10: IES-AL in two dimensions for n = 8. We remove the last constructed point
from the result of IES for n = 9.

Figure 4.9 shows the construction explained above, for the particular example where k = 3
and n = 9. Here, the layer’s size is 5. When we construct the final result, we need to
remove one point. The boldly printed point is alone in the final result, as the other one had
to be deleted. Note that the other points found their place thanks to the "classical" IES
manipulation.
In the second case, n > b(b+ 1)k−1, we have b layers of size (b+ 1)k−1, and we build the last
layer using the first n− (b+ 1)k points of an LHD of dimension k− 1 and size (b+ 1)k. Once
again, we remove the points of the last layer using the same procedure as for IES-FL. For
the two-dimensional case, we start with a rotated grid of size b2 using the same procedure
as for IES and we add points to one line and then to one column until we have n points (see
Fig. 4.10).
In order to retain the same approximation ratio as IES-FL, we build two LHDs, using
both extensions, and we take the best one, according to the separation distance produced.
However, in practice, we only need IES-AL, as it is almost always better (see Section 4.4.3).
Moreover, the worst case of the approximation ratio occurs for values of n such as n = bk−1.
In this case, IES-FL performs badly, as the separation distance will only increase for n+ 1,
while the separation distance for the second extension, IES-AL, is much better. It should be
obvious that this algorithm possesses the same time complexity as the former.

4.4.3 Computational results

We present the results we obtained with the different IES algorithms, as summarized in
Table 4.2, and compare them with those obtained with the Simulated Annealing algorithm
[44]. We discuss the choice of this algorithm in the following subsection.

66

Algorithm Values of n and k Time complexity
IES n = bk, b ∈ N O(nk2)

IES-FL Any n and k O(k2n1+ k−1
k)IES-AL

Table 4.2: Summary of IES algorithms

Algorithm used to solve the LHD-CP

Multiple algorithms have been used to solve the maximin LHD problem. Most of these
algorithms are metaheuristic algorithms. Simulated Annealing [37], Iterated Local Search
[22] and Genetic Algorithms [6] are the most commonly used. It has been shown in [44] that
with an appropriate set of parameters, the Simulated Annealing scheme performs better
than the other algorithms. We used the SA version proposed in that paper as it allows us to
exceed the highscores listed in the literature and the dedicated website (spacefilling.nl).
Its numerical complexity on each iteration step is of O(n2k2) which makes it well adapted
to treat LHDs of large size. For this reason, we compare our results with the results of this
algorithm.

Experimental settings

The heuristic algorithm with which we decided to compare our results is Simulated Annealing
(SA) adapted to the maximin LHD problem, with the same parameters as in [44]. All
experiments were conducted on an i7 4765T 2.00GHz CPU. Each experiment involving SA
was carried out for 10 minutes on one core, and was repeated 50 times, which was enough
to produce very narrow confidence intervals on a 0.05 confidence level. The performance
measure chosen is the mean squared separation distance in the LHD obtained.

Results of IES extensions

The time consumption of both IES-based algorithms is very low, taking at most half a second
for the highest values of n and k we used. Thanks to the short execution times we were able
to run the algorithm for all values of n within a certain range for a given k. Figures 4.11
and 4.12 show the separation distance of the LHDs obtained by the IES-FL and IES-AL
algorithms for k = 3 and k = 5 for every n from 2 to 9000.
As expected, the IES-FL separation distance only grows when we reach a value of n where
n = bk. As for the IES-AL algorithm, we observe that the separation distance also increases
step by step, just like the IES-FL algorithm, but these steps are much shorter. This is due to
the fact that we use the same core layer for several LHDs consecutive in size. Additionally,
the core layer in use may also have the same separation distance. We also see in Fig. 4.12
that, in certain cases, the distance decreases and oscillates slightly. The reason for this
phenomenon is that when we use a bigger LHD as a core layer, one of its points will only
be used in one layer, to the effect that two points may be brought close together. As we
periodically take larger core layers, this behavior may occur several times in a row, creating
oscillations.

4.4.4 Comparison with Simulated Annealing

Figures 4.13 and 4.14 show the result of the IES-AL algorithm and the SA algorithm for k = 3
and k = 5. We observe that SA gives better results for low values of n, and worse results
for high values of n. However, it remains unclear which algorithm is better for intermediate
values of n, due to the steps and oscillations of the IES-AL results as discussed in Subsection
4.4.3. To offer a better comparison between IES-AL and SA, we give two envelopes, noted

67

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

d
m

in
²

n

IES-AL
IES-FL

Figure 4.11: The squared separation distance of the LHDs obtained as results of the IES-FL
and IES-AL algorithms for k = 3, in function of their size.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000

d
m

in
²

n

IES-AL
IES-FL

Figure 4.12: The squared separation distance of the LHDs obtained as results of the IES-FL
and IES-AL algorithms for k = 5, in function of their size.

68

d2
min and cd2

min. The first represents an upper bound for the result of IES-AL, obtained using
d2

min,IES = n
2(k−1)
k + k− 1. The second represents a lower bound, obtained by comparing the

results of the SA algorithm with d2
min = ckdmin,IES , where ck is the worse ratio between the

actual results of the IES-AL algorithm and d2
min,IES , for a fixed k.

Figure 4.15 shows the range where our algorithm beats the Simulated Annealing algorithm,
with n on the y axis and k on the x axis. For all points (n, k) in the light gray area, the
IES-AL algorithm outperforms SA. For all points in the dark gray area, SA produces better
results.

The lower and upper area boundaries were obtained by comparing the results of the SA
algorithm with respectively the upper bound d2

min and the lower bound cd2
min we have just

described. For the central region, IES-AL may or may not be better than the SA algorithm,
depending on the value of n. However, since the IES-AL algorithm is fast, it should always
be possible to run it alongside the SA algorithm.

We made an attempt to improve the annealing descent by taking an IES-AL solution as an
SA starting point. These experiments proved to be unsuccessful. The results were either
worse than results obtained with a random starting point (when SA is better) or the same
as the IES-AL algorithm (when IES-AL is more efficient). This behavior may be explained
by the very regular structure of the LHDs produced by IES. A limited number of iterations
will produce a poor solution. A lot of mutations have to be accepted before breaking the
regularity, which is necessary to obtain better solutions. This phenomenon compromises the
interest of using IES-AL to set a starting point.

 10

 100

 1000

 10000

 100000

 10 100 1000

d
m

in
²

n

Results of the IES-AL and SA algorithms for k=3

IES-AL
SA

Upper bound for IES-AL
Lower bound for IES-AL

Figure 4.13: Comparison between SA and IES-AL for k = 3. The squared separation distance
is given in function of the size of the LHD.

69

 10

 100

 1000

 10000

 100000

 1e+06

 10 100 1000

d
m

in
²

n

Results of the IES-AL and SA algorithms for k=5

IES-AL
SA

Upper bound for IES-AL
Lower bound for IES-AL

Figure 4.14: Comparison between SA and IES-AL for k = 5. The squared separation distance
is given in function of the size of the LHD.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 2 4 6 8 10 12 14

n

k

domain

IES-AL always better than SA
IES-AL always worse than SA

Figure 4.15: Comparison between SA and IES-AL

4.5 Conclusion

We searched for guarantees of performance for both the pLHD-CP and the LHD-CP. We
gave inapproximation results for the former, finding that no approximation algorithm exists
for k ≥ 3 if P 6= NP, a result which holds for every norm. We also give an upper bound for
any approximation ratio in the two-dimensional space for norm L∞. On the contrary, we
designed an approximation algorithm for the LHD-CP and proved its approximation ratio
using two new upper bounds we constructed. We compared this algorithm with the best
metaheuristic algorithm found in the literature, Simulated Annealing. In the next chapter,

70

we try to get the best possible numerical results for the construction and completion problems
to the detriment of theoretical performance bounds.

71

72

Chapter 5

Heuristic algorithms

After finding inapproximation results for the pLHD-CP and an approximation algorithm for
the LHD-CP, we are interested in methods to produce LHDs or to complete pLHDs, so that
they can actually be used for sampling. As the LHD-CP is a subproblem of the pLHD-CP,
algorithms for the latter can also be used for the former. However, algorithms specific to the
LHD-CP should be more effective. As we defined the pLHD-CP, no algorithms for it exists
in the literature.
We start by giving an overview of the numerous algorithms used to construct LHDs. Among
these algorithms, we concentrate on the Simulated Annealing metaheuristic, and we follow
with improvements we made to Simulated Annealing algorithm (SA) for the the LHD-CP
with a new mutation and a new evaluation function, allowing the algorithm to outperform
its previous adaptations found in the literature [8]. The last section treats an adaptation of
SA to the pLHD-CP [24].
As in practice the most used norm is the Euclidean (L2) norm, we only consider this norm
in this chapter.

5.1 State of the art

In this section, we describe the algorithms used to produce LHDs reported in the literature.
We start with exposing two components used in multiple heuristic algorithms, the evaluation
function and the mutations, before formulating the algorithms themselves.

5.1.1 Algorithm components

A metaheuristic algorithm usually necessitates two components to be implemented for a
particular problem: the evaluation function and the mutation. We present the evaluation
functions and the mutation used in the literature to treat the LHD-CP.

