Chapter 1

Introduction en français 1.1 Problème de branchement, exemples Un groupe algébrique ane complexe est une variété algébrique ane dénie sur le corps des nombres complexes C et telle que les opérations de multiplication et de passage à l'inverse sont données par des fonctions régulières sur la variété. Un tel groupe possède un radical, qui est la composante connexe de son sous-groupe fermé résoluble distingué maximal contenant l'élément neutre. Le sous-groupe des éléments unipotents de ce radical est appelé radical unipotent du groupe algébrique considéré. De manière équivalente, le radical unipotent d'un groupe algébrique complexe est son sous-groupe fermé distingué unipotent maximal.

Exemples : Si n est un entier strictement positif, les groupes SL n (C) et GL n (C), formés respectivement par les matrices carrées de déterminant 1 et et les matrices inversibles, sont des groupes algébriques anes complexes. Le radical de SL n (C) est trivial, tandis que celui de GL n (C) est composé des matrices d'homothétie t I n (t ∈ C * ). Les radicaux unipotents de ces deux groupes sont triviaux. Dénition 1.1.1. Un groupe algébrique ane complexe dont le radical unipotent est trivial est dit réductif. Quand son radical est trivial et que le groupe est de plus connexe, on dit qu'il est semi-simple.

Exemples : D'après ce qui précède, SL n (C) est semi-simple (et donc réductif) tandis que GL n (C) est seulement réductif. On peut citer quelques autres exemples classiques de groupes réductifs complexes : SO n (C) (groupe spécial orthogonal), Sp 2n (C) (groupe symplectique), les groupes nis... Le terme réductif vient d'une propriété importante de ces groupes : on dit que leurs représentations sont complètement décomposables ( reducible en anglais). Plus précisément, toute représentation complexe de dimension nie d'un groupe réductif complexe se décompose en somme directe de représentations irréductibles (i.e. qui ne con-1 tiennent pas de sous-représentation non triviale). Une remarque tout aussi intéressante est que, dans le cas d'un groupe connexe, on connaît ces représentations irréductibles.

Soit G un groupe réductif complexe connexe. On peut lui associer son algèbre de Lie g, qui est une algèbre de Lie réductive et possède donc une décomposition en sous-espaces radiciels, et ainsi un système de racines associé. Cette donnée combinatoire dénit entre autres une notion de poids, dont certains sont appelés poids entiers dominants . Il se trouve que, à tout poids entier dominant λ de G, on peut associer une représentation irréductible de G, de dimension nie, appelée module de plus haut poids λ et notée V G (λ). De plus les V G (λ) sont exactement toutes les représentations complexes de G qui sont irréductibles, rationnelles, et de dimension nie.

Exemple : L'exemple le plus basique d'un groupe réductif complexe connexe est peutêtre GL n (C), pour lequel il est facile de décrire les poids entiers dominants : il s'agit exactement des suites nies décroissantes (au sens large) d'entiers, de longueur n. Une telle suite nie α = (α 1 , . . . , α n ) donne un caractère du sous-groupe de GL n (C) formé par les matrices diagonales noté T de la manière suivante :

e α : T -→ C * ⎛ ⎜ ⎝ t 1 . . . t n ⎞ ⎟ ⎠ -→ t α 1 1 . . . t αn n .
Le GL n (C)-module de plus haut poids α est alors noté S α (C n ). Par isomorphisme, lorsque l'on s'intéresse au groupe GL(V ) des automorphismes d'un C-espace vectoriel V de dimension nie, toute suite nie décroissante α d'entiers, de longueur dim(V ), donne une représentation irréductible S α V de GL(V ).

On va uniquement s'intéresser à un type particulier de représentations de GL n (C) : celles qui sont appelées polynomiales . Il s'agit des représentations pour lesquelles l'action de tout élément g ∈ GL n (C) est donnée par une famille xée de polynômes en les entrées de g. Parmi les représentations irréductibles, celles qui sont polynomiales sont faciles à caractériser : si α = (α 1 , . . . , α n ) est un poids entier dominant de GL n (C), la représentation S α (C n ) est polynomiale si et seulement si α n ≥ 0. Les représentations complexes polynomiales irréductibles de dimension nie de GL n (C) sont donc données par les partitions de longueur au plus n, qui sont des suites nies décroissantes α = (α 1 , . . . , α k ) d'entiers strictement positifs, dont la longueur k est la longueur de la partition, notée (α). On note de plus |α| = k i=1 α i la taille d'une telle partition, qui est alors qualiée de partition de l'entier |α| .

Le problème de branchement : On considère à présent deux groupes réductifs complexes connexes, G et Ĝ, et un morphisme f : G -→ Ĝ. Alors, pour tout poids entier dominant λ de Ĝ, le Ĝ-module V Ĝ( λ) est, via le morphisme f , une représentation (complexe, de dimension nie) de G, et donc se décompose en somme directe de représentations 1.1. PROBLÈME DE BRANCHEMENT, EXEMPLES irréductibles de G : (λ, λ) . Dénition 1.1.2. Les multiplicités c(λ, λ) apparaissant dans la décomposition précédente sont des entiers positifs (ou nuls) appelés coecients de branchement .

V Ĝ( λ) = λ poids entier dominant de G V G (λ) ⊕c
Le problème de branchement consiste à étudier ces coecients, ce qui peut vouloir dire trouver une formule combinatoire pour les calculer (cela a été fait dans certains cas). Cela peut aussi vouloir dire étudier certains aspects plus qualitatifs de ceux-ci, comme on le fera dans la suite.

Exemples :

Si n ≥ 2, on peut introduire un morphisme de GL n-1 (C) dans GL n (C) en envoyant toute matrice A ∈ GL n-1 (C) sur

⎛ ⎜ ⎜ ⎜ ⎝ 0 A . . . 0 0 • • • 0 1 ⎞ ⎟ ⎟ ⎟ ⎠
. Dans ce cas, les coecients de branchements sont indexés par des couples de partitions : la première ayant une longueur d'au plus n -1, et la seconde de longueur au plus n. Pour une telle paire (λ 1 , . . . , λ n-1 ) =λ , (μ 1 , . . . , μ n ) =μ , le coecient de branchement correspondant est connu:

c(λ, μ) = 1 si μ 1 ≥ λ 1 ≥ μ 2 ≥ λ 2 ≥ μ 3 ≥ • • • ≥ μ n-1 ≥ λ n-1 ≥ μ n 0 sinon .
Si la situation de branchement est T ⊂ GL n (C), où T est de nouveau le tore maximal de GL n (C) composé des matrices diagonales (et le morphisme entre les deux est donc l'identité), alors on est en fait en train d'étudier la décomposition des modules de plus haut poids polynomiaux de GL n (C) en somme directe de sousespaces de poids (i.e. des sous-espaces sur lesquels T agit par un certain caractère λ). Les coecients de branchement correspondants sont appelés nombres de Kostka et sont indexés par les couples formés d'une suite d'entiers positifs de longueur n (un poids entier dominant disons λ de T ) et d'une partition de longueur au plus n (un poids entier dominant particulier disons μ de GL n (C)).

Alors le nombre de Kostka k μ,λ peut être calculé comme le nombre de tableaux de Young semi-standards de forme μ et de poids λ : c'est-à-dire le nombre de façons de remplir le diagramme de Young de la partition μ avec λ 1 fois le nombre 1, λ 2 fois le nombre 2, etc, de manière croissante (au sens large) en ligne et strictement croissante en colonne.

Un exemple assez célèbre est le cas du produit tensoriel de deux représentations polynomiales irréductibles de GL n (C) : lorsque G = GL n (C) est envoyé diagonalement dans Ĝ = G×G, on s'intéresse en fait à la manière dont le produit tensoriel de deux représentations polynomiales irréductibles de GL n (C) se décompose en somme directe de telles représentations. Les coecients de branchement correspondants sont appelés coecients de Littlewood-Richardson :

S α (C n ) ⊗ S β (C n ) = γ S γ (C n ) ⊕c γ α,β .
Ils sont indexés par des triplets de partitions et il existe une règle combinatoire permettant de les calculer : la règle de Littlewood-Richardson. Elle exprime également les coecients de Littlewood-Richardson en terme de tableaux de Young semi-standards particuliers : soient α, β, et γ des partitions vériant |α| + |β| = |γ| (il s'agit d'une condition nécessaire pour avoir c γ α,β = 0). On considère alors le diagramme de Young gauche de forme γ/α : il s'agit simplement du diagramme obtenu en enlevant au diagramme de Young de γ celui de α (si ce n'est pas possible, c'est que le coecient de Littlewood-Richardson est 0). Par exemple,

α et γ donnent γ/α
On appelle alors tableau de Littlewood-Richardson un tableau semi-standard gauche (i.e. la même chose qu'un tableau semi-standard, mais en partant d'un diagramme de Young gauche) tel que la suite obtenue en concaténant ses lignes inversées (i.e. lues de droite à gauche) est un mot de treillis : dans tout préxe de cette suite, tout nombre i apparaît au moins autant de fois que le nombre i + 1. La règle en question exprime alors que le coecient de Littlewood-Richardson c γ α,β est égal au nombre de tableaux de Littlewood-Richardson de forme γ/α et de poids β. Voyons ce que cela donne sur un exemple : si α = (2, 1), β = (3, 2, 1), et γ = (4, 3, 2), le coecient est alors 2 car il y a exactement deux tableaux de Littlewood-Richardson de forme (4, 3, 2)/(2, 1) et de poids (3, 2, 1) :

1 1 1 2 2 3 et 1 1 2 2 1 3
Un autre problème très intéressant concernant ces coecients était appelé la Conjecture de Saturation : a-t-on, pour tout triplet de partitions (α, β, γ), ∃N ∈ N * , c Nγ Nα,Nβ = 0 =⇒ c γ α,β = 0 ?

(Le fait que c γ α,β = 0 ⇒ ∀N ∈ N * , c Nγ Nα,Nβ = 0 est bien plus facile à démontrer.) L'importance de cette question venait notamment de son lien avec la Conjecture de Horn , provenant d'un problème assez ancien concernant les matrices hermitiennes : étant données deux matrices hermitiennes, que peut-on dire du spectre de leur somme ? Les personnes intéressées pourront par exemple se reporter à cet article introductif de W. Fulton : [START_REF] Fulton | Eigenvalues, invariant factors, highest weights, and Schubert calculus[END_REF]. La réponse nale à cette question vint de la démonstration de la Conjecture de Saturation par A. Knutson et T. Tao (voir [START_REF] Knutson | The honeycomb model of GL n (C) tensor products I. Proof of the saturation conjecture[END_REF] ou [START_REF] Skovsted | The saturation conjecture (after A. Knutson and T. Tao)[END_REF]).

L'exemple qui va le plus nous intéresser dans cette thèse est celui des coecients de Kronecker. Comme pour l'exemple précédent, il s'agit de décomposer le produit tensoriel de deux représentations irréductibles d'un groupe réductif, qui se trouve cette fois être le groupe ni S k des permutations de l'ensemble 1, k (où k est un entier strictement positif). Il est bien connu que les représentations irréductibles d'un groupe ni sont en bijection avec les classes de conjugaison de ce dernier. En particulier, les représentations irréductibles de S k sont même indexées par les partitions de l'entier k. Étant donnée une telle partition α, on notera M α le S kmodule irréductible correspondant. Les coecients de Kronecker sont alors les multiplicités apparaissant dans la décomposition :

M α ⊗ M β = γ k M ⊕g α,β,γ γ
(où α et β sont des partitions de k). On utilise la notation g α,β,γ , sans distinction notable entre les trois partitions, car la valeur du coecient ne dépend en fait pas de l'ordre de celles-ci. Cela est dû au fait que les S k -modules irréductibles sont auto-duaux. Bien que l'on pourrait penser qu'étudier les coecients de Kronecker serait plus simple qu'étudier ceux de Littlewood-Richardson (par exemple parce qu'ils proviennent de la théorie des représentations des groupes nis), on sait en fait que ces derniers sont des coecients de Kronecker particuliers. Les coecients de Kronecker forment alors une classe plus large de coecients de branchement et il n'existe par exemple pour l'instant pas de règle combinatoire semblable à la règle de Littlewood-Richardson pour les calculer. Une autre illustration possible de la diculté que leur étude peut présenter est que l'on sait que ces coecients ne possèdent pas la propriété de saturation.

Organisation de la thèse et résultats principaux

La majeure partie de cette thèse concerne certaines notions de stabilité des coecients de Kronecker. Remarquons tout d'abord que l'on peut étendre la dénition de ces coecients à des triplets de partitions n'ayant pas toutes la même taille en décrétant simplement que le coecient de Kronecker est dans ce cas zéro. Dénition 1.2.1. Soit (α, β, γ) un triplet de partitions. On dit qu'il est : stable lorsque g α,β,γ = 0 et, pour tout triplet de partitions (λ, μ, ν), la suite (g λ+dα,μ+dβ,ν+dγ ) d∈N est stationnaire; faiblement stable lorsque, pour tout entier d strictement positif, g dα,dβ,dγ = 1; presque stable lorsque, pour tout entier d strictement positif, g dα,dβ,dγ ≤ 1 et lorsqu'il existe un entier d 0 strictement positif tel que g d 0 α,d 0 β,d 0 γ = 0.

Les notions de stabilité et de faible-stabilité proviennent des travaux de J. Stembridge dans [START_REF] Stembridge | Generalized Stability of Kronecker Coecients[END_REF]. La première a été introduite dans le but de généraliser un comportement remarqué par F. Murnaghan en 1938 : avec la dénition ci-dessus, Murnaghan s'est rendu compte que le triplet (1), (1), (1) était stable. La deuxième notion a alors été introduite par Stembridge dans le but de trouver une caractérisation de la stabilité qui serait plus facile à vérier en pratique. En eet, Stembridge a démontré que tout triplet stable est faiblement stable et conjecturé que la réciproque est également vraie. S. Sam et A. Snowden ont ensuite prouvé cette conjecture, dans [START_REF] Sam | Proof of Stembridge's conjecture on stability of Kronecker coecients[END_REF], par des méthodes algébriques. Notons aussi que P.-E. Paradan a également donné, dans [START_REF] Paradan | Stability property of multiplicities of group representations[END_REF], une autre preuve de ce fait dans un contexte plus large.

