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Résumé

Les noeuds, tresses et autres objets noués sont des sources d'intérêt et de curiosité pour l'homme depuis de nombreuses années. Que ce soit à titre décoratif et architectural ou pour leur utilité dans l'art de la navigation, les noeuds sont et ont été présents dans de nombreuses sociétés humaines et nous entourent aujourd'hui encore, sans toujours que l'on s'en aperçoive. Sans que l'on puisse donner un sens précis à ses affirmations, le psychanalyste Jacques-Marie Lacan voit ainsi dans certains entrelacs des motifs d'interprétation de la subjectivité humaine [START_REF] Lacan | Écrits: A Selection[END_REF].

Les premières traces de recherche en théorie des noeuds remontent au 18 ème siècle avec les travaux du mathématicien français Alexandre-Théophile Vandermonde. Dans son papier Remarques sur les problèmes de situation [START_REF] Vandermonde | Remarques sur les problèmes de situation[END_REF] Vandermonde s'intéresse au problème du cavalier. La théorie des noeuds connut un regain d'intérêt grâce aux théories de Lord Kelvin qui postula que les atomes étaient des noeuds plongés dans l'éther. Celles-ci conduirent aux premières tables de noeuds réalisées par Peter Guthrie Tait. Il publia ses tables de noeuds à moins de 10 croisements ainsi que des conjectures désormais connues sous le nom de conjectures de Tait à la fin du 19 ème siècle [START_REF] Tait | On Knots I, II, III. Scientific Papers[END_REF].

Le premier invariant de noeuds polynomial fut découvert par James Waddell Alexander [START_REF] Alexander | Topological Invariants of Knots and Links[END_REF] au cours des recherches qu'il a menées sur les groupes de noeuds et les propriétés homologiques des compléments de noeuds. C'est aussi à cette période de l'histoire mathématique que des progrès conséquents furent réalisés en matière de représentation des noeuds et entrelacs. Ce fut par exemple le cas du théorème de Reidemeister [START_REF] Reidemeister | Elementare Begründung der Knotentheorie[END_REF][START_REF] Alexander | On types of knotted curves[END_REF] qui permet de rendre la représentation diagrammatique des entrelacs praticable. Des résultats sur le codage des entrelacs par les tresses sont aussi apparus : Théorème (Alexander [START_REF] Alexander | A lemma on a system of knotted curves[END_REF]). Tout entrelacs est la clôture d'une certaine tresse.

La contre partie du théorème de Reidemeister dans le cas des représentations en tresses fut ensuite explicitée par Markov [START_REF] Markov | Über die freie Äquivalenz der geschlossenen Zöpfe[END_REF].

Alors que dans le même temps les techniques de géométrie hyperboliques furent introduites à la fin des années soixante-dix par William Thurston dans le champ de la théorie des noeuds, pendant un peu moins de soixante ans, le polynôme d'Alexander ∆ demeura de manière a posteriori surprenante le seul invariant polynomial de noeuds connu des topologues. Cela jusqu'à l'introduction en 1984 par Vaughan Jones d'un nouvel invariant d'isotopie d'entrelacs défini de manière combinatoire grâce à son invariance par mouvements de Reidemeister : le polynôme de Jones [START_REF] Jones | A polynomial invariant for knots via von Neumann algebras[END_REF]. Dès lors cet invariant a été largement étudié et il a été généralisé en ce qu'il est convenu d'appeler la théorie des invariants quantiques. Peu de temps après sa découverte, l'invariant de Jones fut utilisé avec succès afin de résoudre d'anciens problèmes ouverts, tels que les conjectures de Tait.

Malgré tout, la compréhension du polynôme en tant qu'objet demeure plus qu'incomplète précisément du fait de la construction combinatoire dont il dérive, qui ne permet pas de conception géométrique immédiate de son origine. A titre d'exemple, on ne sait toujours pas répondre à la question suivante malgré son énoncé élémentaire, et malgré la réponse clairement négative dans le cas du polynôme d'Alexander : le polynôme de Jones distingue-t-il le noeud trivial ? Plusieurs autes invariants furent construits sur le modèle du polynôme de Jones : les polynômes de Jones coloriés, l'invariant de Kontsevich qui peut être vu comme un invariant quantique universel, . . . Même le polynôme d'Alexander peut être vu comme un invariant quantique [61]. Les même questions se posent pour tous ces invariants quantiques quant à la possibilité d'une interprétation classique homologique qui permettrait d'en extraire de l'information géométrique : information sur le genre du noeud, sur son caractère fibré, son caractère topologiquement bordant, etc. Ceci est d'un certain point de vue paradoxal puisque le théorème de Gordon-Luecke [START_REF] Gordon | Knots are determined by their complements[END_REF] a pour conséquence que tout invariant de noeud (premier) peut être extrait du groupe du noeud.

Le polynôme de HOMFLY-PT [START_REF] Freed | Braided compact closed categories with applications to low dimensional topology[END_REF] a aussi été introduit à la suite de la découverte du polynôme de Jones. C'est une généralisation combinatoire commune aux invariants d'Alexander et de Jones. Le polynôme de HOMFLY-PT continent de l'information sur le genre canonique, mais pas sur le genre du noeud lui même [START_REF] Morton | Seifert circles and knot polynomials[END_REF].

Dans cette thèse nous concentrerons nos efforts sur une famille d'invariants quantiques d'entrelacs : les invariants de Links-Gould. Le premier invariant de Links-Gould LG = LG 2,1 a été défini en 1992 par Jon Links et Mark D. Gould [START_REF] Links | Two variable link polynomials from quantum supergroups[END_REF] avant d'être étudié en détails par De Wit, Kauffman et Links en 1999 [START_REF] Wit | On the Links-Gould invariant of links[END_REF]. Les travaux d'Atsushi Ishii fournissent une collection simple de relations d'écheveaux pour LG [START_REF] Ishii | Algebraic links and skein relations of the Links-Gould invariant[END_REF] et posent la question de leur complétude. Par ailleurs, Ivan Marin et Emmanuel Wagner exhibent un ensemble de relations d'écheveaux complet mais difficile à manipuler pour cet invariant [START_REF] Marin | A cubic defining algebra for the Links-Gould polynomial[END_REF].

L'invariant de Links-Gould peut être généralisé dans au moins deux directions différentes. En 2001, De Wit étendit la construction de LG à une famille infinie d'invariants LG n,m , n, m ∈ N * [START_REF] Wit | An infinite suite of Links-Gould invariants[END_REF]. Ces invariants furent alors généralisés à des invariants d'entrelacs à plusieurs variables par Nathan Geer et Bertrand Patureau-Mirand [START_REF] Geer | On the Colored HOMFLY-PT, Multivariable and Kashaev Link Invariants[END_REF] tout comme on peut généraliser le polynôme d'Alexander à sa version multivariable. Dans ces perspectives, le polynôme d'Alexander devient un membre de la famille des invariants de Links-Gould [61] 

∆ = LG 1,1 .
Ainsi, non seulement le polynôme d'Alexander devient un invariant quantique, mais les invariants LG n,m lui deviennent associés et construits suivant le même modèle que ∆. De fait, David De Wit, Atsushi Ishii et Jon Links conjecturent [START_REF] Wit | Links -Infinitely many two-variable generalisations of the Alexander-Conway polynomial[END_REF] que pour tout entrelacs L

LG n,m (L; τ, e iπ/m ) = ∆ L (τ 2m ) n , où ∆ L est le polynôme d'Alexander-Conway de L. Ils prouvent cette conjecture dans les cas (n, m) = (1, m) complètement et (n, m) = (2, 1) pour une famille restreinte de tresses. Une partie de ce travail sera consacrée à la preuve du cas (n, 1) de la conjecture pour n quelconque et est issue de l'article On the Links-Gould invariant and the square of the Alexander polynomial [START_REF] Kohli | On the Links-Gould invariant and the square of the Alexander polynomial[END_REF] et du travail réalisé en collaboration avec Bertrand Patureau-Mirand Other quantum relatives of the Alexander polynomial through the Links-Gould invariant [START_REF] Kohli | Other quantum relatives of the Alexander polynomial through the Links-Gould invariant[END_REF].

Théorème ([31, 33]). Pour tout entrelacs L dans S 3 ,

LG n,1 (L; τ, -1) = ∆ L (τ 2 ) n .

Les polynômes

LG étant des généralisations du polynôme d'Alexander, ils contiennent davantage d'information sur l'entrelacs. En particulier, l'information homologique fournie par ∆ est également présente dans LG. Le problème de démontrer le cas (n, 1) de la conjecture de De Wit-Ishii-Links est plus complexe que celui de prouver le cas (1, n) car on ne connait pas de collection complète de relations d'écheveaux pour ∆ n , n 2.

On développera dans ce manuscrit deux stratégies différentes pour prouver le cas (n, 1) de la conjecture. Pour n petit, on s'intéressera aux représentations des groupes de tresses dérivées de la R-matrice de la superalgèbre de Hopf U q gl(n|1) que l'on interprétera en termes de la représentation de Burau comme on l'a fait dans [START_REF] Kohli | On the Links-Gould invariant and the square of the Alexander polynomial[END_REF]. Si on note b p R la représentation de B p induite par la R-matrice spécialisée à q = -1 de LG 2,1 ou LG 3,1 et Ψ p l'extérieur de years, the Alexander polynomial ∆ was the only polynomial invariant known by topologists. But in 1984 Vaughan Jones introduced a new link isotopy invariant that is defined combinatorially using its invariance under Reidemeister moves: the Jones polynomial [START_REF] Jones | A polynomial invariant for knots via von Neumann algebras[END_REF].

That invariant has since been studied in depth and much generalized to build the theory of quantum invariants. The Jones invariant has also been used successfully to solve old open problems such as the Tait conjectures soon after it was discovered.

However, the understanding of the polynomial itself remains quite incomplete precisely because the combinatorial construction it springs from does not offer a geometrical perspective for the object. For example, such an elementary question as the following, that is known to be untrue for the Alexander invariant, is still an open problem: does the Jones polynomial detect the unknot?

Several other invariants were built on the model of the Jones polynomial: the colored Jones polynomials, the Kontsevich invariant that is in a sense a universal quantum invariant, . . . Even the Alexander polynomial can be reinterpreted as a quantum invariant [61]. For all these quantum invariants the same questions arise regarding a possible classical homological intrepretation that would allow us to extract geometrical information from them: genus information, information on whether a knot is fibered or not, slice or not, etc. This is somewhat paradoxical since a consequence of the Gordon-Luecke theorem [START_REF] Gordon | Knots are determined by their complements[END_REF] is that the value of any knot invariant for a prime knot can be read in the group of the knot.

The HOMFLY-PT polynomial was also introduced [START_REF] Freed | Braided compact closed categories with applications to low dimensional topology[END_REF] in the wake of the discovery of the Jones polynomial as a combinatorial generalization common to the Alexander and Jones invariants. It gives canonical genus information, but says nothing more about the minimal genus of a knot [START_REF] Morton | Seifert circles and knot polynomials[END_REF].

In this work we will focus on a family of quantum invariants: the Links-Gould invariants.

The first Links-Gould invariant LG = LG 2,1 was introduced in 1992 by Jon Links and Mark D. Gould [START_REF] Links | Two variable link polynomials from quantum supergroups[END_REF] and studied in detail by De Wit, Kauffman and Links in 1999 [START_REF] Wit | On the Links-Gould invariant of links[END_REF]. In his work, Atsushi Ishii gives a simple set of skein relations for LG [START_REF] Ishii | Algebraic links and skein relations of the Links-Gould invariant[END_REF] and wonders if that set is complete. On the other hand, Ivan Marin and Emmanuel Wagner give a complete but complicated set of skein relations for that invariant [START_REF] Marin | A cubic defining algebra for the Links-Gould polynomial[END_REF].

The Links-Gould invariant can be generalized in at least two distinct directions. In 2001, De Wit extended the construction of LG to an infinite family of invariants LG n,m , n, m ∈ N * [START_REF] Wit | An infinite suite of Links-Gould invariants[END_REF]. These invariants were then generalized to multivariable link invariants by Nathan Geer and Bertrand Patureau-Mirand [START_REF] Geer | On the Colored HOMFLY-PT, Multivariable and Kashaev Link Invariants[END_REF] in the same way that a multivariable version of the Alexander polynomial can be defined. These perspectives are quite interesting since the Alexander polynomial becomes part of this family [61] 

∆ = LG 1,1 .
Not only is the Alexander polynomial a quantum invariant, but the LG n,m invariants also turn out to be invariants associated to ∆ and built on a same model. As a matter of fact, David De Wit, Atsushi Ishii and Jon Links conjectured [START_REF] Wit | Links -Infinitely many two-variable generalisations of the Alexander-Conway polynomial[END_REF] that for any link L

LG n,m (L; τ, e iπ/m ) = ∆ L (τ 2m ) n , where ∆ L is the Alexander-Conway polynomial of L. They proved the conjecture when (n, m) = (1, m) and when (n, m) = (2, 1) for a particular class of braids. Part of our work here will be to prove the (n, 1) case of this conjecture for any n using two different methods, one of which was first detailed in the paper On the Links-Gould invariant and the square of the Alexander polynomial [START_REF] Kohli | On the Links-Gould invariant and the square of the Alexander polynomial[END_REF]. The second method was developed in the paper Other quantum relatives of the Alexander polynomial through the Links-Gould invariant [START_REF] Kohli | Other quantum relatives of the Alexander polynomial through the Links-Gould invariant[END_REF] written with Bertrand Patureau-Mirand.

Theorem ([31, 33]). For any link L in S 3 ,

LG n,1 (L; τ, -1) = ∆ L (τ 2 ) n . Since Links-Gould invariants are extensions of the Alexander polynomial, they contain more information on the link. In particular the classical information that can be recovered from ∆ is enclosed in LG. Note that it is a harder problem to prove the (n, 1) case of the De Wit-Ishii-Links conjectures than to prove the (1, n) case because there is no known complete set of skein relations for ∆ n , n 2.

In this manuscript, we develop two distinct strategies to prove the (n, 1) case of the conjecture. For small values of n, we focus on the operator invariant derived from Hopf superalgebra U q gl(n|1) and give an interpretation of that operator in terms of the classical Burau representation of braid groups like we did in [START_REF] Kohli | On the Links-Gould invariant and the square of the Alexander polynomial[END_REF]. Denoting by b p R the representation of group B p induced by the R-matrix for LG 2,1 or LG 3,1 specialized at q = -1, and calling Ψ p the exterior representation of the direct sum of two or three well chosen copies of the Burau representation, these two representations are equivalent:

Theorem ([31]). For any p, there exists a C[B p ]-module automorphism I p between the two representations we have just explicited. Which means that map I p satisfies the following commutation relation for any braid b ∈ B p :

Ψ p (b) • I p = I p • b p R (b).
The problem is that this method requires the study of an explicit R-matrix for each n, making it hard to implement as n grows. That is why we then focus on the structure of Hopf superalgebra U q gl(n|1) directly to prove the result for any n as we did in [START_REF] Kohli | Other quantum relatives of the Alexander polynomial through the Links-Gould invariant[END_REF]. A precise study of Hopf superabgebra U q gl(n|1) allows us to obtain a specific decomposition of that algebra at q = -1. This splitting induces a decomposition of the specialized highest weight representation of superalgebra U q gl(n|1) in terms of the highest weight representation of U q gl(1|1). Using the notations we will introduce in Chapter 3, we can write:

Theorem ([33]). Equipped with the action of ⊗ i A i induced by Θ : ⊗ i A i → A σ -1 /I, the specialized highest weight representation V -1 (0 n , α) is isomorphic to the irreducible representation ⊗ i V i where each V i is an A i -module isomorphic to the 2-dimensional U-module V q -α .

However, the first method remains interesting in the prospect of giving a classical interpretation of Links-Gould invariants. Indeed, connecting the R-matrix representation we derive LG n,1 from with the Burau representation offers hope and ideas in the pursuit of such an interpretation.

In fact it is natural to wonder at this point if properties of the Alexander invariant remain true for Links-Gould polynomials, and as a start for the first Links-Gould invariant after ∆, LG 2,1 . We conjecture this happens in at least two cases.

Conjecture ([32], Conjecture 0.3). Set L a link in S 3 and µ the number of its components.

• I span(LG 2,1 (L; t 0 , t 1 )) 2(2g(L) + µ -1),

• II If L is alternating, then inequality I is an equality.

A similar and well known result we recall in Proposition 1.2.5 shows that the Alexander polynomial is a very useful tool to compute the genus of knots and links. The proof of this fact is a direct consequence of the definition of polynomial ∆ as the determinant of a Seifert matrix. By choosing such a matrix with minimal dimensions and considering the degree of each of its coefficients, we obtain the inequality.

Conjecture ([32], Conjecture 0.4). Set K a knot in S 3 .

• I If K is fibered then LG 2,1 (K) is monic,
• II If K is alternating, the converse is true as well.

These conjectures were first stated in the paper The Links-Gould invariant as a classical generalization of the Alexander polynomial? [START_REF] Kohli | The Links-Gould invariant as a classical generalization of the Alexander polynomial ?[END_REF] where they are supported by evidence in several cases.

Theorem ([32]). The genus conjecture is true for all prime knots with less than 12 crossings and a large selection of 13 crossing prime knots, a Whitehead double of the trefoil knot, and for different infinite families of links: 2-bridge links, twist knots and pretzel knots. On the other hand, the fiberedness conjecture has been successfully tested for prime knots with less than 12 crossings.

The Whitehead double of the trefoil on which we tested the conjecture by computing its Links-Gould invariant is a counterexample to a similar inequality in the case of the HOMFLY-PT skein polynomial. This counterexample is due to Hugh Morton [START_REF] Morton | Seifert circles and knot polynomials[END_REF].

In addition, given the evaluations we have for LG 2,1 ,

LG 2,1 (L; t 0 , -t -1 0 ) = ∆ L (t 2 0 ) , LG 2,1 (L; t 0 , t -1 0 ) = ∆ L (t 0 ) 2 ,
if these two conjectures were to be true, the results would systematically improve the similar statements for the Alexander polynomial.

In the same vein, another conjecture due this time to Ishii would be one more trace of a similar behavior between LG and ∆. It can be found in his paper The Links-Gould polynomial as a generalization of the Alexander-Conway polynomial [START_REF] Ishii | The Links-Gould polynomial as a generalization of the Alexander-Conway polynomial[END_REF] where Ishii proves that the Links-Gould invariant LG 2,1 has all kinds of elementary Alexander-type features. In particular,

Theorem ([23]). The Links-Gould polynomial satisfies the following properties: -LG( ) = 1, -Denoting L * the reflexion of L, LG(L * ; t 0 , t 1 ) = LG(L; t -1 0 , t -1 1 ), -We have the following symmetry : LG(L; t 0 , t 1 ) = LG(L; t 1 , t 0 ). Indeed LG does not detect inversion, -For L and L two links, denoting L#L their connected sum :

LG(L#L ) = LG(L)LG(L ), -If L = L L is the split union of L and L , then LG(L) = 0, -LG(L; t 0 , 1) = LG(L; 1, t 1 ) = 1 if L is a knot, 0 otherwise.
Moreover the Ishii conjecture states:

Conjecture ([23]). The LG polynomial LG(K; t 0 , t 1 ) = ∑ i,j a ij t i 0 t j 1 of an alternating knot K is "alternating", that is : a ij a kl 0 if i + j + k + l is even, and a ij a kl 0 otherwise. This behavior we have tested experimentally is likely to be the trace of a classical construction for the LG invariants. So the LG invariants seem to be, apart from the Alexander invariant, the first example of quantum invariants we might understand from a geometrical point of view. Furthermore, it is reasonable to attempt to understand quantum invariants from a geometrical perspective by starting to study the LG invariants that are cousins of ∆.

The only strategy we can imagine at this point to prove the two conjectures we stated and any other significative result linking LG with the geometry of the knot is to present such a construction. We intend to focus our future efforts on this goal.

A clear signal of hope is that even in the case of the Jones polynomial that has been the most thoroughly studied, although no topological meaning has been given up to now, a celebrated conjecture establishes a connection between the colored Jones polynomials and the hyperbolic geometry of knot complements. One can define Kashaev's invariant for a knot K as follows:

K N = lim q→e 2πi/N J K,N (q) J O,N (q) ,
where J K,N (q) stands for the N th colored Jones polynomial. Then the volume conjecture predicts that Conjecture (Kashaev,[START_REF] Kashaev | The hyperbolic volume of knots from the quantum dilogarithm[END_REF]).

lim

N→∞ 2π log | K N | N = vol(K),
where vol(K) is the hyperbolic volume of the complement of knot K in S 3 .

The thesis manuscript that follows is divided into four distinct sections. The first section introduces the objects and explains the context in which we did this research, as well as the fundamental results that inspired and are at the origin of this work. We start by studiying in detail different representations that exist for knots and links. Then we introduce the Alexander and Jones polynomials, and we express each of these invariants as a quantum trace. We then explain what the Reshetikhin-Turaev theory is [START_REF] Reshetikhin | Ribbon graphs and their invariants derived from quantum groups[END_REF] and how it allows us to understand where these traces come from. Finally we give the definition of the objects we study here:

the Links-Gould invariants of links. We state the De Wit-Ishii-Links conjecture that was the question that motivated this work at the start. The three last sections explain the results we achieved to prove. The second and third parts present the two methods we briefly exposed in this abstract to prove the (n, 

: S 3 -→ S 3 such that h(L 1 ) = L 2 .
Soon, we will not say L 1 and L 2 are equivalent anymore, but simply that they are equal. Theorem 1.1.5 (Gordon-Luecke theorem [START_REF] Gordon | Knots are determined by their complements[END_REF]). Two knots are equivalent if and only if they have complements in S 3 that are orientation-preserving homeomorphic.

So knot theory has direct and fundamental connections with the study of 3-manifolds.

This alone can motivate the study of such objects. The main idea to be able to distinguish knots is one that is often used in algebraic topology. We try to compute equivalence invariants: quantities that are invariant on an equivalence class of links.

Definition 1.1.6 (link invariant). A link invariant I is a map from the set of equivalence classes of links to a certain set E. Invariant I is said to be complete if I is an injection.

This definition is very general. Of course, the goal is to find interesting links invariants.

An efficient invariant is one that is easy to compute and that at the same time distinguishes many links. In the following we will give several combinatorial descriptions of links that will allow us to build link invariants using different procedures.

Link diagrams

A link is a 1-dimensional object embedded in the 3-sphere. However, links can be represented in the 2-dimensional euclidean plane. These representations are called link diagrams. where n(D) is the number of crossings of a diagram D. Map n : {links} -→ N clearly is a link invariant. However, the value of n on a link is in general (very) hard to determine. That is why the minimal number of crossings is not an efficient link invariant. Nevertheless, some elegant results exist. For example:

Theorem 1.1.8 (First Tait conjecture [START_REF] Tait | On Knots I, II, III. Scientific Papers[END_REF][START_REF] Kauffman | State Models and the Jones Polynomial[END_REF][START_REF] Murasugi | The Jones Polynomial and Classical Conjectures in Knot Theory[END_REF][START_REF] Murasugi | Jones Polynomials and Classical Conjectures in Knot Theory II[END_REF]). Any reduced diagram of an alternating link has the fewest possible crossings.

Considering two diagrams D 1 and D 2 , one can wonder if they represent the same link.

The Reidemeister theorem answers that question.

Theorem 1.1.9 (Reidemeister theorem [3,[START_REF] Reidemeister | Elementare Begründung der Knotentheorie[END_REF][START_REF] Polyak | Minimal generating sets of Reidemeister moves[END_REF]). This result offers a new way to build a link invariant. A link invariant is a map I : {link diagrams} -→ E such that the value of I is invariant under isotopies of R 2 and Reidemeister moves. That product is a group operation. The identity element is the braid where each strand goes straight down. The inverse of a given braid is its reflection. Group B n is generated by the standard Artin generators σ i for 1 i n -1 and their inverses σ -1 i , see Figure 1.5. Braid group B n equipped with that product and that set of generators can be presented as follows: Remark 1.1.11. The first relation in that presentation is called the braid relation.

1.4 -Braid σ 1 σ -1 3 σ 1 σ 2 σ -1 3 σ -1 2 σ 1 .

Braid representations of links

B n =< σ 1 , σ 2 , . . . , σ n-1 | σ i σ i+1 σ i = σ i+1 σ i σ i+1 , σ k σ l = σ l σ k , |k -l| 2, 1 i n -2 >
Remark 1.1.12. Setting σ 2 i = 1, we find that a quotient of B n is the symmetric group S n on a set of n symbols. This quotient corresponds to ignoring the over/under information at crossings. This makes the topological objects braids happen to be quite pleasant to study since they are equivalently defined from that purely algebraic point of view. In particular, if V is a finite dimensional vector space over a field K, we obtain a natural way of building a sequence (Ψ n ) n≥2 of representations

Ψ n : B n -→ GL(V ⊗n ).
Indeed, setting R ∈ GL(V ⊗ V) one can define

Ψ n (σ i ) := id ⊗i-1 V ⊗ R ⊗ id ⊗n-i-1 V .
Given the relations in B n , representation Ψ n is well defined if and only if

(R ⊗ id V ) • (id V ⊗ R) • (R ⊗ id V ) = (id V ⊗ R) • (R ⊗ id V ) • (id V ⊗ R).
This equality is known as the Yang-Baxter equation. A solution R of that equation is called an R-matrix. Finding explicit R-matrices, especially as the dimension of V grows, is a hard problem and a motivation to the systematic study of quantum groups. We will explicit this in further detail in the following paragraphs.

