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M. ALAZARD, Daniel Professeur ISAE-SUPAERO Rapporteur

M. SENAME, Olivier Professeur Grenoble-INP Rapporteur

M. BENNANI, Samir Docteur Ingénieur Agence Spatiale Européenne Examinateur
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lite qui peut s’avérer dégradée pour cause de microvibrations. Le contrôle des microvibrations
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Abstract

Robust Microvibration Control and Worst-case Analysis
for High Pointing Stability Space Missions

Next generation satellite missions will have to meet extremely challenging pointing stability
requirements. Even low levels of vibration can introduce enough jitter in the optical elements to
cause a significant reduction in image quality. The success of these projects is therefore constrained
by the ability of on-board vibration isolation and optical control techniques to keep stable the
structural elements of the spacecraft in the presence of external and internal disturbances.

In this context, the research work presented in this thesis combines the expertise of the European
Space Agency (ESA), the industry (Airbus Defence and Space) and the IMS laboratory (laboratoire
de l’Intégration du Matériau au Système) with the aim of developing new generation of robust
microvibration isolation systems for future space observation missions. More precisely, the thesis
presents the development of an Integrated Modeling, Control and Analysis framework in which to
conduct advanced studies related to reaction wheel microvibration mitigation.

The thesis builds upon the previous research conducted by Airbus Defence and Space and ESA
on the use of mixed active/passive microvibration mitigation techniques and provides a complete
methodology for the uncertainty modeling, robust control system design and worst-case analysis
of such systems for a typical satellite observation mission. It is shown how disturbances produced
by mechanical spinning devices such as reaction wheels can be significantly attenuated in order to
improve the pointing stability of the spacecraft even in the presence of model uncertainty and other
nonlinear phenomenon.

Finally, the work introduces a new disturbance model for the multi harmonic perturbation
spectrum produced by spinning reaction wheels that is suitable for both controller synthesis and
worst-case analysis using modern robust control tools. This model is exploited to provide new ways
of simulating the image distortions induced by such disturbances.
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7 Schéma bloc pour la pondération Wi qui correspond à l’harmonique de rang ”i”. . . xxiii
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Résumé en français

R.1 Contexte

Le travail de recherche présenté dans ce mémoire, résulte d’une collaboration maintenant pérenne,
entre l’équipe ARIA (Approche Robuste et Intégrée de l’Automatique) du laboratoire IMS (Intégration
du Matériau au Système) de l’université de Bordeaux, Airbus Defence and Space et l’agence spatiale
européenne (ESA). Les travaux menés au sein de cette collaboration visent à développer de nou-
veaux algorithmes de guidage, navigation, contrôle, pour améliorer les performances et l’autonomie
fonctionnelle et opérationnelles des missions spatiales.

Le contexte général des travaux de recherche concerne les problématiques liées à l’optimisation
globale liée à la conception des futurs satellites d’observation terrestre et de missions scientifiques,
nécessitant une très haute stabilité en pointage (capacité du satellite à garder son point de visée).
Plus particulièrement, les travaux concernent le contrôle actif des modes micro-vibratoires.

Dans une mission satellitaire d’observation terrestre, la qualité des images dépend bien évidemment
des instruments de mesure optique (diamètre du miroir, aberrations optiques et qualité du polis-
sage) mais également des performances de la stabilité de la ligne de visée du satellite qui peut
s’avérer dégradée pour cause de micro-vibrations. La présence de ces micro-vibrations est liée aux
divers éléments tournant du satellite tels que les mécanismes de rotation des panneaux solaires ou
de contrôle d’orientation du satellite (on parle de contrôle d’attitude réalisé au moyen de roues
inertielles).
A titre d’exemple, la figure suivante illustre les variations de la ligne de visée liés aux micro-
vibrations (figure de gauche) et son impact sur la qualité de l’image prise par le satellite (figure de
droite). L’image de droite résulte d’un traitement par des stations sols.

Le retour d’expérience de l’ESA et d’Airbus Defence and Space, sur les missions satellitaires les
plus caractéristiques du problème de distorsion des images liée à la présence de micro-vibrations,
souligne les enjeux de cette problématique, voir tableau ??.

Le contrôle des micro-vibrations représentent ainsi un défit technologique, conduisant l’ESA et
les acteurs industriels du monde spatial, a considéré cette problématique comme hautement prior-
itaire pour le développement des satellites d’observation terrestre nouvelle génération.

Il existe à l’heure actuelle deux principes fondamentaux de contrôle des micro-vibrations :

• le contrôle dit passif: la stratégie consiste à introduire des dispositions constructives et des
matériaux particuliers permettant de minimiser la transmission des vibrations à l’environnement.

• le contrôle dit actif : le concept de contrôle actif des vibrations est tout autre : l’idée est cette
fois-ci, de bloquer la micro-vibration en exerçant une vibration antagoniste créée artificielle-
ment avec des propriétés en opposition, à tout instant, relativement à la vibration indésirable,
pour rendre nulle leur somme.

L’industrie spatiale aborde cette problématique en plaçant des isolateurs en élastomère au voisi-
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(a) (b) (c)

Figure 1: (a) Erreurs de pointage (ligne bleue) et les objectifs de performance (point rouge) (b)
Effets sur la qualité de l’image (c) Résultat comparatif avec mesures correctives [CRS13]

Satellite Mission sources de micro-vibrations

MTG Observation terrestre
- roues inertielles
- cryocooler
- moteur SADM des panneaux solaires

Geo-oculus Observation terrestre
- roues inertielles
- cryocooler

IXO Mission scientifique
- roues inertielles
- cryocooler

Table 1: Missions satellitaires et sources principales de micro-vibrations

nage de chaque source de micro-vibrations. Cette solution, qui a fait ses preuves puisqu’elle équipe
actuellement nombre de satellites en orbite, permet de rejeter nombre de micro-vibrations. Mal-
heureusement, la demande de plus en plus importante de grande stabilité de la ligne de visée pour
les futures missions d’observation terrestres telles que les missions GAIA rend l’approche passive
insuffisante.

L’ESA et Airbus Defence and Space, ont donc collaborer conjointement avec l’équipe ARIA au
travers de cette thèse, dans des travaux de recherche dans le domaine du contrôle actif pour palier
ces problèmes. L’objectif visé est de coupler les approches passives et actives afin de rejeter à la
fois les micro-vibrations en hautes fréquences (approche passive existant) et en basses fréquences
(approche active objet des travaux de la thèse).

Pour mener à bien cet objectif, un procédé expérimental représentatif de la problématique satel-
litaire et issu des études passées menées conjointement par l’ESA et Airbus Defence and Space sur la
problématique micro-vibratoire, a été mis à notre disposition. Ce procédé, dont une illustration est
donnée sur la fig. 2, constitue le support type qui a conduit aux développements méthodologiques
présentés dans ce mémoire.
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Figure 2: Illustration du procédé expérimental représentatif de la problématique satellitaire en
micro-vibrations

R.2 Contributions de la thèse

Les contributions méthodologiques des travaux de recherche présentés dans cette thèse s’articulent
autour de trois axes majeurs: la modélisation, la synthèse de loi de commande robuste multivariable
et l’analyse pire-cas.

R.2.1 Contribution en modélisation

Dans nos travaux de thèse, nous abordons le problème de modélisation des phénomènes vibra-
toires liés à la rotation des roues inertielles, ces phénomènes étant responsables des phénomènes
de micro-vibrations de la ligne de visée d’un satellite d’observation. Nous proposons un cadre
méthodologique permettant d’établir un modèle dynamique d’un satellite d’observation équipé
d’un système d’isolation micro-vibratoire mixte passif/actif, dont le contrôle d’attitude est réalisé
à l’aide de roues inertielles. La figure suivante donne une illustration sous forme de schéma blocs
du modèle proposé dans ce mémoire.

Reaction
wheel

Flexible
Support

Active
plate

Pasive
Isolators

Satellite
Rigid
Body

Total actuator forces and torques us

Elastic forces and
torques ysys

yb

qp, q̇p

qa, q̇a

qw, q̇w

Wheel excitations uw

Motor torque Tm

Attitude
Control
System

Flexible
Attachment

[
Ta Tb

]
Reaction forces ff and torques

tf

qpr, q̇pr

Pointing errors
p =

[
θa θb

]
T

qp, q̇p

Figure 3: Schéma bloc d’un satellite d’observation équipé d’un système d’isolation micro-vibratoire
mixte passif/actif et contrôler en attitude par roues inertielles

Un modèle de roue inertielle qui tient compte des couplages en phase des phénomènes multi -
harmoniques, est établi dans un premier temps. La démarche est basée sur une approche géométrique.
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Dans un deuxième temps, le formalisme de Lagrange est utilisé pour déduire un modèle dynamique
de l’ensemble ”roue inertielle - système d’isolation micro-vibratoire - satellite”. L’approche pro-
posée tient compte des modes flexibles du satellite (liés notamment aux panneaux solaires), des
modes de vibrations liés aux roues inertielles (notamment le phénomène de balourd), du système
passif d’isolation des micro-vibrations constitué des élastomères placés au voisinage du système
de vision et enfin des modes du système actif d’isolation des micro-vibrations. Le modèle obtenu
est un modèle sous forme de représentation d’état non linéaire. Une linéarisation du modèle ainsi
obtenu autour de la position d’équilibre caractérisée par ”vibration nulle”, est alors réalisée. Cette
approche se justifie par le fait que nous nous intéressons aux micro-vibrations. On montre alors
que le modèle dynamique peut être formulé comme un modèle à paramètres variants dans le temps
(modèles dit LPV pour l’acronyme anglo-saxon Linear Parameter Varying), paramétré par la vitesse
Ω(t) des roues inertielles. Le modèle LPV étant établi dans un cadre formel, il permet de mettre en
évidence les paramètres physiques du système qui sont incertains et/ou mal connus (incertitudes
paramétriques). Le formalisme LFT (de l’acronyme anglo-saxon Linear Fractionnal Transforma-
tion) est alors utilisé pour séparer les incertitudes paramétriques (ces dernières étant bornées), de
la partie connue du modèle. Un modèle paramétrique incertain des capteurs (12 capteurs de force)
et des actionneurs (6 actionneurs PMAs, acronyme anglo-saxon de Proof Mass Actuator) est alors
adjoint au modèle dynamique précédent, conduisant à un modèle dynamique du système complet
à 6 entrées et 12 sorties (notées y et u sur la fig. 4). Le phénomène de saturation des actionneurs
et la présence éventuelle de retards (incertains) dans ces derniers, sont également considérés. Le
modèle complet est alors reformulé dans un contexte LFT. La fig. 4 donne la structure du modèle
LFT obtenu.
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Figure 4: Modèle LFT du système complet

Ce modèle LFT obtenu étant complexe et d’ordre élevé, nous proposons une procédure de
réduction de ce dernier basée sur l’analyse des modes vibratoires et sur la reformulation des incer-
titudes structurées sous forme additive non structurée. Le résultat obtenu conduit à un modèle de
complexité moindre englobant toutes les dynamiques des phénomènes de micro-vibrations et des
modes souples du système de contrôle actif. Ce dernier modèle sera alors retenu pour synthétiser
le système de contrôle actif des micro-vibrations, tandis que le modèle LFT complexe original
qui tient compte de tous les modes du système (y compris ceux du satellite), sera utilisé pour
valider les performances du système de contrôle actif. A titre d’exemple, la fig. 5 illustre, pour les
transferts us(1)→ ys(1) et us(4)→ ys(1), le tracé des gains principaux des modèles structuraux
complets et réduits pour différentes valeurs d’incertitudes ainsi que les limites d’incertitude additive
correspondantes.
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Figure 5: Gains principaux des modèles structuraux complets et réduits pour différentes valeurs
d’incertitudes ainsi que les limites d’incertitude additive correspondantes

R.2.2 Contribution en commande robuste multivariable

Dans nos travaux de thèse, nous abordons la problématique de synthèse d’un système de contrôle
actif des micro-vibrations, reformulé comme un problème de commande robuste multivariable H∞.
Dans ce contexte, nous montrons comment l’approche H∞ non lisse permet d’apporter une solution
au problème.

Plus précisément, les contributions des travaux de recherche sont de deux natures, i) méthodologique
via le choix systématique des fonctions de pondération du problème H∞, et, ii) algorithmique via
le développement d’une procédure de synthèse H∞ non lisse permettant de tenir compte de la
nature LPV du problème, sous l’hypothèse réaliste que l’accélération des roues inertielles restent
lentes devant la bande passante de la boucle de contrôle des micro-vibrations. Cette hypothèse
est d’ailleurs vérifiée a posteriori à l’aide de la théorie des IQC (acronyme anglo-saxon de Integral
Quadratic Constraint).

Choix systématique des fonctions de pondération du problème H∞

Le problème H∞ pondéré que nous proposons pour synthétiser le système de contrôle actif des
micro-vibrations, est illustré sur la fig. 6.
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Figure 6: Problème de synthèse H∞

Sur cette figure, les blocs (complexes) ∆a,∆u et ∆y correspondent au modèle LFT d’ordre réduit,
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introduits pour englober toutes les incertitudes représentées par les blocs (réels) ∆G,∆n et ∆h cor-
respondant au modèle LFT complet illustré sur la fig. 4. Le bloc ∆ = diag (∆u, ∆y, ∆a) couvre
également les phénomènes de saturation et de retard, voir fig. 4.
Comme classiquement en théorieH∞, la problématique qui se pose est le choix des pondérations per-
mettant de fixer les objectifs de robustesse et de performance à atteindre. Comme l’illustre la fig. 6,
les pondérations à choisir sont au nombre de 10, i.e. les pondérations W∆y ,W∆u ,W∆l,W∆r rela-
tives aux erreurs de modèle, les pondérations Wn,Wbn,W1 relatives aux perturbations exogènes,
les pondérations WRPE ,Wpmax relatives aux performances de pointage du satellite d’observation
et la pondération Wu relative aux objectifs sur le signal de contrôle.

• Choix des pondérations W∆y ,W∆u ,W∆l,W∆r : Dans nos travaux, nous montrons que la varia-
tion de gain sur les senseurs engendrées par les incertitudes peuvent être couvertes en choisissant
W∆y = 0.1I. Similairement, le choix suivant de W∆u permet de couvrir les dynamiques négligées
sur les actionneurs ainsi que de prendre en compte les phénomènes de saturation et de retard:

W∆u = Γ(s) I6 with
Γ(s) = β + α · wτ (s)

β = 30%
and

α = 1− β/3.465

wτ (s) = s/
(
τ−1
max + s/3.465

)
τmax = 1 ms

(1)

Typiquement le choix β = 30% permet de tenir compte des incertitudes multiplicatives des ac-
tionneurs PMA, et la pondération wτ (s) permet de tenir compte du retard τ ∈ [0, τmax]. Les
pondérations W∆l ∈ R6×36 and W∆r ∈ R36×6 permettent de mettre à l’échelle ∆a tout en cou-
vrant l’erreur qu’il existe entre le modèle réduit et le modèle originel. On montre dans nos travaux
que celles-ci peuvent être judicieusement déterminées telles que

W∆l∆aW∆r =

a11δ16 . . . a16δ16
...

. . .
...

a61δ66 . . . a66δ66

 où ∆a ∈

{
diag (δij) :

δij ∈ C, |δij | ≤ 1

i, j ∈ {1, . . . , 6}

}
⊂ C36×36 (2)

où les paramètres ai,j ∈ {1, . . . , 6} représentent les erreurs entre le modèle LFT réduit et le modèle
LFT originel, termes à termes.

• Choix des pondérations Wn,Wbn,W1: Comme assez classiquement, ces pondérations pondérant
le problèmeH∞ à gauche et prennent le sens de filtres formeurs. La pondération Wn est ainsi choisie
comme un majorant de l’estimée de la densité spectrale de puissance du bruit de mesure. Dans nos
travaux, nous faisons l’hypothèse d’un spectre des bruits de mesure, constant, d’où Wn = nmaxI12,
nmax = 10−3N/

√
Hz. De façon similaire, les pondérations Wbn et W1 sont déterminées de façon à

capturer le spectre de l’harmonique de rang 1 des micro-vibrations causées par les roues inertielles
et des variations autour du rang 1. Nous montrons ainsi dans nos travaux, qu’un choix judicieux
pour Wbn consiste en le choix suivant,

Wbn = diag
(
af1Ω2

bn I2, a
t
1Ω2

bn I2

)
, Ωbn = 1 Hz, af1 = 0.785, at1 = 0.324 (3)

où af1 , a
t
1 sont les coefficients radiaux d’harmonique de rang 1 caractérisant les micro-vibrations

causées par la roue inertielle considérée, en force et en couple respectivement. W1 est déterminé
de façon à modéliser les liens entre phase et amplitude des effets des micro-vibrations causées par
la rotation des roues inertielles, selon les axes x et y. La fig. 7 donne le schéma bloc de W1.
Soulignons ici que nos travaux traitent également du cas des harmoniques de rang différent afin de
permettre au lecteur d’étendre nos résultats au cas multi-harmoniques, c’est à dire ∀i, voir fig. 7.
Les coefficients afi , a

t
i sont les coefficients radiaux d’harmonique de rang ”i” caractérisant les micro-

vibrations, en force et en couple respectivement.
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Fxi = afi Ω2 sin(hiΩt)afi

afi
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Figure 7: Schéma bloc pour la pondération Wi qui correspond à l’harmonique de rang ”i”.

• Choix des pondérations WRPE ,Wpmax,Wu: Ces pondérations permettent de définir les ob-
jectifs de performance de pointage (WRPE ,Wpmax) et d’énergie du signal de commande u. Pour
Wu, une pondération constante est retenue, soit Wu = u−1

maxI6, umax = 10 V/
√

Hz. Dans nos
travaux de thèse et sur la base des spécifications de pointage pour les satellites d’observation à
haute stabilité de la ligne de visée fournies par l’ESA (voir les ouvrages de référence [ECS08] et
[ECS11]), nous montrons qu’un choix judicieux des pondérations WRPE et Wpmax est:

Wp = WpmaxWRPE où
Wpmax = ε−1

maxI2

εmax = 0.65 mas/
√

Hz

;
WRPE =

t∆s (t∆s+
√

12)
(t∆s)

2+6(t∆s)+12
I2

t∆ = 20 ms
(4)

Synthèse du correcteur H∞

Les pondérations du problème H∞ ayant été fixées, il nous reste à déterminer le correcteur LPV
K(Ω) = Fl (K,ΩInΩ) comme illustré sur la fig. 6. Une procédure originale H∞ non lisse est pour
cela proposée. Elle vise à réduire le caractère conservateur des approches H∞ LPV récentes (ap-
proches polytopique ou bien LFT), en résolvant le problème d’optimisation multi-critères suivant:

minimise γ
K(Ω) ∈ K,

Ds,D1, . . . ,D8 ∈ D

tel que

∥∥∥∥diag

([
Di
√
ε

X (i)

]
M(Ω)

[√
εD−1

i

I

])∥∥∥∥L2i

< γ

∥∥DsMw→z(Ω)D−1
s

∥∥L2i < 1/ν

∀Ω ∈ Ω i ∈ {1, . . . , 8}

(5)

où X (i) =
[
01×(i−1) 1 01×(8−i)

]
et ‖M‖L2i représente la norme L2 induite de M. Les paramètres

ε, ν sont utilisé pour gérer le compromis entre performance et robustesse. L’originalité de cette
formulation réside dans le fait que l’on cherche simultanément un correcteur d’ordre fixé a priori,
une dimension du bloc ΩInΩ du correcteur LPV K(Ω) = Fl (K,ΩInΩ), pas forcément égale à celle
du modèle (ce qui revient à dire nΩ ≤ 5) et des matrices de ”D-scaling”, de telle sorte à garantir
les propriétés de stabilité robuste ∀Ω ∈ Ω pour un certain niveau ν d’incertitudes maximales
(i.e. ‖∆‖L2i ≤ ν) et un niveau de performance γ pour pour un certain niveau ε/γ d’incertitudes
maximales (i.e. ‖∆‖L2i ≤ ε/γ).

Enfin, nous montrons dans nos travaux de thèse qu’il est judicieux à des fins d’implantation,
de retenir une structure particulière du correcteur K(Ω) telle que (voir fig. 8):

K(Ω) = KoutK̃(Ω)Kin où K̃(Ω) = Fl

((
A0 B0 A∆

C0 D0 B∆

C∆ D∆ 0

)
,ΩInΩ

)
=

(
A0 + ΩA1 B0 + ΩB1

C0 + ΩC1 D0 + ΩD1

)
(6)
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Figure 8: Structure du correcteur K(Ω).

où A1 = A∆C∆, B1 = A∆D∆, C1 = B∆C∆ et D1 = B∆D∆ et Fl (A,B) est le transforma-
tion fractionnaire linéaire (ou LFT) inférieure entre A et B. La dimension nΩ du bloc ΩInΩ du
correcteur LPV fixant le rang des matrices A1,B1,C1,D1, cela offre une paramétrisation élégante
du dimensionnement de nΩ. La matrice Kin = X yNr ∈ R2×12 où X y =

[
02×3 I2 02×1

]
relève

simplement d’une fusion des mesures par combinaison linéaire, et de façon très similaire, la matrice

Kout = B+X u ∈ R6×4 où X u = diag
([

I2
01×2

]
,
[

I2
01×2

])
représente une allocation du vecteur de

commande, par combinaison linéaire.
On montre alors comment les outils H∞ non lisse permettent de déterminer tous les paramètres
du correcteur. Une procédure originale de synthèse est pour cela proposée. Cette dernière vise no-
tamment à gérer de façon optimale (au sens de Paretto), le compromis stabilité robuste (à travers
le facteur ν) / performances robustes (à travers le facteur ε). La fig. 9 illustre parfaitement ce com-
promis. Deux correcteurs sont particulièrement étudiés dans nos travaux: le correcteur Krobustness

permettant d’assurer les meilleurs marges de stabilité robuste et le correcteur Kperformance perme-
ttant d’assurer les meilleurs performances robustes.

Figure 9: Famille des correcteurs synthétisés.

Analyse des performances du système de contrôle de micro-vibrations

Des analyses de performances sont alors menées à travers une série de critères mettant en jeu la
théorie de la µ-analyse ainsi que celle des IQCs (acronyme anglo-saxon pour Integral Quadratic
Constraints). Comme explicité précédemment, ces analyses sont menées sur le modèle complet
originel.

Dans un premier, nous menons une analyse des performances nominales sur le correcteur
Krobustness. La fig. 10 illustre les tracés des gains principaux des transferts de d vers les deux
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Figure 10: Gains principaux des transferts de d vers les deux erreurs de pointage p (haut) et les
six commandes [u] (bas). Krobustness

erreurs de pointage p (haut) et les six commandes [u] (bas) pour différentes valeurs de vitesse de
rotation Ω, versus les spécifications de synthèse. Afin d’apprécier le gain en performance du système
de contrôle des micro-vibrations proposé, les même tracés sont superposés lorsque le système ne
possède pas de système de contrôle microvibratoire (tracés en gris clair). On peut clairement
apprécier sur ces tracés, le gain en performance apporté par la solution que nous avons développée.
On notera également que les spécifications sur les signaux de contrôle sont satisfaites.

Dans un deuxième temps nous menons une analyse de stabilité robuste à l’aide de la procédure
de µ-analyse. Une analyse particulière est notamment réalisée vis-à-vis des blocs ∆u,∆a,∆y pris
individuellement, ainsi que pour le bloc ∆ dans son intégralité, voir fig. 6 pour la définition de
ces derniers blocs. L’analyse est réalisée pour un échantillonnage de la vitesse de rotation Ω assez
conséquent de manière à pouvoir apprécier les résultats obtenus. La fig. 11 donne les résultats
obtenus. Clairement les résultats illustrent parfaitement les marges de robustesse en stabilité de la
solution que nous avons développée dans nos travaux de thèse.

Figure 11: Marges de stabilité robuste pour Krobustness

Dans un troisième temps, nous menons une analyse de compromis entre stabilité robuste et per-
formance, dans un contexte pire-cas. L’objectif est d’illustrer l’impacte des incertitudes croissantes
sur la dégradation des performances, dans un contexte pire-cas. Cette analyse est menée à l’aide
de la procédure de µ-analyse. La fig. 12 illustre les résultats obtenus. On y présente l’impacte sur
les performances de pointage selon les deux axes, ainsi que sur les signaux de commande.
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Figure 12: Illustration de l’impacte des incertitudes sur les performances (RPE = Relative Pointing
Error)

Dans un quatrième temps, nous menons des analyses de performances en tenant compte de la
présence de retard dans la châıne des actionneurs PMA, des effets de saturation de ces derniers
et de la nature variante dans le temps de la vitesse de rotation Ω(t). On montre alors dans nos
travaux de thèse comment ce problème peut être reformulé comme un problème IQC. Etant donné
la complexité du problème, ces analyses sont menées séparément, i.e. les performances H∞ sont
étudiées dans un premier temps, en fonction de l’accélération maximale Ω̇max des roues, puis en
fonction du niveau de saturation σmax des actionneurs et enfin en fonction du retard maximal
τmax. Les résultats obtenus sont donnés sur la fig. 13, de gauche à droite. Ces résultats montrent
clairement que la solution de contrôle des micro-vibrations que nous avons développées, est robuste
aux accélérations des roues inertielles pouvant atteindre 1 Hz/s, à la pleine échelle de saturation
des actionneurs. Par contre, elle n’est pas robuste à des retards trop importants présents dans les
PMAs, ce qui n’est pas surprenant.

Figure 13: IQC portant sur le transfert d → eu vis-à-vis de Ω̇max (gauche), σmax (centre) et du
retard τmax (droite)

Enfin, des simulations temporelles sont menées sur le système, dans des conditions nominales.
Afin d’illustrer le compromis marges de stabilité robuste / performance robuste, les simulations
sont conduites en utilisant, dans un premier temps, le correcteur Krobustness, puis dans un deuxième
temps, avec le correcteur Kperformance. Les résultats sont donnés sur la fig. 14. Les résultats obtenus
sont sur-imposés pour une meilleure appréciation des performances obtenues. Afin d’apprécier
également le gain en performance du système de contrôle des micro-vibrations proposé, les même
tracés sont superposés lorsque le système ne possède pas de système de contrôle microvibratoire
(tracés en gris clair). Clairement, ces tracés montrent bien l’avantage de la solution que nous
proposons dans nos travaux de thèse. Ils soulignent également, et de façon non surprenante, que
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dans des conditions de fonctionnement nominal, les meilleurs performances sont obtenues avec le
correcteur Kperformance.

Figure 14: Simulations temporelles (conditions nominales) - (RPE = Relative Pointing Error)

R.2.3 Contribution en analyse sur la précision de la ligne de visée et son impact
sur la qualité d’imagerie

La troisième et dernière contribution de nos travaux de thèse, traite de la problématique de l’analyse
des micro-vibrations sur la précision de la ligne de visée du satellite d’observation et son impact sur
la qualité d’imagerie. Dans ce contexte, nous établissons une démarche méthodologique qui permet
de reproduire la pire distorsion des images.

Plus précisément, nous proposons une architecture générique permettant d’analyser les effets de
distorsion d’imagerie, dans un contexte pire-cas. L’architecture proposée est illustrée sur la fig. 15.

Cette architecture illustre comment les erreurs de pointage ep (voir fig. 6), erreurs rappelons
le qui se traduisent par des écarts de position angulaire θa et θb, sont liées aux erreurs de pixel
2D, i.e. selon les axes x et y de l’image. Cette architecture, qui tient compte de la dynamique de
la caméra, des modes flexibles et du système de contrôle du satellite (cela comprend le contrôle
d’attitude et le système de contrôle de micro-vibrations), est basée sur l’hypothèse que les sources
de perturbations qui causent une distorsion d’image, sont de deux natures:

• harmoniques dues aux micro-vibrations engendrées par la rotation Ω des roues inertielles.
La fig. 15 fait référence à l’harmonique de rang 1 (notée d1), mais nos travaux de recherche
traitent du problème multi-harmonique.

• stochastiques, notée dn sur la fig. 15.

L’intérêt de la structure proposée est de permettre d’avoir une approche automaticienne de la
problématique de distorsion d’imagerie, en supposant que ces dernières sont la résultante d’un fil-
trage des entrées d et dn, moyennant la structure illustrée sur la fig. 15. Nous montrons alors que

les erreurs de pixel 2D peuvent être prédites en analysant les transferts incertains

[
d
dn

]
→ e où e

représente les erreurs de pixel 2D.

Parmi les résultats pertinents que nous avons établis dans nos travaux de thèse, nous montrons
comment, dans le cas sans incertitude de modèle (i.e. ∆ = 0) et pour un angle de rotation de
la caméra β donné (voir fig. 15), les critères de norme de type H2 et RMS (Root Mean Square),
permettent de prédire des majorants des erreurs de pixel 2D. Ces prédictions sont validées à travers
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x
y

a

b

c

θa

θb
θc

Satellite Rigid Body

Photoreceptor

Target

β

X

Y

Z
Inertial
reference
frame

op

O

(a)

Flexible
Spacecraft
Structure

P

Satellite attitude

ubn

d1 = sin(h1Ωt+ Φ1)
W1

ΩI3wΩ1 zΩ1

Wbn

Random disturbances dbn

∆
w∆ z∆

ΩIn

wΩ zΩ

WN

ΩI3wΩN
zΩN

...

Harmonic disturbances

uw

dN = sin(hNΩt+ ΦN )

M

Cm

Camera
model...

WRPE

Relative
Pointing
Errors
(pixels)

e =

[
x
y

]

u1

uN

p

(b)

Figure 15: (a) Scène de pointage considérée. (b) Structure d’analyse de distorsion d’imagerie.

des simulations, comme l’illustre la fig. 16. Afin d’apprécier le gain en performance du système
de contrôle des micro-vibration développé dans le cadre des travaux de cette thèse, les prédictions
sont superposées lorsque le système ne possède pas de système de contrôle microvibratoire (tracés
en gris clair). On peut clairement apprécier sur ces tracés, le caractère peut conservateur de la
prédiction réalisée.

Les résultats obtenus sont alors étendus au cas incertain dans un contexte ”pire-cas”. On
montre alors que la détermination d’un majorant des erreurs de pixel 2D pour un angle de rotation
de la caméra β donné, peut se poser comme un problème de minimisation H2 sous contrainte H∞,
de dimension infinie car paramétré par la vitesse de rotation Ω des roues inertielles. Pour résoudre
le problème, nous proposons d’effectué un échantillonnage dense des incertitudes ∆ et de Ω (ce
qui revient à avoir une famille dense de modèle M comme illustré sur la fig. 15). On montre alors
que le problème admet une formulation H∞ non lisse. Le résultat obtenu est un majorant peu
conservateur, qui est fonction de Ω et de β. Ainsi, pour β ∈ [0, π] et pour un Ω donné, nous
montrons que l’erreur de distorsion de l’image se traduit par une famille d’ellipses, fonction des
incertitudes ∆, et dont une approximation polytopique peut être déterminée. Bien évidemment,
plus le nombre n de sommets du polytope est important, moins conservatrice est l’approximation
polytopique. La fig. 17 illustre ces résultats pour Ω = 14.44 Hz (gauche) et Ω = 36.4 Hz (droite).
Les figures présentent les résultats dans le cas sans système de contrôle de micro-vibrations (tracés
bleus) et avec le système de contrôle de micro-vibrations que nous avons développés dans nos
travaux de thèse (tracés rouge), pour un échantillonnage de valeurs de ∆. Ces résultats montrent
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Figure 16: Prédiction des majorants des enveloppes des erreurs de pixel e(1). Cas nominal (∆ = 0)

clairement qu’avec le système de contrôle de micro-vibrations, la distorsion d’image est réduite à
quelques pixels. Les résultats présentés ne tiennent compte que de l’effet de l’harmonique de rang
1 des micro-vibrations et des sources de perturbations stochastiques.

Figure 17: Majorant des erreurs de pixel et approximation polytopique

Enfin, nous montrons comment les outils de filtrage 2D telle que la fonction de transfert
optique (traduction francophone de ”Optical Transfer Function” OTF), couplée avec les ma-
jorants ainsi obtenus, peuvent être utilisés pour reconstruire l’image. L’idée est, connaissant
complètement les caractéristiques des sources de distorsion (ce qui revient à dire, connâıtre d et dn
et le modèle M(Ω,∆) illustré sur la fig. 15) et l’OTF, de pouvoir reconstruire l’image distordue.
La problématique étant positionnée dans un contexte linéaire, la solution développée est basée sur
une procédure de filtrage. Un exemple des résultats obtenus pour Ω = {14.5, 36.75}Hz est donné
sur la fig. 18. Les résultats présentés ne considèrent pas le système de contrôle des micro-vibrations.

xxix
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Figure 18: Reconstruction d’une image distordue. Ω = {14.5, 36.75} Hz. a) Image b) Densité
Spectrale de Puissance.

“Le savant n’étudie pas la nature parce que
cela est utile ; il l’étudie parce qu’il y prend
plaisir et il y prend plaisir parce qu’elle est
belle. Si la nature n’était pas belle, elle ne
vaudrait pas la peine d’être connue, la vie
ne vaudrait pas la peine d’être vécue.”

Henri Poincaré
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1 Introduction

1.1 Context and motivation

Due to recent technological advancements in space based instrumentation, spacecraft mechanical
vibrations have become a significant concern for earth observation, communication, space astron-
omy or advanced scientific missions that rely on high level of pointing stability. For instance, in
the case of space based telescopes, the current tendency is to build instruments with an aperture
that roughly doubles in size about every 20 years as illustrated in fig. 1.1a. A large aperture leads
to a higher resolution and the ability to detect dimmer objects. Larger optical instruments usually
involve bigger and more expensive launch vehicles due to the increase in weight. This provided a
strong incentive for researchers and engineers to create proportionally lighter spacecraft. However,
lightweight structures are also usually more flexible and therefore more susceptible to mechani-
cal resonances induced by microvibrations. Meanwhile, due to the demand for higher resolution
images, the average angular resolution of imaging sensors has been improved by a few orders of
magnitude over the past decades as seen in fig. 1.1b. These changes to structural flexibility and

(a) (b)

Figure 1.1: (a) The growing aperture of space telescopes [LPD10]. (b) Angular resolution of recent
civilian Earth observation satellites (1 arcsecond = 5 µrad) [KU14].

payload resolution progressively increase the requirements on the spacecraft pointing stability. As
a result, modern earth observation and space astronomy missions have to meet extremely challeng-
ing pointing accuracy requirements. For instance, cosmic vision missions such as Euclid, Plato,
Chandra X-ray Observatory or the James Webb Space Telescope require high precision pointing
performance in the order of 1 mas (milliarcseconds). Similar demands also arise in geosynchronous
missions like Geo-Oculus and Meteosat Third Generation or agile Low-Earth Orbit missions such
as the future Sentinel-6. As line-of-sight stability requirements get tighter, mechanical vibrations
become one of the key performance limiting factors. These disturbances are commonly termed
microvibrations and are low-amplitude vibrations in the range of a few micro-g’s (µg), that span a
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1.1. Context and motivation

wide frequency range from few Hz up to 1 kHz [CRS13]. Since spacecraft are isolated systems and
operate in an environment that provides no atmospheric damping, the mechanical energy associated
with these disturbances must be dissipated into the system. Moreover, satellites are constructed
from very lightweight materials and microvibrations can easily be transmitted through the flexible
structure towards various sensitive payloads or on-board instruments potentially causing severe
performance degradation. Considering observation missions, microvibrations reduce image quality
by introducing jitter motion during the exposure interval of the optical instruments. The images
are impacted in two ways: high frequency disturbances degrade the Modulation Transfer Function
(MTF) inducing image blurring, whereas low frequency ones degrade the geometry inducing image
distortions. For example, the line of sight jitter on the detector plane shown in fig. 1.2a, intro-
duces the significant image distortions visible in fig. 1.2b. In some cases, image distortions can be
corrected on-ground by dedicated algorithms, but image blurring is definitely not rectifiable. This
high/low frequency limit separation depends on the integration time: it is usually roughly equal to
0.1 times the inverse of the integration time. Hence, long integration time instruments like the ones
used in scientific missions are more affected by this degradation compared to the short integration
time ones used for example in low Earth orbit observation missions.

