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L'application finale concerne les images de nourriture qui interviennent dans des contextes variés tels que la santé, le sport, la psychologie, la recherche personnalisée de recettes, la publicité...

Chapter 0. Classification des Images à partir d'annotations par le regard

Annotation par le regard

Pourquoi le regard est-il informatif?

L'analyse du regard a commencé au XIXe siècle pour comprendre les mécanismes de la perception [START_REF] Duchowski | A breadth-first survey of eye-tracking applications[END_REF]. Le regard est basé sur deux mécanismes: la vision fovéale et la vision périphérique. La fovéa correspond à la partie de la rétine qui capte tous les détails d'une petite zone d'une image regardée. Autour de cette zone, l'image est moins précise car elle est perçue dans la vision périphérique. Ce mécanisme permet notamment de percevoir des mouvements. De manière à avoir une vision globale détaillée d'une image, la fovéa doit être déplacée sur différentes zones de l'image. Les données brutes du regard enregistrées par l'oculomètre sont : la position en x, y, z pour chaque oeil, une valeur entre 0 et 4 pour déterminer si la qualité de l'enregistrement des données est valide (valeur 4), la taille de la pupille et l'intervalle de temps entre deux acquisitions (inverse de la fréquence). Pour un oculomètre de 60 Hz, le temps d'acquisition est 17ms.

Les périodes où la fovéa reste sur la même zone sont appelées fixations et correspondent à l'ensemble des positions rapprochées du regard. Les déplacements entre les points de fixations pour visualiser différentes zones de l'image sont appelées saccades. [START_REF] Buswell | How people look at pictures: A study of the psychology of perception in art[END_REF] a montré que les mouvements des yeux ne sont pas aléatoires et dépendent de la tâche. Cette découverte fondamentale a permis d'analyser le regard pour comprendre la perception humaine et identifier les zones d'intérêt (saillance visuelle [START_REF] Itti | Feature combination strategies for saliency-based visual attention systems[END_REF]) dans les images pour de la classification automatique. Cela a permis également d'identifier des éléments distracteurs. Dans le contexte de la recherche d'images, le regard a été étudié pour retrouver une image cible dans une grille d'images [START_REF] Essig | Vision-based image retrieval (vbir): a new eye-tracking based approach to efficient and intuitive image retrieval[END_REF][START_REF] Oyekoya | Perceptual image retrieval using eye movements[END_REF], pour des tests de mémoire après la visualisation sans contrainte d'une image [START_REF] Yun | Studying relationships between human gaze, description, and computer vision[END_REF] ou encore pour identifier les images correspondant à une catégorie que l'utilisateur se représente mentalement [START_REF] Wilson | Mental search in image databases: Implicit versus explicit content query[END_REF]]. Notre projet s'inscrit dans ce dernier contexte: la recherche par visualisation mentale.

Néanmoins, la dépendance aux tâches implique une définition minutieuse du protocole afin de limiter les ambiguïtés des instructions ainsi que les biais visuels. L'oeil étant attiré par les couleurs vives et le texte [START_REF] Engelke | Perceived interest and overt visual attention in natural images[END_REF], les images doivent être soigneusement sélectionnées. Par ailleurs, il faut limiter le mouvement des yeux parasite induit par la recherche d'une touche sur le clavier ou l'utilisation de la souris. Cela pose le problème de moyen de contrôle et de retour de pertinence. Cela peut être un clic, une ou plusieurs touches de clavier ou une visualisation passive où le temps d'observation est fixé par l'utilisateur. La commande par le regard est une alternative mais nécessite une étude préalable du regard, notamment pour différencier les fixations lors de la phase d'observation des fixations lors de la phase de décision. En effet, le contrôle par le regard peut devenir contraignant si un mouvement parasite actionne une commande que l'utilisateur ne voulait pas. Il s'agit de l'effet Midas [START_REF] Jacob | The use of eye movements in human-computer interaction techniques: what you look at is what you get[END_REF]. Nous allons donc dans un premier temps laisser le contrôle à l'utilisateur en lui permettant de faire afficher les images suivantes tout en fixant un seuil d'observation au-delà duquel les images suivantes s'affichent automatiquement. Si notre étude met en évidence un élément du regard permettant d'indiquer les images pertinentes pour l'utilisateur, nous réfléchirons à une autre expérience où le contrôle se fait par le regard uniquement. Le regard est également analysé dans des études psychologiques afin de déterminer les préférences d'un utilisateur notamment pour déterminer une corrélation entre les troubles alimentaires et les publicités [START_REF] Schag | Impulsivity in binge eating disorder: food cues elicit increased reward responses and disinhibition[END_REF] ou encore l'impact des aliments consommés sur nos émotions [START_REF] Mojet | Are implicit emotion measurements evoked by food unrelated to liking?[END_REF]. La plupart de ces protocoles sont basés sur le Paradigme de Préférence Visuelle défini par [START_REF] Fantz | Pattern vision in young infants[END_REF] pour étudier le processus cognitif d'apprentissage chez les enfants, trop petits pour pouvoir parler. Ce paradigme consiste à présenter des pairs d'images où une seule image correspond à la catégorie recherchée. Ce protocole est particulièrement adapté au contexte d'annotation binaire puisqu'il permet d'annoter deux images en même temps, une seule image étant pertinente.

Collecte des données du regard

Ces différentes études nous confortent dans la possibilité d'annoter les images à partir des seules données du regard. Afin de limiter l'ennui des utilisateurs pendant l'expérience, nous fixions un seuil de 40 images à annoter. Les images, toutes en couleurs, sont affichées par paire pendant 5 secondes maximum. Nous rappelons au lecteur que la caractéristique du regard permettant d'indiquer le choix de l'utilisateur devra être accessible en temps réel et être indépendante du temps de visualisation. Quand l'utilisateur a identifié l'image cible, il appuie sur la barre d'espace. Afin d'éviter que l'utilisateur ne bouge les yeux quand l'image cible se trouve plusieurs fois de suite du même côté, nous affichons une croix sur l'axe médian de l'écran que l'utilisateur doit fixer pendant 2 secondes.

La caractéristique du regard devra être discriminante indépendamment de l'utilisateur et la catégorie cible. Pour cela, nous avons mené 4 expériences. Les deux premières (S 1 et S 2 ) concernent des catégories standard avec des images extraites de Pascal VOC2007 [START_REF] Everingham | The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results[END_REF] : Animaux, Personne, Mobilier et Véhicules. Les deux dernières concernent des catégories en relation avec la nourriture, extraites de la base FOOD101 [START_REF] Durand | Mantra: Minimum maximum latent structural svm for image classification and ranking[END_REF]. Pour la troisième expérience (F 1 ), les catégories cibles étaient: textitCarpaccio, Salade de betteraves, Cannoli et Glace. Pour la quatrième (F 2 ), les catégories cibles étaient: Entrées, Desserts, Agrumes et Fruits rouges. Les détails de l'expérience sont reportés dans le tableau Table 1.

Identification d'un estimateur d'intention par le regard (EIR)

Dans les études portant sur la visualisation des images, 3 groupes de caractéristiques du regard sont informatives. [START_REF] Ionescu | How hard can it be? estimating the difficulty of visual search in an image[END_REF] ou l'intérêt de l'utilisateur [START_REF] Papadopoulos | Training object class detectors from eye tracking data[END_REF]. Enfin, d'autres caractéristiques sont moins souvent utilisées mais peuvent être informative dans notre protocole : l'étendue du regard sur l'écran, pour savoir si les deux images ont été regardées ou une seule. La taille maximale de la pupille peut également être un indice de l'intérêt de l'utilisateur d'après [START_REF] Hupé | Pupil dynamics during bistable motion perception[END_REF]. Les caractéristiques utilisées sont reportées dans Table 2.

Nous proposons d'utiliser les arbres de décision de type C4.5 pour déterminer un ensemble de règles permettant de prédire les choix des utilisateurs en fonction de l'ensemble des caractéristiques (voir Figure 1). Nous éliminons les caractéristiques qui dépendent du temps de visualisation: les caractéristiques concernant les dernières images regardées ou fixées, ainsi que les premières.

Comme nous cherchons une caractéristique suffisamment simple pour qu'elle soit généralisable à n'importe quel utilisateur, nous sélectionnons la racine de l'arbre (caractéristique en haut) qui est considérée comme la plus discriminante pour les 4 expériences : la moyenne de la position en x du regard. Après une étude de la moyenne cumulée de la position en x pendant le temps d'affichage des paires d'images, nous avons identifié que la moyenne à T 0 = 800ms et T 1 = 960ms permettait d'avoir une annotation assez précise. Pour chacune des 4 expériences, nous élaborons un arbre de décision à partir des valeurs de la moyenne à T 0 et T 1 . Parmi les 4 arbres de décision résultats, seuls ceux correspondant à S 1 et F 1 ont une précision meilleure que l'aléatoire, respectivement 68% et 81% Cette étape de validation indique que l'arbre construit avec les données de S 1 est généralisable alors que celui correspondant à F 1 ne l'est pas. Néanmoins, l'étude sur les données de F 2 donne des résultats marginaux. Cela peut s'expliquer par le temps de visualisation qui était deux fois plus grand que pour les autres expériences (Table 1), indiquant une plus grande difficulté de la tâche d'annotation. L'arbre de décision S 1 prédit les annotations correctement avec une validité de 70% en moyenne. L'utilisation de ces images ainsi annotées pour entraîner un algorithme de classification présente deux défis : la petite taille des ensembles d'images par catégorie cible (100 fois plus petits que l'ensemble d'apprentissage fourni par VOC2007) et l'incertitude des annotations.

Classification basée sur l'annotation par le regard avec incertitude

Classification standard

Notations: x correspond à la moyenne et σ à l'écart type.

Dans le cadre de l'apprentissage supervisé, les séparateurs à vaste marge (SVM) sont connus pour avoir une bonne précision même avec des ensembles d'apprentissage petits. Nous allons entraîner un algorithme C-SVM sur (1) l'ensemble d'apprentissage fourni par VOC 2007 (5011 images) (2) l'ensemble restreint à 40 images par catégorie avec les annotations fournies par VOC2007, (3) l'ensemble (2) avec les annotations prédites par le regard pour chacun des utilisateurs (voir Table 3).

Animaux

Personnes Véhicles Mobilier [START_REF] Frénay | Classification in the presence of label noise: a survey[END_REF] ont recensé les différentes méthodes existantes pour traiter l'incertitude des annotations : celles qui sont robustes au bruit [START_REF] Teng | A comparison of noise handling techniques[END_REF], celles qui nécessitent une identification des éléments mal annotés au préalable [START_REF] Martinel | A supervised extreme learning committee for food recognition[END_REF] et enfin celles qui tolèrent les annotations incertaines [START_REF] Niaf | Kernel-based learning from both qualitative and quantitative labels: application to prostate cancer diagnosis based on multiparametric mr imaging[END_REF]. Les auteurs remarquent que la plupart des études sont menées sur des données bruitées artificiellement.
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Incertitude des annotations: méthodes existantes

Comme nous l'avons vu dans la section précédente, SVM n'est pas robuste aux annotations erronées et n'appartient donc pas à la première catégorie de méthodes. Par ailleurs, nos ensembles d'images par catégorie cible sont petits (40 images). Il n'est donc pas recommandé d'éliminer les éléments identifiés comme mal annotés, sans avoir recours aux annotationes correctes. Parmi les méthodes qui tolèrent les annotations incertaines, nous avons identifié le P-SVM [START_REF] Niaf | Kernel-based learning from both qualitative and quantitative labels: application to prostate cancer diagnosis based on multiparametric mr imaging[END_REF] qui allie classification et régression par SVM. Les images considérées comme annotées correctement sont utilisées pour la classification et sont associées à des annotations de classe (+1 pour la catégorie cible, -1 sinon). Elles ont un fort impact sur le classifieur. Les images avec des annotations incertaines sont utilisées pour affiner le modèle grâce à de la régression. Les images sont associées à une valeur probabiliste continue entre 0 et 1, qui correspond à la probabilité qu'une image appartienne à la catégorie cible.

Cet algorithme de classification a été testé dans un contexte d'aide au diagnostic des tumeurs cancéreuses. Quatre experts ont annoté les zones d'intérêt avec une échelle de 5 valeurs entre 0 et 1. 0 correspond à une tumeur bénigne avec certitude (valeur -1 pour la classification) et 1 correspond à une tumeur maligne avec certitude (valeur +1 pour la classification). Les experts fournissent donc leur propre estimation d'incertitude. Dans notre contexte, les images les plus certaines ne sont pas identifiées au préalable. Pour pouvoir appliquer cette méthode, il faut détecter parmi les images annotées précédemment avec notre estimateur celles qui ont plus de probabilité d'être correctement annotées. Nous allons comparer 3 critères d'estimation de fiabilité (certains / incertains) et une estimation de la probabilité pour les éléments les plus incertains.

Classification avec annotations incertaines

Dans le cadre de l'annotation par paire où une seule image correspond à la catégorie cible, il semble logique que si une des images d'une paire est considérée comme annotée avec certitude, alors l'autre image (de la classe opposée) est aussi annotée avec certitude. Ainsi, chaque critère sera appliqué aux images considérées comme positives, les images négatives seront associées à leur paire.

Critères de fiabilité

Le P-SVM nécessite l'identification des images avec les annotations les plus incertaines afin de les utiliser dans la classifiation. Ces images auront un fort impact sur la construction du classifieur. Nous proposons d'évaluer 2 critères: le vote majoritaire et la représentativité.

Probabilité fournie par l'EIR: L'arbre sur lequel est construit l'EIR fournit une estimation de la probabilité qu'une image appartienne à la catégorie cible. Pour discriminer les images avec les annotations les plus certaines, on pourrait définir une valeur seuil. Néanmoins, certains ensembles d'images ont la même probabilité pour toutes les images. On ne peut alors pas les discriminer. Ainsi, ce critère n'est pas approprié.

Vote majoritaire: Une première hypothèse intuitive est que plus il y a de participants qui considèrent qu'une image appartient à la classe positive, plus la probabilité que cette image appartienne à la classe positive est forte. Ainsi, nous allons discriminer les images annotées comme positives de manière certaine par vote majoritaire avant de les associer à leur paire.

Représentativité: Le deuxième critère proposé repose sur les caractéristiques de l'image: la représentativité d'une image par rapport à la catégorie associée [START_REF] Zhang | Power svm: Generalization with exemplar classification uncertainty[END_REF]. Cette mesure correspond au résultat de classifications locales visant à classer chaque exemple positif par rapport à l'ensemble des exemples négatifs. Les images positives avec le score le plus fort sont considérées comme les plus représentatives.

Pour expliquer ces 2 derniers critères, nous avons fait l'hypothèse que nous savions quelles étaient les images de la classe positive. Or, dans un contexte d'utilisation réel, les bonnes annotations ne sont pas toujours accessibles. En effet, nous ne pouvons pas savoir a priori ce qu'un utilisateur recherche exactement.

Contextes

Nous proposons deux contextes d'identification des images considérées comme positives.

Validation par comité: les images certaines sont choisies par rapport à un comité qui correspond: à l'ensemble des participants de S 1 et S 2 qui ont vu les mêmes images dans le cadre des catégories standard ; aux participants de F 1 qui ont vue les mêmes images de cuisine. Nous ne considèrerons pas le cas des participants de F 2 puisque les résultats de l'annotation étaient marginaux. Seule la moitié des images avec les plus grands nombres de votes positifs sont sélectionnées pour être ordonnées par l'un des deux critères.

Centré utilisateur: les images annotées comme positives pour un utilisateur sont ordonnées par l'un des deux critères. Avant de créer les ensembles d'annotation par discrimination entre ceux qui sont plus incertains et ceux qui sont les plus certains, nous allons vérifier que les 2 critères n'ordonnent pas les images de la même manière, auquel cas un seul critère serait intéressant. Pour cela, nous allons calculer le τ de Kendall, qui correspond au nombre d'échange pour obtenir le même ordre [START_REF] Lapata | Automatic evaluation of information ordering: Kendall's tau[END_REF]. Le τ est une valeur entre 0 et 1. Plus le taux est grand, plus les 2 ensembles à comparer sont ordonnés de manière similaire. Les valeurs du τ sont reportés par contexte et par catégorie dans Table 4.

Indépendamment du contexte, le τ est très faible. Ainsi, les deux critères n'ordonnent pas les images de la même manière. Nous pourrons donc identifier clairement quel critère est le plus pertinent en fonction du contexte. 

Chapter 0. Classification des Images à partir d'annotations par le regard

Conclusion et perspectives

Nous avons montré qu'avec une caractéristique du regard simple et accessible en temps réel, il est possible de prédire avec une validité de 70% le choix de n'importe quel utilisateur. L'interface utilisée n'implique que deux images dont une correspondant à la catégorie cible. Il serait intéressant de vérifier que nos résultats sont vérifiables dans un contexte plus complexe: catégories subjectives et nombre d'images affichées plus grand.

Par ailleurs, nous avons montré qu'il était possible d'améliorer les résultats d'une classification standard en prenant en compte l'incertitude des anno-tations dans un contexte non optimal. En effet, pour se placer dans un contexte d'application courante, nous n'avons pas utilisé les bonnes annotations pour une identification précise. Ainsi, dans un contexte où quelques images ont été visualisées par différents utilisateurs, le vote majoritaire permet d'identifier les images qui ont une forte probabilité d'être correctement annotées. En revanche, lorsque les images n'ont été visualisées que par un seul utilisateur, le critère de représentativité n'est pas suffisant. Un critère de difficulté d'interprétation inhérente à l'image pourrait être une alternative ou combinée à la mesure de représentativité. De plus, les images avaient été sélectionnés aléatoirement pour la phase expérimentale de manière à constituer des ensembles d'images identiques pour tous les utilisateurs et comparer leurs résultats. Une sélection d'images informatives au cours de l'expérience (active learning) permettrait d'améliorer les performances de la classification avec une annotation incertaine. 

Introduction

Context

Food images can be retrieved in various contexts [CEA, 2017]: getting ideas to cook an original dinner, to prepare a dish with respect to an health issue (diabetes, weight-loss, allergy...), to book a table at a restaurant or to run an on-line errand for example.

Taking the saying "the eye eats together with the mouth" for granted, many gaze studies have been conducted involving food images. Psychological studies are carried out in order to evaluate the impact of advertisement on our eating habits [START_REF] Velazquez | Attention to food and beverage advertisements as measured by eye-tracking technology and the food preferences and choices of youth[END_REF]. Indeed, advertisement may contribute to the development of trouble disorder like binge eating [START_REF] Schag | Impulsivity in binge eating disorder: food cues elicit increased reward responses and disinhibition[END_REF]. Thus, food can be an addiction and leads the experts to study a potential correlation between feelings and eating habits [START_REF] Van Der Laan | Do you like what you see? the role of first fixation and total fixation duration in consumer choice[END_REF]. We report in Figure 1.1 the different fields related to food topics with some associated studies.

In the context of image retrieval, food images are one of the most popular query on the Internet. This phenomenon is highlighted by the number of photos related to food topics published on Instagram. We will not expand on the famous semantic gap issue that corresponds to difficulty to represent high-level objects (concepts) by low-level elements (pixels). The semantic gap is also related to the wide dimension of the semantic field owing to the synonyms that prevent a unified annotation of a set of images, not to mention the abstract ideas each image may evoke and that is not the same from one user to another one. In order to bridge the semantic gap, Content Based Image Retrieval (CBIR) methods have emerged. Recently, deep learning representations have shown tremendous performances allowing the classification methods to gain 10% compared with classification based on hand-crafted features. However, these features are calculated thanks to deep neural networks that require a huge amount of images in the training phase. Thus, the annotation Binge eating [START_REF] Schag | Impulsivity in binge eating disorder: food cues elicit increased reward responses and disinhibition[END_REF] Health issues

Diabetes [START_REF] Frost | Visualizing health: imagery in diabetes education[END_REF] Lactosis allergy [START_REF] Heizer | The role of diet in symptoms of irritable bowel syndrome in adults: a narrative review[END_REF] Weightloss [START_REF] Carter | Adherence to a smartphone application for weight loss compared to website and paper diary: pilot randomized controlled trial[END_REF] Figure 1.1: Food topics and the various contexts of image retrieval. phase remains challenging, as manually annotating thousands of images is tedious and error-prone. [START_REF] Xiao | Learning from massive noisy labeled data for image classification[END_REF] propose to overcome the difficulty by using an automatic process of labelling with large amount of noisy labels. However, 70 000 images had to be manually checked, which is still tedious.

In order to improve automatic processes of labelling, gaze studies have been conducted in order to model the human vision process. This has been enabled by a major discovery in attention model by [START_REF] Buswell | How people look at pictures: A study of the psychology of perception in art[END_REF]: the gaze is not randomly 1.2. Goal distributed over an image but is directed towards areas of interest and depends on the relative visualisation task. [START_REF] Navalpakkam | Measurement and modeling of eye-mouse behavior in the presence of nonlinear page layouts[END_REF] have shown that eye and mouse movements are both related to an element's relevance with respect to a task. Eyes and mouse movements are correlated too. However, the mouse tracking has limitations. Indeed, the mouse behaviour varies from one user to another one and even for an only user, depending on the context. [START_REF] Tavakoli | Saliency revisited: Analysis of mouse movements versus fixations[END_REF] have proposed to compare mouse movements with eye movements and highlight that mouse tracking data is less reliable for model selection and evaluation, even though training existing models with mouse tracking data is acceptable. Thus, the gaze annotation could improve and even replace annotations based on mouse click.

Goal

This thesis is part of the national project VISIIR 1 which stands for VIsual Seek of Interactive Image Retrieval. VISIIR proposes to build an interactive image retrieval system where the relevant images are identified by gaze data only, independently of the user. The gaze data are collected thanks to an eye-tracker, which corresponds to two infra-red cameras placed under the screen. The final application of the project corresponds to the identification of a subset of target images relative to food categories. This is a context of category search which consists in identifying which image is related to a target category. We assume that any category search task can be considered as a binary annotation: is an image relevant or not? This project aims at improving knowledge about image understanding including representation, learning and eye-tracker driven systems for very large datasets.

This thesis deals with the integration of an eye-tracker in the training stage to annotate images interactively (without time constraint) and the resulting classification of large amount of images (see Figure 1.2). In this context, we hypothesise that the gaze holds enough information in order to annotate few images to train a model of classification. This thesis leads to an interplay of gaze annotations constraints, classification challenges and food topics (see Figure 1.2).

This thesis deals with two major research goals. In a first part, we aim at determining if we can identify target images from gaze data only, in real time in order to build an interactive system based lately. We target to extract a gaze feature simple enough to predict correctly the choice of any user and category independent. Owing to the last constraint, the gaze-based annotation will not rely on image features. Thus, we will call it "Gaze-Based Intention Estimator" (GBIE). The properties of scalability of this gaze-based annotation cannot ensure a flawless annotation.

However, we do not intend to tune the gaze-based annotation process but to integrate its inherent uncertainty into the training phase of the classification process in the second part. Thus, in a second part, we use the gaze-based annotation to train a classification algorithm handling label uncertainty.
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Chapter 1. Introduction Food [START_REF] Heizer | The role of diet in symptoms of irritable bowel syndrome in adults: a narrative review[END_REF] [ [START_REF] Frost | Visualizing health: imagery in diabetes education[END_REF] Psychology [START_REF] Schag | Impulsivity in binge eating disorder: food cues elicit increased reward responses and disinhibition[END_REF] VISIIR 1

Gaze tracking [START_REF] Mantiuk | Do-it-yourself eye tracker: Low-cost pupil-based eye tracker for computer graphics applications[END_REF] [ [START_REF] Rayner | Eye movements in reading and information processing: 20 years of research[END_REF] [ [START_REF] Fantz | Pattern vision in young infants[END_REF] Image retrieval [START_REF] Durand | Mantra: Minimum maximum latent structural svm for image classification and ranking[END_REF] [ [START_REF] Wan | Deep learning for content-based image retrieval: A comprehensive study[END_REF] [ [START_REF] Xiao | Learning from massive noisy labeled data for image classification[END_REF] Large scale [START_REF] Cadene | Deep learning and image classification on a medium dataset of cooking recipes[END_REF] Human perception Klami et al. [2008b] Figure 1.2: Fields covered by the project VISIIR 1 : VIsual Interactive Image Retrieval .

Challenges and Contributions

This thesis has to combine the constraints inherent to protocols involving participants with the challenges of classification.

First, the number of images should be restricted in the protocol in order to limit the cognitive charge of participants and thus, to keep them focused on the task. However, this will limit the number of training images in the classification part, which could reduce the performances. Hence, we have to select a supervised classification algorithm like SVM proven to be competitive with few training samples [START_REF] Hertz | Learning a kernel function for classification with small training samples[END_REF]. One should keep in mind that the main source of noise is introduced by the participants. Indeed, gaze movements can be influenced by participants' characteristics such as age, gender or culture [START_REF] De San Roman | Saliency driven object recognition in egocentric videos with deep cnn: toward application in assistance to neuroprostheses[END_REF]. These variations can be statistically smoothed by recruiting numerous users of different conditions.

Challenges and Contributions

Moreover, integrating the eye tracker devices implies to take care of potential gaze biases and distort the results. Thus, we have to carefully check the images to display and take care of the display itself. Additionally, we have to ensure that the target categories are represented by a large diversity of images. For example, the target category Animals should only contain birds, cats, cows... Finally, one should keep in mind that eye tracker devices are sensors and thus introduce some data noise. Hence, the labelling process relying on gaze data only would be not precise and induces more label errors. In addition, we aim at identifying a gaze feature simple enough to determine efficiently the choice of any user, whatever the target category, and computable in real time so that it can be integrated in an interactive image retrieval system ultimately. These constraints may lead to the tolerance of some mislabelled images with this gaze feature. Thus, in classification, we will have to identify a classification algorithm that handles label uncertainty in the training stage.

As a result, this thesis addresses different challenges. First, regarding the gazebased annotation study (see Figure 1.3), we will have to:

• Identify sources of bias to define a protocol

• Run experiments on a consequent number of participants to ensure the results to be representative

• identify interesting gaze data in our context

• extract the most relevant feature in our context: it should discriminate target images from non-target images, in real time, agnostic to the users and the categories. • Defining a criterion of reliability in order to discriminate the images with the most uncertain labels from those with the most reliable labels predicted by the gaze-based annotation system (GBIE)

DESIGN

• Evaluating the classification based on gaze labelling in two contexts: one benefiting from other users' labels and another one that is user-centred.

The different steps required for the classification handling label uncertainty are illustrated in Figure 1.4. First, the training set has to be shaped with respect to the aforementioned constraints. Then, the parameters of the algorithm should be finetuned during the training phase. Finally, the performances of the algorithm that handles label uncertainty should be compared to a baseline. The main contribution of this thesis is: the public access to gaze data that are used to build a training set with label noise. Note that the label noise is not artificially created.

