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Blondie - You see, in this world there’s two kinds of people, my friend ... those with loaded
guns, and those who dig.

You dig.

Tuco - Where?

Blondie - Here.
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Résumé

Les nceuds, tresses et autres objets noués sont des sources d’intérét et de curiosité pour
I’homme depuis de nombreuses années. Que ce soit a titre décoratif et architectural ou pour
leur utilité dans l’art de la navigation, les nceuds sont et ont été présents dans de nom-
breuses sociétés humaines et nous entourent aujourd’hui encore, sans toujours que I'on s’en
apercoive. Sans que 1'on puisse donner un sens précis a ses affirmations, le psychanalyste
Jacques-Marie Lacan voit ainsi dans certains entrelacs des motifs d’interprétation de la sub-
jectivité humaine [34].

Les premiéres traces de recherche en théorie des nceuds remontent au 18°™¢ siecle avec
les travaux du mathématicien francais Alexandre-Théophile Vandermonde. Dans son papier
Remarques sur les problemes de situation [60] Vandermonde s’intéresse au probléeme du cava-
lier. La théorie des nceuds connut un regain d’intérét grace aux théories de Lord Kelvin qui
postula que les atomes étaient des noeuds plongés dans 1'éther. Celles-ci conduirent aux pre-
mieres tables de noeuds réalisées par Peter Guthrie Tait. Il publia ses tables de nceuds a moins
de 10 croisements ainsi que des conjectures désormais connues sous le nom de conjectures de
Tait a la fin du 19%™€ siecle [57].

Le premier invariant de noeuds polynomial fut découvert par James Waddell Alexander
[2] au cours des recherches qu’il a menées sur les groupes de nceuds et les propriétés homo-
logiques des compléments de nceuds. C’est aussi a cette période de I'histoire mathématique
que des progres conséquents furent réalisés en matiere de représentation des nceuds et en-
trelacs. Ce fut par exemple le cas du théoreme de Reidemeister [50, 3] qui permet de rendre
la représentation diagrammatique des entrelacs praticable. Des résultats sur le codage des

entrelacs par les tresses sont aussi apparus :
Théoreme (Alexander [1]). Tout entrelacs est la cloture d’une certaine tresse.

La contre partie du théoréme de Reidemeister dans le cas des représentations en tresses
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fut ensuite explicitée par Markov [38].

Alors que dans le méme temps les techniques de géométrie hyperboliques furent intro-
duites a la fin des années soixante-dix par William Thurston dans le champ de la théorie
des nceuds, pendant un peu moins de soixante ans, le polyndme d’Alexander A demeura
de maniere a posteriori surprenante le seul invariant polynomial de nceuds connu des topo-
logues. Cela jusqu’a l'introduction en 1984 par Vaughan Jones d’un nouvel invariant d’iso-
topie d’entrelacs défini de maniere combinatoire grace a son invariance par mouvements de
Reidemeister : le polyndme de Jones [25]. Des lors cet invariant a été largement étudié et
il a été généralisé en ce qu’il est convenu d’appeler la théorie des invariants quantiques. Peu
de temps apres sa découverte, I'invariant de Jones fut utilisé avec succes afin de résoudre
d’anciens problemes ouverts, tels que les conjectures de Tait.

Malgré tout, la compréhension du polynome en tant qu’objet demeure plus qu’incom-
plete précisément du fait de la construction combinatoire dont il dérive, qui ne permet pas
de conception géométrique immédiate de son origine. A titre d’exemple, on ne sait toujours
pas répondre a la question suivante malgré son énoncé élémentaire, et malgré la réponse

clairement négative dans le cas du polyndme d’Alexander :
le polyndme de Jones distingue-t-il le nceud trivial ?

Plusieurs autes invariants furent construits sur le modéle du polyndéme de Jones : les po-
lynémes de Jones coloriés, I'invariant de Kontsevich qui peut étre vu comme un invariant
quantique universel, ... Méme le polynome d’Alexander peut étre vu comme un invariant
quantique [61]. Les méme questions se posent pour tous ces invariants quantiques quant a la
possibilité d"une interprétation classique homologique qui permettrait d’en extraire de 'in-
formation géométrique : information sur le genre du nceud, sur son caractere fibré, son carac-
tere topologiquement bordant, etc. Ceci est d"un certain point de vue paradoxal puisque le
théoréeme de Gordon-Luecke [21] a pour conséquence que tout invariant de nceud (premier)
peut étre extrait du groupe du nceud.

Le polynome de HOMFLY-PT [16] a aussi été introduit a la suite de la découverte du poly-
ndome de Jones. C’est une généralisation combinatoire commune aux invariants d”Alexander
et de Jones. Le polyndme de HOMFLY-PT continent de I'information sur le genre canonique,
mais pas sur le genre du nceud lui méme [39].

Dans cette these nous concentrerons nos efforts sur une famille d’invariants quantiques
d’entrelacs : les invariants de Links-Gould. Le premier invariant de Links-Gould LG = LG?*!
a été défini en 1992 par Jon Links et Mark D. Gould [35] avant d’étre étudié en détails par De
Wit, Kauffman et Links en 1999 [11]. Les travaux d’Atsushi Ishii fournissent une collection
simple de relations d’écheveaux pour LG [24] et posent la question de leur complétude. Par



ailleurs, Ivan Marin et Emmanuel Wagner exhibent un ensemble de relations d’écheveaux
complet mais difficile a manipuler pour cet invariant [37].

L'invariant de Links-Gould peut étre généralisé dans au moins deux directions diffé-
rentes. En 2001, De Wit étendit la construction de LG a une famille infinie d’invariants LG"™,
n,m € IN* [7]. Ces invariants furent alors généralisés a des invariants d’entrelacs a plusieurs
variables par Nathan Geer et Bertrand Patureau-Mirand [20] tout comme on peut générali-
ser le polyndme d’Alexander a sa version multivariable. Dans ces perspectives, le polynome

d’Alexander devient un membre de la famille des invariants de Links-Gould [61]
A =LG".

Ainsi, non seulement le polyndme d’Alexander devient un invariant quantique, mais les
invariants LG™™ lui deviennent associés et construits suivant le méme modele que A. De

fait, David De Wit, Atsushi Ishii et Jon Links conjecturent [10] que pour tout entrelacs L
LG"™(L; T, ™ ™) = A (T>™)",

ou Ar, est le polyndme d’Alexander-Conway de L. Ils prouvent cette conjecture dans les
cas (n,m) = (1,m) completement et (n,m) = (2,1) pour une famille restreinte de tresses.
Une partie de ce travail sera consacrée a la preuve du cas (1,1) de la conjecture pour n
quelconque et est issue de l'article On the Links-Gould invariant and the square of the Alexander
polynomial [31] et du travail réalisé en collaboration avec Bertrand Patureau-Mirand Other
quantum relatives of the Alexander polynomial through the Links-Gould invariant [33].

Théoreme ([31, 33]). Pour tout entrelacs L dans S>,
LGN (L;t, —1) = AL(T?)".

Les polyndmes LG étant des généralisations du polyndme d’Alexander, ils contiennent
davantage d’information sur 'entrelacs. En particulier, I'information homologique fournie
par A est également présente dans LG. Le probleme de démontrer le cas (n,1) de la conjec-
ture de De Wit-Ishii-Links est plus complexe que celui de prouver le cas (1,7) car on ne
connait pas de collection complete de relations d’écheveaux pour A", n > 2.

On développera dans ce manuscrit deux stratégies différentes pour prouver le cas (1,1)
de la conjecture. Pour n petit, on s’intéressera aux représentations des groupes de tresses
dérivées de la R-matrice de la superalgebre de Hopf U, gl(7|1) que ’on interprétera en termes
de la représentation de Burau comme on 1’a fait dans [31]. Si on note blg la représentation

de B, induite par la R-matrice spécialisée & g = —1 de LG*! ou LG*! et ¥, l'extérieur de



la somme directe de deux ou trois copies convenablement choisies de la représentation de

Burau, ces représentations sont équivalentes :

Théoréme ([31]). Pour tout p, on peut construire I, un automorphisme de C[By]-modules. C’est a

dire que I, vérifie, pour toute tresse b € By :
¥, (b) oI, = I, o bk (b).

Malheureusement cette méthode requiert I'étude d"une R-matrice explicite pour chaque n,
ce qui la rend difficilement praticable pour n quelconque. C’est pourquoi nous disséquerons
ensuite directement la structure de la superalgebre de Hopf U,gl(n|1) comme nous 1’avons
fait dans [33] afin d’obtenir le résultat pour tout n. Une étude précise de la superalgebre de
Hopf U,gl(n|1) conduit a obtenir une décomposition de cette algebre quand g est évalué en
—1 puis a une décomposition de la représentation de plus haut poids spécialisée de U, gl(1|1)
en termes de la représentation de plus haut poids de U,gl(1|1). Avec les notations que nous

introduirons dans le chapitre 3, cela donne :

Théoréme ([33]). Munie de I'action de ®;A; induite par © : ®;A; — A /1, la représentation de
plus haut pois spécialisée V_1(0",«) est isomorphe a la représentation irréductible @;V' oit chaque
V' est un A;-module isomorphe au U-module 2-dimensionnel V.

Cependant, la premiére méthode demeure intéressante dans la perspective de comprendre
les invariants de Links-Gould d"un point de vue classique. En effet, la connexion établie entre
la R-matrice permettant de calculer LG™! et la représentation de Burau donne bon espoir de
pouvoir fournir une telle interprétation.

Ainsi il est on ne peut plus naturel de chercher a savoir si certaines propriétés de 1'in-
variant d’Alexander s’étendent aux polyndmes de Links-Gould, & commencer par le plus
simple d’entre eux apres A, LG?*!. On conjecture ici que cela se produit dans au moins deux

cas de figure.
Conjecture ([32], Conjecture 0.3). Soit L un entrelacs dans S* a u composantes.

o I span(LG* (L;to, t1)) < 2(2g(L) +u —1),

o II Si L est alterné, I'inégalité 1 est une égalité.

Un résultat similaire et bien connu, énoncé dans la proposition 1.2.5, fait du polynéome
d’Alexander un outil utile dans le calcul du genre des entrelacs. La démonstration de ce fait

vient alors directement de la construction du polynéme A comme déterminant d"une matrice

de Seifert, de la taille minimale d"une telle matrice et du degré de chaque coefficient.



Conjecture ([32], Conjecture 0.4). Soit K un nceud dans S°.
o I Si K est fibré alors LG*>'(K) est unitaire,

o II Si K est alterné, la réciproque est vraie.

Ces conjectures furent initialement énoncées dans 'article The Links-Gould invariant as a
classical generalization of the Alexander polynomial ? [32] et y sont vérifiées dans de nombreux
cas.

Théoreme ([32]). La conjecture de genre est vérifiée pour tous les neeuds premiers possédant moins
de 12 croisements et de nombreux nceuds premiers a 13 croisements, un double de Whitehead du nceud
de tréfle, et plusieurs familles infinies d’entrelacs : les entrelacs a deux ponts, les nceuds twist et les
neeuds pretzel. La conjecture sur les nceuds fibrés, elle, est vérifiée pour tous les neeuds premiers a
moins de 12 croisements.

Le double de Whitehead du nceud de tréfle pour lequel nous calculons le polynome de
Links-Gould afin de vérifier la conjecture de genre est un contre-exemple a une inégalité
similaire dans le cas du polynéme de HOMFLT-PT d& a Hugh Morton [39].

De plus, étant données les évaluations connues pour LG31,
LG* (L;to, —ty ') = AL(£)) , LG*(L; to, ty 1) = AL(to)?,

si ces deux conjectures s’averent exactes, ces résultats constitueraient une amélioration systé-
matique des énoncés similaires pour le polyndme d’Alexander.

Rappelons également une conjecture due a Ishii qui constituerait un autre parallele évident
de comportement entre A et LG. Il énonce cette conjecture dans son papier The Links-Gould po-
lynomial as a generalization of the Alexander-Conway polynomial [23] dans lequel il notait déja la
similitude de certaines propriétés élémentaires des polynomes de Links-Gould et d’Alexan-
der. Ces propriétés sont les suivantes :

Théoreme ([23]). Le polyndme de Links-Gould vérifie :

— LG(O) =1,

— Si L* est la réflexion de L, LG(L*; tp, t1) = LG(L; tal, tl’l),

— On a la symétrie suivante : LG(L; to, t1) = LG(L; 1, to). En effet, LG ne détecte pas l'inver-
sion,

— Si L et L' sont deux entrelacs, on désigne leur somme connexe par L#L'. Alors : LG(L#L') =
LG(L)LG(L'),

— Si L = L' U L" est l'union disjointe de L et L”, alors LG(L) = 0,

— LG(L;to,1) = LG(L;1,t,) = 1si L est un nceud, 0 sinon.



La conjecture affirme quant a elle :

Conjecture ([23]). Le polynome de Links-Gould LG (K; to, 1) = }; ; a,-]-tf)t]i d'un neeud alterné K

2

est “alterné”, cc’est a dire : ajjay > 0sii+j+ k+ 1 est pair, et ajjap < 0 sinon.

Ce comportement vérifié expérimentalement est probablement la trace d'une construc-
tion classique sous-jacente pour les invariants de Links-Gould. Ainsi ces derniers semblent-
ils étre - le polynome d’Alexander mis a part - le premier exemple d’invariants quantiques
que I’on pourrait comprendre géométriquement. Qui plus est, il semble raisonnable de cher-
cher a comprendre les invariants quantiques dans une perspective géométrique en commen-
cant par I'étude des LG qui sont des cousins de A. La seule tactique que 1’on puisse imaginer
a ce point pour prouver les conjectures ci-dessus ou tout autre résultat significatif liant LG et
la géométrie du nceud est d’exhiber une telle construction, ce a quoi nous nous attellerons a
I'avenir.

Un motif d’espoir est que méme dans le cas le plus étudié du polyndme de Jones, alors
qu’aucune interprétation géométrique n’existe, une célebre conjecture établit un lien entre les
polyndmes de Jones coloriés et la géométrie hyperbolique des complémentaires de nceuds.

Sil’on définit I'invariant de Kashaev d’un noeud K par

) Jrn(q)
Kyy= 1 RO LA
K g Jon(q)’

ot Jk n(q) est le N polyndme de Jones colorié, alors la conjecture du volume prédit que :
Conjecture (Kashaev, [27]).

o 2mlog | (K|

N—o0 N - VOI(K)’

oit vol(K) désigne le volume hyperbolique du complémentaire du neeud K dans S°.

Le manuscrit de thése qui suit est organisé en quatre parties. La premiere section pré-
sente les objets et introduit le contexte dans lequel cette recherche s’est effectuée, ainsi que
les résultats fondamentaux qui sont a l'origine de ce travail. Apres avoir détaillé plusieurs
représentations possibles des entrelacs, on définit les polynomes d’Alexander et de Jones,
avant d’exprimer chacun de ces invariants comme une trace quantique. On détaille ensuite
la théorie de Reshetikhin-Turaev [52] qui permet de comprendre la genése de ces expres-
sions. On définit pour finir les invariants de Links-Gould qui sont I'objet de cette étude et
on énonce la conjecture de De Wit-Ishii-Links dont la résolution était la cause finale de ce
travail a son commencement. Les trois parties suivantes présentent les résultats obtenus. La



deuxiéme et la troisieme partie exposent les deux méthodes de résolution du cas (n,1) de
la conjecture de De Wit-Ishii-Links que nous avons expliquées briévement ci-dessus. Enfin,

nous énongons et étayons dans la derniére partie les conjectures citées plus haut.

Le reste de ce texte sera rédigé en anglais.






Abstract

Knots, braids and other knotted objects have sparked curiosity and interest among human
societies since long ago. They are used still today for decoration in art and architectue, as
well as in the science of navigation. On a perhaps more amusing note, French psychoana-
lyst Jacques-Marie Lacan sees in certain knots and links a symbolic interpretation of human
subjectivity [34].

The scientific interest for knot theory starts late in the 18" century with French math-
ematician Alexandre-Théophile Vandermonde and his paper Remarques sur les problemes de
situation [60] where he studies the knight’s tour problem. The focus on the study of knots
due to Lord Kelvin’s theory that atoms were knots in the aether led to Peter Guthrie Tait’s
first knot tabulations. Tait published a table of knots with up to 10 crossings at the end of the
19th century along with several conjectures that came to be known as Tait conjectures [57].

The first polynomial knot invariant was discovered in the effort conducted by James
Waddell Alexander [2] to understand knot groups and homological properties of knot com-
plements. At that same period in mathematical history, significant progress was made in the
understanding of different ways in which one can represent knots and links. For example,
Reidemeister’s theorem [50, 3] allows us to use diagram representations of links effectively.
Similar results were discovered for braid representations of links as well. First Alexander’s

theorem states:
Theorem (Alexander [1]). Any link is the closure of a braid.

Markov [38] then proved a result similar to the Reidemeister theorem in the case of braid
representations.

While in that period of time William Thurston introduced hyperbolic geometry in the
spectrum of techniques used to study knots at the end of the seventies, for practically sixty
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years, the Alexander polynomial A was the only polynomial invariant known by topolo-
gists. But in 1984 Vaughan Jones introduced a new link isotopy invariant that is defined
combinatorially using its invariance under Reidemeister moves: the Jones polynomial [25].
That invariant has since been studied in depth and much generalized to build the theory of
quantum invariants. The Jones invariant has also been used successfully to solve old open
problems such as the Tait conjectures soon after it was discovered.

However, the understanding of the polynomial itself remains quite incomplete precisely
because the combinatorial construction it springs from does not offer a geometrical perspec-
tive for the object. For example, such an elementary question as the following, that is known
to be untrue for the Alexander invariant, is still an open problem:

does the Jones polynomial detect the unknot?

Several other invariants were built on the model of the Jones polynomial: the colored Jones
polynomials, the Kontsevich invariant that is in a sense a universal quantum invariant, ...
Even the Alexander polynomial can be reinterpreted as a quantum invariant [61]. For all
these quantum invariants the same questions arise regarding a possible classical homologi-
cal intrepretation that would allow us to extract geometrical information from them: genus
information, information on whether a knot is fibered or not, slice or not, etc. This is some-
what paradoxical since a consequence of the Gordon-Luecke theorem [21] is that the value
of any knot invariant for a prime knot can be read in the group of the knot.

The HOMFLY-PT polynomial was also introduced [16] in the wake of the discovery of
the Jones polynomial as a combinatorial generalization common to the Alexander and Jones
invariants. It gives canonical genus information, but says nothing more about the minimal
genus of a knot [39].

In this work we will focus on a family of quantum invariants: the Links-Gould invariants.
The first Links-Gould invariant LG = LG?*! was introduced in 1992 by Jon Links and Mark
D. Gould [35] and studied in detail by De Wit, Kauffman and Links in 1999 [11]. In his
work, Atsushi Ishii gives a simple set of skein relations for LG [24] and wonders if that set
is complete. On the other hand, Ivan Marin and Emmanuel Wagner give a complete but
complicated set of skein relations for that invariant [37].

The Links-Gould invariant can be generalized in at least two distinct directions. In 2001,
De Wit extended the construction of LG to an infinite family of invariants LG"", n,m &
IN* [7]. These invariants were then generalized to multivariable link invariants by Nathan
Geer and Bertrand Patureau-Mirand [20] in the same way that a multivariable version of

the Alexander polynomial can be defined. These perspectives are quite interesting since the



Alexander polynomial becomes part of this family [61]
A =LG".

Not only is the Alexander polynomial a quantum invariant, but the LG™™ invariants also
turn out to be invariants associated to A and built on a same model. As a matter of fact,
David De Wit, Atsushi Ishii and Jon Links conjectured [10] that for any link L

LGn’m(L; T, ein/m) — AL(sz)n,

where A is the Alexander-Conway polynomial of L. They proved the conjecture when
(n,m) = (1,m) and when (n,m) = (2,1) for a particular class of braids. Part of our work
here will be to prove the (1, 1) case of this conjecture for any # using two different methods,
one of which was first detailed in the paper On the Links-Gould invariant and the square of the
Alexander polynomial [31]. The second method was developed in the paper Other quantum rel-
atives of the Alexander polynomial through the Links-Gould invariant [33] written with Bertrand
Patureau-Mirand.

Theorem ([31, 33]). Forany link L in S°,
LGN (L; T, —1) = Ap(T?)".

Since Links-Gould invariants are extensions of the Alexander polynomial, they contain
more information on the link. In particular the classical information that can be recovered
from A is enclosed in LG. Note that it is a harder problem to prove the (n,1) case of the De
Wit-Ishii-Links conjectures than to prove the (1, 1) case because there is no known complete
set of skein relations for A", n > 2.

In this manuscript, we develop two distinct strategies to prove the (1, 1) case of the con-
jecture. For small values of 1, we focus on the operator invariant derived from Hopf super-
algebra U,gl(n|1) and give an interpretation of that operator in terms of the classical Burau
representation of braid groups like we did in [31]. Denoting by bk the representation of
group B, induced by the R-matrix for LG*>! or LG*! specialized at 4 = —1, and calling ¥,
the exterior representation of the direct sum of two or three well chosen copies of the Burau

representation, these two representations are equivalent:

Theorem ([31]). For any p, there exists a C[By|-module automorphism I, between the two represen-
tations we have just explicited. Which means that map I, satisfies the following commutation relation
for any braid b € By:

¥, (b) oI, = I, o bk (b).



The problem is that this method requires the study of an explicit R-matrix for each n,
making it hard to implement as n grows. That is why we then focus on the structure of Hopf
superalgebra U,gl(n|1) directly to prove the result for any n as we did in [33]. A precise
study of Hopf superabgebra U,gl(n|1) allows us to obtain a specific decomposition of that
algebra at g = —1. This splitting induces a decomposition of the specialized highest weight
representation of superalgebra U,gl(n|1) in terms of the highest weight representation of

U,gl(1|1). Using the notations we will introduce in Chapter 3, we can write:

Theorem ([33]). Equipped with the action of ®;A; induced by © : ®;A; — A7 /1, the specialized
highest weight representation V_1(0", a) is isomorphic to the irreducible representation ®;V' where
each V' is an A;-module isomorphic to the 2-dimensional U-module V..

However, the first method remains interesting in the prospect of giving a classical in-
terpretation of Links-Gould invariants. Indeed, connecting the R-matrix representation we
derive LG™! from with the Burau representation offers hope and ideas in the pursuit of such
an interpretation.

In fact it is natural to wonder at this point if properties of the Alexander invariant remain
true for Links-Gould polynomials, and as a start for the first Links-Gould invariant after A,

LG*!. We conjecture this happens in at least two cases.
Conjecture ([32], Conjecture 0.3). Set L a link in S® and y the number of its components.

o1 span(LG* (L;to, t1)) < 2(2g(L) +u —1),

o II If L is alternating, then inequality 1 is an equality.

A similar and well known result we recall in Proposition 1.2.5 shows that the Alexander
polynomial is a very useful tool to compute the genus of knots and links. The proof of this
fact is a direct consequence of the definition of polynomial A as the determinant of a Seifert
matrix. By choosing such a matrix with minimal dimensions and considering the degree of
each of its coefficients, we obtain the inequality.

