
HAL Id: tel-01724069
https://theses.hal.science/tel-01724069v1

Submitted on 6 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software development methodology in a Green IT
environment

Hayri Acar

To cite this version:
Hayri Acar. Software development methodology in a Green IT environment. Other [cs.OH]. Université
de Lyon, 2017. English. �NNT : 2017LYSE1256�. �tel-01724069�

https://theses.hal.science/tel-01724069v1
https://hal.archives-ouvertes.fr

No d’ordre NNT : 2017LYSE1256

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée au sein de

l’Université Claude Bernard Lyon 1

École Doctorale ED 512
Informatique et Mathématiques de Lyon (InfoMaths)

Spécialité de doctorat : Informatique

Soutenue publiquement le 23/11/2017, par :
Hayri ACAR

Software development methodology in a
Green IT environment

Devant le jury composé de :

Oussalah Mourad Chabane, Professeur des Universités, Université de Nantes Rapporteur
Pierson Jean-Marc, Professeur des Universités, Université Paul Sabatier Toulouse 3 Rapporteur
Bellatreche Ladjel, Professeur des Universités, ENSMA Poitiers Examinateur
VARGAS-SOLAR Genoveva, Chargé de Recherche CNRS, LIG Grenoble Examinatrice

Ghodous Parisa, Professeur des Universités, Université Lyon 1 Directrice de thèse
Gelas Jean-Patrick, Maître de Conférence, ENS Lyon Co-directeur de thèse
Isiklar Alptekin Gülfem, Associate Professor, Galatasaray University Co-directrice de thèse
Lefèvre Laurent, Chargé de Recherche INRIA, ENS Lyon Invité

2

UNIVERSITE CLAUDE BERNARD - LYON 1

Président de l’Université M. le Professeur Frédéric FLEURY
Président du Conseil Académique M. le Professeur Hamda BEN HADID
Vice-président du Conseil d’Administration M. le Professeur Didier REVEL
Vice-président du Conseil Formation et Vie Universitaire M. le Professeur Philippe CHEVALIER
Vice-président de la Commission Recherche M. Fabrice VALLÉE
Directrice Générale des Services Mme Dominique MARCHAND

COMPOSANTES SANTE

Faculté de Médecine Lyon Est – Claude Bernard Directeur : M. le Professeur G.RODE
Faculté de Médecine et de Maïeutique Lyon Sud –
Charles Mérieux

Directeur : Mme la Professeure C. BURILLON

Faculté d’Odontologie Directeur : M. le Professeur D. BOURGEOIS
Institut des Sciences Pharmaceutiques et Biologiques Directeur : Mme la Professeure C. VINCIGUERRA
Institut des Sciences et Techniques de la Réadaptation Directeur : M. X. PERROT
Département de formation et Centre de Recherche en
Biologie Humaine

Directeur : Mme la Professeure A-M. SCHOTT

COMPOSANTES ET DEPARTEMENTS DE SCIENCES ET
TECHNOLOGIE

Faculté des Sciences et Technologies Directeur : M. F. DE MARCHI
Département Biologie Directeur : M. le Professeur F. THEVENARD
Département Chimie Biochimie Directeur : Mme C. FELIX
Département GEP Directeur : M. Hassan HAMMOURI
Département Informatique Directeur : M. le Professeur S. AKKOUCHE
Département Mathématiques Directeur : M. le Professeur G. TOMANOV
Département Mécanique Directeur : M. le Professeur H. BEN HADID
Département Physique Directeur : M. le Professeur J-C PLENET
UFR Sciences et Techniques des Activités Physiques
et Sportives

Directeur : M. Y.VANPOULLE

Observatoire des Sciences de l’Univers de Lyon Directeur : M. B. GUIDERDONI
Polytech Lyon Directeur : M. le Professeur E.PERRIN
Ecole Supérieure de Chimie Physique Electronique Directeur : M. G. PIGNAULT
Institut Universitaire de Technologie de Lyon 1 Directeur : M. le Professeur C. VITON
Ecole Supérieure du Professorat et de l’Education Directeur : M. le Professeur A. MOUGNIOTTE
Institut de Science Financière et d’Assurances Directeur : M. N. LEBOISNE

3

Acknowledgements

This thesis would not have been possible without the assistance, guidance and encouragements
of many individuals.

First of all, I would like to thank my supervisors, Associate Professor Jean-Patrick Gelas, Assis-
tant Professor Gülfem Isiklar Alptekin and Professor Parisa Ghodous for their supports, advices
and discussions.

I also would like to thank all the members of the SOC team, and my colleagues at University of
Lyon1, for their talks and discussions.

I would like to thank my parents and my brothers and all my wonderful friends for their love
and support.

Finally, my sincere thanks to my wife Fatma and two children Ibrahim and Muhammed for their
limitless patience and support throughout my thesis years.

4

Contents

1 Introduction 15
1.1 Motivations . 15
1.2 Research questions . 17
1.3 Contributions . 18
1.4 Outline . 18

2 Definitions of the Terms: Sustainable and Green 21
2.1 Sustainable . 21

2.1.1 ICT sustainable . 23
2.1.2 Sustainable Software . 25

2.2 Green . 26
2.2.1 Green Software . 28
2.2.2 Green with/within Software . 29

2.3 Conclusion . 30

3 Related Works 33
3.1 Hardware methodologies . 34
3.2 Software methodologies . 35
3.3 Hybrid methodologies . 50
3.4 Conclusion . 51

4 Sustainable and Green Software Engineering Process 53
4.1 BUA Methodology . 53
4.2 Requirements . 55
4.3 Design and Implementation . 57
4.4 Tests . 59
4.5 Usage . 61
4.6 Maintenance . 63
4.7 Disposal . 64
4.8 Green analysis . 66
4.9 Conclusion . 66

5 A generic power consumption methodology: GMTEEC 67
5.1 Business Layer . 67

5.1.1 Hotpoint . 67
5.1.2 Improvement . 68

5.2 Application Layer . 69
5.2.1 Language . 69
5.2.2 Library . 71

5.3 Interface Layer . 73
5.3.1 Platform . 73
5.3.2 Operating System . 75

5.4 Hardware Layer . 76

5

6 CONTENTS

5.4.1 Component . 76
5.4.2 Simulation . 76

5.5 Conclusion . 76

6 GMTEEC methodology applied: TEEC 79
6.1 CPU . 80
6.2 Memory . 82

6.2.1 Activate power . 84
6.2.2 Precharge power . 85
6.2.3 Read power . 85
6.2.4 Write power . 85
6.2.5 Total power . 85

6.3 Hard Disk . 86
6.3.1 Hard disk structure . 86
6.3.2 Power modeling . 87

6.4 Network . 89
6.5 Total power consumption of all components . 89
6.6 Conclusion . 89

7 Experiments and Validation 91
7.1 Fibonacci sequence . 91
7.2 Source code adjustment . 92

7.2.1 Strength reduction . 92
7.2.2 Eliminate common subexpressions . 93
7.2.3 Code motion . 94
7.2.4 Unrolling loops . 96

7.3 Several function optimizations . 96
7.3.1 Tests Description . 97
7.3.2 Results . 99
7.3.3 Validation . 100

7.4 TEEC compared with three other tools . 101
7.4.1 Search an Integer . 102
7.4.2 Students mini-project . 104

7.5 Conclusion . 107

8 Conclusion 109
8.1 Lessons learned . 109
8.2 Future directions . 110
8.3 Publications . 111

List of Figures

1.1 Electricity consumption (TWh) [1] . 16

2.1 Software Sustainability Heart . 23
2.2 Our Sustainable Software definition . 26
2.3 Sustainable and Green Software . 27
2.4 Our Green Software definition . 29
2.5 Green with Software . 31
2.6 Green within Software . 31

3.1 Software power consumption methodologies classification 33
3.2 Systematic map in a bubble plot of research type and nature facets 36

4.1 BUA (BeforeUsageAfter) methodology . 55
4.2 Requirements stage with criteria for Green Analysis 57
4.3 Design and implementation stage with criteria for Green Analysis 59
4.4 Tests stage with criteria for Green Analysis . 61
4.5 Usage stage with criteria for Green Analysis . 63
4.6 Maintenance stage with criteria for Green Analysis 64
4.7 Disposal stage with criteria for Green Analysis 66

5.1 GMTEEC . 68
5.2 Global desktop operating system market share in May 2017 [2] 75
5.3 Global mobile and tablet operating system market share in May 2017 [3] 75
5.4 Distribution of peak power usage by hardware subsystem in one of Google’s data

centers [4] . 76
5.5 Average power use per server distributed by hardware subsystem [5] 77
5.6 Computer power distribution by components [6] 77

6.1 TEEC . 79
6.2 Code manipulations . 80
6.3 One common gate in CPU . 81
6.4 The functional bloc diagram of a DDR3 SDRAM 83
6.5 Hard disk structure. 87
6.6 LBAs. 88

7.1 Power consumption of Fibonacci sequence with TEEC. 92
7.2 Power consumption of Fibonacci sequence with Joulemeter. 92
7.3 Strength reduction unoptimized. 93
7.4 Strength reduction optimized. 93
7.5 Subexpression unoptimized. 94
7.6 Subexpression optimized. 94
7.7 Code motion unoptimized. 95
7.8 Code motion optimized. 95
7.9 Unrolling loops. 96

7

8 LIST OF FIGURES

7.10 Unoptimized functions power consumption. 99
7.11 Unoptimized functions energy consumption. 99
7.12 Optimized functions power consumption. 100
7.13 Unoptimized functions energy consumption. 100
7.14 wattsup?PRO. 101
7.15 Unoptimized and optimized functions power consumption obtained with wattsup?PRO.101
7.16 WattsUp-Pro power consumption measured and used as reference. 102
7.17 TEEC power consumption estimation. 102
7.18 IPG power consumption estimation. 103
7.19 Joulemeter power consumption estimation. 103
7.20 WattsUp-Pro power consumption measured and used as reference. 105
7.21 TEEC power consumption estimation. 105
7.22 IPG power consumption estimation. 105
7.23 Joulemeter power consumption estimation. 106
7.24 Performance and energy results of each project. 106

List of Tables

2.1 Sustainable Software Definitions . 26
2.2 Green Software Definitions . 29

3.1 Comparison of Powermeters . 34
3.2 Studies using hardware methodologies to measure the energy consumption of soft-

ware . 35
3.3 Research Type Facet . 36
3.4 Tools using CPU component to estimate the software energy consumption 41
3.5 Tools using Memory component to estimate the software energy consumption . . 45
3.6 Tools using Hard Disk component to estimate the software energy consumption . 47
3.7 Tools using Network component to estimate the software energy consumption . . 50

5.1 Languages Types . 71
5.2 Libraries . 72
5.3 Virtual and Physical machines advantages and disadvantages 75

6.1 Possibilities to reduce power consumption of the CPU. 82
6.2 Data sheet specifications . 84

7.1 Functions . 99
7.2 Functions time execution. 100
7.3 Energy consumption comparison . 103

9

10 LIST OF TABLES

Summary

The number of mobile devices (smartphone, tablet, laptop, etc.) and Internet users are contin-
ually increasing. Due to the accessibility provided by cloud computing, Internet and Internet of
Things (IoT), users use more and more software applications which cause an increasing effect
on gas emission. Thus, ICT (Information and Communication Technologies) is responsible of
around 2% worldwide greenhouse gas emissions which is equivalent of that emitted by the airline
industry. According to recent reports, the Intergovernmental Panel on Climate Change (IPCC),
CO2 emissions due to ICT are increasing widely. Nevertheless, ICT, in allowing to solve complex
problems in other sectors, can greatly and easily participate to reduce significant portion of the
remaining 98% of global CO2 emissions.
The use of software implies hardware operations which are physically responsible of energy con-
sumption. Consequently, software is indirectly involved in the energy consumption. Thus, we
need to reduce software energy consumption while maintaining the same functionalities for the
software in order to build sustainable and green software.
Firstly, in this thesis work, we define the terms sustainable and green in the area of software
development. To build a software product, we need to follow a software engineering process.
Hence, we define and describe sustainable and green criteria to be respected after each step of
this process in order to establish a sustainable and green software engineering process.
Then, we focus on the software energy consumption estimation. Many research works tried to
propose various tools to estimate the energy consumption due to software in order to reduce car-
bon footprint. Unfortunately, these studies, in the majority of cases, consider only the CPU and
neglects all others components. Existing power consumption methodologies need to be improved
by taking into account more components susceptible to consume energy during runtime of an
application. Writing sustainable, power efficient and green software necessitates to understand
the power consumption behavior of a computer program. One of the benefits is the fact that
developers, by improving their source code implementations, will optimize software power con-
sumption. Moreover, there is a lack of analyzing tool to dynamically monitor source code energy
consumption of several components. Thus, we propose GMTEEC (Generic Methodology of a
Tool to Estimate Energy Consumption) which is composed of four layers assisting developers
to build a tool estimating the software power consumption. Hence, in our work, respecting the
layers of GMTEEC, we develop TEEC (Tool to Estimate Energy Consumption) which is based
on mathematical formula established for each component (CPU, memory, hard disk, network)
in order to estimate the total software energy consumption. Moreover, we add in TEEC the
capacity to locate dynamically the hotpoints which are the parts of source code consuming the
greater amount of energy in order to help and guide developers to optimize their source code
and build efficient, sustainable and green software.
We performed a variety of experiments to validate the accuracy and quality of the sustainable
and green software engineering process and TEEC. The results demonstrate the possibility to
save significant quantity of energy and time at limited costs with an important positive impact
on environment.

11

12 LIST OF TABLES

Résumé

Le nombre de périphériques mobiles (smartphone, tablette, ordinateur portable, etc.) et les inter-
nautes augmentent continuellement. En raison de l’accessibilité du cloud computing, de l’Internet
et de l’Internet des Objets (IdO), les utilisateurs utilisent de plus en plus d’applications logicielles
qui provoquent un effet croissant sur les émissions de gaz à effet de serre. Ainsi, les TIC (Tech-
nologies de l’Information et de la Communication) sont responsables d’environ 2% des émissions
mondiales de gaz à effet de serre qui sont équivalentes à celles émises par l’industrie aérienne.
Selon des rapports récents, le Groupe d’experts Intergouvernemental sur l’Evolution du Climat
(GIEC), les émissions de CO2 dus aux TIC augmentent rapidement. Néanmoins, les TIC, en
permettant de résoudre des problèmes complexes dans d’autres secteurs, peuvent grandement et
facilement participer pour réduire une partie importante des 98% restants des émissions mondi-
ales de CO2.
L’utilisation du logiciel implique des opérations matérielles qui sont physiquement responsables
de la consommation d’énergie. Par conséquent, le logiciel est indirectement impliqué dans la
consommation d’énergie. Ainsi, nous devons réduire la consommation d’énergie du logiciel tout
en conservant les mêmes fonctionnalités pour le logiciel afin de créer des logiciels durables et
verts.
Premièrement, dans ce travail de thèse, nous définissons les termes «durable et vert» dans le
domaine du logiciel afin de créer des logiciels respectant les critères de ces termes. Pour créer
un produit logiciel, nous devons suivre un processus d’ingénierie logicielle. Par conséquent,
nous décrivons des critères durables et verts à respecter après chaque étape de ce processus afin
d’établir un processus d’ingénierie logicielle durable et écologique.
En particulier, nous nous concentrons sur l’estimation de la consommation d’énergie du logiciel.
De nombreux travaux ont essayé de proposer divers outils pour estimer la consommation d’énergie
due aux logiciels afin de réduire l’empreinte carbone. Pendant longtemps, les solutions proposées
se sont concentrées uniquement sur la conception du matériel, mais ces dernières années, les as-
pects logiciels sont également devenus importants. Malheureusement, ces études, dans la plupart
des cas, ne considèrent que le CPU et négligent tous les autres composants. Les modèles de con-
sommation d’énergie existants doivent être améliorés en tenant compte de plus de composants
susceptibles de consommer de l’énergie pendant l’exécution d’une application. L’écriture d’un
logiciel durable, performant et vert nécessite de comprendre le comportement de consommation
d’énergie d’un programme informatique. L’un des avantages est que les développeurs, en amélio-
rant leurs implémentations du code source, optimiseront la consommation d’énergie du logiciel.
De plus, il existe un manque d’outil d’analyse pour surveiller dynamiquement la consommation
d’énergie du code source de plusieurs composants. Ainsi, nous proposons GMTEEC (Méthodolo-
gie Générique d’Outil pour Estimer la Consommation Energétique) qui se compose de quatre
couches aidant et guidant la construction d’un outil permettant d’estimer la consommation én-
ergétique d’un logiciel. Ainsi, dans notre travail, en respectant les couches de GMTEEC, nous
créons TEEC (Outil pour Estimer la Consommation Energétique) qui repose sur une formule
mathématique établie pour chaque composant (CPU, mémoire, disque dur, réseau) susceptible
de consommer de l’énergie afin d’estimer la consommation totale d’énergie du logiciel composée
de la somme de chaque consommation d’énergie par composant. De plus, nous ajoutons à TEEC
la capacité de localiser dynamiquement les points chauds qui sont les parties du code source
consommant la plus grande quantité d’énergie afin d’aider et guider les développeurs à optimiser

13

14 LIST OF TABLES

leur code source et à créer des logiciels efficaces, durables et verts.
Nous avons réalisé une variété d’expériences pour valider la précision et la qualité du processus
d’ingénierie logicielle durable et verte et la précision et la qualité de TEEC. Les résultats démon-
trent la possibilité de réduire la consommation d’énergie et d’améliorer les performances à des
coûts limités avec un important impact positif sur l’environnement.

Chapter 1

Introduction

“People with passion can change the
world for the better.“

Steve Jobs

1.1 Motivations

Experts have commonly recognized that human activity is responsible for the increase of the
earth atmospheric temperature mainly due to the greenhouse gases generated by energy produc-
tion. Consequently, the United Nations Climate Change Conference, COP 21 (Conference of the
Parties), has reasserted the aim of keeping the increase in temperature below 2˚C by the end of
the century [7].

In the last years Information and Communication Technologies (ICT) is increasing very fast with
the goal to propose new solutions and facilitates people’s life. In fact, the number of Internet
users and websites, sent email, Google searches, written blog posts, sent tweets, viewed Youtube
videos, photos uploaded on Instagram, Facebook, Google+, Twitter, Linkedin and Pinterest ac-
tive users, Skype calls, websites hacked, Computers, Smartphones and Tablets sold, Internet
traffic are growing each day in the world. Consequently, energy consumption, electricity used
and greenhouse gas emissions (GHGE) due to ICT are also increasing dramatically. Hence, ICT
is responsible about 2% of global CO2 emissions [8] which is the equivalent emitted by the air-
line industry. Moreover, with the considerable increase of mobile devices and the expansion of
network, as it is represented in Figure 1.1, ICT sector electricity consumption will increase about
60% between 2007 and 2020 [1].

Nevertheless, ICT is contributing efficiently to reducing the global carbon footprint and to solv-
ing complex problems in several sectors of activity. Thus, ICT can greatly and easily participate
to reduce significant portion of the remaining 98% of global CO2 emissions from other sectors.
GeSI’s SMARTer2020 [9] report shows that the increased use of ICT, such as cloud computing,
video conferencing, etc. could cut the projected 2020 global greenhouse gas emissions by 16,5%
[9], amounting to $1.9 trillion in gross energy and fuel savings and a reduction of 9.1 Gigatonnes
carbon dioxide equivalent (GtCO2e) of greenhouse gases. This is equivalent to more than seven
times the ICT sector’s emissions in the same period. Hence, it is necessary to continue these
improvements in order to keep the same functionalities of our ICT products and at the same time
reduce the energy consumption due to these products to obtain sustainable and green products
which will be eco-friendly with the environment. A lot of improvements have been made to save
energy in several sectors.

Particularly, within ICT hardware, improvements made by manufacturers are considerable and
limits of improvement are nearly reached. In fact, physical components in a device are consuming

15

16 CHAPTER 1. INTRODUCTION

Figure 1.1: Electricity consumption (TWh) [1]

energy. However, software use involved hardware operations which imply energy consumption.
Hence, software is also indirectly source of energy consumption. Thus, more and more researches
are investigating to save energy concerning software use. Moreover, software is more complicated
to develop, manage and sell and contributes to create more economic activity than hardware.

Several definitions of the terms sustainable and green have been proposed in order to act for
the environment. Hence, according to the sector, the meanings of those terms are not similar
and a meaning in a sector can not be applied in another sector to create a product linked at
this sector and respecting the meanings of those terms. In ICT sector also there are a lot of
definitions proposed concerning sustainable and green terms. However, an accurate approach is
needed to define these terms in our research area concerning software products in order to create
sustainable and green software.

Companies whose main activity is to develop and sell software use different development lifecycle
to create software product. Firstly, the direct way is to begin the implementation of software
without to carrying out any description of specification functional and techniques and also any
design of development. With this approach, companies want to earn money quickly and the
goal is to offer to the client a software product operating. By this way, it is too complicated to
perform improvement of the software to have a new version. Each time, it is like a new soft-
ware is developed. Moreover, it will be very difficult to realize the maintenance of this software
product especially when the developer performing is different from the developer who developed
the software. Another way is to follow a software engineering process described by the company
in order to have a better organization in the tasks to create the software product. In this case,
specifications are defined between the client and the company. Then, implementation and tests

1.2. RESEARCH QUESTIONS 17

are performed. Next, the software product is deployed for the use of the client. Maintenance is
realized to solve the defects described by the client. During these steps different team could work
separately to check the quality of the software product. Even if there is a better organization
and management in this case, there is a lack of concern for sustainable and green approach. In
fact, the company creates the software product to earn money and does not take into account
the green aspects of the software product to reduce the green house gas emissions keeping the
same functionalities. Hence, it is important to measure and/or estimate the energy consumption
due to software in order to know if it is possible to limit negative impacts.

Several tools using different methodologies have been presented in order to reduce the energy
consumption due to software. Firstly, studies were about hardware methodologies which consist
to measure directly the energy consumption of components (CPU, memory, hard disk, network,
etc.) with powermeters or printed circuits connected at the component. By this way, it is possi-
ble to obtain accurate results about the energy consumption of components. However, the main
limits concerning this methodology are the fact that it is impossible to connect a powermeter on
a Virtual Machine (VM) and measure the energy consumption of a particular process. Moreover,
this approach causes additional energy consumption due to the use of hardware device to mea-
sure the software energy consumption and depending on the situations it could be expensive to
buy a powermeter or build a special printed circuit. Then, researches have been oriented on the
hybrid methodologies which consist to use a hardware device such as a powermeter to perform
the energy measurement and a software tool to get automatically and manage the information
obtained with the hardware device. Even if the management of energy consumption is easier
with this approach, we observe the same limits of those hardware methodologies. Hence, new
recent software methodologies are more and more studying to simplify and facilitate the software
energy measurement. In this case, the limits observed in the both previous methodologies are
solved because an estimation of software energy consumption is proposed. In fact, mathematical
formula are established to estimate the energy consumption of main components such as CPU,
memory, disk, network, etc. taking into account the features of each component. Then, the
accuracy of this approach is checked with hardware devices such as powermeters. Hence, we
choose to study, describe and develop this software methodology in order to reduce the energy
consumption of software while keeping the same functionalities of software. Writing power ef-
ficient software requires understanding the software application power consumption behavior.
Thus, developer could develop efficient, sustainable and green software.

Otherwise, several tools have been implemented to estimate the energy consumption of software.
However, in the majority of cases, the CPU was considered the most energy consumer component
and the other components have been neglected. In the other cases researches limited their
study only at their specific domain of research and proposed tools which take into account only
one particular component. Hence, it is necessary to have a tool able to estimate the energy
consumption of several components (CPU, memory, disk, network, etc.) in the same time during
the runtime of software. If we remain at this step, developers could know the energy consumption
of their software. They did not know if their source code is efficient or not and even if they try to
improve their source code they will lose enormous time to identify the parts of code to optimize.
Consequently, it is important to help and guide developers to locate dynamically the hotpoints
of their source code in order to improve their code to obtain efficient software.

1.2 Research questions

In this thesis, we will focus on the following research questions:

• What are the meanings of the terms sustainable and green related to software area?

18 CHAPTER 1. INTRODUCTION

• How is it possible to establishes sustainable and green software engineering process?

• How to build a tool allowing to estimate software energy consumption?

• How to help and guide developers to optimize their source code in order to build efficient,
sustainable and green software?

1.3 Contributions

The main goal of our thesis is to provide a methodology allowing to create sustainable and green
software product in order to reduce the greenhouse gas emissions. Hence, the contributions are
summarized as follows:

• Definition of the terms sustainable and green for a software product. After studying,
the proposed definitions of those terms in different sectors, we will take a look at the ICT
sector and more particularly at the software product level. Understanding the meanings
of those terms will allow to create efficient product limiting negative impacts on the envi-
ronment.

• Sustainable and green software engineering process respecting the meanings of the
terms defined. BUA (Before Usage After) methodology is proposed in order to describe
all the steps to respect for the creation of a software product. The contribution of this
methodology is to add a green analysis step after each classical step of a software engineer-
ing process. This green analysis stage consist to check if the sustainable and green criteria
established for each stage are validated. When a step validates all the criteria, it is possible
to pass to the next step. If not, a back at a previous step is performed.

• GMTEEC (Generic Methodology of a Tool to Estimate Energy Consumption) is proposed
in order to develop a tool allowing to estimate software energy consumption. In fact, many
tools have been presented and in each case, authors take into account their own way to
create an energy estimating tool. With, GMTEEC, we propose an approach to respect
layers to have a generic methodology which adapt at any situation.

