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Introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Organization of the Manuscript . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Context

AS of 2017, we live in a data-driven world where data-intensive applications are bring-
ing fundamental improvements to our lives in many different areas such as business,
science, health care and security. This has boosted the growth of the data volumes

(i.e., deluge of Big Data). For instance, International Data Corporation (IDC) Research re-
ports that the amount of data generated in 2016 was 16.1 zettabytes [67]. Same IDC study
forecasts that the world will create 163 zettabytes in 2025 which points out the ten-fold in-
crease in the data sizes in less than a decade.

To extract useful information from this huge amount of data, different data processing
models have been emerging [30, 69]. Among these models, MapReduce [30] has stood
out as the most powerful Big Data processing model, in particular for batch processing.
MapReduce, and its open-source implementation Hadoop [53], is adopted in both industry
and academia due to its simplicity, transparent fault tolerance and scalability. For instance,
Carnegie Mellon University (CMU) is using Hadoop clusters for data analysis on several sci-
entific domains including computational astrophysics, computational neurolinguistics, nat-
ural language processing, computational biology and social networking analysis [100]. Be-
sides MapReduce and Hadoop, new data processing frameworks have been introduced [20,
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123, 152], such as Spark and Storm with the emphasize on iterative applications, stream pro-
cessing, machine learning and graph processing. Hereafter, we will call these applications
as Big Data applications.

Big Data processing is traditionally performed by running these data processing frame-
works on clouds. Clouds provide resources at large-scale with a viable cost. Hence, indus-
tries and research labs employ large-scale clouds to cope with the gigantic data volumes. For
instance, Google is known to employ a cluster with more than 200,000 cores to support its
business services and thus improving the user experience [49].

Besides clouds, we have recently witnessed that HPC systems gained a huge interest as a
promising platform for performing efficient Big Data processing. HPC systems are equipped
with low-latency networks and thousands of nodes with many cores thus have a large po-
tential to run Big Data applications, especially for the ones which require timely responses.
For instance, PayPal recently shipped its fraud detection software to HPC systems to be able
to detect frauds among millions of transactions in a timely manner [90]. Furthermore, Big
Data applications can facilitate performing large-scale simulations on HPC systems (e.g., fil-
tering/analyzing the simulation data). For example, John von Neumann Institute for Com-
puting is trying to couple Big Data applications with scientific simulations in order to tackle
societal and scientific grand challenges [86].

Usually, these large-scale platforms (i.e., HPC systems and clouds) are used concurrently
by multiple users and multiple applications with the goal of better utilization of resources.
For instance, there were up to 61 jobs running simultaneously on Argonne’s Intrepid ma-
chine [37]. Also, in a Hadoop production cluster with 78 different users at CMU, there were
at least 10 jobs running concurrently at 5% of the time [100]. Though benefit of sharing
these platforms exist, several challenges are raised when sharing these large-scale platforms,
among which I/O and failure management are the major ones for performing efficient data
processing on these platforms.

In the context of HPC systems, a high number of Big Data applications would be run-
ning concurrently on the same platform and thus sharing the storage system (e.g., parallel
file system). Thus, I/O interference will appear as a major problem for the performance
of these applications. I/O interference is a well-known problem in HPC systems which of-
ten detracts the performance of a single-application from the high performance offered by
these systems [37, 89]. Furthermore, Big Data applications will face high latencies when
performing I/O due to the necessary data transfers between the parallel file system and
computation nodes. Moreover, the impact of both interference and latency will be ampli-
fied when HPC systems are to serve as the underlying platform for Big Data applications
together with large-scale HPC simulations. Even worse, running Big Data applications on
these systems can seriously degrade the performance of these simulations which are consid-
ered as first-class citizens on HPC systems. This rises the challenge in being able to perform
efficient data processing without impacting the performance of currently running large-scale
simulations.

Finally, failures are inevitable in large-scale platforms, especially in clouds. This is be-
cause clouds consist of failure-prone commodity machines which makes failures an every-
day reality. For instance, Barroso et al. [12] indicated that average mean time to failure of
a cluster with 10,000 machines is in the range of few hours. Therefore, fast failure recovery
plays a crucial role in performing efficient data processing on the clouds.
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1.2 Contributions

This thesis focuses on performance aspects of Big Data processing on large-scale shared plat-
forms. Our objective is to provide I/O management and failure handling solutions that can
enable efficient data processing on these platforms.

We first focus on I/O related performance bottlenecks for Big Data applications on HPC
systems. We start by characterizing the performance of Big Data applications on these sys-
tems. We identify I/O interference and latency as the major performance bottlenecks. Next,
we zoom in on I/O interference problem to further understand the root causes of this phe-
nomenon. Then, we propose an I/O management scheme to mitigate the high latencies
that Big Data applications can encounter on HPC systems. Moreover, we introduce inter-
ference models for Big Data and HPC applications based on the findings we obtain in our
experimental study regarding the root causes of I/O interference. Finally, we leverage these
models to minimize the impact of interference on the performance of Big Data and HPC
applications.

Second, we focus on the impact of failures on the performance of Big Data applications
by studying failure handling in shared MapReduce clusters. We introduce a failure-aware
scheduler which enables fast failure recovery thus improving the application performance.
These contributions can be summarized as follows.

Characterizing the Performance of Big Data Applications in HPC Systems

There is a recent trend towards performing Big Data processing on HPC systems. Although
these systems offer a rich set of opportunities for Big Data processing (e.g., high-speed net-
works, high computing power and large memories), they are traditionally designed for
compute-intensive applications rather than data-intensive ones. Hence, it is not trivial to
perform efficient data processing on HPC without understanding the performance charac-
teristics of Big Data applications on these systems. To this end, we conduct an experimen-
tal campaign to provide a clearer understanding of the performance of Spark, the de facto
in-memory data processing framework, on HPC systems. We run Spark using representa-
tive Big Data workloads on Grid’5000 testbed to evaluate how the latency, contention and
file system’s configuration can influence the application performance. Our experimental re-
sults reveal that I/O interference and latency are the major performance bottlenecks when
running Big Data applications on HPC systems. We also discuss the implications of these
findings and draw attention to I/O management solutions (e.g., burst buffers) to improve
the performance of Big Data applications on HPC systems.

Investigating the Root Causes of I/O Interference in HPC Systems

As HPC systems are shared by high number of concurrent applications, I/O interference
appears as a major performance bottleneck for Big Data applications. I/O interference is
a well known problem in HPC which is defined as the performance degradation observed
by any single application performing I/O in contention with other applications running on
the same platform. This interference problem is becoming more important every day with
the growing number of concurrent applications (HPC and Big Data applications) that share
these platforms. Our ultimate goal is to perform interference-aware Big Data processing on
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these platforms. In this direction, understanding the root causes of I/O interference problem
becomes crucial. To this end, we conduct an extensive experimental campaign by using
microbenchmarks on the Grid’5000 testbed to evaluate how the applications’ access pattern,
the network components, the file system’s configuration, and the backend storage devices
influence I/O interference. Our studies reveal that in many situations interference is a result
of the bad flow control in the I/O path, rather than being caused by some single bottleneck
in one of its components. We further show that interference-free behavior is not necessarily a
sign of optimal performance. To the best of our knowledge, our work provides the first deep
insight into the role of each of the potential root causes of interference and their interplay.
This work, partially carried out during a 3-month internship at Argonne National Labs, led
to a publication at the IPDPS’16 conference (see [144]).

Leveraging Burst Buffers in HPC Systems to Enable Efficient Big Data Processing

Developing smart I/O management solutions will be of utmost importance for performing
efficient data processing on HPC systems. Burst Buffers (BBs) are an effective solution for
reducing the data transfer time and the I/O interference in HPC systems. Extending Burst
Buffers to handle Big Data applications is challenging because BBs must account for the
large data sizes and the QoS (i.e., performance requirements defined by the user) of HPC
applications – which are considered as first-class citizens in HPC systems. Existing BBs fo-
cus on only intermediate data and incur a high performance degradation of both Big Data
and HPC applications. We propose Eley, a burst buffer solution that helps to accelerate the
performance of Big Data applications while guaranteeing the QoS of HPC applications. To
achieve this goal, Eley embraces interference-aware prefetching technique that makes read-
ing the input data faster while controlling the interference imposed by Big Data applications
on HPC applications. We evaluate Eley with both real system experiments on Grid’5000
testbed and simulations using a wide range of Big Data and HPC applications. Our results
demonstrate the effectiveness of Eley in obtaining shorter execution time of Big Data appli-
cations while maintaining the QoS of HPC applications. Part of this work was published at
the CLUSTER’17 conference (see [147]).

Enabling Fast Failure Recovery in Large Shared Clusters

Failures are quite common for large-scale platforms, in particular for clouds which consist of
commodity machines. Thus, failure handling plays a crucial role in performing efficient Big
Data processing. In this direction, we aim to improve the application performance under
failures in shared Hadoop (popular open-source implementation of MapReduce) clusters.
Currently, Hadoop handles machine failures by re-executing all the tasks of the failed ma-
chines (i.e., by executing recovery tasks). Unfortunately, this elegant solution is entirely
entrusted to the core of Hadoop and hidden from Hadoop schedulers. The unawareness of
failures therefore may prevent Hadoop schedulers from operating correctly towards meet-
ing their objectives (e.g., fairness, job priority) and can significantly impact the performance
of Big Data applications. We addressed this problem by introducing Chronos, a failure-aware
scheduling strategy that enables an early yet smart action for fast failure recovery while still
operating within a specific scheduler objective. Upon failure detection, rather than wait-
ing an uncertain amount of time to get resources for recovery tasks, Chronos leverages a
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lightweight preemption technique to carefully allocate these resources. In addition, Chronos
considers data locality when scheduling recovery tasks to further improve the performance.
We demonstrate the utility of Chronos by combining it with Fifo and Fair schedulers. The
experimental results show that Chronos recovers to a correct scheduling behavior within a
couple of seconds only and reduces the job completion times by up to 55% compared to state-
of-the-art schedulers. This work led to publications at the BigData’15 conference (see [146])
and FGCS journal (see [145]).

1.3 Publications

Journals

• Orcun Yildiz, Shadi Ibrahim, Gabriel Antoniu. Enabling Fast Failure Recovery in Shared
Hadoop Clusters: Towards Failure-Aware Scheduling, Journal of the Future Generation
Computer Systems (FGCS), 2016.

• Matthieu Dorier, Orcun Yildiz, Shadi Ibrahim, Anne-Cécile Orgerie, Gabriel Antoniu.
On the Energy Footprint of I/O Management in Exascale HPC Systems, Journal of the Future
Generation Computer Systems (FGCS), 2016.

• Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, Robert Sisneros, Orcun
Yildiz, Shadi Ibrahim, Tom Peterka, Leigh Orf. Damaris: Addressing Performance Vari-
ability in Data Management for Post-Petascale Simulations, ACM Transactions on Parallel
Computing (TOPC), 2016.

International Conferences

• Orcun Yildiz, Amelie Chi Zhou, Shadi Ibrahim. Eley: On the Effectiveness of Burst
Buffers for Big Data Processing in HPC systems, in Proceedings of the 2017 IEEE Inter-
national Conference on Cluster Computing (CLUSTER ‘17), Hawaii, September 2017.
CORE Rank A (acceptance rate 31%).

• Orcun Yildiz, Matthieu Dorier, Shadi Ibrahim, Rob Ross, Gabriel Antoniu. On the Root
Causes of Cross-Application I/O Interference in HPC Storage Systems, in Proceedings of the
2016 IEEE International Parallel & Distributed Processing Symposium (IPDPS ‘16),
Chicago, May 2016. CORE Rank A (acceptance rate 23%).

• Orcun Yildiz, Shadi Ibrahim, Tran Anh Phuong, Gabriel Antoniu. Chronos: Failure-
Aware Scheduling in Shared Hadoop Clusters, in Proceedings of the 2015 IEEE Interna-
tional Conference on Big Data (BigData ‘15), Santa Clara, October 2015. (acceptance
rate 35%).

Workshops at International Conferences

• Orcun Yildiz, Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu. A Performance and En-
ergy Analysis of I/O Management Approaches for Exascale Systems, in Proceedings of the
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2014 Data-Intensive Distributed Computing (DIDC ‘14) workshop, held in conjunc-
tion with the 23rd International ACM Symposium on High Performance Parallel and
Distributed Computing (HPDC ‘14), Vancouver, June 2014.

1.4 Organization of the Manuscript

The rest of this manuscript is organized in six chapters.
Chapter 2 presents the context of this thesis. It introduces the Big Data processing

paradigm and presents its applications and platforms. Next, it lists the challenges associ-
ated with Big Data processing at large-scale shared platforms and discusses the potential
ways to mitigate these challenges that drove our contributions towards performing efficient
data processing on these platforms.

Our work aims to provide I/O management and failure handling solutions in order to
perform efficient data processing at large-scale shared platforms. Chapters 3 to 5 focus on
contributions related to the I/O management in HPC systems. Chapter 3 starts by charac-
terizing the performance of Big Data applications on these systems. It shows that high I/O
latency and I/O interference are the major performance bottlenecks in HPC systems. Then,
Chapter 4 dives into the I/O interference phenomenon in HPC systems in order to explore its
root causes. Based on our observations from these chapters, we introduce the Eley approach
in Chapter 5 in order to alleviate the impact of the aforementioned problems.

Chapter 6 is dedicated to the failure handling in clouds. It studies the effect of failures on
the performance of Big Data applications and introduces our Chronos approach. Chronos is
a failure-aware scheduler that aims to provide a fast recovery in case of failures.

Finally, Chapter 7 concludes this thesis and summarizes our contributions and the per-
spectives brought by these contributions.
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Background: Big Data Processing on

Large-Scale Shared Platforms
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THIS chapter aims to draw a picture of Big Data processing on large-scale shared plat-
forms. First, it introduces MapReduce as the state-of-the-art Big Data processing
paradigm and lists the most commonly adopted data processing frameworks. Then,

it details the I/O management and failure handling approaches in Big Data processing and
the respective challenges. Finally, we discuss the potential ways to mitigate these challenges
in order to perform efficient Big Data processing on large-scale shared platforms.
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2.1 Big Data Processing: An Overview

2.1.1 The Deluge of Big Data

Data is a driving power in almost every aspect of our lives and thus large amounts of data
generated everyday. For instance, International Data Research report [67] estimates that the
global data volume subject to data analysis will grow by a factor of 50 to reach 5.2 zettabytes
in 2025. This huge growth in the data volumes, the deluge of Big Data, results in a big
challenge in managing, processing and analyzing these gigantic data volumes.

Some of these data is generated at a high velocity from various sources such as Internet
of Things, network sensors and social networks. As an example from social networks, more
than 44 million messages sent and 486,000 photos shared on Whatsapp per minute [48].
These large data volumes with a high velocity mostly require fast processing. Some use
cases from our everyday lives which require fast processing include fraud detection, national
security, stock market management and customer service optimization. For instance, PayPal
managed to save 710 million dollars in their first year thanks to the fast data processing for
fraud detection [90].

To benefit from this huge amount of data, while addressing the aforementioned chal-
lenges (i.e., Big Data challenges), different data processing models have been emerged [30,
69]. Due to its simplicity, transparent fault tolerance and scalability, MapReduce [30] has be-
come the most powerful Big Data processing model, in particular for batch processing. For
instance, Yahoo! claimed to have the world’s largest MapReduce cluster [54] with more than
100000 CPUs in over 40000 machines running MapReduce jobs.

Recently, several new data processing frameworks have been introduced such as
HaLoop [20], Storm [123] and Spark [152] which extend the MapReduce programming
model. These frameworks focus on different type of applications – beyond batch process-
ing – such as stream data processing, iterative applications, graph processing and query
processing. For example, Netflix has a Spark cluster of over 8000 machines processing mul-
tiple petabytes of data in order to improve the customer experience by providing better rec-
ommendations for their streaming services [122]. Hereafter, we will detail the MapReduce
paradigm and present some of the most commonly adopted Big Data processing frame-
works.

2.1.2 The MapReduce Programming Model

MapReduce is a data processing model for solving many large-scale computing prob-
lems [30]. The MapReduce abstraction is inspired by the map and reduce functions, which
are commonly used in functional languages. The MapReduce programming model allows
users to easily express their computation as map and reduce functions. The map function,
written by the user, processes a key/value pair to generate a set of intermediate key/value
pairs. The reduce function, also written by the user, merges all intermediate values associ-
ated with the same intermediate key to generate the final output. Parallelism of map and
reduce functions gives users the opportunity to have fast and scalable data processing. Be-
sides parallelism, data locality and fault tolerance are the other key aspects of MapReduce
abstraction for achieving efficient Big Data processing. Next, we describe some of the widely
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Figure 2.1: The MapReduce programming model as originally introduced by Google [62].

adopted Big Data processing frameworks and present how these frameworks applies these
key aspects in their implementation.

2.1.3 Big Data Processing Frameworks

Hadoop

Hadoop [53], the popular open-source implementation of MapReduce, is used to process
massive amounts of data. Hadoop is developed primarily by Yahoo!, where it processes
hundreds of terabytes of data on at least 10,000 cores, and is now used by other companies,
including Facebook, Amazon, Last.fm, and the New York Times [54].

Hadoop implements the MapReduce programming model which is illustrated in Fig-
ure 2.1. Users submit jobs consisting of map and reduce functions in order to perform data
processing. These jobs are further divided into tasks which is the unit of computation in
Hadoop. Inputs and outputs of these jobs are stored in a distributed file system (i.e., Hadoop
Distributed File System (HDFS) [53]). In the map phase, map tasks read the input blocks and
generate the intermediate results by applying the user defined map function. These interme-
diate results are stored on the compute node where the map task is executed. In the reduce
phase, each reduce task fetches these intermediate results for the key-set assigned to it and
produces the final output by aggregating the values which have the same key. Next, we
describe this job execution in detail.

Job execution in Hadoop. In Hadoop, job execution is performed with a master-slave con-
figuration. JobTracker, Hadoop master node, schedules the tasks to the slave nodes and
monitors the progress of the job execution. TaskTrackers, slave nodes, run the user defined
map and reduce functions upon the task assignment by the JobTracker. Each TaskTracker
has a certain number of map and reduce slots which determines the maximum number of
map and reduce tasks that it can run. Communication between master and slave nodes is
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done through heartbeat messages. At every heartbeat, TaskTrackers send their status to the
JobTracker. Then, JobTracker will assign map/reduce tasks depending on the capacity of the
TaskTracker and also by considering the data locality (i.e., executing tasks on the machines
where the input data resides) which is a key aspect in MapReduce abstraction. To do so,
JobTracker will assign map tasks to the TaskTrackers with the input data on it, among the
ones with empty slots. By sustaining high data locality, Hadoop can mitigate the I/O latency
and thus improve the application performance. Next, we discuss Hadoop’s fault tolerance
mechanism which is another important factor for the application performance.

Fault tolerance in Hadoop. When the master is unable to receive heartbeat messages from
a node for a certain amount of time (i.e., failure detection timeout), it will declare this node
as failed [32, 60]. Then, currently running tasks on this node will be reported as failed.
Moreover, completed map tasks will also be reported as failed since these outputs were
stored on that failed node, not in the distributed file system as reducer outputs. To recover
from the failures, Hadoop will try to re-execute all the tasks of failed nodes (i.e., executing
recovery tasks) on any healthy node as soon as possible. When there is an empty slot on
a healthy node, Hadoop first will launch the cleanup task for the recovery task. Cleanup
tasks try to ensure that failure will not affect the correct execution of the MapReduce job by
deleting the outputs of failed tasks. When the cleanup task is completed, recovery task can
run on the healthy node with an empty slot.

Spark

Hadoop has become successful for a large class of Big Data applications but it provides a
limited support for some set of applications including iterative applications and interactive
analytics [20, 23, 152]. Spark therefore has been emerging as an efficient Big Data processing
framework that supports a wide range of applications successfully [152].

Spark introduces a new abstraction, Resilient Distributed Datasets (RDDs) [151], which
represent the input data partitions that is distributed across the cluster. RDDs provide an in-
terface that allows users to apply coarse-grained transformations on these input partitions.
These transformations include MapReduce-like operations (e.g., map, reduce, collect). As
Hadoop, Spark relies on a distributed storage system (e.g., HDFS) to store the input and
output data of the jobs submitted by users. However, unlike Hadoop, Spark allows RDDs to
be cached in the memory and therefore intermediate data between different iterations of a
job can be reused efficiently. This reduces the number of costly disk I/O accesses to the dis-
tributed storage system. This memory-resident feature of Spark is particularly essential for
some Big Data applications such as iterative machine learning algorithms which intensively
reuse the results across multiple iterations of a MapReduce job. Next, we describe the job
execution in Spark.

Job execution in Spark. Similarly to Hadoop, job execution is performed in a master-slave
configuration. Users express their jobs as driver programs which are connected to a cluster of
slaves. These programs are expressed in terms of RDDs on which users can invoke actions
such as reduce, collect and count. The driver, Spark master node, assigns tasks to slaves
using delay scheduling [150] in order to mitigate the I/O latency by sustaining high data
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locality. To this end, when the delay scheduler is not able to launch a local task, it waits for
some time until it finds the chance to launch the task locally. The master node also monitors
the progress of the job execution. The slave nodes read the input blocks from a distributed
storage system and apply the user-defined functions on them. Next, we present how Spark
provides fault tolerance guarantees.

Fault tolerance in Spark. RDDs provide an interface that allows users to apply coarse-
grained transformations on them. These transformations are persistently stored as lineage
information. If failure happens, Spark will re-construct the lost data (i.e., RDDs on the failed
nodes) by applying transformations on the corresponding input data in the persistent dis-
tributed storage system with the help of the lineage information. This obviates the need for
data replication (for the intermediate output data) – as in Hadoop – with the extra cost of the
re-computing the lost data sets.

More examples of widely adopted Big Data processing frameworks. Here, we briefly
present the other popular Big Data processing frameworks that are inspired by the success
of MapReduce programming model:

Flink. With the increasing need for fast processing due to the data generation at high ve-
locities, Flink has been introduced to provide fast data processing (i.e., stream data
processing). Flink is a distributed dataflow streaming engine which aims at providing
fault-tolerant and efficient stream processing. Besides stream processing, Flink also
provides support for batch processing, graph processing and machine learning appli-
cations.

Storm. Storm is a scalable and fault-tolerant real-time data processing framework. Similarly
to Flink, Storm performs data processing in real-time and thus tries to cope with the
high data velocities. Storm can process unbounded streams of data and thus provides
a support for wide range of applications including online machine learning, ETL and
continuous computation.

GraphLab. GraphLab [50] is a graph-based, efficient data processing framework which
specifically targets machine learning applications. GraphLab provides a graph-based
data model to address the limitation of MapReduce model in processing the data effi-
ciently when there are high number of computational dependencies among the data.

To cover wider range of Big Data applications, recently several other data process-
ing frameworks and tools have been introduced. Some examples include: (i) Apex [8],
Samza [112], Heron [81], Beam [14] and Kafka [77] for supporting stream data processing;
(ii) Giraph [47], GraphX [142] and Gelly [23] for graph processing; (iii) Hive [128], Spark-
SQL [10] and BlinkDB [2] for performing query analytics.

2.1.4 Big Data Processing in Large-Scale Shared Platforms: Early Adoptions

Big Data Processing in Clouds

Cloud platforms facilitate Big Data processing at large-scale by providing various resources
(e.g., compute, storage, network) to the users on-demand, by the virtue of virtualization [9,



12 Chapter 2 – Background: Big Data Processing on Large-Scale Shared Platforms

22, 75]. Users can obtain these resources on a pay-as-you-go basis [96]. This makes clouds an
easy to use, flexible and economically viable platform for performing Big Data processing.

Given the convenience of clouds as data processing platforms, industry and research labs
have been trying to leverage them for performing efficient Big Data processing. In particular,
there were many efforts focusing on the key aspects of MapReduce programming model
including data locality and fault tolerance. For instance, several efforts have been conducted
in order to achieve a better data locality thus improving the application performance [6, 63,
64]. Moreover, many studies tried to minimize the impact of failures on the performance
of Big Data applications [32, 33, 107]. Although these studies can improve the application
performance, they are applicable for single job scenarios only.