Fine tunning the parameters

Structure

Part I: Gaze analysis The end-goal of the project is to integrate an annotation process based on gaze data only in an interactive Content Based Image Retrieval 1.4. Structure (CBIR) system. The first part is dedicated to the gaze analysis and the design of a gaze labelling process (GBIE). Thus, we will compare various studies involving eye-trackers (see Chapter 2) in order to determine the constraints to deal with. Chapter 2 is dedicated to related works on protocols and gaze features outlined in CBIR studies involving an eye tracker. Thus, we will have to:

1. Design a protocol: Chapter 3 details the protocol and the experiments that where carried out with the eye tracker. The gaze features are described in order to identify the feature that corresponds to the expectations: userindependent, available on the fly and not domain specific.

• Define the visual task so that the users can identify the target images with less interaction possible.

• Define the target categories in order to make the task complex enough and to prevent the participants from developing a gaze strategy that cannot be generalizable.

-Standard categories that are generally used in image retrieval studies (VOC 2007). This is the ground base to evaluate the efficiency of our model (see Appendix A). -Food recipe categories. This is our final application (see Appendices B and C).

• Define a protocol compliant with the visual task that limits the gaze distractors with characteristics of real-world settings.

2. Run experiments and extract the most discriminant gaze feature: Chapter 3 reports the selected feature and the elaboration of the GBIE with gaze data recorded during experiments involving standard image categories (Animals, Persons, Vehicles, Furniture).

• 4 groups of study to test the user independence

• Identify relevant gaze features in our context

• Analyse the gaze feature in order to make it independent from the visualization time.

3. Validate: Chapter 4 is an application of the GBIE on other sets of gaze data, recorded either on the same standard categories, or on food recipe categories, in order to check the properties of generalizability of the GBIE.

• Build a set of rules for the gaze feature that can infer the images that will be chosen.

Part II: Classification based on gaze annotation

The second part is dedicated to the classification of a large amount of unseen images based on a training with images annotated with the GBIE in the first part. Chapter 6 summarizes the state of the art about the classification tasks handling with label noise.

Chapter 1. Introduction

Chapter 6 describes the standard classification algorithms and reports the corresponding results. We will assess the impact of the label uncertainty inherent to the gaze-based annotation on the classification.

Chapter 7 describes the label-noise tolerant classification that we have determined in order to take into account the label uncertainty inherent to the GBIE among various methods proposed in the state-of-the-art (Chapter 6). Three criteria of reliability are compared in order to discriminate the most reliable labels from the most uncertain ones. The results are reported in two contexts in Chapter 8 and Chapter 9. The first one benefits from other users labels on the same images, the second one is user-centred.

Finally, we apply this classification to the context of food in Chapter 10.

Part III: Discussion and Conclusion

The last part opens up different areas to think about and the corresponding experiments that have been initialized.

Part I

Gaze Analysis

CHAPTER 2

Introduction to gaze analysis: Gaze protocols and gaze features in CBIR systems

This part shares material with the following papers:

• Lopez, S., [START_REF] Lopez | One gaze is worth ten thousand (key-) words[END_REF] Smart-phones and tablets make the navigation on the Internet more accessible when we are in transports or cooking. However, the interaction with the device is not always easy: unsteadiness or dirty hands for example. As stated in Chapter 1, we target to provide a hand-free and interactive annotation process that can be available to anyone, in real time and agnostic to the categories. Thus, we will design a protocol in order to determine a gaze feature computable in real time that does not depend on the visualization time and is not domain specific. Moreover, we want to keep the gaze feature as simple as possible so that it can predict the and gaze features in CBIR systems choice of any user. Besides, we expect the annotation process to be efficient with any image category. Thus, the annotation process will only rely on the gaze features and not on the image features. Thus, we will call it Gaze-Based Intention Estimator (GBIE).

In the context of multimedia indexing and image retrieval, the implicit annotation have gained popularity because this strategy relies on spontaneous reactions, such as facial expression or gaze movements, and is effortless [START_REF] Soleymani | Human-centered implicit tagging: Overview and perspectives[END_REF]. [START_REF] Pantic | Implicit human-centered tagging [social sciences[END_REF] have put forwards that implicit tagging provides less irrelevant and inaccurate information compared to the case with explicit tagging. Moreover, such a strategy can be implemented thanks to the growing availability of built-in sensors [START_REF] Soleymani | Human-centered implicit tagging: Overview and perspectives[END_REF], like eye-trackers [START_REF] Mantiuk | Do-it-yourself eye tracker: Low-cost pupil-based eye tracker for computer graphics applications[END_REF]. However, implicit annotation faces different challenges, as it may be intrusive and deals with ethical problems.

In this chapter, we provide first a general overview about gaze information. The settings of different studies about gaze analysis are carefully detailed and evaluated with respect to our goal. Moreover, we will identify the most relevant gaze features that could be compliant with our goal. Finally, we will investigate the current needs in food image community in order to adapt our protocol to this situation.

Gaze is informative

In order to compare the gaze in different activities such as reading or looking at images, gaze data are recorded with an eye-tracker. The first eye trackers used to be very intrusive and not user-friendly 1 (see the left image in Figure 2.1 ). Nowadays, these device are highly adaptable to any screen 2 (see the right image in Figure 2.1 ).

Raw gaze data:

An eye-tracker is a bar containing two infra-red cameras, placed under the screen. The gaze movements are recorded for both eyes in real time: gaze position and the size of the pupil in real time with sampling rated from 32Hz to 1000Hz (accurate for the gaze study about reading tasks).

With the improvement of webcams, low-cost eye-trackers have become very efficient to record gaze data on simple visualization tasks [START_REF] Mantiuk | Do-it-yourself eye tracker: Low-cost pupil-based eye tracker for computer graphics applications[END_REF].

To each eye corresponds a vector of raw gaze data at every sampling time T = 1 f , where f is the sample rate, containing

• X, Y, Z-coordinates the feature space, normalized between 0 and 1,

Raw gaze data recorded with an eye-tracker

1 http://eyesee-research.com/blog/eye-tracking-history/ 2 http://www.acuity-ets.com/products_x2-series.htm • V the validity of the recording with values between 0 and 4 (4 corresponding to the validation)

• the pupil size.

The first gaze studies were designed to understand human perception [START_REF] Duchowski | A breadth-first survey of eye-tracking applications[END_REF]. They evidenced that the vision is not uniform. We perceive a small part of the scene with details whereas the surrounding areas are blurry. Thus, the vision is composed by 2 mechanisms.

Visual mechanisms: First, the detailed information about the scene are provided by the cells at the center of the retina and is called fovea. Secondly, the environment is perceived with the peripheral vision, that is mainly dedicated to the detection of movements and contrast. These mechanisms allow to determine the areas of interest in an image and can be modelled in order to discriminate objects that are moving from objects that belong to the background in videos for example [START_REF] González-Díaz | Perceptual modeling in the problem of active object recognition in visual scenes[END_REF].

These 2 mechanisms are illustrated in Figure 2.23 . The words are displayed through a circle that symbolize the areas perceived in details or blurry. The words in the peripheral vision that is represented by the external yellow circle are blurry, whereas the word in the foveal vision (at the center symbolized by a red point) is very clear.

In order to get a clear perception of all the environment (the same goes for an image exploration), the human eyes keep moving until they stop and focus on a point.

Fixations and saccades:

When focusing on an object, the eye slightly oscillates about the target object which are called micro-saccades. As long as the eye positions remain close enough, which means in a circle with a radius of 30 px during and gaze features in CBIR systems Figure 2.2: Visual mechanisms when reading "Eyes are the window to the mind". The red point displayed at the center correspond to the foveal vision and the external circles to the peripheral vision. The words in the peripheral vision are blurry whereas the word caught by the fovea at the center is very clear. a long period of time (more than 120 ms), the eye positions are aggregated into one single point, called fixation, represented by the red points in Figure 2.3. These threshold values are quite variable across the literature. We have decided to given in [START_REF] Kozma | Gazir: gaze-based zooming interface for image retrieval[END_REF] and [START_REF] Auer | Pinview: Implicit feedback in contentbased image retrieval[END_REF]. The movements between the fixations are called saccades, represented by the red lines in Figure 2.3. [START_REF] Buswell | How people look at pictures: A study of the psychology of perception in art[END_REF] highlighted that the gaze fixations are directed to informative areas in a task of scene perception and not randomly distributed over images. Moreover, the gaze movements are influenced by the visualization task.

Thus, many studies have included eye-trackers in order to understand cognitive processes and to correlate perception with relevance or the impact of environments in order to design attractive advertising [START_REF] Sajjacholapunt | The influence of banner advertisements on attention and memory: human faces with averted gaze can enhance advertising effectiveness[END_REF]. In order to limit the burden of the identification of target images for the users, this gaze feature should be intuitive and available in real-time without requiring a peculiar addition fixation to indicate the selected image. The number in the red points corresponds to the number of gaze points that are aggregated. The higher the number, the higher the time spent on the corresponding area. [START_REF] Castelhano | Eye movements during reading, visual search, and scene perception: An overview[END_REF] point out 3 facts identified in gaze studies:

• the gaze processing is task dependent,

• the eye movements are influenced by the difficulty of the stimuli,

• one single fixation does not hold enough information to have all the information from an image. The representation of the image is induced by the saccades.

Moreover, the gaze can be attracted by bright colors or be impacted by the luminance of an image [START_REF] Henderson | Eye movement control during scene viewing: Immediate effects of scene luminance on fixation durations[END_REF]. [START_REF] Engelke | Perceived interest and overt visual attention in natural images[END_REF] state that colour, eyes, faces, and camera focus influence the observers in their choice. In order to limit gaze distractions, images should be of same nature, either all are RGB or all in grey scale, but not mixed.

Our goal is to define a protocol in a context of category identification in order to determine a simple gaze feature, that can predict what the user prefers, independently from the user and the target category. With respect to the elements highlighted by [START_REF] Castelhano | Eye movements during reading, visual search, and scene perception: An overview[END_REF], performing an experiment involving an eye tracker must be designed carefully.

The next section provides a detailed comparison between protocols designed for different tasks and the different related constraints. 

Protocols including an eye tracker

Tasks and interfaces

Semantic labels and image segmentation through the gaze: Eye tracking studies on images can give an insight into the cognitive processes involved in the visual tasks. For example, the purpose of [START_REF] Yun | Studying relationships between human gaze, description, and computer vision[END_REF] is to understand the construction of natural language. In such a context, the authors aimed at correlating the gaze position in the images to the elements that the participants remember as important. To this end, in a free viewing protocol (no target is specified), the participants were instructed to watch images one by one in order to describe them afterwards, in a memory test. This study puts forwards that an object that has been fixated will be remembered more than an object that has not. [START_REF] Yun | Studying relationships between human gaze, description, and computer vision[END_REF] also report that some object categories are more fixated than other. Indeed, animated objects (Animals, Persons) attract the attention more than inanimate objects. Moreover, the gaze is generally directed to the center of the object. However, this study required a set of images with bounding boxes in order to identify the objects that have been fixated. This preliminary step is tedious, as the authors of [START_REF] Su | Crowdsourcing annotations for visual object detection[END_REF] reported that the median time to draw a bounding box is 26 sec. Hence, it is not compliant with a system based on real-time decisions. In Computer Vision, gaze studies help to identify Areas Of Interest (AOI) and build models in order to automatically determine the AOI without human. For example, [START_REF] Papadopoulos | Training object class detectors from eye tracking data[END_REF] propose to use the gaze data of participants who are instructed to find target objects. In such a context, the images are displayed one by one like in [START_REF] Yun | Studying relationships between human gaze, description, and computer vision[END_REF] but the free viewing protocol is not adapted anymore. Thus, the task is clearly defined: the participants have to determine whether the image contains an object of a given category or not. The experiment is built in a context of 2-alternative forced choice object discrimination, which means that the set of images contains only two categories of objects and the query object is one of the two categories. This requires to build a set of images combining images from 2 distinct categories, like cats vs. dogs (see Figure 2.4). If the target [START_REF] Essig | Vision-based image retrieval (vbir): a new eye-tracking based approach to efficient and intuitive image retrieval[END_REF].

category is "cats", then an image that does not contain any cat contains "dogs" automatically. The categories are carefully matched so that the task is not too easy to the participant. The corresponding images have to be easily confusable, with similar colors and size. Moreover, both categories have to contain the same number of images so that the participant cannot guess the label. Such a setting allows to annotate images according to 2 classes, which is time saving. Moreover, this detection of objects with gaze data only is quite intuitive for the user as she has to only watch images and press a button to confirm the presence or absence of an object within the image. The final purpose is to automatically draw bounding boxes based on the gaze data without asking the participant to draw a bounding box. Then, the area of interest combined with the participant's answer is used to train a classification model. However, this study is constraining as it requires a pre-selection of images relative to 2 categories only, removing images that contain objects from both categories. Such a pre-selection is not a real-world context since we do not always no the relevance of an image a-priori.

Areas of interest and similarity evaluation:

Even though the correlation between gaze movements and image data allows to detect areas of interest and automatically assign semantic labels, this does not ensure an image to be correctly and exhaustively annotated. If an image is relevant for a target category but is not referenced with the corresponding label, the image will not be retrieved. Content Based Image Retrieval (CBIR) approaches have been designed in order to cope with images with missing labels, taking benefit from visual data only. Rather than using key-words that are not always precise enough, the user can provide a query image or a sketch in order to express what she is looking for.

In [START_REF] Essig | Vision-based image retrieval (vbir): a new eye-tracking based approach to efficient and intuitive image retrieval[END_REF] and [START_REF] Oyekoya | Perceptual image retrieval using eye movements[END_REF], the images are then displayed in a grid ( 4 by 4), with the query image displayed on the top. The participant has to select the most similar image so that the system can learn the visual properties and propose more appropriate images in the following steps until the query image is found. Here, the gaze can provide richer information about the areas of interest so that the learning stage can be more accurate and retrieves the query image in less steps (see Figure 2.5). However, the position of the images on the screen may impact the gaze movements.

In these 2 studies, the images are displayed in a matrix-like grid of images
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.6: Different layouts [START_REF] Simonin | Effects of display layout on gaze activity during visual search[END_REF]: Matrix-like, Elliptic, Radial, Random.The black dots correspond to the fixation points. The dark gray rectangle correspond to the target.

of various size, like many image search engines, not to mention the household name Google Image. [START_REF] Simonin | Effects of display layout on gaze activity during visual search[END_REF] have compared the impact of 3 other configurations with the matrix-like grid configuration: elliptic, radial and random (Figure 11.5). In this experiment, the participant has to find a previewed image in one of these configurations. The target image was identified quicker in the elliptic layouts than in the matrix-like layouts, which tends to prove that elliptic layouts are more comfortable and adapted to query image search. This experiment also enhances the fact that the selection of image with a mouse takes more time (2.6 sec.) than the identification of the target image with gaze data only (about 1.6 sec.). However, a query image is not sufficient to represent abstract categories. For example, if a participant is looking for original ideas of breakfast, an only picture cannot represent all the possible concept of breakfasts in the world. In England, the concept corresponds to the traditional dish based on sausage-eggs-bacon-beans, whereas in France it refers to pastries and coffee.

In CBIR systems, the images can be retrieved either by a similarity criterion relative to a query image (called query-by-example) like in [START_REF] Oyekoya | Perceptual image retrieval using eye movements[END_REF] or to an abstract concept that exists in the participant's mind which is called "mental image search" [START_REF] Wilson | Mental search in image databases: Implicit versus explicit content query[END_REF].

CBIR systems: different tasks

Target categories and mental search: In the context of category identification, mental image search is more adapted than the query-by-example paradigm. The purpose here is to build a subset of images that correspond to the target category, from the original dataset. Klami et al. [2008b] proved that the relevance of images can be inferred through gaze data only. The participant had to identify in grids of images (2 by 2) the presence or the absence of one image related to the concept of Sports. Note that the target images have a high diversity to represent the target category since Sports can be illustrated by people doing any sports (running, playing football...) or an object representing a sport. [START_REF] Hardoon | Image ranking with implicit feedback from eye movements[END_REF] is another study where the target category is a large concept, transports, that contains various subcategories. The protocol corresponds to the identification of the top 5 images related to the target category. In this case, there are several relevant images whereas the experiment of [Klami et al., 2008b] consists in a binary decision. This study can complete the results of [Klami et al., 2008b] by inferring an order of preference with gaze data only.

[ [START_REF] Kauppi | Towards brain-activity-controlled information retrieval: Decoding image relevance from meg signals[END_REF] is a follow-up of [Klami et al., 2008b] as the purpose is to identify whether the relevance feedback provided by the gaze can be enriched with brain activity data (EEG). The experiment consists in identifying the most relevant images in a grid of 4 by 4 images. There are 5 different tasks. However, compared with [Klami et al., 2008b], the instructions are subjective, like "find one image most related to man-made flying" (see Figure 2.7). As this study is not referred as a study about gaze analysis in subjective target categories, the authors do not described in details how they selected the ground-truth labels. In Figure 2.7, 2 images correspond to flying to the category man-made flying, but only one should correspond the most to this category. Let us now consider studies about preferences estimated through gaze data.

In the case of protocols dealing with mental search of images, the categories should be slightly ambiguous and easily confusable so that the participants have to focus on the task.

Difficulties inherent to an image A difficult image corresponds to an image

for which it is hard to decide the presence or absence of a given object class in it. Evaluating the difficulty of an image may provide rich information in order to improve segmentation results, according to Tudor [START_REF] Ionescu | How hard can it be? estimating the difficulty of visual search in an image[END_REF]. In and gaze features in CBIR systems Figure 2.7: "find one image most related to man-made flying" in [Klami et al., 2008b] [ [START_REF] Vijayanarasimhan | What's it going to cost you?: Predicting effort vs. informativeness for multi-label image annotations[END_REF], the difficulty of an image is evaluated through the time needed by a human to segment it. Tudor [START_REF] Ionescu | How hard can it be? estimating the difficulty of visual search in an image[END_REF] have identified different elements that contribute to the difficulty of visual search: 

•

Difficulty of an image

In order to determine the correlation between the difficulty perceived by the participants and the visual content of the images, Tudor [START_REF] Ionescu | How hard can it be? estimating the difficulty of visual search in an image[END_REF] used images provided by VOC2012 that correspond to 20 specific categories. 56 images are displayed one by one and are scored by 58 participants. The categories "aeroplane", "bird" and "cat" seem to be the easiest categories. The first 2 appear on uniform background which simplify the segmentation task. For the last category, the backgrounds are various but the target object is easily identifiable by the shape, eyes and body features. On the contrary, the classes "potted plant", "chair", "dining table" and "TV monitor" are difficult to be segmented.

Inferring preferences through the gaze:

In psychological studies about food topics (see Tables 2.5 and 2.6), preference is mainly evaluated under the Visual The VPP is usually used in psychology, especially with infants that are not able to speak yet. [START_REF] Fantz | Pattern vision in young infants[END_REF] applied this protocol to identify what catches the attention of an infant: something known or unknown (see Figure 2.9). [START_REF] Saayman | Response to novelty as an indicator of visual discrimination in the human infant[END_REF] has evidenced that infants generally prefer novel stimuli.

The VPP has been adapted to many other studies about infants' preference like in [START_REF] Rivera | Automatic selection of eye tracking variables in visual categorization for adults and infants[END_REF]. Such a protocol can be adapted to adults [START_REF] Martinel | A supervised extreme learning committee for food recognition[END_REF] with more complex choices such as abstract concepts that are difficult to express by words.

Visual Preference Paradigm (VPP)

In our context, we do not tend to evaluate what a participant prefers when there is no specific target category, but if the gaze reflects the choice of the participant with respect to the target category. When dealing with adults, the preference may be mistaken with an habituation bias [START_REF] Shimojo | Gaze bias both reflects and influences preference[END_REF]. The longer a participant is exposed to a stimulus, the less time she will spend looking at it. For example, if the target image is always displayed on the left side of the screen, the eyes will be attracted to the left after some runs. Thus, in the context of VPP, the images should be randomly displayed on the left and the right.

The habituation bias is also related to the representation of the target category. If the target category is easily recognizable, the participant may develop a gaze strategy to quickly identify the visual elements that characterize the target category. For example, if the target category is cat, the representation of what is a cat is universal: the shape of the head, of the ears, and the fur are common. However, if the target category is more generic like animals, there are a lot of possible representations: all the animals that exist (see Figure 2 In the VPP context, we should

.8). and gaze features in CBIR systems

• display the target image randomly on the left or on the right • display a cross at the centre of the screen to "reinitialize" the gaze • determine general target categories that are not easily recognizable

• display the target image with a non-target image that can be confusable How to limit the habituation bias [START_REF] Shimojo | Gaze bias both reflects and influences preference[END_REF]] performed a study based on VPP about adult participants. The participants have to select the images that are the most attractive in the pairs of images representing faces are displayed. The ground-truth labels are given by a score that is an average of the scores given by 24 observers on a scale from 1 to 7. These observers will not perform the experiment.

Preference can be defined as relevance of subjective queries like in [START_REF] Walber | Smart photo selection: Interpret gaze as personal interest[END_REF] where the participants have to select images from a set of images displayed in a grid according to 3 different subjective tasks. Before undertaking the experiment, the participants had to get an overview of all the photos, knowing that they would select afterwards images according to specific criteria. As aforementioned, the instructions should be expressed so that the user can correctly perform the task but without knowing the purpose of the study in order to not bias the results. Then, the gaze data are analysed in order to determine specific patterns that could predict their selection. Here, the choice is user-specific which is the opposite of our goal.

These different visual tasks support our hypothesis: the gaze can infer relevance [Klami et al., 2008b] and gives insight in the order of preference between relevant images [START_REF] Hardoon | Image ranking with implicit feedback from eye movements[END_REF]. The study [START_REF] Walber | Smart photo selection: Interpret gaze as personal interest[END_REF] enlightens the difficulty to perform an experiment dealing with subjective targets and draw conclusions generalizable to other participants. Thus,

Tasks in our context

Figure 2.10: Validation of the results by an explicit feedback experiment [START_REF] Essig | Vision-based image retrieval (vbir): a new eye-tracking based approach to efficient and intuitive image retrieval[END_REF]. The participant has to score both images in terms of similarity compared with the target image displayed on the top.

in this thesis, we will focus on objective target categories. After considering the different tasks and the corresponding display where an eye tracker can be used, let us now investigate the means of control that should be used to identify target images.

Feedbacks and controls with respect to the task

In order to validate the results provided by gaze driven processes, the participants are asked to provide explicit feedbacks (mouse click, word typing, questionnaire...). [START_REF] Rui | Relevance feedback: a power tool for interactive content-based image retrieval[END_REF] demonstrated that feedbacks could capture the user's need more precisely and thus, is a useful tool for interactive CBIR systems. Explicit feedbacks are associated with explicit controls, which means that the user has to interact with the computer. The means of control has to be adapted to the task and limit the user's distraction.

In [START_REF] Essig | Vision-based image retrieval (vbir): a new eye-tracking based approach to efficient and intuitive image retrieval[END_REF], once the visual task is finished and the selected image is bound to be the target image, the participant has to score both images in terms of similarity compared with the target image displayed on the top. This task is tedious as it corresponds to perform the visual task twice. Thus, this final step should be enriched or even replaced with implicit feedbacks recorded during the initial experiment.

Free viewing: Free viewing tasks are adapted to the studies about understanding how the participants look at the images by allowing specialists to elaborate a model of saliency that can improve the tasks of image segmentation. In [START_REF] Judd | Learning to predict where humans look[END_REF], participants visualize 1003 images corresponding to landscapes and and gaze features in CBIR systems portraits. The images are displayed one by one during 3 seconds, separated by a gray screen. In order to maintain the participants' motivation, the participants know that they have to perform a memory test after, where they have to identify among 100 images which ones have already been displayed.

Tasks based on free viewing give the opportunity to understand cognitive processes involved in memorizing tasks too. In [START_REF] Yun | Studying relationships between human gaze, description, and computer vision[END_REF], the participants have to memorize the image in order to describe it afterwards. The "memory" test consists in giving the name of objects that appear in the image. This task takes 20 seconds and is done after the visualization as a memory test would impact the eye movements. This means of answering is not precise as the participants could use different names to describe a same object. Thus, the authors used WordNet distance [START_REF] Wu | Verbs semantics and lexical selection[END_REF] to keep the words with small distance.

Multiple selection/ranking: The purpose of [START_REF] Kozma | Gazir: gaze-based zooming interface for image retrieval[END_REF] is to identify images that correspond to a target category. To this end, images are displayed in concentric rings. The participants can zoom in with the mouse or the gaze in order to display new images that are proposed according to the information provided by the gaze data on the previous visited images.

Multiple selection of images happens in a context of collecting images to build an album to recall an event. This is the task of the participants involved in [START_REF] Walber | Smart photo selection: Interpret gaze as personal interest[END_REF]. The participants have to identify a subset of 9 photos to create an album of memories related to an event. To this end, the participants had to use the mouse to drag and drop the chosen photos in a specific area. The gaze data were processed off-line to determine a model and compare with the users' selection.

Binary decision:

In [Klami et al., 2008b], the block of 4 displayed images contains either 1 or 0 target image. Thus, the user can use one of the 2 keys dedicated to the answer. However, this technique cannot allow to know which image is the target, if there is one. Only the gaze analysis can infer this information, under the assumption that we have access to the ground-truth labels in order to validate.

In studies based on Visual Preference Paradigm [START_REF] Chuk | Mind reading: Discovering individual preferences from eye movements using switching hidden markov models[END_REF][START_REF] Fantz | Pattern vision in young infants[END_REF][START_REF] Rivera | Automatic selection of eye tracking variables in visual categorization for adults and infants[END_REF][START_REF] Shimojo | Gaze bias both reflects and influences preference[END_REF], 2 keys can be used, each one corresponding to one of the 2 displayed images. This can be applied when only one image is displayed [START_REF] Walber | Smart photo selection: Interpret gaze as personal interest[END_REF].

However, the VPP was first designed to deal with infants that cannot speak yet. In this case, there is no other means of interaction than the gaze. Thus, the control is done by the gaze only, when one image has been fixated more than a certain time (threshold) [START_REF] Rivera | Automatic selection of eye tracking variables in visual categorization for adults and infants[END_REF].

Gaze control:

The experiments based on Visual Preference Paradigm could be extended to adult participants in order to elaborate interfaces controlled by gaze only rather than with the standard mouse click. The first intuitive argument is that gaze selection would be quicker than mouse selection as we explore images [Klami et al., 2008b] in order to identify if there is an image or not corresponding to the category sport. before taking a decision. In [START_REF] Oyekoya | A performance comparison of eye tracking and mouse interfaces in a target image identification task[END_REF], the authors compared the speed of these two means of selection. All the 12 participants had to identify a target image in a grid of 25 images, once with the gaze, and once with the mouse. In order to limit a cognitive bias linked to the first means of selection used, 2 groups have been made: one beginning with the mouse selection and the other beginning with the gaze selection.