• TEEC (Tool to Estimate Energy Consumption) is an application of GMTEEC. With this
tool, it is possible to estimate the energy consumption of several components like CPU,
memory, hard disk and network in order to obtain the global software energy consumption.
Moreover, TEEC allow to locate parts of source code which are the most energy consumer.
Hence, TEEC helps and guides developers to optimize their source code in order to obtain
efficient, sustainable and green software.

1.4 Outline

The remaining of this thesis manuscript is organized as follows.

Chapter 2 proposes definitions of the terms sustainable and green. A generic meaning of those
terms is given. Then, a study examining the definitions of those terms in ICT sector is carried
out in order to better understand their meaning. Thus, a definition of sustainable and green
software, green with software and green within software is proposed in order to take into account

1.4. OUTLINE 19

during software engineering process.

Chapter 3 presents a summary of the previous work in this area of research. Hardware and
Hybrid methodologies allowing to measure the software energy consumption are described and
several tools using these methodologies are examined. Then, their limits are presented. A sys-
tematic review is performed concerning tools proposed in software methodologies. The lacks are
detected in order to propose solutions.

Chapter 4 describes a sustainable and green software engineering process. Based on the defi-
nition established on Chapter 2, BUA (Before Usage After) methodology is proposed to follow
well defined steps to create a sustainable and green software product. For this, in the software
engineering process, after each step a green analysis step is added in order to check if sustainable
and green criteria are respected.

Chapter 5 describes a generic power consumption methodology: GMTEEC (Generic Method-
ology of a Tool to Estimate Energy Consumption). According to their research area, researchers
proposed tools allowing to estimate the software energy consumption. However, there is not a
generic methodology describing the layers to develop a tool to estimate software energy con-
sumption. Hence, GMTEEC helps and guides to create a tool in all situations.

Chapter 6 presents the tool we developed called TEEC (Tool to Estimate Energy Consump-
tion). All the layers of the GMTEEC have been studied in order to create TEEC allowing to
estimate the energy consumption of a variety of components like CPU, memory, hard disk and
network. Hence, total software energy consumption is calculated. In addition, TEEC helps and
guides developers to find and optimize the hotpoints in the source code.

Chapter 7 evaluates and validates our contributions. Several experiments are performed to
validate the accuracy of the proposed tool TEEC and the effectiveness of the sustainable and
green software engineering process.

Chapter 8 summarizes the thesis work and contributions presented. We propose also future
research directions.

20 CHAPTER 1. INTRODUCTION

Chapter 2

Definitions of the Terms: Sustainable
and Green

“The right relation... is that the land
should suffice for the maintenance of the
inhabitants, and that there should be as
many inhabitants as the land can
maintain.“

Jean-Jacques Rousseau

Understanding the meanings of the terms will permit us to build products in respect to these
criteria and conditions. Thus, we will present the definitions of terms “Sustainable“ and “Green“
used in other studies, and then we will introduce our own definitions. Our approach to define
the terms is inspired by the following paper [10] where sustainability is separated in three levels
which are Business Process Sustainability, Services Sustainability and Information Systems Sus-
tainability. Then, in this last level, there are sub-levels which are ICT Sustainability including IT
Sustainability containing Hardware and Software Sustainability. Next, in each level, Sustainabil-
ity is described in detail and comparison is proposed between the different studies. Even if our
approach seems similar, there are several differences because we do not consider Sustainability
composed by three levels, but it is the heart of three dimensions which are Economic, Social
and Environment. Moreover, we take into account only ICT and Software sub-levels in order
to be implied only on our area of research. The same approach for the terms linked to Green
is followed in order to be focused mainly on the software area. Moreover, we propose for each
terms our own definitions.

2.1 Sustainable

Independently of any context, we will examine the general definition of the term “Sustainable“
in order to better understand it meanings and the effects of its application on concrete projects.
Sustainable is a largely used word. We list the following definitions taken from different sources:

• The Cambridge dictionary [11]: “causing little or no damage to the environment and there-
fore able to continue for a long time“.

• Another definition proposed by Oxford dictionaries [12] is the fact of “conserving an eco-
logical balance by avoiding depletion of natural resources“.

21

22 CHAPTER 2. DEFINITIONS OF THE TERMS: SUSTAINABLE AND GREEN

• In [10], sustainable is “the capacity of something to last for a long time“.

• According to [13], “Sustainability can be also discussed with reference to a concrete system
such as an ecological system, a human network, or a specific software system. Here, global
sustainability implies the capacity for endurance given the functioning of all these systems
in concert.“.

• Brundtland Commission: “sustainable development is the way of development that meets
the needs of the present without compromising the ability of future generations to meet
their own needs“ [14].

• In [15], five dimensions of sustainability are taken into account:

– Individual sustainability: refers to the maintenance of the private good of individual
human capital.

– Social sustainability: meaning maintaining social capital and preserving the societal
communities in their solidarity.

– Economic sustainability: aims at maintaining assets which do not only include capital
but also added value. This requires to define income as the amount one can consume
during a period and still be as well off at the end of the period, as it devolves on
consuming added value, rather than capital.

– Environmental sustainability: seeks to improve human welfare by protecting natural
resources.

– Technical sustainability: the central objective of long-time usage of systems and their
adequate evolution with changing surrounding conditions and respective requirements.

However, it is possible to include human and technical sustainability on the others in order to
have only three main dimensions, as cited on the UN, which are environmental protection, eco-
nomic growth and social equality. Respecting the three dimensions of this report, we can define
the sustainability of each one as:

• Environmental protection: in sustainable environment restoration is faster than destruc-
tion.

• Economic growth: economy respects ecological criteria.

• Social equality: sustainable society consists of justice and/or decreasing poverty.

Sustainability has been defined several times, but the most frequently cited definition is from
Our Common Future [14] which contains two main concepts. First idea is the “needs“ and the
second concept is the “limitations“.
In the literature, sustainability is applied in several sectors. However, in our work, we focus on
the ICT sustainability and more particularly on the software sustainability that is illustrated in
Figure 2.1.

2.1. SUSTAINABLE 23

Figure 2.1: Software Sustainability Heart

2.1.1 ICT sustainable

ICT Sustainability becomes more and more important in research area with the creation of
the conference ICT4S (ICT for Sustainability) [16] since 2013. This conference is composed of
researchers with government and industry representatives, including also decision-makers. Re-
searchers focusing on ICT effects on sustainability and developers of sustainable ICT systems. In
the appendix of the proceedings [17], recommendations taken into account under the title “How
to Improve the Contribution of ICT to Sustainability” are: “The transformational power of ICT
can be used to make our patterns of production and consumption more sustainable. However,
the history of technology has shown that increased energy efficiency does not automatically con-
tribute to sustainable development. Only with targeted efforts on the part of politics, industry
and consumers it will be possible to unleash the true potential of ICT to create a more sustain-
able society“.

Sustainable ICT implies the respect of several criteria which can enumerated like following:

• Increase the recycling: reuse as much as possible existing resources. Each part of a
device such as metals, plastic, glass, minerals should be recycled in order to be reused in
another component.

24 CHAPTER 2. DEFINITIONS OF THE TERMS: SUSTAINABLE AND GREEN

• Reduce the energy consumption: ICT equipment needs to be manufactured with the
minimum energy. Moreover, these equipments, during their usage, have to consume the
minimum energy. Hence, it is possible to keep the sustainable aspects.

• Reduce the waste: During all the steps of its lifecycle (manufacture, transportation, stor-
age, buy sell, usage, maintenance, disposal), an ICT equipment has to reduce the waste of
all type.

• Reduce the materials: Use more and more small pieces of ICT equipment which are
manufactured using less energy implying also less waste. In addition, usually a taller laptop
is not more efficient than a smaller one.

ICT for sustainability can be grouped into:

• Sustainability with ICT: build, develop and extend products with ICT equipments
which are respecting sustainability.

• Sustainability within ICT: Reduce the energy consumption, waste and materials during
the whole life-cycle of an ICT product.

The European Commission is supporting research and development projects whose main goal
is, through the use of ICT, to improve water management, energy efficiency and adaptation to
climate change.

In 2009, it is adopted the Recommendation entitled “mobilising ICTs to facilitate the transition
to an energy-efficient, low-carbon economy“ in order to provide the policy framework, in this
area, for its activities and to unlock, in several ways, the ICT sector energy efficiency potential.

The ICT for Energy Efficiency Forum has been set up in the goal that ICT industry develop
a framework to set itself energy efficiency targets and measure its energy and environmental
performance. This Forum has been encouraged to take into account also buildings and transport
sectors where using ICT is possible to save energy significantly.

Software plays a major role, both as part of the problem and as part of the solution as noted in
[18].

According to [19], ICT can develop solutions that offer benefits both internally and across the
enterprise.

As defined in the SIGGreen Statement [20], the Information Systems discipline can have a central
role in creating an ecologically sustainable society because of the fields five decades of experience
in designing, building, deploying, evaluating, managing, and studying information systems to
resolve complex problems.

The Ericsson Energy and Carbon report [21] describes how the increase use of ICT could help
cut greenhouse gas emissions by more than 15%.

2.1. SUSTAINABLE 25

2.1.2 Sustainable Software

Sustainable software should be used in several areas such as data centers, Web services, software
systems, software products, etc. Several studies are in process, here we are interested particularly
at the software products.

Several researches show the importance of sustainable software products in order to solve com-
plex problems and contribution of saving energy.

Sustainability needs to be considerate as an important condition to respect during a software
development even if it not the habits for the developers. For this, the authors in [15] define
the following issue: now, little guidance is presented for the systems under development on how
the sustainability can be improved with the contribution of software engineering. To solve this
problem, authors, for sustainability, describe a reference model where sustainability is composed
of five dimensions which are: individual, environmental, economic, technical and social sustain-
ability.

As noted in [22], improving power consumption allows to obtain sustainable software. Until
now, hardware improvements have given interesting results concerning energy efficiency of com-
ponents thanks to the great interest of industry about this aspect. However, there are several
improvements to make in software side in order to build sustainable software.

In [23], sustainable software is defined as a software, whose indirect and direct negative impacts
on society, economy, environment and human beings that result from the software development,
deployment, and usage which have a positive effect on sustainable development and/or are min-
imal.

As remarked by [24], there are two ways to interpret the Sustainable Software term which are:
the software code being sustainable, agnostic of purpose, or the software purpose being to sup-
port sustainability goals, i.e. improving the sustainability of humankind on our planet. In ideal,
the two previous understanding coincide in a software system that contributes to more sustain-
able living. Hence, sustainable software minimizes the environmental impact of the processes it
supports, has a positive impact on economic and/or social sustainability and is energy-efficient.
These impacts can occur direct, indirect or as rebound effect. Software Engineering for Sus-
tainability aims to make use of methods and tools in order to achieve this notion of sustainable
software.

Another point of view about sustainable software is defined by [25]:

• direct and indirect consumption of natural resources, which arise out of deployment and
utilization, are monitored, continuously measured, evaluated and optimized already in the
development process,

• appropriation and utilization aftermath can be continuously evaluated and optimized,

• development and production processes cyclically evaluate and minimize their direct and
indirect consumption of natural resources and energy.

Moreover, sustainable software has been defined several times. We summarize several of these in
the following Table 2.1.

26 CHAPTER 2. DEFINITIONS OF THE TERMS: SUSTAINABLE AND GREEN

Reference Definition
[24] Energy-efficient, minimizes the environmental impact of the processes it sup-

ports, and has a positive impact on social and/or economic sustainability
[26] Create reliable, long-lasting software that meets the needs of users while re-

ducing negative impacts on economy, society, and environment
[23] Software, whose impacts on economy, society, human beings, and environment

that result from development, deployment, and usage of the software are min-
imal and/or which have a positive effect on sustainable development

[27] Create reliable, long-lasting software that meets the needs of users while re-
ducing environmental impacts

[28] The usage processes of a software system with respect to social and environ-
mental aspects

Table 2.1: Sustainable Software Definitions

Finally, in order to adapt at our particular research area concerning software, we propose our
own definition of the sustainable software in the Figure 2.2.

Figure 2.2: Our Sustainable Software definition

Hence, we are able to understand clearly the meaning of the term sustainable software that we
can apply, particularly, during the development process of our tool to estimate the energy con-
sumption of software.

In the literature, it is possible to find definitions about the terms sustainable and/or green which
are also usually used in the same goal. In our study, we consider both terms differently and we
will follow the same approach that we made for sustainable software in order to offer a meaning
of the term green software.

2.2 Green

After that we defined sustainable software, we need to understand another term “Green“ which
is often linked and included in the sustainability. In our case, as we represent in the Figure 2.3,
we consider green software at the inside of the sustainable software.

As we made previously with the term sustainable, firstly, we will give several definitions of the
term “Green“ in ICT sector in order to better understand its meanings and impacts on the en-
vironment on different sectors to better adapt and give a definition in our study. Moreover, we

2.2. GREEN 27

Figure 2.3: Sustainable and Green Software

need to take it into account in ICT in order to reduce the software carbon footprint. Then, we
will establish a list of several definitions concerning “Green Software“, and we will focus more
particularly on the terms “Green with Software“ and “Green within Software“.

General definitions corresponding to the term “Green“:

• In the category greener energy solutions, Merriam-Webster [29] defines the word “Green“:
is tending to preserve environmental quality (as by being recyclable, biodegradable, or
non-polluting).

• According to [30], green information systems which are inclusive of green information tech-
nologies meanings: an integrated and cooperating set of people, processes, software, and
information technologies to support individual, organizational, or societal goals.

• In [31], Green IT corresponds to the study and practise of designing, manufacturing, and
using several devices such as monitors, printers, storage devices, computers, servers and also
networking and communications systems effectively and efficiently with minimal impact on
the environment. It contains energy efficiency economics, sustainability of environment
and the ownership total cost, which includes the disposal and recycling cost. In addition,
it consists to create energy-efficient, environmentally sustainable business processes and
practices. Information Technology can support, assist, and leverage other environmental
initiatives and help in creating green awareness.

• As remarked by [32], in Green Information Technologies, the green corresponds to the en-
vironmentally sustainable application of IT. Hence, green is to be interpreted in relation
to the environmental problem of climate change and emission of greenhouse gases. Green
IT illustrates a situation where IT support greenhouse gas emissions reductions (directly,
indirectly or in a systemic way).

28 CHAPTER 2. DEFINITIONS OF THE TERMS: SUSTAINABLE AND GREEN

• According to [33], the green IT adoption process is a set of four stages which are:

– Plan.

– Design.

– Implement.

– Measure the performance of the process.

This process is considered cyclical in nature, characterized by a continuous improvement
life-cycle.

• As noted in [34], Green IT is a systematic application of environmental sustainability crite-
ria to the design, production, sourcing, use and disposal of the IT technical infrastructure
as well as within the human and managerial components of the IT infrastructure in order
to reduce IT, business process and supply chain related emissions and waste and improve
energy efficiency.

2.2.1 Green Software

Energy efficient improvement in area of hardware advanced greatly and continue to progressing.
Otherwise, those last few years a new trend is developing in the area of green software. Several
meanings are proposed for this term and we will examine several of them and then we will pro-
pose our own definition related at this term in order to apply in our research efficiently.

As noted in [35], mobile platform manufacturers are seeking to increase the battery life for these
platforms. Great improvement have been performed in battery technologies, new low power
states have been integrated in processors and displays have performed improvement to reduce
their power consumption. Moreover, new improvement are developing. Software can help easily
to reduce the power consumed on mobile platforms and also to extend the battery life. Authors
present green software features and the software design considerations and methodologies to im-
prove energy efficiency of software.

As remarked by [10], green in software engineering is defined as those practices which apply
engineering principles to software by taking into consideration environmental aspects. The de-
velopment, the operation and the maintenance of software are therefore carried out in a green
manner and produce a green software product.

In [36], green software is required to fulfill three abstract requirements:

• The required software engineering processes of software development, maintenance, and
disposal must save resources and reduce waste.

• Software execution must save resources and reduce waste.

• Software must support sustainable development.

2.2. GREEN 29

Reference Definition
[37] During the IT lifecycle, produce the minimum waste
[38] For the optimal use of computing resources, a set of best practices
[39] The study and practice of designing, manufacturing, and using computer hard-

ware, software, and communication systems efficiently and effectively with no
or minimal impact on the environment

[40] Green IT initiatives can range from those that focus on reducing IT infras-
tructure’s carbon footprint to those that transform a business. Green IT can
be deployed to support a variety of sustainability initiatives, such as those
to measure carbon footprints, monitor the environmental impact of business
practices, reduce waste in business processes, lower resource consumption, or
increase energy efficiency and reduce greenhouse gas emissions

[30] An integrated and cooperating set of people, processes, software, and informa-
tion technologies to support individual, organizational, or societal goals

Table 2.2: Green Software Definitions

With these most abstract requirements, authors deduce three abstract green factors:

• Feasibility: How resource efficient it is to develop, maintain, and discontinue software.

• Efficiency: How resource efficient it is to execute software.

• Sustainability: How software supports sustainable development.

We summarize several of green software definitions in the Table 2.2.
Based on these previous definitions of green software and taking into account our particular
situation, we propose the meanings of the term green software illustrated in the Figure 2.4.

Figure 2.4: Our Green Software definition

2.2.2 Green with/within Software

Several works focused on the inside and outside aspects of green concerning software.

30 CHAPTER 2. DEFINITIONS OF THE TERMS: SUSTAINABLE AND GREEN

In [41], if we consider that sustainability is similar to green for the authors, we observe a defini-
tion of sustainability in/for software engineering based on two aspects which are:

• Development Process Aspect (Sustainability for software engineering): Sustainability
during the initial software development process meanings development with responsible use
of ecological, human, and financial resources. The function associated is: to perform soft-
ware development with minimized environmental impact and a sufficient economic balance.

• System Production Aspect (Sustainability in software engineering): Sustainability
of the software system as product with respect to its use of resources for production is
achieved, for example, by using green IT principles, sustainability produced hardware com-
ponents, and optimising the required logistics for assembly, etc. The function associated
is: to produce (assemble) a system with minimized environmental impact and a sufficient
economic balance.

The function is needs satisfaction and the two other aspects are also considered about the
maintenance and the use:

– Maintenance Process Aspect: Sustainability of the software system during its main-
tenance period until replacement by a new system includes continuous monitoring
of quality and knowledge management. The function associated is: to maintain and
evolve a software system with minimized environmental impact, a sufficient economic
balance, and well-managed knowledge.

– System Usage Aspect: Sustainability in the usage processes within the application
domain triggered by the software system as product takes into account responsibility
for the environmental impact and designing green business processes. The function
associated is: to maintain and evolve a software system with minimized environmental
impact, a sufficient economic balance, and social responsibility.

In [42], Green IT 1.0 (Green for IT), study having the main goal to reduce the IT environmental
impact of IT and Green IT 2.0 (IT for Green), works trying to reduce the environmental impact
of operations using IT, notions are defined.

As remarked by [10], green by software covers software developed for domains that work in the
preservation of the environment, as well as software that helps to manage energy-intensive appli-
cations. Nevertheless, green in software is related to how to make software in a more sustainable
way resulting in a more sustainable product.

As noted, several works have given a similar approach considering the improvement made thanks
to software in other fields and the evolution inside the software. Taking into account these works
and focusing specifically in our field of research, we want to give a new approach about the terms
“Green with software“ (See Figure 2.5) and “Green within software“ (See Figure 2.6). This idea
is depicted in Figure 2.3.

2.3 Conclusion

After establishing brief general definitions about the terms related to sustainability and green,
we focused more accurately in our concerning area software. We looked at the meanings of

2.3. CONCLUSION 31

Figure 2.5: Green with Software

Figure 2.6: Green within Software

several terms to have an idea about the works performed in the ICT area. Then, we extended
these proposed works in order to focus more accurately on software area. Hence, we proposed
our own definitions of the terms “Sustainable Software“, “Green Software“, “Green with Software“
and “Green within Software“. Thus, the meanings of these terms will allow to build efficient,
sustainable and green software product using software engineering process in order to reduce the
green house gas emissions due to ICT in keeping the same functionalities of software.

32 CHAPTER 2. DEFINITIONS OF THE TERMS: SUSTAINABLE AND GREEN

Chapter 3

Related Works

“Software is getting slower more rapidly
than hardware becomes faster.“

Wirth’s law

Several methodologies using different techniques have been developed to measure and estimate
software power consumption in academic literature.

Several systems, depending on users needs, have several power supply calculators [43, 44] which
enable to select most appropriate components (Motherboard, CPU, Memory, Video Cards, etc.).
According to manufacturers information, the peak power consumption of components is taken
into account to make assumptions and predictions to calculate the total power consumption.
Those calculators are mainly used by gamers to build a modern gaming PC. These online tools
give a vague and global estimation of the power consumption of different components. It has
been noticed that to build an accurate tool to estimate the power consumption of a computer
program is required. Thus, studies have oriented their research directions in this way to develop
different methodologies. The most studied and common solutions were based on hardware,
since it was possible to obtain accurate results. Then, researchers tried to combine simplicity,
scalability and accuracy by developing hybrid methodologies. Finally, the recent research has
focused on software methodologies only, in order to be adapted to various environments. Figure
3.1 illustrates the evolution of the proposed power consumption/measurement/estimation models
of software.

Figure 3.1: Software power consumption methodologies classification

33

34 CHAPTER 3. RELATED WORKS

Name Accuracy
(%)

Sampling
Speed (/s)

Maximum
Current
(A)

Maximum
Voltage
(V)

Average
Price (e)

Kill A Watt 0.2 1 sample 15 125 20
LMG450 0.1 1000 sam-

ple
16 600 8000

Watts Up
Pro

1.5 1 sample 15 120 130

Brand Elec-
tronics 20-
1850 CI

1.5 1 sample 15 120 300

CHROMA
66200

0.1 240 sample 15 130 1000

WT1800E 0.05 2000 sam-
ple

50 1100 25000

PA3000 0.04 1000 sam-
ple

30 600 7000

Table 3.1: Comparison of Powermeters

3.1 Hardware methodologies

In this kind of methodology, a hardware device is used to measure the energy consumption of a
specific component or the global system or sensors able to measure the power consumption are
connected directly to the monitored component.

Research works which measure the component-based power consumption on hardware method-
ologies can be categorized in two group.

In the first category of studies, voltages and current powering devices are measured directly with
a power meter to obtain the instantaneous power consumption (expressed in Watts) [45, 46].
Powermeter allow to measure and log several information such as power usage, energy consump-
tion, current, voltage, etc. Then, log data can be stored in the memory of the powermeter or
send directly at a computer interface with a user set interval in order to use the data for different
needs (display or analysis). This approach has given rise to the accuracy of software method-
ologies. The performance of our proposed power model is also demonstrated with this accurate
power measurement technique.

In [47], the authors use a powermeter (Brand Electronics 20-1850 CI) to analyze the power pro-
files of different hardware components in the context of database operations. They try to examine
the power consumption due to these operations to demonstrate the energy saving potentials. For
this, they design a set of micro-benchmarks to exercise the hardware components of a database
server using typical database-centric operations.

In [48], a WattsUp-Pro power meter providing a 1.5% measurement error rate is used to propose
a framework PET in order to reduce database energy consumption in optimization query. More-
over, we can group others power measurement hardware in the following Table 3.1 to compare
the accuracy, the sampling speed, the maximum current and voltage and the average price.

In the second category of studies [49, 50], the components that are required to be measured are
identified. Then, adapted and customized power sensors are directly connected to these compo-
nents. Usually, high performance servers use this approach [49].

3.2. SOFTWARE METHODOLOGIES 35

Name Description
etop [53] ASIC (Application Specific Integrated Circuit) is used to

measure the power consumption of components. Thus, it
is possible to obtain quick and accurate results with this
method. However, the hardware component need to be build
with the dedicated ASIC and when an upgrade is necessary
hence the whole hardware have to be replaced. Moreover,
the use of this method will be expensive.

SCHNEIDER ELECTRIC
[54]

Active metering is provided by APC metered rack Power
Distribution Units (PDUs) in order to allow circuit protec-
tion, energy optimization and power utilization data to en-
able managers of data center to inform about decisions on
load balancing and right sizing IT environments in order to
reduce at the minimum the total ownership cost.

SynapSense Power SuiteTM

[55]
It measures power from the level of equipment to the cir-
cuit, cabinet or PDU and across the floor of data center to
display a power usage efficiency (PUE) view in real time.
Taking into account, in a data center, metering, monitoring,
trending and tracking power, SynapSense tools for energy
management optimizes and manages effectively energy us-
age of data center. Hence, there are several benefits for the
clients which are: reduce of the stranded power, real time
capacity identification and optimization of loads.

INA231 [56] It is a current-shunt and power monitor proposed by Texas
Instruments. Voltage of bus supply and shunt voltage drops
are monitored by INA231. Conversion times, programmable
calibration value and averaging associated with an internal
multiplier allow direct power (in watts) and current (in am-
peres) readouts.

Table 3.2: Studies using hardware methodologies to measure the energy consumption of software

IBM Power Executive [51], including hardware and firmware components, enables IBM customers
to manage the power and thermal needs of BladeCenter systems in the datacenter. Server man-
agement is improved by Intel API Intelligent Platform Management Interface (IPMI) v2.0 [52]
that allows also to minimize costs. In fact, it enables to decrease overall server management
costs by allowing clients to maximize IT resources and save time.