Braids are interesting to us because they are after diagrams another efficient way to represent links. Indeed, one can build a link from any braid by closing it. See Figure 1.6. The surjectivity and kernel of that correspondence can be described explicitely. First let us recall this classical result:

Theorem 1.1.13 (Alexander's theorem [START_REF] Alexander | A lemma on a system of knotted curves[END_REF]). Any link is the closure of a certain braid.

Note that although Alexander's paper does not give one, algorithms exist that transform any link diagram into a diagram that is the closure of a braid, see [START_REF] Vogel | Representation of links by braids. A new algorithm[END_REF]. However, the correspondence between braids and links is clearly not one-to-one. For example, the two braids A.B and B.A always have the same closure. The question of understanding how two braids with the same closure are related is addressed by Markov's theorem [START_REF] Markov | Über die freie Äquivalenz der geschlossenen Zöpfe[END_REF]. 

The Alexander polynomial

The Alexander invariant is a polynomial link invariant that was introduced by James Waddell Alexander in 1923 [START_REF] Alexander | Topological Invariants of Knots and Links[END_REF]. It was the first polynomial invariant to be discovered and it remained the only one until the disclosure of the Jones polynomial in 1984. There are many different constructions of the Alexander polynomial, several of which we will explain and explore in this manuscript: derived from the Burau representation or Fox calculus, and even described as a quantum invariant, etc. For the moment we will define the Alexander invariant using a Seifert surface. We will then list some interesting properties of the invariant that are consequences of this construction. Such a surface exists for any link according to Seifert's algorithm [START_REF] Seifert | Über das Geschlecht von Knoten[END_REF]. An example of Seifert surface in the case of the trefoil knot is displayed in Figure 1.9. Note that because a Seifert surface is orientable, choosing an orientation, one can push the surface forward in the direction of a normal vector to the surface.

Classical definition

Remark 1.2.2. Any Seifert surface Σ being connected and orientable, one can define the genus g(Σ) of Σ:

χ(Σ) = 2 -2g(Σ) -µ
where χ(Σ) is the Euler characteristic of Σ and µ is the number of components of link L. Like in the case of the minimal number of crossings, the genus is a link invariant that is quite easy to define but very hard to compute in practice. We will see the Alexander polynomial helps to do so since its degree is a lower bound for the genus. One aim of this work is to give evidence to support the assumption that we can systematically improve this lower bound. 

∆ L (t) = det(tV -t V) ∈ Z[t, t -1 ].
With this definition, ∆ L is determined up to multiplication by ±t n , n ∈ Z, that is up to an invertible element of Z[t, t -1 ]. The standard Alexander normalization consists in picking the representative with positive constant term. The Alexander-Conway normalization corresponds, at least in the case of a knot K, to choosing the symmetric Laurent polynomial with ∆ K (1) = 1. In general, the Conway normalization is determined by its defining skein relations we recall in Theorem 1.4.12.

Consequences of this definition

Here we focus on some classical properties of the Alexander invariant. A very remarkable one is the following, that is a direct consequence of the previous definition of ∆: Proposition 1.2.5. For any link L, deg(∆ L (t)) 2g(L) + µ -1.

We now recall the definition of an alternating link. Definition 1.2.6. A link is alternating when it has a link diagram with alternating underpasses and overpasses.

For alternating links, the inequality in Proposition 1.2.5 becomes an equality, see [START_REF] Crowell | Genus of Alternating Link Types[END_REF].

Moreover, the Alexander polynomial of an alternating link is "alternating", see [START_REF] Crowell | Genus of Alternating Link Types[END_REF][START_REF] Murasugi | On the genus of the alternating knot II[END_REF]. Proposition 1.2.7. The Alexander polynomial ∆ L (t) = ∑ i a i t i of an alternating link L is alternating, that is: (-1) i+j a i a j 0 for any i, j.

Another class of knots for which the Alexander invariant has special properties is the set of fibered knots. Definition 1.2.8. A knot K in S 3 is said to be fibered if the two following conditions hold :

1. the complement of the knot is the total space of a locally trivial bundle over the base space S 1 , i.e. there exists a map p : S 3 \ K -→ S 1 which is a locally trivial bundle.

2. there exists V(K) a neighborhood of K and there exists a trivializing homeomorphism

θ : V(K) -→ S 1 × D 2 such that π • θ(X) = p(X) for any X ∈ V(K) \ K, where π(x, y) := y |y| .
The Alexander polynomial of a fibered knot is monic [START_REF] Neuwirth | Knot Groups[END_REF][START_REF] Rapaport | On the commutator subgroup of a knot group[END_REF][START_REF] Stallings | On fibering certain 3-manifolds[END_REF]. This means the coefficient of the highest degree term of the standard Alexander normalization of the polynomial is 1. For the Conway normalization, it means the leading coefficient is ±1. The converse is not true in general. However, the condition is sufficient for prime knots with up to 10 crossings and alternating knots [START_REF] Murasugi | On a certain subgroup of the group of an alternating link[END_REF]. Also note that for fibered knots, the degree of the Alexander polynomial is exactly twice the genus of the knot, that is the genus of the corresponding fibre surface [START_REF] Rapaport | On the commutator subgroup of a knot group[END_REF].

The last chapter of this manuscript is dedicated to pointing out evidence for possible improvements of all these results using Links-Gould invariants of links.

The Jones polynomial

Quite like the Alexander invariant, the Jones polynomial associates to every link a one variable polynomial. It was discovered by V. Jones in 1984 [START_REF] Jones | A polynomial invariant for knots via von Neumann algebras[END_REF]. The computation is made by using a link diagram. So the invariance of the quantity we calculate under Reidemeister moves is the key point in the theory. The discovery of the Jones polynomial was the starting point of the blossoming new interset for knot theory that has never stopped since. That polynomial has been much generalized into what we now call quantum link invariants. Early after its disclosure, it was also used to prove conjectures that mathematicians had failed to solve without that powerful tool, for example Theorem 1.1.8. We will introduce the Jones polynomial using the Kauffman bracket [START_REF] Kauffman | State Models and the Jones Polynomial[END_REF]. ] and is defined in the following recursive way:

1. < >= 1, 2. < D >= (-A 2 -A -2 ) < D >, 3. < >= A < > +A -1 < >.
The bracket polynomial of a diagram with m crossings can therefore be computed using 3 as a sum of 2 m diagrams with no crossings. Since the polynomial of a diagram with c components and no crossings is equal to (-A 2 -A -2 ) c-1 by 1 and 2, we obtain an expression for any link diagram in the plane. Note that the expression does not depend on the order in which crossings were resolved using 3.

We now study the effect of a non oriented Reidemeister move on the value of the Kauffman bracket.

Proposition 1.3.2. 1. The effect of a type RI Reidemeister move on the bracket polynomial is the following:

< >= -A 3 < >, < >= -A -3 < > .
2. The Kauffman bracket is left unchanged by Reidemeister moves RII and RIII.

Proof. For example, we study Reidemeister move RI.

< > = A < > +A -1 < > = (A(-A 2 -A -2 ) + A -1 ) < > = -A 3 < > .

CQFD

We can modify the bracket slightly to obtain an invariant of oriented links. 

V(L) = (-A) -3w(D) < D > t 1/2 =A -2
where D is an oriented diagram for L.

Remark 1.3.7. For a link with an odd number of components, and in particular for a knot, 

V(L) ∈ Z[t ±1 ].
Proof. < >= A < > +A -1 < >, < >= A -1 < > +A < > .
By multiplying the first equation by A and the second one by A -1 , and substracting these two equalities, we obtain

A < > -A -1 < >= (A 2 -A -2 ) < > . But w(L + ) = w(L 0 ) + 1 = w(L -) + 2. So finally -A 4 V(L + ) + A -4 V(L -) = (A 2 -A -2 )V(L 0 ). CQFD 1.

The Jones and Alexander invariants expressed via modified traces

The two link invariants we have just studied can both be expressed in terms of R-matrix representations of braid groups we introduced in Subsection 1.1.3. This is what we will discuss in this section.

Trace and partial trace

Proposition 1.4.1 (Canonical identifications). Let V and W be two finite dimensional vector spaces over a field K. Let Hom(V, W) be the set of K-linear maps V -→ W. Set also End(V) := Hom(V, V) and V * := Hom(V, K). Then we have the following canonical identifications:

Hom(V, W) = V * ⊗ W, End(V ⊗ W) = End(V) ⊗ End(W), (V * ) * = V, (V ⊗ W) * = V * ⊗ W * .
Definition 1.4.2 (Trace). The trace of an endomorphism is defined using the first identification of Proposition 1.4.1:

trace = End(V) = V * ⊗ V -→ K f ⊗ x -→ f (x) .
Note that if an endomorphism f has a matrix A with respect to a fixed basis, then the trace of f is the sum of the diagonal entries of A.

Definition 1.4.3 (Partial trace). The partial trace linear maps are defined for endomorphisms of a tensor product vector space V ⊗ W using the second identification of Proposition 1.4.1:

trace 1 = End(V ⊗ W) = End(V) ⊗ End(W) -→ End(W) f ⊗ g -→ trace( f )g , trace 2 = End(V ⊗ W) = End(V) ⊗ End(W) -→ End(V) f ⊗ g -→ trace(g) f .
This is not a complete definition in the sense that partial traces can be defined for endomorphisms of tensor products with more than two factors. When it is the case, the number of factors that are killed may vary as well. For example, for

f ⊗ g ⊗ h ∈ End(V ⊗ W ⊗ X) = End(V) ⊗ End(W) ⊗ End(X): trace 2 ( f ⊗ g ⊗ h) = trace(g) f ⊗ h ∈ End(V ⊗ X), trace 2,3 ( f ⊗ g ⊗ h) = trace(g)trace(h) f ∈ End(V). Remark 1.4.4. Given these definitions, it is easy to see that for f ⊗ g ∈ End(V ⊗ W) = End(V) ⊗ End(W), trace(trace 1 ( f ⊗ g)) = trace(trace 2 ( f ⊗ g)) = trace( f ⊗ g).
Then, using linear combinations, this remains true if f ⊗ g is replaced by any

ϕ ∈ End(V ⊗ W). So trace • trace 1 = trace • trace 2 = trace.
This last observation will be useful to reduce expressions.

The Jones polynomial as a modified trace

Lemma 1.4.5. Set V a finite dimensional vector space and fix h ∈ GL(V) and R ∈ GL(V ⊗ V). If h and R satisfy

1. R • (h ⊗ h) = (h ⊗ h) • R, 2. trace 2 (id V ⊗ h) • R ±1 = id V , 3. (R ⊗ id V ) • (id V ⊗ R) • (R ⊗ id V ) = (id V ⊗ R) • (R ⊗ id V ) • (id V ⊗ R),
then R is a solution of the Yang-Baxter equation and as explained in Subsection 1.1.3 we can build a sequence of representations

Ψ n : B n -→ GL(V ⊗n ) using R. Moreover, setting L a link in S 3 and b ∈ B n a braid with closure L, trace h ⊗n • Ψ n (b) only depends on L. Therefore, L → trace h ⊗n • Ψ n (b) is a link invariant.
Proof. We will check that this quantity is invariant under Markov moves MI and MII. For MI

we use 1. Formula R • (h ⊗ h) = (h ⊗ h) • R
implies that, for any b ∈ B n , Ψ n (b) and h ⊗n commute. Therefore, considering b, c ∈ B n :

trace h ⊗n • Ψ n (bc) = trace h ⊗n • Ψ n (b) • Ψ n (c) = trace Ψ n (b) • h ⊗n • Ψ n (c) = trace Ψ n (b) • h ⊗n • Ψ n (c) = trace h ⊗n • Ψ n (c) • Ψ n (b) = trace h ⊗n • Ψ n (cb) .
The invariance under the MII move is a consequence of point 2. For b ∈ B n :

trace h ⊗n+1 • Ψ n+1 (σ ±1 n b) = trace h ⊗n+1 • Ψ n+1 (σ ±1 n ) • Ψ n+1 (b) = trace h ⊗n+1 • (id ⊗n-1 V ⊗ R ±1 ) • (Ψ n (b) ⊗ id V ) = trace (h ⊗n ⊗ id V ) • (id ⊗n V ⊗ h) • (id ⊗n-1 V ⊗ R ±1 ) • (Ψ n (b) ⊗ id V ) = trace h ⊗n ⊗ id V • id ⊗n-1 V ⊗ ((id V ⊗ h) • R ±1 ) • Ψ n (b) ⊗ id V .
But an elementary computation shows that

trace 2 ( f ⊗ id V ) • g • (h ⊗ id V ) = f • trace 2 (g) • h.
Applying this result:

trace h ⊗n+1 • Ψ n+1 (σ ±1 n b) = trace h ⊗n • trace n id ⊗n-1 V ⊗ ((id V ⊗ h) • R ±1 ) • Ψ n (b) = trace h ⊗n • id ⊗n-1 V ⊗ trace 2 ((id V ⊗ h) • R ±1 ) • Ψ n (b) = trace h ⊗n • (id ⊗n-1 V ⊗ id V ) • Ψ n (b) = trace h ⊗n • Ψ n (b) .

CQFD

Let us consider a 2-dimensional vector space E with a basis (e 0 , e 1 ). We define a linear map R 0 ∈ GL(E ⊗ E). It is represented in basis (e 0 ⊗ e 0 , e 0 ⊗ e 1 , e 1 ⊗ e 0 , e 1 ⊗ e 1 ) by the following matrix:

R 0 =       -t 1/2 0 0 0 0 0 t 0 0 t -t 1/2 + t 3/2 0 0 0 0 -t 1/2       .
We also define

h 0 = -t -1/2 0 0 -t 1/2 ∈ End(E).
Proposition 1.4.6. Maps R 0 and h 0 satisfy the three relations of Lemma 1.4.5. So if we call the representations derived from the R-matrix (Φ n ),

L -→ trace(h ⊗n 0 • Φ n (b)), cl(b) = L is an oriented link invariant.
Proof. Direct computation. CQFD Theorem 1.4.7. Let L be an oriented link and b ∈ B n a braid with closure L. The invariant defined above is equal up to a constant to the Jones polynomial V(L) of L. To be more explicit

trace(h ⊗n 0 • Φ n (b)) = (-t 1/2 -t -1/2 )V(L)(t).
Proof. One can verify by hand that t -1 R 0 -tR -1 0 = (t 1/2t -1/2 )id E⊗E . So the two invariants satisfy the same skein relation. Therefore they are equal up to a constant, that can be determined by computing the value of each invariant on the unknot. CQFD This is an alternative definition of the Jones polynomial in terms of representations of braid groups via R-matrices. In the next paragraph, we will try to obtain the Alexander polynomial with a similar construction, though we will see it is a little more tricky to do so in that second case.

The Alexander polynomial expressed as a partial trace

We introduce

R 1 =       t -1/2 0 0 0 0 0 1 0 0 1 t -1/2 -t 1/2 0 0 0 0 -t 1/2       ∈ End(E ⊗ E)
and

h 1 = t 1/2 0 0 -t 1/2 ∈ End(E).
Lemma 1.4.8. Maps R 1 and h 1 satisfy the three relations of Lemma 1.4.5. So if we call the representations derived from the R-matrix (Θ n ),

L -→ trace(h ⊗n 0 • Θ n (b)), cl(b) = L is an oriented link invariant.
Unfortunately this invariant is not very interesting.

Proposition 1.4.9. The invariant derived from R 1 and h 1 is equal to 0 for any oriented link.

This is essentially due to the fact that the trace of h 1 is equal to zero, which was for example not the case for the Jones polynomial. For a detailed proof, see, for example, [START_REF] Ohtsuki | Quantum invariants. A study of knots, 3-manifolds, and their sets[END_REF] Proposition 3.10.

To obtain a non trivial invariant from R 1 and h 1 , we consider the following modification that, from a graphical point of view, consists in leaving the first strand of the braid open.

Theorem 1.4.10 (Alexander polynomial via a representation of B n ). Let L be an oriented link and b ∈ B n be any braid with closure L. Then:

1. There exists a scalar c such that trace 2,3,...,n ((id

E ⊗ h ⊗n-1 1 ) • Θ n (b)) = c.id E ,
2. c is a link invariant and is equal to the Alexander polynomial of L, ∆ L (t).

The existence and invariance of c under MI and MII will be proved by our study of operator invariants derived from ribbon Hopf algebras, see Section 1.5. For the proof of the equality of the invariant and the Alexander polynomial, we refer the reader to [START_REF] Ohtsuki | Quantum invariants. A study of knots, 3-manifolds, and their sets[END_REF], Appendix C.

Corollary 1.4.11. With the same notations, this formula follows from Theorem 1.4.10:

∆ L (t) = 1 2 trace((id E ⊗ h ⊗n-1 1 ) • Θ n (b)).
Proof. Applying the trace operator on each side of the formula that defines constant c, we obtain:

2c = trace(trace 2,3,...,n ((id E ⊗ h ⊗n-1 1 ) • Θ n (b))).
Since trace • trace 2,3,...,n = trace, this concludes. CQFD Note that this definition of the Alexander polynomial, unlike the geometrical construction we explained before, does not contain any indeterminacy. The choice of the unit of Z[t ±1 ] is intrinsic in our case. The Alexander polynomial, when it is chosen to have this privileged normalization, is often referred to as the Alexander-Conway polynomial.

Theorem 1.4.12. The Alexander-Conway polynomial ∆ satisfies the following skein relation:

∆ L + (t) -∆ L -(t) = (t -1/2 -t 1/2 )∆ L 0 (t)
where L + , L -and L 0 are three links that are identical except in the neighborhood of a point where they are as drawn in Figure 1.11.

Proof. Direct computation shows that R 1 -R -1 1 = (t -1/2 -t 1/2 )id E⊗E . CQFD

The Reshetikhin-Turaev theory

The logical question now is to try to understand how one can obtain couples of maps (R, h) that satisfy the three conditions of Lemma 1.4.5 and in particular R-matrices, especially when the dimension of the underlying vector space grows large. The Reshetikhin-Turaev theory [START_REF] Reshetikhin | Ribbon graphs and their invariants derived from quantum groups[END_REF] answers this question by introducing algebraic structures that, once represented, give birth to such maps. These algebraic structures are called quantum groups, or perhaps Figure 1.12 -Reidemeister moves RIc, RII and RIII for framed links. more properly ribbon Hopf algebras. A first step for us will be to understand tangles, that are generalizations of braids, and their diagrams.

But as a preliminary let us introduce framed links that will be of interest to us in this section.

Framed objects

Definition 1.5.1. A framed link is the image of the embedding of a disjoint union of annuli S 1 × [0, 1] into the 3-sphere.

The underlying link associated to a given framed link is the link obtained by restricting each annulus to S 1 × { 1 2 }. The framing of a framed knot is the class of framed knots that have the same underlying knot as the framed knot itself. The framing of a framed knot can be determined by an integer: the linking number of the two boundary components of the annulus with orientations chosen so that the two components are oriented in the same direction. For a framed link, there is a framing for each annulus.

Finally, to a link diagram D in R 2 we can associate a framed link by blackboard framing: the parallel always runs beside the link component in the 2-dimensional projection. Note that any framed link can be expressed by a link diagram by blackboard framing.

In the case of framed links, the Reidemeister theorem is slightly different from the classical one. 

Tangles and their diagrams

A tangle is a compact 1-dimensional manifold embedded in R 2 × [0, 1] in a way that the boundary of the tangle is a finite set of isolated points in {0} × R × {0, 1}. Two tangles are equivalent, or isotopic, when they are related by an isotopy of the ambient space R 2 × [0, 1] that fixes the boundary points. A framed tangle is a tangle for which each component has a framing. If each component is oriented, we obtain an oriented (framed) tangle.

Note that an (oriented) (framed) link is an (oriented) (framed) tangle with no boundary points.

A tangle diagram is a diagram of a tangle in R × [0, 1]. See Figure 1.13. A tangle diagram is made of crossings, neighborhoods of critical points with respect to the height function R × [0, 1] → [0, 1]
and vertical paths, that is embedded curves such that the tangent line at each point of the curve is not horizontal. In other words, any tangle diagram can be expressed, up to isotopy, as a composition of tensor products of copies of elementary tangle diagrams described in Figure 1.14. The composition of two tangles T and S is obtained by putting T on top of S and is denoted TS, while the tensor product T ⊗ S is defined by putting T next to S.

We consider a particular class of tangle diagrams we call sliced diagrams. Sliced tangle or in the case of framed tangles: ,

. These Turaev theorems play the same role in the construction of operator invariants of tangles than the Markov theorem in the case of R-matrix representations of braids, since they give conditions for the operators representing the topological objects to be isotopy invariants.

Operator invariants

The unoriented case Set V a finite dimensional C-vector space. We introduce the Reshetikhin-Turaev functor that sends a sliced tangle diagram with a lower ends and b upper ends to an element of Hom(V ⊗a , V ⊗b ). Then, we study under what conditions this functor is topologically invariant.

To explicit that functor, we need only to define the image of an elementary tangle diagram and that of the product and tensor product of two diagrams. The image of the product of two sliced diagrams is the composition of the two image maps, while the image of the tensor product of two diagrams is the tensor product map of the two images. The elementary tangle diagrams are mapped as follows:

→ id V ; → R ∈ GL(V ⊗ V) ; → R -1 ∈ GL(V ⊗ V) ; → n ∈ (V ⊗ V) * ; → u ∈ Hom(C, V ⊗ V).
That way we map any sliced diagram D to a linear map [D] we will call the bracket of D.

In particular, the bracket of a sliced link diagram belongs to End(C) = C. We now focus on what conditions to impose on R, n, u for the functor to be topological, meaninng that the image of a sliced diagram D only depends on the tangle represented by D (or on the framed tangle represented by blackboard framing by D in the framed case). We need to make sure [D] is invariant under Turaev moves.

Lemma 1.5.7. Suppose that the bracket is a (framed) tangle invariant. Then u is uniquely determined by n. Moreover, n is a non degenerate bilinear form.

Proof. Let (e 1 , . . . , e n ) be a basis of V. Since the bracket is invariant under Turaev moves, translating Theorem 1.5.5 3., we get the following condition on operators:

(n ⊗ id V ) • (id V ⊗ u) = (id V ⊗ n) • (u ⊗ id V ) = id V .
We write n and u in terms of the basis:

n(e i ⊗ e j ) = n i,j , u(x) = x ∑ i,j u i,j e i ⊗ e j .

Define N = (n i,j ) and U = (u i,j ). These are two square matrices. Using the condition on n, u we just explicited:

(n ⊗ id V ) • (id V ⊗ u)(e k ) = ∑ i,j n k,i u i,j e j = e k , (id V ⊗ n) • (u ⊗ id V )(e k ) = ∑ i,j u i,j n j,k e i = e k .
This exactly means that N.U = U.N = I. So U and N are invertible and U = N -1 . Hence u is uniquely determined by n. Moreover, n ∈ (V ⊗ V) * is a non degenerate bilinear form. CQFD Definition 1.5.8. Setting R an invertible element of End(V ⊗ V) and n ∈ (V ⊗ V) * a non degenerate bilinear form, and defining u ∈ Hom(C, V ⊗ V) from n like above, the bracket [ . ] obtained like mentioned before is called the bracket associated with R and n.

Theorem 1.5.9 ([58, 59, 15]). Set T a (framed) tangle and D a sliced diagram of T (representing T by blackboard framing in the case where T is a framed tangle). If an invertible element R ∈ End(V ⊗ V) and a non degenerate bilinear form n ∈ (V ⊗ V) * satisfy the following relations:

1. (id V ⊗ n) • (R ±1 ⊗ id V ) = (n ⊗ id V ) • (id V ⊗ R ∓1 ), 2. (R ⊗ id V ) • (id V ⊗ R) • (R ⊗ id V ) = (id V ⊗ R) • (R ⊗ id V ) • (id V ⊗ R), 3. n • R = n,
or in the case of framed objects n • R = c.n for some non zero scalar c, then the bracket [D] associated with R and n is an isotopy invariant of T. That invariant is denoted by [T] and is called the operator invariant of a (framed) tangle T associated with R and n.

A particular case is for a (framed) link L. In that case the operator invariant is an element of End(C) = C, where the identification is given by f → f (1).