It is quite common to share the clouds among multiple users and applications. To
efficiently operate shared clouds towards certain objectives (e.g., performance, fairness),
Hadoop is equipped with several state-of-the-art schedulers:

The Fifo Scheduler. The first version of Hadoop comes with a fixed Fifo scheduler. In Fifo
scheduling, the JobTracker simply pulls jobs from a single job queue. Although the
scheduler’s name suggests the prioritization of earlier submitted jobs, Fifo scheduler
also takes into account jobs’ priority. For data locality and fault tolerance, Fifo sched-
uler relies on the Hadoop core and thus it tries to achieve these aspects as we explained
in Section 2.1.3.

The Fair Scheduler. Hadoop is also augmented with the Fair scheduler for ensuring fair-
ness among multiple jobs in shared Hadoop clusters. The Fair scheduler assigns re-
sources to jobs in a way such that, on average over time, each job gets an equal share of
the cluster’s resources. Short jobs are able to access the cluster resources, and will finish
intermixed with the execution of long jobs. The Fair scheduler is primarily developed
by Facebook, and aims at providing better responsiveness for short jobs, which are the
majority at Facebook production clusters [150].

Beyond these state-of-the-art schedulers, many solutions have been proposed in order to
facilitate running multiple applications on shared clouds with different fairness policies [3,
45, 46, 70, 87, 99, 104, 124, 140, 150] and priority requirements [27, 28, 78, 103, 113]. Some of
these works have been targeting I/O latency by aiming at high data locality [3, 150] but they
still cope with the failures in a best-effort way. To this end, we aim at sustaining high data
locality while mitigating the impact of failures on the performance of Big Data applications
with our Chronos scheduler in Chapter 6.

Big Data Processing in HPC Systems

HPC systems are known for providing high computing capability. They are equipped with
high-speed networks, thousands of nodes with many cores and large memories [18, 80].
For instance, Sunway TaihuLight, No.1 in the top 500 supercomputers list, is a 10,649,600
processor supercomputer with a Linpack performance of 93 petaflop/s1.

1 http://www.top500.org/.

http://www.top500.org/.
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Given the high performance nature of HPC systems and the emergence of new applica-
tions with high performance requirements, we have recently seen several studies on lever-
aging these systems for Big Data processing [17, 42]. We can categorize these studies into
four categories as following:

Characterizing the performance of Big Data applications on HPC systems. As first steps
towards leveraging HPC systems for Big Data processing, several studies have been
performed with the objective of understanding the performance of Big Data applica-
tions on these systems [25, 129, 139]. For instance, Wang et al. [139] performed an
experimental study in order to investigate the characteristics of Big Data applications
on a HPC system and this study demonstrates that I/O management plays an impor-
tant role in performing efficient Big Data processing on HPC systems.

Employing MapReduce paradigm to process scientific applications. Recent studies inves-
tigate how to benefit from MapReduce paradigm to process scientific applications [39,
118, 141]. CGL-MapReduce [39] supports iterative computations and uses streaming
for all the communications and applies MapReduce paradigm for High Energy Physics
data analysis and k-means clustering of scientific data. MRAP [118] introduces scien-
tific applications’ access patterns into MapReduce paradigm in order to improve the
MapReduce performance for scientific applications such as bioinformatics sequencing
application.

Leveraging HPC technologies for Big Data processing. Several efforts have been con-
ducted to incorporate HPC technologies (e.g., Infiniband networks, NVRAM and SSD
as fast storage devices) into Big Data processing frameworks to improve the applica-
tion performance. In Hadoop, communication among the machines is realized through
remote procedure calls based on Java sockets which can create a performance bottle-
neck for Big Data applications. To alleviate this communication bottleneck of Hadoop,
Lu et al. [91] tried to leverage Infiniband network technology. In particular, they pro-
vided a Remote Direct Memory Access (RDMA) support for Hadoop that enables high
performance communication. They also benefited from Infiniband networks for other
components in Big Data stack such as HDFS [71] and HBase [61]. Some works also
tried to utilize fast storage devices to enhance the performance of Big Data applica-
tions. For example, Islam et al. [73] proposed a hybrid design consisting of NVRAMs
and SSDs, as an alternative to disks, for data storage in a MapReduce cluster.

Introducing novel Big Data processing frameworks targeting HPC architectures. New
implementations of MapReduce programming model — beyond Hadoop — have been
introduced which are specifically tailored for HPC architecture such as multi-core CPU
and GPU [40, 57, 148]. For instance, Phoenix is a novel MapReduce implementation
targeting multi-core machines. In Phoenix, shared-memory threads are used for map
and reduce functions. Phoenix also inspired many other works [56, 74, 94] that target
multi-core machines. Mars [56] is a MapReduce framework on GPUs that uses a large
number of GPU threads for map and reduce functions. However, Mars and Phoenix or
other similar works are not suited for large volumes of data since they run on a single
machine only.

As Big Data processing on HPC systems has been becoming a reality, the aforementioned
studies are indeed important as pioneers towards this goal. However, none of these studies
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fully address the challenges regarding the I/O management (e.g., latency and interference)
which play a crucial role in enabling efficient Big Data processing on HPC systems. Next,
we focus on I/O management in large-scale shared platforms and the respective challenges
in detail.

2.2 I/O Management in Large-Scale Shared Platforms

In the recent years, we observe major advancements in the computation capabilities of data
processing platforms in response to the unprecedented growth in the data sizes. However,
the increase in the I/O capabilities of these platforms is not at the same level. For instance,
Los Alamos National Laboratory moved to Trinity supercomputer from Cielo in 2015. While
Cielo provided a peak performance of 1.37 Petaflops with a peak I/O throughput of 160
GB/s, its successor Trinity has a peak performance of more than 40 Petaflops for a I/O
throughput of 1.45 TB/s [130]. This points out the 28-fold improvement in the computa-
tion capabilities with only a 9-fold increase in the I/O throughput. With such a big gap
between the computation and I/O capabilities, I/O management solutions become critical
in performing efficient Big Data processing on these platforms.

2.2.1 I/O Latency

One major challenge that needs to be tackled for efficient Big Data processing is the I/O
latency problem. Data movements in the network is a well-known source of overhead in to-
day’s large-scale platforms. For example, Sunway TaihuLight (ranked 1st in the Top 500 list
of supercomputers 2) can only reach 0.37 Petaflops of performance on HPCG benchmark [34]
due to the high number of data movements while its peak performance is 93 Petaflops [11].
Moreover, this problem will be more significant as the generated amount of the data is in-
creasing everyday.

Mitigating I/O latency in clouds. Given the cost of data movements for the application
performance, data locality has become a major focus in Big Data processing. Therefore,
state-of-the-art scheduling strategies (i.e., Fifo, Fair, Capacity) in Big Data systems are mainly
accommodated with locality-oriented strategies in order to sustain high data locality. More-
over, a large body of studies have sought to reduce I/O latency in the Big Data context by
further improving the data locality [6, 63, 64, 131, 134, 149, 150]. Zaharia et al. introduced
a delay scheduler [150], a simple delay algorithm on top of the default Hadoop Fair sched-
uler. Delay scheduling leverages the fact that the majority of the jobs in production clusters
are short, therefore when a scheduled job is not able to launch a local task, it can wait for
some time to increase the chance to launch the task locally. Venkataraman et al. [134] have
proposed KMN, a MapReduce scheduler that focuses on applications with input choices
and exploits these choices for performing data-aware scheduling. This in turn results in less
congested links and better performance. Ananthanarayanan et al. introduced Scarlett [6], a
system that employs a popularity-based data replication approach to prevent machines that
store popular content from becoming bottlenecks, and to maximize locality. Yu et al. [149]
proposed to use data prefetching to improve the application performance by mitigating the

2 http://www.top500.org/.

http://www.top500.org/.
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slowdown that is caused by the tasks with non-local data. Ibrahim et al. have proposed Mae-
stro [63], a replica-aware map scheduler that tries to increase locality in the map phase and
also yields better balanced intermediate data distribution. We address data locality problem
in Chapter 6 where we present a failure-aware scheduler that aims at sustaining a high data
locality even under failures.

Mitigating I/O latency in HPC systems. Aforementioned studies mainly target clouds.
However, these studies would not be appropriate for HPC systems where the input data typ-
ically resides in a parallel file system rather than the local storage of the machines. Hence, all
the machines have an equivalent distance to the input data in HPC systems. Consequently,
we recently observed architecture-based solutions (e.g., data staging nodes, burst buffers)
in order to reduce the I/O latency in HPC systems. Burst buffer (BB) is an intermediate
storage layer between the parallel file system and computation nodes which consists of high
throughput storage devices such as SSD, RAMDisk and NVRAM. Liu et al. [88] demon-
strated that BBs can minimize the time spent in the I/O by scientific applications by acting
as a data staging area and allowing to hide the high costs of data transfers in the network.
In [15], the authors extended PLFS, a middleware virtual file system, with burst buffer sup-
port which helped to improve the performance of scientific applications by 30%. In [138],
burst buffers brought a 8-fold improvement to the I/O performance of scientific applica-
tions by buffering the bursty I/O (i.e., checkpointing) of scientific applications and eventu-
ally flushing this data to the parallel file system. The use of dedicated I/O resources [35,
156] also resemble to burst buffer solution. These I/O resources help to hide the I/O la-
tency by transferring the data to these resources asynchronously and thus allow to overlap
computation with I/O.

The main concept underlying the design of burst buffers is the fact that scientific appli-
cations have a periodical behavior. These applications perform bursty I/O requests with a
defined time period. Moreover, this bursty I/O behavior dominates the I/O traffic in HPC
systems [137]. Thus, burst buffer is a great fit for the scientific applications. On the contrary,
leveraging burst buffers for Big Data processing in order to mitigate I/O latency problem
is challenging given that Big Data applications mostly run in batches thus requires a con-
tinuous interaction with the parallel file system for reading the input data. We address this
challenge in Chapter 5 where we present a burst buffer solution that helps to improve the
performance of Big Data applications in HPC systems.

2.2.2 I/O Interference

Another major challenge towards efficient Big Data processing on large-scale shared plat-
forms is I/O interference. In the context of HPC systems, different from clouds, the storage
system (often present as a centralized set of storage servers) is shared among multiple ap-
plications running on the computation nodes as illustrated in Figure 2.2. Thus, sharing the
storage system leads to a performance degradation for these concurrent applications. This
performance degradation resulting from I/O interference is often represented with an inter-
ference factor metric. The interference factor is defined as the ratio between the I/O time of
an application when it is contending with other applications for its I/O operations and the
time for it to perform the same I/O operations alone.
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(a) Typical storage system in clouds

(b) Typical storage system in HPC Systems

Figure 2.2: Typical storage systems in clouds and HPC systems.
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It is also important to note that the ratio among computation nodes and storage servers
is usually between 10x and 100x [97]. These uncontrolled I/O performance degradations in
large-scale applications lead to a large waste of computation time since applications will be
idle while waiting for their I/O operations to be completed. Therefore, mitigating the I/O
interference problem is necessary to prevent I/O from being bottleneck to the performance
of Big Data applications.

To this end, researchers have been trying to handle the I/O interference problem in HPC
systems. The causes of I/O interference can be very diverse. Some works focus on finding
solutions at the disk level [154, 155] mainly by trying to optimize the access locality. Some
research efforts consider network contention as the major contributor to the I/O interfer-
ence [13, 16, 76, 83, 106, 125]. Use of interference-aware schedulers [37, 43, 121, 153, 157] can
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Figure 2.3: Job statistics of a Hadoop cluster in Carnegie Mellon University.

help to control the level of interference by mainly coordinating the requests from different
applications. Towards interference-aware Big Data processing in HPC systems, we try to
identify the root causes of I/O interference and look at the interplay between these causes in
Chapter 4.

Moreover, this interference issue can even become more severe when scientific and Big
Data applications are co-located on the same platform (i.e., sharing the same storage system).
In Chapter 5, we address this problem and try to minimize the performance degradation
resulting from the I/O interference between HPC and Big Data applications.

2.3 Handling Failures at Large Scale

Given the scale of Big Data processing platforms, failures are a norm rather than being an
exception. For example, BlueWaters supercomputer at the National Center of Supercomput-
ing [18] has a mean time to failure of 4.2 hours [31]. In particular, clouds consist of hundreds
of failure-prone commodity machines in order to provide efficient data processing while
enabling low cost of implementation for the users. Moreover, these platforms are shared
by multiple users with different application characteristics which significantly increases the
probability of failures. Therefore, it is critical to efficiently handle failures for performing
efficient Big Data processing. We address this challenge in Chapter 6 by trying to enable fast
failure recovery in shared Hadoop clusters. Hereafter, we briefly list the failure handling
strategies in Big Data processing and then we present the current efforts on mitigating the
impact of the failures on the performance of Big Data applications in Hadoop clusters.

2.3.1 Failure-Handling Strategies in Big Data Processing

Failures are part of the Big Data processing frameworks’ characteristics [32]. Even worse,
they can result in a high number of failed jobs. Figure 2.3 shows the job statistics of a Hadoop
cluster in the Carnegie Mellon University [100] for the period of three months in 2012. Frac-
tion of the failed jobs (i.e., 13% on average) demonstrates that failures are part of the Big
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Data processing clusters. Hence, several strategies have been introduced in order to cope
with failures:

Replication [29, 66] ensures data availability by creating extra copies of the same data in
different machines. If some failure happens, the tasks of the failed machine can be
re-executed on other healthy machines which have the copy of the tasks’ data. Repli-
cation is one of the most commonly used strategy in Big Data processing frameworks.
For example, Hadoop framework (on which we focus in Chapter 6) handles machine
failures (i.e., fail-stop failure) by re-executing all the tasks of the failed machines by
leveraging data replication as well.

Checkpointing [92, 98, 105] stores the snapshot of the state of a task at defined time inter-
vals. Unlike replication, the task can be restarted from the latest checkpoint rather than
from the beginning when failure happens. However, this strategy can be costly when
the amount of data to checkpoint is large. For example, DataMPI [92], communica-
tion library that extends MPI for supporting Big Data analytics, uses checkpointing as
a fault-tolerance strategy and this strategy incurs a significant overhead: 12% perfor-
mance loss when the checkpointing is enabled.

Lineage [84, 152] stores the changes (e.g., transformations) performed on the data as a lin-
eage graph and uses this graph to re-compute the lost data in case of failures. The lin-
eage mechanism is originally used in the database domain [21] and recently Spark [152]
adopted lineage as its fault-tolerance mechanism.

2.3.2 Mitigating Failures in Shared Hadoop Clusters

Single job. Failures can significantly degrade the performance of Big Data applications in
Hadoop clusters. For instance, Dinu et al. [32] have demonstrated a large variation in the
performance of Big Data applications in the presence of failures. In particular, they reported
that the performance of a Big Data application degrades by up to 3.6x for one single ma-
chine failure. Therefore, several studies have been dedicated to explore and improve the
performance of Big Data applications under failures. Ruiz et al. have proposed RAFT [107],
a family of fast recovery algorithms upon failures. RAFT introduces checkpointing algo-
rithms to preserve the work upon failures. RAFT was evaluated using single job only. Dinu
et al. have proposed RCMP as a first-order failure resilience strategy instead of data repli-
cation [33]. RCMP performs efficient job recomputation upon failures by only recomputing
the necessary tasks. However, RCMP only focuses on I/O intensive pipelined jobs, which
makes their contribution valid for a small subset of Big Data applications.

Moving towards shared Hadoop clusters with multiple concurrent jobs. Failure han-
dling and recovery has long been an important goal in Hadoop clusters. However, previous
efforts to handle failures either have been targeting single job scenarios in Hadoop clus-
ters or entirely entrusted to the core of Hadoop as we mentioned in Section 2.1.4 regarding
the state-of-the-art Hadoop schedulers. The unawareness of failures may therefore prevent
Hadoop schedulers from operating correctly towards meeting their objectives (e.g., fairness,
job priority) and can significantly impact the performance of Big Data applications. To this
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end, we introduce a failure-aware scheduler for shared Hadoop clusters in Chapter 6. We
also aim at sustaining a high data locality even under failures.

2.4 Discussion: Enabling Efficient Big Data Processing for Large-
Scale Shared Platforms

Big Data applications are a driving source in the advancements for our society by turning
data into a valuable information. One main challenge in this process, consists of dealing
with the large amounts of data generated by these applications. To meet this challenge, data
processing platforms become larger and larger, and these large-scale platforms are being
used by more applications at the same time.

Given the scale and shared nature of these platforms, I/O management and failure han-
dling solutions have become crucial in enabling efficient data processing on these platforms.
In this thesis, we take application performance as an objective regarding the efficiency of data
processing. One major problem is the I/O latency where movements of huge amounts of
data in the network can impose a large overhead for the performance of Big Data appli-
cations. As these platforms are shared by a high number of concurrent applications, I/O
interference also appears as a major performance bottleneck. Novel and smart I/O manage-
ment solutions are needed, alongside these powerful data processing platforms.

Another major source of performance degradation in Big Data processing is failures. Due
to the large scale and shared nature of the data processing platforms, failures are an everyday
reality rather than being an exception. Handling failures therefore is a key to ensure efficient
Big Data processing on these platforms.

In the next chapters, we describe through a number of contributions how we address
the aforementioned challenges regarding efficient Big Data processing on large-scale shared
platforms.
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WITH the recent interest towards leveraging HPC systems for Big Data processing, it
becomes important to identify the performance characteristics of Big Data appli-
cations on these systems. This is important since Big Data applications are mainly

optimized to run on clouds where main objective is to process data rather than computation
as in HPC systems. To this end, we perform an experimental study characterizing the perfor-
mance of Big Data applications on HPC systems. We use representative Big Data workloads
on the Grid’5000 [19] testbed to evaluate how latency, contention, and file system’s configu-
ration impact the performance of Big Data applications on HPC systems.
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3.1 Motivation

We have recently seen a huge interest in leveraging HPC systems for Big Data process-
ing [17, 42]. However, when doing this one should be aware of the different architectural
designs in current Big Data processing and HPC systems. Big Data processing clusters have
shared nothing architecture (e.g., nodes with individual disks attached) and thus they can
co-locate the data and compute resources on the same machine (i.e., data-centric paradigm).
On the other hand, HPC clusters employ a shared architecture (e.g., parallel file systems) [51]
which results in separation of data resources from the compute nodes (i.e., compute-centric
paradigm). These differences in the design of these two systems lead us to the following
questions that we try to answer in this chapter:

How does I/O latency impact the performance of Big Data applications? Big Data sys-
tems are mainly optimized to sustain high data locality to reduce the I/O latency which is
the major contributing factor to the application performance [6, 134]. However, the same
approach on the data locality can not be applied in HPC systems since all the nodes have an
equivalent distance to the input data. In addition, employing a shared parallel file system
also results in remote data transfers through network when Big Data applications perform-
ing I/O thus resulting in a higher latency.

Previously, several studies have been conducted to explore the impact of the I/O latency
in HPC storage architecture on the performance of Big Data applications. For instance, Wang
et al. [139] indicated that having the storage space as Lustre file system [117] (compared to
co-locating it with the compute nodes) can lead to 5.7x performance degradation for Big
Data applications. Similarly, one of our objectives is to provide a detailed analysis of the
impact of latency on the performance of Big Data applications by considering the different
phases of these applications as input, intermediate and output data.

What is the impact of I/O contention on the performance of Big Data applications? I/O
contention is a well-known source of performance degradation for HPC applications due to
the large size and shared architecture of HPC clusters [43, 89]. If HPC systems are to serve
as the underlying infrastructure for Big Data processing, the impact of contention will be
amplified given the huge data sizes of these applications.

Unfortunately, previous studies regarding the characterization of Big Data applications
on HPC systems [25, 129, 139] do not quantitatively analyze the impact of contention on the
performance of Big Data applications despite its importance.

What is the impact of the file system specific properties on the application performance?
Parallel file systems have several specific properties to meet the requirements of HPC ap-
plications. For instance, synchronization feature in PVFS provides resiliency for HPC ap-
plications. These properties can have a significant impact on the performance of Big Data
applications. For example, Chaimov et al. [25] found out that metadata operations in Lustre
file system create a performance bottleneck for Big Data applications. Similarly, we aim to
explore the potential performance issues specific to PVFS.
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How can we benefit from (HPC) architecture-driven I/O management solutions for per-
forming efficient Big Data processing? Our last objective is to discuss the implications of
the findings with respect to the aforementioned questions and draw attention to new ways
(e.g., burst buffers) which can alleviate the performance issues resulting from HPC storage
architecture and thus improve the performance of Big Data applications on HPC systems.

3.2 Performance Bottlenecks of Big Data Applications on HPC Sys-
tems

3.2.1 Methodology

We conducted a series of experiments in order to assess the impact of the potential issues
regarding HPC systems (i.e., latency, contention, file system’s configuration) on the perfor-
mance of Big Data applications. We further describe the experimental environment: the
platform, deployment setup, and Big Data workloads.

Platform Description

The experiments were carried out on the Grid’5000 testbed. We used the Rennes site; more
specifically we employed nodes belonging to the parasilo and paravance clusters. The nodes
in these clusters are outfitted with two 8-core Intel Xeon 2.4 GHz CPUs and 128 GB of RAM.
We leveraged the 10 Gbps Ethernet network that connects all nodes of these two clusters.
Grid’5000 allows us to create an isolated environment in order to have full control over the
experiments.

Deployment Setup

We used Spark version 1.6.1 working with HDFS version 1.2. We configured and deployed a
Spark cluster using 51 nodes on the paravance cluster. One node consists of the Spark master
and the HDFS NameNode, leaving 50 nodes to serve as both slaves of Spark and DataN-
odes. We used the default value (number of available cores on the node) for the number of
cores to use per each node. Therefore, the Spark cluster can allocate up to 800 tasks. We al-
located 24 GB per node for the Spark instance and set Spark’s default parallelism parameter
(spark.default.parallelism) to 800 which refers to the number of RDD partitions (i.e., number
of reducers for batch jobs). At the level of HDFS, we used a chunk size of 32 MB and set a
replication factor of 2 for the input and output data.

The OrangeFS file system (a branch of PVFS2 [110]) version 2.8.3 was deployed on 12
nodes of the parasilo cluster. We set the stripe size which defines the data distribution policy
in PVFS (i.e., analogous to block size in HDFS) to 32 MB in order to have a fair comparison
with HDFS. Unless otherwise specified, we disabled the synchronization for PVFS (Sync
OFF) which indicates that the incoming data can stay in kernel-provided buffers. We opted
for Sync OFF configuration since Spark is also using the memory as a first storage level with
HDFS.
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Workloads

We selected three representative Big Data workloads including Sort, Wordcount and PageR-
ank which are part of HiBench [58], a Big Data benchmarking suite.

Wordcount is a map-heavy workload which counts the number of occurrences of each word
in a data set. The map function splits the input data set into words and produces the
intermediate data for the reduce function as a key,value pair with word being the key
and 1 as the value to indicate the occurrence of the word. The reduce function sums up
these intermediate results and outputs the final word counts. Wordcount has a light
reduce phase due to the small amount of the intermediate data.

Sort is a reduce-heavy workload with a large amount of intermediate data. This workload
sorts the data set and both map and reduce functions are simple functions which take
the input and produces its sorted version based on the key. This workload has a heavy
shuffling in the reduce phase due to the large amount of intermediate data it produces.

PageRank is a graph algorithm which ranks elements according to the number of links.
This workload updates these rank values in multiple iterations until they converge
and therefore it represents the iterative set of applications. For Sort and Wordcount
workloads, we used 200 GB input data set generated with RandomTextWriter in Hi-
Bench suite. For the PageRank workload, we also used HiBench suite which uses the
data generated from Web data with 25 million edges as an input data set.