(a) (b) (c)

Figure 1.2: (a) Satellite pointing error (blue line) together with the requirement (red dot) (b)
Resulting effects on image quality (c) Comparative result with corrective measures and reduced
imager motion [CRS13]

1.1.1 Microvibration sources

Depending on their origin, microvibration disturbances that commonly occur in spacecraft are:

• External (or natural) perturbations that are the result of interaction between the satellite
and the space environment. These include quasi-steady perturbations (such as atmospheric
drag, earth gravity field gradient, magnetic field interactions, solar flux or earth albedo)
or intermittent transient load (such as those occurring from micro-meteoroids and debris
impacts) [CRS13].

• Internal disturbances that are generated by various subsystems and devices on-board modern
spacecraft such as the attitude control, propulsion, avionics , electrical power, telemetry or
thermal control subsystems.

In general, internal disturbances are far more important and depending on their temporal behavior
can be furter classified into two broad categories:
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Chapter 1. Introduction

• Single disturbance events also known as transient loads are intermittent impulsive dis-
turbances with small dynamic amplitudes. Frequent causes include sudden stress release
between parts with differential temperatures due to thermal expansion, micro-cracking in
laminates, buckling of foils due to thermal expansion and contraction [WWE05, Wij09].
Shock type disturbances forces of this type can also be generated due to specific commands
such as thrusters firing or momentum unloading [MKS07], or liquid flowing and sloshing
[VGL+07, DQGL08, GV03].

• Continuous disturbances otherwise known as vibratory loads can be either narrowband
harmonic disturbances or broadband perturbations [ZYP09]. A variety of on-board equipment
such as infrared sensors, solar array drive mechanisms or cryo-coolers generate this type of
microvibrations. Additional sources include electric motors, data storage devices [Bia97] or
high speed rotating equipment such as momentum/reaction wheel assemblies, gyroscopes or
solar array drives [SNG08].

Overall, out of all these possible sources, the ones generated by the reaction wheel assemblies
(RWAs) or Control Moment Gyroscopes are usually the most significant [Bro06, LJDL15]. These
mechanical spinning devices are used to achieve attitude control by acting as momentum exchange
devices. Additionally, they provide a cheaper and lighter alternative to Cold Gas Micro Propulsion
Systems that are currently the state of practice for very high stability missions (see for instance
[FSBW07, PdBB+16]). A RWA, is typically made up of rotating flywheel that is mounted on a
shaft supported by either mechanical or magnetic bearings and driven by a brushless DC motor.
Inside the RWAs, the flywheels are usually arranged either symmetrically at the mid-span of the
shaft or cantilevered with the flywheel at the end of the shaft, as seen in fig. 1.3. Although slightly
different, both configurations share the same dynamic behavior to a large extent [Add17]. During

(a)

4

(b) (c)

1

2
3

1
1

4

4
2

23

5

Figure 1.3: Possible reaction wheel configurations: a) rigid axi-symmetrical b) rigid cantilever c)
flexible cantilever. 1 -flywheel 2 -rigid motor shaft 3 -bearings 4 -motor 5 -flexible support.

manufacturing, the flywheels are precisely balanced in order to minimize the vibrations that occur
during operation. Nevertheless, even with extremely tight manufacturing tolerances, these rotating
devices still generate residual harmonic perturbations. The disturbances that arise in flywheels are
mainly caused by static imbalance, dynamic imbalance and bearing imperfections [LMB08]. Static
imbalance is caused by the offset of the center mass of the wheel spin axis. Dynamic imbalance
results from the misalignment of the principal axis and the rotating axis on the wheels, while
bearing disturbances are caused by irregularities in balls, races or cages [TO03]. For clarity, fig. 1.4
illustrates some of these bearing imperfections and how the static imbalance caused by the mass
ms give rise to the lateral centrifugal force F1 rotating with the spin rate Ω of the reaction wheel.
Similarly, the figure shows how the dynamic imbalanced caused by the two masses md produces
two centrifugal forces Fd1 and Fd2. These forces combine to create a lateral rotating torque T1

and zero net force on the flywheel body.

As modern space structures become increasingly more lightweight and flexible, these harmonics
can be greatly amplified if they interact with the structural modes of the spacecraft, leading to an
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Ω

F1
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md

Fd1

Fd2

(a) (b) (c)

Figure 1.4: For a reaction wheel spinning at a constant spin rate Ω: (a) Static imbalance caused
my mass ms giving rise to the lateral force F1. (b) Dynamic imbalance caused by the two masses
md producing a combined lateral torque T1. (c) Example of imperfections in the flexible bearings
supporting the wheel.

issue of great importance. The problem of obtaining accurate dynamical models of reaction wheel
perturbations has attracted considerable research interest as evidenced by the numerous studies
such as [Le17, Add17, Mas99, Has86] dedicated to this topic.

1.1.2 Microvibration isolation

Another very active field is the one related to microvibration isolation, especially with regards
to the ones generated by reaction wheels. State-of-the-art microvibration isolation methods have
been reviewed in literature by [AG03, Agr09, LJDL15, GW00] or [Ibr08]. Figure 1.5 shows the
general vibration isolation architecture for a typical imaging spacecraft. In general, multiple

Input
isolation

Spacecraft
structure

Output
isolation

Passive
damping

Active
structural

control

Actuators Sensors

Disturbances Performance

Forces &
torques

Structural
motion

Figure 1.5: General microvibration isolation architecture.

vibration isolation techniques are used in combination to reduce the influence of microvibrations
on the pointing accuracy. One method is to add passive or active damping to the spacecraft
support structure and reduce the vibration response. A second approach is isolate the disturbance
equipment from the other parts of the spacecraft. The third technique is to isolate sensitive payloads
from the spacecraft. For space missions requiring very low jitter, the isolation strategy usually
involves a combination of these techniques, as exemplified in fig. 1.6. In the case of reaction wheels,
significant research effort has been invested in finding ways of reducing the impact of the generated
microvibrations [LJDL15, WC03]. One of the simplest techniques is to constrain the rotational
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Chapter 1. Introduction

Figure 1.6: Possible vibration isolation architecture for a future interferometric mission [Pre11]

speed of the flywheels in order to avoid exciting the spacecraft’s structural modes. However, this
constraint becomes more demanding as structures become less rigid and their flexible modes get
shifted to lower frequencies. Another promising future approach is to use magnetically suspended
bearings [ZBK14] instead of ball-bearings to support the flywheels. This eliminates the direct
mechanical connection and can significantly attenuate the transmitted disturbances. Although this
technology is encouraging, especially for smaller satellites, it is not yet a mature, space-proven
solution and the vast majority of reaction wheels still rely on traditional ball-bearings.

Passive isolation

A much more common isolation approach involves placing isolators along the disturbance propaga-
tion path between the noise source and the instruments. Passive isolation techniques are regarded as
the most mature technology for managing in-orbit vibration isolation [WHX+13] and are a common
presence in aerospace applications [DC93, DCH94]. A passive isolator can be defined as a compact
connection between two structures that receives no external energy or information [WC03]. From
a control perspective, a passive isolator acts like a low-pass filter [GW00] and has the advantage of
guaranteed stability. Inside these devices, stiffness and damping elements are used to dissipate vi-
brational energy and prevent the high frequency disturbances from propagating. Traditionally, for
passive vibration control applications, the dissipative elements are usually visco-elastic materials,
springs or hydraulic dampers isolators [Riv04].

In [KPG10, KPG12, ZL12, ZLLJ12], continuous folded beams (such as the one shown in fig. 1.7)
are employed in the design of a passive isolation platform for RWA. The design of these beams is
optimized and achieves simultaneously a low amplification around the critical wheel speeds and a
large reduction at high frequency. The low corner frequency can be obtained by raising the number
of folds and decreasing the thickness of the vertical beams.

At Airbus Defense and Space, isolators based on elastomeric materials, are the current baseline
for microvibration mitigation on-board the majority of satellites [Sec13]. Recent technological im-
provements have made elastomer components very attractive [Lau16] due to their very light weight,
their capability of withstanding launch loads without requiring a locking device (reducing weight,
complexity and increasing reliability) and testability under 1-g (lower development and validation
costs). Nevertheless, these apparently simple isolators actually require a deep understanding of the
material properties to be compliant with all space constraints such as compatibility with the attitude
control systems, thermal variations, radiation exposure, launch stresses, etc. In [VP99] a six degree
of freedom (DoF) isolation of a disturbance source such as RWA or cryocooler was designed and im-
plemented using three elastomer-based softmounts made of space-qualified silicon rubber material.
The authors point out that an elastomeric material compatible with the space environment was
preferred to other conventional spring/damper technology (such as [RDR+86, DWJR86, CDS96])
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Figure 1.7: Flexible space platform using folded continuous beams [KPG10, KPG12]

for its simplicity and improved performance. Experimental tests demonstrate the attenuation in
force transmissibility exceeding 20 dB above 25 Hz and 40 dB above 50 Hz.

All of the aforementioned types of passive isolators, share the same dynamic behavior in the
case of small amplitude vibrations. Namely, they can be mathematically modeled as a visco-elastic
connection with stiffness k and damping c as shown in fig. 1.8. Considering that the disturbance

Spacecraft Structure

x

Disturbance
Source

Sensitive
Equipment

c k

F

Ft

m

(a) (b)

Figure 1.8: (a) Model of a passive isolation system. (b) Theoretical force transmissibility for a
1-DoF passive isolator with m = 10 kg, k = 10 000 N/m and considering a fixed spacecraft.

source of mass m is placed on top of the isolators and m is much smaller than the supporting
spacecraft structure, the relationship between the disturbance force F acting on the equipment and
the force Ft transmitted to the structured is described with the following set of equations{

mẍ+ cẋ+ kx = F

Ft = cẋ+ kx
(1.1)

where x is the isolator displacement. In terms of input-output behavior, the relationship between
the forces is given by the following second order transfer function:

H(s) =
Ft(s)

F (s)
=

cs+ k

ms2 + cs+ k
(1.2)
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This function is characterized by the undamped natural frequency ωn =
√

k
m and damping ratio

ξ = c
2
√
km

. Figure 1.8b shows the magnitude plots of this function for fixed m and k across

different values of the damping coefficient c. It can be seen that increasing c leads to a decrease
in the peak amplification around wn together with a corresponding increase in the high-frequency
roll-off. This inherent trade-off between peak amplification and high-frequency attenuation is the
main limitation common to most passive isolators. Accordingly, the passive isolator performances
depend on the tuning of their characteristics in terms of stiffness k and damping coefficient c.
The lower the resonance frequency, the wider the spectrum interval that is rejected. In other
terms, a twice lower resonance frequency, for instance, allows for a four times stronger attenuation
performance of a given high frequency perturbation component. Nevertheless, practical constraints
make it unrealistic to design very soft isolators. Among them, we can cite testability on ground
and less resistance of the component to launch stresses. The quality factor Q = 1/(2ξ) for state-
of-the-art elastomer-based isolators is about 3 to 4 (corresponding to about 24 dB amplification at
resonance) and cannot be reduced further due the intrinsic damping property of the material [Sec13].
Accordingly, passive isolators not only are not able to attenuate the low frequency spectrum, but
they actually introduce underdamped structure modes in the frequency range where the reaction
wheel disturbances are expected to act. This explains why for missions requiring very high platform
stability in a wide frequency band, passive isolation systems alone are insufficient to meet mission
pointing requirements when wheels are used.

Hybrid isolation

To compensate for the limitations of a purely passive approach and achieve broadband vibration
isolation, multiple hybrid (mixed pasive/active) control strategies such as [DCH95, LLJ14, LLZ13a]
have been studied in literature. Active isolation techniques rely on external actuators and sensors
in order to provide control force and feedback. The idea is to rely on active vibration isolation in
the low frequency range and use passive isolators to target the high frequency disturbances.

One hybrid isolation approach is to combine the passive folded continuous beams described
earlier with piezoelectric actuators and sensors as shown in fig. 1.9a. Such an arrangement was
used in [KPG10] to isolate microvibrations from reaction wheels in six-degrees-of-freedom. Another
much more common technique is to employ an active platform driven by six active/passive hybrid
struts in a hexapod configuration, such as the one illustrated in fig. 1.9b. For example, one such
arrangement is used by the Jet Propulsion Laboratory within an active–passive vibration isolation
platform meant for space borne interferometry missions [TCVV02]. Each of the hybrid strut
is made up of a voice coil actuator in parallel with a soft spring. The springs act like passive
isolators with 3 Hz break frequency guarantees that even if the active power fails, the isolation
system is still operated by the passive part. The active vibration control unit uses the force
measurements provided by the load cell mounted in the hybrid strut to drive the actuators. Another
hexapod hybrid isolation platform is the Vibration Isolation and Suppression System (VISS) shown
in fig. 1.9c which was employed to protect high precision payloads from on-board disturbances
[CSD+99]. The key isolation component of VISS is a hybrid D-strut with the cross-section shown
in fig. 1.9c. This strut has a passive part composed by viscous fluid in two primary bellows and
interconnected by a narrow orifice between the payload and the base. The main advantage of such a
passive isolator is that the damping is independent of stiffness, has no wear mechanism and exhibits
large stroke.

Overall, hybrid isolation systems combine the best of both the passive and active isolation
techniques. When properly used, both high and low frequency microvibrations can be effectively
isolated. However, a drawback of these systems is that they require additional accessory devices
such as sensors, actuators and power systems alongside a feedback control loop. If the controller is
not properly designed, the system may suffer from serious spillover (due to actuator saturation for
example) and stability problems.
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(a) (b)

(c)

Figure 1.9: (a) Hybrid isolator consisting of folded continuous beams and smart material [KPG10].
(b) Soft isolation Stewart platform with six active actuators [PHR+07]. (c) VISS hexapod configu-
ration with model of MWIR telescope and cross-section of the new-type hybrid D-strut [CSD+99].

1.1.3 Description of the ESA and Airbus D&S hybrid isolation platform

In this context, research activities at ESA and Airbus D&S have seeked to remedy the drawbacks of
the flight-proven passive elastomer isolators by means of an active isolation system. One such hybrid
isolation platform is the one that was initially described in [BMSL11, FBBH14, Sec13] and shown in
fig. 1.10. The initial aim of this benchmark was to demonstrate the good functionality of a coupled
solution composed by a passive stage and an active stage for microvibration mitigation in satellites.
For these purposes, the different elements that composed the system have been dimensioned so that
the setup is representative of the structure behavior of a satellite put in an orbit. The platform
consists of an interface plate suspended by four springs representative of a satellite panel in free
floating conditions. Instead of real reaction wheel, the benchmark made use of a dummy wheel
sharing the same inertial properties of a real wheel. A perturbation source composed of a shaker
was installed on the top of this dummy wheel with the aim of partially simulating the time-varying
harmonic disturbances induced by a real spinning wheel. Although, the shaker and dummy wheel
can’t fully capture the precise nature of real reaction wheel microvibrations, the setup provided
a good initial starting point to evaluate novel isolation methods in a cost effective manner. The
active plate rigidly connects to the dummy wheel while the connection to the interface plate is
made through four passive elastomer isolators that are used to mitigate the effect of high frequency
perturbations. On the bottom of each isolator, a tri-axis force cell sensor is installed. When strained,
piezoelectric elements inside these cells generate electric charges that are converted into voltages
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Figure 1.10: (a) Airbus D&S and ESA breadboard used in preliminary studies. (b) Schematic of
the same breadboard.

using charge amplifiers. The noisy force measurements are afterwards interpreted by the controller
in order to mitigate low-frequency disturbances in the range of 10-50 Hz. This is accomplished using
a set of six proof mass actuators that are used to actuate the active plate. These are mounted on
three cubes; three along the vertical axis and three in the tangential direction and are driven by a
set of six current amplifiers. The end goal is minimize the contact forces measured by the sensors
and therefore the mitigate the microvibrations that get transmitted to the interface plate.

Using an Linear Time Invariant (LTI) model of this platform, experimentally identified by
Airbus D&S, various controller synthesis strategies have been investigated in [BMSL11, FBBH14,
Sec13] with the goal of achieving a reduction of disturbance transmissibility in all of the six DoF
of at least 20 dB. The strategies were experimentally verified and include an adaptive feedforward
disturbance cancelation scheme while the second one was formulated and managed in the µ-synthesis
framework to easily handle robust stability and performance specifications.

1.1.4 Motivation of the study

Limitations of the previous setup

One of the most important motivations for this thesis was the need to address the following list of
limitations with the previous setup and control design approaches:

• the previous setup attempted to emulate the harmonic spectrum of a real reaction wheel by
means of a single shaker installed on top of the dummy wheel. Although this was very useful
in highlighting the potential of the isolation platform, the shaker could only induce vibrations
along the mounting direction. A real reaction wheel on the other hand typically generates a
complex multi-harmonic and phase correlated spectrum in both lateral and axial directions.

• a spinning reaction wheel will naturally induce a coupling between the lateral displacements of
the active plate due to gyroscopic effects. Additionally, a real reaction wheel is not rigidly con-
nected to supporting structure and typically the rotating shaft is supported by ball-bearings
that have an inherent flexibility.

• the previously identified black box LTI dynamics and the associated uncertainty model offered
little insight into the physical reality or the limits of achievable performance.

• due to the lack of physical insight a series of very conservative assumptions were implicitly
made during the controller synthesis procedures about the nature of model uncertainty in
order to safeguard against potential plant variation.
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End-to-end analysis of microvibration disturbances

For modern space missions requiring stringent point performances, the calibration and Validation
& Verification (V&V) of microvibration isolation systems is a crucial step in the overall process.

Currently, due to the reduced means of integrated flight testing for space missions, engineers
have to rely almost exclusively on computer simulations, for the tuning, validation and acceptance
of such systems. In the vast majority of cases, the isolation system tuning is performed using a
combination of empirical and classical control approaches. For the V&V phase, the industry relies
essentially on time-domain analysis techniques based on Monte-Carlo simulations. The setup of
such validation techniques is rather simple. First, engineer build a highly accurate and representa-
tive simulation model. Afterwards, thousands or even millions of flight simulations are run using
different values for the isolation parameters or considering multiple mission conditions. These char-
acteristics are chosen over a set of predefined feasible values in order to ensure that all possible
mission conditions are covered. This often leads to long design, development and validation times
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Figure 1.11: Typical frequency range for reaction wheel disturbances, spacecraft structural dynam-
ics and the attitude & microvibration control systems.

with a lot of iterations relying on these intensive, high fidelity simulation campaigns. However,
slight changes in design hypotheses and objectives lead to large redesign and verification efforts.
These time domain methods have the additional shortcoming that no direct relation exists between
the analysis and the control design. Requirement non-satisfaction from simulations does not typi-
cally give the designer guidelines in which direction the control laws need to be updated and many
iterations are necessary to fix the non compliance while not introducing another one. In addition
to these issues, the main drawback of this method is that the random choice of the parameters
over their predefined range of feasible values does not imply that all the possible parameter com-
binations are investigated. Therefore, the method provides no rigorous guarantee concerning the
stability and performance due to the observation of discrete operating points. The ”certificate”
that is obtained solely consists in a probability of success of the mission. These are some of the
reasons why our industrial partners seek better analytical tools that aid the design and V&V of
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isolation systems and provided a lot motivation for the research conducted in this thesis. The
need is to build accurate and integrated models of typical mission scenarios and afterwards use the
analytical tool to perform both the controller synthesis and the worst-case analysis without the
need for time-domain methods.

With regards to the hybrid isolation of microvibrations produced by reaction wheels, fig. 1.11
seeks to illustrate the typical frequency range for reaction wheel disturbances, spacecraft dynamics
and the attitude & microvibration control systems. The frequency ranges are organized in layers
that are typically found in any space observation mission. The motivation is therefore to build
a representative end-to-end model that combines all this complexity and sub-components in a
common mathematical framework and afterwards use this integrated system for both controller
synthesis and worst-case analysis purposes.

1.2 Aims and objectives

In this context, the research work presented in this thesis combines the expertise of the European
Space Agency (ESA), the industry (Airbus Defence and Space) and the IMS laboratory (laboratoire
de l’Intégration du Matériau au Système) with the aim of developing new generation of robust
microvibration isolation systems for future space observation missions. More precisely, the goal of
the thesis is the development of an Integrated Modeling, Control and Analysis (IMCA) framework
in which to conduct advanced studies related to reaction wheel microvibration mitigation.

Integrated modeling should be understood in the context of this thesis as the process of build-
ing an overall system model of the spacecraft containing realistic structures, disturbances, optics,
attitude control and vibration isolation models and their mutual interaction. Each of these subsys-
tems can have an associated uncertain or parameter-dependent part that is independently identified
and calibrated. Afterwards, the integrated system seamlessly assembles these sub-blocks and their
corresponding uncertain or parameter-dependent components into an end-to-end model that maps
disturbances to various performance signals. With the overall spacecraft model properly con-
structed, the thesis then seeks to demonstrate how modern robust analysis tools can be employed
to truly understand the reaction wheel disturbance propagation throughout the system and also
perform state-of-the-art worst case uncertainty analysis with guaranteed performance bounds. The
present works also seeks new ways to simulate the image distortions induced by such disturbances.
Finally, the thesis aims to highlight how these modeling and analysis capabilities can be com-
bined with modern controller synthesis techniques to synthesize and tune advanced architectures
for microvibration isolation.

To accomplish these goals, the thesis will build upon the previous research conducted by Airbus
Defence and Space and ESA on the use of mixed active/passive microvibration mitigation tech-
niques. Therefore, the main isolation architecture that will be considered in this work is the one
previously described in section 1.1.3. However, it should be stressed that the methodologies and
capabilities demonstrated in this thesis are not limited to this particular architecture and that the
guidelines and procedures presented throughout this work can be adapted to a wide variety of other
mission scenarios.

In accordance with the previously stated goals, the research activity proposed and accomplished
a series of objectives that can be grouped as follows:

Integrated modeling

• establish an Integrated Modeling, Control and Analysis framework for a typical space observa-
tion mission composed of a flexible satellite mode, a hybrid isolation platform and a reaction
wheel assembly. The integrated end-to-end uncertain system model must fully capture the
disturbance propagation from the reaction wheels, through the isolation system and flexible
spacecraft structure towards the sensitive instruments
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• develop a new model for reaction wheel disturbance that takes into account the multi-
harmonic and phase-correlated perturbations generated by a typical wheel during operation.
The model must have a representation that can be easily combined with any end-to-end model
in order to make non-conservative predictions about the resulting performance signals.

Control system design

• show how stability requirements and isolation performance objectives can be expressed as
bounds on certain scaled closed-loop transfers using results from modern control theory.

• demonstrate how the integrated model together with modern controller synthesis techniques
can be employed to tune the active isolation platform and deliver high performance distur-
bance isolation with guaranteed transmissibility or pointing performance in the presence of
plant uncertainty.

• propose a methodology to easily calibrate the trade-off between robustness and performance.

Worst case analysis

• demonstrate how guaranteed performance bounds of the isolation architecture can be ex-
tracted using analytical worst-case analysis tools. These are used to certify the control
solution with respect to model uncertainty and nonlinear phenomenon without relying on
Monte-Carlo campaigns.

• introduce new methods to simulate the image distortions resulting from jitter motions in a
manner that correctly handles the phase relations between the motions along each imaging
axis.

1.3 Outline of the thesis

The content of this thesis is organized into five chapters that are illustrated in the flowchart in
fig. 1.12.

Chapter 1 provided an overview of the concern about spacecraft microvibration and the need to
perform the current research.

Chapter 2 introduces the integrated uncertain model for the hybrid microvibration isolation plat-
form developed by Airbus Defence and Space and ESA. Based on this uncertain model, the chapter
presents a method to tune a robust controller for active vibration isolation in order to minimize
the elastic forces transmitted through the passive isolators. Finally, the robust performances of the
isolation architecture are assessed using analytical tools and time domain simulations based on a
nonlinear high-fidelity industrial simulator are included as a final verification step.

Chapter 3 shows how the dynamical models of the reaction wheel and microvibration isolation
platform established in the previous chapter can be integrated with that of simplified model of
a flexible spacecraft stabilized using an attitude control system. The end-to-end system also in-
cludes a novel disturbance model of the reaction wheel perturbations that is suitable for worst case
analysis and controller design. The main goal is to establish an Integrated Modeling, Control and
Analysis framework of reaction wheel perturbations for a typical space observation mission in order
to guarantee improved pointing stability performance even in the presence of isolation platform
uncertainties and non-linear effects.

Chapter 4 presents a method that guarantees upper bounds on the worst-case pointing errors of
a general flexible spacecraft in response to reaction wheel disturbances. The chapter also includes
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Figure 1.12: Overall structure of the thesis.

a framework to simulate the resulting image distortions based on the predicted geometry of the
time-domain pointing error response.

Chapter 5 presents the main conclusions of the work performed together with recommendations for
future research studies.

“Somewhere, something incredible is
waiting to be known.”

Carl Sagan

13





2

Robust control of a hybrid

microvibration isolation platform

2.1 Introduction

The previous chapter outlined the real industrial need to achieve significant microvibration isola-
tion across the full operating range of a typical reaction wheel to meet rising pointing accuracy
requirements demanded by future space observation missions. It was also shown how hybrid isola-
tion systems can compensate for the limitations of a purely passive approach by means of an active
control strategy at low frequencies. In particular, the mixed passive/active isolation platform de-
veloped by ESA and Airbus Defence and Space is outlined in section 1.1.3

Motivated by the previous research obtained using this hybrid isolation platform and the need
to address the limitations of the initial design, the first objective of this chapter is to present
an uncertain model of the platform that is based upon the physical equations of the system.
The new model includes the dynamics of a spinning reaction supported by flexible bearings and
captures the interactions between the sub-components with various uncertain parameters, in a
unified way. Next, a vibration mitigation architecture is proposed and a systematic control design
procedure is used to calibrate the active control solution. In order to push the system to the
limits of achievable performance, the proposed controller is chosen to adapt based upon the current
operating spin rate of the reaction wheel. Finally, a comprehensive robust analysis procedure
based on the structured singular value µ is used to assess and certify the stability margin and
robust performance of the proposed design. The frequency-dependent parametric sensitivity of
the stability and performance indications is provided and used to identify the critical uncertain
parameters and worst-case combinations. In this way, the classical use of expensive and time-
consuming Monte Carlo campaigns can be avoided.

2.2 Main contributions and chapter organization

The chapter begins with section 2.3 that aims at deriving an uncertain model of the plant that is
suitable for robust control synthesis and subsequent performance analysis. Section 2.4 is devoted
to the aspects of synthesizing a robust controller. The various trade-offs and limitations of the
synthesis procedures are highlighted. The resulting controller is thoroughly analyzed in section 2.5
by employing the structured singular value µ to assess the robust stability and robust performance
of the closed-loop system. Time domain simulations based on a nonlinear high-fidelity industrial
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simulator derived with the expertise of ESA and Airbus Defense & Space are included as a validation
step. A summary and final concluding remarks are given in section 2.7.

2.3 Modeling the plant

The purpose of this section is to model the plant illustrated on fig. 2.1. The model represents an
extension of the hybrid isolation that was previously described in section 1.1.3 and illustrated in
fig. 1.10. More precisely, it is assumed that the dummy wheel used in previous studies was replaced
by a spinning reaction wheel in cantilevered configuration that connects to the active plate using a
flexible support.

Both parametric uncertainties and disturbances are taken into account. To this end, an uncertain
nonlinear model of the plant is derived using the Lagrangian formalism and a Linear Fractional
Transformation (LFT) model is extracted considering a Taylor expansion of each nonlinear terms.
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Figure 2.1: (a) Scaled illustration of the system setup with the various subcomponents (Note: only
four of the six PMAs are illustrated here, while fig. 2.2 shows the locations and orientations of all
six actuators). (b) Body frames, flexible connections and relative placements.

2.3.1 Coordinate system definitions

The dynamical model of the wheel is based on extensive works on this subject in [LLZ+13b, Kim14,
ZAZ11, Mas02]. In this work, the reaction wheel is modeled as a rigid cylinder connected to the
base structure through a massless shaft supported by a flexible connection. This cantilevered con-
figuration allows the wheel to freely rotate along its shaft pointing axis while the elastic connection
also allows for lateral and rocking motions of the wheel. Let Fw := (ow; ~x, ~y, ~z) a body-fixed frame
attached to the center of mass (CoM) of the flywheel with the z-axis aligned with the shaft axis
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Figure 2.2: (a) Top view of actuator and sensor placement. (b) Schematic view of the reference
frames (the vectors r4 and rs4 correspond to positions of the 4th actuator and force sensor). (c)
One the three cubes with two proof-mass actuators attached.

as shown in fig. 2.1. The flywheel’s displacements from the initial position are given in the inertial

reference frame Fworld :=
(
O; ~X, ~Y , ~Z

)
through the vector qwt =

[
x y z

]
T. The wheel’s body

frame orientation with respect to the inertial frame is described using the y-x-z rotation sequence
illustrated in fig. 2.3 and the angles qwr =

[
θx θy θz

]
T. The first one around the Y -axis ro-

x

z

yθz

x′

z′

y′

θxx̂

ẑ

ŷ
θy

X

Z

Y

Figure 2.3: Definition of the Tait-Bryan angles and transformations from the inertial frame XY Z
to the reaction wheel body frame xyz by means of a y-x-z rotation sequence.

tates the inertial reference frame into the intermediate frame x̂ŷẑ. A subsequent rotation about

the new x̂-axis leads to the so-called rocking frame Fwrock :=
(
ow; ~x′, ~y′, ~z′

)
. This frame describes

the rocking motion of wheel due to the elastic connection. A final rotation about the z′-axis by
θz is used to capture the free spinning motion of the flywheel. The overall transformation matrix
Rw = Ryxz (θx, θy, θz) from inertial to body frame is detailed in table 2.1.

In a similar fashion, both the interface and the active plate are free to translate and rotate in three
dimensions. A body-fixed frame Fa := (oa; ~u,~v, ~w) is attached at the CoM of the active plate while

17



2.3. Modeling the plant

Table 2.1: Transformation matrices between the inertial frame and the reaction wheel body frame

Inertial frame to body frame
Sequence: XY Z → x̂ŷẑ → x′y′z′ → xyz

From To Transformation matrix

XY Z x̂ŷẑ Ry (θy) =

 cos θy 0 − sin θy
0 1 0

sin θy 0 cos θy


x̂ŷẑ x′y′z′ Rx (θx) =

 1 0 0
0 cos θx sin θx
0 − sin θx cos θx


x′y′z′ xyz Rz (θz) =

 cos θz sin θz 0
− sin θz cos θz 0

0 0 1


XY Z xyz Ryxz (θx, θy, θz) = Rz (θz)Rx (θx)Ry (θy)

Note: all the transformation matrices are orthonormal i.e. the inverse is equal to the transpose

the frame Fp :=
(
op;~a,~b,~c

)
is fixed to the CoM of the interface plate, see fig. 2.1 for an illustration

of these frames. The translational displacements from the equilibrium configuration of the two
plates are specified in the inertial reference frame using the vectors qat =

[
u v w

]
T for the active

plate and qpt =
[
a b c

]
T for the interface plate. The orientations are described as for the reaction

wheel, by the Euler angles qar =
[
θu θv θw

]
T and y-x-z rotation matrix Ra = Ryxz (θu, θv, θw)

for the active plate and qpr =
[
θa θb θc

]
T and Rp = Ryxz (θa, θb, θc) for the interface plate. The

total vector of generalized coordinates q of the mechanical system can thus be written as:

q =
[
qT
p qT

a qT
w

]
T ∈ R18 with

qw =
[
qT
wt | qT

wr

]
T =

[
x y z | θx θy θz

]
T

qa =
[
qT
at | qT

ar

]
T =

[
u v w | θu θv θw

]
T

qp =
[
qT
pt | qT

pr

]
T =

[
a b c | θa θb θc

]
T

(2.1)

The flexible support connecting the reaction wheel to the active plate is modeled as a single six
DoF elastic connection (point B in fig. 2.1) located at

rwb =
[
0 0 −lbw

]
T in the wheel’s frame Fw and

rab =
[
0 0 lba

]
T in the active plate frame Fa

(2.2)

where the nominal offsets lbw and lba are given in table 2.3. Similarly, the elasticity of the passive
isolators connecting the active and interface plates is also modeled as a six DoF elastic joint (point
S in fig. 2.1) with coordinates

ras =
[
0 0 −las

]
T in the active plate frame Fa and

rps =
[
0 0 lsp

]
T in the interface plate frame Fp

(2.3)

2.3.2 Reaction wheel microvibrations

For the considered mission, the reaction wheel’s time-varying spin rate Ω(t) and acceleration Ω̇(t)
are assumed to be bounded with:

Ω(t) ∈ Ω = [10, 50] Hz (rev/s) and |Ω̇(t)| ≤ Ω̇max = 0.01 Hz/s (rev/s2) ∀t ≥ 0 (2.4)
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Remark 1. Throughout this study, Ω will also sometimes refer to a frequency value and therefore
the preferred unit of measure for the wheel spin rate and acceleration will be Hz and Hz/s.