Le but du Chapitre 4 1 est de donner une nouvelle preuve du fait qu'un triplet faiblement stable est stable. Cette preuve est plus géométrique, et basée sur une autre expression classique des coecients de Kronecker : pour tout triplet (α, β, γ) de partitions, il existe une variété projective X un produit de variétés de drapeaux sur laquelle agit un groupe réductif complexe connexe G (les deux ne dépendant que des longueurs des trois partitions), et un bré en droites L α,β,γ G-linéarisé sur X tels que : g α,β,γ = dim H 0 (X, L α,β,γ ) G (voir le Chapitre 3 pour les détails). Notre démonstration utilise de plus quelques notions de Théorie Géométrique des Invariants (qui sont également présentées dans le Chapitre 3), en particulier la notion de points semi-stables relativement à un bré en droites G-linéarisé sur X (dont l'ensemble dans X est noté si L est le bré en droites X ss (L)). On se sert en outre de certaines conséquences des résultats de V. Guillemin et E. Sternberg dans [START_REF] Guillemin | Geometric quantization and multiplicities of group representations[END_REF], ou de C. Teleman dans [START_REF] Teleman | The quantization conjecture revisited[END_REF], sur ce que l'on appelle quantisation commute à réduction . On y utilise enn un corollaire du théorème du Slice Étale de D. Luna (cf [START_REF] Luna | Slices étalés[END_REF]). On obtient un résultat en un certain sens un peu plus précis : Théorème 1.2.2. Soient (α, β, γ) et (λ, μ, ν) deux triplets de partitions, dont le premier est faiblement stable. Il existe alors un entier positif D tel que, pour tout entier d ≥ D, X ss L λ,μ,ν ⊗ L ⊗d α,β,γ ⊂ X ss (L α,β,γ ). De plus, la suite de terme général g λ+dα,μ+dβ,ν+dγ est constante si d ≥ D. En particulier, (α, β, γ) est stable. 1 Précisons que ce chapitre forme avec les deux premiers paragraphes du Chapitre 5 un article soumis en janvier 2017.

Cette caractérisation d'une borne de stabilisation (l'entier D du théorème) nous donne la possibilité de calculer explicitement de telles bornes pour des exemples assez petits de triplets stables. C'est en eet ce que l'on fait dans la suite : en utilisant le critère de Hilbert-Mumford (voir dans le Chapitre 3), on peut calculer des bornes de stabilisation explicites pour les triplets stables (1), (1), (1) et (1, 1), (1, 1), (2) . Théorème 1.2.3. Soit (λ, μ, ν) un triplet de partitions, tel que n 1 = (λ) et n 2 = (μ).

On pose

2 D 1 = 1 2 -λ 1 + λ 2 -μ 1 + μ 2 + 2(ν 2 -ν n 1 n 2 ) + n 1 +n 2 -4 k=1 (ν k+2 -ν n 1 n 2 -k ) .
Alors, pour tout d ≥ D 1 , g λ+d(1),μ+d(1),ν+d(1) = g λ+D 1 (1),μ+D 1 (1),ν+D 1 (1) .

Théorème 1.2.4. Dans le même contexte, on pose m = max(-λ 2 -μ 1 , -λ 1 -μ 2 ), et

D 2 = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 1 2 m + λ 3 + μ 3 + 2(ν 2 -ν n 1 n 2 ) + n 1 +n 2 -4 k=1 (ν k+2 -ν n 1 n 2 -k ) si n 1 , n 2 ≥ 3 1 2 m + μ 3 + 2ν 2 -ν 2n 2 + n 2 -1 k=1 ν k+2 si n 1 = 2 1 2 m + λ 3 + 2ν 2 -ν 2n 1 + n 1 -1 k=1 ν k+2 si n 2 = 2 .
Alors, pour tout d ≥ D 2 , g λ+d(1,1),μ+d(1,1),ν+d(2) = g λ+D 2 (1,1),μ+D 2 (1,1),ν+D 2 (2) .

Précisons que, pour raner légèrement les bornes obtenues (et ainsi obtenir celles écrites ci-dessus), on utilise un résultat classique de quasi-polynomialité qui concerne la dimension d'un sous-espace d'invariants dans une représentation irréductible d'un groupe réductif complexe. On écrit ainsi une démonstration de cette quasi-polynomialité dans un contexte susant pour l'utilisation que l'on en fait.

Dans le cas du triplet (1), (1), (1) , il existait déjà certaines bornes, obtenues notamment par M. Brion (cf [START_REF] Brion | Stable properties of plethysm: on two conjectures of Foulkes[END_REF]), E. Vallejo (cf [START_REF] Vallejo | Stability of Kronecker Products of Irreducible Characters of the Symmetric Group[END_REF]), et E. Briand, R. Orellana, et M. Rosas (cf [START_REF] Briand | The stability of the Kronecker product of Schur functions[END_REF]). On observe que notre méthode permet de retrouver deux de ces bornes : celle due à Brion et une des deux dues à Briand-Orellana-Rosas. Pour le triplet (1, 1), (1, 1), (2) il n'existait à notre connaissance pas de telle borne.

Dans le Chapitre 5, on montre que les méthodes que l'on utilise s'applique de manière intéressante à d'autres types de coecients de branchement (ce qui n'est pas surprenant, puisque l'on a expliqué que Paradan avait obtenu des résultats similaires à stable ⇔ faiblement stable dans un cadre bien plus large). On s'intéresse donc d'abord, dans le paragraphe 5.1, à des coecients appelés coecients de pléthysme. Il s'agit des coecients de branchement qui apparaissent lorsque l'on compose des foncteurs de Schur : si λ et μ sont deux partitions, si (λ) n'est pas trop grande par rapport à μ (voir la Dénition 5.1.1 pour plus de précision), et si V est un C-espace vectoriel de dimension nie au moins (μ), alors S λ (S μ V ) qui par dénition est un GL(S μ V )-module simple est une représentation de GL(V ). Les multiplicités dans sa décomposition en somme directe d'irréductibles sont les coecients de pléthysme. On obtient sur ceux-ci un résultat de stabilité que Sam et Snowden avaient déjà prouvé dans [START_REF] Sam | Proof of Stembridge's conjecture on stability of Kronecker coecients[END_REF] , que l'on applique ensuite pour redémontrer que deux exemples de suites de tels coecients sont stationnaires. Ces deux exemples avaient déjà été obtenus par L. Colmenarejo dans [START_REF] Colmenarejo | Stability Properties of the Plethysm: a Combinatorial Approach[END_REF].

Le deuxième autre exemple de coecients de branchement considérés est celui du produit tensoriel de représentations irréductibles du groupe hyperoctaédral. Il s'agit d'un groupe ni qui est le groupe de Weyl W n de type B n (pour n ≥ 2), et qui peut s'écrire sous la forme d'un produit semi-direct : W n = (Z/2Z) n S n (cf Paragraphe 5.2 pour des précisions). On doit d'abord utiliser une sorte de dualité de Schur-Weyl pour ce groupe due à M. Sakamoto et T. Shoji, dans [START_REF] Sakamoto | Schur-Weyl reciprocity for Ariki-Koike Algebras[END_REF] , qui permet de ré-exprimer les coecients de branchement considérés uniquement à l'aide de groupes connexes. On peut alors obtenir un analogue de l'équivalence stable ⇔ faiblement stable et trouver une borne de stabilisation dans un cas similaire à la stabilité de Murnaghan pour les coecients de Kronecker.

Le troisième et dernier exemple de ce chapitre concerne le produit de Heisenberg, introduit par M. Aguiar, W. Ferrer Santos, et W. Moreira dans [START_REF] Aguiar | The Heisenberg Product: from Hopf algebras and species to symmetric functions[END_REF]. Leur but était d'unier diérents produits ou co-produits dénis dans diérents contextes et, dans celui des représentations du groupe symétrique, ce produit mène à la dénition par L. Ying (cf [START_REF] Ying | Stability of the Heisenberg Product on symmetric functions[END_REF]) des coecients de Aguiar, qui en un certain sens généralisent les coecients de Kronecker. Dans ce même article, Ying démontre un résultat de stabilité des coecients de Aguiar similaire à la stabilité de Murnaghan. On parvient à redémontrer et généraliser ce résultat en prouvant que les coecients de Aguiar sont également les coecients de branchement pour la situation

G = GL(V 1 ) × GL(V 2 ) → Ĝ = GL V 1 ⊕ (V 1 ⊗ V 2 ) ⊕ V 2 (pour V 1 et V 2 deux C-
espaces vectoriels de dimension nie). On s'intéresse également à quelques bornes de stabilisation.

Dans le Chapitre 6, on s'intéresse à présent à certaines faces de ce que l'on appelle le cône de Kronecker : pour n 1 et n 2 deux entiers strictement positifs xés, on note P n 1 ,n 2 l'ensemble des triplets de partitions tels que (α

) ≤ n 1 , (β) ≤ n 2 , et (γ) ≤ n 1 n 2 .
L'expression précédente des coecients de Kronecker induit par exemple facilement que (α, β, γ) ∈ P n 1 ,n 2 t.q. g α,β,γ = 0 est un semi-groupe (i.e. est stable par addition). Ce qui nous intéresse alors est le cône engendré par ce semi-groupe :

PKron n 1 ,n 2 = (α, β, γ) t.q. ∃N ∈ N * , g Nα,Nβ,Nγ = 0
(que l'on note comme dans [START_REF] Manivel | On the asymptotics of Kronecker coecients[END_REF]). C'est un cône polyédral appelé le cône de Kronecker et un résultat connu (voir [START_REF] Manivel | On the asymptotics of Kronecker coecients[END_REF], Paragraphe 2.4) qui illustre l'intérêt des triplets stables est le suivant : ils sont situés sur des faces de ce cône. On aimerait donc trouver un moyen de produire de telles faces qui contiennent uniquement des triplets stables, ou au moins presque stables.

Parmi les faces du cône de Kronecker, on s'intéressera tout particulièrement à certaines qui sont qualiées de régulières : il s'agit de celles qui contiennent au moins un triplet (α, β, γ) tel que α, β, et γ sont régulières (c'est-à-dire possèdent respectivement n 1 , n 2 , et n 1 n 2 parts deux à deux distinctes). On se place alors de nouveau dans le contexte des coecients de Kronecker (voir Chapitre 3) : autrement dit on pose G = GL(V 1 )×GL(V 2 ) et on considère un sous-groupe à un paramètre du tore maximal T de G formé des matrices diagonales :

τ : C * -→ T t -→ ( ⎛ ⎜ ⎝ t a 1 . . . t an 1 ⎞ ⎟ ⎠ , ⎛ ⎜ ⎝ t b 1 . . . t bn 2 ⎞ ⎟ ⎠) (avec a 1 , . . . , a n 1 , b 1 , . . . , b n 2 ∈ Z). Supposons de plus que τ est dominant et régulier (i.e. a 1 > • • • > a n 1 ≥ 0 et b 1 > • • • > b n 2 ≥ 0), et également Ĝ-régulier (i.e
. les entiers a i + b j sont deux à deux distincts). On construit alors la matrice M = (a i + b j ) i,j , ainsi que ce que l'on appelle la matrice d'ordre de τ : il s'agit de la matrice dans laquelle chaque coecient de M est remplacé par son rang dans la suite des coecients a i + b j ordonnés de manière décroissante. Il existe alors un résultat dû à L. Manivel (cf [START_REF] Manivel | On the asymptotics of Kronecker coecients[END_REF]) et E. Vallejo (cf [Val14]) énonçant qu'une telle matrice d'ordre donne une face régulière explicite de PKron n 1 ,n 2 , de dimension minimale parmi ces faces (i.e. de dimension n 1 n 2 ), qui ne contient que des triplets stables. On étend ce résultat en prouvant qu'une matrice d'ordre donne en fait d'autres faces :

Théorème 1.2.5. Pour tout sous-groupe à un paramètre τ de T dominant, régulier, et Ĝ-régulier, toute conguration du type suivant dans la matrice d'ordre:

k k + 1 row i j j + 1
donne une face régulière de dimension n 1 n 2 du cône de Kronecker Dans le Chapitre 7, on s'intéresse à des zéros apparaissant dans le cône de Kronecker : par zéros, on entend des triplets (α, β, γ) ∈ PKron n 1 ,n 2 tels que g α,β,γ = 0. L'existence de tels triplets correspond au fait que les coecients de Kronecker ne possèdent pas la propriété de saturation, et les comprendre est un grand problème dans l'étude de ces coecients. Quand on considère un tel zéro (α, β, γ), on va comme précédemment s'intéresser à la demi-droite N * (α, β, γ), et plus particulièrement à Λ(α, β, γ) = {d ∈ N * t.q. g dα,dβ,dγ = 0}. On remarque que, dans quasiment tous les exemples connus, ce semi-groupe est de la forme d 0 N * pour un entier strictement positif d 0 . On montre que c'est en fait toujours le cas lorsque le triplet de départ est presque stable (notons que ceci est également une conséquence immédiate des résultats de Paradan, en particulier du Théorème B de [START_REF] Paradan | Stability property of multiplicities of group representations[END_REF]) : Théorème 1.2.7. Soit (α, β, γ) un triplet de partitions presque stable. Il existe alors

d 0 ∈ N * tel que, pour tout d ∈ N * , d ∈ Λ(α, β, γ) ⇐⇒ d 0 |d
Ce résultat n'est par contre pas vrai pour tous les triplets dans PKron n 1 ,n 2 . Il existe en eet une famille de contre-exemples, donnée par Briand, Orellana, et Rosas dans [START_REF] Briand | Reduced Kronecker coecients and counter-examples to Mulmuley's strong saturation conjecture SH[END_REF] (Theorem 2.4), dont le plus petit est (6, 6), (7, 5), (6, 4, 2) . Il s'agit à notre connaissance des seuls exemples connus où Λ(α, β, γ) n'est pas de la forme d 0 N * . On étudie donc géométriquement et en détail cet exemple et on parvient à montrer que : Proposition 1.2.8. Notons Q le groupe des quaternions, vu comme un sous-groupe (de cardinal 8) de SL 2 (C). Alors, pour tout entier d strictement positif, Notons que ce résultat est aussi valable pour les autres contre-exemples de la famille donnée dans [START_REF] Briand | Reduced Kronecker coecients and counter-examples to Mulmuley's strong saturation conjecture SH[END_REF]. On aimerait alors utiliser ce genre de résultat pour produire de nouveaux exemples comme ceux-ci. Malheureusement il est déjà assez compliqué de trouver un autre groupe ni dont, comme Q, l'action sur des espaces de polynômes homogènes donne des dimensions intéressantes pour les espaces des invariants. On parvient seulement à trouver un exemple comme cela, mais on ne parvient pas vraiment à l'exploiter pour produire d'autres triplets comme (6, 6), (7, 5), (6, 4, 2) .

g d(6,6),d(7,5),d(6,4,2) = dim H 0 P 1 (C), O(2d) Q = dim (C[x, y] 2d ) Q , où C[x,
Chapter 2 Introduction 2.1 Presentation of the branching problem A complex ane algebraic group is a group that is an ane algebraic variety dened over the eld C of complex numbers, such that the multiplication and inversion operations are given by regular maps on the variety. Such a group has a radical, which is the identity component of its maximal closed normal solvable subgroup. And the subgroup of this radical formed by unipotent elements is called the unipotent radical of the ane algebraic group. Equivalently, the unipotent radical of a complex ane algebraic group is its maximal closed unipotent normal subgroup.

