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Introduction

In biology, since the first attempts to grow cell cultures in laboratories in the
late XIX™ century [T], 2D cultures in plastic and glass dishes have been the reference.
Once scientists understood how to maintain cells alive, it became possible to grow
them over several days to perform experiments. In the forties and fifties, cell culture
protocols greatly improved leading to breakthroughs in many fields of biology such
as fundamental life science research, genetics, oncology, pharmaceutics, toxicology
and virology [2, Chapter 20].

But recent years developments show that such culture conditions create strong
observational biases. In many ways, nature is three-dimensional and at some points,
2D cultures reach their limits [3]. For instance, multicellular organisms, embryos
and organs evolve in 3D. Their development and study can hardly be reproduced in
the realm of 2D biology. Moreover it has been shown that even a single cell behaves
differently and has a different genetic expression if it adheres on a 2D surface or if
it lies in a 3D extracellular matrix [4].

Since the early 2000s, new protocols are being developed to grow cells in 3D gel
matrices [5]. Such cultures open new fields of research at a scale between standard
2D cultures and small animal experiments that raise ethical concerns [6]. Many
advances are expected in cancer biology, regenerative medicine and fundamental
biology [T, §].

New microscopes are consequently needed to help realizing the full potential of
these 3D cell culture studies by gathering large quantitative and systematic data
over extended period of time while preserving the integrity of the living sample [9].

In microscopy, optical light microscopes [10] have been the standard tool in
biology for several centuries since its systematic introduction in the field by Leeuwen-
hoek in the late XVII*" century [I1]. Ever since, optical microscopes became more
and more complex in order to achieve better magnification, contrast and resolu-
tion [I2]. An increasing resolution is generally accompanied with a small field of
view. Nevertheless, the basics did not change: a light source, a sample and mul-
tiple lenses to focus [9]. But this increasing complexity leads to increasing costs
and a need of trained biologists. Moreover, putting these microscopes in incubator
conditions is challenging and usually the biological samples need to be prepared,
sometimes with toxic labeling agents, and they are consequently not observed in
their natural state.

Some work is done to introduce new physics developments in the context of bio-
logical microscopy, trying to find cost-effective, easy to use and robust technologies.




Introduction

The development of lens-free microscopy [13], [14], based on the in-line holography
theory introduced by Denis Gabor in 1948 [15] is addressing these needs in the con-
text of 2D cell culture, providing label-free and non-phototoxic acquisition of large
datasets.

This thesis is at the interface of these two new fields. It aims at creating a lens-
free microscope to reconstruct large volumes of 3D cell cultures while preserving
the ability to catch every single cell. At the beginning of this work, the laboratory
expertise was focused on lens-free microscopy of 2D cell cultures both in terms of
experimentation and computer-based reconstruction. From this knowledge in the
realm of 2D cell cultures, lens-free diffractive tomography microscopes performing
multi-angle acquisitions are designed and built. In parallel, an intensive work is
done on implementing dedicated 3D holographic reconstruction algorithms. Recon-
structions are finally performed both on simulations and real samples embedded in
Matrigel®, fixed or living.

This manuscript begins with an overview of the 3D cell culture context and its
standard microscopy before focusing on the lens-free imaging development applied
to 2D cell cultures.

Then, the second chapter is devoted to an introduction of the 3D diffraction
physics and the formalism used all along this manuscript. This chapter is not es-
sential for the reader already familiar with the concepts of 3D diffraction physics.

Afterwards, this thesis follows globally chronologically the work done during this
PhD work. It introduces the different choices for the design and the associated
algorithms. A first bench is built to get in touch with the 3D imaging and its
constraints while giving the opportunity to reconstruct the first 3D volumes. From
this first experience, a second design is made to overcome the limitations of the first
prototype and the associated codes.

The conception of prototypes, parallel to the development of the reconstruction
codes allows to simultaneously develop these two sides of this PhD work, leading to
an overall improvement of the 3D reconstruction techniques and imaging.

Thus, the third chapter focuses on the first prototype and its associated recon-
struction codes. It is mainly composed of designs or methods whose developments
are not pursued because of their limitations and drawbacks. It is needed in order to
fully understand the reasoning which leads to the choices made in terms of proto-
types and algorithms for the following. It introduces the basics for the algorithms
later developed. As a consequence, an in-depth comprehension by the reader is not
compulsory to understand this PhD work and the following of the thesis.

The fourth chapter constitutes the core of this thesis. It presents the chosen
solutions in terms of design for a 3D lens-free microscope as well as the dedicated
fully 3D reconstruction algorithms which are implemented.

The final chapter focuses on the adaptation of the 3D lens-free microscope to
incubator conditions. It introduces time-lapse results obtained on cell cultures which
are followed during several weeks as well as the characterization of the proposed 3D
tomographic lens-free microscope.

The following figure is a schematic summary of this thesis. The left column




presents the different diffraction models from the literature which are used in this
PhD work. The central column summarizes the reconstruction algorithms adapted
to lens-free microscopy which are developed and implemented in this thesis. The
right column introduces the three different lens-free prototypes which are designed,
built and tested.

The green lines link the algorithms to their corresponding physical model used
to reconstruct the 3D objects. The blue lines link the different prototypes with the
algorithms used to reconstruct their acquisitions. The faint black arrows indicate
the genealogical dependence of the methods, algorithms and designs.

The red frames highlight the models, algorithms and designs, mainly presented
in the third chapter, which are finally abandoned in this thesis.

The dates indicate the time frame of the development of the corresponding al-
gorithm or prototype in the format year/month.

Finally, Roman and Arabic numerals indicate the chapter and the section in
which each model, algorithm or prototype is introduced in this thesis.
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Chapter 1

Context and state of the art

This chapter sets the biological context of 3D cell culture and its standard imag-
ing tools. It also introduces the development of lens-free microscopy in the field of
2D biology and its first adaptations to 3D samples.

1 Overview of the development of 3D cell culture

1.1 A brief history

Since its beginning, standard of cell biology has been 2D cultures in Petri dishes.
Lots of standardized protocols emerged to perform biological research at large scale
in several domains, from fundamental biology to drug screening.

But nowadays, it is commonly admitted that such a simplified model introduces
important observational biases in the experiments and hides lots of biological phe-
nomena [4]. Animal experimentations became the standard method to perform bio-
logical studies in a more realistic 3D environment but raise ethical and repeatability
concerns.

3D cell cultures are considered as an alternative tool to animal models to per-
form experiments on complex samples or small artificially grown organs in a more
controlled environment [3), [6].

The missing of standardized 3D cell culture was due to the lack of methods to
grow cells in three dimensions and leading to a abscence of imaging tools to study
them because of the unexisting of demand [9].

For a few years, new techniques have emerged based on extracellular matrices
in the form of gels, such as Matrigel, that allowed growing the first 3D cultures
on small scale (few hundreds of microns). New protocols are being developed to
overcome the technological challenges of 3D cell culture and new fields of biology
are being opened [0, [§].

Tt is a gel composed of a gelatinous protein mixture secreted by Engelbreth-Holm-Swarm (EHS)
mouse sarcoma cells [I6]. It resembles the complex extracellular environment found in many tissues
and is used by cell biologists as a substrate for culturing cells, especially in a 3D environment.




I Context and state of the art

New microscopes and imaging tools are consequently needed to explore the full
potential of 3D organoid culture studies.

1.2 Access to new phenomena

As mentioned above, 3D cell cultures provide a new access to biological phenom-
ena which cannot be observed in standard 2D biology. Even if these experiments
are not the scope of this thesis, it can be interesting to keep in mind what will be
the type of samples that a new 3D microscope will have to deal with.

The following non-exhaustive list gives an idea of the potential applications,
both in fundamental biology and pharmaceutics research. It is mainly inspired from
the reviews [4], [7] and [8] where the interested reader can find all the details and
references.

Cell adhesion, 3D motility and chemotaxis - Adherent cells on 2D subtract
and cells evolving in three dimensions do not present the same migration strategies.
In 2D conditions, the migration is mainly driven by the strength of the cell-surface
adhesion, and cells adapt their shape according to a specific distribution of trans-
membrane adhesion proteins. In 3D, cells adopt different strategies according to the
extracellular matrix and the biological situation (individual or collective migrations,
clusters or multicellular sheets). The use of extracellular gel matrix provides also
a new tool to study chemotaxis [I7]. Indeed, the liquid culture medium in stan-
dard 2D experiments hides the local effects as it quickly mixes the proteins possibly
produced by the cells, preventing to study their effect. A gel matrix will lead to
a spreading of these potential chemo-attractants based on diffusion responsible for
heterogeneities in the gel.

Gene expression - As for the cell motility, the culture conditions influence the
gene expression of the cells [4, [7, 8]. Studies show that it is more complex in a 3D
environment, leading to similar expression as in real tumors for example.

Epithelial and endothelial cell morphogenesis - In 3D, such cells present
a highly different phenotype than their 2D equivalent [4] [7]. The first ones are able
to differentiate to create polarized and organized structures. The second ones shape
stable cellular networks and allow studying angiogenesis.

Embryogenesis and developmental biology - 3D cell culture gives access to
the early stages of an embryo formation. Studies showed that it is an intrinsic 3D
phenomenon since the mechanical forces play a role in the cell differentiation [4] [7].

Oncology - As mentioned above, the gene expression presents a more realistic
pattern in three dimensions. Moreover, small tumors derived from real tumorous
cells can be grown in 3D culture in a more realistic situation [3]. Co-cultures, in
which different kinds of cells are simultaneously grown, lead to a more complex
simulation of how a tumor can interact with its environment. Such a model coupled
with angiogenesis experiments can help to better understand tumor formation and
growth and to look for new cures [5].
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Drug screening and toxicology - Beyond oncology, deficient organs (for ex-
ample in autoimmune diseases) could be reproduced at small scale through 3D cell
culture techniques. It provides a new tool to test and select drugs prior to an animal
test, lowering the costs and the needs in laboratory specimens or patients [3, [, [18].

2 Standard 3D imaging of biological sample

The rise of three dimensional cell cultures created a need for new imaging tech-
nique adapted to this new culture modality. In specific conditions, a prepared sample
can be imaged with classical microscopes. Nevertheless, fluorescence microscopy re-
mains the most commonly used techniques to study 3D samples at high resolution
and different scales. This powerful tool needs to label the sample, which raises con-
cerns about its toxicity. To overcome these limitations, new techniques based on
coherent illuminations begin to emerge and provide complementary tool to study
these 3D cultures.

2.1 Standard microscopy

Only needing a classical microscope, optical projection tomography techniques
take benefit from the tools of the computed tomography [19] initially developed in
the context of X-ray imaging [20].

In this technique, the sample is firstly fixed into a transparent hydrogel such as
agarose. If the illuminating parallel rays pass though the sample with negligible
refraction or scattering, one can record the absorption map of the 3D sample at
different angles (see figure [.1}a). Using a filtered back-propagation algorithm [20],
the 3D volume can be reconstructed 2D slice by 2D slice (the red slice in the figure).

Optical clearing [21] of biological tissue allows extending the application of this
technique. It is well adapted to mesoscopic scale and is routinely applied in devel-
opmental biology on embryos (chick, mouse, zebrafish, drosophila, ...) or isolated
organs of developed specimens (limb, brain for instance) [22]. Nonetheless the ad-
missible wavelengths for the illumination are limited in the infrared window which
can go through several centimeters of biological tissue and consequently limit the
resolution.

It is very important that the sample remains unchanged during the rotation to
perform the acquisition. It requires a specific preparation in which the sample is
killed and immersed in a transparent hydrogel. Even if some live optical projec-
tion tomography experiments have been implemented [22], this technique is hardly
applicable to living cultures in Petri dishes.

2.2 Fluorescence microscopy

Fluorescence microscopy remains the standard technique to study 3D biologi-
cal cell cultures [23]. The principle of fluorescence microscopy [24] is based on the
fluorescence of specific molecules, the fluorophores, spread among the 3D sample.

7
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®

cIC apparatus for rotating
the specimen

agarose
cylinder

lenses of microscope

Figure 1.1:  (a) Scheme of an optical projection tomographic microscope. The
specimen is rotated within a cylinder of agarose while held in position for imaging
by a microscope. Light transmitted from the specimen (blue lines) is focused by the
lenses onto the camera-imaging chip (CIC). The apparatus is adjusted so that light
emitted from a section that is perpendicular to the axis of rotation (red ellipse) is
focused onto a single row of pixels on the CIC (red line). (b) The 3D reconstruction
of the embryo shown in (a). Virtual sections in three orthogonal planes are shown,
within the context of the full 3D block of voxel data. Courtesy of [19].

These molecules can for instance be fixed on microbeads or antibodies or can be
directly expressed by genetically modified cells. Illuminated with a specific exciting
wavelength A.., a fluorophore absorbs the light and re-emits it in a different wave-
length A.,,. Using a filter, this light can be imaged by standard microscopy to give
a repartition map of the fluorophores.

The principal advantage of this technique is its high signal to noise ratio.

The three main techniques are the confocal microscopy, the light-sheet mi-
croscopy and the multi-photon microscopy (and their derivatives).

Confocal microscopy - In confocal microscopy [25], apertures after the light
sources and before the sensor conjugate a point in the 3D sample on the focal plane
of the microscope and the light detector (see figure . The 3D volume is scanned
by translating either the sample or the optical parts along the three directions. This
modality of acquisition presents an important photo-toxicity for the sample since
at each acquisition of a point in the volume, the exciting light passes through the
whole culture.

Light-sheet microscopy - Light-sheet microscopy [26] partly solves this issue
by shaping the exciting beam with a cylindrical lens into a thin plane orthogonal to
the acquisition tool (see figure or into a line scanning this plane. This allows
reducing the acquisition time as a whole plane is acquired at a time and the photo-
toxicity since the sample is illuminated once per acquisition.

Multiphoton microscopy - Multiphoton microscopy [27] is an evolution of

8
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Figure 1.2: (a) An example of a confocal microscope: the ZEISS LSM 800. (b)
Schematic principle of confocal microscopy. (c¢) HeLa cells, red: mitochondria mem-
brane, green: microtubuli, magenta: actin fibers. Sample: courtesy of Arne Seitz,
EPFL, Lausanne, Switzerland.

confocal microscopy where the exciting wavelength is set to \... It takes benefit
from the fact that a fluorophore can either absorb a photon with a wavelength of
Aez OF two photons with a wavelength of 2)., if they arrive at the same time at
the same location. Because of this strong constraint, fluorescence can only occur at
the focal point of the laser beam where the density of photons is the highest. This
leads to three major improvements. Firstly, for a given illumination intensity, the
efficiency of the microscope is increased since less photons are lost in out-of-focus
absorption. Limiting background fluorescence, this also increases the resolution.
Secondly, this kind of microscope is less sensitive to the scattering of the re-emitted
light in the sample since it physically comes mainly from the focal point. There is
no need any more of the aperture before the sensor to conjugate the focal point with
the detector. This increases the sensibility of the method. As a lower intensity is
needed, this strongly decreases the photo-toxicity of the confocal technology. And
finally, the use of longer wavelengths makes possible to probe the sample more deeply
as such wavelengths are less scattered and absorbed by biological tissues. This
technique is consequently well suited for the study of in vivo tissues. Moreover, for
some biological samples with specific geometrical and polarization properties, the
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Figure 1.3: (a) An example of a light-sheet microscope: courtesy of Cambridge
Advanced Imaging Centre. (b) Detailed view of the ZEISS Lightsheet Z.1. (c) Light
sheet fluorescence microscopy images the beating heart of a 2 days old zebrafish em-
bryo over extended periods of time, delivering maximal frame rates (80 to 100 fps)
with only minimal light exposure. The 2-channel fluorescence image dataset shows
blood vessels and the endocardium labeled in red, the myocardium in green. Sample:
courtesy of M. Weber and J. Huisken, MPI-CBG Dresden, Germany. (d) Octopus
bimaculoides, age approx 1 month. Light Sheet Fluorescence Microscopy with flu-
orochromes Alexa 546 phalloidin - actin/muscle and To-Pro3 Alexa 642 - DNA. 5x
(0.6 zoom) Maximum Intensity Projection. Sample courtesy of Eric Edsinger and
Daniel S. Rokhsar, Okinawa Institute of Science and Technology.

second [28] or third [29, [30] harmonic generationf] can provide a label-free tool which
does not suffer the effects of phototoxicity or photobleaching.

These different techniques achieve very good optical resolution and can even go
beyond the diffraction limit if super-resolution techniques are implemented, such as
PALM (PhotoActivation Localization Microscopy [31]), STORM (Stochastic Optical
Reconstruction Microscopy [32]) or STED (Stimulated-Emission-Depletion fluores-
cence microscopy [33]) for example. Fluorescence labeling provides a unique and

2These non-linear effects are nevertheless not strictly based on fluorescence phenomena.

10
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Alexa594

Figure 1.4: (a) An example of a multiphoton microscope: the Nikon’s A1R MP+.
(b) The cerebral cortex of an anesthetized YFP-H mouse (4-week-old) studied with
the open skull method. Alexa594 was injected into the tail vein to visualize the
blood vessel. Courtesy of: Drs. Ryosuke Kawakami, Terumasa Hibi and Tomomi
Nemoto, Research Institute for Electronic Science, Hokkaido University.

powerful tool to identify and trace specific molecules in a large range of scales in a
sample, from the whole cell itself to its internal nanoscopic structures via the ex-
pression of fluorescent proteins in genetically modified cells. In addition biological
fluorescent dyes became a standard tool in biology in the study of cell cultures both
for 2D and 3D applications.

Nevertheless, fluorescence microscopy has inherent drawbacks. Only a few en-
dogenous fluorophores are already present in biological samples [34] and generally
have an excitation wavelength in the ultraviolet, harmful to the cells. There is con-
sequently a need to either label or genetically modify the cells, which means that the
cell culture is never observed in its natural state. This also means that the sample
must be specifically prepared and labeled within an adapted culture protocol, a step
which is time consuming. Furthermore, despite some examples in specific configura-
tions [28), 35], fluorescence is generally not quantitative and some fluorophores may
induce toxicity, either because their activation degrades the molecules or releases
toxic agents for the cell. Adding the fact that some may see their performance de-
grades along time, it makes hard to study a given sample for extended periods of
time. Finally, the analysis of a sample via fluorescence microscopy is limited to the
parts which can be fluorescently labeled, the other parts being not observable.

2.3 Coherent microscopy

To overcome the limitations of fluorescence microscopy listed above and in order
to provide complementary tools to analyze cell culture, new tools emerged based on
coherent imaging. The resulting signal depends on the optical path traveled by the
light rays and is directly linked to the local complex refractive index of the sample.
It is a very powerful and label-free mean to probe the physical features of a biological

11
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sample [306].

Optical coherence tomography - Optical coherence tomography is an effi-
cient tool to scan deeply into tissues [23, 37, B8]. It consists of a Michelson type
interferometer (see figure [l.5la) with a low coherence light source (blue). Light is
split into two arms. One arm (red) travels through the sample and ballistic photons
are reflected on the discontinuities. They interfere with the reference arm (green)
and the resulting signal is recorded by a sensor. As the coherence is low, there
is interference only if the depth of reflection matches the length of the reference
arm. The scan in depth is then either performed by translating the mirror or via
a frequency shaping of the illumination and the frequency analysis of the resulting
interference. This geometry is very efficient to detect surface discontinuities and
makes it an adapted tool to study the retina or the skin (to detect cancers or ana-
lyze burns for instance). It can also be applied to embryos or brain tissues or small
animals such as the zebrafish.

(a) Low coherent
light source
Beam
Reference splitter
arm
< 5 S | Light
i ample  gsensor
Sca'nmng reflection F
mirror
\_J,-\-
\./.\'/.\ Sample
X e N

Figure 1.5: (a) Schematic principle of the optical coherence tomography: a Michel-
son type interferometer. (b) In vivo dynamic FF-OCT in a 2 days post fertilization
zebrafish larva. Despite strong phase variations caused by the blood flow, which
generates a strong dynamic signal, some cells can still be revealed in between the
capillaries. The scale bar represents 40 um. Courtesy of [38].

Optical diffractive tomography - Optical diffractive tomography emerged
with the development of the digital holographic microscopy [39]. This kind of mi-
croscope allows recording the wave diffracted by a sample illuminated by a coherent
source (see figure [L.6la). Different configurations exist. The most common config-
uration uses a reference arm to produce off-axis holograms. This allows retrieving
full information on the diffracted wave both in terms of amplitude and phase. This
type of microscope does not need any labeling or staining of the sample which can
be studied in its natural state. It is directly sensitive to the sample local complex
refractive index which provides complementary information compared with the fluo-
rescence microscopy. The sample can be segmented according to its absorption (the
imaginary part of the complex refractive index) or its refractive index (the real part

12
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of the complex refractive index) [40} [4I]. The 3D lens-free microscope developed
during this PhD belongs to this kind of microscopy.
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Figure 1.6: (a) Schematic principle of optical diffractive tomography: the result
of the diffraction of a coherent light through the 3D sample is recorded. The use
of a reference arm which interferes with the diffracted wave allows retrieving the
phase information of the complex wave which is lost otherwise. (b) An example
of an optical diffractive tomographic microscope: the 3D Cell Explorer (Nanolive).
(c) 3D rendering of a HepG2 cell with a 3D Cell Explorer, top view and side view.
Each color represents a different refractive index range. Courtesy of [42].

Since the first works in tomography with digital holographic microscopes, the
technique evolved. At first, the retrieved 2D pictures at each illumination angle were
interpreted as overall phase delay introduced by the sample in the optical path, di-
rectly linked to the integral of the refractive index along the line of sight [43]. They
were consequently processed similarly to the absorption maps produced in X-ray
tomography and the volume was retrieved via Radon transforms in a filtered back-
propagation algorithm [20]. It showed the potential of digital holographic micro-
scopes to retrieve information on 3D cell cultures. Assuming that the propagation
inside the sample follows straight lines, this model nevertheless does not take into
account the diffraction inside the sample. Indeed, in optical wavelengths, the sample
scatters the incoming illumination.

New works are taking into account this diffraction using either the Fourier diffrac-
tion theorenﬂ [44], 435, or multi-slices models in which the diffraction is simu-
lated in a volume numerically cut slice after slice approximated by 2D diffracting
planes [47].

These techniques generally require multiplying the viewing angles around the
sample to obtain the 3D information. The solution is either to rotate the sample in

3See chapter [[I, section
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the microscope or, to avoid any complex sample preparation, rotate the illumination
itself, for example by tilting the mirror in the sample arm in the figure [[.6la.

Some recent works try to remove any moving parts in the system to reduce the
cost of such microscopes. Some of them uses a LED array to change the illumination
angle [47, 48], or to retrieve phase contrast and bright-field images [49]] Some
others replace the tilted illumination by structured illuminations to retrieve similar
information [50, [51].

All these techniques nevertheless work on sample limited in size. Indeed, the gen-
eral framework assumes low scattering object{’} Researches then focus on achieving
the best resolution on small volumes (cubes with sides of few tens of microns).

2.4 Lens-free microscopy: a complementary tool

As shown above, the study of in wvitro cell populations remains a challenging
task if one needs to gather large quantitative and systematic data over extended
periods of time while preserving the integrity of the living sample. Most of the
techniques introduced above also have a limited field of view, raising the issue of
missing isolated events if a cell culture presents multiphenotypes at the same time.

As discussed in [9], there is a need for a new microscopy technique that must
be label-free and non-phototoxic to be as "gentle" as possible with the sample, and
"'smart" enough to observe the sample exhaustively at a variety of scales both in
space and time. Lens-free video microscopy is addressing these needs in the context
of 2D cell culture (see [13], 14, 52, 53]).

The main objective of this PhD work is to investigate if this technology can be
adapted to 3D cell cultures in order to provide a complementary tool from the ones
presented above.

Figure [[.7 gives a quick overview of these different techniques and their pros and
cons as well as the expectations awaited from a 3D lens-free microscope.

3 Development of lens-free time-lapse microscopy

This section gives a brief overview of the 2D lens-free microscopy and introduces
some tools and notions that will be used in the 3D problem.

3.1 Principle and potential

The 2D lens-free microscopy is based on the in-line holography principle in-
troduced by Denis Gabor in 1948 [I5]: a coherent illumination is scattered by a
2D sample, leading to interference patterns which are recorded by a photographic
plate. If a coherent light, so-called reference field, is then diffracted back through
this hologram, an image of the original 2D transmissive plane is created.

4This work [49] does not remove all moving parts since a translation stage is used to scan the
sample along the z-direction.

5See chapter [[I, section
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Figure 1.7: Table comparing the standard 3D microscopy techniques. A lens-free
microscope would complete the panel of possibilities: not competitive in terms of
resolution, it gives a label-free imaging tool on large volumes and allows easy time-
lapse microscopy in incubator conditions.

Figure presents a schematic view of the technique in the realm of biological
microscopy. To avoid parasitic interferences, the illumination in visible light is only
partially coherent. It is obtained by placing a LED behind a pinhole, creating a
spherical Waveﬂ The sample being placed a few centimeters away, this wave can be
approximated by a semi-coherent plane wave. The photographic plate is replaced by
a CMOS sensor located a few millimeters behind the sample. It records the resulting
interference of the light scattered by the sample: the hologram.

The recovery of the sample image from this hologram is then performed numeri-
cally, based on the knowledge of wave propagation physics between the sample and
the sensor (see [3.2).