As explained in the previous chapter, the unavoidable mass imbalances in the flywheel give rise to a
dominant harmonic disturbance centered at the same frequency Ω as the spin rate of the flywheel.
To understand the cause, the static and dynamic imbalances of the flywheel are first modeled
as additional small masses ms and md fixed to the wheel’s body frame Fw as shown in figs. 2.1
and 2.4. Typically, the mass of these imbalances is several orders of magnitude smaller than that
of the balanced flywheel. Therefore, these imbalances don’t cause a significant shift of the center
of mass and the principal axis of inertia when attached to the balanced wheel. In effort to extract
a simple model of the system, the contribution of the mass imbalances to the kinetic energy of the
system (2.12) is only as an additional mass added within the total wheel mass mw. Their effect
on the dynamics of the system is approximated as additional external forces F1 =

[
F x1 F y1

]
T and

torques T1 =
[
T x1 T y1

]
T that are applied to the wheel’s rocking frame Fwrock :=

(
ow; ~x′, ~y′, ~z′

)
and rotate with the same instantaneous angular spin rate Ω as the flywheel. The magnitude of
these forces and torques is speed dependent with |F1| = UsΩ

2 and |T1| = UdΩ
2 where Us = mslrw,

Ud = mdlrwlhrw and lrw, lhrw are the wheel radius and height visible in fig. 2.1. Additionally, the
relative phasing between these vectors depends on the angular separation ϕ between the two planes
containing ms and md as shown in fig. 2.4. Typically, a simplifying assumption is made that the
mass imbalances are coplanar i.e. ϕ = 0 and the vectors F1 and T1 are perpendicular. With the
previous considerations, the components of these disturbance vectors are given by for a constant
spin rate Ω by

F1(t) =

[
F x1 (t)
F y1 (t)

]
=

[
UsΩ

2 sin (Ωt+ φ)
UsΩ

2 cos (Ωt+ φ)

]
and T1(t) =

[
T x1 (t)
T y1 (t)

]
=

[
−UdΩ2 cos (Ωt+ φ)
UdΩ

2 sin (Ωt+ φ)

]
(2.5)

where ψ is a random phase angle. In addition to the mass imbalance disturbances, the wheel can

Ω

Ω

ϕϕ T1

F1

T1

F1
x′

x′

z′

y′ y′

ms

md

md

ow
ow

Figure 2.4: Phase relationship between the harmonic forces and torques due to the mass imbalances.

also generate other harmonics at integer or non-integer multiples of the fundamental frequency Ω as
well as broadband noise [Add17, TO03, LMB08, LYH12, Kim14]. These additional perturbations
are caused among other things by irregularities, lubrication and friction in the ball bearings and
motor drive operation. Experimental studies given in [GMGB14, Kim14] also show that some
wheels can even generate axial forces along the z-axis. With the prior considerations, the extended
excitation vector uw that combines all the forces and torques acting on the flywheel can be expressed
in the wheel’s rocking frame Fwrock as:

uw =
[
fTw | tTw

]
T =

[
Fx Fy Fz | Tx Ty Tz

]
T

=
[
01×5 Tm

]
T +

[
Fxbn Fybn Fzbn | Txbn Tybn Tzbn

]
T︸ ︷︷ ︸

ubn

+
N∑
i=1

[
F xi F yi F zi | T xi T yi 0

]
T︸ ︷︷ ︸

ui

(2.6)
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where Tm represents the control torque supplied by the motor, ubn is the stochastic broadband
noise and ui is the i-th out of a total of N harmonic disturbances with

F xi (t)

F yi (t)

F zi (t)

 =


afi Ω2 sin

(
hiΩt+ φfi

)
afi Ω2 cos

(
hiΩt+ φfi

)
afzi Ω2 cos

(
hiΩt+ φfzi

)


[
T xi (t)

T yi (t)

]
=

[
−atiΩ2 cos

(
hiΩt+ φti

)
atiΩ

2 sin
(
hiΩt+ φti

) ] (2.7)

where hi is the harmonic number (in the case of the main harmonic h1 = 1), afi , a
t
i, a

fz
i are

harmonic amplitude coefficients and φfi , φ
t
i, φ

fz
i are random phase angles. For the main harmonic

disturbance generated by coplanar mass imbalances, the following relationships hold:

af1 = Us = mslrw ; at1 = Ud = mdlrwlhrw ; φf1 = φt1 (2.8)

Both the harmonic coefficients afi , a
t
i, a

fz
i , φ

f
i , φ

t
i, φ

fz
i and a stochastic model for the broadband

noise ubn can be estimated from experimental data [Mas99, LKM+07, LMB08, Kim14]. With this
in mind and for the considering wheel harmonics given in table 2.3, the spectrogram of the reaction
wheel’s axial force disturbance Fx is shown in fig. 2.5 for a linear variation of the spin rate within
Ω ∈ [10, 50] Hz over a 8 min period. The peaks corresponding to each of the 4 harmonics are clearly
visible and highlighted in the figure.

Figure 2.5: Spectrogram of the reaction wheel’s axial force disturbance Fx for a linear variation of
the spin rate within Ω ∈ [10, 50] Hz over a 8 min period (Note: only the four dominant harmonic
components (h1, . . . , h4) have been included in the model while in reality the number of harmonics
can be much higher).

2.3.3 Equations of motion using Lagrangian formalism

The dynamics of the overall setup with generalized coordinates q is completely described using
energy principles from classical mechanics by the following set of Lagrange equation:

d

dt

(
∂Ltotal (q, q̇)

∂q̇

)
− ∂Ltotal (q, q̇)

∂q
+
∂Ddissipative (q̇)

∂q̇
= Q (q, q̇)

Ltotal (q, q̇) = T kinetic (q, q̇)− Vpotential (q)

(2.9)

where q̇ represents the first derivative of the generalized coordinate with respect to time t, Ltotal

is the Lagrangian, T kinetic the total kinetic energy, Vpotential the potential energy, Ddissipative the
dissipative function and Q the vector of external generalized forces.

20



Chapter 2. Robust control of a hybrid microvibration isolation platform

Kinetic energy

The total kinetic energy T kinetic is the sum of the translational and the rotational of the flywheel,
active plate and interface plate. With reference to figs. 2.1 and 2.3, the angular velocity vector of
the reaction wheel ωw is equal to the sum of the angular velocity θ̇y about the Y -axis, θ̇x about
the x̂-axis and θ̇z about the z′-axis. Employing the transformation matrices defined in table 2.1,
the angular velocity vector in the body frame can be written as

ωw =

0
0
Ω

+ Rz (θz)

θ̇x0
0

+ Rz (θz)Rx (θx)

 0

θ̇y
0

 =

θ̇x cos θz + θ̇y cos θx sin θz
θ̇y cos θx cos θz − θ̇x sin θz

Ω− θ̇y sin θx


=

 cos θz cos θx sin θz 0
− sin θz cos θx cos θz 0

0 − sin θx 1


︸ ︷︷ ︸

W (θx,θy ,θz)

θ̇xθ̇y
Ω


︸ ︷︷ ︸
q̇wr

where Ω = θ̇z denotes the wheel spin rate

(2.10)

As previosuly mentioned, the orientations of the two plates is described using the same rotational
sequence as for the flywheel. Therefore, the angular velocities of the active plate ωa and of the
interface plate ωp in the respective body frames are equal to

ωa = W (θu, θv, θw) q̇ar and ωp = W (θa, θb, θc) q̇pr (2.11)

It is now possible to write the total kinetic energy of the system as

Tkinetic (q, q̇) =
1

2

(
mwq̇T

wtq̇wt + ωT
wJwωw︸ ︷︷ ︸

Reaction wheel

+maq̇
T
atq̇at + ωT

aJaωa︸ ︷︷ ︸
Active plate

+mpq̇
T
ptq̇pt + ωT

p Jpωp︸ ︷︷ ︸
Interface plate

)

=
1

2
q̇TM (q, q̇) q̇

(2.12)

where M is the generalized mass matrix, mw, ma and mp are the masses of the flywheel, active and
interface plate respectively while Jw, Ja, Jp denote the corresponding body frame inertia tensors.
Taking into account the rotational symmetries of each object, these tensors are given by

Jw = diag
(
Jrr Jrr Jzz

)
Ja = diag

(
Juu Jvv Jww

)
Jp = diag

(
Jaa Jbb Jcc

)
(2.13)

Remark 2. The inertial properties of the active plate given by ma and Ja and center of mass
location are calculated with the assumption that the proof mass actuators are rigidly connected to
the plate and part of same composite object.

Potential energy and disipations

The potential energy of the system is stored as elastic energy in the flexible wheel support, elastomer
isolators and the springs supporting the interface plate. Similarly, damping also occurs within
these interconnecting elements. To calculate the potential energy Vpotential and the dissipation
Ddissipative, it is necessary to first calculate the relative displacements and relative velocities between
the system components. It can be safely assumed, in the context of microvibration applications,
that except for the wheel angle θz, the angular displacements are of small magnitude [LJDL15,
ZAZ11, LLZ13a]. Considering the relative offsets (2.2), the linearized displacements q∆b occurring
at the elastic connection between the flywheel and the active plate can be written in the inertial
frame as:

q∆b = (qwt + rwb × qwr)− (qat + rab × qar)

= T (rwb)qw − T (rab)qa
(2.14)
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where T (r) =

[
I3 [r]×
03 I3

]
and [r]× =

 0 −z y
z 0 −x
−y x 0

 for r =

xy
z

 (2.15)

Similarly, for the passive isolators connecting the active and interface plates, the extension of elastic
connection is equal to:

q∆s = T (ras)qa − T (rps)qp (2.16)

For clarity, these elastic extensions for small rotations are shown in fig. 2.6. Lastly, it is assumed
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Z
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θu

Reaction
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Figure 2.6: Example of linearized extensions of the elastic connections in the inertial reference
caused by small rotations.

that the elastic energy due to the suspension springs of the interface plate depends only on the
plate’s generalized displacement vector qp. Additionally, classical damping is assumed for all the
elastic connections. With this previous consideration, the potential energy Vpotential (q) and the
dissipation function Ddissipative (q̇) of the system can be written as

Vpotential (q) =
1

2

(
qT

∆bKbq∆b + qT
∆sKsq∆s + qT

pKpqp

)
= qT

(
ΥTKΥ

)
q

Ddissipative (q̇) =
1

2

(
q̇T

∆bCbq̇∆b + q̇T
∆sCsq̇∆s + q̇T

pCpq̇p

)
= q̇T

(
ΥTCΥ

)
q̇

(2.17)
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where Kb,Ks,Kp are the stiffness matrices and Cb,Cs,Cp are the damping matrices given by (the
numerical values of the elements of these matrices are listed in table 2.3):

Kb = diag
(
kx ky kz kθx kθy 0

)
Cb = diag

(
cx cy cz cθx cθy 0

)
Ks = diag

(
ku kv kw kθu kθv kθw

)
Cs = diag

(
cu cv cw cθu cθv cθw

)
Kp = diag

(
ka kb kc kθa kθb kθc

)
Cp = diag

(
ca cb cc cθa cθb cθc

)
(2.18)

and
K = diag

(
Kp Ks Kb

)
C = diag

(
Cp Cs Cb

) ; Υ =


I6 06 06

−T (rps) T (ras) 06

06 −T (rab) T (rwb)

 (2.19)

Note that, the matrices Kb,Cb have the elements connecting the axial rotations θx, θw and velocities
θ̇x, θ̇w null due to the fact that the flywheel is considered free to rotate without friction or elastic
forces along its z-axis. The matrices Ks,Cs depend on the physical characteristics and topology of
the passive isolators and can be identified experimentally up to a certain accuracy. For example,
consider the kθu parameter associated with the rotational stiffness of the joint and assume that
each of the four passive isolators (arranged as shown in figs. 2.1 and 2.2) behaves like a linear spring
with stiffness k

4 . A virtual rotation of angle δ between the active and interface plates as seen in
fig. 2.7 would produce a corresponding extension of the two springs by a factor of lsδ. This in turn

would generate two elastic forces Fδ = ls
k
4δ that give rise to a total torque Tδ = 2lsFδ = l2s

k

2
δ =

kθuδ applied to both plates. The vector ys of elastic forces f s =
[
Fsu Fsv Fsw

]
T and torques

u

w v
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c

bop

oa

Rotation
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4
Linearized

reaction force

Fδ = ls
k

4
δ Echivalent reaction torque
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2
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ls

S
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Figure 2.7: Derivation of the rotational stiffness kθu for the passive isolators by considering small
virtual rotational displacements.

ts =
[
Tsu Tsv Tsw

]
T between the active plate and the interface plate, results from (2.17) and has

the following expression in the inertial frame

ys =
[
fTs | tTs

]
T =

[
Fsu Fsv Fsw | Tsu Tsv Tsw

]
T = Ksq∆s + Csq̇∆s (2.20)

= S (KΥq + CΥq̇) (2.21)

where S =
[
06 I6 06

]
is a selection matrix. The purpose of the control architecture will be to

reconstruct this vector using the noisy sensor measurements and generate an appropriate control
signal to significantly attenuate each component of ys in the presence of external disturbances.
This will be discussed in detail in the following sections.
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External forces

It is now necessary to determine each component of the vector Q (q, q̇) of external generalized
forces in (2.9). To do this, it is first noted that the external forces and torques acting on the
system are due to disturbances generated by the spinning reaction wheel, the actuator forces and
the torque applied by the motor.

As explained in (2.6), the vector uw =
[
Fx Fy Fz | Tx Ty Tz

]
T of reaction wheel forces and

torques is applied directly to the CoM of the flywheel. The Tz component combining the motor
torque as well as the torque ripple disturbance is applied with equal magnitude but opposite
directions to the flywheel and the active plate bodies. The main harmonic is the focus of this
chapter and the additional disturbances are all lumped into a stochastic broadband disturbance
ubn without explicitly modeling their sources physically.

In the case of the six actuators, each one generates an axial force along the direction they are
mounted on to active plate (see fig. 2.2). However, in order to derive the structural dynamics of
the overall system, the actual topology of the actuators will be considered in a later section of
this chapter. For now, it is assumed that the combined actuators can directly apply the following
overall force fas =

[
Fasu Fasv Fasw

]
T and torque vector tas =

[
Tasu Tasv Tasw

]
T to the active

plate at the passive isolator elastic connection S:

us =
[
fTas | tTas

]
T =

[
Fasu Fasv Fasw | Tasu Tasv Tasw

]
T (2.22)

In this way, both the actuator inputs us and the ouputs ys are defined in the same frame and are
said to be collocated.

Let Fk represent the k-th external forces applied at the position rk (q) of the system where q
is the generalized coordinate vector as defined in (2.1). Using the principle of virtual work from
Lagrangian mechanics, the generalized force vector Q(q) ∈ R18 can be calculated as follows

Q(q) =
[
Q1(q) . . . Q18(q)

]
T with Qi(q) =

∑
k

Fk ·
∂rk(q)

∂qi
; i = {1, . . . , 18} (2.23)

where qi represents the i-th generalized coordinate.

Linearized equations of motion

Using (2.12), (2.17) and (2.23), the Lagrange equations (2.9) can be written as:

M (q, q̇) q̈ +
(
G (q, q̇) + ΥTCΥ

)
q̇ + ΥTKΥq = Q(q) (2.24)

The elements Gij with i, j = {1, . . . , 18} of the gyroscopic matrix G are calculated from the elements
Mij of the mass matrix M as follows [TN85]:

Gij (q, q̇) =
18∑
k=1

1

2

(
∂Mij (q, q̇)

∂qk
+
∂Mik (q, q̇)

∂qj
−
∂Mjk (q, q̇)

∂qi

)
q̇k ; i, j = {1, . . . , 18} (2.25)

where q̇k represents the k-th component of the state vector q. Except for the wheel spin angle θz,
the other generalized displacements in q are of small amplitude, i.e. if the state vector is partitioned
as q =

[
ηT θz

]
T then η ≈ 0. The dynamics is heavily influenced by the gyroscopic effects due to

the reaction wheel spinning with velocity Ω = θ̇z. Hence, the nonlinear matrices in (2.24) can be
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linearized by performing a Taylor expansion of each term in the neighborhood of η = 0 and η̇ = 0.
The higher-order terms are ignored, except for those related to the wheel spin Ω and the resulting
linear model is given below

Mq̈ +
(
G(Ω) + ΥTCΥ

)
q̇ + ΥTKΥq = Q

[
uw
us

]
ys = S

[
KΥ CΥ

] [q
q̇

] (2.26)

where

M = diag

([
mpI3

Jp

]
︸ ︷︷ ︸

Mp

,

[
maI3

Ja

]
︸ ︷︷ ︸

Ma

,

[
mwI3

Jw

]
︸ ︷︷ ︸

Mw

)

G(Ω) = diag

(
015 ,

[
0 ΩJzz

−ΩJzz 0

]
, 0

)
Q =


 012×5

I5

01×5

011×1

−1
05×1

1


 06

T (ras)
T

06




(2.27)

The input-output behavior is described through a Ω-dependent system model Ĝ(Ω) with 12 inputs[
uw
us

]
, 6 outputs ys and 36 states

[
q
q̇

]
having the following representation

Ĝ(Ω) :=



[
q̇
q̈

]
=

[
0 I

−M−1K̃ −M−1
(
C̃ + G(Ω)

) ]
︸ ︷︷ ︸

∈R36×36

[
q
q̇

]
+

[
0

M−1Q

]
︸ ︷︷ ︸
∈R36×12

[
uw
us

]

ys = S̃︸︷︷︸
∈R6×36

[
q
q̇

] (2.28)

where K̃ = ΥTKΥ , C̃ = ΥTCΥ , S̃ = S
[
KΥ CΥ

]
. The previous dynamical system can be

written in a more compact form as

Ĝ(Ω) :=


0 I 0

−M−1K̃ −M−1
(
C̃ + G(Ω)

)
M−1Q

S̃ 0

 with ys = Ĝ(Ω)

[
uw
us

]
(2.29)

where the notation
(

A B

C D

)
denotes the dynamical system: C (sI −A)−1 B + D. Since the system

matrices contain rational combinations of uncertain parameters and the wheel spin rate Ω is con-
sidered time-varying and part of the system state (i.e. an endogenous parameter), it follows that
Ĝ is an uncertain quasi Linear Parameter-Varying (qLPV) system scheduled by Ω.

The numerical values of the system parameters are provided in table 2.3 together with the uncer-
tainty ranges. The singular values of the transfer from wheel disturbances uw to the isolator contact
forces and torques ys are shown in fig. 2.8a for various values of uncertain system parameters and
for different reaction wheel speeds spin rates Ω ∈ {10, 30, 50} Hz. The peaks in the singular values
below 2 Hz correspond to the flexible modes due to the suspension springs attached to the interface
plate. Similarly, the modes in the [5, 60] Hz region are the result of the passive isolators while
the higher frequency resonances above 200 Hz are caused by the flexibility in the reaction wheel
support (in this case corresponding to the flexible wheel bearings supporting the wheel’s shaft).
Some of the flexible modes form pairs deemed positive and negative whirl modes that separate due
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2.3. Modeling the plant

to gyroscopic effects with increasing values of Ω. This effect can be highlighted using the so-called
Campbell diagram included in fig. 2.8b. This plot shows the shift in the modal frequencies of the
system (2.29) as a function of Ω. The image focuses on the isolator modes in the [6, 50] Hz region
where active isolation is desired. It is visible that the gyroscopic effect has no influence on the
axial and torsional isolator modes corresponding to movements along and around the w-axis of the
active plate. On the other hand, the nonzero terms in the gyroscopic matrix G introduce coupling
between the lateral and rocking motions along and around the u and v body axes.
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Figure 2.8: For multiple values of the uncertain parameters: (a) Singular values of the transfer from
wheel disturbances to the isolator contact forces and torques uw → ys for Ω ∈ {10, 30, 50}Hz. (b)
Campbell diagram showing the main harmonic disturbance frequency as well as the shift in the
natural frequencies of the system within the control bandwidth [10,50] Hz as a function of the wheel
spin rate Ω.

In order to develop a deeper intuition of the overall system, the dynamical model (2.26) can be
rewritten in terms of the governing equation of each subsystem. These equations are given in
table 2.2 and also shown as a block diagram in fig. 2.9. This provides a more modular approach
to system analysis and enables the possibility to quickly adapt the model to new configurations

26



Chapter 2. Robust control of a hybrid microvibration isolation platform

Table 2.2: Dynamical equations the system subcomponents

Subsystem Governing equation

Reaction wheel Mwq̈w + diag

(
03, Ω

[
0 Jzz
−Jzz 0

]
, 0

)
q̇w = uw − T (rwb)

Tyb

Wheel motor JzzΩ̇ = Tm + Tzbn = Tz =
[
01×5 1

]
uw

Wheel support (Flexible bearings) yb = Kbq∆b + Cbq̇∆b with q∆b = T (rwb)qw − T (rab)qa

Active plate Maq̈a = T (ras)
T (ys + us)− T (rab)

Tyb −
[
05×1

1

][
01×5 1

]
uw︸ ︷︷ ︸

Tz

Passive Isolator ys = Ksq∆s + Csq̇∆s with q∆s = T (ras)qa − T (rps)qp

Interface plate Mpq̈p + Cpq̇p + Kpqp = −T (rps)
Tys

Dimensions: Mw,Ma,Mp,Kb,Ks,Kp,Cb,Cs,Cp ∈ R6×6 ; qw,qa,qp,uw,yb,ys ∈ R6

Reaction
wheel

Flexible
Support

Active
plate

Pasive
Isolators

Interface
plate

Total actuator forces and torques us

Elastic forces and torques ys

ys

yb qp, q̇p

qa, q̇a

qw, q̇w ys

Wheel excitations uw

Motor torque and axial
disturbances Tz

Figure 2.9: System block diagram of the structural equations of motion. Input forces and
torques, Elastic forces and torques , Generalized displacements and velocities.

by replacing some of the component blocks. This will be exploited in the next chapter where
the dynamical model of the interface plate is replaced with that of a flexible satellite. Analyzing
table 2.2 the following facts can be stated:

• due to the offsets lbw, lba, las, lsp between the elastic connections and the CoM of the different
subcomponents, the lateral translations of the wheel, active and interface plates, i.e. the
states

[
x u a

]
in q are coupled to the rotations

[
θx θu θa

]
. Similarly, the translations[

y v b
]

are coupled to the rotations
[
θy θv θb

]
.

• the angular rotations θx and θy of the flywheel are also coupled due to the gyroscopic torques
dependent of the spin axis inertia Jzz and the wheel spin rate Ω. As the wheel is elastically
connected to the active plate, the rocking motions of both the active and interface plates get
coupled as a result. This explains the multiple whirl modes seen in the Campbell diagram
from fig. 2.8b.

• from the motor equation it follows that the wheel acceleration is proportional to Tz/Jzz and
therefore the reaction wheel spin rate Ω acts like an integrator of the total applied torque
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2.3. Modeling the plant

signal Tz = Tm + Tzbn, i.e. Ω(T ) = 1
Jzz

∫ T
0 Tz(t) dt. If the motor torque Tm is assumed to be

an exogenous signal, this integrator introduces an uncontrollable and unstable pole at zero
in the overall system Ĝ(Ω). One solution to stabilize this pole is to add an attitude control
loop such that the motor torque is dependent on the axial displacement and velocity of the
interface plate, i.e. Tm = Kqθc + Cq θ̇c where Kq, Cq ∈ R are the tunable parameters of the
attitude controller. This will be the method of choice in the subsequent chapter, where the
dynamical model of the interface plate will be substituted with a flexible satellite. In practice
however, the flywheel axial inertia Jzz is considerably higher than the total applied torque
signal Tz and therefore the factor Tz/Jzz is very small. This corresponds to small accelerations
(see (2.4)) in the reaction wheel, i.e. the Ω̇ ≈ 0 and the wheel can be assumed to spin at
a constant rate Ω in order to simplify the subsequent developments present in this chapter.
With the previous assumption, the motor equation JzzΩ̇ = Tz together with the axial rotation
θz of the wheel can be eliminated from the system state q in (2.26) and (2.29) and table 2.2.
Subsequently, Ω is considered an exogenous scheduling parameter that only influences the
values of the gyroscopic matrix G(Ω) in the previous equations. With these considerations,
the previously quasi Linear Parameter Varying (LPV) system (2.29) becomes a standard LPV
system the wheel rate is no longer part of the system state

[
qT q̇T

]
T. Furthermore, the new

LPV system remains open-loop stable for any choice in the spin rate Ω or other structural
parameters.

2.3.4 Extracting the models based on Linear Fractional Transformations

LFTs play a fundamental role in modern robust control as they provide an elegant and unified means
to model real or complex uncertain or varying parameters, LTI uncertainties, sector nonlinearities,
saturations, time delays, deadzones, or more general nonlinear operators [BR16, HO06, DPZ91].
The main idea is to separate the known part of the process model from the unknown by expressing
the process model as a feedback connection of a nominal plant and the uncertainty description. In
this way, an LFT describes a model set and the real process model is assumed to lie within this
set. Algebraic operations between LFT models such as series, parallel or feedback interconnections
preserve the LFT structure. Efficient tools exist to automate the LFT extraction process (see for
instance [BR16, Mag06]). The goal of this section is to present the method used to derive the
LFT representation of the uncertain and time-varying structural dynamics model given in (2.26)
and (2.29) and also introduce the uncertain sensor and actuator models. The combined LFT
models will then provide the basis for robust controller synthesis that is addressed in section 2.4
and µ-based performance analysis, that will be addressed in section 2.5.

Structural model of the plant

Coming back to the structural model (2.26), it can be observed that Ĝ(Ω) depends on a certain
number of parameters that are uncertain or time-varying. The list of these parameters is given in
table 2.3. Let Φ denote the set of these parameters. Each parameter Φ• ∈ Φ can be written in
normalized form as Φ• = Φ0

•+v•δ• where Φ0
• ∈ R is the nominal value, δ• is a normalized uncertain

parameter associated with Φ• having |δ•| ≤ 1 and v• ∈ R is used to define the uncertainty range.
Assuming that the wheel’s axial moment of inertial Jzz has a known value, the uncertain parameter
dependent matrices M, C , G , K, Υ , ΥT,Q in (2.26) are all affine in Φ. These matrices can thus be
written as the following minimal LFTs by employing the so-called Morton’s method [Mor85, HO06]
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Chapter 2. Robust control of a hybrid microvibration isolation platform

Table 2.3: Nominal values and uncertainty ranges of the plant parameters.

Subsystem Parameter Description Value / Uncertainty

Reaction
Wheel

Ω Spin rate range [10, 50] Hz (rev/s)

Ω̇max Maximum acceleration 0.01 Hz/s (rev/s2)

mw Mass 5.9 kg ± 1%[
Jrr Jzz

]
Radial and axial moments of inertia

[
0.063 0.075

]
kg m2

[Us Ud] Static and dynamic imbalances [0.716 g cm 29.24 g cm2][
h1 . . . h4

]
harmonic numbers

[
1 2 3 4

][
af1 . . . af4

]
multi-harmonic radial force coefficients

[
0.785 0.298 0.078 0.104

][
afz1 . . . afz4

]
multi-harmonic axial force coefficients

[
0.08 0.03 0.008 0.01

][
at1 . . . at4

]
multi-harmonic radial torque coefficients

[
0.324 0.074 0.03 0.012

]

Flexible
Wheel

support

(ball bearings)

lbw Distance from reaction wheel CoM to elastic
support connection

6 cm± 1%

lba Distance from active plate CoM to elastic
support connection

0.94 cm± 1%

kx, ky, kz Translational stiffness coefficients 7.861× 106 N/m± 5%

cx, cy, cz Translational damping coefficients 200 N s/m± 10%

kθx, kθy Rotational stiffness coefficients 3.7× 104 Nm/rad± 5%

cθx, cθy Rotational damping coefficients 0.942 Nm s/rad± 10%

Proof
Mass

Actuators

mpma Mass of proof-mass 25.5 g

kpma Stiffness coefficient 226.5 N/m± 5%

cpma Damping coefficient 1.2 N s/m± 10%

Tpma Amplification factor 3.16 N/V ± 5%

lp Placement radius 17.5 cm± 0.1 mm

dθ, dφ Force direction uncertainty ±0.06 rad

Active
Plate

ma Total mass including actuators 2.02 kg ± 2%

Juu, Jvv Moments of inertia about u and v axes 31.6 g m2 ± 2%

Jww Moment of inertia about w axis 128.9 g m2 ± 2%

Isolators

las Distance from active plate CoM to isolator
connection

9.18 cm± 1%

lsp Distance from interface plate CoM to isolator
connection

4.2 cm± 1%

ku, kv, kw Translational stiffness coefficients 1.013× 105 N/m± 15%

cu, cv, cw Translational damping coefficients 256 N s/m± 10%

kθu, kθv, kθw/2 Rotational stiffness coefficients 2.026× 103 Nm/rad± 15%

cθu, cθv, cθw/2 Rotational damping coefficients 5.12 Nm s/rad± 10%

Interface
Plate

mp Mass 70 kg ± 2%

Jaa, Jbb Moments of inertia about a and b axes 6.3 kg m2 ± 5%

Jcc Moment of inertia about c axis 6.47 kg m2 ± 5%

Suspension
springs

ka, kb, kc Translational stiffness coefficients 202.6 N/m± 15%

ca, cb, cc Translational damping coefficients 76.7 N s/m± 15%

kθa, kθb, kθc/2 Rotational stiffness coefficients 101.3 Nm/rad± 15%

cθa, cθb, cθc/2 Rotational damping coefficients 5.12 Nm s/rad± 10%

Sensors
ls Sensor/Isolator configuration radius 10 cm

lhs Distance from sensors to isolator location 5.12 cm± 10%

Note: Due to industrial confidentiality some of the numerical values have been modified. Reaction wheel parameters and
flexible ball bearing properties are adapted from [Kim14]. Actuator parameters and isolator properties are derived from the
work done in [Sec13].
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detailed in appendix A.1:

M(Φ) = Fu (M,∆m) C(Φ) = Fu (C ,∆c) G(Φ) = Fu (G ,Ω I2) Q(Φ) = Fu (Q,∆q)

K(Φ) = Fu (K,∆k) Υ(Φ) = Fu (Υ ,∆Υ) ΥT(Φ) = Fu
(
ΥT,∆Υ

)

with



∆m = diag
(
δma δmp δJrr δJrr δJuu δJvv δJww δJaa δJbb δJcc

)
∆c = diag

(
δcx δcy δcz δcu δcv δcw δca δcb δcc

)
∆k = diag

(
δkx δky δkz δku δkv δkw δka δkb δkc

)
∆Υ = diag

(
δlbwI2 δlbaI2 δlasI2 δlspI2

)
∆q = δlasI2

; δ• ∈ R : |δ•| ≤ 1

(2.30)
where Fu denotes the upper LFT. The multiplicity of the time-varying spin rate Ω in the LFT
description of the gyroscopic matrix G(Φ) = Fu (G ,Ω I2) is 2 and equal to the rank of the G
matrix from (2.29).

Using the definitions (2.30), the block diagram of the system described by (2.26) is drawn as seen
in fig. 2.10 using the LFT form (2.30) of each parameter dependent matrix. Individual blocks are
assembled into an overall system LFT using standard algebraic operations. The output vector ys
of interconnecting forces and torques at the isolator location can thus be expressed as follows

ys = Fu
(
G,
[
Ω I2

∆G

])
︸ ︷︷ ︸

Ĝ(Ω)

[
uw
us

]
with ∆G = diag

(
∆m ∆c ∆k ∆Υ ∆Υ ∆q

)
∈∆G ⊂ R46×46

(2.31)

1

s

1

s

Υ

∆Υ

G

ΩI2

M−1

∆m

−
Q q̈ q̇

Υη

⇔
[
uw
us

]

C

∆c

S

Υη̇

G ys

ys

−

K

∆k

us

∆G

ΩI2

uw

∆q

ΥT

∆Υ

Figure 2.10: LFT representation of the multi-body mechanical system.

Sensor model

The vector ys of coupling joint forces and torques between the active plate and the satellite body is
registered by the set of four tri-axis force cells placed underneath the passive isolators and connected
to the base structure. These force cells use piezoelectric elements to convert strains into electric
charges that are subsequently transformed into voltage signals using charge amplifiers. This enable
direct monitoring of the forces transmitted to the base structure by the disturbance equipment.
Figure 2.11 shows the Kistler 3-axis piezoelectric force cells that were used in this study. Let
Fs1...4 := (os1...4;~sx1...4, ~sy1...4, ~sz1...4) denote the reference frames aligned with each of the sensors
measurement axes (see fig. 2.2). The coordinates rs1...4 of these frames relative to the location of
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the passive isolator connection S are

[
rs1 rs2 rs3 rs4

]
=


ls −ls 0 0

0 0 ls −ls

−lhs −lhs −lhs −lhs

 (2.32)

as show in fig. 2.2 for rs4. The corresponding force measurements in each of these frames are
s1...4 =

[
sx1...4 sy1...4 sz1...4

]
T. Assuming zero torques at the contact points of the sensors, the elastic

forces and torques ys(t) ∈ R6 at the isolator location S can be reconstructed from the sensor
measurement vector f s(t) =

[
sT1 sT2 sT3 sT4

]
T ∈ R12 through the following relationship:

ys =

[
I3 I3 I3 I3

[rs1]× [rs2]× [rs3]× [rs4]×

]
f s = Nrf s (2.33)

In order to assess the influence of sensor placement misknowledge and measurement noise on the
closed-loop system, the inverse problem is to determine the projection matrix N̂ such that for a
given force and torque combination ys, the corresponding sensor force vector f s is given by:

f s = N̂ys (2.34)

Since the matrix Nr has linearly independent rows, N̂ can be computed as a right-inverse of Nr,
i.e.

N̂ = NT
r (Nr NT

r )−1 with NrN̂ = I6

N̂ =
1

4



1 0 −2 lhs l
−1
s 1 0 2 lhs l

−1
s 1 0 0 1 0 0

0 1 0 0 1 0 0 1 −2 lhs l
−1
s 0 1 2 lhs l

−1
s

0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 2 l−1

s 0 0 −2 l−1
s

0 0 −2 l−1
s 0 0 2 l−1

s 0 0 0 0 0 0
0 l−1

s 0 0 −l−1
s 0 −l−1

s 0 0 l−1
s 0 0



T

(2.35)

The offset lhs is assumed to be uncertain in the range given in table 2.3 and therefore N̂ is used to
capture how this uncertainty propagates to the sensor forces f s. For a fixed value of ls, the matrix
N̂ is affine in lhs and can be written in minimal LFT form as:

N̂ = Fu (N,∆n) where ∆n = δdsI3 ∈∆n ⊂ R3×3 and |δhs| ≤ 1 (2.36)

Figure 2.11: Kistler 3-axis piezoelectric force cell used on the breadboard.

Actuator model

As mentioned previously, the setup is actuated by a set of six electromagnetic proof-mass actuators
arranged. These are mounted on top of the active plate on set of three cubes with three actuators
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perpendicular to the plate and three in the tangential direction (see fig. 2.2). Each of these actuators
is made out of a reaction mass mpma connected at the base through a visco-elastic joint with
stiffness kpma and damping cpma. A force f on the proof-mass mpma and on the base structure is
generated by a moving-coil transducer modeled as a static gain Tpma with input voltage upma ∈
[−10, 10] V. Considering xpma to be the displacement from the equilibrium position of the proof-
mass, a schematic of actuator is shown in fig. 2.12b. For each of the six actuators, the mapping
between input voltage upma1...6 and the corresponding output forces F1...6 can be described by the
following high-pass second order filters H(s) with natural frequency ωpma and damping ratio ξpma:

H(s) =
Tpmas

2

s2 + 2ξpmaωpmas+ ω2
pma

where ωpma =

√
kpma
mpma

ξpma =
cpma

2
√
kpmampma

(2.37)

The breadboard analyzed in this study is equipped with Wilcoxon F5B actuators (fig. 2.12a) that
have the nominal natural frequency ωpma ≈ 15 Hz within the control bandwidth 10-50 Hz. There-
fore, the actuator dynamics must be included in the overall system model to account for the phase
loss and overshoot occurring around ωpma. As the system contains six actuators, the voltage inputs

(a)

lpma

cpma
mpma

kpma

f = Tpmaupma

upma

xpma

(b)

Figure 2.12: (a) Proof-mass actuator used on the breadboard (Wilcoxon F5B). (b) Schematic of
the actuator.

and mass displacements can be aggregated into the vectors upma(t) =
[
upma1 . . . upma6

]
T ∈ R6

and xpma(t) ∈ R6, respectively. Additionally, the parameters mpma, cpma, kpma, Tpma defined for
each actuator combine into the following diagonal matrices:

Mpma = mpmaI6 Cpma = cpmaI6 Kpma = kpmaI6 Tpma = TpmaI6 (2.38)

The actuators and voltage supplier unit also contribute with uncertain delays of varying size. To
account for this, uncertain time invariant delays τ1...6 ∈ [0.1, 1] ms at the input of each of the six
proof mass actuator (PMA) actuators are considered in this work and modeled as the following
first-order Padé approximation:

e−sτi ≈ −τis+ 2

τis+ 2
, τi ∈ [0.01, 1] ms for i = {1, . . . , 6} (2.39)

The bode diagram of a single PMA together with the time-delay is shown in fig. 2.13 for different
samples of the uncertain parameters. It can be seen how the introduction of the uncertain
time-delay causes a significant uncertain phase shift above 30 Hz. The uncertain delays are next
structed as an LFT model following the same procedure as the one for the plant model (2.30).

