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Introduction

In biology, since the first attempts to grow cell cultures in laboratories in the
late XIXth century [1], 2D cultures in plastic and glass dishes have been the reference.
Once scientists understood how to maintain cells alive, it became possible to grow
them over several days to perform experiments. In the forties and fifties, cell culture
protocols greatly improved leading to breakthroughs in many fields of biology such
as fundamental life science research, genetics, oncology, pharmaceutics, toxicology
and virology [2, Chapter 20].

But recent years developments show that such culture conditions create strong
observational biases. In many ways, nature is three-dimensional and at some points,
2D cultures reach their limits [3]. For instance, multicellular organisms, embryos
and organs evolve in 3D. Their development and study can hardly be reproduced in
the realm of 2D biology. Moreover it has been shown that even a single cell behaves
differently and has a different genetic expression if it adheres on a 2D surface or if
it lies in a 3D extracellular matrix [4].

Since the early 2000s, new protocols are being developed to grow cells in 3D gel
matrices [5]. Such cultures open new fields of research at a scale between standard
2D cultures and small animal experiments that raise ethical concerns [6]. Many
advances are expected in cancer biology, regenerative medicine and fundamental
biology [7, 8].

New microscopes are consequently needed to help realizing the full potential of
these 3D cell culture studies by gathering large quantitative and systematic data
over extended period of time while preserving the integrity of the living sample [9].

In microscopy, optical light microscopes [10] have been the standard tool in
biology for several centuries since its systematic introduction in the field by Leeuwen-
hoek in the late XVIIth century [11]. Ever since, optical microscopes became more
and more complex in order to achieve better magnification, contrast and resolu-
tion [12]. An increasing resolution is generally accompanied with a small field of
view. Nevertheless, the basics did not change: a light source, a sample and mul-
tiple lenses to focus [9]. But this increasing complexity leads to increasing costs
and a need of trained biologists. Moreover, putting these microscopes in incubator
conditions is challenging and usually the biological samples need to be prepared,
sometimes with toxic labeling agents, and they are consequently not observed in
their natural state.

Some work is done to introduce new physics developments in the context of bio-
logical microscopy, trying to find cost-effective, easy to use and robust technologies.
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Introduction

The development of lens-free microscopy [13, 14], based on the in-line holography
theory introduced by Denis Gabor in 1948 [15] is addressing these needs in the con-
text of 2D cell culture, providing label-free and non-phototoxic acquisition of large
datasets.

This thesis is at the interface of these two new fields. It aims at creating a lens-
free microscope to reconstruct large volumes of 3D cell cultures while preserving
the ability to catch every single cell. At the beginning of this work, the laboratory
expertise was focused on lens-free microscopy of 2D cell cultures both in terms of
experimentation and computer-based reconstruction. From this knowledge in the
realm of 2D cell cultures, lens-free diffractive tomography microscopes performing
multi-angle acquisitions are designed and built. In parallel, an intensive work is
done on implementing dedicated 3D holographic reconstruction algorithms. Recon-
structions are finally performed both on simulations and real samples embedded in
Matrigel®, fixed or living.

This manuscript begins with an overview of the 3D cell culture context and its
standard microscopy before focusing on the lens-free imaging development applied
to 2D cell cultures.

Then, the second chapter is devoted to an introduction of the 3D diffraction
physics and the formalism used all along this manuscript. This chapter is not es-
sential for the reader already familiar with the concepts of 3D diffraction physics.

Afterwards, this thesis follows globally chronologically the work done during this
PhD work. It introduces the different choices for the design and the associated
algorithms. A first bench is built to get in touch with the 3D imaging and its
constraints while giving the opportunity to reconstruct the first 3D volumes. From
this first experience, a second design is made to overcome the limitations of the first
prototype and the associated codes.

The conception of prototypes, parallel to the development of the reconstruction
codes allows to simultaneously develop these two sides of this PhD work, leading to
an overall improvement of the 3D reconstruction techniques and imaging.

Thus, the third chapter focuses on the first prototype and its associated recon-
struction codes. It is mainly composed of designs or methods whose developments
are not pursued because of their limitations and drawbacks. It is needed in order to
fully understand the reasoning which leads to the choices made in terms of proto-
types and algorithms for the following. It introduces the basics for the algorithms
later developed. As a consequence, an in-depth comprehension by the reader is not
compulsory to understand this PhD work and the following of the thesis.

The fourth chapter constitutes the core of this thesis. It presents the chosen
solutions in terms of design for a 3D lens-free microscope as well as the dedicated
fully 3D reconstruction algorithms which are implemented.

The final chapter focuses on the adaptation of the 3D lens-free microscope to
incubator conditions. It introduces time-lapse results obtained on cell cultures which
are followed during several weeks as well as the characterization of the proposed 3D
tomographic lens-free microscope.

The following figure is a schematic summary of this thesis. The left column

2



presents the different diffraction models from the literature which are used in this
PhD work. The central column summarizes the reconstruction algorithms adapted
to lens-free microscopy which are developed and implemented in this thesis. The
right column introduces the three different lens-free prototypes which are designed,
built and tested.

The green lines link the algorithms to their corresponding physical model used
to reconstruct the 3D objects. The blue lines link the different prototypes with the
algorithms used to reconstruct their acquisitions. The faint black arrows indicate
the genealogical dependence of the methods, algorithms and designs.

The red frames highlight the models, algorithms and designs, mainly presented
in the third chapter, which are finally abandoned in this thesis.

The dates indicate the time frame of the development of the corresponding al-
gorithm or prototype in the format year/month.

Finally, Roman and Arabic numerals indicate the chapter and the section in
which each model, algorithm or prototype is introduced in this thesis.
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Chapter I

Context and state of the art

This chapter sets the biological context of 3D cell culture and its standard imag-
ing tools. It also introduces the development of lens-free microscopy in the field of
2D biology and its first adaptations to 3D samples.

1 Overview of the development of 3D cell culture

1.1 A brief history

Since its beginning, standard of cell biology has been 2D cultures in Petri dishes.
Lots of standardized protocols emerged to perform biological research at large scale
in several domains, from fundamental biology to drug screening.

But nowadays, it is commonly admitted that such a simplified model introduces
important observational biases in the experiments and hides lots of biological phe-
nomena [4]. Animal experimentations became the standard method to perform bio-
logical studies in a more realistic 3D environment but raise ethical and repeatability
concerns.

3D cell cultures are considered as an alternative tool to animal models to per-
form experiments on complex samples or small artificially grown organs in a more
controlled environment [3, 6].

The missing of standardized 3D cell culture was due to the lack of methods to
grow cells in three dimensions and leading to a abscence of imaging tools to study
them because of the unexisting of demand [9].

For a few years, new techniques have emerged based on extracellular matrices
in the form of gels, such as Matrigel®1, that allowed growing the first 3D cultures
on small scale (few hundreds of microns). New protocols are being developed to
overcome the technological challenges of 3D cell culture and new fields of biology
are being opened [6, 8].

1It is a gel composed of a gelatinous protein mixture secreted by Engelbreth-Holm-Swarm (EHS)
mouse sarcoma cells [16]. It resembles the complex extracellular environment found in many tissues
and is used by cell biologists as a substrate for culturing cells, especially in a 3D environment.
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New microscopes and imaging tools are consequently needed to explore the full
potential of 3D organoid culture studies.

1.2 Access to new phenomena

As mentioned above, 3D cell cultures provide a new access to biological phenom-
ena which cannot be observed in standard 2D biology. Even if these experiments
are not the scope of this thesis, it can be interesting to keep in mind what will be
the type of samples that a new 3D microscope will have to deal with.

The following non-exhaustive list gives an idea of the potential applications,
both in fundamental biology and pharmaceutics research. It is mainly inspired from
the reviews [4], [7] and [8] where the interested reader can find all the details and
references.

Cell adhesion, 3D motility and chemotaxis - Adherent cells on 2D subtract
and cells evolving in three dimensions do not present the same migration strategies.
In 2D conditions, the migration is mainly driven by the strength of the cell-surface
adhesion, and cells adapt their shape according to a specific distribution of trans-
membrane adhesion proteins. In 3D, cells adopt different strategies according to the
extracellular matrix and the biological situation (individual or collective migrations,
clusters or multicellular sheets). The use of extracellular gel matrix provides also
a new tool to study chemotaxis [17]. Indeed, the liquid culture medium in stan-
dard 2D experiments hides the local effects as it quickly mixes the proteins possibly
produced by the cells, preventing to study their effect. A gel matrix will lead to
a spreading of these potential chemo-attractants based on diffusion responsible for
heterogeneities in the gel.

Gene expression - As for the cell motility, the culture conditions influence the
gene expression of the cells [4, 7, 8]. Studies show that it is more complex in a 3D
environment, leading to similar expression as in real tumors for example.

Epithelial and endothelial cell morphogenesis - In 3D, such cells present
a highly different phenotype than their 2D equivalent [4, 7]. The first ones are able
to differentiate to create polarized and organized structures. The second ones shape
stable cellular networks and allow studying angiogenesis.

Embryogenesis and developmental biology - 3D cell culture gives access to
the early stages of an embryo formation. Studies showed that it is an intrinsic 3D
phenomenon since the mechanical forces play a role in the cell differentiation [4, 7].

Oncology - As mentioned above, the gene expression presents a more realistic
pattern in three dimensions. Moreover, small tumors derived from real tumorous
cells can be grown in 3D culture in a more realistic situation [3]. Co-cultures, in
which different kinds of cells are simultaneously grown, lead to a more complex
simulation of how a tumor can interact with its environment. Such a model coupled
with angiogenesis experiments can help to better understand tumor formation and
growth and to look for new cures [5].
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2 Standard 3D imaging of biological sample

Drug screening and toxicology - Beyond oncology, deficient organs (for ex-
ample in autoimmune diseases) could be reproduced at small scale through 3D cell
culture techniques. It provides a new tool to test and select drugs prior to an animal
test, lowering the costs and the needs in laboratory specimens or patients [3, 5, 18].

2 Standard 3D imaging of biological sample

The rise of three dimensional cell cultures created a need for new imaging tech-
nique adapted to this new culture modality. In specific conditions, a prepared sample
can be imaged with classical microscopes. Nevertheless, fluorescence microscopy re-
mains the most commonly used techniques to study 3D samples at high resolution
and different scales. This powerful tool needs to label the sample, which raises con-
cerns about its toxicity. To overcome these limitations, new techniques based on
coherent illuminations begin to emerge and provide complementary tool to study
these 3D cultures.

2.1 Standard microscopy

Only needing a classical microscope, optical projection tomography techniques
take benefit from the tools of the computed tomography [19] initially developed in
the context of X-ray imaging [20].

In this technique, the sample is firstly fixed into a transparent hydrogel such as
agarose. If the illuminating parallel rays pass though the sample with negligible
refraction or scattering, one can record the absorption map of the 3D sample at
different angles (see figure I.1.a). Using a filtered back-propagation algorithm [20],
the 3D volume can be reconstructed 2D slice by 2D slice (the red slice in the figure).

Optical clearing [21] of biological tissue allows extending the application of this
technique. It is well adapted to mesoscopic scale and is routinely applied in devel-
opmental biology on embryos (chick, mouse, zebrafish, drosophila, ...) or isolated
organs of developed specimens (limb, brain for instance) [22]. Nonetheless the ad-
missible wavelengths for the illumination are limited in the infrared window which
can go through several centimeters of biological tissue and consequently limit the
resolution.

It is very important that the sample remains unchanged during the rotation to
perform the acquisition. It requires a specific preparation in which the sample is
killed and immersed in a transparent hydrogel. Even if some live optical projec-
tion tomography experiments have been implemented [22], this technique is hardly
applicable to living cultures in Petri dishes.

2.2 Fluorescence microscopy

Fluorescence microscopy remains the standard technique to study 3D biologi-
cal cell cultures [23]. The principle of fluorescence microscopy [24] is based on the
fluorescence of specific molecules, the fluorophores, spread among the 3D sample.
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Figure I.1: (a) Scheme of an optical projection tomographic microscope. The
specimen is rotated within a cylinder of agarose while held in position for imaging
by a microscope. Light transmitted from the specimen (blue lines) is focused by the
lenses onto the camera-imaging chip (CIC). The apparatus is adjusted so that light
emitted from a section that is perpendicular to the axis of rotation (red ellipse) is
focused onto a single row of pixels on the CIC (red line). (b) The 3D reconstruction
of the embryo shown in (a). Virtual sections in three orthogonal planes are shown,
within the context of the full 3D block of voxel data. Courtesy of [19].

These molecules can for instance be fixed on microbeads or antibodies or can be
directly expressed by genetically modified cells. Illuminated with a specific exciting
wavelength λex, a fluorophore absorbs the light and re-emits it in a different wave-
length λem. Using a filter, this light can be imaged by standard microscopy to give
a repartition map of the fluorophores.

The principal advantage of this technique is its high signal to noise ratio.
The three main techniques are the confocal microscopy, the light-sheet mi-

croscopy and the multi-photon microscopy (and their derivatives).

Confocal microscopy - In confocal microscopy [25], apertures after the light
sources and before the sensor conjugate a point in the 3D sample on the focal plane
of the microscope and the light detector (see figure I.2). The 3D volume is scanned
by translating either the sample or the optical parts along the three directions. This
modality of acquisition presents an important photo-toxicity for the sample since
at each acquisition of a point in the volume, the exciting light passes through the
whole culture.

Light-sheet microscopy - Light-sheet microscopy [26] partly solves this issue
by shaping the exciting beam with a cylindrical lens into a thin plane orthogonal to
the acquisition tool (see figure I.3) or into a line scanning this plane. This allows
reducing the acquisition time as a whole plane is acquired at a time and the photo-
toxicity since the sample is illuminated once per acquisition.

Multiphoton microscopy - Multiphoton microscopy [27] is an evolution of

8



2 Standard 3D imaging of biological sample

Figure I.2: (a) An example of a confocal microscope: the ZEISS LSM 800. (b)
Schematic principle of confocal microscopy. (c) HeLa cells, red: mitochondria mem-
brane, green: microtubuli, magenta: actin fibers. Sample: courtesy of Arne Seitz,
EPFL, Lausanne, Switzerland.

confocal microscopy where the exciting wavelength is set to λex. It takes benefit
from the fact that a fluorophore can either absorb a photon with a wavelength of
λex or two photons with a wavelength of 2λex if they arrive at the same time at
the same location. Because of this strong constraint, fluorescence can only occur at
the focal point of the laser beam where the density of photons is the highest. This
leads to three major improvements. Firstly, for a given illumination intensity, the
efficiency of the microscope is increased since less photons are lost in out-of-focus
absorption. Limiting background fluorescence, this also increases the resolution.
Secondly, this kind of microscope is less sensitive to the scattering of the re-emitted
light in the sample since it physically comes mainly from the focal point. There is
no need any more of the aperture before the sensor to conjugate the focal point with
the detector. This increases the sensibility of the method. As a lower intensity is
needed, this strongly decreases the photo-toxicity of the confocal technology. And
finally, the use of longer wavelengths makes possible to probe the sample more deeply
as such wavelengths are less scattered and absorbed by biological tissues. This
technique is consequently well suited for the study of in vivo tissues. Moreover, for
some biological samples with specific geometrical and polarization properties, the
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Figure I.3: (a) An example of a light-sheet microscope: courtesy of Cambridge
Advanced Imaging Centre. (b) Detailed view of the ZEISS Lightsheet Z.1. (c) Light
sheet fluorescence microscopy images the beating heart of a 2 days old zebrafish em-
bryo over extended periods of time, delivering maximal frame rates (80 to 100 fps)
with only minimal light exposure. The 2-channel fluorescence image dataset shows
blood vessels and the endocardium labeled in red, the myocardium in green. Sample:
courtesy of M. Weber and J. Huisken, MPI-CBG Dresden, Germany. (d) Octopus
bimaculoides, age approx 1 month. Light Sheet Fluorescence Microscopy with flu-
orochromes Alexa 546 phalloidin - actin/muscle and To-Pro3 Alexa 642 - DNA. 5x
(0.6 zoom) Maximum Intensity Projection. Sample courtesy of Eric Edsinger and
Daniel S. Rokhsar, Okinawa Institute of Science and Technology.

second [28] or third [29, 30] harmonic generation2 can provide a label-free tool which
does not suffer the effects of phototoxicity or photobleaching.

These different techniques achieve very good optical resolution and can even go
beyond the diffraction limit if super-resolution techniques are implemented, such as
PALM (PhotoActivation Localization Microscopy [31]), STORM (Stochastic Optical
Reconstruction Microscopy [32]) or STED (Stimulated-Emission-Depletion fluores-
cence microscopy [33]) for example. Fluorescence labeling provides a unique and

2These non-linear effects are nevertheless not strictly based on fluorescence phenomena.
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Figure I.4: (a) An example of a multiphoton microscope: the Nikon’s A1R MP+.
(b) The cerebral cortex of an anesthetized YFP-H mouse (4-week-old) studied with
the open skull method. Alexa594 was injected into the tail vein to visualize the
blood vessel. Courtesy of: Drs. Ryosuke Kawakami, Terumasa Hibi and Tomomi
Nemoto, Research Institute for Electronic Science, Hokkaido University.

powerful tool to identify and trace specific molecules in a large range of scales in a
sample, from the whole cell itself to its internal nanoscopic structures via the ex-
pression of fluorescent proteins in genetically modified cells. In addition biological
fluorescent dyes became a standard tool in biology in the study of cell cultures both
for 2D and 3D applications.

Nevertheless, fluorescence microscopy has inherent drawbacks. Only a few en-
dogenous fluorophores are already present in biological samples [34] and generally
have an excitation wavelength in the ultraviolet, harmful to the cells. There is con-
sequently a need to either label or genetically modify the cells, which means that the
cell culture is never observed in its natural state. This also means that the sample
must be specifically prepared and labeled within an adapted culture protocol, a step
which is time consuming. Furthermore, despite some examples in specific configura-
tions [28, 35], fluorescence is generally not quantitative and some fluorophores may
induce toxicity, either because their activation degrades the molecules or releases
toxic agents for the cell. Adding the fact that some may see their performance de-
grades along time, it makes hard to study a given sample for extended periods of
time. Finally, the analysis of a sample via fluorescence microscopy is limited to the
parts which can be fluorescently labeled, the other parts being not observable.

2.3 Coherent microscopy

To overcome the limitations of fluorescence microscopy listed above and in order
to provide complementary tools to analyze cell culture, new tools emerged based on
coherent imaging. The resulting signal depends on the optical path traveled by the
light rays and is directly linked to the local complex refractive index of the sample.
It is a very powerful and label-free mean to probe the physical features of a biological
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sample [36].

Optical coherence tomography - Optical coherence tomography is an effi-
cient tool to scan deeply into tissues [23, 37, 38]. It consists of a Michelson type
interferometer (see figure I.5.a) with a low coherence light source (blue). Light is
split into two arms. One arm (red) travels through the sample and ballistic photons
are reflected on the discontinuities. They interfere with the reference arm (green)
and the resulting signal is recorded by a sensor. As the coherence is low, there
is interference only if the depth of reflection matches the length of the reference
arm. The scan in depth is then either performed by translating the mirror or via
a frequency shaping of the illumination and the frequency analysis of the resulting
interference. This geometry is very efficient to detect surface discontinuities and
makes it an adapted tool to study the retina or the skin (to detect cancers or ana-
lyze burns for instance). It can also be applied to embryos or brain tissues or small
animals such as the zebrafish.

Figure I.5: (a) Schematic principle of the optical coherence tomography: a Michel-
son type interferometer. (b) In vivo dynamic FF-OCT in a 2 days post fertilization
zebrafish larva. Despite strong phase variations caused by the blood flow, which
generates a strong dynamic signal, some cells can still be revealed in between the
capillaries. The scale bar represents 40 µm. Courtesy of [38].

Optical diffractive tomography - Optical diffractive tomography emerged
with the development of the digital holographic microscopy [39]. This kind of mi-
croscope allows recording the wave diffracted by a sample illuminated by a coherent
source (see figure I.6.a). Different configurations exist. The most common config-
uration uses a reference arm to produce off-axis holograms. This allows retrieving
full information on the diffracted wave both in terms of amplitude and phase. This
type of microscope does not need any labeling or staining of the sample which can
be studied in its natural state. It is directly sensitive to the sample local complex
refractive index which provides complementary information compared with the fluo-
rescence microscopy. The sample can be segmented according to its absorption (the
imaginary part of the complex refractive index) or its refractive index (the real part
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of the complex refractive index) [40, 41]. The 3D lens-free microscope developed
during this PhD belongs to this kind of microscopy.

Figure I.6: (a) Schematic principle of optical diffractive tomography: the result
of the diffraction of a coherent light through the 3D sample is recorded. The use
of a reference arm which interferes with the diffracted wave allows retrieving the
phase information of the complex wave which is lost otherwise. (b) An example
of an optical diffractive tomographic microscope: the 3D Cell Explorer (Nanolive).
(c) 3D rendering of a HepG2 cell with a 3D Cell Explorer, top view and side view.
Each color represents a different refractive index range. Courtesy of [42].

Since the first works in tomography with digital holographic microscopes, the
technique evolved. At first, the retrieved 2D pictures at each illumination angle were
interpreted as overall phase delay introduced by the sample in the optical path, di-
rectly linked to the integral of the refractive index along the line of sight [43]. They
were consequently processed similarly to the absorption maps produced in X-ray
tomography and the volume was retrieved via Radon transforms in a filtered back-
propagation algorithm [20]. It showed the potential of digital holographic micro-
scopes to retrieve information on 3D cell cultures. Assuming that the propagation
inside the sample follows straight lines, this model nevertheless does not take into
account the diffraction inside the sample. Indeed, in optical wavelengths, the sample
scatters the incoming illumination.

New works are taking into account this diffraction using either the Fourier diffrac-
tion theorem3 [44, 45, 46] or multi-slices models in which the diffraction is simu-
lated in a volume numerically cut slice after slice approximated by 2D diffracting
planes [47].

These techniques generally require multiplying the viewing angles around the
sample to obtain the 3D information. The solution is either to rotate the sample in

3See chapter II, section 2
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the microscope or, to avoid any complex sample preparation, rotate the illumination
itself, for example by tilting the mirror in the sample arm in the figure I.6.a.

Some recent works try to remove any moving parts in the system to reduce the
cost of such microscopes. Some of them uses a LED array to change the illumination
angle [47, 48], or to retrieve phase contrast and bright-field images [49]4. Some
others replace the tilted illumination by structured illuminations to retrieve similar
information [50, 51].

All these techniques nevertheless work on sample limited in size. Indeed, the gen-
eral framework assumes low scattering objects5. Researches then focus on achieving
the best resolution on small volumes (cubes with sides of few tens of microns).

2.4 Lens-free microscopy: a complementary tool

As shown above, the study of in vitro cell populations remains a challenging
task if one needs to gather large quantitative and systematic data over extended
periods of time while preserving the integrity of the living sample. Most of the
techniques introduced above also have a limited field of view, raising the issue of
missing isolated events if a cell culture presents multiphenotypes at the same time.

As discussed in [9], there is a need for a new microscopy technique that must
be label-free and non-phototoxic to be as "gentle" as possible with the sample, and
"smart" enough to observe the sample exhaustively at a variety of scales both in
space and time. Lens-free video microscopy is addressing these needs in the context
of 2D cell culture (see [13, 14, 52, 53]).

The main objective of this PhD work is to investigate if this technology can be
adapted to 3D cell cultures in order to provide a complementary tool from the ones
presented above.

Figure I.7 gives a quick overview of these different techniques and their pros and
cons as well as the expectations awaited from a 3D lens-free microscope.

3 Development of lens-free time-lapse microscopy

This section gives a brief overview of the 2D lens-free microscopy and introduces
some tools and notions that will be used in the 3D problem.

3.1 Principle and potential

The 2D lens-free microscopy is based on the in-line holography principle in-
troduced by Denis Gabor in 1948 [15]: a coherent illumination is scattered by a
2D sample, leading to interference patterns which are recorded by a photographic
plate. If a coherent light, so-called reference field, is then diffracted back through
this hologram, an image of the original 2D transmissive plane is created.

4This work [49] does not remove all moving parts since a translation stage is used to scan the
sample along the z-direction.

5See chapter II, section 1.2
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Figure I.7: Table comparing the standard 3D microscopy techniques. A lens-free
microscope would complete the panel of possibilities: not competitive in terms of
resolution, it gives a label-free imaging tool on large volumes and allows easy time-
lapse microscopy in incubator conditions.

Figure I.8 presents a schematic view of the technique in the realm of biological
microscopy. To avoid parasitic interferences, the illumination in visible light is only
partially coherent. It is obtained by placing a LED behind a pinhole, creating a
spherical wave6. The sample being placed a few centimeters away, this wave can be
approximated by a semi-coherent plane wave. The photographic plate is replaced by
a CMOS sensor located a few millimeters behind the sample. It records the resulting
interference of the light scattered by the sample: the hologram.

The recovery of the sample image from this hologram is then performed numeri-
cally, based on the knowledge of wave propagation physics between the sample and
the sensor (see 3.2).

Figure I.8 presents simulations based on the Fresnel propagator7 hz, with three
opaque discs of radius rd = 10 µm and a lighting wavelength of λ = 630 nm, the
sensor being placed at zs = 2 mm.

Such a compact and minimalistic technology leads to numerous advantages. For
instance:

• The absence of lenses or moving parts means robustness and ease of use.

• Such a device can handle incubator conditions, while being user-friendly for
the experimenter.

6The diffuser in the figure aims to produce a uniform lighting on the pinhole. This is particularly
useful in the case of multi-wavelength illumination.

7Which will be introduced in the following section 3.2.
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Figure I.8: Schematic diagram of the 2D lens-free imaging. A semi-coherent wave
front Uinc is generated with a LED placed behind a pinhole: a few centimeters from
the pinhole, the spherical wave can be approximated by a plane wave. This inci-
dent plane wave diffracts through the 2D biological sample. The resulting diffracted
wave Udif propagates in free space toward a CMOS sensor placed a few millimeters
away. The sensor measures the produced interference patterns: only the intensity of
the wave front is registered, the phase information is lost. A numerical reconstruc-
tion is then performed to retrieve the 2D object.

• The field of view is larger than with conventional methods since it is directly
the sensor surface and one can think of statistic experiments on large data set,
for example for new drug screening applications.

• The method is also label-free and is not toxic for the biological sample, allowing
video-microscopy on large periods of time without killing or modifying the
sample, which does not need any specific preparation.

But this method also has its drawbacks. For example, as there is no magnifi-
cation, the resolution is directly linked to the pixel pitch of the sensors which are
currently not competitive with classical optical microscopes8.

One of the main pitfalls of this optical design is the lack of reference beam,
leading to the loss of the wave front phase in the recording step. The numerical
reconstruction techniques will consequently have to take into account this lack of
information to reduce the resulting artifacts, such as the rings on the simulated

8dpix = 1 ∼ 2 µm
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back-propagation in the figure, the so-called "twin image" [54].

3.2 2D in-line holography overview

As previously explained, in a 2D lens-free microscope, there is no lens to perform
any magnification or focusing. As a consequence, the hologram recorded by the
sensor appears as a "blurred" picture. For example on the simulation of figure I.8,
the three spheres appear as unfocused concentric rings.

Even if quantitative and relevant information can be retrieved directly from the
holograms without the need of a proper reconstruction (see [55] for example), many
applications need a more classical rendering comparable with what can be obtained
with a classical microscope. To do so, numerical computation replace the role of the
lenses in a lens-free setup by back-focusing the recorded holograms using a physical
model of light propagation. The quality of the reconstructions will consequently
depend on the quality and accuracy of this model.

In the context of 2D lens-free microscopy, the model is based on the Rayleigh-
Sommerfeld diffraction formula [56]. Using the notation of figure I.8, it states that
for a monochromatic incident wave Uinc with a wavelength of λ0, the wave Udif
diffracted by a 2D complex transmissive plane t2D at z = 0 is given at a given
point ~r = (x, y, z > 0) by:

Udif (−→r ) =
z

iλ0

x

−→rO∈O

t2D (−→rO)Uinc (−→rO)
eik0‖−→r −−→rO‖
‖−→r −−→rO‖2d

2−→rO (I.1)

where k0 = 2π/λ0 is the wave number of the field in free space and O stands for the
2D object. Using the convolution symbol ⋆, equation (I.1) becomes:

Udif (−→r ) = (Uinc.t2D) ⋆

(
z

iλ0

eik0r

r2

)
(I.2)

The convolution kernel z
iλ0

eik0r

r2 corresponds to the equation of a propagating

spherical complex wave eik0r

r
normalized by the pre-factor z

irλ0
. Looking closer,

it appears that z/r = cos θ where θ is the angle between the direction normal
to the diffracting plane and the position pointed by ~r: the pre-factor gives the
"efficiency" of the diffraction according to the angle at which is seen the diffracting
2D object. Equation (I.2) is consequently the mathematical formulation of the well-
known Huygens-Fresnel principle: the diffracted wave is composed of the summation
of the spherical waves emitted at each point −→rO of the sample, the amplitude of these
waves being modulated by the local transmission of the object t2D (−→rO) and the local
value of the incident wave Uinc (−→rO).

This equation gives a tool to propagate a complex field from the object at z =
0 to the sensor plane at z = zs, using a convolution. But it does not provide
a straightforward tool to perform the reverse operation to retrieve a 2D view of
a sample given its hologram on the sensor plane. Indeed, deconvolution can be
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complex when the problem is ill-posed9 or in the presence of noise, two drawbacks
which are encountered in the case of the presented in-line holographic microscope.

To overcome these limitations, equation (I.2) can be expressed in a paraxial con-
text: the Fresnel formulation [56]. It is motivated by the facts that the illumination is
normal to the sample and the sensor, and that the spatial extension of the holograms
is in the order of magnitude of a few tens of microns whereas the distance between
the object and the sensor is higher than a millimeter. With zs ≫ (x, y, xO, yO) one
gets:

−→r −−→rO =
√

(x− xO)2 + (y − yO)2 + z2
s ≃ zs +

(x− xO)2 + (y − yO)2

2zs
(I.3)

and equation (I.2) becomes:

Udif (−→r ) = (Uinc.t2D) ⋆

(
eik0zs

iλ0zs
e

ik0
2

r2
2D
zs

)
= (Uinc.t2D) ⋆

(
hλ0
zs

)
(I.4)

where r2
2D = x2 + y2 and where the convolution kernel hλ0

z = eik0z

iλ0z
e

ik0
2

r2
2D
z is the

Fresnel propagator.
This formulation has two main advantages. First of all, the expression of the

Fourier transform of the Fresnel propagator can be obtained analytically [57], al-
lowing to perform the convolution in equation (I.4) directly into the Fourier domain
with a good numerical precision:

hλ0
z (x, y) =

eik0z

iλ0z
e

ik0
2

x2+y2

z ⇔ ĥλ0
z (u, v) = eik0ze−iπλ0z(u2+v2) (I.5)

Secondly, from this equation (I.5), one gets that the inverse propagator of hλ0
z

is directly hλ0
−z as ĥλ0

z × ĥλ0
−z = 1 [57]. With

∣∣∣ĥλ0
z

∣∣∣ = 1, it comes that the Fresnel

propagator hλ0
−z can directly be used to back-propagate the complex field Udif in the

sensor plane without any amplification of the noise as in standard deconvolution
where the high frequencies diverge.

In addition, for a normal incident plane wave Uinc = U0.e
i(k0z+ϕ) on the sample,

ignoring a complex constant factor of U0.e
iϕ, one can assume that the incident wave

is normalized to Uinc = 1. The 2D transmissive plane is then retrieved by:

t2D = (Udif ) ⋆
(
hλ0

−zs

)
(I.6)

This method has as a prerequisite the knowledge of the totality of the complex
wave Udif both in terms of amplitude and phase. But the sensor is only sensitive to
the intensity of this complex field:

Is = |Udif |2 =
∣∣∣t2D ⋆ hλ0

zs

∣∣∣
2

(I.7)

9Here the phase information on the diffracted wave is unknown.
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As previously mentioned, the problem is consequently ill-posed, leading to the
recurrent problem of phase retrieval since the simplicity of the system leads to a lack
of a reference beam to get the absolute phase. If nothing is done to retrieve some
information on the phase, the reconstructions suffer from artifacts as in figure I.8
where the diffracted wave was approximated by Udif ≃

√
Is. The resulting unfo-

cused rings surrounding the reconstructed objects correspond to the "twin-image"
artifact [54]. These are the images of the same objects but defocused at z = 2zs.
The information on on which side of the sensor the object was supposed to focus is
in the phase of the diffracted wave which is lost during the acquisition.

Several phase retrieval techniques can be implemented and are generally based
on a Gerchberg-Saxton type algorithm [58, 59] in which back and forth propagations
between the experimental data and the reconstructions are iterated to ensure data
fidelity on the first side and apply constraints on the second part. Presented in
figure I.9.a, this type of algorithm works as follows:

• Step 1: At the first iteration of the algorithm, the complex wave on the sensor
is initialized with a modulus corresponding to the recorded intensity and its
phase is set to 0. In the next iterations, step 1 insures the data fidelity by
replacing in the modulus of the complex wave simulated in step 4 with the
square root of the recorded intensity.

• Step 2: Back-propagation of the complex wave from the sensor plane to the
reconstruction plane.

• Step 3: Application of a priori constraints on the object.

• Step 4: Forward propagation of the complex field from the object to the sensor
plane.

This general framework leads to a large variety of algorithms depending on the
solutions implemented for the data acquisition or for the constraints application or
both and are successfully applied in the context of 2D lens-free microscopy.

Concerning the object plane, the use of a mask remains the most straightforward
technique by either spatially limiting the object via an a priori knowledge of its shape
and position or by constraining its value in a specific domain, for example via non-
negativity enforcement when the object must physically be real and positive [60].
This masking technique can be replaced or complemented by regularization on the
object [61].

To improve the available information on the object without requiring a priori
information, the data acquisition process can also be modified: for example with
acquisition planes at different distances zs [61, 62], by multiplying the holograms to
perform super-resolution [63] or with multi-wavelength acquisitions [64, 65].

Figure I.9.b presents an algorithm which is used during this PhD work. It was
developed during a previous PhD done by Sophie Morel [66, 67] and is based on
a RGB acquisition process. The three wavelengths are combined in the object
plane as follows:
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I Context and state of the art

Figure I.9: (a) Schematic diagram of a Gerchberg-Saxton algorithm [58]: in a back
and forth loop between the acquisition plane and the object plane, data fidelity is
enforced on the first one and constraints are applied on the second one. (b) Scheme
of the RGB phase retrieval developed for a lens-free RGB microscope by Sophie
Morel during her PhD. Courtesy of [57].

• Step 1: At the first iteration of the algorithm, each of the complex waves on the
sensor at the different illumination λj ∈ {R,G,B} is initialized with a modulus

corresponding to the recorded intensities and a phase set to 0: U j
dif,0 =

√
Ijs .

In the next iterations, step 1 insures the data fidelity. The simulated complex
waves simulated in step 4 are updated to match the recorded dataset: U j

dif,it =
Uj

dif,it−1

|Uj
dif,it−1|

√
Ijs .

• Step 2: Each complex wave U j
dif,it on the sensor plane is back-propagated using

the Fresnel kernel (I.6) hλj

−zs
.

• Step 3: The object t2D is then retrieved by averaging the three obtained com-
plex fields tj2D: t2D =

〈
t
λj

2D

〉
λj

. As the object cannot emit light in the presented

model, a constraint of domain is applied by forcing its modulus to be lower
than 1: |t2D| ≤ 1.

• Step 4: The object t2D is propagated in the three wavelengths using the Fresnel

kernel (I.7) hλj
zs to simulate intensities for the next loop: Ijs =

∣∣∣t2D ⋆ h
λj
zs

∣∣∣
2

This algorithm is simple to implement and runs fast, providing good results
within only a few iterations.
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3 Development of lens-free time-lapse microscopy

3.3 First work in 3D lens-free microscopy

Inspired from the techniques and algorithms developed for microscopes with
lenses, some works were published in the field of 3D lens-free microscopy. But this
still remains a marginal technology in optical diffractive tomography.

Ozcan’s team at UCLA in the US, very prolific in 2D lens-free microscopy, de-
veloped an experimental bench to perform 3D tomography [68, 69]. Figure I.10
presents some results on C. Elegans. "The partially coherent light source with spec-
tral bandwidth of, e.g., approximately 1−10 nm, is filtered through a large aperture
with diameter approximately 0.05 − 0.1 mm. The light source is rotated to record
lens-free holograms of the micro-objects from multiple viewing angles. The device
also includes the work developed by the team to perform digital super-resolution:
9 holograms are recorded, at each angle, by translating the aperture in the plane
parallel to the sensor within a 3 × 3 grid with discrete shifts of < 70 µm (see the
inset in figure I.10.c)."

The tomographic algorithm uses standard 2D lens-free reconstruction. "A scal-
ing factor is used to correct the deformation of the holograms acquire with an
angle. Once each of the holograms is reconstructed, a filtered back-propagation
algorithm [20] based on the Radon transform is used to retrieve the 3D volume.
And finally, image deconvolution is applied to all the presented microscope images
and tomograms in figure I.10 to further improve their image quality." As mentioned
earlier for [43], this model does not strictly take into account the 3D diffraction in
the sample and is consequently limited on objects with a small extension along the
axial axis.

Figure I.11 presents the results from Chen’s Chinese team [70]. There is no
moving part in the system: the multi-angle viewing is performed with a LED ar-
ray. Using RGB illumination, a 2D phase retrieval is performed for each angle to
extract the complex diffracted waves both in terms of amplitude and phase. These
are used to map the 3D Fourier transform of the 3D sample via the Fourier diffrac-
tion theorem10, commonly used in optical diffractive tomography. To compensate
the missing information due to the limited angular coverage, iterative algorithm
with non-negativity constraint is applied, inspired from [44]. This work presents
techniques and algorithms very similar from the ones developed in this thesis11.

10See chapter II, section 2
11See chapter III, section 4 and chapter IV, section 2.
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Figure I.10: Application of lens-free on-chip tomography toward 3D imaging of
C. Elegans. (a) A tomogram for the entire worm corresponding to a plane that
is 3 µm above the center of the worm. (b.1–3) Tomograms at different layers for the
anterior of the worm. The pharyngeal tube of the worm, which is a long cylindrical
structure with < 5 µm outer diameter, is clearly visible at z = 8 µm plane, and
disappears at outer layers. (b.4) A microscope image (40X, 0.65NA) for comparison.
(c) Schematic diagram of the lens-free tomography setup. The sample is placed
directly on the sensor array with < 5 mm distance to the active area. (d.1-2) y − z
orthogonal slices from the anterior and posterior regions of the worm, respectively.
(e.1-2) x − z orthogonal slices along the direction of the solid and dashed arrow in
(a), respectively. The 3D structure of the anterior bulb of the worm, pointed by
the solid arrows, can be probed by inspecting (a) and (d.1). Scale bars, 50 µm.
Courtesy of [68].
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3 Development of lens-free time-lapse microscopy

Figure I.11: (a) Picture of the microscope. The system consists of a CMOS imag-
ing sensor and a LED matrix controlled by a MCU, where each LED can provide
RGB narrow-band illumination. The whole device is powered through the USB
connection. (b-i) Tomographic reconstruction of a 2 µm silica bead. The LED
array sequentially illuminates the sample with different LED elements. (b-c) The
retrieved complex fields are mapped in 3D Fourier space according to Fourier diffrac-
tion theory. (d-e) Due to the limited pixel resolution abilities, the actual detectable
frequencies of the platform only occupy a limited portion of the 3D Ewald sphere,
while the information in the red shaded region is unrecoverable. (f-g) An iterative
non-negative constraint processing method is implemented for filling the rest of 3D
space. (h) Finally a 3D inverse Fourier transform yields 3D tomogram of the bead.
(i) The FWHM value for the lateral line-profile is 3.41 µm, while the axial FWHM
shrinks to 5 µm. Courtesy of [70].
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Chapter II

3D diffraction physics

The objective of this chapter is to give a brief overview of the 3D diffractive
physics needed in this thesis while introducing the notations and formulations that
will be used all along the manuscript.

A first section focuses on the global problem of 3D in-line holography and gives a
first simplification of the equations. A second section introduces the Fourier diffrac-
tion theorem and its mathematical derivation as well as a geometrical interpreta-
tion. A last section compares the different models with real acquisitions and with
2D models and discusses the limitations of the different methods.

1 3D diffraction model of low scattering objects

This section and its notations are mainly inspired from the chapter 6 "Tomo-
graphic Imaging with Diffracting Sources" of [20] and from [44]. They are themselves
based on the founding work of Emil Wolf [71] published in 1969, for his demonstra-
tion of the Fourier diffraction theorem (see section 2).

The objective is to find a relation linking the 3D sample refractive index to the
wave front at a given point beyond the sample for a given incident wave.

1.1 Equation of wave propagation

Let’s consider a scattering object O with a complex refractive index n immersed
in a homogeneous medium of refractive index n0 as illustrated in figure II.1. A frame
centered on O is arbitrary set in the object, giving the three axes x, y and z.

By convention, the position vectors pointing toward a point in the surrounding
space around the object will be noted ~r = (x, y, z) whereas inside the object they
will be noted −→rO = (xO, yO, zO).

The complex refractive index n of the scattering object depends on the position
inside the object: n (−→rO). Its real part is the standard refractive index while its
imaginary part represents the object absorption [40, 41]. The aim here is to work out

25



II 3D diffraction physics

Figure II.1: Illustration of an incident plane wave Uinc (in blue) with a wave vector ~k0

scattering through an object O. The resulting total wave Utot is composed of the
incident wave and the scattered field Udif diffracted by the object (in red). The
direction of the incident wave propagation is given by the unit vector (p0, q0,m0),
oriented toward increasing z. zmin and zmax are the minimal and maximal object’s
coordinates on the z-axis. The object is immersed in a medium with a constant
refractive index n0.

the total field1 Utot (
−→r ) of an incident wave Uinc (−→r ) propagating trough O toward

increasing z. It can be shown2 that the field can be decomposed in monochromatic
fields with wavelength λ0, and that such a field must satisfy the following wave
equation:

∆Utot (
−→r ) + k2 (−→r )Utot (

−→r ) = 0 (II.1)

where k (−→r ) = k0.n (−→r ) is the local wave number, k0 = 2π/λ0 being the wave
number of the field in free space. ∆. = ∇2. =

−→∇ .−→∇ . is the Laplacian operator.
Replacing k by its expression in equation (II.1):

∆Utot (
−→r ) = −k2

0n
2 (−→r )Utot (

−→r )

and introducing the refractive index n0 of the surrounding medium, equation (II.1)
becomes by adding k2

0n
2
0Utot (

−→r ) on both sides:

∆Utot (
−→r ) + k2

0n
2
0Utot (

−→r ) = −k2
0

(
n2 (−→r )− n2

0

)
Utot (

−→r ) (II.2)

As presented in figure II.1, the total field Utot can be expressed as a sum of
two sub-wave fronts: the incident wave Uinc and the diffracted wave Udif . Uinc is

1As there is no polarization effect in the considered situation, a scalar formulation for the field
is adapted to the mathematical development.

2In details in the chapter 6 "Tomographic Imaging with Diffracting Sources" of [20]. It also
deals with the time dependence which can be ignored in the current problem.
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1 3D diffraction model of low scattering objects

the incident field present in the medium without any inhomogeneities. Udif , the
remaining field to get Utot from Uinc, is considered as being the field scattered by
the object O. It comes then:

Utot = Uinc + Udif (II.3)

According to its definition, Uinc is thus solution of the simplified wave equation
in a homogeneous medium of refractive index n0:

∆Uinc (−→r ) + k2
0n

2
0Uinc (−→r ) = 0 (II.4)

Using this equality (II.4) and the expression (II.3) of the total wave in equa-
tion (II.2), one gets the following equation for the diffracted wave:

∆Udif (−→r ) + k′2
0 Udif (−→r ) = f0 (−→r )Utot (

−→r ) (II.5)

with k′
0 = k0n0 the wave number normalized to a propagation medium with a refrac-

tive index n0 and f the scattering potential of the objectO for a given wavelength λ0:

f0 (−→r ) = −k′2
0



(
n (−→r )
n0

)2

− 1


 (II.6)

Thereafter, it will be more convenient to work on a normalized scattering poten-
tial that does not depend on the wavelength3:

f (−→r ) = −f0 (−→r )
k′2

0

=



(
n (−→r )
n0

)2

− 1


 (II.7)

Equation (II.5) cannot be solved for Udif directly in the general case. But this
equation can be considered as a linear operator according to Udif on the left-hand
side while the right-hand side is a forcing term. Thus if Green’s functions g (−→r1 ,

−→r2 )
exist for the differential equation4:

∆g (−→r1 ,
−→r2 ) + k′2

0 g (−→r1 ,
−→r2 ) = δ (−→r1 −−→r2 ) (II.8)

one can express the diffracted wave Udif as a convolution5 on the total 3D space R3:

Udif (−→r ) = −k′2
0

y

−→rO∈R3

f (−→rO)Utot (
−→rO) g (−→r ,−→rO) d3−→rO (II.9)

In 3D space, an expression of g, solution of equation(II.8) is6:

g (−→r ,−→rO) =
−1
4π

eik
′
0‖−→r −−→rO‖
‖−→r −−→rO‖

(II.10)

3If one assumes that the refractive index n does not depend on the wavelength either.
4δ stands for the Dirac delta function.
5See appendix A, section 1 for more details.
6See appendix A, section 2 for more details.
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II 3D diffraction physics

One may notice that this is the expression of a spherical wave at −→r emitted
from −→rO. This is consistent with equation (II.8) where the forcing term on the right-
hand side can be seen as a point inhomogeneity located at −→rO due to the Dirac delta
function. One may consequently expect that a solution of the wave equation with
such a forcing is indeed a spherical wave propagating from this point −→rO.

Let’s also note that according to the expression (II.7) of the scattering poten-
tial, f = 0 outside the objectO. The integral in equation (II.9) can then be expressed
only on the object.

Finally, the expression of the total wave Utot is:

Udif (−→r ) =
k′2

0

4π

y

−→rO∈O

f (−→rO)Utot (
−→rO)

eik
′
0‖−→r −−→rO‖
‖−→r −−→rO‖

d3−→rO (II.11)

1.2 The Born approximation

One could think that the formula (II.11) is a good solution to express the
diffracted field Udif according to the scattering potential f of the object. But looking
closer, one must notice that Udif depends on itself since it appears in the expression
of Utot (II.3).

A solution is to restrict to a low scattering object. If it produces a perturbation
on the field which can be considered negligible compared to the incident wave Uinc
inside the object, |Udif (−→rO)| ≪ |Uinc (−→rO)|, then Utot (

−→rO) ≃ Uinc (−→rO) and the solu-
tion (II.11) can be written:

UB
dif (−→r ) ≃ k′2

0

4π

y

−→rO∈O

f (−→rO)Uinc (−→rO)
eik

′
0‖−→r −−→rO‖
‖−→r −−→rO‖

d3−→rO (II.12)

This is called the Born approximation. It gives a first order estimation of Udif .
To get an approximation of higher degree UB2

dif , one must use the first order approx-
imation of Utot ≃ Uinc + UB

dif in equation (II.11):

UB2
dif (−→r ) ≃ k′2

0

4π

y

−→rO∈O

f (−→rO)
(
Uinc + UB

dif

)
(−→rO)

eik
′
0‖−→r −−→rO‖
‖−→r −−→rO‖

d3−→rO (II.13)

And one can similarly increase the order of the approximation iteratively, going
from the i-th to the i+ 1-th using Utot ≃ Uinc + UBi

dif :

U
Bi+1

dif (−→r ) ≃ k′2
0

4π

y

−→rO∈O

f (−→rO)
(
Uinc + UBi

dif

)
(−→rO)

eik
′
0‖−→r −−→rO‖
‖−→r −−→rO‖

d3−→rO (II.14)

This work will focus on the first order approximation. Equation (II.12) can also
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1 3D diffraction model of low scattering objects

be expressed as a convolution:

UB
dif = (f.Uinc) ⋆


k

′2
0

4π
eik

′
0‖−→r ‖
‖−→r ‖




︸ ︷︷ ︸
Convolution kernel

(II.15)

It clearly appears that the incident wave, weighted by the scattering potential,
is convolved with a spherical propagator. This is the 3D equivalent of the Huygens-
Fresnel principle (see section 3.2): each point in the scattering medium reemits a
secondary wave, propagating spherically from this point, with an amplitude depend-
ing on the incident primary wave amplitude and the local medium characteristics.
All these spherical waves interfere to create the diffracted field Udif , as illustrated
in figure II.2.

A significant difference with the 2D model is that Udif is not directly the total
field behind the object but only the scattered part. One needs to add the incident
field Uinc.

Figure II.2: Illustration of the Huygens-Fresnel principle in three dimensions. The
incident wave Uinc acts as a primary wave while getting through the scattering
object O. Each points of this object then behaves as a secondary emitter of spherical
waves directly depending on the primary wave. All this components finally merge to
create the diffracted wave Udif . The global resulting field adds these two parts: Utot =
Uinc + Udif .

One can also mention a problem of energy conservation since Uinc is not affected
while going through the object, whereas its amplitude should decrease as it scatters
in the object. Thus the energy carried by Udif is not taken from Uinc but nonetheless
added in the total field Utot. It appears clearly then that this model is a strong
approximation.

In the same spirit, the secondary emitters are not diffracting the total incoming
wave Utot which reaches their location but only the incident wave Uinc. Indeed, in a
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II 3D diffraction physics

scattering volume, the wave which is diffracted at the back of the object has crossed
the whole object and should be containing the information of all the diffractions
it has undergone. In this model, one keeps only the incident wave, the undergone
diffractions being considered as negligible. That is why this model is named the first
Born approximation and is valid only at the first order.

It is briefly mentioned earlier that equation (II.12) is valid only for low scattering
objects. Several works studied its domain of validity such as [20], [44] and [72].
They show that for biological samples composed of several cells, such as 3D cell
cultures, the total phase shift introduced by the sample is too important and the
Born approximation breaks down as soon as the objects are larger than a few tens
of microns. For a cell with a typical refractive index of 1.36 in water [44, 73], the
relative refractive index is δn = 0.03. With a typical cell length of l = 20 µm and
in the visible light λ ≃ 550 nm the overall introduced phase delay is 2πlδn/λ > 2π
which is not negligible.

Nonetheless, this formulation will still be used as this is the only one applicable in
practical use. The future reconstructions are consequently not expected to be phase
quantitative. But it can be expected that it will allow determining morphological
information on the biological sample, such as positions, dimensions and shapes.

Let’s also mention another formulation, the Rytov approximation, well described
in [72]. In this model, the total field is expressed as:

Utot (
−→r ) = Uinc (−→r ) .eψ(−→r ) (II.16)

In the Rytov approximation, the complex phase ψ is equal to:

ψ (−→r ) =
UB
dif (−→r )

Uinc (−→r )
(II.17)

where UB
dif is the diffracted wave given by the Born approximation (II.12).

This approximation is valid for bigger objects than the Born approximation
as soon as the refractive index varies softly in space7. However, even with this
extended domain of validity, the 3D biological objects studied in this thesis fall
outside these limits. Moreover, its formulation is more complicated to put into
practice. Consequently it will not be used in the following models.

2 The Fourier diffraction theorem

This section is mainly based on [71] and aims at finding a simple relation between
the 3D object O to retrieve and the 2D wave front measured on different planes.

Using the notation introduced in figure II.1, such a relation exists for a monochro-
matic incident wave Uinc (−→r ) = ei

−→
k′

0.
−→r , where the wave vector

−→
k′

0 indicates the di-
rection of propagation. Its norm is k′

0 = 2πn0

λ0
and its direction is given by the unit

vector (p0, q0,m0). This relation links the 3D Fourier transform of the scattering

7See [44] and [72].
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potential f with the 2D Fourier transform of the diffracted field Udif on a given
plane at z = z+ and is called the Fourier diffraction theorem:

f̂ (α, β, γ) =
4π
ik′2

0

we−2iπwz+

Ûdif
(
u, v; z+

)
(II.18)

where (u, v) and (α, β, γ) are respectively the coordinates in the 2D Fourier space
of the plane z = z+ and in the 3D Fourier space of the object. These coordinates
satisfy the following relations:





α = u− n0.p0

λ0

β = v − n0.q0

λ0

γ = w − n0.m0

λ0

and w =

√√√√n2
0

λ2
0

− u2 − v2 (II.19)

Note that the Fourier transform8 and its inverse transform are defined for a given
function g as:

F (g) (u) = ĝ (u) =
∫ ∞

−∞
g(x)e−2iπuxdx

F−1 (ĝ) (x) =
∫ ∞

−∞
ĝ(u)e2iπxudu

(II.20)

2.1 Demonstration

Let’s demonstrate this theorem by highlighting the main steps. Using the
monochromatic incident plane wave expression introduced above for Uinc, the ex-
pression (II.12) for the diffracted wave becomes:

Udif (−→r ) =
k′2

0

4π

y

−→rO∈O

f (−→rO) ei
−→
k′

0.
−→rO
eik

′
0‖−→r −−→rO‖
‖−→r −−→rO‖

d3−→rO (II.21)

Using −→r = (x, y, z) and −→rO = (xO, yO, zO), it can be shown9 that the spherical
wave can be decomposed in a summation of plane waves:

eik
′
0‖−→r −−→rO‖
‖−→r −−→rO‖

=
ik′

0

2π

∞x

−∞

1
m
eik

′
0[p(x−xO)+q(y−yO)+m|z−zO|]dpdq (II.22)

where m = (1− p2 − q2)1/2. Then, one gets:

m =

{ √
1− p2 − q2 when p2 + q2 < 1

i
√
p2 + q2 − 1 when p2 + q2 > 1

(II.23)

8This definition extends naturally to higher dimensions.
9See appendix B.
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Let’s consider now the semi-space beyond zmax as defined in figure II.1:
∀ (zO, z

+) ∈ O × [zmax,+∞[, one has: |z+ − zO| = z+ − zO. It comes from equa-
tions (II.21) and (II.22):

Udif (−→r ) =
k′2

0

4π

y

−→rO∈O

f (−→rO) ei
−→
k′

0.
−→rO × · · ·


ik

′
0

2π

∞x

−∞

1
m
eik

′
0[p(x−xO)+q(y−yO)+m(z+−zO)]dpdq


 d3−→rO

=
y

−→rO∈O




∞x

−∞

ik′3
0

8π2

1
m
f (−→rO) eik

′
0(p0xO+q0yO+m0zO) × · · ·

eik
′
0[p(x−xO)+q(y−yO)+m(z+−zO)]dpdq

)
dxOdyOdzO

(II.24)

then by developing the scalar product
−→
k′

0 .
−→rO and inverting the integration order:

Udif (−→r ) =
∞x

−∞

ik′3
0

8π2

1
m
eik

′
0(px+qy+mz+)




y

−→rO∈O

f (−→rO) × · · ·

e−ik′
0[(p−p0)xO+(q−q0)yO+(m−m0)zO]dxOdyOdzO

)
dpdq

(II.25)

and finally with the following change of variables:

n0

λ0
p = k′

0

2π
p↔ u n0

λ0
q = k′

0

2π
q ↔ v

dpdq ↔
(

2π
k′

0

)2
dudv n0

λ0
m↔ w

(II.26)

it comes from equation (II.25):

Udif (−→r ) =
∞x

−∞

ik′3
0

8π2

k′
0

2πw
e2iπ(ux+vy+wz+)




y

−→rO∈O

f (−→rO) × · · ·

e
−2iπ

[
xO

(
u−

n0
λ0
p0

)
+yO

(
v−

n0
λ0
q0

)
+zO

(
w−

n0
λ0
m0

)]

× · · ·

dxOdyOdzO

)(2π
k′

0

)2

dudv

=
∞x

−∞

ik′2
0 e

2iπwz+

4πw




y

−→rO∈O

f (−→rO) × · · ·

e
−2iπ

[
xO

(
u−

n0
λ0
p0

)
+yO

(
v−

n0
λ0
q0

)
+zO

(
w−

n0
λ0
m0

)]

× · · ·
dxOdyOdzO

)
e2iπ(ux+vy)dudv

(II.27)

where:

w =





√(
n0

λ0

)2 − u2 − v2 when u2 + v2 <
(
n0

λ0

)2

i

√
u2 + v2 −

(
n0

λ0

)2
when u2 + v2 >

(
n0

λ0

)2
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Noticing that at a given plane z = z+:

Udif (−→r ) = F−1
2D

(
Ûdif

)
(−→r ) =

∞x

−∞

Ûdif
(
u, v; z+

)
e2iπ(ux+vy)dudv (II.28)

it comes from equation (II.27) that:

Ûdif
(
u, v; z+

)
=
ik′2

0 e
2iπwz+

4πw

y

−→rO∈O

f (−→rO)× · · ·

e
−2iπ

[
xO

(
u−

n0
λ0
p0

)
+yO

(
v−

n0
λ0
q0

)
+zO

(
w−

n0
λ0
m0

)]

dxOdyOdzO

(II.29)

The form of this equation is:

Ûdif
(
u, v; z+

)
=
ik′2

0 a (u, v)
4πw

e2iπwz+

(II.30)

with:

a (u, v) =
y

−→rO∈O

f (−→rO) e
−2iπ

[
xO

(
u−

n0
λ0
p0

)
+yO

(
v−

n0
λ0
q0

)
+zO

(
w−

n0
λ0
m0

)]

dxOdyOdzO

It can be then noticed that for u2 + v2 >
(
n0

λ0

)2
, w is strictly imaginary

and Ûdif (u, v; z+) is an evanescent wave as a function of z+:

∣∣∣Ûdif
(
u, v; z+

)∣∣∣ =
k′2

0 |a (u, v)|
4π

e
−2π

√
u2+v2−

(
n0
λ0

)2

z+

√
u2 + v2 −

(
n0

λ0

)2
−−−−−→
z+→+∞

0 (II.31)

Consequently, this means that any information carried by these frequencies (u, v)
will be lost if one gets too far from the object O since the absolute value of the
coefficient becomes too small to be recorded.

On the other hand, when u2 + v2 <
(
n0

λ0

)2
, w is real. Moreover, using the

previously mentioned remark that integrating on the object O and on the whole
space is identical since f (−→rO) = 0 outside the object, it follows that a (u, v) has the
shape of the 3D Fourier transform of the scattering potential f :

a (u, v) =
∞y

−∞

f (−→rO)× · · ·

e
−2iπ

[
xO

(
u−

n0
λ0
p0

)
+yO

(
v−

n0
λ0
q0

)
+zO

(
w−

n0
λ0
m0

)]

dxOdyOdzO

= F3D (f)
(
u− n0

λ0

p0, v −
n0

λ0

q0, w −
n0

λ0

m0

)

= f̂
(
u− n0

λ0

p0, v −
n0

λ0

q0, w −
n0

λ0

m0

)

(II.32)
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And finally, one finds back the Fourier diffraction theorem (II.18) from equa-
tion (II.30):

Ûdif
(
u, v; z+

)
=
ik′2

0 f̂
(
u− n0

λ0
p0, v − n0

λ0
q0, w − n0

λ0
m0

)

4πwe−2iπwz+ (II.33)

Let’s insist here again on the fact that the Fourier diffraction theorem only holds
for specific sets of frequencies (u, v) verifying u2 + v2 <

(
n0

λ0

)2
. Thus, only a part of

the 3D Fourier space of f̂ is accessible.

2.2 Geometrical interpretation

Looking closer at the formulation of the Fourier diffraction theorem (II.18), one
must notice that it links a 3D object, the 3D Fourier transform of the scattering
potential f̂ , to a 2D entity, the 2D Fourier transform of the diffracted wave Ûdif at a
given distance z+ from the object, or in another words a 2D surface to a 3D volume.

From expression (II.19), one gets that the three coordinates (α, β, γ) depend
on the 2D coordinates (u, v). The resulting 2D surface in the 3D space lies
on a sphere10 with center −n0/λ0 (p0, q0,m0) and radius n0/λ0, as pictured in
scheme II.3. (p0, q0,m0) being the unit vector in the direction of light propaga-
tion, the mentioned sphere passes through the origin, the center of the sphere being
placed a radius apart from it.

As noticed in the previous section, only a part of this sphere is accessible, since
the frequencies (u, v) must satisfy u2 + v2 <

(
n0

λ0

)2
. Consequently, the 2D surface

lies on a semi-sphere as drawn in figure II.3.
The position of these caps depends on the lighting direction. Indeed, if the

plane z = z+ rotates with the lighting direction, the cap also rotates accordingly in
the 3D frequency domain11. If the coordinate system (x, y, z) remains still as the
lighting rotates, the cap is then simply translated12.

As illustrated in figure II.3, it is possible to go in two different ways leading to two
different applications of this theorem. If one goes clockwise, from the object f to the
diffracted waves Udif , the Fourier diffraction theorem gives a tool to simulate data
from a given object numerically designed. On the contrary, if one goes counter-
clockwise, from the diffracted waves Udif to the object f , the Fourier diffraction
theorem gives a mean to retrieve an object from several diffracted waves acquisitions
through a mapping of the 3D Fourier domain of f .