Proof. The proof consists in showing the bracket is preserved by Turaev moves. We will not go into further detail. CQFD Remark 1.5.10. The Kauffman bracket can be generalized to framed tangles and can then be seen as an operator invariant, which is coherent with Corollary 1.5.3. See for example [START_REF] Ohtsuki | Quantum invariants. A study of knots, 3-manifolds, and their sets[END_REF],

Chapter 3, where the proper R-matrix and bilinear form are explicited.

We now investigate the case of oriented (framed) tangles.

The oriented case

To define the Reshetikhin-Turaev functor in the case of sliced oriented tangle diagrams, we connsider once more a finite dimensional C-vector space V. We also consider Hom(V, C) = V * the dual vector space. The fuctor will send a sliced oriented tangle diagram to a linear map between two tensor products of copies of V and V * . The elementary oriented tangle diagrams are mapped the following way:

→ id V ; → id V * ; → R ∈ GL(V ⊗ V) ; → R -1 ∈ GL(V ⊗ V) ; → n ∈ (V ⊗ V * ) * ; → n ∈ (V * ⊗ V) * ; → u ∈ Hom(C, V * ⊗ V) ; → u ∈ Hom(C, V ⊗ V * ).
We set B = (e 1 , . . . , e n ) a basis of V. Then (e * 1 , . . . , e * n ) stands for the dual basis to B. Morphism R is an invertible element of End(V ⊗ V) and we derive n, n , u, u from an invertible element h ∈ End(V) as follows:

n(v ⊗ f ) = f (h(v)) , n (v ⊗ f ) = f (v), u(z) = z ∑ i e * i ⊗ h(e i ) , u (z) = z ∑ i e i ⊗ e * i .
The bracket of an oriented sliced diagram D is then defined in the same way as it was built in the unoriented case, and is denoted [D] once more.

Identifying vector spaces as explained in Proposition 1.4.1, we regard an endomorphism f ∈ End(V ⊗ W) as an element of the following tensor product:

f ∈ End(V ⊗ W) = (V ⊗ W) * ⊗ (V ⊗ W) = W * ⊗ V * ⊗ V ⊗ W.
Using Ohtsuki's notations [START_REF] Ohtsuki | Quantum invariants. A study of knots, 3-manifolds, and their sets[END_REF], we define f and f the two elementary cyclic permutations of the entries of the tensor product defining

f in W * ⊗ V * ⊗ V ⊗ W. f ∈ W ⊗ W * ⊗ V * ⊗ V = (W ⊗ W * ) * ⊗ (V * ⊗ V) = Hom(W ⊗ W * , V * ⊗ V), f ∈ V * ⊗ V ⊗ W ⊗ W * = (V * ⊗ V) * ⊗ (W ⊗ W * ) = Hom(V * ⊗ V, W ⊗ W * ).
Theorem 1.5.11 ([58, 59, 15]). Set T an oriented (framed) tangle and D a sliced diagram of T (representing T by blackboard framing in the case where T is framed). If an invertible element R ∈ End(V ⊗ V) and an invertible map h ∈ End(V) satisfy the following relations: then the bracket [D] associated with R and h is an isotopy invariant of T. That invariant is denoted by [T] and is called the operator invariant of an oriented (framed) tangle T associated with R and h.

Proof. Translation of Turaev moves. CQFD Remark 1.5.12. The element c that is introduced in the case of framed oriented tangles is called the twist of the operator invariant. Comparing the framed and the unframed case, observe that an operator invariant of framed oriented tangles becomes an invariant of unframed oriented tangles once the R-matrix is divided by the twist. Also note that such a modification was not possible in the unoriented case.

Remark 1.5.13. Comparing this result with Lemma 1.4.5, we see that we need one more condition to be able to generalize a link invariant to one that is defined on oriented tangles.

Indeed, trace h ⊗n • Ψ n (b)
happpens to be exactly the operator invariant of the oriented link L when that link is represented (as an oriented tangle with no ends) as the closure of braid b.

The Jones and Alexander polynomials as operator invariants

In Subsections 1.4.2 and 1.4.3, we recovered the Jones and Alexander polynomials as modified traces of representations of the braid groups derived from R-matrices. Here we try to understand these expressions we recall in terms of operator invariants:

(-t 1/2 -t -1/2 )V(L)(t) = trace(h ⊗n 0 • Φ n (b)), ∆ L (t).id E = trace 2,3,...,n ((id E ⊗ h ⊗n-1 1 ) • Θ n (b)),
where b ∈ B n is a braid with closure L, Φ n is the representation of B n built from R 0 , and Θ n is the representation built using R 1 .

Lemma 1.5.14. The two pairs of maps (R 0 , h 0 ) and (R 1 , h 1 ) introduced in 1.4.2 and 1.4.3 satisfy points 1., 2., 3., and 4. of Theorem 1.5.11. Hence they both induce an operator invariant of oriented tangles.

Remark 1.5.13 immediately shows that the operator invariant associated with R 0 and h 0 is a generalization of the Jones polynomial to oriented tangles.

In the case of the Alexander polynomial, note that the fact that the partial trace is a scalar multiple of the identity has yet to be justified. This will be achieved in the next section.

However, we can still try to understand what the meaning of the partial trace is in terms of the operator invariant associated with R 1 and h 1 . In fact, the partial trace

trace 2,3,...,n ((id E ⊗ h ⊗n-1 1 ) • Θ n (b))
is the value of the bracket of the 1-1-tangle obtained from b by closing all strands except the first one. This is a way of building a non trivial link invariant from the operator invariant even though its value on links in always zero as we already mentioned.

Ribbon Hopf algebras and invariants of links

However a question still remains to be answered: how can one find pairs of linear maps (R, h) associated with an operator invariant systematically ? Where, for example, do (R 0 , h 0 ) and (R 1 , h 1 ) come from ? The ribbon Hopf algebra structure achieves this goal quite elegantly. The idea is that given a ribbon Hopf algebra A, special elements of the algebra will be represented on a finite dimensional vector space by maps associated to an operator invariant of oriented tangles. The results about Hopf algebras we present here are originally due to [START_REF] Drinfel | On almost cocommutative Hopf algebras[END_REF]. Most statements will not be proved in this paragraph. We follow the way ideas are explained in [START_REF] Ohtsuki | Quantum invariants. A study of knots, 3-manifolds, and their sets[END_REF], Chapter 4.

Ribbon Hopf algebras

Setting A an algebra over C with a unit element 1, we denote by m : A ⊗ A -→ A the product map. We also define i : C -→ A, z -→ z.1. Definition 1.5.15 (Hopf algebra). We say A is a Hopf algebra when it is equipped with a comultiplication homomorphism ∆ : A -→ A ⊗ A, an anti-homomorphism S : A -→ A called antipode and a counit homomorphism ε : A -→ C subject to the following relations:

1.

(∆ ⊗ id A ) • ∆ = (id A ⊗ ∆) • ∆, 2. (ε ⊗ id A ) • ∆ = id A , 3. (id A ⊗ ε) • ∆ = id A , 4. m • (S ⊗ id A ) • ∆ = i • ε, 5. m • (id A ⊗ S) • ∆ = i • ε.
Definition 1.5.16 (Quasi-triangular Hopf algebra). A quasi-triangular Hopf algebra is a pair (A, R) where A is a Hopf algebra and R ∈ A ⊗ A is an invertible element subject to:

1. (Π • ∆)(a) = R∆(a)R -1 , for any a ∈ A, 2. (∆ ⊗ id A )(R) = R 1,3 R 2,3 , 3. (id A ⊗ ∆)(R) = R 1,3 R 1,2 ,
where

Π(a ⊗ b) = b ⊗ a for a, b ∈ A, R 1,2 = R ⊗ 1, R 2,3 = 1 ⊗ R, R 1,3 = ∑ i a i ⊗ 1 ⊗ b i where R = ∑ i a i ⊗ b i .
When all these conditions are fulfilled, R is called a universal R-matrix.

If (A, R) is a quasi-triangular Hopf algebra, still writing R = ∑ i a i ⊗ b i , we define an element u ∈ A, sometimes called pivotal element, by setting

u = ∑ i S(b i )a i .
Proposition 1.5.17 ([13, 46]). The pivotal element u ∈ A has the following properties:

S 2 (a) = uau -1 for any a ∈ A, u -1 = ∑ j S -1 (d j )c j ,
where we write R -1 = ∑ j c j ⊗ d j .

Proposition 1.5.18 (Some useful properties of the universal R-matrix [START_REF] Drinfel | On almost cocommutative Hopf algebras[END_REF][START_REF] Ohtsuki | Quantum invariants. A study of knots, 3-manifolds, and their sets[END_REF]). In a quasitriangular Hopf algebra (A, R), the universal R-matrix satisfies

1. R 1,2 R 1,3 R 2,3 = R 2,3 R 1,3 R 1,2 , 2. (ε ⊗ id A )(R) = 1 = (id A ⊗ ε)(R), 3. (S ⊗ id A )(R) = R -1 = (id A ⊗ S -1 )(R), 4. (S ⊗ S)(R) = R, 5. (u ⊗ u).R = R.(u ⊗ u).
Proposition 1.5.19 (Properties of u [START_REF] Drinfel | On almost cocommutative Hopf algebras[END_REF][START_REF] Ohtsuki | Quantum invariants. A study of knots, 3-manifolds, and their sets[END_REF]). The coproduct and counit of u can be expressed as follows:

∆(u) = (u ⊗ u).(Π(R)R) -1 , ∆(S(u)) = (S(u) ⊗ S(u)).(Π(R)R) -1 , ε(u) = 1.
To derive operator invariants from some quasi-triangular Hopf algebras, we need to restrict the class of Hopf algebras we consider one last time. Before we introduce ribbon Hopf algebras, and in order to understand what motivates this new definition, we study the properties of w = S(u)u ∈ A.

Proposition 1.5.20 ([13, 46]). Set w = S(u)u ∈ A. Then w is central in A and

∆(w) = (w ⊗ w).(Π(R)R) -2 , S(w) = w, ε(w) = 1.
Definition 1.5.21 (Ribbon Hopf algebra [START_REF] Reshetikhin | Ribbon graphs and their invariants derived from quantum groups[END_REF]). A quasi-triangular Hopf algebra (A, R) is called a ribbon Hopf algebra if there is an element v ∈ A such that 1. v is a central element,

2. v 2 = S(u)u, 3. ∆(v) = (v ⊗ v).(Π(R)R) -1 , 4. S(v) = v, 5. ε(v) = 1.
So a ribbon Hopf algebra (A, R, v) can be obtained from a quasi-triangular Hopf algebra by fixing a square root of w = S(u)u.

Operator invariants defined from ribbon Hopf algebras

Setting a representation of a ribbon Hopf algebra, we can derive an operator invariant of framed tangles. This operator is compatible with the module structure induced by the representation.

Let (A, R, v) be a ribbon Hopf algebra and V be a finite dimensional C-vector space. Set ρ : A -→ End(V) a representation of A on V. This representation defines a A-module structure on V. Theorem 1.5.22 (Schur's lemma). If V is an irreducible A-module and f : V -→ V is an Alinear map, then f is a scalar multiple of the identity. In particular, any central element of A acts by a scalar multiple of the identity.

For an irreducible representation ρ of A on V, we consider the two following maps:

R = P • (ρ ⊗ ρ)(R) ∈ End(V ⊗ V), h = ρ(uv -1 ) ∈ End(V), where P : V ⊗ V → V ⊗ V, x ⊗ y → y ⊗ x.
Theorem 1.5.23. The two previous maps R and h satisfy the relations of Theorem 1.5.11 for some non-zero scalar c. Therefore, they define an operator invariant of framed oriented tangles and an invariant of unframed oriented tangles once R is divided by the twist.

Proof. This is a consequence of Propositions 1.5.17, 1.5.18 and 1.5.19 and Definition 1.5.21.

CQFD

If ρ V : A → End(V) and ρ W : A → End(W) are two representations of A, we define two representations of A on V ⊗ W and on V * .

ρ V⊗W (a) = (ρ V ⊗ ρ W )(∆(a)) ∈ End(V) ⊗ End(W) = End(V ⊗ W), ρ V * (a) ∈ End(V * ) defined by ρ V * (a)( f ) = f • ρ V (S(a)).
This defines a A-module structure inductively on any tensor power of V and V * where V is a fixed A-module. Moreover, the A-module structure we choose on C is derived from the

unit representation ρ C = ε : A → C.
Let us recall that an A-module homomorphism f : V → W is a linear map that commutes with the action of any element of A:

f • (ρ V (a)) = (ρ W (a)) • f for any a ∈ A.
Theorem 1.5.24. Denote the operator invariant of an oriented (framed) tangle T derived from a representation of a ribbon Hopf algebra A on V by [T] A,V . Then [T] A,V is a A-module homomorphism with respect to the A-module structures we introduced.

Corollary 1.5.25. If T is a (framed) oriented 1, 1-tangle, that is a tangle with one uper end and one lower end, then its operator invariant [T] A,V derived from ribbon Hopf algebra A and representation V is a scalar multiple of the identity.

Proof. Apply Schur's lemma (Theorem 1.5.22) to [T] A,V . CQFD

The Jones and Alexander polynomials derived from ribbon Hopf algebras

The operator invariant that we recovered the Jones polynomial from in the previous section is derived from the 2-dimensional irreducible family of representations of quantum group U q sl(2) at a generic q, once the R-matrix is divided by the twist.

On the other hand, the operator invariant that generalizes the Alexander-Conway invariant to oriented tangles can be recovered in two different ways: either by considering the quasi triangular Hopf algebra associated to U q sl(2) at fourth roots of unity, or by considering the super Hopf algebra U q gl(1|1) [61]. We will study these two interpretations in detail in Chapter 3. Moreover, knowing this, it becomes clear using Corollary 1.5.25 that the expression trace 2,3,...,n ((id

E ⊗ h ⊗n-1 1 ) • Θ n (b))
is a scalar multiple of the identity.

We shall now introduce a family of quantum link invariants that we will study in the rest of this manuscript: the Links-Gould invariants of links. The first Links-Gould invariant was introduced by Links and Gould in 1992 [START_REF] Links | Two variable link polynomials from quantum supergroups[END_REF], and studied in further detail by De Wit, Kauffman and Links in [START_REF] Wit | On the Links-Gould invariant of links[END_REF]. It was generalized to a family of invariants LG n,m , n, m ∈ N * by De Wit [START_REF] Wit | An infinite suite of Links-Gould invariants[END_REF]. The first Links-Gould invariant is LG 2,1 in this family, and is sometimes simply denoted LG when it is not ambiguous to do so. The Links-Gould invariants are two variable polynomial invariants. They are derived from super Hopf Algebras U q gl(n|m). The super means that the algebra is equipped with an additional structure: a Z/2Z grading that modifies the axioms slightly compared to those of a standard Hopf algebra. However, this will not be important for us since there is a procedure, called bosonization and due to Majid [START_REF] Majid | Cross products by braided groups and bosonization[END_REF], that transforms a super Hopf algebra into an ordinary one. This trick will be explained in Chapter 3. We will present super Hopf algebra U q gl(n|m) and its characteristic elements when it is necessary for our study, that is in the case of U q gl(n|1), in the course of Chapter 3. For a completely general definition of U q gl(n|m), we refer the reader to [START_REF] Wit | An infinite suite of Links-Gould invariants[END_REF][START_REF] De | Wit -Automatic construction of explicit R matrices for the one-parameter families of irreducible typical highest weight representations of U q [gl(m|n)[END_REF]. Whenever it is possible, we choose to stay at the level of operator invariants.

The work of Viro [61] shows that the simplest Links-Gould invariant LG 1,1 is non other than the Alexander-Conway polynomial. However and except for the (1, 1) case, unlike for most polynomial link invariants, properties that are considered to be at the base of the understanding of an invariant are not known for LG. For example, if Marin and Wagner give a complete set of skein relations for LG 2,1 [START_REF] Marin | A cubic defining algebra for the Links-Gould polynomial[END_REF], the cubic relation is barely practicable, and a simple set of relations has still to be found. On the other hand, the investigations we went through and that are explained in Chapter 4 suggest that the Links-Gould invariants are much closer to the Alexander polynomial in terms of a geometrical interpretation that any other known quantum invariant. These paradoxical facts are underlined by the questions we raise and answers we provide in the course of this text.

The simplest Links-Gould invariant LG 2,1 can be defined as derived from an operator invariant as follows.

Definition 1.6.1. Set K := C(t

± 1 2 0 , t ± 1 2 1
). Let W =< e 1 , . . . , e 4 > be a four-dimensional Kvector space. The following linear map R, expressed in basis (e 1 ⊗ e 1 , e 1 ⊗ e 2 , e 1 ⊗ e 3 , e 1 ⊗ e 4 , e 2 ⊗ e 1 , e 2 ⊗ e 2 , e 2 ⊗ e 3 , . . .), is an automorphism of W ⊗ W and an R-matrix ( [START_REF] Wit | On the Links-Gould invariant of links[END_REF], p.186) : 

                                   
                                    where Y = ((t 0 -1)(1 -t 1 )) 1/2 .
We denote by b n R the representation of braid group B n derived from this R-matrix, given by the standard formula

b n R (σ i ) = id ⊗i-1 W ⊗ R ⊗ id ⊗n-i-1 W , i = 1, . . . , n -1.
Theorem 1.6.2. Let L be an unframed oriented link, and b ∈ B n a braid with closure L. Set µ the linear map defined by

µ =       t -1 0 . . . . -t 1 . . . . -t -1 0 . . . . t 1       ∈ End(W).
Then :

1) there exists an element c ∈ K such that trace 2,3,...,n ((id [START_REF] Alexander | Topological Invariants of Knots and Links[END_REF] c is an oriented link invariant called Links-Gould invariant of L. We will denote it by LG 2,1 (L; t 0 , t 1 ) = LG(L; t 0 , t 1 ).

W ⊗ µ ⊗n-1 ) • b n R (b)) = c.id W ,
Remark 1.6.3. In fact LG(L; t 0 , t 1 )

∈ Z[t ±1 0 , t ±1 1 ] [23]. Remark 1.6.4.
With the notations we use, LG(L; q -2α , q 2α+2 ) is the Links-Gould invariant introduced in [START_REF] Wit | On the Links-Gould invariant of links[END_REF], using a one parameter family of representations of quantum superalgebra U q (gl(2|1)).

Remark 1.6.5. For practical reasons, we will use the opposite R-matrix in Chapter 2, but we will use this one in Chapter 4. Moreover, this is the R-matrix used the most often in papers on the subject, and in particular in Ishii's paper comparing properties of LG 2,1 and ∆ [START_REF] Ishii | The Links-Gould polynomial as a generalization of the Alexander-Conway polynomial[END_REF] that relates to Chapter 4.

Corollary 1.6.6. As in Corollary 1.4.11, we have the following formula for LG:

LG(L; t 0 ,

t 1 ) = 1 4 trace((id W ⊗ µ ⊗n-1 ) • b n R (b)).

Different sets of variables

There are several sets of variables used in papers studying LG invariants. Four of them appear regularly: (t 0 , t 1 ), (τ, q), (p, q) and (q α , q). Each set can be expressed in terms of the others using the following defining relations:

t 0 = q -2α , t 1 = q 2α+2 , τ = t 1/2 0 = q -α , p a q b = t -a 4 + b 2 0 t a 4 + b 2 1 .
In the case of LG 2,1 , variables (t 0 , t 1 ) nicely lead to a symmetric Laurent polynomial.

The De Wit-Ishii-Links conjecture

David De Wit, Atsushi Ishii and Jon Links conjectured [START_REF] Wit | Links -Infinitely many two-variable generalisations of the Alexander-Conway polynomial[END_REF] that for any link L

LG n,m (L; τ,

e iπ/m ) = ∆ L (τ 2m ) n ,
where ∆ L is the Alexander-Conway polynomial of L. They proved the conjecture when (n, m) = (1, m) and when (n, m) = (2, 1) for a particular class of braids. A complete proof of the (n, 1) case for n = 2, 3 is given in Chapter 2. This is achieved by studying the invariants at hand at the level of representations, which requires computation of an explicit R-matrix for each LG n,1 . This makes that method hard to implement as n grows.

In Chapter 3 we prove the (n, 1) case of the conjecture for any n:

LG n,1 (L; τ, -1) = ∆ L (τ 2 ) n .

To do so we study the structure of the universal objects directly, and in particular the (super) Hopf algebras and universal R-matrices that are involved. However, the method that consists in understanding the specialized R-matix representation in terms of the Burau representation remains interesting since it relates that representation to the topology of the complement of the link.

These results were the first pieces of evidence we had for the conjectures we state and support in Chapter 4. Indeed, once LG is known to be a generallization of ∆, one can wonder if ∆'s properties remain true for the Links-Gould polynomials. The very surprising fact is that most of ∆'s homological properties seem to propagate to LG. In that spirit, let us recall that a conjecture by Ishii [START_REF] Ishii | The Links-Gould polynomial as a generalization of the Alexander-Conway polynomial[END_REF] states:

Conjecture 1.7.1. The LG polynomial LG(K; t 0 , t 1 ) = ∑ i,j a ij t i 0 t j 1 of an alternating knot K is "alternating", that is : a ij a kl 0 if i + j + k + l is even, and a ij a kl 0 otherwise.

We give evidence for more results that extend the well known properties of the Alexander invariant we recalled in Subsection 1.2.2. We conjecture that the span of the LG invariant is a lower bound for the genus of a link. We also conjecture that for fibered knots, there are conditions on the leading coefficients of the LG polynomial. We believe that this behavior is the trace of a classical construction for the Links-Gould invariants, and that the general proof of these results will have to use this construction.

However, note that still now, the strong version of the De Wit-Ishii-Links conjecture remains open.

Chapter 2

Understanding the evaluations at the level of representations

In this chapter 1 , we prove the following identity we can express using different sets of variables, namely (τ, q) and (t 0 , t 1 ):

LG n,1 (L; τ, -1)

= ∆ L (τ 2 ) n ,
LG n,1 (L; t 0 , t -1 0 ) = ∆ L (t 0 ) n when n = 2, 3. Our strategy will be to take advantage of the robustness of the braid structure to encode links. We use the expression of the Alexander-Conway polynomial as a quantum trace we gave in Theorem 1.4.10. Then we prove the R-matrix representation of braid group B n used to define reduced Links-Gould invariant LG 2,1 (resp.

LG 3,1 ) is isomorphic to the exterior power of a direct sum of Burau representations. That way, the specialized Links-Gould invariants can be written as products of terms, each of which can be identified with the Alexander polynomial of our link.

In Section 2.1, we recall the definitions we will need in this chapter, and in particular the definition of the Links-Gould invariant of oriented links we will follow here. In Section 2.2 we show that the specialized Links-Gould invariant LG 2,1 can be written as a product by proving two representations of the braid group are isomorphic. We then identify in Section 2.3 each part of the product with the Alexander-Conway invariant. Section 2.4 is dedicated to extending the proof to the next Links-Gould invariant LG 3,1 .

1. This chapter is based on the paper On the Links-Gould invariant and the square of the Alexander polynomial published in the Journal of Knot Theory and Its Ramifications [START_REF] Kohli | On the Links-Gould invariant and the square of the Alexander polynomial[END_REF].

Definitions and main result

Here we define precisely what characteristic elements we consider for the quantum version of the Alexander polynomial ∆ and for LG 2,1 . ). Let W n =< f 1 , . . . , f n > be a n-dimensional K-vector space, and B n be the braid group on n strands. We denote by σ 1 , . . . , σ n-1 the standard Artin generators of the group. The non-reduced Burau representation Ψ W n : B n -→ GL(W n ) is given by :

The Alexander polynomial

Ψ W n (σ i )( f j ) =      (1 -t) f i + t 1/2 f i+1 if j = i , t 1/2 f i if j = i + 1 , f j otherwise.
Denote by

δ n := t -(n-1)/2 f 1 + t -(n-2)/2 f 2 + . . . + t -1/2 f n-1 + f n . One can verify that for any b ∈ B n , Ψ W n (b)(δ n ) = δ n . Hence the reduced Burau representation Ψ W n : B n -→ GL( W n ) is given by : Ψ W n (b)(x) = Ψ W n (b)(x)
where W n := W n / < δ n >.

Recall that Alexander's theorem states that any link can be obtained as the closure of a given braid. Moreover, Markov's theorem allows us to define link invariants through braids with closure the link. A possible definition of the classical Alexander link invariant, different from that using a Seifert surface, exploits that procedure.

Definition 2.1.2. (Alexander polynomial of a link through the Burau representation)

The Alexander polynomial of an oriented link L is defined as :

∆ L (t) • = 1 -t 1 -t n det(I -Ψ W n (b))
where b is any braid in B n with closure L, and the notation But it is not this definition of the Alexander polynomial that will be useful to us in the following. We exploit the definition of ∆ as a partial trace to stay closer to the definition of LG 2,1 we gave. We multiply the R-matrix we used in Theorem 1.4.10 by a factor t 1/2 , therefore renouncing to use the Conway normalization of the polynomial. However this is not a major problem since the result we prove is an equality up to ±t n/2 , n ∈ Z. Definition 2.1.3. Let V be a 2-dimensional K-vector space, and (e 0 , e 1 ) be a basis of V. We define a representation Ψ V ⊗n : B n -→ GL(V ⊗n ) of B n :

Ψ V ⊗n (σ i ) = id ⊗i-1 V ⊗ R 1 ⊗ id ⊗n-i-1 V where R 1 =       1 0 0 0 0 0 t 1/2 0 0 t 1/2 1 -t 0 0 0 0 -t       ∈ End(V ⊗ V)
is an R-matrix, that is a solution of the Yang-Baxter equation.