Examples: For a positive integer n, the groups SL n (C) and GL n (C) (of matrices of determinant 1 and invertible matrices, respectively) are for instance complex ane algebraic groups. The radical of SL n (C) is trivial, whereas the radical of GL n (C) is the subgroup of the scalar matrices: {t I n ; t ∈ C * }. Both unipotent radicals of these groups are trivial. Denition 2.1.1. A complex ane algebraic group whose unipotent radical is trivial is said to be reductive. When the group is moreover connected and its radical is trivial, it is said to be semisimple.

Examples:

According to what precedes, SL n (C) and GL n (C) are reductive, and the former is even semisimple. Other classical examples of complex reductive groups include SO n (C) (group of orthogonal matrices of determinant 1), Sp 2n (C) (symplectic group), all the nite groups... The name reductive comes from an important property of these groups: the complete reducibility of their representations. Indeed, every nite dimensional complex representation of a complex reductive group decomposes as a direct sum of simple (or irreducible) representations. What is moreover interesting is that, for connected groups, we know how to construct these irreducible representations.
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To a complex connected reductive group G one can associate its Lie algebra g. It is a reductive Lie algebra and comes then with an associated root system. This combinatorial data brings in particular a notion of weights, and some of them are called integral dominant. Then to any integral dominant weight λ of G one can associate an irreducible representation of G, called a highest weight module. We will denote the highest weight module of G of highest weight λ by V G (λ). Conversely, any nite dimensional rational complex irreducible representation of G is a V G (λ) for a certain integral dominant weight λ of G.

Example: Probably the most basic example of a connected reductive group is GL n (C), for which the integral dominant weights are easy to describe: they are exactly the nonincreasing nite sequences α = (α 1 , . . . , α n ) of integers, of length n. Such a nite sequence yields a character of T , which is the subgroup of GL n (C) formed by the diagonal matrices, in the following way:

e α : T -→ C * ⎛ ⎜ ⎝ t 1 . . . t n ⎞ ⎟ ⎠ -→ t α 1 1 . . . t αn n .
The irreducible representation of GL n (C) associated to such an integral dominant weight is denoted by S α (C n ). Isomorphically, when one considers the group GL(V ) of automorphisms of a nite dimensional C-vector space V , every non-increasing nite sequence α of integers, of length dim(V ), gives the irreducible representation S α V of GL(V ).

We will only be interested in a particular sort of representations of GL n (C): the ones which are said to be polynomial. They are the representations for which the action of each g ∈ GL n (C) is given by a xed family of polynomials in the entries of g. Among the irreducible ones, the polynomial representations are easy to characterise: for α = (α 1 , . . . , α n ) an integral dominant weight of GL n (C), S α (C n ) is polynomial if and only if α n ≥ 0. Thus the nite dimensional irreducible polynomial complex representations of GL n (C) are given by the partitions of length at most n, which are nite non-increasing sequences α = (α 1 , . . . , α k ) of positive integers, whose length k is the length of the partition, denoted (α). We also denote by |α| = k i=1 α i the weight of such a partition α, which is then said to be a partition of the integer |α|

The branching problem: Consider now two connected complex reductive groups, G and Ĝ, and a morphism f : G → Ĝ. Then, for any dominant weight λ of Ĝ, the highest weight module V Ĝ( λ) is, via the morphism f , also a (nite dimensional complex) representation of G and, as such, it decomposes into a direct sum of irreducible representations of G:

V Ĝ( λ) = λ dominant weight of G V G (λ) ⊕c(λ, λ) .

PRESENTATION OF THE BRANCHING PROBLEM

Denition 2.1.2. The multiplicities c(λ, λ) appearing in the previous decomposition are non-negative integers which are called the branching coecients.

The branching problem consists in studying these branching coecients. Studying these can mean nding a combinatorial way of computing them, and in some cases it has been done. But it can also mean studying other more qualitative aspects of those, as we will see later.

Examples:

If n ≥ 2, we can form a morphism from GL n-1 (C) to GL n (C) by sending A ∈ GL n-1 (C) to ⎛ ⎜ ⎜ ⎜ ⎝ 0 A . . . 0 0 • • • 0 1 ⎞ ⎟ ⎟ ⎟ ⎠
. Then the branching coecients for this situation are indexed by a pair of partitions, the rst one with length at most n -1 and the second one with length at most n. For such a pair (λ 1 , . . . , λ n-1

) =λ , (μ 1 , . . . , μ n ) =μ ,
the corresponding branching coecient is known:

c(λ, μ) = 1 if μ 1 ≥ λ 1 ≥ μ 2 ≥ λ 2 ≥ μ 3 ≥ • • • ≥ μ n-1 ≥ λ n-1 ≥ μ n 0 otherwise .
If the branching situation is T ⊂ GL n (C), where T is the maximal torus in GL n (C) constituted of the diagonal matrices (and the morphism between the two is then the identity), then we are looking at how a polynomial highest weight module of GL n (C) decomposes as a direct sum of weight spaces (spaces on which T acts by a certain character λ). The corresponding branching coecients are called the Kostka numbers and are indexed by pairs composed of a sequence of non-negative integers of length n (a dominant weight say λ of T ) and of a partition of length at most n (a particular dominant weight say μ of GL n (C)). Then the Kostka number k μ,λ can be computed as the number of semistandard Young tableaux of shape μ and weight λ, i.e. the number of ways to ll the Young diagram of μ with λ 1 1's, λ 2 2's, etc, in a non-decreasing way along each row and an increasing way down each column.

One famous example is the case of the tensor product of polynomial irreducible representations of GL n (C):

when G = GL n (C) is embedded diagonally inside Ĝ = GL n (C) × GL n (C),
we are in fact looking at how the tensor product of two polynomial irreducible representations of GL n (C) decomposes into a direct sum of such representations. The corresponding branching coecients are called the Littlewood-Richardson coecients:

S α (C n ) ⊗ S β (C n ) = γ S γ (C n ) ⊕c γ α,β .
They are indexed by triples of partitions, and there exists a combinatorial way of computing them: the Littlewood-Richardson rule. This also expresses the Littlewood-Richardson coecients in terms of particular semistandard Young tableaux: let α, β, and γ be partitions such that |α| + |β| = |γ| (this is a simple necessary condition to have c γ α,β = 0). Then we consider the skew Young diagram of shape γ/α: it is simply the diagram obtained by the set-theoretic dierence of the Young diagrams of γ and α. For example, α and γ give γ/α Then a Littlewood-Richardson tableau is a skew semistandard tableau (i.e. the same as a semistandard tableau, but starting from a skew Young diagram) which has the additional property that the sequence obtained by concatenating its reversed rows is a lattice word: in every initial part of this sequence, any number i occurs at least as often as the number i+1. The rule thus states that the Littlewood-Richardson coecient c γ α,β is the number of Littlewood-Richardson tableaux of shape γ/α and weight β. Let us return to our previous example: for α = (2, 1), β = (3, 2, 1), and γ = (4, 3, 2), the coecient is 2 because there are exactly two Littlewood-Richardson tableaux of shape (4, 3, 2)/(2, 1) and weight (3, 2, 1):

1 1 1 2 2 3 and 1 1 2 2 1 3
Another really important problem concerning these coecients was the Saturation Conjecture: is that true that, for all triple of partitions (α, β, γ),

∃N ∈ N * , c Nγ Nα,Nβ = 0 =⇒ c γ α,β = 0 ?
(The fact that c γ α,β = 0 ⇒ ∀N ∈ N * , c Nγ Nα,Nβ = 0 is much easier to prove.) The importance of this question was highlighted by its connection with the so-called Horn conjecture, coming from an old problem concerning hermitian matrices: given two hermitian matrices, what can one say about the spectrum of their sum? Any interested reader can for instance read this survey by W. Fulton: [START_REF] Fulton | Eigenvalues, invariant factors, highest weights, and Schubert calculus[END_REF]. The nal answer to this question came with the proof of the Saturation Conjecture by A. Knutson and T. Tao (see [START_REF] Knutson | The honeycomb model of GL n (C) tensor products I. Proof of the saturation conjecture[END_REF] or [START_REF] Skovsted | The saturation conjecture (after A. Knutson and T. Tao)[END_REF]).

The example in which we will be the most interested in this thesis is the example of the Kronecker coecients. As in the previous example, it starts with the problem of decomposing a tensor product of two irreducible representations of a reductive group, which is this time the nite group S k of permutations of the set 1, k (for some positive integer k). For a nite group, it is known that the complex irreducible representations are in bijection with the conjugacy classes of the group. Therefore, for S k , the irreducible representations are even indexed by the partitions of the integer k. Given such a partition α, the corresponding irreducible S k -module will be denoted by M α . Then the Kronecker coecients are the multiplicities appearing in the decomposition:

M α ⊗ M β = γ k M ⊕g α,β,γ γ
(where α and β are two partitions of k). We use the notation g α,β,γ (with no real dierence between the three partitions) because the value of the coecient does not depend on the order of the partitions indexing it. This is due to the fact that the irreducible S k -modules are self-dual. Although one could think that studying Kronecker coecients would be easier than studying Littlewood-Richardson coefcients (for instance because they come from the representation theory of nite groups), the latter are actually known to be special Kronecker coecients. Then the Kronecker coecients form a bigger class of branching coecients and, for example, no combinatorial rule such as the Littlewood-Richardson rule is known for them. Another possible illustration of their added complexity is that it is known that they do not have the saturation property.

Organisation of the thesis and main results

A large part of this thesis will concern some notions of stability for Kronecker coecients. Notice that we have only dened Kronecker coecients associated to triples of partitions of the same size. For easier notations we can also dene that the Kronecker coecient associated to a triple of partitions in which (at least) two have dierent sizes is simply zero. The notions of stability and weak-stability come from the work of J. Stembridge in [START_REF] Stembridge | Generalized Stability of Kronecker Coecients[END_REF]. The notion of stability was introduced in order to generalise a behaviour noticed by F. Murnaghan in 1938: in the terms of Stembridge's denition, Murnaghan noticed that the triple (1), (1), (1) is stable. The notion of weak-stability was then introduced in order to nd a characterisation of stability which would be much simpler to check. Indeed Stembridge proved that a stable triple is weakly stable1 , and conjectured that the converse is also true. S. Sam and A. Snowden then managed in [START_REF] Sam | Proof of Stembridge's conjecture on stability of Kronecker coecients[END_REF] to prove this conjecture, by completely algebraic methods. Note that P.-E. Paradan also gave another proof approximately at the same time as ours of this fact in [START_REF] Paradan | Stability property of multiplicities of group representations[END_REF], in a much more general setting and with methods closer to ours.

The goal of Chapter 42 is to give another proof of the fact that a weakly stable triple is stable. The proof that we give is a geometric one, based on a well-known expression of Kronecker coecients: for any triple (α, β, γ) of partitions, there exist a projective variety X which is a product of ag varieties on which acts a complex connected reductive group G (both depending only on the lengths of the partitions), and a G-linearised line bundle L α,β,γ on X such that

g α,β,γ = dim H 0 (X, L α,β,γ ) G
(cf Chapter 3). Our proof moreover uses some notions of Geometric Invariant Theory (also presented in Chapter 3), and in particular the notion of semi-stable points relatively to some G-linearised line bundle on X (whose set in X is denoted if L is the line bundle by X ss (L)), as well as some consequences of the work by V. Guillemin and E. Sternberg in [START_REF] Guillemin | Geometric quantization and multiplicities of group representations[END_REF], or later C. Teleman in [START_REF] Teleman | The quantization conjecture revisited[END_REF], on Quantisation commutes with reduction. We also use a corollary of D. Luna's Etale Slice Theorem (cf [START_REF] Luna | Slices étalés[END_REF]). We obtain a result which is a little more precise: Theorem 2.2.2. Let (α, β, γ) and (λ, μ, ν) be two triples of partitions, the rst one being weakly stable. Then there exists a non-negative integer D such that, for all integers d ≥ D, X ss L λ,μ,ν ⊗ L ⊗d α,β,γ ⊂ X ss (L α,β,γ ). Moreover the sequence of general term g λ+dα,μ+dβ,ν+dγ is constant for d ≥ D. In particular (α, β, γ) is stable.

This characterisation of a bound of stabilisation (the D from the theorem) gives us hope to compute some explicit such bounds for not too dicult examples of stable triples. This is in fact what we do next: using the Hilbert-Mumford numerical criterion (cf Chapter 3), we are able to compute some bounds of stabilisation for two examples of stable triples, namely (1), (1), (1) and (1, 1), (1, 1), (2) . Theorem 2.2.3. Let (λ, μ, ν) be a triple of partitions, with n 1 = (λ) and n 2 = (μ).

We set3 

D 1 = 1 2 -λ 1 + λ 2 -μ 1 + μ 2 + 2(ν 2 -ν n 1 n 2 ) + n 1 +n 2 -4 k=1 (ν k+2 -ν n 1 n 2 -k ) .
Then, for all d ≥ D 1 , g λ+d(1),μ+d(1),ν+d(1) = g λ+D 1 (1),μ+D 1 (1),ν+D 1 (1) .

Theorem 2.2.4. In the same context, set m = max(-λ 2 -μ 1 , -λ 1 -μ 2 ), and

D 2 = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 1 2 m + λ 3 + μ 3 + 2(ν 2 -ν n 1 n 2 ) + n 1 +n 2 -4 k=1 (ν k+2 -ν n 1 n 2 -k ) if n 1 , n 2 ≥ 3 1 2 m + μ 3 + 2ν 2 -ν 2n 2 + n 2 -1 k=1 ν k+2 if n 1 = 2 1 2 m + λ 3 + 2ν 2 -ν 2n 1 + n 1 -1 k=1 ν k+2 if n 2 = 2
.

Then, for all d ≥ D 2 , g λ+d(1,1),μ+d(1,1),ν+d(2) = g λ+D 2 (1,1),μ+D 2 (1,1),ν+D 2 (2) .

Note that to rene slightly those bounds, we use a classical argument of quasipolynomiality concerning the behaviour of the dimension of invariants in an irreducible representation of a complex reductive group. Before using it we write a proof of this quasipolynomiality in a context which is not meant to be optimal sucient for what we want.

In the case of the triple (1), (1), (1) there already existed some bounds, due notably to M. Brion (see [START_REF] Brion | Stable properties of plethysm: on two conjectures of Foulkes[END_REF]), E. Vallejo (see [START_REF] Vallejo | Stability of Kronecker Products of Irreducible Characters of the Symmetric Group[END_REF]), and E. Briand, R. Orellana, and M. Rosas (see [START_REF] Briand | The stability of the Kronecker product of Schur functions[END_REF]). We notice that our methods allow to re-obtain some of those bounds: the one by Brion and one of the two given by Briand-Orellana-Rosas. Moreover we test our bound and compare it on examples with the other ones. For the triple (1, 1), (1, 1), (2) , there was not as far as we know any already existing such bounds.

In Chapter 5 we show that our methods apply interestingly to other branching coecients. It comes as no surprise, since we explained quickly earlier that Paradan has proved in [START_REF] Paradan | Stability property of multiplicities of group representations[END_REF] a similar result to the stable ⇔ weakly stable one in a much more general setting. Actually the only thing necessary to make our techniques work is an expression of the branching coecients as the one we gave for the Kronecker coecients: of the type dim H 0 (X, L) G , where X, G, and L are the same kinds of objects as for the Kronecker coecients (cf Chapter 3 for more precise statements and denitions).