The main pitfall of this theorem is its numerical application. Indeed, one must
keep in mind that its formulation is analytic. But the coordinates will have to be
discretized to be processed numerically. For example, if one wants to use the Fast
Fourier Transform algorithm to compute f̂ from f , the scattering potential will be
discretized on a homogeneous mesh, leading to a homogeneous mesh in the Fourier

10Indeed,
(

α + n0.p0

λ0

)2

+
(

β + n0.q0

λ0

)2

+
(

γ + n0.m0

λ0

)2

= u2 + v2 + w2 = n2

0

λ2

0

11See the rotation of the cap from the red to the green position in figure.
12See the translation of the cap from the red to the blue position in figure.
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2 The Fourier diffraction theorem

Figure II.3: Illustration of the geometrical interpretation of the Fourier diffraction
theorem. A 3D Fourier transform links the 3D spatial and frequency domains of the
scattering potential f . A 2D Fourier transform links the 2D spatial and frequency
domains of the diffracted wave U j

dif for each lighting situation j. A mapping on
spherical caps links the 2D frequency domain of the diffracted wave and the 3D
frequency domain of the object. The orientation and position of these caps directly
depend on the lighting directions

−→
k0

j ∝
(
pj0, q

j
0,m

j
0

)
.

domain. On the other side, the same discretization of the 2D coordinates u and v will
lead to discretized positions (α, β, γ) on the spherical caps which will not necessarily
match with the homogeneous mesh.

One will consequently have to find a way to map the inhomogeneous positions
on the spherical caps into the 3D Fourier homogeneous mesh.

2.3 A diffractive version of the Fourier slice theorem

This section aims at emphasizing the strong link which exists between the Fourier
diffraction theorem and the Fourier slice theorem13. The latter is commonly used
in classical computed tomography (CT) such as X-ray tomography and uses the
Radon transform, notion introduced in 1917 by Johann Radon14.

The radon transform Rα [f ] (s) of a compactly supported continuous func-
tion f (x, y) on R2 is its projection (its integral along the straight lines Γα,s) along a
given direction (α, s), where α is the angle relative to the x-axis and s the distance

13See [74], entry "Tomography".
14See [74], entry "Radon transform". This subsection is also inspired from [75] and [76]
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II 3D diffraction physics

to the frame origin, as pictured in figure II.4:

Rα [f ] (s)=
∫

Γα,s

f (−→γ ) ‖d−→γ ‖

=
∫ +∞

−∞
f ((s cosα− z sinα) , (s sinα+ z cosα)) dz

(II.34)

Figure II.4: Illustration of the geometrical interpretation of the Fourier slice theo-
rem. On the left-hand side of the figure is represented the Radon transform Rα [f ] (s)
of a function f (x, y): it is its projection along a given axis s oriented with an angle α
relative to the x-axis (in blue). On the right-hand side, its unidimensional Fourier

transform R̂α [f ] (ks) is a line in f̂ , the Fourier transform of f .

The Fourier slice theorem states that the unidimensional Fourier transform
of Rα [f ] is a slice in the Fourier domain of f , as schematically drawn in figure II.4.

R̂α [f ] (ks) = f̂ (ks cosα, ks sinα) (II.35)

R̂α [f ] (ks)=
∫ +∞

−∞
Rα [f ] (s) e−2iπsksds

=
∫ +∞

−∞

∫ +∞

−∞
f ((s cosα− z sinα) , (s sinα+ z cosα)) e−2iπsksdsdz

=
+∞x

−∞

f (x, y) e−2iπ(xks cosα+yks sinα)dxdy

= f̂ (ks cosα, ks sinα)
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3 3D numerical simulations

via the following change of variables:
(
x
y

)
=

(
cosα − sinα
sinα cosα

)(
s
z

)

dxdy =

∣∣∣∣∣det

(
cosα − sinα
sinα cosα

)∣∣∣∣∣ dsdz = |1| dsdz = dsdz

(II.36)

This theorem is expandable to higher dimensions: for a three-dimensional object,
the 2D Fourier transform of its projection on a plane will be a planar slice of its 3D
Fourier transform f̂ . Thus, one can retrieve the volume information of an object
from different acquisitions of its absorbency along different directions, for example
with X-ray projections, each acquisition giving a part of the Fourier transform of
the object.

One consequently get something very close to the geometrical interpretation
previously made for the Fourier diffraction theorem, replacing spherical caps by
planes.

Let’s remember that the caps radius rc is inversely proportional to the lighting
wavelength: rc = n0/λ0. Moreover for X-rays, the wavelength λX gets far smaller
than for the visible light λvis: λX ≪ λvis, and rc −−−→

λ0→0
+∞: the spherical caps tend

toward planar surfaces.
Hence one can say that the Fourier slice theorem is the limit of the Fourier

diffraction theorem when the lighting wavelength becomes shorter, or in other words
when the diffraction tends to disappear and that rays propagate straight through
the sample without being scattered.

3 3D numerical simulations

The objective of this section is to get familiar with the formulations introduced in
the previous sections 1 and 2, but in their numerical forms. Indeed, some adaptations
are needed to implement the analytic formulae into a numerical program.

Then, the Fourier diffraction theorem is compared with the Born approximation.
To conclude this chapter, the consistency of the 3D models with the 2D lens-free
reconstruction methods and real data are discussed.

3.1 Reformulation of the Born approximation and the
Fourier diffraction theorem

The aim of the developed models is to give an approximation of the total wave
front Utot at a given position in space. In this work, these models are consequently
used to link the 3D object and the wave front on the sensor plane.

Let’s suppose that the origin of the reference frame is placed at the center of
the object of interest as illustrated in figure II.5, the z-axis being oriented along the
light propagation direction, normal to the sensor plane, placed at z = zs.
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II 3D diffraction physics

Figure II.5: Illustration of the displacement of the region of interest when the
incident lighting is not normal to the sensor: according to the lighting position−→
k0

j ∝
(
pj0, q

j
0,m

j
0

)
, the hologram produced by the object is shifted by −→cj on the

sensor plane z = zs.

The first remark is that one does not need the entire plane, or in other words the
whole sensor surface, to retrieve the object. Indeed, the most important part of the
object’s hologram is directly centered under the object at (x, y) = (0, 0) for a normal
lighting, as pictured in blue in the scheme. If the lighting remains orthogonal to the
sensor plane during the different acquisitions or simulations, one can consequently
work on a cropped part of the sensor plane, directly placed under the object.

If the lighting is not orthogonal to the sensor along the direction (p0, q0,m0),
one is in the situation pictured in red in the scheme: the hologram is shifted on the
sensor plane to the position −→c0 = (x0, y0) = zs

m0
(p0, q0). One can consequently work

on a cropped picture centered on (x0, y0).

Working on centered cropped pictures drastically reduces the memory needs and
the calculation times are greatly reduced. Moreover, working directly on centered
holograms is easier for the user to understand and interpret the simulation and the
acquired data.

Born approximation Let’s find a numerical formulation of the Born approxima-
tion expressed in section 1.2. As mentioned, it can be expressed as a convolution,
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3 3D numerical simulations

equation (II.15). This is consequently convenient to express it in the Fourier domain:

F3D (Udif ) = F3D (f.Uinc)×F3D


k

′2
0

4π
eik

′
0‖−→r ‖
‖−→r ‖


 (II.37)

To perform the computation numerically, one will have to work on a discrete
bounded 3D space. The easiest model is a parallelepiped volume divided uniformly
in parallelepiped voxels lying on a regular mesh of size nbx × nby × nbz. The sides
of the voxel are dx, dy and dz. The analytic Fourier transforms are replaced by
their discrete equivalent and computed by Fast Fourier Transform algorithms15.
For unidimensional vectors of length n:

F (f) (x) = y↔ Yk = FFT
(
f (Xj)j∈{1,n}

)
=

n∑

j=1

f (Xj) e− 2πi
n

(j−1)(k−1)

F−1 (g) (y) = x↔ Xj = FFT−1
(
g (Yk)k∈{1,n}

)
=

1
n

n∑

k=1

g (Yk) e
2πi
n

(j−1)(k−1)

(II.38)

By using fft in Matlab®, one gets an output matrix of the same size as the input
matrix.

Let’s x3D, y3D and z3D be the 3D matrices of the coordinates on a mesh as defined
above, centered on (0, 0, 0). Let’s use the symbols × for the conventional matrix
product and . for the term-by-term multiplication16. Under the Born approximation
Udif is numerically expressed as follows:

Udif = FFT−1
3D

(
FFT3D (f (x3D, y3D, z3D) .Uinc (x3D, y3D, z3D)) . · · ·

FFT3D


k

′2
0

4π
eik

′
0

√
(x3D+x0)2+(y3D+y0)2+(z3D+zs)2

√
(x3D + x0)

2 + (y3D + y0)
2 + (z3D + zs)

2




 dv

(II.39)

with dv = dx.dy.dz
Doing so, one gets a 3D matrix Udif on a volume centered on (x0, y0, zs):

Udif (x0 + x3D, y0 + y3D, zs + z3D). To get only the field on the sensor, one has just
to extract the slice of this 3D matrix corresponding to z = zs which is the slice on
which z3D = 0.

This method has the advantage of being suitable for all kind of incident waves
Uinc and allows for example to test the approximation made for the wave front as
being planar if the sample is placed far enough from a point source.

But its main disadvantage is that for each lighting situation, two 3D FFTs have

to be performed. One on the spherical propagator k′2
0

4π
eik′

0r

r
, and another one on

f.Uinc. When the number of lighting angles increases, the running time will become
a constraint.

15See the Matlab® "help" entry fft.
16Excepted if mentioned, the standard operation will also be applied coefficient by coefficient:

A2 = A.A, eA will be the matrix composed of the exponential of the coefficients of A, A
B

the matrix
composed of the coefficients of A divided by the coefficients of B and so on...
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II 3D diffraction physics

It is possible to get a simpler formulation in the case of plane wave illuminations
Uinc = ei

−→
k′

0.
−→r . Indeed, from equation (II.12) one gets:

Udif (−→r ) =
k′2

0

4π

y

−→rO∈O

f (−→rO) ei
−→
k′

0.
−→rO
eik

′
0‖−→r −−→rO‖
‖−→r −−→rO‖

d3−→rO

=
k′2

0 e
i
−→
k′

0.
−→r

4π

y

−→rO∈O

f (−→rO) e−i
−→
k′

0.(−→r −−→rO) e
ik′

0‖−→r −−→rO‖
‖−→r −−→rO‖

d3−→rO

=
k′2

0 e
i
−→
k′

0.
−→r

4π
(f) ⋆


e−i

−→
k′

0.
−→r e

ik′
0‖−→r ‖
‖−→r ‖




︸ ︷︷ ︸
Convolution kernel

(II.40)

This leads to the following numerical formulation:

Udif =
k′2

0 e
i
−→
k′

0.(x3D+x0,y3D+y0,z3D+zs)

4π
.FFT−1

3D

(
FFT3D (f) . · · ·

FFT3D

(
e−i

−→
k′

0.(x3D+x0,y3D+y0,z3D+zs). · · ·

eik
′
0

√
(x3D+x0)2+(y3D+y0)2+(z3D+zs)2

√
(x3D + x0)

2 + (y3D + y0)
2 + (z3D + zs)

2

))
dv

(II.41)

Udif =
k′2

0 e
i
−→
k′

0.(x3D,y3D,z3D)

4π
.FFT−1

3D

(
FFT3D (f) . · · ·

FFT3D

(
e−i

−→
k′

0.(x3D,y3D,z3D). · · ·

eik
′
0

√
(x3D+x0)2+(y3D+y0)2+(z3D+zs)2

√
(x3D + x0)

2 + (y3D + y0)
2 + (z3D + zs)

2

))
dv

(II.42)

Compared to the formulation (II.39), this latter reduces the number of needed
FFTs. Indeed, FFT3D (f) can be computed once for all, stored, and used for each
lighting situation. Only the FFT of the kernel has to be computed for each situation
since it depends on the position of the hologram (x0, y0, zs).

One last remark must be done before using this numerical simulation and con-
cerns the zero-padding of the object f . Indeed, if one performs directly the above
formulation without any padding, one will get the situation of the figure II.6. The
scheme is drawn for a lighting along the z-axis but remains valid along the other
dimensions. The diffracting volume is in a cube on the left side, between zmin and
zmax while the diffracted wave is computed in a cube on the right side around the
sensor plane zs. For each simulated plane, a whole volume on the object’s side is
used. To simulate the middle plane z = zs the red volume must be used and is
sufficient.

The problems arise if one wants to simulate a wave front above or under this
plane (or laterally for a lighting inclined relative to the sensor plane) like the purple
or the green planes. Indeed, in these situations, two artefacts occur.
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3 3D numerical simulations

Figure II.6: Illustration of the volume wrapping if it is not correctly padded. The
diffracting volume is in the cube on the left side and the simulated diffracted wave
is in the cube on the right. For a given simulated plane, a whole cube around
the object is used in the convolution. The red, green and purple colors indicate the
needed volume to simulate a given plane. Absence of padding leads to two artefacts:
the object, originally placed between zmin and zmax becomes periodic and the wave
front is not consistent. The scheme only pictures the situation of a lighting direction
along the z-axis but is valid for the three dimensions.

Firstly, the FFT makes the volume periodic. For example, to compute the green
plane, one can see on the left in full line the volume that it is used (the dashed
lines represents the wrapping) with an object that has been duplicated. Everything
behaves as if a new object was diffracting and the diffracted pattern is consequently
not consistent with the initial 3D object.

And secondly, there is a phase jump in the wrapping process. As one can see once
again on the green volume, the rainbow pattern, symbolizing the phase evolution in
space of the incident wave front Uinc, has a discontinuity at zmax: the phase jumps
to its zmin value, creating this inconsistency. As seen later in this section, the phase
value is very important since it is the part responsible for the interference between
the incident wave front and the diffracted wave. The present wrapping creates a
diffracted wave not consistent with the phase shift introduced by the propagation
along the direction of the wave vector and which is carried by the incident wave.

Consequently, as this object duplication and phase inconsistency happen in all
directions, one must zero-pad the object on a volume

(
xpad3D , y

pad
3D , z

pad
3D

)
at least twice

as big as the initial volume along all directions. This prevents the duplication of the
object17. The kernel must also be computed on a bigger volume for the convolution
step. This prevents the phase jumps. Noting pad the zero-padding operation and
pad−1 the extraction of a volume with the initial size from a padded volume, the

17One has to be very careful on where is the zero-frequency in the used FFT definition. Using
Matlab®, there must always be a 0 inside the kernel vectors: at the center if the pixel number
nbpix is odd and placed at nbpix/2 if this number is even.
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numerical formulations become:

Udif = pad−1

(
FFT−1

3D

(
FFT3D (pad (f (x3D, y3D, z3D) . · · ·

Uinc (x3D, y3D, z3D))) .FFT3D

(
k′2

0

4π
. · · ·

e
ik′

0

√
(xpad

3D +x0)2
+(ypad

3D +y0)2
+(zpad

3D +zs)2

√(
xpad3D + x0

)2
+
(
ypad3D + y0

)2
+
(
zpad3D + zs

)2








 dv

(II.43)

for the general problem and

Udif =
k′2

0 e
i
−→
k′

0.(x3D,y3D,z3D)

4π
.pad−1

(
FFT−1

3D

(
FFT3D (pad (f)) . · · ·

FFT3D

(
e−i

−→
k′

0.(xpad
3D ,ypad

3D ,zpad
3D ). · · ·

e
ik′

0

√
(xpad

3D +x0)2
+(ypad

3D +y0)2
+(zpad

3D +zs)2

√(
xpad3D + x0

)2
+
(
ypad3D + y0

)2
+
(
zpad3D + zs

)2

)))
dv

(II.44)

for the plane wave situation.

Fourier diffraction theorem Let’s now find a numerical approach of the Fourier
diffraction theorem expressed in section 2. As mentioned previously, one will have to
tackle with different pitfalls of the analytic formulation: the estimation of spherical
caps into a Cartesian mesh as the one introduced above (x3D, y3D, z3D) and the
translation in the Fourier domain according to the relations (II.19). The aim is also
to express the diffracted wave on the sensor plane z = zs centered on the hologram
position (x0, y0).

Let’s start by using the fact that a modulation in the spatial domain is a trans-
lation in the frequency domain18:

F2D [g (x, y)] (u+ u0, v + v0) = F2D

[
g (x, y) e−2iπ(xu0+yv0)

]
(u, v) (II.45)

and vice versa that a translation in the spatial domain is a modulation in the
frequency domain:

F−1
2D [h (u, v)] (x+ x0, y + y0) = F−1

2D

[
e2iπ(x0u+y0v)h (u, v)

]
(x, y) (II.46)

18The variables of integration are explicitly enlightened: F2D [g (x, y)] (u, v) means the 2D Fourier
transform of the function g, of spatial variables (x, y), estimated at the frequencies (u, v). The
integral is consequently along the x and y variables.
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Using equality (II.45) for g (x, y) = Udif (x, y; zs) and the Fourier diffraction
theorem (II.18) by noting (u0, v0, w0) =

(
n0.p0

λ0
, n0.q0

λ0
, n0.m0

λ0

)
, it comes19:

Udif (x, y; zs) = e2iπ(xu0+yv0)F−1
2D

[
· · ·

F2D [Udif (x, y; zs)] (u+ u0, v + v0; zs)
]

(x, y; zs)

= e2iπ(xu0+yv0)F−1
2D

[
ik′2

0 e
2iπw(u+u0,v+v0)zs

4πw (u+ u0, v + v0)
× · · ·

F3D [f ] (u, v, w (u+ u0, v + v0)− w0)

]
(x, y; zs)

(II.47)

with w (u, v) =
√

n2
0

λ2
0
− u2 − v2. Applying this equality to (x+ x0, y + y0) and ac-

cording to the equality (II.46) applied for:

h (u, v) =
ik′2

0 e
2iπw(u+u0,v+v0)zs

4πw (u+ u0, v + v0)
F3D [f ] (u, v, w (u+ u0, v + v0)− w0)

it finally comes:

Udif (x+ x0, y + y0; zs) = e2iπ((x+x0)u0+(y+y0)v0)F−1
2D

[
· · ·

e2iπ(x0u+y0v) × ik′2
0 e

2iπw(u+u0,v+v0)zs

4πw (u+ u0, v + v0)
· · ·

F3D [f ] (u, v, w (u+ u0, v + v0)− w0)
]

(x, y; zs)

(II.48)
This formulation directly gives the expression of the diffracted wave centered

on (x0, y0) and based on the 3D Fourier transform of the object f expressed in the
natural frequency coordinates: F3D [f ] (u, v, w). Before giving its numerical form,
the problem of the estimation of the spherical surface (u, v, w (u+ u0, v + v0)− w0)
remains. Indeed, as previously mentioned, in the numerical formulation, u and v
will be discrete, leading to points placed in the 3D Fourier space, but not necessary
lying on the nodes of the Cartesian mesh on which the Fourier transform of f is
computed, as one can see in figure II.7.

Finding a good estimate of their value is not trivial in the Fourier space. Let’s
nevertheless focus on the two simplest ones that can be implemented in standard
spatial domain: a nearest-neighbor technique and a linear interpolation.

The nearest-neighbor interpolation consists in approximating that the value of
the Fourier transform on the discrete caps is equal to the value of the closest voxel.
For example in the figure, the value on

(
uip , w

(
uip
))

will be approximated by the
one on (uiv , wkv):

f
(
uip , w

(
uip
))
≃ f (uiv , wkv) (II.49)

19It is implied here that: F3D [f ] (u, v, w) = F3D [f (x, y, z)] (u, v, w)
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Figure II.7: Illustration of a discrete spherical cap (in red) not lying on the discrete
Cartesian mesh (in black) for a given function f . To ease the reading, the scheme
is drawn in two dimension but easily adaptable to the 3D problem. The value on
each of the red dots is either estimated as being equal to the value of its nearest-
neighbor (in blue) or being a linear interpolation of the values of its four (eight in
3D) neighbors (in green), weighted by the involved distances. uip and uiv are the
discrete abscissae of the frequency axis along x for the pixels and the voxels. wkv

are the discrete coordinates of the frequency axis along z for the voxels.

This is a strong approximation. For example both the points indexed by uip−2

and uip−1 will have the value on (uiv−1, wkv):

f
(
uip−2, w

(
uip−2

))
≃ f

(
uip−1, w

(
uip−1

))
≃ f (uiv−1, wkv)

Another solution is to perform a linear interpolation with the neighboring voxel
values. The attributed value is then an average on the neighboring values, weighted
with the relative distances. Still in figure II.7, the value on

(
uip , w

(
uip
))

is:

f
(
uip , w

(
uip
))
≃ tutwf (uiv+1, wkv+1) + tu (1− tw) f (uiv+1, wkv) + · · ·

(1− tu) twf (uiv , wkv+1) + · · ·
(1− tu) (1− tw) f (uiv , wkv)

(II.50)

with tu =
uip −uiv

uiv+1−uiv
and tw =

w(uip)−wkv

wkv+1−wkv
. This formula naturally extends to three

dimensions by adding a weighting factor on the v-axis and therefore has eight terms.
Thus this method is more time and memory consuming than the nearest-neighbor

approach since eight indices must be found instead of one and the linear distances
must also be computed to estimate the eight weights.

Now let interp (f, (u, v, w)) be the function giving the approximation on (u, v, w)
of a function f known on a Cartesian mesh either using the nearest-neighbor tech-
nique or the linear interpolation. It is possible now to give a discrete formulation of
the Fourier diffraction theorem.
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3 3D numerical simulations

Keeping the notation introduced above, let’s (x3D, y3D, z3D) be the 3D mesh
centered on (0, 0, 0) on which the object is defined and be dxv, dyv and dzv the voxel
side lengths. And let’s (x2D, y2D) be the 2D mesh centered on (0, 0) modeling the
sensor and dxp, dyp the pixel pitches along the two directions x and y. As written
above, (x3D, y3D) and (x2D, y2D) can be different and do not have to overlap.

u2D and v2D will be the coordinates in the Fourier space corresponding to x2D

and y2D. With these notations, the discrete formulation of the Fourier diffraction
theorem is:

Udif = e2iπ((x2D+x0)u0+(y2D+y0)v0)pad−1


FFT−1

2D

[
· · ·

e2iπ(x0u
pad
2D +y0v

pad
2D ).

ik′2
0 e

2iπw(upad
2D +u0,v

pad
2D +v0)zs

4πw
(
upad2D + u0, v

pad
2D + v0

) . · · ·

interp
[
FFT3D [pad (f (x3D, y3D, z3D))] , · · ·

(
upad2D , v

pad
2D , w

(
upad2D + u0, v

pad
2D + v0

)
− w0

)]]

dv
ds

(II.51)

with w (u, v) =
√

n2
0

λ2
0
− u2 − v2, (u0, v0, w0) =

(
n0.p0

λ0
, n0.q0

λ0
, n0.m0

λ0

)
, ds = dxp.dyp the

elementary pixel surface and dv = dxv.dyv.dzv the elementary voxel volume.

3.2 Comparison of the two models

To test and compare the different models, simulations were performed on a nu-
merical object O composed of cubic voxels v with a side of dpix = 1.67 µm. It is
composed of three identical spheres of radius rc = 10 µm which present a differ-
ence of refractive index δn = 0.005i with their surrounding medium of refractive
index n0 = 1. The three spheres are placed at different heights: z1 = 14.dpix =
23.38 µm, z2 = −16.dpix = −26.72 µm and z3 = dpix = 1.67 µm (see figure II.8.a).
The holograms are simulated for a wavelength of λ0 = 630 nm with a distance
between the hologram plane and the center of the volume of zs = 1.5 mm. Two
lighting positions are tested: a normal illumination orthogonal to the sensor plane
and a tilted illumination. The tilted illumination is tilted by an angle θ = 35◦ com-
pared to the axis orthogonal to the sensor and rotated of an angle ϕ = 125◦ around
this axis.

Four direct models are compared:

• Volume integration: the reference hologram is given by the integral (II.12),
numerically performed in the real space by a discrete integration, voxel by
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voxel:

Udif ≃
k′2

0

4π

∑

v∈O

fv (xv, yv, zv) .Uinc (xv, yv, zv) . · · ·

eik
′
0

√
(x2D+x0−xv)2+(y2D+y0−yv)2+(zs−zv)2

√
(x2D + x0 − xv)2 + (y2D + y0 − yv)2 + (zs − zv)2

d3
pix

(II.52)

• Fourier convolution: the integral (II.12) is performed in the Fourier domain
using the formulation (II.43)

• Linear interpolation: Fourier diffraction theorem (II.51) with a linear interpo-
lation in the Fourier domain by the function interp.

• Nearest-neighbor: Fourier diffraction theorem (II.51) with a nearest-neighbor
interpolation in the Fourier domain by the function interp.

For the convolution, the volume is composed of 512 × 512 × 128 voxels. To
improve the coverage of the spherical caps, the Fourier diffraction theorem is used
on a 512×512×256 voxels20. For all the situations, both the 2D and the 3D domains
are zero-padded.

Figure II.8 compares the intensities given by the different models for a normal
illumination. Their phase are compared in figure II.9 as well as the intensities for a
tilted lighting.

The convolution in the Fourier domain and the Fourier diffraction theorem with
a linear interpolation present a good agreement with the reference hologram, their
maximal divergence being less than 3.5 10−3 for the two intensities (arbitrary unit for
an incident wave normalized to one, |Uinc| = 1) and the phase (rad) (see table [II.1]
and figures II.8.c,d and figures II.9.b,c,f,g.).

For the normal illumination, the nearest-neighbor interpolation gives worse re-
sults on the two beads which are further from the median plane z = 0 in the
simulated object, both for the amplitude and the phase (figures II.8.e and II.9.d.).
The situation degrades even more for the tilted illumination with lots of artifacts
appearing in the background of the simulated picture in figure II.9.h. Nevertheless,
the amplitude of the divergence remains low, three orders of magnitude below the
reference hologram intensity (see table [II.1]).

Some tests, not presented here, show that this is related to both the interpolation
method and the number of planes nbz. Indeed, if the simulated volume is not thick
enough compared to its width on the xy-plane, a part of the spherical caps in
the Fourier diffraction theorem may fall outside the accessible Fourier domain and
cannot be extracted to simulate the diffracted wave. It appears that the linear
interpolation is more robust to this effect.

20Simulation with nbz = 128 (not presented here) showed that the two interpolations methods
fail to correctly simulate the hologram because a too important part of the spherical caps falls
outside the simulated Fourier domain.

46



3 3D numerical simulations

Figure II.8: Comparison of the different models on a numerical object composed
of three identical beads (a) with a normal incidence. Differences between the dif-
ferent results and the reference hologram intensity obtained by integration voxel
by voxel (b), for the convolution in the Fourier domain (c) and the Fourier diffrac-
tion theorem with a linear (d) or nearest-neighbor (e) interpolation in the Fourier
domain.

Volume
integration

Fourier
convolution

Linear
interpolation

Nearest-
neighbor

|Utot| min 0.35 −1.9 10−3 −3.2 10−3 −2.4 10−2

(normal) max 1.77 3.4 10−3 3.0 10−3 3.8 10−2

arg (Utot) min −0.62 −1.6 10−3 −1.8 10−3 −1.5 10−2

(normal) max 0.07 1.6 10−3 1.7 10−3 1.5 10−2

|Utot| min 0.41 −1.8 10−3 −1.3 10−3 −1.8 10−3

(tilted) max 1.72 3.2 10−3 1.9 10−3 2.9 10−3

Table II.1: Table of the minimal and maximal gray values of the reference holo-
gram (volume integration) and of the differences of the different models (Fourier
convolution, Fourier diffraction theorem with linear or nearest-neighbor interpola-
tion) with this reference hologram (see figures II.8 and II.9) for the normal and the
tilted illuminations.

In addition to this comparison, it is also interesting to use the ability of the
convolution formulation (II.43) to work with any incident plane wave Uinc to test
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Figure II.9: Comparison of the different models on a numerical object composed
of three identical beads. Differences between the different models and the reference
holograms phase (a-d) and intensity (e-h) obtained by integration voxel by voxel for
a normal incidence (a) and a tilted lighting (e) for the convolution in the Fourier
domain (b,f), the Fourier diffraction theorem with a linear (c,g) or nearest-neighbor
(d,h) interpolation in the Fourier domain. The calibration bars on the left give the
gray values of the reference holograms. The calibration bars on the right give the
gray values of the three comparisons with the same dynamics.

the assumption that the spherical wave produced by the source can be approximated
by a plane wave because of its large distance d to the sample.

To do so, the spherical wave is simulated for a normal illumination by:

Uinc (x, y, z) = d.
eik

′
0

√
x2+y2+(z+d)2

√
x2 + y2 + (z + d)2

(II.53)

The factor d is used to normalize the amplitude of the wave so that it equals 1
at the center O = (0, 0, 0) of the sample.

Different distances d ∈ {1 m, 10 cm, 7 cm5 cm} were tested and their differences
with the reference hologram obtained for an incident plane wave are presented in
figure II.10.

The holograms seem dilated, an effect which increases when the distance to
the source diminishes and which is used in standard in-line holography to perform
magnification [77]. This dilation affects the rings of the interference patterns which
are shifted of several microns. It would be necessary to quantify this effect on the
reconstructions which use the assumption that the incident wave is plane.
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3 3D numerical simulations

Figure II.10: Comparison of the effect of the distance of the light source d on a
numerical object composed of three identical beads. Differences between the inten-
sities at different distances d ∈ {1 m, 10 cm, 7 cm, 5 cm} and the reference hologram
obtained with a plane wave (source placed at infinity) for a normal incidence with
the same gray values dynamics.

3.3 Consistency with the 2D models

After comparing the 3D propagation models, studying their consistency with
the 2D model is interesting to know if some 2D algorithms can be used in the 3D
reconstruction processes.

The main difference between the models using 2D propagators introduced in
chapter I, section 3 and the ones given by the 3D equations in this chapter is that
the former can directly work on the total complex wave front whereas the latter
model only works on the diffracted wave. More steps are consequently needed to
retrieve the unknown sample from the recording of the intensity of the wave front
by the sensor.

The phase information of the wave front being lost, the quality of the recon-
struction will depend on how the algorithms will deal with this loss, as one can
see in figure II.11 where the holograms of the previous section are reconstructed
using the 2D Fresnel propagator introduced in I, section 3 with a distance −zs. The
convolution (I.6) is performed in the zero-padded Fourier domain using the Fourier
transform of the Fresnel kernel (I.5). To do so, the amplitudes of the holograms to
back-propagate are initialized with the square root of the simulated intensities (and
eventually the simulated phase) and then one-padded.

All the propagated holograms are composed of 512× 512 pixels.
To back-propagate the tilted complex waves, the phase is first corrected by a

phase ramp characteristic of the tilted illumination and equal to the incident plane
wave on the sensor Uinc. Indeed, the Fresnel propagator assumes paraxial propaga-
tion normal to the sensor. Then, the propagation distance zs is corrected by the tilt
angle θ to get the effective propagation distance21 zeffs = zs/ cos θ.

The back-propagations correspond to the effective 2D complex transmissive
planes which would give the same holograms.

First, the 2D and the 3D propagation distances are coherent as the beads are in
focus in the 2D reconstructions.

21For distance zs = 1.5 mm and an angle θ = 35◦, the effective distance is zeff
s ≃ 1.83 mm
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Figure II.11: Modulus and phase of the 2D back-propagations of the simulated
holograms of figures II.8 and II.9 for a normal incident light (a,b) and a tilted lighting
(c,d) without (a,c) and with (b,d) the knowledge of the phase in the hologram plane.
The dynamics of each picture was maximized.

When only the intensity is back-propagated, twin image artifacts surround the
focused beads even for the tilted illumination (figures II.11.a,c).

Then, the phase produced by the 3D model is coherent with a 2D propagation
as the twin-image disappears when the full information of the complex wave is used
for the back-propagation (figures II.11.b,d).

Looking at the phase of the three beads, one can notice the phase inversion
phenomenon [78] at the focal plane for the absorbent objects. The two beads 1 and
2 which are on both sides of the focal plane present a positive (bead 2) and negative
phase (bead 1) whereas the bead 3 which is placed closed to the focal plane z = 0
disappears in the phase pictures (figures II.11.a,b). This is coherent with the fact
that a purely imaginary complex index is interpreted as a 2D absorbent object.

Looking at the back-propagation for the tilted illumination (figures II.11.c,d),
one can see that the 2D Fresnel propagator fails to precisely reconstruct the beads.
This is an expected result as this paraxial kernel can only propagate circles and
cannot focus ellipses.

To continue testing the coherence of the refractive index interpretation, holo-
grams were simulated for a purely dephasing object with δn = 0.005 and then
back-propagated for a normal incident plane wave.

The results in figure II.12 show that the information is now mainly present in the
phase images22. But unlike the previous case of an absorbent object, a part of the

22Note here that the dynamics of the gray values calibration bar were maximized for each view
and can consequently lead to misinterpretation. But comparing the intensity of the beads with the
intensity of the twin-image artifacts, it clearly appears that the information is concentrated on the
phase images.
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Figure II.12: Modulus and phase of the 2D back-propagations of the simulated
holograms of a phase object for a normal incident light without (a) and with (b) the
knowledge of the phase in the hologram plane. The dynamics of each picture was
maximized.

signal here is reconstructed into the modulus of the equivalent transmissive plane.
Figure II.13 compares the back-propagations of the holograms for different dis-

tances of the source with the hologram obtained for a plane wave illumination. As for
the holograms, the reconstructions are dilated, with an effect visible even at 10 cm.
The focal distance to get the beads into focus is also slightly changed: ∼ 1520 µm
for d = 10 cm, ∼ 1530 µm for d = 7 cm and ∼ 1550 µm for d = 5 cm.

Figure II.13: Effect of the light source distance d on the modulus of the 2D back-
propagations of the intensity holograms introduced in figure II.10. Differences of the
2D back-propagations for three different distances d ∈ {10 cm, 7 cm, 5 cm} with the
plane wave incident light reconstructions (+∞). The three differences are given with
the same gray values dynamic. The positions of the three reconstructed beads were
measured for each 2D reconstruction (purple circles for the plane wave situation).

To better quantify the dilation effect, the positions of the reconstructed beads
are extracted using the trackmate plug-in in ImageJ [79]. These positions are used
to compute the relative distances of the three beads. Dilation ratios are computed
by dividing these distances by their corresponding counterpart for the plane wave
illumination (see table [II.2]). The scaling factors are obtained by averaging these
ratios.

The approximation of the incident spherical wave by a plane wave leads to a
scaling factor on the xy-plane which is constrained in a range from 1 to 3 % for
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d
Beads distances (µm) Ratios
1↔ 2 2↔ 3 1↔ 3 1↔ 2 2↔ 3 1↔ 3 Average

+∞ 65.37 33.66 44.30 - - - -
10 cm 66.22 34.08 44.92 1.013 1.012 1.014 1.013
7 cm 66.59 34.26 45.18 1.019 1.018 1.020 1.019
5 cm 67.09 34.52 45.54 1.026 1.026 1.028 1.027

Table II.2: Computation of the scaling factor due to the finite distance of the light
source d. The positions of the three beads are measured for the different distances d
and the reference situation of the plane wave illumination (+∞) to compute their
relative distances (see figure II.13.a). Ratios of these distances with the distances
for the plane wave situation are averaged to determine the order of magnitude of
the scaling factor.

a distance d ∈ [5 cm, 10 cm] between the sample and the light source. As this is
a geometrical effect on how the light source is seen by the scattering object, this
ratio should not depend on the illumination wavelength or the distance between the
sample and the sensor.

Then, the Born approximation is tested on real data. Emulsion of oil droplets
of refractive index noil = 1.38 in water of refractive index nH2O = 1.33 are imaged
with a standard 2D lens-free microscope for a red illumination λ = 630 nm. A
hologram is selected and back-propagated to estimate the droplet diameter (see fig-
ures II.14.a,b) by estimating the width of its profile. The back-propagation distance
is zs = 1320 µm in the air.

A numerical object is simulated accordingly by a sphere of diameter 9.5 µm
placed in a volume of nbvx = nbvy = 400 and nbvz = 256 voxels of 1.67 µm3 with
refractive index n0 = 1.33. The holograms of nbpx = nbpy = 400 pixels are simulated
with the Fourier diffraction theorem with a linear interpolation in the Fourier do-
main, zero-padding both the 2D and the 3D domains with an effective propagating
distance zeffs = n0.zs = 1755.6 µm.

Two possible solutions for the difference of refractive index are tested. The
expected situation of a phase object with a purely real refractive index δn = 0.05
(see figure II.14.d) and the opposite situation of an absorbent object with a purely
imaginary difference of refractive index δn = 0.05i (see figure II.14.c).

Surprisingly, it is the wrong situation which perfectly matches the data with a
simulated absorbent object. It also shows the correctness of the effective propagating
distance zeffs as the sizes of the holograms are equal.

This unexpected result comes from the non-validity of the Born approxima-
tion. As mentioned in section 1.2, the phase delay23 introduced by the oil droplet
is 2πlδn/λ ≃ 0.9π which is not negligible. The 2D reconstruction shows that even
with the 2D Fresnel propagation the droplet is seen as an absorbent dot.

Having a purely imaginary δn is moreover the only way to match the simulations

23With δn = 0.03, l = 9.5 µm and λ = 630 nm.
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Figure II.14: Comparison of a real hologram acquired on an oil sphere immersed in
water (a) and its 2D back-propagation intensity (b) with simulated holograms of an
object of the same size with a purely imaginary (c) or purely real (d) difference of
refractive index δn with its surrounding medium. (e) Scheme of the influence of the
phase of the diffracted wave Udif compared to the phase of the incident wave Uinc
for a purely real (red) or purely imaginary (green) δn.

with the data: most of the holograms recorded during this PhD present a center with
a gray value close from the background value. Looking back at the equations (II.7)
and (II.12) and the figure II.14.e, the only possibility to keep a gray center with a
homogeneous scattering object is to have a purely imaginary δn. Indeed, according
to equation (II.12), because of the spherical propagator in the convolution, the phase
of the diffracted wave Udif at the center of the hologram24 in the direction of

−→
k′

0 is
directly the phase of the incident plane wave Uinc modified by the phase of the
scattering potential f .

And for a small refractive index δn one gets from equation (II.7):

f (−→r ) ≃ 2
δn

n0

(II.54)

This means that if the difference in the refractive index δn is real and positive,
no phase shift is introduced in the diffracted wave whose complex representation
is co-linear with the incident wave as for the red situation in figure II.14.e. Its
interference with the incident wave is constructive and the total wave presents an
intensity higher than the background as for the simulation in figure II.14.d. On
the contrary, if the difference in the refractive index δn is purely imaginary, a ±π
phase shift is introduced in the diffracted wave whose complex representation is

24Because for a position −→r in the direction of
−→
k′

0, Uinc (−→rO) eik′

0‖−→r −
−→rO‖ = Uinc (−→rO) ei

−→
k′

0
.(−→r −

−→rO) =
Uinc (−→r ) and 1/ ‖−→r −−→rO‖ does not introduced any phase.
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now orthogonal to the incident wave as for the green situation in figure II.14.e. Its
interference with the incident wave produces a total wave with an intensity similar
with the incident wave, that is to say similar to the background as for the simulation
in figure II.14.c.

Finally, let’s show that it is impossible to retrieve the 3D information from a
given 2D hologram with a reconstruction only based on a 2D back-propagation.
Figure II.15 shows that back-propagating a hologram at different distances only
produces a stack of focused and unfocused objects whose 3D rendering looks like
columns with varying intensities. Each slice of the stack is moreover a transmissive
plane which can produced the back-propagated hologram whereas in a real recon-
structed volume, the hologram is a combination of all the information in the volume,
some parts participating more than others in the hologram shaping.

Figure II.15: Illustration of a multi-z reconstruction based on a simulated hologram
(zs = 1.5 mm and λ0 = 630 nm). Top-right - Intensity of the simulated hologram.
Bottom-right - 2D back-propagations performed at different z. Bottom-left - 3D
visualization of the obtained stack.

3.4 Conclusion and discussion

As a conclusion, the three tested direct models present a good agreement with
the reference hologram for a plane wave illumination within a range of 4 10−2 from
the reference hologram both for the intensity and the phase. As mentioned earlier,
the Fourier diffraction theorem only needs one 3D Fourier transform to perform a
simulation and is consequently the fastest. Nevertheless its accuracy depends on the
interpolation technique. The linear interpolation gives the best results, but is longer
and above all is not invertible if one wants to use the Fourier diffraction theorem
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as a mapping tool of the Fourier domain of the reconstructed object25. This kind
of reconstruction will be consequently based on nearest-neighbor interpolations. It
has been shown that it gives lower quality results as a direct model and the same
can be expected if it is used as a reconstruction tool.

To complete this study, more tests should be done. Indeed, it was mentioned
that the number of planes nbz has an effect on the numerical efficiency of the Fourier
diffraction theorem. A better understanding of this effect can help to choose recon-
struction parameters more wisely. In the tested situations, both the volume and the
2D grids are overlapping. It would be interesting to test the effect of a difference
in the number of pixels nbpx and nbpy on the 2D plane and the number of voxels nbvx
and nbvy in the 3D volume as well as a difference in the resolution dxp, dyp dxv

and dyv, leading to a difference in the sampling and frequency in the Fourier do-
main.

On an other subject, it has been demonstrated that the finite distance between
the sample and the light source leads to a spherical propagating wave which cannot
be strictly assumed to be plane for distances lower than d = 10 cm generally used in
lens-free microscopy. Working nevertheless under this assumption leads to a scaling
factor in the range of 1 to 3 percent.

Once again, more studies are needed to better estimate this effect and to verify
that it does not depend on the wavelength or the distance between the sample and
the sensor and how it behaves with tilted illuminations.

Concerning the interpretation of the refractive index of the 3D numerical objects,
it seems coherent for the very low diffracting objects which are simulated26. But it
fails at explaining real data with a more realistic refractive index whose variation
with the surrounding medium cannot be considered as weakly scattering. The in-
terpretation even seems inverted: real holograms of phase objects are well simulated
only for purely imaginary variations of refractive index which normally correspond
to absorbent objects.

A more complete test on different objects of different sizes and refractive indices
would be beneficial to really investigate the limit of the Born approximation and
the induced effects in the reconstructions. Indeed, it does not hold in the case of
a lens-free microscope for extended 3D cell cultures, as mentioned in the previous
section 1.2.

25Indeed, the most intuitive solution would be to spread the values of the coefficients on the
spherical caps in their surrounding voxels, weighted by the relative distances (see figure II.7 by
reversing the arrows directions). This leads to a "dilution" of the coefficients. If one for example
performs a mapping and then estimates back the diffracted wave, he will not find back its initial
values. This prevents any stable reconstruction with a linear interpolation technique based on the
mapping of the Fourier domain.

26|δn| = 0.005
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Chapter III

A versatile prototype and first
reconstruction algorithms

This chapter presents the work mainly done during the first year of the PhD
program. A first prototype is developed from scratch to test different modalities
and first ideas of reconstruction algorithms.

It allows having a first glance at 3D samples acquisition and the associated con-
straints, while giving an idea on the first algorithms performances and limitations.
From these results, new directions are taken for the PhD work.

This work has led to a first publication in the Biomedical Optics Express jour-
nal [80].

1 Overview of the experimental bench

1.1 Design and functioning

Unlike 2D lens-free imaging, where only one image is required to retrieve the 2D
object, one can expect that a reconstruction of a 3D object from lens-free acquisitions
requires to multiply the viewing angles. For this purpose, a new experimental bench
is developed, illustrated in figure III.1. It is composed of a semi-coherent illumination
source and a CMOS sensor1.

The semi-coherent illumination is composed of a 3λ LED2. To get a semi-coherent
illumination, it is placed behind a 150 µm diameter pinhole. A diffuser is used to
make the illumination on the pinhole uniform for the three wavelengths.

The spherical wave emitted by the pinhole can be considered as a plane wave if
seen from far enough. That is why the sample is placed several centimeters away
from the lighting (∼ 7 cm)3. Since the lighting is not fully coherent, to record

1IDS - 29.4 mm2, 3840× 2748 monochromatic pixels, pixel pitch 1.67 µm - ref. UI-1492LE-M.
2LED CREE RGB, λR = 630 nm, λG = 520 nm, λB = 450 nm - ref. XLamp MC-E RGBW

MCE4CT, with spectral widths of ∆λR ≃ 10 nm, ∆λG ≃ 40 nm, ∆λB ≃ 20 nm.
3A translational stage allows the user to change the distance of the illumination.
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the produced hologram, the sensor is placed a few millimeters behind the sample,
typically 1 to 3 mm.

Figure III.1: Left-hand side - Experimental bench dedicated to lens-free diffractive
tomography. Right-hand side - Optical scheme of the system. The semi-coherent
incident plane wave Uinc passes through the sample volume. Each element of the
volume diffracts the incident plane wave, behaving like secondary spherical sources,
creating a diffracted wave Udif as explained in chapter II, section 1. The sensor
records the intensity of their summation: Itot = |Utot|2 = |Uinc + Udif |2.

Two modes of acquisition are available on the setup:

• θ-mode: the illumination and the sensor are static. The object is rotated
around an axis passing through its center with a rotation stage4 about the θ-
axis5. This geometry is similar to aX-ray tomographic scanner, where the light
propagation remains orthogonal to the sensor. It can be used with samples
trapped in capillary.

• ϕ-mode: the object and the sensor are static. The light source is rotated with a
rotation stage 6 about the ϕ-axis7. The illumination direction is tilted relative
to the sensor plane. This modality is the most adapted to 3D organoid culture
in standard containers such as Petri dish or well plates.

4Newport - ref. URS75CC, controlled by a Newport universal motion controller - ref. ESP300
5See the green axis in figure II.4
6Newport - ref. M-URM80APP, controlled by a Newport universal motion controller - ref.

ESP300
7See the blue axis in figure II.4
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These two modes aim at different applications. The θ-mode pretends to be the
simplest geometry as the lighting is always normally incident on the sensor, there
is no problem of angle relative to the sensor or the different interfaces with differ-
ent refractive indices. Moreover, all the angles around the object are theoretically
available. Such a geometry is also the one commonly used in tomography and sim-
plifies the preliminary studies of the possibility of a 3D lens-free microscope. This
geometry could be used in a capsule cytometer, the capsules traveling in capillaries.

But this geometry is not adapted for 3D cell cultures in Petri dish which can
only be fixed on the experimental bench. This is why the ϕ-mode is also designed
in this bench to acquire the first biological data with tilted lighting. Nevertheless
one can expect that this geometry will be harder to deal with since one will have
to model the tilted propagation of the light. But its main disadvantage is the very
limited angular coverage which is limited to roughly ϕ ∈ [−45◦, 45◦]. Such limitation
is a huge problem in tomography that has to be dealt with. Moreover, on a more
practical point of view, the more the lighting angle increases, the less the sensor gets
energy and the holograms are harder to record.

1.2 First acquisitions

Inert and biological data are acquired with this prototype, both in θ-mode and ϕ-
mode. Only the most informative data are presented here.

Inert data: a mosquito wing - A mosquito wing is imaged with the prototype.
For the θ-mode it is fixed to a capillary inserted in the θ-motor stage whereas it is
directly placed onto the sensor in the ϕ-mode.

The results are presented in figure III.2. It shows data acquired in both modes.
The three dimensional shape and structure of the wing is clearly visible on both
modes.

This figure emphasizes the differences between the two acquisition modes. On
the left side, for the θ-mode, the dynamic remains identical for all angle while the
object rotates about a well-defined vertical axis (not drawn in the figure). Some
dust on the sensor is present at each angle at the same position on the picture which
will lead to artefacts in the 3D reconstruction.

On the right side, the full frame representations of data acquired in the ϕ-mode
show that there is no more a clearly identified rotation axis. It seems closer to a
shadow projection during daytime, the shadow moving and spreading according to
the lighting angle. This is due to the fact that in this geometry, the sensor stays
still during the acquisitions. Nevertheless, 3D information can be retrieved from the
data, since it is possible to see some parts of the wing moving above one another as
the lighting rotates. Another side effect of the geometry is the loss of signal to noise
ratio as the lighting tilts (for a constant lighting intensity and integration time),
leading to a drop of the dynamic.

Biological data: Matrigel® - The main concern with the living sample is
that they must be kept in the matrix providing their life support (culture medium
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Figure III.2: Left-hand side - Cropped acquisitions in the θ-mode at different an-
gles θ ∈ {−60◦, 0◦, 60◦} of a mosquito wing in the blue channel λ = 450 nm.
Right-hand side - Full frame acquisitions in the ϕ-mode at different angles ϕ ∈
{−50◦, 0◦, 50◦} of a mosquito wing in the red channel λ = 630 nm.

or Matrigel® for instance). Its texture may raise some issues8, especially in the θ-
mode. If it is rigid enough, one can try to fix it on a spike, whereas if it is too liquid,
it can be put in capillary. These two solutions are tested as presented in figure III.3.

The first thing that appears in the figure is that the gap of refractive index
between the air nair = 1 and the culture medium, close to the water refractive
index nH20 ≃ 1.33 is too big. In the air, the Matrigel® and the capillary behave like
a lens and focus the light. The tubing inside the capillary is then not visible.

A pool is designed and 3D printed to perform index matching. The Matrigel® is
now visible on the spike, but inside the capillary the refractive index gap between
the capillary glass and the water is still too important. Replacing water by adapted
immersion oil would not solve the problem since the tubing inside the capillary
would still be filled with water and Matrigel®.

Acquisitions in ϕ-mode are easier to perform as the Petri dish has only to be laid
on the sensor. Results on epithelial cells are presented in figure III.4. The arrows
pointing at different cells at different angles show that the parallax effect is sufficient
enough to record 3D information. The distortion at high angles of the hologram is
also an important effect that one can see in the medallions.

To get such a culture, RWPE1 cells are grown in Matrigel® according to a no top
coat protocol9. This means that the cells are seeded on the top of a Matrigel® bed
and then culture media is slowly poured over the attached cells and is changed every

8For example, the Matrigel® has a viscosity which depends on the temperature.
9See chapter IV, section 5.1 for more details on the cells conditioning and the culture protocol.
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1 Overview of the experimental bench

Figure III.3: Matrigel® culture acquired in θ-mode. To compensate the gap of
refractive index between the air (on the left-hand side) and the culture, one must
use a index matching pool as the one designed and presented at the top of the
figure. On the right-hand side, the acquisition done in water show the limitation of
this θ-mode used with Matrigel®. The sample fixed on a spike (top raw) is not rigid
enough to rotate smoothly with the capillary. Inside the capillary (bottom raw),
despite the water, the index matching is not sufficient and the glass highly distorts
the holograms, behaving like a lens.
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Figure III.4: At the top - Epithelial cells branching into a network on a
Matrigel® bed. At the bottom - Three crops of the data acquired in ϕ-mode
for ϕ ∈ {−15◦, 0◦, 15◦} in the blue channel λ = 450 nm. The colored arrows
point at specific cells whose relative positions change according to the angle. The
parallax effect shows that three dimensional information can be retrieved from this
acquisition mode. In the medallion - Zoom on a hologram at ϕ ∈ {−50◦, 0◦} in the
red channel λ = 630 nm. The deformation of the circular shape to an ellipse with
increasing angle is visible.
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2 A first 3D reconstruction method based on the Radon transform

day. In this situation, these cells tend to develop networks10.

2 A first 3D reconstruction method based on the

Radon transform

The method, developed during the first months of the PhD work aims at proving
the feasibility of a lens-free tomographic microscope. This method has indepen-
dently been previously developed in other laboratories [68, 69] to perform lens-free
diffractive tomography and is based on the inverse Radon transform.

2.1 Overview of the method

The idea is to get closer to the existing algorithms in the field of X-ray tomog-
raphy. The filtered back projection algorithm [20] is commonly used to retrieve an
object from its straight projection at different angles and works with limited an-
gle coverage. It is moreover native in the programming tool used during this PhD
work11.

The approximation here is to consider a recorded hologram as a direct and
straight projection of the sample at a given angle just as if it was a shadow. Doing
so, each line on the z-axis in the dataset can be processed independently. As de-
scribed in chapter II, section 2.3, each line gives information on a line in the Fourier
domain of the object which can be consequently reconstructed slice by slice.

The reconstruction then works as schematically described in figure III.5: for
the three chosen z, green, blue and red, the corresponding lines in the data set
at different angles θ lead to the reconstruction of three different slices. Compiling
all the reconstructed planes gives access to the whole volume of the object. The
reconstruction is performed in the blue channel. Indeed, the holograms are the
smallest in this wavelength, the diffraction being proportional to the wavelength. It
limits the effects of the diffraction.

The figure presents the results on a real sample: a mosquito wing on which the
3D structure is clearly visible. Some small details as ribs and dust are visible. At
the bottom left, one can notice that the sample moved during the acquisition since
the top of the wing is doubled.

This method has numerous advantages. Dealing with the sample slice by slice
instead of the whole volume at once is an optimal method in terms of memory
consumption and large volumes can be processed12 while the computing time is
drastically reduced. Moreover, an important bibliography exists in this field, moti-
vated by the medical domain with the X-ray computed tomography and this method
is consequently easy to implement.

10Non published data. The dynamics of this process are later described in V, section 2.
11Command "iradon" in Matlab®.
12Up to 50 mm3 in the example of the figure III.5
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Figure III.5: Top line - Schematic view of a 3D reconstruction on real data in the θ-
mode using the inverse Radon transform. Data at different angles are processed by
going through the z-axis. At each z the lines extracted from each angle are processed
to get a 2D slice of the 3D object. Assembling these slices at each z gives access to
the whole volume. Bottom line - Zoom on the green and blue slices. On the green
slice, one can notice a doubling of the wing’s edge at its top due to its movement
during the sample rotation (white dashed lines). On the blue slice, one can see
the limit of this method: as the diffraction is not properly taken in account, the
reconstruction seems unfocused with "tubes" instead of nicely shaped ribs. The
straight lines are due to the lack of angle for a proper reconstruction with an inverse
Radon transform. The white arrows point at the dust surrounding the wing. The
global reconstructed volumes is: 4 × 4 × 3.34 mm3 = 53.44 mm3 and is performed
in the blue channel.

The main disadvantage of this method is that it does not take into account the
diffraction phenomenon, which is a 3D effect. The holograms are consequently not
focused by this algorithm, leading to tubes and spheres instead of lines and dots in
the reconstructed volume as one can see in figure III.5.

This method is consequently a good solution to get the localization of the objects
in the volume but will not provide detailed reconstructions at low scale.

One may notice that this method is not directly applicable to the ϕ-mode. In-
deed, in this mode, there is not a well-defined rotation axis anymore and the data
cannot be considered as direct projections as they are distorted with the tilted an-

64



2 A first 3D reconstruction method based on the Radon transform

gle ϕ. A solution is to add a straightening step as presented in figure III.6.

Figure III.6: In the ϕ-mode the data are straightened to get closer to the θ-mode.
For an incident lighting normal to the sensor, the projection is directly the recorded
hologram (red situation). When the lighting is tilted (blue situation), the region of
interest in the blue area is extracted and straightened in the tilting direction to fit
into the black frame, miming a hologram recorded with an angle ϕ with a lighting
normal to the sensor.

If one knows the distance of the object to the sensor zs, the center of the projec-
tion of the object at a given angle ϕ can be computed from its known position with
a normal lighting. It is directly ∆x = zs. tanϕ.

This method is nevertheless not satisfactory. Indeed, with a tilted lighting, the
light undergoes multiple refractions at the different interfaces such as between the
air and the water from the culture medium or between the air and the glass of the
sensor. Different methods are consequently developed to align the data to artificially
create a rotation axis in the ϕ-mode13. The ones used in this section are the first two
developed: the cross-correlation on the raw data and a least square minimization
method on the raw data.

Before reconstructing the 3D volume, a last step is added to increase the recon-
struction quality: a pre-focusing step.

2.2 Adding a 2D pre-focusing step

One of the previously mentioned disadvantages of this method is that it does not
take into account the diffraction of the sample, leading to unfocused projections. A
mean to reduce this effect is to perform a step of 2D back-propagation on the data
set before the Radon reconstruction. At each angle, a 2D reconstruction of the
object at a mean plane zs is done, refocusing partially the object, as described in
figure III.7.

13See appendix C.
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Different 2D back-propagation methods exist, as introduced in chapter I, sec-
tion 3.2. Using a RGB lighting, the reconstruction technique used here is the one
developed by Sophie Morel during her PhD work [57].

This method does not pretend to give a perfectly focused object. Indeed, the
same zs is applied to the whole data set, consequently, if the sample is not on
the rotation axis, its distance from the sensor will vary according to the angles θ,
degrading the reconstruction quality. Moreover, even with an object placed at this
distance zs, the reconstruction will only accurately focus the regions at zs. For 3D
samples, the distance from this plane will vary according to the region of interest
as presented of the figure III.7: only one of the three spheres is laying on the plane,
the two others are consequently not reconstructed at the correct distance.

In the ϕ-mode, the 2D back-propagations are performed after the straightening
step using the Fresnel propagator14 hz.

Figure III.7: Left-hand side - Scheme of the 2D back-propagation step performed
before the 3D reconstruction. The object is refocused at an average plane leading to a
more accurate approximation of the projection. hzs represents the Fresnel propagator
introduced in 2D in-line holography, in chapter I, section 3.2. One can see on the
ribs that the quality of the refocusing depends on the distance from the sensor: at
the center of the reconstruction, they are sharp whereas they are blurred on the
edges where the wing is folded and further from the sensor. Nevertheless, the global
rendering is better. Right-hand side - This operation is performed on all the data
set (on the right) for the different angles.

14A more rigorous model of 2D tilted back-propagation is developed later in this thesis and is
introduced in chapter IV, section 2.1.
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2.3 3D reconstructions

Figure III.8 presents the results of this method in θ-mode on a mosquito wing.
It is based on a data set acquired every ∆θ = 5◦ over 30 angles in the three RGB
channels. The total reconstructed volume is ∼ 2.8 × 2.8 × 5 mm3 ≃ 40 mm3 with
visible details as small as ∼ 5 µm.

The zooms on the red boxes on the back propagated 2D data show that, as
previously said, the focus quality depends on the region of interest because of the
different heights in the object. For example, with θ = 40◦, unlike the ribs, the dots
are not in focus (and consequently present hologram shapes), whereas with θ = 80◦

the dots are well focused while the ribs are not. The "white cloud" surrounding the
reconstruction is due to the noise and the lack of angles to properly reconstruct the
object.

Figures III.9 and III.10 present results on another mosquito wing directly placed
on the sensor and imaged in the ϕ-mode. The data set is composed of acquisitions
done every ∆ϕ = 1◦ from ϕ = −50◦ to ϕ = 50◦ in RGB. The data are aligned by
the least square minimization method on the raw data and then back-propagated.
The total reconstructed volume is ∼ 1.65×1.65×2.34 mm3 ≃ 6.10 mm3 with visible
details as small as ∼ 5 µm.

Nevertheless, unlike the reconstruction presented in the θ-mode, the resolution
is not isotropic. On a plane parallel to the sensor (top-left view in figure III.10)
the resolution is comparable to the resolution of the sensor whereas it gets worse on
the orthogonal axis as one may see on the top-right view in the figure. It is due to
the bow-shaped artifact that one can see on the bottom-left view and highlighted
in blue.

These artifacts can have numerous causes such as the limited angular coverage,
or alignment problems. But one can note that they are arched around the rotation
axis. Consequently the main cause seems to be a problem with the straightening
step, which is maybe not a good enough approximation of the projection that one
could get with a normal lighting on the sensor. Moreover, it is possible that the
angle used to straighten may actually not be strictly equal to the lighting angle due
to refraction effects between the air and the glass above the sensor. More studies
are needed to accurately conclude on this point.

Concerning biological data in the θ-mode, none of 3D reconstructions is relevant
enough to be presented because of the reasons given in section 1.2. In the ϕ-mode,
figure III.11 presents the 3D reconstruction of the data introduced in figure III.4.
The data set is composed of acquisitions done every ∆ϕ = 1◦ from ϕ = −50◦

to ϕ = 50◦ in RGB. The data are aligned by the least square minimization method
on the raw data and then back-propagated. The total reconstructed volume is ∼
2.36× 2.36× 4.17 mm3 ≃ 32.9 mm3.

The colored arrows point at the isolated single objects identified in figure III.4
and lying outside the network plane. The global structure of the network is visible.
At first glance, it appears spread two-dimensionally: the cells mainly grew on the
surface of the Matrigel®. Nevertheless, the side views show that the structure is not
strictly planar, but slightly twisted, as emphasized by the red dashed lines.
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Figure III.8: Reconstruction of a mosquito wing with the θ-mode. Gray background
pictures are 2D visualizations whereas black background pictures are 3D visualiza-
tions. The 2D visualizations present the data after the reconstruction step at two
different acquisition angles. The red framed medallions are zooms on the 2D data
whereas the green framed medallions present zoomed regions on the 3D visualization
at full resolution. On the blue zoom, the dots on the wing are ∼ 5 µm large while the
small hair are ∼ 70 µm long. Reconstructed volume: ∼ 2.8×2.8×5 mm3 ≃ 40 mm3.