This boils down to the setup illustrated in fig. 2.14 with diag
[
τ−1

1 . . . τ−1
6

]
= Fu

(
Dτ−1 ,∆τ

)
and ∆τ = diag

(
δτ1 . . . δτ6

)
, δτ1...6 ∈ R : |δτ1...6 | ≤ 1. This resulting LFT provides the mapping

between inputs upma(t) ∈ R6 to delayed actuator signals uτ (t) ∈ R6. The next step is now to
connect the actuator model to the structural model of the setup illustrated in fig. 2.10. Therefore,
it is necessary to express the link that maps voltage inputs upma to the resulting actuator forces
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Figure 2.13: Bode diagram for the uncertain PMA model mapping input voltage to transmitted
force.

⇔ Dτ

∆τwτ zτ

uτupma

2

s
Dτ−1

∆τ

wτ zτ

2

− −

uτupma

Figure 2.14: LFT form of the first order Padé approximation of the time delay.

and torques us =
[
fTas tTas

]
T at the isolator connection S. To proceed, let Ffi := (ofi; ~fxi, ~fyi, ~fzi)

with i = {1, . . . , 6} be a set of frames corresponding to each of the PMAs and centered at the points
where the forces Fi are applied to the supporting cube. Each of the Ffi frames is aligned with the
~fzi-axis along the direction of the applied forces and ~fxi pointing towards the exterior of the plate.
The following set of position vectors ri give the location of the frames Ffi relative to the isolator
connection S:

[
r1 r2 . . . r6

]
=


lp lp

(
−lp −

√
3h2

)
/2 −lp/2

(√
3h2 − lp

)
/2 −lp/2

h2 0
(√

3lp − h2

)
/2 lp

√
3/2

(√
3lp − h2

)
/2 −lp

√
3/2

h1 h1 + h2 h1 h1 + h2 h1 h1 + h2

 (2.40)

with h1 = lcube + lap + las and h2 = lpma + lcube. The frames Ff3 and Ff4 together with the vector
r4 are illustrated in fig. 2.2. To calculate the forces and torques produced by the actuators at
the isolator connection S, namely us =

[
fTas tTas

]
T, the forces Fi generated by the PMAs in their

respective Ffi frames are first rotated to the active plate frame Fa using the following rotation
matrix:

RFfi→Fa = Ryxz (dφi, θi + dθi, ψi)
T (2.41)

where ψ1...6 = {0, 0, 2/3π, 2/3π, 4/3π, 4/3π} and θ1...6 = {0,−π/2, 0,−π/2, 0,−π} are used to repre-
sent the nominal orientation of each actuator and dθi together with dφi reflect small angle deviations
(see table 2.3) around this nominal direction. Afterwards, the rotated force vectors are projected
into actuator forces and torques at the passive isolator as follows:

us =

[
fas
tas

]
=

6∑
i=1

[
I3

[ri]×

](
RFfi→Fa

[
0
0
1

])
︸ ︷︷ ︸

gi

Fi

=

[
I3 I3 . . . I3

[r1]× [r2]× . . . [r6]×

] g1
. . .

g6


︸ ︷︷ ︸

B∈R6×6

F1
...
F6

 (2.42)

Here, g1...6 are unit vectors giving the uncertain direction of each PMA in the active plate frame
Fa. As the uncertain angles dθi and dφi are small, the vectors g1...6 are linearized to the following

33



2.3. Modeling the plant

values:

[
g1 g2 . . . g6

]
=


dφ1 dφ2

√
3−dφ3

2

√
3 dθ4−dφ4

2

√
3−dφ5

2

√
3 dθ6−dφ6

2

1 −dθ2

√
3 dφ3−1

2
dθ4+

√
3 dφ4

2
1−
√

3 dφ5

2
dθ6−

√
3 dφ6

2

dθ1 1 dθ3 1 dθ5 1

 (2.43)

The full actuator model combines the actuator and delay models (2.37) and (2.39) with the pro-
jection matrices (2.42) and (2.43) and provides the full mapping between voltage signals u and the
vector us of actuator forces and torques at the passive isolator connection. This mapping can now
be put into a LFT form by first drawing the block diagram of the each uncertain subsystem. Let

Φp = {mpma1...6 , cpma1...6 , kpma1...6 , kpma1...6 , Tpma1...6 , θ1...6, φ1...6, h1, h2, lp} (2.44)

be the set of uncertain parameters of all the six actuator. Following the same reasoning as for
the structural model of the plant in (2.30), the uncertain matrices from (2.38) and (2.42) can be
written as

Mpma(Φp) = Fu
(
Mpma,∆mp

)
Cpma(Φp) = Fu

(
Cpma,∆cp

)
Kpma(Φp) = Fu

(
Kpma,∆kp

)
Tpma(Φp) = Fu

(
Tpma,∆tp

)
B(Φp) = Fu (B,∆b)

∆mp = diag
(
δmpma1 . . . δmpma6

)
∆cp = diag

(
δcpma1 . . . δcpma6

)
∆kp = diag

(
δkpma1 . . . δkpma6

)
∆lp = diag

(
δTpma1 . . . δTpma6

)
∆b = diag

(
δh1 δh2 δlp δdθ1 . . . δdθ6 δdφ1 . . . δdφ6

)
(2.45)

with δ• ∈ R : |δ•| ≤ 1 being the normalized uncertain parameter corresponding to each element of
the set Φp. Finally, the uncertainties at block level are grouped into the block ∆h as illustrated in
fig. 2.15, which provides the LFT model of the actuators:

us = Fu (H,∆h)︸ ︷︷ ︸
Ĥ

upma with ∆h = diag
(
∆τ ∆mp ∆kp ∆cp ∆lp ∆b

)
∈∆h ⊂ R42×42 (2.46)

1

s

1

s

B

∆b

Kpma

∆kp

M−1
pma

∆mp

Cpma

∆cp

−
Tpma

∆tp

ẍ
ẋ xpma

F

us

⇔
H

∆h
wh zh

usupma

Dτ

∆τ

uτ

Actuator
dynamics

Time delay

Force projection

upma

Figure 2.15: Block diagram and LFT of the actuator model including the time-delay and force
projection matrices.
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LFT model of the complete system

Combining the LFT models of the actuators (see fig. 2.15), the platform (see fig. 2.10) and the
sensors (see (2.36)) leads to a new overall setup illustrated on fig. 2.16a and defined according to:

fn = N̂Ĝ(Ω)

[
uw

Ĥupma

]
− n

= Fu (N,∆n) Fu
(

G,

[
Ω I2

∆G

])[
uw

Fu (H,∆h) upma

]
− n

(2.47)

with the combined real uncertainty set:

∆real = diag
(
∆G ∆n ∆h

)
∈∆real ⊂ R91×91 (2.48)

To highlight the frequency behavior of this overall model, fig. 2.16b illustrates the open-loop singular
values of the transfer between upma and fn for the wheel spin rates Ω ∈ {10, 30, 50} Hz and various
values of the ∆ blocks. It can be seen on this figure that the gain rolls off by 20 dB/dec in the low
frequency due to the actuators and that the actuator resonances around 15 Hz combine with the
isolator flexible modes in the mid frequency range.
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Actuators

wn zn

∆G
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∆n

ΩI2
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n
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Sensor
noisewh zh

∆sH

∆h
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−
upma

Structural model Sensor measurements

Wheel
disturbances
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Figure 2.16: (a) Open loop interconnection (total number of states = 30). (b) Singular values of
the open-loop transfer upma → fn from actuator inputs to sensor outputs for the wheel spin rates
Ω ∈ {10, 30, 50} Hz.
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2.4 Controller design

2.4.1 Requirements, control architecture and problem formulation

As previously stated, the active control strategy should complement the passive solution and provide
microvibration mitigation in the low frequency range corresponding to reaction wheel operating
speeds specified in (2.4). Therefore, the challenge is now to design a controller that uses the force
measurements fn to generate a control signal upma(t) ∈ R6 in such a way as to achieve the following
requirements for all Ω ∈ Ω = [10, 50] Hz:

(R1) Robust harmonic disturbance attenuation: The aim is to guarantee in the worst
case at least 20 dB decrease in force transmissibility and at least 10 dB in torque transmissibility
around Ω. This frequency corresponds to the main harmonic disturbance generated by the spin-
ning reaction wheel due to mass imbalances [Bro06, LS89, ZLLL12, LLZ+13b, EM02, Mas02].
This performance goal should be achieved despite all uncertainties and delays affecting the
system. The solution should have minimal impact on the torque signal Tm generated by the re-
action wheel and used in attitude control. Additionally, the controller, during operation, should
not severely degrade the disturbance transmissibility outside the main harmonic frequency Ω.

(R2) Robust stability : The solution must guarantee closed-loop stability ∀Ω ∈ Ω and for
all considered uncertainties.

(R3) Actuator limitations: The control signal voltages should stay within limits (absolute
values below umax = 10 V) and not saturate the actuators.

The LFT model (2.47) is used for that purposes. Due to the fact that the wheel speed Ω is assumed
to be known, it is proposed to use this parameter to adapt a gain-scheduling policy depending on
the current speed of the reaction wheel so that it admits the following structure

K(Ω) = Kµ K̂Ω(Ω) Nr = KµFu (KΩ,Ω I12) Nr (2.49)

where Nr is the nominal value of the projection matrix given in (2.33) that maps sensor measure-
ments to forces and torques at the passive isolator connection. K̂Ω(Ω) forms the known parameter-
dependent part of the overall controller used to adjust the attenuation requirements and reconfigure
the overall controller K, based on the known operating speed Ω of the reaction wheel in order to
reject only the main harmonic disturbance u1 of the reaction wheel (see (2.6) for the harmonic
disturbance model). Its definition is addressed in the following subsection. Thus, the synthesis
problem turns out to be the design of Kµ. This is tackled using the H∞/µ theory. More precisely,
nonsmooth optimization techniques [Apk11, AN07] are used for the design of Kµ and µ analysis
techniques [PD93, FTD91, ZDGO96] are used to perform a deeper analysis of the computed design
solution. Two LFT models are derived from (2.47) for that purposes:

• The first reduced LFT is for controller synthesis purposes. The technique mainly consists in
introducing two complex uncertainty blocks ∆u and ∆y so that they provide a crude coverage
of the real uncertainty set ∆real = diag

(
∆G ∆n ∆h

)
∈ ∆real. The reduced LFT model

then consists in removing the blocks ∆h,∆G,∆n, that is, the design is done considering only
∆u and ∆y.
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• The second LFT is for robust stability assessment, robust performance and worst-case analysis
purpose. Thus, the complete and fully representative LFT model illustrated in fig. 2.17 is
used for that purpose. Details on the definition of the ∆ block for that purposes are given
later in section 2.4.2.

To synthesize Kµ, the requirements R1-R3 are first formulated within the H∞ setting, that is,
the design objectives are formulated in terms of loop shapes, i.e., of desired gain responses for the
appropriate closed-loop transfer functions. The shaping objectives are then turned into uniform
bounds by means of the shaping filters. This setup is illustrated on fig. 2.17 where W• refer to the
shaping filters, also called weighting functions.
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Figure 2.17: (a) Weighted closed-loop system interconnection. (b) Synthesis structure considering
only the complex uncertainty blocks. Weighting functions, Real uncertainty, Complex
uncertainty.

2.4.2 Requirements formulation within the H∞/µ framework

In order to design a control law that accommodates the requirements given in the previous sec-
tion, the synthesis problem is recast into the H∞/µ framework. For the necessary mathematical
background related to H∞/µ concepts, including the recent nonsmooth approaches, the reader is
invited to refer to the non exhaustive list of references [PD93, GA94, ZDGO96, Apk11, ADN15].
In this context, the synthesis problem is turned into an optimization problem of the worst-case L2

induced norm between different closed-loop signals scaled by so-called weighting functions.

Closed-loop transfer functions

To understand the link between the weighting functions and the various performance objectives,
the closed-loop interconnection M(Ω) = Fl (P(Ω),Kµ) is first deduced from the setup shown in
fig. 2.17 using the reduced LFT model. In other words the block ∆ depicted in fig. 2.17 takes the
expression

∆ = diag
(
∆u ∆y

)
∈∆ ⊂ C12×12 (2.50)

With this model, the general interconnection matrix P(Ω) can be partitioned as follows: z

e

p

 =

Pw→z Pd→z Pu→z

Pw→e Pd→e Pu→e

Pw→p Pd→p Pu→p


︸ ︷︷ ︸

P(Ω)

 w

d

u

 and w = ∆z (2.51)
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where e =
[
eTp eTm eTu eTy

]
T represents the performance signals, d =

[
dT
r dT

n dT
w

]
T the distur-

bances and w =
[
wT
u wT

y

]
T with z =

[
zTu zTy

]
T the uncertainty channels. With the notation:

ys = Ĝ(Ω)

[
I

Ĥ

] [
uw

upma

]
=
[
Gd(Ω) Gu(Ω)

] [ uw
upma

]
where ys(t),uw(t),upma(t) ∈ R6 (2.52)

the augmented open-loop system interconnection matrix P(Ω) becomes:

z∆u

z∆y

ep
em
eu
ey
p


= diag



I
I

WpK̂Ω

Wm

Wu

Wy

K̂Ω





0 0 0 0 I
Gu 0 0 Gd Gu

−Gu I I −Gd −Gu

−Gu I I −Gd −Gu

0 0 0 0 I
Gu 0 0 Gd Gu

−Gu I I −Gd −Gu


diag


W∆u

W∆y[
Wr |NrWn

]
Wd

I


︸ ︷︷ ︸

P(Ω)



w∆u

w∆y[
dr
dn

]
dw
u



(2.53)
where the dependency on the wheel spin rate Ω in certain transfers was omitted for clarity. Let
Si = (I + KµK̂ΩGu)−1 and So = (I + GuKµK̂Ω)−1 denote the input and output sensitivity
functions. Similarly, the input complementary sensitivity Ti and output complementary sensitivity
To are defined such that Si+Ti = I and So+To = I. With the previous definitions, the closed-loop

M(Ω) =
[

Mw→z Md→z

Mw→e Md→e

]
= Fl(P,Kµ) can be written as:


z∆u

z∆y

ep
em
eu
ey

 = diag



I
I

WpK̂Ω

Wm

Wu

Wy




−Ti SiKµK̂Ω SiKµK̂Ω SiKµK̂ΩGd

GuSi To To SoGd

−GuSi So So −SoGd

−GuSi So So −SoGd

−Ti SiKµK̂Ω SiKµK̂Ω SiKµK̂ΩGd

GuSi To To SoGd

 diag


W∆u

W∆y[
Wr |NrWn

]
Wd


︸ ︷︷ ︸

M(Ω)=Fl(P(Ω),Kµ)


w∆u

w∆y[
dr
dn

]
dw



(2.54)

Robust stability and performance requirements

If the nominal system (i.e. the block Md→e(Ω) in (2.54)) is stable ∀Ω ∈ Ω, then the stability of
this loop is conditioned by the existence of (I −Mw→z(Ω)∆)−1. This is assessed by evaluating
µ∆ (Mw→z(Ω, jω)), where µ∆ (·) represents the structured singular value [PD93] defined for a
complex matrix M ∈ Cm×m and a set of uncertainties ∆ ∈∆ as:

µ∆ (M) = 1/min
{
‖∆‖L2i : ∆ ∈∆,det (I −M∆) = 0

}
(2.55)

where ‖∆‖L2i denotes the L2-induced norm (also called L2 gain) of ∆. If no ∆ ∈∆ makes I−M∆
singular, then µ∆ (M) := 0. Following this definition and under the assumption that the nominal
system Md→e(Ω) is stable for all fixed Ω ∈ Ω, then Fu (M(Ω),∆) is stable ∀∆ ∈ ∆, ‖∆‖L2i < ν
if and only if: µ∆(Mw→z(Ω, jω)) < 1/ν ; ∀ ω ∈ R,Ω ∈ Ω. In this context, µ∆ gives a measure
of the smallest structured uncertainty ∆ that causes closed-loop instability for any frequency ω ∈
R and wheel rate Ω ∈ Ω. Moreover, the L2 gain of this destabilizing perturbation is exactly
1/µ∆ . This fact will be used to impose the robust stability requirement during the synthesis phase
and afterwards to evaluate the stability margin of the loop with respect to different uncertainty
structures in the analysis phase. However, due to its nonconvex character µ∆ can be difficult
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to compute exactly and in order to include these criteria into the control design procedures, µ∆

is replaced with a more conservative upper bound. In this case, the closed-loop system (2.54) is
guaranteed to remain stable for any fixed spin rate Ω ∈ Ω and ∀∆ ∈∆, ‖∆‖L2i < ν if

(
sup
ω∈R

µ∆ (Mw→z(Ω, jω)) ≤ inf
D∈D

∥∥DMw→z(Ω)D−1
∥∥L2i

)
< 1/ν ∀Ω ∈ Ω (2.56)

where the so-called D-scaling matrices D belong to a set D such that for any D ∈ D and ∆ ∈ ∆
the condition D∆ = ∆D holds [DPZ91]. This result can also be adapted in order to assess the
robust performance requirements (R2). As such, the worst case L2 gain of the closed-loop system
along the transfer d → e(i) remains below γ for any Ω ∈ Ω and ∀∆ ∈∆; ‖∆‖L2i ≤ ε/γ with fixed
ε ∈ [0, 1] if and only if

µ∆RP

([√
ε
I

] [ Mw→z(Ω, jω) Md→z(Ω, jω)

Mw→e(i)(Ω, jω) Md→e(i)(Ω, jω)

] [√
ε
I

])
< γ ∀ ω ∈ R,Ω ∈ Ω (2.57)

where the set ∆RP = diag (∆,∆perf ) combines the original model uncertainty ∆ ∈ ∆ with the
set ∆perf ∈∆perf ; ‖∆perf‖L2i < 1 of fictitious full complex perturbations closing the performance
channels d → e(i). As for the robust stability constraint, the requirement is replaced during the
design phase with the following upper bound:(

sup
∆∈∆,‖∆‖L2i

≤ε/γ

∥∥∥Fu (M(Ω),∆)d→e(i)

∥∥∥L2i
≤

inf
D∈D

∥∥∥∥ [D√εI]
[

Mw→z(Ω) Md→z(Ω)

Mw→e(i)(Ω) Md→e(i)(Ω)

] [√
εD−1

I

] ∥∥∥∥L2i

)
< γ

; ∀Ω ∈ Ω (2.58)

2.4.3 Weighting functions selection and definition of the pre-filter K̂Ω(Ω)

The objective is now to select appropriate values for the weighting functions W•.

The uncertainty matrix ∆u = diag
(
δu1 . . . δu6

)
, δu• ∈ C, |δu• | ≤ 1 together with the weight W∆u

behave as input multiplicative uncertainty (I6 + W∆u∆u) acting at the input of the actuator block.
The weight W∆u is chosen to provide an upper bound on the multiplicative uncertainty due to
the maximum time-delay τ0 as explained in [WLS94]. An additional 5% multiplicative uncertainty
is added to account for the uncertainty in the actuator gains Tpma and other unaccounted input
uncertainties. Similarly, the weight W∆y together with the uncertainty block ∆y ∈ C6×6, ‖∆y‖L2i ≤
1 account for 5% multiplicative output uncertainty in the forces and torques vector y. As the
uncertain matrix ∆y is chosen as full block, for cross couplings between the output channels are
also considered with this uncertainty description. These cross-couplings can result for example
from sensor placement uncertainty. With these considerations, W∆u and W∆y are chosen as:

W∆u =

(
τ0s

1 + τ0s/3.465
+ 0.05

)
I6 and W∆y = 0.05 I6 (2.59)

Remark 3. The resulting uncertain dynamics provided by ∆ with the weights W∆u and W∆y

defines a model set chosen large enough to include several important uncertainties such as uncertain
time-delays, uncertain actuator gains and sensor placement as well as variations in mass, stiffness
and damping coefficients. Although this is an approximation of the true uncertainty set, the input
uncertainty model captures the dominant uncertainties of the system and allows for a simpler weight
tuning process.
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As a preliminary step, all external disturbances are scaled based on the expected maximum val-
ues. The sensor measurement noise n(t) ∈ R12 is considered to affect each of the twelve sensor
measurements independently and in equal measure.

Based on the sensitivity limit of the piezoelectric sensors and the associated signal-to-noise ratio,
it is assumed that each of the force measurements will be corrupted by additive zero-mean white
gaussian noise with an upper bound of nmax = 10−3N/

√
Hz on its amplitude spectral density. In

this case, the weight Wn is fixed to

Wn = nmaxI12 ; nmax = 10−3N/
√

Hz (2.60)

in order to scale the normalized unit white noise signal dn and thus capture the maximum mea-
surement noise spectrum.

Similarly, the matrix Wd is used to scale the normalized reaction wheel disturbance vector dw.
According to the wheel perturbation model (2.6) and considering a maximum Ω = 50 Hz, the
maximum disturbances are 0.7 N for radial forces

[
Fx Fy

]
, 0.3 Nm for radial torques

[
Tx Ty

]
,

0.35 N for axial forces Fz and 0.2 Nm for the motor torques jitter Tzbn . The weight Wd is therefore
chosen as:

Wd = diag
(
0.7 N 0.7 N 0.35 N 0.3 Nm 0.3 Nm 0.2 Nm

)
(2.61)

It was previously shown that the open-loop system (2.52) is stable and that the transfer matrix
from reaction wheel disturbance uw to transmitted forces and torques ys is given by Gd(Ω).

Based on this transfer matrix and the reaction wheel disturbance model in (2.6), the weight Wy is
chosen as the inverse of the maximum transmitted forces and torques ys observed during open-loop
simulations for typical reaction wheel speed profiles Ω(t). In this way, the outputs ey = Wyys are
scaled to one for all the considered open-loop scenarios by using the following weight values:

Wy = diag
(
1.4 N 1.4 N 0.16 N 0.19 Nm 0.19 Nm 0.2 Nm

)−1 (2.62)

This corresponds to a maximum transmitted lateral forces Fsu, Fsv of 1.4 N, lateral torques Tsu,
Tsv of 0.19 Nm, axial force Fsw of 0.16 N and axial torque Tsw of 0.2 Nm.

Let the disturbance rejection requirement be now considered. The closed-loop transfer between
wheel disturbances dw and sensor noise dn to the scaled output forces and torques ey = Wyys is
given by:

dw → ey = WySoGdWd and dn → ey = WyToNrWn (2.63)

It should be noted that the output sensitivity function So also appears in the transfer from the
references dr to weighted error outputs ep given by dr → ep = WpK̂ΩSoWr. Therefore, the dis-
turbance requirement will be enforced by shaping the sensitivity So through an appropriate choice
of the weighting functions Wr and WpK̂Ω.

During controller operation, the reference signal dr is always kept at dr = 0 and it is thus introduced
purely as a mathematical tool to enforce the proper shape of So through the selection of the filters
Wp, K̂Ω and Wr. In this case, the weight Wr is chosen as

Wr = W−1
y (2.64)

and has the role of scaling the reference dr based the maximum open-loop values of the transmit-
ted forces and torques. The weight Wp is used to set a lower bound on the desired closed-loop
disturbance attenuation level. This leads to the following choice of Wp:

Wp = diag
(
20 20 20 10 10 10

)
dB ·W−1

r (2.65)
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It corresponds to a desired attenuation of at least 20 dB in the force transmissibility and 10 dB for
torque transmissibility. The term W−1

r is used to scale back the signals dr.

Coming back to the pre-filter K̂Ω(Ω), it is used to reject only the main harmonic disturbance of the
reaction wheel as explained previously. Therefore, K̂Ω(Ω) is chosen to filter each of its six input
channels through unit gain second order bandpass filters parameterized by the wheel speed Ω i.e.

K̂Ω(Ω) = wΩ(s)I6 ; wΩ(s) =
Bs

s2 +Bs+ Ω2
= Fu

 −B −Ω B
Ω 0 0

1 0 0

 , 1

s
I2

 (2.66)

where the bandwidth B refers to the width in rad/s between the upper and lower cut-off frequencies
at which the gain of the filter is down 3 dB from its response at the central frequency Ω. This
parameter is also related to the Q-factor Q, damping ratio ξ and attenuation rate α of the bandpass
filter through the following relationship:

B = Ω/Q = 2ξΩ = 2α (2.67)

A decrease in B forces the filter to become narrower, increasing its Q-factor and putting more
emphasis on the frequencies around Ω. For performance reasons, it is desired to maximize this
bandwidth and therefore ensure that a larger region around the main harmonic Ω is attenuated.
However, due to Bode’s integral theorem, also known as the waterbed effect, an unavoidable con-
sequence of improving the disturbance attenuation around some frequencies is disturbance ampli-
fication at other frequencies [RLD10]. As such, the filter’s bandwidth can’t be set arbitrarily high
without severely impacting the disturbance transmissibility outside of Ω. Additionally, the band-
width can’t be set too low as this will induce a low attenuation rate α and a slow convergence of
the filter. To accommodate these constraints and maximize performance, the bandwidth B can be
considered as function of Ω. Replacing B in (2.66) with the affine dependency B(Ω) = bA + bMΩ,
leads to:

wΩ(s) = Fu

 −bA 0 bA
0 0 0

1 0 0

+

 −bM −1
1 0

0 0

ΩI2

[
1 0 0
0 1 −bM

]
,
1

s
I2



= Fu

(
wΩ(s),Ω I2

)
with wΩ(s) = Fu



−bA 0 −bM −1 bA

0 0 1 0 0

1 0 0 0 0
0 1 0 0 −bM
1 0 0 0 0

 , 1

s
I2


(2.68)

Combining six wΩ(s) into the overall pre-filter K̂Ω(Ω), leads to the following LFT description:

K̂Ω(Ω) = wΩ(s)I6 = Fu
(
K̂Ω,Ω I12

)
(2.69)

Let B20(Ω) and B10(Ω) be defined as the bandwidths in Hz around Ω where the response of K̂Ω(Ω)
drops by 20 dB and 10 dB respectively from the response at Ω. The bandwidths therefore corre-
spond to the regions around Ω where the force and respectively the torque attenuation requirements
introduced through WpK̂Ω(Ω) drop to 0 dB. For the current setup, the choice was made to fix
bM = 1/150 and bA = 0.01. For this parameter choice, the attenuation bandwidth B10 is around
0.24 Hz at Ω = 10 Hz and grows to 1.86 Hz at Ω = 50 Hz as shown in fig. 2.18.

To control the maximum amplification due to the waterbed effect, the output performance channel
em is introduced, see fig. 2.17 if necessary. The transfer from the references dr to em is given by

41



2.4. Controller design
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Figure 2.18: Singular values of K̂Ω(Ω) and the corresponding attenuation bandwidths B10(Ω) and
B20(Ω) for different Ω ∈ [10, 50] Hz.

dr → em = WmSoWr. The filter Wm is thus used to place an upper bound on the So, thereby
limiting the disturbance amplification outside the main harmonic Ω. At high frequencies outside
the controller bandwidth ‖So‖L2i ≈ 1 and it follows that Wm needs at least to satisfy the following
inequality ‖WmNrWn‖L2i < 1. With the previous considerations in mind, an upper bound of 6
dB disturbances amplification for each channel is imposed with the following weight choice:

Wm = 6 dB ·W−1
r (2.70)

Finally, the last weight Wu is used to take into account the maximum actuator effort require-
ment. Reaction wheel disturbances impact the PMA signals though the transfer matrix d′ → us =
SiKµK̂ΩGd. The function SiKµK̂Ω also appears inside the transfer from the references dr to eu
given by dr → eu = WuSiKµK̂ΩWr. The weight Wu is chosen as the following bandpass filter:

Wu =

(
1

umax
· s+ αω1

s+ ω1︸ ︷︷ ︸
Low pass

· αs+ ω2

s+ ω2︸ ︷︷ ︸
High pass

)
I6 with umax = 10V and

α = 20
ω1 = 30× 10−2 Hz
ω2 = 30× 102 Hz

(2.71)

This choice enforces an upper bound umax = 10 V on each component of the actuator signal vector
u within the control bandwidth [10, 50] Hz and also guarantees that these signals are attenuated
by least α = 20, at both high and low frequencies.

For clarity, the singular values for the K̂Ω, Wu and W∆u weights are illustrated in fig. 2.19.
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Figure 2.19: Singular values for the control effort weight Wu, the input uncertainty weight W∆u

and the pre-filter K̂Ω at Ω = 50 Hz.

2.4.4 Controller synthesis procedure

From µ theory, it follows that:
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Chapter 2. Robust control of a hybrid microvibration isolation platform

1. the closed-loop (2.54) illustrated in fig. 2.17 is robustly stable for all uncertainties ∆ if

inf
D∈D

∥∥DMw→zD−1
∥∥L2i = inf

D∈D

∥∥∥∥D [
−Ti SiKµK̂Ω

GuSi To

]
W∆D−1

∥∥∥∥L2i

< 1 (2.72)

where W∆ = diag
(
W∆u W∆y

)
and D ∈ D is known as the D-scaling matrix that commutes

with ∆, i.e. D∆ = ∆D; ∀∆ ∈∆,D ∈ D.

2. the nominal disturbance rejection requirement for each component ep(i) of the performance
output channel ep is achieved whenever the following following constraint holds:

‖dr → ep(i)‖L2i =
∥∥∥X (i)WpK̂ΩSoWr

∥∥∥L2i
< 1 , i = {1, . . . , 6} (2.73)

Here, X (i) =
[
01×(i−1) 1 01×(6−i)

]
is a selection vector used to select the i-th channel.

3. the disturbance attenuation requirements (2.73) achieve robust performance on the i-th channel
with i = {1, . . . , 6} for all ∆ ∈∆ if

inf
Di∈D

∥∥∥∥∥∥diag

(
Di

X (i)WpK̂Ω

) −Ti SiKµK̂Ω SiKµK̂Ω

GuSi To To

−GuSi So So

diag

(
W∆D−1

i

Wr

)∥∥∥∥∥∥
L2i

< 1

(2.74)
where Di are the D-scales that commute with ∆.

4. the maximum disturbance amplification requirements on each component of em is given by:

‖dr → em(i)‖L2i = ‖X (i)WmSoWr‖L2i < 1 , i = {1, . . . , 6} (2.75)

5. for each of the six actuators the nominal actuator effort requirement is given by

‖dr → eu(i)‖L2i =
∥∥∥X (i)WuSiKµK̂ΩWr

∥∥∥L2i
< 1 , i = {1, . . . , 6} (2.76)

These constraints can be solved using the nonsmooth H∞ optimization approach, i.e. combining
the above formulated requirements, the problem to be solved can be formulated according to:

minimize
Kµ D Di

γ s.t.

∥∥DMw→zD−1
∥∥L2i < 1∥∥∥∥ diag

([
Di

X (i)

] [
Mw→z Mw→d

Mw→e Md→e

] [
D−1
i

I

]
, . . . ,X (j)Md→e

) ∥∥∥∥L2i

< γ

i = {1, . . . , 6} j = {7, . . . , 18} ∀Ω ∈ Ω
(2.77)

The constraint
∥∥DMw→zD−1

∥∥L2i < 1 ensures robust stability while

∥∥∥∥ [Di
X (i)

]
M

[
D−1
i

I

] ∥∥∥∥L2i

<

γ and ‖X (j)Md→e‖L2i < γ are used to guarantee a minimum robust performance level γ for the
ep performance channels and a minimum nominal performance level γ for the em and eu channels,
see fig. 2.17 for the meaning of these signals if necessary. When γ < 1 all the required objectives
are achieved.

As it is formulated, problem (2.77) does not admit a solution since it is required for the constraints
to be satisfied over an infinite number of frequencies Ω ∈ Ω. A solution to this problem consists in
using a griding approach, leading the constraints to be finite which is suitable for the nonsmooth
H∞ technique, the problem being reformulated in a multi-model manner. Furthermore, one the
issues with the nonsmooth H∞ tool is that it is highly dependent on the initial conditions and does
not guarantee convergence to a global minimum. However, by employing the following procedure,
satisfactory results are obtained:
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2.5. Stability and performance analysis

Step 1: Let Ω be grid across the domain of the scheduling parameter Ω = [10, 50] Hz.

Step 2: For each Ωj ∈ Ω, synthesize a full order nominal controller Kj using standard H∞
algorithms, i.e solve:

minimize
Kj

γ s.t. ‖Md→e(Ωj)‖L2i < γ

Step 3: Perform a balanced model reduction of each Kj . The resulting reduced controllers Kj

are of order 20.

Step 4: With each controller Kj initialize the optimization problem (2.77) and solve it over the
finite grid Ω. The D-scales are used as optimization variables with a fixed structure compatible
with the ∆ block. The resulting performance level is γj for each controller.

Step 5: Initialize (2.77) with the the best performing controller from the previous step (i.e.
lowest γj) and the associated D-scales. Consider Ω an uncertain parameter and optimize using
the nonsmooth parametric robust controller design technique proposed in [ADN15].

Result: The resulting controller Kµ has 20 states and achieves a closed-loop performance of
γ = 0.878.

The singular values of Kµ and those of KµK̂Ω(Ω) (which represents the overall vibration mitigation
controller from (2.49)) are shown1 in fig. 2.20 for Ω ∈ {10, 30, 50}Hz. As expected, the controller
has the highest gain around the central frequency Ω. This helps to guarantee that the output
sensitivity So = (I + GuKµK̂Ω(Ω))−1 has low gain around Ω and hence comforts the disturbance
rejection requirements (2.74). Additionally, it can be seen that the controller gains roll off at both
high and low frequency as dictated by the control effort requirements (2.76) and by the robust
stability condition (2.72). Since the associated performance level γ = 0.878 is below unity, the

Figure 2.20: Singular values of Kµ (left) and KµK̂Ω(Ω) (right) for the spin rates Ω ∈ {10, 30, 50}
Hz.

required robust stability and performance requirements are achieved for the reduced uncertainty
structure ∆ = diag

(
∆u ∆y

)
. However, there is no guarantee that robust stability and performance

are achieved once the uncertainties ∆h,∆G and ∆n are included. This problem is addressed in the
following sections.

2.5 Stability and performance analysis

In this section, robust stability, robust performance and worst case analysis are addressed to eval-
uate the ability of the obtained controller to achieve the desired specifications. As explained

1Note that only three values of Ω are considered in figs. 2.20 to 2.22 to provide an improved readability. The
analysis however has been done for across a much denser grid over frequencies
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Chapter 2. Robust control of a hybrid microvibration isolation platform

previously, the LFT model illustrated on fig. 2.17 is used for that purpose without any kind of
reduction. However, nominal performance is first assessed since it exhibits interesting properties of
the controller.

Nominal performance

Nominal performances are assessed by fixing ∆ = 0 and examining the singular values of the
closed-loop transfer from d =

[
dT
r dT

n dT
w

]
T to each component of the performance channels ep,

em and eu. The results are shown in fig. 2.21 for different values of Ω. It can be observed that the
maximum singular values of each transfer is less than one for each Ω. Therefore, it follows that the
requirements R1-R3 are met, see section 2.4.1.
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Figure 2.21: Singular values of the nominal transfer from external disturbances d to the performance
channels ep, em and eu for Ω ∈ {10, 30, 50} Hz.