The study [START_REF] Oyekoya | Perceptual image retrieval using eye movements[END_REF]] is a follow-up of [START_REF] Oyekoya | A performance comparison of eye tracking and mouse interfaces in a target image identification task[END_REF], with the same task: identifying a target image displayed on the top left of a grid of 16 images. The control is done by gaze only but the participants do not know what is the criterion to display the next images.

With gaze only, a new question comes up: how to be sure that the user has taken a decision and that he is not still exploring the picture? In [START_REF] Jacob | The use of eye movements in human-computer interaction techniques: what you look at is what you get[END_REF], R.J. Jacob warns us about the risk of "Midas touch" in applications using only gaze information. Some eye movements do not indicate directly what the decision, but the way we explore is. At least, it is preferable at a first step to control the application with an external device like keyboard or mouse.

Midas Touch effect [START_REF] Jacob | The use of eye movements in human-computer interaction techniques: what you look at is what you get[END_REF] Indeed, if the dwell time threshold is too short, the gaze may activate an action that was not intentional. If it is too long, some non-informational gaze points may appear because the gaze would be attracted elsewhere.

The main properties of the protocol are reported in Table 2.1. This enhances the difficulty to get participants in experiments, the choice of the display related to the task, and the corresponding means of control.

In the next subsection, we will report the main gaze features identified as informative but generalizable enough to any context. We only consider 5 major studies. and gaze features in CBIR systems Figure 2.12: Query by image: find the target image among the 16 images displayed. On top left, the image query.

First, [Klami et al., 2008b], [START_REF] Kauppi | Towards brain-activity-controlled information retrieval: Decoding image relevance from meg signals[END_REF] and [START_REF] Kozma | Gazir: gaze-based zooming interface for image retrieval[END_REF] are directly correlated to our context as their purpose is to use gaze data only to identify the most relevant images. [START_REF] Walber | Smart photo selection: Interpret gaze as personal interest[END_REF] has a similar purpose but extended to subjective category, which can help us to identify a gaze feature independent to any kind of target category. We also consider [START_REF] Hardoon | Image ranking with implicit feedback from eye movements[END_REF] as their final purpose is similar to ours, ranking images according to image features without considering the gaze features in the final ranking step.

Gaze features and information

There are three kinds of gaze features. First, raw gaze features that are directly inferred from raw gaze data. Then, the fixations (clusters of raw gaze data) are the most used gaze features. Finally, we will describe other gaze data identified in different studies.

Raw data:

The raw gaze features that are calculated from raw data in related works are reported in the first column of Table 2.2. These raw data indicate the first (R2) and the last seen (R3) images and the number of revisits between images (R4). By counting the number of vectors recorded during the visualization of a page gives an idea about the total visualization time (R5). The same can be applied per image (R6).

Fixations and saccades: [START_REF] Essig | Vision-based image retrieval (vbir): a new eye-tracking based approach to efficient and intuitive image retrieval[END_REF] studied the case of comparing images before selecting the most relevant one. When considering similar images, the user exist (see column 2 in Table 2.2). In [START_REF] Kozma | Gazir: gaze-based zooming interface for image retrieval[END_REF], the authors compare their method of image ranking based on a combination of gaze features with a random ranking and a ranking based on the number of fixations per image.

Other gaze features:

The remaining features concern the position of the gaze and the size of the pupil. In [START_REF] Hardoon | Image ranking with implicit feedback from eye movements[END_REF], the authors propose to consider the gaze spread horizontally (see Figure 2.13) and vertically (O1, O2, O3, O4). These features gives an insight on the images that have not been visited for example. Moreover, such features complete the information provided by the fixations in the case of ill-detected fixations.

The authors also consider the information given by the maximum size of pupil (O6). Indeed, different studies [START_REF] Hupé | Pupil dynamics during bistable motion perception[END_REF][START_REF] Lamirel | Pupil dynamics during bistable form/motion binding[END_REF] have reported that the size of the pupil may vary along with the emotions. Dealing with selections of photos regarding subjective criteria, like finding the most beautiful photos, [START_REF] Walber | Smart photo selection: Interpret gaze as personal interest[END_REF] propose to calculate features related to the maximum pupil size and the average pupil size per image. However, the fixations and observation time appeared to be more significant in the prediction of the selection.

Comparing the studies (see Tables 2.3 and 2.4), features relative to fixations are obviously the most popular ones. The underlying hypothesis is that the longer an image is fixated, the higher the chances for this image to be selected.

Such tasks can be discriminated into 2 groups: the ones that target to anal-yse user-specific application and the other ones that identify common patterns between different users. [START_REF] Hardoon | Image ranking with implicit feedback from eye movements[END_REF] aim at finding a simple feature so that it can be user-independent, whereas in [START_REF] Walber | Smart photo selection: Interpret gaze as personal interest[END_REF], the authors explore whether the subjective selection can be inferred per user. Our goal is closer to the one of [START_REF] Hardoon | Image ranking with implicit feedback from eye movements[END_REF].

Gaze and food images

In the last decade, food behaviour have drawn a lot of attention especially with the emergence of chief cooking programs, fitness programs, Instragram trends and not to forget special care to health issues (diabetes, weight issues, hypertension...). Specialists target to understand human perception of food, especially for people with weight issues. Eye trackers have been introduced in these studies in order to evaluate the impact of the appearance of food, the impact of the environment and user-specific difficulties in their food behaviour.

In this section, we describe the settings of different gaze studies on food images with regard to their respective purpose, but do not analyse the health results.

Topics

The gaze studies about food images are generally related to weight issues [van der [START_REF] Van Der Laan | Sweet lies: neural, visual, and behavioral measures reveal a lack of self-control conflict during food choice in weight-concerned women[END_REF] and to the impact of the advertisement on our eating habits [START_REF] Velazquez | Attention to food and beverage advertisements as measured by eye-tracking technology and the food preferences and choices of youth[END_REF]. Specialists try to correlate the gaze movements on food images with users' particularities, such as the hungriness [START_REF] Werthmann | Can (not) take my eyes off it: Attention bias for food in overweight participants[END_REF], the mood [START_REF] Mojet | Are implicit emotion measurements evoked by food unrelated to liking?[END_REF] and the context. For example, in [START_REF] Werthmann | Desire lies in the eyes: attention bias for chocolate is related to craving and self-endorsed eating permission[END_REF], participants were grouped according to 4 categories: required to eat, forbidden to eat, individual choice to eat, and 50% choice to eat. Hence, preliminary questions should be asked to the participants in order to evaluate potential users' bias. Specialists also target to assess the impact of food perception on our mood and emotions [START_REF] Mojet | Are implicit emotion measurements evoked by food unrelated to liking?[END_REF]. In [START_REF] Werthmann | Can (not) take my eyes off it: Attention bias for food in overweight participants[END_REF], the authors admit that food words might have weaker motivational effects.

These experiments take place in the context of psychological studies that are not elaborated to support an image classification process based on images annotated with gaze data.

Experiments

The settings of the different studies about food images are compared in Table 2.5 and Table 2.6. The number of participants is higher than in studies about standard categories images (less than 10 generally). Moreover, the preference between images is mainly studied under the Visual Preference Paradigm (VPP). Some studies deal with gaze bias analysis [START_REF] Armel | Biasing simple choices by manipulating relative visual attention[END_REF]. To this end, the authors introduce a gray mask between each displayed pair of images with a gaze distractor ran-and gaze features in CBIR systems domly displayed. This gray mask can also be used to limit gaze bias and calibrate the eye tracker again when the experiment lasts more than 20 minutes.

Considering the categories of both target and non-target images, two situations are possible. Either there is a high interclass variability: the target images are related to food whereas non target images are not. However, a careful attention must be paid when matching the images so that the task is not too easy for the participant. In [START_REF] Werthmann | Desire lies in the eyes: attention bias for chocolate is related to craving and self-endorsed eating permission[END_REF], images of food are displayed with images of instruments because the color are similar and the images can be easily confusable.

On contrary, some studies involved pairs of images with low interclass variability: high energy food vs. low energy food [van der [START_REF] Van Der Laan | Do you like what you see? the role of first fixation and total fixation duration in consumer choice[END_REF].

There is no information about intraclass variability, that is to say if the target images are similar or totally different (cakes, vegetables, meats...). We suppose the intraclass variability is high.

Summary

Through the analysis of different gaze studies about visual tasks, this chapter lists the different difficulties in the elaboration of a gaze protocol. Such protocols have to keep a good balance between the limitation of the burden of the task to the participants and the design of protocols in order to collect interesting gaze information. If the experiment lasts more than 20 minutes, small breaks should be inserted and the eye tracker should be recalibrated in order to ensure the precision of the gaze data. In order to limit the parasite gaze movements, the tasks should be defined to keep the focus of the participants. The instructions relative to the visual task should be detailed, intuitive but not too easy. The user should not be able to guess the purpose of the study so that the results could not be biased. Moreover, the environment and internal conditions of participants influence their choices [START_REF] Werthmann | Can (not) take my eyes off it: Attention bias for food in overweight participants[END_REF]. Thus, the experimenter should take care of the experimental settings and prepare carefully the questions to ask to the participants. For example, the experiments should be distributed all along the day especially when the visual tasks involve food images, as the hungriness could interfere with the participants' choices.

According to Klami et al. [2008b], we can infer the relevance of images with gaze data only on abstract concept like Sports, but the control should remained explicit to avoid the Midas Touch effect [START_REF] Jacob | What you look at is what you get: eye movement-based interaction techniques[END_REF]. Relevance can be assimilated to preference too. Protocols involving food images are generally based on the Visual Preference Paradigm which consists in displaying pairs of images. In this case, the participants indicate their preference by pressing one of 2 keys. However, displaying only 2 images on the screen could limit the gaze movements of the participants by using the peripheral vision owing to the habituation bias. Thus, the position of the images on the screen is important and the target image should be randomly displayed on the left or on the right part of the screen. The content of the image is important too: bright colors and textual information attract the gaze. Moreover, [START_REF] Werthmann | Desire lies in the eyes: attention bias for chocolate is related to craving and self-endorsed eating permission[END_REF] chose non-target images that could be easily confusable with target images owing to the similarity of color, brightness and size. Moreover, the target categories should be not easily recognizable and have no particular associated mental image, like animals.

Subjective categories could fit this criterion but are difficult to evaluate. Either the participants provide their own ground-truth labels but the gaze features that could predict their selection will be user-specific, or other participants are involved to manually score the images. For example, in [START_REF] Shimojo | Gaze bias both reflects and influences preference[END_REF], a first group of observers provided a measure of attractiveness on a scale from 1 to 7 to provide a baseline. Then, the evaluation of other groups of participants according to different hypotheses was compared with this baseline. This preparation is time consuming. Considering the average number of participants involved in studies, it is difficult to get volunteers (generally, less than 10 participants), which is not statistically representative.

We do not target to develop a perfect gaze label estimator, but one that has a score of accuracy high enough. Moreover, we target to identify a user-independent gaze feature, like in [START_REF] Hardoon | Image ranking with implicit feedback from eye movements[END_REF]. In this thesis, we do not target to study subjective categories as it is difficult to get the ground-truth labels and to avoid biases. However, we will determine general categories that are the combinations of smaller categories. Once the gaze label estimator is established in this context, it could be tested on subjective categories in future works.

• Define a target category (mental image search) in order to limit the habituation bias,

• Establish a set of images that makes the visual task difficult enough (colors, conceivability ...),

• Display the images along with the Visual Preference Paradigm (VPP) while limiting the habituation bias,

• Define the means of control in order to avoid the Midas Touch. [START_REF] Hardoon | Image ranking with implicit feedback from eye movements[END_REF][START_REF] Kauppi | Towards brain-activity-controlled information retrieval: Decoding image relevance from meg signals[END_REF]Klami et al., 2008b;[START_REF] Kozma | Gazir: gaze-based zooming interface for image retrieval[END_REF][START_REF] Walber | Smart photo selection: Interpret gaze as personal interest[END_REF], grouped into 3 subcategories: raw data directly acquired from the eye-tracker, fixations that are mainly used in the state-of-the-art, and other features that could be interesting in our context.

Important concepts to keep in mind for the protocol

Summary
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R1 R2 R3 R4 R5 R6 O1 O2 O3 O4 O5 O6 O7 O8 O9 This chapter describes the protocol choices and analyses the recorded gaze data. To ensure the selection of a user-independent gaze feature, 4 groups of study have been formed to perform 4 sessions of experiment. We have studied the data of the 4 groups separately. As the results will be compared among users, the image categories have to be well defined and not judgemental. To ensure that the gaze feature is not related to a domain-specific task, each group of study will have different image categories to identify. Moreover, the identification of the target relies only on gaze features. Thus, the final rules are derived from the gaze features and will be called GBIE1 . With such properties of generalizability, the GBIE is not expected to be fully reliable. The purpose of this part is to identify a GBIE computable in real time to be further integrated into an interactive CBIR process, simple enough to be generalizable to any user, and intuitive enough to limit the burden for the user.

Task and interface

The final goal of this experiment is to build a set of images where the target images have been identified thanks to gaze data. We will design a task referring to the image in the user's mind, which is called mental search [START_REF] Wilson | Mental search in image databases: Implicit versus explicit content query[END_REF].

Moreover, in order to simplify gaze analysis and draw stronger conclusions, the task will consist in a binary annotation: relevant or not relevant. The identification of a target category can be understood as the identification of what the participant prefers. Thus, we will work with VPP (see Section 2.2). The images are displayed by pairs, with only one target image by pair, which is fully compliant with binary classification CBIR systems (see Figure 3.1). In order to limit gaze distractions in the protocol based with the VPP, images should be of same nature, either all are RGB or all in grey scale, but not mixed. In this experiment, the images are displayed in RGB mode with no textual information. We have selected the images from VOC2007 [START_REF] Everingham | The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results[END_REF] which is known to have a huge diversity of images. Indeed, the target objects are not always displayed at the center of the image. We have also selected images from FOOD101 [START_REF] Wang | Recipe recognition with large multimodal food dataset[END_REF] where the dishes are displayed according different point of views. For example, the apple pie category can be represented by an entire apple pie or small portion in a plate, with or without additional ingredients (see Figure 3.2).

The diversity of the representation is related to the difficulty of an image. In order to make the identification not too easy in the VPP context, we have selected images of various difficulty, according to some criteria defined by [START_REF] Vijayanarasimhan | What's it going to cost you?: Predicting effort vs. informativeness for multi-label image annotations[END_REF]: number of objects in the image, number of truncated objects and objects spread. Half of the pairs are supposed to be easy and the other half difficult (see Appendices A to C). However, we have not quantified measure of this difficulty. Moreover, the criteria given by Vijayanarasimhan and Grauman [2009b] are defined in a context of one-by-one display. It could be interesting to test their measure in a context of VPP. We explain in Appendix A our strategy.

The size of the images is another source of gaze bias. Here, the RGB images are displayed in relative size: the height of each image is determined by the smallest height of both images, preserving the image ratio. Images are rescaled with dimensions calculated relatively to the application window dimensions. Image width is at most set to 27% of the window width (this amount has been experimentally validated to prevent users from using peripheral vision), images are displayed at both extreme sides of the screen.

In addition, the target image is randomly displayed on the left or on the right part of the screen in order to limit the gaze habituation. This strategy is reinforced with the display of a cross on the vertical axis in the middle of the screen between the display of the images (see Figure 3.1).

The means of control are another source of gaze distraction. Indeed, if there are too many options to provide an answer, the participant will look at the keyboard rather than the screen. However, relying on gaze data only to drive an experiment can bring another issue: Midas touch effect as defined in Section 2.2.2. Some gaze movement could activate buttons with no intention and annoy the participant. The VPP protocol limits the interaction with the computer. Indeed, one key (space bar) is enough to indicate when the user has made her choice. This supposes the target images are easily identifiable, but not too simple so that the participants have to look at both images to take their decision. The choice of image categories is described in the next subsection.

Image categories and groups of studies

The target categories should be general in order to limit the gaze habituation (see Section 2.4).

Thus, in a first set of experiments, the target concepts to identify correspond to the "parent concepts" of the 20 categories in VOC2007 [START_REF] Everingham | The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results[END_REF], which is to say Animals, Persons, Vehicles and Furniture, so that the gaze-based annotation can be validated.

In a second set of experiments, the concepts are selected in a database about food recipe concepts, FOOD101 [START_REF] Wang | Recipe recognition with large multimodal food dataset[END_REF], as the end-goal of VISIIR is related to food images (see Chapter 1). This context is a little more complex than the previous one as both target and non-target images are related to a parent category: food.

The following two paragraphs detail where and how the images were selected first for the standard search task and then for the food recipes search task. All the images are presented in Appendices A to C.

Standard concepts:

The 20 specific categories in VOC2007 are grouped into 4 parent categories: Animals, Persons, Vehicles and Furniture. We randomly selected 20 images in the VOC2007 database per target category. We randomly selected 20 non relevant images for a task so that they correspond to the 3 other task categories. For example, if the target category is Animals, 20 images will represent Animals, each being displayed with a non-target image that can represent either Persons, Vehicles or Furniture.

Note that we do not work with a 2-alternative forced choice object discrimination [START_REF] Papadopoulos | Training object class detectors from eye tracking data[END_REF]. Even if this strategy would allow to build a training set for two target categories, build a training set with 2 categories only is demanding and time-consuming. Moreover, we suppose that we have no access to true-class labels. Thus, a strategy one vs. all is more adapted : images from one target category against images from any other non-target categories.

Two groups of participants will perform the experiment with these concepts. The first group of study (S 1 ) contains 46 participants (16 women and 30 men). Six were removed: two children, a volunteer who did not respect the instructions, another one with problems of glasses and two others that had already done the test during the experiment setting development phase. Thus, the results reporting below correspond to 40 participants, who were between 21 and 60 year-old.

The second group of study (S 2 ) contains 48 participants (24 women, 24 men). Two were removed: one due to poor eye detection rate and another one because of autism which leads to another strategy of vision (see [START_REF] Dakin | Vagaries of visual perception in autism[END_REF] for a review on peculiarities of perception in autism). The participants were between 16 and 60 year-old.

Food concepts: All things being equal, 4 concepts related to food recipe are identified in the database FOOD101 [START_REF] Wang | Recipe recognition with large multimodal food dataset[END_REF]: Beet salad, Cannoli, Beef carpaccio and Ice cream. Target and non-target images belonging to the parent category of food, the pair of images have a low interclass variability. The corresponding group of study (F 1 ) contains 48 participants (13 women and 35 men). Two were removed: one did not respect the instructions and another one had problems with glasses. They were between 18 and 60.

A second group of study (F 2 ) have performed an experiment with the following concepts: Appetizers, Desserts, Citrus and Berries. There were 56 participants (19
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women and 37 men).

The participants were volunteers and did not get paid to participate to the experiment.

Apparatus and environment

The gaze data have been recorded with an eye tracker device. Such a device can be a screen with integrated infra-red cameras. This is the case of Tobii X120, a 17" screen, used to record the gaze data of the participants in S 1 , F 1 and F 2 , with a sample rate of 60 Hz which corresponds to data recorded every 16 ms approximately. Eye trackers tend to be more and more used. Thus, a portable version of eye tracker exists: Tobii X32. Two infrared cameras are embedded in a bar that can be fixed on any computer screen. For S 2 , the gaze data are recorded with Tobii X32, with a 15" screen and a sample rate of 30 Hz, which corresponds to data recorded every 32 ms approximately.

First, the participant has to be correctly placed in front of the eye tracker so that her eyes are well detected. According to the manual of reference, the best position corresponds to a visual angle of 60 degrees, which corresponds to a distance of 70 cm from the screen approximately (the length of an arm). In order to validate the position, a video of the eyes recorded in real time is displayed in the launcher application (see Figure 3.3). This interface is always accessible throughout the experiment. To validate the eye detection during the experiment, the experimenter should have another screen where the real-time video is displayed. Thus, when she notices a problem of detection, the experimenter can ask the participant to slightly move to correct her position. The experimenter should sit one meter from the participant, on her side and not behind.

Once the position of the participant is validated, the participant processes to the calibration part. It consists in fixating a flashing red point that randomly moves on 5 positions (see Figure 3.4 ). This part allows to register intrinsic data of the participant's gaze in order to get higher precision in the detection of her eyes position. The participant can slightly move her head. However, in the experiment, the head movements should be limited.
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Protocol

For all the experiments, user participation was distributed all along the day. Particular attention was given to the experiments dealing with food images (meal hours, before, after). The experiments can be done for free [Vijayanarasimhan and Grauman, 2009a], for fun [START_REF] Russell | Labelme: a database and web-based tool for image annotation[END_REF] or for money [START_REF] Sorokin | Utility data annotation with amazon mechanical turk[END_REF]. In our case, the participants performed the experiment for free.

The whole experimental protocol is described in Figure 3.6. During the whole experiment, the experimenter should keep the interface with the real-time eye display on her screen in order to check the validation of the gaze recording. 1. The first step consists in asking questions about the participant.

Position checking Calibration

2. Then, the position of the participant, who is sitting at 70 cm from the screen approximately is checked. The corresponding interface has to represent both eyes moving to validate the position.

3. Once the position is checked, calibration is performed: the participant has to follow the red point with her eyes.

4. Finally, the experimenter gives the oral instructions to the participant, who can also read them on the screen: the purpose is to find the target image in each pair of images. Each category annotation contains twenty pairs of images, from two different categories. The images are not associated similarly from one participant to another one. The participant are asked to perform the retrieval task as quickly as possible in order to limit the parasite gaze movements. 

Characteristics

Gaze data Recorded

Table 3.1: Characteristics to describe our protocol as defined in [START_REF] Hajimirza | Implicit image annotation by using gaze analysis[END_REF] 5. The participant can perform the visual task: the following steps are repeated 20 times.

(a) The image pair is displayed at most 5 seconds. If the participant has found the target image before, she presses the space bar. The images disappear.

(b) A cross is displayed on the median vertical axis during 2 seconds.

The characteristics of our protocol are summarized in Table 3.1. We remind the reader that the participants of each group of study (S 1 , S 2 , F 1 and F 2 ) have visualized respectively 4 blocks of 40 images, each block containing half images related to a target category. The gaze data of the participants have been collected and related to the corresponding pair of images. From the recorded gaze data, we target to determine the one that is informative enough, being generalisable over different participants, whatever the target category and independent from the visualization time.

Gaze feature analysis

Gaze features

The gaze features are taken from Table 2.2 and are calculated from the raw gaze data described in Section 2.1. In order to perform a user independent analysis and identify a gaze feature that discriminates the image to be chosen by any participant, all the data have been aggregated by group of study. Raw gaze data collected for S 1 and S 2 are aggregated in a single data file available at VISIIR gaze data2 . the best of our knowledge, this is the first database of measurements from gaze data for a visual preference protocol on various categories (not only for faces as in several previous works).

The main groups of features are:

• Fixations (14-25): brief pauses in the gaze. They are identified with the standard of ClearView fixation filter provided with the Tobii eye-tracker software. A fixation is detected if the points have a dispersion less than 30 pixels (0.6 visual degrees for a monitor of 17" screen with resolution 1280*1024) in a period of at least 120 ms. These values are defined in [START_REF] Kozma | Gazir: gaze-based zooming interface for image retrieval[END_REF], derived from the rules stated in [START_REF] Salvucci | Identifying fixations and saccades in eye-tracking protocols[END_REF]].

• Saccades (19): abrupt jump in eye position. It corresponds to the aggregation of points in a period shorter than 120 ms.

• Pupil size (2, 3, 21): the pupil size varies either for biological reasons (lighting changes, colors...) or as a reaction to a feeling.

• Gaze position (6, 7, 8, 9, 10, 11, 31): the x spread (resp. Y spread) corresponds to the difference between the maximal and the minimal X-coordinates (resp. Y-coordinates).

Feature extraction strategy

The purpose of this study is to classify gaze features (see Figure 3.7 ) that predict whether the image that is be selected by the participant will be the left or the right image. We propose to use the decision trees induced by C4.5 algorithm. Decision Trees are a non-parametric supervised learning method used for classification and regression [START_REF] Tuffery | Data Mining and Statistics for Decision Making[END_REF]. The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. This method is popular owing to the visual interpretation that makes decision trees easily understandable. A decision tree as illustrated in Fig- ure down (leaf node). The decision tree iteratively selects the most discriminant feature (node) and defines a threshold that can segregate the gaze features vectors into the two most homogeneous subsets. The thresholds on each side of the ellipses correspond to the rule applied on the selected feature. The leaf node provides a class label and a probabilistic value which corresponds to the number of instances correctly classified among the instances classified by the rule. The root node can be considered as the most discriminant feature.

In Figure 3.7, the first rule is applied on the feature 13, which is the gaze average in x. This leads to two subsets: on the left hand side, gaze feature vectors with feature 13 ≤ 0.49, and on the right hand side, the ones with feature 13 > 0.49. On the right side, the subset is homogeneous enough with respect to one of the two target classes, while on the left hand side, the process is repeated until the homogeneity is high enough. Ellipses represent the selected discriminant features, and the number above indicates the corresponding feature in Table 3.3. The thresholds on each side of the ellipses correspond to the rule applied on the selected feature in the ellipse. The feature at the top of the classification tree is called root.

At the bottom of the decision tree, the bi-color rectangles represent the leaves, corresponding to the final subsets, where light grey color corresponds to the left selected image, and the dark grey color corresponds to the right selected one. Given that we want to look for a simple gaze based estimator that still provides good classification results, we will consider the root feature of the decision trees as the most discriminant one. We will then apply the decision tree on this only feature, called gaze based estimator, in order to determine the successive rules to apply on the set of gaze features vectors to classify them according the participant's chosen image. To perform this study, we used J48 library in R.

The next section reports the results of the gaze feature extraction per group of study. The gaze data recorded on the different category identification tasks are merged per group in order to find a feature that is category independent. Then, if the same feature is identified as discriminant for the 4 groups, this feature is user independent too. Next, the extracted feature will be analysed in order to be independent from the visualization time. Finally, another decision tree will be built in order to determine a set of rules that the extracted gaze feature should respect to best predict the image to be chosen.

Results

Feature extraction

First, the decision tree is applied on the 30 gaze features from the state-of-the-art (group α). Then, the ones depending on the visualization time, like characteristics calculated on the "last seen" or "last fixated" images are removed with regard to the constraint of interactive we have established in Chapter 2 (group β). We also remove the characteristics about the first seen image (group γ). Finally, the last feature, average X-position of the gaze is added (group δ). Considering the α group of features, the root corresponds to the last seen image for S 1 , S 2 and F 2 whereas it corresponds to the 1st seen image in the case of F 1 .