As noticed previously, the reconstruction quality appears much better in the
plane parallel to the sensor than on the orthogonal direction. The bow-shaped
artifacts are once again visible on the top view. They have a spatial extension of a
magnitude bigger than 200 µm whereas a typical cell diameter is approximately ∼
15 µm.

Figure III.11 also presents a 3D reconstruction performed directly on the raw
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Figure III.9: Top line - Acquisition on a mosquito wing laid directly on the sensor
in the ϕ-mode at three different angles. Bottom line - The corresponding 2D back
propagation after the straightening step. The red arrows point at a speck of dust
on the sensor.

data in the red channel15. On the red and green framed medallions, one can see
the tubular reconstruction of the network and the spherical aspect of single objects
due to the holograms shape. It shows the necessity of the focusing step by back-
propagation to get resolved reconstructions.

Figure III.12 presents a 3D reconstruction on a smaller sample, giving a better
idea of the reconstruction resolution and its artifacts. These are single isolated cells
embedded in Matrigel® capsules16. The data set is composed of acquisitions done
every ∆ϕ = 1◦ from ϕ = −30◦ to ϕ = 30◦ in RGB. The data are aligned by the least
square minimization method on the raw data and then back-propagated. The total
reconstructed volume is ∼ 942×942×1336 µm3 ≃ 1.2 mm3. The cells are ∼ 20 µm
wide and the capsule at the center of the frame is 360 µm in diameter.

Once again, even if the distribution of the cells on the z-axis is clearly visible,
the image quality remains better on the xy-plane. The objects pointed by the green
arrows appear badly focused because they are not on the capsule plane, chosen as
the distance for the back-projection step. This shows again the limitation of this

15Where the holograms are consequently the most spread.
16See chapter IV, section 5.1 for more details on the cells conditioning and the culture protocol

to produce Matrigel® capsules.
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Figure III.10: The three orthogonal views of the 3D reconstruction of the data
introduced in figure III.9. The green framed area is a zoom on a tear in the wing.
The red arrows point at the dust on the sensor identified in figure III.9. The blue
curves emphasize bow-shaped artifacts. Reconstructed volume: ∼ 1.65× ∼ 1.65× ∼
2.34 mm3 ≃ 6.10 mm3.

method.

The main observation is that only a ring surrounding the cells is reconstructed,
although the capsules are roughly spherical. Once again, this can be assigned to the
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Figure III.11: The three orthogonal views of the 3D reconstruction of the data
introduced in figure III.4. The green and red framed zooms are reconstructed with
the same dataset but aligned by correlation and without the refocusing steps in
the red channel. The arrows point at the features identified in figure III.4. The
red dashed lines indicate the average 2D surface on which lies the cell culture. It
is not strictly a plane and depends on the position in the culture. Reconstructed
volume: ∼ 2.36× 2.36× 4.17 mm3 ≃ 32.9 mm3.
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Figure III.12: 3D reconstruction of isolated cells embedded in Matrigel® capsules.
The top line presents the raw data at ϕ = −30◦ and 0◦ in the red channel and
a zoom on a capsule. The associated back-propagations are on the middle line.
The green arrows point at badly focused single objects which are not in the plane
of the capsules. The bottom line presents the 3D visualization. Reconstructed
volume: ∼ 942× 942× 1336 µm3 ≃ 1.2 mm3.
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limited angular coverage. This consequently gives a limitation on the objects one
can expect to reconstruct.

A second observation is the non-uniformity of this ring. This comes from the
fact that the lighting is fixed on a rotation axis17, limiting the possibilities of points
of view on the object. Consequently, the capsule surface is better reconstructed
orthogonally to the rotation axis (left and right sides) than on the axis (at the top
and the bottom).

Finally, figure III.13 presents a reconstruction of a culture grown in a top coat
condition: the seeded cells are overlaid with Matrigel® instead of culture medium18.
This prevents the cells from forming a network as previously presented in figure III.11
for example. The data set is composed of acquisitions done every ∆ϕ = 1◦ from ϕ =
−30◦ to ϕ = 29◦ in RGB. The data are aligned by the least square minimization
method on the raw data and then back-propagated. The total reconstructed volume
is ∼ 1.77× ∼ 1.77× ∼ 3.0 mm3 ≃ 9.42 mm3.

Once again, the culture presents an overall 2D structure because of the way
the cells are initially spread on their Matrigel® bed. The interesting thing in this
reconstruction is that a branch grew orthogonally to this plane on more than 600 µm
as one can see on the side view of the 3D reconstruction. It appears to be an
isolated behavior that one could easily miss with standard microscopy. It emphasizes
the potential of the 3D lens-free microscopy to identify rare events thanks to the
possibility to reconstruct large volumes.

To conclude, this section introduces the first 3D reconstructions obtained by the
lens-free imaging setup. Performed with a basic algorithm developed with strong
approximations, this algorithm can work fast (a few minutes) on large volumes,
using the full potential of the large field of view allowed by the lens-free technol-
ogy. The results show nevertheless the potential of the 3D lens-free tomography.
Indeed, the global shape of the samples are retrieved and the position of the single
objects isolated from the main structure can be determined. Lots of artifacts remain
nonetheless and the future approaches need to correct them.

3 A second method based on z-stack acquisitions

This section presents an algorithm developed to be an alternative solution to
traditional methods that use multi-angle acquisitions and the Fourier diffraction
theorem.

As the results are not convincing, it will not be described in details. Nevertheless,
it is important to mention it in this thesis as the negative results emphasize the need
to multiply the viewing angles. Moreover it introduces the formalism of the iterative
inverse problems. It is indeed the first implementation of such an approach in this
PhD work.

17The rotation axis is vertical on the top view of the capsule.
18See chapter IV, section 5.1 for more details on the cells conditioning.
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Figure III.13: Left column - Raw data of RWPE1 cells grown via a top coat
protocol and the associated back-propagation for a normal incidence. Right col-
umn - 3D reconstruction of the cell culture. The reconstructed volume is ∼
1.77 × 1.77 × 3.0 mm3 ≃ 9.42 mm3. The arrow points at a branch which grew
inside the Matrigel®.
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3.1 Motivation of the method

As mentioned earlier, biological samples strongly limit the acquisitions possi-
bilities. Multi-angle views on Petri dishes can only be achieved with the ϕ-mode
and the angular coverage is constrained by the wall height. Things get worse if one
considers cultures in multiwell plates in which the culture size on the xy-plane is in
the same order of magnitude than the walls height.

The method described in this section is not based on multi-angle acquisitions,
but on acquisitions done behind the sample for different distances of the sensor zs,
solving the problem raised by multiwell plates or other container with limited angular
coverage.

Indeed, the hologram shape is characteristic of the distance of propagation: for
a scattering sphere, the size of the resulting rings will increase with the distance
of propagation. One can consequently speculate that having holograms at different
distances could give some information about the distance of the object, thus how to
retrieve it.

Moreover as mentioned in chapter II, section 3, one can get a simulated total
wave on a volume19, given a volume object correctly padded with zeros. This is the
situation symbolized by the red arrow in figure III.14.

Figure III.14: Illustration of the simulation of the diffracted wave on a volume
composed of three identical spheres given a correctly padded object (red arrow)
according to equation (II.37) for an incident lighting normal to the sensor plane.
The diffracted wave is computed on a volume. The counterpart of the zero-padding
is that half of this volume is not physical (crossed out in red in the figure) and
contains the wrapping artifacts of the FFT (see figure II.6). The green volume is
the one physically reachable by acquisition.

19See the simulations based on the Born approximation and its convolution formulation (II.37).
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One can consequently think of a reconstruction method based on the reverse
way: knowing the diffracted wave on a volume behind the object (the green cube in
the figure) could allow retrieving this 3D object using the convolution formulation.
The main pitfall is that, as described in figure III.14, the counterpart of the zero-
padding operation leads to a non-physical diffracted wave on the simulated volume
which is not taken into account in the simulation process. But as one can see on the
right side of the figure, these artifacts contain strong information on the position
of the objects. When the wrapping effect loops on the spheres, the phase shift20

introduced by this wrapping produces important changes in the holograms.
The aim of this section is to find a deconvolution method to retrieve the object

from such a z-stack acquisition (the green arrow in the figure). It is mainly based
on numerical simulations since such z-stack acquisitions cannot be captured with
the developed prototype.

3.2 Few tests of deconvolution

The algorithm which is developed to retrieve the object is described in fig-
ure III.15 and is based on a Gerchberg–Saxton algorithm structure, as the ones
developed for RGB phase retrieval and presented in chapter I, section 3.2.

The challenge here lies in the deconvolution step. Indeed, based on equa-
tion (II.37), one would like to retrieve f with:

F3D (f.Uinc) =
D̂

Ĥ
(III.1)

where: D̂ = F3D (Udif ) and Ĥ = F3D

(
k′2

0

4π
eik′

0‖−→r ‖

‖−→r ‖
)

.

But this kind of method is very unstable, especially for noisy data and it diverges
rapidly during iterations. Filters are needed to prevent this.

Different types of deconvolution filters are tested.

Wiener filter - In this situation [81], equation (III.1) becomes:

F3D (f.Uinc) =
Ĥ

∣∣∣Ĥ
∣∣∣
2

+ N
S

D̂ (III.2)

where N and S are the power spectral densities of the noise and the signal Udif . Ĥ
is the complex conjugate of Ĥ.

Low-pass filter - This filter selects the propagating frequencies according to
the modulus of Ĥ if it gets to low compared to a given value τ :

F3D (f.Uinc) =





D̂
˜̂
H

if
∣∣∣Ĥ
∣∣∣ > τ

0 if
∣∣∣Ĥ
∣∣∣ ≤ τ

(III.3)

20See II.6 for more details.
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Figure III.15: Illustration of the iterative algorithm which is developed to retrieve
the object. Step 1: the dataset, in green, is first initialized on the non-physical part
due to the volume padding. Step 2: deconvolution of the diffracted volume towards
the object. Step 3: forcing the 0-padding. Step 4: simulation of the diffracted wave
due to this padded object. Step 5: to ensure data fidelity, the intensities in the green
volume are replaced by the recorded intensities. The algorithm then loops over the
steps 2 to 5 until convergence.

Adapted low-pass filter - This filter, inspired from [46], changes the modulus
of Ĥ if it gets to low compared to a given value τ :

F3D (f.Uinc) =
D̂
˜̂
H

with ˜̂
H =




Ĥ if

∣∣∣Ĥ
∣∣∣ > τ

1.ei arg(Ĥ) if
∣∣∣Ĥ
∣∣∣ ≤ τ

(III.4)

These filters prevent the amplification of the frequencies when Ĥ becomes too
low and can consequently act as low-pass filters for the noise frequencies.
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Different tests are performed on a simulated object composed of three identical
spheres and all give results similar to the one presented in figure III.16. The recon-
struction is accurately positioned on the xy-plane but fails to constrain the position
on the z-axis, producing hourglass-shaped patterns. It can nevertheless be noticed
that these hourglasses focus at the correct z of the objects.

Figure III.16: Test of an iterative deconvolution on simulated data. The simulated
volume is composed of 256× 265× 256 cubic voxels with a side of 1.67 µm and con-
tains three identical spheres of radius rc = 10 µm and with n0 = 1 and δn = 0.005i.
The propagation distance is zs = 1.5 mm and λ0 = 630 nm. The reconstruction
appears to be very good for the xy-positions but totally ineffective along the z-
direction even if the hourglass-shape is more focused around the correct positions
of the spheres on the z-axis.

Different values are tested for τ or N/S leading to either a divergence of the
iterative reconstructions or these deformed hourglass-shaped reconstructions. It
is also tested to initialize the algorithm with the targeted correct solution and it
appears to be not stable: the simulated objects shifts also towards hourglass-shaped
objects.

These solutions seem consequently not restrictive enough on the z-axis to be
satisfactory. But looking closer to the results in figure III.16, one could expect
that an algorithm forcing the object to be spatially limited would tend to focus the
objects around their correct positions, where the hourglass-shape is narrower. This
leads to the first inverse problem approach developed in this PhD work.

3.3 Toward iterative inverse problem approaches

An inverse problem approach to retrieve an object is based on the knowledge of
the direct model which allows simulating data (here |Utot|2) for a given numerical
object (here the scattering potential f).

Thus, for any object, one can estimate "how far" it is from the recorded data
(here the intensities Id) for a given choice of a "distance". Here, the "distance" will
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3 A second method based on z-stack acquisitions

be the Euclidean norm, or l2-norm21:
∥∥∥|Utot (f)|2 − Id

∥∥∥ =

√√√√
∑

pixelsi,j

(
|Utot (f)|2i,j − Id,i,j

)2
(III.5)

Retrieving f consequently becomes a minimization of this distance to best match
the data. But this method also provides regularization tools if some of the object
properties are known such as its sparsity, a possible bounded domain, and so on.

In this section, the retrieved f is then the solution of the following minimization:

f̃ = argmin
C(f)

1
nbxnbynbz,sN

∑

j

∥∥∥∥
∣∣∣U j

tot,s (f)
∣∣∣
2 − Ijd

∥∥∥∥
2

︸ ︷︷ ︸
data fidelity Jd(f)

+ µL1

1
nbxnbynbz

‖f‖L1,ǫ

︸ ︷︷ ︸
sparsity constraint JL1,ǫ(f)

(III.6)
1

nbxnbynbz,sN
and 1

nbxnbynbz
are normalizing factors, nbx, nby and nbz still being the

voxels number in each direction of the reconstructed object f . The index s stands
for "sampled". Indeed, one may work only on a limited number nbz,s of slices in the
simulated volume Udif which possesses nbz slices.

The data fidelity is composed of a summation on j, standing for the N lighting

directions and wavelength illuminations
−→
k′j

0 (several wavelengths can be used for a
same lighting direction and vice versa).

As defined in appendix D, ‖f‖L1,ǫ
is the "relaxed" L1-norm of the object:

‖f‖L1,ǫ
=

∑

voxelsi,j,k

√
|fi,j,k|2 + ǫ2 (III.7)

Minimizing this norm consequently tends to favor sparse reconstructions. µL1 is
the hyperparameter weighting the sparsity constraint JL1 (f) compared to the data
fidelity Jd (f) in the global cost function:

J (f) = Jd (f) + µL1JL1,ǫ (f) (III.8)

It remains C (f), the constraints on the definition domain of f . It can be for
example the whole complex plane C (f) =

{
f ∈Mnbx,nby ,nbz (C)

}
or a limitation

such as C (f) = {f/I (f) < 0}.
Noting samp the sampling operator on the nbz,s kept slices in the simulated

volume, U j
inc,s the matrix ei

−→
k′j

0 .(x3D,y3D,z3D) sampled on these slices and Ĥj
zs the matrix:

Ĥj
zs = dx.dy.dz.FFT3D


k

′j2
0

4π
e−i

−→
k′j

0 .(xpad
3D ,ypad

3D ,zpad
3D ). · · ·

e
ik′j

0

√
(xpad

3D +xj
0)

2
+(ypad

3D +yj
0)

2
+(zpad

3D +zs)2

√(
xpad3D + xj0

)2
+
(
ypad3D + yj0

)2
+
(
zpad3D + zs

)2




(III.9)

21Here it matches the definition given in appendix D for W = 1. As mentioned in the appendix,
it is possible to weight each pixel for example to minimize the influence of hot or dead pixels.
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equation (II.44) becomes:

U j
dif,s = U j

inc,s.samp
(
pad−1

(
FFT−1

3D

(
Ĥj
zs .FFT3D (pad (f))

)))
(III.10)

All these operations are linear and one can use the matrix formalism as specified

in the appendix D. f , Ĥj
zs , U

j
dif,s and U j

inc,s are consequently unfolded in their vector

shapes
−→
f ,
−→̂
Hj
zs ,
−→
U j
dif,s and

−→
U j
inc,s, f being decomposed on its real and imaginary

parts.
Let’s note P , P i, F , F i and S the matrix representations of the linear opera-

tors pad, pad−1, FFT3D, FFT−1
3D and samp, and R2C the matrix to get the complex

representation of a vector from its decomposition on the real and imaginary part. Let
also be diag the function turning a vector into a diagonal matrix whose coefficients
are the ones of the initial vector.

Equation (III.10) becomes:

−→
U j
dif,s = diag

(−→
U j
inc,s

)
× S × P i × F i × diag

(−→̂
Hj
zs

)
× F × P ×R2C ×−→f

= O ×−→f
(III.11)

It comes from appendix D:

∇Jd
(−→
f
)

=
1

nbxnbynbz,sN

∑

j

4R
[
O⋆ ×

[−→
U j
tot,s

(−→
f
)
.
(∣∣∣
−→
U j
tot,s

(−→
f
)∣∣∣

2
−−→I j

d

)]]

(III.12)
with:

O⋆ = R2C⋆ × P ⋆ × F ⋆ × diag
(−→̂
Hj
zs

)⋆
× F i⋆ × P i⋆ × S⋆ × diag

(−→
U j
inc,s

)⋆
(III.13)

where the Hermitian adjoint of a matrix M is M⋆ = tM . Looking closer at the
matrix representation of each operation, it comes:

diag
(−→
V
)⋆

= diag
(−→̄
V
)

(III.14)

P =




1
. . .

1

0




}
padding

⇒





P ⋆ =




1
. . .

1

0︸︷︷︸
cropping


 = P i

P i⋆ = P

(III.15)
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S =




0 · · · 010 · · · 0 0
. . .

0 0 · · · 010 · · · 0



⇒ S⋆ =




0
...
0
1
0
...
0

0

0 . . .




(III.16)

R2C =




1 i
. . . . . .

1 i


⇒ R2C⋆ =




1
. . .

1
−i

. . .
−i




(III.17)

Thus the adjoint of the padding operation appears to be its "inverse", the crop-
ping operation. The adjoint of the sampling operation samp⋆ consists in adding
zeros in the matrix in the places of the volume slices which are not kept in the
sampling operation. Moreover, it is known that the adjoint of the Fourier transform
operation is its inverse function as it is a unitary operator [82]: F ⋆ = F i and F i⋆ = F .

Looking closer at the equation (III.17), it comes for a complex vector −→c :

R [R2C⋆ ×−→c ] = R
[( −→c
−i.−→c

)]
=

(
R (−→c )
I (−→c )

)
= C2R (−→c ) (III.18)

This is the inverse operation C2R to go from a complex representation of a vector
to its decomposition on its real and imaginary parts.

Finally using the previous remarks and the matrix expression (III.13), it is pos-
sible to express the gradient of the data fidelity in terms of the complex volume f :

∇Jd (f) =
1

nbxnbynbz,sN

∑

j

4.pad−1
(

FFT−1
3D

( ¯̂
Hj
zs
.FFT3D

(
· · ·

pad
(
samp−1

(
Ū j
inc,s.U

j
tot,s (f) .

(∣∣∣U j
tot,s (f)

∣∣∣
2 − Ijd

)))))) (III.19)

Using the appendix D to get the gradient of JL1,ǫ (f), one has the numerical
expression of the gradient of the cost function (III.8) at a given f :

∇J (f) = ∇Jd (f) + µL1∇JL1,ǫ (f) (III.20)

The gradient of the cost function being numerically calculated, one can now
iteratively solve the minimization problem (III.6) using descent gradient algorithms.
In this section, a BFGS algorithm22 adapted23 to boundary constraints is used.

22The Matlab® code which is used in this section is implemented by Mark Schmidt [83] and
runs a quasi-Newton strategy where the steps direction are computed with a limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm [84].

23Thanks to Éric Thiébaut and Fabien Momey for its interfacing with Matlab.
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Figure III.17 presents different reconstructions obtained with different parame-
ters. Noisy data are simulated to create a full volume of the diffracted wave surround-
ing the sensor plane nbz,s = nbz. The numerical object is composed of 256×265×128
cubic voxels with a side of 1.67 µm and contains three identical spheres of ra-
dius rc = 10 µm and with n0 = 1 and δnc = 0.005i. The propagation distance
is zs = 1.5 mm.

Figure III.17: The figure presents reconstructions obtained with different parame-
ters. First line - Data simulation process. Second line - Reconstructions performed
without regularization or constraint (C (f) = {f ∈ C} , µL1 = 0). It compares re-
constructions in terms of number of wavelengths (red channel or RGB) and angles
(ϕ = 0◦ or ϕ ∈ {−15◦, 0◦, 15◦}). Third line - Influence of the regularization and con-
straints for data in the red channel at three angles. The iteration number is nbit = 30.
All the 3D views are displayed with the same dynamics.

Multiplying the wavelengths does not appear critical when only a lighting angle
is used. It helps to minimize the effect of the noise in the reconstruction as it acts
as an averaging of several datasets (one per wavelength) but does not constraint the
objects on the z-axis. Thus, the inverse problem approach and the deconvolution
methods developed in 3.2 leads to similar results. Even if not plotted here, these
conclusions remain valid if regularization is applied.

These reconstructions look very similar to a z-stack that one can obtain by a sim-

82



3 A second method based on z-stack acquisitions

ple back-propagation at different distances from a given hologram (see figure II.15).
These tubular shapes are consequently explained by the fact that a given hologram
can be due to different transmissive planes at different distances z, exactly as any
slice in the z-stack in figure II.15 produces the original hologram. Everything acts
as if the method reconstructs at once all these slices which are all correct in regard
of the simulated volume. It presents a similarity with X-ray tomography: it is not
possible from one angle to get where on the z-axis is an absorbent point. The fact
that the hologram changes along the diffracted volume is not enough restrictive.

Reintroducing angles in the method appears far more efficient to constraint the z-
positions. The third line in figure III.17 presents different tests of constraint and
regularization. It is tested to have a solution with a positive imaginary part I (f) > 0
and the sparsity parameters are set to µL1 = 250 and ǫ = 10−5. It appears that the
sparsity regularization is efficient to reduce the reconstruction artifacts.

Figure III.18: Reconstruction of a simulated dataset for different slicing num-
bers nbz,s. First line - Data simulation process for three lighting angle, one per
channel R, G and B. Second line - Reconstructions performed for different slicing
numbers nbz,s ∈ {126, 26, 13, 3}. Third line - Reconstruction with nbz,s = 1 and
comparison of the evolution of the cost function during iterations.

As shown in figure III.18, one can evaluate the influence of the number of kept
slices in the diffracted volume. The numerical object is the same as previously
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described with a spherical membrane surrounding the three spheres to simulate
cells embedded in a Matrigel® capsule. Its external radius is rcap = 70 µm and its
internal radius is 0.9rcap. Its refractive index is δncap = 0.2δnc.

The reconstructions are similar, even if the more slices are kept, the smoother is
the reconstruction. But nbz,s does not appear determinant in the objects separation
or location. The comparison of the convergence curves of the cost function with
these different slicing parameters shows that nbz,s does not influence the convergence
rapidity.

This method is consequently considered as being a dead end. Indeed, it appears
that multiplying the lighting angles is necessary, whereas the initial aim of the
method to work on a unique z-stack obtained with a normal incidence does not seem
to produce a better reconstruction than with only nbz,s = 1 acquisition. According
to equation (III.19), multiplying the lighting angles leads to increase by a factor of
2 the needs of 3D FFT, which is rapidly time consuming. This is a strong limitation
in an iterative reconstruction method.

Nevertheless, a 3D reconstruction is performed on a real data set, presented in
figure III.19, to show the feasibility of a first 3D object retrieval method taking into
account the diffraction process, in opposition to the Radon method introduced in
the previous section 2.

Figure III.19: Reconstruction of the dataset introduced in figure III.12. The dataset
is composed of the three angles ϕ ∈ {−15◦, 0◦, 15◦} in the three RGB channel,
aligned by LSM on the raw data. The reconstructed volume is ∼ 585× ∼ 585× ∼
214 µm3 ≃ 0.07 mm3.

No constraint on f is applied and the sparsity hyperparameter is set to µL1 =
250. The reconstructed volume is composed of 350 × 350 × 128 voxels, with a
side of 1.67 µm. The distribution of the objects on different planes is visible. As
previously noted in figure III.12, the capsule is not uniformly reconstructed because
of the limited angular coverage and the orientation of the rotation axis.
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4 A third method based on the Fourier diffraction theorem

4 A third method based on the Fourier diffraction

theorem

This section is mainly based on the content of the article published in the Biomed-
ical Optics Express journal [80] and uses the formalism developed in chapter II,
section 3.

4.1 Overview of the method: a Fourier mapping

As mentioned in chapter II, section 2, the Fourier diffraction theorem can either
be used to go from the object f toward the diffracted wave Udif for simulation pur-
poses, or from the diffracted wave to the object for reconstructions (see figure II.3).
The latter is used in this section.

Let’s assume that one has a dataset of N acquisitions recorded under different

illumination situations24

{−→
k′j

0 = k′j
0

(
pj0, q

j
0,m

j
0

)}

j∈[[1,N ]]
.

The discrete formulation of the Fourier diffraction theorem (II.51) introduced in
chapter II, section 3, can be reversed to map the Fourier domain of the object f
for a given illumination j from a hologram pattern centered on

(
xj0, y

j
0

)
on the

corresponding cap capj:

FFT3D [pad (f)]|capj = interp−1
(
Hj
zs
.M j

U .FFT2D

[
pad

(
M j

f̂
.U j

dif

)]
, · · ·

(
upad2D , v

pad
2D , w

(
upad2D + uj0, v

pad
2D + vj0

)
− wj0

))ds
dv

(III.21)

keeping the notations
(
uj0, v

j
0, w

j
0

)
=
(
n0.p

j
0

λj
0

,
n0.q

j
0

λj
0

,
n0.m

j
0

λj
0

)
, and where:

Hj
zs

=
4π
ik′2

0

w
(
upad2D + uj0, v

pad
2D + vj0

)
e−2iπw(upad

2D +uj
0,v

pad
2D +vj

0)zs (III.22)

is a matrix which can be considered as a filter in the Fourier domain, characteristic
of the distance of propagation zs,

M j
U = e−2iπ(xj

0u
pad
2D +yj

0v
pad
2D ) (III.23)

is a modulation matrix in the Fourier domain to translate Udif in the spatial domain
to
(
xj0, y

j
0

)
,

M j

f̂
= e−2iπ((x2D+xj

0)uj
0+(y2D+yj

0)vj
0) (III.24)

is a modulation matrix in the spatial domain to translate the spherical cap capj in
the Fourier domain of f̂ according to the lighting illumination j.

24Let’s remember here that the information of the illumination wavelength is in the wave number

(the norm of the wave vector):

∥∥∥∥
−→
k′j

0

∥∥∥∥ = k′j
0 = 2πn0

λ
j

0
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"interp−1" is the inverse function of the function "interp" for the nearest neighbor
technique: it consists in reversing the orientation of the blue arrows in figure II.7.

Let’s note here that a voxel can consequently be mapped twice or more (for
example

(
uip−1, wkv

)
in the figure). Several strategies can be applied here such as

an averaging. For the simplicity and the rapidity of the code, we decided in this
chapter to only keep one value25, not taking into account the others. Thus, each
illumination j allows mapping the Fourier domain of the object on a spherical cap.

Noting interp−1
j (M) = interp−1

(
M,

(
upad2D , v

pad
2D , w

(
upad2D + uj0, v

pad
2D + vj0

)
− wj0

))
,

an approximation of the 3D object to retrieve is finally given by:

f ≃ pad−1

[
FFT−1

3D

(
interp−1

j∈[[1,N ]]

(
Hj
zs
.M j

U .FFT2D

[
pad

(
M j

f̂
.U j

dif

)]) ds
dv

)]

(III.25)
Let’s note here that this method only gives a very sparse estimation of the Fourier

transform of the object as one can see in figure III.20. The coefficients which are not
mapped are set to zero and one can expect numerous artifacts in the reconstructions.

This sparsity is due to the finite number of acquisition angles but also to the
limitations of the angular coverage of the ϕ-mode. One can indeed notice that this
mode strongly limits the access to the part surrounding the vertical axis and the
rotation axis in the Fourier domain (along γ and α).

Some interpolation methods could be applied to generate a fully filled 3D fre-
quency support but this is not in the scope of this section.

4.2 A phase ramp to compensate the lack of phase

One may have noticed that the introduced method is based on the knowledge
of the diffracted wave Udif . Nevertheless only the intensity of the total transmitted

wave Ijtot =
∣∣∣U j

tot

∣∣∣
2

=
∣∣∣U j

inc + U j
dif

∣∣∣
2

is recorded by the sensor.

Hence one needs to approximate the diffracted wave U j
dif from Ijtot. To do so, Ijtot

is normalized so that the background value, corresponding to the unperturbed inci-
dent wave, is equal to 1. Let’s note this normalized projection Ĩjtot.

The square root of Ĩjtot is multiplied by a phase ramp ei
−→
k′j

0 .
−→r to take into account

the non-uniform phase shift induced by the tilted incidence of
−→
k′j

0 relative to the

sensor plane. Then the theoretical incident plane wave U j
inc = ei

−→
k′j

0 .
−→r is subtracted:

U j
dif ≃

√
Ĩjtot.e

i
−→
k′j

0 .
−→r − U j

inc (III.26)

This formula is schematically represented in figure III.21. This is a needed step
in the presented method. Indeed, the phase is very important since, inter alia, it
contains the inclination of the wave front. Without this information, the mapping
of the Fourier space with equation (III.25) cannot work because the computed 2D

25As mentioned later in chapter IV, this is a critical choice. Averaging can greatly change the
reconstruction quality.
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Figure III.20: Illustration of the method of the Fourier mapping with the notations
of figure II.3. The 3D frequency space of the object of interest f is mapped with the
2D Fourier transform of the projections U j1

dif , U
j2
dif and U j3

dif . An example of a Fourier
region which is actually filled by the algorithm in the ϕ-mode configuration is given
in the medallion in the 3D frequency domain part of the figure. It is the mapped
region for a volume of 512×512×512 voxels with a voxel size of 1.67×1.67×1.67 µm3

at λ0 = 520 nm with an illumination angle varying from -30◦ (blue) to 30◦ (green)
with a step of 5◦ at a distance of zs = 2.5 mm. The red cap corresponds to the
region mapped with the normal illumination.

spectra will be shifted in the Fourier space. Equation (III.26) allows reintroducing
the information of the illumination angle in the data even if the simulated phase is
just an approximation of the real one.

This calculation does not totally compensate the lack of phase information at
the sensor plane. In particular, the phase distortion introduced by the object is
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Figure III.21: Illustration of the steps to get an approximation of U j
dif for a given j.

not taken into account and could be approximated by means of a phase retrieval
algorithm in order to diminish the artifactual twin-image [59] but is not in the scope
of this section and once again, one can expect artifacts in the reconstructions.

4.3 3D reconstruction and comments

In this section, only reconstructions on the RWPE1 cell network data introduced
previously in figure III.4 are presented26.

The chosen angular coverage varies from -30◦ to 30◦ with an angular pitch of 1◦

(for a total of 61 angles) and the reconstructed volume is 4× 4 × 1.34 mm3, using
the data in the green channel: λ0 = 520 nm. Presented in figure III.22, it shows
that the cells interestingly tend to form a structured network as it is deduced from
figure III.11.

Such a large volume is reconstructed by pieces of 1.34 × 1.34 × 1.34 mm3, i.e.
nine reconstructions. The data are divided into nine adjacent regions of interest of
size 1.34×1.34 mm2 (800×800 pixels), as illustrated in figure III.23. The centering
of each projection is done with the least squares minimization method on the raw
data, applied relative to the central region of interest (red dashed in figure III.23).
This central region of interest is also used by the focusing algorithm to estimate
the distance zs between the sensor plane and the cell culture. The eight other
regions of interest remain adjacent to this one whatever the angle of view, to ensure
the continuity in the 3D reconstruction. Each reconstructed 3D image has a size
of 800× 800× 400 voxels with the sampling rate 1.67× 1.67× 3.34 µm3. Owing to
this decoupling task, the reconstruction of a single region of interest has a size of
two gigabytes in double precision which can be handled on a desktop computer. As

26Let’s put the stress on the fact that in the current section, the reconstruction are done as if
everything is in the air: n0 = 1. As presented in the next section 5, taking in account the refraction
in the illumination direction is essential to prevent any scaling factor along the z-axis. This means
that all the distances and positioning in z are not absolute but only relative in this section.
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Figure III.22: Piecewise 3D reconstruction (imaginary part of f) of a large volume
(4×4×1.34 mm3) of the culture of RWPE1 prostate cells. (a) 3 orthogonal sectional
views are shown, each one extracted at a given distance d = zs − z from the sensor.
(b) 3D views of the reconstruction from different observation points. The dash red
curves indicate the tilt of the network relative to the horizontal plane. The red
arrows point out isolated objects that are not focused at the same altitude as the
network.

a result the global 3D image has a size of 2400 × 2400 × 400 voxels and with the
same sampling rate, this whole image has a size close to 20 gigabytes.

The whole reconstructed volume f is shown in figure III.22. Let’s note here that
the reconstructed scattering potential f is a complex number. Only its imaginary
part which gives the most observable information is presented in this section. Three
different sectional views - xy (center), xz (right) and yz (bottom) - show that the
network formed by the cells is well focused at precise altitudes in the volume. The
network fits a surface which is not horizontal. That demonstrates that the recon-
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Figure III.23: Extraction of 9 regions of interest of size 1.34× 1.34 mm2 (800× 800
pixels) for the piecewise 3D reconstruction of the 3D culture of RWPE1 prostate
cells presented in figure III.4.

struction algorithm effectively operates in 3D. Isolated objects are also focused apart
from the network at independent altitudes. Some of them are pointed out by red
arrows.

The central and top-right regions of the reconstructed volume of figure III.22
are detailed in figures III.24 and III.25. They correspond respectively to the central
and bottom-right regions of interest on the raw data in figure III.23. Each of these
figures represents the three sectional views - xy (center), xz (right) and yz (bottom)
- and a 3D view of the region of interest and two specific patterns such as a cell or
a cluster of cells which are pointed by arrows in the regions of interest. The rings
around the focused objects on the xy views are artifactual: this is the phenomenon
of twin-image, induced by the lack of absolute phase information in the data.

To analyze the performances of the setup and the 3D reconstruction algorithm
to recover unambiguously biological objects, a comparative study with 2D recon-
structions from 2D lens-free data acquired at the normal illumination (ϕ = 0◦) in
the RGB channels is conducted27. The algorithm used to perform the 2D recon-
structions has already shown, as a 2D lens-free imaging application, its ability to
recover single cells and clusters while removing the twin-images.

Figure III.26 shows the 2D reconstruction of a region of the studied field of
view. One can observe the efficiency of the reconstruction algorithm to recover
the biological scene showing branching networks, isolated clusters and cells. To

27Such algorithms are mentioned in chapter I section 3.2
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4 A third method based on the Fourier diffraction theorem

Figure III.24: Region of interest at the center of the piecewise 3D reconstruction of
the volume III.22. (a) Orthogonal views and 3D rendering of the region of interest.
(b) Orthogonal sectional views and 3D rendering on two specific clusters at the
full resolution of the reconstruction. These are pointed by arrows on the global
view. The dashed-line indicates the network plane. The red arrow points toward
a 33× 38× 42 µm3 object and the blue arrow toward a 16× 17× 40 µm3 object.

perform the comparison with the 3D reconstruction, three objects are selected from
the objects highlighted figures III.24 and III.25: two cells (see regions of interest 1
and 2 in figure III.26) and one cluster (see region of interest 3 in figure III.26). Two
axial cut profiles respectively in x and y-directions are taken for both the 2D and
3D reconstructions, and one cut profile in the z-direction for the 3D reconstruction.
These cut profiles are illustrated on the three graphs in figure III.26.
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III A versatile prototype and first reconstruction algorithms

Figure III.25: Region of interest at the right corner of the piecewise 3D reconstruc-
tion of the volume III.22. (a) Orthogonal views and 3D rendering of the region of
interest. (b) Orthogonal sectional views and 3D rendering on two specific clusters at
the full resolution of the reconstruction. These are pointed by arrows on the global
view. The dashed-line indicates the network plane. The red arrow points toward
a 12× 43× 96 µm3 object and the blue arrow toward a 80× 80× 100 µm3 object.

As a first observation, one can see that axial profiles are globally equivalent
in 2D and 3D, allowing to measure approximatively cell sizes of ∼ 15 µm for the
region of interest 2 and ∼ 30 µm for the region of interest 1 considering the width
of the central lobe of the profiles (the secondary lobes are known to be twin-image
artifacts), which is consistent with typical cell sizes. For the cluster, the profiles
are more erratic but we can distinguish a kind of a plateau curve, the width of
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4 A third method based on the Fourier diffraction theorem

Figure III.26: 2D reconstruction from 2D lens-free data acquired on the 3D culture
of RWPE1 prostate cells presented in figure III.23. Comparisons of two axial cut
profiles respectively in x and y directions taken on both 2D and 3D reconstructions,
and one cut profile in the z direction taken on the 3D reconstruction, for three
biological objects: two cells, one identified in figure III.24 (region of interest 1 in
red) and one identified in figure III.25 (region of interest 2 in blue) and one cluster
identified in figure III.25 (region of interest 3 in green). The dashed and solid curves
correspond respectively to the 2D and 3D reconstruction cut profiles.

which is measured at ∼ 90 µm. As expected, the observations are different in the z
direction and the resolution is clearly degraded: whereas the objects must have a
global isotropic behavior in terms of size in 3D, our measurements give ∼ 80 µm for
the cell in the region of interest 1, ∼ 115 µm for the cell in the region of interest 2
and ∼ 200 µm for the cluster in the region of interest 3. Moreover, the disparities
of the measurements for the cells tend to show that the apparent resolution highly
depends on the position of the object in the field of view: the more one goes away
from the center (from the regions of interest 1 and 2), the worse is the resolution in
the z-direction. Note that the term of "resolution" used here has not to be confused
with the strict definition of optical resolution. These are empirical measurements
that allow concluding that single biological objects are effectively and unambiguously
identified in the 3D reconstruction.
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III A versatile prototype and first reconstruction algorithms

Uncertainties in the calibration of the setup and the projection model can ex-
plain some artifacts in the image and the previous quantifications of figure III.26.
For example the stretching of holograms is not taken into account in the registration
of the projections whereas it depends of the lighting direction. Thus some misalign-
ment can be present after the registration step. Moreover uncertainties remain on
these lighting directions, due to the multiple refractions in between the different
propagating media (air, culture medium, sensor glass, etc.) which change the illu-
mination orientations28. The induced artifacts then get worse as the distance from
the center increases since the errors on the objects positioning grow with this dis-
tance. That is maybe why the artifactual bow shape around the single objects get
worse on the side, as one can see comparing figure III.24 and III.25 and the profiles
in figure III.26.

As a conclusion, one can see that as for the method based on the Radon trans-
form29 this method can deal with large volumes in reasonably short time30. But
the former can work directly on the volume slices whereas the latter must work
piecewise.

On the other side, the lack of absolute phase in the data leads to numerous
artifacts. Moreover, as for the reconstructions obtained with the inversion of the
Radon transform, the artifacts are highly anisotropic between the directions parallel
and orthogonal to the sensor, but also between the directions aligned or orthogonal
to the rotation axis. Indeed, the bow-shaped structures can once again be attributed
to the setup design31.

5 A few thoughts on the lighting angles...

As mentioned in the previous section, some artifacts could be explained by some
uncertainties on the lighting angles. Indeed, the refraction effect at the different
interfaces is not taken in account and all the reconstruction parameters are set as if
everything is in the air: nair = 1.

But all the biological samples are embedded in a specific medium of refractive
index n0 (generally water with a refractive index of nH2O = 1.33). The index jump is
not negligible and as presented in figure III.27.a it should lead to a difference between
the design angle θair of the light source position and the angle in the medium θ0

because of the Snell’s law:

nair. sin θair = n0. sin θ0 (III.27)

To check if the holograms are indeed characteristic of the illumination angle θ0

given by equation (III.27) a specific experiment is designed. Micro-beads are put

28See section 5 for more details.
29See section 2.
30The longest parts are the 3D FFTs computations which remain limited, leading to a recon-

struction time in the order of one minute.
31Otherwise these artifacts would present a symmetry on the x and y-axes.
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in water and their holograms are recorded for different lighting angle θair in the air
ranging from 20◦ to 50◦ (see figure III.27.b).

Figure III.27: (a) Optical scheme of the Snell’s law: due to the difference in refrac-
tive index between the air and the culture medium, the lighting angle is changed in
the medium. (b) Holograms of micro-beads in water for θair = 20◦. The red medal-
lions are zooms on a given region of interest for different angle θ ∈ {20◦, 35◦, 50◦}
(c) To retrieve the lighting angle θ from a given hologram, the diffraction pattern
is supposed to be cylindrical (green) with a radius of r0 = b instead of conical
(red). a and b are the semi-axes of the ellipse. (d) Curves of the differences between
the measured angles within the cylindrical approximation and the real angle for a
radius of r0 = 150 µm and for different distances zs between the sensor and the
sample.

5.1 Method and experiment

To retrieve the effective illumination angle θ0 for each hologram, the conical
hologram pattern is approximated by a cylinder of radius r0, cut with an angle θ0

by a plane rotated around the x-axis. In the rotated frame (A;x′ = x, y′, z′), using
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the notation in figure III.27.c, the equations of the plane, the cone and the cylinder
are:

z′ = −y′ tan θ and r =
√
x2 + y′2 = r0

(
1 +

z′

zθ

)
and r2

0 = x2 + y′2 (III.28)

This cylindrical approximation holds as far as the cone can be approximated by
a cylinder in the spatial extension of its intersection with the tilted plane, i.e. in
the range z′ ∈ [−z−, z+] where −z′− and z′+ are computed at the extreme two
intersections for x = 0.

Assuming this cylindrical approximation, it is possible to retrieve the illumina-
tion angle θ from the characteristics of the ellipses shaped by the holograms. Indeed,
its semi-minor axis is directly b = r0 while its semi-major axis a is obtained in the
plane x = 0 where |y′| = r0. From equation (III.28), one gets:

a =
√
y′2 + z′2 = r0

√
1 + tan2 θ =

r0

cos θ
(III.29)

and then:

cos θ =
b

a
=
√

1− e2 (III.30)

where e is the ellipse eccentricity.
This must be compared with the theoretical value obtained with the intersection

with the cone32. In the frame (A;x, y, z), the expression of the coordinates (y′, z′)
are:

y′ = y cos θ + z sin θ and z′ = z cos θ − y sin θ (III.31)

and in this frame, the equation of the plane is z = 0. From equation (III.28), the
equation of the ellipse is:

x2 + y2 cos2 θ = r2
0

(
1− y sin θ

zθ

)2

(III.32)

and with tanα = r0/zθ

x2 + 2zθy tan2 α sin θ + y2
(
cos2 θ − tan2 α sin2 θ

)
= r2

0 (III.33)

The eccentricity of such an ellipse is then given by [85]:

e =

√√√√ 2 |1− cos2 θ + tan2 α sin2 θ|
1 + cos2 θ − tan2 α sin2 θ + |1− cos2 θ + tan2 α sin2 θ|

=

√√√√ 2 sin2 θ (1 + tan2 α)
2− sin2 θ − tan2 α sin2 θ + sin2 θ (1 + tan2 α)

=
sin θ
cosα

(III.34)

32Let’s thanks "gb" who gave some clues on a forum: http://www.les-mathematiques.net/

phorum/read.php?8,512589,512687.
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and with zθ = zs/ cos θ

b

a
=
√

1− e2 =

√√√√1−
(

1 +
r2

0

z2
θ

)
sin2 θ

=

√√√√cos2 θ − r2
0

z2
θ

sin2 θ

= cos θ

√√√√1− r2
0

z2
s

sin2 θ

(III.35)

This result (III.35) must be compared with equation (III.30). To get an overview
of the error made with the cylindrical approximation, figure III.27.d presents the
difference between the real angle θr and the angle θm measured within the cylindrical
approximation for different distances zs between the sample and the sensor and for
a radius of r0 = 150 µm. This radius is in the order of magnitude of the diffraction
pattern of the beads on the x-axis for all the recorded angles:

∆θ = θm − θr = acos


cos θr

√√√√1− r2
0

z2
s

sin2 θr


− θr (III.36)

The figure shows that the difference is negligible (< 0.15◦ for the worst case
of zs = 1500 µm). For the purpose of this section, the approximation gives a
sufficient precision.

To retrieve θ from the numerous holograms present in the field of view and to
take into account that some of them may be overlapping, a special algorithm is
implemented. Presented in figure III.28, it works as follows:

• Step 1 (a→b): 2D Fourier transform of the field of view. In order to average
all the holograms, the phase of the Fourier transform is removed by taking its
absolute value.

• Step 2 (b→c): An inverse Fourier transform brings back the information in
the 2D real space. To minimize the influence of the noise, the obtained pattern
is oversampled by a factor of two using a bilinear interpolation and a blurring
Gaussian filter is applied.

• Step 3 (c→d): Computation of the gradient of the pattern to detect the edge
of the interference rings.

• Step 4 (d→e): Thresholding to select only the minimal values of the gradient
(dark and light rings of the pattern).

• Step 5 (e→f): First automatic guess33 of the illumination tilt θ as well as its
rotation ϕ around the z-axis.

• Step 6 (f→g,h): Refinement34 of the illumination parameters (θ, ϕ) by fitting
33Using regionprops(..., ’Centroid’, ’Area’, ’MajorAxisLength’,

’MinorAxisLength’, ’Eccentricity’, ’Orientation’) in Matlab®.
34Using fminsearch in Matlab®.
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ellipses in the dark regions of the threshold picture.

The robustness of the algorithm is tested on simulated data for different values
of θ and φ. Table [III.1] shows a good agreement between the input values and the
values measured by the algorithm for high values of θ despite it is tested in the
worst scenario of figure III.27.d with zs = 1.5 mm. For low values, because of the
lack of specificity of the cosine function, the errors are bigger. On the contrary, for
high values of θ, the assumption of the cylindrical approximation provides very good
results.

θth (◦) 5 10 15 20 25 30 35 40 45
θm (◦) 8.9 11.7 14.0 19.9 24.5 30.2 34.8 40.2 44.4
ϕth (◦) 0 25 15 45 5 10 35 20 40
ϕm (◦) -8.4 24.9 17.3 45.8 5.42 10.6 34.9 19.6 39.0

Table III.1: Test of the algorithm of figure III.28 on simulated pictures. zs =
1.5 mm, nbx = nby = 1024, nbz = 32, dx = dy = dz = 1.67 µm, 40 beads with
a diameter of 20 µm with a normal dispersion of σ = 2 µm and a refractive index
of δn = 0.005i with a normal dispersion of σ = 5.10−5i.

5.2 Results

This algorithm is slightly changed before its application on the real data. Indeed,
because of the noise in the threshold images, the automatic step 5 fails. This step
is replaced by a manual guess of the parameters which are initialized to the awaited
values. The found ellipses are kept from one angle to the next and scaled according
to these awaited values to initialize the matching of step 6. The algorithm is used
to check if the theoretical values are in the order of magnitude of the ones actually
measured.

The angle determination is done on the 31 recorded angles θair ∈ [20◦, 50◦] using
8 ellipses with width of 1.5 pixel. Figure III.29 presents the results for three angles.
For the last angles θair ∈ {49◦, 50◦}, the matching of the fourth ellipse failed and
it merged with another one, giving the impression that only 7 ellipses are matched.
This does not change the interpretation of the results.

All the results35 are synthesized on the curves of figure III.30.
Figure III.30.a shows that the measured sin θm lie on a line in terms of sin θair.

It is in accordance with Snell’s law (III.27). A linear regression y = s.x gives a slope
of s = 0.758 with a coefficient of determination of R2 = 0.995. With nair ≃ 1, the
refractive index of the medium is given according to the Snell’s law (III.27) by:

n0 =
1
a
≃ 1.32 (III.37)

35The angle ϕ are not presented as they do not provide any interesting information in this
section.
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Figure III.28: Illustration of the algorithm to retrieve the illumination parame-
ters (θ, ϕ) on simulated data (a) with parameters (θ = 40◦, ϕ = 20◦). (b) Absolute
value of 2D Fourier transform of (a). (c) Absolute value of 2D Fourier transform
of (b), scaled by a factor of 2 and blurred with a Gaussian filter. (d) Edges of (c).
(e) Thresholding of (d). (f) Automatic detection of the ellipse patterns in (e). (g-h)
Results of the fitted ellipses on the threshold (f) and overlaid on (c).

99



III A versatile prototype and first reconstruction algorithms

Figure III.29: Results of the algorithm for three different input angles θair ∈
{20◦, 35◦, 50◦}.

This is close from the value of the refractive index of water nH20 = 1.33. This
is confirmed in figure III.30.b where the ratio sin θair/ sin θm is plotted for different
values of θair. Excepted for the high angles where the noise degrades the ellipse
matching, the curve is in good agreement with a constant value of refractive index
of n0 = 1.33.

5.3 Conclusion and discussion

First, it is proven that, as expected, the angle of the lighting source θair is not
the one that should be used in the reconstruction algorithm. The holograms have
the characteristics of holograms created under a different angle of illumination θ0.
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Figure III.30: (a) Plot of sin θm (blue) as a function of sin θair and the associated
linear regression (black). (b) Plot of sin θair/ sin θm as a function of θair.

Then, the results show that even if the holograms are recorded in the air and
after the sensor glass, these layers do not change the holograms properties which
match the ones of the medium in which they are originating. Everything acts as
if the sample was illuminated by a source tilted at an angle θ0 corrected from the
angle in the air θair with Snell’s law (III.27).

It exists two ways to take into account this refraction effect in the numerical
reconstructions.

The first one is straightforward and consists in replacing all the angles θair in the
algorithm by their corrected value θ0.

The second can be seen as an a posteriori correction and consists in a scaling
factor along the z-axis, all the reconstruction being done as if everything was in the
air. Indeed, looking back at the figure III.27.a, it is possible to express the ratio of
the position zair in the sample measured in the reconstruction with the wrong angle
with its real position z0. From zair tan θair = z0 tan θ0 and Snell’s law (III.27), it
comes:

z0

zair
=

tan θair
tan θ0

=
sin θair
sin θ0

cos θ0

cos θair

=
n0

nair

√
1− sin2 θ0√

1− sin2 θair

=
n0

nair

√
n2

0/n
2
air − n2

0 sin2 θ0/n2
air

1− sin2 θair

(III.38)

z0

zair
=

√
n2

0/n
2
air − sin2 θair

1− sin2 θair
(III.39)

This solution is also implemented to correct the 3D acquisitions in standard
microscopy when the refractive index of the sample medium n1 does not match with
the refractive index n2 of the air or the immersion oil used in the optics [86, 87]. It
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is interesting to notice the similarity of the corrective scaling factor:

z2

z1

=

√√√√n2
2 −NA2

n2
1 −NA2

(III.40)

where NA is the numerical aperture of the objective.
These two methods are numerically equivalent to reconstruct a 3D sample. Both

of them give the same reconstructed volume.
Note here that the second solution cannot be implemented to correct the recon-

structions of the previous section 4. Indeed several different angles θair are used
in the reconstructions and a common scaling factor to simultaneously correct them
does not exist. This confirms that a part of the identified artifacts are due to a
non-rigorous use of the angles.
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Chapter IV

A second design and new
reconstruction methods

This chapter represents mainly the work done at the end of the first year and
during the second year of the PhD program. From the experience and the con-
clusions of the previous chapter, a new prototype is built from a rethought design
adapted for standard culture protocols in Petri dishes. New reconstruction tech-
niques are implemented and tested on more complex 3D biological samples and first
comparisons with microscope views are made. They are all based on the Fourier
diffraction introduced in chapter II, section 2.

This work has led to a second publication in the Applied Optics journal [88] and
an oral participation at BiOS 2017 [89].

1 Overview of the experimental bench

1.1 Design motivations

It has been seen in the previous chapter that the θ-mode is hardly adaptable to
cell culture conditions and the reconstructions on biological sample are focused on
the ϕ-mode, a mode in which the sample is fixed and the sensor remains parallel
to the Petri dish. This solution has the advantage of being completely adapted to
standard culture protocols. No sample preparation is needed and the Petri dish can
directly be put on the lens-free microscope. This solution is consequently kept to
design the new prototype.

Moreover, as noticed in section 4, lots of artifacts in the reconstructions seem
linked with the geometry of the acquisitions, the lighting positions being constrained
to a single plane on the rotating arm. The artifacts surrounding the isolated ob-
jects are not isotropic but rather gathered in this rotation plane. A better angular
coverage had to be designed for the new prototype.

To choose among different possibilities, several solutions are numerically tested.
To do so, a 10 µm diameter bead is simulated in a volume of 3013 voxels of 1.673 µm3

with a difference of refractive index of δn = 0.005i. For different designs, its holo-

103



IV A second design and new reconstruction methods

grams are computed using the model developed in chapter II, section 3 in three
different wavelengths λ ∈ {640 nm, 520 nm, 450 nm} and zs = 1.5 mm. Both the
2D plane and the 3D volume are zero-padded.

These theoretical holograms are then used to reconstruct the bead with the
Fourier mapping method developed in chapter III, section 4. A noticeable differ-
ence is that contrary to the previous chapter, when a voxel in the Fourier space is
filled with different information due to the mapping method and the different light-
ing positions and wavelengths, the Fourier coefficients are computed as an average
of this overlapping information1. As in the previous chapter and contrary to the
simulations, no padding is applied in the 2D and 3D spaces.

Figures IV.1, IV.2 and IV.3 present the results of the reconstructions for differ-
ent design choices for one wavelength λ = 450 nm. Each design uses 32 lighting
positions, equally distributed along different patterns.

Two noiseless reconstructions are performed in a comparison purpose. In the first
case, only the simulated intensities of the diffracted waves are used to reconstruct
the bead. As in standard in-line holography, the phase information is lost and is
compensated by a phase ramp, as presented in chapter III, section 4. Artifacts are
awaited in the reconstruction (red frame in the figures). In the second case, the
importance of the phase information is highlighted by using directly the complex
diffracted waves to map the Fourier domain and shows the importance to perform
a phase retrieval step in the reconstruction algorithms (green frames in the figures).
The figures also indicate the position of the Fourier coefficients which are mapped
during the reconstruction (blue frames) and can be interpreted as the frequency
response of the lens-free microscope for a given design. The red and green frames
are only extracted parts of the reconstructed volumes of 1013 voxels centered on the
bead and can be interpreted as the point spread function of the prototype.

These reconstructions must be compared with the reconstructions of real 10 µm
beads presented in the last chapter, section 3.

Figure IV.1 compares the two acquisition modes of the first prototype. It sup-
ports the fact that a complete angular coverage with the θ-mode will always give bet-
ter results than the information available using the ϕ-mode. The filling of the Fourier
space appears more homogeneous and even without the phase of the diffracted wave,
the reconstruction in the θ-mode gives a good result on the bead2.

In the ϕ-mode, the Fourier filling is strongly anisotropic and this can be seen in
the 3D reconstructions which are not symmetrical. The reconstruction presents the
bow-shaped artifacts identified in the reconstructions of chapter III, section 4.

Some tests (not presented here) showed that the quality of the reconstruction is
more linked with the opening angle ϕmax than with the number of lighting positions
between −ϕmax and ϕmax. The parallax effect consequently appears to be the most
important factor.

1And not forced to be equal to the first information filling the voxel as previously.
2Note here that the 3D rendering view is more representative of the reconstruction quality than

the average intensity projections which squeeze the dynamics of the reconstructions by dividing
the high value of the reconstructed bead by the number of voxel along the projection axis.
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1 Overview of the experimental bench

Figure IV.1: Comparison of the two designs for 32 lighting positions of the first
prototype (white medallions). (a) θ-mode. (b) ϕ-mode, ϕ ∈ [−45◦, 45◦]. Average
intensity orthogonal projections and 3D rendering of the accessible Fourier coeffi-
cients (blue) and the numerical reconstructions of a simulated 10 µm bead without
(red) and with (green) the knowledge of the phase of the diffracted wave.
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Figure IV.2: Comparison of two designs for 32 lighting positions (white medallions).
(a) Crown with an opening angle θ = 30◦. (b) Crown with an opening angle θ = 45◦.
Average intensity orthogonal projections and 3D rendering of the accessible Fourier
coefficients (blue) and the numerical reconstructions of a simulated 10 µm bead
without (red) and with (green) the knowledge of the phase of the diffracted wave.
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1 Overview of the experimental bench

Figure IV.3: Comparison of two designs for 32 lighting positions (white medallions).
(a) Orthogonal cross (θmax = 45◦). (b) Double crown (θ ∈ {30◦, 45◦}). Average in-
tensity orthogonal projections and 3D rendering of the accessible Fourier coefficients
(blue) and the numerical reconstructions of a simulated 10 µm bead without (red)
and with (green) the knowledge of the phase of the diffracted wave.
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This remark leads to the new kind of designs presented in figure IV.2 based on
a crown, similar to the one used in the 3D Cell Explorer (Nanolive [42]). Using the
notations of figure IV.6 for the new definition of the angles θ and ϕ, this crown is
composed of lightings tilted by an angle of θ = 30◦ (a) or θ = 45◦ (b) compared
to the sensor plane and are equally spread on ϕ ∈ [0◦, 360◦] (∆ϕ = 11.25◦). It
appears that this solution provides a better and more homogeneous coverage of the
Fourier domain of the object than the previous design constraining the positions
on the plane ϕ = 0◦. The artifacts are localized on a cone whose opening angle is
directly θ and produce a lower unwanted signal. The reconstruction of the bead is
better and as expected, the wider the crown is open, the better the reconstruction
is. As the parallax effect increases, the spatial extension of the bead along the z-axis
diminishes.

To confirm that this choice is the most adapted to the needs, two other inter-
mediate designs are tested. A cross with 16 positions along ϕ = 0◦ and 16 positions
along ϕ = 90◦ with theta equally spread in θ ∈ [−45◦, 45◦] (∆θ ≃ 2.8◦, figure IV.3.a)
and a double crown with 16 angles spread at θ = 30◦ and 16 other at θ = 45◦

(∆ϕ = 22.5◦, figure IV.3.b). To maximize the coverage, the two crowns present on
offset of ϕ0 = 11.25◦ to intercalate the upper crown between the positions of the
lower crown.

The cross design leads to a double bow-shaped artifact around the bead, similar
to the one seen in figure IV.1.a but in the two orthogonal planes of the cross and
with a reduced amplitude. The results remain better with the crown solution, even
with an opening angle θ = 30◦.

The results given by the double-crown design are better but present both the
artifacts of the single crown design at the two angles in figure IV.2. Two cone shapes
are interlaced and the upper crown degrades the reconstruction on the z-axis.

This confirms that a single crown with a high opening angle remains the best
tested solution. This can also be intuited by the fact that, as the opening angle
increases, this design tends toward the θ-mode which is proven to be the best in
figure IV.1.a.

These different designs are also tested on a more complex numerical sample and
reconstruct with the inverse problem approach developed in chapter III, section 3.
The volume presented in figure IV.4.a is composed of composed of 1283 voxels of
1.673 µm3 for a volume of 2143 = 9.8 106 µm3 and is composed of cells of radius
10 µm and refractive index difference of δn = 0.005i with a normal dispersion of
δn/10 . These cells are randomly spread in two clusters of 50 cells and two trains
of 250 cells crossing the volume.

The figure presents the average intensity orthogonal projections colored accord-
ing to the depth of each view as well as the 3D rendering of the reconstructed
for different lighting designs composed of 16 positions. The simulated datasets
are simulated in the blue channel λ = 450 nm. The 2D and 3D spaces are zero-
padded for the reconstructions. The hyperparameter value is kept to µr = 250 for
nbit = 30 iterations. The ϕ-mode with θ ∈ [−45◦, 45◦] , ϕ = 0◦ (b), the cross with
θ ∈ [−45◦, 45◦] , ϕ ∈ {0◦, 90◦} (c) as well as two crowns with θ = 30◦ (d) and θ = 45◦
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1 Overview of the experimental bench

Figure IV.4: Comparison of different designs on a simulated complex object and its
holograms reconstructed with the inverse problem approach developed in chapter III,
section 3. Average intensity orthogonal projections and 3D rendering of the initial
object (a) and the reconstructions for the design (b) θ ∈ [−45◦, 45◦] , ϕ = 0◦, (c) θ ∈
[−45◦, 45◦] , ϕ ∈ {0◦, 90◦} (d) θ = 30◦, ϕ ∈ [0◦, 360◦] and (e) θ = 45◦, ϕ ∈ [0◦, 360◦].
The color codes for the depth in each view: the shallowest in blue, the deepest in
red.

(e) with ϕ ∈ [0◦, 360◦] are presented.
Similar conclusions concerning the design can be driven from these reconstruc-
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tions. Comparing (b) and (c), the clusters are better reconstructed with the cross
design with artifacts which appear similar on the xz and yz-views whereas they
seem better determined on the yz-view for the ϕ-mode reconstruction.