3.2.2 The Impact of I/O Latency

First, we try to understand the impact of the data location on the application performance.
While storage resources are co-located with Spark tasks under the data-centric paradigm
(i.e., when using Spark with HDFS), Spark tasks need to communicate with the parallel file
system either to fetch the input data or to write the output data under the compute-centric
paradigm (i.e., when PVFS is employed with Spark). This remote data access results in a
higher latency compared to the data-centric paradigm which leverages data locality. Fig-
ure 3.1 shows how latency can affect the application performance. Note that, intermediate
data is stored locally on the aforementioned settings for Spark in order to focus on the la-
tency resulting from reading the input data in map phase. We explore the intermediate data
storage separately in the next subsection.

Figure 3.1(a) displays the execution time of the Wordcount workload for both paradigms
with a performance in map and reduce phases. Overall, Wordcount performs 1.9x worse
under the compute-centric paradigm compared to the data-centric one. When we look at
the performance in each phase, we observe that the performance degradation contributed
by the map phase (2.3x) is higher compared to the reduce phase. This stems from the fact
that Wordcount has a light reduce phase and generates only a small amount of output data.

Similarly, in Figure 3.1(b) we observe that the data-centric configuration outperforms the
compute-centric one by 4.9x for the Sort workload. In contrast to Wordcount, the reduce
phase is the major contributor to the performance degradation. For the Sort workload, the
amount of the output data is equal to the input data thus it suffers from a higher latency in
the reduce phase as data is written to the parallel file system. As a result, having a higher
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Figure 3.1: Performance of Big Data workloads on Spark under data-centric and compute-
centric paradigms.

latency on both input and output phases led to higher performance degradation for the
compute-centric paradigm.

Lastly, we ran the PageRank workload in both settings for Spark and Figure 3.1(c) shows
the results. Here, performance degradation with the compute-centric paradigm is only 26%.
The reason behind this is that I/O phases of the PageRank workload (i.e., Stage 0 and Stage 5
(denoted as S0 and S5)) accounts for a small fraction of PageRank execution time and Spark
computes the iterations (i.e., Stage 1, 2, 3 and 4) locally.

The Impact of the Input Data Sizes

We also investigated the impact of the input data size on the application performance. To
do so, we ran the Wordcount workload with different input sizes as 2 GB, 20 GB and 200
GB. Figure 3.2 displays the performance of the Wordcount workload in each phase for data
and compute-centric paradigms. Overall, we observe that the impact of I/O latency is only
visible in the map phase for the compute-centric paradigm with increasing input sizes: there
is a performance degradation for the map phase by 1.2x, 1.8x and 2.3x with 2 GB, 20 GB and
200 GB input sizes, respectively. This is mainly due to the fact that Wordcount is a map-
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Figure 3.2: Performance of the Wordcount workload with different input sizes.

heavy workload which generates a small amount of output data and therefore reduce phase
results do not vary significantly with respect to different data sizes. To further investigate
these different behaviors in map and reduce phases, we display the CDF of map and reduce
task durations in Figures 3.3 and 3.4.

Interestingly, Figure 3.3(a) shows that some map task durations are smaller for the
compute-centric paradigm compared to the data-centric one. This is due to the fact that
Spark employs delay scheduling [150] to increase the chances of a map task to be launched
locally for the data-centric paradigm. This delay while launching the map tasks, which re-
sults in a performance degradation for the jobs with small input data sizes, is due to the
default Spark configuration for the maximum waiting time (i.e., 3 seconds) in scheduling
the map tasks. This is only valid for the data-centric paradigm since there is no data locality
objective when scheduling the tasks in the compute-centric paradigm where all the machines
have an equivalent distance to the parallel file system. On the other hand, we observe an in-
crease in the map task durations with larger input sizes for the compute-centric paradigm.
This results from the higher latency while fetching the input data from parallel file system
with larger input sizes.

Another interesting trend we observe is that the maximum map task duration also in-
creases with the increasing data sizes, especially with 200 GB input data size in Figure 3.3(c).
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Figure 3.3: CDFs of running times of map tasks in the Wordcount workload.

We believe that this behavior is due to the higher contention with the increased number
of concurrent map tasks. It is important to note that there are 33, 594 and 800 concurrent
map tasks with 2 GB, 20 GB and 200 GB input sizes. Moreover, we see that this increase
is much higher with the compute-centric paradigm which can highlight the severity of the
contention problem for this paradigm. We will further explain the impact of the contention
on the application performance in Section 3.2.3.

In Figure 3.4, we observe a similar trend for the reduce task durations for the compute-
centric paradigm. With larger data sizes, we observe an increase in those durations too. This
again stems from an increased amount of the remote data transfer while writing the reducer
outputs to the parallel file system. Moreover, we discover that there is a high performance
variability in the reduce phase and the maximum task duration is quite high even with
2 GB data size. This is due to the static Spark configuration which employs 800 reducers
regardless of the input data size. These high number of reducers overload the parallel file
system and results in this performance variability. Hence, we do not see the impact of latency
in Figure 3.2 for the reduce phase. However, when the output data size is large enough as
shown for the Sort workload in the previous experiment (Figure 3.1(b)), the impact of the
I/O latency is quite clear as it results in a significant performance degradation.

For the data-centric paradigm, this time we see that reduce task durations are inlined
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Figure 3.4: CDFs of running times of reduce tasks in the Wordcount workload.
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Figure 3.5: Impact of the location of inter-
mediate data on the performance of the
Sort workload.
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with the data sizes, different from the map phase. While for the map phase there is an
increase in the maximum task duration due to the increased number of concurrent map
tasks, for the reduce phase the number of reduce tasks is fixed and the increase in the reduce
task durations is mainly due to the increased amount of reducer output with larger input
sizes.

Intermediate Data Storage

In Big Data processing systems, intermediate data are typically stored locally. However,
nodes in some of the HPC systems may not have individual disks attached to themselves.
This arises the question of how to store the intermediate data when running Big Data ap-
plications on HPC systems. As a naive solution, we employed PVFS also for storing the
intermediate data as well as storage space for input and output data like in the experiments
so far. We ran the Sort workload with PVFS since it generates an intermediate data equal to
the input data size and thus it is a good fit to evaluate the intermediate data storage for HPC
systems. Figure 3.5 compares the performance of Sort depending on the intermediate data
location: local storage (on disk) or remote storage (on PVFS). We see that using PVFS also
for the intermediate data storage space results in 9% performance degradation.

When we analyze the performance of the Sort workload in each phase, we see that this
performance degradation is 16% for the map phase which stems from writing the interme-
diate data to the parallel file system. For the reduce phase, we observe that there is a 8%
increase in the completion time due to the additional I/O latency when fetching the inter-
mediate data from PVFS.

Finding: In all the workloads, we observe that the remote data access to the parallel
file system leads to a significant performance degradation, especially for the input and
output data. We also show that the degree of this performance degradation depends on
the characteristics of the workloads and on the input data size.

3.2.3 The Impact of Contention

Given the shared architecture of HPC systems, contention is likely to occur when running
Big Data applications on a HPC system. To assess the impact of contention on the perfor-
mance of Big Data applications, we designed the following experiments:
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(a) Performance of multiple Wordcount workloads
under a data-centric paradigm.
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Figure 3.6: Performance of multiple Wordcount workloads under different paradigms.

Measuring the contention when running concurrent Big Data applications. Since the
storage system is shared by all the nodes, this can create a serious contention problem on the
storage path including network, server and storage devices. Here, we ran two Wordcount
workloads concurrently under compute and date-centric paradigms by employing the Fair
scheduler in Spark. The Fair scheduler allows these workloads to have equal share of the
resources in the Spark cluster (i.e., each workload employ 400 tasks which is equal to the half
of the cluster capacity). Figure 3.6 displays the execution times of the Wordcount workload
when it runs alone and together with the other Wordcount workload for data and compute-
centric paradigms. As shown in Figure 3.6(a), the performance degradation when running in
contention with the other Wordcount workload is negligible with data-centric paradigm. In
contrast, we observe that there is a 41% performance degradation with the compute-centric
paradigm when two workloads are running concurrently. This stems from sharing the same
parallel file system with compute-centric paradigm while these two workloads perform their
I/O operations on their individual storage devices in the data-centric paradigm. In partic-
ular, Figure 3.6(b) highlights that this performance degradation is mainly due to the map
phase. This is because Wordcount is a map-heavy workload and therefore the number of
I/O operations is quite large in the map phase compared to the reduce phase.

Measuring the contention when co-locating HPC and Big Data applications. This con-
tention problem can even become more significant when we consider the ultimate objective
of the HPC and Big Data convergence which is co-locating scientific and Big Data applica-
tions on a same platform. To emulate this objective, we ran the Wordcount workload alone
and together with the IOR workload. IOR [119] is a popular I/O benchmark that allows
users to specify different I/O configurations and thus measures the I/O performance of
HPC systems. For IOR workload, we employed 224 processes (on a different set of nodes
separated from the ones running the Wordcount workload) where each process issues a 512
MB write request in 32 MBs of chunks. Figure 3.7 shows the execution times of the Word-
count workload for both cases. Due to resource sharing (file system and network) with the
IOR workload, there is a 1.4x performance degradation in the total execution time of the
Wordcount workload. When we look at the performance in each phase, we observe that this
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Figure 3.7: Performance of the Word-
count workload when running alone and
together with IOR workload.
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performance degradation is mainly due to the reduce phase. This stems from the fact that re-
duce phase performs write operations as the IOR workload and this results in a write/write
contention.

Finding: We demonstrate that contention appears as a limiting factor for Big Data ap-
plications on HPC systems due to employing a shared storage system. In Chapter 4, we
further investigate the causes of this problem and try to understand its implications on
I/O management solutions for performing efficient Big Data processing on HPC sys-
tems.

3.2.4 The Impact of the File System Configuration

Besides the generic problems of HPC systems as latency and contention, we can also en-
counter performance issues with the file system specific problems when running Big Data
applications on HPC systems. For example, [25] reported that metadata operations on Lus-
tre create a bottleneck for Spark applications. Thus, we wanted to investigate file system
specific problems that Spark applications can encounter. To this end, we configured PVFS
with synchronization enabled (Sync ON). This synchronization feature can be necessary for
providing a better reliability guarantee for the clients. To ensure this, each request is imme-
diately flushed to the disk before finalizing the request.

We ran the Wordcount workload with two different synchronization options for PVFS:
Sync ON and Sync OFF. Figure 3.8 shows that Wordcount performs 1.5x worse when syn-
chronization is enabled. We observe that this significant performance degradation mainly
stems from the reduce phase. This is expected since the output data is sent to the file system
during the reduce phase and each request is flushed to the disk thus resulting in a major
bottleneck for the application performance.

We also ran the Sort workload with two different configurations of PVFS and Table 3.1
shows that Sort performs 4.5x worse when synchronization is enabled. In contrast to Word-
count, we observe a much higher performance degradation with the Sort workload. This
is because while Sort is generating a large amount of output data (200 GB as the input data
size), Wordcount has a light reduce phase and generates only a small amount of output data.

Finding: Parallel file systems are equipped with several features which are important
for HPC applications (i.e., synchronization feature in PVFS to provide resiliency, dis-
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Table 3.1: Execution time of the Sort workload and its phases under different configurations
of PVFS.

Configuration Execution Time Map Reduce
Sync ON 2708.5 s 42.7 s 2665.8 s

Sync OFF 597.6 s 42.6 s 555.0 s

tributed locking mechanism in Lustre to ensure file consistency). However, as reported
earlier in [25, 139] and as demonstrated in our experiments, these features may bring a
significant performance degradation for Big Data applications. We further investigate
the role of these file system specific configurations on the I/O interference in Chapter 4.

3.3 Toward Performing Efficient Big Data Processing on HPC Sys-
tems

Our experiments revealed that Big Data applications encounter serious performance issues
related to I/O management when running on HPC systems. On the other hand, current
burst buffer solutions (i.e., intermediate storage layers with fast storage devices) [25, 72, 73,
88, 114] demonstrated their effectiveness in improving the I/O performance of HPC appli-
cations. These studies have focused on mitigating the latency resulting from writing and
reading the intermediate data. However, our findings showed that using burst buffers for
the intermediate data can bring an improvement of at most 9% when the intermediate data
have the same size as the input data. As a result, the latency introduced by the intermediate
data is not really the bottleneck for a major fraction of Big Data applications: by analyzing
traces collected from three different research clusters we observe that the amount of the in-
termediate data is less than 20% of the input data size for 85% of the applications [52]. On the
other hand, we find that the latencies resulting from reading the input data and writing the
output data significantly impact performance. Thus, it is very important to mitigate the high
latency resulting from accessing those data when developing burst buffer solutions which
we address in Chapter 5.
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On the Capacity and Location of Burst Buffers

Although burst buffers promise a large potential for Big Data applications, leveraging them
efficiently is not trivial. For example, there is a trade-off between the capacity and the
throughput of the storage devices that are used in the burst buffers. Although, storage de-
vices such as SSDs or NVRAMs can provide high throughput, they are limited in the storage
capacity. Moreover, we demonstrated in our experiments that we should tackle all the I/O
phases (i.e., input, intermediate and output data) while addressing the latency problem.
Therefore, the problem of having limited capacity will be amplified when we try to use the
burst buffer for all the I/O phases. Similarly, it is important to decide when and which data
to evict when running multiple concurrent applications.

Another challenge would be choosing the optimal deployment location for the burst
buffers. Some of the possible deployment locations are within the compute nodes [139]
or using a dedicated set of nodes [25] as burst buffers. While co-locating burst buffers and
compute nodes can prevent the aforementioned capacity constraints since compute nodes
are greater in size compared to dedicated nodes, this may result in a computational jitter
due to sharing of the resources as also reported in [15].

To find out the impact of the aforementioned factors on the performance of Big Data
applications, we emulated a naive adoption of burst buffers by using the ramdisk (i.e., /de-
v/shm/) as a storage space for the Big Data applications and performed the following ex-
periments:

Measuring the impact of the storage capacity on the application performance. Here, we
ran the Wordcount workload with two different storage capacities for the burst buffer as 40
GB and 10 GB memory. Note that, we used a smaller input data size than previous exper-
iments which has a data size of 20 GB. The burst buffer is employing 5 dedicated nodes.
Figure 3.9 shows the execution time of the Wordcount workload for different burst buffer
configurations. We observe a 2.1x performance degradation when the burst buffer has 10
GB storage capacity. When we look at the performance of the workload in each phase, we
see that this performance degradation is attributed to the map phase. This results from not
having enough space for storing the input data on the burst buffer. Hence, compute nodes
have to fetch the input data from the parallel file system thus resulting in a high I/O latency
in the map phase. On the contrary, all I/O operations performed between burst buffer nodes
and compute nodes when there is enough storage capacity. For the reduce phase, we do not
observe any performance degradation since the output data to be written is small enough to
fit into the burst buffer storage space, for this workload.

Measuring the impact of the deployment location of the burst buffer. We ran the Word-
count workload with the same configuration as in the previous experiment and deployed
the burst buffer in two scenarios: in the first one, the burst buffer is deployed as a disjoint
set of nodes and in the second one it is located as a subset of the compute cluster. Figure 3.10
displays that Wordcount performs better when burst buffer is deployed as a separate set of
nodes. We hypothesize the following explanation. When the burst buffer is using the subset
of the nodes of the compute cluster, I/O and compute tasks on those nodes conflict with
each other thus resulting in a significant performance degradation (38% slowdown). This is
in line with the observations reported in [15].
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Finding: Our experiments show that the storage capacity and the location of burst
buffers can have a significant impact on the performance of Big Data applications. With
limited storage capacity, we demonstrate that burst buffers can not mitigate the latency
problem fully since compute nodes still need to fetch most of the data from the parallel
file system. For the deployment location, we observe that co-locating the burst buffer
and compute resources on the same node can not be appropriate due to the possible in-
terference among them. We take these findings into consideration when designing our
burst buffer solution in Chapter 5 which tries to enable efficient Big Data processing on
HPC systems.

3.4 Related Work

Several research efforts have been conducted to evaluate the performance of Big Data an-
alytics frameworks on HPC systems. Wang et al. [139] performed an experimental study
where they investigated the characteristics of Spark on a HPC system with a special fo-
cus on the impact of the storage architecture and locality-oriented task scheduling. Tous et
al. [129] evaluated the Spark performance on a MareNostrum supercomputer. In particular,
they studied the impact of different Spark configurations on the performance of Sort and
K-means applications. In [126], the authors compared the performance of MapReduce ap-
plications on PVFS and HDFS file systems by using Hadoop framework and give insights
into how to emulate HDFS behavior by using PVFS. Li et al. [85] compared the performance
of MapReduce applications on scale-up and scale-out clusters and proposed a hybrid scale-
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up/out Hadoop architecture based on their findings.
The aforementioned studies provide useful findings towards leveraging HPC systems

for Big Data processing. However, they do not illustrate a complete analysis of the potential
performance issues (e.g., latency and contention). For the latency problem, most of the stud-
ies focus on the intermediate data storage and ignore the latencies which can occur in other
I/O phases. We provide a detailed analysis of the impact of latency on the performance of
Big Data applications with respect to different I/O phases (i.e., input, intermediate and out-
put data) of an application. Although these studies mention contention as a problem, none
of them investigate its impact on the application performance. Hence, we aim to comple-
ment those studies by providing a detailed analysis of the impact of latency and contention
on the performance of Big Data applications. Furthermore, we show potential performance
issues specific to different PVFS configurations.

3.5 Conclusions

We have recently witnessed an increasing trend towards leveraging HPC systems for Big
Data processing. In this chapter, we undertook an effort to provide a detailed analysis of
performance characteristics of Big Data applications on HPC systems, as first steps towards
efficient Big Data processing on HPC systems. Our findings demonstrate that one should
carefully deal with I/O management issues regarding HPC systems (i.e., latency and con-
tention) when running Big Data applications on these systems. An important outcome of
our study is that negative impact of latency on the application performance is present for all
I/O phases. We further show that contention is a limiting factor for the performance of Big
Data applications. To enable a better understanding of this phenomenon, we further inves-
tigate the root causes of I/O interference on HPC systems in Chapter 4. Lastly, we reveal
that enabling synchronization for PVFS in order to provide resillience can create a serious
performance bottleneck for Big Data applications.

We summarize our findings in Table 3.2. We believe that these findings can help to moti-
vate further research leveraging HPC systems for Big Data analytics by providing a clearer
understanding of the Big Data application characteristics on HPC. In this direction, by con-
sidering the performance bottlenecks of Big Data applications on HPC systems that we high-
lighted in this chapter, we introduce a burst buffer solution (described in Chapter 5) that tries
to mitigate these bottlenecks and thus to improve the performance of Big Data applications
on HPC systems.
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The Impact of I/O Latency
We confirm that I/O latency resulting from the remote data access to the parallel
file system leads to a significant performance degradation for all the Big Data
workloads. However, in contrary to existing studies [25, 73], we demonstrate that
intermediate data storage is not the major contributor to this latency problem. We
also observe that the impact of this latency problem depends on the characteristics
of the Big Data applications (e.g., map-heavy, iterative applications).
The Role of Contention
We demonstrate that contention appears as a limiting factor for Big Data
applications on HPC systems due to employing a shared storage system. In
Chapter 4, we further investigate the causes of this problem and try to understand
its implications on I/O management solutions for performing efficient Big Data
processing on HPC systems.
The Impact of the File System Configuration
Parallel file systems are equipped with several features which are important for
HPC applications (i.e., synchronization feature in PVFS to provide resiliency,
distributed locking mechanism in Lustre to ensure file consistency). However, as
we demonstrated in our experiments and also reported earlier in [25, 139], these
features may bring a significant performance degradation for Big Data
applications. We further investigate the role of these file system specific
configurations on the I/O interference in Chapter 4.

Table 3.2: Our major findings on the characteristics of Big Data applications on HPC systems.
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AS we move closer to exascale systems, I/O interference becomes an increasingly im-
portant issue since larger machines are shared by more concurrent applications [37,
89]. In the previous chapter, we observed that I/O interference can lead to a serious

performance degradation for Big Data applications. Thus, understanding the causes of I/O
interference is critical to achieve efficient Big Data processing on HPC systems.

In the context of I/O for HPC systems, the main shared resource that applications con-
tend for is the parallel file system, which comprises several components that can all become
a point of contention. In this chapter, we explore these root causes of I/O interference in
HPC storage systems. To this end, we conduct an extensive experimental campaign. We
use microbenchmarks on the Grid’5000 [19] testbed to evaluate how the applications’ access
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Figure 4.1: Typical parallel storage system and potential points of contention.

pattern, the network components, the file system’s configuration, and the backend storage
devices influence interference.

4.1 I/O Interference As a Major Performance Bottleneck

I/O interference in high-performance computing (HPC) is defined as the performance
degradation observed by any single application performing I/O in contention with other
applications running on the same platform. For several years researchers have been tackling
cross-application I/O interference in the HPC area. The focus has been on several causes
including access locality in disks [154], synchronization across storage servers [121, 154],
or network contention [13, 83, 106, 125]. While these solutions get us undeniably closer to
solving the I/O interference problem, they all focus on a single potential root cause of inter-
ference (e.g., the network) and do not look at the interplay between several potential causes.
This section describes the potential causes of I/O interference in detail.

Points of Contention in the I/O Path

By considering the design of common HPC storage systems, we identified four potential
points of contention in the data path, illustrated in Figure 4.1.

1. As the number of cores per node increases, the network interface shared by all the
cores in a node can become a first point of contention [35, 89]. Failing to address this
first bottleneck at a single-application level can affect the interference encountered with
other applications farther down the I/O path.

2. The network linking computation nodes to storage servers (which we will call “storage
network,” as opposed to the “computation network” used across computation nodes,
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and which may be different) is usually the first point of contention between multiple,
independent applications.

3. The servers running the parallel file system constitute a third possible cause of cross-
application interference, because of the limited bandwidth each server provides and
because of scheduling decisions being made at this level regarding the order in which
I/O requests should be served [106, 121, 154].

4. The disks (or any other backend storage devices) constitute the lowest level at which
contention can occur. While the servers serialize requests into actual disk accesses,
interleaved requests from different applications can break the locality of disk accesses
and degrade performance [153].

Other possible sources of interference include I/O forwarding nodes [5, 68, 136], RAID
technology used in backend storage devices, or the computation network.

4.2 Experimental Insight Into the Root Causes of I/O Interference
in HPC Storage Systems

Investigating the root causes of I/O interference is a challenging task given the complexity of
HPC storage systems and the large number of parameters that can contribute to interference.
In the previous section, we identified the potential points of contention in the data path.
Here, we first describe our methodology for investigating these parameters in order to draw
meaningful and useful conclusions from our experiments. Then, we present the results of
our investigation.

4.2.1 Methodology

Role of Each Point of Contention

One way of studying the effect of potential points of contention consists of carefully isolating
each of them and benchmarking them separately. This is not the approach we undertake
here. This approach indeed does not capture the interplay between causes, such as the fact
that contention at one level can either mitigate or exacerbate interference at another level.

Our approach consists of either ruling out potential causes of interference or modifying
their parameters and observing the resulting performance under congestion. This approach
has proved much more useful not only in understanding the role of each point of contention
but also in evaluating their interactions. More specifically we proceed as follows for each
level.

1. The network interface can be ruled out by making a single core on each node issue all
the I/O requests of that node.

2. While the network can be ruled out by having clients run on the same node along with
a single-server file system, this option gives us little information about the role of the
network in a large, multiserver deployment of the file system. We therefore evaluate
the impact of the network’s bandwidth on the interference as well.
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3. The servers can be ruled out by ensuring that each group of processes accesses a dis-
tinct set of servers. In this scenario the two groups will interfere at the network level
but not in the servers or for the access to the disks.

4. The disks can be ruled out by using much faster devices such as SSDs or local memory
or by asking the file system to throw away any incoming data instead of storing it.
Another option is to turn off the synchronization of data files in the file system, which
allows the servers to keep data cached in memory and flush them to disks later. In the
previous chapter, we observed that synchronization feature can significantly degrade
the performance of Big Data applications therefore we further investigate its role on
the I/O interference.

Microbenchmark and Reporting Method

To investigate the influence of various parameters on the I/O interference, we follow the
methodology used in [37]. We developed a microbenchmark similar to IOR [119]. This ap-
plication starts by splitting MPI_COMM_WORLD into two groups of processes running on two
separate sets of nodes. Each group of processes executes a series of collective I/O operations
following a specified pattern, simulating two applications accessing the file system in con-
tention. We measure the time taken by each group of processes to complete its set of I/O
operations.