The nominal disturbance attenuation capability of the solution can also be visualized by considering
the transfer from the disturbances d to the components of the transmitted forces and torques
vector ys defined in (2.20). The singular value plots for these transfers are shown in fig. 2.22
for Ω ∈ {10, 30, 50}Hz and overlaid with the open-loop responses. It is clear that the proposed
solution significantly decreases the transmissibility in the region of Ω around the main harmonic
disturbance. The amplifications due to the waterbed effect around Ω are within the desired 6 dB
bounds.

Robust stability assessment

Following the structured singular value (µ) theory, robust stability for a given Ω is assessed by
calculating µ∆ (Mw→z(Ω, ω)), ∀ω ∈ R where ∆ is the structure associated to the uncertainty block
∆ = diag

(
∆h ∆G ∆n

)
∈ ∆ and Mw→z is deduced from fig. 2.17 in a similar manner to (2.54).

In this case, robust stability is achieved over all ∆ ∈ ∆ if and only if supω µ∆ (Mw→z(Ω, ω)) <
1. Figure 2.23 shows the µ (upper bound) plot across a grid of 50 values of Ω ∈ Ω and for
frequencies ω ∈ [0.1, 600] Hz covering the whole dynamical range of the system. It can be seen that
µ∆ (Mw→z(Ω, ω)) < 1,∀ω at each sampled value of Ω. Robust stability is therefore guaranteed
for any ∆ ∈ ∆ at those speeds. It can be noted too that the µ function peaks in the frequencies
adjacent to the Ω. Accurate µ∆ (Mw→z(Ω, ω)) is thus calculated in this region, both upper and
lower bounds. The results are shown in fig. 2.24 for Ω = 10 Hz (top-left) and Ω = 50 Hz (bottom-
left). The right part of the figure illustrates the parametric sensitivities plots of µ∆ (Mw→z(Ω, ω))
with respect to each normalized parameter δ• that appears in ∆ , i.e. the so called µ-sensitivity
functions. These plots provide a valuable tool to identify which parameters have the most impact
on the stability margin in a certain frequency range. In the interest of clarity, only the parameters
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Figure 2.22: Closed-loop nominal force and torque transmissibility: singular values from the total
disturbance vector d to each of the elastic forces and torques between the active and interface
plates i.e. ys =

[
fTs | tTs

]
T =

[
Fsu Fsv Fsw | Tsu Tsv Tsw

]
T.

Figure 2.23: Robust stability µ-plots for Ω ∈ [10, 50] Hz.

with the highest sensitivity gains are plotted, in decreasing order of importance. Examining these
plots, it can be seen that when Ω = 10 Hz, the margin is about 9 dB and is strongly influenced by
uncertainties in the actuator gains Tpma• and orientations φ•. At Ω = 50 Hz the margin drops to
around 5 dB, mainly due to the fact that as the controller bandwidth increases, the uncertain time
delays τ• play a much higher role.
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Chapter 2. Robust control of a hybrid microvibration isolation platform

Figure 2.24: Robust stability µ-bounds and µ sensitivty plots for Ω = 10Hz (top) and Ω = 50Hz
(bottom).

Robust performance

To study the degradation of the nominal performance under the influence of the uncertainty bock
∆, the µ function is evaluated for the transfers from the performance input d =

[
dT
r dT

n dT
w

]
T

to each component of the performance channels ep, em and eu. The results are shown in fig. 2.25
for multiple Ω ∈ Ω. As all µ-functions are less than one for each component of ep and eu, it

Figure 2.25: Robust performance results: upper bounds on µ∆RP
for the transfers from disturbance

d to performance channels ep, em and eu for Ω ∈ Ω.

follows that the requirements on disturbance attenuation ‖d → ep‖L2i < 1 and control signal effort
‖d → em‖L2i < 1 hold for any ∆ ∈∆. On the other hand, it can be observed that the µ-function is
higher than one for some components of em(i) corresponding to the maximum disturbance ampli-
fication requirements ‖d → em‖L2i < 1. This is an expected and acceptable side effect due to the
fact that the controller synthesis procedure prioritized robust performance only for the disturbance
attenuation performance channels ep.

To get deeper insight into these situations, let us consider as an example, the robust performance
degradation on em for the channel d → em(4) at Ω = 50 Hz. The signal em(4) corresponds to
the maximum disturbance amplification for the transmitted torque Tsu. The plot of the µ-function
for this transfer are shown in fig. 2.26 together with the associated parametric sensitivities. These
plots reveal that the performance degradation is primarily caused by uncertainties in the directions
φ• of the actuators and the associated time-delays τ•.
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2.5. Stability and performance analysis

Worst-case analysis

Finally, the worst case gain across all uncertainties ∆ ∈ ∆ is calculated based on algorithms
described in [PBLJ00]. The worst case upper bound together with the worst case normalized
parametric combination ∆wc are shown in fig. 2.26. For clarity, only the most sensitive parameters
are included. For this ∆wc, the H∞ norm on closed-loop transfer d → em peaks to about 1 dB in
the 52-60 Hz region. According to the definition of Wm from (2.70), this corresponds to about 7
dB amplification, compared to the open-loop case, for disturbances in the same frequency range.

δφ5 δTpma5 δφ1 δψ5 δTpma1 δφ4 δτ4 δτ3 δτ6 δτ5 δTpma6 δφ3 δτ1 δτ2 δTpma2 δTpma3 δcθw δφ2 δψ3 δTpma4

−1

0

1 (a)

δφ5 δTpma5 δφ1 δψ5 δTpma1 δφ4 δτ4 δτ3 δτ6 δτ5 δTpma6 δφ3 δτ1 δτ2 δTpma2 δTpma3 δcθw δφ2 δψ3 δTpma4

−1

0

1

(b)

Figure 2.26: (a) Robust performance, µ sensitivities and worst case gains for the d → em(4) transfer
at Ω = 50 Hz. (b) The combination ∆wc of normalized parameter values corresponding to the worst
case gain.

Numerical issues about µ computations

Given the number of uncertainties provided in table 2.3, it is clear that the LFT size is quite large
which complicates the computation of the µ-functions presented in the above sections. For robust
stability analysis, ∆ is given by ∆ = diag

(
∆h ∆G ∆n

)
where ∆h is a diagonal matrix of 42 real

scalars (see figs. 2.14 and 2.15 and (2.45)), ∆G is a diagonal matrix of 46 real scalars (see fig. 2.10
and (2.30) and (2.31)) and ∆n is a diagonal matrix of 3 real scalars (see (2.36)). Therefore, ∆ is
a diagonal block composed of 91 real scalars. For robust performance assessment, it is required to
add an additional full complex block ∆perf ∈ C24×24 that closes the performance transfer d → e,
leading the ∆ block to be of total dimension 115.
To prevent numerical difficulties to compute µ (especially for robust stability assessment since ∆
is a pure real block), a complex part is added to ∆ since it is well known that the presence of
a complex block improves the lower bound computations of the structured singular value µ. For
this purpose, the low values of complex uncertainties are added to the global uncertainty block
by using ∆u and ∆y and fixing the associated weighting functions W∆u and W∆y to the low
values i.e. W∆u = W∆y = 10−3 I6. This means that an additional 0.1% of input and output
complex uncertainty is introduced. Although this introduces a slight conservatism to the lower
bound calculations, it greatly improves the numerical stability during the calculations.
With the uncertainty structure in place, the computation of µ follows the two following steps:
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Chapter 2. Robust control of a hybrid microvibration isolation platform

• first, the upper bound of µ and the µ-sensitivity functions, are computed using a fast upper
bound algorithm, see for instance [LTD00]. The µ-sensitivities are a posteriori checked and a
subset of the uncertain parameters for which the µ-sensitivities are the highest, is identified.
This enables to eliminate the uncertain parameters that have minimal influence on µ. 30
uncertain parameters are typically eliminated.

• In a second step, the upper bound is computed using the balanced/AMI technique [YND95,
YD96], for a greater accuracy.

Following this approach, the calculation of µ does not pose a significant numerical problem for
fig. 2.23. For the plots in fig. 2.24, it is required to compute an accurate value of both the upper
and lower bounds. Thus, the upper bound is computed using a LMI formulation. With regards
to the lower bound, it is switched to greatest accuracy by using a power algorithm with randomly
reinitializing its iteration 3 times, see [YD90, YND95]. This procedure is of course considerably
more time consuming. Figures 2.25 and 2.26 are obtained using the same procedure.

2.6 Nonlinear simulations

The microvibration mitigation strategy, derived in the previous sections, is subsequently imple-
mented within a high-fidelity nonlinear simulator developed with the expertise of Airbus Defence
and Space and the European Space Agency (ESA).

The presented simulation corresponds to the following scenario: The reaction wheel accelerates
from Ω = 10 Hz at time t = 0 s to Ω = 50 Hz at t = 220 s using a constant motor torque applied
at t ∈ [10, 210]s. The aim is to evaluate the time-domain closed-loop performances of the proposed
controller for a time-varying wheel rate. These performances will be subsequently compared with
the ones previously predicted using structured singular value analysis in section 2.5.

Following the reaction wheel disturbance model given in (2.6), the simulation includes the wheel’s
static and dynamic mass imbalances that produce the main harmonic perturbation. Additionally, to
account for the full disturbance model, the main harmonic axial perturbation (component F z1 from
(2.6)) as well as the broadband disturbances ubn (see (2.6)) are added to the simulation. The sensor
block is implemented as the LFT (2.36). In this case, the twelve force measurements f s(t) ∈ R12

from (2.34) are corrupted by first passing unit white noise through the sensor noise model Wn given
in (2.60) and generating the appropiate sensor noise signal n(t) ∈ R12. As explained in (2.47), the
noise vector n this is subsequently subtracted from the measurements f s.

To highlight the benefits of the proposed isolation approach, the simulation results presented in
fig. 2.27 show the transmitted forces ys(1 . . . 3) =

[
Fsu Fsv Fsw

]
T and torques ys(4 . . . 6) =[

Tsu Tsv Tsw
]
T in both open-loop and closed-loop together with the six actuator control val-

ues upma. In order to simplify the analysis of the simulations results, all the signals in fig. 2.27 are
normalized prior to plotting, using the normalization factors provided in table 2.4. These factors
correspond to the maximum open-loop values for the transmitted forces and torques as well as the
maximum admissible control signal voltage in the case of the actuators. Examining fig. 2.27, it can

Table 2.4: Normalization factors used for the simulations plots.

Forces ys(1 . . . 3) Torques ys(4 . . . 6) Actuator inputs

Signal Fsu Fsv Fsw Tsu Tsv Tsw upma(•)

Normalized by 1.4 N 1.4 N 0.16 N 0.19 Nm 0.19 Nm 0.2 Nm 10 V
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2.6. Nonlinear simulations

Figure 2.27: Time-domain simulation results displaying the normalized transmitted forces (top),
torques (middle) and control signals (bottom) in both open and closed-loop scenarios for a variable
spin rate Ω(t) ∈ Ω under nominal conditions (the uncertain parameters fixed to ∆ = 0).

be seen that controller significantly attenuates the transmitted lateral and axial disturbances using
acceptable actuator effort (amplitude peaking around 30% of the saturation limit). At the same
time, minimal distortions are introduced into the transmitted reaction wheel torque ys(6) = Tsw
during closed-loop operations. In order to better understand the attenuation performances in the
frequency domain, fig. 2.28 shows the power spectral density plots of the normalized transmitted
forces and torques previously shown in fig. 2.27. From these plots, it becomes apparent that

Figure 2.28: Power spectral densities of the normalized transmitted forces and torques shown in
fig. 2.27.

both the transmitted forces and lateral torques are attenuated by at least 20 dB within the main
harmonic range of Ω = [10, 50] Hz. Therefore, both the isolation performance and the controller
effort requirements introduced in section 2.4.1 are successfully met in this simulation scenario.
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Chapter 2. Robust control of a hybrid microvibration isolation platform

Next, the worst-case predictions obtained in section 2.5 are verified by adjusting the simulator
parameters according to the worst-case parameter combination ∆wc previously shown in fig. 2.26b.
The system is then driven at a constant spin rate Ω = 50 Hz and the transmitted torques ys(4) = Tsu
for the nominal and worst-case closed-loop scenarios are compared with those obtained from the
open-loop. The time-domain and root mean square (RMS) values are shown in fig. 2.29 together
with the power spectral densities of each signal. The spectral content is in line with the predictions
made earlier in section 2.5 with the largest peak occurring around the main harmonic Ω. Compared
to the nominal case, the worst-case peak in disturbance amplification around the main harmonic
is clearly visible within the 52− 60Hz frequency range. However, since the broadband disturbance
level is fairly low, this amplification effect is barely visible in the time-domain as a slight increase
in the RMS value. The effectiveness of µ-tools in predicting worst-case performance and finding

Figure 2.29: Normalized transmitted torque Tsu (left) and the corresponding power spectral density
(right) for a constant spin rate Ω(t) = 50 Hz in open-loop, nominal closed-loop as well as closed-loop
with the worst-case parameter combination ∆wc.

particular problematic parameter combinations is therefore emphasized by these results.

2.7 Conclusions

This chapter addresses the development of a mixed active-passive microvibration mitigation solu-
tion capable of attenuating the transmitted vibrations generated by reaction wheels to a satellite
structure. A representative benchmark developed with the support of the European Space Agency
and Airbus Defence and Space, serves as a support for testing the approach. The chapter also
covers modeling and design issues as well as a deep analysis of the solution within the H∞/µ set-
ting. A representative LFT model is developed starting from the nonlinear uncertain model of
the plant, derived using Lagrangian formalism. The model captures the gyroscopic nature of the
system, actuator dynamics, feedback-loop delays and uncertainties in the various components in a
unified way. The design requirements are translated in the H∞/µ framework using a comprehensive
weighting function selection procedure, based on the physical characteristics and limitations of the
system. The resulting controller is capable of providing significant disturbance attenuation in the
frequency band of interest. The stability margins and robust performance of the proposed solution
is evaluated using the structured singular value µ. The most important uncertain physical parame-
ters affecting the stability and performance of the overall system, are identified by performing local
µ tests for a sufficient number of fixed values of reaction wheel speeds across the operating envelope.
A worst-case analysis procedure is presented to assess the maximum disturbance amplification due
to controller action. Nonlinear time-domain simulations, using the high-fidelity simulator, are used
to demonstrate the capabilities of the proposed microvibration mitigation solution and to confirm
the worst-case predictions made using µ-tools. Based on these promising results, these methods
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will be adapted in the next chapter to provide a systematic methodology for the control system
design and analysis to guarantee pointing performance within typical space observation mission.

“ An expert is a person who has made all
the mistakes that can be made in a very
narrow field. ”

Niels Bohr
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3

Robust microvibration isolation

with guaranteed pointing

performance

3.1 Introduction

Based upon the mixed passive/active isolation architecture and the techniques presented in chap-
ter 2, the aim of this chapter is to highlight how these methods can be adapted to provide a
systematic methodology for the uncertainty modeling, control system design and verification of
microvibration isolation space systems for a typical space observation mission. Central to these ef-
forts is the development of a novel integrated end-to-end uncertain system model that fully captures
the disturbance propagation from the reaction wheels, through the isolation system and flexible
spacecraft structure towards the sensitive instruments. The model of isolation setup is afterwards
integrated with the simplified structural model of a flexible spacecraft driven by a reaction wheel.
The resulting overall plant is an uncertain model derived analytically, with some parameter values
based upon previous experimental results. The aim of this model is to provide a realistic bench-
mark for evaluating various active control strategies while at the same time capturing the main
inherent complexities of the problem. Based on the deep understanding of the system provided by
this model, robust synthesis and analysis procedures are systematically performed using modern
mathematical tools such as µ-analysis, structured H∞ and Integral Quadratic Constraints (IQC)
Analysis. This way, guaranteed stability and performance bounds are obtained, and the system
dynamics can be pushed to the limits of achievable performance.

3.1.1 Contributions and chapter organization

In line with the previously stated goals, the main work covering the whole system design is organized
into three parts: modeling, synthesis and analysis. The first part (section 3.2) introduces the
system model that will form the basis for subsequent controller design and analysis sections. The
linearized equations of motion previously obtained in section 2.3.3 are therefore updated to include
the dynamical model of a flexible satellite stabilized by an attitude control system. As in the
previous chapter, the model is subsequently merged with that of the sensors and actuators and
rewritten in a LFT form (section 3.2.3) for robust design and analysis. The global LFT model
captures the various parametric uncertainties as well gyroscopic effects in a unified manner and
is used to analyze the end-to-end propagation of microvibrations towards the pointing errors of
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the satellite. The model forms the basis for the second part of the chapter (section 3.3) which
is dedicated to the design of the robust controller that manages the active isolation within the
overall mixed microvibration attenuation strategy. Section 3.3.1 details the robust stability and
performance objectives which are afterwards expressed in section 3.3.2 as bounds on the worst-case
L2 gains of certain scaled closed-loop transfers. To accomplish this, weighting functions explained
in section 3.3.3 are used to specify the frequency domain profile of external disturbances and
also set the desired bounds on the pointing stability and actuator control signals. The weights
include a novel model for the multi harmonic perturbation spectrum produced by a reaction wheel
spinning at a particular rate. By also considering the relative phasing between the disturbance
forces and torques, the model is used to make non conservative predictions about the resulting
pointing error spectrum. This fact is exploited in section 3.3.4 where a detailed robust synthesis
procedure is presented. Here, a number of LPV controllers, scheduled by the wheel spin rate, are
designed for different levels of system uncertainty in order to push the predicted closed-loop pointing
error spectrum below the required maximum threshold. Lastly, the third part of the chapter
(section 3.4) details a rigorous analysis procedure used to validate the proposed control solution.
The analysis relies on modern tools such as structured singular value and IQCs in order to obtain
robust performance and stability margin certificates and expedite the validation and verification of
the proposed control law without relying on extensive and time-consuming Monte Carlo campaigns.
Time domain nonlinear simulations performed on a high-fidelity multi-body simulator developed
with the expertise of ESA and Airbus Defence and Space are used to demonstrate the capabilities
of the isolation setup and also verify the worst-case prediction obtained using an analysis based on
the structured singular value.

3.2 System modeling

3.2.1 Description of the mission scenario

A schematic of the considered satellite setup is shown in fig. 3.1. The setup represents an extension
of the isolation architecture described in chapter 2 where the dynamical model of the interface plate
is replaced with that of a flexible satellite. For clarity, an overview of the interconnected system is
shown in fig. 3.2. The end goal is to reduce the impact of wheel disturbances on the pointing stability
of the spacecraft stabilized by an attitude control system (ACS). For the considered pointing
scenario, this corresponds to minimizing the rotational displacements θa, θb of the satellite rigid
body around the ~a and ~b axes during the exposure time t∆ of the optical instrument.

3.2.2 Equations of motion

As mentioned before, the fundamental change compared to the structural model presented in
section 2.3.3 is the fact that the dynamical model of the interface plate is replaced with a six
degree of freedom rigid body model of a satellite body connected to a flexible attachment and
stabilized by an attitude control system. The governing equations for these new subsystems is
outlined in this section.
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Flexible satellite model

A corresponding body-fixed frame Fp := (op;~a,~b,~c) is attached at center of mass (CoM) of the

main satellite body. The matrix Mp =
[
mpI3 0

0 Jp

]
represents the generalized mass matrix of the

rigid body combining the mass mp and moment of inertia tensor Jp in this body frame. As done
for the interface plate in the previous chapter, the displacement of the satellite’s rigid body CoM
relative to the initial position is given in this inertial frame Fworld := (O; ~X, ~Y , ~Z) by the vector
qpt =

[
a b c

]
T while the orientation is described using the Euler angles qpr =

[
θa θb θc

]
T

and the y-x-z rotation matrix Rp = Ryxz (θa, θb, θc) (see table 2.1 for the matrix expression).
Therefore, the combined generalized displacements of the satellite body are contained in the state

vector qp =
[

qT
pt qT

pr

]T
=
[
a b c θa θb θc

]T
. A flexible attachment connects to the main

satellite body at a point F having coordinates rf =
[
0 lpf 0

]
T in Fp. Fixed to the CoM of this

attachment, a frame Fflex := (of ; ~fx, ~fy, ~fz) is introduced such that the connection point F has
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coordinates rmf =
[
0 −lff 0

]
T in Fflex. The flexible attachment generates reaction forces ff and

torques tf due to the accelerations q̈p of the satellite’s rigid body. These forces and torques are
applied to the satellite body in the frame Fp and the relationship can be described by employing
the following cantilever hybrid model [GACC14, MCCCMC01]:

η̈f + diag (2ξfωk)︸ ︷︷ ︸
Cf

η̇f + diag
(
ω2
k

)︸ ︷︷ ︸
Kf

ηf = −LT
fpq̈p

[
fTf tTf

]T
= Mf q̈p + Lf η̈f

;
k = {1, . . . , nk}
nk = 4

(3.1)

where ω1...nk are the modal frequencies with damping ξf and the vector ηf (t) ∈ Rnk combines
the displacements of all the nk = 4 flexible modes. Let mf is the attachment mass and Jf the
moment of inertia tensor in the attachment frame Fflex (with values provided in table 3.1), then the

matrix Mf = T (rmf − rf )T
[
mf I3 0

0 Jf

]
T (rmf − rf ) represents the generalized mass matrix of the

appendage expressed in frame Fp of the satellite rigid body. Here, the matrix T (rmf − rf ), with
the expression provided in (2.15), is used to transport the generalized mass matrix of the appendage
from the body frame Fflex of the flexible attachment into the body frame Fp of the satellite rigid
body (see [GACC14] for details). The modal participation matrix Lf of the appendage in the
frame Fp of the main satellite body can be deduced from the modal participation matrix La at
the connection point F (see table 3.1 for the value) by the following relationship Lf = T (rf )TLa.
Finally, the elasticity due to the passive isolators is modeled by a flexible 6 DoF joint (labeled
as S in fig. 2.1). Let rps =

[
0 0 −lsp

]
T be the coordinates of this connection in Fp and let

ys =
[
fTs | tTs

]
T =

[
Fsu Fsv Fsw | Tsu Tsv Tsw

]
T denote the elastic forces f s and torques ts

applied to the satellite at this location. The over dynamics combining the main satellite body and
the flexible attachment are therefore governed by the following set of equations

[
Ink LT

f

Lf Mp + Mf

] [
η̈f
q̈p

]
+

[
Cf 0
0 0

] [
η̇f
q̇p

]
+

[
Kf 0
0 0

] [
ηf
qp

]
=

0(3+nk)×2

I2

01×2

[Ta
Tb

]
−
[

0
T (rps)

T

] [
f s
ts

]
(3.2)

where Ta, Tb are the torques supplied by the attitude control system around the ~a and ~b axes of
the satellite.

Attitude Control System

An Attitude Control System (ACS) is used to stabilize and control the rotational movement of the
entire spacecraft. The control law assumes that angular displacements qpr and angular rates q̇pr
of the main rigid satellite body are available for measurement. Based on these values, the ACS is
implemented using a set of three independent controllers for each axis, similar to the one described
in [GACC14]. The three control torques tacs supplied by the ACS are therefore given by

tacs =
[
Ta Tb Tm

]
T = Kacsqpr + Cacsq̇pr (3.3)

where the numerical values of the diagonal matrices Kacs and Cacs are provided in table 3.1. These
matrices have been tuned as a preliminary step based on the static inertia of the spacecraft with
the goal of providing a nominal critically damped response for each of the control axis with a
settling time of about 40 s. The control torques Ta and Tb around the ~a and ~b axes of the spacecraft
are assumed to be applied directly to the main satellite body as given in (3.2). The torque Tm
supplied by the reaction wheel motor is applied both to the flywheel as well as to the active
plate (see table 2.2). This torque is afterwards transmitted to the satellite rigid body through the
visco-elastic passive isolator connection (2.20) and used for attitute control along the ~c axis.
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Table 3.1: Parameters values of the flexible satellite system

Satellite main body and Attitude Control System

mp mass 200 kg

Jp moment of inertia tensor in body frame Fp
[

200 10 5
10 800 8
5 8 800

]
kg m2

diag (Kacs,Cacs) ACS controller values diag( 10 5 8 27 10 31 )× 102[
lpf lff lsp

]
distances to connection points

[
25 25 28.38

]
cm

Flexible attachment

mf mass 10 kg

Jf moment of inertia tensor in body frame Fflex diag( 700 20 1000 ) kg m2[
ω1 . . . ω4

]
frequencies of the flexible modes

[
0.8 2 35 140

]
Hz± 2%

ξf damping ratio of the flexible modes 0.005

La modal participation factors at the base F of the
flexible attachment

 −3 0 0 0
0 0 0 0
0 0 5 4
0 0 90 62
0 14 0 0

119 0 0 0


The parameters were adapted from the model introduced in [GACC14].

Reaction wheel

The complete reaction wheel disturbance model explained in section 2.3.2 is slightly adapted for the
mission scenario considered in this chapter. More precisely in order to reduce model complexity
the axial force and torque disturbances

[
F zi Fzbn Tzbn

]
from (2.6) are ignored as these don’t

play a significant role in the overall pointing performance. Considering that the motor torque Tm is
provided by the attitude control system (3.3) , the new reaction wheel force and torque disturbance
vector uw can be expressed in the wheel’s rocking frame Fwrock as

uw =
[
Fx Fy | Tx Ty

]
T =

[
Fxbn Fybn| Txbn Tybn

]
T︸ ︷︷ ︸

ubn

+

N∑
i=1

[
F xi F yi | T xi T yi

]
T︸ ︷︷ ︸

ui

(3.4)

where ubn ∈ R4 represents the stochastic broadband noise and ui is the i-th out of a total of N
harmonic disturbances with

F xi (t) = afi Ω2 sin
(
hiΩt+ φfi

)
T xi (t) = −atiΩ2 cos

(
hiΩt+ φti

)
F yi (t) = afi Ω2 cos

(
hiΩt+ φfi

)
T yi (t) = atiΩ

2 sin
(
hiΩt+ φti

) (3.5)

where hi is the harmonic number, afi ,ati are harmonic amplitude coefficients from table 2.3 and

φfi ,φti are random phase angles.

3.2.3 LFT modeling

Integrated structural dynamics

The combined dynamics of the reaction wheel, active plate, flexible wheel support and passive
isolators previously provided in table 2.2 are now combined with the dynamics of the flexible
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satellite (3.1) and attitude control system (3.3) into the integrated model shown in fig. 3.3. Similar
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Figure 3.3: System block diagram of the structural equations of motion. Input forces and
torques, Connective forces and torques , Generalized displacements and velocities.

to (2.26), the overall equations can be rewritten as
Mq̈ + (C + ΩG) q̇ + Kq = Q

[
uw
us

]
[

p
ys

]
= S

[
q
q̇

] (3.6)

where the matrices M,C ,G ,K,Q,S represent the mass, damping, gyroscopic, stiffness, input and
output matrices combing each of the uncertain system parameters. The precise expressions of
these is omitted but can be deduced by merging the previous subcomponent equations as done in
section 2.3.3. The expression of the overall system state is

q(t) =
[
ηTf qT

p qT
a qT

w

]
T ∈ R22 (3.7)

and the pointing error vector

p(t) =
[
θa θb

]
T ∈ R2 (3.8)

contains the rotational displacements of the main satellite body around the ~a and ~b axes. As in
(2.22), the vector us(t) ∈ R6 combines the total actuator forces fas and torques tas applied to the
active plate at the passive isolator location, i.e.

us =
[
fTas | tTas

]
T =

[
Fasu Fasv Fasw | Tasu Tasv Tasw

]
T (3.9)

Similar to (2.29), the input-output behavior of these equations of motion can be described through

a Ω-dependent system model Ĝ(Ω) with 12 inputs

[
uw
us

]
, 8 outputs

[
p
ys

]
and 44 states

[
q
q̇

]
having

the following representation:

Ĝ(Ω) :=



[
q̇
q̈

]
=

[
0 I

−M−1K −M−1(C + G(Ω))

]
︸ ︷︷ ︸

∈R44×44

[
q
q̇

]
+

[
0

M−1Q

]
︸ ︷︷ ︸
∈R44×12

[
uw
us

]
[

p
ys

]
= S︸︷︷︸
∈R8×44

[
q
q̇

] (3.10)
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Or in a more compact form as:

Ĝ(Ω) :=

 0 I 0
−M−1K −M−1(C + ΩG) M−1Q

S 0

 with

[
p
ys

]
= Ĝ(Ω)

[
uw
us

]
(3.11)

The Ĝ(Ω) system is subsequently expressed in LFT form1 as a feedback interconnection between a
fixed LTI part G and a structured block containting the time-varying spin rate Ω and all the real
uncertain parameters i.e.

Ĝ(Ω) = Fu
(
G,
[
ΩI2

∆G

])
with ∆G ∈∆G = {diag (δ•In•) : δ• ∈ R, |δ•| ≤ 1} ⊂ R39×39 (3.12)

where the block ∆G combines all the normalized uncertain parameters δ• and their multiplicity n•.
These parameters are those given in the previous chapter in (2.31) except for {δmp , δca , δcb , δcc ,
δka , δkb , δkc} as these uncertain parameters are related to the interface plate and suspension spring
models that were replaced, in this chapter, by the flexible satellite model.

Figure 3.4 includes both a block diagram of the original mechanical model (3.6) as well as the
corresponding LFT (3.12). In order to highlight the gyroscopic effects and flexibles modes of
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Figure 3.4: (a) Structural model of the flexible spacecraft and attitude control system. (b) Me-
chanical model in LFT form.

the overall mechanical system, fig. 3.5a contains the singular values from the wheel disturbances
uw towards one of the satellite pointing errors p(1) = θa for different fixed Ω ∈ Ω. The peaks
correspond to the flexible modes i.e. poles of Ĝ(Ω) and can be separated based on their natural
frequency into three regions. The low-frequency modes below 1 Hz are due to Attitude Control
System while the high frequency modes above 100 Hz result from the flexibility in the wheel support
(i.e. the ball-bearings) and some satellite attachment modes. The control bandwidth spans the
mid-frequency range [10, 50] Hz corresponding to the wheel spin rate range Ω where most of the
harmonic disturbance energy is concentrated. One of the modes in this region is due to the flexible
attachment (around 36.5 Hz) while others arise due to the flexibility in the passive isolators. The
coupled lateral and rocking motions of the active plate, resting on top of the flexible passive isolators,
forms pairs of gyroscopic modes (whirl modes) that significantly shift their natural frequency based
on Ω. The effect is illustrated in fig. 3.5b using the Campbell diagram. This plot shows the natural
frequency of the poles within the control bandwidth for different fixed reaction wheel spin rates
Ω ∈ Ω = [10, 50]Hz.

1see section 2.3.4 for a more in-depth description of the LFT extraction process.
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(a)

(b)

Figure 3.5: For different Ω ∈ Ω and uncertainty values: (a) Singular values between wheel distur-
bance inputs uw and the pointing error p(1) = θa ; (b) Campbell diagram showing the frequency
shift of whirl modes within the control bandwidth.

3.3 Performance objectives and controller design

3.3.1 Control architecture and system requirements

The LFT models obtained in the previous section, can be merged into the overall control architec-
ture shown in fig. 3.6 with the combined real parametric uncertainty

∆real ∈∆real := diag (∆G,∆n,∆h) ⊂ R84×84 (3.13)

where ∆G ⊂ R39×39, ∆n ⊂ R3×3 and ∆h ⊂ R42×42 represent the uncertainty sets corresponding to

the dynamical model of the flexible structure Ĝ(Ω) = Fu
(
G,
[
ΩI2

∆G

])
from (3.12), the sensor

projection matrix N̂ = Fu (N,∆n) from (2.36) and respectively the actuator block Ĥ = Fu (H,∆h)
from (2.46).

The challenge is now to design the active control strategy that complements the passive isolators
and insures that a set of robust performance and robust stability objectives are met for all the
considered variable wheel rates Ω(t) ∈ Ω given in (2.4). To accomplish this, the proposed solution
relies on a LPV controller K(Ω(t)) scheduled by the spin rate Ω(t) and written in LFT form as
K(Ω) = Fl (K,Ω(t)InΩ). This controller is used to generate an adequate control signal u(t) ∈ R6

based upon the sensor outputs y = f s + n corrupted by the noise n(t) ∈ R12 . The control
problem takes into account the presence of uncertain time delays τ ∈ [0, τmax] with τmax = 1 ms
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Figure 3.6: Close-loop system interconnection combining the LFT models of the sensors, flexible
structure and PMA actuators.

and saturation nonlinearities sat(·) in each of the control channels. The requirements that need to
be satisfied for all time-varying Ω(t) ∈ Ω is given below:

(R1) Robust stability : Closed-loop stability must be guaranteed with respect to all
considered parametric uncertainties, time-delays and saturations in order to achieve the
reliability demanded by a space certified technology.

(R2) Robust pointing stability and control effort performance: The primary perfor-
mance goal is to attenuate the wheel microvibrations and guarantee that the amplitude spectral
densities (ASDs) of the satellite’s relative pointing errors (RPEs) are pushed below a target
value of εmax = 0.65 mas/

√
Hz. The RPE index is also known as the pointing stability and is

defined [ECS08, ECS11] as the angular separation between the instantaneous pointing direction
p =

[
θa θb

]
T and the short-time average pointing direction during a given time period (in this

case equal to the exposure time of the optical instrument t∆ = 20 ms). Additionally, in order
to avoid excessive actuator degradation over the lifespan of the mission, the amplitude spectal
density of the control signals must be kept below the limit umax = 10 V/

√
Hz imposed by the

manufacturer. Both of these requirements must be ensured even in the presence of a significant
subset of model uncertainty, time-delay or saturation effects.

3.3.2 Requirements formulation within the H∞/µ framework

Closed-loop transfer functions

Consider the proposed synthesis interconnection illustrated in fig. 3.7 that is based on the archi-
tecture previously shown in fig. 3.6. In order to reduce the computational burden of the synthesis
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procedure, several new complex diagonal uncertainty blocks are introduced and aggregated into:

∆ = diag (∆u, ∆y, ∆a) ∈∆ ⊂ C54×54 with ∆ =
{

diag (δ•) : δ• ∈ C, |δ•| ≤ 1
}

(3.14)

The new complex uncertainty set ∆ is used to provide a low order approximation of the real
uncertainty set ∆real as well as covering the worst-case effects of the saturation and delay blocks.
The weighting functions are labeled as W• and depending on their role can be classified into three
types:

(a) input weights Wn and Wd(Ω) =
[
W1(Ω) Wbn

]
that are used to scale normalized disturbance

signals to match the spectral content of sensor and wheel disturbances

(b) performance weights Wp = WpmaxWRPE and Wu used to place upper bounds on the spectral
content of the pointing error and actuator control signals

(c) uncertainty weights W∆u,W∆y,W∆l and W∆r used to appropriately scale the complex uncer-
tainty blocks.