But the best results are given by the crown design. Even if at θ = 30◦ (d) the
maximal angular coverage is less important than for the cross (c) for example, the
reconstruction quality is better and allows to separate the two trains of cells and
reduces their spatial extension along the z-axis. And as expected, the best results
are given by the last design (e) where the lighting angle is set at θ = 45◦.

Finally, the effect of multi-wavelength acquisitions is tested on the numerical
object introduced in chapter II, section 3 and composed of three spheres. Data
are simulated for the blue channel λ = 450 nm and for a RGB illumination λ ∈
{640, 520, 450} and reconstructed by Fourier mapping as presented in chapter III,
section 4.

The results are presented in figure IV.5. In the absence of phase information, the
simulation shows the presence of the twin-image artifact on the xy-views when only
one wavelength is used for the reconstruction, as previously seen in the previous
chapter, section 4 in the reconstructions of biological data. As for the 2D recon-
struction, the use of a RGB lighting slightly reduces this artifact which remains
nevertheless present.

Figure IV.5: (a) Numerical tests of the chosen design on the three beads in-
troduced in chapter II, section 3. Comparison of the reconstructions with only
the blue wavelength (B) λ = 450 nm or the three available wavelengths (RGB)
λ ∈ {640 nm, 520 nm, 450 nm} and with and without the knowledge of the phase
of the diffracted wave (ϕ).

But the best mean to completely erase this artifact is to use the phase informa-
tion. The effect is so effective that no difference clearly appears between the one
lambda or the RGB reconstructions.
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1 Overview of the experimental bench

This simulation emphasizes the important role of the phase information in the
reconstruction and the necessity to perform efficient phase retrieval in the recon-
struction algorithms.

1.2 First acquisitions and reconstructions

Following the conclusions of the previous section, the crown design giving the best
results on simulations in terms of reconstruction, a new prototype is built. Presented
in figure IV.6, it uses the same sensor3 and LED4 used in the first experimental
bench.

Figure IV.6: Proposed design for the second prototype. It introduces a new defi-
nition for the angles θ and ϕ, the inclination angle of the lighting compared to the
sensor plane and its rotation angle around the fixed sample.

The sample is hold above the sensor. The height of the sample holder can be
adjusted by screws. The sensor and the lighting are fixed on a stepper motor5 and
rotate according to the angle ϕ around the sample. The angle θ between the normal
to the sensor and the lighting position is fixed at θ = 45◦.

The drawback of this design is to keep a moving part in the device via the stepper
motor. Nevertheless, this solution allow shifting the sensor so that the hologram of

3IDS - 29.4 mm2, 3840× 2748 monochromatic pixels, pixel pitch 1.67 µm - ref. UI-1492LE-M
4LED CREE RGB, λR = 640 nm, λG = 520 nm, λB = 450 nm - ref. XLamp MC-E RGBW

MCE4CT
5ref. RS-535-0401, 0.9◦, 44 Ncm, 2.8 V , 1.68 A, 4 Wires
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the biological sample remains centered in its field of view whatever the value of ϕ.
This solution consequently maximizes the available field of view and the 3D volume
which can be reconstructed. With a fixed sensor and the use of an array of LEDs
such as in [70], the field of view is indeed reduced. Moreover, more angles can be
acquired around ϕ instead of the limited discrete number of positions available in
an array.

Microswitches6 are used to detect the sample holder in order to stop the stepper
motor before hitting its arm.

Figure IV.7 presents the first data (a) and reconstructions on bubbles and dust
lying at the bottom of a Petri dish (b-h). The reconstruction parameters are ϕ ∈
{0◦, 282◦}, ∆ϕ = 18.8◦, θ = 45◦, λ ∈ {630, 520, 450 nm}, zs = 2.8 mm, 512× 512×
256 voxels of 3.34×3.34×5.32 µm3 for a final volume of 1.7×1.7×1.4 mm3 ≃ 4 mm3.

As mentioned at the end of the previous chapter in section 5, a scaling factor is
applied on the z-axis using equation (III.39) as the data are reconstructed for an
angle θ = θair = 45◦: z0/zair = 1.5930.

The 1024× 1024 pixels data of 1.67× 1.67 µm2 are aligned using the least mean
squares minimization algorithm on the raw data, using the central bubble hologram
as alignment pattern.

The reconstructions are performed via the Fourier mapping method. Contrary
to chapter III, section 4, the overlapping information in a given voxel during the
mapping are averaged.

Compared to the results presented in this former section, the reconstruction
quality is greatly improved. The artifacts seem homogeneous on the whole field of
view and with a reduced spatial extension on the z-axis for the small objects. On
the big bubbles, limits of the design appear with shadowing effects which create the
straight artefactual sides on the bubbles. They are inclined by the angle θ0 ≃ 32.1◦,
corrected from θair = 45◦ in the medium of refractive index n0 = nH2O = 1.33
according to the Snell’s law (III.27).

The twin image artifact is present, especially around the big objects
A zoom on a reconstructed particles of dust (h) shows that the artifacts sur-

rounding small objects are coherent with the reconstructions of the numerical bead
for the choice of the design in figure IV.2.

A closer look at the artifacts shows that their shape (g) is characteristic to the
lighting positions. Out of focus, they shape a ring of small artifacts, spread according
to the lighting positions and merge with the focus on the object. On this artefactual
ring, it is possible to identify the missing angles in the angular coverage due to the
sample holder which limits the available range for ϕ to ϕ ∈ [0◦, 285◦].

Different padding situations on the 2D data and the 3D volume are tested and
plotted using maximum intensity projections to limit the influence of the noise and
artifacts in the projected views.

As seen qualitatively in figures (b-e), the padding operation does not dramatically
change the reconstruction quality.

6ref. RS-686-6840, SPDT-NO/NC Simulated Roller Lever Microswitch, 5 A, 125 V ac
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1 Overview of the experimental bench

Figure IV.7: First data and reconstruction with the second prototype on bubbles
and dust at the bottom of a Petri dish filled with water. (a) Raw data in the
red channel for ϕ = 0◦. (b-e) Comparison of the influence of the padding on the
reconstructions on the xy and xz-maximum intensity projections. (b) No padding.
(c) Padding on the 3D volume. (d) Padding on the 2D data. (e) Padding on the
2D data and the 3D volume. The blue arrows point at the aliasing artifacts due
to a periodization of the objects if no padding is applied. (f) 3D rendering of (e).
(g) Zoom on a region of interest framed in red on (e) in the dust particle plane and
in plane with a defocus of 117 µm. (h) Average intensity orthogonal projections and
3D rendering of the region of interest (g).
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Nonetheless, if one of the spaces is not padded (2D or 3D), the periodization of
the data and/or the volume leads to "ghost" reconstructions of objects which should
be outside the field of view on the opposite side. These are emphasized by the blue
arrows. A striking example is the bubble at the lower edge of the xy-view which
overflows at the top of the view, excepted if a padding is applied on both the 2D
and the 3D spaces.

Another effect which cannot be directly driven from the figures is the contrast of
the reconstructions. Indeed, the value of the scattering potential at the center of the
central bubble in the different volumes changes according to the padding situation
as shown in table [IV.1].

No padding 3D padding 2D padding 2D and 3D padding
|f | 2.9 10−4 6.3 10−5 3.1 10−4 2.5 10−4

Table IV.1: Table of the measured intensities of the scattering potential f at the
center of the bubble of figure IV.7 for the different padding possibilities.

The zero-padding on the 3D appears to have a "dilution" effect which diminishes
the intensity of the reconstructed volume. This effect is compensated by the zero-
padding of the 2D space. Padding both of the spaces gives similar results than no
padding at all.

These padding operations will nevertheless be part of a trade-off between the
wanted quality and the reconstruction time or even the capability of the computer
to deal with large padded-matrices. In extreme cases, even the absence of padding
can provide an acceptable result if one remembers that ghost effect can appear on
the edges of the reconstructed volumes.

2 Iterative phase retrieval

As mentioned in chapter I, section 3 and chapter II, section 3, in the context of
2D lens-free imaging the absence of phase information in the sensor plane leads to
"twin-image" artifacts in the 2D back-propagations. As seen in chapter III, section 4
and in the previous section 1 of this chapter, similar artifacts are present in the 3D
reconstructions.

As presented in [70], performing an iterative phase retrieval allows finding a
better estimate of the unknown phase in the sensor plane than the phase ramp
introduced in the Fourier mapping method developed in chapter III, section 4. To
this end, for each 2D picture Ijtot of the dataset j ∈ [[1, N ]], the 3D object to retrieve is
approximated by an average median plane tj2D as previously presented in chapter III,
section 2.2 in figure III.7. In this section, the final aim is not to retrieve this 2D
transmissive plane but to use this mathematical artifice in a phase retrieval algorithm
to get the phase at the sensor plane for this given illumination j. Alternatively to
the method exposed in [70], the presented phase retrieval technique is based on an
inverse problem approach.
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2 Iterative phase retrieval

2.1 Inverse problem formulation

For low scattering objects, the 2D complex transmission can be rewritten: t2D =
1 + δt and the Rayleigh-Sommerfeld equation (I.1) can be expressed in terms of
incident and scattered complex waves:

Utot (
−→r ) = Uinc (−→r ) + Udif (−→r ) = Uinc (−→r ) + (Uinc.δt) ⋆

(
zs
iλ

eik
′
0r

r2

)
(IV.1)

To take into account the limited coherence length lcoh of the illumination and
to reduce aliasing effects due to the high frequencies of the convolution kernel, a
pyramidal mask is added in the kernel:

Mlcoh
(x, y) =

{
lcoh−r2D

lcoh
if r2D < lcoh

0 if r2D > lcoh
, r2D =

√
x2 + y2 (IV.2)

Then for any δt, it exists a direct model giving the complex diffracted
wave Udif (δt) at the sensor plane:

Udif (δt) = (δt.Uinc) ⋆

(
Mlcoh

zs
iλ

eik
′
0r

r2

)
(IV.3)

The inverse problem of retrieving δt from the measurements Id is ill-posed due,
among other reasons, to the lack of phase measurement on the detector plane. More-
over this model (IV.3) does not provide an analytic inverse formula to go from the
knowledge of the diffracted wave to t2D and the Gerchberg-Saxton algorithm pre-
sented in I, section 3 cannot be used.

The reconstruction problem is solved via an inverse problem approach by mini-
mizing the following data-fidelity term7:

δ̃t = argmin
δt

∥∥∥Id − |Uinc + Udif (δt)|2
∥∥∥

2
(IV.4)

The initial parameters of the experiment (here δt) are retrieved from the knowl-
edge of the experimental data (here Id) and the direct model allowing to simulate
numerical data for a given set of parameters. This inverse approach models the
non-linear direct process of image formation without requiring an inversion formula.

Nonetheless, minimizing directly equation (IV.4) will not be sufficient to retrieve
the phase of Udif since an infinite number of phase can match the recorded intensi-
ties Id. One needs to add some constraints and regularizations to the minimization
problem (IV.4). Using the formalism introduced in chapter III, section 3.3 an inverse

7Here it matches the definition given in appendix D for W = 1. As mentioned in the appendix,
it is possible to weight each pixel for example to minimize the influence of hot or dead pixels.
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approach allows to perform this by minimizing the following cost function:

J (δt) =
1

nbpxnb
p
ynbλ

nbλ∑

j=1

∥∥∥∥I
j
d −

∣∣∣U j
inc + U j

dif (δt)
∣∣∣
2
∥∥∥∥

2

︸ ︷︷ ︸
data fidelity Jd(δt)

+ · · ·

µL1

1
nbpxnb

p
y
‖δt‖L1,ǫ

︸ ︷︷ ︸
sparsity constraint JL1,ǫ(δt)

+ µ∇
1

nbpxnb
p
y
‖∇δt‖L1,ǫ

︸ ︷︷ ︸
gradient sparsity constraint J∇,ǫ(δt)

(IV.5)

to retrieve the 2D transmissive plane:

δ̃t = argmin
C(δt)

J (δf) = argmin
C(δt)

Jd (δt) + µL1JL1,ǫ (δt) + µ∇J∇,ǫ (δt) (IV.6)

1
nbp

xnb
p
ynbλ

and 1
nbp

xnb
p
y

are normalization factors, nbpx, nb
p
y still being the pixel num-

bers in each direction of the 2D planes8. nbλ is the number of wavelength used for
the iterative reconstruction. As mentioned earlier for the 3D scattering potential
in chapter II, section 1, the effective 2D transmissive plane δt is supposed to be
independent of the illumination wavelength.

As previously, C (δt) stands for the constraint given on the domain of definition
of δt. As defined in appendix D the central term is a sparsity prior numerically
given by:

‖δt‖L1,ǫ
=

∑

pixelsk,l

√
|δtk,l|2 + ǫ2 (IV.7)

where the indices (k, l) stand for the nbpx × nbpy pixels locations on the image grid
respectively on the x and y-axes.

As defined in appendix D the right-hand term of equation (IV.5) is a sparsity
prior on the gradient of δt to enforce an edge-preserving regularization. It is numer-
ically computed as follows:

|∇δtk,l|2 =
1
2

[
|δtk+1,l − δtk,l|2 + |δtk,l+1 − δtk,l|2 + · · ·

|δtk+1,l+1 − δtk,l+1|2 + |δtk+1,l+1 − δtk+1,l|2
] (IV.8)

In order to tune an appropriate trade-off between data-fidelity and a priori in-
formation, the regularization terms are respectively weighted by two hyperparame-
ters µL1 and µ∇.

Appendix D presents how to numerically compute JL1,ǫ and J∇,ǫ as well as their
gradient. It remains to find a numerical expression for Jd. The convolution ⋆ of
equation (IV.3) is computed in the padded Fourier domain. To avoid the compu-
tation of the Fourier transform of δt.Uinc for each wavelength at each iteration, the
same trick for incident plane wave than for equation (II.40) is used to convert the

8In this section both the planes of sensor and the 2D object are composed of nbp
x × nbp

y pixels
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spatial modulation introduced by Uinc into a translation in the Fourier domain of
the convolution kernel.

Using the notation introduced in chapter II, section 3.1, from equation IV.3, the
hologram centered on (x0, y0, zs) can be numerically computed as follows:

Udif =
zs
iλ
ei

−→
k′

0.(x2D,y2D,0).pad−1

(
FFT−1

2D

(
FFT2D (pad (δt)) . · · ·

FFT2D

(
e−i

−→
k′

0.(xpad
2D ,ypad

2D ,0).Mlcoh

(
xpad2D , y

pad
2D , 0

)
. · · ·

e
ik′

0

√
(xpad

2D +x0)2
+(ypad

2D +y0)2
+z2

s

(
xpad2D + x0

)2
+
(
ypad2D + y0

)2
+ z2

s

)))
dx.dy

(IV.9)

Noting Ĥj
zs the matrix:

Ĥj
zs = dx.dy.FFT2D


 zs
iλj

e−i
−→
k′j

0 .(xpad
2D ,ypad

2D ,0).Mlcoh

(
xpad2D , y
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2D , 0

)
. · · ·
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√
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2
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2
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+ z2

s




(IV.10)

equation (IV.9) becomes:

U j
dif = U j

inc.pad
−1
(

FFT−1
2D

(
Ĥj
zs .FFT2D (pad (δt))

))
(IV.11)

All these operations are linear. Keeping the notations previously defined in
chapter III, section 3.3 but for 2D matrices, δt being decomposed on its real and
imaginary parts, this equation (IV.11) becomes:

−→
U j
dif = diag

(−→
U j
inc

)
× P i × F i × diag

(−→̂
Hj
zs

)
× F × P ×R2C ×−→δt

= O ×−→δt
(IV.12)

It comes from appendix D:

∇Jd
(−→
δt
)

=
1

nbpxnb
p
ynbλ
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j=1

4R
[
O⋆ ×

[−→
U j
tot

(−→
δt
)
.
(∣∣∣
−→
U j
tot

(−→
δt
)∣∣∣

2
−−→I j

d

)]]
(IV.13)

with:

O⋆ = R2C⋆ × P ⋆ × F ⋆ × diag
(−→̂
Hj
zs

)⋆
× F i⋆ × P i⋆ × diag

(−→
U j
inc

)⋆
(IV.14)

From the analysis done in chapter III, section 3.3 it is possible to express the
gradient of the data fidelity in terms of the complex transmissive plane δf from
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equations (IV.13) and (IV.14):

∇Jd (δt) =
1

nbpxnb
p
ynbλ

nbλ∑

j=1

4.pad−1
(

FFT−1
2D

( ¯̂
Hj
zs
.FFT2D

(
· · ·

pad
(
Ū j
inc.U

j
tot (δt) .

(∣∣∣U j
tot (δt)

∣∣∣
2 − Ijd

))))) (IV.15)

Finally, the numerical expression of the gradient of the cost function (IV.5) at a
given δt is:

∇J (δt) = ∇Jd (δt) + µL1∇JL1,ǫ (δt) + µ∇∇J∇,ǫ (δt) (IV.16)

One can now iteratively solve the minimization problem (IV.6) using a descent
gradient algorithm, which is performed by the VMLM-B algorithm [90], a modified
limited memory quasi-Newton convex optimization method with BFGS updates and
bound constraints9.

Once δt is estimated for a given illumination j, the corresponding diffracted
wave U j

dif can be computed via equation (IV.9). When the 2D phase information
of all the different acquisitions is retrieved, a 3D Fourier mapping is performed as
previously exposed in chapter III, section 4 via equation (III.25) to obtain the final
fully 3D reconstructed volume.

This method solves one pitfall of the Fourier mapping method: the phase infor-
mation introduced in the reconstruction is more realistic and should reduce some
artifacts. Nevertheless, it does not solve the problem of the Fourier mapping limi-
tations: only the same coefficients on the spherical caps are accessible.

2.2 Numerical simulations

To test the efficiency of the proposed phase retrieval algorithm, total wave fronts
IRGBsim are simulated for a known numerical object presented in figure IV.8.a. It
is composed of composed of 5123 voxels of 1.673 µm3 for a volume of 8553 =
6.25 108 µm3 and is composed of cells of radius 10 µm and refractive index dif-
ference of δn = 0.005i with a normal dispersion of δn/10 . These cells are randomly
spread in five clusters of 50 cells and five trains of 250 cells crossing the volume.

Holograms are simulated with the Fourier diffraction theorem by padding the
2D and the 3D spaces and using the nearest-neighbor interpolation method, for an
illumination direction of θ = 30◦ and ϕ = 112.5◦, for the three RGB wavelengths λ ∈
{630 nm, 520 nm, 450 nm}, in the air n0 = 1 and for a sensor distance of zs = 2 mm.
To test the robustness of the iterative phase retrieval algorithm, a Gaussian noise
is added to the intensity with σ = 0.2 (see figure IV.8.b). The simulated phase10 of
figure IV.8.c represents the goal of the phase retrieval algorithm.

9It was implemented in C by Eric Thiébaut in his OptimPack library [91] and Hervé Carfantan
provided an interface [92] of this library running under Matlab® which was adapted by Fabien
Momey.

10Note here that in this section, for the sake of clarity, all the displayed phase are corrected by
a phase ramp characteristic of the given illumination direction.
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Figure IV.8: (a) Average intensity orthogonal projections and 3D rendering of a nu-
merical object used to simulate a hologram on which both the intensity Isim (b) and
the phase ϕsim (c) are known (here in the green channel) for an illumination di-
rection of θ = 30◦ and ϕ = 112.5◦. To test the robustness of the iterative phase
retrieval algorithm, a Gaussian noise with σ = 0.2 is added to the intensity. The
color codes for the depth in each view: the shallowest in blue, the deepest in red.

Different configurations for the iterative parameters are tested to find the best
set. All the tests are run with nbPRit = 100 iterations, by padding the 2D space and
with lcoh = 500 µm.

Figure IV.9 compares the effects of a strong sparsity regularization alone with
the effects of a regularization on the gradient alone for different value of µ∇. Looking
at the modulus of the reconstructed transmissive planes t2D and at the cell branches,
it appears that the ∇-regularization is the most efficient to reduce the noise in the
reconstructions but fails at removing the twin-image artifacts. For high values, it
even increases its amplitude. On the other side, the L1-regularization efficiently
cleans the twin-image around these small objects.

Looking at the phase differences, it appears that the two regularizations fail at
retrieving the phase. The ∇-regularization seems to work better on the big clusters
whereas the L1-regularization succeeds in retrieving the phase of some cell branches.

From the reconstructed modulus of figure IV.9, it appears that the twin-image is
bright: this means that its modulus is higher than the background modulus whose
value is 1: a perfectly transparent plane. Values higher than 1 are then interpreted
as emissive objects. In the present case, this in not physical as the objects do not
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Figure IV.9: Comparison of the modulus |t2D| of the reconstructed transmissive
plane t2D and the difference ∆ϕ = ϕPR − ϕsim between the retrieved phase on the
sensor plane with the numerical simulation of figure IV.8.c for different values of the
hyperparameters µL1 and µ∇ after nbPRit = 100 iterations.

emit any light but only scatter or absorb the incident wave front. The use of an
adapted constraint C (δt) can help to enforce this physical property.

Technically, a non-emissive object is characterized by a modulus of less than
one: |t2D| ≤ 1. But this constraint cannot be directly applied in the present algo-
rithm as the object δt is decomposed on its real and imaginary parts. Nonetheless,
it can give a necessary constraint on δt. Indeed:

|t2D| = |1 + δt| ≤ 1⇔ (1 +R (δt))2 + I (δt)2 ≤ 1
⇒ −1 ≤ 1 +R (δt) ≤ 1
⇒ R (δt) ≤ 0

(IV.17)

This condition is necessary but not sufficient. Indeed, for R (δt) = 0, any δt
with I (δt) 6= 0 will break the constraint |t2D| ≤ 1.

This condition is tested in figure IV.10 as well as combinations of the different
regularizations.

Using both the L1 and the ∇-regularization combines the good performances
mentioned above by erasing the twin-image around the small objects while efficiently
retrieving their phase as well as on some bigger objects.

The constraint R (δt) ≤ 0 is the most effective to reduce the twin-image artifacts
around the small objects and most of the big clusters.

Only combined with the ∇-regularization, the phase on the small objects is not
well retrieved. The effect on the clusters is more important with some phase reversed
compared to figure IV.9 for µ∇ = 0.1.

Combining the 3 solutions gives the best results. The twin-image artifacts are
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Figure IV.10: Comparison of the modulus |t2D| of the reconstructed transmissive
plane t2D and the difference ∆ϕ = ϕPR − ϕsim between the retrieved phase on the
sensor plane with the numerical simulation of figure IV.8.c for different combinations
of the hyperparameters µL1 and µ∇ with a constraint on the domain of δt:R (δt) ≤ 0
after nbPRit = 100 iterations.

erased around almost all the objects, even the clusters. The phase on the small
objects is retrieved as well as on some of the clusters. Nonetheless, none of the
combination succeeds in retrieving the phase at the center of the field which is
denser and where lots of objects at different heights are overlapping.

Finally, figure IV.11 shows the normalized value of the cost function (IV.5) during
the iterations of the phase retrieval algorithm for the simulated data as well as the
experimental data presented in the next section. Excepted for a small bump in the
first 40 iterations, the two curves have a similar convergence rate which becomes
very slow after the 80th iterations.

2.3 3D reconstructions on experimental data

The phase retrieval algorithm is tested on the experimental data introduced in
the previous section 1 in figure IV.7.

For the phase retrieval algorithm, the 2D spaces of nbpx = nbpy = 1024 are
padded, lcoh = 500 µm and nbPRit = 100. The hyperparameters are set to µL1 =
0.5, µ∇ = 0.1 and C (δt) = {δt/R (δt) ≤ 0}.

The lighting parameters are ϕ ∈ {0◦, 282◦}, ∆ϕ = 18.8◦, θ = 45◦, λ ∈
{630, 520, 450 nm}, zs = 2.8 mm. These three wavelengths are used both for the
2D phase retrieval and the 3D reconstruction.

A scaling factor is applied on the z-axis using equation (III.39) as the data are
reconstructed for an angle θ = θair = 45◦: z0/zair = 1.5930. For the 3D reconstruc-
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Figure IV.11: Convergence curves of the iterative RGB phase retrieval for the
simulated data of figure IV.8 and the experimental data of figure IV.12 with µL1 =
0.5, µ∇ = 0.1 and I (δt) ≤ 0. The curves are normalized to their minimal and
maximal values.

tion, the volume11 is composed of 512× 512× 256 voxels of 3.34× 3.34× 5.32 µm3

for a final volume of 1.7× 1.7× 1.4 mm3 ≃ 4 mm3. The 2D and the 3D spaces are
both zero-padded. The simulated total wave fronts Ijsim and ϕjsim are used for the
reconstruction with the Fourier mapping method.

Figure IV.12 presents the results of the phase retrieval procedure for the lighting
position θ = 45◦ and ϕ = 0◦.

The simulated intensities are in agreement with the experimental data. All the
holograms are well simulated for the bubbles, the dust particles and the scratch at
the bottom of the dish. One another side, the regularization efficiently cleaned the
noise and the background heterogeneities mainly due to the surfaces of the Petri
dish and the plastic cap.

Figure IV.12.d is a simple back-propagation of the experimental intensity and is
obtained by reversing the convolution in equation (IV.9) by a division in the Fourier
domain and using a phase ramp approximation for the unknown phase12. As for the
simulation, a comparison with the modulus of the retrieved δt in figure IV.12.e shows
that the phase retrieval procedure removes all the twin-image artifacts and produces
sharper objects with a clean background. Looking also at the reconstructed phase
in figure IV.12.f, it appears that excepted for their edge, the bubbles are seen as
absorbent objects. The dust particles share an absorbent part and a dephasing part
whereas the scratch is only seen in the phase picture.

The 3D reconstruction obtained once the 2D RGB phase retrieval algorithm has
been performed on the 16 lighting positions is presented in figure IV.13 and has to
be compared with the results given in figure IV.7. As expected, the twin-images
artifacts have been removed around all the objects and the background is darker (or
in an equivalent way one can say that the signal is stronger).

11512× 512× 256 voxels of 3.34× 3.34× 3.34 µm3 before scaling.
12A similar artifice is implemented in chapter III, section 4.
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2 Iterative phase retrieval

Figure IV.12: Results of the RGB phase retrieval algorithm on the experimental
data in the green channel (a) introduced in figure IV.7 after 100 iterations. (b) Sim-
ulated intensity on the sensor plane for the retrieved 2D object t2D. (c) Retrieved
phase on the sensor plane for the retrieved 2D object t2D. (d) Modulus of the sim-
ple back-propagation of the experimental data. (e) Modulus of the retrieved 2D
object t2D. (d-e) The gray scale has been reversed to facilitate the interpretation
and the comparison with the 3D reconstructions. (f) Phase of the retrieved 2D
object t2D.

Comparing figure IV.7.h and figure IV.13.d with the simulations in figure IV.2,
one can see that the reconstructions are close from the simulation when the phase
is known in the Fourier mapping method with a contrasted hourglass shape. The
remaining artifacts are consequently due to the limited angular coverage.

These artifacts are spread around the reconstructed objects in accordance with
the lighting positions and can be seen on the maximum intensity projection of fig-
ure IV.13.a. They are emphasized in figure IV.13.f where the contrast is enhanced.
They appear more contrasted than in figure IV.7.g in which they are blurred in the
noise and background signal.

Figures IV.13.a-f are made from the 3D reconstructed volume using the total
simulated wave fronts Ijsim and ϕjsim. Figures IV.13.g-i compare on an extracted
slice at the focus of the dust particles the effect of choosing only the experimental
data Ijd, combining them with the retrieved phase information ϕjPR or using the full
simulated wave fronts IjPR and ϕjPR.
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IV A second design and new reconstruction methods

Figure IV.13: Modulus of the reconstructed scattering potential f of bubbles and
dust at the bottom of a Petri dish filled with water after an iterative RGB phase
retrieval for each lighting position and the use of the simulated wave fronts in the
Fourier mapping process. (a-b) xy and xz-maximum intensity projections of the
reconstructed volume. (c) 3D rendering of the 3D volume. (d) Average intensity or-
thogonal projections and 3D rendering of the region of interest framed in red on (a).
(e-f) Zoom on the region of interest at the focal plane of the dust particle (e) and
with a defocus of 117 µm (f). (g-i) Comparison of a slice of the reconstructed vol-
umes on the plane of the dust particles if only the experimental intensities Ijd are
used (g), if the experimental intensities Id are combined with the retrieved phase
information ϕjPR (h) or if the full simulated wave fronts IjPR and ϕjPR are used (i).

Using the retrieved phase information erases the twin-image artifacts in fig-
ure IV.13.h but the background remains noisy. Using the simulated intensities cleans
the background and produces sharper objects in figure IV.13.i.

3 3D inverse problem approach

In the previous section 2, the remaining artifacts are attributed to the lack of
angular coverage by the lens-free microscope around the sample. Even if the phase
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3 3D inverse problem approach

is retrieved, only the coefficients lying on the spherical caps covered by the dataset
are mapped in the Fourier domain. A huge part of the Fourier domain is then left
at its initialization value: 0.

Besides, it was mentioned that the reconstructed volumes are beyond of the
validity domain of the Fourier diffraction theorem. This means that the model
cannot perfectly fit the data even using the phase retrieval algorithm. Consequently,
to improve the reconstructions quality this constraint on the data fidelity must be
relaxed.

In the method developed in this section, the Fourier diffraction theorem (II.18)
is used as a simulation tool for a direct model to simulate the holograms of a given
object f as explained in chapter II, section 2 from figure II.3. This direct model is
at the base of an inverse problem approach implemented to iteratively retrieve the
3D object f .

Working directly on the full volume f theoretically allows to retrieve more Fourier
coefficients than the previous methods via an extrapolation of the missing frequencies
which lie outside spherical caps thanks to a priori information.

Moreover, such an approach appropriately deals with the lack of phase infor-
mation to reduce artifacts as no assumption on the phase on the sensor plane is
needed.

Finally, the simulated data are compared with the experimental measurements
but are not forced to perfectly match them. This can partially take into account that
the model of the Fourier diffraction theorem, only valid for low scattering objects,
cannot perfectly simulate the experimental data for big objects.

3.1 Inverse problem formulation

It has been seen in chapter II, section 3 that it exists an expression to compute
the diffracted wave U j

dif scattered by a given potential f via equation (II.48) for a

given wavelength and lighting direction
−→
k′j

0 .
This direct model is used to define a new cost function:
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(IV.18)

and a new minimization problem:

f̃ = argmin
C(f)

J (f) = argmin
C(f)

Jd (f) + µL1JL1,ǫ (f) + µ∇J∇,ǫ (f) (IV.19)

1
nbp

xnb
p
yN

and 1
nbv

xnb
v
ynb

v
z

are normalizing factors, nbpx, nb
p
y still being the pixels number in

each direction of the 2D planes and nbvx, nb
v
y, nb

v
z the voxels number in each direction

125
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of the 3D reconstructed volume f . N is the number of acquisitions recorded under

different lighting situations (both in terms of wavelength and direction
−→
k′j

0 ).
As in the previous section 2, C (f) stands for the constraints given on the domain

of definition of f . The central term is still a sparsity prior, but on a 3D object,
numerically given by:

‖f‖L1,ǫ
=

∑

pixelsk,l,m

√
|fk,l,m|2 + ǫ2 (IV.20)

where the indices (k, l,m) stand for the nbvx × nbvy × nbvz voxels locations on the
volume grid respectively on the x, y and z-axes. The right-hand term is the 3D
sparsity prior on the gradient of f and is numerically computed as follows:

|∇fk,l,m|2 =
1
4

[
qx |fk+1,l,m − fk,l,m|2 + qx |fk+1,l+1,m − fk,l+1,m|2 + · · ·
qx |fk+1,l,m+1 − fk,l,m+1|2 + qx |fk+1,l+1,m+1 − fk,l+1,m+1|2 + · · ·
qy |fk,l+1,m − fk,l,m|2 + qy |fk+1,l+1,m − fk+1,l,m|2 + · · ·
qy |fk,l+1,m+1 − fk,l,m+1|2 + qy |fk+1,l+1,m+1 − fk+1,l,m+1|2 + · · ·
qz |fk,l,m+1 − fk,l,m|2 + qz |fk+1,l,m+1 − fk+1,l,m|2 + · · ·
qz |fk,l+1,m+1 − fk,l+1,m|2 + qz |fk+1,l+1,m+1 − fk+1,l+1,m|2

]

(IV.21)
As explained in appendix D, (qx, qy, qz) are weighting coefficients to take into

account that the grid can be not orthonormal and are set to qx = 1, qy = dx/dy
and qz = dx/dz.

As previously, the two hyperparameters µL1 and µ∇ weight the two regularization
terms of the cost function (IV.18).

The gradient of the two regularization terms being given by appendix D, it
remains to find a numerical expression for Jd and its gradient. These expressions are
based on the direct numerical formulation (II.51) developed in chapter II, section 3.

With the notations introduced in chapter III, section 3.3 and noting P2D,
P i

2D, P3D, P i
3D, F2D, F i

2D, F3D, F i
3D and Ij and the matrix representations

of pad, pad−1 in the 2D and 3D spaces, FFT2D, FFT−1
2D, FFT3D, FFT−1

3D and
interp

[
.,
(
upad2D , v

pad
2D , w

(
upad2D + uj0, v

pad
2D + vj0

)
− wj0

)]
which are all linear operators

and defining:

M j
S = e2iπ((x2D+xJ

0 )uj
0+(y2D+yj

0)vj
0)dv
ds

(IV.22)
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with w (u, v) =
√

n2
0

λ2
0
− u2 − v2,

(
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0

)
=
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j
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,
n0.q

j
0

λj
0

,
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j
0
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)
, ds = dxp.dyp

the elementary pixel surface and dv = dxv.dyv.dzv the elementary voxel volume,
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equation (II.51) can be rewritten:
−→
U j
dif = diag

(−→
M j

S

)
× P i

2D × F i
2D × diag

(−→
M j

F

)
× Ij × F3D × P3D ×R2C ×−→f

= O ×−→f
(IV.24)

It comes from appendix D:
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(IV.25)

with:

O⋆ = R2C⋆ × P ⋆
3D × F ⋆

3D × Ij⋆ × diag
(−→
M j

F

)⋆
× F i⋆

2D × P i⋆
2D × diag

(−→
M j

S

)⋆
(IV.26)

From the analysis done in chapter III, section 3.3, the Hermitian adjoint of all
the matrices are already known excepted for Ij. Its matrix shape is:

Ij =




· · · · · ·
0 · · · 0 wjl,1 0 · · · 0 wjl,n 0 · · · 0

· · · · · ·


 l← index of the interpolated

coefficient on the spherical cap

cjl,1 cjl,n
↑ ↑

indices of the neighboring

coefficients in the 3D volume
(IV.27)

where:

• l is a line in Ij corresponding to a given coefficient on the 2D jth spherical
cap13 which is interpolated in the 3D volume,

•
{
cjl,k
}
k∈[[1,n]]

are the columns in Ij corresponding to the position of the neigh-

boring coefficients14 in the 3D volume,

•
{
wjl,k

}
k∈[[1,n]]

are the weights to apply on the neighboring coefficients in the

3D volume,

• n is the number of neighboring coefficients. For a nearest-neighbor interpola-
tion, n = 1. In the case of a linear interpolation, if the grids overlap on the x
and y-directions15, n = 2; if the grids overlap only on the x or the y-direction
16, n = 4; and if none the grids overlap17, n = 8.

13This coefficient is consequently placed at the lth position in the vector shape of this spherical
cap.

14These coefficients are consequently placed at the
{

cj th
l,k

}
k∈[[1,n]]

positions in the vector shape

of the 3D volume.
15The interpolation is on a line between two known coefficients on the z-axis.
16The interpolation is in a rectangle of four known coefficients on the y or the x-axis and the z-

axis.
17The interpolation is in a parallelepiped of eight known coefficients on the x, y and the z-axes.
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Thus, the Hermitian adjoint Ij⋆ of Ij is:

Ij⋆ =




...

...
wjl,1

...
wjl,n

...

...




(IV.28)

From this matrix, it appears that the Hermitian adjoint interp⋆ of interp consists
in summing back the interpolated 2D coefficients on their neighboring 3D coefficients
weighted by the same weights.

It is now possible to express the gradient of the data fidelity in terms for a given
scattering potential f from equations (IV.25) and (IV.26):
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(IV.30)

Finally, the numerical expression18 of the gradient of the cost function (IV.18)
at a given f is:

∇J (f) = ∇Jd (f) + µL1∇JL1,ǫ (f) + µ∇∇J∇,ǫ (f) (IV.31)

The resolution of the minimization problem (IV.19) is performed with the same
convex optimization algorithm [90] introduced in the previous method, in section 2

18Let’s mention here that all the conclusions on the impact of the hyperparameter values in this
chapter IV with the inverse problem approach are subject to caution. Indeed, it was found after-
wards that the implementation of the gradient of the ∇-regularization was wrong. The normaliza-
tion factor 1

nbv
xnbv

ynbv
z

was replaced by 1
nb

p
xnb

vp
y

for the gradient but not for the cost J∇,ǫ. Some tests

tend to show that the results are close from the ones that can be obtained with µ̃∇ = µ∇

nbv
xnbv

ynbv
z

nb
p
xnb

vp
y

.
All the values presented in this thesis are corrected accordingly.
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of this chapter19.
This inverse problem approach is schemed in figure IV.14.a: at each iteration

of the algorithm, the object fith at the ith iteration is forced to satisfy the con-
straints C (fith). It is then used to simulate holograms Ijs for the N different light-
ing situations j. They are compared with the experimental data Ijd in the data
fidelity term Jd. In parallel, the sparsity constraints on f and its gradient are
computed. In blue, the medallions show the effect of the two implemented regular-
izations. The L1-regularization favors spatially limited objects in a sparse environ-
ment. The ∇-regularization produces sharp and homogeneous objects. With these
two terms JL1,ǫ and J∇, ǫ, one gets the global cost function J . Its gradient gives the
direction of the next step fith+1 of the iterative loop.

The loop is run nbIPit times.

Figure IV.14: (a) Schematic view of the inverse problem approach: the domain
of definition of the scattering potential fith at the ith iteration is limited by the
constraints C (f) (orange). The regularization term is computed (blue) and a set
of intensities Ijs is simulated (green) and compared with the experimental data Ijd
(purple) to compute the data fidelity term. The summation of these three terms gives
the global cost function whose gradient at fith determines the new value for fith+1.
(b) After a given number of iteration nbIPit , the regularized simulated intensities Ijs
can be used as references to refine the alignment of the experimental data Ijd before
a new batch of iterations of the algorithm.

19Thanks to Eric Thiébaut who shared his implementation in C code for the computation of
the regularization term ‖∇.‖L1,ǫ for 3D objects and Fabien Momey who adapted it for complex
variables and provided its interfacing with Matlab®.
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But besides addressing the lacking phase and estimating the global Fourier trans-
form of f , this method also allows improving the data alignment. Indeed, after
having performed a first estimation of f , one can use the direct model (IV.24) to
simulate a numerical dataset Ĩjs = |U j

inc + U j
dif (f) |2, j ∈ [[1, N ]]. By construction,

this set of simulated intensities Ĩjs is aligned with the numerical 3D object f . It can
consequently be used as a reference to refine the registration20 of the experimental
data Ijs .

Performing anew a 3D reconstruction of this dataset via a new batch of iterations
increases the quality of the retrieved object. One can iterate these steps alternating
between 3D reconstruction and data alignment as schemed in figure IV.14.b. This
refinement cannot be performed with the methods developed previously.

In addition, one must notice that this method is the only one developed during
this PhD which can correctly take into account a linear interpolation in the Fourier
space via the function interp⋆ in a reconstruction algorithm. Indeed, as mentioned
in the conclusion of chapter II, section 3, algorithms using the Fourier diffraction
theorem (II.18) as a reconstruction tool cannot reverse the linear interpolation and
are constrained to use a nearest-neighbor interpolation. In the proposed algorithm,
the Fourier diffraction theorem is only used as a direct model in which the linear
interpolation can be properly taken into account.

Finally, all the reconstructions are done on the scattering potential f of the
3D object. In some situations, it may be more interesting to work directly on the
complex refractive index δn = n − n0. The cost function (IV.18) is expressed in
terms of δn:
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(IV.32)

with:
f (δn, n0) = (1 + δn/n0)

2 − 1 (IV.33)

Nevertheless, f (., n0) is not a linear operator and it consequently does not exist
a matrix representation similar to equation (IV.24) which is nevertheless needed to
compute the gradient of the data fidelity term Jd (δn). The solution is to locally
linearize Udif (δn) around δn with a Taylor expansion for a small dn:

f (δn+ dn, n0) ≃ f (δn, n0) +
2
n2

0

(n0 + δn) dn (IV.34)

20The experimental data are aligned with the simulated intensities via a least squares minimiza-
tion of the difference between the simulated intensities and the interpolation of the experimental
data for a given shift and a given rotation as presented in appendix C
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Then:
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with U j
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)
which is linear in terms of dn for a given δn. Noting Mδn

the 3D matrix:
Mδn =

2
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(n0 + δn) (IV.36)

one gets a new linear operator from (IV.24):
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(IV.37)

With the same reasoning than in appendix D the gradient for Jd (δn) is:
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It is now possible to work and apply constraints and regularizations directly
on δn to reconstruct the sample 3D complex refractive index .

3.2 Numerical simulations

To evaluate the efficiency of the 3D inverse problem approach, different config-
urations of the parameters are tested on the numerical volume introduced in the
previous section 2.

The holograms are simulated with the Fourier diffraction theorem by padding the
2D and the 3D spaces and using the nearest-neighbor interpolation, for 16 lighting
directions of θ = 30◦ and ϕ ∈ [0◦, 359◦] (∆ϕ = 22.5◦), for the red channel λ =
630 nm, in the air n0 = 1 and for a sensor distance of zs = 2 mm. Figure IV.15
presents the central slice as well as the xy-average intensity projection of the volume
and an example of hologram for ϕ = 112.5◦. This hologram is the target of the data
fidelity term Jd of the cost function (IV.18).

Excepted if mentioned, all the reconstructions are based on the scattering poten-
tial f with nbpx = nbpy = 512, dxp = dyp = 1.67 µm, nbvx = nbvy = nbvz = 256, dxv =
dyv = dyv = 3.34 µm, zs = 2 mm, n0 = 1 and without any constraint on the do-
main of definition of f . No padding is applied. All the tests are run with nbIPit = 20
iterations.
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Figure IV.15: Numerical object and simulations on which the inverse problem
approach is tested. The slice z = 0 and the xy-average intensity projection of
the 3D scattering potential f are presented. The color codes for the depth: the
shallowest in blue, the deepest in red. The hologram in the red channel λ = 630 nm
with a lighting direction θ = 30◦ and ϕ = 112.5◦ is given as reference.

Different configurations for the iterative parameters are tested.
Figure IV.16 compares the effect of the regularization on the sparsity of the object

for different values of µL1 . Without any regularization the algorithm manages to
reconstruct the volume but gives a noisy result with twin-image around big objects
(see the z = 0 slice which as to be compared with the one in figure IV.15). Increasing
the L1-regularization reduces this artifacts around the big objects. The center of
the volume is also cleaner with a darker background.

Figure IV.16 compares the effect of the regularization on the sparsity of the ob-
ject gradient for different values of µ∇. Looking at the noisy background for µ∇ = 64
and µ∇ = 640, the smoothing effect of such a regularization is clearly visible with
the apparition of some "speckle"-type patterns. This smoothing with the dark back-
ground helps to reduce the noise but is not as effective as the L1-regularization and
it does not help to erase the twin-image artifacts. The fact that this regularization
favors homogeneous objects helps to better reconstruct the branches which are more
contrasted than with the L1-regularization, especially at the center of the volume.
If the regularization is too high as for µ∇ = 6400, the crowded areas tend to be more
homogeneous and the background noise is enhanced counterbalancing the previous
advantages.

As for the previous method introduced in section 2, combining the L1 and the ∇-
regularization gives the best results as one can see in figure IV.18 in which the two
first situations are run with a bigger number of iterations: nbIPit = 150. The twin-
image around the big objects is largely removed and the branches are well identified.
The influence of the padding does not seem to have a significant influence on the
reconstruction quality. The contrast is even slightly better if no-padding is applied.

The choice of the interpolation method appears to be more important. Indeed,
even if the last reconstruction is also done with nbIPit = 25 and cannot be directly
compared with the two others, it can be compared with the previous figures. And
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Figure IV.16: Comparison of the xy and xz-maximum intensity projections and
slices z = 0 of the reconstructed 3D scattering potential f for different values of the
hyperparameter µL1 .

even if the data are simulated using the nearest-neighbor interpolation, the best
reconstructions are obtained with the linear interpolation as one can see comparing
the background of the reconstruction with the backgrounds with µL1 = 1000 in
figure IV.16 or with µL∇ = 640 in figure IV.17. This shows the potential of this
inverse problem approach where more coefficients are available in the Fourier domain
than previously and better taken into account.

Figure IV.19 presents the residuals of the data fidelity term for the different
situations tested in figure IV.18. It compares the intensities simulated from the
retrieved 3D volumes with the theoretical simulation of figure IV.15 and table [IV.2]
compares the gray value scales of the figures.

It appears that on all the situations, the data fidelity is not strictly enforced.
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Figure IV.17: Comparison of the xy and xz-maximum intensity projections and
slices z = 0 of the reconstructed 3D scattering potential f for different values of the
hyperparameter µ∇.

No padding 2D&3D padding Nearest-neighbor
min −1.75 −1.63 −1.87
max 0.82 0.83 0.85

Table IV.2: Table of the minimal and maximal gray values of the differences of the
simulated holograms for different reconstruction parameters (no padding applied,
padding of the 2D and 3D spaces and padding with the nearest-neighbor interpola-
tion) with the reference hologram (see figures IV.15 and IV.19).

One may argue that the number of iterations may be too low to achieve a good
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Figure IV.18: Comparison of the xy and xz-maximum intensity projections and
slices z = 0 of the reconstructed 3D scattering potential f for a combination of the
hyperparameters µL1 = 1000 and µ∇ = 640 without and with a zero-padding of the
2D and the 3D spaces. The nearest-neighbor interpolation with a zero-padding of
the 2D and the 3D spaces is also presented.

convergence (and consequently a good agreement with the data). But looking at
the convergence curves in figure IV.20, the convergence rate strongly decreases after
the 50th iterations. Moreover, from the figure and the values of table [IV.2] the
residues are in the same order of magnitude at it = 25 or it = 150 whereas the blue
curve has not yet reached a plateau. This also suggests that the iterative process
mainly acts on the two regularizations, the data fidelity being enforced quite rapidly
and then presents a small evolution.

Note here that in this section, no test is done on reconstructions based on the
refractive index δn of the sample. Some tests are needed to check the validity of
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Figure IV.19: Residuals of the simulated intensities given by the reconstructions of
figure IV.18 compared to the reference of figure IV.15 when the iterative algorithm
is run without and with a zero-padding of the 2D and the 3D spaces. The nearest-
neighbor interpolation with a zero-padding of the 2D and the 3D spaces is also
presented. The gray value scales are given in table [IV.2].

Figure IV.20: Evolution of the cost functions J (f) during the iterations for the
situations tested in figure IV.18. The curves are normalized by their first value.

the Taylor expansion (IV.34) and the efficiency of such an approach compared to a
reconstruction based on the scattering potential f .

In addition, a better choice of hyperparameters could be found by a brute force
test of a larger set of µL1 and µ∇ and comparing the reconstruction with the theo-
retical initial volume21.

Finally, no reconstruction with constraints C (f) on the domain of definition of f
has been presented whereas it can help to reduce the twin-image artifacts. Indeed,
as in the previous section 2, these artifacts present opposite sign compared to the
real signal (not presented here), such as a negative real part for the refractive index,

21For example in this section, the reconstructed 3D volumes are not directly compared with the
initial volume. With an adapted norm such as the L2-norm, such a comparison would provide a
more quantitative criterion to discriminate the different values of the hyperparemeters.
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and can consequently be treated with an appropriate domain constraint.

3.3 3D reconstructions on experimental data

This section presents the test of the 3D inverse problem approach on new exper-
imental data acquired on empty capsules22 of Matrigel® in which some droplets of
oil are trapped during the capsule formation process.

The reconstructed dataset is composed of 31 holograms in the green channel λ =
520 nm of nbpx = nbpy = 512, dxp = dyp = 3.34 µm aligned using the least mean
squares minimization algorithm on the raw data23, using a capsule hologram as
alignment pattern.

The reconstruction parameters for the 3D volume are ϕ ∈ {0◦, 285◦}, ∆ϕ =
9.4◦, θ = 45◦, λ = 520 nm, zs = 2.7 mm. As mentioned at the end of the previous
chapter in section 5, a scaling factor is applied on the z-axis using equation (III.39)
as the data are reconstructed for an angle θ = θair = 45◦: z0/zair = 1.5930. The
reconstructed volume24 is composed 340×340×200 voxels of 5.01×5.01×7.98 µm3

for a final volume of 1.7× 1.7× 1.6 mm3 ≃ 4.6 mm3.
The reconstruction is based on the scattering potential f on which no constraint

on the domain of definition is applied. The 2D and 3D spaces are zero-padded.
The iterative process is split in 9 batches of nbIPit = 10 iterations. In between
each of the batches a refinement of the data alignment is performed as explained in
figure IV.14.b.

Something which is also tested in this reconstruction procedure is to change the
weight of the hyperparameters along this iterative process. Indeed, especially for
complex samples, one can start with a problem strongly regularized in terms of
localization with high values for µ∇: the data fidelity is degraded, but the over-
regularization forces the reconstructed object to be localized, and consequently the
simulated data to be well aligned, bettering the registration step. Once the align-
ment of the experimental data is more accurate, the hyper-parameter µ∇ can be set
to lower values, increasing the data fidelity relative weight in the cost function. µ∇

is consequently set to vary from 450 to 90 ([440, 350, 260, 180, 90, 90, 90, 90, 90]).
The results are presented in figure IV.21.
Comparing the reconstructions after the first and the last batch of iteration,

it appears that the regularization is very effective to remove the artifacts due to
the limited angular coverage: the conical shape around the capsules is strongly
diminished. This result can be compared with the reconstructions of chapter III,
section 3.3. In both cases, the lack of angular coverage is not sufficient to fully
reconstruct the capsules surface. Nonetheless a full ring is reconstructed. This
supports the choice of a crown design as presented in section 1 of this chapter.

The effect of the regularization can also be seen on the objects which are sharper
and better localized in the 3D reconstruction after it = 9 batches.

22See next section 5.1 for more details on the culture protocol to produce Matrigel® capsules.
23See appendix C for more details.
24340× 340× 200 voxels of 5.01× 5.01× 5.01 µm3 before scaling.
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Figure IV.21: Results of the inverse problem approach on Matrigel® capsules. First
line - Results of the refinement of the data alignment. The first batch of itera-
tion it1 of the inverse problem is run based on the first picture (here for ϕ = 235◦).
After each batch, the data alignment is refined. The other figure gives the differ-
ence of the extracted data for two different alignments separated by two batches
of iterations with the same gray value scales. Second line - Comparison of the xy
and yz-maximum intensities projections of the reconstructed scattering potential af-
ter the first and the last batch of iterations. Last line - Comparison of the simulated
intensities (here for ϕ = 0◦) after different batches of iterations. The color code of
the arrows is the same than in figure IV.14.

This conclusion can also be observed on the simulated intensities during the
iterations. As expected, the strong regularization at the beginning produces over-
regularized holograms whose background and interference fringes are smoothed. As
the regularization diminishes, the data fidelity is better enforced and the simulations
give sharper and more detailed holograms.

Finally, figure IV.21 shows the potential and the efficiency of this approach to
refine the data alignment. The gray value indicates the importance of the difference
between two data alignments. A high value means that the correction in the align-
ment is important. As the iterations progress, this correction is less and less visible:
the extracted data converge toward a better alignment. Thus, the alignment refine-
ment and the regularization create a virtuous circle in which they mutually improve
each other as well as the overall reconstruction quality.
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4 Regularized Gerchberg–Saxton algorithm

The algorithm developed in the previous section 3 has a very long runtime.
Indeed, in each iteration, a 3D FFT and N 2D FFTs must be computed twice.
Once for the simulation of the diffracted wave in the data fidelity term and once
for the computation of its gradient. With the addition of the computation of the
regularization terms and their gradient in 3D, each iteration can be very long.

In the previous section 3, the inverse problem approach is initialized by a constant
matrix equal to 0. Finding a better first guess of the reconstructed volume to
initialize the loop can reduce the time needed to achieve convergence.

A new algorithm is implemented whose base comes from a discussion with Volker
Jaedicke from the University of California, Berkeley about standard algorithms in
digital holography microscopy and optical diffractive tomography that he presented
during his talk at BiOS 2017. They are based on a Gerchberg-Saxton algorithm
similar to the one presented in chapter I, section 3.

Such a structure has been modified in this PhD work to integrate regularization
on the reconstructed object. A similar idea was also independently implemented
in the context of the 2D lens-free microscopy [61] in which a 2D propagations and
back-propagations loop alternates with a regularization step.

4.1 A modified Gerchberg–Saxton algorithm

This algorithm is based on the possibilities given by the Fourier diffraction the-
orem (II.18) to be used as a simulation or a reconstruction tool, as explained in
chapter II, section 2.2.

This can be used in a back and forth loop between the recorded holograms and
the reconstructed object as presented in the context of 2D lens-free microscopy in
figure I.9.a. Once again the combination of the three wavelengths is a constraint on
the object to close the loop.

But stronger constraints can be derived for the domain of definition of the object.
Indeed, it has been mentioned in chapter II, section 1 that the refractive in-

dex can be interpreted as the absorption (the imaginary part) and the desaph-
ing property (the real part) of the sample. For absorbent and transparent ob-
jects, they cannot physically be negative25. This leads to the positivity con-
straint: C (δn) = {δn/R (δn) ≥ 0, I (δn) ≥ 0}.

If the object is described by its scattering potential f , remembering that the
models and algorithms are developed for low scattering objects, the approxima-
tion (II.54) leads to a similar constraint C (f) = {f/R (f) ≥ 0, I (f) ≥ 0}.

The Fourier diffraction theorem and these constraints are the bricks of the
Gerchberg-Saxton algorithm used in digital holography microscopy and optical
diffractive tomography[44] which iteratively loops over the following steps:

25Excepted for air bubbles for example, it is indeed expected that the reconstructed objects are
more dephasing than their surrounding aqueous medium implying that R (δn) ≥ 0.

139



IV A second design and new reconstruction methods

• Step 1: At the first iteration it = 0 of the algorithm, the complex waves on the
sensor at the different illumination j ∈ [[1, N ]] are initialized with moduli corre-

sponding to the recorded intensities and a phase set to 0: U j
tot,0 =

√
Ijd. In the

next iterations, step 1 insures the data fidelity. The complex waves simulated

in step 4 are updated to match the recorded dataset: U j
tot,it =

√
Ij

d

|Uj
tot,it−1|U

j
tot,it−1 .

• Step 2: The 3D Fourier domain f̂ is mapped with the corresponding diffracted
waves U j

dif,it according to the Fourier diffraction theorem (II.18).

• Step 3: Constraints C are applied on the real and imaginary parts of the
updated retrieved object.

• Step 4: Using the Fourier diffraction theorem (II.18) as a direct model, a new
set of complex waves U j

tot,it is simulated.

This iterative loop is schemed in figure IV.22. Its number of iteration is
noted nbGSit . As explained in chapter II, section 3, the interpolation in the Fourier
domain cannot be linear. Consequently, for the direct model and the reconstruc-
tion algorithm, the interpolations in the Fourier domain are based on the nearest-
neighbor technique.

Given the microscope geometry, the angular coverage of the lighting positions
is very limited. This algorithm is not efficient to properly compensate this lack
of information in the dataset. It is consequently only used on a few iterations to
initialize the reconstruction. Then, a new step is added in the loop, between steps 3
and 4, leading to the blue loop in figure IV.22. This step 3.2 consists in regularizing
the object. To do so, a minimization problem is defined as:

J (O) = µL1

1
nbvxnb

v
ynb

v
z

‖O‖L1,ǫ

︸ ︷︷ ︸
sparsity constraint JL1,ǫ(O)

+ µ∇
1

nbvxnb
v
ynb

v
z

‖∇O‖L1,ǫ

︸ ︷︷ ︸
gradient sparsity constraint J∇,ǫ(O)

(IV.39)

and new minimization problem:

Õ = argmin
C(O)

J (O) = argmin
C(O)

µL1JL1,ǫ (O) + µ∇J∇,ǫ (O) (IV.40)

where O can either be the refractive index δn or the scattering potential f . The L1

norm and the 3D gradient∇. have the same definition than in the previous section 3.
Their gradient is given by appendix D. C (O) are the constraints on the domain of
definition of O previously defined for the Gerchberg-Saxton loop.

The resolution of the minimization problem (IV.40) is performed with the same
convex optimization algorithm [90] introduced in the previous methods, in sections 2
and 3 of this chapter.

The aim of this regularization is to reduce the artifacts of the reconstructions
due to the limited angular coverage and the lack of phase information in the dataset
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Figure IV.22: Scheme of the Gerchberg-Saxton algorithm. Step 1: The algorithm
is initialized with a set of complex waves. Their modulus is directly the square root
of the recorded intensities. Their unknown phase is initialized to 0. Step 2: These
waves are used to map the 3D Fourier domain of the object f̂ using the Fourier
diffraction theorem. Step 3: Domain constraints are applied on the simulated ob-
ject f . Step 4: The new object is used to simulate a new set of complex waves using
the Fourier diffraction theorem as a direct model. Step 1: The algorithm loops to
start a new iteration. Data fidelity is performed by keeping the simulated phase and
replacing the simulated modulus by the recorded dataset. In between the steps 3
and 4, an additional step can be added: step 3.2. After applying the constraints,
the object is regularized with a sparsity constraint on the object and its gradient.

recorded by the sensor. To accelerate the cleaning of the artifacts, there is no
data fidelity term in the cost function (IV.39). The data fidelity is only ensured
later in the loop by step 4. As a consequence, the solution of the minimization
problem (IV.40) is the volume O = 0. Thus, a limited number of iterations nbGSreg is
performed, on which the sparsity prior efficiently cleans the noise and artifacts with
low values while the edge-preserving regularization maintains high the signal on the
objects limiting their convergence toward the trivial solution 0.

Let’s mention here that to directly reconstruct the refractive index δn, an inver-
sion formula for equation (II.7) is needed to get δn from the scattering potential f .
Mathematically, this inversion is not possible because of the squaring and it exists
two solutions:

δn (f, n0) = n0

(
|1 + f |0.5 eiϕ(1+f)/2+sπ − 1

)
(IV.41)

where s can be equal to 0 or 1 and ϕ (c) gives the argument of a complex number in
the range [0, 2π]. Nevertheless, as stated above, δn cannot have a negative imaginary
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part26. It implies that:

ϕ (1 + f) /2 + sπ ∈ [0, π]⇒ s = 0 (IV.42)

Hence, the inverse formula can be defined as:

δn (f, n0) = n0

(
|1 + f |0.5 eiϕ(1+f)/2 − 1

)
(IV.43)

Finally with this algorithm, when the step 4 is reached, the data fidelity of the
simulated complex waves can be strongly degraded. Indeed, the regularization step
forces the objects to be localized and cleans the noise. As in the previous method,
section 3, this new set of simulated waves can consequently be used to refine the
alignment of the experimental data. This improves the overall reconstruction of the
object. To do so, between step 4 and step 1, the experimental data are aligned with
the simulated intensities via a least squares minimization of the difference between
the latter and the former as detailed in appendix C.

This alignment step is time consuming and is not performed at each iteration of
the loop.

In the following, the number of regularized loops of the Gerchberg-Saxton algo-
rithm is noted nbGS,rit .

4.2 Numerical simulations

To test the efficiency of the proposed algorithm, total wave fronts are simulated
for a known numerical object presented in figure IV.23.a. It is composed of 256 ×
256× 200 voxels of 1.673 µm3 for a volume of 427× 427× 344 = 6.1 107 µm3 with
cells of refractive index difference of δn = 0.005i with a normal dispersion of δn/10.
These cells are randomly spread in ten clusters of three cells of identical refractive
index and radius rc = 10 µm and four trains of 200 cells of identical refractive index
and radius rc/3 crossing the volume.

32 holograms of 256× 256 pixels are simulated with the Fourier diffraction the-
orem by padding the 2D and the 3D spaces and using a linear interpolation, for an
illumination direction of θ = 45◦ and ϕ ∈ [0◦, 285] (∆ϕ = 9.1◦), for the three RGB
wavelengths λ ∈ {640 nm, 520 nm, 450 nm}, in water27 n0 = 1.33 and for a sensor
distance of zs = 1 mm. To test the robustness of the iterative phase retrieval algo-
rithm, a Gaussian noise is added to the intensities with σ = 0.1 (see figure IV.23.b).