Considering the β group, the root corresponds to the Xspread for S 1 , S 2 and F 2 , which corresponds to a gaze position feature. For F 1 , the root still corresponds to the first seen image.

Results
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Considering the γ group, the root corresponds to the horizontal spread on the images displayed on the right for the 4 groups. However, the performances of the decision tree are from 1.5 to 13.7% lower than the performance considering all the features from the state of the art. As the root corresponds to a gaze position, the average x-position could be a well suited feature in the VPP context. Considering the δ group, the root corresponds to this feature for all the groups of study. The performances of the decision tree are from 2.6 to 10.2% upper than the decision tree built with the γ group. However, for F 1 , there is a loss of 1.2 %.

Hence, the average of x-gaze position appears to be the most discriminant feature since: it is outlined by the 4 groups of studies (user independence) that where looking for images related to standard and food categories (category independence). However, this feature corresponds to the average position during the whole visualization time. Analysing the properties of this feature will allow to limit this time dependency.

Analysis of the average position of the gaze

For a real-time decision, the cumulative average of the gaze position X is a better candidate than the gaze average position at the end of the visualization time with regard to the constraint of interactivity established in Chapter 2:

x = t i=1 x i t (3.1)
where t corresponds to the different acquisition time of the gaze position).

In this study, the gaze-based estimator should predict as soon as possible the user's selection of the target image. The average duration of visualization of image pairs is 2 seconds in average. [START_REF] Duchowski | A breadth-first survey of eye-tracking applications[END_REF] explains that the average time to understand the content of an image is 400 ms. It is thus reasonable to think that the time of prediction could be half the visualization time (1 sec.).

On figure Figure 3.8, we present four typical examples of the cumulative average for gaze recordings. The time limit is symbolised by a red vertical line. If the visualization lasted less than one second, the line is not represented (cases c and d). One can note that the first 400 ms corresponds to the latency induced by the cross displayed on the vertical axis on the middle of the screen between the image display. The following study have been done with and without taking into account the first 400 ms. However, the results were similar. Thus, for a seek of clarity, we report the results taking into account the first 400 ms.

The vertical green line represents the middle of the screen. Paying more attention to the curves, we notice that the slope brings more information. Considering the target image indicated above the figures, we can correlate the slope (left or right) with the target image before the time limit (1 second).

As an approximation of the slope, two values of the cumulative average of x are considered: at T 0 and at T 1 > T 0 (see Table 4.8). 

Summary

This chapter depicts 4 experiments performed with the same visual task: identify the target image among two images. The purpose was to determine if it could be possible to infer the choice of any participant with gaze data only and independently of the target category. Table 3.1 summarizes the characteristics of the protocol and validates the first 3 challenges defined at the beginning of Chapter 3. The resulting analysis of the gaze features have evidenced the average of x-position as the most discriminant feature independently of the group of study and the target category.

The next chapter will be dedicated to the elaboration of a set of rules, called Gaze Based Interest Estimator, from this gaze feature. We will build a set of rules by group of study and test each of them with the gaze feature corresponding to the other groups of study. This test will evaluate the property of user-independence and category-independence of the set of the rules.

We have noticed that the study F 2 is slightly different from the others (see Table 3.4). This can be explained by the choice of the target categories which are vague and confusable with the non-target categories. In next part, we dissociate the results of S 1 , S 2 and F 1 from the results of F 2 .

CHAPTER 4

Is the GBIE universal? Given the context of Visual Preference Paradigm described in Chapter 3, the gaze feature that holds information to infer the participants' choice is the average x-position of the gaze. This feature was selected among other gaze features as explained in Chapter 3 with the properties of being agnostic to the users and the categories, and being computable in real time. The x-gaze position through the time corresponds to the curve of the cumulative average (CA). The curve reflects the movements of the gaze from one image to another one and the cognitive process of examination. Moreover, this feature goes along with the intuitive hypothesis that the more one participant fixates one image, the more chances the image to be chosen.

To build a gaze based interest estimator (GBIE) that can predict the choices of any participant from her x-gaze position, we will build a set of rules from the cumulative average gaze position. To this end, we will build a classification tree from each of the average x-gaze position collected for each group of study S 1 , S 2 , F 1 and F 2 .

The first step is to identify which sets of rules 1 appear to predict the labels the most accurately. We will also determine when the cumulative average of xgaze position is informative enough, without depending on the whole visualization time. The second step consists in testing the power of generalizability of the set of the rules, which can be assessed by the depth of the corresponding decision tree. To this end, the cumulative average collected from the groups of study that have not been used to build the decision trees selected in the first step will be applied as input to the decision trees. This test evaluates the user-independence and 64 Chapter 4. Is the GBIE universal? the generalizability to gaze data recorded during the visualization of other target categories.

Data

As a reminder, the groups of study S 1 and S 2 have visualized the same images from 4 standard categories: Animals, Persons, Vehicles and Furniture. The study was divided into 4 tasks, corresponding to the identification of images in each pair corresponding to one of the 4 categories. The non relevant images for the corresponding task corresponded to the 3 other categories.

The groups of study F 1 and F 2 have visualized pairs of images where both images were related to food recipe. Target and non-target images correspond to the same parent category: food. Thus, the pairs have a low interclass variability, which could make the identification of the target category more difficult compared with S 1 and S 2 . In the case of F 1 , the 4 categories concerned particular dishes: Beet salad, Beef carpaccio, Cannoli and Ice-cream. In the case of F 2 , the 4 categories concerned larger concept: Appetizers, Desserts, Citrus and Berries. The identification of the target image in F 2 could be more difficult than for F 1 and involve a higher cognitive charge. Indeed, the general categories like Desserts can depend on the culture.

In this chapter, we will build decision trees from the average x-gaze position collected for each of the 4 groups of study. The 4 resulting decision trees will be discriminated according to their validity score. The remaining decision trees will be tested on the gaze position of the groups of study that were not involved in the construction of the tested decision tree. In order to draw stronger conclusions, we generate 4 other groups of gaze position from the original ones taking benefit from the symmetry of the interface (see Figure 4.1).

If the target image was displayed on the left part of the screen in the original group (S 1 for instance), the target image for the generated group (Sym S 1 ) is on the right. The x-position is normalized between 0 and 1, the same goes for the cumulative average x-position. Then, the average gaze position at T (CA T ) calculated from the original data will become |1 -CA T | .

Mirror data

Set of rules: Gaze Based Interest Estimator

Table 4.7 reports the number of instances correctly labelled by the decision trees built from the cumulative average of x-gaze position at T 0 relative to each group of study. The underlying hypothesis is defined in Section 4.1. Such an hypothesis is compliant with the standard hypothesis according to which the more fixated is an image, the higher the chances this image has to be selected. Except for the group F 1 , the validity of the decision trees barely reaches 60%. Introducing another value of cumulative average to build a decision tree should strengthen the label inference considering that the slopes of cumulative average indicated the direction of the gaze (from the left to the right or from the right to the left). Table 4.8 reports the accuracy of the decision trees built with cumulative average at T 0 and T 1 for each group of study. We constrain T 1 to values <1 sec which corresponds to half the average decision time (see Table 3.2).

Set of rules: Gaze

Adding the Cumulative Average (CA) at T 0 =672ms to the CA at T 1 =992ms in order to build a decision tree improves the validity score from 0. the groups S 1 and S 2 , the later T 1 , the better the results. For T 1 > 928ms, the validity of S 2 does not improve much whereas the validity of S 1 improves by 4% between T 1 =928ms and T 1 =960ms. Waiting until T 1 =992ms does not affect much the performances (> 1%). Thus, we select T 0 =800 ms and T 1 =960 ms as a good compromise. This is compliant with the results of [START_REF] Papadopoulos | Training object class detectors from eye tracking data[END_REF]] (described in Chapter 2), where the mean response time per image is 889 ms. Our context is more complex since images are displayed two by two with only one target image, whereas in their protocol, the images were displayed one by one with a binary answer. Contrary to S 1 and S 2 , F 1 keeps similar validity scores across the time. Thus, the selection of T 0 = 800ms and T 1 = 960ms is validated. F 1 has the highest validity score (80%) compared with the 2 other groups.

The decision trees of S 1 and F 1 built at T 0 = 800ms and T 1 = 960ms appear to be the most efficient ones considering the validity scores with an advantage for F 1 . The complexity of a decision tree, which means the maximal number of queries to reach a leaf, can also give insight into the property of generalizability. Figure 4.2 (resp. Figure 4.3) represents the decision tree associated to S 1 (resp. F 1 ). Notice that the decision tree associated with F 1 contains only one binary rule, which can be compromising when testing it with other sets of gaze features (S 1 , S 2 ). In order to be generalizable, the decision tree should not be too complex. Indeed, the solution would be in a smaller space where the data are correctly classified by hazard. However, if the decision tree is too small, the data that were used to build it were probably special and the decision tree could not infer correctly the labels for other groups of data. The decision tree corresponding to F 1 has a good score of validity (81%) but consists in a single binary decision. Thus, it is not expected to be highly generalizable. The decision tree corresponding to S 1 has a lower score of validity (68%) but is more complex as 6 queries are required to reach a leaf maximally. These 2 potential GBIE (GBIE S 1 and GBIE F 1 ) will be tested along with 2 axes: user independence and category independence. To this end, the gaze data of the other groups of study will be applied as input to each GBIE:

Test of the robustness of the GBIE
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• S 2 (user-independence), F 1 , F 2 , and the symmetric groups Sym S 2 , Sym F 1 and Sym F 2 (category independence) for GBIE S 1

• F 2 (user-independence), S 1 , S 2 and the symmetric groups Sym F 2 , Sym S 1 and Sym S 2 (category independence) for GBIE F 1

As mentioned in Section 3.7, we will analyse the data corresponding to F 2 separately to the other groups.

Test of the robustness of the GBIE

Below, we report the average accuracy of the respective decision tree. Originally, GBIE S 1 and GBIE F 1 have respectively an overall validity of 68% and 81%.

Even though each group of study contains a satisfactory number of participants to get results representative enough (> 40), we would like to get more data to draw stronger conclusions about the robustness. As experiments take time and it is difficult to get participants involved, we have taken profit from the symmetry of the interface to create new groups of data. The underlying hypothesis is that if a target image was displayed on the opposite side to the original, then the gaze data of the participant would have been the opposite of the original gaze data relative to the vertical median axis. We have built the symmetrical groups: Sym S 1 , Sym S 2 , Sym F 1 and Sym F 2 .

User independence

Let us first consider the GBIE S 1 with regard to the test about user independence with the gaze feature calculated for S 2 , Sym S 1 and Sym S 2 (see Table 4.3). With the data of S 2 , the average validity of label prediction is 63.3%, knowing that the eye tracker was not the same used for S 1 . With the data of Sym S 1 (artificially created), the overall validity is 64% which is 4% less than the original data set S 1 that was used to build GBIE S 1 but is still of the same order of magnitude. On the contrary, GBIE F 1 predicts the label with a validity of 51.6% in the case ofF 2 and Sym F 2 (see Table 4.4). However, we cannot conclude directly as the results with a decision tree with the data of F 2 were not better than 55%. One can note that the GBIE F 1 reaches 81% of validity on the test with the data artificially created for Sym F 1 . This test could provide a small evidence about the user independence of the GBIE F 1 .

F 1 Sym F 1 GBIE F 1 81.0% 81.0%
Table 4.4: Evaluation of the GBIE F 1 on the data from the groups of study that had identified target images with respect to food recipe categories.

Let us now evaluate the category independence of both GBIE.

Category independence

The validity of the label inference by GBIE S 1 is about 71% with the data from F 1 and 64.5% with the artificial data of Sym F 1 (see Table 4.5). These 2 tests tend to prove strongly the generalizability of this GBIE on the label inference from gaze data recorded during the identification of target images from other categories. It is not so clear for the test on the data of F 2 and Sym F 2 . However, as aforementioned, this data set is quite problematic. On the contrary, the GBIE F 1 hardly reaches a validity of 55% in label inference for any group: S 1 , S 2 , Sym S 1 and Sym S 2 (see Table 4.9). These results are intuitive 

F 1 Sym F 1 GBIE S 1 71.5% 64.4%

Case of F 2

F 2 has the lowest score almost 55% which is hardly better than random label prediction. One should keep in mind that the participants of F 1 and F 2 visualized pairs of images where both images belonged to the same domain (food). Moreover, the average visualization time of the participants of F 2 was 266ms higher than the average visualization time of F 1 , which can be explained by the fact that F 2 dealt with more general target concepts.

T 0 640 800 992

F 2 (%) 50.9% 50.9% 54.5% 

Comparison with studies from the state-of-the-art

We have identified the average x-gaze position as one simple gaze feature that is informative enough to predict the image to be chosen independently from the user and the target category to identify. The decision can be taken in real time since the GBIE is calculated independently from the visualisation time. In the state-ofthe-art, the gaze feature that appears to be the most informative is the number of fixations on one image, under the hypothesis that the more one image is fixated, the higher the chances for this image to be selected. In [START_REF] Kozma | Gazir: gaze-based zooming interface for image retrieval[END_REF], the authors use this method as a baseline to compare with their own method of label prediction.

Two other gaze features are said to be highly informative in related works. First, the position of the gaze when the size of the pupil is maximal would indicate the image that is the most relevant according to [START_REF] Hess | Pupil size as related to interest value of visual stimuli[END_REF]. Second, some studies assumed that the first image to be fixated is generally the one to be selected [START_REF] Krajbich | Visual fixations and the computation and comparison of value in simple choice[END_REF]] even though it is not clearly validated by other studies [START_REF] Armel | Biasing simple choices by manipulating relative visual attention[END_REF].

These 3 simple gaze features selected to identify the image to be chosen by pair will be evaluated at 2 different times: until the end of the visualization time and until 960ms (when the second value of x-gaze position is calculated to build the GBIE). In our context, we report the validity of the label prediction based on the number of fixations (in the second column of Table 4.10), based on the maximum pupil size (in the third column) and based on the maximum pupil size (in the last column).

The maximum size of pupil until the end of the visualization time appears to be discriminative enough, with a validity score from 60 to 70% for the 4 groups of study. Thus, this gaze feature is category-independent. However, when considering this feature until 960ms only, the validity scores are from 2 to 16% lower than the validity score of our GBIE for the respective groups of study (see Table 4.8). Thus, this method is not available in real time.

The first seen image seems to be particularly discriminant in label prediction for the group of study F 1 but is not robust for other groups of study. Thus, this gaze feature is not category independent. The validity scores relative to the maximum number of fixations is not compliant with the observations from the relative works. When considering the gaze data until 960ms only, the predictions would be better considering the image that would have been the least fixated. This may be due to the case when both images have the same number of fixations, and thus the target image cannot be identified. Table 4.11 reports the average proportion of undetermined target images per group of studies and the validity scores of label prediction only when the target image can be clearly identified.

As an average, from 25% to 50% of the target images cannot be clearly identified. When removing these undetermined target images, the number of fixations calculated until the end of the visualization time is discriminative enough. Indeed, the target images are well identified in 60 to 70% of the cases, except for S 2 . However, when considering the number of fixations until 960 ms only, the prediction corresponds to a random prediction, except for S 2 .

The Gaze-Based Intention Estimator(GBIE) is designed to predict which image will be considered as relevant in a pair of images. Our GBIE is user-independent, category-independent and available in real time. Thus, the GBIE is not fine-tuned for each specific participant. The average validity of the GBIE is 70% with gaze data recorded before 1 sec. and is more discriminant than the 3 other criteria identified in the related works for the same period of time. S 1 (%) 23.9 13.9 66.7 9.7 

S

Conclusion

In Part I, we have performed 4 experiments: two on the same set of standard categories (S 1 and S 2 ) and 2 on different sets of food categories (F 1 and F 2 ). Studying the gaze annotation in these different experiments ensures the independence to the target category. We had built pairs of images of various difficulty to strengthen the independence of the GBIE to the images. However, as elaborating another protocol in order to get more gaze data is time consuming, we have not been able to test statistically the robustness of the GBIE with respect to the difficulty of the pairs of images.

Images displayed in S 1 and S 2 were taken from the training set of VOC2007, which contains 5011 images. This dataset is considered as one of the most challenging dataset as the objects are not centred and their appearance are diverse [Wu et al., 2015a].

In Part II, we target to use the images annotated with the GBIE to train a classifier and test on a large set of images. The noisy labels will have an impact on the quality of the training phase and thus on the final classification.

If the results are promising on the standard categories (S 1 and S 2 ), we will evaluate the algorithms on the categories defined for F 1 . The images were taken from 4 categories among the 101 categories of FOOD101 [START_REF] Wang | Recipe recognition with large multimodal food dataset[END_REF]. For the 4 selected categories, 3635 images are in the training set. We will discard the images annotated in F 2 as this results were not conclusive (see Chapter 4).

Introduction

In this part, the images annotated with the GBIE designed in Part I will be used to train a classifier in order to evaluate whether the GBIE could be integrated into an interactive classification process or not. The first part validated the feasibility to predict which image will be considered as relevant in a pair of images with a simple gaze feature. For each category identification task, 40 images had been selected from VOC2007 which is known to present a large diversity of images as the target objects are not always displayed at the center of the images. However, the images had been selected with respect to criteria relative to the protocol defined in Part I which do not go along with criteria to build training sets for a classification purpose. In this part, the images are assigned with the labels provided by the GBIE for each participant. This chapter describes the training sets relative to each target category defined in Part I in order to evaluate the challenges and the feasibility of a classification using these images in the training phase. To this end, we will compare our training sets to the original training set and the test set provided by VOC2007. We will draw up hypotheses about the classification performances on the same test set provided by VOC2007 and that contain 4952 images with respect to the size of the training set and the diversity of the examples. Then, we will describe the features and the labels that represent the images in the classification algorithm.

Thus, in this chapter, we will compare the diversity of the examples of the original and our restricted training sets to the diversity of the test set.

General information

The test set contains 4952 images, the original training set provided by VOC2007 contains 5011 images and our restricted training sets dedicated to each category identification task contains 40 images each.

Size of the training sets

The sets of images displayed to the participants were small (40 images) in order to limit the boredom of the participants and balanced owing to the Visual Preference Paradigm (20 belong to the target category. This training set is more than 100-time smaller than the original training set that contains 5011 images.

Restricting the number of training examples could limit the diversity of the representation of both classes. Moreover, learning with true class labels is unrealistic as we do not have access to the true class labels in a real-world context. This evaluation is another baseline to assess whether it is possible or not to classify images according to general categories with a small training set.

Categories in binary classification

These evaluations will be first conducted on the standard benchmark of VOC2007 where the images displayed in S 1 and S 2 1 were taken from, for comparing with state-of-the-art results and later conducted on food image dataset (F 1 ). The context of category identification based on gaze data has imposed constraints to the classification context. This is a binary classification context, where the target category corresponds to the positive class and the 3 non-target categories to the negative class.

Classification

First, we have grouped the 20 subcategories of VOC2007 into 4 general categories in order to limit the habituation bias of the gaze.

For a given target category, the 3 other categories are considered as non-target categories and are represented by at least one image. 

Categories

In the state-of-the-art, images are classified according to the 20 subcategories [START_REF] Durand | Mantra: Minimum maximum latent structural svm for image classification and ranking[END_REF]. Thus, we will first use the original training set provided by VOC2007 that contain 5011 images to have baseline classification results with general categories. This evaluation will give an insight into the feasibility to classify images according to general categories.

Multi-labels

The sets of images provided by VOC2007 contains images that contain objects from different categories and have multi-labels. For example, an image can contain a table, a TV and chairs (see Figure 5.1). In our context, this image would correspond to only one class, Furniture, and would not hold any ambiguity. If the target category is Furniture, this image belongs to the positive class, else to the negative class. However, an image that represents a cat on a chair belongs to the categories Animals and Furniture (see Figure 5.2). Therefore, if the target category is Furniture, this image is confusing if the training phase did not contain such a combination. Thus, different combinations of the images from both classes should ensure that the classifier will discriminate the images accurately. In Table 5.1, we report the number of target images that contain different categories (multi-labelled images) to evaluate the diversity of the general categories in the original training set. The columns correspond to the number of images that contain objects from the target category and the non-target category. On the diagonal, the number of images containing only objects of the target category. As the training sets relative to each general category contain the same images, the matrix is symmetric. Thus, we do not report the values below the diagonal.

Animals Persons Vehicles Furniture

For the target category Animals, there are 1075 images containing only Animals, 418 images that contain Animals and Persons, and perhaps Vehicles and Furniture. On the whole, each target category is represented by a large diversity of combinations.

In order to evaluate the diversity of the general categories in the restricted training sets, we report the number of target images that contain different categories (multi-labelled images) in Table 5 The columns correspond to the number of images that contain objects from the target category and the non-target category. On the diagonal, the number of images containing only objects of the target category. The 4 training sets do not contain the same images. Thus, the table is not symmetrical.

First, owing to the small size of the training set, the number of target images is drastically reduced compare with the original training set. Moreover, we remind the reader that the images have been selected with regard to a context of annotation and not a context of classification. As mentioned in Section 3.1, we selected images to present them two by two with different degree of difficulty to identify the target category. Thus, some images may contain different classes, which is one of the criteria for judging the difficulty of an image identified by [START_REF] Vijayanarasimhan | What's it going to cost you?: Predicting effort vs. informativeness for multi-label image annotations[END_REF]. Moreover, the category identification tasks were designed in order to limit the habituation bias. Thus, the images corresponding to the target category should be diversified.

However, the proportion of images with multi-labels are not respected when comparing with the original training set. For example, for the target category Vehicles, there are no images with Vehicles and Animals or Furniture. Thus, there are fewer combinations of classes in the restricted training sets.

Nevertheless, preparing another experiment is tedious, recruiting a new set of participants is difficult and running different sessions of experiments is timeconsuming. We will thus analyse other factors of diversity of the training set, to determine if our restricted training sets hold enough information to be used to train a classifier.

Hypothesis 1 (H1): Despite that the selection of images was performed in a context of annotation, the corresponding images are enough diversified to train a classifier.

Diversity of the training images

The images of VOC2007 have a rich content that makes the classification quite complex. Let us now evaluate the diversity of the whole training sets by considering intraclass and interclass variability.

The diversity of a database is evaluated by :

• the intraclass variability, which corresponds to the diversity of representation of one category. For example, a chocolate cake can be represented by a piece of cake, by a whole cake in a mould or in a plate, with or without decoration and so on.

• the interclass variability, which corresponds to the diversity of the non-target categories, grouped into the negative class in a binary classification context. For example, when the target category is chocolate cake, the non-target categories can be chocolate mousse, apple pie which are both sweet dishes), but also beef carpaccio or beet salad.

Diversity of image databases

Target categories: intraclass variability

Let us compare the number of images per subcategory relatively to each target category to evaluate the diversity. In Table 5.3, for each target category, the first row corresponds to the test set. In order to train an efficient classifier, the training set should be as diversified as the test set. The second (resp. the third row) corresponds to the number of images per subcategory in the original (resp. restricted) training set. The last row is the proportion of images taken in the original training set to build the restricted training set. The category Persons is directly provided by the original training set and is self-defined. 2007 images correspond to this category in the test set, 2008 images in the original training set and 20 in the restricted training set corresponding to the target category Persons. The 3 remaining categories (Animals, Furniture and Vehicles) are described by a set of subcategories as aforementioned. We report the proportion of images per category in Table 5.3. The images may correspond to different subcategories. Thus, the sum of the images over the subcategories is higher than the number of images for the general category they are related to.

All the subcategories are equally represented in the whole in the test set and the training set. Hence, each target category is represented by a large diversity of images. Thus, the test set and the original training set have a high intraclass variability. The classifier trained with the original training set should have a good accuracy on the test set.

In the restricted training set, all the subcategories are represented by 0.3% to 2.2% of the images from the original training set, except Horses. Some subcate- gories are more represented than others. Nevertheless, as the training set should contain diversified images in order to limit the habituation bias in the context of gaze annotation, we selected at least one image per subcategory with respect to the corresponding target category and at least one from each of the 3 non-target categories. This goes along with the classification context, where the train should contain a large diversity of images similar to the test set. Thus, the 40-image training set has a relatively high intraclass variability considering its small size. Hypothesis 2 (H2): As long as an abstract concept is represented by representative images from both the target and non-target categories (high intraclass and interclass variabilities), it is possible to classify images with respect to this abstract category in a binary context.

ANIMALS

Target vs. non-target categories: interclass variability

The evaluation of this hypothesis is detailed in Chapter 6.

Contrary to the original training set, the restricted training set is balanced: it contains half of positive images and half of negative images. This constraint may reduce the diversity of the non-target categories. However, our context is more limited as we selected 40 images for each task of category identification with half corresponding to the target category (20 images). In Table 5.4, we notice that only 1% of the target images is selected from the original training set and about 0.5% if the non-target images are selected from the original training set. The size of the training set is not too critical as long as the training images are well selected in the feature space.

Hypothesis 3 (H3):

As long as an abstract category is represented by images containing different objects related to this category, classifying images with a model trained with few images can still be better than random classification. The evaluation of this hypothesis is detailed in Chapter 6.

Labels

The hypothesis H3 is made under the assumption that all the labels associated with the training set are correct. In our context, 86 sets of labels are built with the GBIE for each 40-image training set. 30% of the labels are noisy in average. As we are not supposed to have access to the true class labels, the number of noisy labels are not known per participant nor which images are mislabelled. Moreover, the protocol based on the Visual Preference Paradigm (VPP) implies that if one image is mislabelled, then the opposite-class image displayed at the same time is misclassified too. This is a double penalty (see Figure 5.5). The initial goal is to build a user- Here, the GBIE infers correctly that the left image is the target image. However, the GBIE can provide noisy labels too.

independent classification system. Thus we will not rely on a label noise model. The impact of noisy labels in the training set will be all the greater that the training sets are restricted to 40 images as aforementioned. Moreover, in a real-world context, true-class labels are not provided. Hence, the images with noisy labels are not easily identifiable. The training sets have uncertain labels which turns the classifi-
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cation problem into a weakly supervised classification problem with training sets containing uncertain labels.

Hypothesis 4 (H4): With uncertain labels in a training set, the classification model cannot be as effective as if it were trained with true class labels. However, the estimation of the label uncertainty provided by our GBIE could limit the impact of the mislabelled images on the classifier. The performances of a classifier that handle uncertain labels could compete with those of a classifier trained with true class labels.