Figure presents simulations based on the Fresnel propagatoifl] b, with three
opaque discs of radius ry = 10 wm and a lighting wavelength of A = 630 nm, the
sensor being placed at z; = 2 mm.

Such a compact and minimalistic technology leads to numerous advantages. For
instance:

o The absence of lenses or moving parts means robustness and ease of use.

e Such a device can handle incubator conditions, while being user-friendly for
the experimenter.

6The diffuser in the figure aims to produce a uniform lighting on the pinhole. This is particularly
useful in the case of multi-wavelength illumination.
"Which will be introduced in the following section
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Figure 1.8: Schematic diagram of the 2D lens-free imaging. A semi-coherent wave
front U;,,. is generated with a LED placed behind a pinhole: a few centimeters from
the pinhole, the spherical wave can be approximated by a plane wave. This inci-
dent plane wave diffracts through the 2D biological sample. The resulting diffracted
wave Uy ¢ propagates in free space toward a CMOS sensor placed a few millimeters
away. The sensor measures the produced interference patterns: only the intensity of
the wave front is registered, the phase information is lost. A numerical reconstruc-
tion is then performed to retrieve the 2D object.

o The field of view is larger than with conventional methods since it is directly
the sensor surface and one can think of statistic experiments on large data set,
for example for new drug screening applications.

e The method is also label-free and is not toxic for the biological sample, allowing
video-microscopy on large periods of time without killing or modifying the
sample, which does not need any specific preparation.

But this method also has its drawbacks. For example, as there is no magnifi-
cation, the resolution is directly linked to the pixel pitch of the sensors which are
currently not competitive with classical optical microscopesﬂ.

One of the main pitfalls of this optical design is the lack of reference beam,
leading to the loss of the wave front phase in the recording step. The numerical
reconstruction techniques will consequently have to take into account this lack of
information to reduce the resulting artifacts, such as the rings on the simulated

Sdm-x =1~2pum
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back-propagation in the figure, the so-called "twin image" [54].

3.2 2D in-line holography overview

As previously explained, in a 2D lens-free microscope, there is no lens to perform
any magnification or focusing. As a consequence, the hologram recorded by the
sensor appears as a "blurred" picture. For example on the simulation of figure [[.§]
the three spheres appear as unfocused concentric rings.

Even if quantitative and relevant information can be retrieved directly from the
holograms without the need of a proper reconstruction (see [55] for example), many
applications need a more classical rendering comparable with what can be obtained
with a classical microscope. To do so, numerical computation replace the role of the
lenses in a lens-free setup by back-focusing the recorded holograms using a physical
model of light propagation. The quality of the reconstructions will consequently
depend on the quality and accuracy of this model.

In the context of 2D lens-free microscopy, the model is based on the Rayleigh-
Sommerfeld diffraction formula [56]. Using the notation of figure [L.8] it states that
for a monochromatic incident wave U;,. with a wavelength of A\, the wave Uy;¢
diffracted by a 2D complex transmissive plane typ at z = 0 is given at a given
point 7= (z,y,z > 0) by:

iko|| 7 73|
zZ e
iAo ﬂo 17— 73|

where kg = 27/ )¢ is the wave number of the field in free space and O stands for the
2D object. Using the convolution symbol %, equation (I.1)) becomes:

ikor
— Z €
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The convolution kernel ;%3
z

spherical complex wave <" Hormalized by the pre-factor o Looking closer,
it appears that z/r = cos 6 where 0 is the angle between the direction normal
to the diffracting plane and the position pointed by 7: the pre-factor gives the
"efficiency” of the diffraction according to the angle at which is seen the diffracting
2D object. Equation (|[.2)) is consequently the mathematical formulation of the well-
known Huygens-Fresnel principle: the diffracted wave is composed of the summation
of the spherical waves emitted at each point 7o of the sample, the amplitude of these
waves being modulated by the local transmission of the object t5p (@) and the local
value of the incident wave Uy, (7“—(3)

This equation gives a tool to propagate a complex field from the object at z =
0 to the sensor plane at z = z,, using a convolution. But it does not provide
a straightforward tool to perform the reverse operation to retrieve a 2D view of
a sample given its hologram on the sensor plane. Indeed, deconvolution can be

corresponds to the equation of a propagating
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complex when the problem is ill—posedﬂ or in the presence of noise, two drawbacks
which are encountered in the case of the presented in-line holographic microscope.

To overcome these limitations, equation can be expressed in a paraxial con-
text: the Fresnel formulation [56]. It is motivated by the facts that the illumination is
normal to the sample and the sensor, and that the spatial extension of the holograms
is in the order of magnitude of a few tens of microns whereas the distance between
the object and the sensor is higher than a millimeter. With z; > (z,v, z0,yo) one
gets:

(= 20)" + (y — yo)*

P =@ —wo) +(y—yo) + 2+ o (13)
and equation becomes:
U () = (Uetap) % | 22 _ (17, 100 5 () (1.4)
dif - inc-b2D i)\ozs - inc-b2D Zs .

e2 = 1is the

2
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where r2, = 2% + y* and where the convolution kernel h) = &=

Fresnel propagator.

This formulation has two main advantages. First of all, the expression of the
Fourier transform of the Fresnel propagator can be obtained analytically [57], al-
lowing to perform the convolution in equation directly into the Fourier domain
with a good numerical precision:
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Y (2,y) = i/\ozeT = o b (u,0) = gihozgmimroz(u+0%) (L5)

Secondly, from this equation , one gets that the inverse propagator of h2°
is directly h2 as b x b2 = 1 [57]. With |h)o
propagator h™, can directly be used to back-propagate the complex field Uy ¢ in the
sensor plane without any amplification of the noise as in standard deconvolution
where the high frequencies diverge.

In addition, for a normal incident plane wave Us,. = Uy.e'*0*+%) on the sample,
ignoring a complex constant factor of Uy.e*?, one can assume that the incident wave
is normalized to U;,. = 1. The 2D transmissive plane is then retrieved by:

= 1, it comes that the Fresnel

tap = (Uair) * (h’lOZJ (1.6)

This method has as a prerequisite the knowledge of the totality of the complex
wave Uy both in terms of amplitude and phase. But the sensor is only sensitive to
the intensity of this complex field:

2

I, = |Udz‘f|2 = ‘tzp * h;\f

(L7)

9Here the phase information on the diffracted wave is unknown.
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As previously mentioned, the problem is consequently ill-posed, leading to the
recurrent problem of phase retrieval since the simplicity of the system leads to a lack
of a reference beam to get the absolute phase. If nothing is done to retrieve some
information on the phase, the reconstructions suffer from artifacts as in figure
where the diffracted wave was approximated by Ugy ~ v/I5. The resulting unfo-
cused rings surrounding the reconstructed objects correspond to the "twin-image"
artifact [54]. These are the images of the same objects but defocused at z = 2z,.
The information on on which side of the sensor the object was supposed to focus is
in the phase of the diffracted wave which is lost during the acquisition.

Several phase retrieval techniques can be implemented and are generally based
on a Gerchberg-Saxton type algorithm [58, 59] in which back and forth propagations
between the experimental data and the reconstructions are iterated to ensure data
fidelity on the first side and apply constraints on the second part. Presented in
figure [[.9a, this type of algorithm works as follows:

o Step 1: At the first iteration of the algorithm, the complex wave on the sensor
is initialized with a modulus corresponding to the recorded intensity and its
phase is set to 0. In the next iterations, step 1 insures the data fidelity by
replacing in the modulus of the complex wave simulated in step 4 with the
square root of the recorded intensity.

o Step 2: Back-propagation of the complex wave from the sensor plane to the
reconstruction plane.

« Step 3: Application of a priori constraints on the object.

o Step 4: Forward propagation of the complex field from the object to the sensor
plane.

This general framework leads to a large variety of algorithms depending on the
solutions implemented for the data acquisition or for the constraints application or
both and are successfully applied in the context of 2D lens-free microscopy.

Concerning the object plane, the use of a mask remains the most straightforward
technique by either spatially limiting the object via an a priori knowledge of its shape
and position or by constraining its value in a specific domain, for example via non-
negativity enforcement when the object must physically be real and positive [60].
This masking technique can be replaced or complemented by regularization on the
object [61].

To improve the available information on the object without requiring a priori
information, the data acquisition process can also be modified: for example with
acquisition planes at different distances z, [61], 62], by multiplying the holograms to
perform super-resolution [63] or with multi-wavelength acquisitions [64] [65].

Figure [[.9 b presents an algorithm which is used during this PhD work. It was
developed during a previous PhD done by Sophie Morel [60, [67] and is based on
a RGB acquisition process. The three wavelengths are combined in the object
plane as follows:
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Figure 1.9: (a) Schematic diagram of a Gerchberg-Saxton algorithm [58]: in a back
and forth loop between the acquisition plane and the object plane, data fidelity is
enforced on the first one and constraints are applied on the second one. (b) Scheme
of the RGB phase retrieval developed for a lens-free RG'B microscope by Sophie
Morel during her PhD. Courtesy of [57].

o Step 1: At the first iteration of the algorithm, each of the complex waves on the
sensor at the different illumination A\; € {R, G, B} is initialized with a modulus

corresponding to the recorded intensities and a phase set to 0: Ugmo = \/E .
In the next iterations, step 1 insures the data fidelity. The simulated complex
waves simulated in step 4 are updated to match the recorded dataset: UJ; fit =
Uézf it—1 IJ

| dif,it— 1|

« Step 2: Each complex wave U7, 7.4t 01 the sensor plane is back-propagated using
the Fresnel kernel ([[.6) hijzs

o Step 3: The object top is then retrieved by averaging the three obtained com-
plex fields ) : top = <t2 D> . As the object cannot emit light in the presented

model, a constraint of domain is applied by forcing its modulus to be lower
than 1: |t2D’ S 1.

o Step 4: The object top is propagated in the three wavelengths using the Fresnel
, . 12
kernel (I.7) b2’ to simulate intensities for the next loop: I = ’tg gy

This algorithm is simple to implement and runs fast, providing good results
within only a few iterations.
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3 Development of lens-free time-lapse microscopy

3.3 First work in 3D lens-free microscopy

Inspired from the techniques and algorithms developed for microscopes with
lenses, some works were published in the field of 3D lens-free microscopy. But this
still remains a marginal technology in optical diffractive tomography.

Ozcan’s team at UCLA in the US, very prolific in 2D lens-free microscopy, de-
veloped an experimental bench to perform 3D tomography [68, [69]. Figure m
presents some results on C. Elegans. "The partially coherent light source with spec-
tral bandwidth of, e.g., approximately 1 —10 nm, is filtered through a large aperture
with diameter approximately 0.05 — 0.1 mm. The light source is rotated to record
lens-free holograms of the micro-objects from multiple viewing angles. The device
also includes the work developed by the team to perform digital super-resolution:
9 holograms are recorded, at each angle, by translating the aperture in the plane
parallel to the sensor within a 3 x 3 grid with discrete shifts of < 70 pum (see the
inset in figure c)."

The tomographic algorithm uses standard 2D lens-free reconstruction. "A scal-
ing factor is used to correct the deformation of the holograms acquire with an
angle. Once each of the holograms is reconstructed, a filtered back-propagation
algorithm [20] based on the Radon transform is used to retrieve the 3D volume.
And finally, image deconvolution is applied to all the presented microscope images
and tomograms in figure [.10] to further improve their image quality." As mentioned
earlier for [43], this model does not strictly take into account the 3D diffraction in
the sample and is consequently limited on objects with a small extension along the
axial axis.

Figure presents the results from Chen’s Chinese team [70]. There is no
moving part in the system: the multi-angle viewing is performed with a LED ar-
ray. Using RGB illumination, a 2D phase retrieval is performed for each angle to
extract the complex diffracted waves both in terms of amplitude and phase. These
are used to map the 3D Fourier transform of the 3D sample via the Fourier diffrac-
tion theoremm, commonly used in optical diffractive tomography. To compensate
the missing information due to the limited angular coverage, iterative algorithm
with non-negativity constraint is applied, inspired from [44]. This work presents
techniques and algorithms very similar from the ones developed in this thesiﬂ.

10See chapter [} section
11GQee chapter section [4f and chapter section
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RZ- T

Figure 1.10: Application of lens-free on-chip tomography toward 3D imaging of
C. Elegans. (a) A tomogram for the entire worm corresponding to a plane that
is 3 wm above the center of the worm. (b.1-3) Tomograms at different layers for the
anterior of the worm. The pharyngeal tube of the worm, which is a long cylindrical
structure with < 5 um outer diameter, is clearly visible at z = 8 um plane, and
disappears at outer layers. (b.4) A microscope image (40X, 0.65NA) for comparison.
(c) Schematic diagram of the lens-free tomography setup. The sample is placed
directly on the sensor array with < 5 mm distance to the active area. (d.1-2) y — z
orthogonal slices from the anterior and posterior regions of the worm, respectively.
(e.1-2) & — z orthogonal slices along the direction of the solid and dashed arrow in
(a), respectively. The 3D structure of the anterior bulb of the worm, pointed by
the solid arrows, can be probed by inspecting (a) and (d.1). Scale bars, 50 pum.
Courtesy of [68].
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Figure I.11: (a) Picture of the microscope. The system consists of a CMOS imag-
ing sensor and a LED matrix controlled by a MCU, where each LED can provide
RGB narrow-band illumination. The whole device is powered through the USB
connection. (b-i) Tomographic reconstruction of a 2 um silica bead. The LED
array sequentially illuminates the sample with different LED elements. (b-c) The
retrieved complex fields are mapped in 3D Fourier space according to Fourier diffrac-
tion theory. (d-e) Due to the limited pixel resolution abilities, the actual detectable
frequencies of the platform only occupy a limited portion of the 3D Ewald sphere,
while the information in the red shaded region is unrecoverable. (f-g) An iterative
non-negative constraint processing method is implemented for filling the rest of 3D
space. (h) Finally a 3D inverse Fourier transform yields 3D tomogram of the bead.

(i) The FWHM value for the lateral line-profile is 3.41 pum, while the axial FWHM
shrinks to 5 um. Courtesy of [70].
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Chapter 11

3D diffraction physics

The objective of this chapter is to give a brief overview of the 3D diffractive
physics needed in this thesis while introducing the notations and formulations that
will be used all along the manuscript.

A first section focuses on the global problem of 3D in-line holography and gives a
first simplification of the equations. A second section introduces the Fourier diffrac-
tion theorem and its mathematical derivation as well as a geometrical interpreta-
tion. A last section compares the different models with real acquisitions and with
2D models and discusses the limitations of the different methods.

1 3D diffraction model of low scattering objects

This section and its notations are mainly inspired from the chapter 6 "Tomo-
graphic Imaging with Diffracting Sources" of [20] and from [44]. They are themselves
based on the founding work of Emil Wolf [71] published in 1969, for his demonstra-
tion of the Fourier diffraction theorem (see section [2).

The objective is to find a relation linking the 3D sample refractive index to the
wave front at a given point beyond the sample for a given incident wave.

1.1 Equation of wave propagation

Let’s consider a scattering object O with a complex refractive index n immersed
in a homogeneous medium of refractive index ng as illustrated in figure[[I.1 A frame
centered on O is arbitrary set in the object, giving the three axes x, y and z.

By convention, the position vectors pointing toward a point in the surrounding
space around the object will be noted 7 = (z,y, z) whereas inside the object they
will be noted 74 = (To, Yo, 2o)-

The complex refractive index n of the scattering object depends on the position
inside the object: n(r_g) Its real part is the standard refractive index while its
imaginary part represents the object absorption [40, [41]. The aim here is to work out
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n X
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Wavefront U, .(7) along
ko = ko(Po,qo,mo)

3D scattering object O

Figure I1.1: Ilustration of an incident plane wave Uy, (in blue) with a wave vector k?)
scattering through an object O. The resulting total wave Uy, is composed of the
incident wave and the scattered field Uy diffracted by the object (in red). The
direction of the incident wave propagation is given by the unit vector (po, qo, m0),
oriented toward increasing z. 2z, and 2, are the minimal and maximal object’s
coordinates on the z-axis. The object is immersed in a medium with a constant
refractive index ng.

the total ﬁel(ﬂ Usot (7) of an incident wave Uj,,. (?) propagating trough O toward
increasing z. It can be shoerl that the field can be decomposed in monochromatic
fields with wavelength \g, and that such a field must satisfy the following wave
equation:

Athot (?) + k2 (?) Utot (?) - 0 (111)
where k(7)) = ko.n(7) is the local wave number, ky = 27/)\ being the wave

number of the field in free space. A. = V2. = ? . is the Laplacian operator.
Replacing k by its expression in equation ([I.1)):

AUy (7) = —k2n2 (7) Usot (7)

and introducing the refractive index ng of the surrounding medium, equation (II.1))
becomes by adding k2n2U,. (7°) on both sides:

AUsot (7) + k§ngUsor (7) = kg (n? (7) = nd) Uit (7) (I1.2)

As presented in figure the total field U;,; can be expressed as a sum of
two sub-wave fronts: the incident wave Uj,. and the diffracted wave Ug¢. Uipe is

1 As there is no polarization effect in the considered situation, a scalar formulation for the field
is adapted to the mathematical development.

2In details in the chapter 6 "Tomographic Imaging with Diffracting Sources" of [20]. It also
deals with the time dependence which can be ignored in the current problem.
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1 3D diffraction model of low scattering objects

the incident field present in the medium without any inhomogeneities. Uy;¢, the
remaining field to get U, from Uy, is considered as being the field scattered by
the object O. It comes then:

Utot = Uinc + Udlf (IIg)

According to its definition, U;,. is thus solution of the simplified wave equation
in a homogeneous medium of refractive index ny:

AUne (7)) + E2n2Uine (T) = 0 (IL.4)

Using this equality (II1.4) and the expression (I1.3) of the total wave in equa-
tion (I1.2), one gets the following equation for the diffracted wave:

AUgis (7)) + kUi (7)) = fo (7)) Uy (77) (IL.5)

with &k, = kono the wave number normalized to a propagation medium with a refrac-
tive index ng and f the scattering potential of the object O for a given wavelength Ag:

fo(T) = —kP? (<n(7)>2 - 1) (11.6)

o

Thereafter, it will be more convenient to work on a normalized scattering poten-
tial that does not depend on the wavelengthf’}

— —\\ 2
Fy =L 15627“) _ ((”2?) _ 1) (IL.7)

Equation cannot be solved for Uy¢ directly in the general case. But this
equation can be considered as a linear operator according to Ugs on the left-hand
side while the right-hand side is a forcing term. Thus if Green’s functions g (7"_1>, r_g)
exist for the differential equation[T}

Ag (7, 73) + K2g (71, 73) = 8 (7 — 73) (IL8)

one can express the diffracted wave Uy as a convoluti@nﬂ on the total 3D space R3:
Uaig (7) = =k [[[[ £70) Uit (7) g (7, 78) &2 (1L9)
FOER3

In 3D space, an expression of g, solution of equation (II.8)) isﬂ:

— 1 eiko || 778 | 1110
g(raro)_E” _TOH ( : )

3If one assumes that the refractive index n does not depend on the wavelength either.
4§ stands for the Dirac delta function.

5See appendix [A] section [1| for more details.

6See appendix Al section [2| for more details.
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One may notice that this is the expression of a spherical wave at 7 emitted
from 7¢. This is consistent with equation where the forcing term on the right-
hand side can be seen as a point inhomogeneity located at 7 due to the Dirac delta
function. One may consequently expect that a solution of the wave equation with
such a forcing is indeed a spherical wave propagating from this point .

Let’s also note that according to the expression of the scattering poten-
tial, f = 0 outside the object O. The integral in equation ([1.9)) can then be expressed
only on the object.

Finally, the expression of the total wave Uy, is:

% - zké”? roH _>
Udzf 7” J:[ f 7ao Utot (To>ﬁ (H.ll)
“ar ) ]

1.2 The Born approximation

One could think that the formula is a good solution to express the
diffracted field Ug; s according to the scattering potential f of the object. But looking
closer, one must notice that Uy;; depends on itself since it appears in the expression
of Uyt .

A solution is to restrict to a low scattering object. If it produces a perturbation
on the field which can be considered negligible compared to the incident wave Uy,
inside the object, |Ugis (@)| < NUine (7“_(9>)|, then U, (7%) ~ Uipe (7%) and the solu-

tion (II.11]) can be written:

zk’H? r@H
e &P I1.12
Udlf 4 J:L(J; f Zn ) || _ TOH To ( )
73

This is called the Born approximation. It gives a first order estimation of Ug.
To get an approximation of higher degree U(EQ, one must use the first order approx-
imation of Uy >~ Ujpe + Ufz-f in equation (II.11)):

kG o el
Udzf J]:[ f Uinc + Udif) (To) ﬁd To (1113)

roEO r TO|

And one can similarly increase the order of the approximation iteratively, going
from the i-th to the i + 1-th using Uy >~ Ujpe + Ude}:

|78
z+l 4 Bi — e 0 53—
Usiy ﬂ] fd Umc + Udif) (75) 7 =7 d’r (11.14)

T@GO

This work will focus on the first order approximation. Equation (II.12) can also
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1 3D diffraction model of low scattering objects

be expressed as a convolution:

12 k|7
0 ¢ (IL.15)

—_—
Convolution kernel

It clearly appears that the incident wave, weighted by the scattering potential,
is convolved with a spherical propagator. This is the 3D equivalent of the Huygens-
Fresnel principle (see section : each point in the scattering medium reemits a
secondary wave, propagating spherically from this point, with an amplitude depend-
ing on the incident primary wave amplitude and the local medium characteristics.
All these spherical waves interfere to create the diffracted field Ugy, as illustrated
in figure [T.2]

A significant difference with the 2D model is that Uy is not directly the total
field behind the object but only the scattered part. One needs to add the incident
field Uj,e.

Utot = Uine + Udif
Ny X
Uinc Tx \ \
AAES

U .
\ \ dif
Y y
) Secondary emitter
Primary wave

Figure I1.2: Tllustration of the Huygens-Fresnel principle in three dimensions. The
incident wave U,,. acts as a primary wave while getting through the scattering
object O. Each points of this object then behaves as a secondary emitter of spherical
waves directly depending on the primary wave. All this components finally merge to
create the diffracted wave Ug;r. The global resulting field adds these two parts: U;o; =
Uinc + Udi f-

One can also mention a problem of energy conservation since Uy, is not affected
while going through the object, whereas its amplitude should decrease as it scatters
in the object. Thus the energy carried by Uy, is not taken from Uj,. but nonetheless
added in the total field U,,. It appears clearly then that this model is a strong
approximation.

In the same spirit, the secondary emitters are not diffracting the total incoming
wave Uy, which reaches their location but only the incident wave Uy,.. Indeed, in a
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Il 3D diffraction physics

scattering volume, the wave which is diffracted at the back of the object has crossed
the whole object and should be containing the information of all the diffractions
it has undergone. In this model, one keeps only the incident wave, the undergone
diffractions being considered as negligible. That is why this model is named the first
Born approximation and is valid only at the first order.

It is briefly mentioned earlier that equation ([I.12]) is valid only for low scattering
objects. Several works studied its domain of validity such as [20], [44] and [72].
They show that for biological samples composed of several cells, such as 3D cell
cultures, the total phase shift introduced by the sample is too important and the
Born approximation breaks down as soon as the objects are larger than a few tens
of microns. For a cell with a typical refractive index of 1.36 in water [44 73], the
relative refractive index is dn = 0.03. With a typical cell length of [ = 20 um and
in the visible light A ~ 550 nm the overall introduced phase delay is 27lén/\ > 27
which is not negligible.

Nonetheless, this formulation will still be used as this is the only one applicable in
practical use. The future reconstructions are consequently not expected to be phase
quantitative. But it can be expected that it will allow determining morphological
information on the biological sample, such as positions, dimensions and shapes.

Let’s also mention another formulation, the Rytov approximation, well described
in [72]. In this model, the total field is expressed as:

Utot (?) = Uinc (ﬁ) -ew(?) (1116)
In the Rytov approximation, the complex phase v is equal to:

B [~
V(7)) = % (I1.17)

wmc r

where UZ ¢ is the diffracted wave given by the Born approximation .

This approximation is valid for bigger objects than the Born approximation
as soon as the refractive index varies softly in spacd’] However, even with this
extended domain of validity, the 3D biological objects studied in this thesis fall
outside these limits. Moreover, its formulation is more complicated to put into
practice. Consequently it will not be used in the following models.

2 The Fourier diffraction theorem

This section is mainly based on [71] and aims at finding a simple relation between
the 3D object O to retrieve and the 2D wave front measured on different planes.

Using the notation introduced in figure[[I.T} such a relation exists for a monochro-
matic incident wave Uj,,. (7) = eik_g?, where the wave vector 170 indicates the di-
rection of propagation. Its norm is kj = 27/{% and its direction is given by the unit

vector (po, go,mp). This relation links the 3D Fourier transform of the scattering

"See [44] and [72].

30



2 The Fourier diffraction theorem

potential f with the 2D Fourier transform of the diffracted field Uy on a given
plane at z = z* and is called the Fourier diffraction theorem:

47T
ikf?