The experiments presented in this chapter focus on write/write interference only as write
operations typically exhibit the worst I/O performance. They use two different access pat-
terns.

Contiguous. In this pattern, each process issues a 64 MB write request in a contiguous way
in a shared file, at an offset given by rank × 64MB. MESSKIT and NWChem applica-
tions, which calculate the electron density around a molecule, are some of the scientific
applications that follow a contiguous pattern in their I/O accesses [120].

Strided. We represent the noncontiguous case by a one-dimensional strided access pattern.
Each process issues 256 requests of size 256 KB each. This I/O pattern can be ob-
served in scientific applications such as ESCAT and quantum chemical reaction dy-
namics (QCRD) application [120].

Our experimental evaluation leverages the concept of ∆-graphs introduced in [37]. For
a given configuration of the platform and the microbenchmark, we introduce a delay ∆ be-
tween the beginning of the I/O burst of the first group of processes and the beginning of the
I/O burst of the second group. We then plot the time to complete an I/O phase as a function
of ∆.

We note that ∆-graphs do not represent timelines; each point in a ∆-graph represents a
single experiment.

Platform Description

The experiments were carried out on the Grid’5000 [19] testbed. We used the Rennes site;
more specifically we employed nodes belonging to the parasilo and paravance clusters. The
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Table 4.1: Time taken by an application running on one core to write 2 GB locally using a
contiguous pattern, alone and in the presence of another application performing the same
access to another file at the same moment.

Device Alone Interfering Slowdown
HDD, sync ON 13.4 s 33.4 s 2.49×

SSD 2.27 s 4.46 s 1.96×
RAM 1.32 s 2.09 s 1.58×

nodes in these clusters are outfitted with two 8-core Intel Xeon 2.4 GHz CPUs and 128 GB of
RAM. We leverage the 10 Gbps Ethernet network that connects all nodes of these two clus-
ters. Reserving these two clusters and deploying our own file system ensured that we were
the only users of the network switch as well as the file system at the time of the experiments.

The OrangeFS file system (a branch of PVFS2 [110]) version 2.8.3 was deployed on 12
nodes of the parasilo cluster. We considered two types of configuration: “Sync ON” and
“Sync OFF”, which represent whether each request is immediately flushed to the backend
storage devices or whether data can stay in kernel-provided buffers, respectively.

We use 60 nodes (960 cores) to run our microbenchmark on the paravance cluster, unless
otherwise specified. These cores will always be split into two groups of equal size (30 nodes)
and follow the same type of access pattern.

4.2.2 Experimental Results

This section explores the role that each of the components presented above has in the I/O
interference. We discuss several possible causes for I/O interference.

Influence of the Backend Storage Device

To investigate the I/O interference caused by the storage backend (i.e., disk-level interfer-
ence), we ran our microbenchmark on the same node as the file system, with the file system
deployed on this node only. This removes the network from the factors contributing to
the interference and highlights disk-level interference. Each application consists of a sin-
gle client writing 2 GB contiguously in a file (one file for each client). Table 4.1 shows the
resulting write time and slowdown for different storage backends: HDD, SSD, and RAM.

Finding: We confirm that the use of hard disks leads to an important relative perfor-
mance degradation in the presence of contention. This interference, less present when
using SSDs or local memory, may stem from the additional disk-head movements pro-
duced by interleaved requests to distinct data files. Hence, use of these high throughput
storage devices can help to enable performing efficient Big Data processing on HPC
systems, as we explore in the following chapter.

Figures 4.2 and 4.3 complement our study of interference at the level of backend storage
devices, this time with real parallel applications and file system. In both figures, two appli-
cations of the same size (480 cores each) write 64 MB per process, in a contiguous pattern in
Figure 4.2 and in a strided pattern in Figure 4.3.
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Figure 4.2: Two applications of the same size (480 cores each) write 64 MB per process using
a contiguous pattern. We show how the application behaves for the different storage char-
acteristics: disk, SSD, and RAM. Sync is enabled in (a) and (b) and disabled in (c) and (d).
(c) and (d) also display the null-aio method for performing I/O, which simply does no disk
I/O at all.
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Figure 4.3: Two applications of the same size (480 cores each) write 64 MB of data per process
to PVFS using a strided pattern. Due to the large write time when using hard disks and syn-
chronization is enabled, we separated the figures for HDDs and other devices. For brevity,
only 1 application is shown since both applications have the same size and behavior).
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As we expect, local memory and SSDs perform better than hard disks. We also confirm
our observations in the previous chapter that enabling synchronization leads to a significant
performance degradation. In terms of interference, the slowdown is equivalent (up to 2×)
regardless of the storage backend for a contiguous pattern.

The contiguous scenario with synchronization enabled (Figures 4.2(a) and 4.2(b)) shows
an interesting result: when using HDDs (and to some extent SSDs), the graph becomes asym-
metrical. That is, the first application entering an I/O phase gets better performance than
does the second, although their I/O patterns are the same. Such unfair interference behavior
will appear again in other scenarios throughout this section and will be further explained in
Section 4.3.

Experiments with a strided access pattern and sync enabled show that local memory and
SSDs have a lower interference factor compared with that of HDDs. This different behavior
stems from the greater tolerance of local memory and SSDs to random accesses produced
not only by interleaved requests from distinct applications but also by the strided patterns
of the applications themselves.

When the synchronization is disabled, we do not observe any significant difference in
terms of performance and interference for both access patterns. This is expected since the
amount of the generated data is small enough to stay in the local memory when the synchro-
nization is disabled.

Finding: Depending on the type of storage device, the access pattern may have an in-
fluence on the I/O interference behavior. While the peak interference factor is almost
equal for all storage devices with a contiguous pattern, a strided pattern leads to higher
interference in HDDs.

Given the regularity and symmetry of the ∆-graph with HDD and synchronization enabled
(perfectly triangular figure with an exactly 2× slowdown when both applications start at the
same time), we hypothesize that while in these conditions the hard disks are the points of
contention, other backends are fast enough to deal with the congestion, and the slowdown
observed in these situations comes from another component, such as the network. This could
explain the asymmetry in those cases. This hypothesis will be examined in the following two
sections.

Influence of the Network Interface

The network interface in increasingly multicore nodes is already a limiting factor to single-
application I/O performance. We explored its role in cross-application interference. Fig-
ure 4.4 illustrates two scenarios: one in which all cores write 64 MB and one in which one
core per node performs an equivalent amount of I/O (16× 64 MB).

We note that, as expected, the performance without interference is improved by using
a single core per node instead of all the cores. This result is in line with the results of our
related work focusing on dedicated I/O cores [35].

In terms of interference, having all the cores perform I/O not only produces more inter-
ference but also leads to unfairness. Indeed the interference pattern observed in Figure 4.4
with 16 writers per node is asymmetrical, which shows that the first application entering an
I/O burst performs better than the one that follows it.
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Figure 4.5: Two applications of the same size (480 cores each) write 64 MB per process using
a contiguous pattern. Sync is enabled in (a) and disabled in the (b). We show the ∆−graph
when the network bandwidth is 10 G (default) and adjusted to the 1 G Ethernet.

Finding: While it was already known that fewer writers per multicore nodes (e.g., ag-
gregators or dedicated I/O processes) improve the I/O performance of a single applica-
tion, we have shown here that this approach also lowers cross-application interference.
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Influence of the Network

We can hardly rule out the network from the HPC system because it provides the link be-
tween the computation and the storage nodes. Hence, we highlighted its role by decreasing
the network bandwidth from 10 G to 1 G. Figure 4.5 shows the results for the different net-
work bandwidths, with two applications writing in a contiguous pattern. Surprisingly, we
discover that having a higher network bandwidth neither significantly improves the appli-
cations’ I/O performance nor helps eliminate the interference. On the contrary, limiting
the network bandwidth to 1 G helped eliminate the interference when synchronization was
disabled in the disks, as shown in Figure 4.5(b), and helped regain a symmetrical (fair) inter-
ference behavior when synchronization was enabled, as shown in Figure 4.5(a).

In Figure 4.5(a), the peak write time in the presence of contention is the same whether
we use a 10 G or a 1 G network. The reason is that the performance of the I/O path here is
limited by the backend storage devices (HDDs). In Figure 4.5(b), the data is not synchronized
to disks right away when reaching storage servers but stays in buffers. Hence, the network
becomes the limiting factor.

The flat ∆-graph observed with a 1 G network stems from the fact that the network is
limiting the rate at which each application sends requests to the file system, producing an
interference-free behavior. Interesting is the fact that the resulting write time is in some
cases smaller than when using a 10 G network, which hints for enabling efficient Big Data
processing on HPC systems that constraining the rate at these applications send their data
to the parallel file system can be a valid solution for mitigating interference.

The fairness regained in Figure 4.5(a), resulting from the interplay between the storage
devices and the network, will be further explained in Section 4.3.

Finding: Counterintuitively, a lower network bandwidth may not cause higher interfer-
ence. On the contrary, it can prevent interference if none of the other components are
subject to contention.

Influence of the Number of Storage Servers

Intuitively and assuming the network is not a point of contention, using more storage servers
increases the aggregate throughput that any single application can achieve. This situation is
demonstrated by the maximum throughput achieved in Figure 4.6(a). In terms of interfer-
ence, however, it is not clear whether more servers will mitigate the interference.

We therefore investigated the role of the number of servers on the interference by de-
ploying PVFS on 24, 12, 8, and 4 nodes with synchronization turned off. Each client writes
64 MB in a contiguous pattern for the first three deployments and writes 32 MB with 4 PVFS
servers because of its lower capacity. Figure 4.6(b) shows the observed throughput for one
of the applications depending on the number of PVFS servers used and on ∆. As expected,
increasing the number of servers improves the throughput, but it cannot eliminate the inter-
ference. I/O interference still exists because each server still has the same number of clients
regardless of the number of servers.

Table 4.2 summarizes the peak interference factors observed for each number of servers.
As we can see, the number of servers does not influence the interference factor much.
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Figure 4.6: Two applications of the same size write data to the PVFS using a contiguous
pattern. Figure (a) shows the maximum throughput achieved (when the application is alone)
and the minimum (in contention) as a function of the number of servers. Figure (b) shows
the throughput for one of the applications in a ∆-graph, that is, as a function of the delay
between applications.

Table 4.2: Peak interference factor observed by the application for different numbers of stor-
age servers.

Number of Servers Interference Factor
4 2.22
8 2.28

12 2.07
24 2.00

Finding: Increasing the number of servers does not affect the relative performance
degradation generated by cross-application interference.

One could argue that this result would not be true for small applications that cannot
get full parallelism from the maximum number of storage servers. Yet as we build larger
machines, the number of storage servers tends to get smaller relative to the number of com-
putation nodes. Moreover, with the Big Data deluge, we tend to run larger applications that
become quickly limited by this small number of servers.

Influence of Targeted Storage Servers

In our previous set of experiments, both applications were writing to all available servers.
In this section, we split the 12 PVFS servers into two groups so that each application targets
a different group of servers. Our idea is to remove the servers and disks from the possi-
ble points of contention, leaving only the network as a shared component between the two
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Figure 4.7: Two applications of the same size (480 cores each) write 64 MB per process using
a contiguous pattern. We show the ∆−graph when both applications use the same set of
PVFS servers (12 PVFS servers) and when each application targets different set of PVFS
servers (6+6 PVFS servers) for the two different storage backends.

applications.
Figure 4.7 shows the results for two different storage backends. As expected, using 2×

fewer servers decreases the performance of a single application.
The behavior with respect to the interference is more interesting, however. We observe

that making each application target a different set of servers removes the interference. In
some cases, the interference observed under contention for all 12 servers leads to a higher
write time than does using 6 separate servers for each application. This result would moti-
vate approaches that detect potential congestion and partition the storage space across ap-
plications instead of letting applications interfere.

Again, the unfairness observed in Figure 4.7(a) when both applications target all servers
is eliminated when they access different sets of servers.

Finding: Making distinct applications target distinct sets of servers is a valid solution to
at least control if not mitigate the level of interference.

Influence of the Data Distribution Policy

Data files are distributed across PVFS servers in a round-robin fashion with a predefined
stripe size. Changing this stripe size can have a significant impact on the resulting perfor-
mance. Hence we wanted to check its influence on the interference as well.

Figure 4.8 illustrates the interference pattern with stripe sizes of 64 KB, 128 KB, and
256 KB for a PVFS deployment with disk and synchronization enabled (Figure 4.8(a)) and
disabled (Figure 4.8(b)). Note that 64 KB is the default stripe size and that each application
writes 64 MB per process in a strided pattern with 256 KB of blocks.
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Figure 4.8: Two applications of the same size (480 cores each) write 64 MB of data to the
PVFS using a strided pattern, with different stripe sizes on the server side. Synchronization
is enabled in (a), and disabled in (b).

A stripe sizes higher than the default one leads to significant performance improvements
for both cases. However, the interference seems to disappear when using a larger stripe size
with synchronization turned off. We hypothesize that this lower interference stems from
the smaller number of servers that each request is striped across. When a large request is
issued by a client, this request is split into smaller requests sent in parallel to several servers.
The operation completes only when all these servers have treated their part of the initial
request. Hence, any slowdown experienced by a single server as a result of contention leads
to a global slowdown for the entire operation. Provided that two servers decide to serve
requests from different applications in a different order, both applications will suffer from a
slowdown observed in servers that have not prioritized their request.

Here each 256 KB request is striped across 4 servers for the default stripe size of 64 KB.
This is reduced to 2 servers with a 128 KB stripe size and to 1 with a 256 KB stripe size. Hence,
we see the performance improvement for both cases and the removal of I/O interference for
the disabled sync case. We believe that interference still exists for the other scenario since
disk is still an active component and contributing to the I/O interference.

Finding: We confirm that making all servers treat requests from distinct applications in
the same order, as done in [121], is an appropriate way of mitigating I/O interference.

Influence of the Request Size

Similarly to the stripe size in the file system, the original request size in applications has
an impact on I/O performance. Figure 4.9 illustrates the interference patterns when each
application writes 64 MB in a strided pattern with a block sizes of 64 KB, 128 KB, 256 KB,
and 512 KB. The stripe size in PVFS is set to the default of 64 KB.
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Figure 4.9: Two applications of the same size (480 cores each) write 64 MB of data to the
PVFS using a strided pattern with a block sizes of 64, 128, 256 and 512 KB. Synchronization
is enabled in (a) and disabled in (b). These graphs show the write time for the application (for
brevity, only 1 application is shown since both applications have the same size) depending
on the block size used and on dt.

The best performance is achieved for small block sizes when synchronization is enabled
(Figure 4.9(a)), whereas it is achieved with large block sizes when synchronization is dis-
abled (Figure 4.9(b)).

While the interference pattern shows a fair, proportional sharing of resources for all block
sizes when synchronization is enabled (symmetric, triangular figure), when synchronization
is disabled the interference pattern disappears for block sizes of 64 and 128 KB. This result is
in line with our observations made in Section 4.2.2 and the fact that such request sizes have
fewer servers involved in each I/O operations. Yet while these small request sizes remove
the interference, they are far from optimal for a single application.

Finding: The fact that no interference is observed between two applications does not
mean that optimal performance is achieved. Our experiments show that, while some
request sizes allow cross-application interference to be mitigated because clients interact
with fewer servers for each request, these block sizes remain far from optimal from a
single-application perspective.

Following this observation, we warn any researcher proposing solutions to the I/O inter-
ference that these solutions should be validated in configurations that are already as good as
possible, if not optimal, for a single application alone. Indeed one can claim that a solution
removes the interference, while much higher performance could actually be obtained from
each application individually by better optimizing their access patterns.
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4.3 Unexpected Behaviors: A Flow-Control Issue

This section explains further some of the results, in particular the counter-intuitive ones, and
highlights a flow-control issue at the core of the interplay between components.

4.3.1 The Incast Issue

Some of the results of the previous section remain unexplained, such as the unfairness of
some scenarios, with the application that starts first getting better performance than the
one starting second. An unfair behavior results from a component that adapts to the work-
load over time. Since PVFS does not implement any particular scheduling mechanism at the
server side, there is no reason to think one flow of requests from an application would be
prioritized over another. The prioritization of one flow over another cannot result from the
backend storage device either, since this storage device sees only serial accesses from a sin-
gle program: the PVFS server. Hence we suspected that such unfair behaviors stem from the
network.

To confirm this hypothesis, we reran the experiment presented in Figure 4.2(a), in which
two applications of 480 cores each write 64 MB per process in a contiguous manner, in a PVFS
file system consisting of 12 servers. We examined more closely the TCP packets exchanged
between a client of either application and a PVFS server, using tcpdump.

Figure 4.10(a) shows the evolution of the TCP window size for the sequence of requests
issued by one client to one server, when an application runs alone. Figure 4.10(b) shows the
evolution of the TCP window size when the application is interfering with another one. As
we can see, the behavior is similar except for the fact that, under contention, the window
size drops to nearly 0, making it difficult for the client to eventually send all its data.

The collapse of the TCP window size as a result of contention was shown by Phanishayee
et al. [102], who termed it the “Incast problem.” When many clients access to a server, the
TCP congestion control mechanism at this server forces the window size to drop in all its
opened sockets, leading to an important loss of performance.

Note that this phenomenon does not stem from the network alone (we have seen, by
splitting the set of servers into two groups, that the network is not a point of contention).
It comes from the interplay between the network and the disks, as well as the lack of flow
control mechanism in Trove, the component of PVFS that forwards requests from sockets
down to the storage devices. Because disks are slow, Trove cannot keep up with the flow of
incoming requests and hence relies on the TCP congestion control mechanism to limit the
flow the requests from all clients.

Finding: The fact that the Incast problem appeared only with HDD and synchroniza-
tion enabled, but not with RAM or SSD, proves that this type of interference results
from the interplay between several components of the I/O path. What appears to be
a network congestion issue can actually stem from bad flow-control induced by slow
backend storage devices.
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Figure 4.10: TCP window sizes of each request during the 64 MB contiguous data write from
a client to the server (a) when the application is running independently and (b) interfering
with the other application, which also has same size (480 cores each) and started at the same
time (dt=0).

4.3.2 From Incast to Unfairness

This Incast issue explains many of the results presented in the previous section, starting
with the unfairness observed in some scenarios. Figure 4.11 shows the behavior of two
applications, one of which starts 10 seconds after the other. We plot the TCP window size
and the progress of the I/O transfer to this server as a function of time, for one client of each
application. Whereas the first application starts seeing a slowdown of its progress at around
90 percent, the slowdown can be observed at 40 percent for the second application; indeed,
the window size hardly manages to get back to a high value.

The appearance of unfair behavior as a result of Incast is a good way to evaluate the
conditions that cause Incast to appear. For example, Figure 4.12 shows the interference be-
havior when running different numbers of clients. An interesting observation is that while
the unfair behavior benefiting the first application is clear when using 960 or 704 clients in
total, the trend seems to reverse at smaller client counts (256 to 512 clients), where the first
application is more impacted than the second one.

We hypothesize the following explanation. At large client counts, the TCP window size
of the second application immediately collapses as a result of contention, allowing the first
application to complete seemingly without contention. At intermediate client counts, the
TCP window size is reduced in both applications but does not collapse. Thus the first ap-
plication is impacted as well. At small process counts, the servers are able to handle all the
requests without having to shrink the window size. The interference observed becomes that
of the backend storage devices.
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Figure 4.11: TCP window sizes and progress of the data transfer from one client of each
application and one of the servers.
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Figure 4.12: ∆-graph illustrating the appearance of the Incast problem as we increase the
number of clients. Each application writes 64 MB per process in a contiguous pattern. PVFS
is deployed on 12 servers with hard disks as backend, synchronization enabled. The number
of clients shown is the total number of clients.

Finding: As the number of clients increases, we are more likely to observe degenerated
flow-control issues as a result of the file system not being able to handle the load.

4.3.3 Counter-intuitive Results From a Flow-Control Perspective

The interplay between components resulting in a bad flow control can explain both the in-
tuitive and counterintuitive results obtained previously.

Using one core per node instead of all cores to perform I/O, as done in Section 4.2.2, re-
duces the number of sockets involved in an application’s I/O phase and forces a seri-
alization of requests at the level of each node. This constrains the rate at which each
single node can write and therefore prevents the Incast problem from happening.

Using a low-bandwidth network as done in Section 4.2.2 with a 1 G network instead of a
10 G, also mitigates the Incast problem by constraining the rate at which each client can
send requests. By forcing a reduction of bandwidth at the source, the rate of requests
becomes sustainable to the backend storage devices and thus the TCP window size
does not collapse.

Splitting the servers into two groups completely prevents the interference from happening
(Figure 4.7(a)) because a server has to interact with 2× fewer clients, therefore main-
taining flow control on 2× fewer links.
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4.4 Related Work

As we move toward the exascale era, performance variability in HPC systems remains a
challenge. Cross-application I/O interference is one of the major causes of this performance
variability. A large body of studies have sought to eliminate cross-application I/O inter-
ference by focusing on possible sources of this interference. For example, Zhou et al. [157]
present an I/O-aware batch scheduler that addresses the interference problem at the level of
batch scheduling. The batch scheduler schedules and coordinates the I/O requests on the fly
by considering the system state and I/O activities. Gainaru et al. [43] show the performance
degradation due to I/O congestion and propose a new scheduler that tries to eliminate this
congestion by coordinating the I/O requests depending on the application past behaviors
and system characteristics. Boito et al. [153] propose AGIOS, an I/O scheduling library for
parallel file systems. AGIOS incorporates the applications’ access pattern information into
the scheduler based on the traces generated by the scheduler itself and uses this informa-
tion to coordinate the I/O requests in order to prevent congestion to the file system. As we
observed, however, although scheduling-level solutions can help control the level of inter-
ference, it does not always lead to improved performance at the same time.

Some works focus on finding solutions at the disk level, the lowest level that I/O inter-
ference can occur in the I/O stack. Zhang and Jiang [155] point out that frequent disk head
seeks, because of the access interference on each I/O node, can seriously hurt the perfor-
mance of a system. They propose a data replication scheme, InterferenceRemoval, to elim-
inate I/O interference. InterferenceRemoval tries to limit the number of the I/O requests
served by each I/O node. Although this solution is in parallel with the Incast problem we
presented in our work, we observe that it is not present for only a single source (e.g., disk)
of interference.

Some research efforts consider network contention as the major contributor to the I/O
interference. Bhatele et al. [16] investigated the performance variability in Cray machines
and found out that the interference of multiple jobs that share the same network links is the
primary factor for high performance variability. Jokanovic et al. [76] introduce the concept
of quiet neighborhoods, a job allocation technique based on the job sizes. This technique
helps control the fragmentation in the HPC systems and reduces the number of jobs sharing
the network, with the aim of minimizing the interference.

Some works study the interference problem with a special emphasis on a single factor.
Kuo et al. [82] investigated the influence of the file access pattern on the degree of interfer-
ence observed. They found out that chunk size can determine the degree of interference and
that the interference effect induced by various access patterns in the HPC system can slow
the applications by a factor of 5. Our work is different in the targeted objective, since we
try to identify all possible sources of interference under various scenarios, as well as their
interplay.

Although indeed important, the aforementioned studies –by focusing only on a single
potential source– do not necessarily provide a complete solution for the interference prob-
lem. In contrast, we consider the possible sources of interference together and conduct an
extensive experimental study. Thus, our work can provide useful insights into the I/O inter-
ference phenomenon. Furthermore, it can help researchers tackle the interference problem
across all components of the I/O system.
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4.5 Conclusions

I/O interference in large-scale platforms is an important problem that can affect the effi-
ciency of an entire machine. This problem will be even more important with exascale ma-
chines that will allow more applications (i.e., Big Data and HPC applications) run concur-
rently. In this chapter, we investigated the potential root causes of I/O interference. Our
findings demonstrate that interference results from the interplay between several compo-
nents in the I/O stack. For instance, we observe that the impact of the request size on
interference varies depending on the configuration of components in the I/O path. Our
findings also illustrate many counter-intuitive results. For example, we show that using a
low-bandwidth network in some scenarios can eliminate the interference problem, which
stems from the interplay between the different points of contention. Hence, we believe that
researchers must understand the tradeoffs between several components in the I/O stack
and must address the interference problem in its entirety, rather than focusing on any single
component.