It is possible to list more studies using powermeters to measure the energy consumption due to
software, we propose several of them in the following Table 3.2 with a bit description of each work.

In general, hardware methodologies are considered to be more accurate than others. However,
for a specific program and in virtual machines cases, it is not possible to accurately measure the
power consumption. Furthermore, physical measurement results are not sufficient to describe the
observed power behavior. On the other hand, these power monitoring circuits consume power
themselves. Therefore, we need new approaches to measure the power consumption of devices.

3.2 Software methodologies

Contrary to the other methodologies, software methodology involves, mathematical formulae
which is given for each component, with respect to its characteristics. Accordingly, the total
power consumption is estimated. Usually, simplifications and assumptions are adopted depend-

36 CHAPTER 3. RELATED WORKS

ing on the area of study. Moreover, in some cases, several components consumption may be
neglected, in the majority of cases CPU power consumption is taken into account, whereas the
other components (memory, disk, network, etc.) power consumption are not considered. There-
fore, the lack of information and accuracy can cause unsatisfactory and incorrect results. In a
power measurement tool, accuracy and completeness are fundamental.

Systematic reviews in related literature have been analyzed [57, 58]. The general research ap-
proaches are summarized respecting research type facet in Table 3.3.

Name Description
Validation Research Investigated techniques are novel and have not yet been im-

plemented in practice.
Evaluation Research Techniques are implemented in practice and an evaluation is

conducted.
Solution Proposal For a problem, a solution is proposed. It is possible that

the solution is either an important extension of an existing
technique or a new approach. A good line of argumentation
or a small example describe the applicability of the solution
and potential benefits.

Table 3.3: Research Type Facet

The CPU, memory, disk and network observed in Figure 3.2 respectively consists of the studies,
where CPU, memory, disk and network are considered to establish a power estimation model of
software.

The two bubble plots in Figure 3.2 are drawn in respect to Tables 3.2, 3.2, 3.2 and 3.2 which are
representing the tools used to measure the software power consumption. Research type facet,
description and limits of each tool is performed.

Therefore, we observe that the majority of studies for computing power consumption takes into
account only one component and neglects others. Moreover, the most remarkable research type
facet is the solution proposal.

Figure 3.2: Systematic map in a bubble plot of research type and nature facets

3.2. SOFTWARE METHODOLOGIES 37

Study Research
Type
Facet

Description Limits

CAMP [59] Solution
Proposal

Common Activity-based Model for
Power (CAMP) is a technique to es-
timate activity factors and power for
micro-architectural structures.

A tool which estimates only
the power consumed by the
CPU and does not take ac-
count the energy consump-
tion due to other components.
Moreover, source code level
of energy consumption is not
managed.

Framework
proposed
by Gupta
and Singh
[60]

Solution
Proposal

When the user logs into the system,
the framework creates a power pro-
file that starts working. Operating
system repository perform the main
task of keeping the record of all in-
stalled software and maintains the
record of power consumed by run-
ning software.

Contrary to other tools, this
framework does not take ac-
count frequency and voltage
in the calculation of CPU
power consumption and con-
sider CPU Usage, Kernel-
Time, UserTime, UpdateDe-
lay, RawUsage, and Raw-
Power. Hence, a global power
consumption of CPU is ob-
tained.

Power
model by
Bertran [61]

Solution
Proposal

The model inputs are defined as
the power component activity ra-
tios. Then, the training data are
defined which is generated using
micro-benchmarks. The required
data are collected to train and val-
idate the model respectively. Then,
method is used to build the model.

Power consumption is cal-
culated considering micro-
benchmark features, activity
ratios and power consump-
tion ratios obtained by the
manufacturer. Hence, data
about component susceptible
to consume energy can not
be obtained dynamically.
Moreover, in the case where
the manufacturer does not
give these data, it will not
be possible to calculate the
power consumption.

CiPE [62] Solution
Proposal

Cross-core interference Profiling
Environment (CiPE) methodology
and framework composed of a
lightweight runtime environment
on which a host application runs.
It manipulates the co-running
contention synthesis engine, while
monitoring and analyzing the re-
sulting dynamic impact on the host
application.

To cross-core interference sen-
sitivity (CIS), a program have
to be run only once on CiPE
framework which is difficult
to manage. CIS is the nor-
malized difference between an
application’s IPC (instruction
per cycle) in the presence of
contention and its IPC when it
is running alone. Power con-
sumption formulae for compo-
nent are not established and
used.

38 CHAPTER 3. RELATED WORKS

Study Research
Type
Facet

Description Limits

ECM model
[63]

Solution
Proposal

the ECM (Execution-Cache-
Memory) model is applied to
show that the scaling properties
of bandwidth-bound codes on a
multi-core chip better than a sim-
ple bottleneck analysis. Energy
behavior to solution is qualitatively
explained by the model with respect
to the number of active cores.

The dependence of achievable
memory bandwidth on the
core clock frequency. Power
information is hardly accessi-
ble.

Sankaran
model [64]

Solution
Proposal

A statistical approach that models
the impact of the cores on overall
power consumed by Chip Multipro-
cessors is developed using Perfor-
mance Counters.

Only data for CPU cycles
and corresponding power
consumption are considered.
Hence, power consumption
for other components is ne-
glected. The impact of source
code on energy consumption
is not also considered.

Atalar
model [65]

Solution
Proposal

Models proposed for predicting the
throughput and power behavior of
lock-free concurrent queues under
steady state usage.

Model is not generalized for
all data types. Simple tests
are executed which is show the
lack of accuracy.

NIPD [66] Solution
Proposal

A zero cost, simply a solution based
on software. A NIPD (Non In-
trusive Power Disaggregation) tech-
nique that develops power map-
ping functions (PMFs) between the
servers states and their power con-
sumption, and infer each server
power consumption with the aggre-
gated power of the entire data cen-
ter.

Solution provides power esti-
mation at the rack and server
level with a relative error that
could be important. The es-
timation is based on compo-
nent states, the number of
servers and virtual homoge-
neous clusters, at a given time
power consumption, state vec-
tor, component state of server
and number of server and sev-
eral coefficients. Hence, only
a global power consumption is
obtained and power consump-
tion of a particular process is
not calculated.

3.2. SOFTWARE METHODOLOGIES 39

Study Research
Type
Facet

Description Limits

Chen [67] Solution
Proposal

On multi core computer systems,
a state-based energy/performance
model for a given parallel applica-
tion. Given the application proper-
ties of parallel degree and computa-
tion intensity, and the system energy
characteristics, the optimal number
of cores and the optimal frequencies
are derived for the application in or-
der to reach the minimum energy
consumption.

Only the energy consumption
due to CPU is considered and
it depends on several factors
which are number of cores,
frequency scaling, parallel de-
gree, memory intensity and
the performance requirement
of the application. The execu-
tion time is obtained by esti-
mating the speedup of the first
task executed on multi core
computers. Hence, the diffi-
culty is to obtain accurate re-
sults.

Tudor
model [68]

Solution
Proposal

A trace driven analytical model for
understanding the energy perfor-
mance of server workloads. The key
of this methodology is the modeling
of the CPU core degrees and esti-
mating the cores number and clock
frequency that optimizes energy per-
formance without compromising ex-
ecution time.

It estimates the execution
time of an application. Time
of CPU which accounts for
both memory and cores re-
sponse time. General and
system parameters are num-
ber of cores, clock frequency,
idle, work cycles and stall
cycles CPU power consump-
tion. Hence, a global power
consumption of the servers
is calculated and the power
consumption of a given pro-
cess can not be estimated
which limit the accuracy of
the model.

CPT [69] Solution
Proposal

For multi core computer systems,
CPT (Concurrency, Power and ex-
ecutive Time) is a general energy ef-
ficiency model. It is a unified model
that allows to decide the configura-
tion of a system in terms of energy
efficiency to execute a given work-
load. The main question is: to per-
form the task, how much energy is
consumed?

Energy efficiency of this model
is defined by active idle
power of the system and aver-
age power dissipation of each
thread, the total workload size
that is assigned to a system,
the concurrency level of the
workload and the total time
considered to complete the
workload. Another principle
to reduce dynamic power is re-
ducing frequency and/or volt-
age of a CPU. Thus, a global
model to reduce power con-
sumption.

40 CHAPTER 3. RELATED WORKS

Study Research
Type
Facet

Description Limits

Anole [70] Solution
Proposal

Anole allows to support energy
adaptation. It is a framework devel-
oped for designers of operating sys-
tem and mobile application. When
certain energy events happen, the
framework supplies several APIs to
trigger system and applications to
change to different power states. To
support the energy aware APIs, a
module of energy profiler is devel-
oped containing three parts: state
collector, energy models and energy
estimator.

Estimation of the applications
energy consumption used a
method which is based on re-
source utilization. Moreover,
User behaviors are not consid-
ered to design the default en-
ergy aware policies. To sup-
port energy adaptation, more
energy aware policies should
be designed. It is a need to de-
sign an energy aware schedul-
ing algorithm with the objec-
tives to control and save the
energy consumption.

Safari [71] Solution
Proposal

Safari is a software power profiling
tool. Major points have been con-
sidered: profiling overhead must be
minimized, use power models to pro-
file power using system information
and performance monitoring coun-
ters.

Information collected are
based on the CPU (CPU
utilization and frequency,
context switch rate, cache
miss rate and instruction per
cycle). Hence, others compo-
nents power consumption are
neglected which could limit
the accuracy of this tool.

Oi study
[72]

Solution
Proposal

It is a case study of performance
power analysis of JVM implementa-
tions. The multi threading effects,
slower clock speed and the correla-
tion of cache reference parameters to
the power consumption are also de-
scribed.

A global power consumption
based only CPU is given and
again the other components
power consumption are not
considered.

David [73] Solution
Proposal

It is a system allowing to run large
benchmarks using small memory ca-
pacities or storage amount readily
available on most computers. David
creates a compressed version of the
original file system image by omit-
ting all file data and laying out meta
data more efficiently.

It is designed to be used for
benchmarking. To measure
the CPU overhead of the stor-
age model alone, it is runned
in the model only mode where
remapping, block classifica-
tion and data squashing are
turned off. Only the CPU us-
age is calculated and the en-
ergy consumption is not taken
into account.

3.2. SOFTWARE METHODOLOGIES 41

Study Research
Type
Facet

Description Limits

SPAN [74] Validation
Research

It is a two level power model that
estimates per core power dissipa-
tion on CMP (Chip Multi Pro-
cessor) on the fly by using only
one PMC and frequency information
from CPUs. SPAN is a software
power analyzer which identify be-
havior of power associated with soft-
ware source code manually. Given
an application, SPAN is able to de-
termine its power dissipation rate at
the function-block level

Only the energy consumed
by CPU is considered and
the other components energy
consumption is not taken
into account. In this case,
programmers need to use
specific function manually
(span_create(), span_open(),
span_start(), span_stop(),
etc.) to call the SPAN APIs.
This task could be not too
easy for the developers.
Simplicity and adaptability
aspects are more emphasized
than accuracy, whereas this
aspect is more important than
the others in order to validate
a power monitoring tool.

PowerAPI
[75]

Validation
Research

PowerAPI is a system monitoring li-
brary. It estimates, in real time,
the running processes energy con-
sumption based on raw data col-
lected from CPU through the oper-
ating system.

The GNU/Linux operating
system is used and data are
taken from procfs and sysfs file
systems. Thus, the tool could
not be easily adapted to an-
other operating system in or-
der to get information about
CPU. The energy consumed
by source code is not taken
into account.

Greenspector
[76]

Evaluation
Research

Greenspector is a software solution
for developers with a unique set of
green rules for energy-oriented code
analysis, a cross-platform measure-
ment capacity and a test bench.

It is oriented for mobile de-
vices and mainly based on
power consumed by CPU.

Joulemeter
[77]

Evaluation
Research

A solution for Virtual Machine
(VM) power metering. Power mod-
els are built to infer power consump-
tion from resource usage at runtime
and identify the challenges that arise
when applying such models for VM
power metering.

Globally, the energy consump-
tion due to CPU, memory and
disk is calculated. However,
for a given process, only the
energy consumed by CPU is
stored. The code source level
energy consumption is not an-
alyzed.

Intel Power
Gadget [78]

Evaluation
Research

Intel Power Gadget is a software-
based power usage monitoring tool
enabled for Intel Core processors.
Monitor and estimate real-time pro-
cessor package power information in
watts using the energy counters in
the processor.

Another tool which estimate
the power consumption due to
CPU and neglect other com-
ponents power consumption.
Moreover, it is not possible to
estimate the power consump-
tion of a given process.

Table 3.4: Tools using CPU component to estimate the soft-
ware energy consumption

42 CHAPTER 3. RELATED WORKS

Study Research
Type
Facet

Description Limits

Vogelsang
[79]

Solution
Proposal

A DRAM power model which uses
a description of DRAM architec-
ture, technology and operation to
calculate power usage and verifies it
against datasheet values. Assump-
tions about the DRAM roadmap are
used to extrapolate DRAM energy
consumption to future DRAM gen-
erations.

DRAM description parame-
ters grouped in six categories:
Physical floorplan, Signaling
floorplan, Specification, Basic
electrical information, Logic
block description and Tech-
nology are used as power
model input. Hence, only
the DRAM power consump-
tion is considered. Moreover,
the results are validated using
datasheet values. Thus, the
limit of the model is accuracy.

Gulur [80] Solution
Proposal

An analytical performance model of
the DRAM Cache. The model es-
timates average missed penalty and
bandwidth.

The model take into account
only key parameters linked to
DRAM such as cache block
size, tag cache/predictor hit
rate, DRAM Cache timing
values, off-chip memory tim-
ing values and salient work-
load characteristics.

Chen [81] Solution
Proposal

This study identifies the common
micro-components used by inter-
nal memory commands and pre-
calibrates the power consumption
pattern of each micro-component. It
decomposes target design architec-
tures into these micro-components
to derive power estimation. It con-
siders also the data variation effect
by leveraging the fact that memory
circuit is mainly doing data passing.

Identify the activated DRAM
units of each command and
the micro-components. This
approach evaluates only the
DRAM power consumption
and does not consider other
components susceptible to
consume power.

SMLA [82] Solution
Proposal

Simultaneous Multi-Layer Access
(SMLA) is a 3D-stacked DRAM ar-
chitecture which increases the inter-
nal DRAM bandwidth by accessing
multiple DRAM layers concurrently,
thus making much greater use of
the bandwidth that the TSVs of-
fer. To avoid channel contention,
the DRAM layers must coordinate
with each other when simultane-
ously transferring data.

How each component within
a DRAM scales with clock
frequency is determined, and
then these observations are
used to estimate the energy
consumption of proposed de-
signs. The reduction in the
frequency is used to reduce
the power consumption due to
DRAM. Hence, techniques al-
lowing to reduce the power
consumption of DRAM are
presented.

3.2. SOFTWARE METHODOLOGIES 43

Study Research
Type
Facet

Description Limits

DRAF [83] Solution
Proposal

DRAM-based Reconfigurable Accel-
eration Fabric (DRAF) is a sub-
strate for bit level reconfigurable
logic that trades off performance of
several FPGA devices for major im-
provements in area efficiency and
power consumption.

Estimation for an FPGA and
a DRAF device with 75 mm2
die size of the maximum power
consumption. DRAM opti-
mizations are performed to re-
duce access latency and en-
ergy consumption. Hence, it is
a global approach concerning
DRAM power consumption.

DReAM
[84]

Solution
Proposal

Authors propose a method to dis-
tribute the energy consumed in
DRAM memories to concurrent run-
ning tasks and an efficient imple-
mentation of such method. This ap-
proach relies on tracking both, the
activity incurred by running tasks
and the memory bank states they in-
duce. Then, energy is attributed to
tasks based on their memory behav-
ior.

Model considers that a de-
vice can be in three differ-
ent states: Power Down (PD),
Standby (S), and Active (A).
In each state, there is a power
consumption. Hence, static
and dynamic power consump-
tion of DRAM are calculated
together and it is not possible
to know the power consump-
tion due to a process.

EFGR [85] Solution
Proposal

This study proposes modifications
to the peripheral circuitry of a
DDR4 DRAM device so as to ex-
pose the non-refreshing banks to
the memory controller. In parallel
with an ongoing refresh, it accesses
a few non-refreshing banks to ser-
vice memory requests. In the rank,
banks must be in pre-charge state to
execute a refresh command.

Refresh command is power
hungry, any refresh design
needs to address during re-
fresh the peak power con-
sumption of device. Only
DRAM power consumption is
estimated based on the feature
of it. Other components are
not analyzed.

NUAT [86] Solution
Proposal

To every memory access request, a
score is given by NUAT in order
to attribute a priority at the re-
quest with the highest score. Par-
titioned Bank Rotation (PBR) and
PBR Page Mode (PPM) are used
to perform a scoring. PBR is a
mechanism that draws access speed
data from refresh position and tim-
ing. PPM selects a better mode of
page between open and close page
modes based on the data from PBR.

DRAM carries out three oper-
ations which are: write, read,
and refresh. To complete each
operation, a series of DRAM
commands should be issued
with pre-defined time inter-
vals. The main goal is to re-
duce latency which could in-
directly reduce the power con-
sumption.

44 CHAPTER 3. RELATED WORKS

Study Research
Type
Facet

Description Limits

Memristive
[87]

Solution
Proposal

A model used for solving hard op-
timization and learning problems.
It demands massively parallel com-
putation at a very fine granular-
ity. Control techniques and config-
urable interconnects eliminate un-
necessary latency, bandwidth, and
energy overheads associated with
streaming the data out of the mem-
ory arrays during the computation
process.

The model exhibits potential
for improving the performance
and energy efficiency of large
scale combinatorial optimiza-
tion and deep learning tasks.
It is again a global calcula-
tion of the power consumption
which study only the RAM.

Valero [88] Solution
Proposal

Authors propose a hybrid L2 cache
that mingles eDRAM and SRAM
technologies to provide by design
leakage energy and area savings with
respect to typical SRAM caches.
To address both performance and
energy, the cache controller is de-
signed. Two main design choices
have been studied to further increase
energy savings : avoid unnecessary
destructive reads of eDRAM and
estimate the optimal percentage of
low-leakage eDRAM banks.

Leakage and dynamic con-
sumption of 512KB and 1MB
caches have been analyzed.
Energy of leakage includes the
consumption of the data ar-
ray, the tag array and the con-
troller logic. The tag array dy-
namic energy which is looked
up on every cache access and
the energy of both data array
and controller logic have been
analyzed separately. Three
steps are considered in the
energy consumption: a write
access to that bank, a read
access to the target eDRAM
bank and another write access
to the target SRAM bank. It
is only an energy consumption
analyze of RAM energy con-
sumption.

CACTI-D
[89]

Validation
Research

It adds support for main memory
DRAM chip organization and sup-
port for modeling of commodity
DRAM technology. It allows mod-
eling of the complete memory hier-
archy with consistent models all the
way from SRAM based L1 caches
through main memory DRAMs on
DIMMs.

Using benchmarks with large
data sets architectural simula-
tion is performed. The execu-
tion time results, power break-
down in the memory hierarchy
and system energy delay prod-
uct for the different system
configurations are presented.
It is a tool limited to the mod-
elization of the DRAM which
does not consider other com-
ponents.

3.2. SOFTWARE METHODOLOGIES 45

Study Research
Type
Facet

Description Limits

Micron [90] Evaluation
Research

Over previous DDR and DDR2
SDRAM, DDR3 SDRAM provides
additional bandwidth. In addition
to the premium performance, DDR3
has a lower operating voltage range.
The result can be a higher band-
width performing system while con-
suming less or equal power of sys-
tem. A description of how DDR3
SDRAM consumes power.

The DRAM master opera-
tion is controlled by clock en-
able (CKE) which have to
be taken into account HIGH
to enable the DRAM to re-
ceive PRE, ACT, READ and
WRITE commands. When
CKE goes HIGH, commands
start propagating through the
DRAM command decoders
and the activity increases the
power consumption. DRAM
power consumption is calcu-
lated considering all parame-
ters given in the data-sheet
depending on the state of the
DRAM.

Table 3.5: Tools using Memory component to estimate the
software energy consumption

Study Research
Type
Facet

Description Limits

Parsons [91] Solution
Proposal

A mathematical hard disk timing
model designed for use in an ex-
ecution driven full system simula-
tor. This model depends far less on
the disk structure details or the disk
physical layout, making it less com-
plex and easier to configure.

The main goal is to simu-
late performance of a data-
intensive workload. A com-
parison concerning different
disk type have been made to
measure the operation per sec-
ond. Hence, for a particu-
lar process, it is not possible
to know its associated perfor-
mance.

Tempo [92] Solution
Proposal

It presents a method to create per-
formance and power model of a disk.
Using a trace of all requests issued
to the disk with a real time stream-
ing workload, the proposed method
is used to estimate the power con-
sumption of the disk.

Disk power consumption is
done using a disk request
model assuming that data
transfer and seek component
of a disk request are indepen-
dent and can be treated sep-
arately. The power consump-
tion is estimated during read,
write and seek operations.

46 CHAPTER 3. RELATED WORKS

Study Research
Type
Facet

Description Limits

STAMP
[93]

Solution
Proposal

STorAgeModeling for Power
(STAMP) developed a scalable
power modeling method that es-
timates the storage workloads
power consumption. The modeling
concept is based on identifying the
major workload contributors to the
power consumed by the disk arrays.

The methodology is based on
three components which are
workload translation (trans-
lates the front-end workload
into the back-end activities),
power tables (for each disk
activity, the power table is
a set of pairs) and inter-
polation (computes the esti-
mated power consumed for
each primitive back-end activ-
ity). Thus, an approximate
power consumption of the disk
is obtained.

TRADE
[94]

Solution
Proposal

It is a simple methodology for cre-
ating hard drive runtime energy
models through the use of obtain-
able data derived from published
specifications and performance mea-
surements. Generated models are
used to create a TRADE estima-
tor (TRAce-Driven disk drive En-
ergy estimator).

Bandwidth variation and seek
time are dependent on sev-
eral factors (rotation speed
and recording density). These
characteristics are exploited
as the basis for fingerprint-
ing hard drive energy con-
sumption. To calculate energy
consumption active and seek
power provided by the drive
manufacturer are used. Thus,
it is a vague energy consump-
tion estimation.

Llopis [95] Solution
Proposal

This work analyzes the power costs
of carrying out intra-node data
movement and I/O operations. To
instrument the platform in order to
perform the I/O analysis, Pyproc-
stat and PMLib frameworks are
used.

This approaches combines the
software and hardware instru-
mentation and data analy-
sis techniques to gain insights
into how different I/O pat-
terns make use of system re-
sources. Several parameters
are considered which reduce
the accuracy of this approach.

PCAP [96] Solution
Proposal

PCAP is an agile performance aware
power capping system for the disk
drive. It dynamically resizes the
queues of disk to cap power. It
operates in two performance aware
modes, throughput and tail latency,
making it viable for cloud systems
with service level differentiation.

The active read/write mode of
the HDD is of a primary inter-
est for power capping. This is
because the HDD draws most
of the power in the active
mode. Power capping may
transition the HDD between
the active mode and one or
more of its low power modes
to reduce the average power
drawn in a period of time. It
is a model trying to reduce the
active mode power consump-
tion.

3.2. SOFTWARE METHODOLOGIES 47

Study Research
Type
Facet

Description Limits

MIND [97] Validation
Research

It is a black box power model for
RAID arrays. It is designed to quan-
titatively measure the power con-
sumption of redundant disk arrays
running different workloads in sev-
eral execution modes. Five modes
(idle, standby and several types
of access) and four actions have
been defined to precisely charac-
terize power states and changes of
RAID arrays.

Energy consumption by four
types of actions and power
consumption in five types of
modes are modelized depend-
ing on controller and disks.
Only disk arrays power con-
sumption are estimated.

Table 3.6: Tools using Hard Disk component to estimate the
software energy consumption

Study Research
Type
Facet

Description Limits

WNIC [98] Solution
Proposal

This study explore the WNIC en-
ergy consumption implications of
popular multimedia streaming for-
mats. The energy consumption un-
der varying stream bandwidth and
network loss rates is investigated.
History based on client side strate-
gies is explored to reduce the en-
ergy consumed by transitioning the
WNICs to a lower power consuming
sleep state.

Various components of the
system setup have been used
to analyze the energy con-
sumption characteristics of
popular streaming formats
such as traffic shaper, browser
stations, wireless access point,
multimedia server and moni-
toring station. According to
the stream format, the energy
consumed by WNIC to receive
multimedia streams are com-
pared. However, an analysis
studying energy consumption
function of the process is not
established.

ON and
PSP mod-
els [99]

Solution
Proposal

It is an approach which presents to
power modeling and runtime power
estimation for wireless network in-
terface cards. Run time power es-
timates is obtained by putting to-
gether four kinds of information:
the working conditions, the nomi-
nal behavior of the card, its inherent
power performance properties and
the workload.

Focused only on the UDP traf-
fic reception, two main operat-
ing modes are presented: ON
(always on) and PSP (power
save protocol). The two op-
erating modes can be con-
sidered as macro states of a
top level state diagram where
state transitions are triggered
by user commands. The strat-
egy is based on the automatic
analysis of current waveforms
collected during the execution
of synthetic benchmarks.

48 CHAPTER 3. RELATED WORKS

Study Research
Type
Facet

Description Limits

Sohan [100] Solution
Proposal

It measures and characterizes the
idle and active power consumption
for a number of production 10 Gbps
Network Interface Cards (NICs) of
varying makes, models, architec-
tures and utilizing different physical
media. The energy efficiency is com-
pared to different configurations.