Theorem 2.1.4. Let L be an oriented link and b ∈ B n be any braid with closure L. We define h = t 1/2 0 0 -t 1/2 ∈ End(V).

Then :

1) There exists a scalar c ∈ K such that trace 2,3,...,n ((id

V ⊗ h ⊗n-1 ) • Ψ V ⊗n (b)) = c.id V ,
2) c is a link invariant and is equal to the Alexander polynomial of L, ∆ L (t).

Keep in mind Corollary 1.4.11 that transforms the partial trace into something easier to manipulate:

∆ L (t) = 1 2 trace((id V ⊗ h ⊗n-1 ) • Ψ V ⊗n (b)).

The Links-Gould invariant LG 2,1 of links

In the whole chapter, we consider the opposite R-matrix to define LG 2,1 compared to Definition 1.6.1: 

R =                                     -t
                                    where Y = ((t 0 -1)(1 -t 1 )) 1/2 .
This matrix still computes the same polynomial up to ±t n/2 , n ∈ Z. Using notations that were introduced in Definition 1.6.1, the invariant is given by the formula

LG(L; t 0 , t 1 ) = 1 4 trace((id W ⊗ µ ⊗n-1 ) • b n R (b)).
The main result of the chapter states:

Theorem 2.1.5. For any oriented link L, LG 2,1 (L; t 0 , t -1 0 )

• = ∆ L (t 0 ) 2 , where • = stands for equality up to ±t n/2 , n ∈ Z.
For a right choice of characteristic elements, the • = can be transformed into an equality with the Conway normalization for the Alexander invariant, as we will see in the next chapter.

The reduced Links-Gould invariant expressed as a product

We derive a representation of the braid group B n from the Burau representation. We identify it with a specialization of the R-matrix representation given in Subsection 2.1.2. Then we use this identification to express the specialized Links-Gould invariant as a product.

A representation of

B n isomorphic to b n R (t 0 , t -1 0 )
Denote by F the following Burau representation of B n on vector space W n =< f 1 , . . . , f n > where we replace t 0 by t -1 0 :

F(σ i )( f j ) =      (1 -t -1 0 ) f i + t -1/2 0 f i+1 if j = i , t -1/2 0 f i if j = i + 1 , f j otherwise.
In a similar way, let G be the representation of B n on n-dimensional vector space W n =< g 1 , . . . , g n > given by:

G(σ i )(g j ) =      -t 1/2 0 g i+1 if j = i , -t 1/2 0 g i + (1 -t 0 )g i+1 if j = i + 1 , g j otherwise.
Proposition 2.2.1. Representation G is isomorphic to the Burau representation of B n .

Proof. One can verify that for i = 1, 2, . . . , n -1 :

J n • Ψ W n (σ i ) = G(σ i ) • J n
where J n can be defined inductively: J 2 = 0 1 -1 0 and

J n =          J n-1 (-1) 2 t (n-2)/2 . . . (-1) n-1 t 1/2 (-1) n t 0/2 (-1) n+1 t -(n-2)/2 . . . (-1) n+1 t -1/2 (-1) n+1 t -0/2 0          .
Moreover, evaluating the determinant of J n , we deduce that J n is an automorphism. Indeed,

detJ n+1 = (-1) n+1 (t 1/2 + t -1/2 )detJ n + detJ n-1 . So detJ n ∈ Z[t ±1/2 ] is invertible in Q(t ±1/2 )
since it has degree n -2 in both variables t We are going to show these two representations are isomorphic. For that we study first the case where n = 2. Since t 1 = t -1 0 , we have a simpler R-matrix R: 

R =                                     -t
                                    where Y = t 1/2 0 -t -1/2 0 . R-matrix
                                    -t
W ⊗2 -→ (W 2 ⊕ W 2 ) such that Ψ 2 (σ 1 ) • I = I • b 2 R (σ 1 ) R . In basis ( f 1 , f 2 , g 1 , g 2 ), (F ⊕ G)(σ 1 ) =       1 -t -1 0 t -1/2 0 . . t -1/2 0 0 . . . . 0 -t 1/2 0 . . -t 1/2 0 1 -t 0       Therefore, computation of Ψ 2 (σ 1 ) shows that in basis C = (|g 1 ∧ g 2 |, | f 1 ∧ f 2 |, |1|, | f 1 ∧ f 2 ∧ g 1 ∧ g 2 |, |g 1 , g 2 |, | f 2 ∧ g 1 ∧ g 2 , f 1 ∧ g 1 ∧ g 2 |, | f 1 ∧ f 2 ∧ g 1 , f 1 ∧ f 2 ∧ g 2 |, | f 2 , f 1 |, | f 2 ∧ g 1 , f 2 ∧ g 2 , f 1 ∧ g 1 , f 1 ∧ g 2 |)
we obtain the same matrix: 

                                    -t
-1 -Y -Y -Y 2                                     Setting I : W ⊗2 -→ (W 2 ⊕ W 2 )
the linear map that transforms B into C, we obtain an automorphism that preserves the C[B 2 ]-module structure:

Ψ 2 (σ 1 ) • I = I • R.
The idea is to generalize that construction for n larger than 2. We choose the following reference basis for (W n ⊕ W n ):

( f i 1 ∧ . . . ∧ f i p ∧ g j 1 ∧ . . . ∧ g j m ) 1≤i 1 <...<i p ≤n , 1≤j 1 <...<j m ≤n .
When we refer to Reord(u i 1 ∧ . . . ∧ u i r ), where the u i k are distinct elements of { f 1 , . . . , f n , g 1 , . . . , g n }, we mean that we rewrite the element so that it becomes part of the reference basis we just mentioned.

We set

I 1 =                W -→ (W 1 ⊕ W 1 ) e 1 -→ g 1 e 2 -→ 1 e 3 -→ f 1 ∧ g 1 e 4 -→ f 1 and I 2 =                W ⊗2 -→ (W 2 ⊕ W 2 ) e i ⊗ e 1 -→ I 1 (e i ) ∧ g 2 e i ⊗ e 2 -→ I 1 (e i ) e i ⊗ e 3 -→ Reord(I 1 (e i ) ∧ f 2 ∧ g 2 ) e i ⊗ e 4 -→ Reord(I 1 (e i ) ∧ f 2 )
. An elementary calculation shows that I 2 = I. We can extend these maps by induction setting:

I n =                W ⊗n -→ (W n ⊕ W n ) e i 1 ⊗ . . . ⊗ e i n-1 ⊗ e 1 -→ I n-1 (e i 1 ⊗ . . . ⊗ e i n-1 ) ∧ g n e i 1 ⊗ . . . ⊗ e i n-1 ⊗ e 2 -→ I n-1 (e i 1 ⊗ . . . ⊗ e i n-1 ) e i 1 ⊗ . . . ⊗ e i n-1 ⊗ e 3 -→ Reord(I n-1 (e i 1 ⊗ . . . ⊗ e i n-1 ) ∧ f n ∧ g n ) e i 1 ⊗ . . . ⊗ e i n-1 ⊗ e 4 -→ Reord(I n-1 (e i 1 ⊗ . . . ⊗ e i n-1 ) ∧ f n ) .
It is easy to see that map I n sends the natural basis of W ⊗n derived from (e 1 , e 2 , e 3 , e 4 ) on our reference basis of (W n ⊕ W n ). In particular, I n is a linear automorphism. Note that map I n can also be written directly: 

I n (e i 1 ⊗ . . . ⊗ e i n ) = k : i k =3,4 f k ∧ k : i k =1,3
Ψ n (b) • I n = I n • b n R (b).
Proof. We show the commutation by induction on n, the number of strands in the braid group we consider. Note that it has already been verified when n = 1, 2. Let us now suppose the equality holds for n -1, n 3. We only need to prove the result for b = σ k , k = 1, . . . , n -1.

For σ k , k ≤ n -2 :

I n (b n R (σ k )(e i 1 ⊗ . . . ⊗ e i n )) = I n (e i 1 ⊗ . . . ⊗ R(e i k ⊗ e i k+1 ) ⊗ . . . ⊗ e i n ) = I n (b n-1 R (σ k )(e i 1 ⊗ . . . ⊗ e i n-1 ) ⊗ e i n )
Therefore:

Ψ n (σ k )(Reord(I n-1 (e i 1 ⊗ . . . ⊗ e i n-1 ) ∧ f n ∧ g n )) = (-1) µ(e i 1 ⊗...⊗e i n-1 ) Ψ n (σ k )(I n-1 (e i 1 ⊗ . . . ⊗ e i n-1 ) ∧ f n ∧ g n ) = (-1) µ(e i 1 ⊗...⊗e i n-1 ) Ψ n-1 (σ k )(I n-1 (e i 1 ⊗ . . . ⊗ e i n-1 )) ∧ f n ∧ g n
Moreover, given the specific form of matrix R, every term that appears in b n-1 R (σ k )(e i 1 ⊗ . . . ⊗ e i n-1 ) has the same total number of e 1 and e 3 as e i 1 ⊗ . . . ⊗ e i n-1 . Hence:

Reord(I n-1 (b n-1 R (σ k )(e i 1 ⊗ . . . ⊗ e i n-1 )) ∧ f n ∧ g n ) = (-1) µ(e i 1 ⊗...⊗e i n-1 ) I n-1 • b n-1 R (σ k )(e i 1 ⊗ . . . ⊗ e i n-1 ) ∧ f n ∧ g n = (-1) µ(e i 1 ⊗...⊗e i n-1 ) Ψ n-1 (σ k ) • I n-1 (e i 1 ⊗ . . . ⊗ e i n-1 ) ∧ f n ∧ g n
Thus we obtain the identity in case i n = 3. Similar calculations show it is also true when i n = 4. The only remaining question is for the last generator of B n .

For σ n-1 : We show that Ψ n (σ n-1 ) • I n (e i 1 ⊗ . . . ⊗ e i n ) = I n • b n R (σ n-1 )(e i 1 ⊗ . . . ⊗ e i n )
for each of the 16 possible ordered pairs (i n-1 , i n ):

(1,1) :

Ψ n (σ n-1 )(I n (e i 1 ⊗ . . . ⊗ e 1 ⊗ e 1 )) = Ψ n (σ n-1 )(I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ g n-1 ∧ g n ) = I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ (-t 1/2 0 g n ) ∧ (-t 1/2 0 g n-1 + (1 -t 0 )g n ) = -t 0 I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ g n-1 ∧ g n I n • (1 ⊗ 1 ⊗ . . . ⊗ R)(e i 1 ⊗ . . . ⊗ e 1 ⊗ e 1 ) = I n (e i 1 ⊗ . . . ⊗ e i n-2 ⊗ -t 0 e 1 ⊗ e 1 ) = -t 0 I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ g n-1 ∧ g n
Now that we have explicited one case, we give the results for the remaining ones. (4,4) : (4,3) :

Ψ n (σ n-1 )(I n (e i 1 ⊗ . . . ⊗ e 4 ⊗ e 4 )) = I n • (1 ⊗ 1 ⊗ . . . ⊗ R)(e i 1 ⊗ . . . ⊗ e 4 ⊗ e 4 ) = -t -1 0 I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ f n-1 ∧ f n (2,2) : Ψ n (σ n-1 )(I n (e i 1 ⊗ . . . ⊗ e 2 ⊗ e 2 )) = I n • (1 ⊗ 1 ⊗ . . . ⊗ R)(e i 1 ⊗ . . . ⊗ e 2 ⊗ e 2 ) = I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) (3,3) : Ψ n (σ n-1 )(I n (e i 1 ⊗ . . . ⊗ e 3 ⊗ e 3 )) = I n • (1 ⊗ 1 ⊗ . . . ⊗ R)(e i 1 ⊗ . . . ⊗ e ⊗ e 3 ) = I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ f n-1 ∧ f n ∧ g n-1 ∧ g n (1,2) : Ψ n (σ n-1 )(I n (e i 1 ⊗ . . . ⊗ e 1 ⊗ e 2 )) = I n • (1 ⊗ 1 ⊗ . . . ⊗ R)(e i 1 ⊗ . . . ⊗ e ⊗ e 2 ) = -t 1/2 0 I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ g n (2,1) : Ψ n (σ n-1 )(I n (e i 1 ⊗ . . . ⊗ e 2 ⊗ e 1 )) = I n • (1 ⊗ 1 ⊗ . . . ⊗ R)(e i 1 ⊗ . . . ⊗ e ⊗ e 1 ) = I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ (-t 1/2 0 g n-1 + (1 -t 0 )g n ) (1,3) : Ψ n (σ n-1 )(I n (e i 1 ⊗ . . . ⊗ e 1 ⊗ e 3 )) = I n • (1 ⊗ 1 ⊗ . . . ⊗ R)(e i 1 ⊗ . . . ⊗ e ⊗ e 3 ) = (-1) µ(e i 1 ⊗...⊗e i n-2 ⊗e 1 ) t 1/2 0 I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ f n-1 ∧ g n-1 ∧ g n (3,1) : Ψ n (σ n-1 )(I n (e i 1 ⊗ . . . ⊗ e 3 ⊗ e 1 )) = I n • (1 ⊗ 1 ⊗ . . . ⊗ R)(e i 1 ⊗ . . . ⊗ e ⊗ e 1 ) = (-1) µ(e i 1 ⊗...⊗e i n-2 ) I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ ((1 -t 0 ) f n-1 ∧ g n-1 ∧ g n -t 1/2 0 f n ∧ g n-1 ∧ g n ) (3,4) : Ψ n (σ n-1 )(I n (e i 1 ⊗ . . . ⊗ e 3 ⊗ e 4 )) = I n • (1 ⊗ 1 ⊗ . . . ⊗ R)(e i 1 ⊗ . . . ⊗ e ⊗ e 4 ) = t -1/2 0 I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ f n-1 ∧ f n ∧ g n
Ψ n (σ n-1 )(I n (e i 1 ⊗ . . . ⊗ e 4 ⊗ e 3 )) = I n • (1 ⊗ 1 ⊗ . . . ⊗ R)(e i 1 ⊗ . . . ⊗ e ⊗ e 3 ) = I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ (t -1/2 0 f n-1 ∧ f n ∧ g n-1 + (1 -t -1 0 ) f n-1 ∧ f n ∧ g n ) (2,4) : Ψ n (σ n-1 )(I n (e i 1 ⊗ . . . ⊗ e 2 ⊗ e 4 )) = I n • (1 ⊗ 1 ⊗ . . . ⊗ R)(e i 1 ⊗ . . . ⊗ e ⊗ e 4 ) = t -1/2 0 (-1) µ(e i 1 ⊗...⊗e i n-2 ) I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ f n-1 (4,2) : Ψ n (σ n-1 )(I n (e i 1 ⊗ . . . ⊗ e 4 ⊗ e 2 )) = I n • (1 ⊗ 1 ⊗ . . . ⊗ R)(e i 1 ⊗ . . . ⊗ e ⊗ e 2 ) = (-1) µ(e i 1 ⊗...⊗e i n-2 ) I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ ((1 -t -1 0 ) f n-1 + t -1/2 0 f n ) (1,4) : Ψ n (σ n-1 )(I n (e i 1 ⊗ . . . ⊗ e 1 ⊗ e 4 )) = I n • (1 ⊗ 1 ⊗ . . . ⊗ R)(e i 1 ⊗ . . . ⊗ e ⊗ e 4 ) = -(-1) µ(e i 1 ⊗...⊗e i n-2 ) I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ f n-1 ∧ g n (2,3) : Ψ n (σ n-1 )(I n (e i 1 ⊗ . . . ⊗ e 2 ⊗ e 3 )) = I n • (1 ⊗ 1 ⊗ . . . ⊗ R)(e i 1 ⊗ . . . ⊗ e ⊗ e 3 ) = (-1) µ(e i 1 ⊗...⊗e i n-2 ) I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ (-f n-1 ∧ g n-1 -Y f n-1 ∧ g n ) (3,2) : Ψ n (σ n-1 )(I n (e i 1 ⊗ . . . ⊗ e 3 ⊗ e 2 )) = I n • (1 ⊗ 1 ⊗ . . . ⊗ R)(e i 1 ⊗ . . . ⊗ e ⊗ e 2 ) = (-1) µ(e i 1 ⊗...⊗e i n-2 ) I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ (-Y f n-1 ∧ g n -f n ∧ g n ) (4,1) : Ψ n (σ n-1 )(I n (e i 1 ⊗ . . . ⊗ e 4 ⊗ e 1 )) = I n • (1 ⊗ 1 ⊗ . . . ⊗ R)(e i 1 ⊗ . . . ⊗ e 4 ⊗ e 1 ) = (-1) µ(e i 1 ⊗...⊗e i n-2 ) I n-2 (e i 1 ⊗ . . . ⊗ e i n-2 ) ∧ (-Y f n-1 ∧ g n-1 -f n ∧ g n-1 -Y 2 f n-1 ∧ g n -Y f n ∧ g n )
Which ends the proof. CQFD

A convenient expression for

LG 2,1 Now we have built an exterior representation that is isomorphic to b n R (t 0 , t -1 0 ), we use it to write the reduction of the Links-Gould polynomial as the product of two quantities we will then identify.

Using proposition 2.2.4, we can write:

LG(L; t 0 , t -1 0 ) =

1 4 trace(I n • (id W ⊗ µ ⊗n-1 ) • I -1 n μ •Ψ n (b)).
We wish to explicit μ.

Lemma 2.2.5. Map μ can be expressed on the reference basis of (W n ⊕ W n ):

μ( f i 1 ∧ . . . ∧ f i p ∧ g j 1 ∧ . . . ∧ g j m ) = t -(n-1) 0 (-1) n-1 (-1) #{k∈{2,...,n}| f k appears} (-1) #{k∈{2,...,n}|g k appears} f i 1 ∧ . . . ∧ f i p ∧ g j 1 ∧ . . . ∧ g j m .
Proof.

If f i 1 ∧ . . . ∧ f i p ∧ g j 1 ∧ . . . ∧ g j m is an element of the basis of (W n ⊕ W n ), we denote by e l 1 ⊗ . . . ⊗ e l n its image under I -1 n . That way, I n (e l 1 ⊗ . . . ⊗ e l n ) = f i 1 ∧ . . . ∧ f i p ∧ g j 1 ∧ . . . ∧ g j m . μ( f i 1 ∧ . . . ∧ f i p ∧ g j 1 ∧ . . . ∧ g j m ) = I n • (id W ⊗ µ ⊗n-1 )(e l 1 ⊗ . . . ⊗ e l n ) = t -(n-1) 0 (-1) #{k∈{2,...,n}|l k =2} (-1) #{k∈{2,...,n}|l k =3} I n (e l 1 ⊗ . . . ⊗ e l n ) = t -(n-1) 0 (-1) #{k∈{2,...,n}|l k =2} (-1) #{k∈{2,...,n}|l k =3} f i 1 ∧ . . . ∧ f i p ∧ g j 1 ∧ . . . ∧ g j m
But:

(-1) #{k∈{2,...,n}|l k =2} (-1) #{k∈{2,...,n}|l k =3} = (-1) n-1 (-1) #{k∈{2,...,n}|l k =1} (-1) #{k∈{2,...,n}|l k =4} = (-1) n-1 (-1) #{k∈{2,...,n}|l k =1} (-1) #{k∈{2,...,n}|l k =4} (-1) #{k∈{2,...,n}|l k =3} 2 = (-1) n-1 (-1) #{k∈{2,...,n}|l k =3 or l k =4} (-1) #{k∈{2,...,n}|l k =1 or l k =3} = (-1) n-1 (-1) #{k∈{2,...,n}| f k appears} (-1) #{k∈{2,...,n}|g k appears} This provides the result.

CQFD

Given the expression for μ we just obtained, and the special form of representation Ψ n we have: Proposition 2.2.6. Invariant LG(L; t 0 , t -1 0 ) can be written as a product, with each term depending only on one of the copies of the Burau representation.

Proof. Recall LG(L; t 0 , t -1 0 ) = 1 4 trace((id W ⊗ µ ⊗n-1 ) • b n R (b)), where µ =       t -1 0 . . . . -t -1 0 . . . . -t -1 0 . . . . t -1 0      
.

Using that we can write

LG(L; t 0 , t -1 0 ) = 1 4 trace( μ • Ψ n (b)) = 1 4 ∑ 1≤i 1 <...<i p ≤n 1≤j 1 <...<j m ≤n ( f i 1 ∧ . . . ∧ g j m ) * μ • Ψ n (b)( f i 1 ∧ . . . ∧ g j m )
where ( f i 1 ∧ . . . ∧ g j m ) * indicates a vector of the dual basis of the reference basis. But given Lemma 2.2.5,

( f i 1 ∧ . . . ∧ g j m ) * μ • Ψ n (b)( f i 1 ∧ . . . ∧ g j m ) = (-t 0 ) -(n-1) (-1) #{k∈{2,...,n}| f k appears} (-1) #{k∈{2,...,n}|g k appears} ( f i 1 ∧ . . . ∧ g j m ) * Ψ n (b)( f i 1 ∧ . . . ∧ g j m ) . Also, ( f i 1 ∧ . . . ∧ f i p ∧ g j 1 ∧ . . . ∧ g j m ) * (Ψ n (b)( f i 1 ∧ . . . ∧ f i p ∧ g j 1 ∧ . . . ∧ g j m F(b)( f i 1 ∧...∧ f ip )∧ G(b)(g j 1 ∧...∧g jm ) )) = ( f i 1 ∧ . . . ∧ f i p ) * ( F(b)( f i 1 ∧ . . . ∧ f i p )) (g j 1 ∧ . . . ∧ g j m ) * ( G(b)(g j 1 ∧ . . . ∧ g j m ))
.

That way we have the following expression for LG(L; t 0 , t -1 0 ):

1 4 (-t 0 ) -(n-1) ∑ 1≤i 1 <...<i p ≤n (-1) #{k∈{2,...,n}| f k appears} ( f i 1 ∧ . . . ∧ f i p ) * ( F(b)( f i 1 ∧ . . . ∧ f i p )) * ∑ 1≤j 1 <...<j m ≤n (-1) #{k∈{2,...,n}|g k appears} (g j 1 ∧ . . . ∧ g j m ) * ( G(b)(g j 1 ∧ . . . ∧ g j m ))
.

CQFD

Now we wish to show that each of these two sums is equal to ∆ L (t 0 ) up to multiplication by a unit of C[t ±1/2 0 ], that is up to multiplication by ±t n/2 0 , n ∈ Z.

Proof of the main theorem

Since we consider equality up to a unit of C[t ±1/2 0 ], we can add a coefficient in front of the trace in the expression of the Alexander-Conway polynomial:

∆ L (t 0 ) • = t -(n-1)/2 0 1 2 trace((id V ⊗ h ⊗n-1 ) • Ψ V ⊗n (b)).
So we can write more simply

∆ L (t 0 ) • = 1 2 trace((id V ⊗ h⊗n-1 ) • Ψ V ⊗n (b)), where h = 1 0 0 -1 . Proposition 2.3.1. Let J n : V ⊗n -→ W n , e i 1 ⊗ . . . ⊗ e i n -→ k : i k =1 f k . Then J n is a C[B n ]-module automorphism: Ψ W n (b) • J n = J n • Ψ V ⊗n (b), ∀b ∈ B n .
The proof is quite similar to the one we did in the previous section. It is detailed in [START_REF] Ohtsuki | Quantum invariants. A study of knots, 3-manifolds, and their sets[END_REF], appendix C, where what we just called J n is denoted by I n , and is introduced by induction.