To the best of our knowledge, this is the first work investigating the role of each of the
potential root causes of interference and their interplay. We summarize our findings together
with their implications on the Big Data processing in HPC systems in Table 4.3. Based on
this, in the following chapter, we propose a burst buffer solution that employs interference
models for both HPC and Big Data applications in order to mitigate the I/O interference
problem.
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Influence of the Backend Storage Device Implications

RAM and SSDs perform better than hard
disks. In terms of interference, however, the
slowdown is equivalent (up to 2x) regardless
of the storage backend.

Use of high throughput storage devices can
help to improve the performance of Big Data
applications. However, interference problem
still exists and should be taken into
consideration.

Influence of the Network Interface Implications
While it was already known that fewer
writers per multicore nodes (e.g.,
aggregators or dedicated I/O processes)
improve the I/O performance of a single
application, we have shown here that this
approach also lowers cross-application
interference.

Aggregating the I/O requests (to the parallel
file system) from large number of compute
nodes into smaller set of burst buffer nodes
can help to lower the I/O interference.

Influence of the Network Implications

Counterintuitively, a lower network
bandwidth may not cause higher
interference. On the contrary, it can prevent
interference if none of the other components
are subject to contention.

Although high-speed networks can provide
low latencies for the I/O accesses, they can
on the other hand impose a more severe
interference problem which we need to take
into consideration when employing HPC
systems for Big Data processing. For
instance, one effective interference
mitigation strategy would be constraining
the rate at Big Data applications send their
I/O requests.

Influence of the Number of Storage Servers Implications

Increasing the number of servers does not
affect the relative performance degradation
generated by cross-application interference.

This implies that we require smart I/O
interference mitigation solutions more than
hardware improvements such as increasing
the capacity of storage servers in order to
achieve efficient Big Data processing.

Influence of the Data Distribution Policy Implications
We confirm that making all servers treat
requests from distinct applications in the
same order is an appropriate way for
mitigating I/O interference.

Setting the stripe size of a parallel file system
equal to the block size of the data set for the
Big Data application can accelerate the
performance of Big Data applications.

Influence of the Number of Clients Implications

As the number of clients increases, we are
more likely to observe degenerated flow-
control issues as a result of the file system
not being able to handle the load.

As Big Data applications employ a large
number of clients to process huge amount of
data, use of burst buffers can help to improve
the performance of these applications by
using fewer clients for performing the I/O
operations of Big Data applications.

Table 4.3: Our major findings on the root causes of I/O interference and their implications
on performing efficient Big Data processing in HPC systems.
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RECENTLY, we have witnessed a dramatically increasing gap between the computa-
tion and I/O capabilities of HPC systems. For example, the Trinity supercomputer
that is used currently at Los Alamos National Laboratory has brought a 28-fold im-
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Figure 5.1: Naive adoption of burst buffers for Big Data processing in existing studies.

provement in the computation capabilities with only a 9-fold increase in the I/O capabilities
compared to its predecessor, Cielo [130].

Given the widening gap in the computation and I/O capabilities of HPC systems, an im-
portant challenge in performing efficient Big Data processing on these systems is to develop
effective I/O management solutions. Chapter 3 highlighted I/O latency and I/O interfer-
ence as the major performance bottlenecks for Big Data applications in HPC systems. In this
chapter, we propose Eley, a burst buffer solution, to alleviate these performance bottlenecks.
Eley is different from current burst buffer solutions where the main focus is on the inter-
mediate data storage and disregard the high latencies resulting from reading the input data.
Moreover, these solutions do not consider the interference problem which can contribute to a
significant performance degradation, not only for Big Data applications but also for the HPC
applications, as we demonstrated in Chapter 4. In contrast, Eley embraces an interference-
aware prefetching technique that makes reading the input data faster while controlling the
interference imposed by Big Data applications on HPC applications. We evaluate Eley with
both real system experiments on Grid’5000 testbed and simulations using a wide range of
Big Data and HPC applications.

5.1 Limitations of Current Burst Buffer Solutions to Big Data Pro-
cessing

Burst Buffer (BB) is an intermediate storage layer between the parallel file system and com-
putation nodes, which consists of high throughput storage devices. They provide an ef-
fective solution for reducing the data transfer time and the I/O interference in HPC sys-
tems. Hence, many research efforts have been dedicated to extend BBs for Big Data appli-
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cations [25, 73, 114, 139]. Figure 5.1 illustrates the overview of these works where the main
focus is to overcome the high latency problem, especially for storing the intermediate data
(i.e., map output for batch jobs and temporary output produced between stages for iterative
jobs). For example, Islam et al. [73] utilized NVRAM as an intermediate storage layer (i.e.,
burst buffer) between compute nodes and Lustre which improved the application perfor-
mance by 24%. Wang et al. [139] leveraged SSDs for storing the intermediate data. Chaimov
et al. [25] used a separate set of nodes (burst buffer nodes) with NVRAM as a storage space
to achieve a better scalability by reducing the latency when reading/writing the interme-
diate data. Unfortunately, the aforementioned works to extend burst buffers for Big Data
applications in HPC systems may fail in practice to achieve the desired performance due to
following:

• Current works ignore the latency problem in the input phase despite the significant
amount of work dedicated to improve the performance of Big Data applications by
sustaining high data locality when reading the input data.

• These works proposed the adoption of burst buffers in a similar way to the traditional
use of burst buffers on HPC systems which aim to minimize the I/O time by absorbing
the checkpointing data of scientific applications. In contrast, Big Data applications
mostly run in batches therefore there is a continuous interaction with the parallel file
system for reading the input data.

• In the previous chapter, we highlighted that although the use of high throughput stor-
age devices can improve the performance of Big Data applications, interference prob-
lem still exists. Unfortunately, none of these efforts considered this interference prob-
lem which can contribute to a significant performance degradation — not only for Big
Data applications but also for HPC applications — by up to 2.5x as we demonstrated
in Chapter 3 and 4.

Our work addresses the limitations of current burst buffer solutions and takes a step
forward toward smart I/O management of Big Data applications in HPC systems by being
able to alleviate I/O latency and interference problems. To this end, this chapter presents
Eley, a burst buffer solution that aims to accelerate the performance of Big Data applications
while guaranteeing the QoS requirements of HPC applications. Similar to existing works
that target QoS-aware execution of HPC applications [44, 95, 133], we express QoS in terms of
the deadline constraint for the completion of an application. These constraints can be given
by users. For instance, some applications are QoS-sensitive thus require tight deadlines for
their correctness (e.g., medical imaging, video transcoding) [41].

5.2 The Eley Approach

5.2.1 Overview of Eley

With the convergence between Big Data and HPC, many Big Data applications are moving
to HPC systems to benefit from their high computation capabilities. Figure 5.2 shows an
architecture of a HPC system with a burst buffer enabled to address the high I/O latency
challenge of Big Data applications on HPC systems. Eley is located between the compute
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Figure 5.2: System overview of Eley.

nodes and the parallel file system where compute nodes only interact with the burst buffer
nodes for all I/O phases of the Big Data application. This also includes reading the input
data besides reading/writing the intermediate data, different from the existing studies on
burst buffers. Thus, the interference at the file system level mainly comes from the I/O
requests of burst buffer nodes and the HPC applications.

We instruct Eley to prefetch the input data of Big Data applications to optimize the I/O
performance of those applications. A typical job of Big Data applications consists of several
iterations (waves) depending on the total input size and the cluster capacity (i.e, the number
of map tasks which can simultaneously run in the cluster). For example, if the cluster capac-
ity is set to 100 map tasks where each map task processes one block of 128 MB, a job of 100GB
data inputs will be executed in 8 waves. This is common for large scale scientific Big Data
applications. For instance, the amount of processed data was almost 900 TBs and almost 100
of executed jobs have an input data of 4.9 TBs during 9 months in a research cluster (i.e.,
M45) with 400 nodes [52]. Thus, Eley employs a novel prefetcher component that prefetches
data inputs of next iterations while computing nodes are still busy processing data inputs of
previous ones. This allows to have data inputs to be stored on a low-latency device close to
computing nodes and therefore results in reducing the latency of reading data inputs of Big
Data applications.

When HPC and Big Data applications are co-located, prefetching operations may inter-
fere with the I/O operations of HPC applications. Thus, our prefetcher component in the
burst buffer tries to manage the prefetching of the input data in a controlled manner. Specif-
ically, it takes into consideration the interference at the file system level (i.e., based on the
profiled information about the compute and I/O times of both HPC and Big Data applica-
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tions which is used for estimating the interference) and makes optimization decisions before
each prefetching operation, in order to optimize the performance of Big Data applications
while satisfying QoS requirements of HPC applications. Then, it initiates the prefetching
operations according to the optimization decisions. We introduce the optimization actions
and decision making process of the prefetcher component in the next section.

5.2.2 Design Principles

In this subsection, we present the design principles of Eley which targets improving the per-
formance of Big Data applications on HPC systems without violating the QoS requirements
of HPC applications.

Enabling efficient Big Data processing on HPC systems. The separation of storage re-
sources from the compute nodes in HPC systems requires repetitive data transfer
through the network, which results in a high I/O latency. In this work, we focus
on Big Data applications with huge input data sizes which are executed in multiple
waves. Thus, the high I/O latency can severely degrade the performance of Big Data
applications on HPC systems. We mitigate the latency problem by locating low-latency
burst buffer devices (i.e., RAMDisk) close to the compute nodes to reduce the latency
of reading data inputs of Big Data applications.

Existing burst buffer studies mainly focus on mitigating the I/O latency on the inter-
mediate data of Big Data applications. However, as we observed in Chapter 3, using
burst buffers for the intermediate data can improve the performance of Big Data ap-
plications up to 9%. We also showed that latencies resulting from reading the input
data can significantly degrade the performance. Thus, it is also important to mitigate
the high I/O latency in the input phase. To this end, we equip our burst buffer with a
prefetcher component.

Guaranteeing QoS requirements of HPC applications. Running Big Data applications in
HPC systems should not introduce much interference to the HPC applications, which
usually involve important scientific simulations. Thus, one of our key design princi-
ples is to guarantee the QoS requirements of HPC applications while improving the
I/O performance of Big Data applications. We define the QoS requirement of HPC as
the deadline constraint for the completion of HPC applications defined by the users.
To this end, we equip our prefetcher with interference-aware data transfer scheme to
help satisfying our design objective.

5.2.3 Performance Models for HPC and Big Data Applications

The I/O operations of Big Data applications can seriously degrade the I/O performance
of concurrent HPC applications. Thus, in this section, we formally model the impact of
interference on the I/O time of both Big Data and HPC applications, in order to optimize the
performance of Big Data while guaranteeing the QoS constraint of HPC applications.
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Performance Model for HPC Applications

Our model focuses on HPC applications with periodical behaviors. That is, the applications
perform series of computations and periodically checkpoint the computation results with an
I/O time of Tio. Most of the HPC applications fall into this category of applications [24]. We
assume that the profiles of HPC applications (e.g., I/O and computation time when running
individually) can be obtained at offline time using solutions such as Omnisc’IO [38]. We
define the I/O time of a HPC application when co-located with a Big Data application as
Tcol

io .

Tcol
io = Talone

io + Tintf
io × Ihpc (5.1)

where Talone
io is the I/O time of the HPC application when performing I/O requests individ-

ually and Tintf
io (Tintf

io = Tio − Talone
io ) is the I/O time of the HPC application when contending

with the Big Data application for I/O resources. Ihpc is the interference factor, defined as the
ratio between the I/O time of the HPC application under contention and the time for it to
perform the same I/O operations alone (i.e., Ihpc > 1).

According to Equation 5.1, an important parameter for estimating the I/O performance
of HPC applications is the interference factor. The I/O interference imposed by Big Data
applications (i.e., prefetching) is affected by several parameters, including the number of
the burst buffer nodes performing prefetching (nbb) and the number of fetching threads per
node (ntr). Ihpc is also depending on the characteristics of the HPC application itself and the
platform where it is running. Thus, given an interfering Big Data application to the HPC (i.e.,
given a set of nbb and ntr values), we can calculate Ihpc for the HPC application by profiling
its I/O performance with and without contention from the Big Data application. However,
offline profiling for each set of given nbb and ntr values is very costly. To reduce the profiling
cost, we decompose the interference into two levels, namely node-level (NI) and thread-level
(TI) interference, and assume that they are independent from each other. By profiling the
two individually, we reduce the profiling complexity from O(n×m) to O(n+m), supposing
that n and m are the sample sizes for nbb and ntr, respectively.

We profile the node-level and thread-level interference and record NI(nbb) and TI(ntr)
values for different nbb and ntr samples. Specifically, we perform prefetching using different
numbers of nbb/ntr while fixing ntr/nbb to the default with the HPC application perform-
ing checkpointing at the same time. We set the default value of both nbb and ntr to 1. For
example, TI(2) is calculated as t2

t1
, where t1 and t2 are the I/O performance of the HPC

application when one burst buffer node is performing prefetching with 1 and 2 threads, re-
spectively. Based on the above analysis, we can calculate the interference factor for HPC as
follows.

Ihpc(nbb, ntr) = TI(ntr)× NI(nbb)× Ihpc(1, 1) (5.2)

where Ihpc(1, 1) is profiled and calculated at offline time.

Performance Model for Big Data Applications

We provide a performance model for Big Data applications to estimate the prefetching time
when using different nbb and ntr values. Similarly to Equation 5.1, the prefetching time is also
impacted by the contention duration with the HPC application and the interference factor.
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We model the prefetching time when running the Big Data application alone with nbb burst
buffer nodes and ntr threads per node as below.

Tpref(nbb, ntr) = NS(nbb)× TS(ntr)× Tpref(1, 1) (5.3)

where NS(nbb) and TS(ntr) represent the system scalability with respect to different number
of nodes and number of threads per node, respectively, with the assumption that the node-
level and thread-level system scalability are independent. We obtain the scalability values
with system profiling using different nbb and ntr samples in the same way as described in the
last subsection. For example, NS(2) is calculated as t2

t1
, where t1 and t2 are the prefetching

time with one and two burst buffer nodes, respectively. Similarly, we obtain Tpref(1, 1) by
profiling the prefetching time with a single burst buffer node and a single thread.

When co-located with HPC applications, the performance of Big Data applications can
be modeled as below.

Tcol
pref = Talone

pref + Tintf
pref × Ibd (5.4)

Similarly to Equation 5.1, Ibd is the interference factor for the Big Data application, de-
fined as the ratio between the prefetching time with and without co-location with HPC ap-
plications. We calculate Ibd(nbb, ntr) using offline profiling similarly to Equation 5.2. Specifi-
cally, we profile TI(ntr) and NI(nbb) individually using the prefetching time under different
nbb and ntr values.

Furthermore, we define the cost of prefetching for Big Data applications as the time that
the prefetching cannot be overlapped with the computation phase. To optimize the perfor-
mance of Big Data applications, we aim to reduce the cost of prefetching in order to hide the
I/O latency of reading the input data.

Cpref =

{
Tcol

pref − Tcpu , if Tcol
pref ≥ Tcpu

0 , otherwise
(5.5)

where Tcol
pref is the time of fetching the input data for the next wave and Tcpu is the computa-

tion time of the current wave.

5.2.4 Interference-Aware Prefetching

Prefetching of Big Data applications imposes interference to the I/O operations of HPC ap-
plications and can violate the QoS requirements of HPC applications. Thus, we propose a
set of optimization actions and iteratively choose the best action to optimize the prefetch-
ing, in order to satisfy the QoS requirement of the HPC application while leading to a good
performance of the Big Data application. In the following, we first introduce the five opti-
mization actions in the action set and then introduce how to choose good actions to optimize
prefetching.

Action Set

We propose five optimization actions, including No Action, Full Delay, Partial Delay, Scale Up
and Scale Down. These actions are lightweight and common strategies for interference miti-
gation. Table 5.1 summarizes the definitions of the five actions. Moreover, we illustrate these
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Name Description
No Action Start the prefetching as it is.

Full Delay
Delay prefetching to the end
of the I/O phase of the HPC
application.

Partial Delay
Delay prefetching for a fixed
amount of time.

Scale Up
Increase the number of
prefetching threads per node.

Scale Down
Decrease the number of total
prefetching threads.

Table 5.1: Details of the actions.

actions in Figure 5.3 where the x-axis represents time and y-axis represents the bandwidth of
the parallel file system shared between HPC and Big Data applications. The boxes represent
the I/O operations of HPC and Big Data applications. The width of boxes represents the
completion time and the height represents the acquired bandwidth of the I/O operations.
Note that, in the illustration, both applications start I/O operations at the same time. Next,
we present the details of the five actions.

No Action performs the prefetching as it is, immediately after receiving the I/O request. We
use it as the baseline to show how the other actions optimize the prefetching operation.
Thus, the completion time of the I/O operations for Big Data and HPC applications are
Tpref × Ibd and Tio × Ihpc, respectively.

Full Delay delays the prefetching to the end of the I/O phase of the HPC application as
shown in Figure 5.3. While this allows HPC application to perform its I/O operations
alone and thus mitigates any interference, it can greatly harm the performance of the
Big Data application when the HPC application has a long running I/O phase. The
completion time of the I/O operations for Big Data and HPC are Tpref + Tio and Tio,
respectively.

Partial Delay delays the prefetching for a certain amount of time td to meet the QoS require-
ment of the HPC application. We calculate the optimized I/O completion time Tcol

io for
HPC and Tcol

pref for prefetching with td delay as follows.

Tcol
io = td + (Tio − td)× Ihpc (5.6)

Tcol
pref = Tpref + (Tio − td)× Ihpc × (1 − 1

Ibd
) (5.7)

Scale Up increases the number of fetching threads per node. As shown in Figure 5.3, in-
creasing the number of total fetching threads can reduce the prefetching time with an
increase on the acquired I/O bandwidth. Therefore, while this action reduces the in-
terference time period of HPC and Big Data applications, it can also lead to a larger
performance degradation to HPC due to the higher interference factor Ihpc. Assume
scale up increases the number of fetching threads per node from n0 to n1, we calculate
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Figure 5.3: Use cases of five actions.

Tpref, Ihpc and Ibd values for n1 threads based on the model defined in Section 5.2.3 and
calculate the optimized I/O completion time for both applications as follows.

Tcol
io = Tio + Tpref × Ibd × (1 − 1

Ihpc
) (5.8)

Tcol
pref = Tpref × Ibd (5.9)

Scale Down decreases the number of total fetching threads from n0 to n1. In the previous
chapter, we observed that constraining the rate that Big Data applications send their
I/O requests can help to lower the interference. Hence, using less fetching threads
can diminish the impact of prefetching on the HPC application with a smaller interfer-
ence factor (Ihpc) but it can also lead to a significant poor I/O performance of the Big
Data application due to the increased prefetching time (Tpref). When n1 is smaller than
the number of burst buffer nodes, we use n1 nodes and one thread per node for the
prefetching. Similarly to scale up, we calculate Tpref, Ihpc and Ibd values for n1 threads,
and calculate the optimized I/O completion time for both applications as follows.

Tcol
io = Tio × Ihpc (5.10)

Tcol
pref = Tpref + Tio × Ihpc × (1 − 1

Ibd
) (5.11)

Decision Making

Given the optimization actions, we iteratively decide the optimal action for prefetching at
the beginning of each iteration (e.g., wave) of the Big Data application, in order to reduce
the cost of the Big Data application while satisfying the performance constraint of the HPC
application.

When making prefetching decisions, we estimate the cost of the Big Data application
and the I/O time of the HPC application for each action. For example, when estimating the
cost of the partial delay action, we first calculate the completion time of both HPC and Big
Data applications with different td values using Equation 5.6 and 5.7. We then select the
td that leads to the minimum cost of the Big Data application while satisfying the deadline
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Iteration Condition Action

1
No action necessary for satisfying the
HPC constraint

No Action

2
Full Delay has zero cost for the Big Data
application while satisfying the HPC
constraint

Perform Full Delay

3
Partial Delay has zero cost for the Big
Data application while satisfying the
HPC constraint

Perform Partial Delay

4
Scale Up has zero cost for the Big Data
application while satisfying the HPC
constraint

Perform Scale Up

5
Scale Down has zero cost for the Big
Data application while satisfying the
HPC constraint

Perform Scale Down

6 None of the actions has zero cost
Perform an action which has
the minimum cost

Table 5.2: Iterations in decision making when choosing the optimal action.

constraint of the HPC application for the delay action and return its result as the result of
partial delay. If we can find an action with a cost equal to zero for the Big Data application
while satisfying the deadline constraint for the HPC application, we simply adopt this action
without further checking the other actions. If none of the actions achieves zero cost for
the Big Data application, we choose the action with the minimum cost while satisfying the
deadline constraint of the HPC application. Table 5.2 summarizes this iterative decision
making process for choosing the optimal action.

5.3 Experimental Evaluation

5.3.1 Methodology

We evaluate our burst buffer design using both real system experiments and simulations.
We further describe the experimental setup for both the real system evaluation and the sim-
ulations.

Real System Setup

The empirical experiments were carried out on the Grid’5000 testbed [19]. We used the
Rennes site; more specifically we employed nodes belonging to the parasilo and paravance
clusters. The nodes in these clusters are outfitted with two 8-core Intel Xeon 2.4 GHz CPUs
and 128 GB of RAM. We leveraged the 10 Gbps Ethernet network that connects all nodes of
these two clusters. Grid’5000 allows us to create an isolated environment in order to have
full control over the experiments and obtained results.
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System deployment. We used Spark version 1.6.1 to execute Big Data applications. We
configured and deployed a Spark cluster using 33 nodes on the paravance cluster. One
node consists of the Spark master, leaving 32 nodes to serve as slaves of Spark. We allo-
cated 8 GB per node for the Spark instance and set Spark’s default parallelism parameter
(spark.default.parallelism) to 256 which refers to the number of RDD partitions. Each Spark
slave has 16 map tasks thus the Spark cluster can execute 512 map tasks in one iteration.

In our burst buffer design, we use low-latency storage devices as a storage space. To
emulate this, we used Alluxio version 1.3.1, which exposes RAMDisk of the burst buffer
nodes to the compute nodes as an in-memory file system. We configured and deployed 8
burst buffer nodes on the same cluster (paravance) as compute nodes to emulate that burst
buffer nodes are closer to compute nodes compared to the parallel file system. Each burst
buffer node provides approximately 32 GB of storage capacity.

The OrangeFS file system (a branch of PVFS2 [110]) version 2.8.3 was deployed on 6
nodes of the parasilo cluster to serve I/O requests from both Big Data and HPC applications.
We select 6 PVFS nodes using the same setting as existing studies [144].

Workloads. We selected two workloads including Sort and Wordcount, which are parts
of the HiBench [58], a Big Data benchmarking suite. Wordcount is a map-heavy workload
with a light reduce phase. On the other hand, Sort produces a large amount of intermediate
data which leads to a heavy shuffling, therefore representing reduce-heavy workloads. For
both workloads, we use 160 GB of input data generated by RandomTextWriter benchmark
of the HiBench suite. Both workloads are executed with five iterations, where each iteration
processes input data size of 32 GB.

As HPC workloads, we use IOR [119] which is a popular I/O benchmarking tool for HPC
systems. We choose this workload for controllable interference between Big Data and HPC
to evaluate the effectiveness of Eley. For each set of experiment, we run IOR side by side
with the Big Data workloads using the same number of iterations. In each iteration, we use
IOR to emulate the I/O requests of HPC applications. Between each request, IOR processes
sleep for a given time S to emulate the computation time of HPC applications. We set S to
be equal to the computation time (Tcpu) of Big Data applications.