It measures energy consump-
tion by intercepting the 3.3
and 12v power lines of the
PCI-Express connector to
measure the current power
in the circuit. According to
a NIC, idle and active power
consumption is measured and
it is not possible to distin-
guish the power used by an
application.

Per-Frame
Energy
Consump-
tion in
802.11
Devices
[101]

Solution
Proposal

The authors offers an in-depth de-
scription of the per frame en-
ergy consumption behavior in 802.11
Wireless LAN devices. Extensive
measurements are carried out for 7
different type of devices and for both
UDP and TCP traffic.

Total power consumed by
transmissions is measured.
The device total power con-
sumption is articulated into
three main components: the
platform specific baseline
power consumption, the
power depending on the air-
time percentage and the slope
and the power depending on
the frame generation rate.

SOLOR
[102]

Solution
Proposal

SOLOR (Self-Optimizing, Legacy-
Compatible Opportunistic Relay-
ing) is a framework which jointly op-
timizes the network topology which
are the nodes associated to each
relay capable node and the relay
schedules, how the relays split time
between the downstream nodes they
relay for and the upstream flow to
access points.

The 802.11 node power con-
sumption can be modeled af-
ter the fraction of time it
spends in receive, transmit,
idle and sleep modes. Powers
consumed by a non-relay node
and a relay node are computed
in order to calculate the to-
tal power consumption. Only
the network representation is
considered on the estimation
of the power consumption.

Budzisz
[103]

Solution
Proposal

The most important proposals, con-
sidered as the two most common
wireless access technologies, namely
cellular and WLAN are studied.

The power consumption is
expressed depending on the
number of antennas, the maxi-
mum power out of the PA, the
power consumed when the RF
output is null and the slope of
the emission-dependent con-
sumption.

3.2. SOFTWARE METHODOLOGIES 49

Study Research
Type
Facet

Description Limits

Vageesh
[104]

Solution
Proposal

This study proposes an RSU (Road
Side Unit) placement strategy on a
one dimensional road to minimize
the total energy consumed. Packet
transmission is through either a di-
rect link with the RSU when the
vehicle is within its transmission
range.

A typical road scenario is
characterized by variations in
the traffic patterns over time.
Each slot captures a snap-
shot of the particular road sce-
nario at different time inter-
vals. Hence, the energy con-
sumed by the radio unit in
the RSU is calculated. It is
composed of energy consumed
during packet reception and
idle power. The global energy
consumption is estimated.

Ganji [105] Solution
Proposal

The main goal is to verify if modifi-
cation patterns in the energy level
of a WLAN channel can indicate
the user communication attempts.
Thus, a detector is proposed whose
task is to detect a user attempting
to connect to the WLAN by sending
a train of probe request frames with
a given probability of detection and
within a given delay of detection.

Using a WLAN adapter, as
well as additional measure-
ment equipment, experiments
are conducted to quantita-
tively examine the perfor-
mance of the proposed detec-
tor in terms of successful de-
tection of the transmission of
a train of PRB-REQs (Probe
Request frames) in the low
SNR regime. It is a special
study limited at the area of
network.

Chiaraviglio
[106]

Solution
Proposal

Formulate a theoretical model based
on random graph theory that al-
lows to estimate the potential gains
achievable by adopting sleep modes
in networks where energy propor-
tional devices are deployed. It is
not simple to foresee which are the
scenarios that make sleep mode or
energy proportionality more conve-
nient.

The authors are interested in
the energy saving that can be
achieved in the transport por-
tion of the network. They
model it by an undirected
graph depending on the set of
transport nodes and links with
cardinality. The link and node
power consumption are calcu-
lated. Thus, the capacity to
reduce energy consumption is
showed for several cases. The
study is limited to network.

50 CHAPTER 3. RELATED WORKS

Study Research
Type
Facet

Description Limits

Orion [107] Validation
Research

Orion is a power performance inter-
connection network simulator that
is able to provide power features,
in addition to performance features,
to allow rapid power performance
trade-offs at the architectural level.

Dynamic power, in CMOS
circuits, the primary source
of power consumed is formu-
lated depending on the switch-
ing activity, the clock fre-
quency, the switch capaci-
tance and the supply volt-
age. Thus, only a total net-
work power consumption is es-
timated, taking into account
characteristics of each compo-
nent in a network.

Table 3.7: Tools using Network component to estimate the
software energy consumption

Based on the description and limits established in the Tables 3.2, 3.2, 3.2 and 3.2, we could say
that depending on the study case, only several components energy consumption are taken into
account, whereas the others are neglected. Moreover, there is a lack of a tool proposing the
estimation of software power consumption taking into account several component susceptible
to consume energy such as CPU, memory, disk and network. Consequently, we integrate this
capacity in our methodology even if the energy consumed by a component can be neglected in
several situations. In addition, tools proposing to examine the impacts of source code in the
energy consumption of software are very little. Even those which are in this case offer only a
manual approach which consisting in integrating several functions to the source code. However,
it could be complicated, difficult, boring and expensive for developers to analyze and find the
parts of source code that consume the most energy and maybe experts could be needed. Hence,
a tool allowing to locate the hotpoints dynamically during runtime of software is needed in order
to simplify the tasks of developers.

3.3 Hybrid methodologies

Hybrid methodologies would like to offer both accuracy of hardware methodologies and the
simplicity of software methodologies [108]. Even if, several tools have been presented, it is
complicated to obtain easily accurate results because it needs many efforts. In several cases, a
hardware device such as a power meter or printed circuit is needed to measure power consump-
tion of several components and in addition software tools to manage the data collected by these
hardware devices in order to provide accurate results. However, adding several hardware could
involve additional energy cost which could be more important usually than the energy saved with
the optimization of the source code.

PUPiL (Performance Under Power Limits) [109] is a hybrid software/hardware power capping
system where the goal is to combine the timeliness of hardware approach and the efficiency of
the software approach . In order to assure a power cap, it navigates through nodes in a decision
framework. Each node corresponds to a choice about how to use a particular resource. After
establishing a decision, it measures power and performance and uses that feedback to drive the
decision at the next node. To evaluate PUPIL, the authors use several benchmarks in order to
compare the timeliness and efficiency with other hardware and/or software techniques. Hence, we

3.4. CONCLUSION 51

observe that the total power is compared to validate the accuracy of PUPIL. However, the capac-
ity to estimate/measure the power consumption of an application depending on components is
not implemented. Moreover, the dynamic and static power consumption parts are not separated.

PowerPack [110] framework is a combination of both hardware (circuits, meters, sensors, etc.)
components that allow direct power measurement and instrumentation and software components
(instrumentation APIs, drivers, etc.) that control power profiling and code synchronization. The
goal of these components is to allow component level power measurement and automatic synchro-
nization between power profiles and application code segments. To obtain isolated component
power, the authors tap a precision sensing resistor into each individual DC power line and then,
using a digital meter, measure the voltage difference at two ends of the resistor. All system DC
power lines are measured and used to derive component power depending on a derived mapping
between lines and components. To obtain total system power including AC/DC conversion, AC
power is measured via an in-line sensor device between the system power cable and the wall.
The software contained in PowerPack serves two purposes which are on-line data recording and
postmortem data analysis. Hence, the use of this framework seems complicated and expensive
because a lot of special devices and experts who are capable to control and manipulate these de-
vices are needed. Moreover, the software part in PowerPack is used more to record and analysis
than estimate or measure the power consumption.

GreenHPC [111] is a model that uses a hall effect sensor, on HPC applications, to precisely cap-
ture current with an arbitrary time-slice. The proposed framework is adapted to measure power
consumption in ARM based processors. GreenHPC tries to calculate the instantaneous power
which is the throughput of energy delivered on a specific instant. To compute instantaneous
power voltage and current are used. Instantaneous power over time estimates the overall energy
consumption of a system, corresponding to the amount of energy used to achieve the solution.
Hence, power and energy are estimated. To collect, store and visualize power consumption, the
framework use three main components which are: a sensor board in charge of noise filtering and
current sensing, a data acquisition board which collects the sensor board data and the voltage
from the power source and a Virtual Instrument (VI) in charge of the data processing, visual-
ization and distributed clock synchronization. Thus, the total power consumption is estimated
without taking into account the separation between the dynamic and static power and the ca-
pacity to consume power by different components.

Finally, this way of measurement methodology is more difficult to establish and it induces an
additional power consumption. This may result in a cost increase. Moreover, this methodology
could need several special hardware device like printed circuits which could be expensive to
adapt at any situation. In addition, to combine efficiently the relation between hardware and
software tools, experts should necessarily well implement, run experiments and analyze the results
obtained which would be contrary to the simplicity fixed by this methodology. The measured
power consumption is the global power consumption without establishing a distinction between
static and dynamic power consumption and consideration that each component could consume
energy.

3.4 Conclusion

We established a study concerning research proposing solution to measure or estimate software
power consumption. We noticed that the studies using hardware methodologies were very numer-
ous and advanced. In fact, in this case it is possible to obtain accurate results. It lead, initially,
searches to use powermeters or printed circuits to measure accurately software power consump-
tion. However, the limits concerning the fact that it is not possible to connect a hardware on a
virtual machine or to measure a particular process power consumption have led searches to find
another methodologies. Hence, works using software methodologies have been proposed to esti-

52 CHAPTER 3. RELATED WORKS

mate software power consumption more easily and quickly. In this case, mathematical formulae
are established depending on the features of components to estimate their power consumption
during the execution of software. As we chose to improve this area of research, we performed a
systematic literature review on the proposed software methodologies in order to group them in
terms of used components to estimate the power consumption. We noticed that often, to esti-
mate software power consumption, only one component is used whereas others are neglected. In
addition, dynamic source code analysis is not carried out for several component. Implemented
tools based on these methodologies are using, in majority, powermeter to check the accuracy
of their results. Otherwise, hybrid methodologies closer to hardware methodologies have also
been proposed to measure software power consumption. Hence, software power consumption
methodologies have similar limitations to hardware methodologies.

Chapter 4

Sustainable and Green Software
Engineering Process

“Software innovation, like almost every
other kind of innovation, requires the
ability to collaborate and share ideas
with other people, and to sit down and
talk with customers and get their
feedback and understand their needs.“

Bill Gates

The increase in the demand of complex software applications causes additional power consump-
tion for the ICT sector. To limit these greenhouse gas emissions, many efforts have been con-
sidered about the effects of hardware components on the environment. However, more and more
efforts are needed to perform for more sustainable software products by examining all the steps
of a software engineering process with a fine grain approach. In fact, hardware components
consume energy, but software, which operates and manages hardware components, has also an
indirect energy consumption. Thus, obtaining an efficient software will indirectly reduce the
negative impact on the environment. For this, we need to take into account all the a software
engineering process steps in order to obtain sustainable and green software products which help
to minimize the negative impacts on the environment. Hence, it is possible to help and guide
project managers, engineers, developers and users to better collaborate to produce efficient soft-
ware applications.

In the literature, green software engineering process models have been introduced. In [112],
software life cycle is analyzed step by step and the carbon footprint of each step is estimated with
some formulae established making several assumptions used for each step. A similar approach is
applied in [113], where two levels are defined: First, a software engineering process is defined with
each stage. Second, tools are proposed to measure the power consumption of each step. Another
proposed methodology is GREENSOFT [114] which gathers the aspects of a software product in
four parts: life cycle of software products, sustainability criteria and metrics, procedure models
and recommendations and tools. However, this methodology does not study the role of software
in order to maintain and optimize the power usage in ICT.

4.1 BUA Methodology

Even if several green software engineering process methodologies have been presented, there is a
lack of a generic methodology taking into account all the steps of a software engineering process.
Hence, we propose BUA (BeforeUsageAfter) methodology, as a solution taking all the stages of
a software engineering process into account like showed in Figure 4.1. We present three levels of

53

54 CHAPTER 4. SUSTAINABLE AND GREEN SOFTWARE ENGINEERING PROCESS

a software engineering process:

• Before Usage: This level includes the following steps: requirements, design, implementa-
tion and tests. This level will help to establish a first analysis about the software product
described by the customer and developed by the manufacturer. By this way, it will be
possible to understand if the requirements have been respected in executing all the tests.
Then, it will be possible to reanalyze if something is wrong or to continue to the next level.

• Usage: This level represents the way to use the software product. The customer is using
the software product for his business. The criteria needed for this step are described further.

• After Usage: This level consists of maintenance and disposal steps. In this level, it is
possible to observe several errors that were not obtained during the Before Usage level and
then offer corrections. Moreover, the customer could ask for an extension of the features
of the software product to adapt at his new business situation. The customer could also
demand a new product based on the previous product in order to have better performance
and results for his business.

We include a green analysis step after each step to obtain a green and sustainable engineering
process. The green analysis evaluates if the considered step respects all green criteria. If the
green analysis does not validate a criteria of a stage, then we return to the previous step, until
the requirements stage.

In each step of the software engineering process, there are energy consumed in different shapes
depending on the sector for what the software product is following this engineering process. For
example: the lights of a meeting room, the time taken to establish the requirements, the calls
and mails exchanged between the different participants at the project, the hardware devices used
such as computer, tablet, mobile phone, printer, paper, fax, etc., the transports used, upload
and/or download software to servers, etc. Thus, each step of a software engineering process is
responsible for energy consumption and we propose the following formula (4.1) to calculate the
total energy consumed by a software engineering process (SEP):

Esep = ERequirements+EDesign+EImplementation+ETests+EUsage+EMaintenance+EDisposal+EGreenAnalysis

(4.1)
where ERequirements, EDesign, EImplementation, ETests, EUsage, EMaintenance, EDisposal and EGreenAnalysis

represents receptively the energy consumed during the requirements, design, implementation,
tests, usage, maintenance, disposal and green analysis steps in a software engineering process.

Contrary to [112], we did not propose for each step an energy consumption estimation of the soft-
ware engineering process, however, we define a generic methodology allowing to reduce the energy
consumption of each step in respecting several criteria that we define and describe. Moreover,
we validate these criteria by a green analysis step after each step in order to obtain sustainable
and green software engineering process. In addition, we focus on the tests stage to propose a
generic methodology to estimate the energy consumption of software at runtime.
We define and describe in detail all stage presented in the Figure 4.1 and their criteria. In all sit-
uations, these criteria could be applied to obtain efficient results, reduce the energy consumption
and improve the performance of a software engineering process.

4.2. REQUIREMENTS 55

Figure 4.1: BUA (BeforeUsageAfter) methodology

4.2 Requirements

It is the first stage of software development process which consists to document, analyze, trace,
prioritize, agree, control change and communicate to all stakeholders on functional and technical
specifications. Requirements are established taking into account the propositions of the several
source like the customer, the project manager, the developer, the user, etc. To describe require-
ments many companies are still using document whereas others use software tools. In addition,
the deadline of each step of the process should be defined. The aim of a successful software
product is to verify and meet the customer needs and expectations. In this step, a continu-
ous communication among all the stakeholders is critical. Its the most important stage of the
software engineering process because all needs of the customer have to be very well understood
and noticed by the requirements team. Depending on the step of the process, if a mistake or a
misunderstanding is observed, then several changes must be performed. Moreover, many efforts
will be lost which implies time and money loss and several negative impacts will be generated in
the progress of the process. Hence, this step effects all the following steps.

Criteria for Green Analysis:

• Investigation: Begin to write the functional specifications when responses are found at
the following questions: tools to use to build and manage the requirements, the information
to add in the requirements, the goals, the current tools, the constraints, etc. Then, the
requirements established need to be approved by all members of the requirements team.
Hence, these requirements will be critical to prevent unnecessary changes. In fact, usually
clients forget to describe a functionality of the software when the process is in advanced
step like tests stage, then a return back to the requirements stage is necessary to take into
account this new aspect and change also the design and the implementation stages. In
several cases, similarly, the development team forgets to describe a functionality given by
the client. Hence, a waste of time and energy is implied.

• Feasibility: After to have described generally the software, establish a description about

56 CHAPTER 4. SUSTAINABLE AND GREEN SOFTWARE ENGINEERING PROCESS

the software concerning the business requirement of the company. Then, consider the fol-
lowing three aspects of feasibility:

– Economic: Describe in detail the costs implied by the development and running of
the software. Then, describe also in detail the benefits of this software product. The
necessary budget has to be allocated for this project taking into account the costs due
to at each step of the process.

– Technical: The software proposed need to respect specifications. For this, it is im-
portant to satisfy constraints of the software. Each technical constraint need to be
examined in order to demonstrate that required skills are available to perform each
constraint. Moreover, the product needs to be pertinent and useful. For this, a de-
veloper team is needed in order to develop the software product. The skills of each
developer have to be at a level (expert, junior, beginner, etc.) allowing to develop
the product efficiently. Moreover, the hardware equipment must be appropriated to
operate the software.

– Social: Consider the effects of the software on the users who will be affected by this
new software. Users need skills to efficiently use this new product. For this, schedule
training sessions are needed for the users in order to describe all the functionalities
of the software. Should we consider the redundancies and / or hiring of people with
the appropriate skills? Then, we need to examine the reaction of people about this
situation.

• Tests: Add at the requirements document a description of all the tests to be performed in
order to ensure that the product has been entirely understood. For each requirement, it is
necessary to have one or more tests defined to validate the functionality of each require-
ment. Then, the tests should be executed during tests stage by another person who is not
member of the requirements stage team or automatized in a script to save time and energy.
Hence, correct, accurate and efficient results should be obtained in order to lead to the
next or previous step. At this stage, it should be necessary to also test the software power
consumption with a powermeter or a software tool allowing to estimate software power
consumption. Depending on the power consumption results obtained, software should be
optimized in improving the quality of source code thanks to senior developers’ analyses or
best development practices techniques.

• Traceability: Verify that the company and stakeholders interests are accomplished con-
cerning compliance, completeness, and consistency. Efficiently manage the changes per-
formed about the requirements. For this, the origin of each requirement and change should
be noted clearly with the date and the name of the user who proposed it in order to be
easily access by anyone. In fact, like there are several people implied in the requirement
elaboration, in several cases a functionality asked by the client is not present in the software
product because it was deleted by a requirement team member. Consequently, a time and
energy waste is provoked.

The Figure 4.2 represents the requirements stage respecting the criteria for green analysis. Once
the requirements are defined in a document or with a software tool, it is possible to proceed to
the next step in order to design and implement with the better way the requirements established.

4.3. DESIGN AND IMPLEMENTATION 57

Figure 4.2: Requirements stage with criteria for Green Analysis

4.3 Design and Implementation

Design: Functional and technical specifications defined in the requirements stages are taken into
account in order to conceptualize the system architecture and the algorithm. For the same re-
quirement, it is possible to produce several different conceptions. Hence, it is important to choose
the efficient design to avoid further problems. Moreover, the concepts and the relationships be-
tween them need to be established. For this, a modeling language like Fundamental Modeling
Concepts (FMC), Jackson Structured Programming (JSP), Unified Modeling Language (UML),
EXPRESS, Systems Modeling Language (SysML), Architecture Description Language (ADL),
Service-Oriented Modeling Framework (SOMF), etc. should be used. Design patterns which
consist of patterns describing a solution to a problem need to be reused if it is possible during
the design step to accelerate the process. The designer has to describe correctly, accurately and
efficiently the aspects of software product to build each detail in respecting the criteria below. If
the design stage is established by a team, then firstly an uniformity concerning the rules of style
and format will be necessary. To reduce conceptual errors, when the design is created, it could
be interesting to check the design quality with experts.

Implementation: The programmers write the source code in one or more programming lan-
guages respecting the performed design. Expertize is needed by developers concerning algorithms
and knowledge about the domain where the software will be used.

Criteria for Green Analysis:

• Modularity: Software products should be divided into a number of independent com-
ponents (modules) that can be mixed in several configurations in order to allow a better
maintainability. Each component could be implemented and tested separately and then
integrated to ensure a functional software and speed up the process. Hence, modules neces-
sitating little skills in programming language should be developed by beginner developers
to improve their knowledge in programming and more complex modules should be imple-
mented by senior developers in order to obtain efficient source code.

• Organization: A well defined relationship respecting a hierarchy among the components.
Distribution of the different tasks among the team members to obtain efficient outcome.

58 CHAPTER 4. SUSTAINABLE AND GREEN SOFTWARE ENGINEERING PROCESS

Schedule the development of each modules with a deadline and then group all modules to
finish the software implementation. In several cases a developer can be implement a part
of source code which is implemented by another developer. Hence, we need to avoid this
waste of time and energy.

• Extensibility: New characteristics should be added without negative impacts on the ex-
isting software. When the design and implementation are finished and the users are using
the software and want to add a new functionality to the software. In this case, the existing
design has to be conserved and it should be possible to integrate this functionality without
impacting the global design of the software. Moreover, other software functionalities should
be protected to avoid defects and errors in the application.

• Efficiency: The most appropriate programming language allowing to build optimized al-
gorithms should be chosen. Depending on the demands of the client and taking into account
the developers’ programming skills, one or more programming language need to be chosen.
Several programming languages provide better performance than others, whereas several
others are easier to design and implement. Hence, the choice of the language should allow
to perform better maintainability of the software and improve the efficiency of the software.

• Compatibility: The software product should operate with other products like a previous
version of the same software. In fact, when the client asks to add new functionalities to a
software, it is obvious that these new functionalities will be added to the existing software.
If not, all the software engineering steps should be performed again which would cause a
lot of waste. Hence, when the new functionalities are added to the existing software, care
should be given to conserve the existing functionalities and not impact them to keep a
software operational.

• Usability: The user should be able to easily use and manage all functionalities of the
software. Usually, in complex software, it is not easy to know all the functionalities of
software. Hence, training sessions should be organized in order to describe all the func-
tionalities of the software to the users. This helps to reduce energy consumption and save
time because users would perform their tasks only on one click instead of to click in several
functionalities which do not correspond to their goals.

• Reusability: It should be possible to several developed codes in another projects with
minimal changes and also external libraries, as showed in [115], in order to save energy and
time. For this, a well documentation about the modules is needed in order to locate the
part of source code which could be used in another application or during a development of
software evolution.

• Performance: The interface should be smooth and respond quickly to the requests of
the users. When the software takes time to respond, then the users could perform more
errors. Several manipulations will be executed whereas it was not necessary. Moreover, if
the performance of the software is not good, then several algorithms calculation could have
failed due to errors.

• Portability: The software product should be operating in a variety of situations and en-
vironments. It should be usable in several operating systems like Windows, Linux, Mac,
etc. In several cases when a company decides to change devices (desktop computer, laptop,

4.4. TESTS 59

etc.) and also change the operating system linked at these devices, it could be difficult to
adapt the software to the new environment. However, if it is taken into account to use the
same software in multiple operating systems, it will be possible to save time and energy
easily.

• Readability: The main goal and the operation of the source code should be understood
easily by any developer to avoid errors, duplicated code and inefficiencies. It is important
to adopt a common style of development among the developers to improve the quality of
source code. For instance, when an integer is declared, it is possible to add a prefix i and
capitalize the following character at the name of this integer in order to know the type of
a variable without a lookup to its declaration. Hence, it is important to define and respect
the same rules of development to help new developers discover the source code to adapt
easily and quickly.

The Figure 4.3 represents the design and implementation stage respecting the criteria for green
analysis. Once the design and implementation are performed, it is possible to pass to the next
step in order to test the design and implementation carried out.

Figure 4.3: Design and implementation stage with criteria for Green Analysis

4.4 Tests

Execute the software with the intent to find errors and check if the software is usable. One or
more properties of each software component are evaluated. It allows to validate if the software
meets its specifications defined in the requirements stage, to discover faults or defects. Verify if
the functions composing software are carried out during an acceptable time. Test results give
information to the customer about the quality and efficiency of software. Tests are defined at
the end of the requirements stage to show that the specifications have been understood. Use of
different testers allows developers to see if the requirements are correct and consistent. There are
several types of testing such as: unit, system, integration, black box, white box, path, automa-
tion, etc. Depending on the situation, it should be necessary to choose the most appropriate
testing type.

60 CHAPTER 4. SUSTAINABLE AND GREEN SOFTWARE ENGINEERING PROCESS

Software energy consumption tests consist of measuring/estimating the energy consumption of
the software in order to know whether the program can be improved. As presented in Related
Works chapter, it is possible to use Hardware, Software or Hybrid methodologies to obtain soft-
ware energy consumption. Further on we present a tool capable to estimate the software energy
consumption and locate parts of source code which are heavy energy consumers.

Criteria for Green Analysis:

• Planning: There are many functionalities in a software and to verify the correct oper-
ation of each functionality, a schedule of the execution of each test is necessary. Several
functionalities should be executed before others, because if a particular functionality does
not operate, then it is not necessary to lose time in testing its sub-functionalities. Hence,
the order of test execution should be automatized in order to validate each test quickly.

• Execution: It should be interesting to automatize tests using script which check each
software functionality and send an answer that validate the functionality tested. Then, a
report should list unvalidated tests in order to solve the problems associated with these
tests. If the script result could give a description about the error, it will faster the problem
solving. Otherwise, it is also possible to use testers to execute all the tests described in
requirements stage. They can report all the errors in a document in order to correct by
the appropriate team until the software release.

• Analyze: Concerning the defects found in the software, a meeting is needed between the
client and the project team in order to know which errors should be corrected or reported
in a next version. For this, the traceability could be used to determine if the situation
involving an error was defined. It is important to describe the errors and their impact on
the software. Depending on the level of the errors, it could be corrected later or before the
deployment of the software. Maybe, the client have not described in detail a functionality
involving this error or maybe the development team forgot to implement a functionality
causing this error.