The evaluation of this hypothesis is detailed in Chapter 7. This hypothesis is reasonable since the decision tree leading to the GBIE provides an estimation of the reliability of the label prediction (see Chapter 4). At this stage, for a given participant, each pair i of images is characterized as follow {(img a , img b ), label i , p i } where either img a or img b is the target image, label i the label inferred by the GBIE, p i the fraction of the pairs that are correctly associated with the label among the pairs that have been labelled by the same leaf. The overall validity of the GBIE is about 70%. Thus, the image identified as a target and non-target have respectively p i and 1p i chances to belong to the positive class. We underline the fact that this probabilistic value is an estimation calculated from the participants' gaze data that were used to build the GBIE (see Chapter 4). Thus, the probabilistic value does not integrate the statistics of the 46 remaining participants. Hence, this estimation is not precise for all the participants.

From now on, we refer to the "labels inferred by the GBIE from the gaze data of the the corresponding participant" as "the participant's labels ". We refer to "the ensemble of the labels predicted by the GBIE" as "GBIE labels". The GBIE now refers to the system that provides the probability of the label to be well inferred by the GBIE, that is computable in real-time and agnostic to the participants and the categories. Thus, the GBIE is not fine-tuned for each specific participant and has an overall validity of 70% in the label prediction.

Challenges and evaluation of performances

The classification based on the images annotated in the previous part faces 3 challenges:

• learning abstract concepts • with small training sets • where the images where not chosen for a classification purpose initially • annotated with uncertain labels

Challenges

We will compare the performances of the algorithm that handles label uncertainty with standard C-SVM by testing to determine the improvement on the classification scores by taking into account the uncertainty of labels in the training set. We will test the trained models on the test set of VOC2007 that contains 4952 images. To validate the 3 hypothesis formulated in Section 5.1, we train the C-SVM on the original training set (TC5011) of 5011 images first, associated to the trueclass labels provided by VOC2007. Secondly, we train it on the set of 40 images with respect to the corresponding target category and the true class labels (TC40). These scores will provide the baselines of the ideal case if ground-truth labels were available. We also train a C-SVM with the 40 images associated with each of the 86 sets of GBIE labels (GBIE40), corresponding to the labels predicted for the 86 participants of S 1 and S 2 .

We will report the average accuracy over the 86 classifications per category and compare it to the average accuracy for each classification: with and without taking into account label uncertainty.The accuracy corresponds to the classification rate on all the images of the training set. The formula is:

accuracy = True Positive + True Negative number of images (5.1)
where the true positive (resp. negative) corresponds to the number of positive images (resp. negative images) correctly classified.

We will also report the measure of Area Under the Curve (AUC) which is a global performance expressing the compromise between sensitivity and specificity:

sensitivity = True Positive True Positive + False Negative specif icity = True Negative True Negative + False Positive (5.2)
The higher the area under the curve of sensitivity varying with specificity (AUC), the better the classification.

Finally, we should consider that in a retrieval context, not all the images will be visualized by the user. [START_REF] Hotchkiss | Eye tracking study. Research white paper[END_REF] have evidenced that there is a particular area of interest on web pages that attracts the gaze. The users generally restrict their research on the websites appearing in this golden triangle. Moreover, less than 10% of people consult the pages after the first page [START_REF] Sharp | The first page of google's search results is the holy grail for marketers[END_REF]. Thus, it would be interesting to evaluate the classification performances on the first n images only, n depending on the patience of the user and the level of relevance she is seeking for. To this end, we will evaluate the precision of the classification for the n first images, note precision @n, n ∈ [50,100,250,500,750,1000,1250,1500,1750,2000].

• X ∈ R d the feature space • Y = {-1, 1} the set of labels • (( x 1 , y 1 ), • • • , ( x n , y n ) ): the training set containing n images. For each image i, x i ∈ X, y i ∈ Y .

Notation

Linear classification

The hyperplane calculated by SVM corresponds to the function that maximizes the distance between the support vectors of the two classes, defined as:

         min 1 2 w 2 y i .((w.x i ) + w 0 ) ≥ 1 (6.1)
where x corresponds to the feature data, y i is the label in -1,+1, w ∈ R d is the weight applied to the feature data. If

y i = +1 (positive examples), y i .((w.x i ) + w 0 ) ≥ +1. Else if y i = -1 (negative examples), y i .((w.x i ) + w 0 ) ≤ -1.
The case -1 ≤ y i .((w.x i ) + w 0 ) ≤ +1 corresponds to the margin. The capacity of generalization of the SVM relies on the maximization of the margin. The examples located on or inside the constructed margin are called support vector. The complexity of the SVM algorithms corresponds to the number of support vectors.

In Figure 6.1, the positive examples correspond to the blue points and the negative examples to the red points. This example is taken from [START_REF] Raschka | Python machine learning[END_REF]. On the left, different hyperplanes could separate the two classes. The support vectors are circled in grey and are used to build the only hyperplane represented by the dot line and that maximizes the margin (grey thin lines). Let us define h the equation of this hyperplane.

h(x) = x ∈ X|w T x + b = 0 (6.2)

Non-linear classification: kernel-trick

SVM algorithms are easily scalable to non-linear problems by mapping the data to a higher dimension space where the data are linearly separable. The SVM does not require to explicitly work in higher -dimensional space. Instead, we can use some functions that computes the SVM in a higher dimensional space without explicitly transforming the original data. These functions are called kernels. In Figure 6.2, the positive examples are depicted in blue points and negative examples in red points. These 2 classes cannot be discriminated with a simple line in 2D (A: Nonlinear case). However, in 3D, the points can be depicted in a cone. The linear separation is the intersection between the cone and an hyperplane in 2D (B: Kerneltrick).

x 1 x 2 • • • • • • • • • • • • • x 1 x 2 • • • • • • • • • • • • • (a) (b) y =+1 y=-1
Chapter 6. Handling label uncertainty: baseline and existing works The Gaussian kernel (Radial-Basis Function RBF) is the most commonly used.

x 1 x 2 • • • • • • • • • • • • • • • • • • • ξ > 1 ξ = 0 ξ < 1
K(x, x ) = e -γ x-x 2 (6.3)
The parameter γ influences the width of the RBF function.

Tolerating some errors of misclassification : C-SVM

Some non-linear problems require a very high-dimension space. In order to limit the complexity of the algorithm (e.g. the number of support vectors), some examples can be tolerated as misclassified in the training model. This classification algorithm is called "soft-margin" or "C-SVM". The distance to the margin of possible misclassified examples x i is symbolized by a slack variable ξ i . The model can tolerate few or many misclassified errors. This number of errors is regularized by a parameter C that corresponds to the cost coefficient that weights the classification error. Large values of C correspond to large error penalties.

           min 1 2 w 2 + C m i=1 ξ i y i .((w.x i ) + w 0 ) ≥ 1 -ξ i C > 0 (6.4)
In Equation (6.4), the maximization of the margin corresponds to the first equation, and the constraints to the second one. In Figure 6.3 1 , the positive class is de-picted by the red points and the negative class by the blue points. The classifier tolerates some misclassified positive examples, which are outlined with the slack variable ξ.

C-SVM model complexity depends on 2 parameters: the soft margin parameter C and γ (Gaussian kernel parameter). PowerSVM [START_REF] Zhang | Power svm: Generalization with exemplar classification uncertainty[END_REF] relies on a notion of image representativeness relatively to the target category, in order to limit the importance of outliers. A local classifier is associated to each positive example against all the negative examples 96 Chapter 6. Handling label uncertainty: baseline and existing works (see Figure 6.5). Below, we consider there are m positive examples and n negative examples. If a positive example is correctly classified by all the local classifiers f , then this example is considered as representative. This is formulated as:

PowerSVM

s i = m t=1 f i (x t ) m - m+n t=m+1 f i (x t ) n (6.5)
If a local classifier correctly classified all the positive example, then it is generalizable enough and is considered as representative of the negative categories.

s j = 1 m m i=1 ( m t=1 f i (x t ) m -f i (x j )) (6.6)
We expect the score of representativeness to give a low weight to the images with noisy labels, as it relies on image features. The average classification accuracies are reported in Table 6.3, commented in next section.

Baseline

The C-SVM parameters are determined by Leave-One-Out (LOO) cross-validation as the training sets contain few images. We have applied a grid search on the values C={0.1,1,10,100,1000}, and γ={10 -5 , 10 -4 , 10 -3 , 10 -2 , 10 -1 , 1}.

Animals

Persons Vehicles Furniture AVG S.D. AVG S.D. AVG S.D. AVG S.D.

(1) 96.3 0 89.3 0 95.5 0 90.9 0

(2) 87.3 0 64.1 0 81.7 0 81.3 0

(3) 69.0 13.5 66.0 10.8 68.2 13.2 69.6 16.2 Table 6.1: C-SVM accuracy on the test set. Each line corresponds to C-SVM trained with : (1) the original training set, (2) the 40-image training set with the labels defined for our protocol, (3) the 40-image training sets assigned with the 86 GBIE sets of labels. For (3), we report the average accuracy over the different classifications.

Accuracy

In Table 6.1, we report the accuracy of C-SVM classification on the test set as a result of different trainings:

1. the accuracy of the classifier trained with TC5011

2. the accuracy of the classifier trained with TC40 6.2. Baseline 97 3. the average accuracy of the classifier trained with GBIE40 over the 86 participants.

Original training set: TC5011 (1) The accuracy of the classification relative to each target category varies from 90 to 96%. These results validate that learning abstract concepts is possible without identifying the subcategories (hypothesis H2).

For the categories from the left to the right of the table, the training model is based on 1014, 994, 1338 and 1804 support vectors.

40-image training set with true-class labels: TC40 (2)

: With the restricted training set where the images where randomly selected, we hypothesized that the results would drastically decrease. However, among the 40 images selected for each category identification task, from 33 to 38 images are part of the support vectors of the C-SVM trained with TC5011. Thus, the training set contains informative elements and should be enough to perform the analysis. This validates the H1.

With the restricted training set assigned with true-class labels, the accuracy decreases by 5 to 10% only. This is relatively few considering that the training set is 100-time smaller than the original one. Moreover, the images were randomly selected for the experiment, which is not optimal for the classification. Thus, our second hypothesis H3 is validated: classifying images with a model trained with few images is better than random classification. Moreover, there is a room for improvement on the training set. The classification results may be comparable to those obtained with the original training set by an optimal selection of images.

The diversity of the training set is evaluated with respect to the test set. The more the positive and negative examples are diverse, the better the performances of the classifier. Let us illustrate this concept by an example: the training set contains images of cats and dogs. If the target category is cats, the classifier should correctly classify unseen images of cats and dogs. However, if the training set contains only one kind of cats (Persian cats for examples) whereas the test set contains other kinds of cats (Siamese cats for example), the classifier will probably make errors of classification as it has not been trained with examples of Siamese cats. Conversely, if the training set contains a large variety of cats (Persian and Siamese cats for example) whereas the test set only contains Persian cats, the classifier should have a good accuracy. Hence, we expect that the repartition of misclassified images gives an insight on the diversity of the training sets (TC5011 and TC40). In Table 6.2, we report the number of misclassified images per category, not per class2 .

We remind the reader that the images of VOC2007 can belong to different categories. Thus, for the target category Animals, a negative image can represent a Person, in a Vehicle, and some Furniture on the road (see Figure 6.6). If this image is misclassified, then Persons, Vehicles and Furniture have one false positive example each. Thus, we prefer to report the proportion of the misclassified images per category. Let us consider the case when the target category is Animals to explain the results reported in Table 6.2. The corresponding results are reported in the row (A). The columns correspond to the different categories contained in the test set. The column Animals corresponds to the misclassified examples belonging to the target category: the false negative examples. The 3 other columns correspond to the misclassified images belonging to the non-target categories: the false positive examples. For a seek of clarity, the false negative rates are in bold in Table 6.2.
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When the classifier is trained with the original training set, the false negative rate (FN) is higher than the false positive rate (FP). For the case of the target category Animals for example, 84 images with Animals are mistaken with the negative class (FN), whereas less than 50 images of any other categories is mistaken with the positive class (FP).

When the classifier is trained with the restricted training set, the FP rate is higher than the FN rate. When the target category is Animals, 90 target images are mistaken for the negative class and more than 130 non-target images are mistaken for the positive class. As TC40 is balanced, there is a smaller proportion of negative images in the training set comparing with the proportion of negative images in the TC5011.

40-image training set with GBIE labels: GBIE40

(3) Finally, we train simultaneously C-SVM with the 86 sets of GBIE labels associated with each category and that are 70% reliable in average (see Section 4.3). We report the average accuracy and the standard deviation in Table 6.1 line (3). We compare the results with the results corresponding to the 40-image training set with true class labels (the line ( (2)). Without correcting noisy labels, the classification accuracy reaches almost 70% with a standard deviation of about 2%, which far better than random classification. This validates our third hypothesis H4. However, classifying with a model learned with noisy labels is from 4 to 15% less accurate than a classifier trained with true class labels. Nevertheless, in a retrieval context, users would not look at all the classified images (see Section 5.5). Thus, let us now consider the AUC measure and the precision of the classification based on the original training set, the 40-image training set with the true-class labels and the GBIE labels.

PowerSVM

The performances of PowerSVM are reported in Table 6.3. Pow-erSVM is directly fed either with true-class labels (line (1)) or with the GBIE labels (line(2)). PowerSVM outperforms true class C-SVM in any cases from 1 to 5% when trained with true class labels. Thus, PowerSVM is better than C-SVM by balancing the impact of the images according to their representativeness relatively to the target category.

However, when trained with GBIE labels, the accuracy is not better than standard C -SV M noisy and shows high standard deviation. Thus, powerSVM is not robust to noisy labels.

Precision and AUC

The images of the test are associated with a SVM score. A threshold is applied to this score in order to provide the labels. Here, we order the images from the one with the highest score to the one with the lowest score. Then, we compare the label given by classification to the true-class labels. In Figure 6.7, we report the rate of images correctly classified among the N images with the highest SVM score, N ∈ [50,2000]. Except for Furniture, the first 1250 images are correctly classified by the model trained with the original training set (TC5011). This is in correlation with the AUC score that almost reaches 1 (see Table 6.4, first row).

For the categories Animals and Vehicles, the classification with a 40-image training set associated with true-class labels leads to 500 images correctly classified, which competes with the model trained with the original training set. This is compliant with the AUC measures reported on the second line (above 0.9 for Animals and Vehicles). Thus, considering a gaze-annotation on 40 images only seems to be adapted to a retrieval context.

However, the classification with noisy labels is not precise (GBIE40), which SVM algorithms have many advantages: easy to compute, build an accurate model with few examples, scalable to non-linear problems, tricks to limit the complexity of the model. However, SVM algorithms are not robust to noisy labels. As our end-goal is to integrate our GBIE in an interactive CBIR system, we analyse off-line how we can limit the impact of label uncertainty in the classification. We hypothesize that despite the lack of precision of the label noise model related to our GBIE, it is still possible to discriminate the labels that are bound to be noisy from the most secure ones.

State of the art: Handling label noise in image classification

In a classification context, training sets are characterized by two entities: image features and class labels assigned to the images. The general assumption is the consistency between the two entities. However, some training instances can be misclassified which has an impact on the convergence time, complexity and accuracy [START_REF] Garcia | Effect of label noise in the complexity of classification problems[END_REF]. This is a topical issue considering the high amount of available images on the Internet [START_REF] Wu | Deep multiple instance learning for image classification and auto-annotation[END_REF]. Indeed, owing to the search engine optimization, people tend to assign catchy labels to their images rather than correct and precise ones. Even though noisy labels are a topical issue, [START_REF] Frénay | Classification in the presence of label noise: a survey[END_REF] report that very few datasets with noisy labels have been identified. Generally, studies are carried out on datasets with artificial noise injected a posteriori [START_REF] Garcia | Effect of label noise in the complexity of classification problems[END_REF][START_REF] Garcia | A study on class noise detection and elimination[END_REF][START_REF] Zhu | Class noise vs. attribute noise: A quantitative study[END_REF]. The application contexts are mainly spam filtering and medical applications. Our labels are generated by an only gaze-based estimator applied to the gaze data of 86 participants visualizing images in a context of standard concept identification (see Section 3.2).

Label uncertainty: topical issue

In order to automatically annotate a large amount of images on web pages, [START_REF] Xiao | Learning from massive noisy labeled data for image classification[END_REF] have proposed to extract keywords taken from the surrounding text. The images are represented by deep features and the label noise is handled with a softmax. The authors prove that it is still possible to train efficient deep classifiers with massively noisy labels. Nevertheless, their method of still requires a "small" amount of secure labels, which corresponds to about 70 000 images to be manually validated. Manual annotation in such a context is tedious. Thus, some studies propose different strategies of semi-automatic annotation like in [START_REF] Sarafis | Building effective svm concept detectors from clickthrough data for large-scale image retrieval[END_REF]. The authors propose to use clickthrough data (position of the mouse click) as an implicit indication of the relevance of the images proposed by the search engines. However, this study deals with the large scale context and requires some textual information in order to evaluate the relevance of the labels.

In our context, gaze data are used as an implicit source of information to infer the choice of the participants between two images from two different classes. We target to limit the external source of information such as labels given by other participants to an image. We aim at identifying a criterion that evaluates the relevance of the labels from the image features and labels of one only participant.

In this part, we do not intend to work on image representation and will directly use deep features to get optimal classification results. Indeed, deep features [START_REF] Durand | Mantra: Minimum maximum latent structural svm for image classification and ranking[END_REF][START_REF] Wan | Deep learning for content-based image retrieval: A comprehensive study[END_REF] can be extracted from a Convolutional Neural Network (CNN) model to use them for training classification models using other techniques, such as SVM that are well-known to deal with small datasets [START_REF] Donahue | Decaf: A deep convolutional activation feature for generic visual recognition[END_REF][START_REF] Zeiler | Visualizing and understanding convolutional networks[END_REF].

Source of label noise -taxonomy

In order to classify, we need to work with image representation in feature space and to associate each sample to a class label. In the best case, the estimated labels Y correspond to the correct category (true class labels Y). Working with a training set that contains uncertain labels corresponds to working in a weakly supervised learning context. Owing to our context of Visual Preference Paradigm Section 3.1, we hypothesize that when an image is ill-labelled, the associated image is ill-labelled accordingly to the other class. Thus, noisy labels are independent from the class Y.

Moreover, the gaze based estimator does not rely on feature images. Hence, noisy labels are independent from their X. Thus, our study is comparable to studies with NCAR labels. [START_REF] Frénay | Classification in the presence of label noise: a survey[END_REF] states it is one of the most studied cases. [START_REF] Frénay | Classification in the presence of label noise: a survey[END_REF] described three types of classifications that cope with noisy labels. First, robust-to-noise methods rely on over fitting avoidance, like decision trees. However, such techniques are reported to be efficient only for simple cases of label noise [START_REF] Teng | A comparison of noise handling techniques[END_REF] and do not require any preprocessing step.

Our context

The second kind of methods, data-cleansing methods, consists in identifying ill-labelled images in order to eliminate or relabel them. This kind of methods are not really adapted to small training set. Indeed, removing images would drastically impact the diversity of the training set and thus, the classification results. An alternative consists in relabelling the images identified as ill-labelled. However, when true class labels are not available, the identification of noisy labels require external information, like committee labels [START_REF] Martinel | A supervised extreme learning committee for food recognition[END_REF]. Thus, the whole training set is considered as uncertain, containing noisy elements and more reliable ones: it is a context of weakly learning. Removing images that are supposed to have noisy labels can be critical.

Finally, label-noise tolerant methods consist in balancing the effect of uncertain labels. Such methods keep the images with potentially noisy labels that may contain highly discriminative information. These images keep a relative influence on the training of the classifier. They can rely on embedded data-cleaning processes [START_REF] Zhang | Power svm: Generalization with exemplar classification uncertainty[END_REF].

• Small training sets: Our training sets are balanced and contain 40 images.

• Uncertain labels: In a real-world context, we are not supposed to have access to true-class labels. Thus, we cannot clearly identify the images with noisy labels.

• No label-noise model: As the GBIE was designed to be used independent, we do not intend to model a label-noise distribution. Thus, we will focus on methods that are label-noise tolerant.

Our context

Techniques to handle label noise

We have identified a noise-tolerant method that derives from SVM classification: Probabilistic-SVM (P-SVM) [START_REF] Niaf | Kernel-based learning from both qualitative and quantitative labels: application to prostate cancer diagnosis based on multiparametric mr imaging[END_REF]. P-SVM is a mix of regular C-SVM and ε-insensitive regression and requires both class labels and probabilistic labels. [START_REF] Niaf | Kernel-based learning from both qualitative and quantitative labels: application to prostate cancer diagnosis based on multiparametric mr imaging[END_REF] have tested the method for computer aided diagnosis in medical image. 4 experts annotated 350 image regions on a 5-level scale confidence, from 0 (absolutely benign) to 1 (absolutely malignant). The authors performed a leaveone-out test and reported the average results. The probabilistic values correspond to the images where the labels are uncertain. An image associated to the positive class has 70% of chance to effectively belong to the positive class. Symmetrically, an image considered as negative has 70% to belong to the negative class, and thus 30% of chance to belong to the positive class. Hence, we can establish a 4-level scale, 0 and 1 corresponding to the images with the most reliable labels, 0.7 (resp. 0.3) to the images labelled as positive (resp. negative) but with uncertainty. The distribution of the 86 instances collected in S 1 and S 2 in this 4-level scale is illustrated in Figure 7.4.

However, in [START_REF] Niaf | Kernel-based learning from both qualitative and quantitative labels: application to prostate cancer diagnosis based on multiparametric mr imaging[END_REF], experts directly discriminate the images with uncertain labels from the images with reliable labels. In our context, we have to identify a criterion to discriminate them according to label reliability.

Image features could also help in discriminating the images with noisy labels from the ones with reliable labels. Indeed, we can hypothesize that images with noisy labels are outliers in the feature space. [START_REF] Zhang | Power svm: Generalization with exemplar classification uncertainty[END_REF] have proposed powerSVM algorithm that relies on a representativeness score. This measure is based on linear local classifiers in the case of binary classification and should outline the images with noisy labels as their image features would not be representative of the corresponding category. As stated in [START_REF] Sarafis | Building effective svm concept detectors from clickthrough data for large-scale image retrieval[END_REF], powerSVM is not designed to handle label importance. Nevertheless, the weights being calculated on observed labels, they can be extracted to discriminate the images according to their features, like in [START_REF] Sarafis | Building effective svm concept detectors from clickthrough data for large-scale image retrieval[END_REF].

We summarize the particularities of the different contexts of applications of [START_REF] Xiao | Learning from massive noisy labeled data for image classification[END_REF], [START_REF] Niaf | Kernel-based learning from both qualitative and quantitative labels: application to prostate cancer diagnosis based on multiparametric mr imaging[END_REF] and [START_REF] Zhang | Power svm: Generalization with exemplar classification uncertainty[END_REF] with our own context [START_REF] Lopez | One gaze is worth ten thousand (key-) words[END_REF] in the table 6.5.

In the next chapter, we will describe the algorithm of P-SVM and how we apply it to our context. We propose 3 criteria to discriminate the image according to label reliability: uncertainty estimation provided by the GBIE, the majority vote and the representativeness score.

• • • • • • • • • • • • • • • • ε ξ + ξ - wx + w 0 + ε wx + w 0 wx + w 0 -ε Figure 7.1: ε-insensitive SVM
The formula is similar to the formula of C-SVM. However, the constraints are established for both negative and positive margin (see 2 last equations in Equation (7.1)).

           min 1 2 w 2 + C m i=1 (ξ + i + ξ - i ) y i -((w.x i ) + w 0 ) ≥ ε + ξ + i ((w.x i ) + w 0 ) -y i ≥ ε + ξ - i (7.1)
In Figure 7.1, the misclassified examples are ignored when they are at a distance of the margin included in [-ε; ε].

P-SVM

In the training set containing n images, the m first images are considered as reliable and the remaining ones have ambiguous class labels. Note that the case m = n corresponds to a standard C-SVM classification. The first m images are used in the classification part and the remaining ones will be used in regression. Let η be the labelling precision. The labels {p i } i=m+1:n are constrained to belong to [η, 1η].

The principle of P-SVM is to find the optimal hyperplane h(x) as defined in Equation (6.1) with constraints on the classification and regression parts (see Figure 7.2). In SVM classification, the scores provided by the SVM (e.g. the distance to the margin) are assigned with a probabilistic confidence by Platt's formulation. The optimal h1 would respect the constraint for i = m + 1 :

n p i -η φ(h(x i )) p i + η a.z - i h(x i ) a.z + i (7.
3)

The constraint Equation (7.3) are then applied to the classification formula. The primal formula of P-SVM is reported in Equation (7.4).

                       min 1 2 w 2 + C m i=1 ξ i + C n i=m+1 ξ - i + ξ + i y i .((w.x i ) + w 0 ) ≥ 1 -ξ i for i=1:m 0 < C, 0 ξ i for i=1:m az - i -ξ - i ((w.x i ) + w 0 ) az + i + ξ + i for i=m+1:n 0 < C, 0 ξ - i and0 ξ + i
for i=m+1:n (7.4) P-SVM complexity relies on these 4 parameters: γ and C (soft margin parameter) like C-SVM. The two other parameters correspond to the regression part: C, and ε that sets the interval for the error margin on uncertain labels.

Thus, P-SVM requires a training set where the images with the most reliable labels are discriminated from those with the most uncertain labels. Contrary to [START_REF] Niaf | Kernel-based learning from both qualitative and quantitative labels: application to prostate cancer diagnosis based on multiparametric mr imaging[END_REF] where the experts discriminate themselves the most reliable labels from the most uncertain ones, we have no means to directly identify images with the most reliable labels. Here, we do not use the true class labels to discriminate the images but only the GBIE labels. The reliable labels will be referred as the class labels and the uncertain labels will be referred as the probabilistic labels.
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Figure 7.3: P-SVM classification

In the next section, we describe 3 criteria of label discrimination: the uncertainty estimation provided by the GBIE, the majority confidence [START_REF] Martinel | A supervised extreme learning committee for food recognition[END_REF] and the representativeness confidence [START_REF] Zhang | Power svm: Generalization with exemplar classification uncertainty[END_REF]. Moreover, as all the participants have seen and thus annotated the same images for a given category annotation task, our experiment provides the opportunity to evaluate the criteria in 2 contexts. We describe here the case for a given category.

Probabilistic labels

First, we remind the reader that the labels were provided in a context of Visual Preference Paradigm (VPP defined in Section 2.2). Thus, when an image is labelled as positive, the image displayed at the same time is automatically labelled as negative. Moreover, all the images associated with a task of category identification have been seen by all the participants for the same task. However, the pairs of images have been randomly constituted. Thus, we will first consider the positive images to discriminate the N images with the most reliable labels from those with the most uncertain labels. Then, for the P-SVM classification, we will hypothesize that the negative images have the same level of label reliability as their corresponding positive image.