Simulation Setup

We design a deterministic event-driven simulator to simulate the execution of HPC and
Big Data applications in a system with the same configuration as our real deployment. We
choose three write-intensive scientific applications executed on Intrepid in 2011 [88] as the
HPC workloads. Table 5.3 shows the characteristics of those applications. For Big Data
applications, we use the traces collected from a OpenCloud cluster in Carnegie Mellon Uni-
versity [52]. Table 5.4 presents the characteristics of the eight applications used in our simu-
lation, which are scientific applications that are most likely to be co-located with HPC appli-
cations in HPC systems.

We run HPC applications for 10 iterations in the simulation. For Big Data applications,
the number of iterations (waves) depends on the total input size and the cluster capacity. We
define the cluster capacity as 50 GB in our simulation. Thus we can execute 800 map tasks
in one iteration. From our real system evaluation, we observe that the bandwidth of the par-
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Application Compute Time(s) I/O Volume(GB)
Turbulence1 (T1) 70 128.2
Turbulence2 (T2) 1.2 235.8

AstroPhysics (AP) 240 423.4

Table 5.3: HPC application characteristics for the simulation [88].

Application Compute Time(s) Input Data Size(GB)
1 20 195
2 24 860
3 12 600
4 236 355
5 29 662
6 43 799
7 41.5 1300
8 9.5 13000

Table 5.4: Big Data application characteristics for the simulation.

allel file system is 4 GB/s. Thus, we use this value in our simulation to limit the maximum
I/O bandwidth acquired by Big Data and HPC applications to the parallel file system. Based
on the model defined in Section 5.2.3, we generate I/O requests (i.e., interference factor, data
copying/fetching times) by using the profiling values obtained during our real system ex-
periments. This profiling approach, which needs to be performed only once for a particular
hardware, helps us to emulate the I/O behaviors of Big Data and HPC applications which
differ with the compared burst buffer solutions. We perform a set of microbenchmarks to
favor the validity of the simulation results on Grid’5000 testbed. However, the validity of
the simulation results on other platforms than Grid’5000 remains to be investigated.

Comparisons

For both real system and simulator-based experiments, we adopt the following state-of-the-
art burst buffer solutions as comparisons to Eley.

NaiveBB. As in the existing burst buffer solutions [25, 73, 114, 139], NaiveBB uses burst
buffer only for storing the intermediate data of Big Data applications. While it is al-
ready shown that this approach can improve the performance of Big Data applications,
different from Eley, it does not consider the QoS requirements of HPC applications and
the I/O latency problem in the input phase.

Eley-NoAction. This approach performs naive prefetching to copy the input data of Big
Data applications from the parallel file system to burst buffer nodes. Different from
Eley, this approach is not aware of the QoS requirement of HPC applications and does
not use any optimization action for the prefetching.
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Figure 5.4: Performance comparison between Eley-NoAction and NaiveBB.

All solutions are evaluated using the same burst buffer storage space (i.e., RAMDisk)
for a fair comparison. We evaluate the completion time of both Big Data and HPC appli-
cations obtained by the three compared solutions to demonstrate the effectiveness of Eley.
For Big Data applications, we only report the completion time of the map phase which is
the main differentiation between Eley and the compared solutions. We also compare the
resulted interference factors of both applications after applying the three compared burst
buffer solutions, which indicate the slowdown (defined as I − 1) of the applications due to
co-location and I/O contention.

5.3.2 Real System Experiments

In this section, we present the evaluation results obtained from both real system deployment
and simulations.

We perform two sets of real system experiments. First, we compare Eley-NoAction with
NaiveBB, the results demonstrate that using a burst buffer for prefetching the input data
of Big Data applications can greatly improve the performance of Big Data while reducing
the interference imposed on the co-located HPC applications. Second, we compare Eley
with Eley-NoAction and find that our interference-aware model and optimization actions
can successfully guarantee the QoS requirement of HPC applications without sacrificing too
much of the Big Data performance. Each set of experiments has been executed five times
and we report the average values.

Comparing NaiveBB with Eley-NoAction

In this experiment, we execute IOR on a cluster of 32 nodes where one process per node is-
sues a 4 GB write request with chunk size of 1MB. Figure 5.4 shows that prefetching reduces
the map time of Sort and Wordcount by 61% and 43%, respectively, compared to NaiveBB
which reads the input data from the parallel file system directly. It can be observed that the
I/O time of the IOR workloads are also reduced when using prefetching for Big Data, by 7%
and 12% when co-locating with Sort and Wordcount, respectively. This is mainly due to the
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Figure 5.5: Performance comparison between Eley and Eley-NoAction.

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
IOR Time (s) (Eley-NoAction) 17.8 22.4 18.5 20.9 23

IOR Time (s) (Eley) 17.8 17.6 17.1 16.3 17.3
Selected Action No Action Partial Delay Scale Up Partial Delay Full Delay
Cost of Sort (s) 0 13 0 9 15

Table 5.5: Applied actions on prefetching during one run of the Sort application and their
respective cost values.

fact that prefetching using burst buffer aggregates the I/O requests sent from a large number
of Spark nodes to a small set of burst buffer nodes and hence reduces the interference im-
posed on IOR workloads. For instance, while 32 compute nodes request the I/O from PVFS
in NaiveBB, only 8 burst buffer nodes perform prefetching with Eley-NoAction. This is inline
with our observations in Chapter 4 and the existing studies in the literature [1, 36] which
demonstrate that aggregation of I/O requests help to reduce the I/O interference. However,
this small improvement might not be enough to meet the QoS requirements of HPC appli-
cations. Therefore, we next discuss the effectiveness of our interference-aware prefetching
mechanism, Eley.

Comparing Eley-NoAction with Eley

In this experiment, we execute IOR on a cluster of 8 nodes, where one process per node issues
a 8 GB write request with chunk size of 1MB. We set three different deadline requirements
for IOR workloads, which are 5%, 15% and 30% longer than the completion time of the
workloads when executed individually.

Figure 5.5 shows that Eley is aware of the deadline constraints of HPC applications and
can control the level of interference imposed by Big Data to HPC applications accordingly.
We take a closer look at the optimization actions used in each iteration to evaluate the effec-
tiveness of Eley on guaranteeing the QoS of HPC applications. Table 5.5 shows the applied
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Application NaiveBB (s) Eley-NoAction (s)
1 151.7 136.6
2 771.3 526
3 379 358.6
4 2018 1925
5 674 487.3
6 979.7 770
7 1518.7 1174
8 6239 6686.7

Table 5.6: Average map times of Big Data applications with NaiveBB and Eley-NoAction
approaches when running together with the three HPC applications.

actions during one run of the Sort application with a QoS of 5% (i.e., 17.9 s). We can observe
that with the optimization actions, Eley is always able to guarantee the QoS requirement
with low cost of the Big Data application. For example, in iteration 3, Eley is able to find an
action (i.e., Scale Up) which leads to a zero cost for the Sort application.

The selection of actions depends on both the characteristics of Big Data and HPC applica-
tions. For instance, the Scale Down action is not used during the entire execution of the Sort
application. We believe this is mainly due to the relatively short computation time of Sort
compared to its prefetching time (e.g., 12 seconds and 16 seconds per iteration, respectively).

Another observation from Figure 5.5 is that there is a clear trade-off between the tight-
ness of HPC deadline and the performance of Big Data applications. For example, with the
5% QoS requirement, the cost of Sort and Wordcount applications are 60% and 75%, respec-
tively. The cost reduces to 23% and 21% for Sort and Wordcount, respectively, when the QoS
requirement is relaxed to 15%. With a small cost, the performance of the Big Data applica-
tions are improved. The cost is also depending on several factors, such as the characteristics
of HPC and Big Data applications and the HPC platform on which the applications are ex-
ecuting. In the next subsection, we run a wide range of applications with our simulator to
better study this trade-off.

5.3.3 Simulation Results

Similarly to the real system experiments, we perform two sets of comparisons using the three
burst buffer solutions.

Comparing NaiveBB with Eley-NoAction

Table 5.6 shows the average map time of the eight Big Data applications when running to-
gether with the three HPC applications. We can observe that Eley-NoAction can reduce the
map time of Big Data applications (except Application 8) by up to 32% compared to NaiveBB.
Eley-NoAction achieves performance improvement for Big Data applications mainly by over-
lapping the input data reading time and map computation time. However, as Application
8 has a very small computation time compared to the required prefetching time, it cannot
benefit much from the Eley-NoAction solution. The prefetching time for the application is
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Figure 5.6: Slowdowns observed for the three HPC applications with NaiveBB and Eley-
NoAction.

25 seconds while reading the input data directly from the parallel file system is only 12 sec-
onds. This is mainly due to the different number of nodes sending I/O requests in naiveBB
and Eley-NoAction. On the other hand, we find that the improvement on the performance
of Big Data applications brought by prefetching is small when the application has a very
large computation time. For example, the map computation time of Application 4 is 236 sec-
onds per iteration, which is 10 times larger than its prefetching time. Thus, the performance
improvement for this application when using Eley-NoAction is only 5%.

We evaluate the slowdown (Ihpc − 1) of the three HPC applications when running to-
gether with the eight Big Data applications using NaiveBB and Eley-NoAction approaches
as shown in Figure 5.6. We have the following observations. First, when using NaiveBB,
most of the HPC applications suffer a lot from the I/O interference. For example, T1 has the
highest slowdown of 63% when co-locating with Big Data Application 8. Second, the slow-
down of the HPC applications are greatly reduced by Eley-NoAction compared to NaiveBB.
For example, the slowdown of T1 is reduced to 26% when running with Application 8 us-
ing Eley-NoAction. Third, the reduction of slowdown varies from application to application.
For example, T1 achieves the highest reduction of slowdown with 54% on average while
the reduction of slowdown for T2 and AP are both 39% on average. We also observe that
Application 8 is imposing the highest slowdown to all HPC applications due to its short
computation time and frequent I/O requests.

We further study the slowdown (Ibd − 1) of the Big Data applications using the two burst
buffer solutions as shown in Figure 5.7. We have similar observations as those for HPC
applications. First, the NaiveBB solution introduces a high slowdown to Big Data applica-
tions, e.g., 48% for Application 3 when co-located with T2. Second, Eley-NoAction can greatly
reduce the slowdown of Big Data applications compared to NaiveBB. For example, the reduc-
tion of slowdown can reach up to 58% on average for Application 3. Third, T2 is the HPC
application which imposes the highest slowdown to the Big Data applications. This is again
due to the fact that T2 has a small computation time and thus its I/O operations can interfere
frequently with the I/O operations of Big Data applications.
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Figure 5.7: Slowdowns observed for the Big Data applications with NaiveBB and Eley-
NoAction.
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Figure 5.8: Performance of Big Data and HPC applications with Eley approach.

Comparing Eley-NoAction with Eley

We study the effectiveness of Eley on satisfying the QoS requirements of different HPC ap-
plications with different concurrently running Big Data applications. We set three QoS re-
quirements for HPC applications, which are 5%, 15% and 30% longer than the completion
time of the applications when executed individually. Figure 5.8(a) shows the average cost
of the Big Data applications and Figure 5.8(b) shows the average performance of the HPC
applications normalized to the different QoS requirements when optimized with Eley.

Figure 5.8(a) shows that the cost of Big Data applications decreases with more relaxed
QoS requirements. For Big Data applications with longer prefetching time than computation
time, the initial cost before applying any action is high. For example, Applications 3 and 8
have the highest cost values due to their relatively short computation times. Figure 5.8(b)
shows that Eley is able to satisfy the QoS requirement for the three HPC applications under
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Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
T2 I/O Time (s) (Eley-NoAction) 70 65 68 65 69

T2 I/O Time (s) (Eley) 59 59 62 59 59
Selected Action Scale Down Full Delay Partial Delay Scale Down Scale Down

Cost of Application 6 (s) 6 0 0 6 6

Table 5.7: Applied actions on prefetching during the first 5 iterations of the Application 6
and T2 and their respective cost values.

all settings. This demonstrates that our interference-aware mechanism is effective in guaran-
teeing the QoS for HPC applications. Take the execution of Big Data Application 6 with the
T2 application for example. Table 5.7 shows the optimization actions selected when the QoS
requirement of T2 is set to 5% (i.e., 62 seconds). For all the iterations, Eley is able to satisfy the
QoS requirement of T2. In two of the iterations, we are able to find actions leading to zero
cost of the Big Data application. Different from the real system experiment, we find that the
Scale Down action is selected at the last two iterations. This is mainly because Application 6
has almost twice longer computation time compared to its prefetching time (recall that Sort
has shorter computation time than its prefetching time and thus never uses Scale Down).

5.3.4 Summary of the Results

In Chapter 3, we highlighted that alleviating I/O latency and interference is crucial toward
performing efficient Big Data processing on HPC systems. Our results demonstrate that
Eley effectively achieves this and improves the performance of Big Data applications while
meeting the QoS requirements of HPC applications (expressed as deadline constraints). This
is due to two main factors:

• Overlapping I/O and computation: Thanks to its prefetcher component, Eley improves the
performance of Big Data applications by overlapping I/O and computation time. Eley
achieves this by copying the input data from the parallel file system to the burst buffer
nodes while computing nodes are still busy processing the input data of previous ones.
Thus, compute nodes can read the input data from burst buffer nodes which offer
high throughput I/O operations, on the contrary to the parallel file system. We also
showed that this performance improvement brought by prefetching depends on the
characteristics of Big Data applications. For instance, when the application has a very
small computation time Eley would not be able to fully hide the cost of I/O latency
when reading the input data.

• OoS-aware execution: HPC applications usually involve important scientific objectives
thus it is important to meet the QoS requirements of HPC applications despite co-
located Big Data applications. We showed that Eley can guarantee the QoS require-
ments of HPC applications by employing an interference-aware prefetching mecha-
nism. We also observed that existing burst buffer solutions (denoted as NaiveBB) can
significantly violate such QoS requirements.
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5.4 Related Work

5.4.1 Early Adoption of Big Data Processing in HPC Systems

Many research efforts have been dedicated to adopt Hadoop [53] on HPC systems [93, 126,
143]. Researchers have discussed solutions to extend data locality to parallel file systems
(i.e., PVFS [110]) through emulating HDFS [55] on a HPC system by using PVFS [126] or
proposing a new storage layer (in-memory storage) on the top of PFVS [143]. Those so-
lutions assume that computing nodes have dedicated disk, this however is not a typical
configuration of HPC system. Moreover, new MapReduce frameworks — beyond Hadoop
— have been introduced such as MARIANE [40] and Glasswing [57]. They mainly focus
on exploiting multi-core CPU and GPUs. Although aforementioned works can improve the
performance of Big Data applications compared to a blind adoption of these applications on
HPC systems, they do not fully address the challenges (i.e., interference, high latency) and
thus they are not able to efficiently leverage HPC systems for Big Data processing.

5.4.2 Extending Burst Buffers for Big Data Applications in HPC Systems

Burst Buffers are an effective solution for reducing the I/O latency and the I/O interfer-
ence in HPC systems. Kougkas et al. [79] leveraged burst buffers when coordinating the
I/O requests of contending HPC applications. In particular, they dynamically partitioned
the parallel file system resources among applications and delayed the I/O requests with-
out interrupting the computation by using burst buffers. Thapaliya et al. [127] proposed
I/O scheduling policies at the burst buffer level to mitigate the cross-application I/O inter-
ference. Wang et al. [138], leveraged burst buffers to reduce the I/O latency in storing the
checkpointing data of HPC applications and thus improving the I/O performance.

Hence, several works proposed adoption of burst buffers for an efficient Big Data pro-
cessing on HPC systems. Chaimov et al. [25] employed a NVRAM buffer between compute
nodes and Lustre file system in order to improve the scalability of the Spark framework.
Islam et al. [72] proposed using Memcached as a burst buffer system to integrate HDFS with
Lustre file system in a performance-efficient way. They also evaluated the NVRAM perfor-
mance as a burst buffer system in [73]. Wang et al. [139] performed an experimental study
where they investigated the characteristics of Spark on a HPC system with a special focus on
the impact of the storage architecture. Based on their findings, they proposed to use SSDs as
a burst buffer to store the intermediate data. As we demonstrated, however, although these
studies are indeed important — without considering the interference problem and the la-
tency resulting from the input phase — they do not provide a complete solution for enabling
efficient Big Data processing on HPC systems.

5.5 Conclusions

In this work, we propose Eley, a burst buffer solution which takes into consideration both
the input data and intermediate data of Big Data applications. Our goal is to accelerate the
performance of Big Data applications while guaranteeing the QoS of HPC applications. To
achieve this goal, Eley is composed of a prefetcher, which prefetches the input data of Big
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Data applications before the execution of each iteration. By prefetching, we are able to over-
lap the I/O and computation time to improve the performance of Big Data applications.
However, data prefetching may introduce huge I/O interference to the HPC applications
and thus end up with a degraded and unpredictable performance for HPC applications. To
this end, we design Eley to be interference-aware. Specifically, we equip the prefetcher with
five optimization actions and propose an interference-aware decision maker to iteratively
choose the best action to optimize the prefetching while guaranteeing the pre-defined QoS
requirement of HPC applications. We evaluate the effectiveness of Eley with both real sys-
tem experiments and simulations. With 5% QoS requirement of the HPC application, Eley
reduces the execution time of Big Data applications by up to 23% compared to the naive
burst buffer solution (denoted as NaiveBB) [25, 73, 114, 139] while guaranteeing the QoS
requirement. On the other hand, the NaiveBB violates the QoS requirement by up to 58%.
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FAILURES are part of everyday life, especially in today’s large-scale platforms, which
comprise thousands of hardware and software devices. For instance, Dean [29] re-
ported that in the first year of the usage of a cluster at Google there were around a
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thousand individual machine failures and thousands of hard drive failures. Schroeder et
al. analyzed the failure rates in the machines at Los Alamos National Laboratory and re-
ported that there were systems with more than 1100 failures per year [116]. Since failures
are more severe in clouds due to employing failure-prone commodity machines, we focus
on the failure handling in clouds in this chapter.

Failures result in a severe performance degradation for Big Data applications. This is
because the completion time of an application, which indicates its performance, is deter-
mined by its slowest task. Consequently, the completion time of the recovery tasks will be
the major factor for the performance of an application. For instance, Dinu et al. reported
that the performance of one single Big Data application degrades by up to 3.6X for one sin-
gle machine failure [32]. This problem is more severe when multiple applications running
concurrently on clouds due to a higher competition in obtaining the resources for the recov-
ery tasks. To mitigate the impact of failures on the performance of Big Data applications,
we propose the Chronos1 scheduler in this chapter. Different from the state-of-the-art sched-
ulers where failure handling is entrusted to the core of Big Data processing frameworks,
Chronos is a failure-aware scheduling strategy that enables an early yet smart action for fast
failure recovery while operating within a specific scheduler objective. Moreover, Chronos
considers I/O latency by aiming at sustaining a high data locality even under failures. We
implemented Chronos in Hadoop and demonstrated its utility by comparing it with two
state-of-the-art Hadoop schedulers: Fifo and Fair schedulers.

6.1 The Unawareness of Failures in Current Job Schedulers

Several built-in schedulers (i.e., Fifo, Fair and Capacity schedulers) have been introduced in
Big Data processing frameworks to operate shared Big Data clusters towards a certain ob-
jective (i.e., prioritizing jobs according to their submission times in Fifo scheduler; favoring
fairness among jobs in Fair and Capacity schedulers) while ensuring a high performance of
the system. This is done through accommodating these schedulers with locality-oriented
strategies [6, 59, 150]. In particular, these schedulers adopt a resource management model
in Hadoop which is based on slots (i.e., slots typically correspond to the cores in Hadoop
workers) to represent the capacity of a cluster: each worker in a cluster is configured to use
a fixed number of map slots and reduce slots in which it can run tasks.

When failures are detected, in order to launch recovery tasks, empty slots are necessary.
If the cluster is running with the full capacity, then Hadoop has to wait until “free" slots
appear. However, this waiting time (i.e., time from when failure is detected until all the
recovery tasks start) can be long, depending on the duration of current running tasks. As a
result of this uncertain waiting time, the following problems may arise:

• A violation of scheduling objectives is likely to occur (e.g., high-priority jobs may have
waiting tasks while lower priority jobs are running) and the performance may signifi-
cantly degrade.

• When launching recovery tasks, data locality is totally ignored. This in turn can further
increase the job completion time due to the extra cost of transferring a task’s input data
through network, a well-known source of overhead in today’s large-scale platforms.

1From Greek philosophy, the god of time.
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Figure 6.1: Recovery task waiting times and job completion times of Fifo scheduler under
failure. The experimental setup is the same as in Section 6.3.2.

These observations present an opportunity for taking early actions upon failure detection
rather than waiting an uncertain amount of time and incurring performance degradation.
On this base, we introduce our Chronos scheduler which enables fast failure recovery in
shared Hadoop clusters.

6.2 Fast Failure Recovery with Failure-Aware Scheduling

Adding failure-awareness to Hadoop schedulers is not straightforward; it requires the de-
veloper to carefully deal with challenging yet appealing issues including an appropriate
selection of slots to be freed, an effective preemption mechanism with low overhead and
enforcing data locality for the execution of recovery tasks. To the best of our knowledge, no
scheduler explicitly coping with failures has been proposed. In this section, we discuss how
Chronos achieves these goals.

6.2.1 Chronos: Design Principles

To enable an efficient fast failure recovery, we designed Chronos with the following goals in
mind:

Enabling an early action upon failure. Hadoop handles failures by scheduling recovery
tasks to any available slots. However, available slots might not be freed up as quickly
as expected. Thus, recovery tasks will be waiting an uncertain amount of time which
depends on the status of running tasks (i.e., current progress and processing speed)
when failure is detected. As shown in Figure 6.1(a), the waiting time varies from 46
to 51 seconds which leads to increase in the completion time of jobs (see Figure 6.1(b)).
Furthermore, during this time, scheduling objectives are violated. Chronos thus takes
immediate action to make room for recovery tasks upon failure detection rather than
waiting an uncertain amount of time.
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Minimal overhead. For the early action, a natural solution is to kill the running tasks in
order to free slots for recovery tasks. Although the killing technique can free the slots
easily, it results in a huge waste of resources: it discards all of the work performed
by the killed tasks. Therefore, Chronos leverages a work-conserving task preemption
technique (Section 6.2.2) that allows it to stop and resume tasks with almost zero over-
head.

Data-local task execution. Although data locality is a major focus during failure-free peri-
ods, locality is totally ignored by Hadoop schedulers when launching recovery tasks
(e.g., our experimental result reveals that Hadoop achieves only 12.5% data locality for
recovery tasks, more details are given in Section 6.3.3). Chronos thus strongly consid-
ers local execution of recovery tasks.

Performance improvement. As shown in Figure 6.1(b), the job completion times increase
by 30% to 70%. Through eliminating the waiting time to launch recovery tasks and
efficiently exposing data-locality, Chronos not only corrects the scheduling behavior in
Hadoop after failure but also improves the performance.

Resource utilization. Chronos aims at having better resource utilization by two key design
choices. First, it reduces the need for remote transfer of the input data by launching
local recovery tasks. Second, Chronos uses a work-conserving preemption technique
that prevents Chronos from wasting the work done by preempted tasks.

Schedulers independent. Chronos targets to make Hadoop schedulers failure-aware and
is not limited to Fifo or Fair schedulers. Taken as a general failure-aware scheduling
strategy, Chronos can be easily integrated with other scheduling policies (e.g., priority
scheduling with respect to the duration of jobs). Moreover, our preemption technique
can be used as an alternative solution to task killing or waiting and therefore can lever-
age the scheduling decision in Hadoop in general.

Hereafter, we will explain how Chronos achieves the above goals. We will discuss
how Chronos allocates the necessary slots to launch recovery tasks, thanks to the tasks-to-
preempt selection algorithm.

Smart slots allocation

Figure 6.2 illustrates the architecture of Chronos and its main functionalities. Chronos tracks
the progress of all running tasks using the cost-free real-time progress reports extracted from
the heartbeats. Here, Chronos waits until new hearbeats are received in order to have up-
to-date information. Relying on previous heartbeats information may result in preempting
almost-complete tasks. This waiting time, introduced by Chronos, ranges from millisec-
onds to several seconds, according to the heartbeat interval and the current network latency.
Hadoop adjusts the heartbeat interval according to the cluster size. The heartbeat interval is
calculated so that the JobTracker receives a min_heartbeat_interval of 100 heartbeat messages
every second. The heart beat interval in Hadoop is computed as:

heartbeat_interval = max((1000 × cluster_size ÷ number_heartbeat_per_second), min_heartbeat_interval) (6.1)
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Figure 6.2: Chronos overview.