• Functionality: Software is composed of a set of functionalities to perform several tasks.
Hence, all the tests described in the requirements step should be tested and validated in
order to show the operation of the software. If not, the requirements could be redefined
and then design and implementation could be adapted.

• Measurement: Depending on the quality of the source code software performing the same
tasks could consume different amount of energy. For this, it should be interesting to mea-
sure or estimate the software energy consumption using methodologies defined in Chapter 3
like powermeter or software tool allowing to estimate software energy consumption. In our
research, we will further propose a software tool allowing to estimate the software energy
consumption and locate in the source code the part which are the most energy consumer
in order to help and guide developers to improve their code to obtain efficient, sustainable
and green software to reduce greenhouse gas emissions.

• Validation: Once all the tests have been executed and validated and the specified require-
ments are satisfied, then the software is ready to use. If several errors are persisting, then
they should be corrected by identifying the causes of the errors and developing solutions
to solve these errors. For this, it could be necessary to return back at a previous step to

4.5. USAGE 61

carry out the adapted changes.

The Figure 4.4 represents the tests stage respecting the criteria for green analysis. When the
tests are carried out, it is possible to proceed to the next step to use the software.

Figure 4.4: Tests stage with criteria for Green Analysis

4.5 Usage

The software needs to be installed and configured in the environment of the customer in or-
der to be used for a business. Hence, the complete software product is released. During this
step, the defects detected by the users have to be reported to the maintenance team in order
to solve problems. For this, it should be better in term of efficiency, quality and time, if the
developers solving the problem were the same who have developed the software because it will
be easier to perform the adapted modification without involving any other errors as they know
the specifications very well. Otherwise, new developers should understand the functional and
technical specifications described in requirement stage to avoid other errors. In this case, it is
likely that new defects could appear. Then, the users are notified concerning the fact that the
software product is available again. A detailed description of the usage of the software product
is needed for the user in order to respect green aspects. There is a dual responsibility for users
and engineers to take into consideration. The user should be trained to use the software, because
inappropriate manipulations can induce errors in the software.

Criteria for Green Analysis:

• Ease: The interface of the software product developed by the programmers have to be
easy to be understood and to practice daily by any users. Moreover, a well detailed doc-
umentation of each properties of the software is necessary. The different links allowing to
access a functionality need to be clear. For example, if one wants to perform a payment,
it should be written “payment“ in the button of payment. Any confusion should be avoided.

• Training: The users of the software need to be trained at the use of the software by a
person having the skills. All functionalities of the software should be presented at the users.

62 CHAPTER 4. SUSTAINABLE AND GREEN SOFTWARE ENGINEERING PROCESS

Hence, the users should be experts of this software in order to select the exact functionality
to solve a particular need. However, if the users navigate in different menus to find the
needed functionality, then time and energy will be lost.

• Simplicity: The interface of the software should be the most basic. Each item or link of
the menu should be clear to understand the property presented by its. Moreover, each sub
menu should be categorized in the similar functionalities and the navigation between the
properties these functionalities should be simple.

• Tests: The users should execute all the capacities of the software in order to understand
the functionalities of the software and also to verify if there are still defects in the soft-
ware. For this, the software should be deployed in a test platform to perform experiments
and train new users. This test platform needs to have all the features of the production
platform with the same data. Hence, it is also possible to simulate the errors encountered
during the real cases and solve client problems using this application in examining logs or
debugging the application. This platform would allow to test the new functionalities of the
software before passing to a production platform. Hence, it could prevent defects and errors.

• Update: After the defects are solved, replace a previous version of the software with a new
release. In order to avoid the errors, it is important to update the software including the
new functionalities to satisfy client demands related to these functionalities. During the
update, it is important to keep in a file the descriptions related to this update. The new
functionalities brought, the errors corrected, the name of the developers who performed
the implementation, the date of the deployment. Hence, one should avoid to deploy two
different versions at the same time which will imply a crushing of one version.

• Tracking: A version tracking system needs to be described in detail to know the developer
who installs the new version of the software and the changes brought for this new version.
Hence, it could be possible to come back at a previous version if the new version implies
many defects. To avoid any error in production platform, it will be interesting to deploy
a new version of the software, firstly, in a test platform, in order to validate the changes
brought to the software. If the changes are not validated, with the tracking system it will
be easy for developers to identify the changes performed in this version in order to locate
quickly the errors and correct them.

• Management: The users should be aware of the use of the software in respecting green
conditions. For this, the users of the software should switch to the most efficient mode
(idle, standby, etc.) and/or close the software when it is necessary to reduce the energy
consumption. Usually users take a break and let their device and software operating.
Moreover, when users finish their work and go to their home, even in this case several users
let their device and software operating whereas it will be easy to switch to a less energy
consuming mode in order to minimize the consumption of energy. Hence, users need to be
careful about the usage of their software to limit the negative impacts on the environment.

The Figure 4.5 represents the usage step respecting the criteria for green analysis. When the
users are beginning to use the software, it is possible to report the defects to the maintenance
team to have them solved.

4.6. MAINTENANCE 63

Figure 4.5: Usage stage with criteria for Green Analysis

4.6 Maintenance

This step is realized after deploying a software product, when it is necessary to fix the defects,
or to introduce a new version or evolution in the program to improve performance. In this stage,
the cost is proportional to the energy waste. Depending on the modifications that the customer
needs, it is possible to return to the requirements stage in order to correctly understand the
behavior of the program and then propose efficient modifications that do not impact any func-
tionality of the application.

Criteria for Green Analysis:

• Needs: The customer needs for a new version or an optimization have to be well defined
and described in order to realize a task without generating new errors in the software.
Taking into account the previous modifications performed in this software, it should be
easier to bring new changes in the software in order to answer the clients needs. Over the
time, several functionalities might not used and become unnecessary. Hence, they could
be also deleted in the new version of software in order to improve the performance of the
software.

• Analyze: All the specifications need to be taken into account before bringing modifica-
tions. Often, the original developer and whoever brings modifications are not the same
person or group. In this case, a particular attention should be given in order to conserve
the sustainability and functionality of the software. In fact, it should be avoided to have
any impact on the useful functionalities. For this, several tests should be executed to ex-
periment with the new functionalities and also the existing functionalities linked to these
new functionalities. Thus, it is possible to save time and energy in avoiding to repeat the
same modifications several times.

• Choice: Often the importance of this stage is neglected and a basic new functionality
to implement is given to a beginner developer. Thus, the error raw is important. So, to
increase the speed of the process, decrease the costs and obtain an efficient maintenance, it
is advised to choose the most appropriate developer depending on the situation. Usually,

64 CHAPTER 4. SUSTAINABLE AND GREEN SOFTWARE ENGINEERING PROCESS

for a complex new functionality, it is better to choose a senior developer to avoid errors
or if the development is performed by a beginner then it should be interesting to check
its modifications by a senior in order to help and guide the beginner developer to locate
his errors and avoid them for the next time. In several cases, it should be interesting to
choose a beginner developer for basic modifications in order to help him to improve these
programming skills.

• Tests: After the modifications asked by the users have been established, then tests con-
cerning these enhancements and the global software functionality should be performed to
avoid errors. For this, each test needs to be described clearly. Then, it is preferable if the
tests could be automatized in a script which allow to save time and energy. It should be
important if the script could send a detailed description about the test with an error result.
Thus, it would be easy to locate the error and to correct it quickly.

• Ease: The new functionalities of the software should be easy to use for the users. The
access to these new properties should be simple in order to conserve the characteristics of
the software. Moreover, the modifications of the software should not impact the interface
of the software in order to avoid the confusions which could happen during the use of the
software. The existing functionalities should be found in the same way and new functional-
ities depending on their features should be categorized with similar existing functionalities
to help users in their usage.

The Figure 4.6 represents the maintenance step respecting the criteria for green analysis. The
defects observed during the use of the software are corrected or the new capabilities are added in
the software until this product become unusable, it is possible to pass to the next step of disposal.

Figure 4.6: Maintenance stage with criteria for Green Analysis

4.7 Disposal

When the software product becomes unprofitable, unused and obsolete, then the software and
hardware, running the code, should be replaced. Before this situation, it would be interesting
to anticipate this situation in order to collect what is recoverable to reuse efficiently in another

4.7. DISPOSAL 65

product. It is always better if this step is never reached, or reached after a long period of time
in order to benefit entirely of the software product. Moreover, compared to other stage, disposal
stage has a lower importance and priority for the following reasons: there is no direct economical
benefit associated with the disposal of software, an important investigation should be necessary
which involves a loss of time and the necessity to analyze all the software engineering process to
understand correctly the task of each part of source code. During this step, information obtained
by the software need to be moved, archived or destroyed properly. Hence, a clean migration to-
ward a new software product has to be performed.

Criteria for Green Analysis:

• Control: A detailed study concerning the materials used by software should be realized in
order to know what material is always operating. In fact, the application is installed in a
server and the access for the users is performed by a platform, like in cloud computing or
the software is directly installed in a desktop computer. When the usage of the software
is finished, depending on the situation if the desktop computer or if the server is very old,
then maybe several components could be recovered to use in another device instead of
being a waste. If not, the devices could be used to run another software or a new version of
the unused software. Hence, it is possible to limit the negative impacts on the environment.

• List: A hardware and data information list used by software should be established in order
to classify them in category to be recycled, reused or destroyed. When a company perform
an activity of e-commerce on-line and this company used a subcontractor to manage the
information about the customers. It should be for the interest of the company to keep in a
database the data concerning these clients because if the company change the subcontrac-
tor, then the company risk to lose a lot of clients and will carry out several efforts to get
back the information about its customers. Thus, to save time and energy consumption, it
should be interesting to have a list of software data.

• Recycling: All the hardware using the software product should be converted into new
materials. When a company stops the usage of a software to pass to another software or a
new version of the old software, usually old hardware become waste. It would be better to
recycle these devices in order to use its in another devices or to improve its performance to
continue its usage. If not, it is also possible to give these devices to the associations which
are interested to recycle and use these devices differently. Hence, it is possible to prevent
the waste of the materials and reduce the energy consumption.

• Reuse: A disposal team composed of developers who developed the software could be per-
formed in order to locate parts of code respecting green criteria which could be extracted.
In fact, to design and implement sustainable and green source code could take a lot of time
which implies a loss of time and consequently energy consumption. Hence, these parts
of codes respecting green criteria could be used at best development practices to reuse
in another software development project to keep a high quality source code. Hence, it is
possible to conserve an eco-friendly software.

• Responsible: After all the precautions take in order to be respectful to the environment,
if there are still several devices or components which have to be thrown away, it should be
performed responsibly by respecting the environment. If the company does not have the
means to treat these waste, it should be transfered to an expert company in this area in
order to limit the pollution due to these wastes.

66 CHAPTER 4. SUSTAINABLE AND GREEN SOFTWARE ENGINEERING PROCESS

The Figure 4.7 represents the disposal step respecting the criteria for green analysis. When this
step is accomplished the end of the software product is realized.

Figure 4.7: Disposal stage with criteria for Green Analysis

4.8 Green analysis

Contrary to other software engineering processes, we add this step, in our contribution, at the
end of each step in order to check the sustainable and green criteria defined in each stage. Only
when the sustainable and green criteria defined in each step are validated, it is possible to pass
to the next step. However, if one or more criteria in a step are not validated, so a come back to a
previous step is necessary in order to locate the problem and solve it. The validations of this step
after each step will enable to obtain sustainable and green software respecting the definitions
that we established in the chapter 2 for each terms.

Thanks to the sustainable and green criteria defined and described in order to perform a green
analysis after each stage, we demonstrate the way to obtain a sustainable and green software
engineering process respecting the meanings of the terms defined in the chapter 2. Moreover,
we would like to focus our research study particularly on the estimation of the software energy
consumption. For this, we need a generic methodology to establish a tool allowing to estimate
the software energy consumption. Then, we must implement this tool in order to perform several
experiments and validate the accuracy of this tool compared to other measurement tools. Hence,
developers will improve the quality of their source code in order to build efficient, sustainable
and green software product.

4.9 Conclusion

Based on the previous green software engineering process proposed in different works and taking
into account the meanings of the terms related to sustainable and green that we defined in
Chapter 2, we propose a new approach to manage sustainable and green software engineering
process in order to build efficient, sustainable and green software product. In fact, in the classical
steps of green software engineering process, we add at the end of each step a green analysis step
composed of sustainable and green criteria to respect and validate in order to pass at a next
step. If not, a come back to a previous step is performed.

Chapter 5

A generic power consumption
methodology: GMTEEC

“Every piece of system knowledge should
have one authoritative, unambiguous
representation. Every piece of knowledge
in the development of something should
have a single representation.“

Andy Hunt and Dave Thomas

In literature, various software engineering process methodologies have taken into account green
and/or sustainable aspects. However, in related literature, a generic methodology allowing the
estimation of the power consumption of given software is not introduced. In fact, the proposed
estimation tools are based on a specific approach and have been with severe assumptions. For
instance, several tools are limited to an Operating System (Linux, Windows, etc.), whereas
others are limited to a programming languages (C, Java, etc.). Thus, in this thesis, a generic
estimation methodology for power consumption of software is introduced as a contribution to
the related literature. It is represented in Figure 5.1, called GMTEEC (Generic Methodology
of a Tool to Estimate the Energy Consumption), which is composed of four layers: business,
application, interface and hardware. A researcher needs to consider this power estimation tool
during the design and development of software applications. The characteristics of GMTEEC
are introduced for each layer, followed by detailed explanation.

5.1 Business Layer

In the Business Layer, we need to locate Hotpoint, i.e. the part of code that consumes the
most energy because of the un-optimization or complexity of the source code at this part. Then,
we deduce possible quality improvements for software source code in order to obtain optimized
source code which consumes less energy and keeps the same functionality.

5.1.1 Hotpoint

Inside the source code of the software, there are objects, methods or part of codes that could
consume more energy than others. Therefore, it is important to locate these hotpoints in the
source code in order to guide developers to improve their code. Developers could take the opinion
of senior developers to know if it is possible to modify the code.

67

68 CHAPTER 5. A GENERIC POWER CONSUMPTION METHODOLOGY: GMTEEC

Figure 5.1: GMTEEC

5.1.2 Improvement

Usually, it is not possible to find available senior developers for taking advices. Hence, it will
be interesting that the tool, based on best programming techniques identified in a knowledge
database, to propose dynamic improvements for source code hotpoints. Moreover, it is better to
begin the development of the software with the best practice techniques in order to develop a
sustainable and green software. The aim is to solve maximum number of problems with mini-
mum number of functionalities. Programmers having necessary skills and expertise can manage
the development of a software in an easier manner. In applying best practices, it is possible
to improve the maintainability, readability, performance and energy of code. We can list the
following best practices to respect during a software implementation:

• Description: Start each file of your project with a description giving information and
relation between the concepts used.

• Packages: Include only the library needed to run the program. If only several functions
are used in a package, it is better to load only the specific associated package and note it
in a comment.

• Comments: At the beginning of each method, loop or part of source code, a comment is
needed describing the use of this code. Hence, another developer could better understand
the goal of each code and when a maintenance is need, it will be easier and simpler to

5.2. APPLICATION LAYER 69

perform changes. However, it is not necessary to overdone comments. In fact, when the
code is obvious, it is better to avoid comments.

• Limit: Keep each function and/or loop in a respectable line size to read it easily. For this,
if a function becomes too long, it is better to separate it in sub-functions.

• Names: Give an explicit simple name describing the classes, functions or variables. Like
in indentation case, there are several styles to name an object. The most important is to
be consistent. Usually underscore is used to separate words, such as ‘code_java_name‘
or except the first word, the first letter of each word is capitalized like ‘codeJavaName‘.

• Unrepeat: The same code may be repeated several times. In this case, it is better to
automate the repetitive tasks.

• Indentation: There are variety of styles to indent a source code. The best way is to use
the same style used in a project, or in a new project, use always the same style. Hence,
the indentation style is needed to be consistent for a project.

• Organization: In order to have a simple way to access the information, we need to group
the code in files and folders.

• Separation: Usually, the data of software are stored separately, e.g. in a database, and
source code is used in another field. It is important to separate them to have a better
organization.

• Collaboration: For the complex projects that are composed of several developers, it is
better to understand the developments performed by other developers in order to validate
or give advice to improve the quality of source code. In this case, it is better that the
source code is validated by an expert.

5.2 Application Layer

In the Application Layer, after we choose an adapted language, we can consider useful libraries
to get the information dynamically from hardware components.

5.2.1 Language

There are various programming languages, which have different characteristics depending on the
case. We carry out a variety of comparison between them in order to guide developers to choose
the most appropriate language according to their situation. Table 5.2.1 represents the language
types.

Type Description Languages

70 CHAPTER 5. A GENERIC POWER CONSUMPTION METHODOLOGY: GMTEEC

Type Description Languages
Imperative It is a paradigm of computer programming with

a state and commands which modify the state.
It is an abstraction of computers which are based
on, with its registers and store, the Turing ma-
chine and the Von Neumann machine operating
with the design of a modifiable store which is
the object that is manipulated by the program.
To provide structure to code and to manipulate
the store, these languages provide several com-
mands. In each language of this category, a par-
ticular hardware view is defined like Java ma-
chine or C machine. In these languages types a
name used by a value can be used later by an-
other value. The set of names and their values
represents the state which is a logical model of
storage. A states sequence is generated during
an execution. The transition from one state to
another is established by sequencing commands
and assignment operations.

Ada, Assembly lan-
guage, C, C++, C#, D,
FORTRAN, COBOL,
Go, Java, MATLAB,
Pascal, Perl, PHP,
Python, etc.

Procedural It is a type of imperative language. It specifies
a series of structured procedures and stages in
its context to compose an application. In order
to complete a computational application, it con-
tains functions, commands and systematic or-
der of statements. It separates an application in
functions, variables, statements and operators.
To carry out a task, procedures are implemented
on the data. Those procedures can be invoked
anywhere.

Ada, BASIC, C, C++,
C#, COMAL, Java, Ju-
lia, Lua, Maple, Plus, R,
S-Lang, etc.

Object-oriented Object-oriented programming (OOP) language
is a model organized around data rather than
logic and objects rather than actions. De-
velopers can create relationships between ob-
jects which can inherit features of other ob-
jects. Hence, object-oriented programs are easily
changeable. The main advantage is to enable de-
velopers to create modules that are not changed
when a new type of object is created.

Blue, C++, C#,
COBOL, Cobra, D, Eif-
fel, Falcon, FORTRAN,
Go, Groovy, JADE,
Java, Objective-C, Perl,
PHP, Python, R, S, etc.

Functional It is a declarative programming paradigm based
on expressions or declarations instead of state-
ments. It is the process to build a program by us-
ing pure functions and avoiding side-effects and
shared state. A pure function is a function where
all of its inputs are declared as inputs and all its
outputs are declared as outputs.

Aldor, BitC, C++,
C#, Clean, Cobra, D,
Java, Javascript, PHP,
Python, etc.

Logic It is a programming paradigm. In a formal logic
system, program statements describe facts and
rules concerning problems . Rules are defined
such as logical clauses.

Alice, Ciao, Datalog,
DLV, Janus, Prolog,
Twelf, etc.

5.2. APPLICATION LAYER 71

Type Description Languages
Scripting It supports scripts which consist of applications

implemented for a particular run-time environ-
ment which automate the execution of tasks. It
uses a high-level construct to interpret and ex-
ecute one command at a time. Generally, these
languages are easier to learn and faster to code
than more structured and compiled languages.

AppleScript, DCL,
JCL, Lua, Perl, PHP,
Python, Red, etc.

Service-oriented SOP (Service-Oriented Programming) uses ser-
vices to design and implement business applica-
tions. Contrary to OOP (Object-Oriented Pro-
gramming), a service-oriented approach allows
to developers an easy and simple way to inte-
grate systems. They are less complex, faster,
more easily maintained, and much easier to de-
sign.

C, C++, Groovy, Java,
Scala, PHP, Python,
etc.

Table 5.1: Languages Types

The ideal programming language (Java, C, C++, Python, PHP, etc.) depending on the need of
the project and respecting several criteria (performance, usage, etc.) should be chosen to design
and develop the tool.

5.2.2 Library

In order to obtain a sustainable and green tool, it is required to use libraries allowing to get
several information and modify the source code, instead of developing them for several reasons
(time, performance, optimization, etc.). Dynamically running libraries should be preferred. We
group in Table 5.2.2 libraries depending on the language allowing to get components information
dynamically and/or to manipulate the source code.

Library Description Languages
SIGAR [116] SIGAR (System Information Gatherer and Re-

porter) is a cross platform, cross language library
and command line tool for accessing operating
system and hardware level activity. It was de-
veloped to overcome the lack of portable access
to low level hardware and operating system met-
rics found in the Java platform. It supports mul-
tiple language bindings and operates on several
OS/hardware combinations.

Java, Perl and .NET

Javassist [117] Javassist (Java Programming Assistant) enables
Java byte-code manipulation simple. It repre-
sents a class library for editing byte-codes in
Java, it allows Java applications to define a new
class at runtime and to modify a class file when
the JVM loads it. Unlike other similar byte-code
editors, it provides two levels of API which are
source and byte-code level. If the source level
API is used, then users can edit a class file with-
out knowledge of the Java byte-code specifica-
tions.

Java

72 CHAPTER 5. A GENERIC POWER CONSUMPTION METHODOLOGY: GMTEEC

Library Description Languages
ASM [118] ASM is a framework of all purpose Java byte-

code manipulation and analysis. It enables to
modify existing classes or dynamically generate
classes, directly in binary form. Provided com-
mon transformations and analysis algorithms en-
able to easily assemble custom complex transfor-
mations and code analysis tools.

Java

BCEL [119] The Byte Code Engineering Library (BCEL)
goal is to give users a convenient way to analyze,
create and manipulate Java class files. Such ob-
jects can be read from an existing file, be trans-
formed by a program and written to a file again.
An even more interesting application is the cre-
ation of classes from scratch at run-time.

Java

psutil [120] psutil (process and system utilities) is a cross
platform library for retrieving data on running
processes and system utilization (memory, CPU,
network, disks) in Python. It is useful mainly for
system monitoring, profiling and limiting pro-
cess resources and running processes manage-
ment.

Python

phpSysInfo [121] It is a open source PHP script that displays sys-
tem information. It displays CPU, Memory, Up-
time, SCSI, IDE, PCI, Ethernet and Video in-
formation.

PHP

PDH [122] Performance Data Helper (PDH) contains a dy-
namic link library which simplifies collecting per-
formance data from real time data sources. It
provides a level of abstraction over the perfor-
mance registry interface.

C#

/proc [123] It is a process information file system which con-
tains system information (cpuinfo, system mem-
ory, hardware configuration, etc.). Hence, it is
considered like a control and information center
for the kernel

C, C++

Linfo [124] Very fast cross platform php script that de-
scribes the host server in details, giving informa-
tion such as ram usage, hardware, raid arrays,
disk space, kernel, network cards, OS, temps,
samba/cups/truecrypt status, disks, etc.

PHP

Table 5.2: Libraries

According to the chosen language, libraries associated at this language should be used in order
to get components data dynamically and then introduce them in the mathematical formulae to
estimate the power consumption of each component. Moreover, it is needed to manipulate the
source code to locate the hotpoints and guide developers to implement efficient programs.

5.3. INTERFACE LAYER 73

5.3 Interface Layer

Interface Layer allows to choose a platform, where energy estimation tool can be executed and
then adapted to the operating system.

5.3.1 Platform

Software and application are used more and more thanks to the fact that it is possible to ex-
ecute them above a lot of platform like personal computer, mobile devices or cloud computing
infrastructure based on servers and virtual machine, etc. Hence, we need to know the difference
between physical and virtual machines in order to choose one of both depending on the case.
For this, in Table 5.3.1, we show the advantages and disadvantages of each one when making
decision.

Virtual machine Physical machine
Advantages Disadvantages Advantages Disadvantages

74 CHAPTER 5. A GENERIC POWER CONSUMPTION METHODOLOGY: GMTEEC

Advantages Disadvantages Advantages Disadvantages

• Easy to manage

• Space saving

• Easy to backup
and restore

• Easy to move
and/or copy

• Compatibility
with programs

• Virtual CPU and
RAM can be eas-
ily reduce or ex-
tend

• A variety of op-
erating system are
loaded

• Hypervisor is used
to create and run
virtual machines

• Hardware inde-
pendence

• Saving electrical
energy

• Availability and
reliability: a soft-
ware failure does
not impact the
other services

• Cost reduction

• Load balanc-
ing: the virtual
machine is encap-
sulated. Hence,
it is possible to
modify the virtual
machine platform
and raise its
performance

• Reduce personnel
costs, cooling
and power by
using less physical
equipment

• Management:
need to be instan-
tiated, monitored,
configured and
saved

• Direct access to
hardware is diffi-
cult

• An important
RAM energy
consumption be-
cause each virtual
machine occupy a
distinguish area
of the same

• Expensive

• Compatibility of
the applications

• An important
use of disk space
because all the
files for each oper-
ating system are
installed on each
virtual machine

• Architecture is
simple because
it contains its
own processor,
memory, etc.