Conjecture ([32], Conjecture 0.4). Set K a knot in S°.

o I If K is fibered then LG*'(K) is monic,

o II If K is alternating, the converse is true as well.

These conjectures were first stated in the paper The Links-Gould invariant as a classical gen-

eralization of the Alexander polynomial? [32] where they are supported by evidence in several

cases.



Theorem ([32]). The genus conjecture is true for all prime knots with less than 12 crossings and a
large selection of 13 crossing prime knots, a Whitehead double of the trefoil knot, and for different infi-
nite families of links: 2-bridge links, twist knots and pretzel knots. On the other hand, the fiberedness
conjecture has been successfully tested for prime knots with less than 12 crossings.

The Whitehead double of the trefoil on which we tested the conjecture by computing its
Links-Gould invariant is a counterexample to a similar inequality in the case of the HOMFLY-
PT skein polynomial. This counterexample is due to Hugh Morton [39].

In addition, given the evaluations we have for LG*1,
LG* (L;to, —ty ') = AL(£]) , LG*(L; to, ty 1) = AL(to)?,

if these two conjectures were to be true, the results would systematically improve the similar
statements for the Alexander polynomial.

In the same vein, another conjecture due this time to Ishii would be one more trace of a
similar behavior between LG and A. It can be found in his paper The Links-Gould polynomial
as a generalization of the Alexander-Conway polynomial [23] where Ishii proves that the Links-

Gould invariant LG?*! has all kinds of elementary Alexander-type features. In particular,

Theorem ([23]). The Links-Gould polynomial satisfies the following properties:
— LG(O) =1,
— Denoting L* the reflexion of L, LG(L*; ty, t1) = LG(L; tal, tl’l),
— We have the following symmetry : LG(L; to, t1) = LG(L; t1,to). Indeed LG does not detect
inversion,
— For L and L' two links, denoting L#L' their connected sum : LG(L#L') = LG(L)LG(L'),
— IfL = L'UL" is the split union of L' and L”, then LG(L) = 0,
— LG(L;to,1) = LG(L;1,t1) = 1if L is a knot, 0 otherwise.

Moreover the Ishii conjecture states:

Conjecture ([23]). The LG polynomial LG(K;to, t1) = Y5 ; az-]-tf)t]i of an alternating knot K is "al-
ternating”, that is : ajjax =0 ifi+j+k+1iseven, and ajjag < 0 otherwise.

This behavior we have tested experimentally is likely to be the trace of a classical con-
struction for the LG invariants. So the LG invariants seem to be, apart from the Alexander
invariant, the first example of quantum invariants we might understand from a geometrical
point of view. Furthermore, it is reasonable to attempt to understand quantum invariants
from a geometrical perspective by starting to study the LG invariants that are cousins of A.
The only strategy we can imagine at this point to prove the two conjectures we stated and
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any other significative result linking LG with the geometry of the knot is to present such a
construction. We intend to focus our future efforts on this goal.

A clear signal of hope is that even in the case of the Jones polynomial that has been the
most thoroughly studied, although no topological meaning has been given up to now, a
celebrated conjecture establishes a connection between the colored Jones polynomials and
the hyperbolic geometry of knot complements. One can define Kashaev’s invariant for a

knot K as follows:

) Jrn(q)
Kyy= 1
K g Jon(q)’

where J n(q) stands for the N™* colored Jones polynomial. Then the volume conjecture pre-
dicts that

Conjecture (Kashaev, [27]).

lim 27tlog [(K)N|

N—o0 N - VOI(K),

where vol(K) is the hyperbolic volume of the complement of knot K in S>.

The thesis manuscript that follows is divided into four distinct sections. The first section
introduces the objects and explains the context in which we did this research, as well as the
fundamental results that inspired and are at the origin of this work. We start by studiying in
detail different representations that exist for knots and links. Then we introduce the Alexan-
der and Jones polynomials, and we express each of these invariants as a quantum trace. We
then explain what the Reshetikhin-Turaev theory is [52] and how it allows us to understand
where these traces come from. Finally we give the definition of the objects we study here:
the Links-Gould invariants of links. We state the De Wit-Ishii-Links conjecture that was the
question that motivated this work at the start. The three last sections explain the results we
achieved to prove. The second and third parts present the two methods we briefly exposed
in this abstract to prove the (n,1) case of the De Wit-Ishii-Links conjecture. To conclude this
work, we state the two conjectures we have formulated earlier and give evidence to support
them.
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Chapter 1

Introduction

1.1 Kbnots, links and invariants

1.1.1 Definitions

Knot theory is a subject for which the goal is quite easy to explain and somewhat natural,
even for a non mathematician. If you consider two shoelaces, each of them can be entangled.

Then one can glue the two ends of each shoelace together and ask:

Question 1.1.1. Can you deform the first shoelace into the second one without ungluing or cutting
it ?

This is the question, quite simple in its terms, that people who study knot theory try to
answer. The goal is to develop systematic and efficient methods to do so.

Definition 1.1.2. A link L of n components is a subset of R> C S° consisting of n disjoint
piecewise linear simple closed surves. When n = 1, we say L is a knot.

Remark 1.1.3. So we consider oriented links, even though we will often omit this precision in

the following and in some figures.

Definition 1.1.4. Two links Ly and L, are equivalent if there exists an orientation preserving

piecewise linear homeomorphism / : S — S® such that h(Ly) = L,.

Soon, we will not say L; and L, are equivalent anymore, but simply that they are equal.
The equivalence relation descried in Definition 1.1.4 is the mathematical translation of the
deformation mentioned in Question 1.1.1.

One can grasp that the question of knowing if two links are equivalent is hard by taking a
look at Figure 1.2. To measure this in another way, let us recall this surprising and non-trivial

result:
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Figure 1.1 — The trefoil knot.

Theorem 1.1.5 (Gordon-Luecke theorem [21]). Two knots are equivalent if and only if they have
complements in S® that are orientation-preserving homeomorphic.

So knot theory has direct and fundamental connections with the study of 3-manifolds.
This alone can motivate the study of such objects. The main idea to be able to distinguish
knots is one that is often used in algebraic topology. We try to compute equivalence invari-

ants: quantities that are invariant on an equivalence class of links.

Definition 1.1.6 (link invariant). A link invariant I is a map from the set of equivalence

classes of links to a certain set E. Invariant I is said to be complete if I is an injection.

This definition is very general. Of course, the goal is to find interesting links invariants.
An efficient invariant is one that is easy to compute and that at the same time distinguishes
many links. In the following we will give several combinatorial descriptions of links that
will allow us to build link invariants using different procedures.

1.1.2 Link diagrams

A link is a 1-dimensional object embedded in the 3-sphere. However, links can be repre-
sented in the 2-dimensional euclidean plane. These representations are called link diagrams.

Definition 1.1.7 (link diagram). A link diagram is a 4-valent planar graph with over/under
decorated vertices. Such a diagram represents a regular projection of the link on a properly
chosen plane. Moreover, such a projection exists for any link type.

Figures 1.1 and 1.2 are examples of different diagrams of simple knots. This representa-
tion of links naturally gives rise to a first example of link invariant. For a link L, the minimal
number of crossings of L is

n(L) := min{n(D), D diagram for L}
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Figure 1.2 — Different "unknots".

where 1n(D) is the number of crossings of a diagram D. Map #n : {links} — IN clearly is a
link invariant. However, the value of 7 on a link is in general (very) hard to determine. That
is why the minimal number of crossings is not an efficient link invariant. Nevertheless, some

elegant results exist. For example:

Theorem 1.1.8 (First Tait conjecture [57, 28, 43, 44]). Any reduced diagram of an alternating link

has the fewest possible crossings.

Considering two diagrams D; and D,, one can wonder if they represent the same link.

The Reidemeister theorem answers that question.

Theorem 1.1.9 (Reidemeister theorem [3, 50, 48]). Set two links L and L. If D is a diagram for L
and D' is a diagram for L', then L and L are equivalent if and only if D and D' are related by a finite
sequence of isotopies of R? and Rla, RIb, RII, RIII local moves shown in Figure 1.3.

This result offers a new way to build a link invariant. A link invariant is a map I :
{link diagrams} — E such that the value of I is invariant under isotopies of IR> and Reide-

meister moves.
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‘K A
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A=Y

Figure 1.3 — Reidemeister moves Rla, RIb, RII and RIII.

Figure 1.4 — Braid 005 10‘10’20’3_ 1(72_ loy.

1.1.3 Braid representations of links

Definition 1.1.10. A braid in 7 strands is a disjoint union of 7 strands embedded in R? x [0, 1]
such that no strand has a critical point with respect to the vertical coordinate. Two braids are
equivalent if they are related by an isotopy of R? x [0, 1] that preserves the vertical coordinate

and its boundary. We consider braids up to equivalence.

An example of a braid in 4 strands can be found in Figure 1.4. We denote by B,, the set
of braids in n strands up to isotopy. If A,B € B, are two braids in n strands, we define
the product of A and B denoted A.B to be the braid obtained by putting A on top of B.
That product is a group operation. The identity element is the braid where each strand goes
straight down. The inverse of a given braid is its reflection. Group B, is generated by the

standard Artin generators 0; for 1 <i < n — 1 and their inverses o '

, see Figure 1.5.
Braid group B, equipped with that product and that set of generators can be presented as

follows:

B, =< 01,02,...,04-1 | 0i0:410; = 0;410i0;41, 0301 = 010k, |k = 1| 22,1 <i<n—2>
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Figure 1.5 — Artin generator 0> € B4 and its inverse o, .

Remark 1.1.11. The first relation in that presentation is called the braid relation.

Remark 1.1.12. Setting 07 = 1, we find that a quotient of B, is the symmetric group S, on
a set of n symbols. This quotient corresponds to ignoring the over/under information at

crossings.

This makes the topological objects braids happen to be quite pleasant to study since they
are equivalently defined from that purely algebraic point of view. In particular, if V is a finite
dimensional vector space over a field K, we obtain a natural way of building a sequence
(¥ )n>2 of representations

¥, : B, — GL(V®").

Indeed, setting R € GL(V ® V) one can define
Y(oy) = idy P @ Reidy L
Given the relations in B, representation ¥, is well defined if and only if
(R®idy)o (idy ® R) o (R®idy) = (idy ® R) o (R®idy) o (idy ® R).

This equality is known as the Yang-Baxter equation. A solution R of that equation is called
an R-matrix. Finding explicit R-matrices, especially as the dimension of V' grows, is a hard
problem and a motivation to the systematic study of quantum groups. We will explicit this
in further detail in the following paragraphs.

Braids are interesting to us because they are after diagrams another efficient way to rep-
resent links. Indeed, one can build a link from any braid by closing it. See Figure 1.6. The
surjectivity and kernel of that correspondence can be described explicitely. First let us recall
this classical result:

Theorem 1.1.13 (Alexander’s theorem [1]). Any link is the closure of a certain braid.

Note that although Alexander’s paper does not give one, algorithms exist that transform
any link diagram into a diagram that is the closure of a braid, see [62].
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Figure 1.6 — The closure operation.

Figure 1.7 — Move ML

However, the correspondence between braids and links is clearly not one-to-one. For
example, the two braids A.B and B.A always have the same closure. The question of un-
derstanding how two braids with the same closure are related is addressed by Markov’s
theorem [38].

Theorem 1.1.14 (Markov’s theorem). Two braids have the same closure if and only if they are
related by a finite sequence of Markov moves MI, MII where:

e ML for A,B € B,, AB <+ B.A;

e MIL: for A € By, A<— A.0y € Byy1 +— Aol € By

Corollary 1.1.15. Amap I : | |,~1 B, — E that is invariant under MI and MII is a link invariant.
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Figure 1.8 — Move MIL

1.2 The Alexander polynomial

The Alexander invariant is a polynomial link invariant that was introduced by James
Waddell Alexander in 1923 [2]. It was the first polynomial invariant to be discovered and
it remained the only one until the disclosure of the Jones polynomial in 1984. There are
many different constructions of the Alexander polynomial, several of which we will explain
and explore in this manuscript: derived from the Burau representation or Fox calculus, and
even described as a quantum invariant, etc. For the moment we will define the Alexander
invariant using a Seifert surface. We will then list some interesting properties of the invariant

that are consequences of this construction.

1.2.1 Classical definition

Definition 1.2.1. (Seifert surface for a link) Set L a link in S3. A Seifert surface for L is a

compact, connected, orientable surface > C S3 such that 90X = L.

Such a surface exists for any link according to Seifert’s algorithm [53]. An example of
Seifert surface in the case of the trefoil knot is displayed in Figure 1.9. Note that because a
Seifert surface is orientable, choosing an orientation, one can push the surface forward in the
direction of a normal vector to the surface.

Remark 1.2.2. Any Seifert surface ¥ being connected and orientable, one can define the genus
g(X) of X

X(Z)=2-28(X) —p
where x(X) is the Euler characteristic of X and y is the number of components of link L.

Definition 1.2.3. (genus of a link) Let L be a link in S>. The genus ¢(L) of L is

g(L) := min{g(X), X Seifert surface for L}.
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Figure 1.9 — A Seifert surface for the trefoil knot.

Like in the case of the minimal number of crossings, the genus is a link invariant that
is quite easy to define but very hard to compute in practice. We will see the Alexander
polynomial helps to do so since its degree is a lower bound for the genus. One aim of this
work is to give evidence to support the assumption that we can systematically improve this
lower bound.

Definition 1.2.4. (Alexander polynomial of a link) Set L a link in $® with # components and
choose X a Seifert surface for L. Then H; (%, Z) is a free abelian group of rank 1 — x(X) =
2¢(X) + u — 1. If v;; is the linking number in $° of the i'" generator of Hj(Z,Z) with the
pushoff of the j generator, then V = (vj) is called a Seifert matrix for L. The Alexander
polynomial is computed from such a Seifert matrix setting

AL(t) = det(tV —'V) € Z[t, t71].

With this definition, A is determined up to multiplication by £t", n € Z, that is up to
an invertible element of Z[t,t~!]. The standard Alexander normalization consists in pick-
ing the representative with positive constant term. The Alexander-Conway normalization
corresponds, at least in the case of a knot K, to choosing the symmetric Laurent polynomial
with Ag(1) = 1. In general, the Conway normalization is determined by its defining skein
relations we recall in Theorem 1.4.12.

1.2.2 Consequences of this definition

Here we focus on some classical properties of the Alexander invariant. A very remarkable

one is the following, that is a direct consequence of the previous definition of A:

Proposition 1.2.5. For any link L, deg(Ap(t)) < 2¢(L) +pu — 1.
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We now recall the definition of an alternating link.

Definition 1.2.6. A link is alternating when it has a link diagram with alternating under-

passes and overpasses.

For alternating links, the inequality in Proposition 1.2.5 becomes an equality, see [6].
Moreover, the Alexander polynomial of an alternating link is "alternating", see [6, 41].

Proposition 1.2.7. The Alexander polynomial Ay (t) = Y, a;t' of an alternating link L is alternating,
that is: (—1)"a;a; > 0 for any i, j.

Another class of knots for which the Alexander invariant has special properties is the set
of fibered knots.

Definition 1.2.8. A knot K in S? is said to be fibered if the two following conditions hold :

1. the complement of the knot is the total space of a locally trivial bundle over the base
space S}, i.e. there exists a map p : S* \ K — S! which is a locally trivial bundle.

2. there exists V(K) a neighborhood of K and there exists a trivializing homeomorphism
0 : V(K) — S! x D? such that mo §(X) = p(X) for any X € V(K) \ K, where

m(x,y) = f;—|

The Alexander polynomial of a fibered knot is monic [45, 49, 55]. This means the coeffi-
cient of the highest degree term of the standard Alexander normalization of the polynomial
is 1. For the Conway normalization, it means the leading coefficient is 1. The converse is
not true in general. However, the condition is sufficient for prime knots with up to 10 cross-
ings and alternating knots [42]. Also note that for fibered knots, the degree of the Alexander
polynomial is exactly twice the genus of the knot, that is the genus of the corresponding fibre
surface [49].

The last chapter of this manuscript is dedicated to pointing out evidence for possible

improvements of all these results using Links-Gould invariants of links.

1.3 The Jones polynomial

Quite like the Alexander invariant, the Jones polynomial associates to every link a one
variable polynomial. It was discovered by V. Jones in 1984 [25]. The computation is made
by using a link diagram. So the invariance of the quantity we calculate under Reidemeister
moves is the key point in the theory. The discovery of the Jones polynomial was the starting
point of the blossoming new interset for knot theory that has never stopped since. That

polynomial has been much generalized into what we now call quantum link invariants. Early
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after its disclosure, it was also used to prove conjectures that mathematicians had failed to
solve without that powerful tool, for example Theorem 1.1.8. We will introduce the Jones
polynomial using the Kauffman bracket [28].

1.3.1 The Kauffman bracket

Definition 1.3.1. The Kauffman bracket is a function from unoriented link diagrams in the
plane to Laurent polynomials with integer coefficients in one variable A. It maps a diagram
D to its bracket < D >¢€ Z[A*!] and is defined in the following recursive way:

1. <O>=1,
2. <OUD>=(-A2-A"2)< D>,
3. </ >=A<)(>+a1< >

The bracket polynomial of a diagram with m crossings can therefore be computed using
3 as a sum of 2" diagrams with no crossings. Since the polynomial of a diagram with ¢
components and no crossings is equal to (— A2 — A=2)°"1 by 1and 2, we obtain an expression
for any link diagram in the plane. Note that the expression does not depend on the order in
which crossings were resolved using 3.

We now study the effect of a non oriented Reidemeister move on the value of the Kauff-
man bracket.

Proposition 1.3.2. 1. The effect of a type RI Reidemeister move on the bracket polynomial is the
following:

< IO N>=-A< >, < T O =A< T
2. The Kauffman bracket is left unchanged by Reidemeister moves RII and RIII.

Proof. For example, we study Reidemeister move RI.

< N> =A<” 5 V> 4A < N >
=(A(-A?—A )+ A )< >
=A< >,

CQFD

We can modify the bracket slightly to obtain an invariant of oriented links.
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N

Figure 1.10 — A positive and a negative crossing.

1.3.2 Modifying the bracket to obtain a link invariant

Definition 1.3.3. The writhe w(D) of a diagram of an oriented link is the sum of the signs of

the crossings of D. See Figure 1.10.

Example 1.3.4. The writhe of the diagram shown in Figure 1.9 is -3.

It is easy to verify that w(D) is invariant if D is changed under a type II or type III
Reidemeister move, which is not the case for type I moves. This observation leads to the

following result.

Theorem 1.3.5. Let L be a link in S3 and D be a diagram of L. The following quantity is an invariant
of the oriented link L:
(—A)3D) <« D>,

Definition 1.3.6 (Jones polynomial). The Jones polynomial of an oriented link L is the ele-
ment of Z[t*1/2] defined by

where D is an oriented diagram for L.

Remark 1.3.7. For a link with an odd number of components, and in particular for a knot,
V(L) € Z[t1].
Proposition 1.3.8. The Jones invariant maps oriented links in S® to Laurent polynomials in the
variable t'/2. It satisfies the following skein relations:

1. V(unknot) =1,

2. If L, L_ and Ly are three links that are equal except in the neighborhood of a point where they
are as drawn in Figure 1.11, then

(L) — V(L) = (B2 = 7YV (Ly).
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A XN

Figure 1.11 — Local changes in the skein relation.

Proof.
</s=a<)(>4a1< >,

<Nos=aAaTl<)(>+Aa< ">,

By multiplying the first equation by A and the second one by A~!, and substracting these
two equalities, we obtain

A<\/\> ~A! </\/>: (A* — A7?) <><>.
Butw(L;) = w(Lo) +1 = w(L_) + 2. So finally
—AYW(L)+ATV(L) = (A2 = A7)V (Ly).

CQFD

1.4 TheJones and Alexander invariants expressed via modified traces

The two link invariants we have just studied can both be expressed in terms of R-matrix
representations of braid groups we introduced in Subsection 1.1.3. This is what we will
discuss in this section.

1.4.1 Trace and partial trace

Proposition 1.4.1 (Canonical identifications). Let V and W be two finite dimensional vector
spaces over a field K. Let Hom(V, W) be the set of K-linear maps V. — W. Set also End(V) :=
Hom(V,V) and V* := Hom(V,K). Then we have the following canonical identifications:

Hom(V,W) =V*®@W,End(V® W) = End(V) ® End(W),
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(V) =V, (VR W)* = V'@ W*

Definition 1.4.2 (Trace). The trace of an endomorphism is defined using the first identifica-

tion of Proposition 1.4.1:

tmce:{ End(V)=V*®@V — K
fex — f(x)

Note that if an endomorphism f has a matrix A with respect to a fixed basis, then the

trace of f is the sum of the diagonal entries of A.

Definition 1.4.3 (Partial trace). The partial trace linear maps are defined for endomorphisms
of a tensor product vector space V ® W using the second identification of Proposition 1.4.1:

{ End(V®@ W) = End(V) ® End(W) — End(W)
trace; = ,
f®g — trace(f)g

e :{ End(V®@ W) = End(V) ® End(W) —> End(V)
2 fog — trace(g)f

This is not a complete definition in the sense that partial traces can be defined for endo-
morphisms of tensor products with more than two factors. When it is the case, the number
of factors that are killed may vary as well. For example, for f @ ¢®@h € End(V@ W ® X) =
End(V) ® End(W) ® End(X):

tracey(f @ g @ h) = trace(g)f @ h € End(V ® X),

tracep 3(f ® ¢ @ h) = trace(g)trace(h)f € End(V).
Remark 1.4.4. Given these definitions, it is easy to see that for f® ¢ € End(VQ@ W) =
End(V)® End(W),
trace(tracei(f ® g)) = trace(tracey(f ® g)) = trace(f ® g).

Then, using linear combinations, this remains true if f ® g is replaced by any ¢ € End(V ®
W). So
trace o tracey; = trace o trace, = trace.

This last observation will be useful to reduce expressions.
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1.4.2 The Jones polynomial as a modified trace

Lemma 1.4.5. Set V a finite dimensional vector space and fixh € GL(V)and R € GL(V® V). If
h and R satisfy

1. Ro(h@h) = (h@h)oR
2. trace; ((idy @ h) o R*¥1) = idy,
3. (R®idy)o (idy ®R)o (R®idy) = (idy ® R) o (R®idy) o (idy ® R),

then R is a solution of the Yang-Baxter equation and as explained in Subsection 1.1.3 we can build a
sequence of representations ¥y, : B, — GL(V®") using R. Moreover, setting L a link in S* and
b € B,, a braid with closure L,

trace(h®" o ¥, (b))

only depends on L. Therefore, L — trace(h®" o ¥, (b)) is a link invariant.
Proof. We will check that this quantity is invariant under Markov moves MI and MIIL. For MI

we use 1. Formula
Ro(h®h)=(h®h)oR

implies that, for any b € B,,, ¥,,(b) and h®" commute. Therefore, considering b, ¢ € By:

trace(h®" o ¥, (bc)) = trace(h®" o ¥, (b) o ¥nu(c))
= trace(¥,(b) h®” o¥y(c))

<‘I’n o (h*" o ‘I’n(c)))
tmce((h®” o ‘Yn(b)>

= trace(h®" o ¥, (cb)).