Different values are tested for µL1 and µ∇. It is also tested to only apply the L1

regularization or the ∇-regularization. In the first case, the regularization tends
homogeneously toward zero in a few iterations and the regularization step is use-
less. In the second case, the background noise and the twin-image artifacts in the
3D reconstructions are neither cleaned nor reduced and then get amplified in the
Gerchberg-Saxton loop.

26This is physically impossible. Otherwise the object would behave as a light emitter.
27The effective angle for the reconstruction is then θ0 ≃ 32.1◦ according to the analysis done in

chapter III, section 5.
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Figure IV.23: (a) xy and xz-average intensity projections of the simulated object.
On each view, the colors codes for the depth: the shallowest in blue, the deepest in
red. (b) Example of a simulated noisy hologram in the green channel for ϕ = 0◦.
(c) 3D rendering of the reconstructed volume with the regularized Gerchberg-Saxton
algorithm under the constraints R (f) = 0 and I (f) ≥ 0.

These studies are not presented here. In all the reconstructions presented in this
thesis, a fixed ratio of µ∇/µL1 = 1.25 is used.

Several values for nbGSreg are tested (also not presented here). nbGSreg = 10 appeared
to be a good compromise between a too low and a too high number of iterations.
If the number of iterations is too low the cleaning of the artifacts is not efficient
and the Gerchberg-Saxton loop puts more artifacts in the reconstructions than the
regularization step is capable of processing. If the number of iterations is too high,
as mentioned above, the minimization (IV.40) rapidly converges toward 0 and the
small objects are erased and consequently not reconstructed.

The reconstructions presented here are based on the scattering potential f
with nbpx = nbpy = 512, dxp = dyp = 1.67 µm, nbvx = nbvy = 256, nbvz =
200, dxv = dyv = dyv = 1.67 µm, zs = 2 mm, n0 = 1 with two different
constraints on the domain of definition of f : C (f) = {f/R (f) ≥ 0, I (f) ≥ 0}
and C (f) = {f/R (f) = 0, I (f) ≥ 0}.

The two reconstructions are run on 15 iterations with nbGSit = 6 and nbGS,rit = 9
(see figure IV.22). The results are presented in figure IV.24.

The role of the different elements of the algorithms can be well identified.
The first iteration it = 1 is equivalent to the Fourier mapping method intro-

duced in chapter III, section 4 just adding a projection of the results on the con-
straints C (f). As previously, the twin-image artifacts are presented around the
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Figure IV.24: xy and xz-average intensity projections of the reconstructed vol-
ume at different iterations it ∈ {1, 6, 7, 15} of the Gerchberg-Saxton loop for two
different domain of definitions: C (f) = {f/R (f) ≥ 0, I (f) ≥ 0} and C (f) =
{f/R (f) = 0, I (f) ≥ 0}.

objects and the background is blurred and noisy.
After a few step of the Gerchberg-Saxton algorithm at it = 6, the choice of the

constraints on the domain of definition appears to be critical. If the constraint is not
strong enough, as in figure IV.24.a, the only effect of the algorithm is to enhance the
amplitude of the reconstruction. But the artifacts are also proportionally enhanced.
In figure IV.24.b, a more limiting constraint is applied and even if the background
is still noisy, the twin-image artifacts completely disappear28.

Even after just one regularized loop29 at it = 7 the effect of the regularization
can be seen: a huge part of the noise in the background is erased or is at least
smoothed to a negligible value. On the contrary, as expected, the objects are more
localized with sharper edges and an enhanced contrast. In figure IV.24.a the twin-
image, more spread and consequently more sensitive to the L1-regularization than
the ∇-regularization, tends also to be smoothed with the background rather than
being enhanced with the object signal.

The following iterations continues this cleaning effect and at the end, at it = 15,
a huge part of the artifacts has been removed. In figure IV.24.a some noise remains
at the center of the volume in the crowded area. The strong regularization in
figure IV.24.b gives an almost perfect result compared with the initial volume in
figure IV.23.a, even in this difficult area. A 3D rendering of this reconstruction is
shown in figure IV.23.b. The main remaining artifact is directly the shadowing effect

28One could draw a parallel with the results obtained in chapter IV, section2 for the 2D phase
retrieval algorithm. The twin-image is contained in the bright/positive parts of the transmissive
plane. In 3D they seem to be contained in the real part of the scattering potential.

29That is to say after a regularization via step 3.2 of figure IV.22 and a Fourier mapping.
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due to the limited opening angle θ which prevents from reconstructing the simulated
cells as spheres but rather as a double conical shape elongated along the z-axis.

More tests should be done combining objects with purely real or purely imaginary
or combined refractive index δn to test the efficiency of the constraints C (f) in the
different cases.

4.3 3D reconstructions on experimental data

This section presents some tests of the regularized Gerchberg-Saxton algorithm
on experimental data acquired on two different cell cultures: prostate epithelial cells
(RWPE1) grown in Matrigel® capsules and murine epithelial cells encapsulated and
grown in alginate shells with tubular shape.

RWPE1 cell culture The reconstructed dataset30 is composed of 31 holograms in
the three RGB channel λ ∈ {640 nm, 520 nm, 450 nm} of 10242 pixels of 1.672 µm2.
Their alignment is provided by the inverse problem approach on the full resolution
reconstruction introduced in the next section 5.3.

The reconstruction parameters for the 3D volume are ϕ ∈ {0◦, 285◦}, ∆ϕ =
9.4◦, θ = 45◦, λ = 520 nm, zs = 3.52 mm. As mentioned at the end of the previous
chapter in section 5, a scaling factor is applied on the z-axis using equation (III.39)
as the data are reconstructed for an angle θ = θair = 45◦: z0/zair = 1.5930. The
reconstructed volumes31 is composed 512×512×300 voxels of 3.34×3.34×3.34 µm3

for a final volume of 1.7× 1.7× 1.6 mm3 ≃ 4.7 mm3.
The reconstruction is based on the scattering potential f with a positivity

constraint on the domain of definition: C (f) = {f/R (f) ≥ 0, I (f) ≥ 0}. The
2D and 3D spaces are zero-padded. The reconstruction is run on 100 iterations
with nbGSit = 11 and nbGS,rit = 89 (see figure IV.22). The results are presented in
figure IV.25. For the sake of visibility, only a part of the volume along the z-axis is
pictured, the rest of the volume being mainly empty.

Looking at figure IV.25.b, especially at the center of the field of view, the algo-
rithm shows its capability to work on big objects which are strongly overlapping.
The small objects are well localized and contrasted with a clean and dark back-
ground. Their spatial elongation along the z-axis seems limited and in the same
order of magnitude than their xy-extension. On the xy-projection the objects have
sharp edges and there is no evident sign of twin-image artifact. It is possible to iden-
tify the edges of the capsules which are completely invisible on the raw holograms
of figure IV.25.a. They shape a honeycomb structure on the xy-projection.

Comparing the figures IV.25.b-e, the same features than in the simulations previ-
ously analyzed can be identified. Between it = 1 and it = 11, the simple Gerchberg-
Saxton loop increases the reconstructed amplitude and the background appears
very noisy with twin-image around the big objects. After the first regularized loop,

30The cells conditioning and the culture protocol of this experiment are given in the next sec-
tion 5.1.

31512× 512× 300 voxels of 3.343 µm3 before scaling.
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Figure IV.25: Reconstructed scattering potential of a RWPE1 cell culture in
Matrigel® capsules. (a) Raw data in the green channel λ = 520 nm. (b) Orthogo-
nal average intensity projections of the reconstructed volume at iteration it = 65.
(c-f) xy-average intensity projections at the center of the reconstructed volume at
different iterations it ∈ {1, 11, 12, 100}. The red arrow points at a diverging area.
On each view, the colors codes for the depth: the shallowest in blue, the deepest in
red. (g) Evolution of the data fidelity term Jd (f) during the iterations normalized
to its minimum and maximum values. Black arrows point at the iterations shown
on (b-f).

at it = 12, a large part of the background has seen its noise diminish but the
twin-image is still present. During the iterations, the contrast of the reconstructed
signal continues to increase as the twin-image disappears to reach the results of
figure IV.25.b at it = 65.

The effects of the regularization can also be seen on the data fidelity term32 Jd (f)
computed at each iteration. Between it = 11 and it = 12 the first application of the
regularization strongly degrades the data fidelity whose cost function starts again

32Introduced in the previous section 3 in equation (IV.18).
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to diminish afterward but with a lower convergence rate.
Something unexpected happens at it = 65. The convergence curve reaches a

local minimum and then starts to diverge. This is due to the regularization step
which begins to degrades the reconstruction and its data fidelity more than the
Fourier mapping is able to compensate. This can be seen in figures IV.25.b,f where
red arrows point at a large cluster of cells whose reconstructed amplitude starts to
diverge.

Murine epithelial cell culture In this cell culture33, epithelial cells (EpH4
J3B1A, murine mammary gland derived cells) are encapsulated and grown in al-
ginate shells with tubular shape. These alginate tubes are obtained with a protocol
adapted from [93]. Briefly, a coaxial flow device is obtained by 3D printing (Micro
Plus Hi-Res, EnvisionTEC) and is used to generate a multi-layered jet. This method
leads to the formation of an external alginate hydrogel shell, coated internally with
a layer of Matrigel® matrix (Corning, #354248, New York, USA) in order to recon-
stitute the extracellular matrix. A Matrigel® concentration of 40% v/v is used to
completely cover the inner wall of the alginate tube.

The principle of the microfluidic device is represented in [94]: the solution con-
taining both the cells and the Matrigel® is injected in an inner channel, an insulating
layer is made by injection of a 300 mM solution of sorbitol (Merck) in an interme-
diate channel and a 2.5% w/v solution of sodium alginate (Protanal LF200S; FMC)
is injected in an external channel. The final multi-layered jet at the exit of the
microfluidic device is directed in contact with a gelation bath containing 100 mM
calcium chloride CaCl2 (VWR International).

Once alginate tubes are formed, they are washed with DMEM medium (Dul-
becco’s Modified Eagle’s medium - Invitrogen) supplemented with 10% v/v FBS
(Fetal Serum Bovin - Invitrogen), 1% NEAA (MEM Non-Essential Amino Acids
- Invitrogen) and 1% antibiotics (penicillin-streptomycin 10000 U.mL−1 - Invitro-
gen) in order to remove the calcium chloride. They are then maintained in DMEM
medium supplemented with 10% v/v CS (Calf Serum - Invitrogen) and 1% antibi-
otics (penicillin-streptomycin 10000 U.mL−1 - Invitrogen) in humidified atmosphere
containing 5% CO2 at 37◦C.

Two acquisitions sets are captured on two different Petri dishes with the new pro-
totype that is presented in the next chapter V, section 1. The reconstructed datasets
are composed of 3 × 32 holograms of 10242 pixels of 3.342 µm2 acquired with ϕ ∈
{0◦, 305◦}, ∆ϕ = 9.8◦ in the three RGB channels λ ∈ {640 nm, 520 nm, 450 nm}.
The final 3D grids are made of 512×512×256 voxels of 6.683 µm3 for a final volume
of 3.4× 3.4× 1.7 mm3 ≃ 20 mm3.

The data alignment is done in the green channel by the least mean squares
minimization algorithm on the raw data using a cell hologram as reference. This
alignment is then refined using the three wavelengths available with manual super-
vision.

33Kindly given by Caterina Tomba from Aurélien Roux’s Lab at the University of Geneva.
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The first acquisition is also reconstructed at higher resolution with extracted
regions of interest of 10242 pixels of 1.672 µm2 for a final 3D grid of 512× 512× 256
voxels of 3.343 µm3 and a final volume of 1.7× 1.7× 0.85 mm3 ≃ 2.5 mm3.

For the three reconstructions, only a padding on the z-axis nbpadz = 2 × nbz is
applied. The iterations started with a batch of 6 not regularized iterations. Then,
all the iterations are regularized and a refinement of the data alignment is performed
every 3 iterations34.

Concerning the reconstruction parameters, the angle θ = 45◦ is corrected to
get the effective angle35 in water θ0 ≃ 32.1◦. A similar constraint C (f) =
{f/R (f) ≥ 0, I (f) ≥ 0} on the domain of definition of the scattering potential f
is applied for the three reconstructions. Finally, for the first set of acquisi-
tions, zs = 2.95 mm and for the second, zs = 2.875 mm.

As previously, for the sake of visibility, only a part of the volume along the z-axis
is pictured, the rest of the volume being mainly empty.

Figure IV.26 shows the results of the reconstruction of the first data set whose
number of iterations is pushed to it = 551. Figure IV.26 shows the reconstruction at
higher resolution of the center of the volume. The iterations are stopped at it = 69.
Figure IV.28 shows the results of the reconstruction of the second data set whose
number of iterations is pushed to it = 298.

Once again, it appears in all the figures that between it = 1 and it = 6, the simple
Gerchberg-Saxton loop increases the reconstructed amplitude and the background
noise without any influence on the reduction of the twin-image artifacts. The first
regularized loop smooths the noise but is inefficient in removing the artifacts due to
the lack of phase information in the data. The following regularized loops efficiently
clean this artificial signal without erasing the small objects and isolated cells.

All these effects are very marked on the blue areas (the shallowest) in the empty
spaces which are only cleaned during the regularized loops.

Another effect of the ∇-regularization is to fill the signal of the tube wall (see
figure IV.26.a). At first, at iterations 6 and 7, the tube wall and its twin-image have
similar intensities. At it = 83, the twin-image is removed but not the tube whose
intensity is nevertheless low. At it = 551, the tube signal has increased.

The usefulness of the regularization and the refinement of the data alignment
steps is also seen in the xz-projections of figures IV.26 and IV.27. First of all
the global background noise is removed and secondly, the spatial elongation of the
objects along the z-axis is reduced. But once again, it is not sufficient to reconstruct
the full section of the tube. As previously for the Matrigel® capsules, it is only visible
in the central xy-plane.

One can note that the influence on the reconstruction edges of the absence of
padding is very limited, especially in the two reconstructions at very low resolution.
This comes from the limited spatial coherence of the incident wave front. The
interferences have a spatially limited impact outside the field of view.

34Excepted for the first set of acquisitions reconstructed at low resolution. The refinement step
is stopped after it = 75.

35According to the analysis done in chapter III, section 5.
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4 Regularized Gerchberg–Saxton algorithm

Figure IV.26: Reconstructed scattering potential of murine epithelial cells en-
capsulated and grown in alginate shells with tubular shape. (a) Orthogonal av-
erage intensity projections of the reconstructed volume at iteration it = 83. On
the xy-view, the medallions present a given region of interest at different itera-
tions it ∈ {1, 6, 7, 83, 551}. On the xz and yz-views, the medallions present the
reconstructions at different iterations on different parts of the projections. (b-
e) Transversal views of the 3D volume along their corresponding colored lines on (a).
(b), (c) and (e) are slices. (d) is a maximum intensity projection of an extracted
volume, cored along the orange rectangle in (a).

Looking at the transversal slices (b-e) in figure IV.26, the lens-free microscope
shows all its potential to study large scale structures36. Despite the elongation of
the objects on the z-axis and the fact that the tube section is not reconstructed, the
tubular shape is clearly visible when scattering objects are lying on the tube surface.
The tube section can either be circular as expected (e) or squeezed (c-d). In (b),
the red curve follows a bump which can be interpreted as a detachment of the cell
layer from the tube wall37. Figures IV.26.d-e shows the possibility to reconstruct

36Let’s remind here that the field of view is 3.4× 3.4× 1.7 mm3 ≃ 20 mm3.
37A phenomenon observed by Caterina Tomba and her colleagues and that they would like to

study with more details on large scales.
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Figure IV.27: Orthogonal average intensity projections of the cell culture presented
in figure IV.26 reconstructed at higher resolution at iteration it = 69. On the xy-
view, the medallions present a given region of interest at different iterations it ∈
{1, 6, 69}. On the xz and yz-views, the medallions present the reconstructions at
different iterations on different parts of the projections.

the layer even if the objects are slightly overlapping.
In figure IV.29, the data fidelity terms show a small bump when the first reg-

ularized loop is run which degrades the data fidelity similar to that observed in
figure IV.25.g. But more noticeable, the two low resolution reconstructions also
show a divergence after a given number of iterations stressed by the black arrows.

The effect mentioned earlier about the amplitude divergences on extended objects
is even more visible in these two figures where all the big objects "expand" and diverge
as seen in the medallions of the last iterations. The red arrows point at some of
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5 Comparison of the algorithms

Figure IV.28: Orthogonal average intensity projections of a cell culture similar the
one presented in figure IV.26 at iteration it = 64. On the xy-view, the medallions
present a given region of interest at different iterations it ∈ {7, 64, 298}.

them in the xy and xz-projections in figure IV.26.a.
Once again, it appears that it is not useful to execute a too large number of

iterations. At a given iteration, the reconstruction starts to diverge.

5 Comparison of the algorithms

The objective of this section is to compare the main algorithms which are devel-
oped in this thesis.

To summarize, four algorithms are implemented to overcome the two main pit-
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Figure IV.29: Evolution of the data fidelity term Jd (f) during the iterations of the
reconstructions presented in figures IV.26 (ROI 1), IV.27 (ROI 1 (zoom)) and IV.28
(ROI 2). The curves are normalized by their first value.

falls of lens-free tomographic acquisitions: the lack of phase information in the in-line
holographic configuration and the limited angular coverage. The four designed fully
3D reconstruction algorithms are all based on the Fourier diffraction (II.18) theorem
as used in standard diffractive tomography [44, 45, 46, 71]. They lead to an increas-
ing reconstruction quality at the cost of an increased complexity. For the sake of
clarity, in the following, they are referenced as:

• Method III.4: the Fourier mapping method - Introduced in chapter III,
section 4, it reintroduces an approximation of the unmeasured phase by a
phase ramp in the dataset.

• Method IV.2: the 2D phase retrieval method - Introduced in chapter IV,
section 2, it performs an iterative phase retrieval based on a regularized in-
verse problem approach on each 2D acquisition. In comparison to the former
method, this algorithm handles better the lack of phase information in the
data acquisition process by estimating a realistic guess for it.

• Method IV.3: the 3D inverse problem approach - Introduced in chap-
ter IV, section 3, it also uses the regularized inverse problem formalism, but
directly applied on the whole dataset and the unknown 3D object, the Fourier
diffraction theorem providing the direct model. Doing so, at the cost of an
increased computation time, it overcomes the limited number of acquisitions
and admissible angles around the sample by directly adding constraints on the
3D object.

• Method IV.4: the regularized Gerchberg-Saxton algorithm - Intro-
duced in chapter IV, section 4, it is a hybrid algorithm alternating a Gerchberg-
Saxton type loop between the experimental holograms and the reconstructed
object and a step dedicated to the regularization of the object. This method
also provides a solution for the unknown phase on the sensor and limited
angular coverage.
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5 Comparison of the algorithms

To compare the reconstruction methods in terms of artifact reduction, signal-to-
noise ratio and computation time, they are tested on two experimental datasets: a
HUVEC endothelial cell culture and a RWPE1 prostate cell culture grown in a 3D
extracellular matrix of Matrigel®. The first one presents a planar geometry and the
second one is a complex fully 3D structure.

In the following, the cell cultures experiments are introduced. Then, reconstruc-
tions with the four algorithms are analyzed and compared. The best algorithms are
finally compared with phase contrast and fluorescence microscopy.

This section is mainly inspired from the published paper in the Applied Optics
journal [88]. Nonetheless, some of the results and conclusions differ. Indeed, the
paper only compares the first three algorithms. This section introduces also the
regularized Gerchberg-Saxton algorithm. Furthermore, in the paper, for the first
two methods, when several coefficients are falling into the same voxel in the Fourier
mapping step, only the first one is considered. As mentioned above, it has been
seen later that taking into account all these coefficients by averaging them38 change
a lot the quality of the reconstructed background and consequently of the global
reconstruction39.

5.1 Biological samples

The different 3D reconstruction approaches are tested and compared on two types
of cell models which lead to different morphologies when grown in 3D scaffolds.

Human Umbilical Vein Endothelial Cells (HUVEC)

HUVEC cells (Millipore) are primary cells extracted from human neonatal um-
bilical cords used for many vascular biology research applications, such as inflam-
mation, angiogenesis and blood clotting. The culture is maintained in a sub-
confluent state in culture Petri Dish (113 cm2) coated with fibronectin at 37◦C.
HUVEC cells are grown in EndoGro basal medium (Millipore) supplemented
with 5 ng/mL of rhVEGF, rhEGF, rhFGFb respectively, 15 ng/mL rh IGF-
1, 10 mM L-glutamine, 0.75 U/mL heparin sulfate, 1 µg/mL hyroscortisone hemisu-
cinate, 50 µg/mL ascorbic acid, and 10% FBS.

For the final cell culture, the cells are grown in Matrigel® (BD Biosciences)
according to a no top coat protocol: the cells are directly seeded on the top of a
Matrigel® bed, laid down in the Petri dish and can freely move on this 3D surface.
For polymerization, Matrigel® is incubated for 30 minutes at 37◦C and 4000 to
10000 cells are seeded and allowed adhering for approximately 45 minutes. Then
their complete medium is slowly poured over the attached cells with 4 to 5% of
Matrigel®.

All cells are routinely cultured in a humidified atmosphere with 5% CO2 at 37◦C
for a day.

38As done in this chapter.
39The interested reader can compare the results with methods III.4 and IV.2 presented in [88]

and in this section.
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Prostate Epithelial Cells (RWPE1)

RWPE1 cell line is obtained from ATCC (ATCC CRL-11609). This cell line
is derived from non-neoplastic human prostate epithelial cells by immortalization
with human papillomavirus. RWPE1 cells are used as a model for normal prostate
epithelial cell behavior as characterized by a polarized acinar morphology in 3D
cultures. RWPE1 cells are maintained in KSFM (Life Technologies) supplemented
with 5 ng/mL Epidermal Growth Factor (Life Technologies), 50 µg/mL Bovine
Pituitary Extract (Life Technologies) and 1% Penicillin-Streptomycin (Life Tech-
nologies). Cells are passaged upon 70% confluence and seeded at 20000 cells/mL
density. All cells are routinely cultured in a humidified atmosphere with 5% CO2

at 37◦C.

Cell number and viability is measured by trypan blue dye exclusion staining
using an EVE™ Automatic Cell Counter (NanoEnTek).

For the final 3D cell culture, Matrigel® (BD Biosciences) capsules are produced
using a microfluidic chip with flow focusing geometry as described in [52, 95]. For
the acinar morphogenesis assay, RWPE1 cells in Matrigel® capsules are allowed de-
veloping into clusters by clonal division for 7 days in KSFM (Life Technologies) sup-
plemented with 50 ng/mL Epidermal Growth Factor (Life Technologies), 2% Foetal
Bovine Serum (Life Technologies), 1% Matrigel® and 1% Penicillin-Streptomycin
(Life Technologies) in multiwell plates. Cell culture medium is changed every two
days.

Finally, capsules are washed twice with medium and are then embedded in
Matrigel® deposited at the center of Greiner petri dishes (Sigma-Aldrich) and al-
lowed polymerizing for 30 minutes at 37◦C. Culture medium is subsequently added.

Acquisitions of the microscope views (RWPE1)

For comparison purpose, microscope acquisitions are performed on the RWPE1
cell culture. The clusters in capsules are labelled with 10 µM CellTracker™ Orange
CMTMR dye (Thermo Fisher Scientific) in media for 30 minutes at 37◦C. Finally,
the RWPE1 culture is fixed using 2% paraformaldehyde 1% glutaraldehyde for 20
min.

During these steps, the cell culture could have been slightly modified and some
structures washed away. As the aim is to compare the z-positioning and the shape
of some objects, it is however deemed sufficient.

z-stacks of phase and fluorescence images are acquired using an AxioObserver.Z1
inverted microscope (Zeiss) with a N-Achroplan 5x/0.13 Ph0 air objective mounted
with an AxioCam 503 monochrome digital camera. Acquisitions are performed on
150 slices equally spread40 on ∆z = 300 µm.

40In the air, not in the culture medium.
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5.2 3D reconstructions

Reconstruction parameters

The two 3D cell cultures are similarly processed, working directly on their scat-
tering potential f .

Acquisitions - Both datasets are composed of 3 × 16 acquisitions done at 16
different angles ϕ ∈ {0◦, 282◦}, ∆ϕ = 18.8◦ in the three available wavelengths
of the RGB LED λ ∈ {630 nm, 520 nm, 450 nm}. In each dataset, a region of
interest of 1024 × 1024 pixels of 1.672 µm2 is selected41. The only limitation in
this selection is that the observed region must be in all the pictures of the dataset.
A representative region of each dataset is chosen by encompassing several typical
structures, i.e. branches for the HUVEC network, and capsules and clusters for the
RWPE1 culture.

Reconstruction volume - To reduce the computing time and the memory
consumption, the final reconstruction42 is composed of 512×512×300 voxels of 3.34×
3.34 × 5.32 µm3 for a global volume of 1.7 × 1.7 × 1.6 mm3 = 4.7 mm3. Knowing
that the reconstruction angle is θ = 45◦ in the air, the voxels are not orthonormal to
take into account the distortion on the z-axis induced by the refraction between the
air of refractive index nair = 1 and the culture medium43 of refractive index n0 =
nH20 = 1.33. For the HUVEC cell culture, zs = 3.3 mm and for the RWPE1 cell
culture, zs = 3.32 mm. For the sake of visibility, only a part of the volumes along
the z-axis are displayed, the rest of the volume being mainly empty.

Data alignment - The initial data alignment is done by the least mean squares
minimization algorithm on 2D reconstructed data. This alignment is used to initial-
ize method IV.3. The results of the alignment refinement steps of this method are
then used to initialize the three other methods.

Method IV.2 - The three available wavelengths are used together to improve
the 2D phase retrieval via the minimization problem (IV.6). As mentioned earlier the
effective 2D transmissive plane δt is supposed to be independent of the illumination
wavelength. To insure non-emissive objects, the constraint C (δt) is chosen to force δt
to have a negative real part: R (δt) ≤ 0 as explained earlier for method IV.2. lcoh is
set to 500 µm and the hyperparameters to µL1 = 0.5 and µ∇ = 0.1. The number of
iterations is fixed to nbPRit = 100.

Method IV.3 - For the 3D inverse problem approach, the iterative process is
split in seven batches of nbIPit = 10 iterations in between which a data alignment
refinement is performed. As explained earlier, the constraints are set to R (f) ≥ 0
and I (f) ≥ 0. It is also mentioned that the values of the hyperparameters can
be changed during the iterations to first favor the alignment step and then the
reconstruction quality. For example, one can start with a small regularization on

411.72 mm2

42512× 512× 300 voxels of 3.343 µm3 before scaling.
43See chapter III, section 5.
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sparsity and increase the hyperparameter µL1 afterwards to enforce the constraint.
To do so, µL1 is set to vary from 0 to 100 ([0, 0, 0, 10, 10, 100, 100] for the HUVEC
dataset and [0, 0, 0, 0, 10, 10, 100] for the RWPE1 dataset). On the other hand,
especially for complex samples, one can start with a problem strongly regularized in
terms of localization with high values for µ∇. It is consequently set to vary from 225
to 75 for the HUVEC dataset ([225, 75, 75, 75, 75, 75, 75]) and from 375 to 75 for the
RWPE1 dataset ([375, 375, 225, 75, 75, 75, 75, 75, 75]). The 2D and the 3D spaces are
padded. For the sake of reconstruction time, the nearest-neighbor interpolation in
the Fourier domain is chosen.

Method IV.4 - The reconstructions are run on 106 iterations with nbGSit = 6
and nbGS,rit = 100. No data alignment refinement is done. As above, the constraints
are set to R (f) ≥ 0 and I (f) ≥ 0, keeping a ratio of µ∇/µL1 = 1.25. For the sake
of reconstruction time, only the z-axis is zero-padded nbpadz = 2× nbz.

Performances of the different methods

Method IV.2 - As expected, the iterative RGB 2D phase retrieval algorithm
developed reduces the numerous artefacts introduced by the lack of phase informa-
tion (see figure IV.30). The sparsity constraint efficiently cleans the noise and the
twin-image signal present in the background of figure IV.30.b: the background in
figure IV.30.c is homogeneous with overlying sharp and contrasting objects.

After a rapid drop in the first 20 iterations for each dataset (see figure IV.31.a),
the cost function (IV.5) barely decreases after the 50th iteration.

Method IV.3 - The convergence curves for the 3D inverse problem (see fig-
ure IV.31.b) are less intuitive as they are not strictly decreasing. This is due to the
fact that all 10 iterations, a data alignment refinement occurs and the values of the
hyperparameters may change. Both of these effects are visible on the curves.

If the registration step does not have a visible effect on the HUVEC convergence
curve, its effect is noticeable between the first and the second batch of the RWPE1
dataset reconstruction. Indeed, between these two batches, at the 10th iteration, the
values of the hyperparameters are unchanged (µL1 = 0 and µ∇ = 375) and so are
the values of the last two terms of the cost function (IV.18). The change in the cost
function from more than 16 % to less than 14 % can therefore only be attributed to
the diminution of the data fidelity term because of a better agreement between the
experimental and simulated data.

The noticeable upward jumps are linked with the change of the value of the
hyperparameter µL1 . It gains a factor 10 at the 30th and the 50th iterations for
the HUVEC reconstruction and at the 40th and the 60th iterations for the RWPE1
reconstruction.

Method IV.4 - As previously seen, the convergence curves for method IV.4
present a bump when the regularization begins to be applied. The number of itera-
tions is nevertheless too low to observe the divergences previously seen. Neverthe-
less, a new behavior can be identified on the RWPE1 curve: small oscillations whose
origin remains unknown.
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Figure IV.30: Example of a RGB phase retrieval performed on the first illumination
position in the HUVEC dataset. (a) Raw acquisition by the sensor with the green
illumination. (b) Modulus of a simple 2D back-propagation of the green intensity to
the object plane. The classical twin-image effect is clearly visible around the isolated
cells and the branches of the HUVEC network. (c) Recovered phase information
in the sensor plane for the green illumination after the iterative RGB retrieval.
(d) Modulus of the retrieved 2D object. Most of the artifacts are erased by the
regularized inverse problem approach.

Reconstruction time - Table [IV.3] compares the running times of the recon-
struction methods. With the phase ramp method III.4, it is directly the time of the
Fourier mapping operation and is quite fast (∼ mins)

As expected, most of the reconstruction time with method IV.2 is spent in the 2D
phase retrieval: several minutes for each of the 16 lighting positions. In details, the
final reconstruction times for the HUVEC and RWPE1 datasets are ∼ 16×5+2 min
and ∼ 16× 7 + 2 min. The last 2 minutes correspond to the final Fourier mapping
operation.

Unsurprisingly, the 3D inverse problem approach IV.3 is slower. The running
time being composed of roughly 60% for the minimization of the problem (IV.18)
and 40% for the data registration refinement.

The last method IV.4 appears to be the slowest one. Nevertheless this statement
must be nuanced. Indeed, during the 106 main iterations, nbGSreg × nbGS,rit = 1000
regularized steps have been performed. This number must be compared with the
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Figure IV.31: Convergence curves of the reconstruction of the HUVEC and RWPE1
datasets. (a) RGB phase retrieval IV.2 performed on the first illumination position
in the HUVEC (see figure IV.30) and RWPE1 datasets. (b) Iterative 3D inverse
problem IV.3. For each dataset, the batches of 10 iterations are separated by a
blank in the curve to emphasize the iterations where the alignment of the data
is refined and where a change in the hyperparameters can occur. (c) Regularized
Gerchberg-Saxton algorithm IV.4. A zoom on the second part of the iterations
is shown. All the curves are normalized to their values at the first and the last
iterations.

Method III.4 Method IV.2 Method IV.3 Method IV.4
HUVEC ∼ 1 min ∼ 1 h 20 min ∼ 7 h ∼ 14 h 20 min
RWPE1 ∼ 1 min ∼ 2 h ∼ 10 h ∼ 15 h

Table IV.3: Comparison of the reconstruction times with the different methods. The
increase in the complexity of the reconstruction method significantly lengthens the
computation time. They are obtained with a Matlab® code running on an Intel(R)
Xeon(R) CPU E5-2620 v3 @ 2.40 GHz processor. The code is not fully optimized,
thus the given times must be considered as an order of magnitude for comparison
purposes.

regularized 70 iterations of the inverse problem approach IV.3 which took roughly 6 h
for the RWPE1 dataset for example44. The same number of iterations45 is done in 1 h
by the regularized Gerchberg-Saxton algorithm IV.4.

4460% 10 h
4515 h× 70/1000
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3D reconstructions

In this section, the 3D reconstructions on the two experimental datasets are
compared for the four methods.

HUVEC reconstruction - Figure IV.32 presents 3D views of the reconstructed
volume. The solution of the inverse problem approach IV.3, which gives the sharpest
3D view is kept for the 3D rendering whereas the result of the Gerchberg-Saxton
algorithm IV.4, which gives the most contrasted reconstruction, is kept for the or-
thogonal projections. Figure IV.33 compares the different methods.

Figure IV.32: 3D reconstruction of the HUVEC dataset. The cells spread on the
Matrigel® surface and the final network is overall planar. (a) Raw data at the three
wavelengths and at different angles. (b) 3D visualization of the reconstructed vol-
ume with the 3D inverse problem method IV.3. (c) Orthogonal maximum intensity
projections of the constructed volume with the regularized Gerchberg-Saxton algo-
rithm IV.4. On each view, the colors codes for the depth: the shallowest in blue,
the deepest in red.

It clearly appears on the volume slices in figures IV.33.a-d that methods IV.2,
IV.3 and IV.4 strongly diminish the artifacts of the phase ramp solution III.4 by
cleaning the twin-image from the background (see the red arrows in the profiles of
figure IV.33.i). One can nevertheless see on the orthogonal views in figures IV.33.e-
h that strong artifacts remain in the reconstructions performed with method IV.2.
They are due to the limited angular coverage: the cone shapes around the contrasted
objects are characteristic of the angle θ at which the sample is illuminated.

On a qualitative point of view, method IV.4 provides the best results in term of
contrast and artifact reduction. The objects are well contrasted and the background
is homogeneously black in both the xy and xz-views. With method IV.3, the back-
ground is darker than with methods III.4 and IV.2 but some "speckle"-like artifacts
remain.

For morphological and positioning analysis, method IV.2 appears to be sufficient
compared to the two last methods IV.3 and IV.4 (see figures IV.33.b-d). The gain of
contrast in the plotted profiles in figure IV.33.i does not justify the high calculation

159



IV A second design and new reconstruction methods

Figure IV.33: Comparison of the reconstruction methods on the HUVEC network.
(a-d) Slice of the volume at z = 0 µm. The red square and the green spot (0) rep-
resent respectively the areas on which the background and the signal are estimated.
(e-h) Orthogonal xz-slices to the white dashed lines. (i) Profiles drawn along the
colored dashed lines in (a-d). The red arrows point at the twin-image artifacts left
by the phase ramp method III.4 in the reconstruction.

time of methods IV.3 and IV.4, since the three methods give similar results in terms
of segmentation capabilities.

RWPE1 reconstruction - Figure IV.34 presents 3D views of the reconstructed
volume. The solution of the inverse problem approach IV.3, which gives the sharpest
3D view is kept for the 3D rendering whereas the result of the Gerchberg-Saxton
algorithm IV.4, which gives the most contrasted reconstruction, is kept for the or-
thogonal projections. Figure IV.35 compares the different methods.

The HUVEC network is overall planar compared to the RWPE1 cell culture
which is more complex with overlapping structures spread on a large scale along
the z-axis (see figures IV.34.b-c). It appears that the previous remarks on the
artifacts reduction still holds (see figures IV.35.a-h).

Besides, some 3D structures only contrast from the background with meth-
ods IV.3 and IV.4. This is particularly visible on the profiles in figure IV.35.i in
which the signal of small individual objects strongly peaks (such as the one pointed
by the green arrows) in all the reconstructions, whereas some bigger objects have
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Figure IV.34: 3D reconstruction of the RWPE1 cell culture. The cells tend to form
clusters when embedded in Matrigel®. (a) Raw data at the three wavelengths and
at different angles. (b) 3D visualization of the reconstructed volume with the 3D
inverse problem method IV.3. (c) Orthogonal maximum intensity projections of the
constructed volume with the regularized Gerchberg-Saxton algorithm IV.4. On each
view, the colors codes for the depth: the shallowest in blue, the deepest in red.

a very low contrast with the background artifacts for the first two methods III.4
and IV.2 (such as the one pointed by the red arrows). In addition, the segmenta-
tion between the three structures between the blue brackets along the dashed lines
appears possible only with methods IV.3 and IV.4 (blue arrows in figure IV.35.i).

As for the HUVEC reconstructions, method IV.4 gives the best reconstruc-
tion in terms of background cleaning and contrast on the reconstructed objects.
Method IV.3 is efficient to retrieve the objects and separate them but the previ-
ously identified "speckles" are once again present.

In order to better quantify these differences in the reconstructions quality, a
contrast to noise ratio R is estimated on specific regions of interest and compared
for the four methods. A region of 45 × 45 pixels is selected in a region seemingly
without any reconstructed object to compute the mean value mb and the standard
deviation σb of the background signal. Then spots of 3 × 3 pixels are selected to
estimate their mean intensity ms. The contrast to noise ratio is then computed as
follows:

R =
ms −mb

σb
(IV.44)

This does not pretend to be a rigorous signal to noise ratio estimation. Indeed,
the real signal, which should actually be compared with the reconstructions, is not
known. Moreover, these ratios do not reflect the efficiency of the different methods
to reduce the artifacts: the background is estimated in a region where they seem
to appear minimal, whereas these regions can peak rather high (see the twin-image
in the phase ramp reconstructions in figures IV.33.a and IV.35.a). These ratios
consequently give only an idea on how the different algorithms increase the signal
intensity compared to the background.

First of all, the different contrasts in table [IV.4] confirm that isolated objects
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Figure IV.35: Comparison of the reconstruction methods on the RWPE1 cell cul-
ture. (a-d) Slice of the volume at z = −48 µm. The red square and the green spots
(1, 2, 3) represent respectively the areas on which the background and the signal
are estimated. The blue square is the zone which is reconstructed with a higher
resolution for comparison with a standard microscope. (e-h) Orthogonal xz-slices
to the white dashed lines. The white arrows point at a small object close to a large
cluster of cells. (i) Profiles drawn along the colored dashed lines in (a-d). The green
and the red arrows point at an isolated object and a cluster. The blue arrows point
at noticeable regions in between big structures where the background noise is hard
to erase.

are well reconstructed with a contrast higher than 26 compared to the background
(R0 and R3) for all the reconstruction techniques. The value R1 confirms that
some structures such as the spot 1 (red arrows in figures IV.35.a-d) have a very
low contrast to the background with the 2D phase retrieval IV.2 (b), even less than
with the phase ramp III.4 (a). One needs the 3D inverse problem approach IV.3
(c) or the regularized Gerchberg-Saxton algorithmIV.4 (d) to correctly extract these
structures from the background intensity.

The contrast to noise ratio is higher with method IV.3. One could have never-
theless expected a better contrast based on the scales of the profiles in figures IV.33.i
and IV.35.i. This comes from the standard deviation of the background which gains
a factor of ∼ 21 with this method compared to methods III.4 and IV.2.
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Phase
ramp III.4

2D phase
retrieval IV.2

3D inverse
problem IV.3

Gerchberg-
Saxton IV.4

H
U

V
E

C mb (10−6) 8.68 10.2 83.5 10.1
σb (10−6) 3.22 3.79 79.8 11.1
ms (10−4) 1.02 2.57 26.2 55.9

R0 29 65 32 500

R
W

P
E

1

mb (10−6) 5.32 8.04 54.5 5.26
σb (10−6) 2.36 4.08 53.6 5.55
m1
s (10−5) 2.64 2.18 70.6 55.1

m2
s (10−5) 5.40 8.07 114 172

m3
s (10−5) 6.68 15.1 356 327
R1 9.0 3.4 12 98
R2 21 18 20 310
R3 26 35 65 588

Table IV.4: Details of the estimation of the contrast R for the different areas spotted
in figures IV.33.a-d and IV.35.a-d. The exponents are coherent with the numbering
of these spots in these figures.

The regularized Gerchberg-Saxton technique IV.4 achieves the best contrasts
on all the spotted objects. This comes from its good efficiency in cleaning the
background artifacts as one can see on the profiles in figures IV.33.i and IV.35.i,
where the low values of the orange curves are squeezed by the high dynamics of the
reconstruction.

Concerning the sectioning on the z-direction, the 3D view of figure IV.34.b shows
that objects are widely spread in the three dimensions and artifacts on this direction
seem limited. Looking more closely at the orthogonal views in figures IV.35.e-h, it
appears once again that only the 3D regularized approaches IV.3 and IV.4 are able
to clean the artifacts to correctly retrieve the objects.

Indeed, one can see that the isolated and small objects that are blurred by the
twin-image with the simple phase ramp method III.4 are well reconstructed by the
2D phase retrieval algorithm IV.2 (see figures IV.35.e-f). Added to methods III.4
and IV.2, methods IV.3 and IV.4 efficiently clean the remaining artifacts due to
the lack of angular coverage. Objects in the vicinity of the big clusters of cells are
now visible and well separated (see white arrows in figures IV.35.e-h). Nonetheless,
their shape normally spherical appears rather straight with the inverse problem
approach IV.3. This is once again due to the impossibility of acquiring widely
distributed polar angles (θ-angle in figure IV.6): the algorithm cannot recover the
information which is in the zones of shadow of the clusters. Method IV.4 seems to
slightly correct this effect but provides less sharp edges.

To conclude this analysis, figure IV.34.c must be compared with the reconstruc-
tions of the previous section 4.3 where 31 ϕ angles are used. This shows that the
number of lighting positions plays a role in the reconstruction quality. As expected,
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its gets better with a higher number of angles: the objects are more contrasted with
sharper edges. With only 16 angles, some of the capsules edges are not reconstructed
and the others are barely visible.

5.3 Comparison with a standard microscope

To further study the sectioning capabilities of the device and the algorithms on
the z-axis, a comparison is made with the acquisitions previously obtained with the
AxioObserver.Z1 inverted microscope (Zeiss).

To do so, a fully 3D reconstruction is performed with a higher resolution on the
RWPE1 cell culture with the 3D inverse problem approach IV.3 and the Gerchberg-
Saxton algorithm IV.4. The region of interest is framed by a blue dashed square on
figure IV.35.d.

Reconstruction parameters

Acquisitions - The dataset is composed of 3×31 acquisitions done at 31 different
angles ϕ ∈ {0◦, 282◦}, ∆ϕ = 9.4◦ in the three available wavelengths of the RGB
LED λ ∈ {630 nm, 520 nm, 450 nm}. The selected region of interest is composed
of 512× 512 pixels46 of 1.672 µm2.

Reconstruction volume - The final reconstruction47 is composed of 512×512×
300 voxels of 1.67× 1.67× 2.66 µm3 for a global volume of 855× 855× 800 µm3 =
0.584 mm3. As previously, the voxels are not orthonormal to take into account
the distortion on the z-axis induced by the refraction between the air of refractive
index nair = 1 and the culture medium, the reconstruction being performed for an
angle θ = 45◦ in the air. The sensor distance is zs = 3.52 mm. For the two methods,
the 2D and the 3D spaces are zero-padded. The constraints on the reconstructed
scattering potential are set to R (f) ≥ 0 and I (f) ≥ 0. For the sake of visibility,
only a part of the volumes along the z-axis are displayed, the rest of the volume
being mainly empty.

Data alignment - The initial data alignment is done by the least mean squares
minimization algorithm on 2D reconstructed data. This alignment is used to initial-
ize method IV.3. The results of the alignment refinement steps of this method are
then used to initialize method IV.4.

Method IV.3 - The iterative process is split in twenty batches of nbIPit = 10
iterations in between which data alignment refinement are performed for the first
fourteen batches (for a total of 13 refinements). For the sake of reconstruction
time, the nearest-neighbor interpolation in the Fourier domain is chosen and the
hyperparameters are varying from 0 to 1000 for µL1 and varying from 375 to 32.5
for µ∇.

46855× 855 µm2

47512× 512× 300 voxels of 1.673 µm3 before scaling.
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Method IV.4 - The reconstructions are run on 46 iterations with nbGSit = 6
and nbGS,rit = 40, keeping a ratio of µ∇/µL1 = 1.25.

3D reconstructions

Comparison of methods IV.3 and IV.4 - For method IV.3, the total re-
construction time is ∼ 30 h whose ∼ 12 h are dedicated to the data registration
refinement. In comparison, method IV.4 ran for ∼ 7 h. With the same reasoning
than above, method IV.3 performed 200 regularized steps in∼ 18 h and method IV.4
400 in almost three times less time48 As predicted in sections 3 and 4 of this chapter,
method IV.3 is the slowest method.

For the two methods, the reconstruction quality is degraded on the z-direction
on the final reconstructed scattering potentials (see figure IV.36). This is due to
the acquisition geometry: it is impossible to rotate the sample to acquire more
specific data on the z-direction. This loss of information leads to a limited number
of coefficients accessible in the Fourier domain of the object as mentioned above.
Nevertheless, the 3D regularization compensates this lack of viewing angles. Even if
all the information is not retrieved, these two algorithms allow cleaning and reducing
artefacts which appear in classical tomographic algorithms with limited angular
coverage [96].

Interestingly, contrary to the previous results, method IV.3 gives the best results.
In figures IV.36.a-b, method IV.4 reconstructs objects which are less contrasted.
Color clarity is better with method IV.3 and color changes (that is to say, dispersion
in heights) in some objects are well visible. In figures IV.36.c-d, even if some capsule
edges reconstructed with method IV.4 are erased, the background quality is higher:
it is darker and homogeneous.

The shape of the clusters can be reconstructed as well as some contrast changes
inside the structures (see figure IV.36.c-d). Let’s insist here again that this is not
quantitative as already mentioned in this work. What seems to be a bridge is visible
between two planes at different z in the yz-slices in figures IV.36.c-d.

Comparison of method IV.3 with microscope views - Figure IV.37.a com-
pares the xy-projections of the lens-free volumes and the phase contrast and fluores-
cence acquisitions. The main structures are common to all the views. Nevertheless,
as mentioned earlier, in the reconstructed volume, single objects (red arrows) arti-
ficially contrast more than extended structures (blue arrows).

The green arrows in figure IV.37.b point at objects of interest in xz-slices. The
positions of these objects in the lens-free reconstruction are coherent with the mi-
croscope acquisitions.

Figure IV.38 presents the comparison of different slices of the fully 3D recon-
structed volume with their microscope counterparts. Despite a non-quantitative

48It means that the following comparison between the two algorithms is fairer than the previous
one, the numbers of regularized steps being in the same order of magnitude (200/400 compared to
70/1000 before).
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Figure IV.36: Visualizations of the reconstructed volume of the RWPE1 dataset at
full resolution with the Gerchberg-Saxton algorithm IV.4 (a,c) and the 3D inverse
problem approach IV.3 (b,d). (a-b) Orthogonal average intensity projections. On
each view, the colors codes for the depth: the shallowest in blue, the deepest in red.
(c-d) Orthogonal slices: xy-slice at z = 48 µm, xz-slice at y = −117 µm, yz-slice
at x = −164 µm.

contrast, one can see that the main structures are accurately reconstructed both in
terms of positioning and morphology49.

49Let’s mention here that the lens-free and microscope volumes are globally matching along
the z-axis before the scaling of the lens-free volume to take into account the refraction effect
between the air and the medium. This is coherent with the fact that the first one is reconstructed
as if the holograms are obtained in the air and that the second ones are acquired by moving the
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Figure IV.37: (a-c) Comparison of the xy-projections of the fully 3D reconstructed
volumes (a - average intensity), the phase contrast (b - average intensity) and the
CellTracker™ visualization (c - maximum intensity). Red arrows point at small
isolated objects. Blue arrows point at big cell clusters. The green arrows point
at different objects of interest. (d-f) Orthogonal slices of the different volumes on
the xz-plane along the corresponding yellow dashed lines. The green arrows point
at different objects of interest. For the phase contrast and fluorescence imaging, the
arrows are placed are the objects seem at their best focus on the xy-plane.

The z-sectioning also appears more selective compared with the focused/un-
focused criterion and is able to separate extended overlapping structures (fig-
ures IV.37.d-f and IV.38). For example, the cluster in the z = 193 µm slice is
well set apart from the cellular branch at z = −33 µm without any bridging artifact
in the z = 105 µm slice. Another example is the structure at the bottom right
of the z = −33 µm slice: it appears separated from the underlying slightly unfo-
cused small cluster visible on the microscope view. This small structure is actually
reconstructed at z = −84 µm (not presented here).

In the slice z = −126 µm, some structures are still visible despite the fact
that this slice is the deepest one into the object and consequently largely beyond
the limits of the model (II.12) developed under the Born approximation since the
incident wave front crossed the entire sample.

With the fully 3D reconstruction, one can also see that the two cellular branches
at z = 193 µm and z = 105 µm are actually bridged in the third dimension: this is
the branch mentioned above, in the yz-slices in figures IV.36.c-d.

translation stage in the air. On both volumes, a scaling factor must be applied to get the distances
in the aqueous culture medium. The same scaling factor than for the lens-free reconstruction is
consequently applied on the microscope acquisitions.
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Figure IV.38: Comparison of the fully 3D reconstructed volume (left) with the
microscope views of phase contrast imaging (middle) and CellTracker™ visualization
(right). Different slices at different depths are presented. At each focusing distance,
the main characteristic structures that are in focus on the phase contrast images are
manually segmented. The red outlines are superimposed on the reconstructed slices
and on the CellTracker™ visualization.
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5.4 Conclusion, discussion and perspectives

The four algorithms are able to overcome the limitations raised by the lens-free
microscope - that is to say the lack of phase information on the data and the limited
angular coverage - in order to retrieve the 3D object but with different qualities
in terms of contrast to noise ratio and computational time. Giving the result in a
single pass, the algorithm based on a phase ramp is fast but leads to a signal which
can be hard to distinguish from the artifacts and the noise. Providing the best
contrast, the algorithms based on the 3D inverse problem approach or a regularized
Gerchberg-Saxton loop can nevertheless be extremely time consuming.

It appears then that the choice to use either an algorithm or another will de-
pend on the targeted application. To identify isolated single cells in a 3D volume,
which produce a strong signal, the first algorithms III.4 or IV.2 can be sufficient.
On the other hand if one aims at reconstructing complex overlapping structures, a
3D regularized method is needed. At high resolution, the 3D regularized iterative
approach IV.3 provides a more pertinent result at the cost of a long runtime. For
low resolution reconstruction, the modified Gerchberg-Saxton loop IV.4 gives the
best results with an equivalent runtime in terms of regularized iterations which is
faster.

Comparisons with standard microscope views show that the fully 3D reconstruc-
tions are accurate in terms of morphology and positioning. The proposed lens-free
device provides a cheap and easy to use tool with a good sectioning in the z-direction
on large volumes. Nonetheless, it has been shown that the reconstructions are not
quantitative in terms of contrast (figure IV.37). The small objects will appear high-
lighted compared to larger structures. This is a limitation of the method and makes
the image prone to interpretation errors.

Beyond this proof of concept, some work remains to be done, especially in terms
of computational time.

As mentioned for method IV.2, the decreasing rate of the cost function sharply
diminishes after the 50th iteration. It would have been possible to stop the al-
gorithm at that point without degrading the reconstruction quality, leading to a
reconstruction time divided by 2. Moreover, all the lighting positions are processed
sequentially, slowing down the all process. Indeed, different lighting positions giving
independent results in this method, the phase retrieval process could be run in a
parallel loop instead of a sequential loop.

The computational time of the regularized approaches IV.3 and IV.4 are their
main pitfall. It is mainly divided between the data refinement and the 3D iterative
problem.

Concerning the first part, the alignment steps are performed sequentially. Since
then, a multi-threaded solution aligning the data by batches in parallel has been im-
plemented. In this case, the registration process is directly divided by the number of
cores of the machine: 12 with the computed used during this PhD work. In the case
of the full resolution RWPE1 reconstruction, the time dedicated to the alignment
process would decrease from ∼ 12 h to ∼ 1 h. Furthermore, the alignment method
is based on the minimization of the least mean squares between the simulated data
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and the experimental intensities. This solution has the advantage to work out the
relative angle but can be very time consuming. In the refinement step, the simu-
lated and experimental data are already relatively close and other faster alignment
techniques may be implemented.

For the second part, as regards the iterative codes themselves, the bottleneck
of methods IV.3 and IV.4 is the computation of the data fidelity term50. The L1-
regularization is indeed fast to be computed. The ∇-regularization can be quite
long but is already optimized anyway51.

At each iteration the computation of the data fidelity term (and its gradient for
method IV.3) can take several minutes since it requires 3D and 2D Fourier transforms
and extraction/mapping of spherical caps in the Fourier domain. In the realm of
tomographic diffractive microscopy, some works have shown that an intelligent use
of GPU programming can dramatically reduce this step to just a few seconds [97].
In the case of the full resolution RWPE1 reconstruction with method IV.3, this
would represent a gain of ∼ 10 h on the ∼ 18 h dedicated to the iterative process.
for a remaining time of ∼ 8 h, comparable with the runtime of ∼ 7 h for a similar
reconstruction with method IV.4.

Another track for improvement concerns the choice of the hyperparameters. In
this work, they are empirically chosen for methods IV.2, IV.3 and IV.4 to provide
reasonable results. A more thorough study of their effects and an optimized choice,
based on simulations, could also improve the quality of the reconstruction. Indeed
during the simulations for the tests of the different methods in the previous sections,
none of the obtained reconstructions is directly compared with the initial numerical
volume to quantify their efficiency on a known example. Doing so by testing different
hyperparameters for the different methods would give an objective criterion to choose
the best hyperparameters.

A better choice of hyperparameters may also influence the large standard de-
viation of the background signal mentioned above for the inverse problem ap-
proach IV.3: further studies are necessary to determine if it comes from the method
and if a better choice for the hyperparameters would solve the issue or if the area
is not as empty as it seems. Indeed the presented cultures are grown in Matrigel®.
It presents good optical properties for standard microscopy [23, 98] but can be a
very heterogeneous structure with a possible formation of fibrils or agglomerates,
not adapted to diffractive microscopy. Some other extracellular matrices could be
tested [99]. The optimization of the hyperparameters and the extracellular matrix
represents an in-depth study that is not pursued during this thesis.

Moreover, more tests are needed to really compare methods IV.3 and IV.4. In-
deed, it is surprising that the method identified as the best changes for low and
high resolutions. Especially knowing that method IV.3 is expected to be the most

50Which corresponds for method IV.4 to the standard step 1 to 4 of the Gerchberg-Saxton loop
without including the eventual regularization step. In terms of computation needs, it is the same
than for the data fidelity term and its gradient in method IV.3: 2 3D FFTs and 2N 2D FFTs.

51Thanks to its implementation in C code gently shared by Eric Thiébaut and thanks to Fabien
Momey who adapted it in C code for complex variables and provided its interfacing with Matlab®.
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complete formulation and should unequivocally lead to the best reconstructions. As
mentioned above, their comparison are not completely fair as method IV.4 is iterated
an order of magnitude more than method IV.3 for the low resolution reconstructions.
Nevertheless, method IV.4 achieves its convergence faster that method IV.3. Thus,
the results at high resolution consequently tend to support the fact that with well
tuned hyperparameters method IV.3 has the best potential as the reconstructions
given with this method are better than the ones obtained with method IV.4 which
cannot provide better results on this dataset.

It has been seen on the RWPE1 experiment that the number of angles changes
the reconstruction quality as well as the sensitivity on the objects which can be
reconstructed. More in-depth studies are needed to test the influence of the number
of lighting positions and the number of wavelengths on experimental data. For a
given number of lighting situations, is better to multiply the number viewing angles
with fewer wavelengths or to multiply the number of wavelengths with less viewing
angles?

Concerning the method themselves, different improvements can be consider for
each of the methods.

Concerning method IV.2, a similar variable change than the one done in the
inverse problem approach IV.3 to go from the scattering potential f to the refractive
index δn can be implement to rather directly work on the amplitude and phase of
the transmissive plane52. To do so, the new variable is φ ∈ C the complex argument
of the complex transmission t2D:

t2D (φ) = eiφ ⇒ δt (φ) = eiφ − 1 (IV.45)

Doing so, the phase of the transmissive plane is directly R (φ) and its amplitude
is |t2D| = e−I(φ). Following the same reasoning detailed in section 3 of this chapter:

δt (φ+ dφ) = eiφeidφ − 1 ≃ eiφ (1 + idφ)− 1
≃ δt (φ) + ieiφdφ ≃ δt (φ) + i (1 + δt (φ)) dφ

(IV.46)

and the gradient of the data fidelity term (IV.15) expressed in terms of φ becomes:
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Ū j
inc.U

j
tot (δt (φ)) .

(∣∣∣U j
tot (δt (φ))

∣∣∣
2 − Ijd

)))))

(IV.47)
More than the complex transmission, some results in the lab concerning 2D lens-

free imaging by Lionel Hervé tend to show that the optical length l = φλ/2π of
the 2D plane is a grandeur more relevant to be reconstructed to correctly take into

52This implementation is done for some tests in parallel of this PhD work in the context of 2D
reconstructions simultaneously performed on planes at different distances to clean artifacts, for
example dust particles on different sides of a coverslip. It is nevertheless not tested in the context
of 3D reconstructions and is consequently not presented here.
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account the wavelength diversity and the fact the transmissive plane should not be
the same for all the wavelengths:

t2D (l) = e2iπl/λ (IV.48)

In addition, more tests should be done on the coherence length lcoh: pertinence
compared with experimental data with a tilted lighting, optimization of its value or
finding a better mask Mlcoh

or a better model.
Concerning method IV.3, the fact that the "speckle"-like effects disappeared be-

tween the low and the high resolution reconstructions tend to imply that this is due
to a wrong choice of hyperparameters. As mentioned earlier in section 3 of this sec-
tion, a mistake is made in the implementation of the gradient of the∇-regularization
and may influence the conclusions concerning this method. For sure, the error in the
normalization factor means that the values of µ∇ are not independent of the grid pa-
rameters nbpx, nb

p
y, nb

v
x, nb

v
y, nb

v
z as thought when they are tuned during simulations.

New tests need to be run to optimize the reconstruction.
In addition, deeper tests of the linear interpolation compared to the nearest-

neighbor interpolation should be done to check the influence and the efficiency of
each of the method.

Then, it is mentioned that the inverse problem approach IV.3 (as well as the
regularized Gerchberg-Saxton algorithm IV.4) can work directly on the refractive
index of the sample to reconstruct. This possibility and its implication on the
physical interpretation of the reconstructions53 are not studied.

Finally, in a more distant future, the inverse problem approach could be fully used
to refine the reconstruction parameters. Similarly to the data alignment refinement
step, this approach can be used to optimize the variables which are manually set
and consequently not optimal. For example, in order of importance: the distance zs,
the wavelengths λ, the angle θ, the angles ϕ.

Concerning method IV.4, some ideas could be tested to deal with the divergence
observed in the cost function curves during iterations. Indeed, it is seen than even
when the divergence starts on some parts of the reconstruction, others can continue
to be well reconstructed (see the tube wall in figure IV.26.a in section 4 of this
chapter).

The divergence is attributed to the ∇-regularization. To limit its effect, once
the quality of the reconstruction is "good enough"54, the value of the ratio µ∇/µL1

could be changed and lowered.
On another level, new techniques to better enforce the data fidelity could be

implemented. For example, it could be interesting to mix methods IV.2 and IV.4,
replacing the experimental amplitudes in the data fidelity of step 1 of method IV.4
by the simulated complex waves via method IV.2.

It is even possible to replace the simple Fourier mapping III.4 in step 1 by a
2D phase retrieval algorithm directly performed on all the 2D holograms simultane-
ously as in [48]. Contrary to method IV.2 in which the 2D phases are sequentially

53In terms of absorption and dephasing properties.
54According to a criterion which remains to be found.
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retrieved, each hologram being considered independently from the others, in this
technique all the phases are simultaneously retrieved by a back and forth mapping
of the Fourier domain with all the holograms until the simulated intensities converge
to the experimental intensities. This technique does not need time consuming 3D
FFTs. Only one is performed at the end to go back to the object. This technique
nevertheless assumes that the number and the positions of the spherical cap in the
Fourier domain are important enough to have a non-negligible overlapping55. Re-
placing step 1 of method IV.4 by this algorithm would enforce a far more constraining
data fidelity.

55Otherwise the algorithm would not have any effect, nothing changing the coefficients on a
given spherical cap during the iterations.
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Chapter V

Towards 3D time-lapse microscopy
in incubator

This chapter focuses on the last year efforts to adapt the 3D lens-free microscopy
developed in the previous chapters to incubator conditions. Such an adaptation
would open the field of time-lapse microscopy to large volumes analysis of overall
sparse 3D cell cultures, dedicated to screening assays for example.

To do so, a new lens-free prototype is designed and built with an increased
number of functionalities to facilitate its use and adapted to incubator while being
cell-friendly. An new experiment dedicated to the microscope characterization is
also run to check the validity of the reconstructions, especially in terms of three
dimensional positioning and scales.