Flo,B,y) = e B0 [ (u,’u;z*) (I1.18)

where (u,v) and (a, 3,7) are respectively the coordinates in the 2D Fourier space
of the plane z = z* and in the 3D Fourier space of the object. These coordinates
satisfy the following relations:

_ . _ Moo
a=u— " 2
B=v—"02L and w=,|— —u?—v? (I1.19)
Ao )\g
_ ng.mo
T=WT TN
0

Note that the Fourier transformﬂ and its inverse transform are defined for a given
function g as:
Flo) ) =) = [ gla)e 2mds
o , (I1.20)
FLo) @) = [ glwemdu

—00

2.1 Demonstration

Let’s demonstrate this theorem by highlighting the main steps. Using the
monochromatic incident plane wave expression introduced above for Uj,., the ex-
pression ([1.12) for the diffracted wave becomes:

eol| 7 =78l

Uis (7) = jﬂf ) 07 md?’r_g (I1.21)

'I’(QEO

Using 7 = (x,y,2) and 7o = (Zo, Yo, 20), it can be shownﬂ that the spherical
wave can be decomposed in a summation of plane waves:

zk0H7 7“@”

’Lk, ol ik} [p
[p(z—z0)+a(y—yo)+mlz—20ll jpq 11.22
. LH pdg (I1.22)

where m = (1 — p? — q2)1/2. Then, one gets:

VI—p?2—¢? when p*+¢*<1 (11.23)
ivpP+q2—1 when p*+¢*>1 '

8This definition extends naturally to higher dimensions.
9See appendix
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Let’s consider now the semi-space beyond zp.. as defined in figure [[I.1}
V(z0,27) € O X [zmaz, +00[, one has: |2 — 25| = 27 — 2,. It comes from equa-

tions ([1.21)) and (|I1.22):

Udzf fjjf @ZOT Yy

T'(QGO

( fj eiko|p(z—zo)+aly— yo)+m(z* Zo)]dpdq) d —o>
j (JI 8]{7:2 ik()(POIoJrQOyOeroZO) N

i)

(I1.24)

oko[pa—ro)+a(y— yo)+m(z+_zo)]dpdq) dreodyodze

then by developing the scalar product 1707’_5 and inverting the integration order:

)= e s .

ro GO

and finally with the following change of variables:

K, K,
,\op 27rp<—>“ )\q 2 PV

dpdq < (,7’,;) dudv — 3om < w (I1.26)
it comes from equation ([L25)):
ki K
Uaif (7) - fj ;71'2 27rw ehirlurrest) j{g f
73
e—2m [’ro (u_%m) +yo (’U—:—gqo) +zo (w—’;—gmo)} "
2
dIodyodZo> (Z) dudv (11.27)
- ff e L LG
FAEO

. Qm[gg@(u A0po)-i—yo<v AOqo)-i-zo(w ,\Omo)} YaE

dxodyodzo> 2w tvy) oy dy

where:

\/GE)Q_UZ_U? when u?+0? < (73)2

i\/u2—|—v2—(’;8)2 when  u? + 02 > (/\—0)2
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2 The Fourier diffraction theorem

Noticing that at a given plane z = 27:
Uaif (7) = Fap (Udif> (7) = ff Ui (u, v; z+> 2z vY) gy gy (I1.28)

it comes from equation ([[1.27)) that:

k/2 2imwzt

2 e A
Udif (%W ) Q}[ J (I1.29)

i [wo (“_ *po) o (U_%%) o (w_%m)] drodyodzo

The form of this equation is:
A ikl?a (u,v) o
Udif (u, v; z+) = 047T(w )62”””2+ (I1.30)

with:

_ no _no _mg
JIIf 2m xo( Aopo)-i-yo(v quo)—i-zo(w *omo)}das@dyodz@
T‘oEO
2
It can be then noticed that for u? + v? > (f{—g) , w is strictly imaginary
and Uy, 7 (u,v; 27) is an evanescent wave as a function of z7:

2
Daig (u,0:27)| = K2la(uo)le V' )~ s 0 (I1.31)
T ey |
0

Consequently, this means that any information carried by these frequencies (u, v)
will be lost if one gets too far from the object O since the absolute value of the
coefficient becomes too small to be recorded.

On the other hand, when u? + v? < (1\‘—2) , w is real. Moreover, using the
previously mentioned remark that integrating on the object @ and on the whole
space is identical since f (73) = 0 outside the object, it follows that a (u,v) has the

shape of the 3D Fourier transform of the scattering potential f:

-l

— [xo (u—— )+yo (”—%Qf)) tzo (w_%mo)] dzrodyodze (I1.32)

D 0,V )\ 05 >\0 0
TL o
= w— —m
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And finally, one finds back the Fourier diffraction theorem (II.18]) from equa-
tion ([[1.30)):

. ik’zf U — Lpg, v — L, w — X¥m
Uaif <U,v;z+> S ( 2o 70 Do ) 4l 0) (I1.33)

47Tw6—227rwz+

Let’s insist here again on the fact that the Fourier diffraction theorem only holds
for specific sets of frequencies (u,v) verifying u? + v? < ( ) Thus, only a part of

the 3D Fourier space of f is accessible.

2.2 Geometrical interpretation

Looking closer at the formulation of the Fourier diffraction theorem , one
must notice that it links a 3D object, the 3D Fourier transform of the scattermg
potential f to a 2D entity, the 2D Fourier transform of the diffracted wave Uy rata
given distance 2T from the object, or in another words a 2D surface to a 3D volume.

From expression , one gets that the three coordinates («, f3,7) depend
on the 2D coordinates (u,v). The resulting 2D surface in the 3D space lies
on a spherﬂ with center —ng/Ao (po, g0, mo) and radius ng/Ag, as pictured in
scheme m (po, g0, mg) being the unit vector in the direction of light propaga-
tion, the mentioned sphere passes through the origin, the center of the sphere being
placed a radius apart from it.

As noticed in the previous section, only a part of this sphere is accessible, since

o

2
/\0) . Consequently, the 2D surface

the frequencies (u,v) must satisfy u? + v? < (
lies on a semi-sphere as drawn in figure [[I.3

The position of these caps depends on the lighting direction. Indeed, if the
plane z = z* rotates with the lighting direction, the cap also rotates accordingly in
the 3D frequency domainE|. If the coordinate system (x,y,z) remains still as the
lighting rotates, the cap is then simply translatedEl

As illustrated in figure[[I.3] it is possible to go in two different ways leading to two
different applications of this theorem. If one goes clockwise, from the object f to the
diffracted waves Uy, ¢, the Fourier diffraction theorem gives a tool to simulate data
from a given object numerically designed. On the contrary, if one goes counter-
clockwise, from the diffracted waves Uy¢ to the object f, the Fourier diffraction
theorem gives a mean to retrieve an object from several diffracted waves acquisitions
through a mapping of the 3D Fourier domain of f.

The main pitfall of this theorem is its numerical application. Indeed, one must
keep in mind that its formulation is analytic. But the coordinates will have to be
discretized to be processed numerically. For example, if one wants to use the Fast
Fourier Transform algorithm to compute f from f, the scattering potential will be
discretized on a homogeneous mesh, leading to a homogeneous mesh in the Fourier

2 2 2
0Tndeed, (a—i—%) +(5+”&7~0f10) +(7+%) =u2 + 02 + w? Ag
11GQee the rotation of the cap from the red to the green position in figure.
12Gee the translation of the cap from the red to the blue position in figure.
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Figure I1.3: Illustration of the geometrical interpretation of the Fourier diffraction
theorem. A 3D Fourier transform links the 3D spatial and frequency domains of the
scattering potential f. A 2D Fourier transform links the 2D spatial and frequency
domains of the diffracted wave Uy, for each lighting situation j. A mapping on
spherical caps links the 2D frequency domain of the diffracted wave and the 3D
frequency domain of the object. The orientation and position of these caps directly

depend on the lighting directions k‘oj X (pé, @), mo)

domain. On the other side, the same discretization of the 2D coordinates u and v will
lead to discretized positions («, 3, ) on the spherical caps which will not necessarily
match with the homogeneous mesh.

One will consequently have to find a way to map the inhomogeneous positions
on the spherical caps into the 3D Fourier homogeneous mesh.

2.3 A diffractive version of the Fourier slice theorem

This section aims at emphasizing the strong link which exists between the Fourier
diffraction theorem and the Fourier slice theorem"®] The latter is commonly used
in classical computed tomography (CT) such as X-ray tomography and uses the
Radon transform, notion introduced in 1917 by Johann Radorﬂ

The radon transform R, [f](s) of a compactly supported continuous func-
tion f (z,y) on R? is its projection (its integral along the straight lines ', ;) along a
given direction («, s), where « is the angle relative to the x-axis and s the distance

13See [74], entry "Tomography".
14Gee [74], entry "Radon transform". This subsection is also inspired from [75] and [76]
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to the frame origin, as pictured in figure [[I.4}

(11.34)

Figure I1.4: Tllustration of the geometrical interpretation of the Fourier slice theo-
rem. On the left-hand side of the figure is represented the Radon transform R,, [f] (s)
of a function f (z,y): it is its projection along a given axis s oriented with an angle «
relative to ﬂe\m—axis (in blue). On the right-hand side, its unidimensional Fourier

transform Ry [f] (k) is a line in f, the Fourier transform of f.

The Fourier slice theorem states that the unidimensional Fourier transform
of R, [f] is a slice in the Fourier domain of f, as schematically drawn in figure

—

Ro [f] (k) = f (ks cos a, kysin @) (I1.35)

— “+oo

Ralfl (k)= [ Ralf)(s) e mtas

(oo oo '
— / / f((scosa — zsina), (ssina + zcosa)) e 2™ *dsdz
oo Jeeo

—+00
— J:f f (.27, y> e—2i7r(:tk5 cos a+yks Sina)dl’dy
—00

= f (ks cos a, k, sin o)
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via the following change of variables:

r \ [ cosa —sina s
y )  \ sina cosa z (11.36)

dxdy = |det ( cosa T a > dsdz = |1| dsdz = dsdz

sina  cosa

This theorem is expandable to higher dimensions: for a three-dimensional object,
the 2D Fourier transform of its projection on a plane will be a planar slice of its 3D
Fourier transform f. Thus, one can retrieve the volume information of an object
from different acquisitions of its absorbency along different directions, for example
with X-ray projections, each acquisition giving a part of the Fourier transform of
the object.

One consequently get something very close to the geometrical interpretation
previously made for the Fourier diffraction theorem, replacing spherical caps by
planes.

Let’s remember that the caps radius r. is inversely proportional to the lighting
wavelength: r. = ng/Ag. Moreover for X-rays, the wavelength Ax gets far smaller
than for the visible light A\,;s: Ax << Ayis, and 7, m ~+o00: the spherical caps tend

toward planar surfaces.

Hence one can say that the Fourier slice theorem is the limit of the Fourier
diffraction theorem when the lighting wavelength becomes shorter, or in other words
when the diffraction tends to disappear and that rays propagate straight through
the sample without being scattered.

3 3D numerical simulations

The objective of this section is to get familiar with the formulations introduced in
the previous sections[I]and[2] but in their numerical forms. Indeed, some adaptations
are needed to implement the analytic formulae into a numerical program.

Then, the Fourier diffraction theorem is compared with the Born approximation.
To conclude this chapter, the consistency of the 3D models with the 2D lens-free
reconstruction methods and real data are discussed.

3.1 Reformulation of the Born approximation and the
Fourier diffraction theorem

The aim of the developed models is to give an approximation of the total wave
front U, at a given position in space. In this work, these models are consequently
used to link the 3D object and the wave front on the sensor plane.

Let’s suppose that the origin of the reference frame is placed at the center of
the object of interest as illustrated in figure [[I.5] the z-axis being oriented along the
light propagation direction, normal to the sensor plane, placed at z = z,.
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Figure II.5: Ilustration of the displacement of the region of interest when the
igcident lighting is not normal to the sensor: according to the lighting position
ko’ o (pé,qg,m{)), the hologram produced by the object is shifted by c_; on the
sensor plane z = z,.

The first remark is that one does not need the entire plane, or in other words the
whole sensor surface, to retrieve the object. Indeed, the most important part of the
object’s hologram is directly centered under the object at (x,y) = (0, 0) for a normal
lighting, as pictured in blue in the scheme. If the lighting remains orthogonal to the
sensor plane during the different acquisitions or simulations, one can consequently
work on a cropped part of the sensor plane, directly placed under the object.

If the lighting is not orthogonal to the sensor along the direction (po, qo, m0),
one is in the situation pictured in red in the scheme: the hologram is shifted on the
sensor plane to the position ¢j = (o, %) = - (Po, qo). One can consequently work
on a cropped picture centered on (xg, yo).

Working on centered cropped pictures drastically reduces the memory needs and
the calculation times are greatly reduced. Moreover, working directly on centered
holograms is easier for the user to understand and interpret the simulation and the
acquired data.

Born approximation Let’s find a numerical formulation of the Born approxima-
tion expressed in section As mentioned, it can be expressed as a convolution,
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equation ([I.15)). This is consequently convenient to express it in the Fourier domain:

k/2 szH7||
Fsp (Uair) = Fsp (f-Uine) X Fap (ZLSTW (I1.37)

To perform the computation numerically, one will have to work on a discrete
bounded 3D space. The easiest model is a parallelepiped volume divided uniformly
in parallelepiped voxels lying on a regular mesh of size nb, x nb, x nb,. The sides
of the voxel are dx, dy and dz. The analytic Fourier transforms are replaced by
their discrete equivalent and computed by Fast Fourier Transform algorithmﬂ
For unidimensional vectors of length n:

F(f)(x) =y Yy, =FFT (f (X9)jequ, n}) ST FX) o~ =1 (k1)
= (I1.38)

F9) () = 20 X; = FFT™ (g Vieeimy) = Z (Vi) e G-Dk-)

By using £ft in Matlab®, one gets an output matrix of the same size as the input
matrix.

Let’s x3p, y3p and z3p be the 3D matrices of the coordinates on a mesh as defined
above, centered on (0,0,0). Let’s use the symbols x for the conventional matrix
product and . for the term-by-term multiplicationﬁ. Under the Born approximation
Uiis is numerically expressed as follows:

Udif = FFTEJ:IJ <FFT3D (f (5U3D, Ysp, Z3D) Uine ($3D, Ysp, ZsD)) Lo

k2 ik \/ (3D +0)*+(ysp+10)* +(23p+ ) (I1.39)
FFT3D E 5 5 5 dv
\/(9530 +20)" + (y3p + Yo)” + (23D + 25)

with dv = dz.dy.dz

Doing so, one gets a 3D matrix Uy on a volume centered on (zo, yo, 2s):
Udir (xo + T3p, Yo + Ysp, zs + 23p). To get only the field on the sensor, one has just
to extract the slice of this 3D matrix corresponding to z = z; which is the slice on
which z3p = 0.

This method has the advantage of being suitable for all kind of incident waves
U;ne and allows for example to test the approximation made for the wave front as
being planar if the sample is placed far enough from a point source.

But its main disadvantage is that for each lighting situation, two 3D FFTs have

to be performed. One on the spherical propagator i—ieikor, and another one on
f-Uine. When the number of lighting angles increases, the running time will become

a constraint.

15See the Matlab® "help" entry fft.

16Excepted if mentioned, the standard operation will also be applied coefficient by coefficient:
A? = A A, e” will be the matrix composed of the exponential of the coefficients of A, % the matrix
composed of the coefficients of A divided by the coefficients of B and so on...
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It is poss1ble to get a simpler formulation in the case of plane wave illuminations
Uine = e Indeed, from equation 1D one gets

ToGO
k,/2 zk 7 zk’”?—roH
o e e RO e
|7 — 76| (11.40)

B %zeiko.? ()% il s |
T 4 ‘ I

Convolution kernel

This leads to the following numerical formulation:

kge“?o-(%D-‘rmo,y3D+y0723D+Zs)
41
77
—iky.(x3p+xo, +v0,23D+2s
FFTsp (6 0-(3D+%0,Y3D+Y0,23D ). L. (11.41)

Ugiy = FFTs) (FFTSD (f).--

eik’o\/(xg,D+xo)2+(y3D+y0)2+(23D+Zs)2 ) >
dv
\/($3D +20)* + (ysp + %0)” + (230 + 25)°

k62eik70.(x3p,y3D723D)

47
7
FFTgD (6_7'1‘70'(‘773D:?J3D7Z3D)‘ . (1142)

etko V (@3D+70)2+(y3p+10) 2+ (230 +25 )
) ) dv
)

Uais =

FFT3} (FFT3D (f).---

\/(90313 +20)” + (y3p + 0)” + (23D + 2)°

Compared to the formulation , this latter reduces the number of needed
FFTs. Indeed, FFT3p (f) can be computed once for all, stored, and used for each
lighting situation. Only the FF'T of the kernel has to be computed for each situation
since it depends on the position of the hologram (zo, yo, 2s)-

One last remark must be done before using this numerical simulation and con-
cerns the zero-padding of the object f. Indeed, if one performs directly the above
formulation without any padding, one will get the situation of the figure [[I1.6, The
scheme is drawn for a lighting along the z-axis but remains valid along the other
dimensions. The diffracting volume is in a cube on the left side, between z,,;, and
Zmae While the diffracted wave is computed in a cube on the right side around the
sensor plane z,. For each simulated plane, a whole volume on the object’s side is
used. To simulate the middle plane z = z, the red volume must be used and is
sufficient.

The problems arise if one wants to simulate a wave front above or under this
plane (or laterally for a lighting inclined relative to the sensor plane) like the purple
or the green planes. Indeed, in these situations, two artefacts occur.
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Zmin 0 Zmax Zs Z
R ‘ I
op H |l
<-‘ —
7 cikoll? |
f-Une 3D x [17 1| Utot = Uine + Udif

Figure 11.6: Illustration of the volume wrapping if it is not correctly padded. The
diffracting volume is in the cube on the left side and the simulated diffracted wave
is in the cube on the right. For a given simulated plane, a whole cube around
the object is used in the convolution. The red, green and purple colors indicate the
needed volume to simulate a given plane. Absence of padding leads to two artefacts:
the object, originally placed between z,,;, and z,,,, becomes periodic and the wave
front is not consistent. The scheme only pictures the situation of a lighting direction
along the z-axis but is valid for the three dimensions.

Firstly, the FFT makes the volume periodic. For example, to compute the green
plane, one can see on the left in full line the volume that it is used (the dashed
lines represents the wrapping) with an object that has been duplicated. Everything
behaves as if a new object was diffracting and the diffracted pattern is consequently
not consistent with the initial 3D object.

And secondly, there is a phase jump in the wrapping process. As one can see once
again on the green volume, the rainbow pattern, symbolizing the phase evolution in
space of the incident wave front Uj,., has a discontinuity at z,,.,,: the phase jumps
to its z,,:, value, creating this inconsistency. As seen later in this section, the phase
value is very important since it is the part responsible for the interference between
the incident wave front and the diffracted wave. The present wrapping creates a
diffracted wave not consistent with the phase shift introduced by the propagation
along the direction of the wave vector and which is carried by the incident wave.

Consequently, as this object duplication and phase inconsistency happen in all
directions, one must zero-pad the object on a volume (:rg%d, bt zg%d) at least twice
as big as the initial volume along all directions. This prevents the duplication of the
objectlﬂ. The kernel must also be computed on a bigger volume for the convolution
step. This prevents the phase jumps. Noting pad the zero-padding operation and
pad~! the extraction of a volume with the initial size from a padded volume, the

170One has to be very careful on where is the zero-frequency in the used FFT definition. Using
Matlab®, there must always be a 0 inside the kernel vectors: at the center if the pixel number
nbpig is odd and placed at nbp,/2 if this number is even.
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numerical formulations become:

Ui = pad ™ (FFT&% (FFT3D (pad (f (x3p,Ys3p, 23D) - - - -
K2

Uinc (w3D7 Y3D, ZdD))) ‘FFT3D (471' T (1143)

eiké \/(acgaDd+:vo)2+ (yggd-‘ryo ) 2—i— (Zg%d-i-Zs ) 2

() 4 (o +w0) + (4 =)

dv

for the general problem and

k(/]Zeia.(I;aDnyD:ZBD)

A7
pad  pad _pad

FFTsp <e_ik70‘(x3D "¥3D +#3D ) .

Ugir = pad <FFT§[1) (FFT3D (pad (f)).--

(I1.44)

eiké\/ (280 )+ (vhes 0 )+ (it 2s)

\/(xgaDd + IO)Q + (y%d + y0)2 + (zgaDd + 25

for the plane wave situation.

Fourier diffraction theorem Let’s now find a numerical approach of the Fourier
diffraction theorem expressed in section[2 As mentioned previously, one will have to
tackle with different pitfalls of the analytic formulation: the estimation of spherical
caps into a Cartesian mesh as the one introduced above (x3p,¥ysp,z3p) and the
translation in the Fourier domain according to the relations . The aim is also
to express the diffracted wave on the sensor plane z = z, centered on the hologram
position (xg, yo)-

Let’s start by using the fact that a modulation in the spatial domain is a trans-
lation in the frequency domainS}

Fop g (x,y)] (u+ ug,v 4+ vo) = Fap [g (z,v) 6_2”(“0””0)} (u,v) (11.45)

and wvice versa that a translation in the spatial domain is a modulation in the
frequency domain:

Fap [h (u,0)] (& + w0,y + o) = Fop [0 R (u, )] (,p) (IL.46)

18The variables of integration are explicitly enlightened: Fap [g (7,y)] (1, v) means the 2D Fourier
transform of the function g, of spatial variables (z,y), estimated at the frequencies (u,v). The
integral is consequently along the z and y variables.
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Using equality (L1.45) for g (x,y) = Uy (z,y;%s) and the Fourier diffraction
theorem ([I1.18]) by noting (ug, vo, wp) = ("‘j\‘g’o, "‘3\‘0‘70, ”0/\'2”0), it come:

Udgis (2,5 25) = ezm(wﬁy%)fﬁ%[ e

Fop [Uaig (2, y; 25)] (u + uo, v + vo; Zs)} (@, y; 25)
l’k:62e2i7rw(u—&—u0711—1—110)2S

(I1.47)

2im(zuo+yvo) T—1
=e F
2 Llﬂw (u 4 ug, v + vo)

Fsp [f] (u,v,w (u + ug, v + vg) — wo)l (x,y; 25)

with w (u,v) = ,/Z—é —u? — o2 Applying this equality to (x + xg,y + 3o) and ac-
0
cording to the equality ([1.46)) applied for:

’lk62 €2i7rw(u+uo ,04v0)2s

h (u,v) Fap [f] (u, v, w (u 4+ up, v+ vo) — wo)

" drw (u + up, v + vp)

it finally comes:

Uais (z + o,y + yo; 25) = > (@raoluotlyrwolo) Fosy ..

Zk62 62i7rw(u+uo ,U+v0)zs

2im(zou+yov)
e X R
drw (u + ug, v + vg)

Fsp [f] (u,v,w (u+ ug, v+ vg) — wo)] (x,y; 26)

(I1.48)

This formulation directly gives the expression of the diffracted wave centered
on (zg,yo) and based on the 3D Fourier transform of the object f expressed in the
natural frequency coordinates: Fsp [f] (u,v, w). Before giving its numerical form,
the problem of the estimation of the spherical surface (u,v,w (u + ug, v + vy) — wp)
remains. Indeed, as previously mentioned, in the numerical formulation, v and v
will be discrete, leading to points placed in the 3D Fourier space, but not necessary
lying on the nodes of the Cartesian mesh on which the Fourier transform of f is
computed, as one can see in figure [[I.7

Finding a good estimate of their value is not trivial in the Fourier space. Let’s
nevertheless focus on the two simplest ones that can be implemented in standard
spatial domain: a nearest-neighbor technique and a linear interpolation.

The nearest-neighbor interpolation consists in approximating that the value of
the Fourier transform on the discrete caps is equal to the value of the closest voxel.
For example in the figure, the value on (uip, w (uzp» will be approximated by the
one on (u;,, Wy, ):

f (uip, w (u2p>) ~ f(u;,, wy,) (I1.49)

197t is implied here that: F3p [f] (u,v,w) = Fsp [f (2,9, 2)] (u, v, w)
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A

Wk, +1

Ujp,—1 Uj, Uip+1

Figure I1.7: Tllustration of a discrete spherical cap (in red) not lying on the discrete
Cartesian mesh (in black) for a given function f. To ease the reading, the scheme
is drawn in two dimension but easily adaptable to the 3D problem. The value on
each of the red dots is either estimated as being equal to the value of its nearest-
neighbor (in blue) or being a linear interpolation of the values of its four (eight in
3D) neighbors (in green), weighted by the involved distances. u;, and w;, are the
discrete abscissae of the frequency axis along x for the pixels and the voxels. wy,
are the discrete coordinates of the frequency axis along z for the voxels.

This is a strong approximation. For example both the points indexed by w;,_»
and wu;,—, will have the value on (u;,—1,wy, ):

f <Uip—2,w (Uz‘p—z)) ~ f (Uz'p—hw (Uip—1)> = f(uiv—hwkv)
Another solution is to perform a linear interpolation with the neighboring voxel

values. The attributed value is then an average on the neighboring values, weighted
with the relative distances. Still in figure [[1.7] the value on (uip, w (g, ) ) is:

f (uipa w (uip)) ~ tutwf (UZ‘U+1, wkUH) + 1, (1 — tw) f (uiv-i-lv wkv) + ..
(1 - tu) twf (uiw wkv-i—l) + - (1150)
(1 —ty) (1 —tw) f (wi,,ws,)

with ¢, = ol )k
Uiy +1~ Uiy Wy 41~ Why
dimensions by adding a weighting factor on the v-axis and therefore has eight terms.
Thus this method is more time and memory consuming than the nearest-neighbor
approach since eight indices must be found instead of one and the linear distances
must also be computed to estimate the eight weights.