• Operating system
is loaded to run
other applications

• Provide ease of ac-
cess and reliability

• Compatibility of
the applications

• Resources used for
a dedicated task

• Direct access to
hardware is simple

• Difficult to move
and/or copy

• No load balancing
technique

• Snapshots are not
used

• Requires a hu-
man contact to
upgrade hardware

• Bound to a set of
hardware compo-
nent

5.3. INTERFACE LAYER 75

Advantages Disadvantages Advantages Disadvantages
Table 5.3: Virtual and Physical machines advantages and dis-
advantages

We observe that virtual machine has more advantages than disadvantages and physical machine
advantages. However, it is important to take into account all aspects of virtual machine to avoid
defects. Based on these criteria, it is possible to choose the platform and then associate it at an
operating system.

5.3.2 Operating System

Depending on the goal, it is necessary to choose the most appropriate operating system (Win-
dows, GNU/Linux, Mac OSX, etc.) where the tool will be able to estimate the power consump-
tion of software in taking into account the other characteristics chosen. In Figure 5.2 [2], 5.3
[3], we observe respectively global desktop and mobile and tablet operating system market share
obtained by NetMarketShare in May 2017. For the desktop market, Windows operating system,
with its all versions, dominates the market, whereas for the mobile and tablet market, Android
dominates all the other operating system.

Figure 5.2: Global desktop operating system market share in May 2017 [2]

Figure 5.3: Global mobile and tablet operating system market share in May 2017 [3]

76 CHAPTER 5. A GENERIC POWER CONSUMPTION METHODOLOGY: GMTEEC

5.4 Hardware Layer

In the Hardware Layer, we identify the components that consume power and then we establish
mathematical formulae to estimate the power consumption of each component.

5.4.1 Component

In each case, since different components (CPU, Memory, etc.) consume different levels of energy;
a fine-grained study is required to identify and understand correctly the behavior of each com-
ponent in order to obtain accurate results. In Figure 5.4 [4], we see a distribution of peak power
usage by hardware subsystem in one of Google’s data centers. In Figure 5.5 [5], we observe an
average power usage per server distributed by hardware subsystem. Computer power distribu-
tion by components is represented in Figure 5.6 [6]. Hence, based on these figures, we remark
that each component is susceptible to consume energy which is not necessarily negligible. Thus,
it is necessary to take into account all components’ energy consumptions in the estimation of
software energy consumption.

Figure 5.4: Distribution of peak power usage by hardware subsystem in one of Google’s data
centers [4]

5.4.2 Simulation

According to the device (server, computer, mobile, etc.), each component apt to consume energy
during software execution should be taken into account during the software energy consumption
estimation. For this, the behavior of each component should be studied very well in order to
establish mathematical formulae depending on the characteristic of component which can be
get automatically or easily. Then, an accurate global energy consumption of software could be
deduced.

5.5 Conclusion

In software engineering literature, various tools have been proposed in order to estimate software
power consumption. However, each tool has been built depending on the need of the authors
research area. In the majority of cases, only one component has been taken into account to
calculate power consumption. Several tools are operating only on Linux or Windows. In this
chapter, we introduced four layers of GMTEEC, which are business, application, interface and
hardware. We simplified the task of researchers to help and guide them to take into account in
each layer several criteria in order to develop the most appropriate tool to estimate the software
power consumption. Thus, in business layer, hotpoint needs to be locate to deduce improvement

5.5. CONCLUSION 77

Figure 5.5: Average power use per server distributed by hardware subsystem [5]

Figure 5.6: Computer power distribution by components [6]

to perform in order to improve the quality and efficiency of source code to obtain optimized source
code consuming less energy and keeping the same functionalities. In application layer, the most
appropriate programming language needs to be define in order to choose adapted libraries linked
to this language to get data dynamically about components susceptible to consume energy. In
interface layer, platform needs to be taken into account to choose the operating system adapted
to this platform. In hardware layer, components apt to consume energy needs to be identified to
define mathematical formulae to estimate the power consumption of each component. Even if it
might be difficult, and in several cases impossible, the best way is to design and implement an
energy estimation tool which will be able to take into account all conditions defined in each layer
described previously. We apply this generic methodology in TEEC to propose the tool described
in the following section.

78 CHAPTER 5. A GENERIC POWER CONSUMPTION METHODOLOGY: GMTEEC

Chapter 6

GMTEEC methodology applied: TEEC

“There is a constant need for new
systems and new software.“

Marc Andreessen

Respecting the previous generic methodology established in the previous section, we extend the
previous work realized in [125] to design and implement a tool to estimate the energy con-
sumption (see Figure 6.1) of software. For this, we developed TEEC (Tool to Estimate Energy
Consumption) working on particular Windows operating system, but also on GNU/Linux. We
established mathematical formulae, that we will explain in detail below, in order to estimate the
energy consumption of CPU, Memory, Disk and Network. We chose Java because it is the most
famous and used programming language [126] to get the information concerning the components.
Sigar library [127] provides Java agents with the capability to load the content of classes at run-
time in the JVM. Javassist [128] library enables to modify a class file when the JVM loads it
and/or define a new class at runtime.

Figure 6.1: TEEC

As we can see in Figure 6.2, using insertBefore and/or insertAfter which are methods of Javassist,
it is possible to add several lines of code at the beginning and/or at the end of a method
(methodName) contained in a class (className) of a project without to change the original
source code. In our case, we add a timer to calculate the execution time of the methodName.
Consequently, hotpoints in the source code software are located using Javassist.
We establish power formulae taking into account the parameters that we can get dynamically
thanks to the libraries defined previously and variable that are provided by the manufacturers
in order to obtain accurate results. The power consumption of software can be separated in two
parts:

79

80 CHAPTER 6. GMTEEC METHODOLOGY APPLIED: TEEC

Figure 6.2: Code manipulations

• Static power: power to maintain a system running which depends on the quality of the
components of devices produced by manufacturer.

• Dynamic power: power consumed during a task execution which depends on several
factors like clock frequency, voltage and quality of source code.

Thus, we are interested only by dynamic power consumption because it is the only one that we
can improve in our research context. Thus, we will establish only dynamic power estimation
formulae for the following components.

6.1 CPU

For a long time the CPU was considered the largest energy consumer component [129] in a device.
That is the reason why in most of the works, the modelization has taken into account only the
CPU to estimate the energy consumed by a program. Several models and factors have been
proposed for CPU power consumption, but in this study, we will consider the following equation
(6.1):

PCPU = PCPU,dynamic + PCPU,static (6.1)

where PCPU,dynamic represents dynamic power consumption, while PCPU,static corresponds to
static power consumption.

Only the manufacturer can reduce the static power consumption because it depends on the archi-
tectural characteristics of each component. In our case, we want to reduce the energy consumed
by software. Therefore, we only consider the dynamic power consumption to get more accurate
and efficient results.

The CPU, like many integrated circuit, is a set of gates. Hence, the main power consumption in
CPU is due to capacitors charge and discharge during computations like respresented in Figure
6.3:

The energy is expressed (6.2) as follows:

EV dd =

∫ ∞

0
iV dd(t) · Vdd · dt (6.2)

where iV dd(t) is the current and Vdd is the voltage.

Otherwise, the current is given with the following equation (6.3):

6.1. CPU 81

Figure 6.3: One common gate in CPU

iV dd(t) = CL · dvout
dt

(6.3)

Thus, the equation (6.2) becomes (6.4):

EV dd = V 2
dd · CL (6.4)

We assume that in a switching cycle, there are low-to-high and high-to-low transitions. Therefore,
we obtain the power equation (6.5) of this gate:

P = f · V 2
dd · CL (6.5)

where f is the frequency imposed by the clock.

For N gates, the power need to be multiplied by N. Hence, we can define a parameter α < 1 as
the average fraction of gates that commute at each cycle. The equation of the power becomes
(6.6):

PCPU = β · f · V 2
dd (6.6)

Where f is the frequency, Vdd is the voltage and β is a constant (β = CL.N.α).

In addition, we need the power consumed by the software given by the percentage of the process
id (Nid). So, we obtain the equation (6.7):

PCPU,id = PCPU ·Nid (6.7)

Thanks to these formulas, we can say that there are several ways to reduce the power consumption
due to CPU grouped in the Table 6.1:
Dual voltage CPUs consist of uses a split-rail design to allow lower voltages to be used in the
processor core while the external Input/Output (I/O) voltages remain unchanged.

Dynamic voltage scaling (DVS): the voltage used is increased (Overvolting) or decreased
(Undervolting) depending upon circumstances.

82 CHAPTER 6. GMTEEC METHODOLOGY APPLIED: TEEC

Solutions Technics
Voltage reduction Dual voltage CPUs, Dynamic

voltage scaling, Overvolt-
ing/Undervolting

Frequency reduction Underclocking, Dynamic fre-
quency scaling

Capacitance reduction Integrated circuits

Table 6.1: Possibilities to reduce power consumption of the CPU.

Underclocking: modify timing settings to run at a lower clock rate than is specified.

Dynamic frequency scaling (DFS): the frequency of a microprocessor can be automatically
adjusted for saving energy.

Integrated circuits: replace PCB (Printed Circuit Board) traces between two chips.

We defined mathematical formula allowing to estimate the power consumed by CPU. We noted
also the different ways to save energy. Thus, we did not limit our work only on the power
consumed by CPU, but we take into account also the impacts of other components on the
software power consumption even if their power consumption could be neglected in several cases.
Hence, we study the characteristics of memory.

6.2 Memory

According to [130], the power used on servers is increasing and two largest consumers of power
are the processors and RAM chips. Especially because memory RAM size increase a lot this last
decade. Several works [131], [131], [79] have the objective to optimize systems to reduce DRAM
power consumption by:

• Using a detailed description of DRAM to calculate power usage.

• DRAM with through-Si-via technology.

• Using the memory controller, a comprehensive approach in order to manage DRAM power.

There are several memory system simulators, such as DRAMSim2 [132] and Cacti 5.1 [133].
In this work, we decide to study the DRAM in order to model its power consumption. Doing
so, we use datasheet values from DRAM manufacturer to built the power consumption equation.
Similar to CPU, we only interest in the dynamic power, since it is the only part for energy saving.
Based on the description performed in [134] we noticed that the dynamic power consumption of
DRAM is composed of:

• Activate power.

• Precharge power.

6.2. MEMORY 83

• Read power.

• Write power

In order to model these powers, we need to understand the functionality of a DDR3 SDRAM
which is represented in Figure 6.4. The master operation is controlled by clock enable (CKE)
that have to be high to enable the DRAM to receive activate, precharge, read and write com-
mands. In this situation, commands begin to propagate across the DRAM command decoders,
and this activity increases the power consumption.

Figure 6.4: The functional bloc diagram of a DDR3 SDRAM

We regroup all the parameters that we will use to calculate the following powers in the Table
6.2.

Parameter Description
Idd2P Precharge power-down current
Vcc Voltage
BNKPRE The percentage of time that all banks on the

DRAM are in a precharged state
CKELOPRE Percentage of the all bank precharge time for

which CKE is held LOW
Vdd System VDD
IDD2N Precharge standby current
systckfreq System CK frequency
Tckused Used for current measurements
IDD3P Active power-down current
CKELOACT Percentage of the at least one bank active time

for which CKE is held LOW
IDD3N Active standby current

84 CHAPTER 6. GMTEEC METHODOLOGY APPLIED: TEEC

Parameter Description
IDD0 Operating current: One bank active-precharge
tRAS Used for IDD0 calculation
tRC Activate-to-activate timing
tRRDsch The average time between ACT commands to

this DRAM
IDD4W Operating burst write current
Blength Burst length
WRsch The percentage of clock cycles which are in-

putting write data to the DRAM
IDD4R Operating burst read current
RDsch The percentage of clock cycles which are out-

putting read data from the DRAM
Table 6.2: Data sheet specifications

Accordingly, total power consumption of DRAM is give as (6.8):

PMemory = PActivate + PPrecharge + PRead + PWrite (6.8)

We detail each term of the previous equation 6.8.

6.2.1 Activate power

To the DRAM, the first command sent, during normal working, corresponds to a command of
activate that chooses a bank and row address in order to enable a DDR3 SDRAM to write or
read information. The data, that is stored in the chosen row cells, is then sent from the array
into the sense amplifiers. Then, active state is assigned at the DRAM. The precharge command
restores the data from the sense amplifiers into the memory array and resets the bank for the
next activate command. This leaves the bank in its precharge condition.
Thus, the following expression (6.9) is used to estimate activate power:

PActivate = PsysACTPDN + PsysACTSTBY + PsysACT (6.9)

Each term is expressed in the following equations (6.10, 6.11, 6.12):

PsysACTPDN = IDD3P∗V cc∗BNKPRE∗CKELOACT∗(V dd/V cc)2∗systckfreq/1000∗Tckused
(6.10)

PsysACTSTBY = IDD3N∗V cc∗(1−BNKPRE)∗(1−CKELOACT)∗(V dd/V cc)2∗systckfreq/1000∗Tckused
(6.11)

PsysACT = (IDD0−(IDD3N∗tRAS/tRC+IDD2N∗(tRC−tRAS)/tRC))∗V cc∗tRC/tRRDsch∗(V dd/V cc)2

(6.12)
Hence, activate power depends of many factors. Each term of these equations are summarized
in the Table 6.2.

6.2. MEMORY 85

6.2.2 Precharge power

Every activate command, that opens a row, have a precharge command, that closes the row,
associated with it.
Precharge power is formulated in the equation (6.13):

PPrecharge = PsysPREPDN + PsysPRESTBY (6.13)

Each term power consumption expression is given in (6.14, 6.15):

PsysPREPDN = Idd2P ∗ V cc ∗BNKPRE ∗ CKELOPRE ∗ (V dd/V cc)2 ∗ 1 (6.14)

PsysPRESTBY = IDD2N∗V cc∗BNKPRE∗(1−CKELOPRE)∗(V dd/V cc)2∗systckfreq/1000∗Tckused
(6.15)

Precharge power depends also of several factors that are defined in the Table 6.2.

6.2.3 Read power

During active state, it is possible to read data from or write to DDR3 SDRAM. A read command
decodes a specific column address associated with the data that is stored in the sense amplifiers.
The data from this column is driven across the I/O, gating to the internal read latch. From
there, it is multiplexed onto the output drivers.
Read power is expressed as follows (6.16):

PRead = (IDD4R−IDD3N)∗V cc∗8/Blength∗RDsch∗(V dd/V cc)2∗systckfreq/1000∗Tckused
(6.16)

Each term of this equation is also described in the Table 6.2.

6.2.4 Write power

For a write data the power needed is like the read data except the data propagates in the
opposite sense. Data from the DQ pins is latched into the data receivers/registers and is sent
to the internal data drivers that transmit the data to the sense amplifiers across the I/O gating
and into the decoded column address location.
Write power is defined with (6.17):

PWrite = (IDD4W−IDD3N)∗V cc∗8/Blength∗WRsch∗(V dd/V cc)2∗systckfreq/1000∗Tckused
(6.17)

Each parameter of this formula is also expressed in the Table 6.2.

6.2.5 Total power

Like in the CPU case we need to consider the usage percent of the process id (Mid). Thus, the
formula of dynamic power consumption due to Memory for a given process is defined by the
equation (6.18):

PMemory,id = PMemory ·Mid (6.18)

Hence, we proposed mathematical formula allowing to estimate memory power consumption
of software. To obtain an accurate and efficient tool, we need to study the behavior of other
component like hard disk.

86 CHAPTER 6. GMTEEC METHODOLOGY APPLIED: TEEC

6.3 Hard Disk

Moreover, in the interest to extend our list of components to take into account, we integrate
hard disk power consumption in TEEC.

According to the International Data Corporation (IDC), storage capacity increases each year
with a rate of 60% [135]. This increase in storage capacity is likely to increase the proportion of
total IT power that is consumed by hard drives.

According to [136], the size of transfers affects power consumption. In light of the observed
results, we would like give advise to help hardware and software designers in optimizing data
storage and access.

There are several tools proposed to test the performance of a hard drive. The most known are
CristalDiskMark and HD Tune [137]. However, these programs allow only measuring read/write
speeds. They do not give information about power consumption. That is the reason why re-
searchers tried to take into account power consumption due to hard disk during the runtime.
Several of the tools that are built for this purpose are:

• DiskSim [138] is a storage system simulator. It is like a reference of disk simulator and it
used in many tools in order to obtain adapt several functions and provide power consump-
tion information.

• Dempsey [139] has the objective establish power consumption model and performance
characteristics of hard disks. In Dempsey, a detailed list of parameters from manufacture
are not required, because it is obtained automatically.

• Tempo [92] assumes that component seeking and data transfer of a disk can be treated
separately. It takes into account of both performance and power in writing, reading and
seeking information.

• SODA [140], the optimal performance and power tradeoffs are functions of the desired
performance and acceptable power consumption.

Taking into account of the ideas in these tools, in order to accurately describe the operation of
the hard disk, we first analyze its structure.

6.3.1 Hard disk structure

Hard disk drive (HDD) is an electro-mechanical magnetic storage device. Buffers and digital
controllers coordinate and check HDD activities. There are three main power dissipater in an
HDD which are the spindle motor, the voice-coil motor and the on-board electronics. Four power
management states are considered by hard drives which are: active, standby, idle and sleep.

In analyzing power consumption of the drive, it is important to have a detailed understanding
of drives operation and their internal make up.

As in Figure 6.5, hard drives consist of:

6.3. HARD DISK 87

• Platters: Data is registered and rotate constantly.

• Spindle motor: It turns the spindle attached to the platters.

• Read and write heads: They collect and send data to the platters.

• Read and write head actuator arms: They suspend the read and write heads above the
platters.

• Actuator: It places the arms over the correct location on the platters.

• Printed circuit board electronic.

The platters stop only in standby mode, otherwise they spin constantly. The read/write heads
are active while reading and writing,. The arm actuator is active when seeking and residing over
locations on a platter. The printed circuit board electronics are always turned on.

Figure 6.5: Hard disk structure.

The disks are filled with data in unit LBAs (logical block addresses). The operating system do
not know the position of LBAs on the disk whereas these blocks are addressed by the operating
system. The outer tracks circumference can hold more logical block than the inner tracks because
it is larger, as represented in Figure 6.6. Each cylinder in a zone have the similar number of
sectors per track. Also transfer speeds vary depending on which zone the heads are in. Data
transfer in outer zone is faster than in inner zone.

Two phases represent a disk request process. First phase is the seek phase: moving of the disk
head over the track containing the first sector of the request and the rotational latency for the
sector to come under the head. Secondly, data transfer phase: the target sectors of the request
are read or written. The disk is idle between two consecutive requests.

6.3.2 Power modeling

In active mode, the platters spin and the head seeks or actively reads or writes. In idle mode, a
disk spins at its full speed but there is not any disk activity that takes place.

88 CHAPTER 6. GMTEEC METHODOLOGY APPLIED: TEEC

Figure 6.6: LBAs.

Using this model, the power consumption of a disk executing a sequence of requests is simply
estimated as the following equation (6.19):

PDisk = PActive + PIdle + PStandby + PSleep (6.19)

where PActive corresponds to active mode power, PIdle is the power at the idle state, PStandby

represents standby mode power and PSleep is the sleep power.

Like previous components, hard disk is composed of dynamic (6.20) and static (6.21) power:

PDisk,dynamic = PActive (6.20)

PDisk,static = PIdle + PStandby + PSleep (6.21)

Then, it is possible to assume (6.22):

PActive = PRead + PWrite (6.22)

For a given process, Pread (6.23) and Pwrite (6.24) are defined as:

PRead =
PDiskRead

RDiskRead
·BRead (6.23)

PWrite =
PDiskWrite

RDiskWrite
·BWrite (6.24)

where PDiskRead and PDiskWrite are, respectively, the power consumption of disk read and write,
RDiskRead and RDiskWrite are the rate of disk read and write, BRead and BWrite represents the
bytes read and write by the process at runtime.

We establish the mathematical formula to estimate hard disk power consumption of software.
An accurate and efficient tool need more component power consumption estimation. Hence, we
describe the network.

6.4. NETWORK 89

6.4 Network

We study the network in order to propose a mathematical formula allowing to estimate software
power consumption. Like previous components, we are only interested by the dynamic power
consumption.

We assume that the dynamic power consumed by the network is composed by the main activity
of transmitting and receiving bytes. Thus, we establish the following equation 6.25:

PNetwork = PReceive + PTransmit (6.25)

For a given process, PReceive 6.26 and PTransmit 6.27 are:

PReceive = PReadBytes ·NetR (6.26)

PTransmit = PTransmitBytes ·NetT (6.27)

Where NetR is Network Received bytes, PReadBytes represents the maximum power received,
NetT is Network Transmit bytes and PTransmitBytes corresponds to the maximum power trans-
mit. PReadBytes and PTransmitBytes are data obtained by the manufacturer specifications.

Hence, software power consumption due to network is estimated with the previous equation
established. Then, we need to associate all the component formula to estimate the global software
power consumption.

6.5 Total power consumption of all components

We define a global mathematical expression which represent the total dynamic power consumed
by software. For this, we sum all the component power consumption formula to obtain the fol-
lowing equation 6.28:

PSoftware = PCPU,id + PMemory,id + PDisk + PNetwork (6.28)

We integrate all the parameters values that are given by the manufacturer and/or that we get
dynamically in all these established formulae in order to obtain the global power consumption
of software.

6.6 Conclusion

A lot of software power consumption estimation tools take into account only one component
and neglect the others to estimate the power consumption of each component during software
execution. Hence, we extend proposed previous works in taking into account several components
like CPU, memory, hard disk, network depending on the features of each component in order
to estimate total software power consumption. Thus, it is possible to have more accurate and
efficient results that we can improve in performing needed optimization at the source code level.
For this, TEEC allows to locate part of source code consuming the most energy in order to help
and guide developers to improve the quality of their source code to build efficient, sustainable
and green software product. To check the accuracy and efficiency of our tool TEEC, we conduct
a large set of experiments described in the following section.

90 CHAPTER 6. GMTEEC METHODOLOGY APPLIED: TEEC

Chapter 7

Experiments and Validation

“The true method of knowledge is
experiment.“

William Blake

During the development of our tool TEEC, we performed a variety of different tests taking
into account different situations in each case. We began, with the experiment consisting to
estimate the power consumption of Fibonacci sequence only for the CPU to validate separately
its power model accuracy. We compared the results obtained with Joulemeter tool, developed
by Microsoft, allowing to estimate only the CPU power consumption for a given process. Then,
we integrated the memory power model in order to see its impacts comparing to the CPU power
consumption. For this, we carried out a set of experiments on well known functions. Next, we
added in TEEC, the capacity to estimate the power consumption due to disk. We realized again
several experiments on several functions in comparing optimize and unoptimize solutions. We
validated the accuracy of results with wattsup ?PRO powermeter. We integrated also in TEEC
the network power consumption and we realized two different experiments which consisted in
searching an integer in a file and students mini-projects. This time we will compare the global
power consumption due to CPU, memory, disk and network with two tools and a powermeter to
check the accuracy of TEEC. In the following sections, we describe in detail each experiments.

7.1 Fibonacci sequence

First, the proposed tool is tested with a program that requires a lot of calculation, and there-
fore heavy use of CPU. As the proposed power tool, only measures the power consumed by the
CPU, the measurement is more precise and accurate. The Fibonacci sequence is implemented
which corresponds to a sequence of integers in which each term is the sum of the two preceding
terms. Furthermore, the task manager is seen before and after the execution of the program to
demonstrate that only the CPU is impacted. The usage of CPU is observed to increase from a
few percent to thirty percent, and it stays around these levels until the end of program execution
and returns back to a few percent.

With the proposed power model tool TEEC, the power consumption of Fibonacci sequence using
recursive method and iterative method are estimated. The generated test calculates the first 45
values of the Fibonacci sequence with recursive method. For the iterative method, the calcula-
tions for the first 5000 values are performed.

The results are represented in Figure 7.1.

The results are compared to the results of Joulemeter application for a particular process with
its Id and name (see Figure 7.2).

91

92 CHAPTER 7. EXPERIMENTS AND VALIDATION

Figure 7.1: Power consumption of Fibonacci sequence with TEEC.

Figure 7.2: Power consumption of Fibonacci sequence with Joulemeter.

First, it is observable that quite similar results are obtained for the running application. It shows
the effectiveness of the proposed tool and computational model. Moreover, the results reveal that
the iterative method is quicker and consumes less power than the recursive method.

The measures need to be validated on other applications to demonstrate the precision and accu-
racy of the proposed model. Moreover, we have to take into other component’s power consump-
tion estimation.

7.2 Source code adjustment

We realize the following tests in order to see the impacts of source code on CPU and memory
power consumption.

7.2.1 Strength reduction

Strength reduction consists of replacing an operation by a similar operation. The most common
example of strength reduction is using the shift operator to multiply and divide. For instance, a
» 2 can be used in place of a / 4, and a « 1 replaces a * 2.

In our case in order to see the impact of this replacement, we execute the same operation several
time (here: 50000 repetitions). The results are represented in Figures 7.3 and 7.4.

For this test, we observe that the DRAM power consumption remains constant in the two cases
and the time elapsed is similar. The CPU power consumption is less important after the strength
reduction. This shows the impact of the code source on the CPU power consumption. Moreover,
in the two cases, we observe that the CPU power varies and in several cases these values are

7.2. SOURCE CODE ADJUSTMENT 93

Figure 7.3: Strength reduction unoptimized.

Figure 7.4: Strength reduction optimized.

closer to DRAM values. Thus, we can say that the DRAM power consumption is not always
neglected in front of CPU power consumption.