Applying J n , we can express the Alexander polynomial differently:

∆ L (t 0 ) • = 1 2 trace J n • (id V ⊗ h⊗n-1 ) • J -1 n µ 1 • Ψ W n (b) .
Where

µ 1 ( f i 1 ∧ . . . ∧ f i p ) = J n • (id V ⊗ h⊗n-1 )(e 0 ⊗ . . . ⊗ e 0 ⊗ e 1 i th 1 position ⊗e 0 ⊗ . . . ⊗ e 0 ⊗ e 1 i th 2 position ⊗ . . .) = (-1) #{k∈{2,...,n}|i k =1} f i 1 ∧ . . . ∧ f i p = (-1) #{k∈{2,...,n}| f k appears} f i 1 ∧ . . . ∧ f i p .
Therefore,

∆ L (t 0 ) • = 1 2 ∑ 1≤i 1 <...<i p ≤n (-1) #{k∈{2,...,n}| f k appears} ( f i 1 ∧ . . . ∧ f i p ) * ( Ψ W n (b)( f i 1 ∧ . . . ∧ f i p )) .
But F and Ψ W n are identical once you change t 0 into t -1 0 . That way we can identify the first factor of our product with ∆ L (t -1 0 ). But the Alexander polynomial is symmetric:

∆ L (t 0 ) • = ∆ L (t -1
0 ) [START_REF] Fox | Dual presentations of the group of a knot[END_REF]. So the only remaining problem is to identify the second sum with the Alexander invariant to be able to conclude. To do that we have to modify the representation of V ⊗n we used up to now to define ∆ L (t 0 ), and especially R-matrix R 1 we introduced at the beginning. Lemma 2.3.2. We can slightly modify R-matrix R 1 so that the new representations ρ V ⊗n of the braid groups we obtain that way still verify

∆ L (t 0 ) • = 1 2 trace((id V ⊗ h⊗n-1 ) • ρ V ⊗n (b)).
Proof. For the moment, we can write:

∆ L (t 0 ) • = 1 2 trace((id V ⊗ h⊗n-1 ) • Ψ V ⊗n (b)), where Ψ V ⊗n is the representation associated to R-matrix R 1 =       1 0 0 0 0 0 t 1/2 0 0 0 t 1/2 0 1 -t 0 0 0 0 0 -t 0       . We can replace R 1 by R 2 = -t -1 0 R 1 =       -t -1 0 0 0 0 0 0 -t -1/2 0 0 0 -t -1/2 0 1 -t -1 0 0 0 0 0 1      
in the definition of Ψ V ⊗n , and we will still have ∆ L (t 0 )

• = 1 2 trace((id V ⊗ h⊗n-1 ) • Ψ V ⊗n (b)).
At last, we replace

t 0 by t -1 0 in R 2 to obtain R 3 =       -t 0 0 0 0 0 0 -t 1/2 0 0 0 -t 1/2 0 1 -t 0 0 0 0 0 1      
. We define the representation of B n associated with R 3 :

ρ V ⊗n (σ i ) = id ⊗i-1 V ⊗ R 3 ⊗ id ⊗n-i-1 V .
Since the Alexander polynomial is symmetric, we have the following expression for ∆ L (t 0 ), that will help us to conclude

∆ L (t 0 ) • = 1 2 trace((id V ⊗ h⊗n-1 ) • ρ V ⊗n (b)).
CQFD Using the same strategy as previously, we wish to find

K n : V ⊗n -→ W n such that for any b ∈ B n : G(b) • K n = K n • ρ V ⊗n (b). Proposition 2.3.3. We set K 1 =      V -→ W 1 e 1 -→ 1 e 0 -→ g 1
and, for n 2,

K n =      V ⊗n -→ W n e i 1 ⊗ . . . ⊗ e i n-1 ⊗ e 0 -→ K n-1 (e i 1 ⊗ . . . ⊗ e i n-1 ) ∧ g n e i 1 ⊗ . . . ⊗ e i n-1 ⊗ e 1 -→ K n-1 (e i 1 ⊗ . . . ⊗ e i n-1 )
.

Then, for any b ∈ B n : G(b)

• K n = K n • ρ V ⊗n (b).
Proof. We leave it to the reader to verify that a proof by induction resembling the one we did with I n concludes. CQFD That way,

∆ L (t 0 ) • = 1 2 trace((id V ⊗ h⊗n-1 ) • ρ V ⊗n (b)) = 1 2 trace(K n • (id V ⊗ h⊗n-1 ) • K -1 n ν • G(b)).
We can set K n (e i 1 ⊗ . . . ⊗ e i n ) = g j 1 ∧ . . . ∧ g j m . That allows us to explicit the values of ν on the natural basis of W n .

ν(g j 1 ∧ . . . ∧ g j m ) = K n • id V ⊗ h⊗n-1 (e i 1 ⊗ . . . ⊗ e i n ) = (-1) #{k∈{2,...,n}|i k =1} K n (e i 1 ⊗ . . . ⊗ e i n ) = (-1) n-1 (-1) #{k∈{2,...,n}|i k =0} g j 1 ∧ . . . ∧ g j m = (-1) n-1 (-1) #{k∈{2,...,n}|g k appears} g j 1 ∧ . . . ∧ g j m .
So

∆ L (t 0 ) = 1 2 trace(ν • G(b)) • = 1 2 ∑ 1≤j 1 <...<j m ≤n (-1) #{k∈{2,...,n}|g k appears} (g j 1 ∧ . . . ∧ g j m ) * ( G(b)(g j 1 ∧ . . . ∧ g j m )) .
And finally LG(L; t 0 , t -1 0 )

• = ∆ L (t 0 ) 2 for any link L.

Generalizing the proof 2.4.1 Writing the conjecture using variables (t 0 , t 1 ) and other considerations

The completely general conjecture states, using variables (τ, q):

LG m,n (L; τ, e iπ/n ) = ∆ L (τ 2n ) m , for any link L.

We can rewrite it using variables (t 0 , t 1 ). Indeed, since q = e iπ/n , the variables are related by t 1/2 1 = τ -1 e iπ/n and t 1/2 0 = τ. Therefore, the conjecture can be expressed the following way:

LG m,n (L; t 0 , e 2iπ/n t -1 0 ) = ∆ L (t n 0 ) m , for any link L.

We can now explore in which cases it seems reasonable to attempt to generalize the strategy we used to evaluate the reduction of LG 2,1 . An obvious obstruction to that concerns the dimension of both representations we built and showed they were isomorphic. Let's calculate the dimensions of the natural generalizations of these representations in case (m, n).

The vector space corresponding to what we denoted W is the highest weight U q (gl(m|n))module used to define LG m,n . It is 2 nm -dimensional. So the representation of braid group B p defined thanks to the corresponding R-matrix is 2 nmp -dimensional. On the other hand, the representation of B p we want to define to produce

∆ L (t n 0 ) m is (W p ⊕ . . . ⊕ W p ) m times ,
where each W p is a C[B p ]-module isomorphic to a version of Ψ W p where t 0 is replaced by t ±n 0 . Such a representation is 2 mp -dimensional. These two representations can not be isomorphic

if n > 1.
That is why a straightforward use of our method can only be applied to prove cases (m, 1). [START_REF] Alexander | On types of knotted curves[END_REF][START_REF] Alexander | A lemma on a system of knotted curves[END_REF] We give the essential steps to prove the result that interests us in the case (m, n) = (3, 1). We follow the same ideas we used to study LG 2,1 . Theorem 2.4.1. For any oriented link L, LG 3,1 (L; t 0 , t -1 0 )

Proof of case

• = ∆ L (t 0 ) 3 .
For an explicit definition of LG 3,1 , see [START_REF] Wit | An infinite suite of Links-Gould invariants[END_REF], p.17. The author uses variables (τ, q), but denotes τ = q -α . We will only use the reduced version of LG 3,1 . It is obtained by setting q = -1 and q -α = t 1/2 0 .

Remark 2.4.2. Since we are going to set q = -1 in the R-matrix of [START_REF] Wit | An infinite suite of Links-Gould invariants[END_REF], we have to chose precisely what the roots that are written formally are. We have chosen :

[α + 1] 1/2 = q -1/2 [α] 1/2 and [α + 2] 1/2 = -[α] 1/2 .

Definition 2.4.3. (R-matrix S)

Set F := C(t ±1/2 0 ). Let W =< e 1 , . . . , e 8 > be a 8-dimensional F-vector space. We define S an automorphism of W ⊗ W as the direct sum of the following automorphisms (S is globally multiplied by t -3/2 0 in comparison with the R-matrix explicited in [START_REF] Wit | An infinite suite of Links-Gould invariants[END_REF]): 

                1 . . . . . . . . -t -1 0 . . . . . . . . -t -1 0 . . . . . . . . -t -1 0 . . . . . . . . t -2 0 . . . . . . . . t -2 0 . . . . . . . . t -2 0 . . . . . . . . -t -3 0                 in basis (e 1 ⊗ e 1 ,
t -1 0       . . . 1 . . 1 t 1/2 0 -t -1/2 0 . 1 . t 1/2 0 -t -1/2 0 1 t 1/2 0 -t -1/2 0 t 1/2 0 -t -1/2 0 (t 1/2 0 -t -1/2 0 ) 2       in bases (e 1 ⊗ e 5 ,
-t -2 0       . . . 1 . . 1 t 1/2 0 -t -1/2 0 . 1 . t 1/2 0 -t -1/2 0 1 t 1/2 0 -t -1/2 0 t 1/2 0 -t -1/2 0 (t 1/2 0 -t -1/2 0 ) 2      
t -3/2 0                . . . . . . . 1 . . . . . . 1 t 1/2 0 -t -1/2 0 . . . . . 1 . t 1/2 0 -t -1/2 0 . . . . 1 . . t 1/2 0 -t -1/2 0 . . . 1 . t 1/2 0 -t -1/2 0 t 1/2 0 -t -1/2 0 (t 1/2 0 -t -1/2 0 ) 2 . . 1 . t 1/2 0 -t -1/2 0 . t 1/2 0 -t -1/2 0 (t 1/2 0 -t -1/2 0 ) 2 . 1 . . t 1/2 0 -t -1/2 0 t 1/2 0 -t -1/2 0 . (t 1/2 0 -t -1/2 0 ) 2 1 t 1/2 0 -t -1/2 0 t 1/2 0 -t -1/2 0 t 1/2 0 -t -1/2 0 (t 1/2 0 -t -1/2 0 ) 2 (t 1/2 0 -t -1/2 0 ) 2 (t 1/2 0 -t -1/2 0 ) 2 (t 1/2 0 -t -1/2 0 ) 3               
in basis (e 1 ⊗ e 8 , e 4 ⊗ e 5 , e 3 ⊗ e 6 , e 2 ⊗ e 7 , e 7 ⊗ e 2 , e 6 ⊗ e 3 , e 5 ⊗ e 4 , e 8 ⊗ e 1 ).

Then S is an R-matrix. So we can denote by b n S the representation of braid group B n derived from S. It is given by the usual expression

b n S (σ i ) = id ⊗i-1 W ⊗ S ⊗ id ⊗n-i-1 W , i = 1, . . . , n -1.
Definition 2.4.4 (Reduced Links-Gould invariant LG 3,1 ). Let L be any oriented link, and b ∈ B n be a braid with closure L. The reduced version of Links-Gould invariant LG 3,1 is given by the following formula:

LG 3,1 (L; t 0 , t -1 0 ) = 1 8 trace((id W ⊗ µ ⊗n-1 ) • b n S (b))
where 

µ = t 3/2 0                 1 
                ∈ End(W).
We set three n-dimensional vector spaces < f 1 , . . . , f n >, < g 1 , . . . , g n > and < h 1 , . . . , h n > that will be all refered to as W n . On each of them, we define a representation isomorphic to the Burau representation:

F(σ i )( f j ) =      t -1/2 0 f i+1 if j = i , t -1/2 0 f i + (1 -t -1 0 ) f i+1 if j = i + 1 , f j otherwise.
We designate by G and H representations on < g 1 , . . . , g n > and < h 1 , . . . , h n > defined by the exact same formula. Then we set Φ n the representation of

B n on (W n ⊕ W n ⊕ W n ) given by Φ n := (F ⊕ G ⊕ H).
When n = 2, one can compute Φ 2 (σ 1 ) and notice that its matrix is equal to S in a well chosen basis. A precise look at this basis gave us the idea to define the following map by induction.

Note that retrospectively one can recover this basis simply by computing the image by our map of the basis we used to express S when n = 2.

Theorem 2.4.5. We set

I 1 =                                    V -→ W 1 e 1 -→ 1 e 2 -→ f 1 e 3 -→ g 1 e 4 -→ h 1 e 5 -→ f 1 ∧ g 1 e 6 -→ f 1 ∧ h 1 e 7 -→ g 1 ∧ h 1 e 8 -→ f 1 ∧ g 1 ∧ h 1
and, for n 2,

I n =                                    V ⊗n -→ W n e 1 ⊗ e i n-1 ⊗ . . . ⊗ e i 1 -→ I n-1 (e i n-1 ⊗ . . . ⊗ e i 1 ) e 2 ⊗ e i n-1 ⊗ . . . ⊗ e i 1 -→ Reord(I n-1 (e i n-1 ⊗ . . . ⊗ e i 1 ) ∧ f n ) e 3 ⊗ e i n-1 ⊗ . . . ⊗ e i 1 -→ Reord(I n-1 (e i n-1 ⊗ . . . ⊗ e i 1 ) ∧ g n ) e 4 ⊗ e i n-1 ⊗ . . . ⊗ e i 1 -→ I n-1 (e i n-1 ⊗ . . . ⊗ e i 1 ) ∧ h n e 5 ⊗ e i n-1 ⊗ . . . ⊗ e i 1 -→ Reord(I n-1 (e i n-1 ⊗ . . . ⊗ e i 1 ) ∧ f n ∧ g n ) e 6 ⊗ e i n-1 ⊗ . . . ⊗ e i 1 -→ Reord(I n-1 (e i n-1 ⊗ . . . ⊗ e i 1 ) ∧ f n ∧ h n ) e 7 ⊗ e i n-1 ⊗ . . . ⊗ e i 1 -→ Reord(I n-1 (e i n-1 ⊗ . . . ⊗ e i 1 ) ∧ g n ∧ h n ) e 8 ⊗ e i n-1 ⊗ . . . ⊗ e i 1 -→ Reord(I n-1 (e i n-1 ⊗ . . . ⊗ e i 1 ) ∧ f n ∧ g n ∧ h n )
.

Then the following identity holds for n 1 and b ∈ B n :

Φ n (b) • I n = I n • b n S ( b).
Remark 2.4.6. As in the previous sections, Reord refers to a reference basis of ( We can use I n to express LG 3,1 differently.

W n ⊕ W n ⊕ W n ) that is ( f i 1 ∧ . . . ∧ f i p ∧ g j 1 ∧ . . . ∧ g j m ∧ h k 1 ∧ . . . ∧ h k q ) 1≤i 1 <...<i p ≤n, 1≤j 1 <...<j m ≤n, 1≤k 1 <...<k q ≤n . Remark 2.4.7. For b = σ ε 1 i 1 . . . σ ε p i p ∈ B n , we define b := σ ε 1 n-i 1 . . . σ ε p n-i p .
LG 3,1 (L; t 0 , t -1 0 ) =

1 8 trace((id W ⊗ µ ⊗n-1 ) • b n S (b)) = 1 8 trace(I n • (id W ⊗ µ ⊗n-1 ) • I -1 n μ •Φ n ( b)).
Denoting as we already did several times

I n (e i n ⊗ . . . ⊗ e i 1 ) = f i 1 ∧ . . . ∧ h k q , we can com- pute μ: μ( f i 1 ∧ . . . ∧ h k q ) = I n • (id W ⊗ µ ⊗n-1 )(e i n ⊗ . . . ⊗ e i 1 ) = t 3(n-1)/2 0 (-1) #{k∈{1,...,n-1}|i k ∈{2,3,4,8}} I n (e i n ⊗ . . . ⊗ e i 1 ) = t 3(n-1)/2 0
(-1) #{k∈{1,...,n-1}| an odd number of the following appear :

{ f k ,g k ,h k }} f i 1 ∧ . . . ∧ h k q = t 3(n-1)/2 0 (-1) #{k∈{1,...,n-1}| f k appears} (-1) #{k∈{1,...,n-1}|g k appears} (-1) #{k∈{1,...,n-1}|h k appears} f i 1 ∧ . . . ∧ h k q . So LG 3,1 (L; t 0 , t -1 0 ) = 1 8 trace( μ • Φ n ( b)) = 1 8 ∑ 1≤i 1 <...<i p ≤n 1≤j 1 <...<j m ≤n 1≤k 1 <...<k q ≤n ( f i 1 ∧ . . . ∧ h k q ) * ( μ • Φ n ( b)( f i 1 ∧ . . . ∧ h k q )). But ( f i 1 ∧ . . . ∧ h k q ) * ( μ • Φ n ( b)( f i 1 ∧ . . . ∧ h k q )) = t 3(n-1)/2 0 (-1) #{k∈{1,...,n-1}| f k appears} (-1) #{k∈{1,...,n-1}|g k appears} (-1) #{k∈{1,...,n-1}|h k appears} ( f i 1 ∧ . . . ∧ h k q ) * (Φ n ( b)( f i 1 ∧ . . . ∧ h k q )) = t 3(n-1)/2 0 (-1) ... ( f i 1 ∧ . . . ∧ f i p ) * ( F( b)( f i 1 ∧ . . . ∧ f i p )) (g j 1 ∧ . . . ∧ g j m ) * ( G( b)(g j 1 ∧ . . . ∧ g j m )) (h k 1 ∧ . . . ∧ h k q ) * ( H( b)(h k 1 ∧ . . . ∧ h k q )).
The coproduct, counity and antipode of U are given by

∆(e) = 1⊗e + e⊗k, ε(e) = 0, S(e) = -ek -1 , ∆( f ) = k -1 ⊗ f + f ⊗1, ε( f ) = 0, S( f ) = -k f , ∆(k) = k⊗k, ε(k) = 1, S(k) = k -1 .
This Hopf algebra can be seen in some sense as a a "double" of Bodo Pareigis' Hopf algebra [START_REF] Pareigis | A non-commutative non-cocommutative Hopf algebra in "nature[END_REF] that would be < k, f > with our notations. A pivotal structure is a group like element φ that induces a conjugation map equal to the square of the antipode. There is non obviously a better choice that can be made by setting φ = k -1 .

Let τ : x⊗y → y⊗x be the switch of factors. Hopf algebra U is not quasi-triangular but it is braided in the sense of [START_REF] Reshetikhin | Quasitriangularity of Quantum Groups at Roots of 1[END_REF]: there exists an (outer) algebra automorphism R : U⊗U → U⊗U different from τ that satisfies

R • ∆ = τ • ∆, (3.1) 
∆ 1 • R = R 13 R 23 , (3.2) 
∆ 2 • R = R 13 R 12 . (3.3) 
Automorphism R admits a regular splitting (see [START_REF] Reshetikhin | Quasitriangularity of Quantum Groups at Roots of 1[END_REF]) R = D • Ad Ř where Ad Ř is the conjugation by the invertible element Ř = 1 + e⊗ f and D is an outer automorphism satisfying equations similar to (3.2) and (3.3) and defined by:

D • τ = τ • D , D (e⊗1) = e⊗k , D ( f ⊗1) = f ⊗k -1 and D (k⊗1) = k⊗1.
Elements k ±2 generate a central Hopf subalgebra and for any g ∈ C \ {0, 1}, the quotient U/(k 2g) is a 8-dimensional semi-simple Hopf algebra with two isomorphism classes of irreducible representations V ±a where a 2 = g. The representation V a is 2-dimensional and can be written as follows in a certain basis (e 0 , e 1 ):

k = a 0 0 -a , e = 0 1 0 0 , f = 0 0 a -1 a 0 . ( 3.4) 
Then the central element e f + f e acts by (aa -1 )I 2 .

[

H, K] = 0 , [H, E] = 2E , [H, F] = -2F.
We will consider the category C of weight modules, that is finite dimensional vector spaces where element H acts diagonally and

K = i H = exp(iπH/2). (3.5) 
The pivotal Hopf algebra structure U is extended to U H i sl(2) using the following relations:2 

∆(H) = 1⊗H + H⊗1 ε(H) = 0, S(H) = -H.
Like in the case of U, the pivotal element is

Φ = K -1 and therefore S 2 (•) = Φ • Φ -1
. With this pivotal structure, category C is ribbon with braiding given by the switch τ : x⊗y → y⊗x composed with the action of the universal R-matrix: R H = i H⊗H/2 (1 + E⊗F). Lemma 3.1.1. For any two representations V, W ∈ C , the conjugation by D H := i H⊗H/2 in V⊗W induces an automorphism D H of End C (V⊗W) that satisfies

ρ V⊗W • D = D H • ρ V⊗W : U⊗U → End C (V⊗W).
Proof. This is an easy consequence of Equation (3.5). More generally, if

x, y ∈ U satisfy [H, x] = 2mx and [H, y] = 2m y, then H⊗H.x⊗y = x⊗y.(H + 2m)⊗(H + 2m ) so i ρ V⊗W (H⊗H/2) ρ V⊗W (x⊗y) = ρ V⊗W (x⊗y)i ρ V⊗W ((H+2m)⊗(H+2m )/2) = ρ V⊗W ((x⊗K m )(K m ⊗y))i ρ V⊗W (H⊗H/2) = ρ V⊗W (D (x⊗y))i ρ V⊗W (H⊗H/2) .

CQFD

For any complex number α that is not an odd integer, U H i sl(2) possesses up to isomorphism a unique two dimensional irreducible representation V α with Spec(H) = {α + 1, α -1}. When restricted to U, this is representation V a where a = i α+1 and the action of H is given by H

= α + 1 0 0 α -1 .
Once it is written in representation V α ⊗V β with respect to basis (e 0 ⊗e 0 , e 0 ⊗e 1 , e 1 ⊗e 0 , e 1 ⊗e 1 ), the braiding is:

i αβ-1 2        i α+β+2 2 0 0 0 0 0 i α-β 2 0 0 i -α+β 2 i -α+β 2 (i β+1 -i -β-1 ) 0 0 0 0 i -α-β+2 2        .
In the case where α = β, the R-matrix then takes the particular form

τR H = i α 2 -1 2       t -1/2 0 0 0 0 0 1 0 0 1 (t -1/2 -t 1/2 ) 0 0 0 0 -t 1/2      
where we set

t 1/2 = i -α-1 .
The ribbon category we consider here allows us to apply the Reshetikhin-Turaev theory [START_REF] Reshetikhin | Ribbon graphs and their invariants derived from quantum groups[END_REF] to construct a framed link isotopy invariant in S 3 . It becomes an unframed link isotopy invariant if one divides the above R-matrix on V α ⊗V α by the value of the twist θ α = i α 2 -1 2 to obtain matrix R 1 of Subsection 1.4.3. In this particular case, the invariant we find is the Conway normalization of the classical Alexander polynomial, see [61] and Subsection 1.4.3.

Recall the Reshetikhin-Turaev functor gives representations of braid groups B

Ψ V ⊗ α : B -→ GL(V ⊗ α ) σ i → Id ⊗i-1 V α ⊗θ -1 α τR H ⊗ Id ⊗ -i-1 V α
, where σ i is the i th standard Artin generator of braid group B .

As we already mentioned, setting L an oriented link in S 3 obtained as closure of a braid in strands b ∈ B , we obtain the following result: 1) There exists a scalar c such that trace 2,3,..., ((

Id V α ⊗(K -1 ) ⊗ -1 ) • Ψ V ⊗ α (b)) = c. Id V α , 2) L → c is
a link invariant and is equal to the Alexander polynomial of L, ∆ L (t).

An example of bosonization: the gl(1|1) model

Bosonization

Here we recall Majid's trick [START_REF] Majid | Cross products by braided groups and bosonization[END_REF] to transform a super Hopf algebra into an ordinary one.

Let H be a pivotal super Hopf algebra and C be its even monoidal category of representations (morphisms are formed by even H-linear maps). Let H σ be the bosonization of H: as an algebra, H σ is the semi-direct product of H with Z/2Z = {1, σ} where the action of σ or equivalently the commutation relations in H σ are given by ∀x ∈ H, σx = (-1) |x| xσ.

The coproduct ∆ σ on H σ is given by ∆ σ σ = σ⊗σ and

∀x ∈ H, ∆ σ (x) = ∑ i x i σ |x i | ⊗x i where ∆(x) = ∑ i x i ⊗x i . If R = ∑ i R (1) i ⊗R (2) i
is the universal R-matrix in H, then the following formula defines a universal R-matrix in H σ :

R σ = R 1 ∑ i R (1) i σ |R (2) i | ⊗R (2) 
i , where

R 1 = 1 2 (1⊗1 + σ⊗1 + 1⊗σ -σ⊗σ).
Given a super representation V = V 0 ⊕ V 1 of H we get a representation of H σ by setting

σ |V = Id V 0 -Id V 1 .
On the other hand, since σ 2 = 1, every H σ -module inherits a natural Z/2Z grading: W splits into W = W 0 ⊕ W 1 where we define W 0 = ker(σ -1) and W 1 = ker(σ + 1).

Theorem 3.1.2 ([36] Theorem 4.2). The even category of super H-modules can be identified with the category of H σ -modules.

Note that the antipode of H σ is given by x → σ |x| S(x). Also, if H has a pivot φ then one can choose φ σ = σφ as a pivot in H σ .