Before detailing each of weights, it is useful to calculate the closed-loop transfer functions. To
simplify the subsequent equations, consider the notations

[
p
f s

]
=

[
I 0

0 N̂

]
Ĝ(Ω)

[
I 0

0 Ĥ

] [
uw
u

]
=

[
Gpd(Ω) Gpu(Ω)
Gyd(Ω) Gyu(Ω)

] [
uw
u

]
(3.15)

where N̂ and Ĥ are the sensor and actuator models given in (2.36) and (2.46) while Ĝ(Ω) is the
integrated structural model from (3.11). Examining fig. 3.7, the general open-loop interconnec-
tion can be written in terms of the complex uncertainty channels w =

[
wT

∆u wT
∆y wT

∆a

]
T and

z =
[
zT∆u zT∆y zT∆a

]
T together with the perturbations d =

[
d1 dT

bn | dT
n

]
T =

[
dT
w | dT

n

]
T and
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performance channels e =
[
eTp eTu

]
T as



z∆u

z∆y

z∆a

ep
eu
y


=diag



I
I

W∆rĤ

Wp

Wu

I





0 0 0 0 0 I
Gyu(Ω) 0 0 Gyd(Ω) 0 Gyu(Ω)

0 0 0 0 0 I

Gpu(Ω) 0 0 Gpd(Ω) 0 Gpu(Ω)
0 0 0 0 0 I

−Gyu(Ω) I I −Gyd(Ω) I −Gyu(Ω)

diag



W∆u

W∆y

N̂W∆l

Wd(Ω)
Wn

I


︸ ︷︷ ︸

P(Ω)



w∆u

w∆y

w∆a

dw
dn
u



(3.16)
where P(Ω) can also be written in LFT form as P(Ω) = Fu (P,ΩI5) by combining, as pictured in
fig. 3.7, the Ω blocks in the LFT descriptions of Wd(Ω) and Ĝ(Ω). The controller K(Ω) can now
be used to close the control channels such that u = K(Ω)y. Let Si(Ω) = [I + K(Ω)Gyu(Ω)]−1

and Ti(Ω) = I − Si(Ω) denote the Input Sensitivity and the Input Complementary Sensitivity
functions. Similarly, the functions So(Ω) = [I + Gyu(Ω)K(Ω)]−1 and To(Ω) = I − So(Ω) represent
the Output and Output Complementary Sensitivity functions. With the previous considerations,

the closed-loop interconnection matrix M(Ω) =

[
Mw→z(Ω) Md→z(Ω)

Mw→e(Ω) Md→e(Ω)

]
= Fl (P(Ω),K(Ω)) has

the following expression
z∆u

z∆y

z∆a

ep

eu

 = diag


I

I

W∆rĤ

Wp

Wu




−Ti SiK SiK −SiKGyd SiK

GyuSi To To SoGyd To

−Ti SiK SiK −SiKGyd SiK

GpuSi GpuSiK GpuSiK Gpd −GpuSiKGyd GpuSiK

−Ti SiK SiK −SiKGyd SiK

 diag


W∆u

W∆y

N̂W∆l

Wd

Wn


︸ ︷︷ ︸

M(Ω) = Fl (P(Ω),K(Ω))


w∆u

w∆y

w∆a

dw

dn



(3.17)
where the dependency on Ω of the various functions was omitted in order to improve readability.
Finally, closing the uncertainty channels w and z around ∆ provides the closed-loop mapping

e = Fu (M(Ω),∆) d =
[
Md→e(Ω) + Mw→e(Ω)∆ (I −Mw→z(Ω)∆)−1 Md→z(Ω)

]
d between the

normalized disturbance signals d and performance outputs e in the presence of uncertainties.

Model reduction

As defined in (3.10), the number of states of the LPV system Ĝ(Ω) is equal to 44. Due to its large
size, such a system can pose serious numerical difficulties if directly used in most robust control
synthesis algorithms. This is why, in order to obtain a low-order LFT model that is more suitable
for synthesis, a model reduction procedure is introduced. Coupled with an additive uncertainty
model, this is used to provide a simplified representation within the desired control bandwidth
10-50 Hz corresponding to the RWA spin range Ω.

Let Φ =
[
φ1 φ2 . . . φn

]
∈ Rn×n, n = 22 be the mass-normalized modal matrix of the mechanical

system Ĝ calculated for the nominal values of M and K and assuming no damping, i.e C = G = 0n.
Each of the n mode shapes φ• has an associated modal frequency ω• and the matrix Φ satisfies,
for nominal values of M and K, the following relationships:

ΦTMΦ = In,
(
K − ω2

iM
)
φi = 0, ΦTKΦ = diag

(
ω2
i

)
for i ∈ {1, . . . , n} (3.18)

In this case, q = Φη can be used to describe the state q of the system in terms of the modal
coordinates η(t) ∈ Rn. Consider now a partitioning Φ =

[
Φr Φt

]
and η =

[
ηTr ηTt

]
T where

Φr ∈ Rn×nr contains the nr modal vectors to be retained and Φt those that will be truncated. The
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original system state q = Φrηr + Φtηt corresponding to the system (3.6) and the input-output
model Ĝ(Ω) is therefore approximated with a reduced state qr = Φrηr ∈ Rnr .

Following this procedure, the original system Ĝ(Ω) with 44 states
[
qT q̇T

]
T shown in (3.10) was

converted into a reduced order system Ĝr(Ω) with just 14 states
[
qT
r q̇T

r

]
T and defined as:

Fu
(
Gr,

[
ΩI2

∆G

])
︸ ︷︷ ︸

Ĝr(Ω)

=

 0 I 0
−G−1

r Kr −M−1
r (Cr + ΩGr) M−1

r Qr

Sr 0

 ;

Mr = ΦT
rMΦr Cr = ΦT

r CΦr Gr = ΦT
r GΦr

Kr = ΦT
rKΦr Qr = ΦT

rQ Sr = S diag (Φr,Φr)

(3.19)

In order to quantify the modeling errors introduced by this truncation, let aij ∈ R; i, j ∈ {1, . . . , 6}
represent the upper bounds on the additive errors between Ĝ and Ĝr along each of the possible
signal paths us(i)→ ys(j) and across all parametric uncertainties ∆G ∈∆G and Ω ∈ Ω, i.e.

sup
∆∈∆G, Ω∈Ω

∥∥∥∥(Ĝ(Ω)− Ĝr(Ω)
)

us(i)→ys(j)

∥∥∥∥L2i

≤ aij ; i, j ∈ {1, . . . , 6} (3.20)

The computation of the worst-case upper bounds aij has been done using the standard µ algorithms
described in [PBLJ00] that are based on the relation given in (2.58) and are implemented in Matlab
as the the command wcgain. For clarity, these additive errors and the associated upper bounds
are shown in fig. 3.8 for two different transfers of the models Ĝ and Ĝr. It can be seen that this
simple additive bounds covers all the high frequency dynamics outside of the control bandwidth
while also accounting for system variations in the mid and low frequency ranges.

Figure 3.8: Singular values of the full and reduced structural models for different uncertainty values
and wheel rates together with the corresponding additive uncertainty bounds.

3.3.3 Weighting function selection

The goal of this section is to explain in a systematic fashion how the weights W• were selected
to convert the design requirements introduced in section 3.3.1 into the conditions aggregated in
table 3.2 that are based upon the definitions (2.56) and (2.58).
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Table 3.2: System requirements and the correspondingH∞/µ criteria used for synthesis and analysis

System requirements Equivalent analysis criteria Synthesis condition

(R1) Stability for ‖∆‖L2i ≤ ν sup
ω∈R

µ∆ (Mw→z(Ω, jω)) < 1/ν inf
D∈D

∥∥DMw→z(Ω)D−1
∥∥L2i < 1/ν

(R2) Performance for ‖∆‖L2i ≤ ε
Amplitude Spectral Densities:

RPE t∆=20 ms < 0.65 mas/
√

Hz

Actuators < 10 V/
√

Hz

sup
∆∈∆,
‖∆‖L2i

≤ε

∥∥∥Fu (M(Ω),∆)d→e(i)

∥∥∥L2i
< 1

for i ∈ {1, . . . , 8}

inf
D∈D

∥∥∥∥∥
[
D
√
ε

X (i)

]
M(Ω)

[√
εD−1

I

]∥∥∥∥∥L2i

< 1

with X (i) =
[
01×(i−1) 1 01×(8−i)

]
for all Ω ∈ Ω with ε, ν ∈ [0, 1]; D ∈ D and D∆ = ∆D .

Uncertainty weights

Firstly, the weights W∆• are used to scale the blocks Mw→z(Ω), Md→z(Ω), Mw→e(Ω) in (3.17)
and therefore the set of complex uncertainties ∆ ∈∆ over which the robust stability/performance
requirements should be enforced. In order to comply with the conditions summarized in table 3.2,
any increase in W∆•, covering a larger uncertainty set, must be accompanied by a corresponding
decrease in the maximum gains of some closed-loop functions, such as Ti, SiK, To that are scaled
by that particular weight. Satisfying these requirements, places an upper limit on the maximum
achievable disturbance rejection performance as the function SiK also appears in the closed-loop
propagation Mdw→ep from wheel disturbances dw towards the pointing stability indicator ep. To
maximize performance, it is therefore necessary to cover the possible plant model variations with
smallest uncertainty set using low magnitude weights W∆•. As such, the space of gain variations
produced by uncertainties in the sensor placement matrix N̂ = Fu (N,∆n) defined in (2.35) is
covered using with the weight W∆y = 0.1 I12 that scales the normalized complex uncertainty block
∆y with ‖∆y‖L2i ≤ 1. The choice accounts for a maximum 10% multiplicative uncertainty in each
of the force sensor measurements. Similarly, the uncertainty model of the actuators is shaped by:

W∆u = Γ(s) I6 with
Γ(s) = β + α · wτ (s)

β = 30%
and

α = 1− β/3.465

wτ (s) = s/
(
τ−1
max + s/3.465

)
τmax = 1 ms

(3.21)

such that |Γ(jω)| ≥ max (β, |wτ (jω)|) ∀ω ∈ R. Here, β = 30% is used to account for input multi-
plicative uncertainty in each of the PMA actuators, covering unmodeled dynamics and saturations
effects, while wτ (s) provides an additional over-bound on the multiplicative uncertainty due to
the uncertain time-delay τ ∈ [0, τmax] (see [WLS94] for additional details). Finally, the weights
W∆l ∈ R6×36 and W∆r ∈ R36×6 are used to scale the additive uncertainty ∆a and cover the trun-
cation errors resulting from the model reduction and also account for structural uncertainty within
the control bandwidth. These weights are directly chosen based on the additive errors bounds aij
calculated in (3.20), such that:

W∆l∆aW∆r =

a11δ16 . . . a16δ16
...

. . .
...

a61δ66 . . . a66δ66

 with ∆a ∈

{
diag (δij) :

δij ∈ C, |δij | ≤ 1

i, j ∈ {1, . . . , 6}

}
⊂ C36×36

(3.22)

Input weights and disturbance source modeling

The input weight Wn ∈ R12×12 is used to scale the Amplitude Spectral Density (ASD) of the unit
spectral density signal dn such that n = Wndn approximates the maximum sensor noise observed
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in typical operations. As previously done in (2.60), the choice was made to fix

Wn = nmaxI12 ; nmax = 10−3N/
√

Hz (3.23)

based on the sensor’s signal-to-noise characteristic, corresponding to an upper bound of nmax on
the noise spectrum for each of the twelve sensor measurement channels.

In the same way, the weight Wd(Ω) is used to capture the spectral content of the disturbances
uw introduced by wheel into the satellite structure and given in (3.4). Following this previous
definition, the weight is decomposed into the broadband and tonal components i.e.

uw = Wbndbn︸ ︷︷ ︸
broadband noise ubn

+

N∑
i=1

Wi(Ω)di︸ ︷︷ ︸
i-th harmonic ui

(3.24)

=
[
W1(Ω) . . . WN (Ω) | Wbn

] [
d1 . . . dN | dT

bn

]
T = Wd(Ω)dw (3.25)

where dbn and di are white noise signals with unit spectral density. The broadband disturbance
model Wbn ∈ R4×4 is fixed to:

Wbn = diag
(
af1Ω2

bn I2, a
t
1Ω2

bn I2

)
with Ωbn = 1 Hz. (3.26)

This choice provides a crude approximation of the maximum spectral amplitude of the broadband
noise and neglected harmonics based upon the main harmonic disturbances generated by the RW
spinning at Ωbn = 1 Hz. This model can of course be refined based upon a more rigorous iden-
tification procedure of the broadband noise magnitude. However, for the purposes of this study,
the simple model (3.26) is considered sufficient. Each of the weighting functions Wi(Ω) with
i = {1, . . . , N} has the role of modeling the amplitude spectrums and phase relationships between
the different components of the harmonic disturbance vector uiw =

[
F xi F yi T xi T yi

]
T from (3.5).

The internal structure of the Wi(Ω) weights is illustrated in fig. 3.9. The system Fpeak(Ω),

F xi = afi Ω2 sin(hiΩt)afi

afi

−ati

ati

Ω2di = sin(hiΩt)

F yi = afi Ω2 cos(hiΩt)

T xi = −atiΩ2 cos(hiΩt)

T yi = atiΩ
2 sin(hiΩt)

Wi(Ω)

−90◦ phase
delay at hiΩ

0 dB

hiΩ

Fpeak(Ω)

β

D90◦shift(hiΩ)

Figure 3.9: Internal structure of the weight Wi(Ω) corresponding to the i-th harmonic distur-
bance. Note: outputs represent the steady state values when driven by the harmonic input
di(t) = sin(hiΩt).

contained within these weights, is chosen as the following second order unit gain bandpass filter:

Fpeak(Ω) =
βs

s2 + βs+ (hiΩ)2
or in state space form Fpeak(Ω) =

 −β −hiΩ β
hiΩ 0 0

1 0 0

 (3.27)

Together with the Ω2 and the afi , a
t
i scalings, its role is to provide for different spin rates Ω, an

approximation of the spectral amplitude corresponding to each of the RW harmonic force and torque
components of uiw. To do this, Fpeak(Ω) is chosen to approximate the spectral amplitude of a unit
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harmonic signal sin(hiΩt). It can be seen that the parameter β controls the filter bandwidth and
is used to account for the way the disturbance energy is distributed around the central frequency
hiΩ. If Fpeak(Ω) is driven unit white noise, the power (or RMS value) of the resulting signal is
equal to the H2 system norm of Fpeak(Ω) given below:

‖Fpeak‖H2 =

(
1

2π

∫ ∞
−∞

∣∣∣Fpeak(jω)
∣∣∣2 dω)1/2

=

√
β

2
(3.28)

In order to match this value with the RMS of a unit harmonic signal i.e. 1/
√

2, the bandwidth β
is fixed to β = 1.

The −90◦ phase delay between the components of the harmonic force
[
F xi F yi

]
and torque

[
T xi T yi

]
vectors is modeled using a first order time-delay filter:

D90◦shift(hiΩ) =
−τΩis+ 2

τΩis+ 2
=

(
−2τ−1

Ωi 1

4τ−1
Ωi −1

)
with τΩi = (0.5hiΩ)−1 (3.29)

Here, the delay is fixed to τΩi = (0.5hiΩ)−1 in order to introduce the corresponding−90◦ phase delay
at the harmonic frequency hiΩ for any given wheel spin rate Ω. With the previous considerations, it
is possible to recast Wi as a system model affine in Ω and subsequently as an LFT, in the following
way:

Wi(Ω) =


afi 0

0 afi
0 −ati
ati 0


 1

D90◦shift(Ω)

Fpeak(Ω) Ω2 =


afi 0

0 afi
0 −ati
ati 0



−β −hiΩ 0 βΩ
hiΩ 0 0 0
Ω 0 −hiΩ 0

Ω 0 0 0
−Ω 0 2hiΩ 0


= Fu (Wi,ΩI3) (3.30)

Remark 4. When driven by the normalized harmonic signal di = sin(hiΩt), the steady-state out-
puts of this filter precisely match those of the i-th harmonic given in (3.5) when the force and torque

vectors are perpendicular2 i.e φfi = φti. On the other hand if the input di is set to unit white noise,
the stochastic responses will have amplitude spectral densities matching the gains along each output
channel of Wi. Additionally, due to the bandwidth choice β = 1, the power of steady-state output is
mainly focused within the narrow region around hiΩ and equal to that of the harmonic signals (3.5).
Therefore, in this stochastic context, the filter Wi can also be interpreted as an approximation in
terms of power distribution of the deterministic sinusoidal perturbations.

Remark 5. A more refined amplitude spectrum of the unit harmonic signal can be obtained by
replacing the peak filter Fpeak(Ω) in (3.27) by a cascade of n copies of itself. In this case, the
overall filter deemed Fpeak/n(Ω) of order 2n will have a sharper roll-off of (20n) dB/decade and
concentrate more of the signal energy around the central frequency Ω.

In this work, a novel state space model of Fpeak/n(Ω) for n > 2 is introduced. The representation

2The filter can be adapted to include other phase relationships by introducing different delays or slightly altering
the structure. For example if the phase relationship between the force and torque vectors is unknown, one possibility
is to split the Wi weight into two copies of itself Wi =

[
Wf

i Wt
i

]
with the amplitude coefficients are fixed to ati = 0

in Wf
i and afi = 0 in Wt

i. Afterwards the new weight is considered driven by two independent normalized force and
torque signals dfi and dti.
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is affine in Ω and has the following recursive definition:

Fpeak/n(Ω) :=

(
βs

s2 + βs+ (hiΩ)2

)n
=

(
An Bn

Cn 0

)
=

 An
β

0

0 1 0 0


where An =

 A1 0[
β
0

] [
1 0

]
An−1

 and A1 =

[
−β −hiΩ
hiΩ 0

] (3.31)

In this case, the expression of the H2 norm can be calculated analytically from the state space
matrices as ∥∥Fpeak/n∥∥H2 = Trace

(
BT
nGoBn

)
(3.32)

where the matrix Go represents the observability Gramian [ZDGO96] that is a solution of the
following Lyapunov equation:

AT
nGo + GoAn + CT

nCn = 0 (3.33)

After solving equation (3.32) for different values of n, it is conjectured in this work that the H2

system norm of Fpeak/n is equal to:

∥∥Fpeak/n∥∥H2 =

√
βκn

2
with κn =

(0.5)n−1

(1)n−1
(3.34)

where (·)n is the Pochhammer symbol (rising factorial). Matching the value of this norm with the
RMS value 1/

√
2 of a unit harmonic signal therefore requires the filter bandwidth to be β = κ−1

n

for different values of n. These β values for n = {1, . . . , 6} are given in table 3.3 and the singular

Table 3.3: Necessary peak filter bandwidth β of the filter Fpeak/n(Ω) for values of n

n 1 2 3 4 5 6

Bandwidth β = κ−1
n 1 2 8/3 16/5 128/35 256/63

values and cumulative RMS of Fpeak/n(Ω) for n = {1, 2, 3} and Ω = 10 Hz are shown in fig. 3.10.
A slight increase in the gain around the central frequency Ω can be observed for higher n values in
order to keep power of the signal (H2 norm, i.e. area underneath the singular value plot) equal to
1/
√

2.

For the considered wheel model (adapted from [Kim14]), the main harmonic dominates in terms of
amplitude over the other harmonics. As such, only the main harmonic weight W1(Ω) , parametrized

by h1 = 1, af1 and at1, will be considered in this study. The other harmonics are all lumped into
the stochastic broadband disturbance signal shaped by Wbn. With this choice, the complexity of
the disturbance model and the subsequent system analysis is significantly reduced. Figure 3.11
shows the magnitude plot towards the first two outputs of this weight together with the phase
difference plot between the same two responses across several Ω ∈ Ω. It can be seen that both two
outputs share the same peak amplitude of af1Ω2 while the phase difference at the central frequency
Ω remains at −90◦ for all different values of Ω ∈ Ω. 28+18 = 46

Output weights and performance definitions

With the disturbance signals and the complex uncertainties properly scaled in the previous sections,
the performance weights Wp and Wu can now be selected. These can be seen as specifications
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Figure 3.10: Singular values and cumulative RMS of Fpeak/n(Ω) for n = {1, 2, 3}, bandwidth
β = κ−1

n and Ω = 10 Hz.

Figure 3.11: Magnitude and phase difference plots for the Fx and Fy outputs of the main harmonic
disturbance model W1(Ω) for several wheel rates Ω ∈ [10, 50] Hz together with the broadband noise
level Wbn.

chosen to impose the performance requirements (R2) and their inverses represent the desired
worst-case upper bounds on the amplitude spectral densities of the actuator control signals upma
and pointing errors p. In order to understand the limits of achievable performance and properly
select these output weights, consider the nominal performance block Md→e of the closed-loop
interconnection M(Ω) given in (3.17). As previously stated, the nominal performance requirements
are satisfied for a given controller K(Ω) whenever the following conditions hold:

∥∥Md→e(i)(Ω)
∥∥L2i < 1

∀Ω ∈ Ω ; i = {1, . . . , 8}
;

Md→e(Ω) =

[
Mdw→ep Mdn→ep

Mdw→eu Mdn→eu

]
=

[
Wp

Wu

] [
Gpd −GpuSiKGyd GpuSiK
−SiKGyd SiK

] [
Wd

Wn

](3.35)
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Based on the control effort requirements (R2) the weight Wu is chosen as

Wu = u−1
maxI6 ; umax = 10 V/

√
Hz (3.36)

such that if the performance conditions
∥∥Md→eu(•)(Ω)

∥∥L2i < 1 are satisfied an upper bound umax
is guaranteed on the worst-case amplitude spectral density of each of the six control signals in
upma in the presence wheel disturbances and sensor noise. However, compliance with these require-
ments further limits the achievable pointing performance by placing additional constraints on the
maximum gains of the function SiK.

The performance weight Wp is selected to ensure that the worst-case amplitude spectral density
profiles of the absolute pointing errors p =

[
θa θb

]
T satisfy the pointing stability requirements

(R2) if
∥∥Md→ep(•)(Ω)

∥∥L2i
< 1. In order to avoid placing contradictory requirements, consider the

closed-loop transfer Mdw→ep = Wp(Gpd −GpuSiKGyd)Wd from normalized wheel disturbances
dw to pointing performance ep and assume that the weight Wp has a high gain in a particular
frequency region. In order to satisfy the requirements (3.35), the controller must shape the function
SiK with sufficiently high gain in the same frequency range and decrease the open-loop disturbance
contribution given by Pdw→ep = WpGpdWd (see (3.16)). However, a high amplitude SiK, will
also cause an amplification of the noise contribution to the pointing errors Mdn→ep and potentially
conflict with the requirements on the robust stability and control effort performance. Based on the
prior considerations, the pointing performance weight Wp was chosen as:

Wp = WpmaxWRPE with
Wpmax = ε−1

maxI2

εmax = 0.65 mas/
√

Hz

;
WRPE =

t∆s (t∆s+
√

12)
(t∆s)

2+6(t∆s)+12
I2

t∆ = 20 ms
(3.37)

Here, WRPE calculates the RPE signals pRPE (shown in fig. 3.7) across a window time t∆ =
20 ms based on the absolute pointing errors p =

[
θa θb

]
T using the frequency domain rational

approximation given in [ECS11, PM12, OFBW13] . Subsequently, Wpmax is used to comply with
the pointing stability requirements and guarantees, if (3.35) holds, an upper bound εmax on the
amplitude spectral density of the RPE signals pRPE .

3.3.4 Robust LPV controller synthesis

Problem setup

With the weights W• properly defined in the previous section, the challenge is now to synthesize
an appropriate LPV controller K(Ω) ∈ K that achieves a good trade-off between robustness and
performance. Using the definitions given in table 3.2, the controller synthesis is expressed as the
following multi-criteria optimization of the closed-loop matrix M(Ω) = Fl (P(Ω),K(Ω)):

minimize γ
K(Ω) ∈ K,

Ds,D1, . . . ,D8 ∈ D

s.t.

γMC(Ω) =

∥∥∥∥diag

([
Di
√
ε

X (i)

]
M(Ω)

[√
εD−1

i

I

])∥∥∥∥L2i

< γ

∥∥DsMw→z(Ω)D−1
s

∥∥L2i < 1/ν

∀Ω ∈ Ω i ∈ {1, . . . , 8}

(3.38)

with X (i) =
[
01×(i−1) 1 01×(8−i)

]
. The constraint

∥∥DsMw→z(Ω)D−1
s

∥∥L2i < 1/ν ensures that
the resulting control law will be robustly stable with respect to any uncertainty ∆ ∈ ∆ with
‖∆‖L2i < ν and ∀Ω ∈ Ω. The constraints containing the Di scalings are used to guarantee the
robust performance requirements. More specifically, for fixed ε ∈ [0, 1], the constraints assure an L2
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gain upper bound ‖d → e(i)‖L2i < γ with respect to any uncertainty ∆ ∈ ∆ with ‖∆‖L2i < ε/γ.
The ε parameter is used to adjust the trade-off between performance and robustness with higher
values forcing the minimization problem to consider larger levels of uncertainty. The minimization
problem (3.38), is known to be NP hard even for fixed values of Ω and is usually handled for the LPV
case with heuristics (see [WPS16, VSK09, AA98]) based on the well-known DK-iteration [ZD98]. To
overcome the disadvantage of high order controllers generated with these LPV synthesis methods
when applied to high order non-academic systems and facilitate the controller implementation, the
proposed method relies instead on nonsmooth H∞ tools [ADN15, Apk11] to minimize γ in (3.38)
and synthesize a low order robust LPV controller. It is clear that the time-varying nature of Ω(t) is
not explicitly taken into account in the synthesis phase. As such, the requirements are certified only
for fixed Ω ∈ Ω. However, the maximum RW accelerations Ω̇(t), given in (2.4), are relatively small
compared to the system dynamics and therefore, the possible discrepancies between the static and
time-varying cases are assumed to be minor. This assumption will be rigorously verified a posteriori
in the analysis section of the chapter.

Controller structure

To increase the controller implementability, its structure is enforced to have the following affine
dependency on Ω:

K(Ω) = KoutK̃(Ω)Kin where
K̃(Ω) = Fl

((
A0 B0 A∆

C0 D0 B∆

C∆ D∆ 0

)
,ΩInΩ

)
=
(

A0 + ΩA1 B0 + ΩB1

C0 + ΩC1 D0 + ΩD1

) (3.39)

where A1 = A∆C∆, B1 = A∆D∆, C1 = B∆C∆ and D1 = B∆D∆. The system K̃(Ω) of order
nK forms the LPV part of the overall controller K(Ω) and the size nΩ of the scheduling block
ΩInΩ determines the maximum rank of the matrices A1,B1,C1,D1 in the affine 3 description
(3.39). The fixed matrix Kin = X yNr ∈ R2×12 has the role of a sensor fusion block containing the
force reconstruction matrix Nr defined in (2.33) and the selection matrix X y =

[
02×3 I2 02×1

]
.

The reduced vector yk = Kiny ∈ R2 will therefore represent, in the absence of sensor noise and
placement uncertainty, a reconstruction of the torques

[
Tsu Tsv

]
in the vector ys given in (2.20).

Similarly, the control allocation block Kout = B+X u ∈ R6×4 contains the pseudoinverse of nominal

PMA force projection matrix B given in (2.42) together with X u = diag
([

I2
01×2

]
,
[

I2
01×2

])
. In

this case, the actuator signal vector is u = Koutuk where the reduced control vector uk(t) ∈ R4

can be thought, in the absence of actuator dynamics and uncertainties, as the desired values for
the components

[
Fasu Fasv Tasu Tasv

]
of the actuator force and torques vector us applied to the

structural model. For clarity, the overall structure of K(Ω) is also shown in fig. 3.12.

Synthesis procedure

According to the controller structure given in (3.39), the goal is now to appropriately tune the LPV
part K̃(Ω) of the controller and the D-scaling matrices such that for given ε, ν the performance
indicator γ in (3.38) is minimized. To accomplish this, the following procedure is proposed:

3Although not strictly enforced in this study, it can be seen that the LPV structure can be further constrained to
be strictly proper by fixing to zero the matrix D0 and either one of the two factors in D1 = B∆D∆.
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Figure 3.12: Internal structure of the LPV controller K(Ω)

Step 1: The original minimization problem given in (3.38) is reduced to the following simpler,
but more conservative, single criteria optimization:

minimize
K(Ω)∈K D∈D

γ s.t.
γSC(Ω) =

∥∥∥[D√εI]M(Ω)
[√

εD−1

I

]∥∥∥L2i
< γ

for ∀Ω ∈ Ω
(3.40)

For fixed values of D, ε and Ω, the previous minimization problem can be optimally solved
using classical H∞ tools. This generates an unstructured controller that has the same order
as the augmented plant model P(Ω). The performance obtained by such a pointwise optimal
controller will afterwards be compared with the ones obtained using the low-order structured
LPV controller calculated using non-smooth H∞ techniques. This provides a clear measure of
the performance penalty that must be paid to achieve the particular controller structure.

Step 2: In order to manage the trade-off between robustness and performance objectives, the
optimization problem (3.40) is solved for multiple values of ε ∈ [0, 1] using nonsmooth H∞
tools over a dense grid of wheel speeds Ω covering the set Ω. The decision variables are the
controller matrices A0 ∈ RnK×nK , B0 ∈ RnK×2, C0 ∈ R4×nK , C∆ ∈ RnΩ×nK and D∆ ∈ RnΩ×2

together with the D-scales D ∈ D. The orders nK and nΩ are used as degrees of freedom
controlling the complexity of the control law and are progressively increased up to a maximum
value until the optimization procedure does not yield a significant improvement in γ. In the
study case, the values of nK and nΩ are fixed to nK = 6 and nΩ = 2. This generates a family
of controllers, each tuned for different levels of uncertainty ε.

Step 3: The additional hard constraint
∥∥DsMw→zD−1

s

∥∥L2i < 1/ν with Ds ∈ D is added
to the minimization problem (3.40) and Step 2 is re-executed for different ν ∈ [0, 1]. This
guarantees that each of the resulting controllers will also guarantee robust stability ∀∆ ∈ ∆
with ‖∆‖L2i < ν. Comparing the resulting performance indicators γ with the ones obtained
using the controllers generated at Step 2 easily highlights the additional performance cost that
must be paid in order to enforce this additional stronger stability requirement.

Step 4: For each ε and ν, the controller matrices and the D-scales obtained in the previous
step are used to initialize and solve the full minimization problem (3.38). Compared to the
previous step, the robust performance requirements are enforced separately only for a subset of
output channels using different D-scales. As the optimization problem is less conservative and
with more degrees of freedom compared with the previous step, it follows that the performances
are guaranteed to improve.

The resulting performance levels γ obtained at the end of Step 4 are shown in fig. 3.13a. Each point
maps different values of ε, ν ∈ [0, 1] to a performance indication γ and a corresponding controller.
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Two of these controllers are highlighted in the figure and will be selected for further analysis.
The first one, Kperformance emphasizes performance over robustness with ε = 0.01% ; ν = 25%
and resulted in a performance level γ = 0.376. The second highlighted controller is labeled as
Krobustness and achieves a performance level of γ = 0.955 for ν = 100% and ε = 5%. Compared to
the previous controller, the new control law trades performance for guaranteed robustness by placing
more demanding robust stability and performance constraints. In order to highlight how the LPV
control laws adapts based on the wheel speed, the singular values and poles of Krobustness are shown
in fig. 3.13b for different values of Ω. It is clear that for each Ω, the maximum gains follow the main
harmonic disturbance and peak around the resonant frequencies of the passive isolator (14 Hz) and
flexible attachment (36.5 Hz). The closed-loop stability and robust performances obtained using
this controller will be analysed in-depth in section 3.4.

(a)

(b)

Figure 3.13: (a) Family of synthesized controllers with the corresponding performance indicator
γ for different ε and ν (b) Singular values and poles of the selected Krobustness controller across
multiple fixed wheel speeds Ω ∈ Ω.

Performance penalty introduced by the structured LPV design

Imposing a fixed low-order LPV structure for the controller comes with a performance penalty
compared to a full order optimal controller precisely tuned for a given Ω. However, this penalty can
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be rather small compared to the gains in simplicity and implementability offered by the proposed
low-order LPV solution. In an effort to quantify this cost for the Krobustness controller, fig. 3.14
first shows a plot of the performance criterion γSC(Ω) from (3.40), calculated for multiple fixed
Ω ∈ Ω using the LPV controller and D-scales generated at Step 2 of the synthesis procedure.
Afterwards, with both the D-scales and ε fixed, a set of optimal controllers minimizing the same
single criteria (3.40) is calculated using classical H∞ tools for each Ω. Comparing the two curves, it
can be seen that the single low-order LPV controller closely matches the optimal results with γSC
differences varying between 10−4 and 10−1. For the considered control problem, this close match
is satisfactory and the performance trade-off is deemed acceptable. The additional small penalty
needed to enforce the extra robust stability requirement associated with Step 3 is highlighted
by tracing the γSC(Ω) performance curve obtain using the LPV controller at this particular step.
Finally, the curve γMC(Ω) reveals the value of full performance criteria given in (3.38) using the
controller synthesized at Step 4 of the procedure.

Figure 3.14: Single and multi-criteria performance level curves γSC(Ω) and γMC(Ω) obtained using
the controller Krobustness at each step of the optimization procedure compared to the H∞ optimal
value of the single criteria γSC obtained at each distinct value of Ω using the same fixed D-scales.
Frequency regions where the optimal single criteria optimization can’t guarantee both robust sta-
bility and robust performance requirements: a - actuator resonance and structural whirl modes;
b - flexible attachment mode.

3.4 Performance and stability analysis

3.4.1 Nominal performance

The nominal performances using the previously designed LPV controller Krobustness are evaluated
by first fixing the uncertainty blocks ∆• to zero in the control architecture pictured in fig. 3.7 .
Additionally, the full order structural model Ĝ is used in place of the reduced one Ĝr employed
during synthesis. Next, the singular values are calculated for the transfers from normalized distur-
bances d =

[
dw dw

]
T towards the pointing errors p =

[
θa θb

]
T and actuator control signals u.

These singular values are illustrated in fig. 3.15 for different fixed spin rates Ω in both open and
closed-loop configurations. It can be seen that the closed-loop singular values lie below the specifi-
cations imposed by the performance weights. For every value of Ω, each of the closed-loop responses
shows a peak around the main harmonic disturbance. The peaks occurring around the 15 Hz and
37 Hz are due to the interaction between the main harmonic disturbance with the flexible modes of
the passive isolators and those of the satellite attachment. In the case of the pointing errors, the
slight amplification in the closed-loop high frequency spectrum can be explained by analyzing the
transfer from each component of the disturbance d towards these performance channels. fig. 3.16a
shows the contribution from the sensor noise dn, broadband perturbation vector dbn and the main
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Figure 3.15: Singular values (representing the worst-case amplitude spectral densities) under nomi-
nal conditions from the normalized disturbances d towards the pointing errors p and control signals
u for different spin rates Ω ∈ Ω.

harmonic disturbance d1 towards the closed-loop pointing error p(1). It is clear, that the high fre-
quency contribution is largely due to the sensor noise while the mid-range is mostly dominated by
the harmonic disturbance. The nominal system performance can also be visualized in terms of the
L2 gain of the transfer d → e towards each of the weighted performance signals. This enables an
easy evaluation of the L2 performance level relative to the specification corresponding to the gain
of γ = 1. The open and closed-loop L2 gains are shown in fig. 3.16b for different output channels.
For example, comparing the open and closed-loop L2 gains in the RPE channel d → ep(1) around
Ω = 37 Hz, it can be deduced that the peak RPE amplitude spectrum is attenuated by over 30 dB.