Evaluation functions

Most algorithms need to evaluate multiple LHDs to progress. The most straightforward
function one can think of is simply the separation distance. However, this function has a
drawback. Indeed, two LHDs with the same separation distance have the same evaluation.
As the separation distance often keeps the same value if the LHD is slightly modified, an
algorithm using this evaluation cannot make a difference between two solutions. An example
is illustrated in Fig. 5.1: the two LHD have a separation distance of

√
2, but the distribution

of distances between points are the following: {
√

2,
√

2,
√

2, 2
√

2, 2
√

2, 3
√

2} for the left LHD
and {

√
2,
√

5,
√

5,
√

5,
√

10,
√

15} for the right one.
To avoid this inconvenience, two other evaluation functions have been used. The authors of
[1] made an analogy by representing points of a design with electrical charges, each exerting

73

X
X

X
X

X
X

X
X

Figure 5.1: Two LHDs with an identical separation distance

a repulsive force on the others. The Audze-Eglais (AE) evaluation function is the potential
energy of such a system:

AE =
n∑
i=1

n∑
j=i+1

1

δ(pi, pj)2
, (5.1)

where d(pi, pj) is the distance between pi and pj . While this evaluation function tends
to increase the separation distance, a maximin LHD does not necessarily maximize the AE
function. Conversely, an LHD maximizing AE is not always a maximin LHD. A more general
evaluation function has been proposed in [37]:

φp =

 n∑
i=1

n∑
j=i+1

1

δ(pi, pj)p

 1
p

, (5.2)

where p ≥ 1 is a chosen parameter and d(pi, pj) is the distance between pi and pj . Contrary
to the separation distance, φp takes every distance into account, and thus varies when the
LHD is modified. The p factor makes the lowest distances have more weight in the evaluation
function. This makes minimizing φp equivalent to maximizing the separation distance if p is
high enough, while being better at guiding an algorithm.
Note that both evaluation functions can be used for various maximin designs and are not
limited to maximin LHDs.

Mutations

Another important component of multiple algorithms is the mutation process. Most algo-
rithm perform a local search and thus need to modify slightly an LHD to obtain another,
similar one. Four mutations have been used for a great number of algorithms. They have
been proposed by [37] and [27]. To explain these mutations, we use the notion of critical
point :

Definition 5.1 Critical point. A critical point is a point at distance equal to the separation
distance to another point.

The mutations mentioned above are as follows:

• m1: Chose randomly a critical point and another point. Exchange a random number
of coordinates. The evaluation function is computed once on the resulting LHD.

• m2: Chose randomly a critical point and another point. Exchange a random coordi-
nate. The evaluation function is computed once on the resulting LHD.

• m3: Chose randomly a critical point and another point. Exchange the coordinate
for which the resulting solution gives the best evaluation. The evaluation function is
computed on each of the k possible resulting LHD.

• m4: Chose randomly two points. Exchange a random number of coordinates. The
evaluation function is computed once on the resulting LHD.

74

Note thatm3 requires multiple computations of the evaluation function, as every k coordinate
change has to be evaluated. Therefore, to compare its performance with the performance of
other mutations, the number of iterations of an algorithm should be divided by k.
After describing the core elements, we describe the algorithms currently used for constructing
LHDs.

5.1.2 Heuristic algorithms

Numerous methods have been used to construct LHDs. Metaheuristic algorithms, such as
Genetic Algorithms and Iterated Local Search, have been applied to the problem. Dedicated
heuristic algorithms have also been designed. Furthermore, reducing the space of solutions
has been tried, by considering particular LHDs such as symmetric LHDs only. We end this
section with the description of the Simulated Annealing metaheuristic, which has been found
to be the best performing algorithm.

Genetic Algorithms

Genetics algorithms are described in [25] and [21], and have been used to construct Latin
Hypercubes in [6] and [35]. Genetic algorithms construct a population of solutions, applies
mutations to each solution and crosses them to produce new solutions (i.e. construct a child
solution from a certain number of parent solutions), and chooses the best-performing ones
to obtain a new population.
Three essential components have to be designed: the mutation, the crossover process, and
the evaluation function used to select the population. In [6], each solution is represented
as k permutations of size n. The mutation used consists in exchanging two values of each
permutation. Seeing the solution as a set of points, this mutation is equivalent to exchanging
one coordinate of two points for each dimension. The evaluation function used is the Audze-
Eglais function (Eq. (5.1)).
Two crossover processes have been found efficient.
The first crossover, called cycle crossover, consists in taking two parent solutions, and, for
each permutation, applying the following procedure: Take the first number of the permuta-
tion of the first parent, and add that number in the first position of the child. Then, add to
the child the number in the same position in the second parent, and add it in the position
it belongs in the first parent. Repeat this process until the number in the second parent is
already present in the child. Then, fill the remaining positions of the child with the same
numbers as the second parent. Two child solutions can be produced this way by exchanging
the two parents. This procedure is illustrated on Fig. 5.2.
The second crossover, called inversion, consists in taking one parent, selecting at random
two positions in each permutation, and inverting the order of elements between these two
positions.
While the two processes are efficient, using cycle crossover followed by inversion crossover
has been found to be more efficient than one process alone.

Iterated Local Search

Iterated local search is a metaheuristic first proposed in [7]. It has been applied to the
LHD-CP in [22]. The idea behind the algorithm is to perform a local search and apply a
mutation until it does not improve the current solution anymore. At this point, a different
mutation is applied, introducing a more significant change to the solution, before restarting
the local search.
The local search uses a variation of the m2 mutation: take a critical point, another point,
and exchange one of their coordinates. All possible mutations are performed and the one
resulting in the best solution is selected if it beats the initial solution.

75

6 5 4 3 2 1

6 5 3

3 6 2 5 1 4

1 2 3 4 5 6

1 2 5 4 6 3

4 1 5 2 6 3S2

S1

Figure 5.2: The cycle crossover process between two solutions S1 and S2. Two steps are
applied to build the child solution. In the first step, we copy 6 from S1 in the first position.
At this position, S2 contains 3, which is in fourth position in S1, so we copy 3 in the fourth
position. Likewise, S2 contains 5 in fourth position, and 5 is in second position in S1, so we
copy 5 in the second position of the child. As the second position of S2 contains 6 which
has already been placed, we stop here. In the second step, we copy in the remaining empty
positions of the child the corresponding numbers from S2.

Once no improvements are found, the following mutation is applied:
Select randomly two points pi and pj , with i ≤ j + 2. Select a dimension randomly. For
all points pl such that i < l ≤ j, replace its coordinate on the selected dimension with the
previous coordinate of pl−1. Replace the coordinate of pi on the selected dimension by the
previous coordinate of point pj . In other words, the coordinates of points pl are exchanged
in a circular way.
The algorithm stops when an arbitrary chosen number of local searches do not improve the
solution.

Translational Propagation

The idea behind the Translational Propagation algorithm proposed in [53] is to take a small
LHD, called a seed, and to build a larger LHD by copying this seed several times.
More precisely, to build an LHD of size n and dimension k with a seed of size s (and the
same dimension k), the algorithm divides the target hypercube in b blocks, which are smaller
hypercubes. The number of blocks have the following constraint: it has to be a power of k,
and has to be greater or equal to n

s . The smallest number of blocks respecting these two
constraints is selected. Each block is a hypercube of side length ns

k
√
b. The seed is then

transformed in a pLHD of size ns
k
√
b by multiplying the coordinate of each point by k

√
b.

Each block is filled by a copy of the modified seed, which is shifted to respect the Latin
constraint. As the resulting LHD may have more than n points, surplus points have to be
removed until n points are left. To remove a point, we select the farthest point from the
center of the block, remove it, and shift the coordinates of the other points to fill the gap:
each point with one coordinate greater than the coordinate of the removed point on the same
dimension gets this coordinate decreased by one.

Symmetric LHDs

Rather than designing a new algorithm to construct LHDs, we can reduce the space of
solutions hoping to obtain better solutions. It has been observed that good quality solutions

76

have certain properties and focusing on LHD with these properties can lead to satisfactory
solutions. Symmetrical LHDs and periodical LHDs have been used to this end.
A symmetrical LHD is an LHD such that for each point it contains, it also contains the image
of the point with respect to the central symmetry. In other words, if a symmetrical LHD
contains point p = (p1, p2, ...pk), it also contains point ps = (n+1−p1, n+1−p2, ..., n+1−p3).
They have been studied in [60]. To build them, a local search algorithm has been developed.
The mutation used is the following: for each dimension, exchange the coordinates of two
points on that dimension and exchange the coordinates of their two symmetric points. The
algorithm starts from a random symmetric LHD and stops when the mutations do not
improve the separation distance.

Periodic LHDs

In [51], 2-dimensional LHDs have been studied. They used an exponential-time algorithm
to build optimal LHD for norm L2. They observed that the majority of optimal LHDs have
periodic patterns. They used this fact to design an algorithm for this specific case, which
explores every periodic pattern and return the LHD with the highest separation distance.