Now let interp (f, (u,v,w)) be the function giving the approximation on (u, v, w)
of a function f known on a Cartesian mesh either using the nearest-neighbor tech-
nique or the linear interpolation. It is possible now to give a discrete formulation of
the Fourier diffraction theorem.

uip Uy,

and t,, = . This formula naturally extends to three
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Keeping the notation introduced above, let’s (x3p,ysp, z3p) be the 3D mesh
centered on (0, 0,0) on which the object is defined and be dz", dy” and dz" the voxel
side lengths. And let’s (x2p,y2p) be the 2D mesh centered on (0,0) modeling the
sensor and dxP, dy? the pixel pitches along the two directions x and y. As written
above, (x3p,ysp) and (zap,y2p) can be different and do not have to overlap.

usp and vop will be the coordinates in the Fourier space corresponding to xsp

and yop. With these notations, the discrete formulation of the Fourier diffraction
theorem is:

Udif — BZiW((sz+$0)u0+(y2D+yo)vo)pad—1 FFT;I% [ o

. . pad pad
] pad pad Zk/262”rw(u2D +uo,v5 +vo)z5
€2z7r(acou2D +Yov5p ) 0

drw (Wb + o, oY + vo) (IL51)
interp [FFT?)D [pad (f (x3p,ysp, 23p))] s -+

pad  pad pad pad dv
(u2D » Uap , W (UQD + U, Vap + UO) - wo)]” ds

2
Mg 2 2 — (mno-po m0-90 mo.Mmo —
Ut -t (wo, vo, wo) = ( Ske, Pedn Tl ), ds = dxP.dyP the

elementary pixel surface and dv = dx".dy".dz" the elementary voxel volume.

with w (u,v) =

3.2 Comparison of the two models

To test and compare the different models, simulations were performed on a nu-
merical object O composed of cubic voxels v with a side of dp;, = 1.67 pm. It is
composed of three identical spheres of radius r. = 10 um which present a differ-
ence of refractive index dn = 0.005¢ with their surrounding medium of refractive
index ny = 1. The three spheres are placed at different heights: z; = 14.d,;, =
23.38 pm, zy = —16.dyi; = —26.72 pm and z3 = dp,; = 1.67 pm (see figure [I1.8a).
The holograms are simulated for a wavelength of Ay = 630 nm with a distance
between the hologram plane and the center of the volume of z, = 1.5 mm. Two
lighting positions are tested: a normal illumination orthogonal to the sensor plane
and a tilted illumination. The tilted illumination is tilted by an angle § = 35° com-
pared to the axis orthogonal to the sensor and rotated of an angle ¢ = 125° around
this axis.

Four direct models are compared:

e Volume integration: the reference hologram is given by the integral ([1.12)),
numerically performed in the real space by a discrete integration, voxel by
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voxel:
K
Udif — E Z fv (%a?/u, Z’U) -Uinc (Iva Yo, Zv) L
veO
eik6\/(IQD+10*Iv)2+(y2D+y0*yv)2+(zs*Zv)2 5 (1152)
d>.
5 iz

V(@ap + 70 — 20)2 + (W20 + Yo — 1) + (20 — 20)

o Fourier convolution: the integral ([I.12) is performed in the Fourier domain
using the formulation ([[1.43])

o Linear interpolation: Fourier diffraction theorem ([I.51]) with a linear interpo-
lation in the Fourier domain by the function interp.

e Nearest-neighbor: Fourier diffraction theorem ([1.51)) with a nearest-neighbor
interpolation in the Fourier domain by the function interp.

For the convolution, the volume is composed of 512 x 512 x 128 voxels. To
improve the coverage of the spherical caps, the Fourier diffraction theorem is used
on a 512 x 512 x 256 voxel§?] For all the situations, both the 2D and the 3D domains
are zero-padded.

Figure compares the intensities given by the different models for a normal
illumination. Their phase are compared in figure as well as the intensities for a
tilted lighting.

The convolution in the Fourier domain and the Fourier diffraction theorem with
a linear interpolation present a good agreement with the reference hologram, their
maximal divergence being less than 3.5 1073 for the two intensities (arbitrary unit for
an incident wave normalized to one, |U;,.| = 1) and the phase (rad) (see table [I1.1]
and figures .c,d and figures b,c,f,g.).

For the normal illumination, the nearest-neighbor interpolation gives worse re-
sults on the two beads which are further from the median plane z = 0 in the
simulated object, both for the amplitude and the phase (figures [[I.8/e and [[L.9]d.).
The situation degrades even more for the tilted illumination with lots of artifacts
appearing in the background of the simulated picture in figure [I1.9/h. Nevertheless,
the amplitude of the divergence remains low, three orders of magnitude below the
reference hologram intensity (see table [[L1]).

Some tests, not presented here, show that this is related to both the interpolation
method and the number of planes nb,. Indeed, if the simulated volume is not thick
enough compared to its width on the xy-plane, a part of the spherical caps in
the Fourier diffraction theorem may fall outside the accessible Fourier domain and
cannot be extracted to simulate the diffracted wave. It appears that the linear
interpolation is more robust to this effect.

20Simulation with nb, = 128 (not presented here) showed that the two interpolations methods
fail to correctly simulate the hologram because a too important part of the spherical caps falls
outside the simulated Fourier domain.
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Figure I1.8: Comparison of the different models on a numerical object composed
of three identical beads (a) with a normal incidence. Differences between the dif-
ferent results and the reference hologram intensity obtained by integration voxel
by voxel (b), for the convolution in the Fourier domain (c¢) and the Fourier diffrac-
tion theorem with a linear (d) or nearest-neighbor (e) interpolation in the Fourier
domain.

Volume Fourier Linear Nearest-

integration | convolution | interpolation neighbor

|Usot| min 0.35 -1.9107° -3.2107° —2.41072

(normal) | max 1.77 3.4107° 3.01073 3.81072

arg (Usor) | min —0.62 -1.6107° -1.8107° —1.5107?

(normal) | max 0.07 1.6 1073 1.71073 1.51072

U] | min 0.41 181073 131073 181073

(tilted) | max 1.72 3.21073 1.91073 291073
Table II.1: Table of the minimal and maximal gray values of the reference holo-

gram (volume integration) and of the differences of the different models (Fourier
convolution, Fourier diffraction theorem with linear or nearest-neighbor interpola-
tion) with this reference hologram (see figures and for the normal and the
tilted illuminations.

In addition to this comparison, it is also interesting to use the ability of the
convolution formulation ([I.43)) to work with any incident plane wave U,. to test
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Figure I11.9: Comparison of the different models on a numerical object composed
of three identical beads. Differences between the different models and the reference
holograms phase (a-d) and intensity (e-h) obtained by integration voxel by voxel for
a normal incidence (a) and a tilted lighting (e) for the convolution in the Fourier
domain (b,f), the Fourier diffraction theorem with a linear (c¢,g) or nearest-neighbor
(d,h) interpolation in the Fourier domain. The calibration bars on the left give the
gray values of the reference holograms. The calibration bars on the right give the
gray values of the three comparisons with the same dynamics.

the assumption that the spherical wave produced by the source can be approximated
by a plane wave because of its large distance d to the sample.

To do so, the spherical wave is simulated for a normal illumination by:

eik6 22412+ (2+d)?

d.
Va2 + g2 + (2 +d)’

Uinc (x7 Y, Z) - (1153)

The factor d is used to normalize the amplitude of the wave so that it equals 1
at the center O = (0,0,0) of the sample.

Different distances d € {1 m, 10 ¢m, 7 cm5 ¢m} were tested and their differences
with the reference hologram obtained for an incident plane wave are presented in

figure [[T.10]

The holograms seem dilated, an effect which increases when the distance to
the source diminishes and which is used in standard in-line holography to perform
magnification [77]. This dilation affects the rings of the interference patterns which
are shifted of several microns. It would be necessary to quantify this effect on the
reconstructions which use the assumption that the incident wave is plane.
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200 pm

Figure 11.10: Comparison of the effect of the distance of the light source d on a
numerical object composed of three identical beads. Differences between the inten-
sities at different distances d € {1 m, 10 em, 7 em, 5 em} and the reference hologram
obtained with a plane wave (source placed at infinity) for a normal incidence with
the same gray values dynamics.

3.3 Consistency with the 2D models

After comparing the 3D propagation models, studying their consistency with
the 2D model is interesting to know if some 2D algorithms can be used in the 3D
reconstruction processes.

The main difference between the models using 2D propagators introduced in
chapter [[| section [3] and the ones given by the 3D equations in this chapter is that
the former can directly work on the total complex wave front whereas the latter
model only works on the diffracted wave. More steps are consequently needed to
retrieve the unknown sample from the recording of the intensity of the wave front
by the sensor.

The phase information of the wave front being lost, the quality of the recon-
struction will depend on how the algorithms will deal with this loss, as one can
see in figure [[.T1] where the holograms of the previous section are reconstructed
using the 2D Fresnel propagator introduced in [[, section [3] with a distance —z,. The
convolution (|[.6]) is performed in the zero-padded Fourier domain using the Fourier
transform of the Fresnel kernel . To do so, the amplitudes of the holograms to
back-propagate are initialized with the square root of the simulated intensities (and
eventually the simulated phase) and then one-padded.

All the propagated holograms are composed of 512 x 512 pixels.

To back-propagate the tilted complex waves, the phase is first corrected by a
phase ramp characteristic of the tilted illumination and equal to the incident plane
wave on the sensor U;,.. Indeed, the Fresnel propagator assumes paraxial propaga-
tion normal to the sensor. Then, the propagation distance z, is corrected by the tilt
angle 6 to get the effective propagation distanceEl 261 = 2,/ cos .

The back-propagations correspond to the effective 2D complex transmissive
planes which would give the same holograms.

First, the 2D and the 3D propagation distances are coherent as the beads are in
focus in the 2D reconstructions.

2¥or distance z, = 1.5 mm and an angle 6 = 35°, the effective distance is 26/ ~ 1.83 mm
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Figure I1.11: Modulus and phase of the 2D back-propagations of the simulated
holograms of figures[[I.§land [[L.9|for a normal incident light (a,b) and a tilted lighting
(c,d) without (a,c) and with (b,d) the knowledge of the phase in the hologram plane.
The dynamics of each picture was maximized.

When only the intensity is back-propagated, twin image artifacts surround the
focused beads even for the tilted illumination (figures [[L.11]a,c).

Then, the phase produced by the 3D model is coherent with a 2D propagation
as the twin-image disappears when the full information of the complex wave is used
for the back-propagation (figures [[L.11]b,d).

Looking at the phase of the three beads, one can notice the phase inversion
phenomenon [7§] at the focal plane for the absorbent objects. The two beads 1 and
2 which are on both sides of the focal plane present a positive (bead 2) and negative
phase (bead 1) whereas the bead 3 which is placed closed to the focal plane z = 0
disappears in the phase pictures (figures a,b). This is coherent with the fact
that a purely imaginary complex index is interpreted as a 2D absorbent object.

Looking at the back-propagation for the tilted illumination (figures .c,d),
one can see that the 2D Fresnel propagator fails to precisely reconstruct the beads.
This is an expected result as this paraxial kernel can only propagate circles and
cannot focus ellipses.

To continue testing the coherence of the refractive index interpretation, holo-
grams were simulated for a purely dephasing object with én = 0.005 and then
back-propagated for a normal incident plane wave.

The results in figure show that the information is now mainly present in the
phase imageﬂ But unlike the previous case of an absorbent object, a part of the

22Note here that the dynamics of the gray values calibration bar were maximized for each view
and can consequently lead to misinterpretation. But comparing the intensity of the beads with the
intensity of the twin-image artifacts, it clearly appears that the information is concentrated on the
phase images.
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Modulus Phase Modulus Phase

Figure 11.12: Modulus and phase of the 2D back-propagations of the simulated
holograms of a phase object for a normal incident light without (a) and with (b) the
knowledge of the phase in the hologram plane. The dynamics of each picture was
maximized.

signal here is reconstructed into the modulus of the equivalent transmissive plane.

Figure [[T.13] compares the back-propagations of the holograms for different dis-
tances of the source with the hologram obtained for a plane wave illumination. As for
the holograms, the reconstructions are dilated, with an effect visible even at 10 cm.
The focal distance to get the beads into focus is also slightly changed: ~ 1520 um
for d = 10 em, ~ 1530 um for d =7 em and ~ 1550 pum for d = 5 cm.
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Figure 11.13: Effect of the light source distance d on the modulus of the 2D back-
propagations of the intensity holograms introduced in figure[[I.10] Differences of the
2D back-propagations for three different distances d € {10 ¢cm, 7 em, 5 em} with the
plane wave incident light reconstructions (+00). The three differences are given with
the same gray values dynamic. The positions of the three reconstructed beads were
measured for each 2D reconstruction (purple circles for the plane wave situation).

To better quantify the dilation effect, the positions of the reconstructed beads
are extracted using the trackmate plug-in in ImageJ [79]. These positions are used
to compute the relative distances of the three beads. Dilation ratios are computed
by dividing these distances by their corresponding counterpart for the plane wave
illumination (see table ) The scaling factors are obtained by averaging these
ratios.

The approximation of the incident spherical wave by a plane wave leads to a
scaling factor on the zy-plane which is constrained in a range from 1 to 3 % for
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Beads distances (um) Ratios

1223|1312 ]2<3|1<+ 3| Average
+oo | 65.37 | 33.66 | 44.30 - - - -
10 em | 66.22 | 34.08 | 44.92 | 1.013 | 1.012 | 1.014 1.013
Tcm | 66.59 | 34.26 | 45.18 | 1.019 | 1.018 | 1.020 1.019
S5cem | 67.09 | 34.52 | 45.54 | 1.026 | 1.026 | 1.028 1.027

d

Table I1.2: Computation of the scaling factor due to the finite distance of the light
source d. The positions of the three beads are measured for the different distances d
and the reference situation of the plane wave illumination (+o00) to compute their
relative distances (see figure ). Ratios of these distances with the distances
for the plane wave situation are averaged to determine the order of magnitude of
the scaling factor.

a distance d € [5 e¢m, 10 cm| between the sample and the light source. As this is
a geometrical effect on how the light source is seen by the scattering object, this
ratio should not depend on the illumination wavelength or the distance between the
sample and the sensor.

Then, the Born approximation is tested on real data. Emulsion of oil droplets
of refractive index n,; = 1.38 in water of refractive index ngy,o = 1.33 are imaged
with a standard 2D lens-free microscope for a red illumination A = 630 nm. A
hologram is selected and back-propagated to estimate the droplet diameter (see fig-
ures |I[I.14]a.b) by estimating the width of its profile. The back-propagation distance
is zg = 1320 pwm in the air.

A numerical object is simulated accordingly by a sphere of diameter 9.5 um
placed in a volume of nb) = nb}) = 400 and nb? = 256 voxels of 1.67 um? with
refractive index ng = 1.33. The holograms of nb, = nbl = 400 pixels are simulated
with the Fourier diffraction theorem with a linear interpolation in the Fourier do-
main, zero-padding both the 2D and the 3D domains with an effective propagating
distance szf = ng.zs = 1755.6 um.

Two possible solutions for the difference of refractive index are tested. The
expected situation of a phase object with a purely real refractive index on = 0.05
(see figure d) and the opposite situation of an absorbent object with a purely
imaginary difference of refractive index dn = 0.05¢ (see figure [[I.14lc).

Surprisingly, it is the wrong situation which perfectly matches the data with a
simulated absorbent object. It also shows the correctness of the effective propagating
distance 2¢/7 as the sizes of the holograms are equal.

This unexpected result comes from the non-validity of the Born approxima-
tion. As mentioned in section , the phase delayF_g] introduced by the oil droplet
is 2mlén/A\ ~ 0.97 which is not negligible. The 2D reconstruction shows that even
with the 2D Fresnel propagation the droplet is seen as an absorbent dot.

Having a purely imaginary dn is moreover the only way to match the simulations

BWith dn = 0.03, [ = 9.5 um and X\ = 630 nm.
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Figure I1.14: Comparison of a real hologram acquired on an oil sphere immersed in
water (a) and its 2D back-propagation intensity (b) with simulated holograms of an
object of the same size with a purely imaginary (c) or purely real (d) difference of
refractive index dn with its surrounding medium. (e) Scheme of the influence of the
phase of the diffracted wave Ug;s compared to the phase of the incident wave Uy,
for a purely real (red) or purely imaginary (green) dn.

with the data: most of the holograms recorded during this PhD present a center with
a gray value close from the background value. Looking back at the equations
and and the figure .e, the only possibility to keep a gray center with a
homogeneous scattering object is to have a purely imaginary on. Indeed, according
to equation , because of the spherical propagator in the convolution, the phase
of the diffracted wave Uy at the center of the hologra in the direction of 170 is
directly the phase of the incident plane wave U;,. modified by the phase of the
scattering potential f.
And for a small refractive index én one gets from equation ([1.7)):

f(7) ~ R0 (I1.54)

This means that if the difference in the refractive index dn is real and positive,
no phase shift is introduced in the diffracted wave whose complex representation
is co-linear with the incident wave as for the red situation in figure [[.14le. Its
interference with the incident wave is constructive and the total wave presents an
intensity higher than the background as for the simulation in figure [I.14d. On
the contrary, if the difference in the refractive index dn is purely imaginary, a +m
phase shift is introduced in the diffracted wave whose complex representation is

- 7
24Because for a position 7 in the direction of %, Uine (773) kol 773 = Uine (775) eiko-(T-73) _
Uine (7) and 1/ || 7 — 73] does not introduced any phase.
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now orthogonal to the incident wave as for the green situation in figure [[I.14e. Its
interference with the incident wave produces a total wave with an intensity similar
with the incident wave, that is to say similar to the background as for the simulation
in figure [I.14]c.

Finally, let’s show that it is impossible to retrieve the 3D information from a
given 2D hologram with a reconstruction only based on a 2D back-propagation.
Figure shows that back-propagating a hologram at different distances only
produces a stack of focused and unfocused objects whose 3D rendering looks like
columns with varying intensities. Each slice of the stack is moreover a transmissive
plane which can produced the back-propagated hologram whereas in a real recon-
structed volume, the hologram is a combination of all the information in the volume,
some parts participating more than others in the hologram shaping.

Intensity

. . Multi-z back-
simulation

propagation
reconstructions

Volume
rendering

Z3

LA

Figure I1.15: Ilustration of a multi-z reconstruction based on a simulated hologram
(zs = 1.5 mm and Ay = 630 nm). Top-right - Intensity of the simulated hologram.
Bottom-right - 2D back-propagations performed at different z. Bottom-left - 3D
visualization of the obtained stack.

3.4 Conclusion and discussion

As a conclusion, the three tested direct models present a good agreement with
the reference hologram for a plane wave illumination within a range of 4 102 from
the reference hologram both for the intensity and the phase. As mentioned earlier,
the Fourier diffraction theorem only needs one 3D Fourier transform to perform a
simulation and is consequently the fastest. Nevertheless its accuracy depends on the
interpolation technique. The linear interpolation gives the best results, but is longer
and above all is not invertible if one wants to use the Fourier diffraction theorem
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as a mapping tool of the Fourier domain of the reconstructed objectlﬂ This kind
of reconstruction will be consequently based on nearest-neighbor interpolations. It
has been shown that it gives lower quality results as a direct model and the same
can be expected if it is used as a reconstruction tool.

To complete this study, more tests should be done. Indeed, it was mentioned
that the number of planes nb, has an effect on the numerical efficiency of the Fourier
diffraction theorem. A better understanding of this effect can help to choose recon-
struction parameters more wisely. In the tested situations, both the volume and the
2D grids are overlapping. It would be interesting to test the effect of a difference
in the number of pixels nb% and nbl on the 2D plane and the number of voxels nbj,
and nb, in the 3D volume as well as a difference in the resolution da?, dy? dz’
and dy", leading to a difference in the sampling and frequency in the Fourier do-
main.

On an other subject, it has been demonstrated that the finite distance between
the sample and the light source leads to a spherical propagating wave which cannot
be strictly assumed to be plane for distances lower than d = 10 ¢m generally used in
lens-free microscopy. Working nevertheless under this assumption leads to a scaling
factor in the range of 1 to 3 percent.

Once again, more studies are needed to better estimate this effect and to verify
that it does not depend on the wavelength or the distance between the sample and
the sensor and how it behaves with tilted illuminations.

Concerning the interpretation of the refractive index of the 3D numerical objects,
it seems coherent for the very low diffracting objects which are simulated@. But it
fails at explaining real data with a more realistic refractive index whose variation
with the surrounding medium cannot be considered as weakly scattering. The in-
terpretation even seems inverted: real holograms of phase objects are well simulated
only for purely imaginary variations of refractive index which normally correspond
to absorbent objects.

A more complete test on different objects of different sizes and refractive indices
would be beneficial to really investigate the limit of the Born approximation and
the induced effects in the reconstructions. Indeed, it does not hold in the case of
a lens-free microscope for extended 3D cell cultures, as mentioned in the previous
section

25Indeed, the most intuitive solution would be to spread the values of the coefficients on the
spherical caps in their surrounding voxels, weighted by the relative distances (see figure by
reversing the arrows directions). This leads to a "dilution" of the coefficients. If one for example
performs a mapping and then estimates back the diffracted wave, he will not find back its initial
values. This prevents any stable reconstruction with a linear interpolation technique based on the
mapping of the Fourier domain.

26|6n| = 0.005
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Chapter 111

A versatile prototype and first
reconstruction algorithms

This chapter presents the work mainly done during the first year of the PhD
program. A first prototype is developed from scratch to test different modalities
and first ideas of reconstruction algorithms.

It allows having a first glance at 3D samples acquisition and the associated con-
straints, while giving an idea on the first algorithms performances and limitations.
From these results, new directions are taken for the PhD work.

This work has led to a first publication in the Biomedical Optics Express jour-
nal [80].

1 Overview of the experimental bench

1.1 Design and functioning

Unlike 2D lens-free imaging, where only one image is required to retrieve the 2D
object, one can expect that a reconstruction of a 3D object from lens-free acquisitions
requires to multiply the viewing angles. For this purpose, a new experimental bench
is developed, illustrated in figure[[TL.1] It is composed of a semi-coherent illumination
source and a CMOS sensoif|

The semi-coherent illumination is composed of a 3\ LE[ﬂ. To get a semi-coherent
illumination, it is placed behind a 150 pm diameter pinhole. A diffuser is used to
make the illumination on the pinhole uniform for the three wavelengths.

The spherical wave emitted by the pinhole can be considered as a plane wave if
seen from far enough. That is why the sample is placed several centimeters away
from the lighting (~ 7 cm)ﬁ Since the lighting is not fully coherent, to record

DS - 29.4 mm?2, 3840 x 2748 monochromatic pixels, pixel pitch 1.67 um - ref. UI-1492LE-M.

2LED CREE RGB, A = 630 nm, Ag = 520 nm, Ag = 450 nm - ref. XLamp MC-E RGBW
MCEA4CT, with spectral widths of AAgr ~ 10 nm, Adg =~ 40 nm, Al ~ 20 nm.

3A translational stage allows the user to change the distance of the illumination.
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the produced hologram, the sensor is placed a few millimeters behind the sample,
typically 1 to 3 mm.

150 um pinhole

3 L lish Semi-coherent
ighting illumination
X,y,z control k / Diffuser

/

] ‘/0)150 um pinhole

A

Uinc
~7cm
r control

~ CMOS 30 mm?,
1.67 um pitch

-—:—:—- 3D cell culture

~1—3mm
v Raw
acquisition

Figure II1.1: Left-hand side - Experimental bench dedicated to lens-free diffractive
tomography. Right-hand side - Optical scheme of the system. The semi-coherent
incident plane wave Uy, passes through the sample volume. Each element of the
volume diffracts the incident plane wave, behaving like secondary spherical sources,
creating a diffracted wave Ugy;r as explained in chapter |I_I|, section . The sensor
records the intensity of their summation: I;,; = |Uto,5|2 = |Uine + Uair|”.

Two modes of acquisition are available on the setup:

e f-mode: the illumination and the sensor are static. The object is rotated
around an axis passing through its center with a rotation stageﬁ about the 6-
axisﬂ. This geometry is similar to a X-ray tomographic scanner, where the light
propagation remains orthogonal to the sensor. It can be used with samples
trapped in capillary.

« ¢-mode: the object and the sensor are static. The light source is rotated with a
rotation stage El about the gp—axi{l The illumination direction is tilted relative
to the sensor plane. This modality is the most adapted to 3D organoid culture
in standard containers such as Petri dish or well plates.

4Newport - ref. URS75CC, controlled by a Newport universal motion controller - ref. ESP300

5See the green axis in figure

6Newport - ref. M-URMSOAPP, controlled by a Newport universal motion controller - ref.
ESP300

"See the blue axis in figure m
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These two modes aim at different applications. The #-mode pretends to be the
simplest geometry as the lighting is always normally incident on the sensor, there
is no problem of angle relative to the sensor or the different interfaces with differ-
ent refractive indices. Moreover, all the angles around the object are theoretically
available. Such a geometry is also the one commonly used in tomography and sim-
plifies the preliminary studies of the possibility of a 3D lens-free microscope. This
geometry could be used in a capsule cytometer, the capsules traveling in capillaries.