3.4.2 Robust stability and worst-case analysis

Analysis using the structured singular value

As previously explained in (2.56), the stability margin of the closed-loop interconnection with
respect to the set of complex uncertainties ∆ ∈ ∆ can be evaluated at a given frequency ω ∈ R
and wheel spin rate Ω ∈ Ω by computing the structured singular value µ∆ (Mw→z(Ω, jω)). The
upper bounds of this function using the Krobustness controller are shown in fig. 3.17a across a dense
grid of reaction wheel spin rates Ω ∈ Ω and frequencies ω ∈ [5, 150] Hz encompassing the control
bandwidth and main dynamics of the system 4. It can be seen that the function peaks (i.e. the
stability margin 1/µ∆ drops) in regions of high controller gain around frequencies equal to the
wheel spin rate Ω or nearby the resonance frequencies of the actuators and passive isolators. To get
a deeper insight into the sensitivity of the robust stability margin, fig. 3.17b shows for a given spin
rate Ω ∈ Ω, the maximum value of µ∆ over all real frequencies ω i.e. supω∈R µ∆ (Mw→z(Ω, jω))
calculated for only certain uncertainty blocks.

4The bounds were calculated using the command robstab from Matlab’s Robust Control Toolbox [BCPS16]. The
algorithm guarantees that the grid of frequencies includes the frequency at which the stability margin is smallest
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(a)

(b)

Figure 3.16: For different wheel spin rates Ω ∈ Ω: (a) Contributions to the closed-loop pointing
error spectrum p(1); (b) L2 gains across multiple performance transfers.

Noting that the peak values are below one in each case, it can be stated that the loop is guaranteed
to remain stable for all the corresponding uncertainty blocks. This confirms that although the
controller was synthesized to enforce robust stability only over the complex set ∆ given in (3.14),
the coverage provided by this uncertainty model was wide enough to account for the real parametric
set ∆real. In the case of the combined complex uncertainties ∆ = diag (∆a,∆y,∆u), a 10% increase
in the normalized uncertainty is enough to cause loop instability. This value is significantly lower
than the 60% increase needed for the real uncertainties ∆real. The gap can be explained due to
the fact that ∆ also accounts for potential saturations or time-delays in the actuators.

The degradation of different performance indicators, under the influence of uncertainty, can also be
systematically studied within the same framework. This is done by calculating an upper bound on
the worst case L2 gain for several closed-loop performance transfers d → e(•) across Ω ∈ Ω and with
respect to different percentages ε ∈ [0, 1] of normalized complex uncertainty ∆ ∈ ∆, ‖∆‖L2i < ε

, i.e. sup∆∈∆,‖∆‖L2i
≤ε

∥∥∥Fu (M(Ω),∆)d→e(•)

∥∥∥L2i
. Numerically, this is efficiently performed using

the Matlab command wcgain [BCPS16]. The performance degradation curves for the pointing
performance ep(1), ep(2) and the control effort eu channels with respect to the purely complex
uncertainty set are shown in fig. 3.18a. The ε value at which each of these curve intersects
the unit L2 gain represents the robust performance margin for that particular channel. This
margin is equal to the maximum level of uncertainty for which the performance requirements are
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(a)

(b)

Figure 3.17: Robust stability results using Krobustness across different Ω ∈ Ω. (a) Upper bound
on µ∆ (Mw→z(Ω, jω)), i.e. the inverse robust stability margin, with respect to the full complex
uncertainty ∆ = diag (∆u, ∆y, ∆a) ∈ ∆ (see (3.14) for details). (b) Peak over frequency bounds
of µ∆ considering only certain uncertainty structures (solid lines for upper bounds and dashed for
lower).

still met. For example, in the case of the RPE pointing performance channel d → ep(1), about
ε = 15.6% of the normalized modeled uncertainty is sufficient to cause an amplification above
unit L2 gain and therefore an invalidation of the requirement. Taking the uncertainties scaled near
these robust performance margins, fig. 3.18b shows the upper bounds and worst case singular values
calculated across multiple fixed Ω ∈ Ω. For ep(1), a value of ε = 15.6% modeled uncertainty causes
an amplification up to the maximum pointing error at Ω = 36.73 Hz when the main harmonic
disturbance interacts with the flexible mode of the satellite. Similarly for ep(2), the amplification
occurs at Ω = 12.81 Hz and ε = 26%. Finally the gain of d → eu, corresponding to the combined
control effort performance, is more robust to uncertainty and guaranteed to be below unit gain up
to about ε = 97%.

It should be clear that the same type of analysis can be done for other uncertainty structures
or performance transfers. For example, fig. 3.19 examines the worst-case gains at each frequency
within the interval Ω = [10, 50] Hz from main harmonic disturbance w1 towards the two pointing
errors p =

[
θa θb

]
T. These are calculated with respect to different real uncertainty groups and

compared to the nominal case. In this fashion, the sensitivity of the worst-case gain with respect
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(a)

(b)

Figure 3.18: (a) Performance degradation curves. (b) Upper bounds and worst case combinations
for different fixed Ω ∈ Ω and ε near the robust performance margins.

to each of parameter group is rigorously computed and the most significant driving uncertainties
in each frequency range can be identified. For instance, actuator or isolator uncertainties alone
are enough to cause a slight invalidation of the performance requirement around the 36 Hz modal
frequency of the flexible attachment.

Analysis via Integral Quadratic Constraints (IQC)

The previous µ-analysis results relied on the underlying realistic assumption that the wheel speed
Ω ∈ Ω is a slow-varying parameter in order to provide pointwise stability and performance guar-
antees. Whereas µ-tools are restricted to LTI uncertainties, the more extensive IQC approach
introduced in [MR97] can also handle a wide range of additional uncertainties such as linear time-
varying (LTV) perturbations, time delays or sector-bounded non-linearities. A number of Matlab
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Figure 3.19: Closed-loop sensitivity analysis. Worst-case L2 gains from the main harmonic w1

towards the two pointing errors p =
[
θa θb

]
T for different real uncertainty groups.

toolboxes [HSP15, KFS08, MKJR04] have been developed to facilitate the analysis using IQCs.
A brief review of IQC theory is given in appendix A.2 and the reader can refer to [VSK16] for
additional details. The flexibility of the IQC framework is leveraged to certify the robust stability
and provide upper bounds on the worst case performances in the case time-varying Ω(t) ∈ Ω,
uncertain time-varying delays and actuator saturations. Consequently, the uncertainty introduced
by the delay and saturation blocks (see fig. 3.6) is incorporated into the augmented plant model
using the following two blocks, as shown in fig. 3.20:

∆τ (t) = diag

[(
Dτi(t) − 1

) 1

s

]
; τi(t) ∈ [0, τmax]

Dτi(t) :=
{
Dτi(t) : L2 → L2, Dτi(t) (ξ(t)) = ξ (t− τi(t))

} and
∆sat(t) = diag

[
σi(t)

]
σi(t) ∈ [0, σmax]

for i ∈ {1, . . . , 6}

(3.41)

The operator ∆τ (t) accounts for the six different bounded time-varying delays τ1...6(t) ∈ [0, τmax],
in a manner suitable for analysis via IQCs (see [VSK16, KR07] for details). Inspired by [PF16],
the operator ∆sat(t) ∈ R6×6 captures the effect of actuators saturations, using the simplified
model sat(u) ≈ u − u · σ(t) where σ(t) ∈ [0, σmax] is a time-varying uncertainty with arbitrar-
ily fast variation rates and σmax is the maximum relative saturation level. Although this model
is conservative, in the sense that it can be used to represent other uncertainties or nonlineari-
ties, it offers the possibility to gain insight into the sensitivity and effects of the saturation on
the performance of the system. The blocks ∆τ (t) and ∆sat(t) together with ones containing the
time-varying wheel speed Ω(t) can be aggregated into an overall time-varying uncertainty block

∆IQC(t) = diag
(

Ω(t)I7, ∆sat(t), ∆τ (t)
)
∈ ∆IQC in feedback with the closed-loop augmented

system M (see fig. 3.20). In this case, the associated set of IQC multipliers that was chosen
to analyze the closed-loop performances, combines the one defined for time-varying delay from in
[KL04, KR07] with the multipliers for time-varying parameters with bounded rates given in [KS06].
With the structure in place, upper bounds on the worst-case L2 gains for any performance transfer,
i.e. sup∆IQC∈∆IQC

∥∥Fu (M,∆IQC) d→e(•)
∥∥L2i can be evaluated using the method outlined in ap-

pendix A.2. In this chapter, the analysis will focus solely on the control effort performance channel
d → eu. To facilitate the identification of wheel speed ranges where the performance degradation
is highest, the domain Ω is subdivided into N connected intervals such that Ω =

⋃N
i=1 Ωi. The
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Figure 3.20: Loop transformations for IQC analysis.

bounds are afterwards calculated for each interval by restricting the domain of the smoothly-time
varying wheel speed to Ω(t) ∈ Ωi. Following this methodology, fig. 3.21a shows the upper L2

bounds computed for different maximum acceleration Ω̇max and ignoring other uncertainties. The
performances are rather insensitive to fast variations in Ω(t) with only a slight penalty compared
to the fixed Ω case even for accelerations that are much higher than the typical ones given in (2.4).

The saturations effects are investigated by first fixing the maximum wheel acceleration Ω̇max to
a low value (10−4Hz/s) and ignoring the time-delays (fix ∆τ (t) = 0). Next, the closed-loop L2

gain bounds for multiple maximum values σmax of the saturation block σi(t) ∈ [0, σmax] are
evaluated and displayed in fig. 3.21b. As the L2 gain remains below one, closed-loop stability and
robust control effort performance are guaranteed for any variation of the saturation levels within
σmax ∈ [0, 100%].

Finally, fig. 3.21c illustrates the performance degradation with respect to the combined effect of
the six variable uncertain time-delays τ1...6(t) ∈ [0, τmax] up to the maximum value τmax = 10 ms
for which the stability can still be guaranteed across Ω . With respect to the current system,
these time-delay stability margins are considered satisfactory. However, it should stressed that
the computed L2 gain bounds can be overly pessimistic as the delays are assumed distinct and
time-varying arbitrarily fast in each of the six actuators.

(a) (b) (c)

Figure 3.21: Upper bounds on the worst-case L2 gain for the combined control effort performance
channel d → eu for time-varying Ω(t) and different maximum: (a) accelerations Ω̇max (b) saturation
levels σmax (c) time-varying uncertain delays τmax.

3.4.3 Time-domain simulations and comparative analysis

As part of the validation process, time-domain nonlinear simulations were performed using the
Kperformance and Krobustness controllers on a high-fidelity multi-body simulator developed with the
expertise of ESA and Airbus Defence and Space. For the considered mission scenario, the reaction
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wheel is accelerated using a constant torque from Ω = 10 Hz at time t = 0 min to Ω = 50 Hz
at t = 30 min. The simulator uses the disturbances model (3.5) and the amplitude coefficients
given in table 3.1 to introduce the main reaction wheel harmonic disturbance. Stochastic broad-
band perturbations and sensor noise, with spectral densities bounded by the Wbn and Wnweights
described in the previous section, are also injected into the closed-loop system. The benefits of
the proposed approach are highlighted by comparing open-loop results with the ones obtained in
closed-loop using the two controllers. Figure 3.22 show the amplitudes and peak amplitude spectral
density values of the relative pointing errors corresponding to each of the angular displacements
p =

[
θa θb

]
T of the satellite main body in open-loop and in closed-loop with both the Krobustness

and Kperformance controllers. Figure 3.23 shows the full spectrograms of the RPE corresponding

Figure 3.22: Relative Pointing Errors and peak amplitude spectral densities corresponding to each
of the satellite’s angular displacements p =

[
θa θb

]
T in open-loop and in closed-loop with both the

Krobustness and Kperformance controllers for a linear wheel spin variation of Ω(t) ∈ Ω. Note: the
peak at a coincides with the intersection between the main harmonic disturbance and the passive
isolator mode while b occurs at the intersection with a mode of the flexible attachment.

to the relative pointing error associated with the p(1) = θa angular displacement of the satellite are
compared in open-loop and in closed-loop with both the Krobustness and Kperformance controllers.
One can easily observe that the contribution from the main harmonic disturbance towards the
pointing error is significantly attenuated in closed-loop. On the other hand, a slight increase in
the broadband pointing error response can be observed in the closed-loop scenarios. As previously
shown in fig. 3.16a this is mainly the contribution from the sensor noise that propagates through the
controller and into the actuator signals. This unavoidable effect is a well understood phenomenon
that was taken into account and correctly predicted in both the controller design (section 3.3.2)
and system analysis (section 3.4) phases.

In fig. 3.24 the six actuator control signals and their corresponding peak amplitude spectral densities
are shown using both the Krobustness and Kperformance controllers.
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Figure 3.23: Spectrograms of the relative pointing error associated with the p(1) = θa angular
displacement of the satellite in open-loop and in closed-loop with both controllers. Note: labeled
locations match those in fig. 3.22.

Figure 3.24: The six actuator control signals and their corresponding peak amplitude spectral
densities using both controllers. Note: labeled locations match those in fig. 3.22

Overall, both the nominal pointing stability and control effort performances comply with the de-
sign requirements. Both controllers manage to significantly attenuate the pointing errors resulting
from the interaction between the main harmonic disturbance and the isolator and flexible attach-
ment modes. As expected from the γ performance levels obtained during the synthesis phase
(section 3.3.4), the controller Kperformance manages to obtain higher attenuation levels using a
more aggressive control signal.

Next, the robust performance of the two controllers is verified over a simplified real uncertainty
set ∆ ∈ ∆simple of 26 real parameters that only includes variations in the stiffness and damping
properties of the passive isolators and also uncertainty in the actuator coefficients, i.e. the pa-
rameters: {kpma1...6, cpma1...6, Tpma1...6, ku, kθu, kv, kθv, cu, cθu, cv, cθv} defined in section 2.3.
For this uncertainty model, fig. 3.25a illustrates the nominal and worst-case L2 gains between the
normalized disturbances d and the relative pointing error pRPE(2) of the closed-loop augmented
system pictured in fig. 3.7. The values are calculated across different wheel spin rates Ω using
the standard µ-tools described earlier in the section and represent the predicted peak amplitude
spectral density values of the closed-loop RPE θb signal. It is clear that while the nominal perfor-
mances are better using Kperformance, the worst-case values peak to a much higher value compared
to those obtained using Krobustness.

The precise parameter combination ∆wc ∈ ∆simple that produces the peak at the spin rate Ω =
14.71 Hz for the Kperformance controller is also provided by the µ-analysis procedure and shown
in fig. 3.25b. These parameter values are subsequently fixed in the nonlinear simulator in order
to compare the time domain data with the values predicted by µ-analysis. Consequently, fig. 3.26
shows the amplitude, spectral density and cumulative RMS of the relative pointing error along
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Chapter 3. Robust microvibration isolation with guaranteed pointing performance

(a) (b)

Figure 3.25: (a) Upper bounds on the worst-case closed-loop L2 gain of d → pRPE(2) corresponding
to the relative pointing error along the p(2) = θb angular displacement for different wheel rates
Ω ∈ Ω using both Krobustness and Kperformance controllers ; (b) Parameter combination ∆wc

corresponding to the worst case L2 gain occuring at Ω = 14.71 Hz using Kperformance.

the p(2) = θb angular displacement in closed-loop using both controllers and running at a fixed
Ω = 14.71 Hz. The parameters are alternatively fixed to the worst-case parameter combination
∆wc as well and to their nominal values. In this case, the simulation results precisely align with

Figure 3.26: Time domain simulations of the closed-loop relative pointing error along the p(2) = θb
angular displacement (left) together with the amplitude spectral density (center) and cumulative
RMS (right) at Ω = 14.71 Hz using both controllers . Note: The various responses include those
where the parameters are fixed to their nominal values and those where the parameters are fixed
to the worst-case parameter combination ∆wc.

those predicted by µ-analysis and highlight the efficiency of the proposed methodology in finding
worst-case scenarios. It should be clear that the simplified real uncertainty set ∆simple contains
a total of 26 real parameters and evaluating even the vertices of the hyperrectangle spanning this
uncertainty space would involve a total of 226 simulations for any given spin rate Ω ∈ Ω. Monte
Carlo campaigns would therefore quickly prove to be ineffective in finding particularly problematic
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parameter combinations or spin rates while an analysis based on the structured singular value can
be scaled to tens or even hundreds of uncertain parameters and provides guaranteed performance
bounds.

3.5 Conclusions

The chapter outlines a unified and comprehensive methodology that can be used to perform rigorous
control system design and validation for microvibration isolation systems with guaranteed pointing
stability performance. To this end, an LFT model is first introduced in order to capture, in
a common mathematical language, the complex dynamic interactions between the uncertain and
time-varying structural dynamics of the spacecraft, the spinning reaction wheel, the attitude control
systems as well as the hybrid isolation platform. This end-to-end analytical model is afterwards
used to systematically synthesize, using structuredH∞ tools, a set of low-order LPV controllers that
balance the trade-offs between robustness and performance. Finally, the work relies on the well-
established structured singular value and IQCs in order to perform a detailed worst-case analysis of
the system and obtain stability and performance certificates without relying on extensive Monte-
Carlo simulations. It is hoped that the presented work can lead to a more widespread adoption
of these powerful design and validation principles within the industry, raising the standards of
performance and reliability of hybrid microvibration isolation systems.

“If people do not believe that mathematics
is simple, it is only because they do not
realize how complicated life is. ”

John von Neumann
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4 Worst case optical jitter analysis

4.1 Introduction

Predicting the dynamic opto-mechanical performance of complex spacecraft during the design phase
is essential before investing considerable resources towards a particular architecture [MdWU+01].
Integrated dynamics and controls modeling provides the means of verifying the soundness of a par-
ticular spacecraft design and to identify crucial system parameters that are the main performance
drivers. These multidisciplinary modeling approaches typically combine the dynamical model of
the flexible spacecraft with that of the vibration isolation and optical sub-systems and have been
researched in a number of studies such as [LYH12, MdWU+01, DGM12]. When combined with a
disturbance model for the perturbations acting on the spacecraft, such as those produced by the
reaction wheels, these approaches aim of predicting optical performance without relying on time-
domain simulations. However, the problem of guaranteed worst-case bounds on the pointing errors
resulting from reaction wheel microvibrations has not been investigated in these studies. This fact
motivated the research presented in this chapter.

Previously, in chapter 3, it was shown how the dynamical model of the a flexible satellite actuated
by a spinning reaction wheel can be integrated with the disturbance model for the wheel perturba-
tions in order to tune an active vibration controller and improve the overall pointing performance.
Using this integrated model as an example, one goal of this chapter is to highlight how the H∞/µ
framework can be used to make a rigorous and systematic assessment of the worst-case pointing
errors of a general flexible spacecraft due to reaction wheel disturbances. The method provides
accurate and non-conservative bounds on the time-domain performance solely based on values of
various system norms and without any reliance of time-domain simulations.

Afterwards, the chapter will detail a novel method that can be used to simulate the image distortions
occurring due to these disturbances based upon a solid mathematical framework. This is a problem
of considerable industrial need as highlighted in [LYH12, PM16, PM12].

4.1.1 Chapter organization and main contributions

Section 4.1.2 begins with the a detailed presentation of the analysis architecture that can be used
to assess the worst-case pointing stability of a general flexible spacecraft. To do this, the weighting
functions previously described in section 3.3.3 will be employed to shape both the disturbance
spectrum as well as to calculate the resulting relative pointing errors . The considered reaction
wheel disturbance spectrum includes a number of harmonic signals plus an additional broadband
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4.1. Introduction

random perturbation. In section 4.2, it is shown how the L2 and H2 system norms can be used to
make accurate worst-case time-domain predictions on both the 3σ amplitude as well as the RMS
values resulting pointing errors without performing any simulations. Additionally, it is shown how
the method can be adapted in a new way in order to assess the worst-case bounds and parametric
sensitivities in various directions of the image plane. Finally section 4.3 will detail a novel method
to compute the image distortions resulting from harmonic wheel perturbations. To this end, new
analytical expressions for the Point Spread and Optical Transfer Functions are introduced in order
to properly simulate and assess the elliptical image motion patterns resulting from harmonic wheel
perturbations.

4.1.2 Analysis architecture

The analysis architecture that will be used throughout this chapter is shown in fig. 4.1 as M(Ω,∆).
For simplicity, the assumption is made that the spacecraft is actuated by a single reaction wheel

Flexible
Spacecraft
Structure

P

Satellite attitude
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d1 = sin(h1Ωt+ Φ1)
W1

ΩI3wΩ1 zΩ1
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Random disturbances dbn
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]
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uN
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Figure 4.1: General system interconnection for jitter analysis.

spinning with a variable angular speed Ω ∈ Ω. A second assumption is that the flexible spacecraft
structure (the P block in fig. 4.1) can be written in LFT form with the dependency on the reaction
wheel spin rate contained within the block ΩIn and the real and complex uncertainties isolated in
the uncertainty block :

∆ ∈∆ ⊂ Cm×m (4.1)

The results presented in this chapter are obtained using the plant model previously introduced in
chapter 3, i.e. the flexible satellite coupled to the microvibration isolation architecture and using
the controller Krobustness. However, it should be stressed that the proposed analysis methodology
can be applied to any other spacecraft models.

The structural model is considered perturbed by the reaction wheel’s disturbance vector uw =[
Fx Fy Tx Ty

]
explained in (3.4) and composed of N deterministic harmonic signals u1...N plus

a stochastic broadband component ubn. Based on the method proposed in section 3.3.3, the filters
W1...N , detailed in (3.30), are used to capture the amplitude and phase correlation of the each
harmonic disturbance at different wheel speeds Ω. However, in this chapter, each of these weights
is assumed to be driven by a corresponding harmonic signal:

di(t) = sin (hiΩt+ Φi) with fixed phase uniformly random in Φi ∈ [0, 2π) (4.2)

Following the properties of the Wi(Ω) weights summarized in remark 4 from chapter 3, it be-
comes clear that the steady states outputs in this case will precisely match those of the harmonic
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Chapter 4. Worst case optical jitter analysis

components ui given in (3.4). Similarly, the weight Wbn models the random broadband wheel
disturbances when driven by unit white noise inputs dbn (see (3.26) for the precise value used in
this chapter).

The mission scenario that will be investigated is shown in fig. 4.2 and is made up of the flexible
satellite model together with the isolation system previously illustrated in fig. 3.1. As explained
in section 3.2.2, this satellite has a corresponding body fixed frame Fp := (op;~a,~b,~c) attached at
the CoM of its rigid body that describes its orientation with respect the an inertial reference frame
Fworld := (O; ~X, ~Y , ~Z). Initially, the rigid body is perfectly aimed at a particular target that is
positioned along its negative ~c body axis. However, reaction wheel perturbations induce small
angular displacements p =

[
θa θb

]
T around the ~a and ~b body axes. The absolute pointing error

vector p is subsequently transformed into pixel errors corresponding to lateral translations of the
target in the xy-plane 1 of the photodetector using the following simplified camera model

[
x
y

]
︸︷︷︸

e

= [WRPE Cm]

[
θa
θb

]
︸︷︷︸

p

where Cm =

[
cos(β) sin(β)
− sin(β) cos(β)

] [
αx

αy

]
(4.3)

where αx = αy = 20 pixels/mas are the pixel densities of the optical instrument in both directions
and β is the angle between the satellite and detector frames along the target pointing axis (see
fig. 4.2 for clarity). Although, this angle is fixed to β = 0 for all simulations, variations within

x

y

a

b

c

θa

θb
θc

Satellite Rigid Body

Photoreceptor

Target

β

X

Y

Z

Inertial
reference
frame

op

O

Figure 4.2: Simplified pointing scene considered in this study.

β ∈
[
0, 2π

]
will be used in subsequent mathematical calculations in order to examine pointing

errors in different directions. The high-pass filter WRPE =
t∆s (t∆s+

√
12)

(t∆s)
2+6(t∆s)+12

I2 is used to calculate

the relative pointing error e =
[
x y

]
T within the exposure time t∆ as detailed in (3.37). Obtaining

accurate bounds and a deep understanding of these pointing errors is an issue of great importance
for high stability space missions and represent the goal of the subsequent sections. This task is
complicated by the variability of Ω ∈ Ω and also due to the presence of system uncertainty and
the fact that external disturbances are both harmonic and stochastic in nature.

1The simplified model assumes that the effect on the pixel errors due to any satellite translation as well as due to
rotations along the c-axis are negligible.
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4.2. Pointing error analysis by means of system norms

4.2 Pointing error analysis by means of system norms

For the overall interconnection M(Ω,∆) that was described in the previous section,

Figure 4.3 shows the singular values of the transfer between the harmonic input d1 and the broad-
band disturbances dbn towards the two relative pointing errors e =

[
x y

]
T in the open-loop nominal

case (∆ = 0) and without any rotation in the photodetector (β = 0). It can be observed that due to
the gyroscopic effect, the singular values from the broadband disturbances dbn are slightly different
across multiple spin rates Ω ∈ Ω = [10, 50] Hz. However, this variation is much more significant in
the case of the input d1 associated with the wheel’s main harmonic perturbation. This results from
the strong amplification of the filter W1(Ω) around its the central frequency. Consider the now

Figure 4.3: Open-loop singular values towards the relative pointing errors e =
[
x y

]
T for different

Ω ∈ [10, 50]Hz and in nominal conditions (∆ = 0).

the following partition of the transfer matrix from external disturbances towards the pixel pointing
error e(1) = x:

x =
[

M1 . . . MN Mbn

]︸ ︷︷ ︸
Md→x(Ω,∆)

[
d1 . . . dN dbn

]T︸ ︷︷ ︸
d

(4.4)

For fixed ∆ ∈∆ and Ω ∈ Ω the time-domain pointing error in the x-direction can be written as:

x(t) = xbn(t) +

N∑
i=1

x∞,i sin (hiΩt+ ψi) (4.5)

where xbn is the stochastic component in response to the zero mean white noise unit covariance
signals dbn. As these random disturbances are assumed to be Gaussian with zero mean and the
system Mbn is LTI for any fixed values of ∆ and Ω, it follows that xbn is also Gaussian and its
variance will be denoted by σ2

x. The sinusoidal components with amplitude x∞,i and phase ψi are
the result of the harmonic excitations di(t) from (4.2). Both the variance σ2

x and the amplitudes2

x∞,i can be described in terms the system norms of Md→x(Ω) as:

x∞,i = ‖Mi‖L2i , i = {1, . . . , N} ; σ2
x = ‖Mbn‖H2 (4.6)

2This is the case if the harmonic filter Wi(Ω) has sufficiently high gain at the central frequency hiΩ compared to
the adjacent frequencies and therefore ‖Mi‖L2i = |Mi(jhiΩ)| holds.
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where the notations ‖·‖H2 denote the H2 system norm defined as

σ2
x = ‖Mbn‖H2 =

√√√√√ 1

2π

∞∫
−∞

Trace [M∗
bn(jω)Mbn] dω (4.7)

Based on these norms, an upper bound x3σ on the predicted steady-state 3σ absolute value of x(t)
together with a corresponding measure xrms of the RMS value are provided by:

x3σ = 3σx +
N∑
i=1

x∞,i ; x2
rms = σ2

x +
1

2

N∑
i=1

x2
∞,i (4.8)

The same approach is applied for the other pointing error y(t) in order to deduce y∞,i, σy and
afterwards y3σ and yrms.

These norms can be used to make accurate and non-conservative time-domain predictions as shown
in fig. 4.4. The image contains the relative pointing errors e(1) = x obtained using nonlinear
industrial simulator for a linear spin rate variation within Ω(t) ∈

[
10, 50

]
Hz in both open and

closed-loop scenarios. The data is afterwards superimposed with the predicted 3σ amplitude bounds
x3σ and RMS values xrms calculated for the corresponding values of Ω. It can be seen that the
amplitude, RMS values and interactions with the flexible modes are correctly predicted in a non-
conservative manner using the proposed approach.

Figure 4.4: Predicted 3σ amplitude bounds and RMS values together with the simulated relative
pointing errors in the nominal case (∆ = 0) along the x-axis in both open and closed-loop for wheel
rates Ω(t) ∈ Ω using the Krobustness controller designed in the previous chapter (for β = 0, this
corresponds to the RPE θa measured in milliarcseconds that is shown in fig. 3.22 scaled by αx).

4.2.1 Geometry of the steady state pointing errors

Let e(t) =
[
x(t) y(t)

]
T ∈ Ci ⊂ R2 be the steady-state relative pointing error response due a single

harmonic excitation di = sin(hiΩt + Φi) for fixed Ω and ∆. If the phase Φi is assumed to be
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uniformly random within Φi ∈
[
0, 2π

]
then the set Ci is an ellipse parametrized by:

Ci(Θ) =
[
x∞,i sin(Θ) y∞,i sin(Θ + ϕi)

]
T with Θ ∈ [0, 2π)

where ϕi = arg (Mdi→y(jω))− arg (Mdi→x(jω)) at frequency ω = hiΩ
(4.9)

For clarity, the parameters characterizing the curve C1 associated with the first harmonic signal d1

are visible in the Bode plots shown in fig. 4.5 for ∆ = 0 and Ω = 34 Hz. If the stochastic distur-

Figure 4.5: Bode plots of the transfers Md1→x and Md1→y and the parameters
[
x∞,1 y∞,1 ϕ1

]
of

the ellipse Ci associated harmonic signal d1 for a spin rate Ω = 34 Hz.

bances dbn are also introduced, the corresponding pointing error responses will have a distribution
with variance σ2

x and σ2
y around the deterministic elliptical response. This fact is visible in fig. 4.6a,

displaying the nominal closed-loop relative pointing errors obtained on the industrial simulator for
fixed spin rate Ω = 36.4 Hz. The response perfectly aligns with the predicted geometry and there-
fore highlights the potential of the proposed method. Subsequently, the time-domain data is used
to calculate the normalized histogram of the response, visible in fig. 4.6b, across a discrete pixel grid
corresponding to the imaging sensor. This histogram is an empirical estimate of the probability
density that a photon will hit a particular pixel. Due to its central role in simulating the effects
of image motion, this function, also known as the Point Spread Function (PSF), will be studied in
greater detail in the following section.

(a) (b)

Figure 4.6: a) Time domain samples of the open-loop simulator response for the wheel spin rate
Ω = 36.4 Hz. b) Normalized histogram of the response across the pixel grid (corresponding to an
empirical estimate of the Point Spread Function).
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4.2.2 Worst-case pointing errors

The effect of the uncertainty ∆ on the pointing errors, is evaluated by first replacing the norms
x∞,i with i = {1, . . . , N}, given in (4.6), with the following upper bounds:

x̂∞,i(Ω) ≥ max
∆∈∆

‖Mi(Ω,∆)‖L2i (4.10)

Each of these upper bounds can be determined using a variety of dedicated µ-analysis tools such
as Matlab’s wcgain command. These tools rely on calculating the structured singular value µ∆

as outlined in (2.57) in order to guarantee tight upper bounds on the worst case L2 gains. In this
case x̂∞,i(Ω) provides an upper bound on the maximum steady steady amplitude in response to
the harmonic signal d1 for a specific wheel spin Ω across all ∆ ∈∆ as seen in fig. 4.7a.

Considering now the effect of random disturbances, dbn, the upper bound σ̂2
x on the worst-case

variance value3 across all Ω ∈ Ω and ∆ ∈∆ satisfies:

σ̂2
x ≥ max

∆∈∆,Ω∈Ω
‖Mbn(Ω,∆)‖H2 (4.11)

Although dedicated algorithms exist to directly calculate upper bounds on the worst-caseH2 system
norm for an uncertain LTI model, the problem of computing worst-case L2 for both LTI and LPV
systems has received considerably more attention in literature. Inspired by the Norm Bounding
Problem (NBP) outlined in [OFBW13], the method proposed in this chapter will provide an upper
bound on the worst-case H2 norm by reformulating it as a standard worst-case L2 gain calculation.
To do this, consider stable strictly proper function Fx(s) having a well defined H2 norm that
satisfies:

max
∆∈∆,Ω∈Ω

∥∥Fx(s)−1Mbn(Ω,∆)
∥∥L2i < 1 (4.12)

Intuitively, this relationship guarantees that Fx overbounds the maximum singular values of Mbn

for any wheel spin rate Ω ∈ Ω and uncertainty ∆ ∈∆ and therefore

σ̂2
x = ‖Fx(s)‖H2 ≥ max

∆∈∆,Ω∈Ω
‖Mbn(Ω,∆)‖H2 (4.13)

In this fashion, the computation of the upper bound on the H2 norm is transformed into the
problem of finding an appropriate Fx(s) that satisfies (4.12). Although a variety of methods exist
to find an appropriate value for Fx(s), the method of choice adopted in this work relies on solving
the following optimization:

minimize
Fx∈Fx

σ̂2
x = ‖Fx(s)‖H2 s.t. max

∆∈∆,Ω∈Ω

∥∥Fx(s)−1Mbn(Ω,∆)
∥∥L2i < 1 (4.14)

This class of mixed H2/H∞ minimization problems can be efficiently handled by the same non-
smooth H∞ algorithms that were used to tune the controllers in sections 2.4.4 and 3.3.4. In this
work, the structured set Fx of possible transfer functions is specifically fixed to the set of all stable
and strictly proper transfer functions of a given order nF .

The minimization problem is challenging because it has to be optimized over all ∆ ∈∆,Ω ∈ Ω. To
tackle this issue, the optimization is converted into a finite dimensional problem using the following
approach:

3The bound σ̂2
x is calculated as a single bound across all Ω ∈ Ω due to the fact that σx doesn’t significantly change

for different wheel speeds.
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Step 1: Fix the initial order nF of the stable and strictly proper filter Fx(s) ∈ Fx.

Step 2: Solve the original minimization problem given in (4.14) across a dense grid of nsamples
samples of Mbn(Ω,∆) with ∆ ∈∆,Ω ∈ Ω, i.e. solve the multi-model optimization problem:

minimize
Fx∈Fx

σ̂2
x = ‖Fx(s)‖H2 s.t. max

i∈{1,...,nsamples}

{∥∥Fx(s)−1Mbn,i

∥∥L2i

}
< 1 (4.15)

where Mbn,i with i ∈ {1, . . . , nsamples} represents one of the grid samples (with nsamples initially
fixed to nsamples = 100 in this study).

Step 3: With an the initial value of Fx(s) obtained in the previous step, verify if condition
(4.12) holds across all ∆ ∈ ∆,Ω ∈ Ω by computing the worst-case L2 gain using standard µ
calculations (Matlab’s wcgain command). If this condition does not hold, then add the worst
case combination to the set of grid samples Mbn,i and re-exectute Step 2.

Step 4: Increase the order nF of the filter Fx(s) and re-execute starting from Step 1 until
there is no significant decrease in the value of σ̂2

x calculated in Step 2 over each iteration.

Result: The filter Fx(s) overbounding the singular value of Mbn,i across ∆ ∈ ∆,Ω ∈ Ω and
the corresponding worst case variance σ̂2

x = ‖Fx(s)‖H2 .

Figure 4.7b shows an example of one filter Fx(s) of order nF = 4 that was calculated using the
previously described method. It can be seen that Fx(s) provides a tight overbound over all the
sampled values Mbn,i of Mbn(Ω,∆).