At rst we then use our techniques to obtain a stability result already proven by Sam and Snowden in [START_REF] Sam | Proof of Stembridge's conjecture on stability of Kronecker coecients[END_REF] concerning plethysm coecients, in Section 5.1. They are the branching coecients that arise when one composes Schur functors: if one considers two partitions λ and μ, with (λ) not too big relatively to μ (see Denition 5.1.1 for precisions), and a complex vector space V of nite dimension at least (μ), then S λ (S μ V )

which is an irreducible GL(S μ V )-module by denition is a representation of GL(V ), and thus decomposes as a direct sum of irreducible ones. The multiplicities in this decomposition are the plethysm coecients. We see thereafter that we can re-obtain two stability properties for these coecients given by L. Colmenarejo in [START_REF] Colmenarejo | Stability Properties of the Plethysm: a Combinatorial Approach[END_REF].

The second other example of branching coecients we look at is the example of the tensor product for irreducible representations of the hyperoctahedral group. It is a nite group, which is the Weyl group W n of type B n (for n ≥ 2), and can be written as a semidirect product: W n = (Z/2Z) n S n (see Section 5.2 for precisions). What we rst have to do here is using a kind of Schur-Weyl duality for W n due to M. Sakamoto and T. Shoji in [START_REF] Sakamoto | Schur-Weyl reciprocity for Ariki-Koike Algebras[END_REF] in order to rewrite the considered branching coecients as branching coecients for connected groups. We manage to do this for the following: if we consider complex nite dimensional vector spaces

V 1 = V + 1 ⊕ V - 1 and V 2 = V + 2 ⊕ V - 2 , then the branching situation considered is with G = GL(V + 1 ) × GL(V - 1 ) × GL(V + 2 ) × GL(V - 2 ) and Ĝ = GL (V + 1 ⊗ V + 2 ) ⊕ (V - 1 ⊗ V - 2 ) × GL (V + 1 ⊗ V - 2 ) ⊕ (V - 1 ⊗ V + 2 )
. This allows us to obtain an analogous of the equivalence stable ⇔ weakly stable in that case and to compute an explicit bound of stabilisation in a case similar to the Murnaghan stability for Kronecker coecients. Our third and nal example in that chapter concerns the Heisenberg product. It was introduced by M. Aguiar, W. Ferrer Santos, and W. Moreira in [START_REF] Aguiar | The Heisenberg Product: from Hopf algebras and species to symmetric functions[END_REF] in order to unify many related products and coproducts dened on various objects (species, representations of the symmetric groups, endomorphisms of graded connected Hopf algebras...). In the context of representations of the symmetric groups, it lead to the denition by L. Ying in [START_REF] Ying | Stability of the Heisenberg Product on symmetric functions[END_REF] of the Aguiar coecients, which extend in a way the Kronecker ones. In that last article Ying proves also an analogous of Murnaghan's stability for these coecients, as well as a bound of stabilisation in that case. The Aguiar coecients are once again dened using nite groups, and thus the rst part of our work is to express them as branching coecients for connected reductive groups: the branching situation we have to consider here is

G = GL(V 1 ) × GL(V 2 ) and Ĝ = GL V 1 ⊕ (V 1 ⊗ V 2 ) ⊕ V 2 , for V 1
and V 2 two nite dimensional complex vector spaces. Then we immediately obtain a general stability result for these coecients, implying in particular the stability proved by Ying. We nally give some new examples of stable triples for Aguiar coecients, and look at some bounds of stabilisation.

In Chapter 6 we are interested in some faces of what is called the Kronecker cone, which are related to the stable triples that we previously studied. Let n 1 and n 2 be two positive integers and denote by P n 1 ,n 2 the set of triples (α, β, γ) of partitions such that (α) ≤ n 1 , (β) ≤ n 2 , and (γ) ≤ n 1 n 2 . The expression of the Kronecker coecients that we gave earlier for instance leads to the fact that (α, β, γ) ∈ P n 1 ,n 2 s.t. g α,β,γ = 0 is a semigroup (i.e. is stable under addition). We then consider the cone spanned by this semigroup:

PKron

n 1 ,n 2 = (α, β, γ) s.t. ∃N ∈ N * , g Nα,Nβ,Nγ = 0
(we use the same notation as in [START_REF] Manivel | On the asymptotics of Kronecker coecients[END_REF]). This is a rational polyhedral cone called the Kronecker cone. Then one of the classical results (see [START_REF] Manivel | On the asymptotics of Kronecker coecients[END_REF], Paragraph 2.4) highlighting the interest for stable triples is that they are located on faces of the Kronecker cone. Therefore one would like to produce some faces of PKron n 1 ,n 2 which contain only stable triples, or at least almost stable ones (see Denition 2.2.1). Among the faces of the Kronecker cone, some particularly interesting ones are those that we will call regular: they are the ones which contain at least one triple (α, β, γ) such that α, β, and γ are regular (meaning that they have respectively n 1 , n 2 , and n 1 n 2 pairwise distinct parts). Then, in the settings of Kronecker coecients (see Chapter 3 and set

G = GL(V 1 ) × GL(V 2 )
), consider a one-parameter subgroup of the maximal torus T of G formed by diagonal matrices:

τ : C * -→ T t -→ ( ⎛ ⎜ ⎝ t a 1 . . . t an 1 ⎞ ⎟ ⎠ , ⎛ ⎜ ⎝ t b 1 . . . t bn 2 ⎞ ⎟ ⎠) (with a 1 , . . . , a n 1 , b 1 , . . . , b n 2 ∈ Z).
Assume moreover that τ is dominant and regular (i.e.

a 1 > • • • > a n 1 ≥ 0 and b 1 > • • • > b n 2 ≥ 0)
, and also Ĝ-regular (i.e. the a i + b j are pairwise distinct). Then we build the matrix M = (a i + b j ) i,j and what we call the order matrix of τ : it is the matrix in which each coecient of M is replaced by its rank (starting at 1) in the decreasingly ordered sequence of the a i + b j . Then one existing result, due to L. Manivel (see [START_REF] Manivel | On the asymptotics of Kronecker coecients[END_REF]) and E. Vallejo (see [START_REF] Vallejo | Stability of Kronecker coecients via discrete tomography[END_REF]), is that each such order matrix gives one explicit regular face of PKron n 1 ,n 2 , of minimal dimension among the regular faces (i.e. of dimension n 1 n 2 ), and which contains only stable triples. We extend this result by proving that an order matrix actually gives other such faces:

Theorem 2.2.5. For any dominant, regular, Ĝ-regular one-parameter subgroup τ of T , each conguration of the following type in the order matrix:

k k + 1 row i j j + 1
gives a regular face of dimension n 1 n 2 of the Kronecker cone PKron n 1 ,n 2 , containing only stable triples, and explicitly given in Section 6.3.4. Likewise, each conguration of the type

k k + 1 row i row i + 1 column j
gives such an explicit face of dimension n 1 n 2 .

We also dene (see Section 6.3.5) ve other types of possible congurations in an order matrix (from Conguration A

O to E O), involving this time three or four of its coecients.

We prove:

Theorem 2.2.6. Let τ be a dominant, regular, Ĝ-regular one-parameter subgroup of T .

Each of the Congurations A

O to E O appearing in the order matrix coming from τ then gives a face not necessarily regular and even possibly reduced to zero of the Kronecker cone PKron n 1 ,n 2 which only contains almost stable triples.

We end this chapter by looking at the actual number of new (i.e. compared to the result of Manivel and Vallejo) faces that our two results produce in the cases of order matrices of size 2×2, 3×2, and 3×3. For instance in the 3×2 case, we obtain 23 new regular faces of PKron 3,2 which contain only stable triples, whereas 5 others were already known. We also get 2 other new non-regular faces, containing only almost stable triples.

In Chapter 7 we are interested in zeroes appearing in the Kronecker cone. By such zeroes we mean triples (α, β, γ) ∈ PKron n 1 ,n 2 such that the Kronecker coecient g α,β,γ is 0. The existence of such triples is equivalent to the fact that the Kronecker coecients do not have the saturation property, and understanding them is a huge problem in the study of those coecients. Once we have such a triple (α, β, γ), we will as before consider the half-line N * (α, β, γ). Then one can notice that, in most of the known examples, the set Λ(α, β, γ) = {d ∈ N * s.t. g dα,dβ,dγ = 0} which is always a semigroup has the form d 0 N * , for some d 0 ∈ N * . We prove that, for almost stable triples, this is always true (note that this can also be seen as a direct consequence of the results by Paradan, and more specically of Theorem B from [START_REF] Paradan | Stability property of multiplicities of group representations[END_REF]): Theorem 2.2.7. Let (α, β, γ) be an almost stable triple of partitions. Then there exists

d 0 ∈ N * such that, for all d ∈ N * , d ∈ Λ(α, β, γ) ⇐⇒ d 0 |d
For triples in PKron n 1 ,n 2 that are not almost stable, this result does not hold. There is indeed a family of counter-examples due to Briand, Orellana, and Rosas (see [START_REF] Briand | Reduced Kronecker coecients and counter-examples to Mulmuley's strong saturation conjecture SH[END_REF], Theorem 2.4), whose smallest example is the triple (6, 6), (7, 5), (6, 4, 2) . But as far as we know, this family is the only known example where Λ(α, β, γ) does not have the form d 0 N * . Therefore we study this example geometrically, in details, and manage (using the result of [START_REF] Briand | Reduced Kronecker coecients and counter-examples to Mulmuley's strong saturation conjecture SH[END_REF]) to prove: Proposition 2.2.8. Denote by Q the quaternionic group, seen as a subgroup (of cardinal 8) of SL 2 (C). Then, for all positive integers d,

g d(6,6),d(7,5),d(6,4,2) = dim H 0 P 1 (C), O(2d) Q = dim (C[x, y] 2d ) Q ,
where C[x, y] 2d denotes the vector space of homogeneous polynomials in two variables x and y, of degree 2d, on which Q ⊂ SL 2 (C) acts by its natural action on (x, y).

Note that this result holds for the other triples in the family of counter-examples given in [START_REF] Briand | Reduced Kronecker coecients and counter-examples to Mulmuley's strong saturation conjecture SH[END_REF]. We would then like to replicate this kind of result to produce other examples like these. But it is in fact already quite dicult to nd nite groups like Q, whose action on spaces of homogeneous polynomials gives interesting dimensions for the spaces of invariants. We manage to nd only one small example like this, but we cannot really use it to obtain other triples like (6, 6), (7, 5), (6, 4, 2) .

Chapter 3 Some prerequisites Example: When V is a complex vector space of dimension n and G = GL(V ), the previous ag varieties can be easily described. Here we choose a basis of V and identify G with GL n (C). Consider the Borel subgroup B of upper-triangular matrices, and T the maximal torus formed by the diagonal matrices. Then the complete ag variety associated to G is:

G/B F (V ) = {0} ⊂ V 1 ⊂ V 2 ⊂ • • • ⊂ V n-1 ⊂ V | ∀i, V i subspace of dimension i .
The isomorphism between the two is explicit:

G/B -→ F (V ) ⎛ ⎝ v 1 . . . v n ⎞ ⎠ modB -→ {0} ⊂ Vect(v 1 ) ⊂ Vect(v 1 , v 2 ) ⊂ • • • ⊂ Vect(v 1 , . . . , v n-1 ) ⊂ V
If we consider a parabolic subgroup P containing strictly B, G/P will be a partial ag variety, meaning that it will contain ags which do not have subspaces of some particular 25 dimensions. Let us give one example: for V = C 6 and

P = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ * * * * * * * * * * * * 0 0 * * * * 0 0 * * * * 0 0 * * * * 0 0 0 0 0 * ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ ⊂ G,
the corresponding partial ag variety is

G/P F (C 6 ; 2, 5) = {0} ⊂ V 2 ⊂ V 5 ⊂ C 6 | V 2 of dim 2, V 5 of dim 5
(and the isomorphism is given as before for G/B).

We can dene interesting line bundles on these projective varieties: let λ be an integral dominant weight of G. Then -λ is a weight of G and it gives a character e -λ of T , which can be extended uniquely to a character of B. We denote by C -λ the one-dimensional representation of B associated to this character and set:

L λ = G × B C -λ .
This denotes a bre product: B acts on G (on the right) and on C -λ (on the left), and we consider the quotient by this action. For a pair (g, v) ∈ G × C -λ , the corresponding class modulo B is denoted by [g : v]. This denes a line bundle on the complete ag variety G/B, whose associated projection on G/B is simply [g : v] → gB. The group G acts on this line bundle by left multiplication, and L λ is then a G-linearised line bundle.

For line bundles on G/P one needs to consider particular weights: let λ be an integral dominant weight of G such that, for all simple roots α such that -α is a root of the Lie algebra p of P , λ(α ∨ ) = 0 (where α ∨ is the simple coroot corresponding to α). The set of such λ's will be denoted by Λ + P . Then e -λ extends to a character of P , and we can set:

L λ = G × P C -λ .
As above, this is a G-linearised line bundle on the ag variety G/P . These line bundles being all G-linearised, there is a linear action on the vector space formed by their sections.

The interesting fact about these spaces is the following:

Theorem 3.1.1 (Borel-Weil Theorem). For any integral dominant weight λ of G (resp.

λ ∈ Λ + P ), the space H 0 (G/B, L λ ) (resp. H 0 (G/P, L λ )) of sections of the line bundle L λ dened on G/B (resp. G/P ) is the dual of the irreducible representation V G (λ) of highest weight λ of G.
This result can for instance be found in [START_REF] Chriss | Representation Theory and Complex Geometry[END_REF].

Example: Still for G = GL(V ) and V of dimension n, an integral dominant weight is a partition λ of length at most n. The character e -λ of T is then

e -λ : T -→ C * ⎛ ⎜ ⎝ t 1 . . . t n ⎞ ⎟ ⎠ -→ t -λ 1 1 . . . t -λn n
and its extension to B is simply:

e -λ : B -→ C * ⎛ ⎜ ⎝ b 1 ( * ) . . . (0) b n ⎞ ⎟ ⎠ -→ b -λ 1 1 . . . b -λn n .
The conclusion of the previous theorem is thus that

H 0 (F (V ), L λ ) is the dual of S λ V .
We can now give a well-known interesting expression for the branching coecients. Assume that G and Ĝ are complex reductive groups, that f : G -→ Ĝ is a morphism, and that the groups are both connected. Then recall that Schur's Lemma states that every morphism of representations between two irreducible modules is either zero or an isomorphism. Furthermore, if these two irreducible representations are the same, then the vector space of endomorphisms of representations is of dimension 1. Therefore we can derive from the denition of the branching coecients:

V Ĝ( λ) = λ dominant weight of G V G (λ) ⊕c(λ, λ) , that dim V G (λ) * ⊗ V Ĝ( λ) G = c(λ, λ).
Then an immediate consequence of Borel-Weil Theorem is the following: Proposition 3.1.2. Let G and Ĝ be two complex connected reductive groups, with respective Borel subgroups B and B, and f : G -→ Ĝ be a morphism. Then, for all λ integral dominant weights of G and all λ integral dominant weights of Ĝ,

c(λ, λ) = dim H 0 (G/B × Ĝ/ B, L λ ⊗ L * λ) G .
Note that the dual L * λ of L λ is simply the line bundle L -ŵ0 . λ, where ŵ0 is the longest element of the Weyl group Ŵ associated to Ĝ. Moreover the external tensor product of the line bundles L λ and L * λ is simply the line bundle on G/B × Ĝ/ B such that, for all (x, y) ∈ G/B × Ĝ/ B, the bre over (x, y) is the tensor product of the bre over x in L λ and the bre over y in L * λ.