This work was presented in an oral participation at ECBO 2017 [100].

1 Toward an improved and incubator-proofed

prototype

At first, it is tried to adapt the prototype introduced in the previous chapter IV,
section 1 to perform acquisitions directly into incubators.

Nevertheless, its lack of flexibility in the adjustment of the alignment of the light
source, the sample and the sensor makes it hard to use it routinely for acquisitions
on numerous samples. Indeed, it is designed with a fixed relative position of the
light source and the sensor. The center of rotation of the object is geometrically
aligned with them only for a given position. This is only adjustable with the sample
holder height, leading to a rough precision. Moreover, the further is the sample from
the sensor, the worse are the recorded holograms because of the limited spatial and
temporal coherence of the light source.

On another point, the electronics has not been prepared to high levels of humidity
during the conception and lots of short-circuit or welding issues come out.

And finally, nothing is done to deal with the sensor heating. Source of evap-
oration of the culture medium, it leads to condensation on the container’s cap,
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preventing any acquisition. Working with an open container for short periods of
time is not an option neither as the reached temperatures, up to 50◦C, are lethal
for cells.

As a conclusion it appears easier to build a new adapted lens-free prototype to
correct these points as soon as the conception step, keeping the same electronics
but changing the design. The resulting prototype shown in figure V.1 presents new
functionalities.

Figure V.1: (a) New lens-free prototype built to resist to incubator conditions. New
features are added such as a cooling system via an air flow and the possibility to
adjust the sensor position or the polar angle θ of the lighting. (b) Picture of the
prototype inside an incubator. (c) Exploded view of the light source (the pinhole
and the radiator are not pictured) and the xy-translation stage designed for the
sensor positioning.

First of all, all the 3D printed pieces are manufactured to be easily removable in
order to ease the possible need to fix the prototype. The previous design needed to
be entirely disassembled to have access to the electronics in case of breakage. The
position of the microswitches is changed to optimize the angular coverage from ϕ ∈
{0, 282◦} to ϕ ∈ {0, 305◦}. Then, the electronics is coated with an insulation layer
to be protected from the incubator humidity. The light source and its radiator are
hidden behind on optical baffle allowing ventilating the heat emitted by the LED
while preventing parasitic reflection on the incubator wall.

In terms of new functionalities, a rail allows changing the polar angle θ of the
light source in the range of θ ∈ [30◦, 55◦]. Thanks to a xy-translation stage which
permits to adjust the alignment of the sensor with the sample and the light source,
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the sample holder can be placed as close as possible to the sensor, improving the
holograms quality. The holder is equipped which three screws which gives little room
for maneuver to select a given area of the 3D sample to acquire. But their main
role is to hold and prevent any movement of the culture dish due to the vibrations
produced when the stepper motor is rotating.

In order to acquire data on large periods of time without killing the cells, a
cooling system is added. Indeed, as mentioned above, when the sensor is on, the
CMOS warms up to 50 ◦C whereas the cell culture must be stabilized at 37 ◦C. The
thermal insulation from the sensor is performed with an air knife flowing in between
the sensor and the Petri dish from a vein carved in the sample holder as schemed in
Fig.V.2.a.

Figure V.2: (a) Scheme of the cooling system: an air flow is brought through the
sample holder to create a thermal insulation of the cell culture with an air knife
between the sensor and the Petri dish. To test the efficiency of the system, thermal
probes are placed on a mock Petri dish (� 35 mm) at different places: probe 1 in
the incubator, probe 2 at the top of the cap, probe 3 in the dish at the bottom of
the cap and probe 4 at the bottom of the dish. (b) Temperature curves of the four
probes during the mock experiment: the system is placed into the incubator and
at t ≃ 2 h the power is turned on. As the sensor warms up, the temperature in
the Petri dish increases rapidly. At t ≃ 6.5 h, the cooling air flow is triggered and
the temperatures drop to standard culture values. (c) Focus on temperature curves
during the acquisition process: starting at t ≃ 10 h a dataset is recorded every hour.

Figure V.2.b shows the temperature with and without the cooling system in a
mock Petri dish. Four thermal probes are placed to measure the temperature in the
incubator, at the bottom of the Petri where normally lies the cell culture and on the
two sides of the cap.

As soon as the sensor is turned on, within 4 min, the temperature inside the dish
goes higher than 40 ◦C. The difference of temperature with the outside creates con-
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densation on the cap preventing any acquisition. If nothing is done, the temperature
stabilizes above 48 ◦C in less than 45 min in the cell culture and around 44 ◦C in
all the Petri dish. When the cooling system in activated with an adequate pressure,
the temperature quickly drops to its initial value in less than 15 min.

When acquisitions are performed, as the sensor rotates, the geometry of the
air knife changes, lowering the efficiency of the cooling system. This leads to small
bumps in the temperature curves. They nevertheless remain confined within a 0.2 ◦C
range, which is adapted for cell culture.

2 3D+t reconstructions

2.1 Access to 3D large scale phenomena

Few tests are run outside the incubator on yeasts which can grow at room tem-
perature and conditions and in incubator on 2D cell culture in Petri dishes to validate
the air cooling system on living samples.

Once the prototype is proven to be robust and cell-friendly, a first experiment is
designed to perform time-lapse reconstructions on large scale 3D samples.

Cell culture

This RWPE1 cell line1 is prepared according to the no top coat protocol intro-
duced in chapter IV, section 5 for the HUVEC cells, replacing the Matrigel® bed by
a small Matrigel® drop on which the cells can freely move.

This drop is consequently deposited at the center of a Greiner petri dish
(Sigma-Aldrich) and allows polymerizing for 30 minutes at 37◦C. RWPE1 cells are
then added at the surface of Matrigel and allow to attach for 1 hour at 37◦C.
KSFM (Life Technologies) supplemented with 50 ng/mL Epidermal Growth Factor
(Life Technologies), 2% Fetal Bovine Serum (Life Technologies) and 1% Penicillin-
Streptomycin (Life Technologies) is subsequently added.

The culture is monitored during two weeks.

Reconstruction parameters

Acquisitions - Every 68 min a dataset is acquired, composed of 3 × 32 acqui-
sitions done at 32 different angles ϕ ∈ {0◦, 305◦}, ∆ϕ = 9.8◦ in the three available
wavelengths of the RGB LED λ ∈ {640 nm, 520 nm, 450 nm}. These data are
first aligned via the least mean squares minimization algorithm on 2D reconstructed
data and then used to reconstruct three different time-lapse views of the experiment.
They are all based on the scattering potential on which positivity constraints are
applied: C (f) = {f/R (f) ≥ 0, I (f) ≥ 0}.

1See chapter IV, section 5.1 for more details on the cells conditioning
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Low resolution reconstruction - The first time-lapse is composed of low reso-
lution reconstructions, based on a region of interest of 800× 800 pixels of 3.342 µm2

selected2 at the center of the sensor field of view.
To reduce the computing time and the memory consumption, the final recon-

structions are composed of 800×800×128 voxels of 3.34×3.34×5.32 µm3 for a global
volume of 2.67 × 2.67 × 0.68 = 4.86 mm3. With θair = 45◦, the effective angle for
the reconstruction in water3 is 32.1◦. The reconstruction distance is zs = 1.66 mm.
None of the 2D and the 3D spaces is padded.

The volumes are reconstructed with the regularized Gerchberg-Saxton method
run on 20 iterations with nbGSit = 5 and nbGS,rit = 15 iterations. The data alignment
is refined every 3 regularized step for the first acquisition time and then the same
alignment parameters are used for all the other acquisition times.

The obtained volumes are used in figures V.3 and V.5.

Full resolution reconstruction - The second time-lapse is composed of recon-
structions with a voxel size given by the sensor pixel pitch and based on a region of
interest of 800 × 800 pixels of 1.672 µm2 selected4 at the center of the sensor field
of view.

The final reconstructions are composed of 800×800×200 voxels of 1.67×1.67×
2.66 µm3 for a global volume of 1.34 × 1.34 × 0.530 = 1 mm3. With θ0 = 32.1◦.
The reconstruction distance is zs = 1.67 mm. Only the z-axis of the 3D volume is
padded.

The volumes are reconstructed with the regularized Gerchberg-Saxton method
run on 10 iterations with nbGSit = 6 and nbGS,rit = 4 iterations followed by 2 batches of
10 iterations5 of the inverse problem approach IV.3 with µL1 = 1000 and µ∇ = 75.
The interpolation in the Fourier domain is linear. For all the acquisition times, the
data are aligned twice: once after 2 regularized iterations of method IV.4.

The obtained volumes are used in figure V.4 for the clusters 2 and 3 and in
figure V.6.

Cluster reconstruction - The third time-lapse aims at reconstruct a cluster of
cell which is at the lower limit of the previous reconstructed time-lapse. The region
of interest6 of 256 × 256 pixels of 1.672 µm2 is centered on the holograms of this
cluster of cells whose positions are computed relatively to the alignment parameters
given by the previous time-lapse reconstruction. Indeed, their holograms are mixed
with the ones of the overlying layer of cells and cannot be identified and extracted
easily.

To reduce the computing time and the memory consumption, the final recon-
structions are composed of 256× 256× 128 voxels of 1.67× 1.673 µm3 for a global

22.672 mm2

3See chapter III, section 5
41.342 mm2

5In this chapter, the problem on the normalization factor for the ∇-regularization in the inverse
problem approach is corrected.

64282 µm2
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volume of 427 × 427 × 214 = 3.9 107 µm3. With θ0 = 32.1◦. The reconstruction
distance is zs = 1.4 mm. Only the z-axis of the 3D volume is padded.

The volumes are reconstructed with the regularized Gerchberg-Saxton method
run on 20 iterations with nbGSit = 10 and nbGS,rit = 10 iterations followed by 4 batches
of 10 iterations of the inverse problem approach IV.3 with µL1 = 1000 and µ∇ = 75.
For all the acquisition times, the data alignment is computed from the results of the
previous time-lapse.

The obtained volumes are used in figure V.4 for cluster 17.

Results

This experiment shows the potential of 3D lens-free microscopy to acquire per-
tinent data on four domains of cell culture:

• 3D cell motility and large scale migrations

• Cell(s)-cell(s) interactions

• Developmental biology

• Extracellular matrix-cell(s)- interactions

3D cell motility - Figure V.3.a shows a snapshot of the 3D time-lapse re-
constructions at low resolution. The reconstructed volume is as large as 4.86 mm3

(2.67 mm×2.67 mm×0.68 mm) and it is possible to image simultaneously hundreds
of cellular objects.

This large field of view allows tracking cells on long distances. It is emphasized
on figure V.3.b where the maximal values of the temporal stack are kept. The
cells displacements leave tracks on such a visualization. It can be seen that the
cells do not follow a random movement but are moving along extended organized
trajectories.

A first analysis consists in counting the number of cell clusters present in the 3D
reconstructed volume as a function of time (figure V.3.c) and measuring their size
in terms of projected area (figure V.3.d) in the xy-projection.

At first, with the first cell divisions, the number of clusters reaches a maximum
of 496 at t0 + 90 h. But then, via cell divisions and successive merging, this number
drops to 383 at t0 + 210 h. In parallel, the average projected area of the clusters
increases while the occupied area of the field of view reaches a plateau. This implies
that the cells stop multiplying (otherwise the occupied area would increase) and
favor global movements and merging.

Developmental biology - Examples of clusters growth due to cellular division
are presented in figure V.4. Three clusters (identified with numbers in figure V.6)
are blocked in the Matrigel®and grow inside the extracellular matrix (ECM). It is
consequently possible to follow their development during the two weeks monitoring.

7The fact that the reconstructions of the different clusters 1, 2 and 3 are similar tend to show
that the problem in the normalization of the ∇-regularization is effectively corrected as the same
values for the hyperparameters are used but on volumes of different sizes.
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Figure V.3: (a) Orthogonal average intensity projections of the reconstructed vol-
ume at t0 + 103 h 30 min. The RWPE1 cell culture is followed during two weeks on
the 3D lens-free microscope. The color bar gives the depth in the volume for each
views. The blue color encodes for the highest positions (z = 0.34 mm for the xy-
view, x = −1.34 mm for the yz-view, y = 1.34 mm for the xz-view) and the red color
encodes for the deepest positions (z = −0.34 mm for the xy-view, x = 1.34 mm
for the yz-view, y = −1.34 mm for the xz-view). The green square is the region of
interest which is reconstructed at high resolution (see figure V.6). The red regions
of interest emphasize noticeable cell behaviors (see figure V.5). (b) Maximum inten-
sity projection of the temporal stack for each pixel of the xy-view. The trajectory
of isolated cells on large scales can be identified. (c) Number of detected objects
as a function of the experiment time. The red star indicates a change of culture
media at t0 + 234 h in which several clusters of cells have detached. This has biased
the measurement (d) Mean projected area on the xy-plane of the detected objects
as a function of the experiment time. (e) Percentage of the occupied area on the
overall xy-plane of the field of view.

Cluster 1 time-lapse reconstruction is specially reconstructed to study it. Clus-
ters 2 and 3 time-lapse reconstruction is extracted from the high resolution time-
lapse reconstruction. The volume are estimated according to a 3D segmentation
performed using a simple thresholding algorithm.

Cluster 1 extends by ejecting some cells on its sides.

181



V Towards 3D time-lapse microscopy in incubator

Figure V.4: (a-b) Time series of the reconstructed volume of three different clus-
ters of cells highlighted in figure. V.6 at 34 h 30 min time intervals. The volume
is 430 µm × 430 µm × 210 µm. Time is indicated in hours: minutes. On each
view, the colors codes for the depth: the shallowest in blue, the deepest in red. The
clusters mainly spread on two dimensions. (c) The volume, the integrated signal on
the volume and the resulting density of the three clusters are plotted over time.

Monitoring their volume in figure V.4.b, it appears that they grow before reach-
ing a plateau and even retracting for the cluster 2. Cluster 1 volume grows lin-
early from 40 103 to 225 103µm3, reaching a plateau at t0 + 165 h. In compar-
ison, the initial growth of clusters 2 and 3 is negligible with a volume oscillating
around 30 103µm3.

Even if the reconstruction methods are not proven to be quantitative, it is inter-
esting to draw the overall reconstructed signal on the volume as well as the cluster
density (the integrated signal divided by the volume). Their density remains overall
constant.

As stated above, the decreasing number of clusters of cells is due to merging
of such clusters at the surface of the Matrigel® drop. This also participates to the
overall growth of the clusters mean projected area.

Cells-cells interactions - This merging between clusters implies large scale
interaction that can be observed thank to the large field of view provided by the
lens-free microscope. It allows finding rare phenomena which can hardly be found
or monitored with classical imaging techniques.

Figure V.5 presents three montages extracted from the regions of interest intro-
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Figure V.5: Time series of region of interests showing cell migration patterns result-
ing in the growth of large aggregates of cells. (a,c,e) 3D time-lapse reconstructions
of three different regions of interest taken from the full-field reconstruction framed
in red in figure V.3.a. On each view, the colors codes for the depth: the shal-
lowest in blue, the deepest in red. (b),(d) and (f) The xy-projections depicted in
respectively (a),(c) and (e) are segmented and a color code is given to the different
clusters of cells: green for the cluster of interest and red for the cells that will be
aggregated into this cluster. Other cells that are not aggregated to this cluster are
depicted in gray. (a-b) The organoid (green) moves into the field of view and grabs
the surrounding cells (red). (c-d) The organoid (green) pulls cells (red) before their
merging. (e-f) Two organoids (green) exchange cells before creating a branch and
merging. Some other cells (red) are then pulled before their merging.

183



V Towards 3D time-lapse microscopy in incubator

duced in figure V.3. These montages emphasize some cells-cells behaviors.
Figures V.5.a-b show the growth of a cluster of cells initially 25 µm in diameter

(in the xy-projection). The growth is initiated when the cluster starts moving in its
surrounding and merges with other cells. The cluster moves by 250 µm in 38 hours
with an average speed of 14 µm.h−1 and during its course it aggregates around
himself 7 small clusters of cells of 15 to 30 µm in diameter to form a larger cell
aggregate. At one point, at t0 + 83 h, the aggregate forms a 150 µm long cell
branching initiated by the dispersal of a 25 µm diameter cell cluster (see red star in
figure V.5.a). In the following 20 hours this cell branching is however re-absorbed
to the aggregate. At the end of its course, the aggregate is about 70 µm in diameter
and there are no more cells present within a circle of 390 µm in diameter. In the
following 140 hours, one can observe that this newly formed aggregate is unstable.
It wiggled and its size oscillated between 60 and 90 µm in diameter as it dispersed
and re-absorbed small cell clusters of 5 to 20 µm in diameter (not presented here).
The distance of the dispersions ranges between 5 and 75 µm and it appears that the
larger the dispersed clusters of cells, the larger the distance of dispersal.

Figures V.5.c-d show another particular cell aggregate growth. In this case the
growth is apparently initiated from the merging of three single cells that are first
orbiting around each other. At t0 +95 h, suddenly, this newly formed cluster of cells
generated three extensions of 70 µm, 220 µm and 190 µm in length respectively.
These branches are finally re-absorbed and, doing so, the cluster attracts to itself a
large number of cells present in its neighboring. In sum, this cluster grows through
the merging of 15 other clusters that are initially present within a circle of 450 µm.
This cell aggregate is also unstable. By three times it ejected clusters of cells in the
direction of another cell aggregate located at a distance of 250 µm (not presented
here).

Figures V.5.e-f show the merging of two cell aggregates consecutive to pairwise
attraction. At t0 + 68 h, the two aggregates are about 55 µm in diameter and they
are separated by a distance of 450 µm. They first move towards each other, accumu-
lating cells from the surroundings. When the distance between the two aggregates
is about 100 µm, branching cells emerge and connect the two aggregates that finally
merge together in the time of four hours. The resulting aggregate continue to move
a little, by 150 µm and accumulated more neighboring cells. At t0 + 280 h this
aggregate is as large as 140 µm in diameter and the number of cells present in its
neighboring becomes very low.

These observations take place on more than four days and demonstrate thus that
small amounts of localized cell migrations are able to strongly affect the growth of
cell aggregate.

Extracellular matrix-cells interactions - A region of figure V.3 is selected
to be reconstructed at full resolution (the green square). Figure V.6.a presents the
3D reconstruction at t = 193 h 12 min.

Figure V.6.b emphasizes a more striking example of clusters merging. It concerns
the accumulation of 25 clusters of cells into one very large aggregate. The latter still
manages to move as a cohesive group at a speed in the range of 5 to 10 µm.h−1. The
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Figure V.6: (a) Reconstruction of the region of interest highlighted in green in fig-
ure V.3 at t0+193 h 12 min at higher resolution. It shows the merging of cells aggre-
gates into a very large aggregate. Three clusters which grew inside the Matrigel® are
numbered (see figure V.4). On each view, the colors codes for the depth: the shal-
lowest in blue, the deepest in red. (b) Maximal value of the temporal stack for
each pixel of the xy-view between t0 + 176 h 39 min and t0 + 208 h 23 min. The
yellow arrows point at cells fixed in the Matrigel® which highlight its deformation
as the cluster of cells moves along the green arrow. (c-d) xy-snapshots at t0 + 111 h
and t0 + 211 h. The projections images are segmented and a color code is given
to the different objects: green for the cluster of interest and red for the cells that
will be aggregated into this cluster. Other cells that are not aggregated to this
cluster are depicted in gray. Green arrows show the displacement of the cluster of
interest. (e-h) Visualizations of cell displacements resulting from the traction forces
created by the large aggregate of cells onto the Matrigel®. The initial positions of
the clusters of cells are shown in (d). The cell tracking has been performed with the
trackmate plug-in in ImageJ [79] on the 2D projections. The figure shows the sum
of the temporal tracks from t0 + 176 h 39 min to t0 + 208 h 23 min. The cell cluster
detection is shown in purple, the track in yellow and the initial starting point in red.
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measured speed presents also local maxima of about 30 µm.h−1 which, correspond to
sequences of expansion/contraction of the aggregate. These local maxima of speed
are observed at t0 +120 h and between t0 +180 h and t0 +210 h (see figure V.7.a-b).

Figure V.7: (a) Speed of the large aggregate of cells in figure V.6 as a function of
time. (b) Total projected area of the large aggregate of cells as a function of time.
(c) Speed of the clusters of cells depicted in figure V.6.c-f as a function of time. (d)
Total displacement of the clusters of cells depicted in figure V.6.c-f as a function of
the distance to the large aggregate of cells.

During the latest sequence of expansion/contraction, the large aggregate clearly
created traction forces onto the ECM over large distances, from tens to hundreds of
micrometers. At t0 + 184 h hours, following a large expansion of the cell aggregate,
a traction force is generated onto the ECM. It is indirectly observed through the
displacement of several clusters of cells towards the large aggregate (figures V.6.e-h).
These traction forces disappear as the aggregate releases the tensions applied to the
ECM and the clusters move back to their initial positions. Figures V.7.c-d show
that the traction forces are isotropic and that they can be observed up to a distance
of 550 µm.

2.2 Study of the extracellular matrix

This observation of an ECM modification due to cell traction led to a second
experiment to better visualize these 3D deformations.

The protocol is the same than for the previous experiment excepted that flu-
orescent beads with a diameter of 10 µm (Sigma-Aldrich) are mixed with the
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Matrigel®before its deposition at the center of the dish. It is monitored by lens-
free imaging for 7 days. Cell culture medium is changed every two days.

This method is usually performed at the microscopic scale to monitor and quan-
tify single cell traction forces [101]. Here it is used to show the long scale deforma-
tions of the ECM.

Acquisitions - Every hour a dataset is acquired, composed of 3 × 32 acquisi-
tions done at 32 different angles ϕ ∈ {0◦, 305◦}, ∆ϕ = 9.8◦ in the three available
wavelengths of the RGB LED λ ∈ {640 nm, 520 nm, 450 nm}. These data are first
aligned via the least mean squares minimization algorithm on 2D reconstructed data.

Scattering potential reconstruction - This is composed of low resolution
reconstructions, based on a region of interest of 800 × 800 pixels of 3.342 µm2

selected8 at the center of the sensor field of view.
To reduce the computing time and the memory consumption, the final recon-

structions are composed of 800×800×128 voxels of 3.34×3.34×6.10 µm3 for a global
volume of 2.67 × 2.67 × 0.78 = 5.57 mm3. With θair = 55◦, the effective angle for
the reconstruction in water9 is 38◦. The reconstruction distance is zs = 3.435 mm.
Only the z-axis of the 3D volume is padded.

The volumes are reconstructed with the regularized Gerchberg-Saxton method
run on 12 iterations with nbGSit = 6 and nbGS,rit = 6 iterations followed by
4 batches of 10 iterations of the inverse problem approach IV.3 with µL1 =
[1000, 1000, 2000, 2000] and µ∇ = 75. For all the acquisition times, the data are
aligned three times: once after 2 regularized iterations of method IV.4 and once
after the two first batches of iterations with method IV.3.

As described in the previous chapter, positivity constraints are applied on the
reconstructed scattering potential: C (f) = {f/R (f) ≥ 0, I (f) ≥ 0}.

The obtained volumes are used in figures V.9, V.10 and V.11.

Refractive index reconstruction - As seen later, the previous time-lapse
shows a global drift along the z-direction and the reconstructed beads and cells
slowly go out of the reconstructed field of view. Moreover, at the end of the experi-
ment, when the field of view is crowded, a lot of twin-image remains and degrades
the reconstruction quality. Some tests on these acquisitions (not presented here)
showed that reconstructions based on the refractive index are more robust to this
situation.

The second time-lapse is composed of the same acquisitions than previously and
uses the alignment parameters produced by the previous time-lapse but modified to
take into account the z-drift and keep the initial region of interested centered in the
reconstructed field of view.

The final reconstructions are also composed of 800× 800× 128 voxels of 3.34×
3.34×6.10 µm3 for a global volume of 2.67×2.67×0.78 = 5.57 mm3, with θair = 55◦.
The reconstruction distance varies around zs = 3.435 mm. Only the z-axis of the
3D volume is padded.

82.672 mm2

9See chapter III, section 5
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The volumes are reconstructed with the regularized Gerchberg-Saxton method
run on 10 iterations with nbGSit = 5 and nbGS,rit = 1.

Positivity constraints are applied on the reconstructed refractive index: C (n) =
{n/R (n) = 0, I (n) ≥ 0}.

Some of the obtained volumes compose the figure V.8.

Figure V.8: (a) Orthogonal average (xy) and maximum (xz) intensity projection
of reconstructed volumes of a 3D culture of RWPE1 cells with 10 µm beads em-
bedded into the ECM monitored during 10 days in incubator conditions. Final
volume: 2.67 mm × 2.67 mm × 0.78 mm = 5.57 mm3. On each view, the colors
codes for the depth: the shallowest in blue, the deepest in red. The xz-projections
show clearly the presence of the 10 µm beads embedded into the ECM. The green
square is the region of interest presented in figure V.9.

At first sight, this second 3D time-lapse acquisition performed over eight con-
secutive days, shows a striking evolution of the RWPE1 3D cell culture, namely the
construction of a cellular network.

In contrast to the first experiment where the cell aggregates are moving, deform-
ing and merging, here another interesting phenomena can be observed. A small
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population of cells clusters (15 out of 140 clusters) start to eject cells and in some
case dissociate into batches of single cells.

As previously, large scale cell movements can be identified. Figure V.9 shows the
total dissociation of four clusters together with the tracks of the dispersed cells that
further migrate on the Matrigel® at a speed of about 30 µm.h−1. These cells migrate
along linear paths, they follow each other, sometimes turning back. Importantly they
form trains of cells moving as cohesive groups (see red stars in figures V.9.b-d). In
a second phase these paths taken by the single cells become gradually branches of
cells connecting larger cellular structures. After six days of cell culture, one can
observe about 30 cells aggregates in the range of 50 to 100 µm in diameter. They
are separated by distances of about 250 µm and most of them are interconnected
with each other (see figure V.8).

Figure V.9: Visualization of a region of interest of figure V.8 showing migrations
of single cells. The snapshots are details of xy projections of the 3D reconstructions
taken at time intervals of 28 hours. In (a), four cell clusters of interest are pointed
with different colored circles. These are clusters that will next decompose into single
cells. Other clusters that remain solid are pointed with dashed white circles. The red
stars in (b-d) point at different "train of cells". (f-j) Time series of the dissociation of
the four clusters of cells and the tracks of the dispersed single cells. The cell tracks
are presented in a temporal window of 28 h with the color code given in (a). The
tracking is performed manually up t0 +84 h. After this frame, it is no longer possible
to conduct the cell tracking owing to the large number of cells and the relatively
large frame rate of 1 acquisition every hour.

Finally, in a third and final phase, the cellular network collapses, branches of
cells merge, closed structures collapse and cell islands merge together. Despite this
collapse, the cellular network does not vanish completely. After eight days of culture,
there are still branches of cells connecting very large cellular structures, some of them
as long as 500 µm.

In sum, three distinct phases in this RWPE1 3D cell culture can be distinguished:
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a first phase of single cell migration, a second phase of interconnection between cell
aggregates, and a final phase where the cellular network collapses partially. These
three phases are accompanied by deformations of the ECM which can be visualized
thanks to the presence of the introduced microbeads.

In the third phase in particular, the collapses of the network reveals significant
pulling forces that distort the ECM. But at first sight, in the first hours of the
experiment, the presence of the microbeads allows observing the intrinsic 3D defor-
mations of the ECM made of Matrigel®. Their positions are monitored in the three
dimensions using an algorithm similar to the one developed in the next section 3 of
this chapter.

During the first 140 hours of the experiment, the ECM expands radially in the xy-
plan. All the beads move away from a central point at a speed increasing with
the distance to this point (red star in figure V.10.a). The speed of the beads is
under 1 µm.h−1 close to the center of expansion (∼ 0.8 µm.h−1) and about 2 µm.h−1

at a distance of approximately 2.5 mm (see figuresV.10.a-b). At t0 + 90 h, the
expansion stops and the ECM remains stable at least in the xy-projection.

Figure V.10: (a-b) 3D particle tracking of the beads in the xy-projection (a) and
the 3D volume (b). The figure shows the tracks of the 10 µm beads over 208 hours,
with a color code corresponding to their median speed. The red arrows show the
overall direction of the tracks. The red star shows the center of the ECM radial
dilation. (c) Plot of the tracks of 250 beads along the z-direction as a function of
time.

In the z-direction, in the first 24 hours of the time-lapse acquisition, there is an
important ECM dilation of about 125 µm (see figures V.10.b-c) followed by a slow
drift which lasts until the end of the experiment.
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ECM deformation resulting from traction forces generated by cell aggregate can
be clearly seen at t0 +136 h in figure V.11. At a distance of 350 µm to one large cell
aggregate, a traction force is detected that move the 10 µm beads by 100 µm (speed
of 12 µm.h−1) and at a depth of several tens of microns below the Matrigel® surface
(see figure V.11.c). This traction force is still visible through beads displacement at
a large of distance of 1200 µm (see figure V.11.b). Thus, these observations show
the long-scale effects of the traction forces generated by cell aggregate onto ECM.

Figure V.11: (a) Snapshot of a region of interest at t0 + 136 h showing a long-scale
deformation of the ECM consecutive to traction forces generated by a cell aggregate
(red star) slightly deeper below the Matrigel® surface. The direction of the traction
forces is shown with a red arrow in. (b-c) Details of (a) showing the displacement
of the beads towards the cell aggregate at distances of 1200 µm and 350 µm re-
spectively. The red arrows highlight the change in direction of the 10 µm beads
tracks consecutive to the generation of traction forces onto the ECM. The tracking
is performed with the trackmate plug-in in ImageJ [79].

3 Characterization

The previous section 2 proves that the lens-free microscope is robust to incu-
bator conditions and able to routinely monitor large 3D cell cultures. Moreover,
the reconstruction quality is good enough to be able to analyze the reconstructed
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volumes and retrieve quantitative information on the biological objects: position,
shape, volume, speed, and so on.

These features need a quantitative analysis of the reconstructed volumes. In
order to validate the figures given in the analysis of the previous section, it is neces-
sary to characterize the lens-free microscope and the associated reconstruction codes
both in terms of accuracy and resolution on a known object.

It is shown in the previous chapter IV, section 5.3 that the sectioning capabilities
of the lens-free microscope outclasses the focused/unfocused estimation of 2D stan-
dard microscopes. But to better quantify the resolution on the z-axis, comparisons
with classical optical 3D microscopes such as confocal or light-sheet microscopes are
needed with simpler objects.

The idea for an adequate reference object comes from the results of the previous
section in which the beads position in 3D is easy to extract with a good accuracy.

As a consequence, a new experiment dedicated to the lens-free microscope cali-
bration is run and specific codes are implemented to compare the 3D reconstruction
of a reference object from lens-free acquisitions with acquisitions through a standard
microscope.

3.1 Experiment and data processing

The 3D reference object is directly inspired from the experiment presented in the
previous section 2. At the center of Greiner petri dishes (Sigma-Aldrich), a small
drop of Matrigel® is deposited to serve as a bed of another small layer of Matrigel® in
which fluorescent microbeads with a diameter of 10 µm (Sigma-Aldrich) are mixed.
It is then allowed to polymerize for 30 minutes at 37◦C before addition of cell culture
medium. As seen in the previous section 2, Matrigel® deforms along time. To limit
this effect, the dish is put in incubator for three days before the acquisitions.

The final volume is consequently composed of fluorescent microbeads randomly
spread in the three dimensions.

The reference for the positions is obtained by fluorescence microscopy: z-stacks
fluorescent images are then acquired using an AxioObserver.Z1 inverted microscope
(Zeiss) with a N-Achroplan 5x/0.13 Ph0 air objective mounted with an AxioCam
503 monochrome digital camera. In this configuration, the effective pixel size given
by the microscope is 0.9080 µm on 1936× 1460 pixels (∼ 1.76× 1.33 ≃ 2.33 mm2).
856 slices are imaged with a scanning pitch of: δz = 1 µm. Let’s note here that
no immersion oil is used and that the translation stage moves in the air. The axial
distances given by the microscope correspond to distances in the air.

Trying to get the best signal and to study its influence, lens-free acquisitions
with and without the Petri dish cap are done. As shown in figure V.12.a, the cap
produces a non-uniform background signal and blurs the beads holograms.

To analyze the effect of the illumination angle θ, different sets of acquisitions
are acquired with the lens-free microscopes. Indeed, it is shown in chapter IV,
section 1 that the higher the angle is, the better the results should be. Three angles
are tested: θ ∈ {35◦, 45◦, 55◦}. As seen in figure V.12.b, a high angle leads to a
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degraded signal.

Figure V.12: (a) Comparison of a region of interest in the red channel with and
without the cap on the Petri dish at θ = 35◦. (b) Comparison of a region of interest
for different values of the angle θ in the red channel.

All the datasets are composed of 3×32 acquisitions done at 32 different angles ϕ ∈
{0◦, 305◦}, ∆ϕ = 9.8◦ in the three available wavelengths of the RGB LED λ ∈
{450, 520, 640 nm}. In each dataset, a region of interest of 1024 × 1024 pixels (∼
1.72 ≃ 2.9 mm2) is selected and aligned.

Both the fluorescence and lens-free acquisitions are performed outside the incu-
bator. The air flow is activated to prevent the sensor from warming the dish and to
avoid any condensation on the Petri dish cap during the lens-free acquisitions.

As the objects to reconstruct are simple, the regularized Gerchberg-Saxton al-
gorithm presented in chapter IV section 4 is sufficient. The reconstructed vol-
umes are composed of 512 × 512 × 400 voxels of 3.343µm3 for a global volume
of 1.7× 1.7× 1.3 mm3 = 3.9 mm3. The angles θ are corrected to take into account
the refraction effect as presented in chapter III, section 5. Constraints of positiv-
ity R (f) ≥ 0 and I (f) ≥ 0 are enforced and the reconstructions are initialized
by nbGSit = 6 loops without regularization. Then nbGS,rit = 46 regularized loops are
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V Towards 3D time-lapse microscopy in incubator

performed with a hyperparameters ratio of µ∇/µL1 = 1.25. The data alignment is
refined every 3 iterations.

Figure V.13 shows a comparison between the fluorescence acquisition and the
lens-free reconstruction without cap and at θ = 35◦. On the fluorescence view, one
can see the elongated signal around the beads due to out-of-focus fluorescence. The
axial resolution appears better in the lens-free reconstruction.

To characterize the lens-free reconstructions, the position of the beads must first
be extracted from the fluorescence z-stack and the reconstructed volumes. The
same method is applied to the two volumes. First, a top view of the xy-plane is
computed by selecting the maximal value of the volumes along the z axis to perform
a maximum intensity projection (see figures V.13.c-d). These views are used to
determine the positions of the beads on the xy-plane.

A homemade algorithm refines these 2D xy-positions and determines the alti-
tude z of each bead. Presented in figure V.14, it consists in extracting a coring of
the volume around each bead over the whole height of the volume. For each bead,
one gets a volume similar to the one in the white medallions in figures V.14.a,c,e.
The coring is extracted inside the blue perimeters. In each coring a specific pattern
(presented in the white medallions in figures V.14.b,d,f) is matched by a 3D cross-
correlation performed in the Fourier space to extract the 3D position. The chosen
matching pattern is an ellipsoid of characteristic dimensions of rx = ry = rrad and rz.
The base of the extracted coring is a square of side rextrad. These dimensions depend on
the resolution of the pixel and the dimensions of the beads pattern in each volume.

• Fluorescence z-stack: rrad = 5 pix, rz = 45 pix and rextrad = 8 pix

• Lens-free reconstruction (θ = 35◦): rrad = 2 pix, rz = 7 pix and rextrad = 4 pix

• Lens-free reconstruction (θ = 45◦): rrad = 2 pix, rz = 9 pix and rextrad = 4 pix

• Lens-free reconstruction (θ = 55◦): rrad = 2 pix, rz = 10 pix and rextrad = 4 pix

For a checking purpose, the volumes are synthesized using the found 3D posi-
tion and the chosen matching pattern. Comparisons between the original volume
and the extracted position show a good agreement for both the fluorescence (fig-
ures V.14.a,c,e,g,i versus b,d,f,h,j)) and the lens-free volumes (not presented).

Once the 3D positions of the beads are known in the different volumes in terms
of voxel, they must be paired.

For each reconstructed lens-free volume, the positions of the beads ~r bi
1 =(

xbi
1 , y

bi
1 , z

bi
1

)
extracted from the fluorescence z-stack are considered as the refer-

ence. These positions must be paired with the position ~r bi
2 =

(
xbi

2 , y
bi
2 , z

bi
2

)
extracted

from each of the lens-free reconstructions. To do so, the parameters of a transfor-
mation pos1→2 between the coordinates of two given volumes must be determined.
These parameters take in account different effects:

• s2D: a scaling factor on the 2D xy-plane to deal with the difference in effective
pixel size between the fluorescence acquisitions and the lens-free reconstruc-
tions.
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3 Characterization

Figure V.13: (a) Visualization of the z-stack acquired with the fluorescence micro-
scope. (b) 3D view of the reconstructed scattering potential of the volume at θ = 35◦

without the cap. (c) Maximum intensity projection of the volume presented in (a).
(d) Maximum intensity projection of the volume presented in (b). (e) Zoom on a
selected region of interest in the fluorescence view (c). (f) Zoom on the same region
of interest in the lens-free view (d). (g-h) Zoom on the same region of interest but
in the reconstructed volumes acquired with θ = 45◦ and 55◦.
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Figure V.14: (a,c,e) Orthogonal views of a region of interest of the fluorescence z-
stack. Each view is an average intensity projection. The blue frames correspond
to the side of the cored volume for a given bead. Its position (the red circles) is
searched in this extracted volume (in the white medallions). (b,d,f) Orthogonal
views of the region of interest synthesized with the found positions of the identified
beads. The matching pattern is presented in the white medallions. (g-j) Comparison
of the fluorescence z-stack (g,i) with the synthesized volume (h,j) at two different
acquisition planes spaced ∆z = 28 µm apart. The red arrows point at beads which
are in focus in a given plane.

• sz: a scaling factor along the z axis to deal with the difference between the
sampling δz along the z-axis of the fluorescence acquisitions and the effective
voxel size of the lens-free reconstructions.

• α: the angle of rotation on the 2D xy-plane between the two volumes to deal
with the 2D rotation of the sample between its position on the fluorescence
and lens-free microscopes.

• (x0, y0): the translation on the 2D xy-plane between the two volumes to deal
with the 2D translation of the sample between its position on the fluorescence
and lens-free microscopes.
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3 Characterization

• z0: an offset on the z-axis to deal with a possible difference between the center
of the volume acquired with the fluorescence microscope and the center of the
reconstructed lens-free volumes.

In terms of 3D positions, this transformation works as follows:


xbi

2

ybi
2

zbi
2


 = pos1→2


[s2D, sz, α, x0, y0, z0] ;



xbi

1

ybi
1

zbi
1







=



s2D

s2D

sz


 .


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cosα − sinα 0
sinα cosα 0

0 0 1


×



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zbi
1 − z0




(V.1)

Let’s note here that the transformation (V.1) between the positions of the beads
expressed in the reference frame of the first volume and their expression in the
reference frame of the second volume does not take in account a possible tilt of
the volume compared to the axial direction. This consequently assumes that for
all the acquisitions, the sample remained strictly parallel to the sensor. Over the
dimensions on the xy-axes larger than a few hundreds of microns, even a small
tilt can lead to a difference of several tens of microns on the z-axis. This effect
consequently degrades the expected lens-free accuracy found along the z-axis.

To initialize the set of parameters, at least nbb = 6 matching pairs {b1, · · · , bnbb
}

are selected by the user. The set of parameters p̃ar = [s̃2D, s̃z, α̃, x̃0, ỹ0, z̃0] is then
estimated by minimizing10 the distance between the transformed positions and the
extracted positions in the second volume:

p̃ar = argmin
par

1
nbb

nbb∑

i=1

∥∥∥~r bi
2 − pos1→2

(
par;~r bi

1

)∥∥∥
2

(V.2)

Using this set of parameters, a second homemade program automatically pro-
poses new matching pairs that the user can choose to keep or not. It is possible
also to refine the set of parameters running the minimization problem (V.2) again
on the new set of matching pairs. As soon as the user estimates that enough pairs
have been chosen and that the automatic matching is satisfactory, a last refinement
of the parameters is done before an automatic matching of all the beads.

For each bead identified in the first volume, the automatic matching consists in
computing their corresponding positions in the second volume from their position
in the first volume via equation (V.1) and finding the closest identified bead in the
second volume. If the distance between this closest bead and the computed position
falls within a tolerance of 20 voxels, the two beads are paired. Otherwise, the bead
is put apart. If the bead in the second volume is already paired, the bead in the
first volume giving the closest computed position in the second volume is kept.

Figure V.15 presents the result for the pairing algorithm on the fluorescence z-
stack and the lens-free reconstruction at θ = 35◦.

10Command "fminsearch" in Matlab®.
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V Towards 3D time-lapse microscopy in incubator

Figure V.15: (a,b) Average intensity orthogonal projection of the fluorescence z-
stack. (c,d) Average intensity orthogonal projection of the lens-free reconstruction
(θ = 35◦). The blue circles indicate the unpaired identified beads and the red circles
the paired beads.

3.2 Accuracy

Figure V.16 presents the results on the beads which are paired between the
fluorescence z-stack and the 3 lens-free volumes with θ ∈ {35◦, 45◦, 55◦} without cap
on the Petri dish.

On the xy-plane, the data are not scaled but only rotated and translated to give
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3 Characterization

Figure V.16: (a,b,c) Maximum intensity orthogonal projections of the fluores-
cence z-stack. Red circles: the beads positions identified in the fluorescence z-stack.
Green squares: the beads positions identified in the lens-free volume (θ = 45◦)
(d) Zoom on the blue square on (a). Red circles: the xy-positions in the fluo-
rescence z-stack. Green markers: the xy-positions in the lens-free reconstructed
volumes at θ = 35◦ (triangles), 45◦ (squares) and 55◦ (pentagons). (e-f) Zooms on
the orange rectangles on the xz-view (c). The gray arrows emphasize a tilt angle
of the Petri dish between the acquisitions on the fluorescence microscope and the
lens-free microscope.
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V Towards 3D time-lapse microscopy in incubator

the best matching11 between the clouds of points12. The distances to the rotation
center are directly given by the effective pixel size of the different volumes13.

Looking at the xy-view in figure V.16.a, the lens-free reconstruction seems di-
lated. A zoom on the bottom-right corner in figure V.16.d shows that this effect
happens for the three tested angles but with a different coefficient. The higher is
the angle, the bigger is the coefficient.

On the z-axis the positions of the lens-free reconstructions are translated but also
scaled to match the fluorescence positions. It seems to be a very good agreement
between the paired positions.

The zooms on the xz-view in figures V.16.e,f show that the sample is tilted clock-
wise around the y-axis. As mentioned in the previous section, this transformation is
not taken in account by equation (V.1) and will lead to a bias in the determination
of the z-accuracy which will be underestimated.

To better quantify these effects, the distribution of the positions of the beads in
the reconstructed volumes without cap as a function of the positions in the fluores-
cence z-stack is fitted on the xy-plane and along the axial direction. The results are
presented in figure V.17 and table [V.1]. They are linear regressions y = s.x which
compare the extracted positions in the reconstructed volume with their reference
positions in the fluorescence z-stack which lie on the line y = x. On the xy-plane,
to analyze the dilation, the distances dbi =

∥∥∥~r bi
1,2

∥∥∥
2

are used rather than the xy-

positions xbi
1,2 and ybi

1,2.

Figure V.17: Comparison between the positions determined in the fluorescence z-
stack (black) and the lens-free reconstructed volumes (red → θ = 35◦, green → θ =
45◦ and blue → θ = 55◦). (a) Comparison of the radial positions (on the xy-plane).
(b) Comparison of the axial positions (along the z-axis).

Both for the radial and axial distributions, the data lie precisely as expected on
lines with coefficients of determination higher than R2 > 0.999.

11Using a minimization problem similar to the problem (V.2) but with only θ, x0 and y0 as
parameters. The positions of the beads are directly given in terms of microns and not pixels.

12The fluorescence z-stack remains the reference.
130.9080 µm for the fluorescence and 3.34 µm for the lens-free.
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nbb = 409
Radial distributions Axial distributions

θ = 35◦ θ = 45◦ θ = 55◦ θ = 35◦ θ = 45◦ θ = 55◦

s 1.0113 1.0155 1.0221 1.4046 1.4114 1.4237
R2 0.9997 0.9997 0.9997 0.9992 0.9993 0.9991

σ (µm) 3.6835 3.7599 3.9926 6.6085 6.4412 7.4261

Table V.1: Results of the linear regression performed on the nbb = 409 beads
matched in the fluorescence z-stack and the three reconstructed volumes without
the cap on the Petri dish. For θ ∈ {35◦, 45◦, 55◦}, the slope s, the coefficient of
determination R2 and the standard deviation σ of the linear regressions are given
both for the radial (on the xy-plane) and the axial (along the z-axis) distributions.

For the radial distribution, the dilation effect noticed in figure V.16.a is visible on
the linear regressions and their slope s which increases with the angle as seen above.
At the highest distortion (θ = 55◦ and s = 1.0221), this effect remains nevertheless
under 2.5 % with a low standard deviation σ < 4 µm.

The increase of the dilation factor with the angle θ is also observed on the z-axis.
The standard deviation is worse than on the radial plane with values around σ ≃
7 µm. But the most interesting parameter is the value of the slopes s ≃ 1.41, similar
for all the angles but far from the ideal value of s = 1 if the reconstructions perfectly
matched the fluorescence acquisitions. Actually this is the coefficient mentioned in
chapter III, section 5: a scaling factor (III.40) must be applied in the microscope
acquisitions along the z-axis because of the refractive index mismatch between the
sample in the water and the moving objective in the air [86]. With NA = 0.13, n2 =
nH2O = 1.33 and n1 = nair in equation (III.40), it comes:

zH2O

zair
=

√√√√n2
H2O
−NA2

n2
air −NA2

≃ 1.335 (V.3)

which is closer of the found slopes s even if it is shown that this formula has some
limitations [87]. The fact that the slopes are identical for the three angles sup-
ports the validity of the choices proposed in chapter III, section 5 to correct the
illumination properties in order to take into account this refractive index mismatch.
This also means that the lens-free reconstructions give the absolute position14 on
the z-axis without the need for any other scaling factor.

3.3 Resolution and xyz-sizing

To get an estimation of the resolution and the sizing capabilities of the lens-free
microscope and the associated reconstructions, a region of interest is selected and
an isolated bead is chosen.

14In the sense that the distances measured in the volume are actual distances in microns and
not relative heights between the objects.
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The datasets without the cap are also reconstructed at full resolution using
the same reconstruction parameters concerning the hyperparameters, the positivity
constraints and the number of iterations and alignments. The region of interest is a
square of 256× 256 pixels (4282 µm2) and the reconstructed volumes are composed
of 256× 256× 256 voxels of 1.673µm3.

Figure V.18 shows this region of interest as well as the bead by comparing the xy
and xz-average intensity projections of the fluorescence z-stack and the lens-free
reconstruction without cap at full resolution for θ = 35◦.

On the xy-projections, isolated beads are perfectly identifiable and in the clusters
of beads, the resolution appears sufficient enough to resolve the beads which lie in
a same plane. For the rightmost cluster, the beads are agglutinated in the three
directions and it becomes more difficult to separate the different beads.

On the xz-projections it clearly appears that the lens-free reconstructions have
a better sectioning capability than the fluorescence microscope15. Nevertheless, the
resolution is worse than on the xy-plane: the beads are elongated along z.

The undersampling of the reconstruction, the presence of the cap or the value
of the angle θ can influence the quality of the reconstructions and the resulting
resolution. Figures V.19 and V.20 compare the effects of these parameters.

The cap on the Petri dish does not seem to influence the quality of the recon-
struction. There is no noticeable difference between the low resolution projections.

The voxel resolution 1.67 µm v.s. 3.34 µm does not influence the reconstruction
resolution neither. Indeed, if the pixelization is visible on the low resolution pro-
jections, the full resolution projections do not provide better information. These
projections are blurred and the edges of the beads are not sharper as it could be
expected. Some tests (not presented here) showed that these projections are very
similar with a scaling by a factor of 2 of the low resolution pictures with a bilinear
interpolation.

The voxel resolution has nevertheless an effect on the noise: the background in
the low resolution reconstruction is darker and cleaner. An explanation for this effect
is that no matter what is the voxel resolution, the pixel resolution in the dataset
remains 1.67 µm. This means that there is four times more redundant data in the
low resolution reconstructions per voxel than for the full resolution reconstruction.
This averages the noise in the data.

The influence of the angle θ is much stronger. On the xy-views, the resolution
slightly degrades as θ increases. This effect is particularly visible on the clusters
where the resolution at θ = 55◦ is not sufficient anymore to dissociate the beads.
But it is along the z-axis that this effect is the most visible: the elongation of the
beads strongly deteriorates with the angle.

To better quantify these effects, profiles are drawn along the x and the z-axis for
the bead pointed in figures V.18, V.19 and V.20. For the visualization in figures V.21

15Let’s recall here that the fluorescence microscope is not a confocal microscope. Such a micro-
scope would provide a better sectioning capability. Acquisitions have been attempted on a spinning
disk confocal microscope but the amplitude of the translation stage along the z-axis is too short
to acquire large volumes and perform a comparison on a large statistic of beads.
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Figure V.18: xy and xz-average intensity projections of a region of interest of
the fluorescence z-stack (left) and its counterpart in the lens-free reconstruction at
full resolution (right, θ = 35◦, without cap). The red arrow points at the bead
which is investigated. The red rectangles frame the regions which are compared in
figures V.19 and V.20. On each view, the colors codes for the depth: the shallowest
in blue, the deepest in red.

and V.22, the profiles are all normalized and centered.
For each profiles, its full width at half maximum (FWHM) is manually measured

along the z-axis. For the xy-plane, Gaussian distributions are fitted with parame-
ters x0 (the translation of the curve), σ (the standard deviation), A (the amplitude)
and off (the offset):

f (x) = A.e−
(x−x0)2

2σ2 + off (V.4)

The FWHM is then given by [102]:

FWHM (σ) = 2
√

2ln2σ (V.5)

203



V Towards 3D time-lapse microscopy in incubator

Figure V.19: xy-average intensity projections of a region of interest of the re-
constructed volumes for different angles and reconstruction resolutions, with and
without the cap on the Petri dish. The red arrow points at the bead which is inves-
tigated. On each view, the colors codes for the depth: the shallowest in blue, the
deepest in red.

The results are presented in the table [V.2]. As they are done on a single isolated
bead these results cannot be used to quantify the resolution but they give an idea
of the sizing capabilities of the system.

On the radial plane, figure V.21 confirms some of the previous qualitative ob-
servations. Excepted a more pronounced pixelization effect between the full res-
olution reconstruction (solid lines) and the undersampled reconstructions (dotted
and dashed lines), the curves present a similar FWHM around 9 ∼ 10 µm which
is in a good agreement with the fluorescence measurements. Let’s note here that x
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Figure V.20: xz-average intensity projections of a region of interest of the re-
constructed volumes for different angles and reconstruction resolutions, with and
without the cap on the Petri dish. The red arrow points at the bead which is inves-
tigated. On each view, the colors codes for the depth: the shallowest in blue, the
deepest in red.
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Figure V.21: Comparison of xy-profiles drawn at the center of the bead pointed
in figure V.18 in the fluorescence z-stack (gray line along the x-direction, black line
along the y-direction) and the reconstructed volumes for θ = 35◦ (red), θ = 45◦

(green) and θ = 55◦ (blue) at full resolution (solid line) and low resolution with
(dotted line) and without (dashed line) the cap on the Petri dish.

Fluo Full resolution No cap With cap
θ 0◦ 35◦ 45◦ 55◦ 35◦ 45◦ 55◦ 35◦ 45◦ 55◦

x (y) 9.1 (8.3) 9.1 10.5 9.5 9.0 11 9.7 9.2 10.0 10.6
z 134 32 49 75 34 44 70 28 51 74

Table V.2: Table of the measured full widths at half maximum in the different
situations. The values are given in microns.

and y-profiles are drawn for the fluorescence plane because unfocused fluorescence
of a bead on the left of the bead of interest is degrading the signal along the x-axis
(bump on the left of the gray curves)16. The oversampling does not degrade the
sizing capability, the edge of the beads decreases in the same manner. This is in line
with the previous qualitative remark on the spatial resolution on the xy-plane.

16Let’s also note that the found FHMWs of 9.1 and 8.3 µm do not match the theoretical value
of 10 µm diameter. This may be due to the choice to fit a Gaussian curve to get the FHWM.
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Figure V.22: Comparison of z-profiles drawn at the center of the bead pointed
in figure V.18 in the fluorescence z-stack (black) and the reconstructed volumes
for θ = 35◦ (red), θ = 45◦ (green) and θ = 55◦ (blue) at full resolution (solid line)
and low resolution with (dotted line) and without (dashed line) the cap on the Petri
dish.

Similarly, the presence or the absence of the cap on the Petri dish does not
significantly change the measured FWHMs. The reconstruction conserves its quality.
This means that the regularization is efficient to get rid of the structured background
added by the presence of the cap in the signal.

But the FWHMs are not influenced by the value of the angle θ. This is in
contradiction with the previous qualitative observation of a loss of resolution in the
clusters. This may be due to the fact that this is an isolated bead on which the
regularization is efficient compared to the clusters where a lack of resolution will be
enhanced by the regularization which fosters an extended homogeneous object.

The curves of figure V.22 confirm the conclusions of the analysis of figure V.20.
The resolution of the reconstruction and the presence of the cap on the Petri dish
do not have much influence, giving similar FWHMs.

The effect of the angle θ is much more impressive. If all the reconstructions are
better than the z-profile in the fluorescence z-stack, there is a strong disparity in
the three cases with an elongation shifting from ∼ 30 µm for θ = 35◦ to ∼ 70 µm
for θ = 55◦. They are several times bigger than the 10 µm theoretical diameter
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of the beads. The sizing capabilities are consequently strongly diminished along
the z-axis with an overestimation of at least17 ∼ 20 µm. These FWHMs give also
the low limit of the axial resolution which cannot be expected to be better than
these values.

Another remark concerns the shape of the profiles. The nice dome at θ = 35◦

on which it is simple to identify the position of the bead is replaced by a plateau
at θ = 45◦ and 55◦ on which the position is less obvious.

Let’s also mention the two bumps in the z-profiles surrounding the central peak
for θ = 55◦. These are artefactual as they are not present in the other reconstructions
curves.

Interestingly, these artifacts are not present for all the beads in the volume. It
only concerns isolated beads (not presented here).

3.4 Conclusion and discussion

As a conclusion, the lens-free microscope provides its best results at θ = 35◦

and the presence or the absence of the cap on the Petri dish does not significantly
change the reconstructions quality.

Apart from a dilation factor under 2.5 %, it can achieve a very good accuracy
on the xy-plane with a low standard deviation σ < 4 µm for all the tested angles θ.
It is proven that contrary to an uncorrected fluorescence acquisition, the lens-free
reconstructions provide quantitative information on the z-axis in terms of positioning
with an accuracy slightly degraded (standard deviation around ≃ σ < 7.5 µm
for θ = 55◦ and σ . 6.5 µm otherwise).

The study of the resolution is only qualitative, looking at the average intensity
projections. A low limit is nevertheless found on the z-axis via a sizing capability
study. It cannot be better than ∼ 30 µm for θ = 35◦ and ∼ 70 µm for θ = 55◦. On
the contrary good sizing capability is performed on the xy-plane for objects of at
least 10 µm in diameter.

These results seem in contradiction with the simulations presented in the previous
chapter, section 1. It has been seen that the wider the angle θ is open, the better the
resolution on the z-axis should be. In this section, wider opening angle are linked
with a degradation of the reconstructions along the z-axis. Several factors may play
a role in this difference of results.

First, the simulation are performed on perfect simulated data, whereas the noise
strongly increases in the real data (see figure V.12.b) and participates to degrade
the reconstructions quality.

Then, the model reaches its limits at high angle. Indeed, all the simulations
and reconstructions are based on the Fourier diffraction theorem which assumes a
monochromatic incident plane wave with infinite spatial and time coherence, whereas
the real lighting is only semi-coherent with an extended spatial source. As the
holograms spread and overlap each other at high angle, this effect degrades the
interferences of the holograms.

17The best FWHM ∼ 30 µm minus the theoretical size of the beads 10 µm
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And finally, the sensor response is neither modeled nor even known at high
angle. The sensors efficiency and light acceptance are known to degrade with the
angle [103]. A characterization of the sensor may be needed to model these effects
and take them into account in the reconstruction algorithms.

Let’s also give some limitations of the proposed method.
First of all, no oversampling is used. This means that the cross-correlation

cannot perform sub-pixel positioning. This degrades the position determination as
it is constrained to be an entire multiple of the pixel size. As a first approximation,
this is nonetheless considered sufficient. But looking at the standard deviations of
table [V.1] on the radial distributions, it appears that they are of the same order
of magnitude than the voxel size18. It implies that the limitation in the accuracy
presented here is not the reconstruction algorithm nor the reconstruction quality
but the algorithm to extract the beads positions.

Then the 3D position determination depends on the matching pattern designed
by the user and the size of the extracted coring. For each volume, different parame-
ters are tested and an "average" set of parameters around which the results are not
significantly different is chosen. Deeper studies are necessary to quantify this effect,
especially concerning the pattern shape in the fluorescence z-stack. An ellipsoid
may not be the optimal shape.

As mentioned, transformation (V.1) does not work out the tilt of the 3D sample
which appears non negligible in figures V.16.e,f. This increases the dispersion of
the clouds of points in figure V.17.b and thus decreases the estimated accuracy on
the z-axis (see table [V.1]). It could be interesting to include a tilt parameter in the
transformation (V.1). This is nevertheless a subtle work as it must take in account
that the voxels are not normed in the three directions because of the scaling factor
introduced on z-axis.

It is also shown that the reconstructed volumes present a dilation on the xy-plane.
Constrained between 1.1 % and 2.3 % depending on the angle θ, these scaling factor
are in the order of magnitude of the scaling factors found in chapter II, section 3
which are due to the approximation of the incident spherical wave by a plane wave.

Nevertheless the light source is forced to move on a circle centered on the sample
and whose radius is 7 cm. The scaling factor should consequently not present the
observed variations according to the angle θ. To investigate if they are due to the
acquisition angle or a dilation/contraction of the Matrigel® along time as observed
in section 2 of this chapter, lens-free reconstructions with and without cap which
are done at the same angles but different timings are compared in figure V.23.

The curve in figure V.23.b is not conclusive. Indeed on the one hand, the scaling
factors appear to follow a coherent temporal evolution with a decreasing value along
time. Nevertheless on the other hand, it is not as marked as it should be, the scaling
factor also forming clusters according to the angle θ.

A closer look in figure V.23.a does not provide better interpretation as on some
trails, the dilation appears coherent with an temporal evolution (green arrows)
whereas on some other this clustering effect is also visible (red arrows).

18dxv = dyv = 3.34 µm ∼ 3.683 µm ≤ σ ≤ 3.993 µm
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Figure V.23: Comparison of the scaling factor s on the radial plane for the lens-free
reconstruction with (squares) and without (triangles) the cap on the Petri dish at the
different angles θ = 35◦ (red), 45◦ (green) and 55◦ (blue). (a) Temporal evolution
of the scaling factor s. (b) Zoom on the bottom right corner of the xy-view of
figure V.16.a. The yellow circles are the positions of the beads identified with the
fluorescence microscope. The green arrows follow the beads which seem to have a
temporal contraction whereas the red arrows follow the beads where a clustering
effect with the angle seems to prevail.

nbb = 389
Without cap With cap

θ = 35◦ θ = 45◦ θ = 55◦ θ = 35◦ θ = 45◦ θ = 55◦

s 1.0114 1.0156 1.0223 1.0118 1.0158 1.0234
R2 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997

σ (µm) 3.6759 3.7641 3.9852 3.6384 3.9474 4.0110
t0 + t (min) 72 48 5 63 39 19

Table V.3: Results of the linear regression performed on the radial distribution for
the nbb = 389 beads matched in the fluorescence z-stack and the six reconstructed
volumes with and without the cap on the Petri dish. For θ ∈ {35◦, 45◦, 55◦}, the
slope s, the coefficient of determination R2, the standard deviation σ of the linear
regressions and the time of acquisition are given.

As a conclusion, if the value of the scaling factor seems mainly due to the plane
wave approximation of the incident spherical wave front, it is not possible to give
a certain explanation of the variation of the dilation with the angle θ observed in
figure V.16.a. The experiment depends on too many factors. The sample is indeed
in incubator for 3 days before its imaging at the ambient air on the fluorescence
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3 Characterization

microscope. Let at room temperature it is imaged half a day later on the lens-free
microscope at θ = 55◦ with a large dilation factor with the cooling air flow activated.
Because of the formation of mist during the first acquisition with a cap, the pressure
of the air flow is augmented. For the higher angles, a contraction of the Matrigel® is
observed concomitant with the change of θ. It is hard to conclude on a change in
the dilation factor due to a temperature or a geometrical effect.