Simulated Annealing

The Simulated Annealing algorithm, introduced in [32], is a metaheuristic algorithm in-
spired by the physical process of annealing, in which metal is heated, and progressively
cooled. During the metallurgical process, metal molecules organize themselves in a config-
uration reaching the global energy minimum. The basic step of the algorithm applied to a
combinatorial problem is the following:

• Take the previous state, modify it, then evaluate it. This evaluation is also called
energy.

• If the modification gives a better evaluation, accept it.

• If the evaluation is worse, accept it with a certain probability depending on the tem-
perature and the difference between the previous and the new evaluation.

The acceptance probability is the following :

P (∆E) = exp(−∆E

kT
),

where ∆E is the difference between the two evaluations, k is a constant (usually chosen
as k = 1) and T the temperature. The temperature varies through the execution of the
algorithm, starting high and approaching zero at the end, which models a cooling process.
The probability of accepting a worse solution is thus high at the beginning, and very low at
the end. T is usually chosen to be either linear or exponentially decreasing.
This allows the algorithm to explore thoroughly the space of solutions without getting stuck
in local minima at the start, and reaching a minimum at the end.
The Simulated Annealing algorithm has been applied to the LHD-CP for the first time by
[37], using φp (Eq. (5.2)) as an evaluation function and m2 as mutation.
Simulated Annealing has been found to be the best performing algorithm by [44], using m3

as a mutation.

5.1.3 Conclusion

We gave an overview of the techniques used to produce maximin LHDs. We presented the
most popular evaluation functions and mutations, and we described the heuristic algorithms:
Genetic Algorithms, Iterated Local Search, Translational Propagation, periodic LHDs and

77

Points p1 p2 p3 p4 p5

dimension 1 0 1 2 3 4

dimension 2 1 2 0 4 3

dimension 3 2 1 4 3 0

Points p1 p2 p3 p4 p5

x 0 1 2 3 4

y 1 2 0 4 3

z 3 1 4 2 0

Table 5.1: Illustration of 1D–move with an initial (left) and a following (right) solution

symmetric LHDs, ending with the most efficient one: Simulated Annealing. We continue
our study with modifications we proposed to make the Simulated Annealing more efficient
for constructing and completing LHDs [8] [24].

5.2 Simulated Annealing for the LHD-CP

We replaced two key elements in the Simulated Annealing algorithm for the LHD-CP: the
mutation and the evaluation function [8]. We took advantage of the fact that a mutation
should make the slightest possible modification to a solution. We studied the properties of
distances obtained with the evaluation function φp in SA solutions. This analysis allowed us
to establish a better evaluation function. We describe both new elements.

5.2.1 New mutation for the LHD-CP

We designed a new mutation for constructing LHDs. We start by giving the principle of
the mutation which tries to preserve the Latin constraint. We evaluate the quality of this
mutation to build LHDs taking the traditional evaluation function φp (Eq. (5.2)).

Principle of the mutation

We use m2 as a basis to construct a more efficient mutation. Article [50] shows that for
the Traveling Salesman Problem, the best mutations for SA are mutations which moves
the smallest number of edges. We use this principle to create a mutation that makes the
smallest modifications possible to an LHD. To clarify its principle, we define the notion of
the neighborhood:

Definition 5.2 Neighbor of a point. For a given instance of the LHD-CP of size n and
dimension k, a point p1 of a solution D is a neighbor of the point p2 if and only if there
is a dimension j for which coordinates of these two points are the closest possible. In other
terms, ∃j ∈ [|1; k|] such that

∣∣∣p(j)
1 − p

(j)
2

∣∣∣ = 1.

The new mutation 1D–move consists in taking a critical point and taking one of its neighbors.
Then we exchange the coordinates in one of the dimensions concerned by the neighborhood.
This allows the mutation to have the least possible effect on the distances inside the initial
solution.
We choose an instance with n = 5 and k = 3 to illustrate 1D–move. Table 5.1 gives the
coordinates of the points of a solution D. First, we choose a critical point: dmin is determined
by points p1 and p2. We arbitrarily take p1 for the example. Points p2 (on dimensions 1, 2
and 3), p3 (on dimension 2) and p4 (on dimension 3) are neighbors of p1. For the sake of the
example, we shall choose p4 as a neighbor. Then, we exchange the coordinates of p1 and p4

on dimension 3 because p1 and p4 are neighbors through dimension 3. The new solution is
also given in Table 5.1.
After describing the mutation, we prove that it has a smaller effect on a solution than the
other mutations already used.

78

Effect of the mutation

To prove that 1D–move modifies less the LHD than m3, we define a distance function δ
between two LHD D1 and D2 of the same size n and dimension k:

Definition 5.3. Let F be the set of mappings from points of D1 to points of D2.
Then the distance between D1 and D2 is

δ(D1, D2) = min
f∈F

n∑
i=1

d(pi, f(pi)).

The distance between two LHD is the sum of the distances between their points taken by
pair for the mapping minimizing this sum.
Let us consider an LHD D of size n and dimension k, and the two mutations m2 and 1D–
move. We want to prove that the changes due to these two mutations can be of different
order of magnitude. Let us note:

m2 : D −→ D′ and 1D–move : D −→ D′′.

We assume the two mutations translate the points p1 and p2 on a given dimension j. The
objective is to find a configuration for which δ(D,D′)� δ(D,D′′). We immediately see that
δ(D,D′′) = 2: two points are translated by one unit on one dimension. This is obtained by
the mapping associating each point of D to its corresponding point in D′′. The only points
having a non-zero distance are the two points modified by 1D–move, which are each at a
distance one from their original position in D.
Now we note dmin the separation distance of D. We suppose that the jth coordinates
of the points displaced by m2 differ by bdmin

2 c. The distance between D and D′ is then
δ(D,D′) = 2bdmin

2 c. This is again obtained by the mapping associating each point of D to
its corresponding point in D′′. Another mapping would result in a greater or equal distance,
since the distance between p1 and any other point p is at least dmin, and thus the distance
between p′1 and p it at least dmin − bdmin

2 c ≥ b
dmin

2 c. The same reasoning holds for p2.
By using the result of the IES algorithm forD and choosing n = bk, we obtain that δ(D,D′) =

2

⌊√
n

2(k−1)
k +k−1
2

⌋
and finally δ(D,D′) = O(n

k−1
k).

In the case discussed, δ(D,D′) � δ(D,D′′) which signifies that m2 can modify the LHD
much more than 1D–move. This makes the local search performed with the latter smoother.

Performance Evaluation

We evaluate the performances of 1D–move for SA with φp as an evaluation function and
compare them with those of m2 and m3. We reproduced the experiments made in [44]
keeping the same value of parameter p (p = 10) for instances with k = 4 and n = 25, k = 9
and n = 10, k = 8 and n = 20 to show its performance (Table 5.2). SA performs a linear
thermal descent until temperature T = 0 is reached. The initial temperature is set thanks
to a series of preliminary runs. We computed 100 effective runs and we present here the
average within the 95% confidence interval. 1D–move outperforms not only m2 but m3 as
well.

Conclusion

We presented a new mutation for the LHD-CP, outperforming the previously used mutations.
Our interest is now oriented towards the second essential element of Simulated Annealing,
the evaluation function.

79

XXXXXXXXXXXInstance
Mutation

m2 m3 1D–move

k = 4, n = 25 177.59± 0.29 177.67± 0.29 180.51± 0.27
k = 9, n = 10 156.24± 0.10 156.06± 0.08 156.54± 0.06
k = 8, n = 20 431.98± 0.61 433.72± 0.84 436.20± 0.56

Table 5.2: Performance of SA with different mutations

5.2.2 New evaluation function targeting Maximin

Presentation of a Maximin effect: narrowing the distribution of distances

We study the properties of distances obtained with the evaluation function φp in SA solutions.
We represent all the distances between the points of an LHD in histograms and identify
properties that will allow us to establish a better evaluation function. We note M(k, n)
the random variable representing any square distance in any solution of an instance with
dimension k and size n. We note its mean M(k, n). As shown in [52], the following equality
always holds for norm L2: M(k, n) = kn(n+1)

6 . From now on, we distinguish three cases
relative to values taken by n and k, each case showing a different behavior of the distribution
of distances;

• Case n ≤ k In this case (see the histogram in the top of Figure 5.3, k = 50, n = 40), the
distances of potential solutions are concentrated around the mean. It is highly probable
that two points taken at random will be neighbors. In our example with k = 50 and
n = 40 in Figure 5.3, the statistical range of M relative to M , dmax−dmin

M
= 340

13667 =
2.5%, in fact, is narrow. The rationale for this behavior is that when the number of
points is less than the number of dimensions, it happens, in absence of constraints, that
all the points are equidistant. Since the Latin constraint has to be respected, the points
cannot be exactly equidistant. The distances, however, do not differ significantly. We
talk about unimodal distribution.

• Case k ≤ n ≤ 2k In this case (the histogram in the center of Figure 5.3, k = 30, n =
50), distributions are concentrated around two peaks. The first peak is mainly around
the average distance (actually, there is a little shift between the peak and the mean
because both the peaks preserveM) and the second peak is located around the doubled
average distance. Much more distances are concerned by the first peak.