7.2.2 Eliminate common subexpressions

To remove redundant calculation, we eliminate common subexpressions. This part of code:

double a = c * (d / e) * f;
double b = c * (d / e) * g;

can be rewritten as:

double h = c * (d / e);
double a = h * f;
double b = h * g;

94 CHAPTER 7. EXPERIMENTS AND VALIDATION

We run test in a loop of 50000 repetitions to observe the variation of power. The results are
showed in Figure 7.5 and 7.6.

Figure 7.5: Subexpression unoptimized.

Figure 7.6: Subexpression optimized.

In this test, the results show that the CPU and the DRAM power consumption and the elapsed
time in the two cases are quite similar. However, we note that the CPU power consumption vary
and several times is more close to DRAM power consumption.

7.2.3 Code motion

Code motion moves code that calculates an expression whose result does not change. This is
most common with loops, but it can also involve code repeated on each invocation of a method.
For example:

7.2. SOURCE CODE ADJUSTMENT 95

for (int i = 0; i < a.length; ++i)
a[i] *= Math.PI * Math.cos(b);

becomes:

double pico = Math.PI* Math.cos(b);
for (int i = 0; i < a.length; i++)
a[i] *= pico;

The results of this test is represented on the Figures 7.7 and 7.8.

Figure 7.7: Code motion unoptimized.

Figure 7.8: Code motion optimized.

This test show that in the unoptimized code motion, the time elapsed is slightly greater than
optimized code. CPU and DRAM power consumption are quite similar in the two cases. In
several cases CPU power consumption curve approaches DRAM power consumption curve.

96 CHAPTER 7. EXPERIMENTS AND VALIDATION

7.2.4 Unrolling loops

Unrolling loops reduces the number of loop control code by performing more than one operation
each time in the loop, and consequently running fewer iterations. With the previous example, if
the length of the table a is always a multiple of two, the loop can be rewrite like:

double pico = Math.PI* Math.cos(b);
for (int i = 0; i < a.length; i += 2)
a[i] *= pico;
a[i+1] *= pico;

Figure 7.9 shows the power consumption of CPU and DRAM depending on the time.

Figure 7.9: Unrolling loops.

Compare to the Figure 7.8, in this case, we observe that at the beginning of the curve, the CPU
consumes more power than code motion during several time and then becomes similar. However,
in unrolling loops case, the total execution elapsed time is the half of the code motion case.
And at the end of the curve in Figure 7.9, the CPU power is less important than the curve in
code motion (Figure 7.8). Moreover, in this test, the difference between CPU and DRAM power
consumption is less important than code motion case.

Thus, the results reveal that the unrolling loops method is quicker and consumes less CPU power
than the code motion method.

According to the previous test, we conclude that the power consumption due to memory is not
always neglected compared to CPU power consumption. Hence, the need to take into account
the memory power consumption in order to have an efficient and accurate tool to estimate the
software power consumption. To extend our study, we need to perform other test taking into
account other component power consumption.

7.3 Several function optimizations

Using TEEC, different tests have been executed with unoptimized and optimized methods in
order to observe the variation of the power consumption due to the CPU, the memory and the

7.3. SEVERAL FUNCTION OPTIMIZATIONS 97

disk and compare them.

7.3.1 Tests Description

Loops have an important effect on the performance of a program and provide efficient way for
repeating a piece of code as many times as required. Java has three types of loop control struc-
tures which are: while, do-while and for. If we do not know the number of required iterations,
then while loop can be used. The do-while loop is always executed at least once and then the
condition is checked at the end of the loop. If we know how many iterations are required, then
we use for loop.

Therefore, it is interesting to study several methods that are used during a development of a
program in order to analyze possible improvement.

Table 7.3.1 shows the difference between optimized and unoptimized source code.

Array copy

It is better to use an int data type than byte or short data types for a loop index variable,
because of its efficiency. The fact to use byte or short data type as the loop index variable
involves implicit type cast to int data type.
It is always efficient to copy arrays using System.arraycopy() than using a loop.

Locality of Reference

Elements close to each other in memory are faster to access. We can observe this principle with
the programs described in Table 7.3.1. Locality of reference in an array is used.
In the unoptimized version, the loop reads the values of 100 elements in an array. In the optimized
version, the loop loads 100 elements, but they are spaced 100 elements apart from each other.

Array and Array List

Arrays are harder to use than ArrayLists, but they have a speed advantage, even on simple
element accesses. In Table 7.3.1, we represent a sum of two 100-element collections: an array
and an ArrayList.

Integer List Loop

There are several ways to iterate elements of an integer list. In Table 7.3.1, we compare two
different ways.

Char Array and StringBuilder

We can replace a StringBuilder with a char array in several programs.

Binary Search

As showed in Table 7.3.1, the BinarySearch method searches an integer in a sorted array of
integers. This is more practical to use compare to a for loop.

Unoptimized Optimized
Array copy

98 CHAPTER 7. EXPERIMENTS AND VALIDATION

Unoptimized Optimized

for (int j = 0; j < a.length; j++)
b[j] = a[j]; System.arraycopy(a, 0, b, 0, b.length);

Locality of reference

for(int i=0;i<1000000;i++){
int sum = 0;

for(int x=0;x<50000;x+=100){
sum += values[x];
}}

for(int i=0;i<1000000;i++){
int sum = 0;
for(int x=0;x<500;x++){
sum += values[x];
}}

Compare array to array list

for(int i=0;i<1000000;i++){
int sum = 0;

for(int v=0;v<list.size();
v++)

sum += list.get(v);
}

for(int i=0;i<1000000;i++){
int sum = 0;

for(int v=0;v<array.length;
v++)

sum += array[v];
}

Compare integer list loop

for(Integer i:list) count++; int size=list.size();
for(int i=0;i<size;i++)

count++;

Char array StringBuilder

for(int i=0;i<1000000;i++){
StringBuilder builder=
new StringBuilder();

for(int v=0;v<1000;v++)
builder.append(’?’);

String result=
builder.toString();
}

for(int i=0;i<1000000;i++){
char[] array=new char[1000];

for(int v=0;v<1000;v++)
array[v] = ’?’;

String result=
new String(array);
}

Binary search

for(int i=0;i<10000000;i++){
int index = -1;

for(int j=0;j<values.length;
j++)

if (values[j] == 80)
index = j;
break;
}}}

for(int i=0;i<10000000;i++)
int index =
Arrays.binarySearch(values,
80);

7.3. SEVERAL FUNCTION OPTIMIZATIONS 99

Unoptimized Optimized
Table 7.1: Functions

7.3.2 Results

We develop two JAVA projects in order to regroup all the optimized and unoptimized methods
previously defined. We obtain the following power and energy related relationships (Figure 7.10,
7.11, 7.12 and 7.13).

Figure 7.10: Unoptimized functions power consumption.

Figure 7.11: Unoptimized functions energy consumption.

Therefore, we observe that globally the power consumption of CPU dominates memory or disk
consumption. If we examine the results obtained each 50 ms, we can note that the power con-
sumption of disk can be neglected for these cases, but in several cases power consumption of
memory must be taken into account. In addition, we can note that the power consumption of
the unoptimized code is higher than the one of the optimized code and the total execution time
of optimized code is less than the one of the unoptimized code. Consequently, it is a great inter-
est to develop optimized parts of code in order to obtain green, sustainable and efficient software.

Hence, going more in details, for each method code, we measure the time elapsed during the
execution of the tests and results are represented in Table 7.2.

100 CHAPTER 7. EXPERIMENTS AND VALIDATION

Figure 7.12: Optimized functions power consumption.

Figure 7.13: Unoptimized functions energy consumption.

Functions Unoptimized Optimized
Time (ms)

Array copy 359 312
Locality of reference 18140 17219
Compare array to array list 22047 17297
Compare integer list loop 7734 7391
Char array StringBuilder 11235 2421
Binary search 2250 438

Table 7.2: Functions time execution.

Hence, optimized codes are found faster than unoptimized codes. Particularly, we remark a faster
execution of the following optimized methods: “Locality of reference”, “Compare array to array
list”, “Char array StringBuilder” and “Binary search”.

7.3.3 Validation

To validate our experiments, we use a powermeter ‘wattsup ?PRO’ as shown in Figure 7.14. We
connect this powermeter to the notebook via USB port. This device saves in his memory the
power consumed by all process in runtime. So, we connect WattsUp to the notebook and then we
wait until the power reach a stationary state. Then, we execute the unoptimized code, followed
by the optimized code. We then transfer the results using the application WattsUpUSB and the

7.4. TEEC COMPARED WITH THREE OTHER TOOLS 101

results are depicted in Figure 7.15.

Figure 7.14: wattsup?PRO.

Figure 7.15: Unoptimized and optimized functions power consumption obtained with
wattsup?PRO.

Comparing to the results obtain with TEEC, even if we make a measurement in each second,
we can say that in all of the cases, optimized code test is faster and reveals less power than
unoptimized code test. Each optimized and unoptimized curves present several increase of power
as we observed with TEEC.

7.4 TEEC compared with three other tools

We perform two kinds of experiments. First, we test the optimization and the potential to save
energy using a Java method which amounts to finding an integer in a list of integers contained
in a file. Second, we measure the power consumption of the identical course project done by
students. Their programming skills range from absolute beginners to highly experienced devel-
opers. Then, we execute their projects on the same system (an ASUS N751JK-T7238H laptop
having quad-core i7-4710HQ, 2.5 GHz) and use four tools to measure the power consumption:

• Intel Power Gadget (IPG) 3.0: estimates the power consumption of all CPU intensive
processes.

• Joulemeter: for a given process, estimates only the power consumption of the CPU.

• TEEC: our tool introduced in the previous section.

102 CHAPTER 7. EXPERIMENTS AND VALIDATION

• WattsUp-Pro: a power meter hardware with a ±1.5% measurement error rate. We used
it as a reference in order to validate measures obtained by the three other tools. Notice
that we calibrate Joulemeter using WattsUp-Pro.

7.4.1 Search an Integer

We defined a file with 100 000 unique and randomly ordered integers. The goal of the program
is to open this file and find a predefined value as quickly as possible. For this, we found about 40
programs using different programming techniques (iterative, recursive, linear, binary, dichotomy,
etc.) on the Internet to solve this issue. Using these programs, we obtained the results that are
depicted in Figure 7.16, 7.17, 7.18 and 7.19.

Figure 7.16: WattsUp-Pro power consumption measured and used as reference.

Figure 7.17: TEEC power consumption estimation.

In overall, the appearance of the curves, obtained with the four tools, seems similar. In each
case, the slowest function takes about 250 seconds, while the fastest takes less than a second.
However, when we take a closer look, we notice several important differences.

First, curves obtained with Joulemeter show a large deviation of power amplitudes. In fact,
compared to the powermeter, we see a general deviation of about 7W. These results are not
realistic although we used the WattsUp-Pro power meter to calibrate Joulemeter. In addition,
the amplitude of the fastest methods exceeds 8W, whereas in the case of IPG (which also es-
timates CPU power consumption only) it remains below 6W. Secondly, even if it is not as

7.4. TEEC COMPARED WITH THREE OTHER TOOLS 103

Figure 7.18: IPG power consumption estimation.

Figure 7.19: Joulemeter power consumption estimation.

remarkable as Joulemeter, the results obtained with IPG still represents a significant deviation
of 4.5W compared to the power meter values. Moreover, the peaks obtained (about 6W) are
half that of the powermeter (about 12W). Unlike the other tools, TEEC presents results very
close to the power meter values. Indeed, we generally observe a deviation of about 1W maximum.

In order to compare the estimated (or measured) energy consumption of all methods by the
four tools, we present in Table 7.3 the methods which consume the minimum and maximum
energy, the average energy consumption of all methods and the percentage error relative to the
powermeter of these average consumptions. To calculate the energy, we multiply the power by
time.

Tools Minimum
energy con-
sumption (J)

Maximum en-
ergy consump-
tion (J)

Average energy
consumption
(J)

Error rate
(%)

IPG 12,55 1161,92 89,76 45.63
Joulemeter 21,4 623,6 62,94 61,88
TEEC 2,32 2087,47 137,51 16,71
WattsUp-PRO 6,6 2343,5 165,09 -

Table 7.3: Energy consumption comparison

104 CHAPTER 7. EXPERIMENTS AND VALIDATION

We find that Joulemeter estimates the biggest values of the method consuming the minimum
energy, the smallest value of the method consuming the maximum energy and the average of all
methods. Hence, Joulemeter is the tool with the highest error rate. Furthermore, in all cases,
TEEC is the tool with the results closest to the power meter. Therefore, TEEC has the lowest
error rate.

We can explain this by the fact that our tool takes into account not only the CPU, but also Mem-
ory, Disk and Network power consumption, whereas Intel Power Gadget or Joulemeter estimate
only CPU power consumption. In fact, with our tool we notice that the power consumption due
to Memory can reach up to 2.5 W which can not be neglected. In addition, TEEC also presents
a small difference of power consumption which are explainable by the fact that other compo-
nents that we do not take into consideration also consume power (e.g. chipset, PSU inefficiency,
etc.). Thus, it is important to take into account all components in consideration during power
estimation. Otherwise, TEEC becomes more accurate compared to the others in the execution
time of each method. This is because it begins to estimate only when the method is executed
whereas the others give a global view. Evaluating these 41 methods that carry out the same
goal, we also optimize the source code of an application to reach a sustainable and green method
and then application software. In fact, this simple experiment shows that it was possible to save
about 240s execution time and 2336.9J. Also, we observed that several methods consume more
power but are executed more quickly.

7.4.2 Students mini-project

Contrary to previous experiments, in this section, we want to show the impact on the energy
consumption of software to respect the Green software engineering process that we represented
in Figure 4.1 and described in the section IV. For this, we gave the same mini-project to 34
students which worked in pairs. The goal is to develop a program which allows generating an
OWL (Web Ontology Language) file from data recovered from a database. We gave the tables
representing the characteristics of a product that is a pen. The students have to manage the
connection at the Oracle database, get the information and put them in the owlapi methods to
generate an owl file. Firstly, students tried to understand the requirements, then they went to the
design and implementation stages. They realized several tests which allowed them to validate the
requirements. They continued to the usage step by opening the owl file in the software “protégé”
and worked on it. Some students succeed in going to the maintenance step, optimizing their
code and bringing several evolutions. Moreover, several students have reflected at the disposal
step by identifying the parts of source code that could be reusable. For example, if the data are
presented in an express file instead of a database, so they need to develop a parser to recover the
data and reuse the way to generate the owl file with the owlapi methods.

Then, we execute the mini-projects and show the power consumption values obtained with each
power measurement tool in Figure 7.20, 7.21, 7.22 and 7.23. In addition, thanks to our TEEC
tool, we modify dynamically the source code to measure the execution time of each method in
each project and count the number of method called. Consequently, we can easily locate the
part of code that we can optimize in order to obtain sustainable and green software.

As in the previous test, globally, the shape of the curves obtained by the four tools seems iden-
tical. For all tests, the fastest method lasts about 80 seconds and the shortest last about less
than a second. However, we also observe significant differences.

Again, the curves obtained with Joulemeter presents a large deviation from the power meter.
We only observe a few peaks of about 7.5W, whereas for the power meter we observe several
peaks that can reach 18W.

We find that the results obtained with IPG are less satisfactory than in the previous test. Indeed,

7.4. TEEC COMPARED WITH THREE OTHER TOOLS 105

Figure 7.20: WattsUp-Pro power consumption measured and used as reference.

Figure 7.21: TEEC power consumption estimation.

Figure 7.22: IPG power consumption estimation.

in general, we see a difference of 7W compared to the power meter. However, we observe many
more peaks than Joulemeter which remain in the vicinity of 8W.

In TEEC case, we observe more peaks which are more close to powermeter than other two tools.

Moreover, we observe that the projects respecting sustainable and green software engineering
process obtain better results.

106 CHAPTER 7. EXPERIMENTS AND VALIDATION

Figure 7.23: Joulemeter power consumption estimation.

We observe also that several methods consume more power but are executed more quickly. In
Figure 7.24, we represented, for each project, the number of method that the project executes,
the total, average, minimum and maximum time execution of each method of each project. The
total energy consumption for each project classified by the tool used. Then, the minimum, max-
imum and average energy consumption among the projects and the percentage error relative to
the powermeter of these average consumptions depending on four tools. To calculate the energy,
we multiply the power by time.

Figure 7.24: Performance and energy results of each project.

We show again that TEEC is closest to WattsUP PRO measured values than others. Evaluating
these projects that realized the same goal, we demonstrate also the great interest to follow a
sustainable and green software engineering process by respecting each step. Thanks to the fact
that we can manipulate the source code, we locate the parts of code that developers could
optimize in performance, power and energy in order to obtain sustainable and green software.

7.5. CONCLUSION 107

In fact, it is possible to save about 40s, 167.3J and reduce the number of methods used from 167
to 8.

7.5 Conclusion

Different types of experiments have been performed to demonstrate the accuracy, efficiency and
simplicity of our tool TEEC which allow to estimate the software power consumption taking
into account several components. Firstly, we examined the impact of CPU alone on the software
energy consumption. Then, we add in TEEC the capacity to estimate respectively, memory, hard
disk and network power consumption in order to demonstrate their importance in the software
power consumption and show that to assume that the CPU power consumption is enough to
estimate software power consumption is not sufficient and accurate because other components
also have an important impact on the software power consumption which is not neglected.

Moreover, the fact that TEEC allows to locate part of source code consuming the most energy
helps and guides easily and quickly developers to improve the quality of their source code in or-
der to build efficient, sustainable and green software which reduce the greenhouse gas emissions
while keeping the same functionalities.

In addition, students mini project showed us the importance of sustainable and green software
engineering process like we described in Chapter 4 in order to obtain sustainable and green
software products. Students having respected all the criteria defined in each step of the BUA
methodology proposed in Chapter 4 have obtained applications consuming less energy than
others. This is motivating to conduct these experiments in more complex industrial projects in
order to demonstrate the efficiency of this sustainable and green software engineering process.

108 CHAPTER 7. EXPERIMENTS AND VALIDATION

Chapter 8

Conclusion

“It’s more fun to arrive a conclusion than
to justify it.“

Malcolm Forbes

8.1 Lessons learned

Building sustainable and green software product by reducing the greenhouse gas emissions, we
needed to understand the meanings of ’green’ and ’sustainable’ in software domain. Hence, we
proposed our own definitions for the terms “Sustainable Software“, “Green Software“, “Green with
Software“ and “Green within Software“after analyzing related literature and related ICT sector
publications.

During our systematic literature review process, we then focused on the works on the software
power consumption. We classified them in three groups: hardware, software and hybrid method-
ologies. In fact, since researchers want accurate power consumption results, they used hardware
methodologies using powermeter or printed circuits connected directly to a component. Then,
they moved on the hybrid methodologies because of their simplicities. However, in both these
cases, it is not possible to connect a hardware to a virtual machine or to measure the power
consumption of a particular process. Hence, they oriented their research to power consumption
estimation methodologies based on software, which is also considered in this thesis. We first gen-
erated a systematic literature on the estimation models of the power consumption of software.
We remarked that, in the majority of works, only the power consumption of one component
(mostly CPU) is considered, while the others are neglected. Moreover, we noticed a lack of a
dynamic manipulation of the source code before the execution of the application in order to guide
developers to locate their hotpoints (source code area that is heavily called during execution).

In order to reduce the negative impacts on the environment, it is needed to respect to a software
development methodology to obtain sustainable and green software. For this, we proposed BUA
(Before Usage After) methodology, which respect sustainable and green criteria after each step
of software engineering process. Accordingly, a green analysis step is added after each step of the
process (requirements, design and implementation, tests, usage, maintenance and disposal) in
order to define and describe sustainable and green criteria. Thus, the methodology necessitates
to pass to the next step only when all the criteria of the previous step are validated. If not, a
return back at a previous step is performed.

In this research, we proposed GMTEEC (Generic Methodology of a Tool to Estimate the En-
ergy Consumption), which is composed of four layers in order to guide researches to build tool
allowing to estimate software power consumption. In fact, researchers proposed tools allowing to

109

110 CHAPTER 8. CONCLUSION

estimate software power consumption based on mathematical formulae defined on the features of
each component. However, depending on their research area, they performed interesting choices
in their areas, but not interesting in other area. Usually, tools are operating only on Linux or
Windows. In several cases, they considered only one component (power consumption) and ne-
glected the impacts of others. Several other criteria which limited the generic of the tool. Hence,
the description of the four layers will help and guide researches in their choice to build generic
tool to estimate software power consumption.

We applied GMTEEC to build TEEC (Tool to Estimate Energy Consumption). We followed the
four layers of GMTEEC to have a great impact in reducing greenhouse gas emissions. For this,
we chose Java as programming language because it is the most popular and used language. Sigar
and Javassist associated at this language to get dynamically data about different components.
We established power consumption mathematical formulae for several components like CPU,
memory, hard disk and network in order to estimate accurately and efficiently software power
consumption. We also added the capacity to locate part of source code consuming the most
energy to help and guide developers to improve their source code to obtain efficient, sustainable
and green software.

We experimented the accuracy and efficiency of our proposed tool TEEC in several scenarios.
First, we performed tests on Fibonacci sequence only on the CPU power consumption and com-
pared them with Joulemeter tool developed by Microsoft. When we validated the results, we
added respectively memory, hard disk and network power consumption formulae in TEEC to
show their impacts on software power consumption. We realized tests on several functions and
compared the results with a powermeter to demonstrate the importance of considering also these
components in the estimation of software power consumption.

Then, when we validated and demonstrated the accuracy, efficiency and the importance of all
components in the software power consumption estimation, we carried out two tests to show the
capacity of TEEC to locate hotpoints. First, to test the behavior of a particular method which
consists of finding an integer among integers in a file. Second, to test a course project which
involves developing an application connected to a database, getting information of a product
to generate an owl file and taking into account the sustainable and green engineering process.
In these two tests, we compared obtained results with the results obtained by different power
measurement tools, such as Intel Power Gadget (IPG), Joulemeter and a power meter in order to
validate the accuracy and simplicity of TEEC. We noticed that the results closest to the power
meter values were provided by TEEC, because it not only considers CPU but also memory, disk
and network components power consumptions for a given process. Moreover, TEEC begins to
measure the power consumption when we launched the project, whereas for the other tools, we do
not know exactly when the power estimation begins. This explains the accuracy of our proposed
tool. TEEC manipulates also source code of the application, we know the number of used called
methods and their execution time. Thus, developers may identify the fundamental parts of the
source code that need to be optimized to build efficient, sustainable and green software.
In the experiments, we observed different software power consumption results having the same
functionalities. Hence, an optimized program allows to reduce execution time but also save
energy. Respecting all the sustainable and green criteria described in our proposed sustainable
and green software engineering process, it is possible to obtain efficient, sustainable and green
software, and consequently, reduce the greenhouse gas emissions.

8.2 Future directions

Our proposed tool TEEC allows to estimate the power consumption during software execution
due to four components: CPU, memory, hard disk and network. The results of the experiments
showed that TEEC gives close results to powermeter in the power consumption estimation. Still,

8.3. PUBLICATIONS 111

we remarked a difference, which can be explained by the power consumption due to other com-
ponents. Hence, we will extend TEEC by integrating power models of new components, e.g.
chipset, PSU, etc.

TEEC allows to locate the parts of source code that consume the most energy during the ex-
ecution. Hence, it guides developers to improve the quality of their source code. Doing this,
they need to be experts or to find experts to improve these parts in terms of code efficiency. To
simplify the tasks of developers, based on a list of best practices techniques, we will automatize
TEEC.

As it stands, TEEC allows to estimate power consumption of a given process. We will extend
this capacity to estimate several processes’ power consumptions at the same time. Then, based
on machine learning techniques [141], we will manage efficiently applications energy consumption.

In addition, TEEC has been tested on a set of chosen projects. Extending these experiments will
show the impacts of TEEC during the development of an industrial software project. Besides,
we will adapt TEEC in other domains, such as cloud computing, web services, etc.

8.3 Publications

The results obtained in this thesis have been published in international journals and conferences
with reading committee. The list of our papers are:

• Hayri Acar, Gülfem I. Alptekin, Jean-Patrick Gelas and Parisa Ghodous. The impact
of source code in software on power consumption. The International Journal of Electronic
Business Management (IJEBM). Volume 14, Issue 5, pages 42-52, September 2016.

• Hayri Acar, Gülfem I. Alptekin, Jean-Patrick Gelas and Parisa Ghodous. TEEC: Improv-
ing power consumption estimation of software. In the Proceedings of the 30th International
Conference on Environmental informatics (EnviroInfo 2016), Berlin, Germany, September
2016.

• Hayri Acar, Gülfem I. Alptekin, Jean-Patrick Gelas and Parisa Ghodous. Beyond CPU:
Considering Memory Power Consumption of Software. In the Proceedings of the 5th In-
ternational Conference on Smart Cities and Green ICT Systems (SMARTGREENS 2016).
Rome, Italy, April 2016.

• Hayri Acar, Gülfem I. Alptekin, Jean-Patrick Gelas and Parisa Ghodous. A Green ap-
proach to save energy consumed by software. In the Proceedings of the 3rd International
Conference on ICT for Sustainability (ICT4S 2015). Copenhagen, Denmark, September
2015.

• Hayri Acar, Gülfem I. Alptekin, Jean-Patrick Gelas and Parisa Ghodous. Towards a
Green and Sustainable Software. In the Proceedings of the 22nd International Conference
on Concurrent Engineering (ISPE 2015). Delft, Netherlands, July 2015.