We want to have this kind of expression for the Kronecker coecients, but the denition that we gave used nite groups, which are obviously not connected. Fortunately they can be expressed as branching coecients for another branching situation, this time involving connected groups. It is a consequence of Schur-Weyl duality (see [START_REF] Weyl | The Classical Groups: Their Invariants and Representations[END_REF]): let V be a complex vector space of nite dimension n and k be a positive integer. Then consider the vector space V ⊗k . It is a obviously a representation of GL(V ) since V is , but it is also a representation of the symmetric group S k , which acts on the left by permuting the factors in the tensor product. Moreover these two actions commute, and thus V ⊗k is a representation of the direct product GL(V ) × S k .

Theorem 3.1.3 (Schur-Weyl Duality). As a representation of GL(V ) × S k , V ⊗k splits in a direct sum of irreducible modules in the following way:

V ⊗k α k s.t. (α)≤n S α V ⊗ M α .
Here is the classical consequence for Kronecker coecients: Proposition 3.1.4. Let α, β, and γ be three partitions of the same positive integer k.

Then, for any pair of nite dimensional vector spaces

(V 1 , V 2 ) such that dim V 1 ≥ (α) and dim V 2 ≥ (β), the Kronecker coecient g α,β,γ is the multiplicity of the irreducible representation S α V 1 ⊗ S β V 2 of G = GL(V 1 ) × GL(V 2 ) inside the irreducible representation S γ (V 1 ⊗ V 2 ) of Ĝ = GL(V 1 ⊗ V 2 ).
Note that the morphism from G to Ĝ is given in that case by: (g 1 , g 2 ) ∈ G denes an automorphism of the vector space

V 1 ⊗ V 2 , denoted by φ g 1 ,g 2 , dened on elementary tensors v 1 ⊗ v 2 by φ g 1 ,g 2 (v 1 ⊗ v 2 ) = g 1 (v 1 ) ⊗ g 2 (v 2 ).
Proof. Consider two nite dimensional vector spaces V 1 and V 2 as in the statement of the proposition. Then we look at the vector space

(V 1 ⊗ V 2 ) ⊗k V ⊗k 1 ⊗ V ⊗k
2 . At rst we use Schur-Weyl duality on the left side of this identity:

(V 1 ⊗ V 2 ) ⊗k γ k S γ (V 1 ⊗ V 2 ) ⊗ M γ γ k,α,β S α V 1 ⊗ S β V 2 ⊗ M γ ⊕n γ α,β ,
where the coecients n γ α,β are (almost all zero) non-negative integers, which exist since

S γ (V 1 ⊗ V 2
) is a G-module and are the multiplicities mentioned in the statement of the proposition. If we now apply Schur-Weyl duality on the right side of the rst identity:

V ⊗k 1 ⊗ V ⊗k 2 α k (S α V 1 ⊗ M α ) ⊗ β k S β V 2 ⊗ M β α,β,γ k S α V 1 ⊗ S β V 2 ⊗ M γ ⊕g α,β,γ .
Then, for all triples (α, β, γ) of partitions of k, g α,β,γ = n γ α,β .

Proposition 3.1.5. Let (α, β, γ) be a triple of partitions of the same integer. Then there exist a projective variety X and a complex connected reductive group G acting on X, both depending only on the lengths of the three partitions, together with a G-linearised line bundle L α,β,γ on X such that:

g α,β,γ = dim H 0 (X, L α,β,γ ) G .
Proof. This is a direct consequence of Propositions 3.1.2 and 3.1.4 with:

X = F (V 1 ) × F (V 2 ) × F (V 1 ⊗ V 2 ), G = GL(V 1 ) × GL(V 2 ),
and

L α,β,γ = L α ⊗ L β ⊗ L * γ .

Some notions from Geometric Invariant Theory

A notion from Geometric Invariant Theory, due D. Mumford, which will be central in this thesis, is the notion of semi-stable points. Let X be a complex projective variety on which a complex connected reductive group G acts. Consider furthermore a G-linearised line bundle L on X.

Denition 3.2.1. The line bundle L is said to be:

base-point-free if, for any x ∈ X, there exists a section σ of L dened on X such that σ(x) = 0;

very ample if there are a nite dimensional complex vector space V and an embedding X -→ P(V ) such that the pull-back of O(1) is isomorphic to L;

ample if there exists a positive power of L which is very ample; semi-ample if there exists a positive power of L which is base-point-free.

Denition 3.2.2. A point x ∈ X is said to be semi-stable (relatively to L) if there exist

n ∈ N * and σ ∈ H 0 (X, L ⊗n ) G such that σ(x) = 0.
It is said to be unstable otherwise.

We denote respectively by X ss (L) and X us (L) the sets of semi-stable and unstable points in X relatively to L. They are respectively open and closed subsets.

Remark 3.2.3. It is important to notice that this denition is not exactly the one that was given by Mumford (see e.g. [START_REF] Dolgachev | Lectures on Invariant Theory[END_REF] for this one): one usually requires in addition that the set of points on which σ is not zero is ane. These two notions of semi-stability nevertheless coincide in the case of an ample line bundle, and the one that we use here is a little bit better adapted for the case of semi-ample line bundles, which is the case that we will always consider in this thesis.

The purpose of this notion was the construction of good quotients for projective varieties. For example the following result can be found in [START_REF] Dolgachev | Lectures on Invariant Theory[END_REF] (Theorem 8.1): Theorem 3.2.4 (Mumford). If L is ample, there exists a good categorical quotient π :

X ss (L) -→ X ss (L) G,
where X ss (L) G is a projective variety. Moreover the morphism π is ane.

Maybe now would be a good time to wonder what an ample or semi-ample line bundle looks like in our case, i.e. on a ag variety. So we temporarily set X = F (V ), with V a complex nite dimensional vector space whose dimension is denoted by n. Then we have seen that, for any partition λ of length at most n, we have a GL(V )-linearised line bundle L λ on X. Then this line bundle will be ample if and only if the partition is regular, i.e. has n pairwise distinct parts (the last one can be zero). If one looks at a partial ag variety

Y = F (V ; d 1 , . . . , d r ), with 1 ≤ d 1 < • • • < d r ≤ n -1,
it is a little bit more complicated: from our construction, the line bundle L λ will be well-dened if and only if {i ∈ 1, n -1 s.t. λ i > λ i+1 } ⊂ {d 1 , . . . , d r }. Moreover it will be ample if and only if these two sets are equal.

Example: On Y = F (C 6 ; 2, 4, 5), for λ = (5, 5, 3, 3, 2, 0), μ = (5, 5, 3, 3, 2, 2), and ν = (5, 4, 3, 3, 2, 0): L λ is well-dened and ample, L μ is well-dened but not ample, and L ν is not well-dened on Y .

Notice now that one has a surjective map (which is a bration)

p : X -→ Y (V 1 ⊂ • • • ⊂ V n-1 ) -→ (V d 1 ⊂ • • • ⊂ V dr ) .
If a partition λ is such that L λ is well-dened on Y , we then have two line bundles dened by λ: one on X and one on Y , that we denote for now L (B) λ

and

L (P ) λ respectively. Then L (B) λ is the pull-back of L (P ) λ by p. Therefore if L (P ) λ is ample, then L (B) λ is semi-ample.
As a consequence, since for any non-zero partition one can nd a partial ag variety on which L (P ) λ is ample, every line bundle L (B) λ on the complete ag variety X is semi-ample. The same reasoning works to prove that every well-dened line bundle L (P ) λ on a partial ag variety is semi-ample.

With the denition of semi-stability that we have chosen, there exists an important numerical criterion of semi-stability which remains true for semi-ample line bundles (it usually works for ample line bundles). Consider again any complex projective variety X on which a complex connected reductive group G acts. Let L be a G-linearised line bundle on X, τ be a one-parameter subgroup of G (we denote by X * (G) the set of such subgroups), and x ∈ X. Then, since X is complete, we can consider the limit

x = lim t→0 τ (t).x,
which is a point of X xed by τ (i.e. by Im τ ). Thus C * acts via τ on the bre L x over x. This action is therefore given by an integer: there exists μ

L (x, τ ) ∈ Z such that ∀t ∈ C * , ∀v ∈ L x, τ(t).v = t -μ L (x,τ ) v.
These integers have the following properties: Lemma 3.2.5. (i) For all g ∈ G, μ L (g.x, gτ g -1 ) = μ L (x, τ ).

(ii) The map L → μ L (x, τ ) is a group homomorphism from Pic G (X) the group of G- linearised line bundles on X to Z. (iii) For any G-variety and any G-equivariant morphism f : Y → X, for all y ∈ Y , μ f * (L) (y, τ ) = μ L (f (y), τ).
Lemma 3.2.6. Let v be a non-zero point in L x. Then, when t tends to 0:

1. if μ L (x, τ ) < 0, then τ (t).v tends to zero in L x; 2. if μ L (x, τ ) = 0, then τ (t).v tends to a non-zero point in L x; 3. if μ L (x, τ ) > 0, then τ (t).v has no limit in L x.
All these results can for instance be found in [START_REF] Ressayre | Geometric Invariant Theory and the Generalized Eigenvalue Problem[END_REF], as can be the adaptation of the following really important criterion to the case of semi-ample line bundles:

Theorem 3.2.7 (Hilbert-Mumford criterion). If L is semi-ample, then x ∈ X ss (L) ⇐⇒ ∀τ ∈ X * (G), μ L (x, τ ) ≤ 0.
Chapter 4

Characterisation of stability for Kronecker coecients, bounds of stabilisation 4.1 Introduction

For a positive integer n, let S n be the symmetric group over n elements. The complex irreducible representations of this group are indexed by the partitions of n (i.e. nonincreasing nite sequences of positive integers called parts whose sum is equal to n). For a partition α of n (for which the integer n is called the size, and denoted |α|), we denote its length (i.e. the number of parts) by (α), and write M α for the associated complex irreducible representation of S n . An important problem concerning the representation theory of this group is the understanding of the decomposition of the tensor product of two such irreducible representations:

M α ⊗ M β = γ n M ⊕g α,β,γ γ ,
where the multiplicities g α,β,γ are non-negative integers, which are called the Kronecker coecients. These coecients appear in various situations, and are quite dicult to study. Some of their properties are nevertheless known, one of which being that the order of the three partitions indexing a Kronecker coecient does not matter.

There are several dierent ways of studying the Kronecker coecients, and we will be interested in their asymptotic behaviour, in various senses. They hold indeed a remarkable asymptotic property, noticed by F. Murnaghan in 1938: let α, β, γ be partitions of the same integer; if one repetitively increases by 1 the rst part of each of these partitions, the corresponding sequence of Kronecker coecients ends up stabilising. J. Stembridge, in [START_REF] Stembridge | Generalized Stability of Kronecker Coecients[END_REF], introduced two notions of stability of a triple of partitions in order to generalise this Murnaghan stability:

33 Denition 4.1.1. A triple (α, β, γ) of partitions such that |α| = |β| = |γ| is called:
weakly stable if g dα,dβ,dγ = 1 for all d ∈ N * ; stable if g α,β,γ > 0 and, for any triple (λ, μ, ν) of partitions such that |λ| = |μ| = |ν|, the sequence of general term g λ+dα,μ+dβ,ν+dγ is eventually constant.

The terminology weakly stable is in fact used by L. Manivel in [START_REF] Manivel | On the asymptotics of Kronecker coecients[END_REF]. The notion of a stable triple is made to generalise the Murnaghan stability: the latter simply means that the triple (1), (1), (1) is stable. By introducing the notion of a weakly stable triple, Stembridge hoped to nd a simpler criterion to determine whether a triple is stable. He proved in [START_REF] Stembridge | Generalized Stability of Kronecker Coecients[END_REF] that a stable triple is weakly stable, and conjectured that the converse is true. S. Sam and A. Snowden proved shortly afterwards, in [START_REF] Sam | Proof of Stembridge's conjecture on stability of Kronecker coecients[END_REF], that it is indeed veried. We also learned during the redaction of this article about a prepublication by P.-E. Paradan [START_REF] Paradan | Stability property of multiplicities of group representations[END_REF], who demonstrated this kind of result in a more general context which in particular contains the case of Kronecker coecients (as well as the plethysm case). In the rst part of this chapter, we give another new proof of this result:

Theorem 4.1.2. If a triple (α, β, γ) of partitions is weakly stable, then it is stable.

A question then arises: given a stable triple, can we determine when the associated sequences of Kronecker coecients do stabilise? There have already been results on this, at least in the case of Murnaghan's stability: for instance, M. Brion in 1993 and E. Vallejo in 1999 calculated bounds from which these sequences are necessarily constant. In [START_REF] Briand | The stability of the Kronecker product of Schur functions[END_REF], E. Briand, R. Orellana, and M. Rosas recall the two bounds from Brion and Vallejo, and determine two other ones, still in the case of the stable triple (1), (1), (1) .

The interesting aspect of our proof of Theorem 4.1.2 is that it gives a nice geometric bound from which we can be certain that the sequence (g λ+dα,μ+dβ,ν+dγ ) d is constant, if the triple (α, β, γ) is stable. Indeed, the Kronecker coecients can classically be related to the dimension of spaces of invariant sections from some line bundles: for all triples (α, β, γ) and (λ, μ, ν), there exist a reductive group G acting on a projective variety X, and two G-linearised line bundles L and M on X whose spaces of invariant sections respectively give -via their dimension-the coecients g α,β,γ and g λ,μ,ν (cf. Section 4.2.1). Then, for d ∈ N, g λ+dα,μ+dβ,ν+dγ is the dimension of H 0 (X, M ⊗ L ⊗d ) G , the space of invariant sections of the line bundle M ⊗ L ⊗d on X. Recall that, if N is a G-linearised line bundle on X, X ss (N ) stands for the set of semi-stable points with respect to N , i.e. the points x for which there exists a G-invariant section of a positive power of N whose value at x is not zero. Proposition 4.1.3. We suppose that the triple (α, β, γ) is weakly stable. Then: there exists an integer D ∈ N such that, for all d ≥ D, X ss (M ⊗ L ⊗d ) ⊂ X ss (L); for all d ≥ D, the Kronecker coecient g λ+dα,μ+dβ,ν+dγ does not depend on d.