The gl(1|1) model

Using the same notations as Viro: U q gl(1|1) is the pivotal super Hopf algebra generated by two odd generators X, Y and two even generators I, G satisfying the relations

XY + YX = C -C -1 q -q -1 , X 2 = Y 2 = 0, [I, X] = [I, Y] = [I, G] = 0, [G, X] = X , [G, Y] = -Y,
where C = q I , with coproduct

∆(I) = 1⊗I + I⊗1 , ∆(G) = 1⊗G + G⊗1, ∆(X) = X⊗C -1 + 1⊗X , ∆(Y) = Y⊗1 + C⊗Y, counit ε(X) = ε(Y) = ε(I) = ε(G) = 0, antipode S(I) = -I, S(G) = -G, S(X) = -XC, S(Y) = -YC -1 , pivot φ = K
and universal R-matrix R = (1 + (qq -1 )(X⊗Y)(C⊗C -1 ))q -I⊗G-G⊗I .

Its bosonization U q gl(1|1) σ contains a Hopf subalgebra U 1 isomorphic to U defined by setting e = (qq -1 )Xσ , f = Y and k = C -1 σ.

Indeed, these elements satisfy the following:

e f -f e = (q -q -1 )(XσY -YXσ) = (q -q -1 )(-XY -YX)σ = k -k -1 , ke + ek = k f + f k = 0, ∆ σ (e) = (q -q -1 )∆ σ (Xσ) = (q -q -1 )(X⊗C -1 + σ⊗X)(σ⊗σ) = e⊗k + 1⊗e, ∆ σ ( f ) = ∆ σ (Y) = Y⊗1 + Cσ⊗Y = f ⊗1 + k -1 ⊗ f , ∆ σ (k) = k⊗k.
In the bosonization, the universal R-matrix is

R σ = R 1 q -(I⊗G+G⊗I) (1 + e⊗ f ), where R 1 = 1 2 (1⊗1 + σ⊗1 + 1⊗σ -σ⊗σ).
Lemma 3.1.3. Denoting D = q -I⊗G-G⊗I and D σ = R 1 D we have that for any x, y Let us recall the expression of a family of 2-dimensional U q gl(1|1) σ -modules. This family is parametrized by two complex numbers (j, J) and ε ∈ {0, 1}, see [61]. It extends the representation V a of U 1 where a = (-1) ε q -2j . Written in matrix form,

∈ U = U 1 R 1 (x⊗y)R -1 1 = σ |y| x⊗yσ |x| , D (x⊗y)(D ) -1 = xC -d G (y) ⊗yC -d G (x) , D σ (x⊗y)(D σ ) -1 = (C -1 σ) d G (y) x⊗y(C -1 σ) d G (x) = D (x⊗y), where d G (x) ∈ Z is defined by [G, x] = d G (x)x.
I = 2j 0 0 2j , G = J+1 2 0 0 J-1 2 , X = 0 q 2j -q -2j q-q -1 0 0 , Y = 0 0 1 0 , σ = (-1) ε 0 0 -(-1) ε .

3.1.4

Comparing the actions of R σ and R H U 0 ⊂ U H i sl(2) and U 1 ⊂ U q gl(1|1) σ are two isomorphic Hopf algebras. The goal of this paragraph is to show the action of

R H = i H⊗H/2 (1 + E⊗F) ∈ U H i sl(2)⊗U H i sl(2)
and that of R σ = R 1 q -(I⊗G+G⊗I) (1 + e⊗ f ) ∈ U q gl(1|1) σ ⊗U q gl(1|1) σ on two representations V H 1 ⊗V H 2 of U H i sl(2) and V σ 1 ⊗V σ 2 of U q gl(1|1) σ are identical up to a scalar multiple of the identity, when V H i and V σ i have the same underlying U 0 = U 1 -module structure.

We recall conjugations by

D H = i H⊗H/2 in V H 1 ⊗V H 2 and D σ in V σ 1 ⊗V σ 2 induce the same automorphism D of U⊗U.
Proposition 3.1.5. For i = 1, 2 let V H i be a representation of U H i sl(2) and V σ i be a representation of U q gl(1|1) σ that both restrict to the same irreducible representation of U = U

0 = U 1 . Then D H (D σ ) -1 ∈ End C (V 1 ⊗V 2 ) is a scalar multiple of the identity.
Proof. The density theorem states that if V is a finite dimensional irreducible representation of an algebra A over an algebraically closed field, then A End(V) is surjective. Denote the representations at hand ρ V H i , ρ V σ i for i = 1, 2. We supposed

ρ V H i U = ρ V σ i U . So if ρ H = ρ V H 1 ⊗ρ V H 2
and ρ σ = ρ V σ 1 ⊗ρ V σ 2 we define ρ := ρ H U⊗U = ρ σ U⊗U . Using Lemma 3.1.1 and Lemma 3.1.3, for any x, y ∈ U:

ρ H D H ρ(x⊗y)ρ H (D H ) -1 = ρ D (x⊗y) = ρ σ D σ ρ(x⊗y)ρ σ (D σ ) -1 . Which means ρ H D H -1 ρ σ D σ ρ(x⊗y) = ρ(x⊗y)ρ H D H -1 ρ σ D σ .
Using the density theorem, ρ H D H -1 ρ σ D σ commutes with any element in

End C (V 1 )⊗ End C (V 2 ) = End C (V 1 ⊗V 2 )
. So this linear map is a scalar multiple of the identity. CQFD

From now on, we consider Hopf algebra A = U H i sl(2) U U q gl(1|1) σ . That algebra contains both algebras U H i sl(2) and U q gl(1|1) σ . Formally, setting q = e h , q T := e hT and i α = e i π 2 α , we also consider that

i H = k = q -I σ
which means that we will only study representations of A that satisfy this relation. Recall from Equations (3.4) the representation of U with parameter a. We can look for the representations of A that simultaneously extend to the representations of U H i sl(2) and U q gl(1|1) σ we already described. If ε ∈ {0, 1} is the degree of the first vector e 0 of the basis (e 0 , e 1 ) we choose, direct computation of such a representation V(α, a, 2j, ε, J) shows it is well defined if and only if:

(-1) ε q -2j = a a = e i π 2 (α+1) = i α+1

(3.6) Setting s = q j i α-3-2ε 2

= ±1, we can compute the coefficient R H /R σ = D H /D σ given by Proposition 3.1.5 in our case.

Proposition 3.1.6. R H /R σ = D H /D σ = ss (-1) εε i ε+ε i αα -1 2 q jJ +j J .
Proof. Using representation V⊗V = V(α, a, 2j, ε, J)⊗V(α , a , 2j , ε , J ) in basis (e 0 ⊗e 0 , e 0 ⊗e 1 , e 1 ⊗e 0 , e 1 ⊗e 1 ), we can write:

D H = i αα /2        i α+α +1 2 0 0 0 0 i -α+α -1 2 0 0 0 0 i α-α -1 2 0 0 0 0 i -α-α +1 2        . Moreover, D σ = R 1 D and R 1 = (-1) εε       1 0 0 0 0 (-1) ε 0 0 0 0 (-1) ε 0 0 0 0 (-1) ε+ε +1       , D = q -jJ -j J       q -j-j 0 0 0 0 q j-j 0 0 0 0 q -j+j 0 0 0 0 q j+j      
.

Since a = i α = (-1) ε+1 iq -2j , the formulas make two square roots of a appear:

α √ a = i α/2 and j √ a = i ε+ 3 2 q -j = s α √ a.
That way, one can compute any of the diagonal coefficients of D H (D σ ) -1 to end the proof. CQFD 3.2 An integral form of U q gl(n|1) and its specialization 3.2.1 Quasitriangular Hopf superalgebra U q gl(n|1)

Here we define the h-adic quasitriangular Hopf superalgebra U q gl(n|1) that we will use to construct the Links-Gould invariant LG n,1 . The conventions we use for generators and relations are those chosen by Zhang and De Wit in [START_REF] Zhang | Universal L operator and invariants of the quantum supergroup U q (gl(m|n))[END_REF][START_REF] De | Wit -Automatic construction of explicit R matrices for the one-parameter families of irreducible typical highest weight representations of U q [gl(m|n)[END_REF]. I = {1, 2, . . . , n + 1} will be the set of indices. We introduce a grading [a] ∈ Z/2Z for any a ∈ I by setting

[a] = 0 if a n and [a] = 1 when a = n + 1.

The superalgebra has (n + 1) 2 generators divided into three families. There are n + 1 even Cartan generators E a a . There are 1 2 n(n + 1) lowering generators E b a parametrized by a < b. Finally there are 1 2 n(n + 1) raising generators E a b , with a < b. The degree of E b a is given by [a] + [b].

For a ∈ I, a = n + 1, set K a = q E a a , and set K n+1 = q -E n+1 n+1 . In the following [X, Y] denotes the super commutator [X, Y] = XY -(-1) [X][Y] YX. Now let us present the relations there are between elements of U q gl(n|1).

For any a, b ∈ I with |a -b| ≥ 2 and for any c in the interval between a and b,

E a b = E a c E c b -q sign(a-b) E c b E a c .
For any a, b ∈ I,

E a a E b b = E b b E a a , E a a E b b±1 = E b b±1 E a a + δ a b -δ a b±1 [E a a+1 , E b+1 b ] = δ a b K a K -1 a+1 -K -1 a K a+1 q -q -1 which generalizes for a < b to [E a b , E b a ] = K a K -1 b -K -1 a K b q -q -1 , (E n n+1 ) 2 = (E n+1 n ) 2 = 0, which implies (E i n+1 ) 2 = (E n+1 i ) 2 = 0 for i < n + 1.
The Serre relations: for any a, b ∈ I with |a -b| ≥ 2,

E a+1 a E b+1 b = E b+1 b E a+1 a , E a a+1 E b b+1 = E b b+1 E a a+1 ,
and for a ≤ n - These relations can be completed into a set of "quasi-commutation" relations indexed by pairs of root vectors (see [START_REF] De | Wit -Automatic construction of explicit R matrices for the one-parameter families of irreducible typical highest weight representations of U q [gl(m|n)[END_REF]Lemma 1] where a reordering algorithm gives a constructive proof of the Poincaré-Birkhoff-Witt theorem) but these relations are redundant over the field C(q).

We consider the Hopf algebra structure given by the coproduct

∆(E a a+1 ) = E a a+1 ⊗K a K -1 a+1 + 1⊗E a a+1 , ∆(E a+1 a ) = K -1 a K a+1 ⊗E a+1 a + E a+1 a ⊗1 ∆(K a ) = K a ⊗K a and ∆(E a a ) = E a a ⊗1 + 1⊗E a a which admits 3 the universal R-matrix R gl = D gl Řgl with D gl = q ∑ i≤n E i i ⊗E i i -E n+1 n+1 ⊗E n+1 n+1 and Řgl = n ∏ i=1 n ∏ j=i+1 e q ((q -q -1 )E i j ⊗E j i ) e q (E i n+1 ⊗E n+1 i ),
3. we use here the coproduct and R-matrix of [START_REF] Khoroshkin | Universal R-matrix for quantized (super)algebras[END_REF] conjugated by D gl .

where e q (x) = (1 -(qq -1 )x), e q (x) = ∑ +∞ k=0 x k

(k) q ! , (k) q = 1-q k 1-q and (k) q ! = (1) q (2) q . . . (k) q . Do note that the order in which the factors are written in Řgl matters.

Integral form and interesting subalgebras

We now give an integral form of U q gl(n|1) that supports evaluation at q = -1. Let A q be the Z[q, q -1 ]-subalgebra of U q gl(n|1) generated by elements K a , E a b := qq -1 E a b when a < b and E a b := E a b when a > b. The relations of U q gl(n|1)

[E a b , E b a ] = K a K -1 b -K -1 a K b q -q -1 for a < b, are replaced in algebra A q by [E a b , E b a ] = K a K -1 b -K -1 a K b .
Still, A q admits a presentations similar to that of U q gl(n|1). No additional relations are needed because the analog of the above commutation relations are enough to express any element in the Poincaré-Birkhoff-Witt basis.

In the bosonization A σ q of A q , define for i = 1, . . . , n the algebra

A i = e i = -E i n+1 σ, f i = E n+1 i , k i = K i K -1 n+1 σ ⊂ A σ q .
Proposition 3.2.1. Algebra A i is isomorphic to U. Indeed:

e i f i -f i e i = k i -k -1 i , k i e i + e i k i = k i f i + f i k i = 0.
Proof. Direct computations from the defining relations of A q and Lemma 1 of [START_REF] De | Wit -Automatic construction of explicit R matrices for the one-parameter families of irreducible typical highest weight representations of U q [gl(m|n)[END_REF]. In particular, e i f i -

f i e i = -E i n+1 σE n+1 i + E n+1 i E i n+1 σ = [E i n+1 , E n+1 i ]σ = k i -k -1 i . CQFD Remark 3.2.2.
However, A i is not isomorphic to U as a Hopf algebra (except for A n ), which can be seen by looking at the coproduct of elements of A i in A q . This will not be a problem for us.

Set 1 i = j n. Using [START_REF] De | Wit -Automatic construction of explicit R matrices for the one-parameter families of irreducible typical highest weight representations of U q [gl(m|n)[END_REF] Lemma 1 once again, we want to see at what conditions any x ∈ A i and y ∈ A j commute. Lemma 3.2.3. We have the following commutations: e i e j = -q -1 e j e i , f i f j = -q -1 f j f i , k i k j = k j k i , if i < j, e i f jf j e i = σK j K -1 n+1 E i j , otherwise e i f jf j e i = σ qq -1 E i j K n+1 K -1 i ,

k j e i = -q -1 e i k j , k j f i = -q f i k j .

Proof. The first two equalities correspond to [8, Eq. ( 38) and [START_REF] Morton | Seifert circles and knot polynomials[END_REF]] and the two brackets [e i , f j ] correspond to [8, Eq. ( 36) (c) and (d)]. CQFD Corollary 3.2.4. Setting q = -1, in any quotient of A σ -1 where for any 1 i < j n, E i j = 0, the elements of two distinct A i commute.

Highest weight representation V(0 n , α)

Let V(0 n , α) be the highest weight irreducible 2 n -dimensional representation of U q gl(n|1) of weight (0 n , α), with α / ∈ Z. So E i i is represented by 0, except for E n+1 n+1 that is represented by α. Set v 0 a highest weight vector in V(0 n , α) and let V q (0 n , α) = A q v 0 . The Poincaré-Birkhoff-Witt theorem proves that

n ∏ i=1 f m i i v 0 m i ∈{0,1}
is a basis for vector space V(0 n , α) and for the free Z[q, q -1 ]-module V q (0 n , α).

Set A σ -1 = A σ q ⊗ q=-1 C and V -1 (0 n , α) = V q (0 n , α)⊗ q=-1 C
Proposition 3.2.5. In the representation V -1 (0 n , α), E i j = 0 for any 1 i < j n. So E i j belongs to the kernel I of the representation A σ -1 -→ End(V -1 (0 n , α)). As a consequence, the following map is well defined:

Θ : n i=1 A i -→ A σ -1 /I ⊗ i x i → ∏ i x i .
Proof. We want to show that for any basis vector v ∈ V -1 (0 n , α) and for 1 [START_REF] De | Wit -Automatic construction of explicit R matrices for the one-parameter families of irreducible typical highest weight representations of U q [gl(m|n)[END_REF]Eq. (40)] [8, Eq. ( 37), [START_REF] Murakami | The multi-variable Alexander polynomial and a one-parameter family of representations of U q (sl(2, C)) at q 2 = -1. Quantum groups[END_REF]].

i < j n, E i j v = 0. We can write v = f i 1 1 . . . f i n n v 0 where i k = 0, 1. Using [8] Lemma 1 once more, if c < i then [E i j , E n+1 c ] = 0 by
c = i then [E i j , E n+1 c ] = -K i K -1 j E n+1 j by [8, Eq. ( 36 
)(a)] i < c < j then [E i j , E n+1 c ] = -(q -q -1 )K c K -1 j E i c E n+1 j by [8, Eq. ( 43 
)(a)] j ≤ c then [E i j , E n+1 c ] = 0 by
In all cases, [E i j ,

f c ] = [E i j , E n+1 c ] = (q -q -1 )[E i j , E n+1 c ] = 0 in A σ -1 . So E i j v = f i 1 1 . . . f i n n (E i j v 0 ).
But E i j is a raising generator, so E i j v 0 = 0. Using Corollary 3.2.4, for i = j A i and A j commute in that representation. CQFD

3.2.4

Řgl makes sense when q = -1

Here we intend to show that the non diagonal part Řgl of the universal R-matrix of U q gl(n|1) supports evaluation at q = -1, which is not obvious given the formula defining Řgl . In the bosonization U q gl(n|1) σ , the universal R-matrix is given by

(R gl ) σ = D gl ( Řgl ) σ = D gl n ∏ i=1 n ∏ j=i+1 e q (E i j ⊗E j i ) (1 + e i ⊗ f i ).
Proposition 3.2.6. For any 1 i < j n,

e q (E i j ⊗E j i ) -1 V q (0 n , α)⊗V q (0 n , α) ⊂ (q + 1)Z[q, q -1 ] loc V q (0 n , α)⊗V q (0 n , α)
where Z[q, q -1 ] loc is the localization of Z[q, q -1 ] at (q + 1). Hence (R gl ) σ induces a well defined automorphism of V -1 (0 n , α)⊗V -1 (0 n , α) where the action of ( Řgl ) σ is given by

( Řgl ) σ = n ∏ i=1 (1 + e i ⊗ f i ).
Proof. Define V = Z[q, q -1 ] loc V q (0 n , α) ⊂ V(0 n , α) so that V -1 (0 n , α) ∼ = V⊗ q=-1 C. We wish to prove that for 1 i < j n, in the representation V⊗V, e q (E i j ⊗E j i ) = 1 mod (q + 1). Set 1 i < j n. We show by induction on k 1, that

(E i j ) k (k) q ! V ⊂ (q + 1)V.
For k = 1, this follows from E i j ∈ I (see Proposition 3.2.5). Now let us suppose that the result holds for any l ∈ {1, . . . , k -1}. Since

(E i j ) k (k) q ! = (E i j ) k-1 (k-1) q ! E i j (k) q it is enough to show that E i j (k) q V ⊂ V.
We know that E i j V ⊂ (q + 1)V, so

E i j (k) q V ⊂ q+1 (k) q V. If k is even, (k) q = (q + 1)( k 2 ) q 2 with ( k 2 ) q 2 = k 2 mod (q + 1) so E i j (k) q V ⊂ 1 ( k 2 ) q 2 V = V. If
k is odd, (k) q = 1 mod (q + 1) and therefore E i j (k) q V ⊂ (q + 1)V. This concludes the proof. The Links-Gould invariants LG n,1 are the framed link invariants obtained by applying the modified (one has to use a modified trace, see [START_REF] Geer | Multivariable link invariants arising from Lie superalgebras of type I[END_REF]) Reshetikhin-Turaev construction to the ribbon Hopf algebras U q gl(n|1) σ we just studied. Like in the Alexander case, the R-matrix can be divided by the value of the twist so that LG n,1 becomes an unframed link invariant.

Note that this definition and Viro's work [61] show that the first LG invariant LG 1,1 coincides with the Alexander-Conway polynomial ∆.

Here we are interested in what happens to LG n,1 when you evaluate q at -1, or in other words when you set t 0 t 1 = 1.

Proof of the conjecture

Our study of ribbon Hopf algebra U q gl(n|1) σ allows us to prove the (n, 1) case of the De Wit-Ishii-Links conjecture: Theorem 3.3.1. For any link L in S 3 , LG n,1 (L; τ, -1) = ∆ L (τ 2 ) n . This can be translated in variables (t 0 , t 1 ):

LG n,1 (L; t 0 , t -1 0 ) = ∆ L (t 0 ) n .

Remark 3.3.2. Here we prove an equality, and not only an equality up to an ivertible element.

The rest of the section is devoted to proving this identity. First we identify V -1 (0 n , α) as a ⊗ i A i -module: Proposition 3.3.3. Let us denote by V i an A i -module isomorphic to the 2-dimensional U-module V q -α . Equipped with the action of ⊗ i A i induced by Θ :

⊗ i A i → A σ -1 /I, representation V -1 (0 n , α) is isomorphic to the irreducible representation ⊗ i V i .
Proof. By ⊗ i V i , we mean the representation

⊗ i ρ i : ⊗ i A i → ⊗ i End C (V i ) ∼ = End C (⊗ i V i ) where ρ i : A i → End C (V i ).
Set a = q -α . For each i, k 2 i acts by a 2 on V -1 (0 n , α). Thus V -1 (0 n , α) is a representation of the 8 n -dimensional semi-simple algebra j i=1 A i /(k 2 ia 2 ) . But for each A i , v 0 is a highest weight vector of weight a. So it belongs to a summand of the

j i=1 A i /(k 2 i -a 2 ) -module V -1 (0 n , α) of the form ⊗ i V i .
Comparing the dimensions which are equal to 2 n for both vector spaces, we have that V -1 (0 n , α) ⊗ i V i . CQFD Now we study the action of the pivotal element of A σ q in the representation at q = -1.

Proposition 3.3.4. If K σ 2ρ is the pivotal element of A σ q , in the representation V -1 (0 n , α),

K σ 2ρ = Θ(⊗ i φ i )
where

φ i = k -1 i ∈ A i .
Proof. The antipode of U q gl(n|1) satisfies S(

E i i+1 ) = -E i i+1 K i+1 K -1 i and S 2 (E i i+1 ) = K i K -1 i+1 E i i+1 K i+1 K -1 i = K 2ρ E i i+1 K -1 2ρ .
We can write K 2ρ in terms of Cartan generators:

K 2ρ = K n n+1 n ∏ i=1 K n-2i i .
Denoting a|b := ∑ n i=1 a i b ia n+1 b n+1 , and ρ the graded half sum of all positive roots, we find:

2ρ = n ∑ i=1 (n -2i)ε i + nε n+1 ,
where ε i is the i th basis vector of C n+1 and we write any vector x = ∑ n+1 i=1 x i ε i in this basis. K 2ρ conjugates element e i ∈ A i as follows:

K 2ρ e i K -1 2ρ =q 2ρ|ε i -ε n+1 e i = q (n-2i+n) e i = q 2n-2i e i . So if q = -1, σK 2ρ e i K -1 2ρ σ = -e i = φ i e i φ -1 i =Θ(⊗ j φ j )e i Θ(⊗ j φ -1 j ).
Similarly to Proposition 3.1.5, we therefore can say that in the irreducible ⊗ i A i -module V -1 (0 n , α), K σ 2ρ is a scalar multiple of Θ(⊗ j φ j ). We call this element λ. Since the two maps both act by q nα on the highest weight vector, we find that λ = 1. CQFD Proposition 3.3.5. For any x ∈ A i ⊗A i ⊂ A q ⊗A q , we have

D gl x(D gl ) -1 = D (x)
where we identified A i ⊗A i ∼ = U⊗U.