= trace

The invariance under the MII move is a consequence of point 2. For b € B:

trace(h*" ™ o ¥, 41(0;7'b)) = trace(h*" ! o ¥, 1 (07 ") 0 ¥upa (b))
= trace(h®" ' o (idy" 1 @ R¥) o (¥, (b) ®idy))
= trace((h®" ®idy) o (idy" @ h) o (idy" ' @ R¥) o (¥,(b) ®idy))

= trace( (h*" ®@idy) o (idy" ' @ ((idy ® h) o R*!)) o (¥u(b) @ idv)).
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But an elementary computation shows that
trace; ((f ® idy) o go (h®idy)) = f o tracey(g) o h.
Applying this result:
trace(h*"™ o ¥, 41(0;1b)) = trace

h¥" o trace, (idy" ' @ ((idy ® h) o R*1)) o ‘I’n(b))

= trace <h®” (idy" ! @ tracex((idy ® h) o R¥1)) o ‘I’n(b)>

= trace(h™" o (id" ' @ idy) o ¥ (D))
= trace(h®" o ¥, (b)).

CQFD

Let us consider a 2-dimensional vector space E with a basis (ep, e1). We define a linear
map Ry € GL(E ® E). Itis represented in basis (ey ® ep, eg @ e1, €1 ® g, €1 ® e1) by the follow-

ing matrix:
—t172 0 0
0 0 t 0
Ro=1" | _prypr
0 0 0 —t1/2

We also define
=120
hy = 0 _f2 S End(E).

Proposition 1.4.6. Maps R and hy satisfy the three relations of Lemma 1.4.5. So if we call the
representations derived from the R-matrix (),

L — trace(h§" o @, (b)), cl(b) = L
is an oriented link invariant.
Proof. Direct computation. CQFD

Theorem 1.4.7. Let L be an oriented link and b € B, a braid with closure L. The invariant defined
above is equal up to a constant to the Jones polynomial V(L) of L. To be more explicit

trace(h§™ o @, (b)) = (—t'/2 — 712 )V(L)(1).
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Proof. One can verify by hand that t 'Ry — tR;! = (t/2 — +71/2)idpgp. So the two invari-
ants satisfy the same skein relation. Therefore they are equal up to a constant, that can be
determined by computing the value of each invariant on the unknot. CQFD

This is an alternative definition of the Jones polynomial in terms of representations of
braid groups via R-matrices. In the next paragraph, we will try to obtain the Alexander
polynomial with a similar construction, though we will see it is a little more tricky to do so

in that second case.

1.4.3 The Alexander polynomial expressed as a partial trace

We introduce

#1720 0 0
0 0 1 0
Ry = 0 1 pvr_pn g € End(E®E)

0 0 0 —1/2

t’2 0
hy = 0 _An S End(E)

Lemma 1.4.8. Maps Ry and hy satisfy the three relations of Lemma 1.4.5. So if we call the represen-

and

tations derived from the R-matrix (©y),
L — trace(h§" 0 ©,(b)), cl(b) = L

is an oriented link invariant.
Unfortunately this invariant is not very interesting.
Proposition 1.4.9. The invariant derived from Ry and hy is equal to O for any oriented link.

This is essentially due to the fact that the trace of h; is equal to zero, which was for
example not the case for the Jones polynomial. For a detailed proof, see, for example, [46]
Proposition 3.10.

To obtain a non trivial invariant from R; and %, we consider the following modification

that, from a graphical point of view, consists in leaving the first strand of the braid open.

Theorem 1.4.10 (Alexander polynomial via a representation of B,,). Let L be an oriented link
and b € By, be any braid with closure L. Then:
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-----

2. cis a link invariant and is equal to the Alexander polynomial of L, Ar(t).

The existence and invariance of ¢ under MI and MII will be proved by our study of
operator invariants derived from ribbon Hopf algebras, see Section 1.5. For the proof of the
equality of the invariant and the Alexander polynomial, we refer the reader to [46], Appendix
C.

Corollary 1.4.11. With the same notations, this formula follows from Theorem 1.4.10:
1 H ®n—1
AL(t) = 5 trace((idg @ h" ") 0 ©,(b)).

Proof. Applying the trace operator on each side of the formula that defines constant ¢, we

obtain:

-----

Since trace o traces 3, , = trace, this concludes. CQFD

Note that this definition of the Alexander polynomial, unlike the geometrical construc-
tion we explained before, does not contain any indeterminacy. The choice of the unit of
Z[t*1] is intrinsic in our case. The Alexander polynomial, when it is chosen to have this

privileged normalization, is often referred to as the Alexander-Conway polynomial.

Theorem 1.4.12. The Alexander-Conway polynomial A satisfies the following skein relation:
AL+(t) —Ar (t) = (t_l/z - tl/z)ALo(t)

where Ly, L_ and L are three links that are identical except in the neighborhood of a point where

they are as drawn in Figure 1.11.

Proof. Direct computation shows that Ry — Ry V— (172 - 1/ 2)idp . CQFD

1.5 The Reshetikhin-Turaev theory

The logical question now is to try to understand how one can obtain couples of maps
(R, h) that satisfy the three conditions of Lemma 1.4.5 and in particular R-matrices, especially
when the dimension of the underlying vector space grows large. The Reshetikhin-Turaev
theory [52] answers this question by introducing algebraic structures that, once represented,

give birth to such maps. These algebraic structures are called quantum groups, or perhaps
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Figure 1.12 — Reidemeister moves Rlc, RII and RIII for framed links.

more properly ribbon Hopf algebras. A first step for us will be to understand tangles, that are
generalizations of braids, and their diagrams.
But as a preliminary let us introduce framed links that will be of interest to us in this

section.

1.5.1 Framed objects

Definition 1.5.1. A framed link is the image of the embedding of a disjoint union of annuli
S! x [0,1] into the 3-sphere.

The underlying link associated to a given framed link is the link obtained by restricting
each annulus to S! x {1}. The framing of a framed knot is the class of framed knots that
have the same underlying knot as the framed knot itself. The framing of a framed knot
can be determined by an integer: the linking number of the two boundary components of
the annulus with orientations chosen so that the two components are oriented in the same
direction. For a framed link, there is a framing for each annulus.

Finally, to a link diagram D in R? we can associate a framed link by blackboard framing:
the parallel always runs beside the link component in the 2-dimensional projection. Note
that any framed link can be expressed by a link diagram by blackboard framing.

In the case of framed links, the Reidemeister theorem is slightly different from the classi-

cal one.

Theorem 1.5.2. Let L and L' be two framed links. If D and D' are diagrams of these framed links by
blackboard framing, then L and L' are isotopic if and only if D and D' are related by a finite sequence
of isotopies of R? and Rlc, RII, RIII local moves shown in Figure 1.12.

Corollary 1.5.3. The Kauffman bracket is a framed link invariant.

Proof. Consequence of Proposition 1.3.2. CQFD
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Figure 1.13 — A tangle.

AXAY

Figure 1.14 — The elementary tangle diagrams.

1.5.2 Tangles and their diagrams

A tangle is a compact 1-dimensional manifold embedded in R? x [0, 1] in a way that the
boundary of the tangle is a finite set of isolated points in {0} x R x {0,1}. Two tangles are
equivalent, or isotopic, when they are related by an isotopy of the ambient space R? x [0, 1]
that fixes the boundary points. A framed tangle is a tangle for which each component has a
framing. If each component is oriented, we obtain an oriented (framed) tangle.

Note that an (oriented) (framed) link is an (oriented) (framed) tangle with no boundary
points.

A tangle diagram is a diagram of a tangle in R x [0, 1]. See Figure 1.13. A tangle diagram
is made of crossings, neighborhoods of critical points with respect to the height function R x
[0,1] — [0,1] and vertical paths, that is embedded curves such that the tangent line at each
point of the curve is not horizontal. In other words, any tangle diagram can be expressed, up
to isotopy, as a composition of tensor products of copies of elementary tangle diagrams described
in Figure 1.14. The composition of two tangles T and S is obtained by putting T on top of S
and is denoted TS, while the tensor product T ® S is defined by putting T next to S.

We consider a particular class of tangle diagrams we call sliced diagrams. Sliced tangle
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Figure 1.15 — The elementary oriented tangle diagrams.

diagrams are tangle diagrams sliced by horizontal lines such that each element of the product
these lines define is the tensor product of at most one crossing or critical point with as many
vertical lines as needed. Each tangle can be represented by a sliced diagram, and we will

only consider such representations from now on.

Oriented tangles can be represented by oriented tangle diagrams as well. They are tangle
diagrams where each component is oriented. Any oriented tangle can be represented by an
oriented sliced tangle diagram where the elementary oriented tangle diagrams are shown in Figure
1.15.

Remark 1.5.4. Figure 1.15 shows that all elementary oriented crossings are oriented down-
wards. Hence one has to rotate all crossings oriented differently before slicing the oriented

tangle into elementary diagrams. See Figure 1.16.

Work by Turaev [58, 59] and Freed and Yetter [15] explicits how two (framed) (oriented)
sliced tangle diagrams are related whenever they represent the same (framed) (oriented)

tangle.

Theorem 1.5.5. Two sliced (framed) tangle diagrams represent the same (framed) tangle if and only
if they are related by a finite sequence of Turaev moves:
1. T x trivial tangle diagram < T < trivial tangle diagram x T, where a trivial tangle dia-
gram is a tensor product of vertical lines,
2. (T @ trivial tangle diagram) X (trivial tangle diagram ® S) <« (trivial tangle diagram @ S) x
(T ® trivial tangle diagram),
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Figure 1.16 — We rotate crossings that are not oriented downwards.
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5. Unoriented Reidemeister moves, see Figure 1.3 and forget the orientations for tangles. For
diagrams of framed tangles, consider Figure 1.12.

Theorem 1.5.6. Two oriented sliced (framed) tangle diagrams represent the same oriented (framed)
tangle if and only if they are related by a finite sequence of Turaev moves:

1. T x trivial tangle diagram < T <> trivial tangle diagram x T, where a trivial tangle dia-
gram is a tensor product of vertical lines,

2. (T @ trivial tangle diagram) X (trivial tangle diagram ® S) <« (trivial tangle diagram @ S) x
(T ® trivial tangle diagram),
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or in the case of framed tangles:

These Turaev theorems play the same role in the construction of operator invariants of
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tangles than the Markov theorem in the case of R-matrix representations of braids, since they
give conditions for the operators representing the topological objects to be isotopy invariants.

1.5.3 Operator invariants
The unoriented case

Set V a finite dimensional C-vector space. We introduce the Reshetikhin-Turaev functor
that sends a sliced tangle diagram with a lower ends and b upper ends to an element of
Hom(V®4, V). Then, we study under what conditions this functor is topologically invari-
ant.

To explicit that functor, we need only to define the image of an elementary tangle diagram
and that of the product and tensor product of two diagrams. The image of the product of
two sliced diagrams is the composition of the two image maps, while the image of the tensor
product of two diagrams is the tensor product map of the two images. The elementary tangle

diagrams are mapped as follows:
—idy ; \/\ — ReGL(V®V) ; /\/ — R TeGL(V®V) ;

[\ —»ne(VeV) ; \ / —ueHom(C,VaV).

That way we map any sliced diagram D to a linear map [D] we will call the bracket of D.
In particular, the bracket of a sliced link diagram belongs to End(C) = C. We now focus
on what conditions to impose on R, n1, u for the functor to be topological, meaninng that the
image of a sliced diagram D only depends on the tangle represented by D (or on the framed
tangle represented by blackboard framing by D in the framed case). We need to make sure

[D] is invariant under Turaev moves.

Lemma 1.5.7. Suppose that the bracket is a (framed) tangle invariant. Then u is uniquely determined
by n. Moreover, n is a non degenerate bilinear form.

Proof. Let (e1,...,e,) be a basis of V. Since the bracket is invariant under Turaev moves,

translating Theorem 1.5.5 3., we get the following condition on operators:
(n®idy) o (idy @u) = (idy @ n) o (u ®idy) = idy.
We write n and u in terms of the basis:

ne;@ej) =mn;;, u(x) = xZui,jei ®e;.
i
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Define N = (n;;) and U = (u;;). These are two square matrices. Using the condition on 1, u
we just explicited:
(l’l ® ldV) © (ZdV ® U)(ek) = an,iui,jej = e,
ij

(Zdv X 1’1) o (1/[ ® idv)(é‘k) = Zui,jnjlkei = € .
ij
This exactly means that N.U = U.N = I. So U and N are invertible and U = N~!. Hence
u is uniquely determined by n. Moreover, n € (V ® V)* is a non degenerate bilinear form.
CQFD

Definition 1.5.8. Setting R an invertible element of End(V ® V) and n € (V ® V)* a non
degenerate bilinear form, and defining u € Hom(C,V ® V) from n like above, the bracket

[ . ] obtained like mentioned before is called the bracket associated with R and 7.

Theorem 1.5.9 ([58, 59, 15]). Set T a (framed) tangle and D a sliced diagram of T (representing T by
blackboard framing in the case where T is a framed tangle). If an invertible element R € End(V ® V)
and a non degenerate bilinear form n € (V ® V)* satisfy the following relations:

1. (idy ®@n)o (R ®@idy) = (n®idy) o (idy ® RF1),

2. (R®idy)o (idy ® R) o (R®idy) = (idy ® R) o (R®idy) o (idy ® R),

3. no R = n, or in the case of framed objects n o R = c.n for some non zero scalar c,
then the bracket [D] associated with R and n is an isotopy invariant of T. That invariant is denoted
by [T| and is called the operator invariant of a (framed) tangle T associated with R and n.

A particular case is for a (framed) link L. In that case the operator invariant is an element
of End(C) = C, where the identification is given by f — f(1).

Proof. The proof consists in showing the bracket is preserved by Turaev moves. We will not
go into further detail. CQFD

Remark 1.5.10. The Kauffman bracket can be generalized to framed tangles and can then be
seen as an operator invariant, which is coherent with Corollary 1.5.3. See for example [46],
Chapter 3, where the proper R-matrix and bilinear form are explicited.

We now investigate the case of oriented (framed) tangles.

The oriented case

To define the Reshetikhin-Turaev functor in the case of sliced oriented tangle diagrams,

we connsider once more a finite dimensional C-vector space V. We also consider Hom(V, C)

V* the dual vector space. The fuctor will send a sliced oriented tangle diagram to a linear
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map between two tensor products of copies of V and V*. The elementary oriented tangle
diagrams are mapped the following way:

i — idy T — idye ; X —REGLV®V) ; x —R1eGLVQV) ;

V\ »ne VoV ; [\ »ne(VaV);
\ / —ueHom(C,V'®V); \ } —u €Hom(C,VaV").

We set B = (e1,...,e,) abasis of V. Then (ej, ..., e;) stands for the dual basis to B. Mor-
phism R is an invertible element of End(V ® V) and we derive n,n’, u, u’ from an invertible
element i € End(V) as follows:

n(0® f) = f(h(v)), n'(v e f) = f(0),
u(z) = zZe}" @ h(e;), u'(z) = zZei R e}

The bracket of an oriented sliced diagram D is then defined in the same way as it was
built in the unoriented case, and is denoted [D] once more.

Identifying vector spaces as explained in Proposition 1.4.1, we regard an endomorphism
f € End(V ® W) as an element of the following tensor product:

fFEEdAVOW)=(VOW) '@ (VOW)=W'aV ' eVaW.

Using Ohtsuki’s notations [46], we define f© and f© the two elementary cyclic permutations
of the entries of the tensor product defining f in W* @ V* @ V@ W.

fPEWRIW VeV =WeW)*®(V'®@V)=Hom(WaW", V' aV),
eV RVaWeW = (V' @V)" @ (W W*) = Him(V* e V,W e W*).

Theorem 1.5.11 ([58, 59, 15]). Set T an oriented (framed) tangle and D a sliced diagram of T
(representing T by blackboard framing in the case where T is framed). If an invertible element R €
End(V ® V) and an invertible map h € End (V) satisfy the following relations:

1. Ro(h®h)=(h®h)oR,

2. (R®idy)o (idy ® R) o (R®idy) = (idy ® R) o (R®idy) o (idy ® R),

3. trace; ((idy @ h) o R*Y) = idy, or in the case of framed objects trace, ((idy ® h) o R*!) =

ctL.idy for some non zero scalar c,
4. (R"M)Co ((idy ® h) o Ro (h ' @idy))” = idyey,
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then the bracket [D] associated with R and h is an isotopy invariant of T. That invariant is denoted
by [T) and is called the operator invariant of an oriented (framed) tangle T associated with R and h.

Proof. Translation of Turaev moves. CQFD

Remark 1.5.12. The element c that is introduced in the case of framed oriented tangles is called
the twist of the operator invariant. Comparing the framed and the unframed case, observe
that an operator invariant of framed oriented tangles becomes an invariant of unframed
oriented tangles once the R-matrix is divided by the twist. Also note that such a modification

was not possible in the unoriented case.

Remark 1.5.13. Comparing this result with Lemma 1.4.5, we see that we need one more con-
dition to be able to generalize a link invariant to one that is defined on oriented tangles.
Indeed,

trace(h®" o ¥, (b))

happpens to be exactly the operator invariant of the oriented link L when that link is repre-

sented (as an oriented tangle with no ends) as the closure of braid b.

The Jones and Alexander polynomials as operator invariants

In Subsections 1.4.2 and 1.4.3, we recovered the Jones and Alexander polynomials as
modified traces of representations of the braid groups derived from R-matrices. Here we try

to understand these expressions we recall in terms of operator invariants:
(=172 —t7V2)V(L)(t) = trace(h§™ o Dy (b)),

AL<t).idE = traC€2,3,._.,n((idE X hi@nfl) o @n(b)),

where b € B, is a braid with closure L, ®, is the representation of B, built from Rp, and ©,

is the representation built using R;.

Lemma 1.5.14. The two pairs of maps (Ro, ho) and (Rq, hy) introduced in 1.4.2 and 1.4.3 satisfy
points 1., 2., 3., and 4. of Theorem 1.5.11. Hence they both induce an operator invariant of oriented

tangles.

Remark 1.5.13 immediately shows that the operator invariant associated with Ry and ko
is a generalization of the Jones polynomial to oriented tangles.
In the case of the Alexander polynomial, note that the fact that the partial trace is a scalar

multiple of the identity has yet to be justified. This will be achieved in the next section.
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However, we can still try to understand what the meaning of the partial trace is in terms of
the operator invariant associated with Ry and h;. In fact, the partial trace

tracers, n((ide @ h¥" 1) 0 @, (D))

is the value of the bracket of the 1-1-tangle obtained from b by closing all strands except the
first one. This is a way of building a non trivial link invariant from the operator invariant

even though its value on links in always zero as we already mentioned.

1.5.4 Ribbon Hopf algebras and invariants of links

However a question still remains to be answered: how can one find pairs of linear maps
(R, h) associated with an operator invariant systematically ? Where, for example, do (Ro, 1)
and (Ry, hp) come from ? The ribbon Hopf algebra structure achieves this goal quite ele-
gantly. The idea is that given a ribbon Hopf algebra A, special elements of the algebra will
be represented on a finite dimensional vector space by maps associated to an operator in-
variant of oriented tangles. The results about Hopf algebras we present here are originally
due to [13]. Most statements will not be proved in this paragraph. We follow the way ideas
are explained in [46], Chapter 4.

Ribbon Hopf algebras

Setting A an algebra over C with a unit element 1, we denote by m : A® A — A the
product map. We also definei : C — A, z — z.1.

Definition 1.5.15 (Hopf algebra). We say A is a Hopf algebra when it is equipped with a
comultiplication homomorphism A : A — A ® A, an anti-homomorphism S : A — A
called antipode and a counit homomorphism e : A — C subject to the following relations:

. (A®idg) o A= (ida®A) oA,

(e®idy) oA =idga,

3. (idg®e)oA=idy,

4. mo(S®ida)oA=iog,

5. mo(idg®S)oA=ioe.

!\JH

Definition 1.5.16 (Quasi-triangular Hopf algebra). A quasi-triangular Hopf algebra is a pair
(A, R) where A is a Hopf algebra and R € A ® A is an invertible element subject to:

1. (TToA)(a) = RA(a)R™}, forany a € A,

2. (A®ids)(R) = Ri3Ro3,

3. (ida ®A)(R) = Ri3R12,
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where[I(a®b) =b®afora,be A, Rip=R®1,Ray3=10R, R13=);4;®1®Db; where
R =Y ;a; ® b;. When all these conditions are fulfilled, R is called a universal R-matrix.

If (A, R) is a quasi-triangular Hopf algebra, still writing R = };4; ® b;, we define an
element u € A, sometimes called pivotal element, by setting

u= ZS(bl)al

Proposition 1.5.17 ([13, 46]). The pivotal element u € A has the following properties:

S?(a) = uau™! forany a € A,

ES dj)cj,
where we write R~ = Y, ¢; @ d;.

Proposition 1.5.18 (Some useful properties of the universal R-matrix [13, 46]). In a quasi-
triangular Hopf algebra (A, R ), the universal R-matrix satisfies

- R12R13R23 = R23R13R1,,

(e®idp)(R)=1=(ida®¢e)(R),

(S®ida)(R) =R 1= (idg @ S71)(R),

. (S®S)(R)=TR,

c(w@u).R=R.(u@u).

~

ST U

Proposition 1.5.19 (Properties of u [13, 46]). The coproduct and counit of u can be expressed as
follows:
Au)=(u®u).(TI(R)R)},

A(S(u)) = (S(u) @ S(u)).(I(R)R) ",
e(u) =1.

To derive operator invariants from some quasi-triangular Hopf algebras, we need to re-
strict the class of Hopf algebras we consider one last time. Before we introduce ribbon Hopf
algebras, and in order to understand what motivates this new definition, we study the prop-
erties of w = S(u)u € A.

Proposition 1.5.20 ([13, 46]). Set w = S(u)u € A. Then w is central in A and

Aw) = (0B w).(I(R)R) 2,
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S(w) = w,
e(w) =1.

Definition 1.5.21 (Ribbon Hopf algebra [52]). A quasi-triangular Hopf algebra (A, R) is
called a ribbon Hopf algebra if there is an element v € A such that

1. vis a central element,

2. 02 = S(u)u,

3. A(v) = (v®0).(I(R)R) "},

4. S(v) =0,

5. ¢(v) = 1.

So a ribbon Hopf algebra (A, R, v) can be obtained from a quasi-triangular Hopf algebra
by fixing a square root of w = S(u)u.

Operator invariants defined from ribbon Hopf algebras

Setting a representation of a ribbon Hopf algebra, we can derive an operator invariant
of framed tangles. This operator is compatible with the module structure induced by the
representation.