What we prove precisely is in fact that H 0 (X ss (L), M ⊗ L ⊗d ) G does not depend on d and that, if X ss (M ⊗ L ⊗d ) ⊂ X ss (L), then the restriction morphism H 0 (X, M ⊗ L ⊗d ) G → H 0 (X ss (L), M ⊗ L ⊗d ) G is an isomorphism. A natural question could thus be: is the converse true? The answer here is no. A counter-example can be found for the triples (α, β, γ) = (1), (1), (1) and (λ, μ, ν) = (4, 1, 1), (3, 3), (2, 2, 2) : the Kronecker coecient g λ+dα,μ+dβ,ν+dγ does not depend on d ≥ 0, but one can prove that X ss (M) ⊂ X ss (L).

We indeed manage, in Section 4.3.4, to improve slightly the previously-stated result by proving that the sequence (g λ+dα,μ+dβ,ν+dγ ) d can already stabilise for a d such that the inclusion X ss (M ⊗ L ⊗d ) ⊂ X ss (L) is a priori not veried. The key points to obtain this extension are an argument of quasipolynomiality (which is a known result, of which we nevertheless write a proof in Section 4.3.4, inspired by [START_REF] Kumar | Dimension of zero weight space: An algebro-geometric approach[END_REF]) and the structure of what is called the GIT-fan (see for instance [START_REF] Ressayre | The GIT-equivalence for G-line bundles[END_REF] for this notion and the description of its structure).

In Section 4.3, we give a method allowing -at least for small weakly stable triplesto compute bounds from which the inclusion X ss (M ⊗ L ⊗d ) ⊂ X ss (L) is realised. We perform the calculations for two examples of triples (namely (1), (1), (1) and

(1, 1), (1, 1), ( 2) ). Taking into account the slight extension explained in the previous paragraph, it gives us:

Theorem 4.1.4. If we denote n 1 = (λ), n 2 = (μ), and set1 

D 1 = 1 2 -λ 1 + λ 2 -μ 1 + μ 2 + 2(ν 2 -ν n 1 n 2 ) + n 1 +n 2 -4 k=1 (ν k+2 -ν n 1 n 2 -k ) ,
we have, for all d ≥ D 1 , g λ+d(1),μ+d(1),ν+d(1) = g λ+D 1 (1),μ+D 1 (1),ν+D 1 (1) .

(it is in this case legitimate to reorder the partitions λ, μ, and ν to get the lowest bound D 1 possible) and Theorem 4.1.5. If m = max(-λ 2 -μ 1 , -λ 1 -μ 2 ), and

D 2 = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 1 2 m + λ 3 + μ 3 + 2(ν 2 -ν n 1 n 2 ) + n 1 +n 2 -4 k=1 (ν k+2 -ν n 1 n 2 -k ) if n 1 , n 2 ≥ 3 1 2 m + μ 3 + 2ν 2 -ν 2n 2 + n 2 -1 k=1 ν k+2 if n 1 = 2 1 2 m + λ 3 + 2ν 2 -ν 2n 1 + n 1 -1 k=1 ν k+2 if n 2 = 2 , then for all d ≥ D 2 , g λ+d(1,1),μ+d(1,1),ν+d(2) = g λ+D 2 (1,1),μ+D 2 (1,1),ν+D 2 (2) .
We then prove that our method allows to recover some of the bounds already existing in the case of Murnaghan's stability: we re-obtain Brion's bound, as well as the second one given by Briand, Orellana, and Rosas. Moreover, we get slight improvements for these in some cases. The bounds we obtained are in addition tested on some examples, in Section 4.3.6. We also make a comparison on these examples with the four already existing bounds that we cited.

Proof of the characterisation of stability 4.2.1 Link with invariant sections of line bundles

Thanks to Schur-Weyl duality, the Kronecker coecients also appear in the decomposition of representations of the general linear group. If V 1 and V 2 are two (complex) vector spaces, γ is a partition, and if we denote by S the Schur functor2 ,

S γ (V 1 ⊗ V 2 ) α,β S α (V 1 ) ⊗ S β (V 2 ) ⊕g α,β,γ as representations of G = GL(V 1 ) × GL(V 2 ).
Then, by Schur's Lemma we have, for all triples (α, β, γ) of partitions (such that |α| = |β| = |γ|) and all vector spaces

V 1 and V 2 such that dim(V 1 ) ≥ (α), dim(V 2 ) ≥ (β), and dim(V 1 ) dim(V 2 ) ≥ (γ): g α,β,γ = dim (S α V 1 ) * ⊗ (S β V 2 ) * ⊗ S γ (V 1 ⊗ V 2 ) G .
Finally, we use Borel-Weil's Theorem: if V is a complex vector space of nite dimension, we denote by F (V ) the complete ag variety associated to V . We know that, if B is a Borel subgroup of GL(V ), the variety F (V ) is isomorphic to GL(V )/B. We can then dene particular line bundles on GL(V )/B: for any partition λ of length at most dim V , the nite sequence of integers -λ denes a character e -λ of B, and this allows us to dene L λ = GL(V ) × B C -λ , where C -λ is the one-dimensional complex representation of B given by the character e -λ . The bre product L λ is a GL(V )-linearised line bundle on GL(V )/B F (V ). Then Borel-Weil's Theorem states that the representation

(S α V 1 ) * is isomorphic to H 0 (F (V 1 ), L α ), the space of sections of the line bundle L α on F (V 1 ). This is the same for (S β V 2 ) * , and for V 1 ⊗V 2 this yields S γ (V 1 ⊗V 2 ) H 0 (F (V 1 ⊗V 2 ), L * γ )
. Hence, we have the following important proposition: Proposition 4.2.1. For any triple (α, β, γ) of partitions such that |α| = |β| = |γ|, there exist a reductive group G, a projective variety X on which G acts, and a G-linearised line bundle L α,β,γ on X such that

g α,β,γ = dim H 0 (X, L α,β,γ ) G .
More precisely, the previous equality is true if V 1 and V 2 are nite-dimensional complex vector spaces such that (α) ≤ dim(V 1 ), (β) ≤ dim(V 2 ), (γ) ≤ dim(V 1 ) dim(V 2 ), and for:

G = GL(V 1 ) × GL(V 2 ), X = F (V 1 ) × F (V 2 ) × F (V 1 ⊗ V 2 ), L α,β,γ = L α ⊗ L β ⊗ L * γ .
Proof. This follows directly from the Borel-Weil Theorem.

Thus, from now on, we consider a weakly stable triple (α, β, γ) of partitions, and another triple (λ, μ, ν) of partitions (also satisfying |λ| = |μ| = |ν|). Then there exists a reductive group G, acting on a projective variety X, and two G-linearised line bundles L and M on X such that:

g α,β,γ = dim H 0 (X, L) G and g λ,μ,ν = dim H 0 (X, M) G
(we denote by V 1 and V 2 the two vector spaces used to dene those). We are interested in the behaviour of H 0 (X, M ⊗ L ⊗d ) G , or rather its dimension, for d ∈ N.

Semi-stable points

Denition and criterion of semi-stability Denition 4.2.2. Given a G-linearised line bundle N on X, we dene the semi-stable points in X (relatively to N ) as the elements of

X ss (N ) = {x ∈ X s.t. ∃k ∈ N * , ∃σ ∈ H 0 (X, N ⊗k ) G , σ(x) = 0}.
The points which are not semi-stable are said to be unstable (relatively to N ), and we denote by X us (N ) the set of unstable points.

Let us emphasise that this is not the standard denition of semi-stability (cf. for instance [START_REF] Dolgachev | Lectures on Invariant Theory[END_REF], Chapter 8): most often there is an additional requirement to full for a point to be semi-stable. The denition we gave coincides nevertheless with the usual one in the case of an ample line bundle. The following result is then due to V. Guillemin and S. Sternberg:

Proposition 4.2.3. If N is a G-linearised semi-ample line bundle on X, then H 0 (X, N ) G H 0 (X ss (N ), N ) G .
Proof. A demonstration of this result for ample line bundles can be found in [START_REF] Guillemin | Geometric quantization and multiplicities of group representations[END_REF], or for example in [START_REF] Teleman | The quantization conjecture revisited[END_REF], Theorem 2.11(a). It is given with the more usual denition of semi-stable points, which is not ours, but coincides with it in this case. Then, in the case of a semi-ample line bundle N , there exists a G-equivariant projection π : X → X (which is even a bration with connected bres) such that N is the pull-back by π of an ample line bundle N on a projective variety X. Indeed, X is a product of ag varieties and, on such a variety, a semi-ample line bundle is a L δ for δ a partition. Moreover this L δ is ample if and only if the type of the partition (i.e. the indices i such that δ i > δ i+1 ) coincides with the type of the ag variety. Henceforth, for every partition δ, there exists a projection as announced above, which consists simply in forgetting in the ag variety the dimensions which do not appear in the type of δ.

Then, with the properties of π,

H 0 (X, N ) G H 0 (X, N ) G H 0 (X ss (N ), N ) G H 0 (X ss (N ), N ) G , since π -1 (X ss (N )) = X ss (N ).
There is an extremely useful criterion of semi-stability which is called the Hilbert-Mumford criterion. It is generally stated for ample line bundles but, with the previously given denition of semi-stability, it holds for semi-ample line bundles (cf. [Res10], Lemma 2), which is the case for all the line bundles we consider. We are going to rephrase this criterion to get a more geometric one, in terms of polytopes. Let us begin with the case in which a torus T acts on X, and N is a T -linearised ample line bundle on X.

Then (see e.g. [START_REF] Dolgachev | Lectures on Invariant Theory[END_REF], Section 9.4), as N is ample, we have a closed embedding of X in P(V ), where V is a nite dimensional vector space, the action of T on X comes from a linear action on V , and some positive tensor power of N is the restriction of O(1) to X. Then, since T is a torus, V splits into a direct sum of eigensubspaces,

V = χ∈X * (T ) V χ ,
where X * (T ) denotes the set of all characters of T and, for all χ ∈ X * (T ),

V χ = {v ∈ V s.t. ∀t ∈ T, t.v = χ(t)v} is the eigenspace associated to the character χ. Then, for x ∈ X ⊂ P(V ) and a v = χ v χ ∈ V (v χ ∈ V χ ) such that x = Span(v), we dene the weight set of x as Wt(x) = {χ ∈ X * (T ) s.t. v χ = 0}. Note that Wt(x) is a nite subset of X * (T ) Z N ⊂ R N (N
is the rank of T ). We nally dene the weight polytope of x as the convex hull conv(Wt(x)) of Wt(x) in R N . Then, Theorem 9.2 of [START_REF] Dolgachev | Lectures on Invariant Theory[END_REF] states that the Hilbert-Mumford criterion means:

x ∈ X ss (N ) ⇐⇒ 0 ∈ conv(Wt(x)).
We want to express this in a way which does not use an embedding in a P(V ), and which involves explicitly N . For this, one has to wonder which objects of X correspond to objects in P(V ):

In P(V ) In X P(V χ ) (for V χ = {0}) xed points of T χ (P(V χ ) ∩ X) X T = {xed points of T in X} P(V χ ) ∩ X a union of some irreducible components X 1 , . . . , X k of X T χ -1 character giving the action of T on N | X i for i ∈ 1, k
So we set, denoting by X 1 , . . . , X s the irreducible components of X T , for all i ∈ 1, s ,

χ i : Pic T (X) -→ X * (T ) N -→ the inverse of the character giving the action of T on N | X i .
Then, the Hilbert-Mumford criterion states:

x ∈ X ss (N ) ⇐⇒ 0 ∈ conv({χ i (N ) ; i ∈ 1, s s.t. χ i (N ) is a vertex of conv(Wt(x))}).
And the only object left which uses an embedding of X in P(V ) is Wt(x). But we can get rid of it thanks to the following lemma:

Lemma 4.2.4. With the notations used above, if

x = Span χ v χ ∈ X ⊂ P(V ), χ is a vertex of conv(Wt(x)) ⇐⇒ P(V χ ) ∩ T.x = ∅.
Proof. Let us recall that there is a duality pairing between X * (T ) and the one-parameter subgroups of T , whose set is denoted by X * (T ): for all χ ∈ X * (T ) and τ ∈ X * (T ), χ • τ : C * → C * is of the form z → z n with n integer. We set χ, τ = n. Then, according to a classical property of convex polyhedra:

χ is a vertex of conv(Wt(x)) ⇐⇒ ∃τ ∈ X * (T ) s.t. χ, τ = 0 ∀χ ∈ conv(Wt(x)) \ {χ}, χ , τ > 0 .
As a consequence, if χ is a vertex of conv(Wt(x)), we have such a τ ∈ X * (T ). Moreover,

∀z ∈ C * , τ(z).x = Span ⎛ ⎝ χ χ • τ (z)v χ ⎞ ⎠ = Span ⎛ ⎝ χ z χ ,τ v χ ⎞ ⎠ .
And thus lim

z→0 (τ (z).x) = Span(v χ ) ∈ P(V χ ) ∩ T.x.
Conversely, if we suppose that χ is not a vertex of conv(Wt(x)), then for all τ ∈ X * (T ), there exists χ(τ ) ∈ conv(Wt(x)) \ {χ} such that χ(τ ), τ = χ, τ . We want to prove that P(V χ ) ∩ T.x = ∅.

By contradiction, let us assume that P(V χ ) ∩ T.x = ∅. Then there exists τ ∈ X * (T ) such that lim z→0 (τ (z).x) ∈ P(V χ ). On the other hand,

∀z ∈ C * , τ(z).x = Span ⎛ ⎝ χ z χ ,τ v χ ⎞ ⎠ .
So, for every χ ∈ Wt(x) \ {χ}, χ , τ > χ, τ . This contradicts the existence of χ(τ ), which is necessarily a convex combination involving at least one element of Wt(x) \ {χ}.

Then,

x ∈ X ss (N ) ⇐⇒ 0 ∈ conv({χ i (N ) ; i ∈ 1, s s.t. X i ∩ T.x = ∅}),
which now does not involve anymore any embedding of X in P(V ). So this is also true for line bundles which are semi-ample, and not necessarily ample (since Hilbert-Mumford criterion holds for such ones). We now extend this to the case when G is reductive. Then we take a maximal torus T in G and, using Theorem 9.3 of [START_REF] Dolgachev | Lectures on Invariant Theory[END_REF], we nally get: Proposition 4.2.5. In our settings (a reductive group G acting on a ag variety X), if

N is a G-linearised semi-ample line bundle on X, then x ∈ X ss (N ) ⇐⇒ ∀g ∈ G, 0 ∈ conv({χ i (N ) ; i ∈ 1, s s.t. X i ∩ T.(g.x) = ∅}),
where T is a maximal torus in G, and X 1 , . . . , X s are the irreducible components of X T .