We illustrate this phenomenon with the instance with k = 30 and n = 50 in Figure 5.3.
We can explain this distribution shape by the fact that it is possible for this many
points to be placed in an hyperoctahedron. In such a geometric object, each point is
at the same distance from every other point but one, which is farther away. Thus, the
distribution of distances shows two values, with the smaller being represented much
more frequently. We name it bimodal distribution.

In our example, D(30, 50) = 12500. Concerning the highest peak, the statistical range
remains small compared with the mean: the ratio is 7.8%, larger than in the first
case for the whole distribution. There are only seven distances located in the interval
[13183; 24865]

• Case 2k ≤ n In this last case (the histogram in the bottom of Figure 5.3, k = 10, n =
100), distances are distributed more uniformly. There is neither a dense peak nor a
sparse interval. We observe a decrease of occurrences with an increase in the value of
the distance. It is an amodal distribution.

• Observations and consequences In the unimodal case, the only peak is naturally
thin thanks to SA and particularly φp action. It would be pointless to try to narrow

80

Figure 5.3: Histograms of distances for (k = 50, n = 40), (k = 30, n = 50) and (k = 10, n =
100) solutions

81

Inst. σ φ10 & m2 ψ10,σ & m2 φ10 & 1D-move ψ10,σ & 1D-move
k = 4, n = 25 70 177.59± 0.29 177.98± 0.71 180.51± 0.27 181.24± 0.23

k = 9, n = 10 20 156.24± 0.10 156.09± 0.06 156.54± 0.06 156.49± 0.10

k = 8, n = 20 65 431.98± 0.61 433.58± 0.70 436.20± 0.56 445.28± 0.45

Table 5.3: Performance of SA with different setups for evaluation function and mutation

it more. We note that for the two other cases (k ≤ n), narrowing differences between
distances lead to improve performance. We illustrate this on the instance with k = 8
and n = 20. We represent distance sets of several possible solutions and observe that
the best solutions have the most narrow distributions. We compare two solutions in
Figure 5.4 with dmin = 421 and dmin = 446 which is the best solution found in [44].
Indeed, we note that dmin = 446 has the narrowest peak. We formulate the hypothesis
that this property may be beneficial for SA performance. We introduce below a new
evaluation function taking into account this aspect.

Figure 5.4: Distance sets of two 8/20 solutions

Definition of evaluation function ψ

We propose an evaluation function ψp,σ to replace the usual function φp given by Eq. (5.2):

ψp,σ =

 (n2)∑
i=1

wid
−p
i

1
p

, where wi =
1√∑(n2)

j=1 e
− |dj−di|

2

σ2

. (5.3)

The idea is to add weights wi ≥ 1 for each distance term d−pi . These weights determine if
the distance is close to other ones. If a distance is far from the others, the weight will be
high. Consequently, it forces the distances to be close to each other. However, ψp,σ has two
drawbacks: its complexity in O(n4) and the need to find a good value for σ.
There are different ways to reduce this complexity. First, for instance, it is possible to
consider only the differences which respect |dj − di|2 ≤ 5σ2. In this way, we avoid the
calculations of terms that may be considered as negligible (e−5 � 1). Instead of summing
up
(
n
2

)
distances, we can randomly choose O(n) distances dj .

The next section treats the second drawbacks by explaining the method to fix σ.

5.2.3 Tuning of parameter σ and its justification

Let us focus on the parameter σ: we would like to avoid tuning it with preliminary exper-
iments for each instance. We will therefore search for a general expression depending on n

82

HHH
HHn
k

3 4 5 6 7 8 9 10

3 6 7 8 12 13 14 18 19
4 6 12 14 20 21 26 28 33
5 11 15 24 27 32 40 43 50
6 14 22 32 40 47 54 62 68
7 17 28 40 52 62 72 81 91
8 21 42 50 66 80 91 103 116
9 22 42 61 82 95 114 128 144
10 27 50 82 95 113 134 158 175
11 30 55 82 111 133 157 184 211
12 36 63 94 142 158 184 213 243
13 41 70 107 143 184 214 246 279
14 42 78 109 162 220 247 282 318
15 48 89 135 179 228 281 323 363
16 50 94 154 200 254 328 364 412
17 56 102 163 221 277 343 413 462
18 57 114 176 249 306 376 469 515
19 62 123 193 268 336 408 491 576
20 66 138 210 293 372 448 528 645
21 69 149 232 315 401 482 570 674
22 82 154 246 347 433 525 623 721
23 82 165 260 364 468 566 667 773
24 83 173 276 391 506 609 720 837
25 89 183 294 419 541 657 768 897

Table 5.4: Highscores obtained with “all-purpose” tuning

and k. Looking at the definition of ψp,σ, this variable is introduced in order to regulate the
order of magnitude of the exponential term. We see that σ should have approximately the
same order of magnitude as the values taken by |dj − di|2.
This is why we try to give the expression of a linear function of k and n which is similar to
typical values |dj − di|2. To establish it, we study the variance of M(k, n): the tuning of σ
is founded on Theorem 5.1.

Theorem 5.1. M (k, n) ∼ N
(
kn(n+1)

6 , g (k, n)
)
with g (k, n) ∼ 7kn4

180 +O(n3).

Proof. Thanks to [52], we know that E(M (k, n)) = kn(n+1)
6 . We note (P1, P2) the random

variable that gives any couple of points for an instance. The random variable M (k, n)
is a function of (P1, P2). For any 1 ≤ j ≤ k, we note Y (j) = (P1(j)− P2(j))2 and get
M (k, n) =

∑k
j=1 Y (j). As Y (i) and Y (j) are independent if i 6= j, we note Y (i) = Y

to keep the notation simple. If k is high enough, we apply the Central Limit Theorem:
M (k, n) ∼ N

(
kn(n+1)

6 , kVar(Y)
)
. We focus first on E(Y 2) = E((P1(j)− P2(j))4):

E(Y 2) =

∑n
x=1

∑
y 6=x(x− y)4

n(n−1)
2

=
2
(
n
∑n−1

z=1 z
4 −

∑n−1
z=1 z

5
)

n(n− 1)
=
n4

15
+O

(
n3
)
.

We thus deduce Var(Y) = E(Y 2) − E(Y)2 = n4

15 −
n4

36 + O
(
n3
)
∼ 7n4

180 , and thus g(k, n) =

kVar(Y) ∼ 7n4

180 .

A good way to tune σ2 is to express it as a linear function of the variance of the distances, i.e.
the random variable M (k, n). As we have just showed, this variance follows the function
g(k, n) above. We will therefore have the following expression for σ2: ckn4 where c is a

83

constant. We just need to determine the value of c. for this, we will proceed experimentally
and give a different value for each different case.
In the amodal case n ≥ 2k, we assume σ2 = ckn4. According to several experiments series,
we identify a good compromise with c = 1

300 .
In the case unimodal case n ≤ k, ψ does not bring more interesting results than φ. It is
equivalent to assuming c to be very large (c→∞).
Finally, the bimodal case k ≤ n ≤ 2k which is an intermediary of the two previous cases,
can be tuned with σ = 2ckn4. This proposition does not obviously represent the best tuning
for all possible instances but gives an efficient and simple solution for the tuning of σ.
It is necessary to mention that the case k ≤ n ≤ 2k is the case where tuning is essential: to
be as efficient as possible, the value of σ has to be carefully selected.

5.2.4 Experimental results

Table 5.3 shows the impact of ψp,σ on the SA performance with mutations m2 and 1D-
move. We keep the same experimental setup as in Subsection 5.2.1: SA makes a thermal
linear descent, the results presented come out from 100 runs and the average is within the
95% confidence interval. The evaluation function ψp,σ brings better results than φp for the
bimodal and amodal cases, in particular when paired with 1D–move. In particular, the case
where k = 8 and n = 20 shows a high increase in quality.
In Table 5.4 we update scores for the same instances as in [44]. The results were produced
with 107 iterations and p = 5. Our function ψp,σ is used when k ≤ n, φp is used elsewhere. We
note in bold type improved results and in italics results worse than [44]. For 4 ≤ k ≤ 8, the
use of 1D–move and ψp,σ allows us to exceed a large number of scores but this improvement
is less significant for other values. For k = 3, we suppose that the new tools are not able
to outperform previous results because the results are already optimal or very good. For
k = {9, 10}, a credible hypothesis is that the value of n

k is so close to 1 that the effect of
ψp,σ is weak. Generally, results could be better with a specifically adapted tuning. Here,
we established temperature, p and σ by making compromises between all the instances.
However, in a real-life case, when treating complex systems, we work on a defined instance
with k and n fixed. In such circumstances, we naturally advice to customize the tuning
of the different parameters by making preliminary experiments on this very instance. We
expect that such an approach would produce results outperforming those in Table 5.4.

5.2.5 Conclusion

We presented the state of the art of the algorithms used to solve the LHD-CP, focusing at
first on the Simulated Annealing metaheuristic and continuing with other heuristics applied
to constructing LHDs. We then presented improvements we made to SA for LHD in the
form of a new mutation and a new evaluation function, both allowing to overcome the best
results obtained in the literature. We go on with the implementation of Simulated Annealing
for the pLHD-CP.