But this geometry is not adapted for 3D cell cultures in Petri dish which can
only be fixed on the experimental bench. This is why the p-mode is also designed
in this bench to acquire the first biological data with tilted lighting. Nevertheless
one can expect that this geometry will be harder to deal with since one will have
to model the tilted propagation of the light. But its main disadvantage is the very
limited angular coverage which is limited to roughly ¢ € [—45°,45°]. Such limitation
is a huge problem in tomography that has to be dealt with. Moreover, on a more
practical point of view, the more the lighting angle increases, the less the sensor gets
energy and the holograms are harder to record.

1.2 First acquisitions

Inert and biological data are acquired with this prototype, both in #-mode and -
mode. Only the most informative data are presented here.

Inert data: a mosquito wing - A mosquito wing is imaged with the prototype.
For the #-mode it is fixed to a capillary inserted in the #-motor stage whereas it is
directly placed onto the sensor in the ¢-mode.

The results are presented in figure [[II.2] It shows data acquired in both modes.
The three dimensional shape and structure of the wing is clearly visible on both
modes.

This figure emphasizes the differences between the two acquisition modes. On
the left side, for the #-mode, the dynamic remains identical for all angle while the
object rotates about a well-defined vertical axis (not drawn in the figure). Some
dust on the sensor is present at each angle at the same position on the picture which
will lead to artefacts in the 3D reconstruction.

On the right side, the full frame representations of data acquired in the ¢p-mode
show that there is no more a clearly identified rotation axis. It seems closer to a
shadow projection during daytime, the shadow moving and spreading according to
the lighting angle. This is due to the fact that in this geometry, the sensor stays
still during the acquisitions. Nevertheless, 3D information can be retrieved from the
data, since it is possible to see some parts of the wing moving above one another as
the lighting rotates. Another side effect of the geometry is the loss of signal to noise
ratio as the lighting tilts (for a constant lighting intensity and integration time),
leading to a drop of the dynamic.

Biological data: Matrigel® - The main concern with the living sample is
that they must be kept in the matrix providing their life support (culture medium
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Figure I11.2: Left-hand side - Cropped acquisitions in the §-mode at different an-
gles 6 € {—60°,0°,60°} of a mosquito wing in the blue channel A = 450 nm.
Right-hand side - Full frame acquisitions in the p-mode at different angles ¢ €
{=50°,0°,50°} of a mosquito wing in the red channel A = 630 nm.

or Matrigel® for instance). Its texture may raise some issuesﬂ especially in the 6-
mode. If it is rigid enough, one can try to fix it on a spike, whereas if it is too liquid,
it can be put in capillary. These two solutions are tested as presented in figure

The first thing that appears in the figure is that the gap of refractive index
between the air n,;, = 1 and the culture medium, close to the water refractive
index ny,o ~ 1.33 is too big. In the air, the Matrigel® and the capillary behave like
a lens and focus the light. The tubing inside the capillary is then not visible.

A pool is designed and 3D printed to perform index matching. The Matrigel® is
now visible on the spike, but inside the capillary the refractive index gap between
the capillary glass and the water is still too important. Replacing water by adapted
immersion oil would not solve the problem since the tubing inside the capillary
would still be filled with water and Matrigel®.

Acquisitions in ¢-mode are easier to perform as the Petri dish has only to be laid
on the sensor. Results on epithelial cells are presented in figure [[I1.4, The arrows
pointing at different cells at different angles show that the parallax effect is sufficient
enough to record 3D information. The distortion at high angles of the hologram is
also an important effect that one can see in the medallions.

To get such a culture, RWPEL1 cells are grown in Matrigel® according to a no top
coat protocoﬂ. This means that the cells are seeded on the top of a Matrigel® bed
and then culture media is slowly poured over the attached cells and is changed every

8For example, the Matrigel® has a viscosity which depends on the temperature.
9See chapter IV] section for more details on the cells conditioning and the culture protocol.
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Figure I11.3:  Matrigel® culture acquired in #-mode. To compensate the gap of
refractive index between the air (on the left-hand side) and the culture, one must
use a index matching pool as the one designed and presented at the top of the
figure. On the right-hand side, the acquisition done in water show the limitation of
this #-mode used with Matrigel®. The sample fixed on a spike (top raw) is not rigid
enough to rotate smoothly with the capillary. Inside the capillary (bottom raw),
despite the water, the index matching is not sufficient and the glass highly distorts
the holograms, behaving like a lens.
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Figure II1.4: At the top - Epithelial cells branching into a network on a
Matrigel® bed. At the bottom - Three crops of the data acquired in ¢-mode
for ¢ € {—15°0°,15°} in the blue channel A\ = 450 nm. The colored arrows
point at specific cells whose relative positions change according to the angle. The
parallax effect shows that three dimensional information can be retrieved from this
acquisition mode. In the medallion - Zoom on a hologram at ¢ € {—50°,0°} in the
red channel A = 630 nm. The deformation of the circular shape to an ellipse with
increasing angle is visible.
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day. In this situation, these cells tend to develop networks{r_ql.

2 A first 3D reconstruction method based on the
Radon transform

The method, developed during the first months of the PhD work aims at proving
the feasibility of a lens-free tomographic microscope. This method has indepen-
dently been previously developed in other laboratories [68, [69] to perform lens-free
diffractive tomography and is based on the inverse Radon transform.

2.1 Overview of the method

The idea is to get closer to the existing algorithms in the field of X-ray tomog-
raphy. The filtered back projection algorithm [20] is commonly used to retrieve an
object from its straight projection at different angles and works with limited an-
gle coverage. It is moreover native in the programming tool used during this PhD
wWor

The approximation here is to consider a recorded hologram as a direct and
straight projection of the sample at a given angle just as if it was a shadow. Doing
so, each line on the z-axis in the dataset can be processed independently. As de-
scribed in chapter [[I], section [2.3] each line gives information on a line in the Fourier
domain of the object which can be consequently reconstructed slice by slice.

The reconstruction then works as schematically described in figure [[IL5} for
the three chosen z, green, blue and red, the corresponding lines in the data set
at different angles 6 lead to the reconstruction of three different slices. Compiling
all the reconstructed planes gives access to the whole volume of the object. The
reconstruction is performed in the blue channel. Indeed, the holograms are the
smallest in this wavelength, the diffraction being proportional to the wavelength. It
limits the effects of the diffraction.

The figure presents the results on a real sample: a mosquito wing on which the
3D structure is clearly visible. Some small details as ribs and dust are visible. At
the bottom left, one can notice that the sample moved during the acquisition since
the top of the wing is doubled.

This method has numerous advantages. Dealing with the sample slice by slice
instead of the whole volume at once is an optimal method in terms of memory
consumption and large volumes can be processed? while the computing time is
drastically reduced. Moreover, an important bibliography exists in this field, moti-
vated by the medical domain with the X-ray computed tomography and this method
is consequently easy to implement.

10Non published data. The dynamics of this process are later described in [V}, section
N Command "iradon" in Matlab®.
12Up to 50 mm3 in the example of the figure [I11.5
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Figure II1.5:  Top line - Schematic view of a 3D reconstruction on real data in the 6-
mode using the inverse Radon transform. Data at different angles are processed by
going through the z-axis. At each z the lines extracted from each angle are processed
to get a 2D slice of the 3D object. Assembling these slices at each z gives access to
the whole volume. Bottom line - Zoom on the green and blue slices. On the green
slice, one can notice a doubling of the wing’s edge at its top due to its movement
during the sample rotation (white dashed lines). On the blue slice, one can see
the limit of this method: as the diffraction is not properly taken in account, the
reconstruction seems unfocused with "tubes" instead of nicely shaped ribs. The
straight lines are due to the lack of angle for a proper reconstruction with an inverse
Radon transform. The white arrows point at the dust surrounding the wing. The
global reconstructed volumes is: 4 x 4 x 3.34 mm3 = 53.44 mm? and is performed
in the blue channel.

The main disadvantage of this method is that it does not take into account the
diffraction phenomenon, which is a 3D effect. The holograms are consequently not
focused by this algorithm, leading to tubes and spheres instead of lines and dots in
the reconstructed volume as one can see in figure

This method is consequently a good solution to get the localization of the objects
in the volume but will not provide detailed reconstructions at low scale.

One may notice that this method is not directly applicable to the p-mode. In-
deed, in this mode, there is not a well-defined rotation axis anymore and the data
cannot be considered as direct projections as they are distorted with the tilted an-
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gle . A solution is to add a straightening step as presented in figure [[TL.6]

I
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X

Figure II1.6: In the p-mode the data are straightened to get closer to the §-mode.
For an incident lighting normal to the sensor, the projection is directly the recorded
hologram (red situation). When the lighting is tilted (blue situation), the region of
interest in the blue area is extracted and straightened in the tilting direction to fit
into the black frame, miming a hologram recorded with an angle ¢ with a lighting
normal to the sensor.

If one knows the distance of the object to the sensor z,, the center of the projec-
tion of the object at a given angle ¢ can be computed from its known position with
a normal lighting. It is directly Az = z,. tan ¢.

This method is nevertheless not satisfactory. Indeed, with a tilted lighting, the
light undergoes multiple refractions at the different interfaces such as between the
air and the water from the culture medium or between the air and the glass of the
sensor. Different methods are consequently developed to align the data to artificially
create a rotation axis in the p-modd™] The ones used in this section are the first two
developed: the cross-correlation on the raw data and a least square minimization
method on the raw data.

Before reconstructing the 3D volume, a last step is added to increase the recon-
struction quality: a pre-focusing step.

2.2 Adding a 2D pre-focusing step

One of the previously mentioned disadvantages of this method is that it does not
take into account the diffraction of the sample, leading to unfocused projections. A
mean to reduce this effect is to perform a step of 2D back-propagation on the data
set before the Radon reconstruction. At each angle, a 2D reconstruction of the
object at a mean plane z, is done, refocusing partially the object, as described in

figure [[T1.7]

13See appendix
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Different 2D back-propagation methods exist, as introduced in chapter [[, sec-
tion Using a RG B lighting, the reconstruction technique used here is the one
developed by Sophie Morel during her PhD work [57].

This method does not pretend to give a perfectly focused object. Indeed, the
same zg is applied to the whole data set, consequently, if the sample is not on
the rotation axis, its distance from the sensor will vary according to the angles @,
degrading the reconstruction quality. Moreover, even with an object placed at this
distance z,, the reconstruction will only accurately focus the regions at z,. For 3D
samples, the distance from this plane will vary according to the region of interest
as presented of the figure [[I.7} only one of the three spheres is laying on the plane,
the two others are consequently not reconstructed at the correct distance.

In the p-mode, the 2D back-propagations are performed after the straightening
step using the Fresnel propagatorEl h..

Figure II1.7: Left-hand side - Scheme of the 2D back-propagation step performed
before the 3D reconstruction. The object is refocused at an average plane leading to a
more accurate approximation of the projection. h,_ represents the Fresnel propagator
introduced in 2D in-line holography, in chapter [[, section One can see on the
ribs that the quality of the refocusing depends on the distance from the sensor: at
the center of the reconstruction, they are sharp whereas they are blurred on the
edges where the wing is folded and further from the sensor. Nevertheless, the global
rendering is better. Right-hand side - This operation is performed on all the data
set (on the right) for the different angles.

A more rigorous model of 2D tilted back-propagation is developed later in this thesis and is
introduced in chapter |T_V|, section @
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2 A first 3D reconstruction method based on the Radon transform

2.3 3D reconstructions

Figure presents the results of this method in #-mode on a mosquito wing.
It is based on a data set acquired every Af = 5° over 30 angles in the three RGB
channels. The total reconstructed volume is ~ 2.8 x 2.8 x 5 mm? ~ 40 mm3 with
visible details as small as ~ 5 um.

The zooms on the red boxes on the back propagated 2D data show that, as
previously said, the focus quality depends on the region of interest because of the
different heights in the object. For example, with § = 40°, unlike the ribs, the dots
are not in focus (and consequently present hologram shapes), whereas with § = 80°
the dots are well focused while the ribs are not. The "white cloud" surrounding the
reconstruction is due to the noise and the lack of angles to properly reconstruct the
object.

Figures [[TT.9] and [[TT.10] present results on another mosquito wing directly placed
on the sensor and imaged in the p-mode. The data set is composed of acquisitions
done every Ap = 1° from ¢ = —50° to ¢ = 50° in RGB. The data are aligned by
the least square minimization method on the raw data and then back-propagated.
The total reconstructed volume is ~ 1.65 x 1.65 x 2.34 mm? ~ 6.10 mm? with visible
details as small as ~ 5 um.

Nevertheless, unlike the reconstruction presented in the #-mode, the resolution
is not isotropic. On a plane parallel to the sensor (top-left view in figure
the resolution is comparable to the resolution of the sensor whereas it gets worse on
the orthogonal axis as one may see on the top-right view in the figure. It is due to
the bow-shaped artifact that one can see on the bottom-left view and highlighted
in blue.

These artifacts can have numerous causes such as the limited angular coverage,
or alignment problems. But one can note that they are arched around the rotation
axis. Consequently the main cause seems to be a problem with the straightening
step, which is maybe not a good enough approximation of the projection that one
could get with a normal lighting on the sensor. Moreover, it is possible that the
angle used to straighten may actually not be strictly equal to the lighting angle due
to refraction effects between the air and the glass above the sensor. More studies
are needed to accurately conclude on this point.

Concerning biological data in the #-mode, none of 3D reconstructions is relevant
enough to be presented because of the reasons given in section In the p-mode,
figure [[IT.T1] presents the 3D reconstruction of the data introduced in figure [[II.4]
The data set is composed of acquisitions done every Ap = 1° from ¢ = —50°
to o = 50° in RG'B. The data are aligned by the least square minimization method
on the raw data and then back-propagated. The total reconstructed volume is ~
2.36 x 2.36 x 4.17 mm? ~ 32.9 mm?3.

The colored arrows point at the isolated single objects identified in figure
and lying outside the network plane. The global structure of the network is visible.
At first glance, it appears spread two-dimensionally: the cells mainly grew on the
surface of the Matrigel®. Nevertheless, the side views show that the structure is not
strictly planar, but slightly twisted, as emphasized by the red dashed lines.
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Figure I11.8: Reconstruction of a mosquito wing with the #-mode. Gray background
pictures are 2D visualizations whereas black background pictures are 3D visualiza-
tions. The 2D visualizations present the data after the reconstruction step at two
different acquisition angles. The red framed medallions are zooms on the 2D data
whereas the green framed medallions present zoomed regions on the 3D visualization
at full resolution. On the blue zoom, the dots on the wing are ~ 5 pum large while the

small hair are ~ 70 um long. Reconstructed volume: ~ 2.8 x 2.8 x5 mm? ~ 40 mmS3.

As noticed previously, the reconstruction quality appears much better in the
plane parallel to the sensor than on the orthogonal direction. The bow-shaped
artifacts are once again visible on the top view. They have a spatial extension of a
magnitude bigger than 200 pm whereas a typical cell diameter is approximately ~
15 pm.

Figure also presents a 3D reconstruction performed directly on the raw
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2 A first 3D reconstruction method based on the Radon transform

Figure I11.9:  Top line - Acquisition on a mosquito wing laid directly on the sensor
in the p-mode at three different angles. Bottom line - The corresponding 2D back
propagation after the straightening step. The red arrows point at a speck of dust
on the sensor.

data in the red channel™® On the red and green framed medallions, one can see
the tubular reconstruction of the network and the spherical aspect of single objects
due to the holograms shape. It shows the necessity of the focusing step by back-
propagation to get resolved reconstructions.

Figure [[IT.12] presents a 3D reconstruction on a smaller sample, giving a better
idea of the reconstruction resolution and its artifacts. These are single isolated cells
embedded in Matrigel® capsule The data set is composed of acquisitions done
every Ap = 1° from ¢ = —30° to ¢ = 30° in RGB. The data are aligned by the least
square minimization method on the raw data and then back-propagated. The total
reconstructed volume is ~ 942 x 942 x 1336 um3 ~ 1.2 mm?®. The cells are ~ 20 um
wide and the capsule at the center of the frame is 360 um in diameter.

Once again, even if the distribution of the cells on the z-axis is clearly visible,
the image quality remains better on the xy-plane. The objects pointed by the green
arrows appear badly focused because they are not on the capsule plane, chosen as
the distance for the back-projection step. This shows again the limitation of this

15Where the holograms are consequently the most spread.
16See chapter [[V] section [5.1] for more details on the cells conditioning and the culture protocol
to produce Matrigel® capsules.
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Figure I11.10:  The three orthogonal views of the 3D reconstruction of the data
introduced in figure [II.9) The green framed area is a zoom on a tear in the wing.
The red arrows point at the dust on the sensor identified in figure [I1.9. The blue
curves emphasize bow-shaped artifacts. Reconstructed volume: ~ 1.65x ~ 1.65x ~
2.34 mm3 ~ 6.10 mm3.

method.

The main observation is that only a ring surrounding the cells is reconstructed,
although the capsules are roughly spherical. Once again, this can be assigned to the
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2 A first 3D reconstruction method based on the Radon transform

Figure I11.11: The three orthogonal views of the 3D reconstruction of the data
introduced in figure [[I1.4] The green and red framed zooms are reconstructed with
the same dataset but aligned by correlation and without the refocusing steps in
the red channel. The arrows point at the features identified in figure [II.4] The
red dashed lines indicate the average 2D surface on which lies the cell culture. It
is not strictly a plane and depends on the position in the culture. Reconstructed
volume: ~ 2.36 x 2.36 x 4.17 mm? ~ 32.9 mm?.
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Figure I11.12: 3D reconstruction of isolated cells embedded in Matrigel® capsules.
The top line presents the raw data at ¢ = —30° and 0° in the red channel and
a zoom on a capsule. The associated back-propagations are on the middle line.
The green arrows point at badly focused single objects which are not in the plane
of the capsules. The bottom line presents the 3D visualization. Reconstructed
volume: ~ 942 x 942 x 1336 um? ~ 1.2 mm?.
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3 A second method based on z-stack acquisitions

limited angular coverage. This consequently gives a limitation on the objects one
can expect to reconstruct.

A second observation is the non-uniformity of this ring. This comes from the
fact that the lighting is fixed on a rotation axig'"} limiting the possibilities of points
of view on the object. Consequently, the capsule surface is better reconstructed
orthogonally to the rotation axis (left and right sides) than on the axis (at the top
and the bottom).

Finally, figure [[TII.13] presents a reconstruction of a culture grown in a top coat
condition: the seeded cells are overlaid with Matrigel® instead of culture medium{™]
This prevents the cells from forming a network as previously presented in figure[[II.11
for example. The data set is composed of acquisitions done every Ay = 1° from ¢ =
—30° to o = 29° in RGB. The data are aligned by the least square minimization
method on the raw data and then back-propagated. The total reconstructed volume
is ~ 1.77x ~ 1.77x ~ 3.0 mm? ~ 9.42 mm?3.

Once again, the culture presents an overall 2D structure because of the way
the cells are initially spread on their Matrigel® bed. The interesting thing in this
reconstruction is that a branch grew orthogonally to this plane on more than 600 um
as one can see on the side view of the 3D reconstruction. It appears to be an
isolated behavior that one could easily miss with standard microscopy. It emphasizes
the potential of the 3D lens-free microscopy to identify rare events thanks to the
possibility to reconstruct large volumes.

To conclude, this section introduces the first 3D reconstructions obtained by the
lens-free imaging setup. Performed with a basic algorithm developed with strong
approximations, this algorithm can work fast (a few minutes) on large volumes,
using the full potential of the large field of view allowed by the lens-free technol-
ogy. The results show nevertheless the potential of the 3D lens-free tomography.
Indeed, the global shape of the samples are retrieved and the position of the single
objects isolated from the main structure can be determined. Lots of artifacts remain
nonetheless and the future approaches need to correct them.

3 A second method based on z-stack acquisitions

This section presents an algorithm developed to be an alternative solution to
traditional methods that use multi-angle acquisitions and the Fourier diffraction
theorem.

As the results are not convincing, it will not be described in details. Nevertheless,
it is important to mention it in this thesis as the negative results emphasize the need
to multiply the viewing angles. Moreover it introduces the formalism of the iterative

inverse problems. It is indeed the first implementation of such an approach in this
PhD work.

1"The rotation axis is vertical on the top view of the capsule.
18See chapter section [5.1| for more details on the cells conditioning.
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Figure 111.13:  Left column - Raw data of RWPEL cells grown via a top coat
protocol and the associated back-propagation for a normal incidence. Right col-
umn - 3D reconstruction of the cell culture. The reconstructed volume is ~

1.77 x 1.77 x 3.0 mm?® ~ 9.42 mm?. The arrow points at a branch which grew
inside the Matrigel®.
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3 A second method based on z-stack acquisitions

3.1 Motivation of the method

As mentioned earlier, biological samples strongly limit the acquisitions possi-
bilities. Multi-angle views on Petri dishes can only be achieved with the ¢-mode
and the angular coverage is constrained by the wall height. Things get worse if one
considers cultures in multiwell plates in which the culture size on the xy-plane is in
the same order of magnitude than the walls height.

The method described in this section is not based on multi-angle acquisitions,
but on acquisitions done behind the sample for different distances of the sensor zg,
solving the problem raised by multiwell plates or other container with limited angular
coverage.

Indeed, the hologram shape is characteristic of the distance of propagation: for
a scattering sphere, the size of the resulting rings will increase with the distance
of propagation. One can consequently speculate that having holograms at different
distances could give some information about the distance of the object, thus how to
retrieve it.

Moreover as mentioned in chapter [[I, section [3, one can get a simulated total
wave on a volumeEl, given a volume object correctly padded with zeros. This is the
situation symbolized by the red arrow in figure [[I1.14]

|k,

Zmin
O <~-=-=--- =
0 [®) o o
elkoll7 I
B
7
J-Uinc —>
Zmax <=
Is deconvolution
possible?
0 D >
Not
physical
0-padding Utot
Z

Figure I11.14: Ilustration of the simulation of the diffracted wave on a volume
composed of three identical spheres given a correctly padded object (red arrow)
according to equation for an incident lighting normal to the sensor plane.
The diffracted wave is computed on a volume. The counterpart of the zero-padding
is that half of this volume is not physical (crossed out in red in the figure) and
contains the wrapping artifacts of the FFT (see figure . The green volume is
the one physically reachable by acquisition.

19Gee the simulations based on the Born approximation and its convolution formulation (IL.37).
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One can consequently think of a reconstruction method based on the reverse
way: knowing the diffracted wave on a volume behind the object (the green cube in
the figure) could allow retrieving this 3D object using the convolution formulation.
The main pitfall is that, as described in figure the counterpart of the zero-
padding operation leads to a non-physical diffracted wave on the simulated volume
which is not taken into account in the simulation process. But as one can see on the
right side of the figure, these artifacts contain strong information on the position
of the objects. When the wrapping effect loops on the spheres, the phase Shif@
introduced by this wrapping produces important changes in the holograms.

The aim of this section is to find a deconvolution method to retrieve the object
from such a z-stack acquisition (the green arrow in the figure). It is mainly based
on numerical simulations since such z-stack acquisitions cannot be captured with
the developed prototype.

3.2 Few tests of deconvolution

The algorithm which is developed to retrieve the object is described in fig-
ure and is based on a Gerchberg—Saxton algorithm structure, as the ones
developed for RG B phase retrieval and presented in chapter [[, section [3.2]

The challenge here lies in the deconvolution step. Indeed, based on equa-
tion , one would like to retrieve f with:

D

Fsp (fUine) = 7 (ITL.1)

L . K2 7
where: D = Fsp (Uyiy) and H = Fp i 7 )"

But this kind of method is very unstable, especially for noisy data and it diverges
rapidly during iterations. Filters are needed to prevent this.
Different types of deconvolution filters are tested.

Wiener filter - In this situation [81], equation ([II.1)) becomes:

———D (I11.2)

Vi
fBD (fUznc) = T2
H| +

0|z

where N and S are the power spectral densities of the noise and the signal Uy . H
is the complex conjugate of H.
Low-pass filter - This filter selects the propagating frequencies according to

the modulus of H if it gets to low compared to a given value 7:

f
f

(I11.3)
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208ee for more details.
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Step 1:
Initialization

Step 2:

Deconvolution

o

Step 5:
Data
fidelity
Step 3:
0-padding

Step 4: m /"W\

Propagation

Figure I1I1.15: Hlustration of the iterative algorithm which is developed to retrieve
the object. Step 1: the dataset, in green, is first initialized on the non-physical part
due to the volume padding. Step 2: deconvolution of the diffracted volume towards
the object. Step 3: forcing the 0-padding. Step 4: simulation of the diffracted wave
due to this padded object. Step 5: to ensure data fidelity, the intensities in the green
volume are replaced by the recorded intensities. The algorithm then loops over the
steps 2 to 5 until convergence.

Adapted low-pass filter - This filter, inspired from [46], changes the modulus
of H if it gets to low compared to a given value 7:

A

H

1 .ei arg(ﬁ)

f
f

Fan (F-Upne) ith A it |H| > 7 (IT1.4)
Uine) = W1 = N .
P if || <7

mn‘ o>

These filters prevent the amplification of the frequencies when H becomes too
low and can consequently act as low-pass filters for the noise frequencies.
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Different tests are performed on a simulated object composed of three identical
spheres and all give results similar to the one presented in figure [[1[.16, The recon-
struction is accurately positioned on the xy-plane but fails to constrain the position
on the z-axis, producing hourglass-shaped patterns. It can nevertheless be noticed
that these hourglasses focus at the correct z of the objects.

z-stack Filtered

simulation deconvolution

Figure II1.16: Test of an iterative deconvolution on simulated data. The simulated
volume is composed of 256 x 265 x 256 cubic voxels with a side of 1.67 pm and con-
tains three identical spheres of radius r. = 10 um and with ny = 1 and én = 0.005:.
The propagation distance is z;, = 1.5 mm and A\g = 630 nm. The reconstruction
appears to be very good for the xy-positions but totally ineffective along the z-
direction even if the hourglass-shape is more focused around the correct positions
of the spheres on the z-axis.