Inclusions of sets of semi-stable points

The following proposition could be deduced from well-known results on the GIT-fan (see e.g. [START_REF] Dolgachev | Variation of geometric invariant theory quotients[END_REF], Section 3.4, or [START_REF] Ressayre | The GIT-equivalence for G-line bundles[END_REF], Section 5), but we give another demonstration specic to this case: Proposition 4.2.6. There exists D ∈ N such that, for all d ≥ D, X ss (M ⊗ L ⊗d ) ⊂ X ss (L).

Proof. To all x ∈ X and g ∈ G, we associate E x,g ∈ P( 1, s ) (i.e. a subset of 1, s ) as follows:

E x,g = {i ∈ 1, s s.t. X i ∩ T.(g.x) = ∅}.
With this notation, we know that:

x ∈ X ss (L) ⇐⇒ ∀g ∈ G, 0 ∈ conv({χ i (L) ; i ∈ E x,g }).
So we set

A = {E x,g s.t. 0 / ∈ conv({χ i (L) ; i ∈ E x,g })}, which is nite since contained in P( 1, s ). Then, for all E ∈ A, there exists ϕ E ∈ (R N ) * such that, for all i ∈ E, ϕ E (χ i (L)) > 0. Moreover 3 , ∀E ∈ A, ∀i ∈ E, ϕ E • χ i M ⊗ L ⊗d d ----→ d→+∞ ϕ E (χ i (L)) > 0, so there exists D E ∈ N * such that, for all d ≥ D E , for all i ∈ E, ϕ E •χ i M ⊗ L ⊗d d > 0.
We then set

D = max{D E ; E ∈ A}. Let d ∈ N, d ≥ D. Let x / ∈ X ss (L), which means that there exists g ∈ G such that 0 / ∈ conv({χ i (L) ; i ∈ E x,g }).
In other words,

E x,g ∈ A. So, as d ≥ D ≥ D Ex,g , ϕ Ex,g (χ i (M ⊗ L ⊗d )) = dϕ Ex,g • χ i M ⊗ L ⊗d d > 0 for all i ∈ E x,g . Hence 0 / ∈ conv χ i M ⊗ L ⊗d ; i ∈ E x,g , i.e. x / ∈ X ss (M ⊗ L ⊗d ).
Thus, X ss (M ⊗ L ⊗d ) ⊂ X ss (L).

Use of Luna's Etale Slice Theorem

Let us recall that we considered a triple of partitions (α, β, γ) such that, for all d ∈ N * , g dα,dβ,dγ = 1. This means that,

∀d ∈ N * , H 0 (X, L ⊗d ) G C.
Then, using Proposition 8.1 of [START_REF] Dolgachev | Lectures on Invariant Theory[END_REF], as X is projective,

X ss (L) G Proj(C[t]).
So X ss (L) G is a point. Thus X ss (L) contains exactly one closed G-orbit, denoted by G.x 0 . Moreover, X ss (L) is ane (since the canonical projection X ss (L) → X ss (L) G is ane). So we can use Corollary 2 to Luna's Slice Étale Theorem (cf. [START_REF] Luna | Slices étalés[END_REF]): there exist a reductive subgroup H which is in fact the isotropy subgroup G x 0 of G and an ane H-variety S such that

⎧ ⎨ ⎩ S H = {x 0 } ∀x ∈ S, x 0 ∈ H.x X ss (L) G × H S .
Furthermore, since X is smooth, S is isomorphic to T x 0 X/T x 0 (G.x 0 ) as an H-variety. Thus S is a vector space of nite dimension on which H acts linearly.

Proof of the characterisation

We are now ready to prove Theorem 4.1.2. We still have our weakly stable triple (α, β, γ) and another triple of partitions (λ, μ, ν), which give rise to the two (semi-ample) line bundles L and M.

Proposition 4.2.7.

If D ∈ N is such that, for all d ≥ D, X ss (M ⊗ L ⊗d ) ⊂ X ss (L), then ∀d ≥ D, H 0 (X, M ⊗ L ⊗d ) G H 0 (S, M) H .
Proof. Let D ∈ N be as in the statement, and d ∈ N, d ≥ D. Then, thanks to Proposition

4.2.3, H 0 (X, M ⊗ L ⊗d ) G H 0 (X ss (M ⊗ L ⊗d ), M ⊗ L ⊗d ) G . Consequently, since X ss (M ⊗ L ⊗d ) ⊂ X ss (L) ⊂ X, H 0 (X, M ⊗ L ⊗d ) G H 0 (X ss (L), M ⊗ L ⊗d ) G .
Now, using the consequence of Luna's Slice Étale Theorem:

H 0 (X, M ⊗ L ⊗d ) G H 0 (G × H S, M ⊗ L ⊗d ) G H 0 (S, M ⊗ L ⊗d ) H .
We are almost done; it only remains to prove that H 0 (S, M ⊗ L ⊗d ) H does not depend on d. For this, we demonstrate that L is trivial on S, using the following lemma:

Lemma 4.2.8. The map

ψ : X * (H) -→ Pic H (S) χ -→ L χ ,
where L χ is the trivial bundle S × C whose H-linearisation is given by the character χ, is an isomorphism.

Proof. The only non trivial thing to prove is the surjectivity of ψ. Let N ∈ Pic H (S). We have seen that x 0 is a point of S xed by H. So, H acts on the bre N x 0 . This action gives χ ∈ X * (H). Moreover, N is trivial because S is a vector space. Necessarily, its linearisation is given by the character χ.

We consider the character χ 0 given by the action of H on L x 0 and we want to prove that χ 0 is trivial. As x 0 ∈ X ss (L), there exist k ∈ N * and σ ∈ H 0 (X, L ⊗k ) G such that σ(x 0 ) = 0. Moreover, dim(H 0 (X, L) G ) = dim(H 0 (X, L ⊗k ) G ) = 1 so, if we take σ 0 ∈ H 0 (X, L) G \ {0}, we have σ ⊗k 0 = tσ with t ∈ C * . As a consequence, σ ⊗k 0 (x 0 ) = 0 and so σ 0 (x 0 ) = 0. Furthermore,

∀h ∈ H, σ 0 (x 0 ) = σ 0 (h.x 0 ) = h.σ 0 (x 0 ) = χ 0 (h)σ 0 (x 0 ),
and then χ 0 (h) = 1 for all h ∈ H. Thus, χ 0 is trivial and so is L over S. 

Finally, ∀d ≥ D, H 0 (X, M ⊗ L ⊗d ) G H 0 (S, M)

Explicit bounds of stabilisation in small cases

We saw in the previous section that the sequence (g λ+dα,μ+dβ,ν+dγ ) d∈N stabilises as soon as X ss (M ⊗ L ⊗d ) ⊂ X ss (L). We now would like to see if one can compute the rank D from which this inclusion is realised. The computation of D from the proof of Proposition 4.2.6 appears to be too tricky, and so in the following we focus on two examples in which we can do explicit computations using another method.

Steps of the computation

The inclusion X ss (M⊗L ⊗d ) ⊂ X ss (L) we are interested in is equivalent to the following:

X us (L) ⊂ X us (M ⊗ L ⊗d ).
Here we are rather looking to prove this last one, principally because we nd that the fact of being an unstable point has -thanks to the Hilbert-Mumford criterion-a more practical description. Here are the dierent steps we are then going to carry out on the two examples:

The rst step is to consider the projection π : X → X onto the product of partial ag varieties such that L is the pull-back of an ample line bundle L on X.

The second step is to study the set X us (L) of unstable points in X. More precisely, we want to express this set as the union of some orbit closures: cl(G.x 1 ), . . . , cl(G.x p ).

Then one can prove that, thanks to good properties of the projection π, X us (L) is the union of the closures of π -1 (G.x 1 ), . . . , π -1 (G.x p ). As a consequence, since X us (M ⊗ L ⊗d ) is closed and π is G-equivariant, to prove that X us (L) ⊂ X us (M ⊗ L ⊗d ) we only need to show for all i ∈ 1, p that π -1 (x i ) ⊂ X us (M ⊗ L ⊗d ).

In the fourth step we want to use the Hilbert-Mumford criterion. Let us write it in a way dierent from before:

Denition 4.3.1. Let Y be a projective variety on which a reductive group H acts, and N a H-linearised line bundle on Y . Let y ∈ Y and τ be a one-parameter subgroup of H (denoted τ ∈ X * (H)). Since Y is projective, lim t→0 τ (t).y exists. We denote it by z. This point is xed by the image of τ , and so C * acts via τ on the bre N z . Then there exists an integer μ N (y, τ ) such that, for all t ∈ C * and z ∈ N z , τ (t).z = t -μ N (y,τ ) z.

The Hilbert-Mumford criterion can then be stated as (see e.g. [START_REF] Ressayre | Geometric Invariant Theory and the Generalized Eigenvalue Problem[END_REF], Lemma 2):

Proposition 4.3.2. In the settings of the previous denition, if in addition N is semi-ample, then:

y ∈ Y ss (N ) ⇐⇒ ∀τ ∈ X * (H), μ N (y, τ ) ≤ 0. Set i ∈ 1, p . Since x i ∈ X us (L)
, we can nd a destabilising one-parameter subgroup for x i : τ i such that μ L (x i , τ i ) > 0.

Let us keep in mind that we want to get π -1 (x i ) ⊂ X us (M ⊗ L ⊗d ). By Hilbert-Mumford criterion, this will be true when, for all x ∈ π -1 (x i ), μ M⊗L ⊗d (x, τ i ) > 0.

But, for such an x, we have:

μ M⊗L ⊗d (x, τ i ) = μ M (x, τ i ) + dμ L (x i , τ i ).
So we only need to calculate μ M (x, τ i ) for all x ∈ π -1 (x i ):

From the denition of the integers μ M (., τ i ), we see that we can restrict to the case when x ∈ π -1 (x i ) is a xed point of τ i . Then at rst we determine the form of such a xed point.

Finally we calculate explicitly the action of τ i on the bre of M over such a point.

As a conclusion, as soon as

d > - μ M (x, τ i ) μ L (x i , τ i )
for all i ∈ 1, p and x ∈ π -1 (x i ) τ i , we have the inclusion we were looking for.

Case of Murnaghan's stability Reduction to ample line bundles

In this case, the stable triple we are interested in is simply (1), (1), (1) . It has been known for a long time that it is a stable triple. Consider

π : X -→ denoted X P(V 1 ) × P(V 2 ) × P((V 1 ⊗ V 2 ) * ) ((W 1,i ) i , (W 2,i ) i , (W i ) i ) -→ (W 1,1 , W 2,1 , {ϕ ∈ (V 1 ⊗ V 2 ) * s.t. ker ϕ = W n 1 n 2 -1 }) . Since α = β = γ = (1), we have that L = L α ⊗ L β ⊗ L * γ is the pull-back of O(1) ⊗ O(1) ⊗ O(1) (denoted L from now on) by π. Moreover, H 0 (X, L) G (V * 1 ⊗ V * 2 ⊗ V 1 ⊗ V 2 ) G C. So X ss (L) = {x ∈ X s.t. σ 0 (x) = 0} for any σ 0 ∈ H 0 (X, L) G \ {0}. A simple non-zero section on X is Cv 1 ⊗ Cv 2 ⊗ Cϕ -→ ϕ(v 1 ⊗ v 2 ). And X ss (L) = {(Cv 1 , Cv 2 , Cϕ) ∈ X s.t. v 1 ⊗ v 2 / ∈ ker ϕ}.

Determination of X us (L)

Let us take (e 1 , . . . , e n 1 ) a basis in V 1 (with n 1 ≥ 2), and (f 1 , . . . , f n 2 ) a basis in V 2 (n 2 ≥ 2). Their dual bases are denoted with upper stars. Moreover, we set n = min(n 1 , n 2 ).

Proposition 4.3.3. The set X us (L) consists in the closure of the G-orbit of the element

x = (Ce 1 , Cf 2 , Cϕ n ), where ϕ n = n i=1 e * i ⊗ f * i ∈ V * 1 ⊗ V * 2 (V 1 ⊗ V 2 ) * . Proof. At rst, since X us (L) = {(Cv 1 , Cv 2 , Cϕ) ∈ X s.t. ϕ(v 1 ⊗ v 2 ) = 0}, X us (L) is pure of codimension 1. Then P((V 1 ⊗ V 2 ) * ) P(V * 1 ⊗ V * 2 ) P(Hom(V 1 , V * 2 )). So we consider (l 1 , l 2 , Cψ) ∈ P(V 1 ) × P(V 2 ) × P(Hom(V 1 , V * 2 )).
The action of G is then:

∀(g 1 , g 2 ) ∈ G, (g 1 , g 2 ).(l 1 , l 2 , Cψ) = (g 1 (l 1 ), g 2 (l 2 ), C t g -1 2 • ψ • g -1 1 ).
So we know that the orbits of the action on the third part (Cψ) are classied by the rank of ψ. Moreover, this triple (l 1 , l 2 , Cψ) denes several subspaces:

in V 1 in V 2 in V * 1 in V * 2 l 1 l 2 H 1 = l ⊥ 1 H 2 = l ⊥ 2 ker ψ ker t ψ Im t ψ = (ker ψ) ⊥ Im ψ = (ker t ψ) ⊥ ψ -1 (H 2 ) t ψ -1 (H 1 ) t ψ(l 2 ) = ψ -1 (H 2 ) ⊥ ψ(l 1 ) = t ψ -1 (H 1 ) ⊥
and the dierent possible positions of l 1 and l 2 with respect to ker ψ, ψ -1 (H 2 ), and respectively ker t ψ, t ψ -1 (H 1 ), shall help us to describe the orbits. Furthermore, ker ψ ⊂ ψ -1 (H 2 ), ker t ψ ⊂ t ψ -1 (H 1 ), and l 1 ⊂ ψ -1 (H 2 ) ⇔ l 2 ⊂ t ψ -1 (H 1 ).