Proof. By a direct computation,

D gl E j n+1 ⊗1 = E j n+1 ⊗1q ∑ i≤n ((E i i +δ i j )⊗E i i -(E n+1 n+1 -1)⊗E n+1 n+1 = E j n+1 ⊗K j K -1 n+1 D gl
Thus D gl e j ⊗1(D gl ) -1 = e j ⊗k j . Similarly D gl f j ⊗1(D gl ) -1 = f j ⊗k - V i be the isomorphic representations of Proposition 3.3.3. In the following we fix such an isomorphism. Let V i H be a U H i sl(2)-module structure on V i extending the representation of A i . We therefore obtain n commuting R-matrices

R i = D i Ři in End C (V i ⊗V i ) → End C (V -1 (0 n , α)⊗V -1 (0 n , α))
, where the explicit inclusion maps are given by ι

i : v ⊗ w → (id ⊗i-1 ⊗ v ⊗ id ⊗n-i ) ⊗ (id ⊗i-1 ⊗ w ⊗ id ⊗n-i ). By Proposition 3.2.6, Řgl |q=-1 = ∏ i ι i ( Ři ) ∈ End C (V -1 (0 n , α)⊗V -1 (0 n , α)).
Moreover, using Lemma 3.1.1, Proposition 3.3.5, and the density Lemma, the conjugation by ∏ i ι i (D i ) is equal to the conjugation by D gl in End C (V -1 (0 n , α)⊗V -1 (0 n , α)). Hence the braidings on ( n i=1 V i H )⊗( n i=1 V i H ) and on V -1 (0 n , α)⊗V -1 (0 n , α) are proportional. Now in the process of computing both the Links-Gould invariant and the Alexander polynomial, the R-matrices are rescaled by the inverse of their twist θ -1 so that the invariants become framing independent: trace 2 (θ -1 (Id ⊗φ)τR) = Id V -1 (0 n ,α) (here φ denotes any of the pivotal structures which are equal by Proposition 3.3.4). Hence

the rescaled R-matrices R gl |q=-1 = ∏ i ι i (R H V i ⊗V i ) and i R H V i
⊗V i are equal up to reordering factors. Finally, for any braid β ∈ B , the associated operators by the Reshetikhin-Turaev construction correspond up to reordering as well:

Ψ gl V -1 (0 n ,α) ⊗ (β) = Ψ U H i sl(2) V ⊗ -α (β) ⊗n . At the end, if trace 2,3,..., (Id V -1 (0 n ,α) ⊗φ ⊗ -1 ) • Ψ gl V -1 (0 n ,α) ⊗ (β) = d. Id V -1 (0 n ,α) when trace 2,3,..., (Id V α ⊗φ ⊗ -1 U ) • Ψ U H i sl(2) V ⊗ α (β) = c. Id V α , we obtain d = c n
by considering the trace of these two maps. Indeed, the trace is blind to reordering factors. CQFD Remark 3.3.6. In [START_REF] Geer | Multivariable link invariants arising from Lie superalgebras of type I[END_REF], the LG invariant is extended to a multivariable link invariant M(L; q, q 1 , . . . , q c ) for links with c ≥ 2 ordered components, taking its values in Laurent polynomials Z[q ± , q ± 1 , . . . , q ± c ]. It is shown in [START_REF] Geer | On the Colored HOMFLY-PT, Multivariable and Kashaev Link Invariants[END_REF] that

LG n,1 (τ, q) = n-1 ∏ i=0 q i τ - τ q i M(L; q, τ -1 , . . . , τ -1 ).
The proof in this chapter should adapt to show that M(L; -1, q 1 , . . . , q c ) = ∇(q 1 , . . . , q c ) n

where ∇ is the Conway potential function, a version of the multivariable Alexander polynomial. -LG(K 0 ; t 0 , t

1 ) = 3 -4t 1 + 2t 2 1 -4t 0 + 6t 1 t 0 -2t 2 1 t 0 + 2t 2 0 -2t 1 t 2 0 -2t 2 1 t 2 0 + 4t 3 1 t 2 0 -2t 4 1 t 2 0 + 4t 2 1 t 3 0 -10t 3 1 t 3 0 + 8t 4 1 t 3 0 -2t 5 1 t 3 0 -2t 2 1 t 4 0 + 8t 3 1 t 4 0 -8t 4 1 t 4 0 + 2t 5 1 t 4 0 -2t 3 1 t 5 0 + 2t 4 1 t 5 0 + 4t 5 1 t 5 0 - 6t 6 
1 t 5 0 + 2t 7 1 t 5 0 -6t 5 1 t 6 0 + 8t 6 1 t 6 0 -2t 7 1 t 6 0 + 2t 5 1 t 7 0 -2t 6 1 t 7 0 . So the span of LG(K 0 ; t 0 , t 1 ) is 4 and the span inequality is verified in this case. Remark 4.2.4. The value of LG(K 0 ; t 0 , t 1 ) was obtained by direct computation of the formula given by Theorem 1.6.2 with the R-matrix in Definition 1.6.1 using MATHEMATICA 10.

Infinite families of knots using partial skein relations

Here we verify the genus bound on several infinite families of knots or links. To do that, we will use basic Alexander-type properties of LG we will recall, and partial skein relations that will make the computations practicable.

Some properties of LG and useful skein relations

To compute LG for infinite families of knots, we need to have a more efficient way to evaluate it than simply using the formula in 1.6.2. We first recall some general facts about the LG polynomial. Proposition 4.2.5. The Links-Gould polynomial satisfies the following properties :

-LG( ) = 1, -Denoting L * the reflexion of L, LG(L * ; t 0 , t 1 ) = LG(L; t -1 0 , t -1 1 ),

-We have the following symmetry : LG(L; t 0 , t 1 ) = LG(L; t 1 , t 0 ). Indeed LG does not detect inversion, -For L and L two links, denoting L#L their connected sum : LG(L#L ) = LG (L)LG(L ), -If L = L L is the split union of L and L , then LG(L) = 0.

Proof. For proofs of these facts, we refer the reader to [START_REF] Ishii | Algebraic links and skein relations of the Links-Gould invariant[END_REF][START_REF] Wit | On the Links-Gould invariant of links[END_REF][START_REF] Wit | An infinite suite of Links-Gould invariants[END_REF]. CQFD Remark 4.2.6. The last two points show that LG and ∆ behave similarily concerning sums and disjoint unions.

Let us also cite a list of skein relations that are known to be true for LG. Whether the associated skein module is generated by the unknot or not is a problem pointed out by Ishii [START_REF] Ishii | Algebraic links and skein relations of the Links-Gould invariant[END_REF]. It is to the best of our knowledge an open question.

Proposition 4.2.7.

LG verifies the following skein relations. Skein relation (1) :

LG

+ (1 -t 0 -t 1 )
LG

+(t 0 t 1 -t 0 -t 1 )LG + t 0 t 1 LG = 0.

Skein relation (2) :

LG + (1t 0t 1 )

LG

+(t 0 t 1 -t 0 -t 1 )LG + t 0 t 1 LG = 0.

Skein relation (3) :

LG

+ (t 0 t 1 -t 0 -t 1 + 2)LG -(t 0 t 1 -t 0 -t 1 + 2)LG -LG = 0 . Skein relation (4) :
LG -(t 0 t 1 + 1)

LG

+t 0 t 1 LG + 2(t 0 -1)(t 1 -1)LG = 0.
Proof. See [START_REF] Ishii | Algebraic links and skein relations of the Links-Gould invariant[END_REF][START_REF] Wit | On the Links-Gould invariant of links[END_REF][START_REF] Links | Two variable link polynomials from quantum supergroups[END_REF]. CQFD Remark 4.2.8. ( 1) and ( 2) are equivalent, by adding each time a well chosen tangle from the left.

Remark 4.2.9. As explained in [START_REF] Ishii | Algebraic links and skein relations of the Links-Gould invariant[END_REF], ( 4) is a consequence of ( 2) and (3).

Remark 4.2.10. Set V the 4-dimensional irreducible U q (gl(2|1))-module that gives rise to the Links-Gould invariant. Then the tensor product of two copies of V decomposes with respect to the U q (gl(2|1))-module structure.

V ⊗ V = V 1 ⊕ V 2 ⊕ W, with dimV 1 = dimV 2 = 4 and dimW = 8.
Morevover, V 1 , V 2 and W are non isomorphic irreducible U q (gl(2|1))-modules. For details, see [START_REF] Geer | Multivariable link invariants arising from sl(2|1) and the Alexander polynomial[END_REF][START_REF] Wit | On the Links-Gould invariant of links[END_REF]. Using this and denoting A := U q (gl(2|1)), we have the following identification :

End A (V ⊗ V) End A (V 1 ) ⊕ End A (V 2 ) ⊕ End A (W) C(t ±1 0 , t ±1 1 ) 3 . 
In particular, for any three (2, 2)-tangles such that the associated maps in End A (V ⊗ V) are linearly independent, any other can be expressed as a linear combination of the first three.

This potentially generates a great variety of skein relations for LG.

Remark 4.2.11. Using points 2 and 3 of Proposition 4.2.5, we can modify the previous skein relations : orientation of the strands, signs of the crossings. We will use these modified relations, though we will not write them down here.

Corollary 4.2.12. Using notations in [START_REF] Ishii | Algebraic links and skein relations of the Links-Gould invariant[END_REF], LG satisfies the following skein relations :

-LG n half twists = (-1) n (t 0 +1)(t 1 +1) + t n 0 (t 0 +1)(t 0 -t 1 ) + t n 1 (t 1 +1)(t 1 -t 0 )
LG

-(-1) n (t 0 +t 1 ) (t 0 +1)(t 1 +1) + t n 0 (t 1 -1) (t 0 +1)(t 0 -t 1 ) + t n 1 (t 0 -1) (t 1 +1)(t 1 -t 0 ) LG + (-1) n t 0 t 1 (t 0 +1)(t 1 +1) - t n 0 t 1 (t 0 +1)(t 0 -t 1 ) - t n 1 t 0 (t 1 +1)(t 1 -t 0 )
LG .

-LG n full twists = t n 0 t n 1 -1

t 0 t 1 -1 LG + 1 - t n 0 t n 1 -1 t 0 t 1 -1 LG + 2(t 0 -1)(t 1 -1) t 0 t 1 -1 n - t n 0 t n 1 -1 t 0 t 1 -1
LG . -LG n full twists

= a 1 (n)LG + a 2 (n)LG + a 3 (n)
LG , where :

a 1 (n) = t n 0 t n 1 -1 t 0 t 1 -1 , a 2 (n) = 2n(t 0 -1)(t 1 -1) t 0 t 1 -1 -a 1 (n) (t 0 t 1 +1)(t 0 -1)(t 1 -1) t 0 t 1 -1 + 1 , a 3 (n) = (t 0 -1)(t 1 -1)a 1 (n) + 1.
We will now use all these properties to compute LG, or at least its span, on some infinite families of links.

2-bridge links

A 2-bridge link is a link with bridge number 2. As explained in [START_REF] Kanenobu | Genus and Kauffman polynomial of a 2-bridge knot[END_REF], an oriented 2-bridge link can always be written in terms of the two generators S 1 and S 2 of 3-string braid group B 3 . We use the notations one can find in [26, 24], setting where µ is the number of components [START_REF] Siebenmann | Exercices sur les noeuds rationnels[END_REF]. Proof. First we note that a 1 (n), a 2 (n), a 3 (n) are symmetric polynomials with respect to variables t 0 and t 1 . We can compute the span in each case.

span(a 1 (n)) = 0, span(a 2 (n)) = 2, span(a 3 (n)) = 2.

We will indicate by ãi (n) the quantity a i (n)(t -1 0 , t -1 1 ). Let's prove the span equality by induction on m. m = 1 Using the mirror of skein relation 3 of Corollary 4.2.12 :

LG (D( For instance K 0 is the unknot, K 1 is the trefoil knot and K 2 is knot 5 2 . Proposition 4.2.17. For n = 0, g(K n ) = 1. Proposition 4.2.18.

-LG(K 0 ) = LG( ) = 1. -For n 1,

2n -1 crossings

LG(K n ) = (-t -2 0 t -1 1t -1 0 t -2 1 + t -2 0 + 2t -1 0 t -1 1 + t -2 1t -1 0t -1 1 + 1)(t -1 0 t -1 1 ã1 (n -1) + 1)

+ (t -1 0 -1) 2 (t -1 1 -1) 2 (t -1 0 t -1 1 + 1) ã1 (n -1) -2(n -1) t -1 0 t -1 1 -1 + ã1 (n -1)(t -1 0 -1) 2 (t -1 1 -1) 2 -t -1 0 t -1 1 ã1 (n -1).
It has span 4.

-For n -1,

LG(K n ) = (t -1 0 -1)(t -1 1 -1) a 1 (-n) + (t 0 -1)(t 1 -1)

2n + a 1 (-n)(t 0 t 1 + 1) t 0 t 1 -1 + (t 0 -1)(t 1 -1)a 1 (-n) + 1.

It has span 4 as well.

Proof. When n 1, we first write the third skein relation of 4.2.12 for n -1 full twists. On p q r Figure 4.6 -L(p, q, r).

each of the three links that appear, we use the first point of 4.2.12. We find the formula written in the theorem. A close look at that expression shows that span(LG(K n )) 4.

To see it is equal to 4, we can for example evaluate t 1 = -t -1 0 . We know we will find (and can verify)

LG(K n )(t 0 , -t -1 0 ) = ∆ K n (t 2 0 ) = nt 2 0 -(2n -1) + nt -2 0 .

So span(LG(K n )) 4. Similar computations can be made when n -1. CQFD Pretzel knots Definition 4.2.19. Set p, q, r ∈ Z. The (p, q, r)-pretzel link L(p, q, r) is a union of three pairs of strands half-twisted p, q, r times and attached along the tops and bottoms as shown in Figure 6. The half-twists are oriented according to whether the integer is positive or negative.

For example, pretzel knot L(-2, 3, 7) is represented in Figure 7. L(p, q, r) is a knot ⇐⇒ at most one of the three integers p, q and r is even .

In that case pretzel knot L(p, q, r) is denoted by K(p, q, r).

In [START_REF] Kim | Some invariants of pretzel links[END_REF], Kim and Lee explicit the genus for all pretzel knots. Verifying the genus conjecture on this family of knots is quite interesting since the genus does not behave the same way as a function of parameters (p, q, r) in all cases. The next theorem is proved in [START_REF] Kim | Some invariants of pretzel links[END_REF].

Theorem 4.2.21. Let p, q, r be integers. The genus of K(p, q, r) is as follows :

1 K(p, ±1, ∓1), K(±2, ∓1, ±3) have genus 0 for any p, 2 K(p, q, r) has genus 1 if p, q, r are odd and we are not in case 1, 3 K(±2, ∓1, ±r) has genus |r-2|-1 2 , 4 K(2l, q, r) has genus

|q|+|r| 2
if q, r have the same sign and we are not in any of the previous cases, 5 K(2l, q, r) has genus |q|+|r|-2 2

if q, r have different signs and we are not in cases 1, 2 or 3.

We rewrite that theorem so that different cases exclude each other. Doing this makes computations more specific and somewhat easier in each case. Moreover, since K(p, q, r) * = K(-p, -q, -r), we will consider p 0. Also, K(p, q, r) = K(q, r, p) = K(r, p, q). So we can restrict our study to the cases where q, r are odd.

Corollary 4.2.22. Given the restrictions mentioned, setting p 0 an integer and q, r two odd integers, the genus g of K(p, q, r) is as follows :

1 g = 0 for K(p, ±1, ∓1) and K(2, -1, 3), that is when K(p, q, r) is the unknot, 2 g = 1 when p, q, r are odd and K(p, q, r) is not the unknot, -p is even and q, r are positive, -p is even and different from 2, q = -1 and r is negative, -p is even, q is negative and different from -1, r is negative,

3 g = |r-2|-
5 g = |q|+|r|-2 2 if :
-p is even and different from 2, q = -1 and r 3, -p is even, q 0, r 0 and (p, q, r) = (p, 1, -1), -p is even, q -3 and r 0. Theorem 4.2.23. For all pretzel knots, span(LG(K(p, q, r))) 4g(K(p, q, r)).

Proof. We compute the span of LG(K(p, q, r)) in each case of Corollary 4.2.22. 1 K(p, ±1, ∓1) and K(2, -1, 3) are different representations of the trivial knot that is part of the small cases we already checked.

2 Using the fact that K(p, q, r) * = K(-p, -q, -r) and K(p, q, r) = K(q, r, p) = K(r, p, q), we have only two cases to consider : when p, q, r have the same sign and when two out of the three have the same sign. For example we can choose the following configurations : p, q, r 0 and p 0, q, r 0. In each case, using skein relation 2 of Corollary 4.2.12 on the three pairs of strands, we find a sum of 27 terms, each of which is symmetric of span smaller than 4.

3 For r = 1, 3, K(2, -1, r) is the unknot. If r 5, K(2, -1, r) is drawn in Figure 8 once it is simplified. The same kind of isotopy can be operated on K(2, -1, r) when r -1 and the result is shown in Figure 9.

For example if r 5 we can apply skein relation 1 of Corollary 4.2.12 to the r -2 half twists.

LG(K(2, -1, r)) = -1 (t 0 + 1)(t 1 + 1) + t r-2 0 (t 0 + 1)(t 0t 1 ) + t r-2

1 (t 1 + 1)(t 1 -t 0 )
LG --t 0t 1 (t 0 + 1)(t 1 + 1) + t r-2 0 (t 1 -1) (t 0 + 1)(t 0t 1 ) + t r-2 1 (t 0 -1) (t 1 + 1)(t 1t 0 )

LG( ) + -t 0 t 1 (t 0 + 1)(t 1 + 1) -t r-2 0 t 1 (t 0 + 1)(t 0t 1 ) -t r-2 1 t 0 (t 1 + 1)(t 1t 0 )

LG( ) = (t 0t 1 )(t 0 t 1 + 1)t r-1 0 (t 1 -1)(t 1 + 1) + t r-1 1 (t 0 -1)(t 0 + 1) (t 0 + 1)(t 1 + 1)(t 0t 1 )

The numerator has span 2r -2 and the denominator has span Computations can be led in a similar way in the other case.

4 If p is positive and even, and q, r are positive and odd. Choosing an orientation for K(p, q, r), we can apply skein relation 2 of 4.2.12 on the p half twists and skein relation 1 of 4.2.12 on the q and r half twists. As in a previous case, we get a sum of 27 terms, each of which can be computed easily. All these terms have a span smaller than 2q + 2r = 4g. Therefore we have the inequality in this case.

If p is positive, even and different from 2, q = -1, and r is odd and negative. Choosing an orientation here again, we can use skein relation 2 on the p half twists and skein relation 1 on the r half twists. Each of the 9 parts of the sum such obtained has a span smaller than 2 -2r. So once again span(LG(K(p, -1, r))) 2 -2r = 4 1r 2 = 4g.

If p is even and positive, q is odd negative and different from -1, and r is odd and negative. An extended computation similar to the two previous ones proves the bound in this case as well.

5 If p is even, positive and different from 2, q = -1, and r is positive, odd and different from 1. Applying skein 2 of 4.2.12 on the p/2 full twists, we find three links, each of which is the 2r half twists ant. Conjecture 4.0.3, if it were to be true, would refine the standard Alexander polynomial criterion. This is the object of this section.

Let us recall that a knot K in S 3 is said to be fibered when the two following conditions hold:

1 the complement of the knot is the total space of a locally trivial bundle over the base space S 1 , i.e. there exists a map p : S 3 \ K -→ S 1 which is a locally trivial bundle. Proof. To have such a result we can more generally consider a set of links E such that, for any L ∈ E, deg(∆ L (t)) = 2g(L) + µ -1. This is the case here, and it was also the case in Proposition 4.1.3 where it is proved completely. CQFD

As we already said, we can express the Links-Gould polynomial with different sets of variables : for example with variables (t 0 , t 1 ) as we did up to now, but also (p, q) where p a q b = t .

These are the variables used in the LINKS-GOULD EXPLORER as well as in de Wit's papers on the subject. He sometimes uses P = p 2 . In variables (p, q) the LG polynomial of a link L can be written

LG(L; p, q) = a 0 + ∑ k∈N * P k (q)(p 2k + p -2k )

where a 0 ∈ Z and P k (q) ∈ Z[q ±1 ]. Note that if P l (q) = 0 and P k (q) = 0 for any k > l, then span(LG(L; p, q)) = 2l. Definition 4.3.2. Set K a knot. We say LG(K) is monic when the term in LG(K) of highest and lowest degrees can be written q 2m (p 4l + p -4l ) with l ∈ N and m ∈ Z. In terms of variables (t 0 , t 1 ), this condition is expressed by saying the terms of highest and lowest degrees are monic monomials of the form t α 0 t β 1 with α + β even.

Proposition 4.3.3. Set K a knot. If LG(K; t 0 , t 1 ) is monic, then ∆ K (t) is monic as well.

So the quantity we are interested in is

x(-r)(t -1 0 , t -1 1 )(t -1

0 + t -1 1 -t -1 0 t -1 1 ) (t -1 0 t -1 1 ) p/2 -1 t -1 0 t -1 1 -1 -(t -1 0 -1)(t -1 1 -1) x(q)(t 0 + t 1 ) + 2(t -1 0 -1)(t -1 1 -1) t -1 0 t -1 1 -1 p 2 - (t -1 0 t -1 1 ) p/2 -1 t -1 0 t -1 1 -1
x(q)(t 0 + t 1 )

+ x(-r)(t -1 0 , t -1 1 )(-t -1 0 t -1 1 ) (t -1 0 t -1 1 ) p/2 -1 t -1 0 t -1 1 -1
x(q)(t 0 + t 1 )(t -1 0 + t -1 1 )(t 0 + t 1 )

+ 2(t -1 0 -1)(t -1 1 -1) t -1 0 t -1 1 -1 p 2 - (t -1 0 t -1 1 ) p/2 -1 t -1 0 t -1
1 -1

x(q + 1)(t 0 + t 1 ) = x(-r)(t -1 0 , t 1 -1 )(t 0 + t 1 ) (t -1 0 + t -1 1 ) 2 (t -1

0 t -1 1 ) p/2 -1 t -1 0 t -1 1 -1 x(q) + (t -1 0 + t -1 1 ) 2(t -1 0 -1)(t -1 1 -1) t -1 0 t -1 1 -1 p 2 - (t -1 0 t -1 1 ) p/2 -1 t -1 0 t -1 1 -1 x(q) + (t -1 0 t -1 1 ) p/2 -1 t -1 0 t -1 1 -1 x(q)(t 0 + t 1 )(t -1 0 + t -1 1 )(-t -1 0 t -1 1 )
+ (-t -1 0 t -1 1 )

2(t -1 0 -1)(t -1 1 -1) t -1 0 t -1 1 -1 p 2 - (t -1 0 t -1 1 ) p/2 -1 t -1 0 t -1 1 -1 x(q + 1)
= x(-r)(t -1 0 , t 1 -1 )(t 0 + t 1 ) x(q) (t -1 0 t -1 1 ) p/2 -1 t -1 0 t -1

1 -1

t -2 0 + t -2 1 -t -1 0 t -1 1 (t 0 t -1 1 + t 1 t -1 0 ) + 2(t -1 0 -1)(t -1 1 -1) t -1 0 t -1 1 -1 p 2 - (t -1 0 t -1 1 ) p/2 -1 t -1 0 t -1 1 -1 (t -1 0 + t -1 1 )
x(q)t -1 0 t -1 1 x(q + 1) .

But t -2 0 + t -2 1t -1 0 t -1 1 (t 0 t -1 1 + t 1 t -1 0 ) = 0. So to show the two terms of highest and lowest degree disappear in that polynomial we show that modulo lower degree terms, α = (t -1 0 + t -1 1 )x(q)t -1 0 t -1 1 x(q + 1) = 0. Let's look at x(q) first of all:

x(q) = t q 0t q 1 + other terms (t 0 + 1)(t 1 + 1)(t 0t 1 )

= M + m + other terms, where M is the term of highest degree in x(q), and m the one of smallest degree. That way t q 0t q 1 + other terms = (t 0 + 1)(t 1 + 1)(t 0t 1 )(M + m + other terms).

And identifying the highest and lowest degree terms on each side we find M = t q-2 0 and m = t q-2 1 .
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 11 Figure 1.1 -The trefoil knot.

Definition 1 . 1 . 7 (

 117 link diagram). A link diagram is a 4-valent planar graph with over/under decorated vertices. Such a diagram represents a regular projection of the link on a properly chosen plane. Moreover, such a projection exists for any link type.

Figures 1 .Figure 1 . 2 -

 112 Figures 1.1 and 1.2 are examples of different diagrams of simple knots. This representation of links naturally gives rise to a first example of link invariant. For a link L, the minimal number of crossings of L is

  Set two links L and L . If D is a diagram for L and D is a diagram for L , then L and L are equivalent if and only if D and D are related by a finite sequence of isotopies of R 2 and RIa, RIb, RII, RIII local moves shown in Figure 1.3.

Figure 1 . 3 -

 13 Figure 1.3 -Reidemeister moves RIa, RIb, RII and RIII.

Figure

  Figure 1.4 -Braid σ 1 σ -1 3 σ 1 σ 2 σ -1 3 σ -1 2 σ 1 .

Figure 1 . 5 -

 15 Figure 1.5 -Artin generator σ 2 ∈ B 4 and its inverse σ -1 2 .

Figure 1 . 6 -

 16 Figure 1.6 -The closure operation.

Figure 1 . 7 -

 17 Figure 1.7 -Move MI.

Figure 1 . 8 -

 18 Figure 1.8 -Move MII.

Definition 1 . 2 . 3 .

 123 (genus of a link) Let L be a link in S 3 . The genus g(L) of L is g(L) := min{g(Σ), Σ Seifert surface for L}.

Figure 1 . 9 -

 19 Figure 1.9 -A Seifert surface for the trefoil knot.

Figure 1 . 1 . 3 . 2 Modifying the bracket to obtain a link invariant Definition 1 . 3 . 3 .Example 1 . 3 . 4 .Theorem 1 . 3 . 5 .Definition 1 . 3 . 6 (

 1132133134135136 Figure 1.10 -A positive and a negative crossing.
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 111 Figure 1.11 -Local changes in the skein relation.

Theorem 1 . 5 . 2 .

 152 Figure 1.13 -A tangle.

Figure 1 . 14 -

 114 Figure 1.14 -The elementary tangle diagrams.

Figure 1 . 15 -Theorem 1 . 5 . 5 . 5 .Theorem 1 . 5 . 6 .

 1151555156 Figure 1.15 -The elementary oriented tangle diagrams.

1. 6 A 1 . 6 . 1

 6161 family of quantum invariants: the Links-Gould invariants The Links-Gould invariants of links LG n,m

Definition 2 . 1 . 1 .

 211 (Reduced and non-reduced Burau representations of a braid)Set K := C(t ± 1 2

•=

  means equality up to multiplication by a unit of C[t ±1 ].

Proposition 2 . 2 . 4 .

 224 Map I n is a C[B n ]-module automorphism. That is, for any b ∈ B n :

  b is braid b "looked at from the other side". That way we have elementary properties : closure(b) = closure( b) ; σk = σ n-k ; for any σ, τ ∈ B n : στ = σ τ.

Remark 3 . 1 . 4 .