We remind the reader that the decision tree leading to the GBIE is built on the gaze data collected in the group of study S 1 , and thus corresponds to a set of rules applied to input data: Cumulative Average of the x-positive at T 0 (CA T 0 ) and T 1 (CA T 1 ). To a given couple (CA T 0 ,CA T 1 ) corresponds a unique rule. The probabilistic value associated with the corresponding rule R is : pr = number of instances correctly predicted with R total number of instances predicted with R (7.5)

• X ∈ R d the feature space

• Y = {-1, 1} the set of labels

• P r ∈ [0, 1] the probabilistic confidence of the labels

• x 1 , y 1 , p 1 , x 2 , y 2 , p 2 • • • , x n-1 , y n-1 , p n-1 , (x n , y n , p n ) :
the training set containing n images, considering the image i, x i ∈ X, y i ∈ Y , p i ∈ P r. The images are ordered by pairs in the training set with respect to the protocol derived from the Visual Preference Paradigm. A positive label assigned to the image i has a confidence of p i . The negative label assigned to the image that was displayed at the same time has a confidence of 1p i .

Notation

This probabilistic value is only an estimation as it is calculated on the instances provided by S 1 only. This provides a refined quantification with 20-levels (see the illustration on the right of Figure 7.4). We expect to get a more accurate classification when using this refined scale in the training stage. First, we could apply a threshold on the probabilistic values provided by the GBIE (see Algorithm 1) to identify the images with the most reliable labels for a given participant and a given target category .

Algorithm 1 First strategy of label discrimination n, number of images visualized by a participant p n , probabilistic value associated with the image n l n , the label to assign the the image n thr, threshold value for ifrom 1 to n do if p i > thr then

l i = 1 else if p i < 1 -thr then l i = -1 else l i = p i
However, for some participants, all the images have the same probabilistic value because the gaze data of the corresponding participant were similar through the different pairs of images. Hence, these images cannot be discriminated with respect to the label reliability. Thus, the most reliable labels should be discriminated from the most uncertain ones with another criterion than a mere threshold on the probabilistic value.

Secondly, the images could be discriminated by using a majority confidence illustrated in Figure 7.5 which stands for the number of similar labels given to a same image by different participants. To this end, the labels given by a participant p k (in red) are merged with the labels provided by a committee (in blue). This leads to a new committee, which is the ensemble of the 86 participants.

Then, in order to get a selection the most precise possible, we apply a bootstrapping strategy, which consists in dividing the committee into g=10 groups.

In each group, we collect the number of similar labels for each image. Then, we calculate the mean number of similar labels per image, which corresponds to the majority confidence. Then, the images considered as positive by the committee are ordered by decreasing majority confidence, hypothesizing that an image with the highest number of similar labels is the most reliable one. As we do not know how many images are correctly labelled per user, we will select various amounts of images with this criterion and assign them the corresponding class labels. Among the n = 40 images of the training set, let us consider a subset of N pairs of images with class labels, where N ∈ [2, n/2]. Intuitively, the more class labels are included, the more the performances will be alike to a standard C-SVM, unless the images
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Committee Labels Figure 7.5: Process to get committee labels. These labels are used in the context of committee validation.

considered as the most reliable are relabelled (see next section). However, the majority confidence does not guarantee to select the most representative images in the feature space. Thus, we will also consider the representativeness defined in Section 6.1.4 as another strategy of label discrimination, relying on image features in order to estimate how easily an image annotated as positive can be confused with an image of the negative class. The lower the representativeness confidence, the more representative the image. We extract this value from an algorithm designed to tackle classification uncertainty, PowerSVM [START_REF] Zhang | Power svm: Generalization with exemplar classification uncertainty[END_REF]. As stated in [START_REF] Sarafis | Building effective svm concept detectors from clickthrough data for large-scale image retrieval[END_REF], powerSVM is not designed to handle label importance. Nevertheless, the weights being calculated on observed labels can be extracted to discriminate the images according their labels, like in [START_REF] Sarafis | Building effective svm concept detectors from clickthrough data for large-scale image retrieval[END_REF]. As our labelling estimator (GBIE) provides limited information about the label noise, the representativeness criterion appears to be a relevant criterion to discriminate the most secure labels. Contrary to powerSVM, we only use the positive representativeness score Equation (6.5) assuming that the negative examples have the same level of reliability as the associated positive examples.

Comparison of the image order induced by the 2 criteria

One hypothesis is that majority vote criterion should evidence the most representative images in the human understanding and thus, produce a similar order to the representativeness criterion. To compare the order of images induced by these two criteria, we evaluate the Kendall's τ [START_REF] Lapata | Automatic evaluation of information ordering: Kendall's tau[END_REF]. This non-parametric test relies on the number of swaps needed to put the second image sets into exactly the same order to the first set of images. Before giving the corresponding formula, let us remind some concepts related to statistics. Let X = (x 1 , x 2 ) and Y = (y 1 , y 2 ) be two variables ; (x 1 ,y 1 ) and (x 2 ,y 2 ) be a pair of observations. In our case, X corresponds to the indexes of the images ordered by majority confidence and Y the indexes of the images ordered by representativeness confidence. The pair is concordant if

sign(x 1 -x 2 ) = sign(y 1 -y 2 ) (7.6)
The pair is discordant if

sign(x 1 -x 2 ) = sign(y 1 -y 2 ) (7.7)
As a numerical application, X={5,2,3,1,4} and Y={5,1,3,4,2}. For a seek of clarity, we re-index X so that x i = i. Thus, sign(x ix j ) is always negative for i < j. We apply the corresponding transformation to Y, which implies Y={4,1,3,2,5}. We illustrate the calculus in Figure 7.6.

The formula to calculate Kendall's τ is: number of concordant pairsnumber of discordant pairs number of pairs (7.8)

In our example, the Kendall's correlation τ is:

6 -4 6 + 4 = 2 10 = 0.2 (7.9) The best configuration is when Y is in the same order as X. Thus, all the pairs are concordant and there is no discordant pair (see Figure 7.7). Thus, the Kendall's τ is:

10 -0 10 + 0 = 1 (7.10) Thus, if the images are similarly ordered by majority confidence and representativeness confidence, the Kendall's τ should be high.

So far, we have not explained which images are considered as positive. These two strategies of label discrimination can be applied in 2 contexts: either with the committee validation on the class labels or a user-centred context.

As all the participants have seen the same images during the experiment a , the participants can be considered as committee members. Thus, an image considered as a positive image by a majority of committee members can be considered as a reliable positive example. The positive examples are identified by committee validation among the whole set of images .

In the user-centred context, the positive examples are the images considered as positive by the participant herself, without relying on a committee.

a See the description of the protocol Chapter 3

Two contexts

In the next section, we will investigate the performances of P-SVM in these two contexts. The notations that are used from now-onwards are explained below:

• CVC: Committee Validation Context.

• N : number of images with the highest number of committee members that agree consider them as positive. The N images are assigned with class label +1, and the corresponding negative images with the class label -1.

• UC: User-Centred Context.

• N th number of images with reliable labels according to the chosen criterion: with the majority confidence, the score should be higher than a threshold th 1 ; with the representativeness confidence lower that th 2 .

• C -SV M noisy : C-SVM trained with the GBIE labels. We report the average accuracy over all the participants per category.

• C -SV M T C : C-SVM trained with true-class(TC) labels.

Notations

CHAPTER 8 The selection of images with the most reliable labels is crucial since they have a huge influence on the classification part of the P-SVM. In the Committee Validation context, we do not trust the labels predicted by the GBIE per participant. Indeed, the overall validity of GBIE labels is 70% over all the participants but may be lower or higher considering each participant. The participant may be part of the participants that did not agree with the majority of the participants (i.e. the committee members). Moreover, this context provides a more uniform number of images with reliable labels over the participants.

Committee validation context

Thus, we decide to use the labels provided by the committee (see Figure 8.1) in order to validate the labels provided by the participant. The committee validation allows to identify the images with the highest probability to belong to the target category. The underlying hypothesis is that the highest the number of committee members consider that an image belongs to the target category, the highest the chance that the image belongs to the the target category.

After this preliminary step, we apply one criterion of reliability, either majority vote or representativeness, to sort the images for the most reliable positive labels to the most uncertain labels. Then, we hypothesize that if a positive image has a reliable label, then the associated negative image by Visual Preference Paradigm has a label with the same level of reliability.

Committee Validation Context (CVC)

In this context, the set of labels assigned to the images for the reliability discrimination is provided by a committee validation since the labels provided by each participant is not considered as reliable. The individual errors could be cancelled out in the CVC. This context is constraining as it supposed all the participants to have seen all the images. The N images selected either by majority confidence The labels and the GBIE probabilities depend on the pair association. The majority and representativeness scores are given per image. Then, the images are ordered with respect to each of the criteria confidence. Finally, class labels (determined by committee and referred as CL i ) are assigned to the images that are considered with the most reliable labels.
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or representativeness confidence are assigned with the same class labels, called committee labels CL (see Figure 8.1). The images displayed with these N images, depending on the participant, are assigned with the opposite class labels. First, we will determine if the order induced by the majority confidence is similar to the order induced by the representativeness confidence, with the Kendall's τ (see Section 7.2.2). The average correlation (in percentage) over the different participants are reported in Table 8.1, corresponding to the images with positive labels assigned by the committee. Globally, we notice that the correlation is below 0.2. Thus, there is low correlation between the criterion based on the number of similar labels and the one based on the representativeness. The order of images induced by majority confidence is different from the order induced by representativeness confidence. Hence, the classification performances will differ depending on the training set choice: class labels determined by majority confidence or by representativeness confidence. With one of the 2 aforementioned criteria, we select N images from the set of images considered as positive by the majority, and the corresponding N images displayed with them. In the end, there are 2N images with class labels in the training set, the remaining being assigned with the probabilistic labels provided by the GBIE. We investigate the influence of the proportion of 2N class labels in the training set on the performance of the resulting P-SVM classifier. When half of the images are selected as reliable (N = 20), P-SVM should behave like a standard C-SVM as the training sets contain only class labels. Moreover, as the class labels are determined by the committee whatever the selected label discrimination strategy (see Figure 8.1), we expect similar results for high N . Besides, the accuracy of P-SVM should tend to the accuracy of C-SVM trained with true-class labels for high N values.

Results: Handling label uncertainty when individual labels are not reliable

In this section, we train the P-SVM in the context of CVC with RBF kernel. ε is assigned with the same value as in [START_REF] Niaf | Handling learning samples uncertainties in svm : application to mri-based prostate cancer computer-aided diagnosis[END_REF], ε = 0.125. The other parameters are determined by leave-one-out cross validation as the training set is small: C = {0. Contrary to the Committee Validation context, we trust the labels provided by the GBIE per participant in this chapter. We do not apply the preliminary validation. Hence, even though the participants have seen the same images, the images have not the same labels from one participant to another. We apply one criterion, either the majority vote or the representativeness, to discriminate the most reliable labels among the positive labels assigned by the GBIE for a given participant. Like in the Committee Validation context, we hypothesize that if a positive image has a reliable label, then the associated negative image by Visual Preference Paradigm has a label with the same level of reliability.

User-Centred context

The second context is user-centred (UC) and is illustrated in Figure 9.1. The images selected either by majority confidence or by representativeness confidence are assigned with the labels provided by the participant. In this context, we will select the images considered as positive by a participant and that

• is considered as positive by at least th 1 other participants

• or that have a score of representativeness confidence lower than a threshold th 2 , that corresponds to the degree of confusion related to the positive image.

This context is ideal to evaluate the robustness to class label noise that must be observed for high N th values in the best cases. We target to identify the best criterion to select the most reliable labels among 2 different strategies. This criterion should be of good quality since the subset of selected images will have a huge impact on the P-SVM training. The remaining images, associated with the most uncertain labels, will used in the regression part. 

SELECT SELECT ASSIGN ASSIGN

Majority Confidence Representativeness

for N th > th 1 for N th < th 2 Figure 9.1: User-centred context. For a seek of clarity, we consider that the images are associated by pair in the order of display related to the participant k. The labels and the GBIE probabilities depend on the pair association. The majority and representativeness scores are given per image. Then, the images with positive labels (provided by the participant) are ordered with respect to each of the criteria confidence. Finally, class labels (determined by committee and referred as CL i ) are assigned to the images that are considered with the most reliable labels.
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First, we will determine if the order induced by the majority confidence is similar to the order induced by the representativeness confidence, with the Kendall' τ (see Section 7.2.2). The average correlation (in percentage) over the different participants are reported in Table 8.1, corresponding to the images with positive labels in the user-centre context.

Animals

Persons Furniture Vehicles AVG S.D. AVG S.D. AVG S.D. AVG S.D.

User-centred 0.005 0.15 0.07 0.14 0.02 0.17 -0.02 0.16

Table 9.1: Average Kendall rank correlation coefficient (Kendall's τ : the order of the images induced by the majority vote criterion appears to be highly different from the order induced by the representativeness criterion.

Globally, we notice that the correlation is below 0.2. Thus, there is low correlation between the criterion based on the majority confidence and the one based on the representativeness. The order of images induced by majority confidence is different from the order induced by representativeness confidence. Hence, the classification performances will differ depending on the training set choice: class labels determined by majority confidence or by representativeness confidence.

Handling label uncertainty when only few images have been annotated by different users

First, we report the average accuracy of C -SV M noisy with respect to the classifications relative to each participant and the accuracy of C -SV M T C in Table 9.2 as a baseline. We expect to determine which criterion allows to discriminate the most efficiently possible the images with reliable labels in the user-center context in order to:

• outperform C -SV M noisy • compete with C -SV M T C
We train the P-SVM in the user-centred context. Given a category dataset, we present the average accuracy of each classifier over all the participants and compare it with baseline C-SVM with RBF kernel. The parameters are determined by Leave-One-Out Cross Validation as the training set is small: C = 10, C = 10 and γ = 10 -5 .

Accuracy

In Table 9.3, we report the mean accuracy of the classification trained with N images considered as the most reliable with the strategy of majority confidence (the number of similar labels higher than a threshold th 1 ∈ {0.2, 0.8} ). The remaining images are assigned with the probabilistic values provided by the GBIE. The accuracy of P-SVM ( Table 9.3) trained with datasets preprocessed with the majority confidence competes with C -SV M T C (see Table 9.2) with less than half of the pairs with reliable labels (N th < 10).

C-SVM

In Table 9.4, the model is trained with N images considered as the most reliable with the strategy of representativeness confidence (the score of representativeness is higher than a threshold th 2 ).

In UC context, P-SVM trained with datasets preprocessed with representativeness criterion fails to reach the accuracy of C -SV M noisy . Thus, the representativeness confidence is not efficient to discriminate the most reliable labels in the training set. In the user-centred context, the representativeness confidence is not efficient enough. It could be interesting to evaluate another criterion of discrim-
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ination that does not rely on other participants' reliability. Nevertheless, the majority confidence applied in the user-centred context is efficient to discriminate the most reliable labels given by any participant, without a preliminary validation by a committee. dently for positive and negative classes (see Section 7.2.1). Thus, we have selected the most reliable positive labels independently from the most reliable negative labels with respect to the representativeness calculated for each class. However, no improvement has been noticed. These observations are consolidated by the AUC measures. For the strategy of majority confidence (see Table 9.5), the best AUC measures are recorded for th 1 = 0.6 which means that the images with more than half of similar labels assigned by the committee can be considered as reliable. Moreover, there is no need to set a threshold too strict.

For the representativeness confidence (see Table 9.6) the AUC measures are from 11 to 17% lower than those calculated in the previous case.

Conclusion

This part provides promising results about an image classification process based on a fully-gaze based annotation despite its inherent label noise. We used a label- noise tolerant classification algorithm, P-SVM to test whether it is possible to improve the results of a standard C-SVM trained with noisy labels and even reach the performances of ground-truth C-SVM. The GBIE provides a measure of confidence of its labels but in some sets, the pairs have the same confidence value. Thus, the GBIE is not enough. Then, we compared 2 other criteria of label reliability, majority score and representativeness score, in 2 contexts. First, in a critical context where all the images should be seen by all the users, we can merge the labels provided by one participant to the labels of the other participants with respect to the corresponding images. In this context, despite the majority confidence does not guarantee to get most informative images first, P-SVM accuracy is similar with the training set preprocessed either by majority confidence or by representativeness confidence.

Then, in a context where only few images are seen by all the users (usercentred context), the majority confidence is very efficient in discriminating the pairs with highly reliable labels. With less than half the images seen by all the users in the training set, the others being assigned with probabilistic labels to limit their impact, P-SVM accuracy is 10 to 15 % higher than C-SVM accuracy trained with noisy labels. It can even compete with C-SVM trained with ground-truth labels. However, the representativeness confidence fails at discriminating the images with noisy labels. Note that the study was carried out under the pair annotation constraint and the representativeness confidence may be not adapted to this context. In summary, our study shows that the estimation of the label uncertainty provided by the Gaze Based Interest Estimator (GBIE) combined with an external criterion, majority vote, that discriminates the most reliable labels are enough to build training sets of good quality to train a label-noise tolerant classification algorithm such as P-SVM. In some cases, the accuracy of P-SVM competes with the baseline C-SVM with RBF kernel trained with true class labels.

These promising results consolidate our idea to use our GBIE into an interactive CBIR system. One contribution of the project VISIIR is the elaboration of an image database containing 100 000 images representing 101 classes [START_REF] Wang | Recipe recognition with large multimodal food dataset[END_REF] and the extraction of deep features. As explained in Part I, we have only selected 4 classes to run our experiment: Beef carpaccio, Beet salad, Cannoli and Ice cream. We report the proportion of images per category in the original training set (see Table 10.1) and in the test set (see Table 10.2).

Data

We remind the reader that for the experiment F 1 , 40 images are displayed per category, 20 corresponding to the target category. Like for the standard categories (see Chapter 6), we report the classification performances of C-SVM (see Table 10.3). First, the C-SVM is trained with the 2718 images taken from the original training set corresponding to the 4 categories. Then, the C-SVM is trained with restricted training set of 40 images, and finally with the restricted training set assigned with GBIE labels (46 participants of F 1 ). The labels are correctly predicted at a rate of 70% as an average overall the participants all the categories considered. 

Gaze annotation

Our initial intention was to introduce gaze data in an interactive image retrieval system. To this end, a preliminary study to determine relevant gaze features was mandatory. However, no publicly available database of gaze data was available for this specific context at the beginning. Thus, we had to build our own database and thus, we have elaborated and conducted a protocol including an eye-tracker.

As explained in Chapter 2, the Visual Preference Paradigm (VPP) was a relevant choice in a binary classification context. From the raw gaze data recorded during the experiments, we have extracted a gaze feature discriminant enough to predict the choice of the participants: the average horizontal gaze position. We have built a set of rules on this feature: the Gaze-Based Intention Estimator (GBIE). The GBIE is computable in real-time.

Part I concludes that the GBIE is agnostic to the participants and the categories. The goals defined for the gaze annotation part in Chapter 1 have been achieved: we have designed a GBIE that can be integrated into an interactive image retrieval system.

• Design a protocol that limits the gaze distractors while keeping some characteristics of real world contexts

• Run experiments on a consequent number of participants so that the
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Chapter 11. Discussion results can be representative

• Extract the most relevant gaze feature to predict the choice of any user and that is available on the fly. The set of rules that will be applied to this gaze features is called GBIE.

• Validate the GBIE so that it respects the aforementioned constraints.

However, the protocol was established as a proof-of-concept in a laboratory context, not in a real-world context of image retrieval system. Indeed, in order to compare the results between participants and thus elaborate on stronger statistics, the same images have been displayed to all the participants in random order. Nowadays, images are displayed according to recommendation engine and the set of displayed images vary from one user to another one. Besides, the images have been displayed by pairs which does not correspond to a standard display in grid, like Google Image does. These results are validated on abstract categories, which constitutes a step towards subjective categories.

Thus, we intend to explore the case of more subjective categories (see Section 11.1.1), extend the analysis of VPP to more complex interfaces (see Section 11.1.2) and to integrate the GBIE in an interactive system retrieval (see Section 11.1.3). The future works are illustrated in Figure 11.1.

Subjective categories

The experiment F 2 with the food categories Appetizers, Desserts, Citrus and Red berries did not provide good performance in Part I. These categories are very vague and the choices of images to represent these concepts were surprising according to some participants. Indeed, Red berries or Citrus could appear in both salty and sweet dishes. Moreover, some appetizers were slightly ambiguous by the shape and could be selected as target images only by deduction. This experiment was slightly too complex and gives insight about the difficulties of interpretation of a query or of the images themselves.

One should keep in mind that our GBIE is built from a spacial characteristic. In future work, it would be interesting to introduce temporal aspects. For example, the dynamics of the eye movements could be a signature of the user's interest for the image. In that case, the interest in the image could be deduced from the characterization of the trajectory. For that purpose, dynamical system theory [START_REF] Strogatz | Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering[END_REF] could give a rich representation of the gaze trajectory in term of dynamical visual attractors. As the trajectory dynamics could be very complex or even chaotic, quantitative measures such as the fractal dimension or the Lyapunov exponents could be used as characterization.

Regarding the other experiment F 1 , the categories were more specific (Beet salad, Carpaccio, Cannoli and Ice cream), which can explain the good performances on F 2 . At the end of the experiment, we asked the participant to visualize the images proposed by Google Image for the same categories. 60% of the participants would have selected our application to indicate what they are looking for or to get original ideas, whereas 76% of the participants would have chosen Google Image to discover a new concept. The main argument that discriminated the two applications is the Google Image present very similar images in the first 40 images, which is interesting to get a quick representation of an unknown concept. Our approach was considered as more attractive for exploratory search. This study highlights that our approach corresponds to users' needs. Table 11.1: What application is better to annotate images? to learn a new concept? to find original ideas? We report the number of participants that prefer (1) our application (2) Google Images (3) no opinion.

More complex interfaces: DiscoveryHub

This section details the experiment we have performed to collect gaze data on a more complex interface in a context of exploratory search.

Specialization a of information exploration which represents the activities carried out by searchers who are:

• unfamiliar with the domain of their goal (i.e. need to learn about the topic in order to understand how to achieve their goal)

• or unsure about the ways to achieve their goals (either the technology or the process)

• or unsure about their goals in the first place.

a definition provided by https://en.wikipedia.org/wiki/Exploratory_search

Exploratory search

In this context, the formulation of a query may be difficult and could be replaced by a gaze selection as proposed in Part I. The interface of exploratory search DiscoveryHub,2 illustrated in Figure 11.2, looks like a real-world interface. The user can scroll the web page and the images are displayed in lines by topics related to the query. The grey area summarizes the different topics related to the query. One can click on a key-word in order to directly visualize the corresponding line. The images judged as the most relevant are displayed below in a top line (see Figure 11.3). Note that the images are displayed depending on the number of visits and clicks on the images.

We hypothesize that we can apply the VPP per line in order to determine which images appears to be more relevant to the user. We have used a tool provided with the eye tracker, Tobii Studio, where we can predetermine areas of interest (AOI). Thus, gaze data collected in these AOI provide rich information. The feature selected to design our GBIE, the average x-position, could be relevant. In exploratory search, the participant does not know exactly what she is looking for. Thus, we cannot set a maximum visualisation time. Thus, another in-depth analysis should be conducted to assess whether it is possible to determine the choice "on the fly".

The experiment has been conducted on food topics: pasta or pastries. Like in Chapter 3, user biases had to be taken into account: lunch time, culture, interests... The visual task was more subjective than the one defined in Part I: "Image you invite friends to dinner at home. You are looking for original recipe of (1) pasta (2) pastries. Select 5 images with the mouse that correspond to this criterion". The concept of "originality" varies from one user to another and depends on the displayed images. Thus, the selections of images will be different at the end of the experiments. Two problems have been encountered: first, not all the topics were 11.4), thus, the participant was asked to click on pre-determined key-words (Top, Food, Miscellaneous) which constrained the experiment of exploratory search ; the second problem concerns the propositions related to these key-words because some images were not displayed.

All the constraints related to a real-world interface have taken time to handle in the protocol definition. We have collected the gaze data of 27 participants and intend to analyse them with respect to the contributions of Part I.

Training set defined with active selection

The 40 images randomly combined were selected in order to compare the results between users. Thus, there is room for improvement with active selection of im- On the left, the classification at t. The points that are the closest to the hyperplane are considered as highly informative and will be labelled for the next step. On the right, the classification at t+1. The two previous points belong to the negative class. A new hyperplane is calculated. Three points appear to be highly informative.

ages. Among 5011 images in the initial training set, 2 images are randomly selected, one belonging to the target category. Then, according to the ground-truth labels, an hyperplane is calculated, separating the training set into 2 categories. The next 2 images are selected near to the hyperplane, an active learning process [START_REF] Tong | Svm active learning for image retrieval[END_REF]. In parallel, we test the classifier on the test set step by step. We apply this selection 40 times in order to compare the classification results to our context. We have performed 50 classification runs based on active learning since the initial pair of images may impact the evolution of the classifier. We report the average accuracy over the 50 classifications, in 

Future works in label uncertainty classification

We have used the images annotated in the first part to train classification algorithm SVM that is known to get good performances despite a small training set. However, SVM is not robust to label noise. Among all the studies related to label uncertainty in training phase, we have chosen P-SVM. In order to apply to our context, we have proposed 2 criteria to discriminate the most reliable labels from the most uncertain labels: majority vote and representativeness. Both criteria are efficient in a context where the reliable labels are validated by a committee. In this context, the GBIE could be used to annotate images as long as its inherent uncertainty is taken into account in the training phase. However, when we decide to trust the participant's labels only, only the majority vote is efficient. In this context, the GBIE could be used to annotate images as long as some images are discriminated by a committee.

User-centred context: Identifying another reliability criterion

We remind the reader that we only relied on the positive representativeness provided by PowerSVM (see Section 6.1.4) assuming that the negative examples associated with the images selected by this strategy would be as representative. In this context, we have also tested a strategy where N negative examples would be selected with the negative representativeness to be assigned with class labels, the N positive examples being still selected with the positive representativeness. No difference has been noticed. However, PowerSVM is not robust to label noise. Moreover, the representativeness is not sufficient in a user-centred context as seen in Chapter 9. In future works, we should find another criterion of discrimination that does not rely on the other participants' labels. This is particularly crucial in a subjective context, when a same image can be relevant for one participant but not relevant for another participant.