Let (A, R,v) be a ribbon Hopf algebra and V be a finite dimensional C-vector space.
Set p : A — End(V) a representation of A on V. This representation defines a A-module

structure on V.

Theorem 1.5.22 (Schur’s lemma). If V is an irreducible A-module and f : V — V is an A-
linear map, then f is a scalar multiple of the identity. In particular, any central element of A acts by
a scalar multiple of the identity.

For an irreducible representation p of A on V, we consider the two following maps:
R=Po((p®p)(R)) € End(V®V),

h=p(uo™') € End(V),
where P: V@V = VRV,xQy—y®=x.

Theorem 1.5.23. The two previous maps R and h satisfy the relations of Theorem 1.5.11 for some
non-zero scalar c. Therefore, they define an operator invariant of framed oriented tangles and an
invariant of unframed oriented tangles once R is divided by the twist.

Proof. This is a consequence of Propositions 1.5.17, 1.5.18 and 1.5.19 and Definition 1.5.21.
CQFD
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If oy : A — End(V) and pw : A — End(W) are two representations of A, we define two
representations of A on V ® W and on V*.

pvew(a) = (ov @ pw)(A(a)) € End(V) ® End(W) = End(V @ W),

pv+(a) € End(V*) defined by py+(a)(f) = f o py(S(a)).

This defines a A-module structure inductively on any tensor power of V and V* where V is
a fixed A-module. Moreover, the A-module structure we choose on C is derived from the
unit representation pc = ¢: A — C.

Let us recall that an A-module homomorphism f : V' — W is a linear map that commutes

with the action of any element of A:

folpv(a)) = (ow(a))o f
foranya € A.

Theorem 1.5.24. Denote the operator invariant of an oriented (framed) tangle T derived from a
representation of a ribbon Hopf algebra A on V by [T| a,v. Then [T|a v is a A-module homomorphism
with respect to the A-module structures we introduced.

Corollary 1.5.25. If T is a (framed) oriented 1, 1-tangle, that is a tangle with one uper end and one
lower end, then its operator invariant [T) 4 v derived from ribbon Hopf algebra A and representation
V is a scalar multiple of the identity.

Proof. Apply Schur’s lemma (Theorem 1.5.22) to [T]4,v. CQFD

1.5.5 The Jones and Alexander polynomials derived from ribbon Hopf algebras

The operator invariant that we recovered the Jones polynomial from in the previous
section is derived from the 2-dimensional irreducible family of representations of quantum
group U,sl(2) at a generic g, once the R-matrix is divided by the twist.

On the other hand, the operator invariant that generalizes the Alexander-Conway in-
variant to oriented tangles can be recovered in two different ways: either by considering
the quasi triangular Hopf algebra associated to Uysl(2) at fourth roots of unity, or by con-
sidering the super Hopf algebra U,gl(1]1) [61]. We will study these two interpretations in
detail in Chapter 3. Moreover, knowing this, it becomes clear using Corollary 1.5.25 that the
expression

traceys, . ((idp @ ") 0 @4 (b))
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is a scalar multiple of the identity.

We shall now introduce a family of quantum link invariants that we will study in the rest

of this manuscript: the Links-Gould invariants of links.

1.6 A family of quantum invariants: the Links-Gould invariants

1.6.1 The Links-Gould invariants of links LG

The first Links-Gould invariant was introduced by Links and Gould in 1992 [35], and
studied in further detail by De Wit, Kauffman and Links in [11]. It was generalized to a
family of invariants LG, n, m € IN* by De Wit [7]. The first Links-Gould invariant is LG?!
in this family, and is sometimes simply denoted LG when it is not ambiguous to do so. The
Links-Gould invariants are two variable polynomial invariants. They are derived from super
Hopf Algebras U,gl(n|m). The super means that the algebra is equipped with an additional
structure: a Z /27 grading that modifies the axioms slightly compared to those of a standard
Hopf algebra. However, this will not be important for us since there is a procedure, called
bosonization and due to Majid [36], that transforms a super Hopf algebra into an ordinary one.
This trick will be explained in Chapter 3. We will present super Hopf algebra U, gl(n|m) and
its characteristic elements when it is necessary for our study, that is in the case of U,gl(n|1),
in the course of Chapter 3. For a completely general definition of U,gl(n|m), we refer the
reader to [7, 8]. Whenever it is possible, we choose to stay at the level of operator invariants.

The work of Viro [61] shows that the simplest Links-Gould invariant LG!! is non other
than the Alexander-Conway polynomial. However and except for the (1,1) case, unlike for
most polynomial link invariants, properties that are considered to be at the base of the un-
derstanding of an invariant are not known for LG. For example, if Marin and Wagner give
a complete set of skein relations for LG>! [37], the cubic relation is barely practicable, and a
simple set of relations has still to be found. On the other hand, the investigations we went
through and that are explained in Chapter 4 suggest that the Links-Gould invariants are
much closer to the Alexander polynomial in terms of a geometrical interpretation that any
other known quantum invariant. These paradoxical facts are underlined by the questions

we raise and answers we provide in the course of this text.

The simplest Links-Gould invariant LG>! can be defined as derived from an operator

invariant as follows.
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141
Definition 1.6.1. Set K := C(toi%tliz). Let W =< eq,...,e4 > be a four-dimensional K-
vector space. The following linear map R, expressed in basis (e1 ® e1,e1 ® 2,61 @ €3,€1 ®
es, 02 Qe1,e0Rey, e es,...),is an automorphism of W ® W and an R-matrix ([11], p.186) :

to )
1/2
£ :
1/2
) £ )
) . 1
B2 -1 .
-1 ) ) . ) . )
1/2,1/2 1/2,1/2
toty — 1 . L I T
o : : : . t/2
.. : . . t—1 . .
1/2,1/2
) — 424 . . ) . Y
-1 )
) ) ) ) ) . ) . ) t1/2
1
1. R T i . Y . y? )
£/2 ) t—1
1’2 ) .oh—1

ty

where Y = ((tp — 1)(1 — ))V2.
We denote by b the representation of braid group B, derived from this R-matrix, given by

the standard formula
bi(o) =idy '@ R®@idy ™ i=1,...,n—1.

Theorem 1.6.2. Let L be an unframed oriented link, and b € By, a braid with closure L. Set y the
linear map defined by

Then :

1) there exists an element ¢ € K such that tracey s, »((idw @ u®" 1) o bk (b)) = c.idw,

2) cis an oriented link invariant called Links-Gould invariant of L. We will denote it by LG**(L; to, t1) =
LG(L, t(), tl).

Remark 1.6.3. In fact LG(L; to, t1) € Z[t5", t7] [23].
Remark 1.6.4. With the notations we use, LG(L; 2%, 4***2) is the Links-Gould invariant in-

troduced in [11], using a one parameter family of representations of quantum superalgebra
uq(9[(2’1>)-
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Remark 1.6.5. For practical reasons, we will use the opposite R-matrix in Chapter 2, but we
will use this one in Chapter 4. Moreover, this is the R-matrix used the most often in papers
on the subject, and in particular in Ishii’s paper comparing properties of LG>! and A [23]
that relates to Chapter 4.

Corollary 1.6.6. As in Corollary 1.4.11, we have the following formula for LG:

LG(L; tg, t1) = 411 trace((idw @ u®" 1) o bk (b)).

1.6.2 Different sets of variables

There are several sets of variables used in papers studying LG invariants. Four of them
appear regularly: (to,t1), (7,9), (p,q) and (g%, q). Each set can be expressed in terms of the
others using the following defining relations:

tO — q721x’ tl — q2a+2’

b
a+5 24

NS

T=t2=q%p" =t Y

In the case of LG*1, variables (t, t1) nicely lead to a symmetric Laurent polynomial.

1.7 The De Wit-Ishii-Links conjecture
David De Wit, Atsushi Ishii and Jon Links conjectured [10] that for any link L
LGn,m (L; T, ein/m) — AL (TZm)n’

where A is the Alexander-Conway polynomial of L. They proved the conjecture when
(n,m) = (1, m) and when (n,m) = (2,1) for a particular class of braids. A complete proof of
the (n,1) case for n = 2,3 is given in Chapter 2. This is achieved by studying the invariants
at hand at the level of representations, which requires computation of an explicit R-matrix for
each LG™!. This makes that method hard to implement as 1 grows.

In Chapter 3 we prove the (1, 1) case of the conjecture for any n:
LG (L;t,—1) = A ()",

To do so we study the structure of the universal objects directly, and in particular the (su-

per) Hopf algebras and universal R-matrices that are involved. However, the method that
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consists in understanding the specialized R-matix representation in terms of the Burau rep-
resentation remains interesting since it relates that representation to the topology of the com-
plement of the link.

These results were the first pieces of evidence we had for the conjectures we state and
support in Chapter 4. Indeed, once LG is known to be a generallization of A, one can wonder
if A’s properties remain true for the Links-Gould polynomials. The very surprising fact is
that most of A’s homological properties seem to propagate to LG. In that spirit, let us recall
that a conjecture by Ishii [23] states:

Conjecture 1.7.1. The LG polynomial LG(K;to, t1) = ;i a,-]-tf)t]i of an alternating knot K is "al-
ternating”, that is : ajja > 0if i + j+ k + 1 is even, and ajjay < 0 otherwise.

We give evidence for more results that extend the well known properties of the Alexander
invariant we recalled in Subsection 1.2.2. We conjecture that the span of the LG invariant is
a lower bound for the genus of a link. We also conjecture that for fibered knots, there are
conditions on the leading coefficients of the LG polynomial. We believe that this behavior is
the trace of a classical construction for the Links-Gould invariants, and that the general proof
of these results will have to use this construction.

However, note that still now, the strong version of the De Wit-Ishii-Links conjecture re-

mains open.



Chapter 2

Understanding the evaluations at the
level of representations

In this chapter!, we prove the following identity we can express using different sets of
variables, namely (7, ¢q) and (o, t1):

LG (L;t,—1) = A (T2)",

LGn’l(L; to, tal) = AL(tO)n

when n = 2, 3. Our strategy will be to take advantage of the robustness of the braid structure
to encode links. We use the expression of the Alexander-Conway polynomial as a quantum
trace we gave in Theorem 1.4.10. Then we prove the R-matrix representation of braid group
B, used to define reduced Links-Gould invariant LG*! (resp. LG*!) is isomorphic to the
exterior power of a direct sum of Burau representations. That way, the specialized Links-
Gould invariants can be written as products of terms, each of which can be identified with

the Alexander polynomial of our link.

In Section 2.1, we recall the definitions we will need in this chapter, and in particular the
definition of the Links-Gould invariant of oriented links we will follow here. In Section 2.2
we show that the specialized Links-Gould invariant LG*>! can be written as a product by
proving two representations of the braid group are isomorphic. We then identify in Section
2.3 each part of the product with the Alexander-Conway invariant. Section 2.4 is dedicated
to extending the proof to the next Links-Gould invariant LG*?.

1. This chapter is based on the paper On the Links-Gould invariant and the square of the Alexander polynomial
published in the Journal of Knot Theory and Its Ramifications [31].
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2.1 Definitions and main result

Here we define precisely what characteristic elements we consider for the quantum ver-

sion of the Alexander polynomial A and for LG,

21.1 The Alexander polynomial

Definition 2.1.1. (Reduced and non-reduced Burau representations of a braid)

Set K := C(ti%). Let W, =< fi,..., fu > be a n-dimensional K-vector space, and B, be
the braid group on n strands. We denote by 1, ..., 0,1 the standard Artin generators of the
group. The non-reduced Burau representation ¥y, : B, — GL(W,,) is given by :

(1—t)fi+ 12 ifj=1,
Y, (1) (fj) = § t/%f; ifi=i+1,
fi otherwise.

Denote by 8, := t~("="1/2f; 4 =(n=2)/2£ 4 4 4=1/2f, |+ f,. One can verify that for any
b € By, ¥Yw, (b)(6n) = 6,. Hence the reduced Burau representation ‘I’Wn : B, — GL(W\H) is
given by :

Y, (0)(%) = ¥w, (0)(x)

where I//V\n =W,/ < by >.

Recall that Alexander’s theorem states that any link can be obtained as the closure of a
given braid. Moreover, Markov’s theorem allows us to define link invariants through braids
with closure the link. A possible definition of the classical Alexander link invariant, different

from that using a Seifert surface, exploits that procedure.

Definition 2.1.2. (Alexander polynomial of a link through the Burau representation)
The Alexander polynomial of an oriented link L is defined as :
1-—t

AL(t) = T det(I =¥z (b))

where b is any braid in B, with closure L, and the notation < means equality up to multipli-
cation by a unit of C[t*1].

But it is not this definition of the Alexander polynomial that will be useful to us in the
following. We exploit the definition of A as a partial trace to stay closer to the definition

of LG?! we gave. We multiply the R-matrix we used in Theorem 1.4.10 by a factor t1/2,
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therefore renouncing to use the Conway normalization of the polynomial. However this is
not a major problem since the result we prove is an equality up to £t"/2,n € Z.

Definition 2.1.3. Let V be a 2-dimensional K-vector space, and (ey, ¢1) be a basis of V. We
define a representation ¥yen : B, — GL(V®") of By, :

Yyen(07) = idy ' @ Ry @idy" 1

where
1 0 0 0
0o 0 2 0
Ry = cEnd(VaV
YTlo a2 1o ( )
0 0 0 —t

is an R-matrix, that is a solution of the Yang-Baxter equation.

Theorem 2.1.4. Let L be an oriented link and b € B,, be any braid with closure L. We define

tz 0
h= 0 _pn € End(V).

Then :
1) There exists a scalar ¢ € K such that tracey s, ,((idy @ h®" 1) o Yyen (b)) = c.idy,
2) c is a link invariant and is equal to the Alexander polynomial of L, A (t).

Keep in mind Corollary 1.4.11 that transforms the partial trace into something easier to
manipulate:

AL(t) = % trace((idy @ h®" 1) o Wyen(b)).

2.1.2 The Links-Gould invariant LG%*! of links

In the whole chapter, we consider the opposite R-matrix to define LG*! compared to Def-

inition 1.6.1:
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—ty

1/2
t .
1/2
: —t} :
. . . , -1
T o1 —ty .
1/2,1/2 1/2,1/2
1—tot; . T (o 1V 4
R — : : : : —172
/% . S : . 1-t . .
1/2,1/2
128 . . o -Y
1 :
. S : . : : . . —11/2
1
-1 . Lonrary . e ~Y? :
—t/2 . : 11—t
—t1/2 : o 1-t .
—t

where Y = ((tp — 1)(1 — t1))/2.

This matrix still computes the same polynomial up to "/, n € Z. Using notations that

were introduced in Definition 1.6.1, the invariant is given by the formula

LG(Lito, tr) = }1 trace((idw ® u®") o by (b)).

The main result of the chapter states:

Theorem 2.1.5. For any oriented link L, LG*'(L; to, ty ') = Ar(to)?, where = stands for equality
up to +t"2,n € Z.

For a right choice of characteristic elements, the = can be transformed into an equal-
ity with the Conway normalization for the Alexander invariant, as we will see in the next

chapter.

2.2 The reduced Links-Gould invariant expressed as a product

We derive a representation of the braid group B, from the Burau representation. We
identify it with a specialization of the R-matrix representation given in Subsection 2.1.2. Then

we use this identification to express the specialized Links-Gould invariant as a product.
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2.2.1 A representation of B, isomorphic to b (to, t, )

Denote by F the following Burau representation of B, on vector space W,, =< fi,..., fu >
where we replace fo by ¢,

(M=t fi+ 1ty P i ifj=1,
F(o)(f) =4 to'/*f: ifji=i+1,
f]- otherwise.

In a similar way, let G be the representation of B,, on n-dimensional vector space W,, =<
81,...,8n > given by:

~ty'?gin itj=i,
G(o)(gj) =4 —t32qi+(1—to)giy ifj=i+1,
gj otherwise.

Proposition 2.2.1. Representation G is isomorphic to the Burau representation of B,,.

Proof. One can verify that fori = 1,2,...,n—1: J, o ¥y, (0;) = G(0;) o ], where ], can be
0 1
defined inductively: J, = < ) and

-1 0
(—1)2t(n=2)/2
]n = ]nil (_1)n—1t1/2
(—1)”t0/2
(_1)n+1t7(n72)/2 (_1)n+1t71/2 (_1)n+1t*0/2 0

Moreover, evaluating the determinant of J,, we deduce that J,, is an automorphism. Indeed,
det]yi1 = (—1)" (Y2 + t71/2)det], + det], 1. So det], € Z[t*1/?] is invertible in Q(t+1/?)
since it has degree n — 2 in both variables t'/? and t~1/2. CQFD

Definition 2.2.2. If F @ G is the representation of the n-strand braid group on W,, © W, built
from F and G, we consider the exterior representation ¥, := A(F @& G) on exterior algebra
AWy © Wy).

Remark 2.2.3. Note that bj (to, to 1) and ¥, both are 4" = 22" —dimensional representations.

We are going to show these two representations are isomorphic. For that we study first
the case where n = 2. Since t; = ¢ 1 we have a simpler R-matrix R:
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—ty .
1/2
—t} )
1/2

—t )

) ) . . -1

-z Co1—ty .
1 )
-1 -Y .
. . L . ‘ t1/2
R= 0

-2 . . . . 1—+t )

-1 . =Y

1 )
-1/2
) ty
-1 -Y -Y -Y?
t—1/2 . 1— tal
-1/2 -1
ty 1t )
-1
_tO
where Y = té/z - to_l/Z.

R-matrix R can be rewritten in basis B = (|e; ® e1], |es ® e4], |2 ® e2], ez @ e3], |e1 ® €2, 62 ®
e1], le1 ®e3,e3 ®e1], |e3 ® es, e ® €3], |e2 ® e, 64 @ €2, |61 ® e, 2 ® €3,€3 ® €2, €4 ® 1) as fol-

lows:

o -1 0 =Y
-1 =Y =Y -Y?

Family (f1, f2,81,§2) is a basis for W, & W,. Since B, =< 07 >, we are looking for a linear
automorphism I : W2 — A (W, @ W,) such that ¥ (o1) o I = I o b (07).
R



67

2.2 The reduced Links-Gould invariant expressed as a product

In basis (f1, f2,81,82),
- —-1/2
1—t/01 tot/
t,'/2 0 :
(F®G)(o) =] ° 0
—1/* 1—tg

1/2
_to

Therefore, computation of ¥,(07) shows that in basis C = (|g1 A g2/, [f1 A f2l, [1], |1 A
LAg1AGl (81,8l 2N NG ANgGIASL IiNf2AGL AN Al | f il 1f2 A g1 fa A

2, i Ng1, f1 N §2|) we obtain the same matrix:

—tp .
-1
—t;

1/2
(A
—t/% 11—ty )
1/2
0o —t
12 1t
0
-1/2 -1
t; 11—t

t61/2

0 tg1/?
—-1/2 —1
t 1-t

0 -1 0 -Y
-1 —-Y -Y -Y2

Setting I : W®2 —s A(W, @& W) the linear map that transforms B into C, we obtain an

automorphism that preserves the C[B;]-module structure:
‘{’2(01) ol =10oR.
The idea is to generalize that construction for n larger than 2. We choose the following

reference basis for (W, & W,):

(fu Ao e A fi, N8N - A &ju 1<y <. <iy<n , 11 <. <ju<n-
When we refer to Reord (u;, A ... Au; ), where the u;_are distinct elements of {f1,..., fu,g1,---,8n},
we mean that we rewrite the element so that it becomes part of the reference basis we just

mentioned.
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W — AW @& W) We2 — \(W2 © W)
e —> 1 ei®@er —> ILi(e) Ng
Wesetl; =< e — 1 and = ¢ e;®e; — Ii(e)
es — fiNg ej®@e; +—— Reord(Ii(e;)) A\ f2 A g2)
ea — fi ej@es +—— Reord(Li(e;) A f2)

An elementary calculation shows that I = I. We can extend these maps by induction setting:

wen AWy & Wy)
€i1®...®€1‘”71®€1 In71(6j1®---®ein,1)/\gn

.
N

I e, ®...Q6, Qe +— L q1(ey®...Qe; )
—
—

e, ®...0¢6,  Ke3 Reord([n,l(ei] R...Q 81‘”7]) A fu N gn)
e, ®...Qe, ey Reord(L,—1(ej, ®...®e;, )N fu)

It is easy to see that map I, sends the natural basis of W*" derived from (e1, €2, €3, e4) on our
reference basis of A(W,, & W,,). In particular, I, is a linear automorphism. Note that map I,

can also be written directly:

Lien®...@e)=( N A N\ )

k:iy=34 k:ig=13

Proposition 2.2.4. Map 1, is a C[B,]-module automorphism. That is, for any b € B,:

Y, (b) oI, = I,0bg(D).

Proof. We show the commutation by induction on 7, the number of strands in the braid
group we consider. Note that it has already been verified when n = 1, 2. Let us now sup-
pose the equality holds for n —1, n > 3. We only need to prove the result for b = o,
k=1,...,n—1.

Foro, k<n-—2:

Lu(br(0r) (e;; @ ... ®ei, )
= n(ell ® ®R(elk®elk+1> ®"'®ein)
= n(b% 1( )(811 ® ® eln ]) ® eln)
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(

Infl(bﬁil (or) (e, ® ... @€, ) Agn ifi, =1
] L Y o) (e @ e, ) if i, =2
Reord(ln,l(bﬁ’l(ak)(eil Q...®¢e, )N faAgn) ifi, =3
{ Reord(ln_l(b"_l(Uk)(ei1 ®...0¢e, )N fa) ifi, =4
(¥, 1(00) (Li1(e;, @ ...® e ) Agn ifi, =1
ifi =2
— Fu-1(0%) (In- (?1 ®. 1 Z (inductive hypothesis)
Reord (I, (b} (O'k) ®e )N fuNgn) ifi, =3
Reord(I,—1 (b}~ 1(c7k)(eZl ®...0e, )N fa) ifi, =4
On the other hand:
Yu(o) (In(ei ® ... ®e;,))
¥ (o) (Li—1(ey, ® ... Qe ) Agn) ifi, =1
_ Tn((Tk)(In,1 (61’1 X...Q eiM)) ifi, =2
¥, (0x) (Reord(I,—1(ei, ® ... @€, )N fuANgn)) ifin=3
¥, (0%)(Reord(L,—1(e;, @ ...®e; ) A fu)) ifi, =4
(¥, () (L1 (er, @ ... e, ) A¥nl(on)(gn) ifiy, =1
_ ‘Yﬂ(o-k)(ln (611® Qe 1)) =% 1(07()( n— 1(61‘1@...@81‘7!71)) if i, =2
¥, (0x) (Reord(I,—1(ei, ® ... e, ) A fuNgn)) ifi, =3
| Yulok)(Reord(l,—1(e;, @ ... ®ei, ) A fu)) ifi, =4

Fori, =

when i, = 2. We now study the two remaining cases.