5.3 SA for completion

As we did not find any algorithm with performance guarantees for the pLHD-CP, and even
worse, found that it is inapproximable for most practical cases, we use a heuristic algorithm
to treat it. As the best performing heuristic for the LHD-CP is the Simulated Annealing
metaheuristic, we applied it to the pLHD-CP. While the evaluation function φp can be used
without a change, mutations need to be adapted. We adapt and compare two mutations,
whose results vary depending on the number of points already chosen in the pLHD, and
combine them using a method inspired by bandits strategies.

84

5.3.1 Mutation targeting “relatively empty” hypercubes

The mutations conceived for the construction problem may be reused in the completion
context. The single difference is that only the points which have not been fixed in advance
may be involved in them. In the remainder we use the term authorized points to refer to
these points.
The choice of an appropriate mutation is conditioned by the number of points set a priori .
When the design is entirely empty, the completion becomes a construction and 1D-move is
a natural choice as it is the best mutation to this day, as we have seen in Section 5.2.1.
However, even though 1D-move is efficient for the construction problem, it behaves very
poorly for the completion. The behavior of this mutation when completing a Maximin LHD
needs to be adapted to this case. Otherwise, unauthorized critical points may restrict the
mutation freedom and, as a consequence, the algorithm may be stuck in a local minimum.
As a matter of fact, in the extreme case, the mutation becomes totally blocked. We will now
describe in detail a situation where the use of the 1D-move mutation leads to oscillations.
This will be illustrated in Fig. 5.5. If the minimal distance occurs once in the design and
one of the points involved in it is fixed, one and only point can be chosen by the mutation.
In Fig. 5.5 we use the following notation. Points U , A, and C stand for unauthorized, au-
thorized, and critical points, respectively. Point UC indicates a fixed point which is involved
in the minimal distance which spans between it and CA. Point CA is the only authorized
and critical point in our example.
Once the mutation has chosen a dimension (we fix our attention on the horizontal axis in
Fig. 5.5), the sequence of points of type UCAU on this dimension imposes the choice of
the other point to exchange one coordinate. In our example, on the horizontal dimension
this sequence is UCCAA1U1. Mutation 1D-move will exchange the coordinates of A1 and
CA on this dimension (CA becomes C ′′′A while A1 becomes A′′′1). If C ′′′A remains the only
critical point and the same dimension is chosen again, the sequence will be of UACU type,
UCA

′′′
1 C

′′′
AU1 in our case, and C

′′′
A will exchange its coordinate with A

′′′
1 going back to its

initial position. If such a sequence exists on each dimension (as this is a case in our example
in Fig. 5.5) and every exchange maintains CA (or C ′A, or C

′′
A, or C

′′′
A) as the one and only

authorized critical point, the algorithm will be stuck oscillating (CA ↔ C
′′′
A , CA ↔ C

′′
A, etc.)

or turning around (CA → C
′′′
A → C

′′
A → C

′
A → CA). In our example, mutation 1D-move

cannot exchange one coordinate of the critical point with one coordinate of A3 or A4 as
they are “too far” from CA. Consequently, it will never produce a configuration with a point
added either on position C∗A or position C∗∗A .
Now that we have seen that there are situations where 1D-move leads to oscillations, we
will design a new mutation called cmpl1D-move that is based on 1D-move but that avoids
such problem. The first major difference with the previous mutations is that it selects an
oriented dimension, which means that we take into account a direction when looking for
another point to exchange coordinates. Indeed, as seen in the example above, the selection
of the neighbor in one dimension, performed by 1D-move, may be constrained to only one
possibility. The second major difference is that mutation cmpl1D-move does not limit itself
to choose points which are neighbors: once the direction has been fixed, it looks for the point
with the minimal distance on the dimension and direction selected. Thus, considering the
direction in which we look for the authorized point beforehand ensures that, given a critical
point and a dimension, cmpl1D-move will have two outcomes (in the two opposite directions,
possibly not symmetrical one to another with reference to the critical point on the dimension
selected). In the example given in Fig. 5.5, critical point CA can be found in positions C∗A or
C∗∗A after the mutation, if the cmpl1D-move selects respectively the horizontal axis leftward
(for C∗A obtained by the exchange with A3 which becomes A∗3), or the vertical axis downward
(for C∗∗A obtained by the exchange with A4 which becomes A∗∗4). In summary:

85

Uc

CA

C
′
A C

′′
A

C
′′′
AC∗A

C∗∗A

U1

U2

A1A
′′′
1

A2

A
′
2

A4

A∗∗4

A3 A∗3

dmin

Figure 5.5: The points marked with solid black circles form the initial configuration for this
example. The smallest distance between lines is equal to one. Point CA is the one and
only authorized critical point. It can exchange coordinates with points A1 and A2 as the
coordinates of CA and A1 differ by one on the horizontal axis and those of CA and A2 differ
by one on vertical axis. These coordinates of are represented by dotted lines. Unauthorized
points Uc, U1 and U2 prevent from choosing the other coordinates, represented by solid lines.
Mutation 1D-move would make point CA oscillate between three positions C ′A, C

′′
A, and C

′′′
A

as it cannot exchange the coordinates of CA with either A3 or A4. By contrast, mutation
cmpl1D-move can do these exchanges and insert a point on either position C∗A or position
C∗∗A .

86

cmpl1D-move:

1. Select one critical point p(1), one dimension j and the sign +/− of the coordinate
difference at random.

2. Find the authorized p(2) such that the coordinate difference
∣∣∣p(1)
j − p

(2)
j

∣∣∣ is mini-
mal.

3. Exchange the coordinates on the dimension j with respect to the chosen sign
which determines the direction.

4. If there is no authorized point on the dimension and direction chosen, perform
mutation m2 .

As the restriction of the search space, induced by the fixed points, gets stronger when the
number of these points increases, the mutation cmpl1D-move would not look for a solution
sufficiently far from a current configuration. Its interest is therefore limited to instances in
which a relatively small number of points is fixed in advance. At the contrary, m2 performs
best when a lot of points are fixed. We therefore try to combine both mutations to obtain
one mutation adapted to every case.

5.3.2 Bandit-driven mutation

At this stage we conclude that there is not a single mutation which could cope with the
entire spectrum of incomplete hypercubes, from “almost empty” to “almost filled up”. We
know, however, that cmpl1D-move works well for the first category of instances while m2 is
well suited to explore the search space of the second one. As we do not want to change the
mutation depending on the instance, we would like to create a decision-making algorithm for
choosing the mutation on-the-fly. In order to do this, we consider that at each iteration of
SA, we have at our disposal several mutations and that choosing a mutation is a multi-armed
bandit (MAB) problem as described in [2].
The MAB problem can be defined by several random variables Xi, where i is the index
of a gambling machine whose output is given by Xi. At each step, a machine j is chosen
and a reward which is the realization of Xj is given. The goal is to maximize the sum of
the rewards. In our case, the choice of the mutation would correspond to the choice of the
machine and the reward, the evaluation of the new individual, i.e. a configuration in the SA
context.
However, in our problem, the choice of a mutation changes the state of the system. We make
the hypothesis that this is equivalent to a modification of the random variables behind each
machine. With this hypothesis, our problem can be seen as a classical variant of the MAB
problem: the non-stationary multi-armed bandit (NSMAB) problem [3].
An algorithm has been proposed in [20] to solve this variant: the sliding-window UCB
algorithm. The principle is to choose the next gambling machine based on a trade-off between
the exploitation of machines that previously gave good rewards and the exploration of other
machines. At each step, a score is computed for each machine and the machine with the
highest score is selected. This score is the sum of an exploitation part and an exploration
part. The exploitation is based on the average reward of the machine. To handle the non-
stationary aspect of the problem, the average is computed only on the last results of the
machine. The exploration part will grow logarithmically when the machine is not selected.
Our own algorithm will be based on this one with an adaptation to the nature of our problem.
In SA, the difference in energy led by mutations will decrease during the algorithm and
therefore the rewards will decrease in the corresponding bandit problem. As a result, we will
handle the exploration in a different way.
The idea of our algorithm is to compute the average reward for each mutation based on their
last results as in the sliding-window UCB algorithm. However, we chose the mutation based

87

on a probability depending on this average instead of having a deterministic algorithm. This
and the fact that the rewards decrease in our problem allow us to get ride of the exploration
part. Indeed, less exploited machines will have older rewards in their corresponding stored
window. Those rewards, according to the previous remark, will likely be higher than the
reward recently given, thus the average of less exploited machines tend to increase over time
(and de facto the probability of choosing those machines will increase).
Here is a formal description of our algorithm. Let us note Wi the set of size w of the
last rewards xi for mutation i. At each step, we select the next mutation according to the
probability pi computed as specified by:

pi =
exp(Xi)∑
j

exp(Xj)
, where Xi =

1

w

∑
xi∈Wi

exp(xi). (5.4)

In the following, we apply this algorithm to the mutations m2 and cmpl1D-move and name
the resulting mutation Bandit Driven Mutation (BDM). We note that it can be applied to
any number of mutations.