Different values are tested for 7 or N/S leading to either a divergence of the
iterative reconstructions or these deformed hourglass-shaped reconstructions. It
is also tested to initialize the algorithm with the targeted correct solution and it
appears to be not stable: the simulated objects shifts also towards hourglass-shaped
objects.

These solutions seem consequently not restrictive enough on the z-axis to be
satisfactory. But looking closer to the results in figure [[II.16] one could expect
that an algorithm forcing the object to be spatially limited would tend to focus the
objects around their correct positions, where the hourglass-shape is narrower. This
leads to the first inverse problem approach developed in this PhD work.

3.3 Toward iterative inverse problem approaches

An inverse problem approach to retrieve an object is based on the knowledge of
the direct model which allows simulating data (here |Utot]2) for a given numerical
object (here the scattering potential f).

Thus, for any object, one can estimate "how far" it is from the recorded data
(here the intensities 1) for a given choice of a "distance'. Here, the "distance" will
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3 A second method based on z-stack acquisitions

be the Euclidean norm, or ly-normPT}

10 (1) - 1] = J S (U (DE, — 1)’ (111.5)

pizels; j

Retrieving f consequently becomes a minimization of this distance to best match
the data. But this method also provides regularization tools if some of the object
properties are known such as its sparsity, a possible bounded domain, and so on.

In this section, the retrieved f is then the solution of the following minimization:

7 1 2 12
= ar mm— — Dl + I
I= g nb;nbynb, s N Z H‘ fot ’ d HLa nb, nb nb, 11z, e
data fidelity Jg(f) sparsity constraint Jp, (f)
(I11.6)
oo lnb ~ and — n}) —— are normalizing factors, nb,, nb, and nb, still being the
x WPy ltVz,s 0y MO~z

voxels number in each direction of the reconstructed object f. The index s stands
for "'sampled". Indeed, one may work only on a limited number nb, s of slices in the
simulated volume Ug;y which possesses nb, slices.

The data fidelity is composed of a Surgmation on j, standing for the N lighting

directions and wavelength illuminations kgj (several wavelengths can be used for a
same lighting direction and vice versa).
As defined in appendix @, £l is the "relaxed" L;-norm of the object:

e = 2 Vifial +€ (ITL.7)

vozels; j i

Minimizing this norm consequently tends to favor sparse reconstructions. py, is
the hyperparameter weighting the sparsity constraint Jr, (f) compared to the data
fidelity J4 (f) in the global cost function:

() = Ja(f) + prr, i e () (IL.8)

It remains C' (f), the constraints on the definition domain of f. It can be for
example the whole complex plane C (f) = { J € Mup, nby mb. (C)} or a limitation
such as C (f) ={f/Z(f) <0}.

Noting samp the sampling operator on the nb, , kept slices in the simulated
— -
iky

volume, U? __the matrix e**¢ -(#3pvsp-z30) sampled on these slices and HZ, the matrix:

mce,s
152

~ k
Hi. = dx.dy.dzFFTsp (06
47

—k77> pad pad pad
o -\T3p "Y3D **3D

() () ()’ ) (I1L9)
ad i\ 2 ad N 2 ad 2
\/(ng + a:%) + (y§D + yé) + (ZgD + zs)

21Here it matches the definition given in appendix @] for W = 1. As mentioned in the appendix,
it is possible to weight each pixel for example to minimize the influence of hot or dead pixels.
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equation ([II.44) becomes:
Ul = Ul .samp <pad (FFng (ffﬁs.FFTw (pad ( f)))>> (I11.10)

All these operations are linear and one can use the matrix formalism as specified
in the appendix @ f, H,, Uéifs and U’

ine,s are consequently unfolded in their vector

shapes 7, H, ﬁfhﬁs and ﬁ{nc’s, f being decomposed on its real and imaginary
parts.

Let’s note P, P, F', F* and S the matrix representations of the linear opera-
tors pad, pad—!, FFTsp, F FT:;[I, and samp, and R2C' the matrix to get the complex
representation of a vector from its decomposition on the real and imaginary part. Let
also be diag the function turning a vector into a diagonal matrix whose coefficients
are the ones of the initial vector.

Equation (I11.10)) becomes:

-

fh.f’s:diag(ﬁj )XSxPixFixdiag<H§S> ><F><P><R2C><7

:Ox?

It comes from appendix D}

V4 = iy £ [0 [T (7) ([P (D) - T2

nbynbynb, ;N 7
(II1.12)

(I1L.11)

with:
=N\ . .
O* = R2C* x P* x F* x diag <H55> x F* x P* x §* x diag (U,,)" (IIL13)

where the Hermitian adjoint of a matrix M is M* = *M. Looking closer at the
matrix representation of each operation, it comes:

diag (7 = diag <

(I11.14)

)
. 1 ( g _ pi

ropping
O }padding pie —
(I11.15)
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1
S = = 5= 0 (II1.16)

O 0---010---0 :

0

1
1 1 1
R2C = = R2C* = _ (ITL.17)
1 )

—1i
Thus the adjoint of the padding operation appears to be its "inverse', the crop-
ping operation. The adjoint of the sampling operation samp* consists in adding
zeros in the matrix in the places of the volume slices which are not kept in the
sampling operation. Moreover, it is known that the adjoint of the Fourier transform
operation is its inverse function as it is a unitary operator [82]: F* = F" and F* = F.
Looking closer at the equation ([IL.17), it comes for a complex vector <

K R(7)
* o _ _
R[R2C* x 7] =R [( i =\ 7o) )= C2R () (I11.18)
This is the inverse operation C2R to go from a complex representation of a vector
to its decomposition on its real and imaginary parts.
Finally using the previous remarks and the matrix expression ([II.13), it is pos-
sible to express the gradient of the data fidelity in terms of the complex volume f:

1 =
=— N4, d—l(FFT1 (HJ FFT (
VJai(f) nbunbynb. N Z pa 3p | 11z, 3D

pad (saﬁplj(ffg;c,s.vg;m - (o 0] - 1))

Using the appendix @ to get the gradient of Jy, . (f), one has the numerical
expression of the gradient of the cost function (IIL.8) at a given f:

VI(f) =V Ia(f) + p2.V I, e (f) (IT1.20)

The gradient of the cost function being numerically calculated, one can now
iteratively solve the minimization problem (IIL.6) using descent gradient algorithms.
In this section, a BFGS algorithm?? adapted®| to boundary constraints is used.

22The Matlab® code which is used in this section is implemented by Mark Schmidt [83] and
runs a quasi-Newton strategy where the steps direction are computed with a limited-memory
Broyden-Fletcher—Goldfarb—Shanno algorithm [84].

23Thanks to Eric Thiébaut and Fabien Momey for its interfacing with Matlab.

(I11.19)
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Figure [[TI.T7] presents different reconstructions obtained with different parame-
ters. Noisy data are simulated to create a full volume of the diffracted wave surround-
ing the sensor plane nb, ; = nb,. The numerical object is composed of 256 x 265 x 128
cubic voxels with a side of 1.67 um and contains three identical spheres of ra-
dius r. = 10 gm and with ng = 1 and én. = 0.005:. The propagation distance
is zg = 1.5 mm.

[terative
reconstruction

S s

13 @

| [
STy, >0

Figure II1.17: The figure presents reconstructions obtained with different parame-
ters. First line - Data simulation process. Second line - Reconstructions performed
without regularization or constraint (C (f) ={f € C},ur, =0). It compares re-
constructions in terms of number of wavelengths (red channel or RGB) and angles
(p=0°o0rp e {-15°0°15°}). Third line - Influence of the regularization and con-
straints for data in the red channel at three angles. The iteration number is nb;; = 30.
All the 3D views are displayed with the same dynamics.

Multiplying the wavelengths does not appear critical when only a lighting angle
is used. It helps to minimize the effect of the noise in the reconstruction as it acts
as an averaging of several datasets (one per wavelength) but does not constraint the
objects on the z-axis. Thus, the inverse problem approach and the deconvolution
methods developed in leads to similar results. Even if not plotted here, these
conclusions remain valid if regularization is applied.

These reconstructions look very similar to a z-stack that one can obtain by a sim-
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3 A second method based on z-stack acquisitions

ple back-propagation at different distances from a given hologram (see figure .
These tubular shapes are consequently explained by the fact that a given hologram
can be due to different transmissive planes at different distances z, exactly as any
slice in the z-stack in figure [[T.15 produces the original hologram. Everything acts
as if the method reconstructs at once all these slices which are all correct in regard
of the simulated volume. It presents a similarity with X-ray tomography: it is not
possible from one angle to get where on the z-axis is an absorbent point. The fact
that the hologram changes along the diffracted volume is not enough restrictive.

Reintroducing angles in the method appears far more efficient to constraint the z-
positions. The third line in figure presents different tests of constraint and
regularization. It is tested to have a solution with a positive imaginary part Z (f) > 0
and the sparsity parameters are set to puz, = 250 and € = 107°. It appears that the
sparsity regularization is efficient to reduce the reconstruction artifacts.

=128 slices 26 slices ==13slices
3 slices 1 slice
S 1,10E-02 e i el
§ 1,05E-02 -
| = 1,00E-02
=
% 9,50E-03 -
(=]
B © 9,00E-03 ‘ ‘ | | ‘ |
0 5 10 15 20 25 30

Iterations

Figure I11.18:  Reconstruction of a simulated dataset for different slicing num-
bers nb, . First line - Data simulation process for three lighting angle, one per
channel R, G and B. Second line - Reconstructions performed for different slicing
numbers nb, , € {126,26,13,3}. Third line - Reconstruction with nb,; = 1 and
comparison of the evolution of the cost function during iterations.

As shown in figure [[TI.18] one can evaluate the influence of the number of kept
slices in the diffracted volume. The numerical object is the same as previously
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described with a spherical membrane surrounding the three spheres to simulate
cells embedded in a Matrigel® capsule. Its external radius is r,, = 70 um and its
internal radius is 0.974,. Its refractive index is 0ncqp, = 0.20n.

The reconstructions are similar, even if the more slices are kept, the smoother is
the reconstruction. But nb, s does not appear determinant in the objects separation
or location. The comparison of the convergence curves of the cost function with
these different slicing parameters shows that nb, ; does not influence the convergence
rapidity.

This method is consequently considered as being a dead end. Indeed, it appears
that multiplying the lighting angles is necessary, whereas the initial aim of the
method to work on a unique z-stack obtained with a normal incidence does not seem
to produce a better reconstruction than with only nb, ; = 1 acquisition. According
to equation ([11.19), multiplying the lighting angles leads to increase by a factor of
2 the needs of 3D FFT, which is rapidly time consuming. This is a strong limitation
in an iterative reconstruction method.

Nevertheless, a 3D reconstruction is performed on a real data set, presented in
figure [[T1.19] to show the feasibility of a first 3D object retrieval method taking into
account the diffraction process, in opposition to the Radon method introduced in
the previous section

Figure I11.19: Reconstruction of the dataset introduced in figure . The dataset
is composed of the three angles ¢ € {—15°0°,15°} in the three RGB channel,
aligned by LSM on the raw data. The reconstructed volume is ~ 585X ~ 585X ~
214 pum? ~ 0.07 mm?3.

No constraint on f is applied and the sparsity hyperparameter is set to pp, =
250. The reconstructed volume is composed of 350 x 350 x 128 voxels, with a
side of 1.67 um. The distribution of the objects on different planes is visible. As
previously noted in figure the capsule is not uniformly reconstructed because
of the limited angular coverage and the orientation of the rotation axis.
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4 A third method based on the Fourier diffraction
theorem

This section is mainly based on the content of the article published in the Biomed-
ical Optics Express journal [80] and uses the formalism developed in chapter
section [3

4.1 Overview of the method: a Fourier mapping

As mentioned in chapter [[I, section 2] the Fourier diffraction theorem can either
be used to go from the object f toward the diffracted wave Uy, ¢ for simulation pur-
poses, or from the diffracted wave to the object for reconstructions (see figure .
The latter is used in this section.

Let’s assume that one }ES a dataset of N acquisitions recorded under different
illumination situation {k[/]j =kJ (pé, @, mg))} .

J€[1L,N]

The discrete formulation of the Fourier diffraction theorem introduced in
chapter [T} section [3| can be reversed to map the Fourier domain of the object f
for a given illumination j from a hologram pattern centered on (x%,yé) on the

corresponding cap cap’:

FFTsp [pad (f)]|capj = interp ! <H§S.M(]}.FFT2D [pad (M; gif)} e

N P N gs  (II121)
(o, b (o + o8 + ) = wi))

. . j i j no.p? mno.¢ mno.mi
keeping the notations (u(j), vé,wé) = ( g\fﬁ, ijqo, =3 0), and where:
0 0 0

, 47 d , d , . pad | j  pad j
—2
H, = —w (a3 4, o35 + o) e imw (U5 e g )= (I11.22)
S Z 0

is a matrix which can be considered as a filter in the Fourier domain, characteristic
of the distance of propagation z,

J. pad j. pad

M, = e~ 2im(ehus et (111.23)

is a modulation matrix in the Fourier domain to translate Uy in the spatial domain
to (3, 43),
M = o=2im((e2ptad)ui+(v2p+u3 ) v3) (I11.24)
7 .

is a modulation matrix in the spatial domain to translate the spherical cap cap’ in
the Fourier domain of f according to the lighting illumination j.

24Let’s remember here that the information of the illumination wavelength is in the wave number
k_é; — k6] _ 27mng

(the norm of the wave vector): 3
0
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"interp~1" is the inverse function of the function "interp" for the nearest neighbor
technique: it consists in reversing the orientation of the blue arrows in figure [[I.7]

Let’s note here that a voxel can consequently be mapped twice or more (for
example (uip,l, wkv) in the figure). Several strategies can be applied here such as
an averaging. For the simplicity and the rapidity of the code, we decided in this
chapter to only keep one valud®] not taking into account the others. Thus, each
illumination j allows mapping the Fourier domain of the object on a spherical cap.

Noting interp; ' (M) = interp™ (M, (ug%d, v w (ug‘}jd + ud, v+ vg) — wé)g
an approximation of the 3D object to retrieve is finally given by:

Y

f ~ pad™* [FFT;,% <interpj€1[[17N]] (Hﬁs-M(]}-FFTzD [pad (M]Jc ézf)D Zi)]

(I11.25)
Let’s note here that this method only gives a very sparse estimation of the Fourier
transform of the object as one can see in figure[[TI.20] The coefficients which are not
mapped are set to zero and one can expect numerous artifacts in the reconstructions.
This sparsity is due to the finite number of acquisition angles but also to the
limitations of the angular coverage of the ¢-mode. One can indeed notice that this
mode strongly limits the access to the part surrounding the vertical axis and the
rotation axis in the Fourier domain (along v and «).
Some interpolation methods could be applied to generate a fully filled 3D fre-
quency support but this is not in the scope of this section.

4.2 A phase ramp to compensate the lack of phase

One may have noticed that the introduced method is based on the knowledge

of the diffracted wave Ug;r. Nevertheless only the intensity of the total transmitted
2 ; C 2

= ‘Ufnc + Uj;;| is recorded by the sensor.

wave Itjot = ’Utjot
Hence one needs to approximate the diffracted wave Ugi s from I, To do so, I7.,

is normalized so that the background value, corresponding to the unperturbed inci-
dent wave, is equal to 1. Let’s note this normalized projection I7.,.
H

The square root of I7, is multiplied by a phase ramp etk 7 to _t>ake into account

the non-uniform phase shift induced by the tilted incidence of kj relative to the

- 7
sensor plane. Then the theoretical incident plane wave U? ik§ 7 s subtracted:

'mc_e

- .
ikg.? . U]

wmc

Usiy =\ i (IIL.26)

This formula is schematically represented in figure [[IT.21] This is a needed step
in the presented method. Indeed, the phase is very important since, inter alia, it
contains the inclination of the wave front. Without this information, the mapping
of the Fourier space with equation ([1I.25)) cannot work because the computed 2D

25 As mentioned later in chapter this is a critical choice. Averaging can greatly change the
reconstruction quality.
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Figure II1.20: Illustration of the method of the Fourier mapping with the notations
of figure The 3D frequency space of the object of interest f is mapped with the
2D Fourier transform of the projections U, g;f, U gff and Ugff. An example of a Fourier
region which is actually filled by the algorithm in the ¢-mode configuration is given
in the medallion in the 3D frequency domain part of the figure. It is the mapped
region for a volume of 512x 512 x 512 voxels with a voxel size of 1.67x1.67x1.67 um?
at Ao = 520 nm with an illumination angle varying from -30° (blue) to 30° (green)
with a step of 5° at a distance of z;, = 2.5 mm. The red cap corresponds to the
region mapped with the normal illumination.

spectra will be shifted in the Fourier space. Equation allows reintroducing
the information of the illumination angle in the data even if the simulated phase is
just an approximation of the real one.

This calculation does not totally compensate the lack of phase information at
the sensor plane. In particular, the phase distortion introduced by the object is
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Figure I11.21: Tllustration of the steps to get an approximation of U c]ﬁ s for a given j.

Module
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o

not taken into account and could be approximated by means of a phase retrieval
algorithm in order to diminish the artifactual twin-image [59] but is not in the scope
of this section and once again, one can expect artifacts in the reconstructions.

4.3 3D reconstruction and comments

In this section, only reconstructions on the RWPEL cell network data introduced
previously in figure are presented??]

The chosen angular coverage varies from -30° to 30° with an angular pitch of 1°
(for a total of 61 angles) and the reconstructed volume is 4 X 4 x 1.34 mm?, using
the data in the green channel: Ay = 520 nm. Presented in figure it shows
that the cells interestingly tend to form a structured network as it is deduced from
figure [[TL.11]

Such a large volume is reconstructed by pieces of 1.34 x 1.34 x 1.34 mm?, i.e.
nine reconstructions. The data are divided into nine adjacent regions of interest of
size 1.34 x 1.34 mm? (800 x 800 pixels), as illustrated in figure The centering
of each projection is done with the least squares minimization method on the raw
data, applied relative to the central region of interest (red dashed in figure .
This central region of interest is also used by the focusing algorithm to estimate
the distance z; between the sensor plane and the cell culture. The eight other
regions of interest remain adjacent to this one whatever the angle of view, to ensure
the continuity in the 3D reconstruction. Each reconstructed 3D image has a size
of 800 x 800 x 400 voxels with the sampling rate 1.67 x 1.67 x 3.34 um?®. Owing to
this decoupling task, the reconstruction of a single region of interest has a size of
two gigabytes in double precision which can be handled on a desktop computer. As

3

26Let’s put the stress on the fact that in the current section, the reconstruction are done as if
everything is in the air: ng = 1. As presented in the next section [5] taking in account the refraction
in the illumination direction is essential to prevent any scaling factor along the z-axis. This means
that all the distances and positioning in z are not absolute but only relative in this section.
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Figure I11.22: Piecewise 3D reconstruction (imaginary part of f) of a large volume
(4 x 4x1.34 mm?) of the culture of RWPEL prostate cells. (a) 3 orthogonal sectional
views are shown, each one extracted at a given distance d = z; — z from the sensor.
(b) 3D views of the reconstruction from different observation points. The dash red
curves indicate the tilt of the network relative to the horizontal plane. The red
arrows point out isolated objects that are not focused at the same altitude as the
network.

a result the global 3D image has a size of 2400 x 2400 x 400 voxels and with the
same sampling rate, this whole image has a size close to 20 gigabytes.

The whole reconstructed volume f is shown in figure Let’s note here that
the reconstructed scattering potential f is a complex number. Only its imaginary
part which gives the most observable information is presented in this section. Three
different sectional views - xy (center), zz (right) and yz (bottom) - show that the
network formed by the cells is well focused at precise altitudes in the volume. The
network fits a surface which is not horizontal. That demonstrates that the recon-
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registration and focus reference

Figure I11.23: Extraction of 9 regions of interest of size 1.34 x 1.34 mm? (800 x 800
pixels) for the piecewise 3D reconstruction of the 3D culture of RWPEL prostate
cells presented in figure [[T1.4]

struction algorithm effectively operates in 3D. Isolated objects are also focused apart
from the network at independent altitudes. Some of them are pointed out by red
arrows.

The central and top-right regions of the reconstructed volume of figure [[T1.22]
are detailed in figures [[T1.24] and [[T1.25] They correspond respectively to the central
and bottom-right regions of interest on the raw data in figure Each of these
figures represents the three sectional views - zy (center), zz (right) and yz (bottom)
- and a 3D view of the region of interest and two specific patterns such as a cell or
a cluster of cells which are pointed by arrows in the regions of interest. The rings
around the focused objects on the xy views are artifactual: this is the phenomenon
of twin-image, induced by the lack of absolute phase information in the data.

To analyze the performances of the setup and the 3D reconstruction algorithm
to recover unambiguously biological objects, a comparative study with 2D recon-
structions from 2D lens-free data acquired at the normal illumination (¢ = 0°) in
the RGB channels is conducteﬂ The algorithm used to perform the 2D recon-
structions has already shown, as a 2D lens-free imaging application, its ability to
recover single cells and clusters while removing the twin-images.

Figure [[I1.26] shows the 2D reconstruction of a region of the studied field of
view. One can observe the efficiency of the reconstruction algorithm to recover
the biological scene showing branching networks, isolated clusters and cells. To

27Such algorithms are mentioned in chapter m section
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Figure I11.24: Region of interest at the center of the piecewise 3D reconstruction of
the volume [[I1.22] (a) Orthogonal views and 3D rendering of the region of interest.
(b) Orthogonal sectional views and 3D rendering on two specific clusters at the
full resolution of the reconstruction. These are pointed by arrows on the global
view. The dashed-line indicates the network plane. The red arrow points toward
a 33 x 38 x 42 um? object and the blue arrow toward a 16 x 17 x 40 um? object.

perform the comparison with the 3D reconstruction, three objects are selected from
the objects highlighted figures [[I1.24] and [[IL.25} two cells (see regions of interest 1
and 2 in figure and one cluster (see region of interest 3 in figure . Two
axial cut profiles respectively in x and y-directions are taken for both the 2D and
3D reconstructions, and one cut profile in the z-direction for the 3D reconstruction.
These cut profiles are illustrated on the three graphs in figure [[I1.26]
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Figure II1.25: Region of interest at the right corner of the piecewise 3D reconstruc-
tion of the volume m (a) Orthogonal views and 3D rendering of the region of
interest. (b) Orthogonal sectional views and 3D rendering on two specific clusters at
the full resolution of the reconstruction. These are pointed by arrows on the global
view. The dashed-line indicates the network plane. The red arrow points toward
a 12 x 43 x 96 um? object and the blue arrow toward a 80 x 80 x 100 um? object.

As a first observation, one can see that axial profiles are globally equivalent
in 2D and 3D, allowing to measure approximatively cell sizes of ~ 15 pum for the
region of interest 2 and ~ 30 um for the region of interest 1 considering the width
of the central lobe of the profiles (the secondary lobes are known to be twin-image
artifacts), which is consistent with typical cell sizes. For the cluster, the profiles
are more erratic but we can distinguish a kind of a plateau curve, the width of
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Figure I11.26: 2D reconstruction from 2D lens-free data acquired on the 3D culture
of RWPEL prostate cells presented in figure [I[.23] Comparisons of two axial cut
profiles respectively in x and y directions taken on both 2D and 3D reconstructions,
and one cut profile in the z direction taken on the 3D reconstruction, for three
biological objects: two cells, one identified in figure (region of interest 1 in
red) and one identified in figure (region of interest 2 in blue) and one cluster
identified in figure m (region of interest 3 in green). The dashed and solid curves
correspond respectively to the 2D and 3D reconstruction cut profiles.

which is measured at ~ 90 um. As expected, the observations are different in the z
direction and the resolution is clearly degraded: whereas the objects must have a
global isotropic behavior in terms of size in 3D, our measurements give ~ 80 um for
the cell in the region of interest 1, ~ 115 um for the cell in the region of interest 2
and ~ 200 um for the cluster in the region of interest 3. Moreover, the disparities
of the measurements for the cells tend to show that the apparent resolution highly
depends on the position of the object in the field of view: the more one goes away
from the center (from the regions of interest 1 and 2), the worse is the resolution in
the z-direction. Note that the term of "resolution" used here has not to be confused
with the strict definition of optical resolution. These are empirical measurements
that allow concluding that single biological objects are effectively and unambiguously
identified in the 3D reconstruction.
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Uncertainties in the calibration of the setup and the projection model can ex-
plain some artifacts in the image and the previous quantifications of figure [[T1.26]
For example the stretching of holograms is not taken into account in the registration
of the projections whereas it depends of the lighting direction. Thus some misalign-
ment can be present after the registration step. Moreover uncertainties remain on
these lighting directions, due to the multiple refractions in between the different
propagating media (air, culture medium, sensor glass, etc.) which change the illu-
mination orientationﬂ. The induced artifacts then get worse as the distance from
the center increases since the errors on the objects positioning grow with this dis-
tance. That is maybe why the artifactual bow shape around the single objects get
worse on the side, as one can see comparing figure [[T11.24] and [[TT.25 and the profiles
in figure [[T1.26]

As a conclusion, one can see that as for the method based on the Radon trans-
formP] this method can deal with large volumes in reasonably short timd®] But
the former can work directly on the volume slices whereas the latter must work
piecewise.