Let ]4(31'1 ®

1, since ¥, (0%)(gn) = gn, we obtain the result. We also observe the equality holds

.. ®e;,) be the total of the number of e; and the number of e in that elemen-

tary tensor. Given the expression of I, and our reference basis of AW, & W,), it is obvious

that:

Reord(ln l(ell ®...0¢€,_ 1) /\fn) = ( 1)H(eil®m®ei"71)ln—1(ei1 ®...® einfl) A fn

and

Reord(I,—1(ej, ® ... ®ej, )N fuAgn) = (—1)V(ei1®"'®ein—l)1n71(eil @...0e ) A falgn
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Therefore:

Y, (0%)(Reord(L,—1(e;, @ ...®e;, ) A fu\Ngn))
— <_1)V(ei1®"'®ein—l)an (Uk)(In,1(€i1 ®...&Q €in71) /\fn A gn)
= (—)MaE ), (o) (L1 (e, @ - @i, ) A fu A g

Moreover, given the specific form of matrix R, every term that appears in b% ' (0%)(e;, ®
...®e;,_,) has the same total number of ¢; and e3 as e;, ® ... ®e¢;,_,. Hence:

Reord(I,—1 (0% (ox) (e;, ® ... @€, ) A fu Agn)
— (—D)Hea®Ba ) o bt o) (e @ ... @€ ) A fu A g
_ (_1)]‘(31'1@,..@8%—1)‘?1171 (0%) o n,l(eil R...® ein—l) A fu A\ gn

Thus we obtain the identity in case i, = 3. Similar calculations show it is also true when

in = 4. The only remaining question is for the last generator of B,,.

For 0,,_1 : We show that ¥,,(0;,—1) o I(e, ® ... ®¢;,) = I, o bl (0y—1) (i, ® ... ®¢;,) for each
of the 16 possible ordered pairs (i,_1,1,):

1,10 :

¥o(on-1)(In(ey, ®...Qe1®@eq))

=¥ (0u—1)(In—2(e;, ®...®¢€;,_,) Ngn-1/\&n)

=Ii2(e; ®...®e€;, ,) A (_t(1)/28n) A (_té/zgnil + (1 —to)gn)
= _tOIn72(ei1 XR...Q €in72) N&n—1/N\gn

Ino(l®1®...®R)(€il®...®€1®€1)
= In(eil RX...®e;, , ¥ —toer ®€1)
= —tolnfz(eil ®...Q0 61'”72) N8gun-1/N\&gn

Now that we have explicited one case, we give the results for the remaining ones.

44) | ¥u(on1)(In(e;, ®...Qes®es)) =[,0(1®01R...0R)(e;, ®... ey ® ey)
= —talln_z(eil X... ®€in72) /\fn71 /\fn

22)|: Yn(on-1)(In(e;, ® ... Qe®e)) =1,0(101®...0R)(e, ®...Qe, @ey)
= H*Z(el& ®@...® einfz)
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(33)|: ¥n(on-1)(In(ei, ®...®e3®e3)) =[,0(101®...®R)(e;, @ ...

=l 206, ®...Q¢€, ,) A fac1 A fu Agn-1/&n

12)[: ¥u(on-1)In(e;, ®...Q0e1®e2)) =[,0(1®1®...0R)(e;; @ ...

= —t/*La(e;, ® ... @€, ,) Agn

21) | ¥n(op1)(In(ey, ®...®e®e1) =10 (101®...®R)(e;, @...

= Lia(e, ®...®e;, ,) A(—ty2gu1+ (1 —to)gn)

13)[: ¥u(on-1)In(e;, ®...®e1®e3)) =[,0(1®1®...0R)(e;; ® ...

= (_1)”(31'1®"'®€in—2®€1)t(1)/21n_2(€i1 R...Q einfz) /\fn,1 N&n-1/\gn

G| ¥n(on1)(In(ey, ®...®e3®e1)) =0 (101®...®R)(e;, @ ...

= (—1)Mea®2h )L (e @ @i L) A((1—t0) fuo1 A1 Agn—ty/2fu Agn1 /A gn)

BA4) |- Yu(on-1)In(e;, ®...®e3®ey)) =[,0(1®1®...0R)(e;; ® ...

=ty P Iya(e, @ ... @ei, ,) A fac1i A fuAgn

(4,3) Z‘Yn(O'nfl)(In(eil ®...®€4®€3)) =1I,0 (1 ®1 ®~~®R)(ei1 X ...

®e3®e3)

®er ®e)

®exRep)

X ey ®€3)

®e3Rep)

X e3 ®€4)

®€4®63)

= Lia(e @ ... @€, ,) Al 2t A fa Agua + (1= 1) faa A fu A )

24) | ¥n(on1)(In(ey, ®...0e2Re)) =10 (101®...®R)(e;, @ ...

_ tal/Z(_1)H(ei1®..,®€in_z)In_z(eil R...® ei,,,z) /\fnfl

(4,2) :‘i’n(an,l)(ln(ei] ®...®€4®€2)) =1I,0 (1 ®1 ®...®R)(€i1 X...

= (~)H S e, @ @e, ) A= ) facr + 8512 )

(14) | ¥n(on1)(In(ey, ®...0e1Res)) =[,0(101®...®R)(e;, @ ...

_ _(_1)]"(31‘1®...®ein_2)1n_2(eil ®...0€ ) A fu_1Agn

(2,3) :‘i’n((rn,l)(ln(ei] ®...®€2®€3)) =1,0 (1 ®1 ®...®R)(€i1 X...

= (_1)V(ei1®'"®ei"’2)ln*2<ei1 ®@...Q¢€, ) N(—fu-1ANgn-1—Yfu1/gn)

(32) | ¥n(on1)In(ei, ®...®e3Re)) =[,0(101®...®R)(e;; @ ...

R e ® ey)

® ey ®ep)

® e1 ®€4>

® ey ® e3)

®e3®e)
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= (‘UM%®m®ei”’2)1n—2(ei1 ®...0¢€, ) ) AN (=Y a1 Agn— fuA&n)

4,1): "Pn(O'n_l)(In(eil R...Qey ®€1)) =1I,0 (1 RIR... ®R)(ei1 XR...Qe4 ®€1)
(—1)”(6"1®'“®e"n72)1n,2(e,‘1 @...0e, )N =Yfac1 Agu1— faAgn-1— Y fu1 Agn—Yfu A
)

oQ

n

Which ends the proof. CQFD

2.2.2 A convenient expression for LG*'

Now we have built an exterior representation that is isomorphic to b} (to, ty 1), we use it
to write the reduction of the Links-Gould polynomial as the product of two quantities we

will then identify.
Using proposition 2.2.4, we can write:

LG(L; o, ty ) = — trace(I, o (idw @ u®" 1) o I, 1 0¥, (b)).

I3

=

We wish to explicit ji.
Lemma 2.2.5. Map ji can be expressed on the reference basis of \(W,, & Wy, ):

P Ao A Sy gy e A gjy) = D (1) (kS e

Proof. If fiy A... A fi, Agjy A... A\ gj, is an element of the basis of A (W, & Wy), we denote by
e, ®...®e, itsimage under I, . That way, Iy(e), ® ... ®e,) = fi, Ao A fi, A&y Ao A g,

ﬁ(ﬁl/\.../\ﬁp/\gh/\...Agjm):Ino(idw®y®"_1)(ell®...®e,n)
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But:

(_1>#{ke{2 ..... n}\lk:Z}<_1)#{ke{2,...,n}|lk:3}

— (_1)n—1(_1)#{ke{2 ..... n}\lkzl}(_1)#{ke{2,...,n}|lk:4}

— (_1)n—1(_1)#{ke{2 ..... n}\lkzl}(_1)#{ke{2,..‘,n}|lk:4} (_1)#{ke{2 ..... n}\lk:S})z
— (_1)n—1(_1)#{ke{2 ..... n}l=3or lk:4}(_1)#{k€{2,...,n}|lk:1 or [;=3}

— (_1)n—1(_1)#{ke{2 ..... n}\fkappears}(_1>#{ke{2 ..... n}|gx appears}

This provides the result.
CQFD

Given the expression for ji we just obtained, and the special form of representation ¥,

we have:

Proposition 2.2.6. Invariant LG(L; ty, ty ") can be written as a product, with each term depending

only on one of the copies of the Burau representation.

Proof. Recall LG(L;to, ty') = 1 trace((idw ® u®"~1) o b (b)), where

-1
tO
-1
_to

Using that we can write

LG(L;to, ty') = ~ trace(ji o ¥, (b))

Yoo (fan NG (o YD) (fi, A AGL))

1<i) <..<ip<n

e

1< < <jm<n

where (f; A...Ag;,)* indicates a vector of the dual basis of the reference basis. But given
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Lemma 2.2.5,

(fua Ao NG (Fn(D)(fiy Ae - AGj)) -

AISO, (fi1 A... /\fip /\g]'] A... /\g]'m)*(‘fn(b)(fi] A... /\fip /\g]'1 /\/\g]m))

AE®)(fy A fi ) AN GO (853 A
= (fa A A ) INEQ@)fiy A A i) (850 A A 83T (NG (B)(8 A A8 ))-

That way we have the following expression for LG (L; fo, t,):

HCORG DY ((—1>#{k6{2f--~'"}'fk P (fo A ) (NFO) o A Aﬁm)

1<i <..<ip<n

* Z ((_1)#{](6{2 ----- n}‘gkappears}(gjl /\/\g]m)*(/\c(b)(g]l /\/\g]m))>

1< <. <jm<n

CQFD

Now we wish to show that each of these two sums is equal to Ay (o) up to multiplication
by a unit of C[tg'/?], that is up to multiplication by +#1/%, n € Z.

2.3 Proof of the main theorem

Since we consider equality up to a unit of C[t(:)tl/ 2], we can add a coefficient in front of
the trace in the expression of the Alexander-Conway polynomial:

Ap(te) = £ D72 % trace((idy @ hE"1) 0 Wyen (B)).
So we can write more simply

Ar(to)

N[ =

- ~ 1
trace((idy @ h®" 1) o ¥yen (b)), where It = (0 01> .

Proposition 2.3.1. Let [, : VE" — AWy, 6;, ®...®¢; —> A fr. Then ], is a C[B,]-module
k N lkzl
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automorphism:
A ¥w, () 0 Ju = Ju o ¥yen(b), Vb € By

The proof is quite similar to the one we did in the previous section. It is detailed in [46],

appendix C, where what we just called J, is denoted by I,,, and is introduced by induction.

Applying J,, we can express the Alexander polynomial differently:

trace( Jy o (idy @ h®" ) o ;1 o \ ¥w, ().
M1

N[ —

Ar(ty) =

Where

p(fu Ao N fiy) = Jno (idy @B (e ® ... Qe® e ®e®..0e0® &  ©...)
it position it} position
— (_1)#{k€{2,,n}|lk:1}fll /\ . /\ﬁp
_ (_1)#{k€{2,...,n}|fk appealrs}f:i1 AL A f

ZV‘

Therefore,

MOEEIEDY ((—1>#{k€{2f~~'n}'fkappeafswfilA---Aff,,>*</\‘1fw,1<b)<ﬂlA---Aﬁ,,»).

1<ii<..<ip<n

But F and ¥y, are identical once you change ty into t,'. That way we can identify the first
factor of our product with Ay (t;!). But the Alexander polynomial is symmetric: Ay (tg) =
Ar(ty 1) [14]. So the only remaining problem is to identify the second sum with the Alexander
invariant to be able to conclude. To do that we have to modify the representation of V" we

used up to now to define Ay (tp), and especially R-matrix Ry we introduced at the beginning.

Lemma 2.3.2. We can slightly modify R-matrix Ry so that the new representations pyen of the braid
groups we obtain that way still verify

Ar(to) trace((idy ® h®" 1) o pyen(b)).

N =

Proof. For the moment, we can write: A (tg) = 1 trace((idy @ i®"1) o Yyen (b)), where ¥yen
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1 0 0 0
, , , . 0 0 #?* o
is the representation associated to R-matrix Ry = 1/2
0 ty/s 1—tp O
0 0 0 —to
;10 0 0
. 0 0 - 0], -
We can replace R; by R, = —t, 'Ry = 12 . in the definition of
0 t 1—t,7 0
0 0 0 1
Yyen, and we will still have Ay (ty) = 1 trace((idy ® h®"~1) o ¥yen(b)). At last, we replace
—to 0 0 O

o 0 -t* 0
0 % 1-t
0o 0 0 1

to by t, 1in R, to obtain R = . We define the representation of B,

associated with Rj:
pven(07) = idy ' @ Ry @idy" 1.

Since the Alexander polynomial is symmetric, we have the following expression for Ay (ty),
that will help us to conclude

.1

Ap(to) 5 trace((idy @ h®" 1) o pyen(b)).

CQFD

Using the same strategy as previously, we wish to find K, : V" — A W, such that for
any b € B, : A G(b) o K, = Ky, 0 pyen(b).

Vv — AWM
Proposition 2.3.3. Weset K1 = ¢ ¢y —— 1 and, forn > 2,
e —— &1
yen — AW,
Ki=1¢ €,®...Q0¢, Qe +— Ky_1(e;,®@...®¢€ ,)Agn
6, RX..Qe,  Ke Kn_l(ez-l ®...®€in7])

Then, for any b € B,: \ G(b) o K, = K, 0 pyen (D).

Proof. We leave it to the reader to verify that a proof by induction resembling the one we did
with I, concludes. CQFD
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That way,

A (ty) = = trace((idy @ h®" 1) o pyen (D))

trace(K, o (idy @ h*" ) o K,/ o \ G(D)).

v

NI~ DN~

We can set Ky (e;, ®...®e¢;,) = g, \...Agj,. That allows us to explicit the values of v

on the natural basis of A W,,.
1/(g]'1 AN /\g]m) =K, o ldv ®fl®n_l(8il ... ®€Z‘”)

_ (_1)n—1(_1)#{ke{2,...,n}|ik:0}gj1 A A S
_ (_1)n—1 (_1)#{ke{2,...,n}|gk appears}gjl A A g],m.

So
Ap(to) = 5 trace(vo \ G(b))

Z ((_1)#{k6{2 ,,,,, ankappears}(gh /\"'/\g]m)*(/\G<b)(g]l /\"'/\gjin))>'

1<h<..<jm<n

Nl—= N =

And finally LG(L; to, t; ') = A (t)? for any link L.

2.4 Generalizing the proof

2.4.1 Writing the conjecture using variables (t, t;) and other considerations
The completely general conjecture states, using variables (7, q):
LG™"(L;T,e™™) = Ap(t*)™, for any link L.

We can rewrite it using variables (o, t1). Indeed, since g = e/ the variables are related by
t%/ 2 = 771em/" and t(l]/ % = 1. Therefore, the conjecture can be expressed the following way:

LG™"(L; to, ™"ty 1) = AL(ts)™ , for any link L.
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We can now explore in which cases it seems reasonable to attempt to generalize the strategy
we used to evaluate the reduction of LG*!. An obvious obstruction to that concerns the di-
mension of both representations we built and showed they were isomorphic. Let’s calculate

the dimensions of the natural generalizations of these representations in case (1, 1).

The vector space corresponding to what we denoted W is the highest weight U, (gl(m|n))-
module used to define LG™". It is 2""'-dimensional. So the representation of braid group B,
defined thanks to the corresponding R-matrix is 2""P-dimensional. On the other hand, the
representation of B, we want to define to produce Ay (7)™ is

AW, &...aW,),

m times

where each W), is a C[Bp]-module isomorphic to a version of ¥y, where fy is replaced by toi”.
Such a representation is 2"'7-dimensional. These two representations can not be isomorphic
ifn > 1.

That is why a straightforward use of our method can only be applied to prove cases
(m,1).

2.4.2 Proof of case (3,1)

We give the essential steps to prove the result that interests us in the case (m,n) = (3,1).
We follow the same ideas we used to study LG>!.

Theorem 2.4.1. For any oriented link L, LG>'(L; to, t; ') = AL (to)>.

For an explicit definition of LG>?, see [7], p.17. The author uses variables (7,4q), but
denotes T = g*. We will only use the reduced version of LG>!. It is obtained by setting
g=—-landg™* = t(l]/z.

Remark 2.4.2. Since we are going to set 4 = —1 in the R-matrix of [7], we have to chose pre-
cisely what the roots that are written formally are. We have chosen : [« + 1]1/2 = g=1/2[a]/2

and [a +2]1/2 = —[a]'/2.

Definition 2.4.3. (R-matrix S)
SetF := C(toﬂ/ 2). Let W =< e1,...,eg > be a 8-dimensional [F-vector space. We define S
an automorphism of W ® W as the direct sum of the following automorphisms (S is globally
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multiplied by ¢, 32 in comparison with the R-matrix explicited in [7]):

-3
_tO

in basis (61 ® e1,e; ® €3, €3 R €3, 4 ® €4, 65 R €5,6 X €, 67 X €7,e3 D €g) ;

0 /2

inbases (e1 ® ez, 62 ®e1), (1 Res,e3@ep) and (63 R ey, e4 R eq) ;

~1/2
ty? ( (1)/2 o )
- -1
L

in bases (e7 ® eg, es @ e7), (e @ eg,e3 @ e5) and (e5 ® eg, es X e5) ;

-1/2

_t01< O/ tO >
—-1/2 -1
R

inbases (e; ® e5,e5 R €2), (e3 R es,e5 R es), (e2 R eq, 66 D €2), (€4 R eg, 66 R eq), (€3 R e7,e7 R e3)
and (es ® e7,e7 @ ey4) ;

several copies of

several copies of

several copies of

several copies of

: 1
1/2 -1/2
: 1 12—t
1 : ty/? —ty /2

1/2 -1/2 1/2 -1/2 1/2 —1/2\2
SR e e A (et )

-1
tO
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in bases (&1 ® e5,6p ® e3,e3 R e3,e5 R e1), (61 ® eg, €0 R eq,e4 R €2, X e1) and (61 ® e7,e3 ®

es, 64 Qe3,67Qe1);

several copies of

: 1
1/2 -1/2
1 ty/? — t;

0 1/2 _ —1/2
: 1 : ty/? —t,

1/2 _ =1/2 (/2 _ =1/2 ((1/2 _ —1/2
O T N (e T

in bases (e4 ® es,e6 ® ey,67 ® e,63 R e4), (€3 R eg, 5 @ e7,e7 R e5,e3 @ e3) and (ex X eg, e5 ®

€6, 66 ® 5,68 D €) ;

-3/2
tO

1

172 ,-1/2
) 1 . 12—t
1 . (/2 =172 .
1/2 —-1/2 1/2 -1/2
/% —t 1/ —t

in basis (e1 ® eg, e4 ® 5,63 R €q, €2 R €7,67 R 3,66 X €3,65 X ey, 68 X €1).

/2 _4-1/2
(1)/2 01/2
tO - tO

1/2 _ 4 =1/2 /2 _ ,=1/2 /2 =1/2  1/2 _ =1/2\2  (1/2 _ =1/2\2  1/2 _ ,=1/2\2
1t/ -t ' — 1 £’ — 1 (to — 1t ) (to —t ) (to —t )

Then S is an R-matrix. So we can denote by b the representation of braid group B, derived

from S. It is given by the usual expression

bi(oy) = idyi '@ S®@idy T i=1,...,n—1

Definition 2.4.4 (Reduced Links-Gould invariant LG>'). Let L be any oriented link, and
b € B, be a braid with closure L. The reduced version of Links-Gould invariant LG%! is

given by the following formula:

LG (L; b, t51) = % trace((idw @ u®"~1) o b%(b))
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where

. B
U= tg/z € End(W).

We set three n-dimensional vector spaces < fi,..., fn >, < g1,...,8 >and < hy,..., h, >
that will be all refered to as W,,. On each of them, we define a representation isomorphic to

the Burau representation:

0 firn ifj=1i,
F@)(fi) = § to"?fi+ (I —tg ) fin ifj=i+1,
fi otherwise.

We designate by G and H representations on < g1,...,g, > and < hy,..., h, > defined by
the exact same formula. Then we set ®,, the representation of B, on A(W, & W, & W,,) given
by

@, := \(F® G o H).

When n = 2, one can compute ®, (07 ) and notice that its matrix is equal to S in a well chosen
basis. A precise look at this basis gave us the idea to define the following map by induction.
Note that retrospectively one can recover this basis simply by computing the image by our

map of the basis we used to express S when n = 2.
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%4 AWy
e1 1
e f
€3 81
Theorem 2.4.5. Weset 1 = < ey hq and, forn > 2,

es A&
€6 fiNh
ey g1 NI
es finNg1 Al

( yen AW,

e1®e,  X...Qe€;
e, ...0¢e;
es®e  X...Qe;
Li=4 e4®e,  ®...Q¢;
es®e  X...Qe;,
e,  &...0¢e;
e7®e  X...Qe€;
egRe | Q...0¢e;

Lii(e, \®...®e€;)

Reord(I,—1(ej, , ®...®e;) A fu)
Reord(I,—q1(ej, , ®...®e€i) Agn)
Li—i(e, ,®...®e;) Nhy

Reord(I,—1(ej, , ®...®e€i) A fuAgn)
Reord(I,—1(ei, , ®@...®e;) A fu Ahy)
Reord(I,_1(e; . ®ei) ANgn Nhy)
Reord(I,—1(ei, , ®@...®ei) A fu A gn A hy)

S A A A A

n—1 ® *
1 ®
Then the following identity holds for n > 1 and b € B,:

®,(b) oI, = I, o bi(b).
Remark 2.4.6. As in the previous sections, Reord refers to a reference basis of A(W, ® W, &
W,,) that is

(fll /\ e /\_flp /\g]l /\ e /\ gjm /\ hkl /\ e /\ hkq)lﬂl’]<...<l’p§l’l,1§j1<...<]’n1§1’l, 1Sk1<...<kq§l’l‘

Remark 2.4.7. For b = Ufll . (Tfp” € B,, we define b := (721_1.1 .. U;”_ip. b is braid b "looked at
from the other side". That way we have elementary properties : closure(b) = closure(b) ;

Ok = 0y—k ; forany o, T € B, : o°t = 0°T.