To discriminate the effects, it is needed to perform again the experiments with
either another reference object which does not evolve along time or with a more
controlled environment in terms of temperature and with longer periods of time in
between the acquisitions.

Concerning the accuracy, only the reconstructions obtained with the regularized
Gerchberg-Saxton algorithm IV.4 are investigated. It would be an interesting result
to also reconstruct the data with the regularized inverse problem approach IV.3. If
a gain in resolution on the xy-plane is not expected, maybe that the regularization
could improve the resolution along the z-axis.
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V Towards 3D time-lapse microscopy in incubator
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Conclusion and perspectives

As a conclusion, this thesis shows the possibility to adapt the lens-free mi-
croscopy to the imaging of 3D biological samples over large fields of view and ex-
tended periods of time in incubator conditions as well as the possibility to adapt
the algorithms to perform tomographic reconstructions.

Concerning the prototypes, several solutions are tested whose designs depend on
the potential applications. A first design is more adapted to standard tomographic
acquisitions with a sensor and a light rotating relatively to the sample. But it implies
strong constraints on the sample preparation because of limitations on the container
size or geometry and because of refractive index matching issues.

A second design finally converges to a scheme combining two conditions. The
first requirement is the choice of simplicity of use with a cell culture in standard
Petri dish and requiring no specific preparation or change of container. The second
condition is to find the best possible angular coverage of lighting angles in regards
of the geometric constraints imposed by the first requirement.

Finally, an incubator-proof version of this design is successfully built and tested.
Regarding the dedicated tomographic reconstruction algorithms, all the devel-

oped methods aim to correct two inherent problems of a lens-free in-line holographic
microscope: the absence of phase information, the sensor being sensitive only to the
intensity of the incident wave, and the limited angular coverage.

Different pragmatic solutions are tested using techniques previously developed
in the context of X-rays tomography and 2D lens-free tomography.

A solution using z-stack acquisitions and the diffraction physics under the Born
approximation does not appear conclusive but paves the way to reconstructions
based on 3D diffraction physics.

The work on the algorithm mainly focuses on four major solutions, all based
on the Fourier diffraction theorem, conventionally used in optical diffractive tomog-
raphy and with an increasing complexity. The first algorithm simply replaces the
unknown phase with that of an incident plane wave. If this method is fast, it is
however the source of many artifacts. The second solution tries to estimate the
missing phase by approximating the unknown object by an average plane and uses
the tools of the 2D lens-free microscopy to recover the missing phase in an inverse
problem approach. The third solution consists in implementing a regularized inverse
problem approach on the 3D object to reconstruct. It is the most effective method
to deal with the two problems mentioned above but it is very slow. The fourth and
last solution is based on a modified Gerchberg-Saxton algorithm with a regularized
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step on the object and can be used to initialize the third algorithm.
The use of an algorithm more than another is directly linked with the sample

characteristics and the wanted reconstruction quality.
All these methods are compared and tested successfully on numerical simula-

tions as well as on experimental biological data, fixed and living. Comparisons
with conventional microscope acquisitions show the validity of the reconstructions
in terms of shape and location of the retrieved objects as well as the accuracy of their
three-dimensional positioning. Biological samples are reconstructed with volumes
of several tens of cubic millimeters, inaccessible in standard microscopy.

Moreover, 3D time-lapse data successfully obtained in incubators show the rele-
vance of this type of imaging by highlighting large-scale interactions between cells
or between cells and their three-dimensional environment.

Thus, as synthesized in the following table, this thesis demonstrates the capa-
bility of a 3D lens-free microscope to acquire and gather relevant information on
different kinds of 3D cell culture.

3D model Relevant information Experiment

Culture
substrate

Large volumes, cell-cell
interactions, cluster development

and migration, 3D network
formation

Chapter III, sections 2, 4
Chapter IV, section 5
Chapter V, section 2

Capsules
3D distribution of single cells,

cluster development and escape
from the capsule

Chapter III, sections 2, 3
Chapter IV, sections 3, 4, 5

Tubes Angiogenesis, tubular processes Chapter IV, section 4
Extracellular

matrix
Passive evolution, dynamic

remodeling
Chapter V, section 2

In terms of perspectives, this work paves the way to new experiments in bi-
ology with temporal statistics on large volumes and opens new possibilities in terms
of design and prototype conception and reconstruction algorithms development.

In 3D biology - Chapter V, section 2 demonstrates for the first time the ca-
pability of a lens-free tomographic microscopy to perform 3D+t acquisitions of 3D
cell culture in incubator. Being able to monitor large volumes over a period of time
covering several days allows observing within the same experiment a large number
of phenomena dealing with cell migration in 3D environment: single cell migration,
collective migrations of cells, displacement of cell aggregates, dispersal of cells, ag-
gregation of tens of cells into one single aggregate, interactions with the ECM, ECM
remodeling and so on. These kinds of observation can help to validate biophysical
models develop in different branches of 3D biology.

For example, the cell migration and merging observations are very much in line
with the broad spectrum of migration and invasion mechanisms discussed in [104,
105] and [106].
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The sprouting of cells observed around the clusters, that is to say short-range
dispersal of cells, echoes the mechanisms described in [107] to explain faster rate of
tumor growth.

The observations are also in line with the model introduced in [108] which de-
scribes the possible migration of very large aggregates of cells. The cohesive migra-
tion of an aggregate of cells of 6000 to 10000 µm2 (projected area) confirms their
prediction that an isolated cells monolayer may acquire a global polarity and con-
sequently performs persistent random walks. Overall, all these observations demon-
strate that 3D lens-free microscopy is an interesting technique to capture and study
the complex multicellular dynamics and remodeling that are supported by collective
cell migration processes [109].

In addition to the observation of cell migrations in 3D environment, the intrinsic
deformations of the ECM can be measured. The speed of these deformations are in
the range of 1 to 2 µm.h−1 which is not negligible. Hence they should be system-
atically taken into account when measuring for example the speed of single cells in
3D cell culture.

More importantly isolate ECM deformations resulting from traction forces gen-
erated by large cell aggregates are observed. It means that lens-free microscopy
allows capturing in time the dynamic interplay between cell growth in 3D and ECM
remodeling. It is an important observation since ECM is a key active event in the
embryonic development or tissue homeostasis. And any dysregulation affecting ECM
may contribute to pathologies such as inflammation [110], age-related diseases [111]
or cancer [112, 113]. Thus the capability of 3D lens-free microscopy to monitor
the process of ECM modifications could provide a mean to measure this dynamic
signature.

One can question whether 2D lens-free microscopy would have allowed all these
observations. Indeed, it has been shown that 2D holographic reconstruction algo-
rithm can be successfully used to monitor 3D cell culture [52]. But in this context
of a no top coat culture, the objects are mainly lying on a 2D surface and do not
have a large distribution in terms of z-positions. Moreover, all the contextual in-
formation, such as the 3D positions of the clusters of cells and the deformation of
the ECM are lost with a 2D lens-free microscopy setup. The contribution of the
lens-free 3D reconstruction is proven to be particularly important for the tracking
of beads embedded within the ECM at different depths. It provides a unique tool to
observe 3D deformation of the ECM and judge the long-range effect of the traction
forces created by cells aggregates onto the ECM.

Concerning large biological reconstruction, future works can focus to test the
3D lens-free microscope on standard objects such as C. Elegans. It has also been
recently proven the possibility to acquire pertinent data on cleared samples [114]
which would be good objects to test the limit of the model and the reconstruction
algorithms.

Something which is also investigated in this PhD work, but not presented in
this thesis because of the lack of in-depth studies, is the possibility to use 3D lens-
free microscopy to discriminate acini (hollow cell cluster) from spheroids (full cell
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cluster) in RWPE1 prostate epithelial cell cultures. These cells form polarized acini
with lumen under standard 3D culture conditions while the first event in epithelial
carcinogenesis is a loss of polarity, followed by uncontrolled proliferation leading to
metastasis and the filling of the lumen and thus to spheroid formation [52]. They
represent difficult objects to reconstruct because of their important cell density
but on which 3D information is essential in terms of biological applications. They
constitute a pertinent sample to test the limit of the models and reconstruction
methods on large and dense objects

To conclude in terms of biological applications, it would be interesting to test
the limitations of the proposed tool with stained or pigmented cells. Indeed, the
reconstruction algorithms are based on the assumption that the sample is transpar-
ent. Nonetheless staining is often used in biology to label specific cells or structures.
Some works have shown the possibility to use lens-free devices to image such 2D
samples [115], a need which will also appear in 3D samples.

Reconstruction algorithms - This thesis introduces new algorithms dedicated
to reconstruction of lens-free tomographic data and more in-depth studies are needed
to improve and complete them. Some perspectives are already given at the end of
chapter IV, section 5.

Concerning the proposed codes themselves, let’s remind here the need to optimize
the choice of the hyperparameters especially for the inverse problem approach IV.3
and test their validity for different volume sizes and voxel pitches. The effect of the
numbers of acquisition angles and wavelengths as well as their combination should
be more studied to optimize the number of lighting situations needed to achieve
good reconstruction quality while limiting the acquisition time.

Most of the reconstructions with the inverse problem approach IV.3 uses the
nearest-neighbor interpolation technique whereas it is shown in chapter II, section 3
that a linear interpolation should lead to better reconstruction. This should be
tested.

Still concerning the inverse problem approach, a similar step than the alignment
refinement could be dedicated to refine the other reconstruction parameters such as
the reconstruction distance zs and the illuminations wavelengths which are critical
or the lighting positions via the values of ϕ and θ.

Through its characterization, especially in terms of admissible angles, the sensor
behavior could also be modeled and integrated in the direct model used in the
inverse problem approach. The same could be done with the LED spectra which
are assumed to be monochromatic in this entire thesis. A model adding incoherent
holograms of different wavelengths around the emission peak of each LED could
simulate this limited temporal coherence.

For the regularized approaches IV.3 and IV.4, only two regularization are tested:
a sparsity prior on the object and on its gradient. The main limitation of the lens-free
microscope is its limited angular coverage. It leads to the elongated artifacts on the
z-axis observed in all the reconstructions of this thesis, the missing information being
hardly retrieved by the implemented regularizations. New regularizations adapted
to the reconstructed objects could be tried. For instance, it could expected that the
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reconstructed objects present similar properties in the three directions since in a first
approximation, a cell can be considered as spherical. Enforcing this characteristic
in a constraint, as proposed in [116], could improve the reconstruction quality.

Some ideas for new algorithms based from the ones already developed are also
given. For example methods IV.2 and IV.4 or methods IV.2 and IV.3 could be com-
bined to force the retrieved phase by method IV.2 in the data fidelity enforcement
step. Method IV.2 could also be replaced by a completely new phase retrieval al-
gorithm presented in [48] to perform the data fidelity in the Gerchberg-Saxton loop
of method IV.4. By enforcing stronger data fidelity, it should accelerate the conver-
gence with a minimal extra cost in terms of computation needs both, in memory
and time.

But it is also possible to think about new algorithms based on different tech-
niques such as presented in [49] which combines incoherent illuminations and z-stack
acquisition or in [117] which trains a neural network for a machine learning approach.

In a more pragmatic point of view, none of the algorithms developed in this thesis
which takes into account the 3D diffraction physics is tested for θ-mode acquisitions
with the first prototype. Nevertheless, the simulations on a bead of the chapter IV,
sectio, 1 show a strong reduction of the reconstruction artifacts and simulations on
cells embedded in a capsule (not presented here) lead to a complete reconstruction
of the encapsulating envelope and not only a ring in the plane parallel to the sensor
as in chapter III, section 3 or chapter IV, section 3. As a consequence, if a lens-free
device is built to implement the θ-mode on real data, tremendous improvements in
the reconstructions quality are awaited.

Reconstruction time - As often in tomographic reconstruction, the bottleneck
of the presented methods is their computation time, up to several hours (or days)
for a given volume. The acquisition of systematic temporal data, as in chapter V,
section 2, raises the concern of the global reconstruction of the 3D time-lapse video
of an experiment monitored during several days which can take several weeks. This
leads to the impossibility to acquire data on several experiments and reconstruct
and compare them in a reasonable period of time.

Some ideas to shorten the reconstruction time are given in chapter IV, section 5
and some of them are tested during this PhD work but not presented in this thesis
because the overall gain in computation time is not convincing.

For example an algorithm is implemented to perform the extraction/mapping
of the coefficients of the spherical caps in the Fourier domain for method IV.3 in
parallel in terms of lighting situations. Nevertheless, its multi-threading faces the
impossibility to share large matrices of the master thread to the slaves in Matlab®.
Getting around this issue compensates the gain of time of the method. C-code or
GPU programming have already demonstrated to correct these issues [97] in the
case of method III.4. Adapting these solutions to the algorithms presented in this
thesis would be beneficial.

The alignment refinement remains also a time consuming step. It can take up
to tens of minutes for large fields of view to align all the angles and wavelengths.
Faster alignment techniques would decrease the reconstruction time or improve the
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reconstruction quality as they could be run more times.

Pre-processing steps - As presented in appendix C, the pre-processing steps
of data alignment and zs determination are essential to achieve good reconstruc-
tion quality. They are complex steps which need the user’s supervision or manual
intervention. This can be a strong impediment to the development of 3D lens-free
microscopy because of this implication of a degraded ease of use compared to a 2D
lens-free in which even the focusing step can be done automatically [118].

Testing similar criterion of finding new metrics to qualify the focus automatically
would provide more objective reconstruction distances and remove a step which is
currently manual in the reconstruction.

The bottleneck remains the data alignment. A new algorithm must be invented
to be able to align the data independently or all together in the same time to avoid
the error propagation mentioned in appendix C. This new algorithm also needs to
be robust to complex fields of view where a specific pattern present and isolated on
all the acquisitions is hard to find.

In order not to diminish the ease of use, such an algorithm would also gain to
be automatic.

3D diffraction model - In this thesis, all the reconstruction methods are based
on the Born approximation with strong limitations in terms of domain of validity.
These conditions are generally not met by the large 3D samples observed in lens-free
microscopy.

It may be an explanation for the unexplained inversion in the interpretation of the
complex refractive index mentioned in II, section 3 for the absorption and dephasing
properties of the reconstructed objects. This incomprehension is the reason why
refractive index representations are barely used in this thesis. Nevertheless, this
possibility given by the different algorithms to directly reconstruct the scattering
potential should be tested and compared with scattering potential reconstructions
to determine which is the one giving the best results and if it depends on the sample
nature. These reconstructions should also be compared with the expected complex
refractive index in order to identify where this problem may come from.

The Born approximation prevents any quantitative interpretation of the recon-
structed volumes and there is a need of a more adapted model. More in-depth
studies are needed to determine if this refractive index problem can be directly at-
tributable to the 3D diffraction model and the Born approximation or some gaps in
the overall modeling of the system, for example with the effect of the temporal and
spatial coherence of the LEDs which should be studied more into details.

Concerning the Born approximation, the Rytov formulation mentioned in II,
section 1.2 is supposed to have a greater validity domain and should be tested and
compared with reconstructions based on the Born formulation.

Some recent works solve this issue by completely changing the propagation tech-
nique by moving to multislice models [47, 119]. Only based on 2D propagations,
they run faster with an increased domain of validity. They could be adapted to an
inverse problem approach similar to method IV.3.
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In any case, much work remains to be done before having quantitative recon-
structions.

Device conception - But in the short term, efforts must focus on the prototype
to provide a really effective and easy to use 3D lens-free microscope for long term
use in incubator conditions.

Before the acquisitions, there is a long procedure of adjustment of the positions
of the sensor and the sample using small screws. This procedure aims to insure that
the center of rotation of the projected holograms of the object of interest is centered
and to maximize the field of view which can be reconstructed. The screw system
allows precise and easy positioning of the sensor and a similar solution should be
implemented for the sample. Moreover, this system is not always intuitive.

For the acquisitions, the stepper motor should be replaced by a smoother and
faster solution. Indeed, the sample needs to be maintained to prevent any displace-
ment because of the vibrations induced by the rotation of the light source and the
sensor. To prevent any blurring effect during the hologram recording, a preventive
waiting time is performed after each movement before the first acquisition. This
leads to a very slow acquisition procedure: up to 10 min for 32 lighting positions
and 3 wavelengths. This can be greatly improved (with a similar geometry with
optimized components, the 3D Cell Explorer from Nanolive performs the full acqui-
sitions within less a second [42]).

Moreover this moving part is source of lots of breakages and problem of welding
in the wires linking the fixed structure of the microscope with the moving sensor
and light source. More adapted solutions must be found to insure the robustness
of the prototype in long period of time without premature wear using electronics
pieces dedicated to wiring of rotation stages.

A solution could also be to move to a fixed strip of LEDs laid on a crown similar to
the solution implemented in [49, 70]. With the sensor fixed on the axis of symmetry,
there is no moving part anymore. A prototype with this solution is built but not
presented in this thesis. This nevertheless implies that the sample is put as close as
possible to the sensor to insure that its holograms are projected on the sensor field
of view. It also leads to an overall reduced field of view.

The long acquisition time is also partly due to the low power of the LEDs.
Combined with the not normal illumination, only a small part of the emitted light
reaches the sensor. This degrades the signal over noise ratio and forces to use the
maximal exposure time available of the sensor model.

A more powerful LED could be used. Laser diodes with higher temporal coher-
ence and emitting power should be tested as they would increase the interference
quality and provide an illumination more adapted to the models used in the different
reconstruction algorithms which assume monochromatic fully coherent plane wave.
They would also increase the signal over noise ratio.

Using the recent results of the 2D lens-free microscopy, the size of the pinhole
(�150 µm) should also be reduced (to �50 µm for example) to increase the spatial
coherence.

Still concerning the light source, it is shown in this thesis that the spherical wave
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produced by the LED is at the origin of a dilation effect of a few percent on the
reconstructed objects. The use of a more powerful source could allow increasing
its distance to the sample, limiting this effect. Some works also demonstrate the
possibility to use holographic plates to create a rigorous plane wave illumination in
a compact system as well as controlling the lighting direction without the need of
any moving part [120, 121]. This direction could also be investigated.

The air cooling system is also a compulsory need in the lens-free microscope
functioning. It relies on an external air supply and is very sensitive to the input
pressure. It could be interesting to test less heating sensors or to actively monitor
and cool the sensor temperature.

Concerning the θ-mode, this thesis shows the difficulties to handle large scale 3D
objects acquisitions which cannot be put in a glass capillary or fixed on a rotating
spike. Nevertheless, simulations show all the potential of such a mode in terms of
reconstruction quality. Reducing the size of the studied samples to aggregates of a
few cells, different techniques could be tested in a standard 2D lens-free microscope
to manipulate and rotate the sample in 3D to acquire holograms at different angles,
such as acoustic [122, 123] or optical [124] tweezers or dielectrophoresis [125].

Finally, this PhD work focuses on designs directly inspired from the 2D lens-free
microscopes only composed of a semi-coherent light source behind a pinhole and a
fixed sensor. But one could try to modify other designs in which lenses are mainly
used as magnification tool to turn them into 3D lens-free microscopes. For example,
in chapter III, section 3 the method base on a z-stack acquisition is said to be a
dead end with the chosen designs and models. But some works have shown that an
adapted light source and specific LED patterns can lead to tomography algorithms
needing only normal illuminations to simulate bright-field and phase contrast images
and a translation stage to multiply the acquisitions distances [49, 126], perfectly
adapted to multiwell plates. It opens new perspectives in terms of design.
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Appendix A

Green’s functions to solve linear
differential equations

The aim of this Appendix is to give a brief overview of the definition and the
use of the Green’s function to solve linear equations. It gives a more consistent
framework for the results stated in chapter II, section 1 by detailing some of the
main steps to solve equation (II.5). It does not intend at being mathematically
rigorous.

1 Overview

The reader willing for a more rigorous frame is encouraged to refer to [74], entry
"Green’s function".

Let’s consider a linear differential operator L acting on a function u according
to the variable x in Ω. The present problem is to solve the following equation1:

Lu (x) = f (x) (A.1)

where f is another function called the forcing term since it forces the value of Lu
according to x.

Let’s now consider that for any given y in Ω, it exists a function g depending
on (x, y) such as:

Lg (x, y) = δ (x− y) (A.2)

where δ is the classical notation for the Dirac delta function. g is the so-called
Green’s function.

It is now possible to express a solution u for the equation (A.2). Indeed, f can
be expressed in terms of distribution:

f (x) =
∫

y∈Ω
f (y) δ (x− y) dy (A.3)

1To be well-posed, the problem also needs boundary conditions. For example, for the wave
equation, the Sommerfeld radiation condition is generally chosen (see [74], entry "Radiation condi-
tions"). It states that the energy must scatter to infinity and is radiated from the source and not
toward the source from infinity.
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Then, from equation (A.2), it comes:
∫

y∈Ω
f (y)Lg (x, y) dy =

∫

y∈Ω
f (y) δ (y − x) dy (A.4)

Knowing that L is linear and acting on the variable x, it is possible under certain
circumstances to invert the integration on y and the derivation on x. One then gets
from equations (A.1) and (A.3):

L
∫

y∈Ω
f (y) g (x, y) dy = f (x) = Lu (x) (A.5)

It is then tempting to speculate that:

u (x) =
∫

y∈Ω
f (y) g (x, y) dy (A.6)

This assumption is true under certain circumstances, at least in term of distribu-
tions. Generally in physical sciences, one considers that all the needed conditions are
met to use the mathematical properties encountered in this section, and a solution
of equation (A.1) is actually given by the expression (A.6).

It appears then that the solution is a weighting in space of the Green’s function g
by the forcing function f .

This formulation (A.6) is used to obtain equation (II.9) from equations (II.5)
and (II.8).

2 Solution of the wave equation

Let’s now deal with the wave equation (II.5) met in chapter II section 1:

∆Udif (−→r ) + k′2
0 Udif (−→r ) = f0 (−→r )Utot (

−→r )

And more specifically the equation (II.8) expressed according to the associated
Green’s function:

∆g (−→r1 ,
−→r2 ) + k′2

0 g (−→r1 ,
−→r2 ) = δ (−→r1 −−→r2 )

Let’s have a glimpse on how the solution for g can be worked out. Let’s in-
sist again that the following calculations are not meant to be rigorous and aim at
highlighting the main steps.

Noticing that there is no spatial dependence in equation (II.8), it can be written
in a new reference frame centered on −→r2 . Posing −→r = −→r1 −−→r2 , the equation is now
written as:

∆g
(−→r ,−→0

)
+ k′2

0 g
(−→r ,−→0

)
= δ (−→r ) (A.7)

The first idea is to get inspired from the physics underlying behind this equation:
this is a wave equation with a forcing term (the Dirac delta function δ) associated
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2 Solution of the wave equation

with a point inhomogeneity placed at the origin of the reference frame. The problem
has a spherical symmetry and as a consequence, g only depends on r = ‖−→r ‖:

∆g (r) + k′2
0 g (r) = δ (r) (A.8)

Moreover, one may expect from a point inhomogeneity that the resulting wave
is a spherical wave diverging from this point. Its amplitude must then decrease
according to 1/r, so that the global intensity G = |g|2 lying on a sphere of radius r
remains constant2. The phase of the field is expected to grow with the distance r.
This leads to a first guess for the Green’s function:

g (r) = g0
eikr

r
(A.9)

Let’s check this is actually a solution for equation (A.8). Knowing the expression
of the Laplacian in spherical coordinates3:

∆f (r, θ, ϕ) =
1
r2

∂

∂r

(
r2∂f

∂r

)
+

1
r2 sinϕ

(
∂

∂r

(
sinϕ

∂f

∂ϕ

)
+
∂2f

∂θ2

)
(A.10)

and from the fact that g only depends on r, one gets ∀r 6= 0:

∆g (r) =
1
r2

∂

∂r

(
r2∂g

∂r

)
=

1
r2

∂

∂r

(
g0e

ikr (ikr − 1)
)

= −k2g0
eikr

r
(A.11)

Then, from equation (A.8), it comes ∀r 6= 0:

− k2g0
eikr

r
+ k′2

0 g0
eikr

r
= 0 (A.12)

This is true if k = ±k′
0. As only the waves outgoing from the point inhomogeneity

should be kept, only k = k′
0 remains. To find the value of g0, let’s suppose that the

solution (A.9) stays valid when k′
0 → 0 in equation (A.8), meaning that g (r) = g0/r

satisfies the Poisson’s equation:

∆g (r) = δ (r) (A.13)

Using the divergence theorem4 on a spherical cap S of radius r0 for the vec-
tor
−→∇g (r), one gets:
x

S

−→∇g (r) .
−→
ds =

y

VS

−→∇ .−→∇g (r) dv =
y

VS

∆g (r) dv =
y

VS

δ (r) dv = 1 (A.14)

Knowing the expression of the gradient in spherical coordinates5:

−→∇f (r, θ, ϕ) =
∂f

∂r
−→ur +

1
r sin θ

∂f

∂ϕ
−→uϕ +

1
r

∂f

∂θ
−→uθ (A.15)

2If there is no loss during the propagation, the quantity 4πr2G is constant.
3See[74], entry "Spherical coordinates".
4See[74], entry "Divergence theorem".
5See[74], entry "Spherical coordinates".
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A Green’s functions to solve linear differential equations

and using again the fact that g only depends on r, and that on the spherical
cap S −→ds = r2

0 sin θdθdϕ−→ur one gets :

−→∇g (r) .
−→
ds =

∂

∂r

(
g0

r

)∣∣∣∣∣
r=r0

r2
0 sin θdθdϕ = −g0 sin θdθdϕ (A.16)

Hence: x

S

−→∇g (r) .
−→
ds =

∫ π

θ=0

∫ 2π

ϕ=0
−g0 sin θdθdϕ = −4πg0 (A.17)

From equality (A.14), one finally has:

g0 =
−1
4π

(A.18)

and finally finds back the solution used in chapter II, section 1 as a solution for the
wave equation (II.8) in terms of Green’s function:

g (r) =
−1
4π

eik
′
0r

r
(A.19)
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Appendix B

Weyl’s integral for harmonic
spherical waves

The aim of this appendix is to demonstrate the relation (II.22) used in chapter II,
section 2 to state the Fourier diffraction theorem:

eikr

r
=
ik

2π

∞x

−∞

1
m
eik(px+qy+m|z|)dpdq

with k > 0, r =
√
x2 + y2 + z2 and m = (1− p2 − q2)1/2, m being complex if p2 +

q2 > 1.
This formulation and its proof are attributed to Weyl who published them almost

a century ago in [127]. As the author does not understand the proof in this paper,
another proof is introduced here, developed by the author and based on holomorphic
functions and the residue theorem.

1 Reformulation of the problem

Let’s begin by expressing eikr

r
in terms of its Fourier transform1, using the defi-

nitions introduced in chapter II:

eikr

r
= F−1

3D

[
F3D

[(
eikr

r

)] (−→
ξ
)]

(−→r )

=
+∞y

−∞

[
F3D

(
eikr

r

)] (−→
ξ
)
e2iπ(xu+yv+zw)d3−→ξ

=
+∞y

−∞

[
F3D

(
eikr

r

)] (−→
ξ
)
e2iπ−→r .

−→
ξ d3−→ξ

(B.1)

1Thanks to "kennytm" who gives the steps presented here on a forum: http://physics.

stackexchange.com/questions/1524/spherical-wave-as-sum-of-plane-waves.
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B Weyl’s integral for harmonic spherical waves

where −→r = (x, y, z) and
−→
ξ = (u, v, w) are the coordinates in the spatial and fre-

quencies spaces. It comes:

F3D

[(
eikr

r

)] (−→
ξ
)

=
+∞y

−∞

eikr

r
e−2iπ(ux+vy+wz)d3−→r

=
+∞y

−∞

eikr

r
e−2iπ

−→
ξ .−→r d3−→r

(B.2)

One must notice that the problem has a spherical symmetry and without loss
of generality, it can be considered that

−→
ξ is aligned with the z-axis. If not, it is

possible to perform a change of variables to align the new z′-axis with the unit
vector −→uz′ =

−→
ξ /ξ = (u, v, w) /ξ. Let’s also express the integration in terms of

spherical coordinates (r, θ, ϕ):

F3D

[(
eikr

r

)]
(ξ−→uz′) =

+∞y

−∞

eikr

r
e−2iπξz′

d3−→r

=
∫ +∞

r=0

∫ π

θ=0

∫ 2π

ϕ=0

eikr

r
e−2iπξr cos θr2 sin θdrdθdϕ

= 2π
∫ +∞

r=0

∫ π

θ=0
eikrr sin θe−2iπξr cos θdrdθ

= 2π
∫ +∞

r=0
eikr

[
e−2iπξr cos θ

2iπξ

]π

θ=0

dr

=
1
iξ

∫ +∞

r=0

(
ei(k+2πξ)r − ei(k−2πξ)r

)
dr

=
1
iξ

[
ei(k+2πξ)r

i (k + 2πξ)
− ei(k−2πξ)r

i (k − 2πξ)

]+∞

r=0

=
1
ξ

(
1

(k + 2πξ)
− 1

(k − 2πξ)

)

=
4π

4π2ξ2 − k2

(B.3)

Let’s note that the last integration converges for r →∞ only if k has a strictly
positive imaginary part. As mentioned, the previous calculations hold for any

−→
ξ

and then:

F3D

[(
eikr

r

)] (−→
ξ
)

=
4π

4π2ξ2 − k2
(B.4)

From equations (B.1) and (B.4), one gets:

eikr

r
= lim

ǫ→0+

ei(k+iǫ)r

r

= lim
ǫ→0+

+∞y

−∞

4π

4π2ξ2 − (k + iǫ)2 e
2iπ−→r .

−→
ξ d3−→ξ

= lim
ǫ→0+

+∞y

−∞

4πe2iπ(xu+yv+zw)

4π2 (u2 + v2 + w2)− (k + iǫ)2dudvdw

(B.5)
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2 Holomorphic functions and residue theorem to calculate integrals

Performing the change of variables 2π (u, v, w)←→ k (p, q, s) and supposing that
the limit and the integral can be inverted, one gets:

eikr

r
= lim

ǫ→0+

+∞y

−∞

4πe2iπ(xp+yq+zs)

k2

(
p2 + q2 + s2 −

(
1 + i ǫ

k

)2
)
(
k

2π

)3

dpdqds

=
+∞x

−∞

eik(xp+yq) lim
ǫ→0+



∫ +∞

−∞

k

2π2

eikzs

p2 + q2 + s2 −
(
1 + i ǫ

k

)2ds


 dpdq

=
k

2π2

+∞x

−∞

eik(xp+yq) lim
ǫ→0+

(∫ +∞

−∞

eikzs

p2 + q2 + s2 − (1 + iǫ)2ds

)
dpdq

(B.6)

where it is used that ǫ→ 0+ ⇔ ǫ
k
→ 0+.

Let’s find a way to compute:

Iǫ =
∫ +∞

−∞

eikzs

p2 + q2 + s2 − (1 + iǫ)2ds (B.7)

2 Holomorphic functions and residue theorem to

calculate integrals

Such integrals as equation (B.7) can be estimated with the use of their corre-
sponding holomorphic function f (z) where z is a complex variable and the residue
theorem2. It states that a holomorphic function f on U\ {a1, · · · , an} a simply con-
nected open subset of the complex plane U , the integral of f along a closed rectifiable
curve γ in U which does not meet {a1, · · · , an} equals to:

∮

γ
f (z) dz = 2πi

n∑

k=1

Indγ (ak) Res (f, ak) (B.8)

where the winding number Indγ (ak) of the curve γ about the point ak counts
the number of times the curve winds counter-clockwise around the point ak and
where Res (f, ak) is the residue of f at the singularity ak. For a simple pole c, its
value is given by:

Res (f, c) = lim
z→c

(z − c) f (z) (B.9)

Let’s now suppose that f is a holomorphic function on C, excepted on purely
complex singularities zj and that:

∃ (M,R) > 0, α > 1/∀z, |z| > R and I (z) > 0, |f (z)| < M

|z|α (B.10)

2See[74], entry "Analytic function". This section is also strongly inspired from [128] and [129].
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B Weyl’s integral for harmonic spherical waves

Let’s use the holomorphic properties of f to compute3:

If =
∫ +∞

∞
f (x) dx (B.11)

First of all, let’s define an integration contour γR in the complex plane as pre-
sented in figure B.1.

Figure B.1: Illustration of an integration contour γR. It is drawn counter-clockwise
around the complex singularities zj and is composed of a semicircle γ̆R of radius R
and the remaining γ̄R segment [−R,R] on the real axis.

With this definition, one can notice that:
∫ +∞

−∞
f (x) dx = lim

R→+∞

∮

γ̄R

f (z) dz (B.12)

Moreover, it comes:
∮

γ̄R

f (z) dz =
∮

γR

f (z) dz −
∮

γ̆R

f (z) dz (B.13)

Firstly, according to the residue theorem (B.8) when R is large enough4, γR
winds counter-clockwise around all the purely complex singularities zj with a strictly
positive imaginary part once5 and one gets:

lim
R→+∞

∮

γR

f (z) dz = 2πi
∑

I(zj)>0

(f, zj) (B.14)

3Note that this integral can be improper, only converging according to the Cauchy principal
value definition(see [130]). It is this definition which is used here.

4Understood as when R→ +∞ all the complex singularities zj with a strictly positive imaginary
part I (zj) > 0 lie within the contour γR.

5IndγR,ǫ
(zj) = +1
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3 Proof of Weyl’s integral

Secondly, according to the conditions (B.10) listed above, whenR is large enough:
∣∣∣∣
∮

γ̆R

f (z) dz
∣∣∣∣ ≤

∮

γ̆R

|f (z)| dz ≤
∮

γ̆R

M

|z|αdz =
∮

γ̆R

M

Rα
dz =

πM

Rα−1
(B.15)

And consequently, as α > 1:
∮

γ̆R

f (z) dz −−−−→
R→+∞

0 (B.16)

Finally, from the previously computed limits (B.14) and (B.16) one gets the
global limit from (B.12) and (B.13):

∫ +∞

−∞
f (x) dx = 2iπ

∑

I(zj)>0

Res (f, zj) (B.17)

Let’s note here that if the conditions (B.10) are not satisfied on the positive
imaginary part of the complex plane I (z) > 0 but on the negative part I (z) < 0:

∃ (M,R) > 0, α > 1/∀z, |z| > R and I (z) < 0, |f (z)| < M

|z|α (B.18)

the same demonstration holds with an integral contour in the negative part of the
complex plane drawn clockwise symmetrically to the one presented in figure B.1. In
this situation the winding number is negative6 and:

∫ +∞

−∞
f (x) dx = −2iπ

∑

I(zj)<0

Res (f, zj) (B.19)

3 Proof of Weyl’s integral

The function introduced in equation (B.7) f (s) = eikzs

p2+q2+s2−(1+iǫ)2 has the follow-

ing asymptotic behavior:

|f (s)| ∼
|s|→+∞

e−kzI(s)

|s|2
(B.20)

Thus, according to the sign of z on which depends the divergence of the expo-
nential part, f (s) satisfies either the conditions (B.10) (z > 0) or (B.18) (z < 0)

Let’s manipulate the integrand of Iǫ to find its residue:

f (s) =
eikzs

p2 + q2 + s2 − (1 + iǫ)2

=
eikzs

s2 −
(
(1 + iǫ)2 − p2 − q2

)

=
eikzs(

s+
(
(1 + iǫ)2 − p2 − q2

)1/2
)(

s−
(
(1 + iǫ)2 − p2 − q2

)1/2
)

(B.21)

6IndγR,ǫ
(zj) = −1
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B Weyl’s integral for harmonic spherical waves

The integrand has consequently two simple poles:

s± = ±
(
(1 + iǫ)2 − p2 − q2

)1/2

=
(
1− p2 − q2

)1/2
(

1 +
2iǫ

1− p2 − q2
+O

(
ǫ2
))1/2

=
(
1− p2 − q2

)1/2
(

1 +
iǫ

1− p2 − q2
+O

(
ǫ2
))

(B.22)

whose residues are according to the formula (B.9):

Res (f, s±) =
±e±ikz((1+iǫ)2−p2−q2)

1/2

2
(
(1 + iǫ)2 − p2 − q2

)1/2
(B.23)

We can then use the results found in the previous section to calculate the inte-
gral Iǫ. There are two cases.

Case 1: p2 + q2 < 1
Then 1− p2 − q2 ≥ 0 and the two poles are:

s± = ±
√

1− p2 − q2

(
1 +

iǫ

|1− p2 − q2| +O
(
ǫ2
))

(B.24)

with I (s±) = ± ǫ√
1−p2−q2

+O (ǫ2).

As ǫ → 0+, I (s+) > 0 and I (s−) < 0. Using the relations (B.17) or (B.19)
according to the sign of z, one gets:

Iǫ =





2iπRes (f, s+) = iπe
ikz((1+iǫ)2

−p2
−q2)

1/2

((1+iǫ)2−p2−q2)
1/2 if z > 0

−2iπRes (f, s−) = iπe
−ikz((1+iǫ)2

−p2
−q2)

1/2

((1+iǫ)2−p2−q2)
1/2 if z < 0

(B.25)

That is to say:

Iǫ =
iπeik|z|((1+iǫ)2−p2−q2)

1/2

(
(1 + iǫ)2 − p2 − q2

)1/2
−−→
ǫ→0

iπeikm|z|

m
with m =

√
1− p2 − q2 (B.26)

Case 2: p2 + q2 > 1
Then 1− p2 − q2 ≤ 0 and the two poles are:

s± = ±i
√
p2 + q2 − 1

(
1− iǫ

|p2 + q2 − 1| +O
(
ǫ2
))

(B.27)

with I (s±) = ±
√
p2 + q2 − 1 +O (ǫ2).
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3 Proof of Weyl’s integral

As ǫ → 0+, I (s+) > 0 and I (s−) < 0. Using the relations (B.17) or (B.19)
according to the sign of z, one gets:

Iǫ =





2iπRes (f, s+) = iπe
ikzi(p2+q2

−(1+iǫ)2)
1/2

i(p2+q2−(1+iǫ)2)
1/2 if z > 0

−2iπRes (f, s−) = iπe
−ikzi(p2+q2

−(1+iǫ)2)
1/2

i(p2+q2−(1+iǫ)2)
1/2 if z < 0

(B.28)

That is to say:

Iǫ =
iπeik|z|i(p2+q2−(1+iǫ)2)

1/2

i
(
p2 + q2 − (1 + iǫ)2

)1/2
−−→
ǫ→0

iπeikm|z|

m
with m = i

√
p2 + q2 − 1 (B.29)

Finally, with the formulations (B.6) and (B.7) and the results (B.26) and (B.29)
one gets the wanted relation (II.22) for the spherical waves:

eikr

r
=
ik

2π

∞x

−∞

1

m
eik(px+qy+m|z|)dpdq

with:

m =





√
1− p2 − q2 if p2 + q2 < 1

i
√
p2 + q2 − 1 if p2 + q2 > 1
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Appendix C

Data registration methods and zs
estimation

This appendix gives some details about some pre-processing steps needed prior
any 3D reconstruction which are not detailed in the main text:

• the data registration - the different algorithms introduced in this thesis as-
sume that the datasets are centered on the projected holograms of the samples
to reconstruct.

• the estimation of zs - in lens-free imaging, the focus is performed numerically
and the reconstruction algorithms take as an input this distance zs between
the sensor plane and the sample to reconstruct.

1 Data registration methods

Excepted for the θ-mode of the first design where the holograms are aligned by
construction1, the different proposed microscope designs acquire non-aligned data.

In the case of the first design of chapter III, for the ϕ-mode, the lighting rotation
leads to a translation of the holograms in the sensor field of view.

In the case of the second design of chapter IV, excepted if an object is perfectly
on the intersection of the stepper motor rotation axis and the axis connecting the
sensor and the light source, its projected hologram center moves along a circle in
the sensor field. And in all the cases, the holograms rotate on themselves because
the sensor orientation changes with the angle ϕ.

As a consequence, the data need to be aligned. This is a critical step as it is
known that in tomography algorithms, the reconstruction quality is highly sensitive
to the data registration [131].

Two techniques are used in this PhD: an autocorrelation and a least mean squares
optimization. According to the situation, they are used on the raw holograms or
their reconstructions.

1And only if the adjustments of the different pieces are correct.
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C Data registration methods and zs estimation

1.1 Registration algorithms

The pre-processing registration step is based on a simple idea schemed in fig-
ure C.1. For a given frame fi , a characteristic pattern pi is identified and then used
frame by frame to register the different lighting situation. The pattern pi identified
in picture fi is matched in picture fi+1. As the pattern may change according to
the lighting angle, the pictures are aligned according to consecutive angles and the
identified pattern pi+1 in frame fi+1 becomes the reference pattern for picture fi+2.
And so on...

Figure C.1: Illustration of the alignment technique on the example of the
Matrigel® capsules reconstructed in chapter III, section 3. For the three angles
ϕ ∈ {−15◦, 0◦, 15◦}, a capsule is chosen as a reference pattern pi to align the frame
fi+1 of the neighboring angle. In that case, the alignment is performed on the 2D
back-propagated data. The raw holograms are given for information in the medal-
lions.

The main feature of this alignment technique remains the matching algorithm
used to identify the position of the pattern pi in the frame fi. First of all, the
matching algorithm can be initialized with a position closed to the expected position.
Indeed, the position of the pattern pi+1 can be estimated for the two situations.

For the ϕ-mode of the first prototype, the shift ∆xi of the projection i compared
to the projection with a normal illumination should directly be ∆xi = zs. tanϕi.

For the second design, from the knowledge of the alignment of the two first
patterns, knowing ϕi+1 − ϕi, a center of rotation and the associated radius can be
determined and used to predict the position of the other patterns2.

Concerning the matching itself, two techniques are used.

Maximum of the cross-correlation - In this technique, the cross-correlation
of the pattern pi with an extracted region of fi+1 around the expected position is
computed [132]. Supposing that pi is effectively in fi+1, the operation is similar
to the computation of the autocorrelation [133] whose maximum gives the relative
translation of the pattern pi in the frame fi+1 and consequently the position of the
new pattern pi+1 and the relative alignment of the two frames.

This technique gives good results for patterns with a high specificity and is very
fast to run. It is nevertheless very sensitive the change of the pattern shape according

2This center of rotation and radius can be refined when new patterns are identified.
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1 Data registration methods

to the angle, especially if the raw holograms are used to aligned the data. Indeed,
nothing looks like more a hologram of a cell (circles into other circles) than another
hologram of a cell, misleading the algorithm if the extracted frame to perform the
cross-correlation is too big and contains many holograms.

This alignment technique is used until chapter III, section 2.

Iterative registration by least mean squares minimization - This tech-
nique aims at being more robust by taking in account that the pattern evolves from
one angle to another. For a given frame di+1, it finds the area which "looks like the
most" to the pattern pi.

This estimation is performed by computing the L2-norm of the difference between
the pattern pi to identify and the possible pattern in fi+1 defined as:

‖f‖L2
=
√∑

l

|fl|2 (C.1)

Finding the best parameters consists in the least mean squares minimization [134]
of the following problem:

(
d̃x, d̃y, d̃θ

)
= argmin

(dx,dy,dθ)
‖interp2D (fi+1, dx, dy, dθ)− pi‖2

L2
(C.2)

where interp2D (fi+1; (dx, dy, dθ)) is the 2D linear interpolation of fi+1 on a 2D mesh
- which matches the characteristics of the one of pi in terms of pixel number nbx and
nby and pixel pitch - translated of dx and dy and rotated of dθ. As this technique
is initialized with the forecast position of the pattern to find, it is less likely to
diverge far away from this position on another pattern looking alike the target as a
cross-correlation on the full area could do. It rather reaches the closest surrounding
pattern.

Contrary to the previous algorithm, this technique can perform sub-pixel align-
ment and can find the relative angle of the frame whereas the cross-correlation can
only find a relative translation. It is also more robust to hologram deformation.

It is nevertheless longer to run as it is solved by an iterative gradient descent
method3.

It is this technique which is implemented in the steps dedicated to alignment
refinement in methods IV.3 and IV.4.

This alignment technique is used from chapter III, section 3 in the main text.

1.2 Raw versus reconstructed holograms

For the first reconstructions of this PhD work, the alignment is done via the cross-
correlation technique on the raw holograms. For isolated objects or big characteristic
areas, it works well enough.

But as stated above, a hologram changes according to the wavelength and is
not a very specific pattern as interference rings interference with their neighbors,

3Using "fminsearch" in Matlab®.
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C Data registration methods and zs estimation

depending on the angles. For example, looking at the holograms in figure C.1,
it is impossible to do a precise alignment directly on a specific object inside the
capsule, its hologram interfering with other objects holograms or the capsule edge.
In contrary, on the presented 2D back-propagated frames, the individual objects are
clearly separated and a precise alignment on one of them is possible.

Once 2D back-propagation model are developed, it is possible to provide better
pictures to feed the algorithms.

For the first prototype, 2D reconstructions are done on the stretched holograms
as described in chapter III, section 2.2 using the 2D back-propagation and phase
retrieval algorithms introduced in chapter I, section 3 to remove the twin-image.

For the second design, once a more realistic model has been developed to take
in account the 2D tilted wave propagation, simple back-propagations4 as presented
in chapter IV, sections 2 and 5 are used to focus the patterns pi.

1.3 Discussion

A question which has not been raised so far concerns the different wavelengths
and how they should be taken into account in the alignment procedures.

At first, the alignment is assumed to be the same for all the three wavelengths
λ ∈ RGB. Consequently the results of the three wavelengths are averaged to extract
one position in the field of view to extract the aligned data.

But this assumption is wrong. It is observed that the three wavelengths are
slightly shifted, for example because of the relative position of their corresponding
LEDs behind the pinhole or refraction effects which depends on the wavelength, and
should be aligned independently. To do so, the green channel, whose wavelength is
in between the two others (blue and red) is used as a reference to align the two other
wavelengths. This means that the algorithms align the green channel and then, the
red and blue channel are aligned on the green extracted patterns.

This works with the raw holograms, but is very well adapted to an alignment on
the 2D back-propagated planes.

On another point, these algorithms are based on a strong assumption: that the
holograms or their reconstruction patterns are coherent angle after angle, which
is wrong. This means that the alignment cannot be perfectly made with these
techniques. Moreover, the alignment being performed angle after angle, the errors
made during these alignment accumulate. To minimize this effect, the central angle
ϕc can be used to separate the angles in two equal set, one the "left" and the other
on the "right" of ϕc. Then the errors accumulate on half of the angles instead of on
the whole dataset.

This shows the importance of the alignment refinement steps in methods IV.3
and IV.4 where the holograms are aligned independently from one another.

In addition, it was mentioned in the conclusion of chapter IV, section 5 that
the alignment step can be very long. In tomography problems, registration is a
recurrent issue [131] and it surely exists faster alignment techniques than the one

4Figures IV.12.d and IV.30.b.
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2 zs estimation

implemented in this thesis, especially if estimating the relative angle is not necessary.
It is something that is not deepened during this PhD work.

Finally, these algorithms imply the existence of a specific pattern or object iso-
lated enough to produced isolated holograms in the field of view for all the angles.
If it is not isolated enough its hologram will overlap with holograms of other objects
depending of the lighting situation and the relative positions of the objects.

This means that it can be very hard or even impossible to align data acquired on
too complex samples in the pre-processing steps using these techniques. When this
happens, it is still possible to use the alignment parameters of a previous experience
hoping that they will be close enough to those sought and that the refinement steps
in methods IV.3 and IV.4 will be sufficient to correct the errors.

2 zs estimation

The other determinant parameter in the 3D reconstruction quality is the distance
zs between the sensor and the object. For all the reconstructions of this thesis, it is
manually estimated.

The reconstruction quality may benefit of an objective criterion automatically
optimized. It nevertheless implies more in-depth studies and is not treated in this
PhD work.

2.1 Simple 2D back-propagation

Until chapter IV, section 3 and for section 5, zs is estimated through simple 2D
back-propagation, using a 2D propagation model adapted to the situation.

In the case of the first prototype, the zs is computed using the hologram acquired
with a normal angle ϕ = 0◦ for which standard 2D back-propagation algorithm de-
veloped for standard 2D lens-free microscopy can be used. Small objects holograms
are chosen in the field of view and back-propagated using hλ0

−zs
until their recon-

struction appears to be the sharpest.

In the case of the second design, there is no acquisition performed with a normal
angle because θ is fixed to a given value. The adapted tilted model developed in
chapter IV, section 2 is used as a simple back-propagation tool. It is nevertheless
trickier as taking in account the angle is subtle (see III, section 5). One needs to
be careful to use the same angle θair or θ0 for the 2D and the 3D reconstructions.
Moreover, lots of artifacts remain and make it harder to identify the focal plane
based on the sharpness of the reconstructed objects.

The problem of the simple 2D back-propagation method is that the focus is
adjust using a single object in the field of view whose height may strongly differ
from the one of the reconstructed volume. If this object does not belong to the
plane z = 0 of this volume, the overall focus will be wrong.

This problem is handled correctly by the following method.

239



C Data registration methods and zs estimation

2.2 Simple 3D back-propagation

This method is based on a brute force approach in which 3D reconstructions
using a simple Fourier mapping III.4 are computed for different distances zs on a
small region of the dataset. Without any regularization, the reconstructions are
noisy with many artifacts. But as shown in chapter IV, section 5, single isolated
objects can be easily identified and have a strong peaked signal.

Working directly on one of the reconstructed particles or on the xy-maximum
intensity projection of the whole volume, the distance zs giving the sharpest signal
is chosen to feed the 3D reconstruction algorithm on the full dataset.

This technique, used for chapter IV, section 4 and chapter V, is more accurate
as it gives a 3D criterion on the focus parameter. But it is longer to run.
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Appendix D

Gradient of J (f )

The aim of this appendix is to give on overview of the computation of the gradient
of the cost functions introduced in this thesis.

1 Data fidelity

This section focuses on the data fidelity term of the cost functions:

Jd (f) =
∥∥∥|Utot (f)|2 − Id

∥∥∥
2

(D.1)

Id symbolizes an intensity data measured by the sensor and Utot the total complex
wave front on the sensor for a given diffracting object f .

With the canonical scalar product and its associated norm, equation (D.1) gives
a data fidelity term for gradient descent methods, leading to a minimization of
the least squares between the data and the simulated intensities. These numerical
methods generally need the expression of the gradient at a given f . Finding such a
formulation is the objective of this appendix.

The following formalism applies for vectors, not matrices. Thus, for example
if Id is the 2D matrix of the measures on the sensor, it will be unfolded toward a
vector shape. The same applies for f which can either be a 2D or a 3D complex
matrix, unfolded on its real and imaginary parts1:

f2D ∈Mnbx,nby (C)⇒ f = (R (f2D (:)) ; I (f2D (:))) ∈ R
2nbxnby

f3D ∈Mnbx,nby ,nbz (C)⇒ f = (R (f3D (:)) ; I (f3D (:))) ∈ R
2nbxnbynbz

(D.2)

Furthermore, one can introduced a weighting factor W to weight the data fidelity
pixel by pixel2. This can be used to avoid taking in account defective pixels such
as hot pixels or dead pixels. The definition of the scalar product and the associated

1Using Matlab® notations.
2Which is generally set uniformly to 1 in this thesis, giving the canonical scalar products 〈., .〉

R

and 〈., .〉
C
.
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D Gradient of J (f)

norm becomes:

∀ (x, y) ∈ Rn × Rn, 〈x, y〉W,R =
∑n
k=1 wkxkyk

∀ (x, y) ∈ Cn × Cn, 〈x, y〉W,C =
∑n
k=1 wkxkyk

‖.‖2
W = 〈., .〉W,R

(D.3)

Let’s suppose that Udif is linearly dependent on f . This is consistent with the
models developed in chapter II, sections 1.2 and 2 for low scattering objects. Thus
it exists a linear operator of matrix representation O such that:

Utot (f) = Uinc + Udif (f) = Uinc +O × f (D.4)

where all the complex fields are unfolded as mentioned above3.

Let’s now find the first order development of J (f + δf) according to δf :

Jd (f + δf) =
∥∥∥|Uinc +O × (f + δf)|2 − Id

∥∥∥
2

W

=
∥∥∥|Uinc +O × f +O × δf |2 − Id

∥∥∥
2

W

=
∥∥∥|Utot (f) +O × δf |2 − Id

∥∥∥
2

W

=
∥∥∥|Utot (f)|2 + |O × δf |2 + 2R

(
Utot (f) . (O × δf)

)
− Id

∥∥∥
2

W

=
∥∥∥|Utot (f)|2 − Id

∥∥∥
2

W
+ · · ·

2
〈
|Utot (f)|2 − Id, 2R

(
Utot (f) . (O × δf)

)〉
W,R

+ o (‖δf‖)
= J (f) + · · ·

4R
〈
|Utot (f)|2 − Id, Utot (f) . (O × δf)

〉
W,C

+ o (‖δf‖)
= J (f) + · · ·

4R
〈
W.Utot (f) .

(
|Utot (f)|2 − Id

)
, O × δf

〉
C

+ o (‖δf‖)
= J (f) + · · ·

4R
〈
O⋆ ×

[
W.Utot (f) .

(
|Utot (f)|2 − Id

)]
, δf

〉
C

+ o (‖δf‖)
= J (f) + · · ·〈

4R
[
O⋆ ×

[
W.Utot (f) .

(
|Utot (f)|2 − Id

)]]
, δf

〉
R

+ o (‖δf‖)
(D.5)

using that |Utot (f)|2−Id and δf are real vectors to reverse the scalar products 〈., .〉
R

and 〈., .〉
C

and the projection on the real part R. Utot stands for the complex conju-
gate of Utot and O⋆ is the Hermitian adjoint4 of O.

It finally comes the gradient expression of the cost function (D.1) at a given
point f :

∇Jd (f) = 4R
[
O⋆ ×

[
W.Utot (f) .

(
|Utot (f)|2 − Id

)]]
(D.6)

3×, the matrix multiplication sign, is the only matrix operator. The modulus |.|, square 2 and
multiplication . operators are applied term by terms on the vectors.

4For a matrix, O⋆ = tO.
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2 L1-norm

2 L1-norm

This section focuses on the L1-norm term of the cost functions whose minimiza-
tion favors a sparse solution:

JL1 (f) = ‖f‖L1
(D.7)

If one works with overall sparse objects, this aims at enforcing the fact that the
expected reconstruction is mainly composed of isolated "particles" [135, 136].

The L1-norm of f is defined as the sum of the absolute value of its coefficients.
Using a vector shape, indexed by k, the expression is:

‖f‖L1
=
∑

k

|fk| (D.8)

One may note that such an expression is not differentiable on 0, which can be
problematic for gradient descent resolution. It is numerically implemented by the
following convex approximation:

‖f‖L1,ǫ
=
∑

k

√
|fk|2 + ǫ2 (D.9)

where ǫ is a small number5.
Consequently, the gradient of the expression (D.9) at a given point f is:

∇JL1,ǫ (f) =


 fk√
|fk|2 + ǫ2




k

(D.10)

3 ∇-norm

This section focuses on the ∇-norm term of the cost functions whose minimiza-
tion enforces an edge-preserving regularization [137, 138] by favoring a sparse gra-
dient of the reconstructed object:

J∇ (f) = ‖∇f‖L1
(D.11)

This a priori hypothesis is based on the expectation that the "particles" in the
reconstructions have almost uniform values inside their support. As a result, the
gradient of the objects has to be almost sparse. Another interpretation is that the
reconstructed image has to be smooth while preserving sharp edges at the locations
of the particles.

The gradient of the object is computed on its "inner" coefficients. Indeed, the
gradient is estimated in between the pixels for 2D objects or in between the vox-
els for 3D objects using the surrounding neighbors (see figure D.1). It cannot be

5ǫ = 10−7 in all this PhD work.

243



D Gradient of J (f)

computed on the edges. Thus, defining I2D = [[1, nbx − 1]]× [[1, nby − 1]] and I3D =
[[1, nbx − 1]]× [[1, nby − 1]]× [[1, nbz − 1]] it comes for the 2D objects ∀ (k, l) ∈ I2D:

|∇fk,l|2 =
1

2

[
qx |fk+1,l − fk,l|2 + qy |fk,l+1 − fk,l|2 + · · ·

qx |fk+1,l+1 − fk,l+1|2 + qy |fk+1,l+1 − fk+1,l|2
] (D.12)

and for the 3D objects ∀ (k, l,m) ∈ I3D:

|∇fk,l,m|2 =
1

4

[
qx |fk+1,l,m − fk,l,m|2 + qx |fk+1,l+1,m − fk,l+1,m|2 + · · ·
qx |fk+1,l,m+1 − fk,l,m+1|2 + qx |fk+1,l+1,m+1 − fk,l+1,m+1|2 + · · ·
qy |fk,l+1,m − fk,l,m|2 + qy |fk+1,l+1,m − fk+1,l,m|2 + · · ·
qy |fk,l+1,m+1 − fk,l,m+1|2 + qy |fk+1,l+1,m+1 − fk+1,l,m+1|2 + · · ·
qz |fk,l,m+1 − fk,l,m|2 + qz |fk+1,l,m+1 − fk+1,l,m|2 + · · ·
qz |fk,l+1,m+1 − fk,l+1,m|2 + qz |fk+1,l+1,m+1 − fk+1,l+1,m|2

]

(D.13)
(qx, qy, qz) are weighting coefficients to take into account that the grid can be not
orthonormal. They are set to qx = 1, qy = dx/dy and qz = dx/dz.

Figure D.1: Illustration of the coefficients used to compute the gradients ∇fk,l
and ∇fk,l,m in two (green) and three (red) dimensions using the neighboring ele-
ments.

The ∇-norm of f is defined as the sum of the absolute value of the coefficients
of its gradient:

‖∇f‖L1,ǫ
=





∑
(k,l)∈I2D

√
|∇fk,l|2 + ǫ2, for 2D objects

∑
(k,l,m)∈I3D

√
|∇fk,l,m|2 + ǫ2, for 3D objects

(D.14)

The parameter ǫ is again used to avoid the singularity when ∇f = 0. It has also
the property of relaxing the strong constraint put by the L1-norm on the sharpness of
edges by acting like a threshold on the gradient. Below this threshold, regularization
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3 ∇-norm

smooths the solution (behaving like a L2-norm) while above this threshold, the
contrast is preserved (behaving like a L1-norm).

From equation (D.14), it appears that a given coefficient fk,l in 2D (fk,l,m in 3D)
have multiple participation in the gradient: two for each pixel surrounding fk,l (or
three for each voxel surrounding fk,l,m). This means that for inner elements, the
gradient will be composed of a summation of 2 × 4 = 8 terms, 2 × 2 = 4 for the
elements on the side of the surface and 2×1 = 2 in the corner (and in 3D, 3×8 = 24
for the inner coefficients, 3 × 4 = 12 for the faces of the volume, 3 × 2 = 6 for the
sides and 3× 1 = 3 for the eight corners).

Noting N the surrounding neighbors6 of (k, l) (or (k, l,m) for 3D objects)
and E (Ni)k,l (or E (Ni)k,l,m) the two elements participating in the gradient7 for
each neighbor Ni, the gradient of the expression (D.14) at a given point f is:

∇JL1,ǫ (f) =






∑

Ni∈N(k,l)

∑
Ei∈(NI)k,l

q(k,l;Ei)
2

fk,l−fEi√
|∇fNi|2+ǫ2




k,l

, in 2D


∑

Ni∈N(k,l,m)

∑
Ei∈(NI)k,l,m

q(k,l,m;Ei)
4

fk,l,m−fEi√
|∇fNi|2+ǫ2




k,l,m

, in 3D

(D.15)
where q (., .) is defined to equal qx, qy or qz depending on the given situation.

6 For example, for an inner coefficients fk+1,l+1 in 2D and fk+1,l+1,m+1 in 3D, one gets:

• in 2D: N (k + 1, l + 1) = {(k, l) , (k + 1, l) , (k, l + 1) , (k + 1, l + 1)}
• in 3D: N (k + 1, l + 1, m + 1) = {(k, l, m) , (k + 1, l, m) , (k, l + 1, m) , (k + 1, l + 1, m) , · · ·

(k, l, m + 1) , (k + 1, l, m + 1) , (k, l + 1, m + 1) , (k + 1, l + 1, m + 1)}

7 For example, for an inner coefficients (k + 1, l + 1) in 2D and (k + 1, l + 1, m + 1) in 3D, and
a given Ni = (k, l) in 2D and Ni = (k, l, m) in 3D, one gets:

• for 2D objects: E (k, l)k+1,l+1 = {(k + 1, l) , (k, l + 1)}
• for 3D objects: E (k, l, m)k+1,l+1,m+1 = {(k + 1, l, m + 1) , (k, l + 1, m + 1)}
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Appendix E

3D chemotaxis simulations

The aim of this appendix is to give some examples of 3D cell culture applications
in biological research and how the knowledge of the 3D cells distribution could
improve the tested models.