On the other side, the lack of absolute phase in the data leads to numerous
artifacts. Moreover, as for the reconstructions obtained with the inversion of the
Radon transform, the artifacts are highly anisotropic between the directions parallel
and orthogonal to the sensor, but also between the directions aligned or orthogonal
to the rotation axis. Indeed, the bow-shaped structures can once again be attributed
to the setup designm

5 A few thoughts on the lighting angles...

As mentioned in the previous section, some artifacts could be explained by some
uncertainties on the lighting angles. Indeed, the refraction effect at the different
interfaces is not taken in account and all the reconstruction parameters are set as if
everything is in the air: ng;, = 1.

But all the biological samples are embedded in a specific medium of refractive
index ng (generally water with a refractive index of ny,o = 1.33). The index jump is
not negligible and as presented in figure[[I.27]a it should lead to a difference between
the design angle 6,;,. of the light source position and the angle in the medium 6,
because of the Snell’s law:

| Nair. $I0 05 = 1. sin by | (I11.27)

To check if the holograms are indeed characteristic of the illumination angle 6y
given by equation ([I1.27)) a specific experiment is designed. Micro-beads are put

28See section |5| for more details.

29Gee section

30The longest parts are the 3D FFTs computations which remain limited, leading to a recon-
struction time in the order of one minute.

310therwise these artifacts would present a symmetry on the = and y-axes.
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in water and their holograms are recorded for different lighting angle ;. in the air
ranging from 20° to 50° (see figure [[I1.27\b).

30 6 (°) 60

Figure II1.27: (a) Optical scheme of the Snell’s law: due to the difference in refrac-
tive index between the air and the culture medium, the lighting angle is changed in
the medium. (b) Holograms of micro-beads in water for 6,;, = 20°. The red medal-
lions are zooms on a given region of interest for different angle 6 € {20°,35°,50°}
(c) To retrieve the lighting angle 6 from a given hologram, the diffraction pattern
is supposed to be cylindrical (green) with a radius of ry = b instead of conical
(red). a and b are the semi-axes of the ellipse. (d) Curves of the differences between
the measured angles within the cylindrical approximation and the real angle for a
radius of rg = 150 pwm and for different distances z; between the sensor and the
sample.

5.1 Method and experiment

To retrieve the effective illumination angle 6, for each hologram, the conical
hologram pattern is approximated by a cylinder of radius rg, cut with an angle 6,
by a plane rotated around the z-axis. In the rotated frame (A;2" = z,v/, 2’), using
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the notation in figure [[I1.27 ¢, the equations of the plane, the cone and the cylinder
are:

!/

2= —y'tanf and r = \/a2 +y? =1y <1 - Z) and rg = 2* + ¢ (I11.28)

Z0

This cylindrical approximation holds as far as the cone can be approximated by
a cylinder in the spatial extension of its intersection with the tilted plane, i.e. in
the range 2/ € [—z7,2"| where —z'~ and 2" are computed at the extreme two
intersections for x = 0.

Assuming this cylindrical approximation, it is possible to retrieve the illumina-
tion angle # from the characteristics of the ellipses shaped by the holograms. Indeed,
its semi-minor axis is directly b = 7y while its semi-major axis a is obtained in the

plane x = 0 where |y/| = ro. From equation ([II.28)), one gets:

cos

and then:

b
=Vi—¢ (I11.30)

cosf = —
a

where e is the ellipse eccentricity.

This must be compared with the theoretical value obtained with the intersection
with the conelﬂ In the frame (A;z,y, z), the expression of the coordinates (y', 2’)
are:

Yy =ycosf + zsinf and 2’ = zcosf — ysinb (TI1.31)

and in this frame, the equation of the plane is z = 0. From equation ([II.28]), the
equation of the ellipse is:

N
%+ y?cos’ O =1 (1 _ o > (I11.32)
<
and with tan a = rg/zg
2% + 229y tan® asin 6 + ¢/ (0052 6 — tan® a sin’ 9) =7y (I11.33)
The eccentricity of such an ellipse is then given by [85]:
2|1 — cos? 0 + tan® asin® 4|
e =
1 + cos? 0 — tan? asin? 6 + |1 — cos? 6 + tan? asin? 6|
B 2sin? 6 (1 + tan® ) (I11.34)
~ \ 2 —sin?0 — tan® asin® 0 + sin? 6 (1 + tan® @)
_ sinf
~ cosa

32Let’s thanks "gb" who gave some clues on a forum: http://www.les-mathematiques.net/
phorum/read.php?8,512589,512687.
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5 A few thoughts on the lighting angles...

and with zg = z,/ cos @

b 2
—=+1—-e2= 1—<1+Tg>sin29
a 2

&

7

=cosf,|1 — —sin’¥
2
S

This result ([I1.35) must be compared with equation ([I1.30). To get an overview
of the error made with the cylindrical approximation, figure [[II.27]d presents the

difference between the real angle 6, and the angle #,, measured within the cylindrical
approximation for different distances z, between the sample and the sensor and for
a radius of 7o = 150 um. This radius is in the order of magnitude of the diffraction
pattern of the beads on the z-axis for all the recorded angles:

2
= |cos?0 — 2 sin? 6 (IT1.35)

2
Al =0, — 0, = acos (cos 0,1 — % sin? HT) -0, (I11.36)
The figure shows that the difference is negligible (< 0.15° for the worst case
of z; = 1500 um). For the purpose of this section, the approximation gives a
sufficient precision.
To retrieve # from the numerous holograms present in the field of view and to
take into account that some of them may be overlapping, a special algorithm is
implemented. Presented in figure [[T[.28] it works as follows:

« Step 1 (a—Db): 2D Fourier transform of the field of view. In order to average
all the holograms, the phase of the Fourier transform is removed by taking its
absolute value.

e Step 2 (b—c): An inverse Fourier transform brings back the information in
the 2D real space. To minimize the influence of the noise, the obtained pattern
is oversampled by a factor of two using a bilinear interpolation and a blurring
Gaussian filter is applied.

e Step 3 (c—d): Computation of the gradient of the pattern to detect the edge
of the interference rings.

o Step 4 (d—e): Thresholding to select only the minimal values of the gradient
(dark and light rings of the pattern).

e Step 5 (e—f): First automatic gues§™| of the illumination tilt 6 as well as its
rotation ¢ around the z-axis.

o Step 6 (f—g,h): Refinement™] of the illumination parameters (6, ¢) by fitting

33Using regionprops(..., ’Centroid’, ’Area’, ’MajorAxisLength’,
’MinorAxisLength’, ’Eccentricity’, ’Orientation’) in Matlab®.
34Using fminsearch in Matlab®.
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ellipses in the dark regions of the threshold picture.

The robustness of the algorithm is tested on simulated data for different values
of € and ¢. Table shows a good agreement between the input values and the
values measured by the algorithm for high values of 6 despite it is tested in the
worst scenario of figure [I1.271d with z, = 1.5 mm. For low values, because of the
lack of specificity of the cosine function, the errors are bigger. On the contrary, for
high values of 6, the assumption of the cylindrical approximation provides very good
results.

0,C) ] 5 | 10 | 156 | 20 | 25 | 30 | 35 | 40 | 45
O, (°) | 89 [ 11.7 | 14.0 | 19.9 | 24.5 | 30.2 | 34.8 | 40.2 | 44.4
om(C)| 0 [ 25 [ 15 | 45 | 5 | 10 | 35 | 20 | 40
om (°) | -84 249 [17.3 [ 45.8 | 5.42 | 10.6 | 34.9 | 19.6 | 39.0

Table III.1:  Test of the algorithm of figure on simulated pictures. z, =
1.5 mm, nb, = nb, = 1024, nb, = 32, dv = dy = dz = 1.67 pm, 40 beads with
a diameter of 20 um with a normal dispersion of ¢ = 2 um and a refractive index
of én = 0.005¢ with a normal dispersion of o = 5.107%3.

5.2 Results

This algorithm is slightly changed before its application on the real data. Indeed,
because of the noise in the threshold images, the automatic step 5 fails. This step
is replaced by a manual guess of the parameters which are initialized to the awaited
values. The found ellipses are kept from one angle to the next and scaled according
to these awaited values to initialize the matching of step 6. The algorithm is used
to check if the theoretical values are in the order of magnitude of the ones actually
measured.

The angle determination is done on the 31 recorded angles 6,;. € [20°,50°] using
8 ellipses with width of 1.5 pixel. Figure [[II.29 presents the results for three angles.
For the last angles 0,;, € {49°,50°}, the matching of the fourth ellipse failed and
it merged with another one, giving the impression that only 7 ellipses are matched.
This does not change the interpretation of the results.

All the results”] are synthesized on the curves of figure [[I1.30}

Figure |[11.30[a shows that the measured sin6,, lie on a line in terms of sin ;.
It is in accordance with Snell’s law . A linear regression y = s.x gives a slope
of s = 0.758 with a coefficient of determination of R? = 0.995. With ng;, ~ 1, the
refractive index of the medium is given according to the Snell’s law by:

ng = ! ~ 1.32 (IIL1.37)
a

35The angle ¢ are not presented as they do not provide any interesting information in this
section.

98



5 A few thoughts on the lighting angles...
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Figure I11.28: Illustration of the algorithm to retrieve the illumination parame-
ters (6, ) on simulated data (a) with parameters (0 = 40°, ¢ = 20°). (b) Absolute
value of 2D Fourier transform of (a). (c) Absolute value of 2D Fourier transform
of (b), scaled by a factor of 2 and blurred with a Gaussian filter. (d) Edges of (c).
(e) Thresholding of (d). (f) Automatic detection of the ellipse patterns in (e). (g-h)
Results of the fitted ellipses on the threshold (f) and overlaid on (c).

99



IIT A wversatile prototype and first reconstruction algorithms

Fourier transform

Edge detection

Thresholded image

Figure II1.29:  Results of the algorithm for three different input angles 6, €
{20°,35°,50°}.

This is close from the value of the refractive index of water ngy,o = 1.33. This
is confirmed in figure .b where the ratio sin 6,/ sin 6, is plotted for different
values of 0,,.. Excepted for the high angles where the noise degrades the ellipse
matching, the curve is in good agreement with a constant value of refractive index
of ng = 1.33.

5.3 Conclusion and discussion

First, it is proven that, as expected, the angle of the lighting source 6,;,. is not
the one that should be used in the reconstruction algorithm. The holograms have
the characteristics of holograms created under a different angle of illumination 6.
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(a) 0,65 (b) 135
° 1,34
055 1,33
D 1,32
S %131

T045 ~
= c'bg 1,3
£ 129

%]
0,35 128
1,27
0,25 1,26
0,3 0,4 0,5, 0,6 0,7 0,8 20 30 40 50
sin 6, Oair

Figure II1.30: (a) Plot of sind,, (blue) as a function of sin f,;, and the associated
linear regression (black). (b) Plot of sin 0,/ sin 6, as a function of ;.

Then, the results show that even if the holograms are recorded in the air and
after the sensor glass, these layers do not change the holograms properties which
match the ones of the medium in which they are originating. Everything acts as
if the sample was illuminated by a source tilted at an angle 6y corrected from the
angle in the air 6., with Snell’s law .

It exists two ways to take into account this refraction effect in the numerical
reconstructions.

The first one is straightforward and consists in replacing all the angles 6,;,. in the
algorithm by their corrected value 6.

The second can be seen as an a posteriori correction and consists in a scaling
factor along the z-axis, all the reconstruction being done as if everything was in the
air. Indeed, looking back at the figure [[I1.27]a, it is possible to express the ratio of
the position z,;, in the sample measured in the reconstruction with the wrong angle
with its real position zg. From z,, tanf,;, = zptanfy and Snell’s law , it
comes:

20 tan 0,  sinf,, cosfy

Zair tan g sin 6y cos 0,4,

_ (IIL38)
Nair \/ 1-— Sin2 eair

2 2 2 in2 2
L nO/nair — NSl Ho/nair
1 — sin? 6,;,

Nair

(I11.39)

27,2 2
2 \/no/nair — sin® Oy,

1-— SiIl2 9,”'7"

Zair

This solution is also implemented to correct the 3D acquisitions in standard
microscopy when the refractive index of the sample medium n; does not match with
the refractive index ng of the air or the immersion oil used in the optics [86] 87]. It
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is interesting to notice the similarity of the corrective scaling factor:

2 2
29 ns — NA
o T \moNa (II140)

where N A is the numerical aperture of the objective.

These two methods are numerically equivalent to reconstruct a 3D sample. Both
of them give the same reconstructed volume.

Note here that the second solution cannot be implemented to correct the recon-
structions of the previous section [l Indeed several different angles 6, are used
in the reconstructions and a common scaling factor to simultaneously correct them
does not exist. This confirms that a part of the identified artifacts are due to a
non-rigorous use of the angles.
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Chapter 1V

A second design and new
reconstruction methods

This chapter represents mainly the work done at the end of the first year and
during the second year of the PhD program. From the experience and the con-
clusions of the previous chapter, a new prototype is built from a rethought design
adapted for standard culture protocols in Petri dishes. New reconstruction tech-
niques are implemented and tested on more complex 3D biological samples and first
comparisons with microscope views are made. They are all based on the Fourier
diffraction introduced in chapter [[I section [2]

This work has led to a second publication in the Applied Optics journal [88] and
an oral participation at BiOS 2017 [89).

1 Overview of the experimental bench

1.1 Design motivations

It has been seen in the previous chapter that the #-mode is hardly adaptable to
cell culture conditions and the reconstructions on biological sample are focused on
the ¢-mode, a mode in which the sample is fixed and the sensor remains parallel
to the Petri dish. This solution has the advantage of being completely adapted to
standard culture protocols. No sample preparation is needed and the Petri dish can
directly be put on the lens-free microscope. This solution is consequently kept to
design the new prototype.

Moreover, as noticed in section [ lots of artifacts in the reconstructions seem
linked with the geometry of the acquisitions, the lighting positions being constrained
to a single plane on the rotating arm. The artifacts surrounding the isolated ob-
jects are not isotropic but rather gathered in this rotation plane. A better angular
coverage had to be designed for the new prototype.

To choose among different possibilities, several solutions are numerically tested.
To do so, a 10 wm diameter bead is simulated in a volume of 3012 voxels of 1.67% pm?
with a difference of refractive index of on = 0.005:. For different designs, its holo-
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1V A second design and new reconstruction methods

grams are computed using the model developed in chapter [[I, section [3] in three
different wavelengths A\ € {640 nm, 520 nm, 450 nm} and z; = 1.5 mm. Both the
2D plane and the 3D volume are zero-padded.

These theoretical holograms are then used to reconstruct the bead with the
Fourier mapping method developed in chapter [[TI} section @] A noticeable differ-
ence is that contrary to the previous chapter, when a voxel in the Fourier space is
filled with different information due to the mapping method and the different light-
ing positions and wavelengths, the Fourier coefficients are computed as an average
of this overlapping informationﬂ. As in the previous chapter and contrary to the
simulations, no padding is applied in the 2D and 3D spaces.

Figures [[V.1], [V.2] and [[V.3| present the results of the reconstructions for differ-
ent design choices for one wavelength A = 450 nm. Each design uses 32 lighting
positions, equally distributed along different patterns.

Two noiseless reconstructions are performed in a comparison purpose. In the first
case, only the simulated intensities of the diffracted waves are used to reconstruct
the bead. As in standard in-line holography, the phase information is lost and is
compensated by a phase ramp, as presented in chapter [[TI} section [d] Artifacts are
awaited in the reconstruction (red frame in the figures). In the second case, the
importance of the phase information is highlighted by using directly the complex
diffracted waves to map the Fourier domain and shows the importance to perform
a phase retrieval step in the reconstruction algorithms (green frames in the figures).
The figures also indicate the position of the Fourier coefficients which are mapped
during the reconstruction (blue frames) and can be interpreted as the frequency
response of the lens-free microscope for a given design. The red and green frames
are only extracted parts of the reconstructed volumes of 1013 voxels centered on the
bead and can be interpreted as the point spread function of the prototype.

These reconstructions must be compared with the reconstructions of real 10 um
beads presented in the last chapter, section [3]

Figure [[V.I] compares the two acquisition modes of the first prototype. It sup-
ports the fact that a complete angular coverage with the 8-mode will always give bet-
ter results than the information available using the ¢p-mode. The filling of the Fourier
space appears more homogeneous and even without the phase of the diffracted wave,
the reconstruction in the #-mode gives a good result on the beadﬂ

In the p-mode, the Fourier filling is strongly anisotropic and this can be seen in
the 3D reconstructions which are not symmetrical. The reconstruction presents the
bow-shaped artifacts identified in the reconstructions of chapter [[TI] section [4

Some tests (not presented here) showed that the quality of the reconstruction is
more linked with the opening angle ¢,,,, than with the number of lighting positions
between —@,,.. and ¢,,q.. The parallax effect consequently appears to be the most
important factor.

L And not forced to be equal to the first information filling the voxel as previously.

2Note here that the 3D rendering view is more representative of the reconstruction quality than
the average intensity projections which squeeze the dynamics of the reconstructions by dividing
the high value of the reconstructed bead by the number of voxel along the projection axis.
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50 um

e

Figure IV.1: Comparison of the two designs for 32 lighting positions of the first
prototype (white medallions). (a) #-mode. (b) p-mode, ¢ € [—45°,45°]. Average
intensity orthogonal projections and 3D rendering of the accessible Fourier coeffi-
cients (blue) and the numerical reconstructions of a simulated 10 gm bead without
(red) and with (green) the knowledge of the phase of the diffracted wave.
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50 um

Figure IV.2: Comparison of two designs for 32 lighting positions (white medallions).
(a) Crown with an opening angle # = 30°. (b) Crown with an opening angle § = 45°.
Average intensity orthogonal projections and 3D rendering of the accessible Fourier
coefficients (blue) and the numerical reconstructions of a simulated 10 pm bead
without (red) and with (green) the knowledge of the phase of the diffracted wave.
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1 OQwverview of the experimental bench

Figure IV.3: Comparison of two designs for 32 lighting positions (white medallions).
(a) Orthogonal cross (0,4, = 45°). (b) Double crown (6 € {30°,45°}). Average in-
tensity orthogonal projections and 3D rendering of the accessible Fourier coefficients
(blue) and the numerical reconstructions of a simulated 10 pum bead without (red)
and with (green) the knowledge of the phase of the diffracted wave.
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1V A second design and new reconstruction methods

This remark leads to the new kind of designs presented in figure [[V.2] based on
a crown, similar to the one used in the 3D Cell Explorer (Nanolive [42]). Using the
notations of figure for the new definition of the angles # and ¢, this crown is
composed of lightings tilted by an angle of § = 30° (a) or § = 45° (b) compared
to the sensor plane and are equally spread on ¢ € [0°,360°] (Ap = 11.25°). It
appears that this solution provides a better and more homogeneous coverage of the
Fourier domain of the object than the previous design constraining the positions
on the plane ¢ = 0°. The artifacts are localized on a cone whose opening angle is
directly 6 and produce a lower unwanted signal. The reconstruction of the bead is
better and as expected, the wider the crown is open, the better the reconstruction
is. As the parallax effect increases, the spatial extension of the bead along the z-axis
diminishes.

To confirm that this choice is the most adapted to the needs, two other inter-
mediate designs are tested. A cross with 16 positions along ¢ = 0° and 16 positions
along ¢ = 90° with theta equally spread in § € [—45°,45°] (Af ~ 2.8°, figure[[V.3]a)
and a double crown with 16 angles spread at § = 30° and 16 other at § = 45°
(Ap = 22.5°, figure b). To maximize the coverage, the two crowns present on
offset of ¢y = 11.25° to intercalate the upper crown between the positions of the
lower crown.

The cross design leads to a double bow-shaped artifact around the bead, similar
to the one seen in figure [V.Ila but in the two orthogonal planes of the cross and
with a reduced amplitude. The results remain better with the crown solution, even
with an opening angle 6 = 30°.

The results given by the double-crown design are better but present both the
artifacts of the single crown design at the two angles in figure[[V.2] Two cone shapes
are interlaced and the upper crown degrades the reconstruction on the z-axis.

This confirms that a single crown with a high opening angle remains the best
tested solution. This can also be intuited by the fact that, as the opening angle
increases, this design tends toward the #-mode which is proven to be the best in
figure [V.1]a.

These different designs are also tested on a more complex numerical sample and
reconstruct with the inverse problem approach developed in chapter [[TI section [3]
The volume presented in figure .a is composed of composed of 128% voxels of
1.67% pum? for a volume of 2143 = 9.8 10° um? and is composed of cells of radius
10 pm and refractive index difference of on = 0.005; with a normal dispersion of
on/10 . These cells are randomly spread in two clusters of 50 cells and two trains
of 250 cells crossing the volume.

The figure presents the average intensity orthogonal projections colored accord-
ing to the depth of each view as well as the 3D rendering of the reconstructed
for different lighting designs composed of 16 positions. The simulated datasets
are simulated in the blue channel A = 450 nm. The 2D and 3D spaces are zero-
padded for the reconstructions. The hyperparameter value is kept to u, = 250 for
nb; = 30 iterations. The p-mode with 6 € [—45°,45°], ¢ = 0° (b), the cross with
0 € [—45°,45°],p € {0°,90°} (c) as well as two crowns with § = 30° (d) and 6 = 45°
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100 pem (b) (c)

(d) (e)

Figure IV.4: Comparison of different designs on a simulated complex object and its
holograms reconstructed with the inverse problem approach developed in chapter [T}
section [3] Average intensity orthogonal projections and 3D rendering of the initial
object (a) and the reconstructions for the design (b) 6 € [—45°,45°] ;o = 0°, (¢) 0 €
[—45°,45°] , o € {0°,90°} (d) 0 = 30°,¢ € [0°,360°] and (e) 0 = 45°, ¢ € [0°,360°].
The color codes for the depth in each view: the shallowest in blue, the deepest in
red.

(e) with ¢ € [0°,360°] are presented.

Similar conclusions concerning the design can be driven from these reconstruc-
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1V A second design and new reconstruction methods

tions. Comparing (b) and (c), the clusters are better reconstructed with the cross
design with artifacts which appear similar on the xz and yz-views whereas they
seem better determined on the yz-view for the p-mode reconstruction.

But the best results are given by the crown design. Even if at § = 30° (d) the
maximal angular coverage is less important than for the cross (c¢) for example, the
reconstruction quality is better and allows to separate the two trains of cells and
reduces their spatial extension along the z-axis. And as expected, the best results
are given by the last design (e) where the lighting angle is set at 0 = 45°.

Finally, the effect of multi-wavelength acquisitions is tested on the numerical
object introduced in chapter [[I, section [3] and composed of three spheres. Data
are simulated for the blue channel A = 450 nm and for a RGB illumination \ €
{640, 520,450} and reconstructed by Fourier mapping as presented in chapter [[TI,
section [l

The results are presented in figure In the absence of phase information, the
simulation shows the presence of the twin-image artifact on the zy-views when only
one wavelength is used for the reconstruction, as previously seen in the previous
chapter, section [4] in the reconstructions of biological data. As for the 2D recon-
struction, the use of a RGB lighting slightly reduces this artifact which remains
nevertheless present.

100 pm

Figure IV.5: (a) Numerical tests of the chosen design on the three beads in-
troduced in chapter [[I, section Comparison of the reconstructions with only
the blue wavelength (B) A = 450 nm or the three available wavelengths (RGB)
A € {640 nm, 520 nm, 450 nm} and with and without the knowledge of the phase
of the diffracted wave (y).

But the best mean to completely erase this artifact is to use the phase informa-
tion. The effect is so effective that no difference clearly appears between the one
lambda or the RG B reconstructions.
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1 OQwverview of the experimental bench

This simulation emphasizes the important role of the phase information in the
reconstruction and the necessity to perform efficient phase retrieval in the recon-
struction algorithms.

1.2 First acquisitions and reconstructions

Following the conclusions of the previous section, the crown design giving the best
results on simulations in terms of reconstruction, a new prototype is built. Presented
in figure [IV.6] it uses the same sensoif| and LED] used in the first experimental
bench.

Semi-coherent illumination
e about angle ¢
9 / ( g

~20cm

A
1
1
[
[
1
1
1
1
1
[ Microswitch
[

[
1
1
1
1
A 4

Figure IV.6: Proposed design for the second prototype. It introduces a new defi-
nition for the angles 6 and ¢, the inclination angle of the lighting compared to the
sensor plane and its rotation angle around the fixed sample.

The sample is hold above the sensor. The height of the sample holder can be
adjusted by screws. The sensor and the lighting are fixed on a stepper motorEl and
rotate according to the angle ¢ around the sample. The angle 6 between the normal
to the sensor and the lighting position is fixed at 6 = 45°.

The drawback of this design is to keep a moving part in the device via the stepper
motor. Nevertheless, this solution allow shifting the sensor so that the hologram of

3IDS - 29.4 mm?, 3840 x 2748 monochromatic pixels, pixel pitch 1.67 um - ref. UI-1492LE-M

4LED CREE RGB, \g = 640 nm, A\g = 520 nm, A = 450 nm - ref. XLamp MC-E RGBW
MCE4CT

Sref. RS-535-0401, 0.9°, 44 Nem, 2.8V, 1.68 A, 4 Wires
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the biological sample remains centered in its field of view whatever the value of .
This solution consequently maximizes the available field of view and the 3D volume
which can be reconstructed. With a fixed sensor and the use of an array of LEDs
such as in [70], the field of view is indeed reduced. Moreover, more angles can be
acquired around ¢ instead of the limited discrete number of positions available in
an array.