We can use I, to express LG3! differently.
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LG

Denoting as we already did several times I,,(¢;, ® ... ®¢;,) = fi, A

pute fi:
A(fa Ao Ah) = Lno (idw @ u®" 1) (e, ® ... ®e;))
_ tg(n—l)m( )#{ke{l ..... n—1}ike{2348}} (e, ®...®e;)
:tg(nfl)/Z(_ )#{ke{l ..... n—1}| an odd number of the following appear : { fi,gx, /i } }
Fa Ao Al
— tg(”—l)/Z(_l)#{ke{l ,,,,, n—1}|fx appears}( )#{ke{l n—1}|g appears}
(_1)#{k€{1,...,n71}\hk a1:>1:)ears}fi1 ALA hkq-
So
3,1 _ 1 . 5
LG¥ (L;to, ty ') = 3 trace(fi o @, (b))
1 N
=3 L UaAnhg) (@o@n)(fi Ao Ahy)).
1§11<..‘<1p§n
1<j1 <. <jm<n
1<k <...<ks<n
But
_ t(?;(nfl)/Z(_ )#{ke{l,...,n—1}|fkappears}(_l)#{ke{l ,,,,, n—1}|gx appears}
( )#{ke{l ,,,,, n— 1}\hkappears}(f AL /\hk )*(¢H(B)(ﬂ1 A ~~/\hkq))
— fo(" D/2(_qy- (fn Ao N fi)) (ANE®)(fi, A A fiy)
(g]l/\ "/\gjrn /\G )(g]l "'/\g]m)) (hkl/\ "/\hkq)*(/\H(E)(hkl/\ "/\hkq))‘

(Lito, t5 ")

= é trace((idw @ u®"~') o b(b))

- % trace(Iy o (idw ® 4= 1) o 11 o®, (b)),

H

oA hkq, we can com-
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So finally

LG31 (L; to, tal) _ tg(n—l)/Z (; 2 (_1)#{k€{1,...,n71}\fk appears}

1<ii<..<ip<n
(fu Ao A fi)(NF(D)(fy /\.../\ﬁp))) ..

The only thing that remains to be shown is that each of the three terms in the product is
equal to Aj(t) = Ap(t). The proof is similar to the one we did for LG*!. The main point is to
find R-matrices associated to their representations on V®" such that

AL(t) = 5 tracel((idy © h*") o ¥y (b))

and that up to conjugation the trace is one of the three sums. We will not detail this argument.

2.4.3 A remark around case (1,1)

To prove the identity
LG™ (Lito, tg') = AL(to)"

when n = 2, 3, we have used the crucial fact that we know an explicit formula for the R-
matrix and the left handle (the maps we called ) in these two cases. Solving the conjecture
for any n using the same ideas therefore requires the R-matrix to be computed in all cases.
In [7], the calculations are explicit but up to n = 4 only. This is why it seems hard to solve
the problem using these techniques when n grows larger. In the next chapter, we study the

problem at the level of (super) Hopf algebras to prove all cases at the same time.



Chapter 3

Understanding the evaluations at the
level of universal objects

Oleg Viro studied two interpretations of the (multivariable) Alexander polynomial as
a quantum link invariant in [61]: either by considering the quasi triangular Hopf algebra
associated to Ujsl(2) at fourth roots of unity, or by considering super Hopf algebra U,gl(1[1).
In this chapter !, we show these Hopf algebras share properties with the —1 specialization of
U,gl(n|1) leading to a complete proof of the (1,1) case of the De Wit-Ishii-Links conjecture.

3.1 Hopf algebras for the Alexander polynomial

We first define a Hopf algebra U which is an essential ingredient in the study of quantum
relatives of the Alexander polynomial. Unfortunately this algebra is only braided in a weak
sense. Then we recall the definition of two quantum groups which can be seen as central
extensions of U. One was first used by Murakami [40], both were studied by Viro in [61].
Finally we compare the braidings of these two Hopf algebras.

3.1.1 A braided Hopf algebra U

The following Hopf algebra U is a version of quantum s[(2) when the quantum param-
eter g is chosen to be a fourth root i of 1. The complex algebra U is finitely presented by

generators k=L e, f and relations

ke+ek=kf+ fk=e*=f*>=0 and ef —fe=k—k

1. This chapter is based on the paper Other quantum relatives of the Alexander polynomial through the Links-
Gould invariants written with Bertrand Patureau-Mirand [33].



86 Understanding the evaluations at the level of universal objects

The coproduct, counity and antipode of U are given by

A(e) = 1®e + e®k, ele) =0, S(e) = —ek 1,
A(f) =k'ef + f®1, e(f) =0, S(f) = —kf,
A(k) = k®k, e(k) =1, S(k) =k

This Hopf algebra can be seen in some sense as a a "double" of Bodo Pareigis” Hopf algebra
[47] that would be < k, f > with our notations. A pivotal structure is a group like element ¢
that induces a conjugation map equal to the square of the antipode. There is non obviously
a better choice that can be made by setting ¢ = k1.

Let T : x®y — y®x be the switch of factors. Hopf algebra U is not quasi-triangular but
it is braided in the sense of [51]: there exists an (outer) algebra automorphism & : UQU —
U®U different from T that satisfies

HZolN=ToA, (3.1)
Ao R = T3 %23, (3.2)
Ao R = Rysry, 3.3)

Automorphism Z admits a regular splitting (see [51]) #Z = Z o Ad; where Adj is the
conjugation by the invertible element

R=1+exf

and 7 is an outer automorphism satisfying equations similar to (3.2) and (3.3) and defined
by:

Pot=109, P(e®1)=exk, 2(f®1)=fxk ! and 2(ka1)=k®]1.
Elements k*2 generate a central Hopf subalgebra and for any ¢ € C \ {0,1}, the quotient
U/ (k* — g) is a 8-dimensional semi-simple Hopf algebra with two isomorphism classes of

irreducible representations V., where a2 = g. The representation V; is 2-dimensional and

can be written as follows in a certain basis (e, €1):

0 01 0 0
kz(é —a)'e:<0 0)’f:<a—1 0)' G4

Then the central element ef + fe acts by (a —a~1) L.
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3.1.2 The sl(2) model and the Alexander polynomial

From [61, 5] the s[(2) model is the unrolled version of quantum sl(2) atg = i = exp(irt/2).
It is an algebra U's[(2) generated by K*!, E, F, H. Its presentation is obtained from that of U
(Up = (K*1,E, F) ~ U) by adding a generator H and the following relations:

[H,K] =0, [H,E|=2E, [H,F]=-2F.

We will consider the category & of weight modules, that is finite dimensional vector spaces
where element H acts diagonally and

K =il = exp(irH/2). (3.5)

The pivotal Hopf algebra structure U is extended to U}’s[(2) using the following relations: >

A(H) = 1®H + H®1 e(H) =0, S(H) = —H.

Like in the case of U, the pivotal element is ® = K~! and therefore S?(-) = ® - ®~1. With
this pivotal structure, category ¢ is ribbon with braiding given by the switch 7 : x®y — y®x
composed with the action of the universal R-matrix:

RH = iH®H/2(1 L EQF).

Lemma 3.1.1. For any two representations V, W € €, the conjugation by DY := i"®H/2 i YW
induces an automorphism 2% of Endc (V@W) that satisfies

Ovew © 9 =9H0o Pvew : Uuu — EndC(V®W).

Proof. This is an easy consequence of Equation (3.5). More generally, if x,y € U satisfy
[H/ x] = me and [H/y] = Zm/y, then H®Hx®y = x®y.(H + 2m)®(H + Zm’) 0
iPV@W(H@H/Z)pV®W<x®y) = Pv®w(x®y)iPV‘zw((H+2m)®(H+2m’)/2)
— ovew((x@K™) (K™ @y))itven (HEH/2) COFD
= pvew(2(x®y))ifvew (HOH/2),

For any complex number a that is not an odd integer, U/'s[(2) possesses up to isomor-

phism a unique two dimensional irreducible representation V, with Spec(H) = {a + 1,0 —

a+1

1}. When restricted to U, this is representation V, where a2 = i*"" and the action of H is

2. Compared to Viro, we use the opposite coproduct here.
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0 a—1
Once it is written in representation V, ® Vg with respect to basis (ep®ep, eg®eq, e1R®eg, e1Rer ),

1 0
given by H = <D( + ) .

the braiding is:
iw+[25+2 0 0
| 00 i 0
0 il i@ i) o
—x—p42
0 0 0 i 2

In the case where « = 3, the R-matrix then takes the particular form

t=1/2 0 0
21 0 0 1 0
TRE =i
0 1 (t—1/2 _ t1/2> 0
0 0 0 —1/2

where we set t1/2 = i %1,

The ribbon category we consider here allows us to apply the Reshetikhin-Turaev theory

[52] to construct a framed link isotopy invariant in S3. It becomes an unframed link isotopy
a2-1

invariant if one divides the above R-matrix on V,®V, by the value of the twist 6, = i 2
to obtain matrix Ry of Subsection 1.4.3. In this particular case, the invariant we find is the
Conway normalization of the classical Alexander polynomial, see [61] and Subsection 1.4.3.
Recall the Reshetikhin-Turaev functor gives representations of braid groups B,

Yyer: B — GL(V)
o = Idy e, 'tRMeIdy T,

where 0; is the it standard Artin generator of braid group B;.
As we already mentioned, setting L an oriented link in S® obtained as closure of a braid
in ¢ strands b € B, we obtain the following result:
1) There exists a scalar ¢ such that trace; 3. _,((Idy, ®(K~1)®"1) o Yy (D)) = c.1dy,,
2) L — cis alink invariant and is equal to the Alexander polynomial of L, Ay ().

3.1.3 An example of bosonization: the gl(1]|1) model
Bosonization

Here we recall Majid’s trick [36] to transform a super Hopf algebra into an ordinary one.
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Let H be a pivotal super Hopf algebra and ¥ be its even monoidal category of represen-
tations (morphisms are formed by even H-linear maps). Let H” be the bosonization of H: as
an algebra, H is the semi-direct product of H with Z/2Z = {1, 0} where the action of ¢ or

equivalently the commutation relations in H” are given by
Vx € H, ox = (=1)¥xo.
The coproduct A” on HY is given by A’c = c®c and

Vx € H, A?(x) = me'x”@xf where A(x) =) x;®x].
i i

IfR=1Y%; R§1)®R(2) is the universal R-matrix in H, then the following formula defines a

1
universal R-matrix in HY:

@) 1
R” = Ry Y RWolR” @R, where Ry = 5181+ 091 +180 —0®0).
i

Given a super representation V = V; @ V7 of H we get a representation of H” by setting
Oy = Idvﬁ — IdVT. On the other hand, since 02 = 1, every H’-module inherits a natural Z /27
grading: W splits into W = Wy @ Wy where we define Wy = ker(c — 1) and Wy = ker(c +1).

Theorem 3.1.2 ([36] Theorem 4.2). The even category of super H-modules can be identified with
the category of H?-modules.

Note that the antipode of H is given by x  ¢*/S(x). Also, if H has a pivot ¢ then one

can choose ¢7 = o¢ as a pivot in H.

The g[(1|1) model

Using the same notations as Viro: U,gl(1|1) is the pivotal super Hopf algebra generated
by two odd generators X, Y and two even generators I, G satisfying the relations

_ -1
XY+YX:Cq_§_1, X*=Y*=0,

1,X] =[LY] =[I,G] =0,

G,X] =X, [GY]=-Y,
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where C = g/, with coproduct
Al) =101+ 121, A(G) =18G + G®1,

A(X) = XeC ' +18X, A(Y) =Y®1+CRY,

counit
e(X) = e(Y) = e(I) = €(G) =0,
antipode
S(I)=~1,5(G) = —G, S(X) = —XC, S(Y) = —YC},
pivot

and universal R-matrix

R=(1+(q—q )(X@Y)(CRC))q 19071

Its bosonization U,gl(1|1)” contains a Hopf subalgebra U; isomorphic to U defined by
setting
e=(@—-qgHXe, f=Y and k=Clo.

Indeed, these elements satisfy the following:
ef —fe=(q—qg ) (XeY -YX0)=(g—q ) (-XY -YX)e =k -k},

ke +ek = kf + fk =0,
A(e) = (g —q HA"(Xo) = (g — ¢ H)(XC !+ 00X) (cR0) = e®k + 1Re,
A(f) =A7(Y) = YR1+CorY = fel +k'®f,
A% (k) = k®k.

In the bosonization, the universal R-matrix is

1
R7 = Ryg~U®C+CED (1 4 e f), where Ry = 5 (181 +081+180 — 0®0).

Lemma 3.1.3. Denoting D' = q~19¢=6®1 gnd D7 = Ry D’ we have that for any x,y € U = U

Rl(x®y)R1’1 = (T'y‘x@ya'x' , D’(x®y)(D’)*1 = xC’dG(y)@)yC’dG("),
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D (xey) (D7) = (€Yol iy (C o)) = F(aoy),
where dg(x) € Z is defined by |G, x] = dg(x)x.

Remark 3.1.4. For a homogeneous a € Uy, |a| = dg(a) modulo 2.

Let us recall the expression of a family of 2-dimensional U,gl(1|1)?-modules. This fam-
ily is parametrized by two complex numbers (j, J) and € € {0,1}, see [61]. It extends the
representation V, of U; where a = (—1)€q_2f . Written in matrix form,

(%0 _ (0
0 2j)’ o L)’
=g C1\e
- (0 =h v 0 0 . (-1) 0 ‘
0 0 10 0 —(-1)

3.1.4 Comparing the actions of R” and R

Uy C Ufsl(2) and Uy C U,gl(1]1)7 are two isomorphic Hopf algebras. The goal of this
paragraph is to show the action of

RE = iH®H/2(1 1 ExF) € ullsi(2)@Uufls((2)

and that of
R = Ryq~(156+G2D (1 1 e f) € Uygl(1[1) @ U,gl(1[1)7

on two representations V7@ V) of Ufs1(2) and VY @Vy of U,gl(1|1)” are identical up to a
scalar multiple of the identity, when V! and V{ have the same underlying Uy = U;-module
structure.

We recall conjugations by DY = if#®H/2 in VH@ V! and D7 in VY @V§ induce the same
automorphism % of URU.

Proposition 3.1.5. For i = 1,2 let V! be a representation of UHs1(2) and V7 be a representation
of Uygl(1|1)7 that both restrict to the same irreducible representation of U = Uy = U;. Then
DH(D?)~! € End¢c(V1®V,) is a scalar multiple of the identity.

Proof. The density theorem states that if V is a finite dimensional irreducible representation
of an algebra A over an algebraically closed field, then A — End (V) is surjective. Denote

the representations at hand pyx, pye for i = 1,2. We supposed

Pvi |y = PV e
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Soif py = PyH Py and pr = pyr®@pyy we define p := Py oy = Polyey- Using Lemma
3.1.1 and Lemma 3.1.3, for any x,y € U:

ou (D) p(x@y)pn (D) 1) = p(2(x®y)) = po (D7) p(x®y)ps ((D7) 7).

Which means
o (D) oo (D7) p(x®y) = p(x@y)pr (DM) " po (D7).

Using the density theorem, pj; (D) oy (D7) commutes with any element in
Endc(V1)® Ende(V2) = Ende(Vi®V2). So this linear map is a scalar multiple of the identity.
CQFD

From now on, we consider Hopf algebra A = U{s(2) ®; U,yg!(1|1)?. That algebra con-
tains both algebras Uf?sl(2) and U,gl(1[1).
— T

Formally, setting g = ¢”, g7 : and i* = ¢17%, we also consider that

i"=k=g"¢

which means that we will only study representations of A that satisfy this relation. Recall
from Equations (3.4) the representation of U with parameter a. We can look for the repre-
sentations of A that simultaneously extend to the representations of Ufs[(2) and U,gl(1[1)”
we already described. If € € {0,1} is the degree of the first vector ey of the basis (g, 1) we
choose, direct computation of such a representation V(«, a,2j, ¢, J) shows it is well defined if

and only if:
1) ¥ =g
o 36
q = 617(05-1-1) — iD(-‘rl
Setting s = qfi[x73272€ = 41, we can compute the coefficient R’ /R” = D' /D" given by

Proposition 3.1.5 in our case.
Proposition 3.1.6. R'/R" = DH /D" = SS'(—1)“/i€+€,iMT_1 g7+

Proof. Using representation VRV’ = V(a,a,2j,¢e, )V (a',a’,2f,€,]") in basis
(ep®ep, eg®@e1, 1€y, e1Req ), we can write:

Joaral 41
2

i 0 0 0
. —ata’ -1
DH it)clx//z 0 2 a78/71 0
0 0 12 0
—a—a' 41
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Moreover, DY = R;D’ and

1 0 0 0
o (1)
Rl — (_1>ss ( ) 0 ) 0 ,
0 0 (=1 0
0 0 0 (_1>8+€’+1
g7 0 0 0
D' =g /I 77 0 0

0 0 g7t 0
0 0 0o gt/

Since a = i* = (—1)¢*!ig~%, the formulas make two square roots of a appear:
Va=i"?and v/a = i£+%q’j = sv/a.

That way, one can compute any of the diagonal coefficients of DH (D7)~ to end the proof.
CQFD

3.2 An integral form of U,gl(n|1) and its specialization

3.2.1 Quasitriangular Hopf superalgebra U,gl(n|1)

Here we define the -adic quasitriangular Hopf superalgebra U,gl(1|1) that we will use
to construct the Links-Gould invariant LG™!. The conventions we use for generators and
relations are those chosen by Zhang and De Witin [63, 8]. Z = {1,2,...,n + 1} will be the
set of indices. We introduce a grading [a] € Z/2Z for any a € T by setting

[a] =0ifa <nand [a] =1 whena =n+1.

The superalgebra has (1 + 1)? generators divided into three families. There are n + 1 even
Cartan generators E?. There are 3n(n + 1) lowering generators E? parametrized by a < b.
Finally there are 37n(n + 1) raising generators E?, with a < b. The degree of E! is given by
[a] + [b].

Forac€Z,a#n+1,setK, =g"%, andsetK, ; = q‘Eﬁﬁ. In the following [X, Y] denotes
the super commutator [X, Y] = XY — (—1)XMyx,

Now let us present the relations there are between elements of U,gl(n|1).
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For any a,b € Z with |a — b| > 2 and for any c in the interval between a and b,
Ef = E°E{ — g*8"a—DECET,
Foranya,bcZ,
EGE; = EyEq, EqEpey = Epuy (EG + 8 — 0p)
K Ka_-H K, 'Kqopa
q—q"

[ a+1'Eb+1] - 5u
KK, ' — KK,
q—q7"

n 2 _ n+1\2 __ : . . i 2 _ n+1\2 __ :
(Eni1)” = (Ey7)” =0, which implies (E}, ;)" = (EI""")* =0fori <n+1.

which generalizes for a < b to [EZ, E}] =

4

The Serre relations: for any a,b € Z with |a — b| > 2,

a+1rb+1 _ pb+1pa+l a
ESTEYT = EPTESTY B2 (ED, = Ep . ElLq,

and fora <n -1,

a a _ a a a+1pa+2 __ a+2 pa+1
Ea+1Ea+2_un+2Ea+ll Ea Ea _an Ea ’

a+l __ a+1 a+2pa+2 a+2 a+2
a+2Baiy = qE 5 Ee, and  ETUELTY = qECE;

These relations can be completed into a set of “quasi-commutation” relations indexed by
pairs of root vectors (see [8, Lemma 1] where a reordering algorithm gives a constructive
proof of the Poincaré-Birkhoff-Witt theorem) but these relations are redundant over the field

C(q).
We consider the Hopf algebra structure given by the coproduct

A(El,,) = Bl \®K.K L +1QES,, A(ESY) = K 'K @EST + EFfl el

A(K;) = K,®K, and A(E%) = E‘®1 + 1QE"

i n+1 n+1
which admits 3 the universal R-matrix R?' = DR with D¢' = qzl<" E/@E—E,1OE and

H(H es((q—q~ E1®E])> G(En i QEI),

j=i+1

3. we use here the coproduct and R-matrix of [29] conjugated by D9l
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— 0 k 1—gk
where e (x) = (1 — (7 —q7")x), e5(x) = L% (GRT (k)g = ﬁ and (k)4! = (1)4(2),. .. (k)g-
Do note that the order in which the factors are written in R matters.

3.2.2 Integral form and interesting subalgebras

We now give an integral form of U,gl(n|1) that supports evaluation at ¢ = —1. Let A,
be the Z|q, g !]-subalgebra of U,gl(n|1) generated by elements K, £ := (g — ') Ef when
a < band & := Ej when a > b. The relations of U,gl(n|1)

KK, ' — KUK,
q—q*

(B, E2] =
for a < b, are replaced in algebra A, by
€7, E)] = KoK ' — K 'K,

Still, A; admits a presentations similar to that of U,gl(n|1). No additional relations are
needed because the analog of the above commutation relations are enough to express any
element in the Poincaré-Birkhoff-Witt basis.

In the bosonization Ag of A, define fori = 1,...,n the algebra
A = <ei = &0, fi=EM k= 1<Z-1<,;+110—> C A
Proposition 3.2.1. Algebra A; is isomorphic to U. Indeed:
eifi — fiei =ki— k',
kie; + eik; = kif; + fiki = 0.

Proof. Direct computations from the defining relations of .A; and Lemma 1 of [8]. In particu-

lar, e;f; — fie; = —&L o&M 4 EMIEL o =[E L, M o =k — k. CQFD

Remark 3.2.2. However, A; is not isomorphic to U as a Hopf algebra (except for A;), which
can be seen by looking at the coproduct of elements of A; in A;. This will not be a problem

for us.

Set 1 < i # j < n. Using [8] Lemma 1 once again, we want to see at what conditions any
x € Ajand y € Aj commute.
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Lemma 3.2.3. We have the following commutations:
61'8]' = —qilejei, ﬂf] = —qilf]'fi, klk] = kjki,

ifi <jeifj— fiei = 0K; K 5 otherwise e;f; — fie; = a(q — q’l)EanHKi’l,

k]-ez- = — 6 k k]fl = C]fzk]
Proof. The first two equalities correspond to [8, Eq. (38) and (39)] and the two brackets [e;, f;]
correspond to [8, Eq. (36) (c) and (d)]. CQFD

Corollary 3.2.4. Setting q = —1, in any quotient of A7 | where forany 1 <i <j < n, 5; =0, the
elements of two distinct A; commute.