BDM:

1. Compute the probability of mutations m2 and cmpl1D-move according to Eq. 5.4.

2. Randomly select the mutation to be used based on these probabilities.

3. Store the corresponding gain xi.

4. Apply the chosen mutation.

5.3.3 Numerical experiments

We chose to base our experiments on the problem of dimension 4 and size 75 as was done
in [44]. The experiments are performed for the hypercube taken from
spacefillingdesigns.nl, with the distance expressed by the Euclidean norm L2. Ac-
cording to the site mentioned, this hypercube has Dmin of 867 (we obtained, however, a
hypercube with a score of 889 during our experiments).
Unless it is stated otherwise, the number of mutations of the annealing used for the experi-
ments is 105. We remark that for mutation m3, experiments are realized with four times less
mutations than for the others, because this mutation evaluates the Dmin of the configuration
once per dimension of the instance, thus we limited the total number of mutations performed
in order to fairly compare the different types of mutations. Also, the temperature follows a
linear cooling scheme that decreases the temperature every 100 mutations, from an initial
acceptance probability of 0.4 down to 0.
Incomplete hypercube instances are obtained by removing points according to a uniform
distribution. The results are obtained by averaging over 200 incomplete instances except for
some points in Table 5.6 and Figure 5.6 where a significant difference could not be obtained
and therefore the average over 2000 runs was used. The same set of 200 (respectively 2000)
instances of hypercubes with fixed points randomly generated with 200 (respectively 2000)
different seeds were used as starting hypercubes across all algorithms.
We will first compare the performance of existing mutations with the one we designed for
the completion problem: cmpl1D-move (Section 5.3.1) in function of the number of deleted
points in the hypercube. The results are presented in Table 5.5.
The results in bold type correspond to the best average for a given number of deleted points.
The last line (75 deleted points) of this table corresponds to the construction problem.
We note that the mutation 1D-move which gives the best results for the construction problem
performs very poorly for the completion problem, which was explained in Section 5.3.1. The
mutation we proposed: cmpl1D-move is successful as it obtains the best average for 35 to

88

Deleted mutations
points m1 m2 m3 1D-move cmpl1D-move

5
15
25
35
45
55
65
75

846±49
810±55
745±36
735±14
735±11
740±10
747±11
751±12

864±14
854±20
769±28
728±14
724±10
722±10
724±10
730±10

858±32
832±42
791±35
752±13
745± 8
747± 8
753± 7
761± 8

331±54
173±30
137±28
126±25
134±24
173±31
325±53
844± 5

853±32
710±57
732±32
767±15
780± 9
799± 7
818± 6
844± 6

Table 5.5: The mean score in function of the number of deleted points, for an instance of
size 75, in four dimensions, with Dmin = 867

75 deleted points. However, it is interesting to observe that this is not the case for a smaller
number of deleted points where mutations m2 and m3 produce better scores.

This suggests that the problem behaves very differently depending on the number of deleted
points. This observation leads us to propose the mutation BDM that is able to pick up the
best mutation depending on the instance.

We will now present in Table 5.6 and Figure 5.6 the results of the comparison of BDM with
mutations m2 and cmpl1D-move of which BDM is composed.

Deleted mutations
points m2 cmpl1D-move BDM

5
15
20
25
30
35
40
45
55
65
75

864±11
853±14
819±21
766±19
736±11
727± 8
725± 7
724± 6
723± 6
726± 6
731± 6

858±18
709±41
713±31
736±22
750±14
763±10
774± 7
782± 6
798± 4
818± 3
843± 3

863±12
830±25
811±24
794±20
780±14
773± 9
775± 6
779± 5
791± 4
807± 4
830± 3

Table 5.6: Comparison of the mean score of BDM and its components: m2 and cmpl1D-move

The size of the sliding window w discussed in Section 5.3.2 is arbitrarily set for our experi-
ments to 100 (for a total of 105 mutation steps during an annealing process).

We see that for the extreme cases (a large or a small number of deleted points), BDM
obtains scores close to those produced by the best-performing mutation. Our goal of having
a mutation that can handle both cases has therefore been achieved.

On top of that, for intermediate values of deleted points, BDM reaches significantly better
results than both other mutations. This shows that a dynamic choice of a mutation during
a single run based on a bandit formula can not only perform as well as each individual
mutation but also combine the advantages of the different mutations to obtain even a better
result.

89

Figure 5.6: Mean Dmin with confidence interval for mutations: m2, cmpl1D-move, and BDM
in function of the number of deleted points

5.4 Conclusion

We presented a state of the art of the methods used to produce maximin LHDs. We improved
the most efficient technique, the Simulated Annealing metaheuristic, by designing a new
mutation and a new evaluation function, both performing better than their equivalent in the
literature. This allowed us to beat several highscores for numerous instances. We applied this
metaheuristic to the pLHD-CP, adapting the mutations used for the LHD-CP, and improved
them by using a bandit method to choose a mutation.

90

Chapter 6

Conclusion

6.1 Summary of contributions

Two goals motivated this study: on the one hand, designing algorithms for constructing
LHDs and improving existing ones, and on the other hand, finding the complexity class to
which the LHD-CP belongs. The first goal has been met, and significant advances have been
made toward the second one.
After giving a state of the art of metamodeling we focused on a sampling method, maximin
Latin hypercube designs, which have the required qualities for metamodeling but are difficult
to construct. We generalize the problem of constructing maximin LHDs (LHD-CP) by
defining a new problem: the maximin completion of partial LHDs (pLHD-CP).
We studied the complexity of the pLHD-CP and proved that it is NP-complete in dimensions
k ≥ 3 for norm L1, a result we extended to all norms. We also proved that it is NP-complete
in the two-dimensional space for norm L1, norms Lp with p ∈ N, and norm L∞.
We then searched for guarantees of performance for algorithms concerning both problems and
found that the pLHD-CP is inapproximable for all norms in dimensions k ≥ 3. We also gave
an upper bound for an approximation ratio in dimension k = 2 for norm L∞. We designed
IES, an approximation algorithm for the LHD-CP which is, to the best of our knowledge,
the first approximation algorithm to solve this problem. We proved its approximation ratio
by introducing two new upper bounds for the LHD-CP.
We finished by a study of heuristic algorithms for both problems. We started by describing
the state of the art of algorithms used to solve the LHD-CP and we proposed two modifica-
tions for the best performing algorithm, the Simulated Annealing algorithm. The first is a
new mutation which makes the local search smoother by reducing the effect of the mutation
over the examined solutions. The second is an evaluation function that takes advantage of
the shape of the distribution of distances we observed in good LHDs. These two modifica-
tions allowed us to produce better LHDs than those found in the literature for numerous
instances of the LHD-CP.
We also adapted the Simulated Annealing algorithm to the pLHD-CP by modifying the two
best-performing mutations for the LHD-CP. We observed that the best performing mutation
depends on the instances of the problem and we designed a super-heuristic inspired by bandit
methods able to choose the best mutation depending on the situation and even outperforming
each individual mutation in some cases.

6.2 Directions for further research

The complexity of the LHD-CP remains an open problem.
Proving its supposed NP-completeness by finding a reduction to another problem is challeng-
ing considering the small amount of information which defines each instance. The instance

91

is made up of only the two positive natural numbers which are the LHD size and dimension.
Proving that the construction problem is in P (if this is the case) would require two elements.
The first would be tight upper bound. While we did find an upper bound of the right
order, described in Section 4.3.1, it is not thight. The second element would be an optimal
polynomial-time algorithm. While we designed a polynomial-time approximation algorithm,
it is not an optimal algorithm.
While the pLHD-CP has been found to be NP-complete in most cases, in two dimensions it
has only been proven NP-complete for the usual norms L∞ and Lp, with p ∈ N∗. Further-
more, its approximability is also unknown on the plane. Proving its inapproximability for
one norm would lead to proving its inapproximability and NP-completeness for all norms
with the same technique we used for dimensions k ≥ 3.
The approximation algorithm we designed, the Inflate, Expand and Stack algorithm (IES),
has the advantage of being very fast. However, we did not successfully use it as a starting
point for the heuristic algorithms we studied. Nonetheless, it could be used in this way in
algorithms using different mutations and thus a different search space. Finding better upper
bounds for the problem would also give a better, more accurate, approximation ratio for
IES.
A work of considerable volume has been done in the operations research field to build max-
imin LHDs and thus numerous heuristic algorithms have been developed to this end. The
mutation and evaluation function we designed for the Simulated Annealing algorithm may
be used for other heuristic algorithms. Notably, the evaluation function we proposed is not
specific to LHDs and can be used for other types of maximin designs.
The pLHD-CP, has been introduced in this thesis and has not been studied out of this scope.
It would be interesting to see what other heuristic algorithms could be used to solve it. As
we oberved, this problem behaves differently when the number of points already fixed is
low or high, different algorithms, mutations or evaluation functions should be used for each
individual case.

92

Bibliography

[1] P. Audze and V. Eglais. New approach for planning out of experiments. Problems of
dynamics and strengths, 35:104–107, 1977.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2–3):235–256, 2002.

[3] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

[4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Pro-
tasi. Complexity and approximation: Combinatorial optimization problems and their
approximability properties. Springer Science & Business Media, 2012.