In [START_REF] Ionescu | How hard can it be? estimating the difficulty of visual search in an image[END_REF], the difficulty of an image is mentioned to influence the quality of the labelling process. [START_REF] Vijayanarasimhan | What's it going to cost you?: Predicting effort vs. informativeness for multi-label image annotations[END_REF] proposed a method relying on various criteria reported in Chapter 2 in order to evaluate the difficulty of an image. In our case, the images were displayed by pairs. It could be interesting to evaluate if the criteria of image difficulty is applicable to assess the difficulty of a pair of images. If it is conclusive, the correlation between the quality of the GBIE label and the difficulty of the pair of images could be evaluated. The image difficulty combined with the representativeness confidence could provide an interesting criterion of label reliability in a user-centred context.
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Evaluation of the probabilistic confidence: ε parameter

There is also room for improvement by tuning the ε parameter. As the probabilistic values assigned to the images with uncertain labels are estimated from the instances of S 1 and not updated with the upcoming instances (S 2 ,F 1 ,F 2 ), it could be interesting to attribute a confidence value to these probabilities. This method consists in dynamically changing ε rather than setting it. The probabilistic values are given at the end of a branch of the decision tree leading to GBIE. The instances labelled by one rule could be divided into g groups. Then, we evaluate how many instances are correctly labelled in each group. Finally, the probabilistic values corresponding to this rule would be the mean of correctly labelled instances over the g groups and the confidence value would be the standard deviation over the g groups.

Size of the training set and active learning

Another possibility for room of improvement concerns the size of the training set as seen with the classification on food images (see Chapter 10). However, the size of the training set should remain small enough to limit the burden of annotation to the participants. Active learning selection optimizes the selection of the images so that the few selected images are informative enough. Classifiers trained with images selected actively [START_REF] Tong | Svm active learning for image retrieval[END_REF] show higher performances that those trained with images randomly selected. Thus, in future works, an experiment integrating an active selection with an interactive gaze annotation with our GBIE could show better performance for the food related categories. 

Gaze annotation

As discussed in Part I, Visual Preference Paradigm (VPP) allows to determine which image is the most relevant in a pair of images. Accordingly, many psychological studies about food topics have successfully used this approach in order to enhance the impact of food advertisement on addictions for example [START_REF] Schag | Impulsivity in binge eating disorder: food cues elicit increased reward responses and disinhibition[END_REF][START_REF] Velazquez | Attention to food and beverage advertisements as measured by eye-tracking technology and the food preferences and choices of youth[END_REF]. However, this strategy has never been studied in a context of automatic annotation driven by gaze data, despite the numerous studies including eye trackers [START_REF] Essig | Vision-based image retrieval (vbir): a new eye-tracking based approach to efficient and intuitive image retrieval[END_REF][START_REF] Kozma | Gazir: gaze-based zooming interface for image retrieval[END_REF][START_REF] Oyekoya | Perceptual image retrieval using eye movements[END_REF]. Moreover, no gaze database are available on-line. Part I fills this gap and reveals that a simple gaze feature called Gaze-Based Intention Estimator (GBIE) is efficient to determine the choice of any user in 70% of the predictions in average, in real time, whatever the target category. We have provided a database of gaze-data in the VPP context, recorded on 86 participants on 160 images from standard categories, and 93 participants in two experiments about food topics of 160 images each.

There is a room for improvement in many aspects as mentioned in Chapter 11. We target to extend the VPP to a more complex interface. We have already collected gaze data for further analysis. In a next step, we would like to integrate the GBIE in an interactive image retrieval system since the preliminary study off-line arises promising results. A third direction is brought by considering the mitigated results of the second experiment on food images, that highlights the complexity of subjective and abstract target categories. Another experiment should be performed after a careful preliminary study about personal biases.

Classification with gaze-based annotation

The first part of this thesis was developed with the idea to provide labels for image classification alleviating the burden of annotation for the users. Thus, the sec-Chapter 12. Conclusion ond part proposes a comparison between standard classification algorithms and another one that handles label uncertainty in the training stage. [START_REF] Frénay | Classification in the presence of label noise: a survey[END_REF] have reported that the studies on label uncertainty are mainly performed with artificially injected noise. Moreover, as in [START_REF] Xiao | Learning from massive noisy labeled data for image classification[END_REF], the training sets with real-world label noise contain thousands of data that have to be manually checked, at least partially 70 000 images in their paper. Our study could provide a first step towards a simplification of this manual checking by using gaze data only and handling its inherent uncertainty. We have shown that using a committee validation of less than half of the training set combined with probabilistic values on the other images improves the results. In terms of precision, the results are comparable to a standard classification trained with true-class labels. Our study was limited in number of images in the training set owing to the constraints of the annotation process Part I. Thus, we expect that with a little bigger training set, performances could be higher.

In a user-centred context, the results are more mitigated. The criterion of representativeness does not appear to be as efficient as expected. The results could be improved with an active learning selection of the images during the training phase. Moreover, it could be interesting to provide a measure of precision on the probabilistic values as explained in Chapter 11.

This thesis gives a full-stack process of visual seek for images retrieval and provides promising results to integrate the GBIE into an interactive image retrieval system. Dans un premier temps, nous avons élaboré un protocole basé sur le paradigme de préférence visuelle pour collecter les données du regard d'un échantillon de participants dans une tâche de catégorisation d'images. Parmi les caractéristiques du regard pointées comme informatives sur l'intention des utilisateurs, nous avons élaboré un estimateur d'intention par le regard, calculable en temps réel, indépendant de l'utilisateur et de la catégorie cible. Cette annotation implicite est meilleure qu'une annotation aléatoire mais reste incertaine.

Classification

Dans une deuxième partie, les images ainsi annotées sont utilisées pour classifier un plus grand ensemble d'images avec un algorithme prenant en compte l'incertitude des labels : P-SVM combinant classification et régression. Nous avons déterminé parmi différentes stratégies un critère de pertinence pour discriminer les labels les plus fiables, utilisés pour la classification, des labels les plus incertains, utilisés pour la régression. La précision du P-SVM est évaluée dans différents contextes et peut atteindre les performances d'un algorithme de classification standard entraîné avec les labels certains. Ces évaluations ont tout d'abord été menées sur un benchmark standard pour se comparer à l'état de l'art, et dans un second temps, sur une base d'images de nourriture.

Mots-clés: annotation par le regard, classification binaire, labels incertains, CBIR.
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 12 Figure 1: Exemple d'arbre de décision utilisé pour identifier les caractéristiques les plus discriminantes. La caractéristique à la racine de l'arbre (13) est jugée comme étant la plus discriminante.

  and Contributions . . . . . . . . . . . . . . . . . . . . . . 16 1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 1 . 3 :

 13 Figure 1.3: Steps to design a gaze based intention estimator.

Figure 1 . 4 :

 14 Figure 1.4: Main elements to take care of during the process of classification.

Figure 2 . 1 :

 21 Figure 2.1: Old (on the left) vs. new (on the right) eye tracker devices.
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  Figure 2.4: Image of a dog displayed in the experiment [Papadopoulos et al., 2014]. The fixations on the images are represented by yellow dots. The position of the fixations produce a bounding box in order to determine what the participant has looked to take her decision in a context of 2-alternative forced choice object discrimination.
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 25 Figure 2.5: Extraction of the areas of interest based on the gaze fixations in[START_REF] Essig | Vision-based image retrieval (vbir): a new eye-tracking based approach to efficient and intuitive image retrieval[END_REF].
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 28 Figure 2.8: What is your mental representation of the concept of animals?
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 29 Figure 2.9: Experiment based on the Visual Preference Paradigm introduced by Fantz [1958]. 2 kinds of stimuli are displayed in front of infants aged of 3 or 4 months. This experiment shows that infants prefer curvilinear stimuli.
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 211 Figure 2.11: Images display in a grid 2 by 2[Klami et al., 2008b] in order to identify if there is an image or not corresponding to the category sport.
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 213 Figure 2.13: Gaze data recorded during the visualization of a chocolate cake. The raw gaze data are symbolized by the white crosses and are aggregated into fixations (blue circles). The horizontal gaze spread corresponds to the distance between the minimum and the maximum x-position.
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 31 Figure 3.1: Interface corresponding to the Visual Preference Paradigm described in Section 2.2.1: two images from two different classes are displayed at the extremity of the screen. The target category is either Animals (left image) or Furniture (right image). The red axis displayed at the middle of the screen indicates where the cross appears when the images have disappeared.
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 32 Figure 3.2: Diversity of representations: 4 different representations of an apple pie.
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 33 Figure 3.3: Screen-shots of the interface used to validate the detection of the eyes.On the left, only one eye is detected which is not validated. When the participant moves, both eyes are detected (right image). This interface is integrated into the launcher application and is always displayed during the experiment. The experimenter should keep this interface on her screen in order to check if the eyes are correctly detected throughout the experiment.
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 3 Figure 3.4: 5-point calibration 1 . The order of appearance of the points is randomly shuffled.
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 35 Figure 3.5: Calibration's results for both eyes. The lines correspond to the distance between the calibration point and the eye position recorded in real time.
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 36 Figure 3.6: Protocol of our experiment using an eye-tracker.
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 37 Figure 3.7: Example of a classification tree used to select the most discriminant gaze features.
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 38 Figure 3.8: Cumulative average of gaze position in x for S 1 . The target category is Animals.
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 51 Figure 5.1: An image that contains objects from different subcategories (chairs, table, TV)
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 52 Figure 5.2: An image that contains objects from different subcategories (chairs, cat) may be confusing for the classification.
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 53 Figure 5.3: Proportion of target and non-target images per target category task for the original training set (5011 images)
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 54 Figure 5.4: Proportion of target and non-target images per target category task for the restricted training set (40 images)
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 55 Figure 5.5: Identification of the target image corresponding to the category Animals in a pair of images. Here, the GBIE infers correctly that the left image is the target image. However, the GBIE can provide noisy labels too.
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 6162 Figure 6.1: Linear SVM. The training examples are in 2D (X = x 1 , x 2 ). The positive class corresponds to the blue points and the negative class to the red points.The points with a circle around correspond to the support vectors which are used to calculate the margin, represented by the two gray lines. In (a), all the displayed hyperplanes separate both classes. In (b), the constraint of maximal margin is applied (SVM). The dot line correspond to the hyperplane that maximize the margin between the two classes.
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 6 Figure 6.3: C-SVM classification . The misclassified red points are tolerated with regard to the ξ value.
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 64 Figure 6.4: SVM vs. PowerSVM. On the left,the images are classified with standard SVM without distinctiveness, i.e. all the examples are considered are equally representative of the category. On the right, the images are classified with Pow-erSVM[START_REF] Zhang | Power svm: Generalization with exemplar classification uncertainty[END_REF] where a measure of representativeness relative to the corresponding category is calculated and integrated into the classification.
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 65 Figure 6.5: Representativeness embedded in PowerSVM: Local classifiers trained to calculate a representativeness score for each example relatively to its corresponding category.
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 66 Figure 6.6: When the target category is Animals, a negative image can represent a Person, in a Vehicle, and some Furniture on the road.
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 6 Figure 6.7: C-SVM classification. Curve of precision @n where n is the number of images with the highest svm score.
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  X ∈ R d : feature space • Y the set of true-class labels • Y the set of estimated labels.Notations[START_REF] Frénay | Classification in the presence of label noise: a survey[END_REF] wrote a survey on stochastic label noise where the authors distinguished 3 types of training set with label uncertainty. First, a training set with no correlation between wrong Y neither Y nor X which corresponds to a Noisy Completely At Random Model (NCAR). Then, come the training set where the wrong Y depends on the class Y, which corresponds to Noisy at Random Model (NAR). Finally, a training set where samples may be labelled because of their X which corresponds to a Noisy Not at Random Model (NNAR).
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 7 Figure 7.2: C-SVM vs P-SVM. For C-SVM, all the labels are considered as reliable.For P-SVM, the labels that are considered as uncertain correspond to probabilistic values that are handled in regression SVM.
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 74 Figure 7.4: Distribution of the number of labels over the different probabilistic levels for the training set corresponding to the task of identification of Animals. On the left: 4-level quantification annotation based on the average validity of the GBIE. On the right: 20-level quantification annotation based on the estimation of label reliability provided by the GBIE. The number of class labels N=25% of n=40 is 12, respectively for the negative (0) and the positive (1) class.
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 76 Figure 7.6: Kendall's τ : measure of correlation. C stands for concordant and D for discordant. On the left, we detail the first calculus. We compare the first value of Y with the next values. On the right, all the cases have been calculated. The total values of C and D respectively correspond to the total number of concordant and discordant pairs.
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 77 Figure 7.7: Kendall's τ : measure of correlation. C stands for concordant and D for discordant. This figure illustrates the best case: when X and Y are in the same order. All the pairs are concordant.
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 81 Figure 8.1: Context of committee validation. For a seek of clarity, we consider that the images are associated by pair in the order of display related to the participant k. The labels and the GBIE probabilities depend on the pair association. The majority and representativeness scores are given per image. Then, the images are ordered with respect to each of the criteria confidence. Finally, class labels (determined by committee and referred as CL i ) are assigned to the images that are considered with the most reliable labels.
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 93 Figure 9.3: Curves of precision associated with P-SVM classification with a strategy of representativeness confidence in a user-centred context.
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 115 Figure11.5: Active learning. On the left, the classification at t. The points that are the closest to the hyperplane are considered as highly informative and will be labelled for the next step. On the right, the classification at t+1. The two previous points belong to the negative class. A new hyperplane is calculated. Three points appear to be highly informative.

  set. Each line corresponds to C-SVM trained with : (1) the original training set (5011 images), (2a) the 40-image training set with VOC true class labels, (2b) the 40-image training set with the labels defined for our protocol, (3) the training sets generated by active learning The classification based on active learning selection in the training step provides better performance than C-SVM trained with the 40 images with true-class labels. For Furniture, the active learning C-SVM competes with the C-SVM trained with the original training set that contains 5011 images. These promising results give insights on the possible improvements of the gaze annotation tuned with active learning.
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Table 1 :

 1 Caractéristiques des expériences

	Expérience	S 1	S 2	F 1	F 2
		Animaux	Animaux	Carpaccio	Entrées
	Catégories	Personnes Véhicules	Personnes Véhicules	Salade Cannoli	Dessert Agrumes
		Mobilier	Mobilier	Glace	Fruits rouges
	Oculomètre	60 Hz	32 Hz	60 Hz	60 Hz
	Visualisation	1856 s.	1717 s.	1952 s.	2218 s.

La première concerne les données brutes, la position du regard, la taille de la pupille, la première et dernière image regardée. Le deuxième groupe de caractéristiques, très souvent utilisé, concerne les fixations. Le nombre de fixations peut indiquer la difficulté [Tudor

Table 2 :

 2 . Nous allons maintenant vérifier que ces arbres de décision ont une bonne précision avec des données d'autres utilisateurs et enregistrées pendant la visualisation d'autres catégories. Caractéristiques du regard à partir des données brutes

	Caractéristiques du regard	Réf.
	Données brutes	
	1	temps d'observation	R1
	2, 3	taille max. pupille image gauche, droite	O7
	4	label de l'image avec une taille de pupille max.	O6
	5, 6	première et dernière image regardée	R2,R3
	Position du regard	
	7, 8	gauche: étendue en X,Y	O2
	9, 10	droite: étendue en X,Y	O2
	11, 12 les 2: étendue en X,Y	O1
	13	position moyenne du regard en X	-
	Fixations	
	14	nombre total (F)	F1
	15, 16	nombre de fixations pendant la première et dernière visite	F3
	17, 18	nombre de fixations sur l'image de gauche/droite	F2
	19	F/(F+ nombre de saccades)	F12
	20	distance moyenne entre les fixations	F5
	21	temps de fixation total	F7
	22, 23 première et dernière image fixée	F3
	24, 25 durée de la première et dernière fixation F8
	Position des fixations	
	26, 27 gauche: étendue en X f , Y f	O4
	28, 29 droite: étendue en X f , Y f	O4
	30, 31 les 2 images: étendue en X f , Y f	O3

Validation des propriétés de l'estimateur

Afin d'avoir des résultats permettant une validation plus concluante, nous doublons la quantité de données en utilisant la propriété de symétrie de l'interface 6 Chapter 0.

Classification des Images à partir d'annotations par le regard

  

					≤0.49	>0.49
	position moyenne
		en X	
	≤0.45	>0.45
				gauche: étendue
				en y entre fixations
				≤0.016	>0.016
					distance moyenne
					entre les fixations
					≤0.38	>0.38
					2 images: étendue
					en x entre fixations
	Node 3 (n = 1289) 1	1	Node 5 (n = 176) 1	1
		0.8			0.8
		0.6			0.6
		0.4			0.4
		0.2			0.2
	2	0	2		0

Table 3 :

 3 PrécisionCependant, ils ne sont pas robustes au bruit de label puisque la précision du C-SVM est 10% plus faible quand l'ensemble d'apprentissage a des annotations incertaines par rapport à un ensemble d'apprentissage avec les annotations correctes.

de C-SVM sur l'ensemble test. Chaque ligne correspond à C-SVM entraîné avec : (1) l'ensemble d'apprentissage d'origine, (2) l'ensemble restreint aux 40 images avec les annotations correctes (3) l'ensemble (2) avec les 86 ensembles d'annotations prédits par le regard. Pour (3), nous donnons la précision moyenne sur l'ensemble des 86 classifications.

Table 4 :

 4 Moyenne du τ de Kendall.

	Résultats
	Dans un premier temps, nous avons appliqué la classification aux catégories
	standard des expériences S 1 et S 2 . Une classification C-SVM standard sur nos
	ensembles restreints à 40 images a une précision entre 80 et 90%, soit 10% de
	moins qu'avec l'ensemble d'apprentissage d'origine. En comparant les préci-
	sions moyennes de P-SVM dans les deux contextes avec des nombres variables
	d'éléments certains sélectionnés par chaque critère. Dans les deux contextes, seule
	la sélection par vote majoritaire permet d'obtenir une meilleure précision qu'un
	C-SVM entraîné avec des annotations incertaines, voire permet de rivaliser avec
	une classification standard C-SVM entraînée avec les bonnes annotations. Ces ré-
	sultats sont obtenus pour un ensemble d'apprentissage avec moins de la moitié
	des éléments considérés comme certains.
	Pour les images de nourriture, nous nous sommes restreints aux catégories
	de F 1 puisque les résultats de F 2 se sont avérés marginaux. La classification C-
	SVM sur l'ensemble d'apprentissage de FOOD101 restreint aux 4 catégories (2718
	images) est de 70% environ. Pour un ensemble d'apprentissage restreint aux
	40 images sélectionnées pour chaque catégorie cible, la classification est à peine
	meilleure (60%) qu'une classification aléatoire, ce qui compromet les performances
	du P-SVM. Néanmoins, nous avons pu constater que le P-SVM appliqué sur les
	ensembles d'apprentissage traîtés par vote majoritaire permettait d'améliorer la
	précision du C-SVM entraîné avec les annotations incertaines (qui était de 50%).
	Néanmoins, cette application n'est pas concluante et nécessite une nouvelle expéri-
	ence avec plus d'images à annotées par le regard ou avec un système de sélection
	des images optimisée, pour qu'elles soient plus informatives.
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Table 2 . 1 :

 21 Properties of protocols elaborated for gaze studies appears to focus on details and performs longer fixations. On the contrary, when comparing two obviously different images, saccades are more numerous in order to quickly identify the specific areas of interest to discriminate the images.

The fixations are the main gaze features that appear to be informative. They are symbolized by white crosses in Figure

2

.13. Many features about fixations and

gaze features in CBIR systems
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𝑠𝑝𝑟𝑒𝑎𝑑 = 𝑥 𝑚𝑎𝑥 -𝑥 𝑚𝑖𝑛

44 Chapter 2. Introduction to gaze analysis: Gaze protocols and gaze features in CBIR systems

  

	Raw features	Fixations	Other features
	R1	number of measurements	F1	Number of fixations	O1	Xspread,Yspread
	R2	X,Y of the 1st measurement	F2	Number of fixations per image	O2	Yspread/Xspread
	R3	X,Y of the last measurement	F3	Number of fixations at the 1st visit	O3	O1 for fixations
	R4	number of jumps between images	F4	Number of images fixation with at least one	O4	O2 for fixations
	R5	total observation time per image	F5	Mean length of fixation	O5	Speed
	R6	Total observation time without fixations	F6	Mean length of fixations per image	O6 Max pupil diameter
			F7	Total length of fixations	O7	Max pupil diameter per image
			F8	length of the 1st fixation	O8	Max pupil diameter per image
			F9	length of the 1st fixation per image	O9	Average pupil size per image
			F10	length of the last fixation per image		
			F11	length of the fixation during the 1st visit		
			F12	Percentage of time spent in fixations		
			F13	Number of revisits		
			F14	X,Y of the first fixation		
			F15 X,Y of the last fixation		
	Table 2.2: Main gaze features collected from gaze studies	

Table 2 . 3 :

 23 Comparison between related works using raw features and other gaze features indicated as informative in related works.

	F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
	Hardoon and Pasupa [2010]
	Walber et al. [2014]
	Klami et al. [2008b]
	Kozma et al. [2009]
	Kauppi et al. [2015]

Table 2 .

 2 

	Area of interest	2 images	2 images	2 images
	Physical interaction 2 buttons	2 buttons	nothing
	Food specialty	Snack foods	Food/ non food	Food/ non food
	Number of images	100	144	48
	Number of users	20	23	76
	Users' bias	Women	Women	overweight/ weight
	Main features	Fixation length Number of fixations last fixation	1st fixation	First fixation position Visualization time
	Gaze data	3000ms	3035ms (average)	3000 ms
	Table 2.5: Settings of gaze studies about food images

4: Features related to fixations used in related works van der Laan et al. [2014] van der Laan et al. [2015] Schag et al. [2013] 3.1 Task and interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Image categories and groups of studies . . . . . . . . . . . . . . . . . 49 3.3 Apparatus and environment . . . . . . . . . . . . . . . . . . . . . . . 51 3.4 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5 Gaze feature analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.5.1 Gaze features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.5.2 Feature extraction strategy . . . . . . . . . . . . . . . . . . . . 55 3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.6.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.6.2 Analysis of the average position of the gaze . . . . . . . . . . . 59 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 3 . 2 :

 32 ToGroup of study Number of participants Average Visualization time (ms) Characteristics of the groups of study: number of participants and average visualization time of a pair of image.

	S 1	40	1856
	S 2	46	1717
	F 1	46	1952
	F 2	52	2218

Gaze feature analysis 57

  3.7 is a set of rules (decisions) applied to the data feature from top (root) to

	3.5.		
	gaze features	Ref.
	raw gaze features	
	1	visualization time	R1
	2, 3	max. size of pupil on left, right image	O7
	4	image label with max. pupil size	O6
	5, 6	first and last seen image	R2,R3
	gaze position	
	7, 8	left image: spread in X,Y	O2
	9, 10	right image: spread in X,Y	O2
	11, 12 both images: spread in X,Y	O1
	13	average gaze position in X	-
	fixations features	
	14	total number of fixations (F)	F1
	15, 16	number of fixations during first and last visit	F3
	17, 18	number of fixations on left, right image	F2
	19	F/(F+ number of saccades)	F12
	20	average distance between fixations	F5
	21	total fixation duration	F7
	22, 23 first and last fixated image	F3
	24, 25 duration of first and last fixation F8
	position of fixations	
	26, 27 left image: spread in X f , Y f	O4
	28, 29 right image: spread in X f , Y f	O4
	30, 31 both image: spread in X f , Y f	O3
	Table 3.3: Gaze features calculated from raw data

Table 3 . 4 :

 34 Accuracy of the decision trees built with the different groups of features (columns) α, β, γ and δ. The decision trees are built from the data collected in the different studies (rows) S 1 , S 2 , F 1 and F 2 . For each decision tree, the root feature and the accuracy are indicated.

		α		β		γ	δ
	root accuracy	root accuracy	root accuracy	root accuracy
	S 1 (6)	96.5%	(9)	94.3%	(9)	90.3%	(13) 92.9%
	S 2 (6)	91.4%	(9)	81.7%	(9)	77.7%	(13) 87.9%
	F 1 (6)	92.8%	(9)	90.5%	(9)	85.3%	(13) 92.1%
	F 2 (5)	93.0%	(5)	93.8%	(9)	91.5%	(13) 90.3%

Based Interest Estimator 65 Animals Figure 4.1: Mirror data

  

		T 0	
	640	800	992
	S 1 50.0% 56.5% 58.6%
	S 2 53.1% 54.3% 57.0%
	F 1 80.7% 80.6% 80.4%

Table 4 .

 4 

1: Accuracy of the decision trees built with the cumulative average at T 0 , for each group of study

Table 4

 4 

	3 to 8.5%. For

.2: Accuracy (%) of the decision trees built with the cumulative average at T 0 and T 1

Table 4 . 3 :

 43 Same goes for the test with Sym S 2 . Evaluation of the GBIE S 1 on the data from the groups of study that had identified target images with respect to standard categories. In bold, the highest performance.

	S 1	S 2	Sym S 1 Sym S 2
	GBIE S 1 67.8% 63.3% 64.0%	60.5%

Table 4 . 5 :

 45 Evaluation of the GBIE S 1 on the data from the groups of study that had identified target images with respect to food recipe categories.with respect to the constitution of the GBIE F 1 itself, since it consists in a binary decision only.

	S 1	Sym S 1 S 2	Sym S 2
	GBIE F 1 55.2% 54.8%	53.3% 53.3%

Table 4 . 6 :

 46 Evaluation of the GBIE S 1 on the data from the groups of study that had identified target images with respect to food recipe categories.

Table 4 . 7 :

 47 Accuracy of the decision trees built with the cumulative average at T 0 for F 2

Table 4 . 9 :

 49 Evaluation of the GBIE S 1 on the data from the groups of study that had identified target images with respect to food recipe categories.

	T 0	640 ms	672 ms	768 ms 800 ms 832 ms
	T 1	800 ms 960 ms	832 ms 992 ms	928 ms 960 ms 992 ms
	F 2 (%)	50.9	54.4	50.9	54.9	54.4	54.4	54.9
	Table 4.8: Accuracy of the decision trees built with the cumulative average at T 0
	and T 1 for F 2						
				F 2	Sym F 2			
				GBIE S 1 55.8% 54.3%			
				GBIE F 1 51.6% 51.6%			

Table 4

 4 

		max. number	max size	first seen
		of fixations	of pupil		image	
	Until the end of the visualization time		
		AVG	S.D.	AVG S.D.	AVG S.D.
	S 1 (%)	51.0	12.7	67.7	8.9	49.4	5.1
	S 2 (%)	22.5	11.6	65.3	7.5	50.2	5.6
	F 1 (%)	57.1	13.5	60.2	8.7	85.1 12.8
	F 2 (%)	46.9	10.4	57.0	7.5	50.9	6.4
	Until 960ms					
		AVG	S.D.	AVG S.D.	AVG S.D.
	S 960 1 (%) 37.2	9.9	55.8	6.0	48.9	5.0
	S 960 2 (%) 34.8	11.5	58.4	7.0	50.1	5.7
	F 960 1 (%) 59.8	20.5	65.0 11.1	83.6 13.3
	F 960 2 (%) 34.3	9.5	51.8	5.8	50.1	6.3

.10: Average accuracy (%) of the label predicted with gaze features proposed in related works

Table 4

 4 

	2 (%)	59.9	19.7	56.7	13.0
	F 1 (%)	20.2	11.5	71.4	12.6
	F 2 (%)	25.3	11.3	62.4	9.3
	Until 960ms			
		AVG	S.D.	AVG	S.D.
	S 960 1 (%) 28.1	17.7	51.7	6.9
	S 960 2 (%) 33.4	19.1	52.7	10.5
	F 960 1 (%) 25.1	16.9	79.2	16.9
	F 960 2 (%) 31.9	15.9	50.4	8.3

.11: Label prediction according to the number of fixations per image. Left column: average proportion (%) of same number of fixations on both images (undetermined target image); right column: average validity score of the label prediction when the number of fixations is different between the images of a pair

  Aeroplane, Bicycle, Boat, Bus, Car, Motorbike, Train • Furniture: Bottle, Chair, Dining table, Potted plant, Sofa, TV

	• Animals: Bird, Cat, Cow, Horse, Dog, Sheep • Persons • Vehicles:

Table 5 .2: Interclass variability

 5 .2.