3.2.3 Highest weight representation V (0", a)

Let V (0", a) be the highest weight irreducible 2"-dimensional representation of U,gl(n|1)
of weight (07, ), with & ¢ Z. So E! is represented by 0, except for Eij that is represented by
w. Set vy a highest weight vector in V(0", ) and let V; (0", a) = A,vo. The Poincaré-Birkhoff-

Witt theorem proves that
n
< H f z'mi UO)
i=1

is a basis for vector space V(0",a) and for the free Z[q, g~ ']-module V, (0", a). Set A7, =
A7 ®q=—1C and V_1(0", &) = V5(0", &) ®q——1C

mie{o,l}

Proposition 3.2.5. In the representation V_1(0", ), 51 =0forany1 <i<j<n So 5]?' belongs
to the kernel I of the representation A7 | — End(V_ (0 )). As a consequence, the following map
is well defined:
0:QL A — A% /I
®ix; = ILx

Proof. We want to show that for any basis vector v € V_1(0",a) and for 1 < i < j < n,
5]?0 = 0. We can write v = 1” ... fi'oo where i = 0, 1.
Using [8] Lemma 1 once more, if
¢ < ithen [E]Z:, E'1] = 0 by [8, Eq. (40)]
c=ithen [Ei,El] ~KiK;” 1E”+1 by [8, Eq. (36)(a)]
| =
| =

i<c<jthen [E,E*]=—(q— —1)I< K ELE] ! by [8, Eq. (43)(a)]
j < c then [E;i, Er1 = 0by [8, Eq. (37) (40)].
Inall cases, [&], f] = [}, €8] = (9 —q7)[EL EX*'] = 0in A%,. So Elv = s ,i”(S]?'vO).
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But 5; is a raising generator, so £ ;vo = 0. Using Corollary 3.2.4, fori # j A; and A; commute
in that representation. CQFD

3.24 R9' makes sense when g = —1

Here we intend to show that the non diagonal part R® of the universal R-matrix of
U,gl(n|1) supports evaluation at ¢ = —1, which is not obvious given the formula defining
Re". In the bosonization U,gl(1|1), the universal R-matrix is given by

(R = D9(R#)” Dng ( I eq(SJ?@ej)) (1+e®f;).
j=it+1
Proposition 3.2.6. Forany1 <i <j<mn,
(eq(g;‘@s{) - 1>Vq(0”,¢x)®Vq(0",oc) C (q+1)Z[g, 9 10eVy (0", 2) @V, (0", )
where Z.[q,q ) 10c is the localization of Z[q,q '] at (q +1). Hence (R%")” induces a well defined
automorphism of V_1(0", &)@V _1 (0", ) where the action of (R%")7 is given by
. n
(R =T+ ef).

i=1

Proof. Define V = Z[g, g ]1ocV4(0", &) C V(0", &) so that V_1(0", &) = V®,-_1C. We wish
to prove that for 1 < i < j < n, in the representation V®V, eq(5;®5{) = 1mod (g +1). Set
1 <i < j < n. We show by induction on k > 1, that

L
((kf)z!V C(g+1)V

For k = 1, this follows from & ]Z € I (see Proposition 3.2.5). Now let us suppose that the result

. (gt)k (gt)k 1 gl
holds for any ! € {1,...,k —1}. Since (k]) = D, ), ) it is enough to show that GR ) V c V.

£l
Crige |

If k is even, (k); = (g + 1)(%) » with (%) = £ mod (q+1) so ﬁv C (k1>V =V.If
q 2/q?

C (g +1)V. This concludes the proof.
CQFD

We know that £V C (q+1)V, so V.

i

k is odd, (k); = 1 mod (g + 1) and therefore ﬁv
q
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3.3 Links-Gould invariants and the conjecture

3.3.1 Links-Gould invariants LG"!

The Links-Gould invariants LG™! are the framed link invariants obtained by applying the
modified (one has to use a modified trace, see [19]) Reshetikhin-Turaev construction to the
ribbon Hopf algebras U,gl(n|1)” we just studied. Like in the Alexander case, the R-matrix
can be divided by the value of the twist so that LG becomes an unframed link invariant.
Note that this definition and Viro’s work [61] show that the first LG invariant LG coincides
with the Alexander-Conway polynomial A.

Here we are interested in what happens to LG"™! when you evaluate g at —1, or in other
words when you set tpt; = 1.

3.3.2 Proof of the conjecture

Our study of ribbon Hopf algebra U,gl(n|1)” allows us to prove the (1,1) case of the De
Wit-Ishii-Links conjecture:

Theorem 3.3.1. For any link L in S3, LG"'(L;T,—1) = AL(7?)". This can be translated in
variables (to, t1):
LGn’l(L,' to, to_l) = AL(fo)n.

Remark 3.3.2. Here we prove an equality, and not only an equality up to an ivertible element.

The rest of the section is devoted to proving this identity. First we identify V_;(0",«) as
a ®;A;-module:

Proposition 3.3.3. Let us denote by V' an A;-module isomorphic to the 2-dimensional U-module
V,-«. Equipped with the action of ®;A; induced by © : ®;A; — A7, /1, representation V_1(0", )
is isomorphic to the irreducible representation ®;V'.

Proof. By ®;V', we mean the representation
®ioi * QiA; — ®iEl‘1dc(Vi) = El’ldc(®ivi) where pi: Ai — Endc(vi).

Set a = gq~*. For each i, k? acts by a? on V_1(0",a). Thus V_;(0", a) is a representation of
the 8"-dimensional semi-simple algebra ®5:1 (A;i/(k? — a?)). But for each A;, vy is a highest
weight vector of weight a. So it belongs to a summand of the ®{::1 (Ai/ (k2 — az))—module
V_1(0", &) of the form ®,V. Comparing the dimensions which are equal to 2" for both vector
spaces, we have that V_1 (0", a) ~ ®;V". CQFD
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Now we study the action of the pivotal element of A7 in the representation at g = —1.
Proposition 3.3.4. If K3, is the pivotal element of A7, in the representation V_1 (0", a),
20 = O(®i¢i)
where ¢; = k;l € A,

Proof. The antipode of U,gl(n|1) satisfies S(EL ;) = —El’f+1Ki+1Ki’1 and S*(E,|) = Kz-KijrllEfHKiHKfl =

Ko Ef +1K2_pl. We can write Ky, in terms of Cartan generators:

n

__ wn n—2i
Kap = Kyij1 HKi :
i=1

Denoting (a|b) := YI' ; a;b; — a,+1b,+1, and p the graded half sum of all positive roots, we
find:

n

20 =) (n—2i)e; + neyq,
i=1

where ¢; is the i basis vector of C"*! and we write any vector x = Z;f’jll x;€; in this basis.

K3, conjugates element e; € A; as follows:

szeiKz_pl :q <2P|€i_€n+1) e;

(n—2i+n)

— anfZiei.
Soifg = -1,
(Tszel‘KEplO' = —e;
= pici; !

=0(®i¢)eO(@;¢; ).

Similarly to Proposition 3.1.5, we therefore can say that in the irreducible ®;A;-module
V_1(0", &), K3, is a scalar multiple of ©(®;¢;). We call this element A. Since the two maps
both act by 4"* on the highest weight vector, we find that A = 1. CQFD

Proposition 3.3.5. For any x € A;®A; C A;®A,, we have

D¥x (D)1 = 9(x)
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where we identified A;®A; = URU.
Proof. By a direct computation,

Dg[E] +1®1 _ E] +1®1q2,<n((Ef+5})®Ef (Eni-DeErT _ E] +1®K Kn+1D gl
Thus D%¢;@1(D%)~! = e;®k;. Similarly D9'f;®@1(D%)~! = ]‘j®k]71. Finally k;®1 clearly

commutes with D® and we can conclude using 7 o D% = D% o 7. CQFD

Proof of Theorem 3.3.1. Let us sum up what we proved up to now to obtain 3.3.1. Let V_1 (0", a) ~

" , V' be the isomorphic representations of Proposition 3.3.3. In the following we fix such
an isomorphism. Let V/; be a U/’sl(2)-module structure on V' extending the representa-
tion of A;. We therefore obtain n commuting R-matrices R' = DR’ in End¢c(Vi®V’) <
End¢(V_1(0",2)®V_1(0", a)), where the explicit inclusion maps are given by ¢; : v @ w —
(id® '@ ®id*" ) @ (id® ! ® w®id®"~"). By Proposition 3.2.6,

Ry 1= Hl ) € Endc(V-1 (0", 0)@V_1(0", ).

Moreover, using Lemma 3.1.1, Proposition 3.3.5, and the density Lemma, the conjugation
by [T;4(D") is equal to the con]ugatlon by D® in Endc(V_1(0",a)®V_1(0",&)). Hence the
braidings on (®"; Vi;)®(®", V};) and on V_1(0",a)®@V_1(0", ) are proportional. Now
in the process of computing both the Links-Gould invariant and the Alexander polynomial,
the R-matrices are rescaled by the inverse of their twist ! so that the invariants become
framing independent:

trace; (0~ (Id ®¢)TR) = Idy (0n,0)

(here ¢ denotes any of the pivotal structures which are equal by Proposition 3.3.4). Hence
the rescaled R-matrices qu[ = [T;u(R V’®V’) and ;R V, oyi are equal up to reordering
factors. Finally, for any braid ﬁ € By, the associated operators by the Reshetikhin-Turaev

construction correspond up to reordering as well:
®n
ufst
¥ e B = (1P )

At the end, if trace, 5 ((Idv (0 ®4>®‘3 b o‘I’g[ (07,05 (/3)) =d.1dy ,(g» ) when

tracey s ¢ ((IdVa ®<,b®£ o ‘Yu‘ 12 )(5)) = ¢.Idy,, we obtain

V@f

d=c"
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by considering the trace of these two maps. Indeed, the trace is blind to reordering factors.
CQFD

Remark 3.3.6. In [19], the LG invariant is extended to a multivariable link invariant M(L; ¢, 41, . - ., qc)
for links with ¢ > 2 ordered components, taking its values in Laurent polynomials Z [, 47, . . ., g5].
It is shown in [20] that

LG"Y(t,q) = (Hq —T> (L;g,v7% ..., 771,

The proof in this chapter should adapt to show that

M(L;,—-1,91,---,9.) =V(q1,---,9)"

where V is the Conway potential function, a version of the multivariable Alexander polyno-
mial.
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Chapter 4

A classical generalization of the
Alexander invariant ?

At this point, the Alexander-Conway polynomial of a link Aj can be recovered from LG
in at least two ways. David de Wit, Atsushi Ishii and Jon Links showed [10]

LG(L;ty, —ty ') = AL(t}).

On the other hand, we just proved that the square of the Alexander polynomial can also
be obtained evaluating LG:
LG(L, t(), to_l) = AL(to)Z.

Knowing this, it is natural to wonder :
Question 4.0.1. Are there properties of A that extend to LG ?

Conjecture 1.7.1 is a first attempt to give a positive answer to this question. In this final
chapter ! we give evidence for more positive answers to Question 4.0.1. We conjecture that
the span of the LG invariant is a lower bound for the genus of a link.

Conjecture 4.0.2. Set L a link in S® and y the number of its components.

oI span(LG(L;to, t1)) <2(2g(L)+u—1),

o II If L is alternating, then inequality 1 is an equality.

We also conjecture that for fibered knots, there are conditions on the leading coefficients

of the LG polynomial.

1. This last chapter was first summed up in the paper The Links-Gould invariant as a classical generalization of
the Alexander polynomial ? [32] that has been accepted for publication in Experimental Mathematics.
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Conjecture 4.0.3. Set K a knot in S°.
o I If K s fibered then LG(K) is monic,

o II If K is alternating, the converse is true as well.

We base these conjectures on computations for the first prime knots and on partial skein
relations for LG that allow its evaluation on various infinite families of links. Notice that
if the genus conjecture were true, LG would systematically give a better lower bound for
the genus of a link than the one given by the Alexander invariant. Also, the criterion we
conjecture for fibered knots would refine the well known similar statement for A.

A proof of these two statements would show quantum invariant LG can be used to find

information on the geometry of links.

The R-matrix for LG*! we consider in this chapter in the one introduced in Definition
1.6.1.

4.1 The Links-Gould invariant and the genus of links

We believe that Proposition 1.2.5 can be extended to the similar statement expressed in
Conjecture 4.0.2. We will explain how and why it would be an extension of 1.2.5. The goal

of Section 4.2 is to give a range of evidence to support that conjecture.
Definition 4.1.1. Set P € Z[t3!, 5]. For (n,m) € Z?, we define
deg(tot') == n —m.

For a general P = }° a; tf) tjl', we can extend that definition to introduce the span of P :
ijeZ

span(P) := max{deg(tf)t]i)} — min{deg(tét]l')}.
#0 a;j#0

aij
Remark 4.1.2. The span satisfies the usual elementary degree properties :
span(PQ) = span(P) + span(Q),

span(P + Q) < max{span(P),span(Q)} if P and Q are symmetric Laurent polynomials.

Conjecture 4.0.2 generalizes Proposition 1.2.5 since this well known result shows Conjec-
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ture 4.0.2 is true when tpt; = 1 and tpt; = —1 via the evaluations we already mentionned
LG(L;to, —tg') = AL(t]) ; LG(L; to, ty ') = Ap(to)*.

These evaluations also explain why our definition for the span was natural to try and push
the lower bound a little further.

Proposition 4.1.3.

1 In Conjecture 4.0.2, I implies 1I,

2 If Conjecture 4.0.2 is true, it systematically improves the lower bound for the genus provided
by A :
for any L link, 2deg(AL(t)) < span(LG(L; to, t1)).

Moreover, there are links where

2deg(AL(t)) < span(LG(L;to, t1)).

Proof. Since LG(L;to, —t;") = AL(t3), 2deg(AL(t)) = deg(AL(t?)) = span(LG(L;t, —t~1)).
So to prove 2, we wish to show

span(LG(L;t, —t~ 1)) < span(LG(L; to, t1)).

If we denote LG(L; tp, t1) = Y aijtf)tjl', then

i,jeZ/
u,-jyéO
LG(L;it,—t71) = Y (Y ay(—1))th
keZ i,jeZ/
(liﬁéo
i—j=k

This clearly shows that if the coefficient in front of t* in LG(L;t, —t~1) is non zero, then there
is at least one non zero coefficient in front of a monomial of degree k in the expression of
LG(L; o, t1), which yields 2. Moreover, some examples where the equality does not hold are
given in Proposition 4.2.1.

Now suppose I holds for any link and set L an alternating link. Then [6], Theorem 3.5,
states

deg(AL(t)) = 2g(L) +pu — 1.
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So we have the following inequality chain :

2.(2¢(L) +p —1) = span(LG(L; to, t1)) (Conjecture 4.0.2)
> 2deg(Ae (1)) (point 2)
=2.(2¢(L)+u—1) (reference [6])

CQFD

4.2 Evidence supporting the genus conjecture

We wish to give evidence of the likeliness of Conjecture 4.0.2. In particular we verify
the bound for small prime knots, prove it for several infinite families of knots and links and
verify that the genus conjecture holds on an untwisted Whitehead double of the trefoil knot,
which is a counter example due to Hugh Morton in a ressembling situation we will explain.

4.2.1 Less than 13 crossing prime knots

When we consider knots, y is equal to 1 and the inequality becomes
span(LG(K; to, t1)) < 4g(K).

We tested that inequality on all prime knots with less than 12 crossings, and on a large selec-
tion of non alternating prime knots with 13 crossings. To do that, we used the computations
of LG for prime knots one can access via David de Wit’s LINKS-GOULD EXPLORER [9].
To find genus information up to 12 crossings, we used Cha and Livingston’s KNOTINFO
[4]. For non alternating 13 crossing prime knots, data is obtained from Stoimenow’s website
KNOT DATA TABLES [56]. Knots are listed with respect to the HTW ordering for tables of
prime knots of up to 16 crossings [22].

The reason why we did not test all non alternating 13 crossing prime knots is explained in
[12]: The LINKS-GOULD EXPLORER’s database contains evaluations only for LG of knots
with string index at most 5, and from time to time 6 or 7. Indeed, the memory required
increases dramatically with braid width. This still provides values for LG for 2096 non alter-

nating prime knots with 13 crossings among the 5110 which exist.

Proposition 4.2.1.

1 Conjecture 4.0.2 holds for every knot tested. In particular, for all alternating knots tested, the
equality holds.
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2 For all prime knots with less than 10 crossings, the span of LG exactly is 4 times the genus of
the knot.

3 The list of prime knots with 11 or 12 crossings where there is no equality is the following :
N 11N 11N 11N 11N 11N 11N_ 19N 19N 19N 19N 19N 19N 19N 19N _ 19N
gy, 1y, W5, 117, 1175, 17, 11355, 1255, 125, 1257, 125, 1265, 127, 12159, 12435, 1255y,
120, 1250 120 120 128 120 128 120 128 128 128 .

4 Among these knots we get a more precise lower bound with LG than with A for several of them
c11h, 11, 11, 118, 128 128, 128, 128 1250 120, 128 1250 128 120 120
125,

5 Some of the spans are "half integers” in the sense that they are multiples of 2, as they necessarily
are, but not multiples of 4 : 11%, 115&, 11%‘]7, 11377, 12?’1, 125156, 12%7, 12%’64, 12%7/ 125168, 1231)\53,
125, 12805, 128,
Remark 4.2.2. If true, the span inequality is meaningful when 2deg (A (t)) < span(LG(L; to, t1)).
However, as long as it remains a conjecture, the hard case for the inequality is when deg (AL (t)) =
2¢(L) + p — 1 precisely because there is no choice on the value of the span of LG for it not to
be a counter-example.

4.2.2 The untwisted Whitehead double of the trefoil knot

Here we compute the Links-Gould polynomial of the untwisted double of the trefoil knot
that is drawn is Figure 1. This is an interesting knot to study since it is a counterexample to
a genus type bound for another generalization of the Alexander-Conway polynomial : the
HOMFLY-PT polynomial. Precisely, Hugh Morton shows in [39], theorem 2, that the mono-
mial of highest degree with respect to the Alexander variable in the HOMFLY-PT invariant
gives a lower bound for 2¢(L) + p — 1, where ¢(L) is the canonical genus of link L. The double
of the trefoil is the example Morton gives to show that degree is not in general a lower bound
for 2¢(L) + 4 — 1. There is no such problem here :

Proposition 4.2.3. The untwisted Whitehead double of the right handed trefoil with positive clasp
Ko has the following properties :

— 8(Ko) =1,

— Ak (1) =1,

— A braid presentation of Ko in braid group Be as a word in the standard Artin generators o7,

.., 051S:

-1_-1 —-1.-1 -1.,.-1 —1 2 _—1
04030204 "0, 050302010, 03 0504030, 0Og 030203 02070, °,
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089096

Figure 4.1 — The untwisted Whitehead double of the right handed trefoil with a positive
clasp.

— LG(Ko;to, t1) = 3 — 4ty + 212 — 4tg + 61t — 2130 + 213 — 2413 — 24342 + A£313 — 2t1t5 +
48283 — 106585 + 8t — 281 — 263t5 + 8155 — BtHth + 26515 — 26567 + 2411 + 481 —
615 715 546 616 716 547 647
61013 + 24713 — 61515 + 8t8t5 — 2478 + 2437 — 24847
So the span of LG(Ko; to, t1) is 4 and the span inequality is verified in this case.

Remark 4.2.4. The value of LG(Kj; to, t1) was obtained by direct computation of the formula
given by Theorem 1.6.2 with the R-matrix in Definition 1.6.1 using MATHEMATICA 10.

4.2.3 Infinite families of knots using partial skein relations

Here we verify the genus bound on several infinite families of knots or links. To do that,
we will use basic Alexander-type properties of LG we will recall, and partial skein relations
that will make the computations practicable.

Some properties of LG and useful skein relations

To compute LG for infinite families of knots, we need to have a more efficient way to
evaluate it than simply using the formula in 1.6.2. We first recall some general facts about
the LG polynomial.

Proposition 4.2.5. The Links-Gould polynomial satisfies the following properties :

— LG(O) =1,
— Denoting L* the reflexion of L, LG(L*;to, t1) = LG(L; ty %, t71),
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— We have the following symmetry : LG(L; to, t1) = LG(L; t1,to). Indeed LG does not detect
inversion,

— For L and L' two links, denoting L#L' their connected sum : LG(L#L') = LG(L)LG(L’),

— IfL = L'"UL" is the split union of L' and L", then LG(L) = 0.

Proof. For proofs of these facts, we refer the reader to [24, 11, 7]. CQFD

Remark 4.2.6. The last two points show that LG and A behave similarily concerning sums

and disjoint unions.

Let us also cite a list of skein relations that are known to be true for LG. Whether the
associated skein module is generated by the unknot or not is a problem pointed out by Ishii
[24]. It is to the best of our knowledge an open question.

Proposition 4.2.7. LG verifies the following skein relations.
Skein relation (1) :

16( C5 )+ a-n-nio( )
+(tot1—t0—t1)LG<> <> +t0t1LG</\/> = 0.

Skein relation (2) :

LG<§> +(1—t0—t1)LG(X)
vt —n-nie( ) ()= JOV) =0

Skein relation (3) :

LG<§> +(tot1—t0—t1+2)LG<x>
~(tot1—to—t1+2)16( ) () —LG<X\/\> 0

Skein relation (4) :

Lc<><) —(t0t1+1)LG(> <>
+t0t1LG(§> 2t — 1) (h — 1)LG<X> —0.
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Proof. See [24,11, 35]. CQFD

Remark 4.2.8. (1) and (2) are equivalent, by adding each time a well chosen tangle from the
left.

Remark 4.2.9. As explained in [24], (4) is a consequence of (2) and (3).

Remark 4.2.10. Set V the 4-dimensional irreducible U, (gl(2|1))-module that gives rise to the
Links-Gould invariant. Then the tensor product of two copies of V decomposes with respect
to the U, (gl(2|1))-module structure.

VeV=VieV,eW,withdimV, = dimV, = 4 and dimW = 8.

Morevover, Vi, V, and W are non isomorphic irreducible U, (gl(2|1))-modules. For details,
see [18, 11]. Using this and denoting A := U,(gl(2|1)), we have the following identification :

Ends(V® V) ~ Enda(V1) ® Enda(Va) ® Enda(W) ~ C(t51, 51)°.

In particular, for any three (2,2)-tangles such that the associated maps in End,(V ® V) are
linearly independent, any other can be expressed as a linear combination of the first three.
This potentially generates a great variety of skein relations for LG.

Remark 4.2.11. Using points 2 and 3 of Proposition 4.2.5, we can modify the previous skein
relations : orientation of the strands, signs of the crossings. We will use these modified

relations, though we will not write them down here.

Corollary 4.2.12. Using notations in [24], LG satisfies the following skein relations :
A
— LG < /< }n half twists )
K

N

— (=" t t P

= <(t0+1)(t1+1) + (to+1)€t0*t1) * (tﬁl)%fl*to) >LG< Q)
(=1)"(to+t1) f(h—1) H(to—1) N

— ( (t0+1)(?1+i) + (tofl)l(tg—n) + (t1+11)0(t1to)>LG</\>

(=1)"tot L fit

+ ( (t0+1)(tf+11) a (t0+1§(tlo—t1) N (f1+1)1(fl—t0))LG(> <)

[ .
_ LG< e }nfull twists >

=

- igj;}LG(Q) + (1 - t;;)g})LGO <>
2

nyn __ \/
to—1)(t1—1 tot—1
St LN )(n - t%l)LG (/\>
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Y
Sq: S Sy -
D

Figure 4.2 — Generators S; and S; of braid group Bs.

2b; o —2b, —2b
§2hg2e g2

Figure 4.3 - D(by, ..., by) when m is even.

} n full twists )

(/j) a6 () +monc() (),

_LG<

where :

) = g1

a1(n fof; —17

a(n) = % —m(n) ((tot1+12(()i?_})(tll) " 1>,
a3(n) = (to —1)(ty — 1)az (n) + 1.

We will now use all these properties to compute LG, or at least its span, on some infinite

families of links.

2-bridge links

A 2-bridge link is a link with bridge number 2. As explained in [26], an oriented 2-bridge
link can always be written in terms of the two generators S; and S, of 3-string braid group
B;. We use the notations one can find in [26, 24], setting D(by, bo, ..., by,) the oriented 2-
bridge link drawn in Figures 3 and 4. We can suppose by, ..., b, > 0, thereby choosing
an alternating diagram to represent any 2-bridge link. In particular, any 2-bridge link is

alternating, so the inequality in Conjecture 4.0.2 should be an equality.