Importantly, the min_heartbeat_interval limits the heartbeat interval to not be smaller
than 300 milliseconds. In our experiments, the heartbeat interval was 0.3 seconds correspond-
ing to the cluster size.

When some failure is detected, Chronos consults the JobTracker to retrieve the list of
failed tasks and the nodes that host their input data. Chronos then extracts the list of can-
didate tasks (running tasks) that belong to nodes where the input data of failed tasks re-
side. This list is then fed to the tasks-to-preempt selection algorithm (Algorithm 1) which
first sorts the tasks according to the job priority. After sorting the tasks for preemption, the
next step is to decide whether a recovery task can preempt any of these tasks in the sorted
list. To respect scheduling objectives, we first compare the priorities of the recovery task and
candidate tasks for preemption. If this condition holds, the recovery task can preempt the
candidate task. For example, recovery tasks with higher priority (e.g., tasks belonging to
earlier submitted jobs for Fifo or belonging to a job with a lower number of running tasks
than its fair share for Fair scheduler) would preempt the selected tasks with less priority.
Consequently, Chronos enforces priority levels even under failures. The list is then returned
to Chronos, which in turn triggers the preemption technique in order to free slots to launch
recovery tasks. If the scheduler behavior is corrected, Chronos stops preempting new tasks.

6.2.2 Work-conserving Preemption

Preemption has been widely studied and applied for many different use cases in the area
of computing. Similarly, Hadoop can also benefit from the preemption technique in several
cases (e.g., achieving fairness, better resource utilization or better energy efficiency). How-
ever, only the kill technique (i.e., killing the tasks) is available in Hadoop which can be used
by developers as a preemption technique. Although the kill technique is simple and can take
a fast action (i.e. deallocating the resources), it wastes the resources by destroying the on-
going work of the killed tasks. This amount of wasted work will even increase with the long
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Algorithm 1: Tasks-to-preempt Selection Algorithm

Data: Ltasks, a list of running tasks of increasing priority;
Tr, a list of recovery tasks tr of decreasing priority

Result: Tp, a list of selected tasks to preempt
1 for Task tr:Tr do
2 for Task t:Ltasks do
3 if t belongs to job with less priority compared to tr;
4 AND !Tp.contains(t) then
5 Tp.add(t);
6 end
7 end
8 end

Figure 6.3: Overview of the three preemption techniques.
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running tasks. Moreover, this amount can be more significant if the killed task is a reduce
task: later, when the copy of the killed task is launched, it has to fetch all the intermediate
mapper outputs which will result in additional usage of network resources that have already
been scarce.

Apart from killing, also a waiting approach can be taken. It is simply waiting for running
tasks that should be preempted to finish, meaning that not taking any action for achieving
the several goals as we described above. Waiting can be efficient when a cluster runs many
short jobs. However, it can introduce a considerable amount of delay for the preempting
jobs in case of long-running tasks that have to be preempted.

Besides wait and kill approaches, we can also apply work-conserving preemption tech-
nique to achieve our goals. Interestingly, this technique is neither supported by Hadoop nor
has been investigated by the scientific community in detail. For clarity, we illustrate these
three techniques (i.e., wait, kill and preemption) in Figure 6.3. It presents a scenario where
a shorter task, t2, needs a slot from the longer one as it arrives in the middle of the execu-
tion of the longer task, t1. With the wait approach, we can see that the execution time of t2
prolonged as much as the remaining time of t1 until its completion. With the kill approach,
we observe the longest execution time where on-going work of t1 is wasted and needs to
be re-executed after the completion of t2. In the last scenario with the work-conserving pre-
emption approach, we can see that all the work that has been done by the longer task has
been conserved at the moment of the preemption. After t2 finishes its execution, t1 contin-
ues its execution where it left off. Here, ∆t represents the overhead that can be caused by
the preemption technique. This scenario promises the lowest average waiting time for both
jobs which motivated us to leverage it within Chronos. In this work, Chronos leverages it
for better handling of failures by pausing the running tasks to make room for the recovery
tasks, and resuming them from their paused state when there is an available slot.

For the preemption mechanism, a naive checkpointing approach [111] can be taken as a
strawman solution. Although this approach is simple to implement, it will introduce a large
overhead since checkpointing requires flushing all the data associated with the preempted
task. Moreover, obtaining this checkpoint upon resume can consume a significant amount
of network and I/O resources. In this section, we introduce our lightweight preemption
technique for map and reduce task preemption.

Map Task Preemption

During the map phase, TaskTracker executes the map tasks that are assigned to it by the
JobTracker. Each map task processes a chunk of data (input block) by looping through ev-
ery key-value pair and applying the user defined map function. When all the key-value
pairs have been processed, JobTracker will be notified as the map task is completed and the
intermediate map output will be stored locally to serve the reducers.

For the map task preemption, we introduce an earlyEnd action for map tasks. We also
augment each map task with its range information which includes the starting and the end-
ing key for the key-value pairs. The map task listens for the preemption signal from Chronos
in order to stop at any time. Upon receiving the preemption request, this action will stop the
looping procedure and split the current map task into two subtasks. The former subtask cov-
ers all the key-value pairs that have been processed before the preemption request comes.
This subtask will be reported back to the JobTracker as completed as in the normal map task
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Figure 6.4: Map task preemption.

execution. On the other hand, the second subtask contains the range information for the
key-value pairs that have not been processed yet. This subtask will be added to the map
pool for later execution when there is an available slot, as for new map tasks. This map task
preemption mechanism is illustrated in Figure 6.4. Full parallelism of map tasks by hav-
ing independent key-value pairs gives us the opportunity to have fast and lightweight map
preemption.

To ensure the correctness of our map preemption mechanism, we also notify the reduce
tasks for the new subtasks created upon the map task preemption. In Hadoop, Job Tracker
notifies reduce tasks about the location of intermediate map outputs through Map Comple-
tion Event message. Reduce task would assume correct execution if it receives the same
number of Map Completion Event messages as the number of map tasks which was initialized
in the beginning of the job. Since our mechanism introduces new subtasks upon preemption,
we include this information inside the Map Completion Event message to inform the reduce
tasks for these new subtasks. Next, we present our reduce task preemption mechanism.

Reduce Task Preemption

In Hadoop, reduce task execution consists of three phases: shuffle, sort and reduce. During
the shuffle phase, reducers obtain the intermediate map outputs for the key-set assigned to
them. The sort phase performs a sort operation on all the fetched data (i.e., intermediate map
outputs in the form of key-value pairs). Later, the reduce phase produces the final output of
the MapReduce job by applying the user defined reduce function on these key-value pairs.

For the reduce preemption, the splitting approach (as in the map preemption) would not
be feasible due to the different characteristics of map and reduce tasks. Full parallelism of
map execution and having map inputs on the distributed file system enables us to apply a
splitting approach for map preemption. However, the three different phases of the reducer
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Figure 6.5: Reduce task preemption.

are not fully independent of each other. Therefore, we opt for a pause-and-resume approach
for the reduce preemption. In brief, we store the necessary data on the local storage for
preserving the state of the reduce task with pause and we restore back this information
upon resume. Figure 6.5 displays this reduce task preemption mechanism.

Our reduce preemption mechanism can preempt a reduce task at any time during the
shuffle phase and at the boundary of other phases. The reason behind this choice is that
usually the shuffle phase covers a big part of the reduce task execution, while the sort and
reduce phases are much shorter. In particular, the sort phase is usually very short due to
the fact that Hadoop launches a separate thread to merge the data as soon as it becomes
available.

During the shuffle phase, reducers obtain the intermediate map outputs for the key-
set assigned to them. Then, these intermediate results are stored either on the memory or
local disk depending on the memory capacity of the node and also the size of the fetched
intermediate results [65]. Upon receiving a preemption request, the pause action takes place
and first stops the threads that fetch the intermediate results by allowing them to finish the
last unit of work (i.e., one segment of the intermediate map output). Then, it stores all the
in-memory data (i.e., number of copied segments, number of sorted segments) to local disk.
This information is kept in files that are stored in each task attempt’s specific folder, which
can be accessed later by the resumed reduce task.

Preemption at the boundary of the phases follows the same procedure as above. The
data necessary to preserve the state of the reduce task is stored on the local disk and then the
reduce task will release the slot by preempting itself. The task notifies the JobTracker with
a status of suspended. Suspended tasks will be added to the reduce pool for later execution
when there is an available slot.

6.3 Experimental Evaluation

In this section, we evaluate Chronos by comparing it with the state-of-the-art Hadoop sched-
ulers with representative Big Data workloads using Grid’5000 [19] testbed.
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6.3.1 Methodology

Platform

We run our experiments on the Rennes site of Grid’5000 testbed. Specifically, we use the
parapluie cluster. Each node of this cluster is outfitted with 12-core AMD 1.7 GHz CPUs and
48 GB of RAM. Intra-cluster communication is done through a 1 Gbps Ethernet network.

Hadoop deployment

We configured and deployed a Hadoop cluster using 9 nodes. The Hadoop instance consists
of the NameNode and the JobTracker, both deployed on a dedicated machine, leaving 8 nodes
to serve as both DataNodes and TaskTrackers. The TaskTrackers were configured with 8 slots
for running map tasks and 4 slots for executing reduce tasks. At the level of HDFS, we used a
chunk size of 256 MB due to the large memory size in our testbed. We set a replication factor
of 2 for the input and output data. As suggested in several studies in the literature [32], we
set the failure detection timeout to a smaller value (i.e., 25 seconds) compared to the default
timeout of 600 seconds, since the default timeout is too big compared to the likely completion
time of our workloads in failure-free periods.

Failure injection: To mimic the failures, we simply killed the TaskTracker and DataNode pro-
cesses of a random node. We could only inject one machine failure since Hadoop cannot
tolerate more failures due to the replication factor of 2 for HDFS.

Workloads

We evaluated Chronos using two representative Big Data workloads (i.e., wordcount and
sort) with different input data sizes from the PUMA datasets [4]. Wordcount is a Map-
heavy workload with a light reduce phase, which accounts for about 70% of the jobs in
Facebook clusters [26]. On the other hand, sort produces a large amount of intermediate
data which leads to a heavy reduce phase, therefore representing Reduce-heavy workloads,
which accounts for about 30% of the jobs in Facebook clusters [26].

Comparisons

We implemented Chronos in Hadoop-1.2.1 with two state-of-the-art Hadoop schedulers:
Fifo (i.e., priority scheduler with respect to job submission time) and Fair schedulers. We
compare Chronos to these baselines. The Fifo scheduler is the default scheduler in Hadoop
and is widely used by many companies due to its simplicity, especially when the perfor-
mance of the jobs is the main goal. On the other hand, the Fair scheduler is designed to
provide fair allocation of resources between different users of a Hadoop cluster. Due to the
increasing numbers of shared Hadoop clusters, the Fair scheduler also has been exploited
recently by many companies [70, 150].
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(b) Chronos vs Fair scheduler.

Figure 6.6: Performance comparison for Map-Heavy jobs.

6.3.2 The Effectiveness of Chronos in Reducing Job Completion Times

Results with Fifo Scheduler

We ran two wordcount applications with input data sizes of 17 GB and 56 GB, respectively.
The input data sizes result in fairly long execution times of both jobs, which allowed us to
thoroughly monitor how both Hadoop and Chronos handles machine failures. More impor-
tantly, this mimics a very common scenario when small and long jobs concurrently share a
Hadoop cluster [108, 150]. Also, we tried to ensure that the cluster capacity (64 map slots in
our experiments) is completely filled. After submitting the jobs, we have injected the failure
before the reduce phase starts in order to have only map tasks as failed tasks.

In contrast to Fifo, Chronos reduces the completion time of the first job and the second
one by 20% and 10%, respectively. Most of the failed tasks belong to the first job and therefore
Chronos achieves better performance for the first job compared to the second one. The main
reason for the performance improvement is the fact that Fifo waits until there is a free slot
before launching the recovery tasks, while Chronos launches recovery tasks shortly after
failure detection. The waiting time for recovery tasks is 51 seconds (15% of the total job
execution) in the Fifo scheduler and only 1.5 seconds in Chronos (Chronos waited 1.5 seconds
until new heartbeats arrived). Moreover, during this waiting time, recovery tasks from the
first submitted job (high priority job) are waiting while tasks belonging to the second job
(low priority) are running tasks. This obviously violates the Fifo scheduler rule. Therefore,
the significant reduction in the waiting time not only improves the performance but also
ensures that Fifo operates correctly towards its objective.

Results with Fair Scheduler

We ran two wordcount applications with input data sizes of 17 GB and 56 GB, respec-
tively. The failure is injected before the reduce phase starts. Figure 6.6(b) demonstrates
that Chronos improves the job completion time by 2% to 14%, compared to Fair scheduler.
This behavior stems from eliminating the waiting time for recovery tasks besides launching
them locally. We observe that failure results in a serious fairness problem between jobs with
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(b) Data locality in Chronos and Fair scheduler.

Figure 6.7: Data locality for Map-Heavy jobs under Chronos, Fifo and Fair Schedulers.

Hadoop’s Fair scheduler: this fairness problem (violation) lasts for almost 48 seconds (16% of
the total execution time) in the Fair scheduler, while Chronos restores fairness within about
2 seconds by preempting the tasks from the jobs which exceed their fair share.

Summary. One may think that preempting tasks from low priority jobs to launch recovery
tasks of high priority jobs will obviously result in a performance degradation for low priority
jobs in Chronos compared to both the Fifo and Fair schedulers. However, the performance
improvements of high priority jobs in Chronos (due to the waiting time reduction and data
locality improvement) result in an earlier release of slots and therefore tasks belonging to low
priority jobs are launched earlier and fewer tasks are competing with them for resources.

6.3.3 The Effectiveness of Chronos in Improving Data Locality

Besides the failure handling, Chronos also aims at mitigating the I/O latency by trying to
launch recovery tasks locally. Figure 6.7 shows the data locality of each job from previous
experiments with Fifo (Figure 6.7(a)) and Fair (Figure 6.7(b)) schedulers. While the second
job has a similar data locality, we can clearly observe that Chronos significantly improves the
data locality for the first job for both scenarios (i.e., 15% and 22% data locality improvement
compared to Fifo and Fair schedulers, respectively). This improvement is due to the almost
optimal locality for recovery tasks with Chronos (all the recovery tasks which are launched
through Chronos are executed locally). Only 12.5% of the recovery tasks were executed
locally in Hadoop. The improved locality brings better resource utilization by eliminating
the need for remote transfer of input blocks for recovery tasks and further improves the
performance.

Summary. The aforementioned results demonstrate the effectiveness of Chronos in reducing
the violation time of the scheduler (i.e., priority based on job submission time and fairness)
to a couple of seconds. More importantly, Chronos reduces the completion time of the first
job (the job was affected by the machine failure) due to the reduction in the waiting time and
optimal locality for recovery tasks. This in turn allows the second job to utilize all available
resources of the cluster and therefore improves the performance.
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Figure 6.8: Job completion times for Reduce-
Heavy jobs under Chronos and Fifo scheduler.
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6.3.4 Impact of Reduce-Heavy Workloads

We also evaluated Chronos with Reduce-Heavy workloads. We ran two sort applications
with input data sizes of 17 GB and 56 GB, respectively. Both jobs have 32 reduce tasks. We
injected the failure during the reduce phase in order to have failed reduce tasks from the first
job. Figure 6.8 details the job completion time with Chronos and Fifo. Chronos achieves a
55% performance improvement for the first job and 11% for the second one. The improve-
ment in the Reduce-Heavy benchmark is higher compared to the Map-Heavy benchmark
because reduce tasks take a longer time until they are completed and therefore the recov-
ery (reduce) tasks have to wait almost 325 seconds in Fifo. Chronos successfully launches
recovery tasks within 2 seconds.

Summary. Chronos achieves a higher improvement when the failure injection is in the reduce
phase which clearly states that the main improvement is due to the reduction in the waiting
time. Here it is important to mention that other running reduce tasks will be also affected by
the waiting time as they need to re-fetch the lost map outputs (produced by the completed
map tasks on the failed machine).

6.3.5 The Effectiveness of the Preemption Technique

To assess the impact of the preemption technique on Chronos performance, we have also im-
plemented Chronos with a kill primitive as a preemption technique (Chronos-Kill). Instead
of pausing the candidate tasks to free the slot, we kill the candidate tasks with Chronos-Kill.
We repeated the same experiments as above, and Figure 6.9(a) shows the results. Although
both implementations have similar completion times for first job, Chronos-Kill degrades the
completion time of the second job by 12.5%. Note that with Fifo scheduler, the first job has a
higher priority compared to the second job due to its earlier submission time. Chronos-Kill
thus kills the tasks from the second job to allocate slots for recovery tasks. This results in
a waste of resources (we have observed that more than 50% of the killed tasks are killed
after 60 seconds of execution, as shown in Figure 6.9(b)). On the other hand, our preemption
mechanism has a work-conserving behavior in which the preempted tasks from the second
job continue their execution without wasting the work that has already been done.
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6.3.6 Overhead of Chronos

The overhead of Chronos may be caused by two factors: first, due to the collection of the use-
ful information (i.e., real-time progress reports) that is fed later to our smart slot allocation
strategy, and second, due to the overhead of the preemption technique. With respect to the
slot allocation strategy, the overhead of Chronos is negligible because Chronos leverages the
information already provided by heartbeat messages. We have studied the overhead of the
preemption technique by repeating the same experiment as in Section 6.3.2. Figure 6.10(a)
shows the completion times of each successful task with Chronos and Hadoop, we can see
that they both have a similar trend. Thus, we conclude that the preemption technique does
not add any noticeable overhead to cluster performance in general.

Moreover, we studied the overhead of Chronos during the normal operation of the
Hadoop cluster. We ran the same experiment as in Section 6.3.2 five times without any fail-
ures and Figure 6.10(b) shows that Chronos incurs negligible performance overhead during
the normal operation.

6.3.7 Chronos and Hadoop Under Multiple Failures

Our results demonstrated that the performance of Big Data applications degrade signifi-
cantly with a single failure. Furthermore, it is common to have multiple failures in clouds
since single failures can have a cascading effect [29, 32, 109, 135]. For instance, Rosa et al.
analyzed the traces from Google production cluster and found out that more than 55% of
failed tasks experience multiple failures during their lifetime [109]. Hence, we also evalu-
ated Chronos under multiple failures. We repeated the same Hadoop deployment in pre-
vious experiments by only changing the replication factor of HDFS to 3 in order to tolerate
two failures.

We ran two wordcount applications with input data sizes of 17 GB and 56 GB, respec-
tively. After submitting the jobs, we have injected two failures before the reduce phase starts
in order to have only map tasks as failed tasks. Figure 6.11 illustrates that Chronos again
reduces the completion time of the jobs by 22% and 13% thanks to its early yet smart slot
allocation strategy for recovery tasks.

6.3.8 Chronos with Aggressive Slot Allocation

The main objective of Chronos is to correct the behavior of Hadoop schedulers after failure.
Therefore, once this is achieved, Chronos operates similarly to Hadoop’s original mecha-
nism to avoid preempting tasks from the same job. However, after observing that Chronos’s
preemption technique has a negligible overhead, we wanted to assess the impact of agres-
sive slot allocation. To this end, we allow Chronos to preempt the selected tasks with the
same priority for the recovery tasks (e.g., recovery tasks belonging to the same job with se-
lected tasks). Previously, recovery tasks with higher priority would preempt the selected
tasks with less priority in Chronos. One may think that preempting tasks from the same
job to launch recovery tasks would not improve the job performance. However, thanks to
the work-conserving preemption technique we can safely preempt the tasks even belong-
ing to the same job to improve the locality of recovery tasks. Here, we name Chronos with
aggressive slot allocation as Chronos* for brevity.
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Figure 6.9: Job completion times for Reduce-Heavy jobs under Chronos and Chronos-Kill.
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Figure 6.10: Overhead of Chronos.

Figure 6.11: Performance comparison of Big
Data jobs under double failure.
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Figure 6.12: Job completion times under Fifo,
Chronos and Chronos* schedulers with single
failure.

To assess the effectiveness of Chronos*, we ran two wordcount applications with input
data sizes of 17 GB and 56 GB, respectively. The failure is injected before the reduce phase
starts. We adjusted the network speed to 256 Mbps in order to incorporate the locality factor
on the performance. The results are shown in Figure 6.12. Although both implementations
have similar completion times for the first job, Chronos* reduces the completion time of
the second job by 17% compared to Chronos. Note that with Chronos, recovery tasks that
belong to the second job would not be able to preempt any of the running tasks due to
their later submission time. However, we observed 100% locality for recovery tasks with
Chronos* thanks to its aggressive slot allocation strategy by also allowing the recovery tasks
to preempt the tasks from the same job. This highlights the importance of mitigating I/O
latencies in shared Hadoop clusters besides efficiently handling failures.

6.3.9 Discussion of the Results

Fail-stop failures can severely decrease the performance of Big Data applications [32, 66,
107]. Our results demonstrate that Chronos recovers to a correct scheduling behavior within
a couple of seconds only and reduces the job completion times compared to the state-of-the-
art schedulers. The performance improvement is due to two main factors:

• Reduction in the waiting time: The reduction in waiting time varies according to the
status and the progress speed of running tasks when detecting the failure. However,
as shown in many studies, recently Hadoop cluster is shared by multiple different Big
Data applications (i.e., differ in their complexity and thus in the average execution time
of their tasks [108, 150]: by analyzing the traces collected from three different research
clusters [52], we observe that the average execution time of map and reduce tasks is
124 seconds and 901 seconds, respectively). Thus, having long running tasks, despite
the failure injection and detection times, is common in Hadoop clusters. As a result,
there is a significant potential for improving the performance of jobs using Chronos.

• Improved locality of recovery tasks: Network is normally the most scarce resource in to-
day’s clouds [115]. Chronos therefore, by launching local recovery tasks, reduces the
extra cost for data transferring of these sensitive tasks and improves the performance
of Big Data applications.
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It is also important to mention that although we implemented Chronos in Hadoop 1.2.1,
the same logic can also be applied to the next generation of Hadoop, YARN [132]. Major
difference of YARN from the Hadoop 1.2.x versions is that it separates the JobTracker into
ResourceManager and ApplicationManager. The main motivation behind this new design
is to provide better fault tolerance and scalability. However, our initial experiences with
YARN indicate that severe impact of failures still exists since its schedulers are also unaware
of failures and YARN adopts the same fault tolerance mechanism as Hadoop 1.2.x.

6.4 Related Work

6.4.1 Scheduling in Big Data Systems

There exists a large body of studies on exploring new objectives (e.g., fairness, job priority)
when scheduling multiple jobs in Big Data systems and improving their performance. Isard
et al. introduced Quincy [70], a fair scheduler for Dryad, which treats scheduling as an op-
timization problem and uses min-cost flow algorithm to achieve the solution. Quincy uses
the kill mechanism to set the cluster according to the configuration in the solution. Zaharia
et al. introduced a delay scheduler [150], a simple delay algorithm on top of the default
Hadoop Fair scheduler. Delay scheduling leverages the fact that the majority of the jobs in
production clusters are short, therefore when a scheduled job is not able to launch a local
task, it can wait for some time until it finds the chance to be launched locally. More recently,
Venkataraman et al. have proposed KMN [134], a scheduler that focuses on applications
with input choices and exploits these choices for performing data-aware scheduling. KMN
also introduces additional map tasks to create choices for reduce tasks. This in turn results
in less congested links and better performance. Although these scheduling policies can im-
prove the performance of Big Data applications, none of them is failure-aware, leaving the
fault tolerance mechanism to the Big Data system itself, and thus are vulnerable to incurring
uncertain performance degradations in case of failures. Moreover, Chronos can complement
these policies to enforce correct operation and to further improve their performance under
failures.