Microswitchesﬁ are used to detect the sample holder in order to stop the stepper
motor before hitting its arm.

Figure [[V.7] presents the first data (a) and reconstructions on bubbles and dust
lying at the bottom of a Petri dish (b-h). The reconstruction parameters are ¢ €
{0°,282°}, Ap = 18.8°, § = 45°, A € {630, 520,450 nm}, z; = 2.8 mm, 512 x 512 X
256 voxels of 3.34x 3.34 x5.32 um? for a final volume of 1.7x 1.7 x 1.4 mm? ~ 4 mm?.

As mentioned at the end of the previous chapter in section [5] a scaling factor is
applied on the z-axis using equation ([I1.39) as the data are reconstructed for an
angle 0 = 0, = 45°: 20/ 24 = 1.5930.

The 1024 x 1024 pixels data of 1.67 x 1.67 um? are aligned using the least mean
squares minimization algorithm on the raw data, using the central bubble hologram
as alignment pattern.

The reconstructions are performed via the Fourier mapping method. Contrary
to chapter [[TI} section [4, the overlapping information in a given voxel during the
mapping are averaged.

Compared to the results presented in this former section, the reconstruction
quality is greatly improved. The artifacts seem homogeneous on the whole field of
view and with a reduced spatial extension on the z-axis for the small objects. On
the big bubbles, limits of the design appear with shadowing effects which create the
straight artefactual sides on the bubbles. They are inclined by the angle 6, ~ 32.1°,
corrected from 6., = 45° in the medium of refractive index ny = ny,0o = 1.33
according to the Snell’s law ([IL27).

The twin image artifact is present, especially around the big objects

A zoom on a reconstructed particles of dust (h) shows that the artifacts sur-
rounding small objects are coherent with the reconstructions of the numerical bead
for the choice of the design in figure [[V.2]

A closer look at the artifacts shows that their shape (g) is characteristic to the
lighting positions. Out of focus, they shape a ring of small artifacts, spread according
to the lighting positions and merge with the focus on the object. On this artefactual
ring, it is possible to identify the missing angles in the angular coverage due to the
sample holder which limits the available range for ¢ to ¢ € [0°,285°].

Different padding situations on the 2D data and the 3D volume are tested and
plotted using maximum intensity projections to limit the influence of the noise and
artifacts in the projected views.

As seen qualitatively in figures (b-e), the padding operation does not dramatically
change the reconstruction quality.

Sref. RS-686-6840, SPDT-NO/NC Simulated Roller Lever Microswitch, 5 A, 125 V ac
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Figure IV.7: First data and reconstruction with the second prototype on bubbles
and dust at the bottom of a Petri dish filled with water. (a) Raw data in the
red channel for ¢ = 0°. (b-e) Comparison of the influence of the padding on the
reconstructions on the xy and zz-maximum intensity projections. (b) No padding.
(c) Padding on the 3D volume. (d) Padding on the 2D data. (e) Padding on the
2D data and the 3D volume. The blue arrows point at the aliasing artifacts due
to a periodization of the objects if no padding is applied. (f) 3D rendering of (e).
(g) Zoom on a region of interest framed in red on (e) in the dust particle plane and
in plane with a defocus of 117 um. (h) Average intensity orthogonal projections and
3D rendering of the region of interest (g).
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Nonetheless, if one of the spaces is not padded (2D or 3D), the periodization of
the data and/or the volume leads to "ghost" reconstructions of objects which should
be outside the field of view on the opposite side. These are emphasized by the blue
arrows. A striking example is the bubble at the lower edge of the xy-view which
overflows at the top of the view, excepted if a padding is applied on both the 2D
and the 3D spaces.

Another effect which cannot be directly driven from the figures is the contrast of
the reconstructions. Indeed, the value of the scattering potential at the center of the
central bubble in the different volumes changes according to the padding situation

as shown in table [IV.1].

No padding | 3D padding | 2D padding | 2D and 3D padding
] | f] 2.9 1074 6.3 107" 3.1107* 2.5107*

Table IV.1: Table of the measured intensities of the scattering potential f at the
center of the bubble of figure for the different padding possibilities.

The zero-padding on the 3D appears to have a "dilution" effect which diminishes
the intensity of the reconstructed volume. This effect is compensated by the zero-
padding of the 2D space. Padding both of the spaces gives similar results than no
padding at all.

These padding operations will nevertheless be part of a trade-off between the
wanted quality and the reconstruction time or even the capability of the computer
to deal with large padded-matrices. In extreme cases, even the absence of padding
can provide an acceptable result if one remembers that ghost effect can appear on
the edges of the reconstructed volumes.

2 Iterative phase retrieval

As mentioned in chapter [[ section [3| and chapter [T} section [3] in the context of
2D lens-free imaging the absence of phase information in the sensor plane leads to
"twin-image" artifacts in the 2D back-propagations. As seen in chapter [[TI} section
and in the previous section [I] of this chapter, similar artifacts are present in the 3D
reconstructions.

As presented in [70], performing an iterative phase retrieval allows finding a
better estimate of the unknown phase in the sensor plane than the phase ramp
introduced in the Fourier mapping method developed in chapter [[TI] section [4. To
this end, for each 2D picture I, of the dataset j € [1, N], the 3D object to retrieve is
approximated by an average median plane #} , as previously presented in chapter m,
section in figure [IL.7] In this section, the final aim is not to retrieve this 2D
transmissive plane but to use this mathematical artifice in a phase retrieval algorithm
to get the phase at the sensor plane for this given illumination j. Alternatively to
the method exposed in [70], the presented phase retrieval technique is based on an
inverse problem approach.
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2 Iterative phase retrieval

2.1 Inverse problem formulation

For low scattering objects, the 2D complex transmission can be rewritten: top =
1 + 0t and the Rayleigh-Sommerfeld equation ([.1)) can be expressed in terms of
incident and scattered complex waves:

iN 12

Usot (7) = Uine (7) + Uiy (7) = Usne (7) + (Uner58) (’“) (IV.1)

To take into account the limited coherence length I.,, of the illumination and
to reduce aliasing effects due to the high frequencies of the convolution kernel, a
pyramidal mask is added in the kernel:

leah=T2D §f pypy < ] 55
M _ Lo 2D coh _ 2 2 V.2
lcoh <ZL', y) { O lf TQD > lcoh 9 TQD x + y ( )

Then for any odt, it exists a direct model giving the complex diffracted
wave Uy s (6t) at the sensor plane:

24 eik(’)r

hi\ 2

The inverse problem of retrieving ¢ from the measurements I, is ill-posed due,
among other reasons, to the lack of phase measurement on the detector plane. More-
over this model does not provide an analytic inverse formula to go from the
knowledge of the diffracted wave to top and the Gerchberg-Saxton algorithm pre-
sented in [I} section [3] cannot be used.

The reconstruction problem is solved via an inverse problem approach by mini-
mizing the following data-fidelity termﬂ:

ot = argértnin H]d — |Uine + Uiy (5t)|2H2 (IvV.4)

The initial parameters of the experiment (here 0t) are retrieved from the knowl-
edge of the experimental data (here I;) and the direct model allowing to simulate
numerical data for a given set of parameters. This inverse approach models the
non-linear direct process of image formation without requiring an inversion formula.

Nonetheless, minimizing directly equation ([V.4]) will not be sufficient to retrieve
the phase of Ug;s since an infinite number of phase can match the recorded intensi-

ties I;. One needs to add some constraints and regularizations to the minimization
problem (IV.4)). Using the formalism introduced in chapter [[I} section 3.3 an inverse

"Here it matches the definition given in appendix |§| for W = 1. As mentioned in the appendix,
it is possible to weight each pixel for example to minimize the influence of hot or dead pixels.
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approach allows to perform this by minimizing the following cost function:

1 nby ) ) 2012
J 5t = —— ]] U] UJ- 5t tee
(50) = gy, 2 |14~ Uine + Uiy G|+
data fidelity J(dt) (IV5)

1
—— ||0t — ||Vt
KL, nbgnb?]; H HLl,e + py nb];nbg H ”Ll,e

sparsity constraint J, ¢(6t) gradient sparsity constraint Jy .(dt)

to retrieve the 2D transmissive plane:

ot = argminJ (0f) = argminJy (6t) + pr, J1, « (0t) + pyJv.c (6t) (IV.6)
C(st) c(6t)
nbpnll)pnb and bp wp are normalization factors, nbf, nbl still being the pixel num-

bers in each dlrectlon of the 2D planeﬂ nb) is the number of wavelength used for
the iterative reconstruction. As mentioned earlier for the 3D scattering potential
in chapter [T} section [1} the effective 2D transmissive plane dt is supposed to be
independent of the illumination wavelength.

As previously, C' (6t) stands for the constraint given on the domain of definition
of 6t. As defined in appendix [D| the central term is a sparsity prior numerically

given by:
It = S VIotel + e (IV.7)

pizelsy ;

where the indices (k,[) stand for the nbl x nb? pixels locations on the image grid
respectively on the z and y-axes.

As defined in appendix @ the right-hand term of equation is a sparsity
prior on the gradient of dt to enforce an edge-preserving regularization. It is numer-
ically computed as follows:

1
\Votr]” = 3 D(Stk—&-l,l — Stpal? 4 |0thsgr — Ota* 4 - -
(IV.S)

|0tkt1041 — 5tk,z+1|2 + [0tgs1041 — 5251&+1,z|2

In order to tune an appropriate trade-off between data-fidelity and a prior: in-
formation, the regularization terms are respectively weighted by two hyperparame-
ters pr, and py.

Appendix E presents how to numerically compute J, . and Jy . as well as their
gradient. It remains to find a numerical expression for J;. The convolution x of
equation is computed in the padded Fourier domain. To avoid the compu-
tation of the Fourier transform of §t.U;,. for each wavelength at each iteration, the
same trick for incident plane wave than for equation is used to convert the

8In this section both the planes of sensor and the 2D object are composed of nb2 x nb¥ pixels
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spatial modulation introduced by Uj,. into a translation in the Fourier domain of
the convolution kernel.

Using the notation introduced in chapter [T} section [3.1] from equation [[V.3] the
hologram centered on (zg, ¥o, 2zs) can be numerically computed as follows:

s ikl _ -
Uﬁf:?;a%wﬂww@mmd1<FFE5<FFTﬂmmm(&».~.
1
T (opad pa
FF T, (e—zko-(:szd,yng’O) M, ($127aDd7 yg%d’ O) . (IV.9)
6ik6 \/<xgaDd+x0)2+(yg;)d+yo)2—1-23
o 5 o 5 ) ) ) dx.dy
(235 + o) + (85 +w0) + 22
Noting HZ, the matrix:
o _/J> pad pa
HI, = dx.dy.FFTyp (i\sje_’ko (=55 955°9) 0y, (xg%d, yad o) .
7
ki) v ) 42 ) (IV.10)
a i\ 2 a i 2
(255 + ) + (B + ) + 22
equation (IV.9)) becomes:
Uif——Uiﬂpmi1(FFT§5<£@yFFTﬂ)deQ%»>> (IV.11)

All these operations are linear. Keeping the notations previously defined in
chapter [[TI} section but for 2D matrices, dt being decomposed on its real and

imaginary parts, this equation ([V.11]) becomes:

ﬁfh‘f = diag( inc) X P' x F* x diag (H,is) X F x P x R2C x it (IV.12)
%
=0 x 6t

It comes from appendix D}

1 TLb>\

—

O x

Tl (30) - [Tk (3) = T2)| | vas)

with:
AN . A
O* = R2C* x P* x F* x diag (Hi) x F™* x P* x diag (U7, (IV.14)

inc

From the analysis done in chapter [[TI} section [3.3] it is possible to express the
gradient of the data fidelity in terms of the complex transmissive plane ¢ f from
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1V A second design and new reconstruction methods

equations (IV.13)) and ([V.14):

1 nb/\

4. d—l(FFT1 (ffj FFT <
nbgnbgnlb\z pa 2D Zs 2D

j=1

pad <(_]zjncUtjot (6t) . (‘Ut]ot (5t>‘2 B Ié)))))

Finally, the numerical expression of the gradient of the cost function (IV.5]) at a
given 6t is:

V.Jy (6t) =
(IV.15)

vJ ((5t> =VJ ((5t) + /LL1VJL17€ (5t) + /LvVJV’E ((St) (IV16)

One can now iteratively solve the minimization problem using a descent
gradient algorithm, which is performed by the VMLM-B algorithm [90], a modified
limited memory quasi-Newton convex optimization method with BFGS updates and
bound constraint{’]

Once 4t is estimated for a given illumination j, the corresponding diffracted
wave U, s can be computed via equation . When the 2D phase information
of all the different acquisitions is retrieved, a 3D Fourier mapping is performed as
previously exposed in chapter section [4| via equation to obtain the final
fully 3D reconstructed volume.

This method solves one pitfall of the Fourier mapping method: the phase infor-
mation introduced in the reconstruction is more realistic and should reduce some
artifacts. Nevertheless, it does not solve the problem of the Fourier mapping limi-
tations: only the same coefficients on the spherical caps are accessible.

2.2 Numerical simulations

To test the efficiency of the proposed phase retrieval algorithm, total wave fronts
IBSB are simulated for a known numerical object presented in figure .a. It
is composed of composed of 5123 voxels of 1.67% um? for a volume of 855° =
6.25 108 pum? and is composed of cells of radius 10 um and refractive index dif-
ference of on = 0.0057 with a normal dispersion of dn/10 . These cells are randomly
spread in five clusters of 50 cells and five trains of 250 cells crossing the volume.

Holograms are simulated with the Fourier diffraction theorem by padding the
2D and the 3D spaces and using the nearest-neighbor interpolation method, for an
illumination direction of # = 30° and ¢ = 112.5°, for the three RG' B wavelengths \ €
{630 nm, 520 nm, 450 nm}, in the air ny = 1 and for a sensor distance of z; = 2 mm.
To test the robustness of the iterative phase retrieval algorithm, a Gaussian noise
is added to the intensity with o = 0.2 (see figure .b). The simulated phasﬂ of
figure [V.8lc represents the goal of the phase retrieval algorithm.

9Tt was implemented in C by Eric Thiébaut in his OptimPack library [91] and Hervé Carfantan
provided an interface [92] of this library running under Matlab® which was adapted by Fabien
Momey.

10Note here that in this section, for the sake of clarity, all the displayed phase are corrected by
a phase ramp characteristic of the given illumination direction.
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2 Iterative phase retrieval

Figure IV.8: (a) Average intensity orthogonal projections and 3D rendering of a nu-
merical object used to simulate a hologram on which both the intensity Iy, (b) and
the phase g, (c) are known (here in the green channel) for an illumination di-
rection of # = 30° and ¢ = 112.5°. To test the robustness of the iterative phase
retrieval algorithm, a Gaussian noise with o = 0.2 is added to the intensity. The
color codes for the depth in each view: the shallowest in blue, the deepest in red.

Different configurations for the iterative parameters are tested to find the best
set. All the tests are run with nb5® = 100 iterations, by padding the 2D space and
with l.,, = 500 pm.

Figure compares the effects of a strong sparsity regularization alone with
the effects of a regularization on the gradient alone for different value of uy. Looking
at the modulus of the reconstructed transmissive planes t,p and at the cell branches,
it appears that the V-regularization is the most efficient to reduce the noise in the
reconstructions but fails at removing the twin-image artifacts. For high values, it
even increases its amplitude. On the other side, the L;-regularization efficiently
cleans the twin-image around these small objects.

Looking at the phase differences, it appears that the two regularizations fail at
retrieving the phase. The V-regularization seems to work better on the big clusters
whereas the Li-regularization succeeds in retrieving the phase of some cell branches.

From the reconstructed modulus of figure[[V.9] it appears that the twin-image is
bright: this means that its modulus is higher than the background modulus whose
value is 1: a perfectly transparent plane. Values higher than 1 are then interpreted
as emissive objects. In the present case, this in not physical as the objects do not
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IV A second design and new reconstruction methods

Figure IV.9: Comparison of the modulus |top| of the reconstructed transmissive
plane top and the difference Ap = ppr — pqm between the retrieved phase on the
sensor plane with the numerical simulation of figure [[V.8|.c for different values of the

hyperparameters pr, and py after nbf® = 100 iterations.

emit any light but only scatter or absorb the incident wave front. The use of an
adapted constraint C' (§t) can help to enforce this physical property.

Technically, a non-emissive object is characterized by a modulus of less than
one: |tap| < 1. But this constraint cannot be directly applied in the present algo-
rithm as the object 0t is decomposed on its real and imaginary parts. Nonetheless,
it can give a necessary constraint on dt. Indeed:

ltap| = [1+ 6t <1 (14+R(6t)* + I (6t)* <1
= -1<1+R(t) <1 (IV.17)
=R (6t) <0

This condition is necessary but not sufficient. Indeed, for R (6¢t) = 0, any ot
with Z (6t) # 0 will break the constraint |top| < 1.

This condition is tested in figure as well as combinations of the different
regularizations.

Using both the L; and the V-regularization combines the good performances
mentioned above by erasing the twin-image around the small objects while efficiently
retrieving their phase as well as on some bigger objects.

The constraint R (6t) < 0 is the most effective to reduce the twin-image artifacts
around the small objects and most of the big clusters.

Only combined with the V-regularization, the phase on the small objects is not
well retrieved. The effect on the clusters is more important with some phase reversed
compared to figure [V.9 for uy = 0.1.

Combining the 3 solutions gives the best results. The twin-image artifacts are
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Uy =01//R<0 pr, =05//R<0 pr, =05/ puy =0.1 pp, M g [/ R <0

—
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Figure IV.10: Comparison of the modulus |t3p| of the reconstructed transmissive
plane t5p and the difference Ap = pr — @qm between the retrieved phase on the
sensor plane with the numerical simulation of figure[[V.8|.c for different combinations
of the hyperparameters i, and py with a constraint on the domain of dt: R (6t) < 0
after nb;® = 100 iterations.

erased around almost all the objects, even the clusters. The phase on the small
objects is retrieved as well as on some of the clusters. Nonetheless, none of the
combination succeeds in retrieving the phase at the center of the field which is
denser and where lots of objects at different heights are overlapping.

Finally, ﬁgure shows the normalized value of the cost function during
the iterations of the phase retrieval algorithm for the simulated data as well as the
experimental data presented in the next section. Excepted for a small bump in the
first 40 iterations, the two curves have a similar convergence rate which becomes
very slow after the 80" iterations.

2.3 3D reconstructions on experimental data

The phase retrieval algorithm is tested on the experimental data introduced in
the previous section [1] in figure [V.7]

For the phase retrieval algorithm, the 2D spaces of nbf = nbl = 1024 are
padded, l.o;, = 500 pum and nbL = 100. The hyperparameters are set to up, =
0.5, uy = 0.1 and C (6t) = {5t/R (6t) < 0}.

The lighting parameters are ¢ € {0°,282°}, Ap = 18.8°, 0§ = 45°, X\ €
{630,520,450 nm}, zs = 2.8 mm. These three wavelengths are used both for the
2D phase retrieval and the 3D reconstruction.

A scaling factor is applied on the z-axis using equation as the data are
reconstructed for an angle 6 = 0,;, = 45°: 2/ 24, = 1.5930. For the 3D reconstruc-
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Figure IV.11: Convergence curves of the iterative RGB phase retrieval for the
simulated data of figure [[V.§ and the experimental data of figure [V.12 with p, =
0.5, py = 0.1 and Z (6t) < 0. The curves are normalized to their minimal and
maximal values.

tion, the volumeﬂ is composed of 512 x 512 x 256 voxels of 3.34 x 3.34 x 5.32 um3
for a final volume of 1.7 x 1.7 x 1.4 mm? ~ 4 mm?. The 2D and the 3D spaces are
both zero-padded. The simulated total wave fronts I gzm and gogim are used for the
reconstruction with the Fourier mapping method.

Figure presents the results of the phase retrieval procedure for the lighting
position # = 45° and ¢ = 0°.

The simulated intensities are in agreement with the experimental data. All the
holograms are well simulated for the bubbles, the dust particles and the scratch at
the bottom of the dish. One another side, the regularization efficiently cleaned the
noise and the background heterogeneities mainly due to the surfaces of the Petri
dish and the plastic cap.

Figure [V.12]d is a simple back-propagation of the experimental intensity and is
obtained by reversing the convolution in equation by a division in the Fourier
domain and using a phase ramp approximation for the unknown phasdﬂ. As for the
simulation, a comparison with the modulus of the retrieved 6t in figure[[V.12]e shows
that the phase retrieval procedure removes all the twin-image artifacts and produces
sharper objects with a clean background. Looking also at the reconstructed phase
in figure [V.I2}f, it appears that excepted for their edge, the bubbles are seen as
absorbent objects. The dust particles share an absorbent part and a dephasing part
whereas the scratch is only seen in the phase picture.

The 3D reconstruction obtained once the 2D RG B phase retrieval algorithm has
been performed on the 16 lighting positions is presented in figure and has to
be compared with the results given in figure [V.7] As expected, the twin-images
artifacts have been removed around all the objects and the background is darker (or
in an equivalent way one can say that the signal is stronger).

1512 x 512 x 256 voxels of 3.34 x 3.34 x 3.34 um? before scaling.
12A similar artifice is implemented in chapter section
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Experimental intensity / modulus Retrieved intensity / modulus Retrieved phase

Sensor plane

Object plane

Figure IV.12: Results of the RG B phase retrieval algorithm on the experimental
data in the green channel (a) introduced in figure [[V.7 after 100 iterations. (b) Sim-
ulated intensity on the sensor plane for the retrieved 2D object top. (c) Retrieved
phase on the sensor plane for the retrieved 2D object top. (d) Modulus of the sim-
ple back-propagation of the experimental data. (e) Modulus of the retrieved 2D
object top. (d-e) The gray scale has been reversed to facilitate the interpretation
and the comparison with the 3D reconstructions. (f) Phase of the retrieved 2D
object tap.

Comparing figure [V.7h and figure [V.13|d with the simulations in figure

one can see that the reconstructions are close from the simulation when the phase
is known in the Fourier mapping method with a contrasted hourglass shape. The
remaining artifacts are consequently due to the limited angular coverage.

These artifacts are spread around the reconstructed objects in accordance with
the lighting positions and can be seen on the maximum intensity projection of fig-
ure [V.13la. They are emphasized in figure [V.13f where the contrast is enhanced.
They appear more contrasted than in figure [V.7lg in which they are blurred in the
noise and background signal.

Figures [V.13la-f are made from the 3D reconstructed volume using the total
simulated wave fronts I7, and ¢/, . Figures .g—i compare on an extracted
slice at the focus of the dust particles the effect of choosing only the experimental
data I é, combining them with the retrieved phase information gof; r or using the full

simulated wave fronts I, and @pp.
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Figure IV.13: Modulus of the reconstructed scattering potential f of bubbles and
dust at the bottom of a Petri dish filled with water after an iterative RG B phase
retrieval for each lighting position and the use of the simulated wave fronts in the
Fourier mapping process. (a-b) xy and zz-maximum intensity projections of the
reconstructed volume. (c) 3D rendering of the 3D volume. (d) Average intensity or-
thogonal projections and 3D rendering of the region of interest framed in red on (a).
(e-f) Zoom on the region of interest at the focal plane of the dust particle (e) and
with a defocus of 117 um (f). (g-i) Comparison of a slice of the reconstructed vol-
umes on the plane of the dust particles if only the experimental intensities I fé are
used (g), if the experimental intensities I; are combined with the retrieved phase
information ¢}, (h) or if the full simulated wave fronts I, and ¢h, are used (i).

Using the retrieved phase information erases the twin-image artifacts in fig-
ure[[V.13]h but the background remains noisy. Using the simulated intensities cleans
the background and produces sharper objects in figure [V.13]i.

3 3D inverse problem approach

In the previous section [2| the remaining artifacts are attributed to the lack of
angular coverage by the lens-free microscope around the sample. Even if the phase
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is retrieved, only the coefficients lying on the spherical caps covered by the dataset
are mapped in the Fourier domain. A huge part of the Fourier domain is then left
at its initialization value: 0.

Besides, it was mentioned that the reconstructed volumes are beyond of the
validity domain of the Fourier diffraction theorem. This means that the model
cannot perfectly fit the data even using the phase retrieval algorithm. Consequently,
to improve the reconstructions quality this constraint on the data fidelity must be
relaxed.

In the method developed in this section, the Fourier diffraction theorem (I1.18))
is used as a simulation tool for a direct model to simulate the holograms of a given
object f as explained in chapter [[I, section [2| from figure [[I.3] This direct model is
at the base of an inverse problem approach implemented to iteratively retrieve the
3D object f.

Working directly on the full volume f theoretically allows to retrieve more Fourier
coefficients than the previous methods via an extrapolation of the missing frequencies
which lie outside spherical caps thanks to a priori information.

Moreover, such an approach appropriately deals with the lack of phase infor-
mation to reduce artifacts as no assumption on the phase on the sensor plane is
needed.

Finally, the simulated data are compared with the experimental measurements
but are not forced to perfectly match them. This can part