[5] D. Baer. Punktverteilungen in Würfeln beliebiger Dimension bezüglich
der Maximum-norm. Wiss. Z. Pädagog. Hochsch. Erfurt/Mühlhausen,
Mathematik-Naturwissenschaften. Reihe, 28:87–92, 1992.

[6] S. J. Bates, J. Sienz, and V. V. Toropov. Formulation of the optimal Latin hy-
percube design of experiments using a permutation genetic algorithm. In Proc.
of AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
Conference, pages 19–22, 2004.

[7] J. Baxter. Local optima avoidance in depot location. Journal of the Operational
Research Society, pages 815–819, 1981.

[8] P. Bergé, K. Le Guiban, A. Rimmel, and J. Tomasik. Search space exploration and
an optimization criterion for hard design problems. In Proc. of GECCO (compagnon),
pages 43–44, July 2016. Full version aviable on CoRR: https://arxiv.org/abs/1608.
07225.

[9] P. Berman, M. Karpinski, and A. D. Scott. Approximation hardness of short sym-
metric instances of MAX-3SAT. Electronic Colloquium on Computational Complexity
(ECCC), (049), 2003.

[10] A. W. Blom, S. Setoodeh, J. M. A. M. Hol, and Z. Gürdal. Design of variable-stiffness
conical shells for maximum fundamental eigenfrequency. Computers & Structures,
86(9):870–878, 2008.

[11] G. E. P. Box and N. R. Draper. Empirical model-building and response surfaces, volume
424. Wiley New York, 1987.

[12] G. E. P. Box and S. J. Hunter. The 2 k− p fractional factorial designs. Technometrics,
3(3):311–351, 1961.

[13] J. F. M. Burkert, F. Maugeri, and M. I. Rodrigues. Optimization of extracellular lipase
production by geotrichum sp. using factorial design. Bioresource Technology, 91(1):77–
84, 2004.

93

[14] C. J. Colbourn. The complexity of completing partial Latin squares. Discrete Applied
Mathematics, 8(1):25–30, 1984.

[15] A. Darmann, U. Pferschy, J. Schauer, and G. J. Woeginger. Paths, trees and matchings
under disjunctive constraints. Discrete Applied Mathematics, 159(16):1726–1735, 2011.

[16] N. Dyn, D. Levin, and S. Rippa. Numerical procedures for surface fitting of scat-
tered data by radial functions. SIAM Journal on Scientific and Statistical Computing,
7(2):639–659, 1986.

[17] O. Ekren and B. Y. Ekren. Size optimization of a pv/wind hybrid energy conver-
sion system with battery storage using response surface methodology. Applied Energy,
85(11):1086–1101, 2008.

[18] G. Gan and X. S. Lin. Efficient Greek calculation of variable annuity portfolios for dy-
namic hedging: A two-level metamodeling approach. North American Actuarial Journal,
21(2):161–177, 2017.

[19] M. R. Garey and D. S. Johnson. Computers and intractability. W.H. Freeman, New
York, 1979.

[20] A. Garivier and E. Moulines. On upper-confidence bound policies for switching bandit
problems. In Proc. of ALT, pages 174–188. Springer, 2011.

[21] D. E. Goldberg and J. H. Holland. Genetic algorithms and machine learning. Machine
Learning, 3(2):95–99, 1988.

[22] A. Grosso, A. R. M. J. U. Jamali, and M. Locatelli. Finding maximin Latin hypercube
designs by iterated local search heuristics. European Journal of Operational Research,
197(2):541–547, 2009.

[23] L. Gu. A comparison of polynomial based regression models in vehicle safety
analysis. In ASME Design Engineering Technical Conferences, ASME Paper No.:
DETC/DAC-21083, 2001.

[24] C. Hamelain, K. Le Guiban, A. Rimmel, and J. Tomasik. Bandits help simulated
annealing to complete a maximin Latin hypercube design. 2017. Submission to CPAIOR
in November 2017.

[25] J. H. Holland. Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. MIT Press, 1992.

[26] J. K. Hunter and B. Nachtergaele. Applied analysis. World Scientific Publishing Co
Inc, 2001.

[27] B. Husslage, G. Rennen, E. R. Van Dam, and D. den Hertog. Space-filling Latin hyper-
cube designs for computer experiments. Tilburg University, 2006.

[28] M. E. Johnson, L. M. Moore, and D. Ylvisaker. Minimax and maximin distance designs.
Journal of Statistical Planning and Inference, 26(2):131–148, 1990.

[29] M. Hall Jr. Distinct representatives of subsets. Bulletin of the American Mathematical
Society, 54(10):922–926, 1948.

[30] V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Inf.
Process. Lett., 37(1):27–35, 1991.

94

[31] A. I. Khuri and S. Mukhopadhyay. Response surface methodology. Wiley
Interdisciplinary Reviews: Computational Statistics, 2(2):128–149, 2010.

[32] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, et al. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

[33] J. P. C. Kleijnen. Statistical tools for simulation practitioners. Marcel Dekker, Inc.,
1986.

[34] J. P. C. Kleijnen. Kriging metamodeling in simulation: A review. European Journal of
Operational Research, 192(3):707–716, 2009.

[35] M. Liefvendahl and R. Stocki. A study on algorithms for optimization of Latin hyper-
cubes. Journal of Statistical Planning and Inference, 136(9):3231–3247, 2006.

[36] M. McKay, R. Beckman, and W. Conover. Comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics,
21(2):239–245, 1979.

[37] M. Morris and T. Mitchell. Exploratory designs for computational experiments. Journal
of Statistical Planning and Inference, 43(3):381–402, 1995.

[38] T. Mukhopadhyay, T. K. Dey, R. Chowdhury, and A. Chakrabarti. Structural damage
identification using response surface based multi-objective optimization: a comparative
study. Arabian Journal for Science and Engineering, 40(4):1027–1044, 2015.

[39] M. A. Nik, K. Fayazbakhsh, D. Pasini, and L. Lessard. Surrogate-based multi-objective
optimization of a composite laminate with curvilinear fibers. Composite Structures,
94(8):2306–2313, 2012.

[40] N. Oler. A finite packing problem. Canad. Math. Bull, 4(2), 1961.

[41] A. B. Owen. Orthogonal arrays for computer experiments, integration and visualization.
Statistica Sinica, pages 439–452, 1992.

[42] Lei Peng, Li Liu, Teng Long, and Wu Yang. An efficient truss structure optimization
framework based on cad/cae integration and sequential radial basis function metamodel.
Structural and Multidisciplinary Optimization, 50(2):329–346, 2014.

[43] J. N. Reddy. An introduction to the finite element method, volume 2. McGraw-Hill
New York, 1993.

[44] A. Rimmel and F. Teytaud. A survey of meta-heuristics used for computing maximin
Latin hypercube. In Proc. of EvoCOP, pages 25–36. Springer, 2014.

[45] H. J. Ryser. A combinatorial theorem with an application to Latin rectangles.
Proceedings of the American Mathematical Society, 2(4):550–552, 1951.

[46] D.M.Y. Sommerville. An Introduction to the Geometry of n Dimensions. Methuen &
Co., London, 1929.

[47] G. Sun, X. Song, S. Baek, and Q. Li. Robust optimization of foam-filled thin-walled
structure based on sequential Kriging metamodel. Structural and Multidisciplinary
Optimization, 49(6):897–913, 2014.

[48] K. Le Guiban, A. Rimmel, M.-A. Weisser, and J. Tomasik. Completion of partial Latin
Hypercube Designs: NP-completeness and inapproximability. Journal of Theoretical
Computer Science, section A, 2017. submitted paper.

95

[49] K. Le Guiban, A. Rimmel, M.-A. Weisser, and J. Tomasik. The first approximation
algorithm for the maximin Latin hypercube design problem. Operations Research, 2017.
Accepted, in press. doi:10.1287/opre.2017.1665.

[50] P. Tian, J. Ma, and D.-M. Zhang. Application of the simulated annealing algorithm to
the combinatorial optimisation problem with permutation property: An investigation of
generation mechanism. European Journal of Operational Research, 118(1):81–94, 1999.

[51] E. R. van Dam, B. Husslage, D. den Hertog, and H. Melissen. Maximin Latin hypercube
designs in two dimensions. Operations Research, 55(1):158–169, February 2007.

[52] E. R. van Dam, G. Rennen, and B. Husslage. Bounds for maximin Latin hypercube
designs. Operations Research, 57(3):595–608, 2009.

[53] F. A. C. Viana, G. Venter, and V. Balabanov. An algorithm for fast optimal Latin
hypercube design of experiments. International Journal for Numerical Methods in
Engineering, 82(2):135–156, 2010.

[54] G. Vicente, A. Coteron, M. Martinez, and J. Aracil. Application of the factorial de-
sign of experiments and response surface methodology to optimize biodiesel production.
Industrial Crops and Products, 8(1):29–35, 1998.

[55] S. Volpi, M. Diez, N. J. Gaul, H. Song, U. Iemma, K. K. Choi, E. F. Campana, and
F. Stern. Development and validation of a dynamic metamodel based on stochastic
radial basis functions and uncertainty quantification. Structural and Multidisciplinary
Optimization, 51(2):347–368, 2015.