The main objective is to give an idea of the potential use of the 3D information
available via a large field of view given by a 3D lens-free microscope as an input for
biophysical models.

The results in this appendix are preliminary and do not pretend to provide the
explanation of the underlying biology of the presented experiments.

Both of the examples given in this appendix are based on chemotaxis: the cells
are able to sense the surrounding concentration of molecules and move accordingly.
The experiments focus on the cells displacement in their culture medium to shape
ordered structure. They were done before the PhD work using a 2D lens-free micro-
scope.

1 Experiments

In these experiments, the cells are seeded on a Matrigel® bed according to the
no top coat protocol previously described in the main document, in chapter IV,
section 5. This section also presents the two cell lines that are used in this appendix.
Contrary to 2D Petri dishes, in which the cells can only develop bidimensionally,
this extracellular matrix allows them shaping 3D structures.

1.1 RWPE1: Prostate Epithelial Cells

Figure E.1 emphasizes the temporal evolution over 35 hours of two regions of
interest in a RWPE1 cells culture1.

The RMPE1 cells are tumorous cells from the human prostate. Cultivated
prostate cells grow into acini, empty spheres of cells in which are produced hor-
mones. In Matrigel®, RMPE1 cells tend to form spheroids, which are acini, filled
with tumorous cells. Besides, on a Matrigel® bed coated with liquid culture medium,

1Non published data.
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E 3D chemotaxis simulations

Figure E.1: Time-lapse on a RWPE1 culture. Two regions of interests, 1 and 2, are
enlightened on (a). The evolution of 1 (resp. 2), is detailed on (b) (resp. (c)), with
a 5 hours step between each frame. Its final configuration is shown on (d) (resp.
(e)). On each region of interest, a cell stream seems to be ejected from one acinus
and migrates to another one, on a specific path. Once it reaches this second acinus,
the stream cell moves backward. In 2, it goes back to its original acinus whereas in
1 it moves towards another neighbor.
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2 Mathematical model

cells are free to move on the interface between the gel and the liquid and tend to
create networks between acini. It is the early stage of this phenomenon which can
be seen in figure E.1.

Contrary to what one may think, the experiment shows that cell migration be-
tween acini does not appear to be random. Cells follow specific tracks. On each
region of interest, cells move from the spheroid A to B, on a curved path, specifically
targeting B. On the region labeled 2, the path avoids carefully C. In the two cases,
the cells seem to turn back once they have reached B. If in 2 they just go back
to A, a shift happens in 1 where the cells begin to follow their track before turning
towards C.

Hence, it appears that studying such 3D cells cultures can help understanding
fundamental biological phenomena in the realms of morphogenesis and tumorigen-
esis.

This experiment in particular has initiated a work to explain the trajectories
thanks to a mathematical model.

1.2 HUVEC: Human Umbilical Vein Endothelial Cells

In figure E.2, one can see the early stages of vascular network assembly in an
endothelial cells culture. This experiment shows several steps from the first layout
of the cells shaping the future structure to their division and strengthening of the
network.

Figure E.3 focuses on the first part of the network assembly. Randomly spread,
the cells first begin to migrate to form the shape of the future network. As the
cells do not touch their neighbors yet, chemotaxis can be an explanation of their
migration to one another.

Once again, understanding such a phenomenon can lead to better knowledge of
fundamental biological phenomena in the realms of vasculogenesis and angiogenesis.

2 Mathematical model

This section focuses on the mathematical model developed to simulate the two
previous experiments. Some works already exist on chemotaxis simulation and this
work is mainly based on [17] in which the authors simulate the 2D early stages of
vascular network assembly. It has the advantages to both take into account the dif-
fusion of proteins2 released by the cells in the culture medium and the displacements
of cells, that is to say the diffuser themselves.

The aim here is to develop a 3D model. Nonetheless, no information is known
about the z-distribution of cells in the given experiments. As a consequence, all the
objects are placed in the same plane.

In the first place, the diffusion model is introduced for static diffusers, before
focusing in a second part on the situations in which the cells producing proteins are

2Or any other chemoattractant that will also be mentioned as "proteins" in this appendix.
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E 3D chemotaxis simulations

Figure E.2: Time-lapse on HUVEC culture. On these frames, spaced every three
hours, randomly spread cells agglutinate to form the early stages of a vascular
network assembly (a-c). After a phase of contraction, once the network shape is
formed, cells begin to divide (d) and expand their occupation on the Matrigel®

surface (e-g) before stabilizing in a vast network (h).
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Figure E.3: Focusing on the first four frames of the figure E.2 (a-d). On these
frames, spaced every 1.5 hours, one can see the initially randomly spread cells ag-
glutinating to form the early stages of the future network before the phase of cells
division (f).

also moving in the sample.

It should be noted that all the equations are written for continuous variable.
The 3D mesh and the temporal evolution are discrete in the simulation and a direct
equivalence between the continuous and discrete formulae is implied.
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2.1 The model

The model of chemotaxis chosen for these simulations is based on the fact that
cells are sensitive to their surrounding proteins concentrations and move accordingly
along their gradients. Thus, the cells velocity is here supposed3 to be proportional
to this gradient:

−→v =
d−→pos
dt

= k.
−−→
grad c (E.1)

where −→v is the velocity of the cells and −→pos their position, c the concentration of
the proteins and k a coefficient of proportionality.

Then one needs to know the proteins distribution in the culture medium to work
out its gradient. The temporal evolution in the mesh is led by the following equation:

∂c

∂t
= D∆c+ αn− τ−1c (E.2)

where D is the diffusion coefficient, α the rate of release and τ the decay rate of the
proteins. n is the diffuser density. D represents the ability of the chemoattractant
to spread in the culture medium. αn is the source term of the proteins. And τ is
the characteristic degradation time of these proteins.

These steps are shown schematically in figure E.4.

Figure E.4: Scheme of the algorithm: after the diffusers have released their chemoat-
tractant (on red color), the cells move along its concentration gradient (the green
arrows) on specific streamlines (the blue curves).

For the discrete problem, the spatial derivative is computed thanks to second
order symmetric finite difference method and once the grid is known for the time tn,
the time evolution is updated with the Euler method [139] for the discrete evolu-
tion δt:

−−−−→posn+1 = −−→posn + δt.k.
−−→
grad c (E.3)

3Whereas in [17], the acceleration −→a is supposed to be proportionally linked to the gradient.
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c (tn+1) = c (tn) + δt×
(
D∆c+ αn− τ−1c

)
(tn) (E.4)

Contrary to [17], the migrating cells are not modeled by a field but remain here
discrete points, moving freely in the discrete mesh. The field n is then computed by
counting the cells in each elementary volume, the voxels, of the mesh.

2.2 Static diffusers

For the simulation of chemotaxis with acini, the previous model is slightly dif-
ferent. Indeed, the diffusers are static and the source term is accordingly changed.
In this situation, the hypothesis that the concentration in the diffusers is supposed
to be constant.

Thus, at each time step, the concentration in the diffusers’ voxels is forced to be
kept constant and c is led by :

∂c

∂t
= D∆c− τ−1c (E.5)

Each time step is then composed of two sub-steps:

• Sub-step 1: evolution of c according to (E.5)

• Sub-step 2: update in the mesh of c forced to be constant in the diffusers
voxels.

In this situation, c reaches an equilibrium in which all the proteins released by
the diffusers are compensated by their degradation through the term ”− τ−1c” (see
figure E.5).

Once the concentration is known, one can work out directly the trajectory of
the cells, given by the streamlines in the gradient according to equation (E.1) (see
figure E.6).

2.3 Mobile diffusers

If one now wants to simulate the network assembly experiment, the complete
model described in 2.1 must be used. Thus, the times steps are now composed of
three sub-steps:

• Sub-step 1: computation of ”αn” = α.
nbcells per voxels

V olvoxel
, the discrete source term.

• Sub-step 2: evolution of c according to equation (E.4).

• Sub-step 3: update of the cells positions −→pos according to equation (E.3).

If nothing is added to this model, as one can see on figure E.8, the cells ag-
glomerate in a non-physical manner: the cellular pressure, preventing the cells from
overlapping is indeed not modeled.
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Figure E.5: These figures show the evolution of the proteins concentration in the
3D mesh at different time steps (a-c). (a) is the initial situation. (d) represents
the convergence curve: it is for each step n the l2-norm of the difference of the
concentration field at tn and tn+1

Thus a pressure term p depending on the density must be added. p ∼ 0 for n ∼ 0
and for n ∼ V olcells, p must rapidly increase.

Equation (E.1) then becomes:

−→v = k.
−−→
grad c+ kp.

−−→
grad p (E.6)

This is this new expression which must be used in the previous sub-step 3. If
the pressure term p is well chosen, it will prevent the non-physical agglomerations
while allowing the network formation.

2.4 Boundary conditions

Before running the model, another important issue must be addressed: what are
the correct boundary conditions? Indeed, to apply the finite differences formulae on
the 3D mesh, one must define the properties of the boundaries.

Different boundary condition are implemented and summed up in figure E.6. To
simplify the coming expressions, the mesh is supposed to be mono-dimensional, from
index n = 1 to n = N . One must then define c0 and cN+1. We will focus on cN+1, c0

being symmetrically defined.
Periodic: cN+1 = c1 - The mesh is supposed to be periodic. As one can see

on figure E.6, it is a strong condition leading to very bent streamlines because of
diffuser out of the field of view due to the volume periodization.
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3 Results and discussion

Extrapolation: cN+1 − cN = cN − cN−1 - The derivative on the boundary is
supposed to be constant. This leads to a boundary which seems to absorb too much
of the proteins, curving the streamlines towards the outside of the volume.

Neumann condition: cN+1 = cN - This leads to a null flux on the bound-
aries: ∂c

∂x
= 0. Contrary to the previous situation, the proteins are trapped in the

medium and the streamlines are curved towards the inside.

Zero padding: cN+1 = 0 - As for the extrapolation, the boundaries seem to
absorb too much of the medium proteins, but the effect is less marked than with
the previous conditions. This solution is then kept for following analysis.

Figure E.6: This figure shows the streamlines in the concentration gradient once the
convergence is reached for static diffuser according to different boundary conditions:
periodic (a), extrapolation (b), Neumann condition (c) and zero padding (d).

3 Results and discussion

This section introduces preliminary results of the previous models and their
confrontation with the real data.

As mentioned earlier, the static diffusers model 2.2 is used for the acini ex-
periment and the network assembly with HUVEC cells uses the mobile diffusers
model 2.3.
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3.1 RWPE1: tumorous prostatic cells

The aim of this section is to simulate the experiment presented in section 1.1.
To do so, two sets of chemoattractants4 are introduced, let’s say A and B, that
can be released by the acini. On a given cell, these two sets will have opposite
effects. For example, the cell will be attracted by A and rejected by B. It will be
noted Ayes//Bno.

This leads to two proteins field cA and cB. They can both have their specific
characteristics, such as D and τ and are both diffused thanks to equation (E.2).
The streamlines are then computed thanks an upgraded expression of −→v :

−→v = kA.
−−→
grad cA + kB.

−−→
grad cB (E.7)

The sign of the k coefficients will determine if the cell is attracted or rejected by
the given type. For example, for a Ayes//Bno cell, kA > 0 and kB < 0.

In the context of the model developed for this appendix, having at least two sets
of proteins is mandatory in such a simulation. Indeed, if one keeps only one set of
proteins A, only radial trajectories from (Ano) [or towards (Ayes)] an acinus can be
modeled. To be able to visualize an exchange between two structures, at least two
sets, one being yes, the other one being no must be present.

For the different experiments, a type is given to each acinus: A, B or neutral5.
The simulations on the two regions of interest in figure E.1 are run with the

following parameters: 



D = 10−11 m2.s−1

τ = 64× 60 s
|kA| = |kB| = 1 a.u.

(E.8)

where a.u. stands for arbitrary unit. Moreover, the concentration in the acini is
also fixed to |cA| = |cB| = 1 a.u. and the discrete time δt is computed thanks the
Courant-Freidrich-Levy condition [140]: δt = 0.95× dl2

6.max(|kA|,|kB |)
.

The results of the simulation can be seen on the figure E.7. In both cases, even if
the streamlines do not strictly overlap the real trajectory, some global features can
be noticed.

On the first region of interest, the acini 1 and 2 are modeled as being of
type A, 3, 4 and 7 of type B and 5 and 6 are neutral. The fact that the two
acini 4 and 7 produce the same kind of chemoattractant B prevents the cells from
directly making a bridge in between. Indeed, the meeting of the two released pro-
teins sets creates a sort of wall6, forcing a cell being Ayes//Bno to have a right angle
shift in its direction of propagation. This behavior corresponds to the one observed
in the real data set during the first 20 hours of the experiment.

4It can be a specific protein, or a set of proteins leading to a specific effect.
5Note that the neutral acini do not affect the simulation and the proteins diffusion. The

corresponding voxels are artificially set to zero at the end of the iterations. A better model taking
into account the proteins diffusion around such acini has still to be developed. So far, the proteins
cross these acini during the iterative process as they did not exist.

6It is actually a valley in the proteins concentration of B.
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3 Results and discussion

Figure E.7: (a,b) Initial acini identification and type of the two regions of interest
enlightened in figure E.1. (b,d) Streamlines at the end of the simulation . The
set of proteins A (resp. B) is in red (resp. blue) color while the red (resp. blue)
streamlines represent the Ano//Byes (resp. Ayes//Bno) cells trajectories. The actual
path of the cells identified on the figure E.1 are in green color.

On the other hand, if a cell being Ano//Byes is released by the acinus 2 close
to this wall, can either turn left toward the acinus 4 or right toward the acinus 7
according to the side of the wall it lays on. A slight shift in the release position can
affect the "choice" between 4 and 7.

Thus, the first experiment could be explained as following through the interpre-
tation of our model: a train of cells being Ayes//Bno is released from the acinus 7.
Reaching the previously mentioned wall and sensing the proteins A, it turns to-
ward the acinus 2. Once it reaches it, it gets a chemical signal from 2 turning it
from Ayes//Bno to Ano//Byes. The train of cells then goes back on its track. But
having slightly moved to the left side of the wall, it turns left to the acinus 4, creating
the three branched bridge one can see on the final state of the experiment.

On the second region of interest, the acini 2, 7 and 8 are modeled as being of
type A, 5 and 6 of type B and 1, 3 and 4 are neutral. The same interpretation can
be led: a train of cells being Ano//Byes is released from the acinus 2, following one
of the curved streamlines avoiding the acinus 4. Once it reaches the acinus 5, it gets
a chemical signal turning it from Ano//Byes to Ayes//Bno. It goes back to 2 on a
slightly different streamline. It appears indeed that two streamlines can have very
close release points on 2 and 5 while having a noticeable difference at the apogee of
the trajectory.
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E 3D chemotaxis simulations

3.2 HUVEC: Epithelial cells

This section aims at simulating the experiment presented in section 1.2, using
the model developed in section 2.3. As mentioned in this section, different pressure
terms are tested to prevent cells agglutination on discrete points.

Two forms of pressure are used:

p =
∣∣∣∣
x

1− x

∣∣∣∣
β

(E.9)

and:

p = (x.ex)β (E.10)

where x = n.V olcell. Both of the expression tend to zero for a density close to
zero7. But when the density is closed to the cells volume (x ∼ 1), the first one
quickly diverge to infinity while the other one increases exponentially. The results
are presented in figure E.8. The simulations are run with this set of parameters:





D = 10−11 m2.s−1

τ = 64× 60 s
|k| = |kp| = 0.5.10−12 m2.s−1a.u.−1

α = 10−16 a.u.s−1

β = 2
rcell = 10 µm

(E.11)

where a.u. is an arbitrary concentration scale.

For the three tested pressures, the early stages of the simulation shows the shap-
ing of a global structure closed to the one observed in the real data. But without
any pressure, it quickly collapses before a network can be shaped. It enlightens the
fact that adding a pressure term is not an option if one wants to see the network
assembly.

With the pressure term (E.9), the collapse is restrained at the beginning of the
simulation and a network begins to appear. But once more, the pressure cannot
resist enough to the collapse of the structure. It can be explained by the fact
that the pressure can get higher than x ∼ 1 without diverging: indeed, once the
limit x = 1 is crossed, the expression of p quickly decreases again. This expression
can then not really prevent the collapse.

Finally, the pressure term (E.10) is the best to retain the agglutination. Indeed,
once the limit x ∼ 1 is crossed, p continues to diverge and the pressure term plays
its role. In this simulation, after the shaping of the network, this latter stabilizes
and the system stops evolving. Nonetheless, the branches of the network appear to
be a bit too wide.

7As the cells are laid on a bidimensional surface, for the simulation it is more interesting to focus
on preventing the discs overlapping. n is replaced by n.dl where dl is the side of the elementary
volume and V olcell is replaced by V olcell/ (4/3.rcell)
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3 Results and discussion

Figure E.8: This figure shows the evolution of the simulated network assembly
according to different pressure terms. (a-d) No pressure: cells agglutinate towards
points. This is not physical. (e-h) p is defined by equation (E.9). One can see the
assembly of a network before its agglutination. (i-l) p is defined by equation (E.10).
One can see the assembly of a network and the pressure term is enough to prevent
cells agglutination.

3.3 Discussion

Concerning the RMPE1 experiment (section 3.1), even if the computed stream-
lines do not strictly coincide with the real trajectories, in both of the cases the
global behavior is well simulated. Moreover the back and forth movements of cells
can be interpreted with a change in the cells sensitivity to the chemoattractants. To
go deeper in the model, one could change the characteristics of A and B and the
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E 3D chemotaxis simulations

associated cells sensibility (so far they are the same for both of the proteins sets).
Moreover different choices for the acini type could be tested, as well as the rate of
release for each acinus. Even so, the model can be considered as promising as it
gives results comparable to the experiments.

On the HUVEC simulation (see section 3.2), the chemotaxis model is successfully
used to get a network shaping and stabilization. Nevertheless some works remain
to be done to improve the pressure term to get more realistic network. Moreover as
previously mentioned, different parameters could be tested such as the influence of
the protein rate or the cells sensitivity. On another point, this model cannot render
the second step observed in the data: the strengthening of the network with the
cells multiplication. A step further in the simulation could consist in adding a cell
division once the cell density reaches a threshold value.

Finally, all the simulations are performed with molecules diffusing in a 3D matrix.
Nonetheless, as the culture is grown via a no top coat protocol, only the underlying
half-space should be taken into account. Indeed, the overlying liquid culture media
in the superior half-space quickly mixes the molecules, erasing the local effects of
gradient concentrations.
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Appendix F

Résumé en Français

Cette thèse étant rédigée en anglais, cette annexe en fournit un résumé détaillé
en français, chapitre par chapitre.

Introduction

En biologie, la culture cellulaire en deux dimensions a pendant longtemps été le
standard dans les laboratoires. Toutefois la nature est par essence tridimensionnelle
et ce modèle de culture finit par atteindre ses limites en introduisant de nombreux
biais dans les observations biologiques. Depuis le début des années 2000, de nou-
veaux protocoles pour cultiver les cellules en trois dimensions sont apparus, ouvrant
de nouveaux champs d’étude en oncologie, médecine régénérative ou biologie fon-
damentale par exemple. Ce nouveau type de culture a entraîné un besoin pour de
nouveaux types de microscopies adaptés à ces conditions spécifiques.

En microscopie, d’autre part, les microscopes optiques restent le standard en
termes de technique d’imagerie depuis leur introduction en biologie au XVIIième

siècle par Leeuwenhoek. Malgré une complexité toujours croissante dans le but
d’atteindre de meilleures résolutions, des contrastes plus élevés ou des grossisse-
ments plus importants, le principe de base reste le même, celui de l’utilisation
d’une source de lumière et de multiples lentilles pour focaliser sur l’échantillon à
observer. Cet accroissement en complexité est lié à un accroissement du coût des
microscopes et de leur difficulté de mise en œuvre, ainsi que de leur adaptation
aux conditions d’incubateur pour pouvoir suivre les cultures cellulaires au cours
du temps sans endommager les cellules. De récents travaux se concentrent sur
l’introduction d’une nouvelle physique dans le contexte de la microscopie biologique
dans le but de concevoir de nouvelles techniques d’imagerie qui soient à la fois peu
chères, faciles d’utilisation et robustes. L’imagerie sans lentille, basée sur le principe
de l’holographie en ligne introduit par Gabor en 1948 répond à ces besoins dans le
cadre de la culture cellulaire en 2D, fournissant des acquisitions non photo-toxiques
et sans marquage sur de grands champs de vue.

Cette thèse se situe à l’interface de ces deux domaines. Son but est de montrer
la possibilité d’adapter cette technologie sans lentille à l’imagerie des cultures cellu-
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laires en 3D tout en préservant ses nombreux avantages. De nouveaux prototypes de
microscopes sans lentille sont conçus en parallèle du développement d’algorithmes
de reconstructions tomographiques dédiés.

Concernant les prototypes, plusieurs solutions sont testées pour converger vers
un microscope sans lentille conciliant d’une part la simplicité d’utilisation avec une
culture cellulaire en boîte de Petri standard et ne nécessitant aucune préparation
spécifique ou aucun changement de contenant et d’autre part une couverture angu-
laire des positions d’éclairage suffisante pour obtenir des reconstructions pertinentes
en termes d’observables biologiques. Enfin, une version adaptée aux conditions en
incubateur est développée et testée avec succès.

Concernant les algorithmes développés, ils se doivent de corriger deux problèmes
inhérents au microscope sans lentille : l’absence de l’information de phase, le capteur
n’étant sensible qu’à l’intensité de l’onde reçue, et la couverture angulaire limitée.
Différentes solutions sont proposées dans cette thèse. Toutes ces méthodes sont
comparées et testées avec succès sur des simulations numériques et des données
expérimentales. Des comparaisons avec des acquisitions au microscope classique
montrent la validité des reconstructions en matière de tailles et de formes des objets
reconstruits ainsi que la précision de leur positionnement tridimensionnel. Elles
permettent de reconstruire des volumes de plusieurs dizaines de millimètres cubes
de cultures cellulaires 3D, inaccessibles en microscopie standard.

Enfin les données spatio-temporelles obtenues avec succès en incubateur mon-
trent aussi la pertinence de ce type d’imagerie en mettant en évidence des interac-
tions dynamiques sur de grandes échelles des cellules entres elles ainsi qu’avec leur
environnement tridimensionnel.

Chapitre I : Contexte et état de l’art

Ce chapitre donne un aperçu général du contexte biologique de la culture cel-
lulaire 3D et des techniques d’imagerie conventionnellement mises en œuvre pour
leur étude. Il introduit aussi la technique de l’imagerie sans lentille dans le cadre
de la culture 2D ainsi que les travaux réalisés par d’autres équipes dans le but de
l’adapter aux cultures 3D.

Développement de la culture cellulaire 3D

En ce qui concerne la biologie 3D, il est communément admis de nos jours que
la culture 2D introduit de nombreux biais observationnels et cache ou modifie de
nombreux phénomènes biologiques. Pendant longtemps, la seule alternative pour
concevoir des cultures cellulaires en 3D fut le modèle sur petit animal, qui soulève
de nombreuses questions éthiques et pratiques concernant la répétabilité.

La culture cellulaire 3D apparaît donc un outil intermédiaire entre la culture
cellulaire 2D et le modèle animal. Elle est rendue possible par le développement
récent de gels organiques dans lesquels les cellules peuvent se nourrir et croître dans
les trois directions de l’espace.

262



Les applications potentielles sont nombreuses, ne serait-ce qu’en termes de biolo-
gie fondamentale ou de recherches pharmaceutiques, avec de nombreuses avancées
récentes, en autres en : motilité cellulaire, chimiotaxie et adhésion cellulaire ; ex-
pression génétique ; morphogénèses épithéliale et endothéliale ; embryogénèse et
organogénèse ; oncologie ; toxicologie et dépistage de nouveaux principes actifs.

Développement de la culture cellulaire 3D

Ces nouveaux types de culture cellulaire ont déclenché un besoin en nouveaux
types d’imagerie adaptés, répartis en trois grandes catégories.

Les microscopes classiques peuvent être utilisés sur des échantillons fixés et trans-
parents après avoir été adaptés à l’acquisition de plusieurs angles pour faire de la
tomographie par projection optique.

La microscopie par fluorescence reste la technologie dominante en ce qui con-
cerne l’imagerie 3D, répartie en trois grandes techniques : la microscopie confocale,
la microscopie à feuille de lumière et la microscopie multi-photons. Ces techniques
tirent profit du marquage des échantillons avec des protéines spécifiques qui fluores-
cent sous certaines conditions d’illumination. Toutefois, sauf cas particuliers, elles
nécessitent une longue préparation de l’échantillon avec une étape de marquage qui
peut se révéler toxique. Au final, l’échantillon est rarement étudié dans son état
naturel et son suivi au cours du temps peut se révéler difficile.

Le développement de la microscopie par imagerie cohérente cherche à s’affranchir
de cette étape de marquage en étant directement sensible à l’indice de réfraction
de l’objet à étudier. La tomographie en cohérence optique est une technique déjà
largement répandue pour l’étude de la rétine ou de la peau par exemple. La tomo-
graphie optique diffractive se développe quant à elle sur les bases de la microscopie
holographique digitale et produit sans marquage des images très résolues de petits
échantillons, apportant des informations complémentaires à l’imagerie par fluores-
cence. Les microscopes sans lentille appartiennent à ce type de microscopie.

Développement de vidéo-microscopie sans lentille

La microscopie sans lentille se base sur le principe de l’holographie en ligne
proposée par Gabor en 1948 : une illumination cohérente est diffractée par un
échantillon. Les taches d’interférences produites sont ensuite enregistrées : il s’agit
de l’hologramme de l’objet. Connaissant la physique de la propagation de la lu-
mière, tout le jeu de ce type de microscopes est de « remonter le temps » à partir
de l’hologramme pour focaliser l’image et retrouver l’objet recherché. Le rôle des
lentilles dans un microscope classique est ici remplacé par des algorithmes informa-
tiques de rétro-propagation.

Un microscope sans lentille utilisant ce principe d’holographie en ligne est donc
minimaliste, seulement composé d’un éclairage semi-cohérent à quelques centimètres
d’un capteur, l’échantillon étant placé au plus proche du capteur. Il s’agit donc
d’une technologie facile d’utilisation (il n’y pas besoin de faire de mise au point, ni
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de préparer l’échantillon), robuste et peu chère (car sans partie mobile ou fragile)
et facilement adaptable aux conditions de culture régnant dans un incubateur (et
permet donc de suivre des cultures cellulaires sur de longues périodes de temps).
Le champ de vue, directement de la taille du capteur utilisé, est plus grand que par
microscopie conventionnelle.

Cette technologie présente toutefois des inconvénients telles qu’une résolution
limitée par la taille du pixel et les modèles physiques utilisés ainsi que l’absence
de bras de référence dans le montage optique qui permettrait de connaître la phase
de l’onde incidente. Ce défaut majeur doit être compensé par les algorithmes de
reconstructions développés.

Plusieurs équipes ont déjà proposé des solutions de microscopes sans lentille pour
des échantillons 3D. Toutefois, aucune n’a présenté de résultats à la fois basés sur
des modèles physiques en 3D de la diffraction et sur des échantillons biologiques 3D.

Chapitre II : Physique de la diffraction 3D

L’objectif de ce chapitre est de donner un aperçu de la physique de la diffraction
3D en partant des équations de propagation des ondes. A proprement parlé, il
n’introduit pas de nouveaux résultats comparés à la littérature mais en condense les
résultats pour présenter toutes les étapes menant à la démonstration du théorème de
diffraction de Fourier. Pendant du théorème de Radon dans le cadre de la diffraction,
il est utilisé dans la plupart des algorithmes de reconstruction tomographique en
optique diffractive.

Modèle de la diffraction 3D pour les objets faiblement diffu-
sants

L’objectif de cette partie est de trouver l’expression mathématique de l’onde
lumineuse sur le capteur en fonction de l’onde incidente et de l’objet diffusant qu’elle
croise sur son chemin. Ce modèle est indispensable pour espérer construire un
algorithme de reconstruction qui va dans l’autre sens, du capteur vers l’objet.

Une solution analytique explicite ne pouvant être dérivée des modèles, il est
nécessaire d’introduire des approximations dans le but de simplifier les équations.

L’approximation de Born consiste à supposer que l’onde lumineuse après
l’échantillon est composée de deux sous-parties : l’onde incidente initiale qui a
traversé l’objet sans être modifiée et une onde diffractée par l’objet. Le capteur
enregistre l’interférence de ces deux ondes.

L’expression de l’onde diffractée est directement l’équivalent 3D du principe de
Huygens-Fresnel : elle est constituée de la somme d’ondes sphériques réémises en
chaque point de l’objet 3D et dont l’amplitude dépend de l’indice de réfraction local
et de l’onde incidente en ce point.
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Théorème de diffraction de Fourier

Cette partie donne les étapes essentielles de la démonstration du théorème de
diffraction de Fourier et en donne une interprétation géométrique.

L’objectif principal du chapitre et des modèles présentés est de trouver un lien
entre les hologrammes 2D accessibles par la mesure avec un capteur et l’objet 3D à
reconstruire. Ce lien existe en fait entre leurs transformées de Fourier respectives.
Le théorème de diffraction de Fourier énonce que la surface 2D de la transformée de
Fourier 2D de l’onde diffractée se trouve sur une calotte sphérique de la transformée
3D de l’objet étudié.

Ce théorème peut donc être utilisé à la fois comme méthode de reconstruction
ou comme outil de simulation. Dans le premier cas, la multiplication des angles
d’éclairages et donc d’ondes diffractées permet en effet de remplir au fur et à mesure
l’espace de Fourier 3D de l’objet par cartographies successives de différentes calottes
sphériques. Dans le second cas, la simulation d’un hologramme à partir d’un objet
numérique se fait par l’extraction d’une calotte sphérique dans cet espace de Fourier
3D.

Ce théorème est le pendant diffractif du théorème de Radon utilisé dans les algo-
rithmes de reconstruction en tomographie par rayons X. La diffraction est négligeable
à cause des longueurs d’onde en jeu et les rayons vont droit. Dans le théorème de
Radon, les calottes sphériques sont remplacées par des plans dans l’espace de Fourier
de l’objet à reconstruire.

Simulations numériques 3D

Cette partie se concentre sur une formulation numérique des modèles physiques
développés dans le chapitre dans le but de les appliquer numériquement dans des
algorithmes de simulation ou de reconstruction.

Une fois mises en place, ces méthodes numériques sont utilisées pour comparer
l’approximation de Born et le théorème de diffraction de Fourier qui en découle. La
cohérence des hologrammes simulés à l’aide des modèles 3D avec les modèles 2D
développés dans le cadre de l’imagerie sans lentille 2D est aussi testée.

Les tests montrent une bonne cohérence des modèles 3D entre eux et avec les
modèles 2D. Mais le résultat principal reste un problème quant à l’interprétation
physique des indices de réfraction complexes mis en jeu avec une inversion des pro-
priétés absorbantes et déphasantes des objets simulés entre la 2D et la 3D.

Chapitre III : Un prototype polyvalent et premiers

algorithmes de reconstruction

Ce chapitre condense les travaux préliminaires effectués en termes de prototypage
et d’algorithmes pour se familiariser avec les problèmes de l’imagerie sans lentille en
3D d’une part et des contraintes posées par les cultures cellulaires en 3D d’autre part.
Travailler sur les deux sujets de front permet de faire évoluer les plans du microscope
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et la structure des algorithmes en prenant en considération les contraintes de ces
deux domaines.

Différentes directions sont testées dont beaucoup sont abandonnées par absence
de résultat. Toutefois, leur présentation est nécessaire pour la bonne compréhension
du déroulé des pensées et de la réflexion tout au long de ce travail de thèse.

Premier banc expérimental

Un microscope sans lentille dédié à la culture cellulaire 3D reprend les carac-
téristiques d’un microscope sans lentille 2D, à savoir un capteur CMOS et une
LED derrière un sténopé pour produire un éclairage semi-cohérent. Toutefois, la
première intuition est que pour reconstruire un objet en trois dimensions, il faut
pouvoir l’observer sous différents angles.

Ainsi, un moteur rotatif vient s’ajouter dans la liste des composants d’un micro-
scope sans lentille. Deux modalités sont testées :

• Le mode-θ dans lequel l’éclairage et le capteur sont fixes, l’éclairage étant
normal au plan capteur. C’est l’objet qui tourne sur lui-même au-dessus du
capteur.

• Le mode-ϕ dans lequel le capteur et l’échantillon sont fixes, l’éclairage étant
sur fixé au bout d’un bras tournant autour d’un axe dans le plan capteur, ce
qui permet de changer l’angle d’éclairage.

Le mode-θ est le plus intuitif et permet d’accéder à n’importe quel angle de
rotation de l’objet sur lui-même. Toutefois, c’est aussi le plus compliqué à mettre
en œuvre en pratique. En effet, il est très difficile de fixer un échantillon biologique
au bout d’une tige pour le faire tourner, le tout dans l’eau pour éviter un trop gros
saut d’indice de réfraction entre l’objet et le milieu environnant. Une piscine adaptée
est conçue pour gérer ce problème. Des tests sont aussi réalisés en capillaire en verre
mais s’avèrent non concluants à cause de la différence d’indice entre l’eau et le verre.

Le mode-ϕ est le plus simple à mettre en œuvre puisqu’il suffit de poser
l’échantillon en boîte de Petri directement sur le système sans avoir besoin d’une pré-
paration au préalable. Toutefois, la couverture angulaire est extrêmement limitée.
C’est ce mode qui est ensuite gardé tout au long de la thèse.

Un premier algorithme de reconstruction 3D basé sur la
transformée de Radon

Le premier algorithme développé au cours de cette thèse se base sur les tech-
niques de reconstruction utilisées en tomographie axiale calculée par ordinateur où
les acquisitions à différents angles d’un objet sont des projections de cet objet le
long d’une direction donnée. L’objet est alors reconstruit à partir de ces différentes
projections grâce à l’inversion de la transformée de Radon précédemment évoquée.

Dans le cas de l’imagerie sans lentille, l’approximation est faite que les holo-
grammes des objets étudiés soient directement cette projection, sans prendre en
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compte la diffraction. Cette méthode a l’avantage de pouvoir travailler rapidement,
coupe 2D par coupe 2D, sur de très gros volumes avec des algorithmes déjà optimisés,
dédiés à la tomographie axiale calculée par ordinateur.

Dans le but de partiellement prendre en compte la diffraction, une étape de
focalisation des hologrammes 3D sur un plan moyen 2D via les algorithmes de rétro-
propagation classiques développés pour la microscopie sans lentille 2D est implé-
mentée.

Les résultats sont convaincants malgré la présence d’artefacts dans les recon-
structions dus à la mauvaise prise en compte du phénomène de diffraction 3D.

Une seconde méthode basée sur un empilement en z

Cette méthode s’inspire de la formulation numérique de l’approximation de Born
introduite plus haut. En effet, le calcul par transformée de Fourier 3D d’un objet
mène numériquement à la connaissance de l’onde diffractée sur tout un volume.

La question à se poser alors est de savoir si réciproquement, la connaissance de
l’onde diffractée sur tout un volume est suffisante pour reconstruire l’objet.

Les simulations montrent que la déconvolution de ce problème est difficile et que
le nombre d’acquisitions à différentes distances z est beaucoup moins déterminant
que la diversité angulaire dans les acquisitions.

Cette idée est donc abandonnée même si elle permet d’introduire la notion de
problème inverse dans ce travail de thèse.

Une troisième méthode basée sur le théorème de diffraction
de Fourier

Cette méthode implémente la possibilité donnée par le théorème de diffraction
de Fourier d’être utilisé comme un outil de reconstruction.

Toutefois, elle doit résoudre un problème soulevé par l’holographie en ligne. Un
tel système n’enregistre que le module de l’onde totale arrivant sur le capteur alors
que le théorème de diffraction de Fourier n’utilise que la partie de cette onde com-
plexe correspondant à l’onde diffractée. Il faut donc extraire cette onde diffractée à
partir de l’unique connaissance du module de l’onde totale. Il manque la phase de
l’onde complexe au niveau du capteur.

Dans cette méthode, cette phase inconnue est approximée par une rampe de
phase caractéristique de l’angle d’éclairage avec lequel est acquis chaque holo-
gramme. Une fois les ondes diffractées extraites pour chaque position de l’éclairage,
ces informations sont cartographiées sur leur calotte respective dans l’espace de
Fourier 3D de l’objet.

Cette méthode permet de reconstruire les objets 3D en prenant en compte la
diffraction en une passe. Mais l’approximation de la phase réelle inconnue par
une rampe de phase produit de nombreux artéfacts dans les reconstructions qui
s’apparentent au problème des « images jumelles » en reconstruction holographique
2D.
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Quelques réflexions sur les angles d’éclairage. . .

Durant tout le chapitre, les reconstructions sont réalisées en prenant en compte
l’angle d’éclairage dans l’air dans les algorithmes. Toutefois, de nombreux artefacts
dans les reconstructions sont attribués à des problèmes d’angle dans les sections
précédentes. En effet, les objets biologiques sont dans l’eau et donc l’angle dans le
milieu doit varier selon les lois de la réfraction de Snell-Descartes.

Dans le but de déterminer si les hologrammes finalement enregistrés par le cap-
teur sont caractéristiques d’un éclairage dans l’eau ou dans l’air, une expérience est
menée. Des billes sont placées dans l’eau et leurs hologrammes sont enregistrés pour
différents angles d’éclairage.

Ces hologrammes forment donc des ellipses dont l’excentricité peut être reliée
à l’angle d’éclairage. L’extraction de cette information pour les différents angles
d’acquisitions montre que ces hologrammes, bien qu’acquis dans l’air, sont effective-
ment caractéristiques d’un angle dans l’eau.

Ainsi, deux solutions sont proposées pour prendre en compte ce phénomène dans
les reconstructions : soit de directement corriger les angles de reconstruction dans
les algorithmes par les angles dans le milieu de culture via la loi de Snell-Descartes,
soit d’appliquer un facteur d’échelle le long de l’axe z a posteriori.

Chapitre IV : Un second choix de conception et

nouvelles méthodes de reconstruction

Fort de l’expérience acquise au cours des travaux du chapitre précédent, un
nouveau prototype est conçu et testé et de meilleurs codes de reconstruction sont
implémentés pour résoudre les problèmes soulevés par les premières reconstructions
3D.

Ce chapitre constitue le cœur des travaux de thèse.

Deuxième banc expérimental

Tout d’abord, les codes du chapitre précédent sont utilisés pour simuler dif-
férentes configurations possibles pour un nouveau prototype de microscope sans
lentille. Les nouveaux plans se concentrent sur une contrainte déduite des expéri-
ences du chapitre précédent sur des échantillons biologiques : ce nouveau prototype
doit être en « mode-ϕ » pour faciliter son utilisation, avec donc un capteur sous la
culture cellulaire qui reste parallèle au fond de la boîte de Petri.

Les différentes simulations convergent vers une solution où l’éclairage tourne sur
une couronne avec un angle zénithal d’ouverture constant. Le capteur est aussi
légèrement déporté pour tourner avec le support de l’éclairage, ce qui permet de
garder l’hologramme projeté de l’objet d’étude au centre du champ de vue et donc
de maximiser la taille du volume reconstructible. Comme le prototype précédent, la
LED possède trois longueurs d’onde : rouge, verte et bleue.
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Le prototype est construit et testé sur données inertes avec des résultats promet-
teurs.

Estimation itérative de la phase manquante

Cette méthode vise à corriger le défaut principal de la méthode proposée en
fin du chapitre précédent, à savoir l’approximation de la phase manquante, alors
remplacée par une rampe de phase.

Tout d’abord, un modèle 2D de propagation en biais de la diffraction produite
par un objet 2D est développé. Ensuite, comme pour l’algorithme implémenté avec
l’inversion de la transformée de Radon, à chaque angle d’éclairage, l’objet est approx-
imé par un plan 2D. Cet artifice mathématique permet de trouver une approximation
de la phase par une approche inverse.

Le modèle direct est donné par le modèle 2D de propagation en biais, l’attache
aux données est faite sur l’intensité de l’onde complexe au niveau du plan capteur
et les contraintes sont appliquées sur l’approximation 2D de l’objet. Une contrainte
de domaine est implémentée en fonction des propriétés physiques de l’objet et deux
régularisations sont mises en œuvre : une imposant que l’objet soit parcimonieux,
ce qui favorise des objets localisés et nettoie le bruit de fond et l’autre imposant que
son gradient soit parcimonieux, ce qui favorise des objets homogènes à bord franc
et lisse le fond. L’utilisation des trois longueurs d’onde de la LED à chaque angle
de vue améliore les résultats de l’algorithme. La résolution de ce problème est faite
itérativement par descente de gradient.

Une fois la phase estimée pour toutes les acquisitions à tous les angles d’éclairage,
l’espace de Fourier 3D de l’objet est cartographié comme précédemment, calotte par
calotte.

Problème inverse 3D

Cette méthode est similaire à la méthode précédente, sauf que c’est directement
l’objet 3D qui est l’inconnue sur laquelle s’appliquent les contraintes de domaine
et de régularisation. Le modèle direct est donné par le théorème de diffraction de
Fourier, comme précédemment expliqué dans le chapitre II et l’attache aux données
est effectuée sur toutes les intensités mesurées à la fois. La résolution de ce problème
est faite itérativement par descente de gradient.

Avec cette méthode, la diffraction 3D est prise en compte, contrairement à
la méthode précédente où l’objet était approximé par un plan à chaque angle
d’éclairage.

De plus, dans la méthode précédente, seuls les coefficients de l’espace de Fourier
de l’objet qui se trouvent sur l’une des calottes sphériques cartographiées sont es-
timés. Cette méthode, via les termes de régularisations travaille sur tout l’espace
de Fourier de l’objet et estime donc tous les coefficients.

Enfin, cette méthode permet de raffiner l’alignement des données, étape cruciale
des algorithmes de reconstruction tomographique. En effet, au cours des itérations
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de l’algorithme, l’attache aux données étant relaxée, il est possible de simuler des
données qui sont légèrement différentes des données expérimentales et qui sont, par
construction, alignés avec l’objet reconstruit. Ces données simulées peuvent servir
de référence pour réaligner les données expérimentales. Cela améliore grandement
la qualité finale des reconstructions 3D.

Un algorithme de Gerchberg-Saxton modifié

L’algorithme précédent peut être très long à faire tourner à cause des multiples
transformées de Fourier 3D qu’il engendre.

Dans le but de l’initialiser avec une meilleure valeur de départ un algorithme de
type Gerchberg-Saxton est implémenté.

La base de ce type d’algorithme est d’alterner entre l’objet à reconstruire et les
acquisitions des phases de reconstructions et de simulations. A chaque itération
de la boucle, l’attache aux données est forcée dans les simulations au niveau des
acquisitions et des contraintes sont appliquées dans les reconstructions au niveau de
l’objet.

Avec la faible couverture angulaire du prototype proposé, inhérente à la culture
en boîte de Petri, cet algorithme n’est pas suffisant pour corriger les artefacts de
reconstruction. Il est donc modifié avec l’ajout d’une étape de régularisation sur
l’objet avec l’application des contraintes de parcimonies précédemment évoquées
sur l’objet et son gradient.

Comme l’algorithme précédent, celui-ci traite les deux problèmes du prototype
de microscope sans lentille en estimant les phases manquantes au niveau du capteur
et en travaillant directement sur l’ensemble des coefficients de l’espace de Fourier.

Comparaison des algorithmes

Le chapitre se termine sur une comparaison des algorithmes sur deux cultures
de références. La première est composée de cellules endothéliales cultivées sur une
couche de matrice extracellulaire, les menant à la formation d’un réseau cellulaire.
La deuxième est constituée de cellules épithéliales, encapsulées dans des sphères
de matrice extracellulaire dans lesquelles elles vont former des amas de cellules et
éventuellement s’échapper des capsules.

Ces deux cultures sont reconstruites avec les quatre algorithmes précédemment
décrits utilisant le théorème de diffraction de Fourier sur des volumes de 5 mm3.
Les résultats sont nets. Si les deux premiers ont des temps d’exécution courts, seuls
les deux derniers, régularisés, sont en mesure d’efficacement nettoyer les artefacts de
reconstruction au prix d’un temps de reconstruction qui peut s’avérer rédhibitoire.

Ensuite, une zone reconstruite à plus haute résolution avec les deux derniers
algorithmes est comparées avec des acquisitions faites au microscope. Cette zone
présente une large distribution en z des objets et constitue donc un bon moyen de
tester les algorithmes sur des objets avec de forts recouvrements en z ainsi que leur
capacité de sectionnement axial des volumes.
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La comparaison montre que les reconstructions sont fidèles à l’objet biologique
observé avec un sectionnement en z bien meilleur que le critère « focalisé/défocalisé
» du microscope.

Enfin, différentes pistes sont proposées pour tenter de répondre aux problèmes
soulevés par les conclusions de cette comparaison de ces quatre méthodes.

Chapitre V : Vers la vidéo-microscopie 3D en in-

cubateur

Après avoir testé les performances des différents algorithmes en termes de temps
et de qualité de reconstruction, les derniers efforts de la thèse se focalisent sur
l’adaptation du prototype sans lentille aux conditions d’incubateur pour pouvoir
suivre des cultures cellulaires 3D au cours du temps.

Une caractérisation des reconstructions est aussi effectuée sur un objet de
référence pour quantifier la précision des positionnements en 3D obtenus avec le
microscope sans lentille.

Vers un prototype résistant aux conditions d’incubateur

Il est d’abord essayé d’adapter l’ancien prototype aux conditions d’incubateur.
Toutefois, sa conception n’est pas optimisée en conséquence et il apparaît plus simple
d’en reconstruire un autre avec de nouvelles fonctionnalités.

Tout d’abord une platine de translation sur le plan xy est intégrée dans le support
du capteur pour pouvoir affiner sa position sous l’échantillon placé au plus près.
Un rail est aussi ajouté sous l’éclairage pour pouvoir changer l’angle zénithal de
l’illumination.

Mais la principale nouvelle fonctionnalité consiste en l’ajout d’un système de
refroidissement. En effet, en fonctionnement, le capteur chauffe à une température
pouvant atteindre les 50◦C, létal pour les cellules. Dans le but d’isoler la culture
cellulaire du capteur, une lame d’air est injectée entre celui-ci et le dessous de la
boîte de Petri.

Des tests avec une boîte de Petri monitorée avec des sondes de température
montrent l’efficacité de ce dispositif pour stabiliser la température dans le milieu
biologique de la culture cellulaire.

Reconstruction 3D+t

Deux cultures cellulaires sont suivies pendant plus d’une semaine avec le proto-
type en incubateur, montrant sa capacité à résister aux conditions d’humidité et de
température le tout sans tuer les cellules. Il s’agit de cellules épithéliales cultivées à
la surface d’une matrice extracellulaire.

Les résultats de la première expérience démontrent la capacité d’un micro-
scope sans lentille d’acquérir des données pertinentes sur de larges volumes grâce à
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l’observation de quatre grands types de phénomènes :

• Le déplacements de cellules sur de longues distances avec une trajectoire qui
ne semble pas aléatoire mais au contraire structurée sur de grandes échelles.

• Les interactions entre cellules ou amas de cellules sur de larges distances avec
fusions successives.

• Le développement et la croissance d’amas de cellules bloquées dans la matrice
extracellulaire.

• Le déplacement sur de grandes distances d’amas de plusieurs dizaines de cel-
lules ainsi que les forces de tractions engendrées sur la matrice extracellulaire.

Ce dernier point mène à la conception de la deuxième expérience dans laquelle
des microbilles sont intégrées directement dans la matrice extracellulaire dans le but
d’étudier ses déformations. Comme précédemment, des mouvements de la matrice
dus aux déplacements des amas cellulaires sont mis en évidence jusqu’à des distances
dépassant le millimètre. Mais la présence des billes dans la matrice permet aussi
d’étudier sa dilatation radiale au cours du temps avec un suivi précis des billes dans
les trois dimensions de l’espace.

Caractérisation

Cette dernière expérience a servi de base à la conception d’un objet de référence
pour caractériser le microscope sans lentille proposé.

Des billes sont mélangées à de la matrice extracellulaire qui est ensuite laissée
à polymériser. L’objet obtenu, sans cellule et uniquement composé de billes, est
reconstruit à l’aide de l’imagerie sans lentille pour différents angles zénithaux pour
l’éclairage et comparé avec une acquisition par fluorescence au microscope.

Des algorithmes dédiés sont développés pour identifier et appareiller les billes
dans les différents volumes reconstruits. La comparaison des positions extraites
montre un excellent positionnement obtenu par l’imagerie sans lentille sur le plan
xy. Un léger facteur de dilatation est attribué à l’approximation faite sur l’onde
d’éclairage, supposée être plane alors qu’elle est sphérique. Les positionnements en
z montrent que les algorithmes de reconstruction en imagerie sans lentille prennent
bien en compte les différents effets de réfraction sur les angles et que les positions
sont bien absolues et non relatives le long de l’axe z, contrairement à la microscopie
classique où un facteur d’échelle dépendant de l’objectif et de l’indice de réfraction
de l’huile à immersion (ou de l’air si aucune huile n’est utilisée) doit être pris en
compte.

En terme de résolution, il apparaît naturellement qu’elle est dégradée le long
de l’axe z. De manière surprenante, contrairement à l’intuition, les reconstructions
apparaissent d’autant plus dégradées que l’angle zénithal de l’éclairage est élevé
alors qu’il est légitime de s’attendre à ce qu’une parallaxe plus élevée améliore les
reconstructions, comme le laissaient entendre les simulations.
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Conclusions et perspectives

En conclusion, cette thèse montre la possibilité d’adapter l’imagerie sans
lentille à l’imagerie d’échantillons biologiques 3D. Différents prototypes et algo-
rithmes sont construits et implémentés.

Le prototype converge vers un schéma réunissant deux conditions : la facilité
d’utilisation avec un microscope devant fonctionner sur des boîtes de Petri et une
couverture angulaire optimisée à la vue de la première contrainte. Un prototype
adapté à la culture cellulaire en incubateur est construit et testé avec succès.

Concernant les codes de reconstruction, ils se concentrent sur quatre grandes
méthodes, toutes basées sur le théorème de diffraction de Fourier. Chacune propose
une solution pour traiter les deux problèmes liés à l’holographie en ligne : l’absence
de mesure de la phase de l’onde arrivant sur le capteur et la couverture angulaire
limitée. L’amélioration de la qualité des reconstructions se fait au prix d’une com-
plexité croissante.

Les différents prototypes et algorithmes sont testés avec succès sur des simu-
lations et des données expérimentales, avec des volumes reconstruits de plusieurs
dizaines de millimètres cubes. Les premiers résultats en incubateur montrent les ca-
pacités de la microscopie sans lentille 3D de rassembler des données pertinentes sur
les cultures 3D par exemple via l’observation à grande échelle d’interaction cellulaire
avec la matrice extracellulaire environnement.

En ce qui concerne les perspectives, plusieurs pistes sont envisagées dans
différents domaines.

En biologie, les résultats obtenus en incubateur ouvrent la voie vers de nouvelles
expériences pour observer le remodelage dynamique de la matrice extracellulaire,
au cœur de nombreux sujets de biologie, tels que les cancers ou les inflammations
par exemple. Il pourrait aussi être intéressant d’étudier des objets classiques de la
biologie en 3D tels que le C. Elegans ou de tenter de discriminer les objets pleins
des objets creux, fonction utile pour identifier les phénomènes de cancérogénèse.

Concernant les algorithmes de reconstruction, les travaux suivants devront
surtout s’orienter vers l’optimisation des hyperparamètres dans les approches in-
verses ainsi qu’au développement de nouvelles régularisations plus pertinentes.
D’autres algorithmes récemment développés par d’autres équipes dans le cadre de
la microscopie diffractive optique avec lentille peuvent aussi être adpatés.

Un travail doit aussi être effectué sur l’optimisation des temps de calcul. En
effet, les algorithmes régularisés présentés dans cette thèse peuvent s’avérer par-
ticulièrement longs, rendant impossible l’étude de plusieurs cultures cellulaires au
cours du temps dans un temps raisonnable. Ceci consiste donc un frein puissant à
la démocratisation de la technologie.

L’alignement des données ainsi que la détermination de la distance de recon-
struction restent aussi des points qui n’ont pas été automatisés durant ces travaux
et qui se doivent d’être traités pour une utilisation de l’imagerie sans lentille 3D par
un utilisateur non initié.

Le modèle utilisé durant cette thèse n’est pas valide pour les objets étudiés. Il
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est toutefois gardé pour sa simplicité de mise en œuvre. Pour améliorer les recon-
structions ou si devenir quantitatif est un objectif, de nouveaux modèles doivent être
implémentés. Différents travaux indiquent par exemple qu’un modèle multi-couches
peut constituer une alternative pertinente.

Enfin, en termes de conception, beaucoup de travail reste à faire sur le pro-
totype pour le rendre résistant à long terme aux conditions d’incubateur et ro-
buste à l’usure mécanique. Plus d’études se doivent d’être réalisées pour optimiser
l’éclairage, par exemple à l’aide de diodes lasers, plus puissantes et plus cohérentes ce
qui améliorerait le rapport signal à bruit ou même la validité du modèle qui suppose
une onde parfaitement cohérente. L’utilisation d’un meilleur moteur permettrait
aussi d’accélérer les temps d’acquisition qui peuvent être limitants pour certaines
applications. De plus, d’autres types de microscopes pourraient être adaptés à une
technologie sans lentille en changeant le type d’éclairage par exemple.

Annexes

En plus de ce résumé en français, cette thèse présente plusieurs annexes.
Les deux premières sont des annexes mathématiques qui introduisent les outils

nécessaires à la démonstration du théorème de diffraction de Fourier et qu’il n’était
pas pertinent d’intégrer dans le texte principal sous peine d’alourdir le discours.

La troisième annexe est consacrée aux étapes de prétraitements nécessaires dans
cette thèse à toute reconstruction tomographique: l’alignement des données et la
détermination de la distance de propagation entre l’objet et le plan capteur. Elle
présente les différentes méthodes mises en œuvre pour déterminer ces différents
paramètres.

La quatrième annexe donne les outils nécessaires au calcul du gradient des dif-
férentes fonctions coût introduites au cours de cette thèse dans la formulation des
approches par problèmes inverses.

Enfin, la cinquième annexe est consacrée à un travail de modélisation biophysique
réalisé en parallèle de la thèse. Il s’agit de modéliser le phénomène de chimiotaxie sur
deux expériences réalisées avec des cellules épithéliales et endothéliales. Son objectif
est de démontrer la pertinence d’avoir des acquisitions 3D sur larges champs de vue
pour contraindre ce genre de modèle.
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Résumé - Ce travail de thèse se situe à l’interface de deux domaines : la culture cellulaire en trois dimensions et
l’imagerie sans lentille.

Fournissant un protocole de culture cellulaire plus réaliste sur le plan physiologique, le passage des cultures mono-
couches (2D) à des cultures tridimensionnelles (3D) - via l’utilisation de gels extracellulaires dans lesquels les cellules
peuvent se développer dans les trois dimensions - permet de faire de grandes avancées dans de nombreux domaines en
biologie tels que l’organogénèse, l’oncologie et la médecine régénérative. Ces nouveaux objets à étudier créent un besoin
en matière d’imagerie 3D.

De son côté, l’imagerie sans lentille 2D fournit un moyen robuste, peu cher, sans marquage et non toxique, d’étudier
les cultures cellulaires en deux dimensions sur de grandes échelles et sur de longues périodes. Ce type de microscopie
enregistre l’image des interférences produites par l’échantillon biologique traversé par une lumière cohérente. Connaissant
la physique de la propagation de la lumière, ces hologrammes sont rétro-propagés numériquement pour reconstruire l’objet
recherché. L’algorithme de reconstruction remplace les lentilles absentes dans le rôle de la formation de l’image.

Le but de cette thèse est de montrer la possibilité d’adapter cette technologie sans lentille à l’imagerie des cul-
tures cellulaires en 3D. De nouveaux prototypes de microscopes sans lentille sont conçus en parallèle du développement
d’algorithmes de reconstructions tomographiques dédiés.

Concernant les prototypes, plusieurs solutions sont testées pour converger vers un schéma alliant deux conditions. La
première est le choix de la simplicité d’utilisation avec une culture cellulaire en boîte de Petri standard et ne nécessitant
aucune préparation spécifique ou aucun changement de contenant. Cette condition entraînant de fortes contraintes
géométriques sur l’architecture, la deuxième est de trouver la meilleure couverture angulaire possible des angles d’éclairage.
Enfin, une version adaptée aux conditions en incubateur est développée et testée avec succès.

Concernant les algorithmes, quatre types de solutions sont proposés, basées sur le théorème de diffraction de Fourier
classiquement utilisé en tomographie diffractive optique. Toutes cherchent à corriger deux problèmes inhérents au mi-
croscope sans lentille : l’absence de l’information de phase, le capteur n’étant sensible qu’à l’intensité de l’onde reçue,
et la couverture angulaire limitée. Le premier algorithme se limite à remplacer la phase inconnue par celle d’une onde
incidente plane. Rapide, cette méthode est néanmoins source de nombreux artefacts. La deuxième solution, en approxi-
mant l’objet 3D inconnu par un plan moyen, utilise les outils de la microscopie sans lentille 2D pour retrouver cette phase
manquante via une approche inverse. La troisième solution consiste à implémenter une approche inverse régularisée sur
l’objet 3D à reconstruire. C’est la méthode la plus efficace pour compenser les deux problèmes mentionnés, mais elle est
très lente. La quatrième et dernière solution est basée sur un algorithme de type Gerchberg-Saxton modifié avec une
étape de régularisation sur l’objet.

Toutes ces méthodes sont comparées et testées avec succès sur des simulations numériques et des données expéri-
mentales. Des comparaisons avec des acquisitions au microscope classique montrent la validité des reconstructions en
matière de tailles et de formes des objets reconstruits ainsi que la précision de leur positionnement tridimensionnel. Elles
permettent de reconstruire des volumes de plusieurs dizaines de millimètres cubes de cultures cellulaires 3D, inaccessibles
en microscopie standard.

Par ailleurs, les données spatio-temporelles obtenues avec succès en incubateur montrent aussi la pertinence de ce
type d’imagerie en mettant en évidence des interactions dynamiques sur de grandes échelles des cellules entres elles ainsi
qu’avec leur environnement tridimensionnel.

Abstract - This PhD work is at the interface of two fields: 3D cell culture and lens-free imaging.
Providing a more realistic cell culture protocol on the physiological level, switching from single-layer (2D) cultures to

three-dimensional (3D) cultures - via the use of extracellular gel in which cells can grow in three dimensions - is at the
origin of several breakthroughs in several fields such as developmental biology, oncology and regenerative medicine. The
study of these new 3D structures creates a need in terms of 3D imaging.

On another side, 2D lens-free imaging provides a robust, inexpensive, non-labeling and non-toxic tool to study cell
cultures in two dimensions over large scales and over long periods of time. This type of microscopy records the interferences
produced by a coherent light scattered by the biological sample. Knowing the physics of light propagation, these holograms
are retro-propagated numerically to reconstruct the unknown object. The reconstruction algorithm replaces the absent
lenses in the role of image formation.

The aim of this PhD is to show the possibility of adapting this lens-free technology for imaging 3D cell culture.
New lens-free microscopes are designed and built along with the development of dedicated tomographic reconstruction
algorithms.

Concerning the prototypes, the tested solutions converge to a scheme combining two conditions. The first requirement
is the choice of simplicity of use with a cell culture in standard Petri dish and requiring no specific preparation or change of
container. The second condition is to find the best possible angular coverage of lighting angles in regards of the geometric
constraint imposed by the first requirement. Finally, an incubator-proof version is successfully built and tested.

Regarding the algorithms, four major types of solutions are implemented, all based on the Fourier diffraction theorem,
conventionally used in optical diffractive tomography. All methods aim to correct two inherent problems of a lens-free
microscope: the absence of phase information, the sensor being sensitive only to the intensity of the incident wave, and
the limited angular coverage. The first algorithm simply replaces the unknown phase with that of an incident plane wave.
However, this method is fast but it is the source of many artifacts. The second solution tries to estimate the missing phase
by approximating the unknown object by an average plane and uses the tools of the 2D lens-free microscopy to recover
the missing phase in an inverse problem approach. The third solution consists in implementing a regularized inverse
problem approach on the 3D object to reconstruct. This is the most effective method to deal with the two problems
mentioned above but it is very slow. The fourth and last solution is based on a modified Gerchberg-Saxton algorithm
with a regularization step on the object.

All these methods are compared and tested successfully on numerical simulations and experimental data. Comparisons
with conventional microscope acquisitions show the validity of the reconstructions in terms of shape and positioning of
the retrieved objects as well as the accuracy of their three-dimensional positioning. Biological samples are reconstructed
with volumes of several tens of cubic millimeters, inaccessible in standard microscopy.

Moreover, 3D time-lapse data successfully obtained in incubators show the relevance of this type of imaging by
highlighting large-scale interactions between cells or between cells and their three-dimensional environment.
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