Moreover, we gave the following talks and presentations:

112 CHAPTER 8. CONCLUSION

• Hayri Acar and Jean-Patrick Gelas. TEEC: Logiciel vert et durable. Conférence EcoInfo,
Impact des logiciels sur l’environnement, quid de l’éco-conception ?. Grenoble, France,
February 2017.

• Hayri Acar and Jean-Patrick Gelas. Méthodologie de Développement de Logiciel vert.
Avalon team. ENS Lyon, Lyon, France, June 2016.

• Hayri Acar and Jean-Patrick Gelas. Une approche verte pour économiser de l’énergie
consommée par des logiciels. Thesis days. Lyon, France, November 2016.

Bibliography

[1] Ericsson. Energy and Carbon Report. Technical report, 2013.

[2] NetMarketShare. Desktop Operating System Market Share, 2017.

[3] NetMarketShare. Mobile/Tablet Operating System Market Share, 2017.

[4] Paul Dempsey. Rambus CEO calls for collaboration and an architectural focus for memory,
2013.

[5] Matt. Average Power Use Per Server, 2015.

[6] Steven Sinofsky. Windows 7 Energy Efficiency, 2009.

[7] UNFCCC. ADOPTION OF THE PARIS AGREEMENT: Proposal by the President to
the United Nations Framework Convention on Climate Change. volume 21932, pages 1–32.
Paris, 2015.

[8] Gartner. Gartner Estimates ICT Industry Accounts for 2 Percent of Global CO2 Emissions,
2007.

[9] SMARTer2020. GeSI SMARTer2020: The Role of ICT in Driving a Sustainable Future.
2012.

[10] Coral Calero and Mario Piattini. Introduction to Green in Software Engineering, pages
3–27. Springer International Publishing, 2015.

[11] Cambridge dictionary. Sustainable definition.

[12] Oxford dictionaries. Definition of Sustainable.

[13] Birgit Penzenstadler, Ankita Raturi, Debra Richardson, Coral Calero, Henning Femmer,
and Xavier Franch. Systematic mapping study on software engineering for sustainability
(SE4S). Proceedings of the 18th International Conference on Evaluation and Assessment
in Software Engineering - EASE ’14, (November):1–14, 2014.

[14] United Nations Commission. Report of the World Commission on Environment and De-
velopment: Our Common Future. Technical report, 1987.

[15] B Penzenstadler and H Femmer. A generic model for sustainability with process- and
product-specific instances. GIBSE 2013 - Proceedings of the 2013 Workshop on Green in
Software Engineering, Green by Software Engineering, (June 2015):3–7, 2013.

[16] ICT4S. The international conferences ICT4S – ICT for Sustainability.

[17] Lorenz M. Hilty, Bernard Aebischer, Göran Andersson, and Wolfgang Lohmann. Proceed-
ings of the First International Conference on Information and Communication Technologies
for Sustainability. 2013.

[18] Sm Easterbrook. Climate change: a grand software challenge. . . . of the FSE/SDP work-
shop on Future of software . . . , pages 99–103, 2010.

113

114 BIBLIOGRAPHY

[19] B. Donnellan, C. Sheridan, and E. Curry. A Capability Maturity Framework for Sustainable
Information and Communication Technology. In IEEE Computer Society, 2011.

[20] Helen Hasan, Alemayehu Molla, and Vanessa Cooper. Towards a green IS taxonomy. In
SIGGreen Workshop, pages 1–22, Barcelona, Spain, 2012.

[21] ERICSSON. Ericsson energy and carbon report. Technical Report November, 2014.

[22] C Calero, M F Bertoa, and M Á Moraga. A systematic literature review for software
sustainability measures. In 2013 2nd International Workshop on Green and Sustainable
Software (GREENS), pages 46–53, 2013.

[23] M. Dick, J. Drangmeister, E. Kern, and S. Naumann. Green software engineering with
agile methods. In 2013 2nd International Workshop on Green and Sustainable Software
(GREENS), pages 78–85, San Francisco, CA, USA, May 2013.

[24] Birgit Penzenstadler, Ankita Raturi, Debra Richardson, Coral Calero, Henning Femmer,
and Xavier Franch. Systematic Mapping Study on Software Engineering for Sustainability
(SE4S). In Proceedings of the 18th International Conference on Evaluation and Assessment
in Software Engineering, EASE ’14, pages 14:1—-14:14, New York, NY, USA, 2014. ACM.

[25] T. Johann, M. Dick, E. Kern, and S. Naumann. Sustainable development, sustainable soft-
ware, and sustainable software engineering: An integrated approach. In 2011 International
Symposium on Humanities, Science and Engineering Research, pages 34–39, June 2011.

[26] Christian Manteuffel and Spyros Ioakeimidis. A systematic mapping study on sustainable
software engineering: a research preview. In 9th {Student} colloquium, pages 35–40, 2012.

[27] Nadine Amsel, Zaid Ibrahim, Amir Malik, and Bill Tomlinson. Toward Sustainable Soft-
ware Engineering (NIER Track). In Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 976–979, New York, NY, USA, 2011. ACM.

[28] Martin Mahaux, Patrick Heymans, and Germain Saval. Discovering Sustainability Re-
quirements: An Experience Report. In Proceedings of the 17th International Working
Conference on Requirements Engineering: Foundation for Software Quality, REFSQ’11,
pages 19–33, Berlin, Heidelberg, 2011. Springer-Verlag.

[29] Merriam-Webster.

[30] Richard T Watson, Marie-Claude Boudreau, and Adela J Chen. Information Systems and
Environmentally Sustainable Development: Energy Informatics and New Directions for the
is Community. MIS Q., 34:23–38, 2010.

[31] S. Murugesan and P. A. Laplante. It for a greener planet [guest editors’ introduction]. IT
Professional, 13(1):16–18, Jan 2011.

[32] Adrian T. Sobotta, Irene N. Sobotta, and John Gøtze. Greening IT: How Greener IT Can
Form a Solid Foundation For a Low-Carbon Society. 2010.

[33] Ranjit Bose and Xin (Robert) Luo. Green IT adoption: a process management approach.
International Journal of Accounting & Information Management, 20(1):63–77, 2012.

[34] Alemayehu Molla, Vanessa A. Cooper, and Siddhi Pittayachawan. IT and Eco-
sustainability : Developing and Validating a Green IT Readiness Model. ICIS 2009 Pro-
ceedings, 1(Paper 141):1–17, 2009.

[35] Bob Steigerwald and Abhishek Agrawal. Developing Green Software. Intel White Paper,
pages 1–11, 2011.

BIBLIOGRAPHY 115

[36] Juha Taina. Good, Bad, and Beautiful Software – In Search of Green Software Quality
Factors. CEPIS UPGRADE, 2011(4):22–27, 2011.

[37] K. Erdélyi. Special factors of development of green software supporting eco sustainabil-
ity. In 2013 IEEE 11th International Symposium on Intelligent Systems and Informatics
(SISY), pages 337–340, Sept 2013.

[38] Nathalie Bachour. Green IT Project Management. Sustainable ICTs and Management
Systems for Green Computing, pages 146–178, 2012.

[39] S. Murugesan. Making it green. IT Professional, 12(2):4–5, March 2010.

[40] K. Mohan, B. Ramesh, L. Cao, and S. Sarkar. Managing disruptive and sustaining inno-
vations in green it. IT Professional, 14(6):22–29, Nov 2012.

[41] Birgit Penzenstadler. What does Sustainability mean in and for Software Engineering?
Proceedings of the 1st International Conference on ICT for Sustainability (ICT4S), (Jan-
uary 2013), 2013.

[42] N. Bachour and L. Chasteen. Optimizing the value of green it projects within organizations.
In 2010 IEEE Green Technologies Conference, pages 1–10, April 2010.

[43] Power Supply Calculator. No Title, 2015.

[44] OuterVision Power Supply Calculator, 2017.

[45] Wu Chun Feng and Heshan Lin. The green500 list: Year two. Proceedings of the 2010
IEEE International Symposium on Parallel and Distributed Processing, Workshops and
Phd Forum, IPDPSW 2010, (May 2017), 2010.

[46] Power efficiency in high performance computing. Ipdps, pages 1–8, 2008.

[47] Analyzing the Energy Efficiency of a Database Server. the 2010 International Conference,
page 231, 2010.

[48] Zichen Xu, Yi-Cheng Tu, and Xiaorui Wang. PET: Reducing database energy cost via
query optimization. Proceedings of the VLDB Endowment, 5(12):1954–1957, 2012.

[49] Ravi A. Giri and Anand Vanch. Increasing Data Center Efficiency with Server Power
Measurements. (January):8, 2010.

[50] Rafael Vidal Aroca and Luiz Marcos Garcia Gonçalves. Towards green data centers: A
comparison of x86 and ARM architectures power efficiency. Journal of Parallel and Dis-
tributed Computing, 72(12):1770–1780, 2012.

[51] IBM. IBM Systems: Power Executive 1.02 Release Notes. 2006.

[52] Intel Corporation and N E C Corporation. Intelligent Platform Management Interface
Specification v2.0 rev. 1.1 E6 Markup. 2014.

[53] D McIntire, T Stathopoulos, and W Kaiser. etop-Sensor Network Application Energy
Profiling on the LEAP2 Platform. In 2007 6th International Symposium on Information
Processing in Sensor Networks, pages 576–577, 2007.

[54] SCHNEIDER ELECTRIC. Metered Rack PDU, 2017.

[55] SynapSense Power SuiteTM. Power Monitoring, 2017.

[56] Texas Instruments. High-or Low-Side Measurement , Bi-Directional CURRENT / POWER
MONITOR with I 2 C TM Interface, 2013.

116 BIBLIOGRAPHY

[57] Barbara Kitchenham and Pearl Brereton. A systematic review of systematic review process
research in software engineering. Information and Software Technology, 55(12):2049–2075,
2013.

[58] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Systematic Map-
ping Studies in Software Engineering. 12Th International Conference on Evaluation and
Assessment in Software Engineering, pages 68–77, 2008.

[59] Michael D. Powell, Arijit Biswas, Joel S. Emer, Shubhendu S. Mukherjee, Basit R. Sheikh,
and Shrirang Yardi. CAMP: A technique to estimate per-structure power at run-time using
a few simple parameters. Proceedings - International Symposium on High-Performance
Computer Architecture, (Hpca):289–300, 2009.

[60] P. K. Gupta and G. Singh. A framework of creating intelligent power profiles in operating
systems to minimize power consumption and greenhouse effect caused by computer systems.
Journal of Green Engineering, 1(2):145–163, 2011.

[61] Ramon Bertran, Marc Gonzalez, Xavier Martorell, Nacho Navarro, and Eduard Ayguade.
Decomposable and Responsive Power Models for Multicore Processors using Performance
Counters Categories and Subject Descriptors. Proceedings of the 24th ACM International
Conference on Supercomputing, pages 147–158, 2010.

[62] Jason Mars, Lingjia Tang, and Mary Lou Soffa. Directly characterizing cross core inter-
ference through contention synthesis. Proceedings of the 6th International Conference on
High Performance and Embedded Architectures and Compilers - HiPEAC ’11, page 167,
2011.

[63] Georg Hager, Jan Treibig, Johannes Habich, and Gerhard Wellein. Exploring performance
and power properties of modern multi-core chips via simple machine models. Concurrency
Computation, 28(2):189–210, 2016.

[64] Sriram Sankaran. Predictive Modeling Based Power Estimation for Embedded Multicore
Systems. CF ’16, pages 370–375, New York, NY, USA, 2016. ACM.

[65] Aras Atalar, Anders Gidenstam, Paul Renaud-Goud, and Philippas Tsigas. Modeling
Energy Consumption of Lock-Free Queue Implementations. Proceedings - 2015 IEEE 29th
International Parallel and Distributed Processing Symposium, IPDPS 2015, pages 229–238,
2015.

[66] Guoming Tang, Weixiang Jiang, Zhifeng Xu, Fangming Liu, and Kui Wu. Zero-Cost,
Fine-Grained Power Monitoring of Datacenters Using Non-Intrusive Power Disaggregation.
Proceedings of the 16th Annual Middleware Conference on - Middleware ’15, pages 271–282,
2015.

[67] Yawen Chen, Jason Mair, Zhiyi Huang, David Eyers, and Haibo Zhang. A State-based
Energy / Performance Model for Parallel Applications on Multicore Computers Analytical
Model : State-based model. (1), 2015.

[68] Bogdan Marius Tudor and Yong Meng Teo. On understanding the energy consumption of
ARM-based multicore servers. International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), pages 267–278, 2013.

[69] Weisong Shi, Shinan Wang, and Bing Luo. CPT: An Energy-Efficiency Model for Multi-
core Computer Systems. Cs.Wayne.Edu, (201001):1 – 6, 2012.

[70] Hui Chen, Bing Luo, and Weisong Shi. Anole: A Case for Energy-Aware Mobile Application
Design. In 2012 41st International Conference on Parallel Processing Workshops, pages
232–238, 2012.

BIBLIOGRAPHY 117

[71] S. Wang, Youhuizi Li, W. Shi, Lingjun Fan, and A. Agrawal. Safari: Function-level power
analysis using automatic instrumentation. In 2012 International Conference on Energy
Aware Computing, pages 1–6, 2012.

[72] Hitoshi Oi. Power-performance analysis of JVM implementations. 2011 International
Conference on Information Technology and Multimedia: "Ubiquitous ICT for Sustainable
and Green Living", ICIM 2011, (November), 2011.

[73] Nitin Agrawal, Leo Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Emulating goliath storage systems with David. Tos, 7(4):1–21, 2012.

[74] Shinan Wang, Hui Chen, and Weisong Shi. SPAN: A software power analyzer for multicore
computer systems. Sustainable Computing: Informatics and Systems, 1(1):23–34, 2011.

[75] a Noureddine, A Bourdon, R Rouvoy, and L Seinturier. A preliminary study of the impact
of software engineering on {GreenIT}. Green and Sustainable Software (GREENS), 2012
First International Workshop on, pages 21–27, 2012.

[76] Thierry LEBOUCQ. Green Digital Charter. 2016.

[77] Aman Kansal, Feng Zhao, Jie Liu, Nupur Kothari, and Arka Aloke Bhattacharya. Virtual
Machine Power Metering and Provisioning. 1st ACM Symposium on Cloud Computing
(SoCC ’10), pages 39–50, 2010.

[78] Intel Power Gadget, 2016.

[79] Thomas Vogelsang. Understanding the Energy Consumption of Dynamic Random Access
Memories. IEEE/ACM International Symposium on Microarchitecture (MICRO), 2010.

[80] Nagendra Gulur. A Comprehensive Analytical Performance Model of DRAM Caches. pages
157–168, 2015.

[81] Chi-Kang Chen, Hsin-I Wu, Chi-Ting Hsiao, and Ren-Song Tsay. An Accurate and
Flexible Early Memory System Power Evaluation Approach Using a Microcomponent
Method. In Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, CODES ’16, pages 3:1—-3:8, New
York, NY, USA, 2016. ACM.

[82] Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Samira Khan, and Onur Mutlu.
Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost.
ACM Transactions on Architecture and Code Optimization, 12(4):1–29, 2016.

[83] Mingyu Gao, Christina Delimitrou, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng,
Bob Brennan, and Christos Kozyrakis. DRAF: A Low-Power DRAM-Based Reconfigurable
Acceleration Fabric. Proceedings - 2016 43rd International Symposium on Computer Ar-
chitecture, ISCA 2016, pages 506–518, 2016.

[84] Qixiao Liu, Miquel Moreto, Jaume Abella, Francisco J Cazorla, and Mateo Valero. DReAM
: an Approach to Estimate Per-Task DRAM Energy in Multicore Systems Memory Power
(Watts). V, 2011.

[85] Venkata Kalyan Tavva, Ravi Kasha, and Madhu Mutyam. EFGR: An Enhanced Fine
Granularity Refresh Feature for High-Performance DDR4 DRAM Devices. ACM Trans.
Archit. Code Optim., 11(3):31:1—-31:26, 2014.

[86] Wongyu Shin, Jeongmin Yang, Jungwhan Choi, and Lee Sup Kim. NUAT: A non-
uniform access time memory controller. Proceedings - International Symposium on High-
Performance Computer Architecture, pages 464–475, 2014.

118 BIBLIOGRAPHY

[87] Mahdi Nazm Bojnordi and Engin Ipek. Memristive Boltzmann machine: A hardware
accelerator for combinatorial optimization and deep learning. Proceedings - International
Symposium on High-Performance Computer Architecture, 2016-April:1–13, 2016.

[88] A Valero, J Sahuquillo, S Petit, P López, and J Duato. Design of Hybrid Second-Level
Caches. IEEE Transactions on Computers, 64(7):1884–1897, 2015.

[89] Shyamkumar Thoziyoor, Jung Ho Ahn, Matteo Monchiero, Jay B. Brockman, and Nor-
man P. Jouppi. A comprehensive memory modeling tool and its application to the design
and analysis of future memory hierarchies. Proceedings - International Symposium on
Computer Architecture, (June 2008):51–62, 2008.

[90] Micron Technology. TN-41-01: Calculating Memory System Power for DDR3. 2007.

[91] Benjamin S. Parsons and Vijay S. Pai. A mathematical hard disk timing model for full sys-
tem simulation. ISPASS 2013 - IEEE International Symposium on Performance Analysis
of Systems and Software, pages 143–153, 2013.

[92] Donald Molaro, Hannes Payer, and Damien Le Moal. Tempo: Disk drive power con-
sumption characterization and modeling. Digest of Technical Papers - IEEE International
Conference on Consumer Electronics, pages 246–250, 2009.

[93] Miriam Allalouf, Yuriy Arbitman, Michael Factor, Ronen I. Kat, Kalman Meth, and Dalit
Naor. Storage modeling for power estimation. Proceedings of SYSTOR 2009: The Israeli
Experimental Systems Conference on - SYSTOR ’09, page 1, 2009.

[94] Anthony Hylick and Ripduman Sohan. A Methodology for Generating Disk Drive En-
ergy Models Using Performance Data. Proc of ACM SOSP Workshop on Power Aware
Computing and Systems HotPower, 80:100, 2009.

[95] Pablo Llopis, Manuel F Dolz, Javier Garcia Blas, Florin Isaila, Mohammad Reza Heidari,
and Michael Kuhn. Analyzing the Energy Consumption of the Storage Data Path. J.
Supercomput., 72(11):4089–4106, 2016.

[96] Mohammed G Khatib, Zvonimir Bandic, and Santa Clara. PCAP : Performance-aware
Power Capping for the Disk Drive in the Cloud. Fast’16, 2016.

[97] MIND: A black-box energy consumption model for disk arrays. 2011 International Green
Computing Conference and Workshops, IGCC 2011, 2011.

[98] Surendar Chandra. Wireless Network Interface Energy Consumption Implications of Pop-
ular Streaming Formats. History.

[99] Emanuele Lattanzi, Andrea Acquaviva, and Alessandro Bogliolo. Run-time software mon-
itor of the power consumption of wireless network interface cards. Integrated Circuit and
System Design. Power and Timing Modeling, Optimization and Simulation, pages 352–361,
2004.

[100] Ripduman Sohan, Andrew Rice, Andrew W. Moore, and Kieran Mansley. Characterizing 10
Gbps network interface energy consumption. Proceedings - Conference on Local Computer
Networks, LCN, pages 268–271, 2010.

[101] Pablo Serrano, Andres Garcia-Saavedra, Giuseppe Bianchi, Albert Banchs, and Arturo Az-
corra. Per-Frame Energy Consumption in 802.11 Devices and Its Implication on Modeling
and Design. IEEE/ACM Transactions on Networking, 23(4):1243–1256, 2015.

[102] A.a b Garcia-Saavedra, B.c d Rengarajan, P.a Serrano, D.e f Camps-Mur, and X.e Costa-
Pérez. SOLOR: Self-Optimizing WLANs With Legacy-Compatible Opportunistic Relays.
IEEE/ACM Transactions on Networking, 23(4):1202–1215, 2015.

BIBLIOGRAPHY 119

[103] Dynamic Resource Provisioning for Energy Efficiency in Wireless Access Networks: a Sur-
vey and an Outlook. IEEE Communications Surveys & Tutorials, PP(99):1–1, 2014.

[104] Vageesh D C., M Patra, and C Siva Ram Murthy. Joint placement and sleep scheduling
of grid-connected solar powered road side units in vehicular networks. In 2014 12th In-
ternational Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks (WiOpt), pages 534–540, 2014.

[105] Fatemeh Ganji, Anatolij Zubow, Łukasz Budzisz, and Adam Wolisz. On detecting WLAN
users communication attempts. 2014 7th IFIP Wireless and Mobile Networking Conference,
WMNC 2014, (May), 2014.

[106] Luca Chiaraviglio, Delia Ciullo, Marco Mellia, and Michela Meo. Modeling sleep mode
gains in energy-aware networks. Computer Networks, 57(15):3051–3066, 2013.

[107] Hang-sheng Wang and Li-shiuan Peh. Orion 2.0: A power-performance simulator for
interconnection networks.

[108] C. Isci and M. Martonosi. Runtime power monitoring in high-end processors: Methodology
and empirical data. Proceedings of the Annual International Symposium on Microarchitec-
ture, MICRO, 2003-January:93–104, 2003.

[109] Huazhe Zhang and Henry Hoffmann. Maximizing Performance Under a Power Cap : A
Comparison of Hardware , Software , and Hybrid Techniques. ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS), pages 545–559, 2016.

[110] PowerPack: Energy profiling and analysis of high-performance systems and applications.
IEEE Transactions on Parallel and Distributed Systems, 21(5):658–671, 2010.

[111] Gustavo Rostirolla, Rodrigo Da Rosa Righi, Vinicius Facco Rodrigues, Pedro Velho, and
Edson Luiz Padoin. GreenHPC: A novel framework to measure energy consumption on
HPC applications. 2015 Sustainable Internet and ICT for Sustainability, SustainIT 2015,
2015.

[112] Juha Taina. How Green Is Your Software? In International Conference of Software
Business (ICSOB), volume 51, pages 151–162, 2010.

[113] Sara S. Mahmoud and Imtiaz Ahmad. A green model for sustainable software engineering.
International Journal of Software Engineering and its Applications, 7(4):55–74, 2013.

[114] Stefan Naumann, Markus Dick, Eva Kern, and Timo Johann. The GREENSOFT Model:
A reference model for green and sustainable software and its engineering. Sustainable
Computing: Informatics and Systems, 1(4):294–304, 2011.

[115] Eugenio Capra, Chiara Francalanci, and Sandra A. Slaughter. Is software "green"? Appli-
cation development environments and energy efficiency in open source applications. Infor-
mation and Software Technology, 54(1):60–71, 2012.

[116] SIGAR. SIGAR.

[117] Jason Long. Javassist.

[118] ASM. ASM.

[119] BCEL. BCEL.

[120] Psutil. psutil.

[121] PhpSysInfo. phpSysInfo.

120 BIBLIOGRAPHY

[122] PDH. PDH.

[123] PROC. PROC.

[124] Linfo. Linfo.

[125] Hayri Acar, Gulfem I. Alptekin, Jean Patrick Gelas, and Parisa Ghodous. Towards a green
and sustainable software. In Advances in Transdisciplinary Engineering, volume 2, pages
471–480, 2015.

[126] Stephen Cass. The 2015 Top Ten Programming Languages, 2015.

[127] Javaagent. Javaagent.

[128] Jboss-javassist. Javassist.

[129] Minjoong Kim, Yoondeok Ju, Jinseok Chae, and Moonju Park. A simple model for estimat-
ing power consumption of a multicore server system. International Journal of Multimedia
and Ubiquitous Engineering, 9(2):153–160, 2014.

[130] Lauri Minas and Brad Ellison. The Problem of Power Consumption in Servers. Intel, 2009.

[131] Ibrahim Hur and Calvin Lin. A comprehensive approach to DRAM power management.
In 14th International Symposium on High Performance Computer Architecture, pages 305–
316, 2008.

[132] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. DRAMSim2: A cycle accurate
memory system simulator. IEEE Computer Architecture Letters, 10(1):16–19, 2011.

[133] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and Norman P Jouppi.
Cacti 5.1. Technical report, 2008.

[134] Hayri Acar, Isiklar Alptekin, Jean-patrick Gelas, and Parisa Ghodous. Beyond CPU :
Considering Memory Power Consumption of Software. In Smartgreens 2016, 2016.

[135] Brian Fonseca. IDC serves up top 10 storage predictions for 2008.

[136] Anthony Hylick, Ripduman Sohan, Andrew Rice, and Brian Jones. An analysis of hard
drive energy consumption. 2008 IEEE International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems, MASCOTS, 2008.

[137] EFD Software. HD Tune Pro.

[138] John S Bucy, Jiri Schindler, Steven W Schlosser, and Gregory R Ganger. The disksim
simulation environment version 4.0 reference manual. Technical report, 2008.

[139] John Zedlewski, Sumeet Sobti, Nitin Garg, Fengzhou Zheng, Arvind Krishnamurthy, and
Randolph Wang. Modeling Hard-Disk Power Consumption. In 2nd USENIX Conference
on File and Storage Technologies, pages 217–230, 2003.

[140] Yan Zhang, Sudhanva Gurumurthi, and Mircea R. Stan. SODA: Sensitivity based optimiza-
tion of disk architecture. In 44th Annual Design Automation Conference, pages 865–870,
2007.

[141] Leandro Fontoura Cupertino, Jean-Marc Pierson, and Georges Da Costa. Modeling the
power consumption of computing systems and applications through Machine Learning tech-
niques. PhD thesis, Université Toulouse 3 Paul Sabatier, 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