[56] G. G. Wang. Adaptive response surface method using inherited Latin hypercube design
points. Transactions-American Society of Mechanical Engineers Journal of Mechanical
Design, 125(2):210–220, 2003.

[57] D. B. West et al. Introduction to graph theory, volume 2. Prentice Hall, Upper Saddle
River, 2001.

[58] J. Wu and M. S. Hamada. Experiments: planning, analysis, and optimization, volume
552. John Wiley & Sons, 2011.

[59] Y. Yamini, A. Saleh, and M. Khajeh. Orthogonal array design for the optimization of
supercritical carbon dioxide extraction of platinum (iv) and rhenium (vii) from a solid
matrix using cyanex 301. Separation and Purification Technology, 61(1):109–114, 2008.

[60] K. Q. Ye, W. Li, and A. Sudjianto. Algorithmic construction of optimal symmetric
Latin hypercube designs. Journal of Statistical Planning and Inference, 90(1):145–159,
2000.

[61] H. Zhao, Z. Yue, Y. Liu, Z. Gao, and Y. Zhang. An efficient reliability method com-
bining adaptive importance sampling and kriging metamodel. Applied Mathematical
Modelling, 39(7):1853–1866, 2015.

[62] G. Zhu and H. Ju. Determination of naproxen with solid substrate room tempera-
ture phosphorimetry based on an orthogonal array design. Analytica Chimica Acta,
506(2):177–181, 2004.

96

Résumé de la thèse

Un hypercube latin (LHD) est un ensemble de n points en dimension k, à coordonnées
entières, contenus dans un hypercube de taille nk, et tel que les points ne partagent pas
de coordonnées sur aucune dimension. Un LHD maximin est un LHD tel que la distance
de séparation, c’est-à-dire la distance minimale entre deux points, est maximale. Les LHDs
maximin sont particulièrement utilisés pour la construction de métamodèles en raison de
leurs bonnes propriétés pour l’échantillonnage. Comme la plus grande partie des travaux
concernant les LHD se sont concentrés sur leur construction par des algorithmes heuristiques,
nous avons décidé de produire une étude détaillée du problème, et en particulier de sa
complexité et de son approximabilité en plus des algorithmes heuristiques permettant de le
résoudre en pratique.
Pour conduire cette étude, nous avons généralisé le problème de construction d’un LHD
maximin en définissant le problème de compléter un hypercube latin entamé en respectant la
contrainte maximin: étant donné un LHD partiel (un LHD auquel il manque des points), lui
ajouter des points de manière à obtenir un LHD avec une distance de séparation maximum.
Le sous-problème dans lequel le LHD partiel est vide correspond au problème de construction
de LHD classique.
Dans le second chapitre, nous étudions les métamodèles et décrivons les différentes techniques
utilisées, avec les régressions polynomiales, la méthode des surfaces de réponses, le krigeage
et les fonctions de base radiales. Nous décrivons les différentes méthodes d’échantillonage
utilisées pour les métamodèles étudiés, les plans factoriels fractionnaires, les réseaux orthog-
onaux et les hypercubes latins. Cela nous conduit à définir formellement les problèmes de
construction d’hypercubes latins maximin et de complétion maximin d’hypercubes latins
partiels, en tant que problèmes de décision et d’optimisation.
Dans le troisième chapitre, nous avons étudié la complexité du problème de complétion et
avons prouvé qu’il est NP-complet pour toutes les normes en dimension k ≥ 3, et pour les
normes usuelles (i.e. les normes Lp, avec p ∈ N et la norme L∞) dans le plan, à l’aide de
réduction polynomiales à partir des problèmes de complétion de carrés latins ainsi que du
problème (3, B2)-SAT qui est une variante de 3-SAT. N’ayant pas déterminé la complexité
du problème de construction, nous avons cherché des garanties de performances pour les
algorithmes résolvant les deux problèmes.
Dans le quatrième chapitre, nous avons prouvé que le problème de complétion n’est approx-
imable pour aucune norme en dimensions k ≥ 3. Nous avons également prouvé un résultat
d’inapproximabilité plus faible pour la norme L∞ en dimension k = 2. D’un autre côté,
nous avons proposé le premier algorithme d’approximation pour le problème de construc-
tion, l’algorithme IES, dont nous avons calculé le rapport d’approximation grâce à deux
bornes supérieures que nous avons établies.
En plus de l’aspect théorique de cette étude, nous avons travaillé dans le cinquième chapitre
sur les algorithmes heuristiques, et en particulier sur la métaheuristique du recuit simulé.
Nous avons proposé une nouvelle mutation pour le problème de construction, en prenant
en compte le fait que le recuit simulé est plus performant lorsque la mutation ne change
que légèrement la solution. Après avoir remarqué que la distribution des distances dans des
bonnes solutions avait une forme particulière, nous avons développé une nouvelle fonction

97

d’évaluation prennant ce fait en compte.. Ces deux éléments ont permis d’améliorer les
résultats rapportés dans la littérature. Nous avons adapté la méta heuristique du recuit
simulé au problème de complétion, et nous avons observé que le comportement du problème
de complétion change en fonction du nombre de points initialement présent dans le LHD
partiel, faisant varier la mutation la plus adaptée au problème. Nous avons pris ce fait
en compte et amélioré le recuit simulé en utilisant une méthode de bandit pour choisir
la mutation la plus appropriée pendant le déroulement de l’algorithme, dépassant chaque
mutation individuelle lorsque le nombre de points présents initialement est intermédiaire.

98

aaa

Titre : Hypercubes Latins maximin pour l’echantillonage
de systèmes complexes

Mots clefs : Hypercube latins maximin, NP-complet, algorithme d’approximation, recuit simulé

Résumé :
Un hypercube latin (LHD) maximin est un ensemble de
points contenus dans un hypercube tel que les points ne
partagent de coordonnées sur aucune dimension et tel
que la distance minimale entre deux points est maximale.
Les LHDs maximin sont particulièrement utilisés pour la
construction de métamodèles en raison de leurs bonnes
propriétés pour l’échantillonnage. Comme la plus grande
partie des travaux concernant les LHD se sont concentrés
sur leur construction par des algorithmes heuristiques,
nous avons décidé de produire une étude détaillée du
problème, et en particulier de sa complexité et de son
approximabilité en plus des algorithmes heuristiques per-
mettant de le résoudre en pratique.
Nous avons généralisé le problème de construction d’un
LHD maximin en définissant le problème de compléter
un LHD entamé en respectant la contrainte maximin. Le
sous-problème dans lequel le LHD partiel est vide corre-
spond au problème de construction de LHD classique.
Nous avons étudié la complexité du problème de com-

plétion et avons prouvé qu’il est NP-complet dans de
nombreux cas. N’ayant pas déterminé la complexité du
sous-problème, nous avons cherché des garanties de per-
formances pour les algorithmes résolvant les deux prob-
lèmes.
D’un côté, nous avons prouvé que le problème de com-
plétion n’est approximable pour aucune norme en dimen-
sions k ≥ 3. Nous avons également prouvé un résultat
d’inapproximabilité plus faible pour la norme L∞ en di-
mension k = 2. D’un autre côté, nous avons proposé
un algorithme d’approximation pour le problème de con-
struction, et avons calculé le rapport d’approximation
grâce à deux bornes supérieures que nous avons établies.
En plus de l’aspect théorique de cette étude, nous avons
travaillé sur les algorithmes heuristiques, et en particulier
sur la méta-heuristique du recuit simulé. Nous avons pro-
posé une nouvelle fonction d’évaluation pour le problème
de construction et de nouvelles mutations pour les deux
problèmes, permettant d’améliorer les résultats rapportés
dans la littérature.

Title : Maximin Latin hypercubes for experimental design

Keywords : Latin Hypercube Design, NP-completeness, approximation algorithm, Simulated Annealing

Abstract : A maximin Latin Hypercube Design (LHD)
is a set of point in a hypercube which do not share a
coordinate on any dimension and such that the minimal
distance between two points, is maximal. Maximin LHDs
are widely used in metamodeling thanks to their good
properties for sampling. As most work concerning LHDs
focused on heuristic algorithms to produce them, we de-
cided to make a detailed study of this problem, including
its complexity, approximability, and the design of practi-
cal heuristic algorithms.
We generalized the maximin LHD construction problem
by defining the problem of completing a partial LHD
while respecting the maximin constraint. The subprob-
lem where the partial LHD is initially empty corresponds
to the classical LHD construction problem.
We studied the complexity of the completion problem
and proved its NP-completeness for many cases. As we

did not determine the complexity of the subproblem, we
searched for performance guarantees of algorithms which
may be designed for both problems.
On the one hand, we found that the completion problem
is inapproximable for all norms in dimensions k ≥ 3. We
also gave a weaker inapproximation result for norm L∞
in dimension k = 2. On the other hand, we designed
an approximation algorithm for the construction prob-
lem which we proved using two new upper bounds we
introduced.
Besides the theoretical aspect of this study, we worked
on heuristic algorithms adapted for these problems, fo-
cusing on the Simulated Annealing metaheuristic. We
proposed a new evaluation function for the construction
problem and new mutations for both the construction and
completion problems, improving the results found in the
literature.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