6.4.2 Exploiting Task Preemption in Big Data Systems

There have been a few studies on introducing work-conserving preemption techniques to
Big Data environments. Wang et al. [140] exploited the fact that long running reduce tasks
may lead to starvation of short jobs. Thus, they introduced a technique for reduce task
preemption in order to favor short jobs against long jobs. However, the preemption tech-
nique is limited to reduce tasks and there is no overhead study regarding the preemption
technique. Pastorelli et al. [101] have proposed a preemption technique with a pause and
resume mechanism to enforce the job priority levels for the job execution. For the pause
and resume mechanism, they leverage the already available memory management mecha-
nisms in the operating system. Although these mechanisms can simplify the preemption, it
brings the shortcoming that a suspended task can only be launched on the same machine
on which it was paused before. Ananthanarayanan et al. [7] introduced Amoeba to support
a lightweight checkpointing mechanism for reduce tasks with the aim of achieving better
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elasticity for resource allocation. In contrast, Chronos introduces both map and reduce task
preemption and leverages it to make Hadoop schedulers failure-aware.

6.5 Conclusions

Hadoop has emerged as a prominent tool for Big Data processing in large-scale clusters.
Failures are inevitable in these clusters, especially in shared environments. Consequently,
Hadoop was designed with hardware failures in mind. In particular, Hadoop handles ma-
chine failures by re-executing all the tasks of the failed machine. Unfortunately, the efforts to
handle failures are entirely entrusted to the core of Hadoop and hidden from Hadoop sched-
ulers. This may prevent Hadoop schedulers from meeting their objectives (e.g., fairness, job
priority, performance) and can significantly impact the performance of the applications.

Given the limitations of current Hadoop schedulers in handling the failures, we propose
a new scheduling strategy called Chronos. Chronos is conductive to improving the perfor-
mance of Big Data applications by enabling an early action upon failure detection. Chronos
tries to launch recovery tasks immediately by preempting tasks belonging to low priority
jobs, thus avoiding the uncertain time until slots are freed. Moreover, Chronos strongly con-
siders the local execution of recovery tasks. The experimental results indicate that Chronos
results in almost optimal locality execution of recovery tasks and improves the overall per-
formance of Big Data applications by up to 55%. Chronos achieves that while introducing
very little overhead.
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AS data volumes growing at a dramatic rate, Big Data applications has become crucial
in our lives by extracting meaningful information from this data. A key issue is
to run these applications efficiently on large-scale shared platforms to be able to

process these gigantic data volumes. Several factors play an important role in the efficiency
of these applications in terms of their performance:

1. Data movements within the data processing platforms affect the application perfor-
mance dramatically. With larger amounts of data being generated everyday, it becomes
a must to develop solutions that can reduce the amount of these data movements.

2. I/O interference is a major performance bottleneck due to the shared nature of the
data processing platforms. This interference problem will be more important as these
platforms are being used by more and more concurrent applications. Hence, smart I/O
interference mitigation strategies are necessary to prevent it from being bottleneck to
the performance of Big Data applications.

3. Finally, failures can significantly degrade the performance of Big Data applications.
Failures are already part of the data processing platforms and they are becoming more
severe as these platforms are getting larger and larger.

In this thesis, we addressed aforementioned issues to achieve efficient Big Data process-
ing on large-scale shared platforms through a number of contributions that we describe next.
Then, we discuss the perspectives that our research opens for Big Data processing on large-
scale shared platforms.
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7.1 Achievements

The achievements obtained in this thesis can be summarized as follows.

Investigating the Characteristics of Big Data Applications in HPC Systems

As a first step toward efficient Big Data processing on HPC systems, we conducted an exper-
imental campaign to characterize the performance of Big Data applications on these systems.
We ran Spark using representative Big Data workloads on Grid’5000 testbed to evaluate how
the latency, contention and file system’s configuration can influence the performance of Big
Data applications. Our study demonstrated that there are several performance issues when
running Spark on a HPC system. For instance, we observe that I/O latency resulting from
the data movements between the parallel file system and compute nodes can significantly
degrade the application performance. Moreover, we report that this latency problem is sig-
nificant for all I/O phases, in contrary to existing studies in the literature. Our findings
also illustrate that one should carefully tackle the I/O interference problem, mainly result-
ing from sharing the same storage system, when running Big Data applications on a HPC
system.

Given all these performance issues, we claim that blind adoption of Spark or other main-
stream data processing frameworks can not leverage HPC systems efficiently for Big Data
processing. This rises the need for novel I/O management solutions that can alleviate the
aforementioned performance bottlenecks and enable efficient Big Data processing on these
systems.

Studying I/O Interference in HPC Systems

Performance characteristics of Big Data applications highlighted I/O interference as one
of the major bottlenecks. With larger machines, more and more applications would run
concurrently. Hence, tackling this interference problem will play a more important role in
enabling efficient Big Data processing on HPC systems. To this end, we conduct an ex-
tensive experimental campaign to understand the root causes of I/O interference. We use
microbenchmarks on the Grid’5000 to evaluate how the applications’ access pattern, the net-
work components, the file system’s configuration, and the backend storage devices influence
interference. Our experiments highlight the different causes of I/O interference in several
scenarios and are accompanied by lessons learned from the behavior of the system in these
scenarios. An important outcome of our study is that in many situations, interference is a
result of bad flow control in the I/O path, rather than the presence of a single bottleneck in
one of its components. Hence, we believe that researchers must understand the tradeoffs
between several components in the I/O stack and must address the interference problem in
its entirety, rather than focusing on any single component. We hope that the insights and
lessons learned from our experiments will enable a better understanding of I/O interference
and help enable efficient Big Data processing on HPC systems.
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Extending Burst Buffers in HPC Systems to Enable Efficient Big Data Processing

I/O management solutions play a critical role in achieving efficient Big Data processing on
HPC systems. To this end, we proposed the Eley approach. Eley is a burst buffer solution
that precisely aims to reduce the I/O latencies when reading the input data. Eley also con-
trols the I/O interference that can be caused by these read requests of Big Data applications
on HPC applications that are sharing the same platform. Eley employs interference-aware
prefetching technique to improve the performance of Big Data applications while guaran-
teeing the QoS of HPC applications. Our extensive evaluation with both real system exper-
iments on Grid’5000 and simulations demonstrated that Eley reduces the execution time of
Big Data applications by up to 30% compared to the existing burst buffer solutions while
guaranteeing the QoS requirement of HPC applications.

Addressing Failures in Large Shared Clusters

Besides I/O management, failure handling also plays a crucial role in performing efficient
Big Data processing on large-scale shared platforms, given their scale. With these platforms
getting larger and larger, it becomes necessary to have efficient failure recovery mechanisms.
To this end, we propose the Chronos approach. Chronos is a failure-aware scheduler that
enables an early yet smart action for fast failure recovery. To achieve this, Chronos uses a
novel preemption technique and preempts the tasks belonging to low priority jobs to launch
the recovery tasks immediately. Furthermore, Chronos aims at sustaining a high data lo-
cality even under failures to avoid the extra data transfers that can be necessary to ship the
required data to recovery tasks. Our experiments on Grid’5000 demonstrated that Chronos
mitigates the impact of failures on the performance of Big Data applications while introduc-
ing a negligible overhead.

7.2 Perspectives

Our present work addresses several issues related to the I/O management and failure han-
dling at large-scale shared platforms with the aim of achieving efficient Big Data processing
on these platforms. Towards this goal, our conducted research naturally opens a number of
perspectives.

Developing an I/O Interference Simulator

Interference is an inevitable fact that large-scale systems face when multiple applications
(i.e., Big Data and HPC applications) share the same platform. In Chapter 4, we undertook
an effort to identify the root causes of I/O interference in HPC storage systems and demon-
strated that interference results from the interplay between several components in the I/O
stack. An immediate question that can be asked is that can we design a simulator which
can accurately model the components subject to this interference. In this direction, we first
plan to expand our experimental study by looking at other platforms than Grid’5000, other
file systems (e.g., Lustre), other workload types (e.g., read-only, mixed) and other types of
network (e.g., InfiniBand). Then, by leveraging the knowledge gained in our work, we plan
to design this event-driven I/O interference simulator.
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Leveraging Eley for the Output Phase

Eley constitutes a good step toward developing smart I/O management solutions to enable
efficient Big Data processing on HPC systems. Currently, Eley can reduce the latencies for
the input and intermediate data phases of Big Data applications. Therefore, an important
research direction in the near future will be to leverage Eley for the output phase as well.
This will alleviate the latency problem in all I/O phases. Moreover, Chapter 4 demonstrated
that write/write interference can be very severe for the application performance. Therefore,
we plan to extend the interference-aware data transfer strategies so that synchronizing the
output data to the parallel file system will not violate the performance requirements of HPC
applications.

Equipping Eley with Smart Data Eviction Policies

Eley improves the performance of Big Data applications by allowing them to perform high-
throughput I/O operations. However, there is a trade-off between throughput and storage
capacity when using burst buffers. In Chapter 3, we highlighted that the limited storage
capacity of burst buffers can have a significant impact on the performance of Big Data ap-
plications. To address this challenge, Eley prefetches a subset of the input data (i.e., one
wave) as compute cluster computes one wave at a time. After extending Eley for reducing
the latencies in the output phase, one concern would be how to partition the storage space
of burst buffers with respect to different I/O phases (i.e., input, intermediate and output) of
Big Data applications. To this end, smart data eviction policies will be needed. These policies
can minimize the I/O operations between compute nodes and parallel file system by trying
to store the useful data for Big Data applications on burst buffers.

Extending Chronos to HPC Systems

Since failures are more severe in clouds due to employing failure-prone commodity ma-
chines, we focus on the failure handling in clouds by employing Chronos in shared Hadoop
clusters in this thesis. Chronos demonstrated its effectivess in improving the performance of
Big Data applications under failures. On the other hand, failures are becoming more com-
mon on HPC systems due to the ever-increasing scale of these systems. For example, the
BlueWaters supercomputer at the National Center of Supercomputing [18] has a mean time
to failure of 4.2 hours [31]. One potential research perspective would thus consists of lever-
aging Chronos to mitigate the impact of failures on the performance of Big Data applications
in HPC systems. However, this is not a trivial task considering the different architectural de-
signs in clouds and HPC systems. As shown in Chapter 6, improved locality of recovery
tasks is one of the main factors for the performance improvement brought by Chronos be-
sides the reduction in the waiting time for these tasks. Since all the compute nodes have
an equal distance to the data storage (i.e., parallel file system) in HPC systems, we would
need new methods to integrate this factor for Chronos when extending it to HPC systems.
For instance, it would be interesting to investigate the feasability of employing Eley to fetch
the input data for recovery tasks and thus reducing the I/O latency when launching the
recovery tasks.
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Chapter 8
Appendix

Contexte

En 2017 nous vivons dans un monde régi par les données. Les applications d’analyse de
données apportent des améliorations fondamentales dans de nombreux domaines tels que
les sciences, la santé et la sécurité. Cela a stimulé la croissance des volumes de données (le
déluge du Big Data). Par exemple, l’International Data Corporation (IDC) Research rapporte
que la quantité de données générées en 2016 était de 16,1 zettabytes. La même étude prévoit
que 163 zettabytes seront engendrées en 2025, ce qui se traduit par une augmentation de dix
fois dans la taille des données en moins d’une décennie.

Pour extraire des informations utiles à partir de cette quantité énorme d’informations,
différents modèles de traitement des données ont émergé. Parmi eux, MapReduce s’est
imposé comme le modele dominant, en particulier pour le traitement par lots (batch pro-
cessing). MapReduce, et sa mise en œuvre open source Hadoop, ont été adoptés à la fois
dans l’industrie et dans le milieu universitaire en raison de leur simplicité, de leur tolé-
rance aux pannes transparente et de leur évolutivité. Par exemple, Carnegie Mellon Univer-
sity (CMU) utilise des clusters Hadoop pour l’analyse de données dans plusieurs domaines
scientifiques, y compris l’astrophysique, la neurolinguistique, le traitement du langage na-
turel, la bioinformatique et l’analyse des réseaux sociaux. Outre MapReduce et Hadoop, de
nouveaux outils de traitement de données ont été introduits, tels que Spark et Storm. Ces
derniers se focalisent sur les applications itératives, le traitement des flux, l’apprentissage
automatique et le traitement de graphes. Nous appelons ces applications des “applications
Big Data”.

Les traitements Big Data est traditionnellement exécuté sur les Clouds. Les Clouds four-
nissent des ressources à grande échelle à moindre coût. Par conséquent, de nombreuses in-
dustries et laboratoires de recherche utilisent des Clouds à grande échelle pour faire face aux
volumes de données gigantesques. Par exemple, Google emploie un cluster avec plus de 200
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000 cœurs pour délivrer ses services aux entreprises et ainsi améliorer la qualité d’expérience
de l’utilisateur.

Outre les Clouds, les systèmes HPC (High-Performance Computing) ont suscité un
grand intérêt de par leur capacité à effectuer efficacement des traitements Big Data. Les sys-
tèmes HPC sont équipés de réseaux haut-débit et de milliers de nœuds avec de nombreux
cœurs, ce qui leur profère un grand potentiel pour les traitements Big Data, en particulier
pour les applications nécessitant un temps de réponse court. Par exemple, PayPal a récem-
ment déployé son logiciel de détection de fraude sur des systèmes HPC afin de détecter
rapidement les fraudes parmi des millions de transactions. Par ailleurs, les applications Big
Data peuvent faciliter la réalisation de simulations à grande échelle sur les systèmes HPC (en
filtrant / analysant les données de simulation). Par exemple, l’institut John von Neumann
Institute for Computing essaie de coupler des applications Big Data avec des simulations
scientifiques afin de relever les grands défis sociétaux et scientifiques.

Habituellement, ces plateformes à grande échelle (les systèmes HPC et les Clouds) sont
utilisées simultanément par plusieurs utilisateurs et de multiples applications afin d’optimi-
ser l’utilisation des ressources. Par exemple, une soixantaine de jobs sont executés simulta-
nément sur le supercalculateur Intrepid d’Argonne. Bien qu’il y ait beaucoup d’avantages à
partager de ces plates-formes, plusieurs problèmes sont soulevés dès lors qu’un nombre im-
portant d’utilisateurs et d’applications les utilisent en même temps. Par exemple, la gestion
des Entrées/Sorties (E/S) et des pannes est au cœur d’un traitement efficace des données
sur ces plateformes.

Dans le contexte des systèmes HPC, un grand nombre d’applications Big Data fonction-
nera simultanément sur la même plateforme et partagera le système de stockage (système
de fichiers parallèle). Ainsi, les interférences d’E/S apparaîtront comme un problème ma-
jeur pour la performance de ces applications. L’interférence E/S est un problème bien connu
dans les systèmes HPC, il empêche souvent les applications d’utiliser pleinement les res-
sources mises à leur disposition. D’autre part, les applications Big Data seront confrontées
à des latences élevées lors de la réalisation d’E/S en raison des transferts de données né-
cessaires entre le système de fichiers parallèle et les noeuds de calcul. D’ailleurs, l’impact
des interférences et de la latence sera amplifié lorsque les systèmes HPC serviront de pla-
teforme sous-jacente pour les applications Big Data, ainsi que pour les simulations HPC à
grande échelle. De plus, l’exécution d’applications Big Data sur ces systèmes peut gravement
dégrader les performances de ces simulations qui sont considérées comme des citoyens de
première classe sur les systèmes HPC. Cela soulève le défi de pouvoir effectuer un traite-
ment efficace de données sans affecter les performances des simulations à grande échelle
qui seraient en cours d’exécution.

Enfin, les pannes sont inévitables dans les plateformes à grande échelle, en particulier
dans les Clouds. C’est parce que les Clouds se composent de machines fortement suscep-
tibles de tomber en panne, ce qui rend les défaillances une réalité quotidienne. Par exemple,
Barroso et al. ont indiqué que le temps moyen entre deux pannes dans un cluster de 10 000
machines est de quelques heures. Par conséquent, le recouvrement rapide des pannes joue
un rôle crucial pour le traitement efficace de données dans les Clouds.
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Contributions

Cette thèse se concentre sur les facteur qui déterminent la performance des traitements Big
Data sur les plateformes partagées à grande échelle. Notre objectif est de fournir des solu-
tions de gestion des E/S et de recouvrement de pannes qui peuvent améliorer le la perfor-
mance des traitements des données sur ces plateformes.

Nous nous concentrons tout d’abord sur les goulots d’étranglement liés aux perfor-
mances des E/S pour les applications Big Data sur les systèmes HPC. Nous commençons
par caractériser les performances des applications Big Data sur ces systèmes. Nous identi-
fions les interférences et la latence des E/S comme les principaux facteurs limitant les per-
formances. Ensuite, nous nous intéressons de manière plus détaillée aux interférences des
E/S afin de mieux comprendre les causes principales de ce phénomène. De plus, nous pro-
posons un système de gestion des E/S pour réduire les latences que les applications Big
Data peuvent subir sur les systèmes HPC. Aussi, nous introduisons des modèles d’interfé-
rence pour les applications Big Data et HPC en fonction des résultats que nous obtenons
dans notre étude expérimentale concernant les causes des interférences d’E/S. Enfin, nous
exploitons ces modèles afin de minimiser l’impact des interférences sur les performances des
applications Big Data et HPC.

Deuxièmement, nous nous concentrons sur l’impact des défaillances sur la performance
des applications Big Data en étudiant la gestion des pannes dans les clusters MapReduce par-
tagés. Nous présentons un ordonnanceur qui permet un recouvrement rapide des pannes,
améliorant ainsi les performances des applications Big Data.

Ces contributions peuvent être résumées comme suit.

Caractérisation de la performance des applications Big Data sur les systèmes HPC

Il existe un intérêt récent pour l’exécution de traitements Big Data sur les systèmes HPC.
Bien que ces systèmes (HPC) offrent un vaste éventail d’opportunités pour le traitement de
données massives (réseaux haut-débit, multi-cœurs, stockage à accès très rapide), ils sont
traditionnellement conçus pour des applications de calcul intensif et non pour gérer des
données massives. Par conséquent, il est nécessaire de comprendre les caractéristiques et les
performances des applications Big Data sur les systèmes afin de pouvoir les utiliser effica-
cement. Pour ce faire, nous avons mené une étude expérimentale pour mieux comprendre
les performances de Spark, le logiciel de traitement de données en mémoire de facto, sur les
systèmes HPC. Nous avons exécuté Spark en utilisant des charges de travail représentatives
du Big Data sur Grid’5000 pour évaluer comment la latence, la contention et la configuration
du système de fichiers peuvent influer sur les performances des applications. Nos résultats
expérimentaux révèlent que les interférences et que les latences d’E/S sont les facteurs ma-
jeurs limitant la performance lors de l’exécution d’applications Big Data sur les systèmes
HPC. Nous discutons également des implications de ces résultats et attirons l’attention sur
les solutions de gestion des E/S (Burst Buffers) pour améliorer les performances des appli-
cations Big Data sur les systèmes HPC.
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Identifier les causes premières des interférences des E/S sur les systèmes HPC

Comme les systèmes HPC sont partagés par un grand nombre d’applications en même
temps, les interférences d’E/S apparaissent comme un facteur limitant pour les perfor-
mances des applications Big Data. Les interférences des E/S, qui est un problème bien connu
dans l’HPC, sont définies comme la dégradation des performances observées par une ap-
plication unique exécutant une E/S en conflit avec d’autres applications s’exécutant sur la
même plateforme. Ce problème d’interférence devient de plus en plus important avec le
nombre croissant d’applications (des applications HPC et Big Data) qui partagent ces pla-
teformes. Notre but est d’effectuer un traitement intelligent prenant en compte les interfé-
rences pour des applications Big Data sur ces plateformes. Dans cette optique, la compré-
hension des causes premières du problème d’interférence des E/S devient cruciale. À cet
effet, nous avons mené une vaste étude expérimentale en utilisant de micro-applications sur
Grid’5000 pour évaluer comment le modèle d’accès des applications, les composants réseau,
la configuration du système de fichiers et les périphériques de stockage backend influencent
les interférences des E/S. Notre étude révèle que, dans de nombreuses situations, l’interfé-
rence est le résultat d’un mauvais contrôle de flux dans le chemin des E/S et n’est pas aussi
souvent due à la limitation d’un composant dans le chemin des E/S. Nous montrons aussi
que le comportement sans interférences n’est pas nécessairement un signe de performance
optimale. À notre connaissance, notre travail fournit la première description détaillée du
rôle de chacune des causes premières potentielles des interférences et de leur interactions.
Ce travail, partiellement effectué durant un stage de 3 mois à ANL, a mené à une publication
dans la conférence IPDPS 2016.

Proposition d’une architecture à base de burst buffers pour des systèmes HPC,
permettant d’accélérer les traitements de données

Le développement de solutions intelligentes de gestion des E/S est d’une importance capi-
tale pour effectuer un traitement efficace des données sur les systèmes HPC. Les tampon de
pic (Burst Buffers : BB) sont une solution efficace pour réduire le temps de transfert de don-
nées et des interférences des E/S sur les systèmes HPC. L’extension des BB pour gérer les
applications Big Data est difficile car ils doivent tenir compte des grandes tailles de données
et de la qualité de service (QoS, contraintes de performance définies par l’utilisateur) des ap-
plications HPC - considérées comme des citoyens de première classe sur les systèmes HPC.
Les BB existants se concentrent uniquement sur les données intermédiaires et entraînent
une dégradation élevée des applications Big Data et HPC. Nous proposons Eley, une solu-
tion basée sur des BB qui aide à accélérer les performances des applications Big Data tout
en garantissant la QoS des applications HPC. Pour atteindre cet objectif, Eley intègre une
technique de prélecture sensible aux interférences qui rend la lecture des données d’entrée
plus rapide tout en contrôlant les interférences imposées par les applications Big Data sur
les applications HPC. Nous avons évalué expérimentalement Eley avec un système réel sur
Grid’5000 et des simulations utilisant une large gamme d’applications Big Data et HPC. Nos
résultats démontrent l’efficacité d’Eley dans la réduction du temps d’exécution des applica-
tions Big Data tout en maintenant la QoS des applications HPC. Une partie de ce travail a
été publiée lors de la conférence CLUSTER’17.
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Recouvrement rapide des défaillances sur des systèmes partagés à grande échelle

Les défaillances sont assez courantes dans les plateformes à grande échelle, en particulier
pour les Clouds qui se composent de matériel de grande série. Ainsi, la gestion des dé-
faillances joue un rôle crucial pour un traitement Big Data efficace. Dans ce sens, nous visons
à améliorer la performance des applications en cas des défaillances sur les clusters Hadoop
partagés. Actuellement, Hadoop gère les défaillances de la machine en exécutant de nou-
veau toutes les tâches des machines défectueuses (en exécutant des tâches de recouvrement).
Malheureusement, cette solution élégante est entièrement confinée au cœur d’Hadoop et
est cachée aux ordonnanceurs. L’inconscience des défaillances peut donc empêcher les or-
donnanceurs Hadoop de fonctionner correctement pour atteindre leurs objectifs (l’équité,
la priorité du travail) et peuvent avoir une incidence importante sur les performances des
applications Big Data. Nous avons abordé ce problème en proposant Chronos, une stratégie
d’ordonnancement qui permet une action rapide et intelligente pour un recouvrement ra-
pide après défaillance, tout en respectant un objectif de l’ordonnanceur. Lors de la détection
d’une défaillance, plutôt que d’attendre un certain temps pour obtenir des ressources pour
les tâches de recouvrement, Chronos s’appuie sur une technique légère de préemption pour
répartir ces ressources avec précaution. En outre, Chronos considère la localisation des don-
nées lors d’ordonnancement des tâches de recouvrement pour améliorer les performances.
Nous démontrons l’utilité de Chronos en la combinant avec les ordonnanceurs FIFO et Fair.
Les résultats expérimentaux montrent que Chronos reprend un comportement d’ordonnan-
cement correct en quelques secondes seulement et réduit les temps d’exécution du travail
jusqu’à 55% par rapport aux ordonnanceurs présents dans la littérature. Ce travail a mené à
des publications à la conférence BigData’15 et au journal FGCS.
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