The same approach can be employed for worst-case pointing error in other directions of the image
plane. To do this, the camera rotation angle β in (4.3) is varied within β ∈

[
0, π

]
and the worst-

case bounds (4.10) are recomputed. Following this approach a convex polygon can be generated
that encapsulates the set of possible steady state system ellipsoidal responses associated with a
harmonic excitation di. The polygons for the main harmonic disturbance, calculated for n =
{2, 3, 30} directions are shown in fig. 4.8 for both open and closed-loop systems and at wheel
speeds Ω = {14.44, 36.4} Hz close to the modal frequencies of the system. The various ellipses
(4.9), corresponding to different samples of the uncertainty ∆ ∈ ∆ are used to illustrate how the
proposed method can be employed to obtained a tight envelope on the possible system responses.
The same procedure is also used for sensitivity analysis by only considering subsets of the total
system uncertainties and fixing the rest to the nominal values. Figure 4.8 illustrates this method for
applied to the closed-loop system spinning with Ω = 14.44 Hz. For sufficiently high number of edges,
the inner polygon, corresponding to the nominal condition (∆ = 0), converges to the same nominal
ellipse C1 defined in (4.9). The bounds on this domain are slightly enlarged when uncertainties
in the stiffness and damping characteristics of the passive isolators are introduced due to shifts
in frequency and damping characteristics of the corresponding isolator mode. Additionally, when
uncertainties in the tangential actuators (T-Group) or vertical actuators (V-Group) are considered
(see the actuator arrangement in fig. 2.2), a slight shift in the direction of maximum gain can also
be observed. The proposed analysis methodology therefore allows the systematic identification of
both the magnitude and the direction in which the uncertain parameters contribute to the overall
pointing error.
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(a)

(b)

Figure 4.7: Singular values, uncertainty samples and worst case bounds on the transfer towards
the pointing error x from a) main harmonic d1 at Ω = 50 Hz b) stochastic noise dn.

4.3 Image jitter simulation

4.3.1 Description of the Optical Transfer Function (OTF)

An important performance measure for imaging spacecraft is the Point Spread Function (PSF)
that describes the response of an imaging system to a point source. The Optical Transfer Func-
tion (OTF) is the two-dimensional spatial Fourier transform of the PSF and describes the spatial
frequency response of an optical system analogous to the transfer function of a mechanical system
[DGM12]. The main use of the OTF is to predict and analyze optical system performance, to
specify requirements and tolerances or to perform image reconstruction.

The Fourier transform of an object imaged through an incoherent and isoplanic optical system is
the product between the system OTF and the Fourier transform of the object projected onto the
detector, i.e.

FTimage(ξ) = OTFsystem(ξ)FTobject(ξ) (4.16)

where ξ =
[
ξx ξy

]
is 2D spatial frequency (in cycles per pixels for example). For space applications,

the overall system OTF can be decomposed as the element-wise product of several OTFs, such as
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Figure 4.8: Worst-case bounds in n ∈ {2, 4, 30} directions. The resulting polygons encapsulate the
possible ellipsoidal responses caused by main harmonic disturbance for any values of the uncertain
parameters.

Figure 4.9: Sensitivity analysis of the worst-case pointing error polygonal bounds with respect to
different uncertainty groups (closed-loop model with Ω = 14.44 Hz)

the one due to image motion, the optics, or the atmospheric distortions [PM12, PM16]. A typical
system OTF can therefore be given by:

OTFsystem(ξ) = OTFmotion(ξ)OTFoptics(ξ)OTFatmosphere(ξ) (4.17)

The focus of this study is only the contribution OTFmotion due to image motion. In this case,
various closed-form expressions exist to compute the OTF for different types of one-dimensional
image motion such as sinusoidal, Gaussian random or constant velocity [DGM12, PM16]. Although
methods to derive the OTF for two-dimensional line-of-sight motion have been presented in works
such as [PM16, LYH12], to the best of the authors’ knowledge, these methods don’t cover the case
where the image motion follows an average Gaussian distribution along a main elliptical path as is
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the case for the response pictured in fig. 4.6a. The focus of this work is therefore on deriving two-
dimensional analytical expressions for OTFmotion as well as the associated point spread function
PSFmotion for these types of motions with the final goal of better simulating the corresponding
jitter effects due to microvibrations.

4.3.2 Analytical expressions for the OTF resulting from reaction wheel microvi-
brations

As previously mentioned, the two-dimensional pointing error motion is a superposition of elliptical
responses due to the harmonic signals overlapped with gaussian random noise contributions. If
the exposure time t∆ is much longer than the harmonic perturbations and all of the random
disturbances are assumed to be zero-mean Gaussian signals, then the steady state relative pointing
errors in the detector plane, for fixed Ω, can be described in a statistical framework as:[

x
y

]
=

[
xbn
ybn

]
+

N∑
i=1

[
x∞,i sin(Θi)

y∞,i sin(Θi + ϕi)

]
(4.18)

where Θi ∈
[
0, 2π

]
are uniformly random phase angles , xbn, ybn are zero mean Gaussian random

signals with variance σx, σy and the fixed constants x∞,i, y∞,i,ϕi describe the geometry of the
i-th harmonic ellipse (4.9). The total motion point spread function PSFmotion is equal to the
joint probability distribution in the two directions and quantifies the probability associated with a
photon hitting the detector at a particular location. The probability density function PSFi(x, y)
associated with the elliptical motion along the curve Ci can be written as:

PSFi(x, y) :=


1

2π
√
x2
∞,i + y2

∞,i − x2 − y2
for

[
x y

]
∈ Ci

0 otherwise

(4.19)

and represents4 an extension to the two-dimensional case of the probability density associated with
uni-dimensional random phase sinusoidal motion. The probability density corresponding to the
Gaussian random variations5 around the elliptical path are provided by:

PSFjitter(x, y) :=
1

2πσxσy
exp

(
− x2

2σ2
x

− y2

2σ2
y

)
(4.20)

The total joint probability distribution, i.e. PSFmotion, requires the convolution of all the previous
probability density functions as follows:

PSFmotion := PSFjitter ∗PSF1 ∗ · · · ∗PSFN (4.21)

The calculations are greatly simplified if the convolutions are replaced by multiplications in the
Fourier domain. In this case, the overall motion OTF is rewritten as:

OTFmotion(ξ) = OTFjitter(ξ)
N∏
i=1

OTFi(ξ) (4.22)

where OTFjitter is the result of the Gaussian random pointing error motion while OTFi quantifies
the image degradation due to the high-frequency sinusoidal motion resulting from the i-th harmonic

4It can be verified that the function satisfies
∞∫
−∞

∞∫
−∞

PSFi(x, y) dx dy =
2π∫
0

PSFi
(
Ci(θ)

)
|C′i(θ)| dθ =

2π∫
0

1
2π

= 1

5under the simplifying assumption that the random motions xbn and ybn in the xy plane are not correlated.
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4.3. Image jitter simulation

motion. Let the functions x∞,i(β) and σx(β) denote harmonic amplitudes and standard deviations
along the detector x-axis, calculated using the system bounds (4.6), for all angles β ∈

[
0, π

]
of the

detector in the camera model (4.3). In this case, the two-dimensional expressions of OTFjitter(ξ)
and OTFi(ξ) can be written in polar form in terms of the one-dimensional OTFs given in [DGM12]
as:

OTFjitter(β, ξ) = exp
(
−2(πξσx)2

)
; OTFi(β, ξ) = J0 (2πξx∞,i) (4.23)

where J0 is the zero-order Bessel function and ξ is the spatial frequency along a any given angle
β. Multiplying these functions gives rise to the total OTFmotion(β, ξ) along that particular β-
direction. An example of this particular OTF calculation process is illustrated in fig. 4.10. Here
we consider the open-loop system running at Ω = 18.3 Hz perturbed by the first two harmonic
excitations centered at Ω and 2Ω Hz. It can be observed that the function OTF1 displays a
high degree of radial symmetry as the response caused by the first harmonic is mainly circular in
nature. However, the asymmetry visible in the case of OTF2 is due to the interaction of the second
harmonic with the flexible mode at 36.75 Hz. This causes primarily oscillations in the direction of
the flexible mode. The combined effect of these two possible motions is also visible in general shape
of PSFtotal where a mainly circular distribution is spread across the direction of the flexible mode.

Figure 4.10: Components of the total OTFmotion for the main and second harmonic excitations at
Ω = 18.3 Hz and the corresponding PSFmotion.

Based on the relationship (4.16), the newly computed motion OTF can be used as a Fourier
domain image filter in order to perform jitter simulation and a visual assessment of the picture
degradation. The outline of this process is shown in fig. 4.11. It is easy to see how the spatial
frequencies for which OTFmotion has zero magnitude are completely eliminated from the image
spectrum, resulting in loss of information. Applying this method for different reaction wheel
speeds in both open and closed-loop settings provides an illustration of the benefits of the proposed
active vibration control solution. This is visible in the results presented in fig. 4.12 for wheel
rates Ω close to some flexible modes of the system. The filter image correctly captures the motion
blur associated with the particular movement induced by the wheel disturbances. For example, at
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� =

Original Jitter simulation

Fourier Space

PSFmotion

OTFmotionFTobject FTimage

Figure 4.11: Outline of the jitter simulation process. Note: only the spectral magnitudes are shown,
however OTFmotion also acts upon the phase component.

Ω = 14.5 Hz, the movements in the two imaging axis are almost in quadrature, leading to a circular
PSF and a circular blurring features in the resulting images. In contrast, at Ω = 36.75 Hz, the main
harmonic disturbance intersects with the flexible mode, leading to in-phase motions primarily along
the direction of resonant mode. This is visible both in the corresponding PSF and in the resulting
image that displays sinusoidal motion blur along that particular direction.

14.5 Hz 25 Hz 36.75 Hz 25 Hz

Open loop Closed loop

a)

b)

c)

36.75 Hz14.5 HzΩ =

Figure 4.12: Jitter simulation results Ω = {14.5, 25, 36.75} Hz in open and closed-loop scenarios.
a) Point Spread Functions b) Magnitudes of the OTF c) Filtered images.
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4.4. Image jitter simulation

4.3.3 Image reconstruction

Besides enabling more accurate jitter simulations, knowledge about the optical transfer function
can also be used perform deblurring on the resulting image. For example, consider that in addition
to the detector motion, the image is also corrupted by additive white Gaussian noise, i.e.

FTimage(ξ) = OTFmotion(ξ)FTobject(ξ) + N(ξ) (4.24)

where N(ξ) is mean power spectral density of the noise. The goal is to find a filter Gdeconv(ξ) so
that FTobject can be estimated as follows:

F̂Tobject(ξ) = Gdeconv(ξ)FTimage(ξ) (4.25)

where F̂Tobject(ξ) is an estimate of FTobject that minimizes the mean square error. One possible
way to obtain such an estimate is to employ a Wiener deconvolution filter that is described in the
frequency domain as:

Gdeconv(ξ) =
OTF ∗motion(ξ)

|OTFmotion(ξ)|2 + NSR(ξ)
(4.26)

where the term NSR(ξ) = N(ξ)/FTobject(ξ) is the noise-power-to-signal-power ratio. When the
signal is very strong relative to the noise, NSR → 0 and the Wiener filter becomes simply the
inverse of the system. Conversely, when the signal-to-noise ratio drops NSR → ∞ it follows that
Gdeconv → 0. In most practical situations, the quantity NSR(ξ) is rarely known to a high degree
of accuracy. Therefore, it is usually estimated using empirical models. Figure 4.13 shows how
this filter could be employed to recover significant spatial information from an image deteriorated
by both the previously described motion blur as well as uniform additive Gaussian noise (with
variance equal to 1% of that of the original image). The effectiveness of this image restoration
approach opens up the possibility for a different kind of control philosophy. In this alternative
approach, the focus is shifted from minimizing the pointing error, to the problem of forcing the
system response along a known trajectory even in the presence of model uncertainty. Afterwards,
restoration algorithms, like the ones previously introduced, could be used to achieve higher levels
of image quality then the ones attainable with a strategy solely based on minimizing the pointing
error.

Deteriorated ReconstructedOriginal

14.5 Hz 36.75 Hz 36.75 Hz14.5 Hz

a)

b)

Figure 4.13: Image reconstruction in open-loop configuration for Ω = {14.5, 36.75} Hz. a) Image
space b) Fourier power spectrum.
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4.4 Conclusions

The chapter highlights a systematic microvibration analysis framework that relies on system norms
and H∞/µ concepts to guarantee end-to-end pointing error performance in the presence of system
uncertainty. To this end, the novel disturbance model is used to capture the harmonic disturbance
spectrum generated by a spinning reaction wheel. The disturbance model is linked to an uncertain
structural model of the spacecraft and used to provide key details about the geometry of the
resulting steady-state pointing error trajectories.

Secondly, the chapter proposes a detailed and comprehensive worst-case pointing error analysis of
the uncertain system. The method relies on µ-tools in order to guarantee a tight polygonal envelope
around the set of possible steady-state responses and also to extract parametric sensitives of the
resulting bounds.

Finally, the chapter also presents a powerful new jitter simulation procedure that takes into ac-
count the two-dimensional phase correlation between the movements in the detector plane. This
method provides a deeper understanding into the nature of the image distortions introduced by the
harmonic microvibrations. A potential image restoration procedure is used to highlight how this
understanding could be put to use in the form of a deconvolution filter.

“ Nobody ever figures out what life is all
about, and it doesn’t matter. Explore the
world. Nearly everything is really
interesting if you go into it deeply enough.
”

Richard Feynman
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5 Conclusions and recommendations

5.1 Thesis summary

Next generation satellite missions will have to meet extremely challenging pointing stability require-
ments. Even low levels of vibration can introduce enough jitter in the optical elements to cause
a significant reduction in image quality. The success of these projects is therefore constrained
by the ability of on-board vibration isolation and optical control techniques to keep stable the
structural elements of the spacecraft in the presence of external and internal disturbances. This
problem becomes increasingly more complex as modern space structures become more lightweight
and flexible, leading to a problem of great importance in this industry. Although a variety of on-
board equipment generate these microvibrations, by far the largest anticipated disturbance source
is the reaction wheel assembly that is used to control spacecraft attitude by acting as a momentum
exchange device. These devices provide significant cost and mass savings when compared to the
Cold Gas Micro Propulsion Systems that are currently employed for attitude control during very
high stability missions. For this reason, a variety of passive,active or hybrid isolation strategies
have been developed to specifically target the disturbances produced by these wheels with the
hopes of rivaling the performances achieved using Micro Propulsion Systems. However, the vast
majority of such isolation systems are calibrated based on a combination of empirical tuning and
time-consuming Monte Carlo campaigns on high fidelity simulators. In most cases, these provide
only stochastic guarantees and give no direct relation between the analysis and the control design
phases. This often leads to large redesign and verification efforts in case of minor changes to the
system design or performance objectives. These issues have been outlined in detail in chapter 1.

Within the space industry, the trend is to increasingly rely on analytical tools during the devel-
opment and verification phases of modern spacecraft. Nevertheless, prior to the research work
carried out in this thesis, no integrated end-to-end framework existed for the purposes of tuning
modern active microvibration isolation architectures. In this case end-to-end refers to an uncer-
tain model that combines the optical and structural models of a flexible satellite actuated by a
spinning reaction wheel together with the microvibration isolation system and a disturbance model
of the reaction wheel perturbations. This motivated the main objective of the thesis which was
the development of an Integrated Modeling, Control and Analysis framework for microvibration
isolation systems. This framework incorporates uncertainty modeling via LFTs, robustness analy-
sis via the Structured Singular Value µ and IQCs and modern robust control synthesis techniques
such as structured H∞ and µ methods. In order to reach this goal, chapter 2 introduces the hy-
brid microvibration isolation platform developed by Airbus Defence and Space and subsequently
transfered to ESA. The setup combines the usage of passive isolators together with active control
law to perform broadband microvibration isolation. The class of perturbations that are specifically
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5.2. Thesis summary

targeted are the ones that are typically generated by the spinning reaction wheels during operation.
The capabilities of this platform were demonstrated in preliminary studies however, the controller
synthesis procedures relied on a black box model that didn’t provide a lot of physical insight into
the dynamics. To alleviate these issues, the chapter begins by first extracting, in agreement with
the industrial partners, a new uncertain model of the platform that is based upon the physical
equations of the system. This model is expressed as an LFT and captures in an unified manner
the dependency on various parametric uncertainties as well as the gyroscopic effects induced by
the spinning motion of the wheel. This LFT model serves as the starting point for all further
research presented in the thesis. Afterwards, based on this model, the active isolation controller
is tuned to minimize the elastic forces that get transmitted through the passive isolators using a
systematic control design procedure based on H∞/µ techniques. In order to increase performance
, the proposed controller is chosen to adapt based upon the current operating spin rate of the
reaction wheel. Finally, the robust performances of the isolation architecture are assessed with the
help of the structured singular value µ. Furthermore, the same µ-techniques are shown to provide
parametric sensitivity with respect each of the uncertain elements and help identify the driving pa-
rameters of the overall setup. Finally, the method enabled the possibility of calculating worst-case
combinations without the reliance on the classical and expensive Monte Carlo campaigns. Time
domain simulations based on a nonlinear high-fidelity industrial simulator are included as a final
verification step of the worst-case parameter combinations identified using µ methods.

Motivated by the previous results, chapter 3 established an Integrated Modeling, Control and
Analysis framework for a typical space observation mission that incorporates the previous microvi-
bration platform. To do this, the LFT model of isolation setup, established earlier in chapter 2,
is integrated with that of simplified model of a flexible spacecraft stabilized using an attitude con-
trol system. The main goal was to show how modern robust control methods can be employed
to tune the isolation platform in order to guarantee improved pointing stability performance dur-
ing closed-loop operation even in the presence of uncertainties. Weighting functions are used to
specify the frequency domain profile of external disturbances and also set the desired bounds on
the pointing stability and actuator control signals. These weights include an improved disturbance
model for the multi harmonic perturbation spectrum produced by the reaction wheel. Afterwards,
the robust stability and performance objectives are expressed in as bounds on the worst-case L2

gains of certain scaled closed-loop transfers. These gains are optimized in the subsequent robust
synthesis procedure. Here, multiple LPV controllers, scheduled by the wheel spin rate, are designed
for different levels of system uncertainty in order to highlight the performance trade-offs inherent
in the design. It was shown how this approach can be employed to synthesize an active vibration
control strategy that significantly improves the pointing stability of the overall mission while also
being robust to model uncertainty. Lastly, the third part of chapter 3 establishes the µ and IQC
analysis framework that is used to validate the proposed isolation design. The framework provided
accurate and guaranteed bounds on the worst-case pointing performance in the presence of para-
metric uncertainty, time-varying actuator delays and saturations as well as variable spin rates. The
predicted worst-case scenarios showed almost perfect agreement with the results obtained on the
high-fidelity industrial simulator.

Chapter 4 takes the previous analysis one step forward and uses it to predict, in a rigorous way, the
worst-case pointing errors of a general flexible spacecraft in response to reaction wheel disturbances.
It was shown how both the pointing error amplitude in various directions of the image plane due
to the harmonic perturbations as well as the variance in response to the Gaussian noise can be
bounded by certain L2 gains of the system. Based on these bounds, the geometry of the pointing
error response for different reaction wheel spin rates is established and used to simulate the image
distortions resulting from such jitter motions. This is done with the aid of new analytical expressions
for the Point Spread and Optical Transfer Functions that correctly handle the 2-D image motion
induced by the wheel perturbations.
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5.2 Main achievements

All of the objectives listed in the introduction chapter of the thesis have been achieved and the
contributions to the state of the art can be grouped as follows:

Integrated modeling

• the thesis established an Integrated Modeling, Control and Analysis framework for a typical
space observation mission composed of a flexible satellite mode, a hybrid isolation platform
and a reaction wheel assembly. The overall system is assembled by combining the LFT models
of each sub-component. In this fashion, the uncertainty in each subcomponent naturally
combines in a representative and physical uncertainty model at system level. The proposed
LFT representation is also parameterized by the spin rate of the reaction wheel and is capable
of correctly capturing the gyroscopic coupling induced by wheel into the overall system. The
integrated end-to-end uncertain system model fully captures the disturbance propagation from
the reaction wheels, through the isolation system and flexible spacecraft structure towards
the sensitive instruments.

• a new disturbance model for reaction wheel perturbations is convinced by taking into account
the multi-harmonic noise spectrum generated by any typical reaction wheel during operation.
The model takes into considerations the phase correlation that exists between the harmonic
components in an effort to make the disturbance model as accurate as possible. The model
is shown to have an LFT representation that is parameterized by the wheel’s spin rate and
can seamlessly integrate into the overall end-to-end model of the plant in order to make
non-conservative predictions about the resulting pointing errors.

Control system design

• With the structural and disturbance models in place, the work describes how fundamental
results from H∞/µ theory can be used to reformulate the stability requirements and isolation
performance objectives into bounds on the L2 gain of certain scaled closed-loop transfers.
These L2 gains are subsequently minimized by means of structured LPV controllers that are
tuned using multi-objective non-smooth H∞ techniques. Two novel active isolation strategies
are proposed and demonstrated in chapter 2 and chapter 3 that are based on different assump-
tions. The first one described in chapter 2 employs an adaptive pre-filter block parameterized
by the reaction wheel spin rate together with a tunable LTI block to significantly decrease
the force and torque transmissibility around the main harmonic disturbance. In this case, the
tuning procedure relies on a very simplified model of the reaction wheel perturbations. The
second control strategy presented in chapter 3 employs the integrated model of the flexible
satellite together with the accurate disturbance model of the reaction wheel perturbations.
In this case, a low-order structured LPV controller is directly tuned to push the predicted
open-loop pointing error spectrum below a certain threshold. Both of these strategies also
take into account the system uncertainties and employ D-scales in the optimization procedure
in an effort to reduce conservatism at guarantee the robust performance requirements.

• In section 3.3.4 the proposed synthesis procedure generates a set of controllers each optimized
for the same performance criteria but employing different levels of uncertainty. Analyzing the
resulting performance levels across the set of controllers reveals the trade-off between robust-
ness and performance. Additionally, a methodology is proposed to visualize the performance
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penalty introduced by the low-order structured LPV design compared to a full order optimal
controller tuned to a specific value of the scheduling parameter.

Worst case analysis

• both chapter 3 and chapter 2, describe new analysis methodologies in the field of microvibra-
tion control that are based on analytical tools such as the structured singular value µ and
IQCs. These are used to certify the microvibration isolation architectures without relying
on Monte-Carlo campaigns. Once the LFT models are assembled, the µ computations were
proven essential in identifying worst-case combinations for different performance objectives
even for numerous uncertain parameters. These were subsequently validated on the indus-
trial simulator to highlight the soundness of this approach. IQCs provided the means to
extend the worst-case analysis methodology to also include the effects of actuator saturation,
time-varying reaction wheel spin rates and uncertain time-varying delays.

• new analytical expressions are introduced for the Point Spread and Optical Transfer Functions
associated with the elliptical 2-D motion induced by the wheel’s harmonic perturbations.
These are used to simulate the image distortions resulting from such jitter motions in a
manner that correctly handles the phase relations between the motions along each imaging
axis. Based on these expressions, an algorithm is proposed that could be used to perform
image reconstruction for this class of image deformation.

5.3 Future work

Research into microvibration isolation technology is a topic that will only grow in interest in the
coming years, especially with the emergence of smallsat and nanosatellite platforms. The trend
towards lighter space structures further motivates active research in this field. What follows is a list
of recommendations for future work in certain subjects addressed in this thesis for which further
research is deemed necessary:

• The IQC analysis performed in section 3.4.2 with respect to actuator saturation showed that
the closed-loop remains stable for any loss of efficiency in the PMAs. Therefore, taking only
stability into account, the system is inherently fault tolerant with respect to any number
of failures in the actuators. However, in order to achieve such robustness, the uncertainty
domain used in the synthesis procedure had to account for high simultaneous variations in the
actuator gains. Such a scenario is not very likely to occur in practice and it could be argued
that the previous solution is overly conservative. In order to maximize performance, future
research could investigate the possibility of directly synthesizing a robust controller that is
passively fault tolerant only with respect to a single actuator failure. Another alternative
is to design a complete Fault Detection, Isolation, and Recovery (FDIR) unit that runs in
parallel with a controller designed solely to maximize performance. In case of a failure this
FDIR unit could perform the switch to a backup controller. Although this strategy would
probably perform the best in terms of isolation, it would introduce a lot of complexity to
the overall isolation architecture. A proper trade-off analysis of these aspects would be an
interesting future study.

• Inspired by the works of [PPAL16, ALdPC13], the controller synthesis procedure could be
extended to tune certain structural parameters at the same time. Such an integrated con-
trol/structure co-design would allow in the case of this thesis for simultaneous tuning of the
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attitude control and hybrid isolation systems. Additionally, the same methodology could be
employed to optimally place the sensor and actuator blocks in order to achieve super isolation
performance or increase system robustness.

• The current thesis only focused on the disturbance effects induced by a single reaction wheel,
however it is suspected that the presented techniques can scaled to multiple wheel configura-
tions without significant difficulty. This could be accomplished by first modeling each of the
N wheels as a separate LFT scheduled by a corresponding spin rate Ωi with i = {1, . . . , N}.
Afterwards for each wheel, the disturbances must be correctly rotated and projected into the
supporting frame to account for the mounting direction. As many of the current and future
spacecraft are equipped with a cluster of reaction wheels, analyzing the vibration interaction
between the multiple connected flywheels is a matter of significant industrial relevance. For
example, in [FB12], it has been shown that resonant vibration of flywheel whirl at non-spin
speeds can be caused by the synchronous imbalance-induced vibration input of another fly-
wheel in the system. These sort of interactions are especially relevant in the case of smallsat
or nanosats platforms for which reaction wheels are relatively inexpensive. For instance, in
[NAS16], the GEMINI Stability Control (GSC) concept makes use of extra reaction wheels
combined with precision speed control to maintain reaction wheel speeds on the “sweet spot”
of their passive vibration isolators and therefore optimize disturbance attenuation. To do
this, the study proposes to install two reaction wheels per axis (six reaction wheels total)
on a smallsat plaform. This simplifies the arrangement, and also enabled the torque to be
commanded using either common mode control (i.e., commanding the wheels to accelerate in
the same direction), or speed commanded using differential-mode control (i.e., commanding
the wheels to accelerate opposite each other). The methodology presented in this thesis could
be adapted to such system in order to provide additional analytical insight into the coupled
dynamics.

• the use magnetically suspended bearings instead of ball-bearings to support the flywheels
offers a number of significant advantages. These Magnetic bearing reaction wheels (MBRW)
may be operated at much higher speeds and therefore improve the momentum-to-mass ratio
compared to traditional ball-bearing flywheels which are limited to around 10 000 rpm. For
example, in [ZBK14] a reaction wheel demonstrator is presented that employs a high-speed,
magnetically levitated electrical drive system, to reach spin rates of over 200 000 rpm. Such
systems could potentially be investigated within the analysis framework introduced in this
thesis. To do this, one would have to replace the dynamics of wheel flexible support in
table 2.2 with the closed-loop dynamics of the magnetically levitated system (such as the
one proposed in [XFLC13]). Afterwards, both the magnetic levitation system and the hybrid
isolation platform proposed in the thesis can be tuned at the same time in order to achieve
state-of-the-art isolation performance.

• all the results presented in this thesis are based on the assumption that the passive isolators
behave like a 6-DoF viscoelastic joint with linear stiffness and damping and ignore any non-
linear effects. This is a safe assumption for current elastomers undergoing small amplitude
deformations. However, the true mechanical properties of elastomeric dampers are relatively
complicated and may vary with environment temperature and excitation frequency [HS96].
Therefore the linear model that was employed in this thesis has some serious shortcomings
which could become increasingly more apparent in future years. For example, the shear
stiffness value of the elastomers varies with the frequency, temperature, deformation and
amplitude of excitation. Hence, there exists a real need for a reliable, usable, non-linear theory
that includes consideration of nonlinear effects. Currently, fractional derivative models such
as the one presented in [SPA11] offer the best compromise between complexity and predictive
capacity [Ibr08]. In this context, future research might investigate if the techniques based
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on Integral Quadratic Constraints that were used in this thesis could provide an alternative
way to analyze the dynamical properties of these nonlinear dampers. A good starting point
for this potential study would be to use the IQC multipliers introduced in [Jön98, PH98] to
model the elastic hysteresis effects commonly observed in elastomeric materials.

In conclusion, the work carried out in this thesis has been shown to significantly improve the
previous techniques in the field of active microvibration isolation, especially with respect to the
issue of uncertainty management. In particular the work demonstrated the powerful capabilities of
an integrated end-to-end modeling framework in which to perform worst-case analysis and system
design of reaction wheel microvibration isolation systems. However, one must remember that the
results presented in this thesis are a preliminary study and require further exploration. A number
of possible future developments have thus been suggested based on the currently unsolved issues
and for which this thesis can be used as an initial reference.

“ Deep in the human unconscious is a
pervasive need for a logical universe that
makes sense. But the real universe is
always one step beyong logic. ”

Frank Herbert
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Appendix

A.1 Morton’s method for affine parameter dependent matrices

Consider Φ a parameter vector of length k and a parameter dependent matrix A(Φ) ∈ Rn×m affine
in Φ. Each parameter Φi ∈ Φ is considered uncertain and bounded by Φi ∈ [αi, βi] with a nominal
value Φ0

i = (αi + βi)/2. With a prior normalization of Φi ∈ Φ such as Φi = Φ0
i + viδi where

vi = (βi − αi)/2 and |δi| ≤ 1, it is possible [Mor85, HO06] to write the matrix A(Φ) as

A(Φ) = Ao +
k∑
i=1

δiAi (1)

with constant matrices Ai ∈ Rn×m, i = {1, . . . , k} . Let Ai = LiRi be a full rank factorization of
Ai with Li ∈ Rn×ri and Ri ∈ Rri×m. Then A(Φ) can be rewritten as

A(Φ) = A0 +
k∑
i=1

LiδiIriRi = Fu




0 . . . 0 R1
...

. . .
...

...
0 . . . 0 Rk

L1 . . . Lk A0

,
 δ1Ir1

. . .

δkIrk


 = Fu (2)

A.2 Performance Analysis using IQCs

Two finite energy signals w ∈ Lnw2 , z ∈ Lnz2 whose Fourier transforms are denoted as ŵ and ẑ are
said to satisfy the frequency domain IQC defined by a multiplier Π if∫ ∞

−∞

[
ẑ(jω)
ŵ(jω)

]∗
Π(jω)

[
ẑ(jω)
ŵ(jω)

]
dω ≥ 0, Π =

[
Π11 Π12

Π∗12 Π22

]
. (3)

where Π(jω) : jR→ C(nw+nz)×(nw+nz) can be any measurable Hermitian-valued function, although
it is usually chosen among the rational functions bounded on the imaginary axis. The uncertainty
domain ∆IQC introduced by a causal and bounded operator ∆IQC : Lnv2 → Lnw2 is said to be
described by an IQC of this form, provided that the inequality (3) holds for all z ∈ Lnz2 and
w = ∆IQC(z) (where ∆IQC(z) represents the output of ∆IQC when excited by z). For a given
uncertainty description, the set DΠ of all suitable multiplier Π is therefore given by:

DΠ :=

{
Π :

∫ ∞
−∞

[
ẑ(jω)
εŵ(jω)

]∗
Π(jω)

[
ẑ(jω)
εŵ(jω)

]
dω ≥ 0,∀ε ∈ [0, 1], ∀z ∈ Lnz2 ,w = ∆IQC(z),∆IQC ∈∆IQC

}
(4)

where the term ε needs to be introduced due to the fact that the IQC theory requires the set
of uncertain perturbations to be star-shaped with respect to the origin (i.e. if ∆IQC ∈ ∆IQC,

107



A.2. Performance Analysis using IQCs

then ε∆IQC ∈ ∆IQC,∀ε ∈ [0, 1]). With the multipliers chosen from this set and for a nomi-
nally stable system M, analyzing whether Fu (M,∆IQC) has a robust performance of level γ, i.e.
sup∆IQC∈∆IQC

H∞[Fu (M,∆IQC)] < γ, is reduced to verifying whether the following inequality
holds:

[
M(jω)

I

]∗
Π̃(jω)

[
M(jω)

I

]
≺ 0,∀ω ∈ R ∪ {∞}, where Π̃ =

Π11 0 Π12 0
0 I 0 0

Π∗12 0 Π22 0
0 0 0 −γ2I

 (5)

The previous inequality can be efficiently verified by expressing it as a single Linear Matrix Inequal-
ity (LMI) [VSK16] using the Kalman-Yakubovich-Popov (KYP) lemma [IH05]. To accomplish this,
the multipliers are first parameterized as Π(s) = Ψ(s)∗SΨ(s) where S is a matrix variable and
Ψ(s) is a tall transfer-matrix constructed from pre-selected basis transfer functions. The structure
of both Ψ(s) and S is chosen based on the type of uncertainty being investigated.
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[Pre11] André Preumont. Vibration Control of Active Structures , An Introduction. Vi-
bration Control of Active Structures , An Introduction, page 199, 2011.

[RDR+86] J J Rodden, H J Dougherty, L F Reschke, M D Hasha, and L P Davis. Line-of-sight
performance improvement with reaction-wheel isolation. Guidance and Control,
pages 71—-84, 1986.

[Riv04] EI Rivin. Passive Vibration Isolation. In Applied Mechanics Reviews, volume 57,
chapter 1-2, page B31. 2004.

[RLD10] Mike Ruth, Kenneth Lebsock, and Cornelius Dennehy. What’s New is What’s Old:
Use of Bode’s Integral Theorem (circa 1945) to Provide Insight for 21st Century
Spacecraft Attitude Control System Design Tuning. In AIAA Guidance, Navigation,
and Control Conference, Virigina, 2010.

[Sec13] Federico Secondi. Robust active control for microvibration mitigation in high sta-
bility space missions. PhD thesis, Politecnico di Milano, 2013.

[SNG08] S. Shankar Narayan, P. S. Nair, and Ashitava Ghosal. Dynamic interaction of rotat-
ing momentum wheels with spacecraft elements. Journal of Sound and Vibration,
315:970–984, 2008.

[SPA11] M. Sasso, G. Palmieri, and D. Amodio. Application of fractional derivative models
in linear viscoelastic problems. Mechanics of Time-Dependent Materials, 15(4):367–
387, nov 2011.

[TCVV02] Doug Thayer, Mark Campbell, Juris Vagners, and Andrew Von Flotow. Six-axis
vibration isolation system using soft actuators and multiple sensors. Journal of
Spacecraft and Rockets, 39(2):206–212, 2002.

[TN85] Vassilios D Tourassis and Charles P Neuman. The inertial characteristics of dynamic
robot models. Mechanism and Machine Theory, 20(1):41–52, jan 1985.

[TO03] Shigemune Taniwaki and Yoshiaki Ohkami. Experimental and numerical analysis of
reaction wheel disturbances. JSME International Journal Series C, 46(2):519–526,
2003.

[VGL+07] A. E P Veldman, J. Gerrits, R. Luppes, J. A. Helder, and J. P B Vreeburg. The nu-
merical simulation of liquid sloshing on board spacecraft. Journal of Computational
Physics, 224(1):82–99, 2007.

[VP99] L Vaillon and C Philippe. Passive and active microvibration control for very high
pointing accuracy space systems. Smart Materials and Structures, 8(6):719–728,
dec 1999.

[VSK09] Joost Veenman, Carsten Scherer, and Hakan Koroglu. IQC-Based LPV Controller
Synthesis for the NASA HL20 Atmospheric Re-entry Vehicle. In AIAA Guidance,
Navigation, and Control Conference, Reston, Virigina, aug 2009. American Institute
of Aeronautics and Astronautics.

[VSK16] Joost Veenman, Carsten W. Scherer, and Hakan Köroğlu. Robust stability and
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