		Animals Persons Vehicles Furniture
	(A)	16	2	1	1
	(P)	2	8	5	2
	(V)	0	6	13	0
	(F)	0	3	2	14

. The rows correspond to each general category.

Table 5 .

 5 

		Bird	Cat	Cow	Horse	Dog	Sheep	Total
	Test set (1)	282	322	127		418		274		97	1494
	Original								
	Training	330	337	141		421		287		96	1581
	Set (2)								
	40-image								
	Training	8	7	2		0		1		2	40
	Set (3)								
	Ratio (%) (3)	2.4%	2.1%	1.4%		0%		0.3%	2.1%	2.5%
	(2)								
	VEHICLES	Aero plane	Bicycle Boat	Bus	Car	Motor bike	Train Total
	Test set (1)	204	239	172	174	721		222	256	1872
	Original								
	Training	238	243	181	186	714		245	261	1913
	Set (2)								
	40-image								
	Training	2	1	3	1		8		4	1	40
	Set (3)								
	Ratio (%) (3)	0.8%	0.4%	1.7%	0.5%	1.1%	1.6%	0.4%	2%
	(2)								
	FURNITURE Bottle	Chair	Dining	Potted	Sofa	TV
				table	plant		
	Test set (1)	212	417	190		224	223	229	1142
	Original								
	Training	244	445	200		245	229	256	1175
	Set (2)								
	40-image								
	Training	2	15	6 3		5		3		40
	Set (3)								
	Ratio (%) (3)	0.8%	3.4%	0.3%	1.2%	2.2%	1.2%	3.4%
	(2)								

3: Proportion of images representing the different subcategories for one target category in the test set.

Furniture 28% Animals 22% Persons 28% Vehicles 22% Other categories 72% FURNITURE VS OTHER CATEGORIES

  In order to build an efficient classifier, the training set should also contain a large diversity of negative examples. Let us now consider the proportion of target and non-target categories in the training sets.First, we consider the original training set that contains 5011 images.

	ANIMALS VS OTHER CATEGORIES	PERSONS VS OTHER CATEGORIES
		Animals Furniture	Persons Vehicles		Persons Furniture	Animals Vehicles
	Animals 26%	Other categories 74%	31% Furniture Persons 17% 26% Vehicles	Persons 37%	Other categories 63%	Animals 22% Furniture 28% 13% Vehicles
		Furniture	Animals			
		Persons	Vehicles			

Vehicles 22% Animals 30% Persons 26% Furniture 22% Other categories 78% VEHICLES VS OTHER CATEGORIES

  

	Vehicles	Animals
	Persons	Furniture

  Proportion of images from the original training set selected to build the 4 training sets for experimental purposes. In bold, the proportion concerning the target category.

					Chapter 5. Context
		Animals Persons Vehicles Furniture
	Animals	1.3%	0.2%	0.6%	0.8%
	Persons	0.8%	1%	0.6%	0.5%
	Vehicles	0.5%	0.3%	1%	0.7%
	Furniture	0.5%	0.3%	0.7%	1.7%
	Table 5.4:				

Chapter 6. Handling label uncertainty: baseline and existing works

  

	Original set (5011) Animals Persons Vehicles Furniture
	(A)	84	47	14	12
	(P)	72	71	29	80
	(F)	32	148	180	18
	(V)	16	59	35	107
	Restricted set (40) Animals Persons Vehicles Furniture
	(A)	90	242	138	222
	(P)	662	291	225	642
	(F)	186	470	278	91
	(V)	401	484	121	156

Table 6 . 2 :

 62 Misclassification in the test set (4952 images). Each row correspond to one of the 4 target categories. The columns correspond to the categories that are represented in the test set, one being the target category. In bold, the number of misclassified target images.

Table 6 .
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	1) 88.1%	0%	71.3% 0%	87.0%	0%	87.6%	0%
	(2) 76.1% 10.4%	60.6% 8.7%	67.3% 15.4%	69.7% 12.1%

3: PowerSVM accuracy on the test set. Each line corresponds to Pow-erSVM trained with : (1) the 40-image training set with VOC true class labels, (2) the 40-image training sets assigned with the 86 GBIE sets of labels.

6.3. State of the art: Handling label noise in image classification 101 confirms

  the need to take into account the label uncertainty into the training phase.

		Animals Persons Vehicles Furniture
	GT5011	0.99	0.96	0.96	0.99
	GT40	0.96	0.80	0.84	0.93
	GBIE40	0.76	0.70	0.71	0.74
	Table 6.4: AUC measures for C-SVM classification.
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	8.2.1

  Assign p i value to the remaining images

			Pairs of images displayed to a participant k.		Criteria of confidence.
			Images	Labels	GBIE	Maj.	Committee	Rep.
							Scores	Labels	Scores
			i 1,1	label 1	p 1,1	score 1	CL 1	rep 1
			i 1,2	-label 1	p 1,1	score 2	CL 2	rep 2
			. . .	. . .		. . .	. . .	. . .	. . .
			in 2 ,1	labeln 2 ,1	p 1,1	score n-1	CL n-1	rep n-1
			in 2 ,2	-labeln 2 ,1	p 1,1	score n	CL n	rep n
						ORDER	
	Majority Confidence						Representativeness
		Decreasing Majority Confidence					Decreasing Representativeness Confidence
		Images	Maj. Scores					Images	Rep. Scores
		i 3,1	0.97						i 5,2	1
		i 10,2	0.92						i 3,1	0.87
		. . .	. . .						. . .	. . .
		i 18,2	0.24						i 15,1	0.36
		i 7,2	0.19						i 7,2	0
					SELECT & ASSIGN
		SELECT	We consider the labels provided by a participant k Select the N top images. Assign the CL i corresponding to an image i among the selected images Select the images associated by pair Assign the -CL i to the images associated to the image i	SELECT
	i 1,1	label 1	p 1,1 ASSIGN	p 1,1	for N = 2	i 1,1	label 1	p 1,1 ASSIGN p 1,1
	i 1,2	-label 1	p 1,2		p 1,2			i 1,2	-label 1	p 1,2	p 1,2
	. . .	. . .	. . .					. . .	. . .	. . .
	i 3,1	label 3	p 3,1	CL 5			i 3,1	label 3	p 3,1	CL 5
	i 3,2	-label 3	p 3,2	-CL 5			i 3,2	-label 3	p 3,2	-CL 5
	. . .	. . .	. . .					. . .	. . .	. . .
	i 10,1	label 10	p 10,1	-CL 21			i 5,1	label 5	p 5,1	-CL 10
	i 10,2	-label 10	p 10,2	CL 21			i 5,2	-label 5	p 5,2	CL 10
	. . .	. . .	. . .					. . .	. . .	. . .
	in 2 ,1	labeln 2	pn 2 ,1		pn 2 ,1			in 2 ,1	labeln 2	pn 2 ,1	pn 2 ,1
	in 2 ,2	-labeln 2	pn 2 ,2		pn 2 ,2			in 2 ,2	-labeln 2	pn 2 ,2	pn 2 ,2

Table 8 . 1 :

 81 Average Kendall rank correlation coefficient (Kendal's τ ): the order of the images induced by the majority vote criterion appears to be highly different from the order induced by the representativeness criterion.

Table 8 . 2 :

 82 AUC measures for the strategy of majority confidence in a context of committee validation. In bold, the highest AUC values.

		Animals	Persons	Furniture	Vehicles
		AVG S.D.	AVG S.D.	AVG S.D.	AVG S.D.
	2	0.79 0.12	0.75 0.08	0.73 0.11	0.77 0.11
	6	0.87 0.07	0.82 0.04	0.83 0.02	0.86 0.04
	12 0.95 0.01	0.85 0.01	0.84 0.01	0.91 0.02
	18 0.96 0.00	0.85 0.01	0.85 0.01	0.92 0.01
		Animals	Persons	Furniture	Vehicles
		AVG S.D.	AVG S.D.	AVG S.D.	AVG S.D.
	2	0.80 0.11	0.67 0.12	0.76 0.09	0.77 0.13
	6	0.86 0.06	0.76 0.09	0.84 0.03	0.86 0.06
	12 0.94 0.01	0.80 0.07	0.85 0.02	0.93 0.01
	18 0.95 0.00	0.80 0.03	0.84 0.01	0.93 0.00
	Table 8.3: AUC measures for the strategy of representativeness confidence in a
	context of committee validation. In bold, the highest AUC values.

1, 1, 10, 100, 1000}, C = {0.1, 1, 10, 100, 1000} and

Handling label uncertainty when only few images have been an- notated by different users
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  Assign p i value to the remaining images

			Pairs of images displayed to a participant k.	Criteria of confidence.	
			Images	Labels	GBIE	Maj. Scores	Rep. Scores	
			i 1,1	label 1	p 1,1	score 1	rep 1	
			i 1,2	-label 1	p 1,1	score 2	rep 2	
			. . .	. . .	. . .	. . .	. . .	
			in 2 ,1	labeln 2 ,1	p 1,1	score n-1	rep n-1	
			in 2 ,2	-labeln 2 ,1	p 1,1	score n	rep n	
					ORDER			
				the images			
				with positive label i,j			
				where i is the number of the pair		
			and j the number of the image in the pair.		
		Decreasing Majority Confidence			Decreasing Representativeness Confidence
		Images	Maj. Scores				Images	Rep. Scores
		i 4,2	0.93				i 5,2	1
		i 10,2	0.92				i 11,1	0.74
		. . .	. . .				. . .	. . .
		i 11,2	0.54				i 21,1	0.36
		i 14,1	0.53				i 19,2	0.15
				SELECT & ASSIGN		
			We consider the labels provided by a participant k Select the N top images. Assign +1 corresponding to an image i among the selected images Select the images associated by pair Assign -1 to the images associated to the image i	
	i 1,1	label 1	p 1,1	p 1,1		i 1,1	label 1	p 1,1	p 1,1
	i 1,2	-label 1	p 1,2	p 1,2		i 1,2	-label 1	p 1,2	p 1,2
	. . .	. . .	. . .	. . .		. . .	. . .	. . .	. . .
	i 4,1	label 4	p 4,1	-1		i 5,1	label 5	p 5,1	-1
	i 4,2	-label 4	p 4,2	+1		i 5,2	-label 5	p 5,2	+1
	. . .	. . .	. . .	. . .		. . .	. . .	. . .	. . .
	i 10,1	label 10	p 10,1	-1		i 11,1	label 11	p 11,1	+1
	i 10,2	-label 10	p 10,2	+1		i 11,2	-label 11	p 11,2	-1
	. . .	. . .	. . .	. . .		. . .	. . .	. . .	. . .
	in 2 ,1	labeln 2	pn 2 ,1	pn 2 ,1		in 2 ,1	labeln 2	pn 2 ,1	pn 2 ,1
	in 2 ,2	-labeln 2	pn 2 ,2	pn 2 ,2		in 2 ,2	-labeln 2	pn 2 ,2	pn 2 ,2

Table 9 . 2 :

 92 Baseline accuracy of C-SVM trained with participants' labels (C -SV Mnoisy) or with true class labels (C -SV M T C )

		Animals		Persons		Furniture	Vehicles
		AVG S.D.	AVG S.D.	AVG S.D.	AVG S.D.
	0.87 C -SV M noisy 0.69 0.14 0 C -SV M T C	0.64 0.66 0.11 0	0.81 0.70 0.16 0	0.82 0.68 0.13 0
		Animals		Persons		Furniture	Vehicles
		AVG S.D.	AVG S.D.	AVG S.D.	AVG S.D.
	0.75 0.73 0.09		0.73 0.08		0.74 0.10	0.73 0.09
	0.7	0.74 0.09		0.73 0.08		0.75 0.10	0.74 0.09
	0.5	0.77 0.10		0.71 0.08		0.76 0.08	0.75 0.07
	0.25 0.70 0.14		0.65 0.11		0.67 0.14	0.67 0.13

Table 9 . 3 :

 93 Comparison between average accuracy of P-SVM trained with datasets where reliable labels are identified by majority in the user-centred context

		Animals	Persons	Furniture	Vehicles
		AVG S.D.	AVG S.D.	AVG S.D.	AVG S.D.
	0.8	0.67 0.15	0.62 0.12	0.59 0.19	0.65 0.14
	0.75 0.67 0.13	0.59 0.12	0.58 0.19	0.64 0.15
	0.5	0.65 0.13	0.60 0.12	0.63 0.16	0.63 0.16
	0.2	0.64 0.14	0.60 0.10	0.64 0.15	0.63 0.14

Table 9 .4:

 9 Comparison between average accuracy of P-SVM trained with datasets where reliable labels are identified by the representativeness score in the usercentred context

Table 9 .

 9 5: AUC measures for the strategy of majority confidence in a user-centred context. In bold, the highest AUC values.

	9.3. Conclusion

Table 9 .

 9 

6: AUC measures for the strategy of representativeness confidence in a user-centred context. In bold, the highest AUC values.

Table 10 . 1 :

 101 Proportions of images in the training set.

	Training Beef carpaccio Beet salad Cannoli Ice cream
	2718	671	664	689	694
	Test Beef carpaccio Beet salad Cannoli Ice cream
	908 224	222	230	232

Table 10 . 2 :

 102 Proportions of images in the test set. Gaze annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 11.1.1 Subjective categories . . . . . . . . . . . . . . . . . . . . . . . . 140 11.1.2 More complex interfaces: DiscoveryHub . . . . . . . . . . . . 142 11.1.3 Training set defined with active selection . . . . . . . . . . . . 144 11.

	Part III
	Discussion and conclusion

2 Future works in label uncertainty classification . . . . . . . . . . . . 146

  11.2.1 User-centred context: Identifying another reliability criterion 146 11.2.2 Evaluation of the probabilistic confidence: ε parameter . . . . 147 11.2.3 Size of the training set and active learning . . . . . . . . . . . 147

Table 11 .

 11 Table 11.2, row (3). 2: C-SVM accuracy on the test

		Animals		Persons		Vehicles		Furniture
		AVG S.D.	AVG S.D.	AVG S.D.	AVG S.D.
	(1)	96.3	0	89.3	0	95.5	0	90.9	0
	(2a) 89.3	0	57.9	0	84.3	0	85.8	0
	(2b) 87.3	0	64.1	0	81.7	0	81.3	0
	(3)	91.6	7	74.9	7.1	86.6	7	90.5	7

http://www.agence-nationale-recherche.fr/?Project=ANR-13-CORD-0009

inspired from http://eyetracking.me/?page_id=9

Gaze Based Intention Estimator

http://visiir.univ-lr.fr/index.php/component/content/article/ 80-visiir-data/74-visiir-data

built from the data of S1, S2, F1 and F2

https://steve-cronin.blogspot.fr/2010/09/modern-analytics-look-at-smo. html

See Section 5.1

seeEquation (6.1) 

www.discoveryhub.co 

sous le numéro de contrat ANR-13-CORD-0009

Part II

Classification based on gaze annotation

CHAPTER 5

Context

This part shares material with the following paper:

• Lopez, S., [START_REF] Lopez | Handling noisy labels in gaze-based cbir system[END_REF]. Handling noisy labels in gaze-based cbir system. In Advanced Concepts for Intelligent Vision Systems (ACIVS). IEEE

Outline

The training sets described in this chapter will be used to train and test the standard classification algorithm SVM in Chapter 6. We will also propose an evaluation of an algorithm that handles label uncertainty in Chapter 7.

CHAPTER 6

Handling label uncertainty: baseline and existing works The purpose of this chapter is not to demonstrate the calculus. We only report the primal formula in order to understand the relationship between the 3 methods. Giving this description, there are 3 sources of errors of prediction. First, a classification algorithm makes a model that is prone to misclassification errors. Then, errors may be induced by misleading data collected from a sensor that is not well calibrated: data errors. Finally, if the labels may be erroneous especially if the category to identify is ambiguous: label error. Here, we only focus on label errors and misclassification errors.

Standard classification

In supervised learning, training sets generally contain thousands of examples. Nonetheless, Support Vector Machines (SVM) algorithms are known to be still efficient when dealing with few training samples (X). Moreover, these algorithms are easy to compute and to understand as they consist in separating the feature space into 2 subspaces, one for the positive class (Y = +1) and the other one for the negative class (Y = -1), by the simplest geometrical form: hyperplane. As seen in Chapter 6, SVM algorithms are not robust to uncertain labels, which is the case of the labels provided by our Gaze-Based Intention Estimator (GBIE). In a real world context, we are not supposed to have access to the true-class labels. Thus, we should not be able to easily identify the images with noisy labels. Therefore, the training set contains uncertain labels. Moreover, the GBIE has been designed to be user independent. Consequently, we did not intend to model the error distribution but we target to discriminate the images with the most reliable labels from those with the most uncertain labels. As our training sets are already small, we should preserve all the images and balance the impact of the most uncertain labels. We have identified P-SVM [START_REF] Niaf | Kernel-based learning from both qualitative and quantitative labels: application to prostate cancer diagnosis based on multiparametric mr imaging[END_REF] to handle uncertain labels in the training set, that is a mix between a SVM model for classification and a SVM model for ε-insensitive regression. We refer the reader to Section 6.1 for the description of SVM classification. We describe the SVM model for ε-insensitive regression and the P-SVM below.

ε-insensitive and P-SVM

This section is a summary of the process described in [START_REF] Niaf | Kernel-based learning from both qualitative and quantitative labels: application to prostate cancer diagnosis based on multiparametric mr imaging[END_REF].

ε-insensitive Regression

The ε-insensitive regression is a SVR with the soft margin modified to predict a continuous response. There are both class labels in Y = {-1, 1} and probabilistic labels in P r ∈ [0, 1]. γ = {10 -5 , 10 -4 , 10 -3 , 10 -2 , 10 -1 , 1}.

Accuracy

We compare the average classification accuracy of P-SVM in Figure 8.2: (dark blue curve) associated with the training sets preprocessed with the representativeness confidence and (light blue curve) for the majority confidence to the baseline C-SVM. We expect to outperform C -SV M noisy (red dot line) and bridge the gap with the C -SV M T C (green dot line). For small N values, the accuracy of P-SVM trained with the datasets preprocessed by each criterion is similar to the accuracy of C -SV M noisy and for high N values, similar and even better than the accuracy of C -SV M T C . It is intuitive enough as the higher the N value, the more class levels (e.g. images with high impact on the classifier) in the training set. Even though Kendall's τ indicated that the order of the images induced by each criterion is not similar, there is not much difference between the accuracy relative to each criterion. We had expected that
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the representativeness would have selected more informative images in the feature space than the majority confidence and thus, had provided higher accuracy for low N values.

Precision and AUC

In this section, we consider the score of precision @n,(see Section 5.5). We compare the precision @n relative to each category, with different amount of class labels in the training set. With a strategy of majority confidence (see Figure 8.3), at least 250 images are retrieved with a precision above 95% for N = 6 or N = 12, which corresponds to half of the training set with labels validated by committee vote. For Animals and Vehicles respectively, 500 and 750 images are retrieved with 95% of precision.

With a strategy of representativeness confidence (see Figure 8.4), the first 1000 images of Animals and 1500 images of Vehicles are retrieved with a precision of 95% which clearly outperforms the strategy of majority confidence. For labels in the training set) are correctly classified, whereas it was not the case for the strategy of majority confidence. For Persons, the precision curves are similar. These results are consolidated by the AUC measures. For the strategy of majority confidence (see Table 9.5) and the strategy of representativeness confidence (see Table 9.6), the best rate between sensitivity and specificity is reached for N = 12.

The AUC measures are similar to those of majority confidence. Thus, the precision curve for high values of N is similar to C-SVM trained with 40 images assigned with the true-class labels (see Figure 6.7).

In the context of Committee Validation, we have evidenced that P-SVM trained with a set of images annotated by the GBIE can compete with standard C-SVM trained with true-class labels.

Precision and AUC

Let us now compare the performances of P-SVM in a context of retrieval when the most reliable labels are identified in a user-centred context. With a strategy of majority confidence (see Figure 9.2), the best precision scores are obtained when the class labels in the training set where selected among the ones that get the highest consensus in the committee (th 1 > 0.6). For th 1 = 0.8, the first 500 images are correctly classified with a precision of 95%.

With a strategy of representativeness confidence(see Figure 9.3), the 50 first images are correctly classified with a precision of 80% which is far below the case of majority confidence. Such poor results could be explained by the constraint of pair annotation whereas the representativeness score was initially calculated indepen- 

Standard classification

The parameters of C-SVM have been determined by 4-fold cross validation: for (1) C = 10 and γ = 10 -2 , for (2)C = 10 and γ = 10 -5 , for (3) C = 100 and γ = 10 -3 . First, the accuracy of C-SVM trained with the original training set is between 70 and 80%. When the training set is 70-time smaller, the accuracy drops drastically and barely reaches 60%. The low results may be partly explained by the fact that the training and test sets had not been manually checked and may contain some noisy labels [START_REF] Wang | Recipe recognition with large multimodal food dataset[END_REF]. Nevertheless, the classification is better than random classification for two categories only: Beet salad (62.8%) and Ice-cream (60.0%). Hence, P-SVM allows to improve the results of classification based on uncertain labels in order to compete with classification based on true-class labels.

Finally, the average accuracy of C-SVM trained with GBIE labels is not better than random classification. With P-SVM, we can expect to reach similar performances to (2). We study P-SVM in the Committee Validation Context with the majority confidence criterion to determine the most reliable labels as it was the best case identify in Chapter 7.

P-SVM in the Committee Validation Context, using the majority confidence criterion

The parameters of P-SVM have been determined by 4-fold cross validation: C = 10, C = 0.1 and γ = 0.001. We report in Table 10.4 the average accuracy of P-SVM over the 46 classifications, depending on N the number of reliable labels identified by the majority confidence criterion in the Committee Validation Context. Like in Chapter 7, P-SVM is more accurate with half of the training set validated by the committee than standard classification trained with the GBIE labels. Moreover, P-SVM outperforms standard classification only considering the two categories that were classified with more than 60% accuracy in Table 10.4: for N = 15 for beet salad, and N = 10 for ice-cream. This is compliant with the results of Chapter 7.

However, this study is not conclusive about classification on food-related cate- 

Standard images

This chapter contains the images displayed during the experiments S 1 and S 2 about standard categories: Animals, Persons, Furniture, Vehicles. The images were displayed two by two, only one being the target image. As mentioned in Part I, we selected color images trying to represent all the associated subcategories (see Chapter 5). Moreover, we wanted to limit gaze bias and make sure that the annotation task is not trivial. To this end, we have built easy pairs of images and more difficult ones. A definition of "difficult images " is developed in Section 2.2.1. Their difficulty predictor is based on higher level of images interpretation based on deep features. In our context, the images are displayed by pair. The identification of the target image in a pair can be ambiguous, depending on the difficulty of each image and how much confusable the two images are. Thus, we consider that the pairs of images are easy when :

• the element indicating that an image is the target is displayed at the center of this image,

• the two images are not confusable (distinct backgrounds, colors)

We consider that the pairs of images are difficult when:

• there are numerous objects of different classes in both images

• the element indicating that an image is the target is partially hidden or is hardly distinguishable from the background

• both images contain the same colors and similar shapes.

According to Tudor [START_REF] Ionescu | How hard can it be? estimating the difficulty of visual search in an image[END_REF], wrong annotations provide the ultimate evidence of a difficult image. For us, characterizing the difficulty of an image could give insight in the label confidence in future works. 

Appendix A. Standard images

A.1 Animals

Food images: specific categories

This chapter contains the images displayed during the experiments F 1 about standard categories: Beef carpaccio, Beet salad, Cannoli, Ice-cream. The images were displayed two by two, only one being the target image. Like in Appendix A, we wanted to display easy and difficult pairs of images. For example, for beef carpaccio and beet salad, the red color attracts the eye and it may be too easy to identify the target image quickly. Thus, we had to display non-target images with red colors. Moreover, we selected target images with unusual presentations of the dish. 

B.1 Beef carpaccio

Food images: general categories

This chapter contains the images displayed during the experiments F 2 about standard categories: Apetizers, Desserts, Berries, Citrus. The images were displayed two by two, only one being the target image. Like in Appendix A, we wanted to display easy and difficult pairs of images. Appetizers correspond to: salads, soups, oysters and snails. Desserts correspond to anything that is sweet.Here, the diversity of subcategories referring to first to target category is very wide and is sufficient to make the pairs of images quite difficult.

Citrus refers to yellow and green lemons or to oranges. Berries refers to strawberries, raspberries for example. These two target categories can appear in sweet or salty dishes. The surprising presentation contributes to the difficulty of the pairs of images. One daunting challenge of Content Based Image Retrieval systems is the requirement of annotated databases. To limit the burden of annotation, this thesis proposes a system of image annotation based on gaze data. The purpose is to classify a small set of images according to a target category (binary classification) in order to classify a set of unseen images.

First, we have designed a protocol based on visual preference paradigm in order to collect gaze data from different groups of participants during a category identification task. Among the gaze features known to be informative about the intentions of the participants, we have determined a Gaze-Based Intention Estimator (GBIE), computable in real-time, independent both from the participant and the target category. This implicit annotation is better than random annotation but is inherently uncertain.

In a second part, the images annotated by the GBIE from the participants' gaze data are used to classify a bigger set of images with an algorithm that handles label uncertainty: P-SVM combining classification and regression SVM. We have determined among different strategies a criterion of relevance in order to discriminate the most reliable labels, involved in the classification part, from the most uncertain labels, involved in the regression part. The average accuracy of P-SVM is evaluated in different contexts and can compete with the performances of standard classification algorithm trained with true-class labels. These evaluations were first conducted on a standard benchmark for comparing with state-of-the-art results and later conducted on food image dataset.