 314 For a homogeneous a ∈ U 0 , |a| = d G (a) modulo 2.

CQFD

  

3. 3 Links-Gould invariants and the conjecture 3 . 3 . 1

 3331 Links-Gould invariantsLG n,1

Figure 4 . 1 -

 41 Figure 4.1 -The untwisted Whitehead double of the right handed trefoil with a positive clasp.

S 1 : S 2 :Figure 4 . 2 - 3 . S 2b 1 2 S -2b 2 1 . . . S -2b m 1 Figure 4 . 3 -

 1242321143 Figure 4.2 -Generators S 1 and S 2 of braid group B 3 .

D(b 1 ,2b 1 2 S -2b 2 1 . . . S 2b m 2 Figure 4 . 4 -Proposition 4 . 2 . 14 .

 1212444214 Figure 4.4 -D(b 1 , . . . , b m ) when m is odd.

Therefore, Conjecture 4 Theorem 4 . 2 . 15 .

 44215 .0.2 can be rephrasedspan(LG(D(b 1 , . . . , b m ))) = 2(2g(D(b 1 , . . . , b m )) + µ -1) = 2m.For any b 1 , b 2 , . . . , b m > 0, span(LG(D(b 1 , . . . , b m ))) = 2m.

1 or S 2b m 2 depending

 12 b 1 )) = ã1 (b 1 )LG( ) + ã2 (b 1 )LG( ) + ã3 (b 1 )LG( ) = ã1 (b 1 ) + ã2 (b 1 ). So the span of LG(D(b 1 )) is 2. m = 2 Still using the same skein relation, we can compute LG(D(b 1 , b 2 )).LG(D(b 1 , b 2 )) = a 1 (b 2 )LG(D(b 1 -1)) + a 2 (b 2 )LG(D(b 1 )) + a 3 (b 2 )LG( ).The second part of the sum has span 2 + 2 = 4. The third part has span 2 + 0 = 2. More care has to be taken with the first term, and in particular with LG(D(b 1 -1)). If b 1 -1 > 0, LG(D(b 1 -1)) has span 2. In the other case, D(0) = so LG(D(0)) = 0. So in any case the span of the sum is 4. Let us now set m 3 and suppose the equality stands for any D(b 1 , . . . , b k ) with k m -1. For D(b 1 , . . . , b m ) we can apply skein relation 3 of 4.2.12 or its mirror image to the crossings that correspond to S -2b m on whether m is odd or even. Say m is even. LG(D(b 1 , . . . , b m )) =a 1 (b m )LG(D(b 1 , . . . , b m-1 -1)) + a 2 (b m )LG(D(b 1 , . . . , b m-1 )) + a 3 (b m )LG(D(b 1 , . . . , b m-2 )).

Since

  LG(D(b 1 , . . . , b m-1 , 0)) = LG(D(b 1 , . . . , b m-2 )) the first element in the sum has a span smaller than 0 + 2(m -1) = 2m -2. The second part has span 2 + 2(m -1) = 2m and the third 2 + 2(m -2) = 2m -2. In the end span(LG(D(b 1 , . . . , b m ))) = 2m. CQFD Twist knots Definition 4.2.16.A twist knot is a Whitehead double of the unknot. We will denote by K n the twist knot shown in Figure5when 2n -1 is positive. If 2n -1 is negative, there are 1 -2n crossings of the opposite sort.

Figure 4 . 5 -

 45 Figure 4.5 -Twist knot K n .

Figure 4 . 7 -

 47 Figure 4.7 -L(-2, 3, 7).

1

 1 

2 for K( 2 ,

 22 -1, r),4 g = |q|+|r| 2 if :

Figure 4 . 8 -

 48 Figure 4.8 -K(2, -1, r) when r 3.

Figure 4 . 9 -

 49 Figure 4.9 -K(2, -1, r) when r -1.

2Proposition 4 . 3 . 1 .

 431 there exists V(K) a neighborhood of K and there exists a trivializing homeomorphismθ : V(K) -→ S 1 × D 2 such that π • θ(X) = p(X) for any X ∈ V(K) \ K,where π(x, y) := y |y| . Set K a fibered knot. If Conjecture 4.0.2 is true, then span(LG(K; t 0 , t 1 )) = 4g(K).
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Definition 1.1.10. A braid in n strands is a disjoint union of n strands embedded in R 2

  ∈ B n are two braids in n strands, we define the product of A and B denoted A.B to be the braid obtained by putting A on top of B.

	× [0, 1]
	such that no strand has a critical point with respect to the vertical coordinate. Two braids are
	equivalent if they are related by an isotopy of R 2 × [0, 1] that preserves the vertical coordinate
	and its boundary. We consider braids up to equivalence.
	An example of a braid in 4 strands can be found in Figure 1.4. We denote by B n the set
	of braids in n strands up to isotopy. If A, B

Corollary 1.1.15. A

  map I : n 1 B n -→ E that is invariant under MI and MII is a link invariant.

	Theorem 1.1.14 (Markov's theorem). Two braids have the same closure if and only if they are
	related by a finite sequence of Markov moves MI, MII where:
	• MI: for A, B ∈ B n , A.B ←→ B.A ;
	• MII: for A ∈ B n , A ←→ A.σ n ∈ B n+1 ←→ A.σ -1 n ∈ B n+1 .

Definition 1.2.1. (Seifert surface for

  a link) Set L a link in S 3 . A Seifert surface for L is a compact, connected, orientable surface Σ ⊂ S 3 such that ∂Σ = L.

Definition 1.2.4. (

  Alexander polynomial of a link) Set L a link in S 3 with µ components and choose Σ a Seifert surface for L. Then H 1 (Σ, Z) is a free abelian group of rank 1χ(Σ) = 2g(Σ) + µ -1. If v ij is the linking number in S 3 of the i th generator of H 1 (Σ, Z) with the pushoff of the j th generator, then V = (v ij ) is called a Seifert matrix for L. The Alexander polynomial is computed from such a Seifert matrix setting

1.3.1 The Kauffman bracket Definition 1.3.1. The

  Kauffman bracket is a function from unoriented link diagrams in the plane to Laurent polynomials with integer coefficients in one variable A. It maps a diagram D to its bracket < D >∈ Z[A ±1

  If F ⊕ G is the representation of the n-strand braid group on W n ⊕ W n built from F and G, we consider the exterior representation Ψ n := (F ⊕ G) on exterior algebra (W n ⊕ W n ). ) and Ψ n both are 4 n = 2 2n -dimensional representations.

	1/2 and t -1/2 .	CQFD
	Definition 2.2.2. Remark 2.2.3. Note that b n R (t 0 , t -1 0	

  R can be rewritten in basis B = (|e 1 ⊗ e 1 |, |e 4 ⊗ e 4 |, |e 2 ⊗ e 2 |, |e 3 ⊗ e 3 |, |e 1 ⊗ e 2 , e 2 ⊗ e 1 |, |e 1 ⊗ e 3 , e 3 ⊗ e 1 |, |e 3 ⊗ e 4 , e 4 ⊗ e 3 |, |e 2 ⊗ e 4 , e 4 ⊗ e 2 |, |e 1 ⊗ e 4 , e 2 ⊗ e 3 , e 3 ⊗ e 2 , e 4 ⊗ e 1 |) as follows:

  e 2 ⊗ e 2 , e 3 ⊗ e 3 , e 4 ⊗ e 4 , e 5 ⊗ e 5 , e 6 ⊗ e 6 , e 7 ⊗ e 7 , e 8 ⊗ e 8 ) ; ⊗ e 2 , e 2 ⊗ e 1 ), (e 1 ⊗ e 3 , e 3 ⊗ e 1 ) and (e 1 ⊗ e 4 , e 4 ⊗ e 1 ) ; ⊗ e 8 , e 8 ⊗ e 7 ), (e 6 ⊗ e 8 , e 8 ⊗ e 6 ) and (e 5 ⊗ e 8 , e 8 ⊗ e 5 ) ; ⊗ e 5 , e 5 ⊗ e 2 ), (e 3 ⊗ e 5 , e 5 ⊗ e 3 ), (e 2 ⊗ e 6 , e 6 ⊗ e 2 ), (e 4 ⊗ e 6 , e 6 ⊗ e 4 ), (e 3 ⊗ e 7 , e 7 ⊗ e 3 ) and (e 4 ⊗ e 7 , e 7 ⊗ e 4 ) ;

	several copies of		
		0	t -1/2 0
	t -1/2	
	several copies of		
	t -2 0	0 t -1/2 0	t -1/2 0 1 -t -1
	several copies of		
	-t -1 0	0 t -1/2 0	t -1/2 0 1 -t -1 0
	in bases (e 2 several copies of		

0 1t -1 0 in bases (e 1 0 in bases (e 7

  e 2 ⊗ e 3 , e 3 ⊗ e 2 , e 5 ⊗ e 1 ), (e 1 ⊗ e 6 , e 2 ⊗ e 4 , e 4 ⊗ e 2 , e 6 ⊗ e 1 ) and (e 1 ⊗ e 7 , e 3 ⊗ e 4 , e 4 ⊗ e 3 , e 7 ⊗ e 1 ) ;

	several copies of

  in bases (e 4 ⊗ e 8 , e 6 ⊗ e 7 , e 7 ⊗ e 6 , e 8 ⊗ e 4 ), (e 3 ⊗ e 8 , e 5 ⊗ e 7 , e 7 ⊗ e 5 , e 8 ⊗ e 3 ) and (e 2 ⊗ e 8 , e 5 ⊗ e 6 , e 6 ⊗ e 5 , e 8 ⊗ e 2 ) ;

  1 j . Finally k i ⊗1 clearly commutes with D gl and we can conclude using τ • D gl = D gl • τ. CQFD Proof of Theorem 3.3.1. Let us sum up what we proved up to now to obtain 3.3.1. Let V -1 (0 n , α)

n i=1

T × trivial tangle diagram ↔ T ↔ trivial tangle diagram × T, where a trivial tangle diagram is a tensor product of vertical lines,

2. (T ⊗ trivial tangle diagram) × (trivial tangle diagram ⊗ S) ↔ (trivial tangle diagram ⊗ S) × (T ⊗ trivial tangle diagram),

t 1/2 0 t 1/2 1 Y . . . . . . . . . . . . . . . . -t 1/2 1 . . . . -t 1/2 0 . . . . . 1t 0 . . . . . . . . . . . . . t 1/2 0 t 1/2 1 . . . . . -Y . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . -t 1/2 1 . . . . -1 . . t 1/2 0 t 1/2 1 Y . . -Y . . -Y 2 . . . . . . . . . . -t 1/2 1 . . . . . 1t 1 . . . . . . . . . . . . . -t 1/2 1 . . 1t 1 .

Compared to Viro, we use the opposite coproduct here.

Remerciements

On the other hand:

Ψ n (σ k )(I n-1 (e i 1 ⊗ . . . ⊗ e i n-1 )) ∧ Ψ n (σ k )(g n ) if i n = 1 Ψ n (σ k )(I n-1 (e i 1 ⊗ . . . ⊗ e i n-1 )) = Ψ n-1 (σ k )(I n-1 (e i 1 ⊗ . . . ⊗ e i n-1 )) if i n = 2 Ψ n (σ k )(Reord(I n-1 (e i 1 ⊗ . . . ⊗ e i n-1 ) ∧ f n ∧ g n ))

if i n = 3 Ψ n (σ k )(Reord(I n-1 (e i 1 ⊗ . . . ⊗ e i n-1 ) ∧ f n ))

if i n = 4

For i n = 1, since Ψ n (σ k )(g n ) = g n , we obtain the result. We also observe the equality holds when i n = 2. We now study the two remaining cases.

Let µ(e i 1 ⊗ . . . ⊗ e i n ) be the total of the number of e 1 and the number of e 3 in that elementary tensor. Given the expression of I n and our reference basis of (W n ⊕ W n ), it is obvious that:

Reord(I n-1 (e i 1 ⊗ . . . ⊗ e i n-1 ) ∧ f n ) = (-1) µ(e i 1 ⊗...⊗e i n-1 ) I n-1 (e i 1 ⊗ . . . ⊗ e i n-1 ) ∧ f n and Reord(I n-1 (e i 1 ⊗ . . . ⊗ e i n-1 ) ∧ f n ∧ g n ) = (-1) µ(e i 1 ⊗...⊗e i n-1 ) I n-1 (e i 1 ⊗ . . . ⊗ e i n-1 ) ∧ f n ∧ g n .

So finally

LG 3,1 (L;

The only thing that remains to be shown is that each of the three terms in the product is

The proof is similar to the one we did for LG 2,1 . The main point is to find R-matrices associated to their representations on V ⊗n such that

and that up to conjugation the trace is one of the three sums. We will not detail this argument.

A remark around case (n, 1)

To prove the identity

LG n,1 (L; t 0 , t -1 0 )

when n = 2, 3, we have used the crucial fact that we know an explicit formula for the Rmatrix and the left handle (the maps we called µ) in these two cases. Solving the conjecture for any n using the same ideas therefore requires the R-matrix to be computed in all cases.

In [START_REF] Wit | An infinite suite of Links-Gould invariants[END_REF], the calculations are explicit but up to n = 4 only. This is why it seems hard to solve the problem using these techniques when n grows larger. In the next chapter, we study the problem at the level of (super) Hopf algebras to prove all cases at the same time.

Chapter 3

Understanding the evaluations at the level of universal objects

Oleg Viro studied two interpretations of the (multivariable) Alexander polynomial as a quantum link invariant in [61]: either by considering the quasi triangular Hopf algebra associated to U q sl(2) at fourth roots of unity, or by considering super Hopf algebra U q gl(1|1).

In this chapter 1 , we show these Hopf algebras share properties with the -1 specialization of U q gl(n|1) leading to a complete proof of the (n, 1) case of the De Wit-Ishii-Links conjecture.

Hopf algebras for the Alexander polynomial

We first define a Hopf algebra U which is an essential ingredient in the study of quantum relatives of the Alexander polynomial. Unfortunately this algebra is only braided in a weak sense. Then we recall the definition of two quantum groups which can be seen as central extensions of U. One was first used by Murakami [START_REF] Murakami | The multi-variable Alexander polynomial and a one-parameter family of representations of U q (sl(2, C)) at q 2 = -1. Quantum groups[END_REF], both were studied by Viro in [61].

Finally we compare the braidings of these two Hopf algebras.

A braided Hopf algebra U

The following Hopf algebra U is a version of quantum sl(2) when the quantum parameter q is chosen to be a fourth root i of 1. The complex algebra U is finitely presented by generators k ±1 , e, f and relations

Chapter 4

A classical generalization of the Alexander invariant ?

At this point, the Alexander-Conway polynomial of a link ∆ L can be recovered from LG in at least two ways. David de Wit, Atsushi Ishii and Jon Links showed [START_REF] Wit | Links -Infinitely many two-variable generalisations of the Alexander-Conway polynomial[END_REF] LG(L; t 0 , -t -1 0 ) = ∆ L (t 2 0 ).

On the other hand, we just proved that the square of the Alexander polynomial can also be obtained evaluating LG:

LG(L; t 0 , t -1

Knowing this, it is natural to wonder : Question 4.0.1. Are there properties of ∆ that extend to LG ?

Conjecture 1.7.1 is a first attempt to give a positive answer to this question. In this final chapter 1 we give evidence for more positive answers to Question 4.0.1. We conjecture that the span of the LG invariant is a lower bound for the genus of a link.

Conjecture 4.0.2. Set L a link in S 3 and µ the number of its components.

• I span(LG(L; t 0 , t 1 )) 2(2g(L) + µ -1),

• II If L is alternating, then inequality I is an equality.

We also conjecture that for fibered knots, there are conditions on the leading coefficients of the LG polynomial. • I If K is fibered then LG(K) is monic,

• II If K is alternating, the converse is true as well.

We base these conjectures on computations for the first prime knots and on partial skein relations for LG that allow its evaluation on various infinite families of links. Notice that if the genus conjecture were true, LG would systematically give a better lower bound for the genus of a link than the one given by the Alexander invariant. Also, the criterion we conjecture for fibered knots would refine the well known similar statement for ∆.

A proof of these two statements would show quantum invariant LG can be used to find information on the geometry of links.

The R-matrix for LG 2,1 we consider in this chapter in the one introduced in Definition 1.6.1.

The Links-Gould invariant and the genus of links

We believe that Proposition 1.2.5 can be extended to the similar statement expressed in Conjecture 4.0.2. We will explain how and why it would be an extension of 1.2.5. The goal of Section 4.2 is to give a range of evidence to support that conjecture.

For a general P = ∑ i,j∈Z a ij t i 0 t j 1 , we can extend that definition to introduce the span of P : 2 is true when t 0 t 1 = 1 and t 0 t 1 = -1 via the evaluations we already mentionned

These evaluations also explain why our definition for the span was natural to try and push the lower bound a little further. Moreover, there are links where

)) = span(LG(L; t, -t -1 )). So to prove 2, we wish to show span(LG(L; t, -t -1 )) span(LG(L; t 0 , t 1 )).

This clearly shows that if the coefficient in front of t k in LG(L; t, -t -1 ) is non zero, then there is at least one non zero coefficient in front of a monomial of degree k in the expression of LG(L; t 0 , t 1 ), which yields 2. Moreover, some examples where the equality does not hold are given in Proposition 4.2.1. Now suppose I holds for any link and set L an alternating link. Then [START_REF] Crowell | Genus of Alternating Link Types[END_REF], Theorem 3.5,

So we have the following inequality chain :

Evidence supporting the genus conjecture

We wish to give evidence of the likeliness of Conjecture 4.0.2. In particular we verify the bound for small prime knots, prove it for several infinite families of knots and links and verify that the genus conjecture holds on an untwisted Whitehead double of the trefoil knot, which is a counter example due to Hugh Morton in a ressembling situation we will explain.

Less than 13 crossing prime knots

When we consider knots, µ is equal to 1 and the inequality becomes span(LG(K; t 0 , t 1 )) 4g (K).

We tested that inequality on all prime knots with less than 12 crossings, and on a large selection of non alternating prime knots with 13 crossings. To do that, we used the computations of LG for prime knots one can access via David de Wit's LINKS-GOULD EXPLORER [START_REF] Wit | Links-Gould Explorer[END_REF].

To find genus information up to 12 crossings, we used Cha and Livingston's KNOTINFO [4]. For non alternating 13 crossing prime knots, data is obtained from Stoimenow's website KNOT DATA TABLES [START_REF] Stoimenow | Knot Data Tables[END_REF]. Knots are listed with respect to the HTW ordering for tables of prime knots of up to 16 crossings [START_REF] Hoste | The first 1,701,936 knots[END_REF].

The reason why we did not test all non alternating 13 crossing prime knots is explained in [START_REF] De Wit | Where the Links-Gould invariant first fails to distinguish nonmutant prime knots[END_REF]: The LINKS-GOULD EXPLORER's database contains evaluations only for LG of knots with string index at most 5, and from time to time 6 or 7. Indeed, the memory required increases dramatically with braid width. This still provides values for LG for 2096 non alternating prime knots with 13 crossings among the 5110 which exist.

Proposition 4.2.1.

1 Conjecture 4.0.2 holds for every knot tested. In particular, for all alternating knots tested, the equality holds.

2 For all prime knots with less than 10 crossings, the span of LG exactly is 4 times the genus of the knot. However, as long as it remains a conjecture, the hard case for the inequality is when deg(∆ L (t)) = 2g(L) + µ -1 precisely because there is no choice on the value of the span of LG for it not to be a counter-example.

The untwisted Whitehead double of the trefoil knot

Here we compute the Links-Gould polynomial of the untwisted double of the trefoil knot that is drawn is Figure 1. This is an interesting knot to study since it is a counterexample to a genus type bound for another generalization of the Alexander-Conway polynomial : the HOMFLY-PT polynomial. Precisely, Hugh Morton shows in [START_REF] Morton | Seifert circles and knot polynomials[END_REF], theorem 2, that the monomial of highest degree with respect to the Alexander variable in the HOMFLY-PT invariant gives a lower bound for 2 g(L) + µ -1, where g(L) is the canonical genus of link L. The double of the trefoil is the example Morton gives to show that degree is not in general a lower bound for 2g(L) + µ -1. There is no such problem here : -

-A braid presentation of K 0 in braid group B 6 as a word in the standard Artin generators σ 1 , . . . , σ 5 is :

closure of a power of generator σ 1 of B 2 . We can then use skein relation 1 of 4.2.12 on each of these links to find that these three terms have a span smaller than 2r -2 = 4 r-1 2 . If p is even and positive, q is odd and positive, r is odd and negative, and (q, r) = (1, -1). This is the most tricky case. Indeed, if we compute LG naively using skein relations 1 and 2 as we did for the moment, some parts of the sum we obtain have a span larger than 4g = 2q -2r -4. We therefore have to look at these particular terms to see that what goes past the bound we hope actually compensates. This is achieved in the appendix (Section 4.4).

If p is positive and even, q is odd and q -3, and r is odd and positive. K(p, q, r) can be isotoped as follows :

K(p, q, r) = K(r, q, p) = K(p, r, q).

The last form K(p, r, q) shows that this case is a consequence of the two previous cases of point 5. CQFD

A generalization of Conjecture 4.0.2 to

LG n,1

Though we lack computations for LG m,n when (m, n) = (1, 1), (2, 1), the (m, 1) and (1, m) cases of the De Wit-Ishii-Links conjecture, that are known to be true, extend the evaluations we have for LG 2,1 , that motivated Conjecture 4.0.2. So a potential homological interpretation for LG 2,1 should extend to LG n,1 as well. Question 4.2.24. Set L a link in S 3 and n 3. Do we have, as it seems to be the case when n = 2 :

• I span(LG n,1 (L; t 0 , t 1 )) n(2g(L) + µ -1),

• II If L is alternating, then inequality I is an equality ? Remark 4.2.25. For example, the equality holds for all prime knots with less than 10 crossings when n = 3. Remark 4.2.26. As a consequence, one could ask, as n tends to infinity, if

However this cannot be true. Indeed, there are pairs of mutant knots with different genera, and neither of the LG n,1 detects mutation.

The Links-Gould polynomial and fiberedness

In addition to genus information, the Links-Gould polynomial seems to contain signs of whether a knot is fibered or not. This is another well known feature of the Alexander invari- Verifications were done using de Wit's LINKS-GOULD EXPLORER [START_REF] Wit | Links-Gould Explorer[END_REF] and Cha and Livingston's KNOTINFO [4].

Appendix : proof of the harder case in Theorem 4.2.23

Here we prove the remaining case of Theorem 4.2.23. Consider pretzel knot K(p, q, r) when p is positive and even, q is positive and odd, r is negative and odd, and (q, r) = (1, -1). We want to show that span(LG(K(p, q, r))) 4g = 2q -2r -4.

We first consider r = -1. Then 4g = 2q -2. In that precise configuration, using skein relation 2 of 4.2.12 on the p/2 full twists and skein relation 1 of the same corollary on the q half twists, you find a sum of terms, each of which has a span smaller than 2q -2. In general, the computation is not that easy. We show knot K(2, 3, -3) in Figure 10 to fix the orientation chosen here. Let us introduce some notations :

.

We transform the -r half twists in K(p, q, r) using skein relation 1 of 4.2.12.

LG(K(p, q, r)

LG(K(p, q, -1))

LG(K(p, q, 0)).

The span of LG(K(p, q, -1)) is 2q -2 with the previous case. Also span(y(-r)(t -1 0 , t -1 1 )) = -2r -4. So the second term of the sum above has span 2q -2r -6 and we need only to consider the first and third terms in the rest of the proof. Also, using skein relation 1 of Proposition 4.2.7,

LG(K(p, q, -1))

LG(K(p, q, 1)).

Again, the first term of this sum has span (-2r -4) + 2 + (2q -2) = 2q -2r -4 so we can ignore it as well and we are interested in the following sum:

LG(K(p, q, 0))

LG(K(p, q, 1)).

However, span(z(-r)(t -1 0 , t -1 1 )) = -2r -6 and span(x(-r

LG(K(p, q, 1)).

Using the usual skein relations on LG(K(p, q, 0), we get the following value modulo terms with a small span:

LG

The two pieces of the sum have span 2q. Similarily, ignoring non extremal span terms:

LG

Finally, modulo lower degree terms,

In conclusion,
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Abstract

In this thesis we focus on the connections that exist between two link invariants: first the Alexander-Conway invariant ∆ that was the first polynomial link invariant to be discovered, and one of the most thoroughly studied since alongside with the Jones polynomial, and on the other hand the family of Links-Gould invariants LG n,m that are quantum link invariants derived from super Hopf algebras U q gl(n|m). We prove a case of the De Wit-Ishii-Links conjecture: in some cases we can recover powers of the Alexander polynomial as evaluations of the Links-Gould invariants. So the LG polynomials are generalizations of the Alexander invariant. Moreover we give evidence that these invariants should still have some of the most remarkable properties of the Alexander polynomial: they seem to offer a lower bound for the genus of links and a criterion for fiberedness of knots.
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