Remark 4.2.13. If mis even, D(b, ..., by) is a knot. It is a link with two components when m
is odd.
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S e g2 '>

Figure 4.4 - D(by, ..., by) when m is odd.

Proposition 4.2.14. If b; # 0 for any i, then

- om—pu+1

g(D(by, ..., b)) :

where y is the number of components [54].

Therefore, Conjecture 4.0.2 can be rephrased
span(LG(D(by,...,by))) =2(2¢(D(by,...,by)) +u—1) = 2m.
Theorem 4.2.15. For any by, by, ..., by >0,
span(LG(D(by,...,by))) = 2m.

Proof. First we note that a1(n),ax(n),asz(n) are symmetric polynomials with respect to vari-
ables tp and t;. We can compute the span in each case.

span(ai(n)) = 0, span(ax(n)) = 2, span(az(n)) = 2.
We will indicate by 4;(n) the quantity a;(n)(t;',t;'). Let’s prove the span equality by in-
duction on m.
Using the mirror of skein relation 3 of Corollary 4.2.12 :
LG(D(b1)) = d1(b1)LG(O) + d2(b1)LG(O) + d3(b1)LG(OQ) = d1(b1) + d2(b1).

So the span of LG(D(by)) is 2.
Still using the same skein relation, we can compute LG (D (b1, by)).

LG(D(by, b2)) = a1(b2) LG(D(by — 1)) + a2(b2) LG(D(b1)) + a3(b2) LG(O).
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The second part of the sum has span 2 + 2 = 4. The third part has span 2 + 0 = 2. More
care has to be taken with the first term, and in particular with LG(D(b; —1)). If by —1 > 0,
LG(D(by — 1)) has span 2. In the other case, D(0) = OO so LG(D(0)) = 0. So in any case
the span of the sum is 4.

Let us now set m > 3 and suppose the equality stands for any D(by, ..., bx) with k <
m — 1. For D(by,...,b,) we can apply skein relation 3 of 4.2.12 or its mirror image to the
crossings that correspond to S;° 2bm or Sgbm depending on whether m is odd or even. Say m is
even.

LG(D(bl, N ,bm)) :al(bm)LG(D(bl, e ,bm,1 — 1))
+ az(bm)LG(D(bl, ce ,bmfl))
+a3(by)LG(D (b, - .., b—2)).

Since LG(D(b,...,by-1,0)) = LG(D(b,...,by—_2)) the first element in the sum has a span
smaller than 0 + 2(m — 1) = 2m — 2. The second part has span 2 4+ 2(m — 1) = 2m and the
third 2 4+ 2(m — 2) = 2m — 2. In the end

span(LG(D(by,...,by))) = 2m.

CQFD

Twist knots

Definition 4.2.16. A twist knot is a Whitehead double of the unknot. We will denote by K
the twist knot shown in Figure 5 when 2n — 1 is positive. If 2n — 1 is negative, there are
1 — 2n crossings of the opposite sort.

For instance Kj is the unknot, K; is the trefoil knot and K, is knot 5,.
Proposition 4.2.17. Forn # 0, g(K,,) = 1.

Proposition 4.2.18.
— LG(Kp) = LG(O) =1
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2n—1
Crossings

Figure 4.5 — Twist knot K.

— Forn > 1,

LG(K,) =
(—toh ! =t 2 P 2 T — g =+ (g A (= 1) + 1)

to' + Ddi(n—1) —2(n — 1)

tot =1

+ar(n—1)(ty =12t = 1) =ty d(n - 1),

i <tal . 1)2(t;1 o 1)2(

It has span 4.
— Forn < —1,

LG(K,) =

(" =" = 1) () + (0 = (0~ )

+ (to — 1)(t1 — 1)6[1(—11) +1.

2n+ay(—n)(tot1 + 1)
tot — 1

It has span 4 as well.

Proof. When n > 1, we first write the third skein relation of 4.2.12 for n — 1 full twists. On
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]

Figure 4.6 - L(p,q,1).

each of the three links that appear, we use the first point of 4.2.12. We find the formula
written in the theorem. A close look at that expression shows that

span(LG(K,)) < 4.

To see it is equal to 4, we can for example evaluate t; = —t,'. We know we will find (and
can verify)
LG(Ky)(to, —ty') = Ax, (1) = nt§ — (2n — 1) + nty %

So span(LG(K})) > 4. Similar computations can be made when n < —1. CQFD

Pretzel knots

Definition 4.2.19. Set p,q,r € Z. The (p, q, r)-pretzel link L(p, g, ) is a union of three pairs of
strands half-twisted p, g, r times and attached along the tops and bottoms as shown in Figure
6. The half-twists are oriented according to whether the integer is positive or negative.

For example, pretzel knot L(—2,3,7) is represented in Figure 7.

Proposition 4.2.20.
L(p,q,r) is a knot <= (at most one of the three integers p,q and r is even).

In that case pretzel knot L(p, q,r) is denoted by K(p, q,7).

In [30], Kim and Lee explicit the genus for all pretzel knots. Verifying the genus conjec-

ture on this family of knots is quite interesting since the genus does not behave the same way
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5 ¢

K/Q\XN”\/

Figure 47-L(-2,3,7).

as a function of parameters (p, g, r) in all cases. The next theorem is proved in [30].

Theorem 4.2.21. Let p, q,r be integers. The genus of K(p, q, 1) is as follows :
1 K(p,£1,F1), K(£2, F1, £3) have genus 0 for any p,
2 K(p,q,r) has genus 1 if p, q, r are odd and we are not in case 1,
3 K(=£2,F1, £r) has genus %,

4 K(21,q,r) has genus M if q, v have the same sign and we are not in any of the previous

cases,

5 K(21,q,r) has genus W if g, r have different signs and we are not in cases 1, 2 or 3.

We rewrite that theorem so that different cases exclude each other. Doing this makes
computations more specific and somewhat easier in each case. Moreover, since K(p, g, r)* =
K(—p, —q,—r), we will consider p > 0. Also, K(p,q,7) = K(gq,r,p) = K(r,p,q). So we can

restrict our study to the cases where ¢, r are odd.
Corollary 4.2.22. Given the restrictions mentioned, setting p = 0 an integer and q,r two odd
integers, the genus g of K(p, q,r) is as follows :
1 ¢ =0forK(p,£1,F1) and K(2, —1,3), that is when K(p, q,r) is the unknot,
2 ¢ = 1whenp,q,rareoddand K(p, q,r) is not the unknot,
3 ¢="2 fork(2,-1,1),
+ .
4 g= ItﬂZIfI if :
— pis even and q, r are positive,
— p is even and different from 2, g = —1 and r is negative,
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— p is even, q is negative and different from —1, r is negative,

5 g =2,

— p is even and different from2,q = —landr > 3,
— piseven,q > 0,r < 0and (p,q,7) # (p,1,-1),
— piseven, q < —3andr >0

Theorem 4.2.23. For all pretzel knots,

span(LG(K(p,q,7))) < 4g(K(p, q,7)).

Proof. We compute the span of LG(K(p, g, 1)) in each case of Corollary 4.2.22.
K(p,£1,¥1) and K(2, —1, 3) are different representations of the trivial knot that is part of
the small cases we already checked.
Using the fact that K(p,q,7)* = K(—p, —q,—r) and K(p,q,r) = K(q,7,p) = K(r,p,q),
we have only two cases to consider : when p, g, r have the same sign and when two out
of the three have the same sign. For example we can choose the following configurations :
p,q,r =2 0and p > 0,q,r < 0. In each case, using skein relation 2 of Corollary 4.2.12 on the
three pairs of strands, we find a sum of 27 terms, each of which is symmetric of span smaller
than 4.
Forr = 1,3, K(2,—1,r) is the unknot. If r > 5, K(2, —1,r) is drawn in Figure 8 once it is
simplified. The same kind of isotopy can be operated on K(2, —1,7) when r < —1 and the
result is shown in Figure 9.

For example if r > 5 we can apply skein relation 1 of Corollary 4.2.12 to the » — 2 half
twists.

t672 ti‘ 2
LG + + LG
( ( to—l—l t1—|—1) (to—|—1)(t0—t1) (tl—i—l tl—to ) < )
—tg—t t 2k — 1) £ 2ty — 1)
LG(O
t0—|—1 t1—|-1) (t0+1)(t0—t1) (t1—|—1 t —t()
i tr_zt tT 2t
+< tot1 3 o h 0 )LG
(t0—|—1 t1—|-1) (t0+1)(0—t1) (t1—|—1 tl—to
_ (h—t) (bt +1) — f5 =Dt +1) +8 (b —1)(to+ 1)

(to+1)(t1 +1)(to — t1)

The numerator has span 2r — 2 and the denominator has span 4. So

span(LG(K(2,—1,7))) = (2r —2) —4 = 2r —6 = 4(“23> _ 4<|r“§|_1)
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r—2
half
twists

Figure 4.8 - K(2, —1,7) whenr > 3.

Computations can be led in a similar way in the other case.
E If p is positive and even, and q, r are positive and odd. Choosing an orientation for K(p, q,7),
we can apply skein relation 2 of 4.2.12 on the p half twists and skein relation 1 of 4.2.12 on
the g and r half twists. As in a previous case, we get a sum of 27 terms, each of which can be
computed easily. All these terms have a span smaller than 29 + 2r = 4g. Therefore we have
the inequality in this case.

If p is positive, even and different from 2, q = —1, and r is odd and negative. Choosing an
orientation here again, we can use skein relation 2 on the p half twists and skein relation 1 on
the r half twists. Each of the 9 parts of the sum such obtained has a span smaller than 2 — 2r.

So once again

span(LG(K(p, —1,7))) <2—2r = 4(1 ; r) = 4g.

If p is even and positive, q is odd negative and different from —1, and r is odd and negative. An
extended computation similar to the two previous ones proves the bound in this case as well.
If p is even, positive and different from 2, g = —1, and r is positive, odd and different from 1.
Applying skein 2 of 4.2.12 on the p/2 full twists, we find three links, each of which is the
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2—r
half
twists

Figure 49 - K(2,—1,7) whenr < —1.
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closure of a power of generator 07 of B,. We can then use skein relation 1 of 4.2.12 on each of
these links to find that these three terms have a span smaller than 2r — 2 = 4(’51).

If p is even and positive, q is odd and positive, r is odd and negative, and (q,r) # (1,—1).
This is the most tricky case. Indeed, if we compute LG naively using skein relations 1 and
2 as we did for the moment, some parts of the sum we obtain have a span larger than 4g =
2q — 2r — 4. We therefore have to look at these particular terms to see that what goes past the
bound we hope actually compensates. This is achieved in the appendix (Section 4.4).

If p is positive and even, q is odd and q < —3, and r is odd and positive. K(p,q,r) can be
isotoped as follows :

K(p,q,7) = K(r,q,p) = K(p,7.q)-

The last form K(p,r,q) shows that this case is a consequence of the two previous cases of
point 5. CQFD

4.2.4 A generalization of Conjecture 4.0.2 to LG""!

Though we lack computations for LG™" when (m,n) # (1,1),(2,1), the (m,1) and (1, m)
cases of the De Wit-Ishii-Links conjecture, that are known to be true, extend the evaluations
we have for LG?!, that motivated Conjecture 4.0.2. So a potential homological interpretation
for LG?*! should extend to LG™! as well.

Question 4.2.24. Set L a link in S® and n > 3. Do we have, as it seems to be the case when n = 2 :

oI span(LG™(L;ty, t1)) < n(2g(L) +u—1),

o II If L is alternating, then inequality 1 is an equality ?

Remark 4.2.25. For example, the equality holds for all prime knots with less than 10 crossings
when n = 3.

Remark 4.2.26. As a consequence, one could ask, as n tends to infinity, if
span(LG™(L; to, t1)) e n(2g(L)+u—1)?

However this cannot be true. Indeed, there are pairs of mutant knots with different genera,
and neither of the LG™! detects mutation.

4.3 The Links-Gould polynomial and fiberedness

In addition to genus information, the Links-Gould polynomial seems to contain signs of

whether a knot is fibered or not. This is another well known feature of the Alexander invari-
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ant. Conjecture 4.0.3, if it were to be true, would refine the standard Alexander polynomial
criterion. This is the object of this section.

Let us recall that a knot K in S is said to be fibered when the two following conditions
hold:

1 the complement of the knot is the total space of a locally trivial bundle over the base
space S!, i.e. there exists a map p : S \ K — S! which is a locally trivial bundle.

2 there exists V(K) a neighborhood of K and there exists a trivializing homeomorphism
0 : V(K) — S! x D? such that 7o 0(X) = p(X) for any X € V(K) \ K, where

m(x,y) = Iyll

Proposition 4.3.1. Set K a fibered knot. If Conjecture 4.0.2 is true, then
span(LG(K; to, t1)) = 4g(K).

Proof. To have such a result we can more generally consider a set of links E such that, for
any L € E, deg(Ar(t)) = 2¢(L) + u — 1. This is the case here, and it was also the case in
Proposition 4.1.3 where it is proved completely. CQFD

As we already said, we can express the Links-Gould polynomial with different sets of
variables : for example with variables (to, t;) as we did up to now, but also (p, 4) where

These are the variables used in the LINKS-GOULD EXPLORER as well as in de Wit’s papers
on the subject. He sometimes uses P = p2. In variables (p, q) the LG polynomial of a link L

can be written

LG(L;p,q) = a0+ Y. Pu(q)(p™ +p %)
keIN*

where a9 € Z and P(q) € Z[q*']. Note that if Pi(q) # 0 and P,(q) = O for any k > I, then
span(LG(L; p,q)) = 21.

Definition 4.3.2. Set K a knot. We say LG(K) is monic when the term in LG(K) of highest and
lowest degrees can be written g*" (p* + p~#) with I € N and m € Z. In terms of variables
(to, t1), this condition is expressed by saying the terms of highest and lowest degrees are
monic monomials of the form t§ tf with a + B even.

Proposition 4.3.3. Set K a knot. If LG(K; to, t1) is monic, then Ak (t) is monic as well.
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Proof. Consequence of LG(K;t, —t1) = Ag(#?). CQFD

Remark 4.3.4. Point I in Conjecture 4.0.3 implies point II. This is a consequence of Proposition
4.3.3 and of the fact that when the Alexander polynomial is monic for an alternating knot,
the knot is fibered.

Remark 4.3.5. Given Proposition 4.3.3, criterion 4.0.3 would be an improvement of the crite-
rion provided by the Alexander invariant. In addition, we will see in the following that there

are examples of knots where A is monic but LG is not.

Proposition 4.3.6.
1 Conjecture 4.0.3 holds for every prime knot up to 12 crossings. In particular, for all alternating
knots tested, fiberedness and having monic LG are equivalent.

2 For a prime knot K with at most 11 crossings, K is fibered if and only if LG(K) is monic.

By work of Friedl and Kim [17], there are 13 non-fibered 12-crossing prime knots which
have monic Alexander polynomials such that deg(Ak(t)) = 2¢(K) : 125, 125, 12, 12},
128,128,128 128 1208, 128 1200 120 12X .. Among these, LG manages to "detect"

non-fiberedness of some, but not all.

Proposition 4.3.7. The following knots have monic LG : 12?7, 12%158, 125’79, 12224, 122’83, 12?’50,

128 <. So there are knots that are non-fibered but that have monic LG.

Proposition 4.3.8. The following knots have non-monic LG : 125, 125, 128, 125 128 12},

So A sometimes is monic when LG is not.

Verifications were done using de Wit’s LINKS-GOULD EXPLORER [9] and Cha and Liv-
ingston’s KNOTINFO [4].

4.4 Appendix: proof of the harder case in Theorem 4.2.23

Here we prove the remaining case of Theorem 4.2.23. Consider pretzel knot K(p, g, )
when p is positive and even, g is positive and odd, r is negative and odd, and (g,7) # (1, —1).
We want to show that

span(LG(K(p,q,1))) < 4g =29 —2r — 4.

We first consider r = —1. Then 4g = 2q — 2. In that precise configuration, using skein
relation 2 of 4.2.12 on the p/2 full twists and skein relation 1 of the same corollary on the ¢

half twists, you find a sum of terms, each of which has a span smaller than 2g — 2.
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A\

Figure 4.10 - K(2,3, —3).

In general, the computation is not that easy. We show knot K(2, 3, —3) in Figure 10 to fix
the orientation chosen here. Let us introduce some notations :

T g f
SO e} R e Ve R e R
(Tl) _ (_1)n(t0+t1) tg(tl _1) t?(to—l)
Y (to+1)(t1+1)  (bo+1)(tbo—t1) (L +1)(t1—to)’
o) = (-1)"toh Hity - Pty
C(+D(+1) (o+D)(o—t) (b +1)(0 —to)

We transform the —r half twists in K(p, g, ) using skein relation 1 of 4.2.12.

LG(K(p,q,7)) = x(=r)(t5", 17 )LG(K(p, 9, —2))
—y(=n)(ty", 17" )LG(K(p, g9, 1))
+2(=r)(ty ", 17 LG(K(p, 4,0)).

The span of LG(K(p,q, —1)) is 2q — 2 with the previous case. Also span(y(—r)(ty', 1)) =
—2r — 4. So the second term of the sum above has span 2q — 2r — 6 and we need only to

consider the first and third terms in the rest of the proof.
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Also, using skein relation 1 of Proposition 4.2.7,

x(=7)(ty ' 7 LG(K(p, g, —2)) = x(—r)(tg 17 (tg " + 171 — 1)LG(K(p, 9, —1))
+x(=n)(ty L 5+ =t LG(K(p, 9,0))
—x(=r) (k" 17t T LG(K(p, g, 1))

Again, the first term of this sum has span (—2r —4) +2 + (2q — 2) = 2q — 2r — 4 so we can

ignore it as well and we are interested in the following sum:

(x(—r><t01,t11)(t01 +i =) + z(—r)(tﬁf)) LG(K(p,q,0))
- (x(—r)(talltfl)taltfl)LG(K(p,q,1>>.

However, span(z(—r)(t; ', ;1)) = —2r —6 and span(x(—r) (ty L, ;) (g P+ =t 11 1)) =
(—2r —4) 42 = —2r — 2. So we can reduce our concerns to

(M 1"+ 57 = 1571 ) LG (K(p,,0)

— <x(—r>(to‘1lt1‘1>talt;l)LG(K(p, q,1)).

Using the usual skein relations on LG(K(p, g,0), we get the following value modulo terms

with a small span:

—1,-1yp/2 _
L6(&(p0,0) =( AT (- 05 =10 - D)t —1 ) )

# (B P =) (5 B A k(- o - ),

—1,-1 —1,-1
ol -1 ol —1

The two pieces of the sum have span 24. Similarily, ignoring non extremal span terms:

LG(K(p,q,1) =
—1,-1 _
<(t°tt11t)1p/_2 : 1x(q)(t0 +h -Vt + 7 =2t ) (= (b — 1) (H — 1)))
0 "1

p (D) (2 B ) (- - ).

ot —1 ot —1
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So the quantity we are interested in is

“1-1\p/2
K0 4 =) [ (= = D - 1)x@) o+ 1)
0 "1

%5“—Dm4—n(p <$%fwﬂ—1> }

+ L - x(q)(to +1t

oty —1 2 ottt -1 (@)t +10)
(taltfl)p/z -1

+x@ﬂ0€»#x—w%#ﬂ .
tot =1

za&—&xal—n<p (%%HV“—1> }
L 1)(to + ¢
i ot =1 2 ot =1 *q+ 1)t +h)

x(q)(to + t1) (tg " + 171 (b0 + 1)

(') =1
ot =1
20&—4Ma1—n<p <%HNV“—1>ﬂ@

1 2 T

=x&n%%n1xm+mﬂ%tuff x(q)

+(tgt + 1)

tol -1
A" =N =1 (p ()21
T S| 2 T S| 1
0 "1 0 "1
I (tg 't P2 —1
:m—n%%nlxm+hﬂww 0 i)
|

20t — 1) (7 =1 /2 g B B 1
+ Uy t_lt_)l( ! 1 ) (Z - ( Ot_llt_)l 1 )((t01+t1 1)X(Q) —ty 1t1 1x(q+1))].
01 - 0“1 —

x(q)(to + t1) (kg + 1) (=t ')

+(—t't )

(2 + 82—t bty T + tatg )

But £,2 + t;2 —ty ' H(tot; ! + tty ') = 0. So to show the two terms of highest and low-
est degree disappear in that polynomial we show that modulo lower degree terms, a =
(tg' +t7)x(q) — tg ' x(g + 1) = 0. Let’s look at x(q) first of all:

td — 1 + other terms

x(q) = (o +1)(t1 + 1) (fo—h1) = M + m + other terms,

where M is the term of highest degree in x(g), and m the one of smallest degree. That way

th — t1 + other terms = (to +1)(t +1)(to — t1) (M + m + other terms).
And identifying the highest and lowest degree terms on each side we find

M= tg_Z and m = tq_z.
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Finally, modulo lower degree terms,

1 -1 -2 -2 —1,-1,,9-1 -1
a= (gt H DT ) (g )
=00 T g

=0.
In conclusion,

span(LG(K(p,q,7))) < (29 —2r—2) —2=29-2r—4 = 4<CI—;—2>
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Résumé

On s’intéresse dans cette these aux rapports qui existent entre deux invariants d’entrelacs.
D’une part l'invariant d’Alexander A qui est I'invariant de nceuds le plus classique, et le plus
étudié avec le polyndme de Jones, et d’autre part la famille des invariants de Links-Gould
m). On
démontre en particulier un cas de la conjecture de De Wit-Ishii-Links : certaines spécialisa-

LG™™ qui sont des invariants quantiques dérivés des super algebres de Hopf U, gl(n

tions des polyndmes de Links-Gould fournissent des puissances du polynome d’Alexander.
Les polynéomes LG sont donc des généralisations du polynome d’Alexander. On conjecture
de plus que ces invariants conservent certaines propriétés homologiques bien connues de A
permettant d’évaluer le genre des entrelacs et de tester le caractére fibré des noeuds.

Mots clés nceud, entrelacs, polynome d’Alexander, invariants de Links-Gould, algebre

de Hopf, R-matrice, genre, nceud fibré.

Abstract

In this thesis we focus on the connections that exist between two link invariants: first the
Alexander-Conway invariant A that was the first polynomial link invariant to be discovered,
and one of the most thoroughly studied since alongside with the Jones polynomial, and on
the other hand the family of Links-Gould invariants LG™™ that are quantum link invariants
derived from super Hopf algebras U,gl(n|m). We prove a case of the De Wit-Ishii-Links
conjecture: in some cases we can recover powers of the Alexander polynomial as evaluations
of the Links-Gould invariants. So the LG polynomials are generalizations of the Alexander
invariant. Moreover we give evidence that these invariants should still have some of the
most remarkable properties of the Alexander polynomial: they seem to offer a lower bound
for the genus of links and a criterion for fiberedness of knots.

Keywords knot, link, Alexander polynomial, Links-Gould invariants, Hopf algebra, R-

matrix, genus, fiberedness.
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