First case:

n 1 = n 2 (so n = n 1 = n 2 ).
Let us rst assume that rk ψ = n. Then, ker ψ = {0} and ker t ψ = {0}. So this leaves two possibilities for the positions of l 1 and l 2 :

l 1 ⊂ ψ -1 (H 2 ) and l 2 ⊂ t ψ -1 (H 1 ). One can check that such (l 1 , l 2 , Cψ) form one orbit, O 1 . l 1 ⊂ ψ -1 (H 2 ) and l 2 ⊂ t ψ -1 (H 1 ). One can also check that such triples form a second orbit, O 2 . We can see that O 1 is unstable, whereas O 2 is semi-stable. What if rk ψ ≤ n -1? The closed subset Y = {(l 1 , l 2 , Cψ) s.t. rk ψ ≤ n -1} satises codim(Y ∩X us (L)) ≥ 2 because, for all l 1 and l 2 , {Cψ ; rk ψ ≤ n-1 and ψ(l 1 )(l 2 ) = {0}} has codimension 2 in P(Hom(V 1 , V * 2 )). So the complement of Y ∩ X us (L) intersects every irreducible components of X us (L). Thus, Y c = {(l 1 , l 2 , Cψ) s.t. rk ψ = n} intersects every irreducible components of X us (L)
Conclusion for this case:

X us (L) = cl(O 1 ), the closure of orbit O 1 . Furthermore, a representative of O 1 is x = (Ce 1 , Cf 2 , Cϕ n ).
Second case: n 1 < n 2 (and then n = n 1 ). In this case, {Cψ s.t. rk ψ ≤ n -1} has codimension at least 2 (because the minors of rank n must be zero, and there are at least 2). So, as in the previous case, it suces to consider the case where rk ψ = n, for which ker ψ = {0} and ker t ψ = {0}. This leads to three possibilities for l 1 and l 2 :

l 1 ⊂ ψ -1 (H 2 ) and l 2 ⊂ ker t ψ ⊂ t ψ -1 (H 1 ). One can check that such (l 1 , l 2 , Cψ) form one orbit, O 1 . l 1 ⊂ ψ -1 (H 2 ) and l 2 ⊂ ker t ψ, but l 2 ⊂ t ψ -1 (H 1 )
. Once again, one can check that this gives only one orbit, O 2 .

l 1 ⊂ ψ -1 (H 2 ) and l 2 ⊂ t ψ -1 (H 1 ). One can still check that these triples form one orbit, O 3 .

The orbit O 3 is semi-stable, whereas O 1 and O 2 are unstable. In addition,

O 1 ⊂ cl(O 2 ) because, if rk ψ = n and (l 1 , l 2 , Cψ) is unstable, (l 1 , l 2 , Cψ) ∈ O 1 ⇔ t ψ(l 2 ) = {0} and (l 1 , l 2 , Cψ) ∈ O 2 ⇔ t ψ(l 2 ) = {0}.
Conclusion for that case: Here, X us (L) = cl(O 2 ) and a representative of O 2 is the same

x as before: x = (Ce 1 , Cf 2 , Cϕ n ).
Third and last case:

n 1 > n 2 .
Everything happens similarly to the previous case, if we exchange the roles of V 1 and V 2 . So we have also the orbit of x = (Ce 1 , Cf 2 , Cϕ n ) which is dense in X us (L).

Restriction to π -1 (x)

The projection π we use is of the form π : G/ B -→ G/ P , with G a complex reductive group, B a Borel subgroup, and P a parabolic subgroup containing B. So the bres are all isomorphic to P / B (π is even a bration). This is also true for its restriction to X us (L) = π -1 (X us (L)). Thus, since G.x is dense in

X us (L), π -1 (G.x) is dense in X us (L). As a consequence, X us (L) ⊂ X us (M ⊗ L ⊗d ) if π -1 (G.x) ⊂ X us (M ⊗ L ⊗d ) (because X us (M ⊗ L ⊗d ) is closed). And nally, if π -1 (x) ⊂ X us (M ⊗ L ⊗d ), then π -1 (G.x) ⊂ X us (M ⊗ L ⊗d ) since π is G-equivariant. Hence the following lemma: Lemma 4.3.4. If d 0 ∈ N is such that, for all d ≥ d 0 , π -1 (x) ⊂ X us (M ⊗ L ⊗d ), then
∀d ≥ d 0 , g λ+d(1),μ+d(1),ν+d(1) = g λ+d 0 (1),μ+d 0 (1),ν+d 0 (1) .

Computation of the bound

We identify GL(V 1 ), GL(V 2 ), and GL(V 1 ⊗ V 2 ) respectively with GL n 1 (C), GL n 2 (C), and GL n 1 n 2 (C) thanks to the bases (e 1 , . . . , e n 1 ) and (f 1 , . . . , f n 2 ) of V 1 and V 2 respectively that we considered. The basis in V 1 ⊗ V 2 is then (e i ⊗ f j ) i,j , ordered lexicographically. Moreover we use the following notation for one-parameter subgroups of some

GL m 1 (C) × • • • × GL mp (C): τ : C * -→ GL m 1 (C) × • • • × GL mp (C) t -→ ( ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ t a (1) 1 t a (1) 2 . . . t a (1) m 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ , . . . , ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ t a (p) 1 t a (p) 2 . . . t a (p) mp ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ) is denoted by τ = a (1) 1 , a (1) 
2 , . . . , a

(1)

m 1 | . . . |a (p) 1 , . . . , a (p) mp .
Destabilising one-parameter subgroup for x: We set the following one-parameter subgroup of G:

τ 0 = 1, -1, 0, . . . , 0 -1, 1, 0, . . . , 0 .
Then, since the action of τ 0 (t) on the lines Ce 1 , Cf 2 , and Cϕ n is the multiplication by t, t, and 1 respectively, we have μ L (x, τ 0 ) = 2.

Let now x ∈ π -1 (x). We want to calculate μ M (x, τ 0 ). Thanks to the way μ is dened (rst, one has to take the limit when t → 0 from τ 0 (t).x and gets a xed point of τ 0 ), and since x is xed by τ 0 , it suces to calculate μ M (x, τ 0 ) for x ∈ π -1 (x) τ 0 . So we take x ∈ π -1 (x) τ 0 .

Form of an element x ∈ π -1 (x) τ 0 : First of all, the action of τ 0 on V 1 has three dierent weights: 1,-1, and 0, whose corresponding subspaces are

W 1 = Ce 1 , W -1 = Ce 2 , and W 0 = Ce 3 + • • • + Ce n 1 .
Thus, the component of

x in F (V 1
) is a ag given by a basis of V 1 composed of: e 1 at rst, e 2 in a position i between 2 and n 1 , and n 1 -2 vectors forming a basis of W 0 .

For the same reasons, there exists an integer j between 2 and n 2 such that the second component of x (in F (V 2 )) is a ag given by a basis of V 2 composed of f 2 at rst, f 1 in position j, and n 2 -2 vectors forming a basis of

Cf 3 + • • • + Cf n 2 .
For the third component (in

F (V 1 ⊗ V 2 )) of x:
the action of τ 0 on V 1 ⊗ V 2 has now ve dierent weights, 2, -2, 1, -1, and 0, whose respective corresponding subspaces are

W 2 = Ce 1 ⊗f 2 , W -2 = Ce 2 ⊗f 1 , W 1 = Ce 1 ⊗f 3 +• • •+Ce 1 ⊗f n 2 +Ce 3 ⊗f 2 +• • •+Ce n 1 ⊗f 2 , W -1 = Ce 2 ⊗ f 3 + • • • + Ce 2 ⊗ f n 2 + Ce 3 ⊗ f 1 + • • • + Ce n 1 ⊗ f 1 , W 0 spanned by the rest of the e i ⊗ f j . Thus, the component of x in F (V 1 ⊗ V 2 ) is a ag given by a basis of V 1 ⊗ V 2 of the form: e 1 ⊗ f 2 at a position k 2 between 1 and n 1 n 2 -1, e 2 ⊗ f 1 at a position k -2 between 1 and n 1 n 2 -1, n 1 + n 2 -4 vectors forming a basis of W 1 at positions m (1) 1 , . . . , m (1)
n 1 +n 2 -4 (between 1 and n 1 n 2 -1), , m (-1) n 1 +n 2 -4 (between 1 and n 1 n 2 -1), the other vectors forming a basis of W 0 .

n 1 + n 2 -4 vectors forming a basis of W -1 at positions m (-1) 1 , . . .
Calculation of the action of τ 0 on the bre of M over x: (We denote this bre by M x ). Let us recall another description, for δ a partition, of the line bundle L δ on a ag variety F (V ) (with dim V = n ≥ (δ)). We have the embedding

ι : F (V ) -→ n k=1 P( k V ) (Cv 1 , Cv 1 ⊕ Cv 2 , . . . , Cv 1 ⊕ • • • ⊕ Cv n ) -→ (Cv 1 , C(v 1 ∧ v 2 ), . . . , C(v 1 ∧ • • • ∧ v n )
.

Then L δ is the pull-back of the line bundle O(δ 1 -δ 2 ) ⊗ • • • ⊗ O(δ n-1 -δ n ) ⊗ O(δ n ) by
ι (for all the partitions that we use, we take the convention that, if i > (δ), δ i is simply 0). Using this description and the form of an element x ∈ π -1 (x) τ 0 , we can easily get the following:

Lemma 4.3.5. For x ∈ π -1 (x) τ 0 , there exist i ∈ 2, n 1 , j ∈ 2, n 2 , and 2(n 1 + n 2 -3)

distinct integers k 2 , k -2 , m (1)
1 , . . . , m

(1) 1)

n 1 +n 2 -4 , m (-1) 1 , . . . , m (-
n 1 +n 2 -4 ∈ 1, n 1 n 2 -1 such that μ M (x, τ 0 ) = λ 1 -λ i + μ 1 -μ j + 2(ν k -2 -ν k 2 ) + n 1 +n 2 -4 k=1 (ν m (-1) k -ν m (1) k ), with (ν 1 , . . . , ν n 1 n 2 ) = (ν n 1 n 2 , . . . , ν 1 ). Moreover, all the possibilities for i, j, k 2 , k -2 , the m (1)
k 's, and the m (-1) k 's arise when x varies in π -1 (x) τ 0 . As a consequence,

max x∈π -1 (x) -μ M (x, τ 0 ) = -λ 1 + λ 2 -μ 1 + μ 2 + 2(ν 2 -ν n 1 n 2 ) + n 1 +n 2 -4 k=1 (ν k+2 -ν n 1 n 2 -k ).
Finally, Lemma 4.3.4 leads to the following result: Proposition 4.3.6. If we set

d 0 = 1 2 -λ 1 + λ 2 -μ 1 + μ 2 + 2(ν 2 -ν n 1 n 2 ) + n 1 +n 2 -4 k=1 (ν k+2 -ν n 1 n 2 -k ) ,
we have for all d ∈ N such that d > d 0 , g λ+d(1),μ+d(1),ν+d(1) = g λ+ d 0 +1 (1),μ+ d 0 +1 (1),ν+ d 0 +1 (1) .

Proof. For all x ∈ π -1 (x) and all d > d 0 ,

μ M⊗L ⊗d (x, τ 0 ) = μ M (x, τ 0 ) + dμ L (x, τ 0 ) = μ M (x, τ 0 ) + 2d > 0 because d > d 0 ≥ - 1 2 μ M (x, τ 0 )
. Thus, by Hilbert-Mumford criterion, x ∈ X us (M ⊗ L ⊗d ), and we conclude using Lemma 4.3.4.

Remark 4.3.7. We even have the inclusion X ss (M ⊗ L ⊗d ) ⊂ X ss (L) which is true for all d > d 0 , d ∈ Q. Indeed, the denition of X ss (N ) (and the one from μ N (., τ 0 )) can be extended to N ∈ Pic G (X) ⊗ Z Q:

X ss (N ) = {x ∈ X | ∃k ∈ N * s.t. N ⊗k ∈ Pic G (X) and ∃σ ∈ H 0 (X, N ⊗k ) G , σ(x) = 0}. 4.3.3 Case of the triple (1, 1), (1, 1), (2) 
We now have a look at the triple (1, 1), (1, 1), (2) which is also stable (cf. for instance [START_REF] Stembridge | Generalized Stability of Kronecker Coecients[END_REF]). We consider

π : X -→ denoted X F (V 1 ; 1, 2) × F (V 2 ; 1, 2) × P((V 1 ⊗ V 2 ) * ) ((W i ) i , (W i ) i , (W i ) i ) -→ ((W 1 , W 2 ), (W 1 , W 2 ), {ϕ ∈ (V 1 ⊗ V 2 ) * / ker ϕ = W n 1 n 2 -1 }) .
Similarly as before, the line bundle L is the pull-back by

π of L = L α ⊗ L β ⊗ O(2).
The same arguments that we have used throughout the previous section are also going to work here. The only changes will be the orbits of G in X which are unstable: Proposition 4.3.8. If n 1 ≥ 3 or n 2 ≥ 3, then the set X us (L) of unstable points consists in the union of the closures of two G-orbits:

that of x 1 = ((Ce 1 , Ce 1 + Ce 2 ), (Cf 3 , Cf 3 + Cf 1 ), Cϕ n ) and that of x 2 = ((Ce 1 , Ce 1 + Ce 2 ), (Cf 2 , Cf 2 + Cf 3 ), Cϕ n ).
Proof. It is completely similar to the proof of Proposition 4.3.3.

We then set two destabilising one-parameter subgroups of G for the two elements x 1 and x 2 (we still consider the case when n 1 , n 2 ≥ 3):

τ 1 = 0, 1, -1, 0, . . . , 0 0, -1, 1, 0, . . . , 0 and τ 2 = 1, 0, -1, 0, . . . , 0 -1, 0, 1, 0, . . . , 0 , which give μ L (x 1 , τ 1 ) = 2 = μ L (x 2 , τ 2 ).
As before, we only have to get a bound from which π -1 (x 1 ) ⊂ X us (M ⊗ L ⊗d ) and π -1 (x 2 ) ⊂ X us (M ⊗ L ⊗d ). We have already seen the form of elements of π -1 (x 1 ) τ 1 and π -1 (x 2 ) τ 2 , and as a consequence we get:

Lemma 4.3.9. If n 1 ≥ 3 and n 2 ≥ 3, max

x 1 ∈π -1 (x 1 ) (-μ M (x 1 , τ 1 )) = -λ 2 + λ 3 -μ 1 + μ 3 + 2(ν 2 -ν n 1 n 2 ) + n 1 +n 2 -4 k=1 (ν k+2 -ν n 1 n 2 -k )
and max

x 2 ∈π -1 (x 2 ) (-μ M (x 2 , τ 2 )) = -λ 1 + λ 3 -μ 2 + μ 3 + 2(ν 2 -ν n 1 n 2 ) + n 1 +n 2 -4 k=1 (ν k+2 -ν n 1 n 2 -k ).
What remains to be seen is what happens when n 1 = 2 or n 2 = 2. Let us focus on the case where n 1 = 2 and n 2 ≥ 3. Then, τ 1 and τ 2 become:

τ 1 = 0, 1 0, -1, 1, 0, . . . , 0 , τ 2 = 1, 0 -1, 0, 1, 0, . . . , 0 . We still have μ L (x 1 , τ 1 ) = 2 = μ L (x 2 , τ 2 ), but this time max x 1 ∈π -1 (x 1 ) (-μ M (x 1 , τ 1 )) = -λ 2 -μ 1 + μ 3 + 2ν 2 -ν 2n 2 + n 2 -1 k=1 ν k+2 ,
and

max x 2 ∈π -1 (x 2 ) (-μ M (x 2 , τ 2 )) = -λ 1 -μ 2 + μ 3 + 2ν 2 -ν 2n 2 + n 2 -1 k=1 ν k+2 .
By exchanging the roles of V 1 and V 2 (that is to say λ and μ), we easily get the result for the case n 1 ≥ 3, n 2 = 2. Only the case n 1 = 2 = n 2 remains, and we could do exactly the same. But the result we would get would be exactly the formula for n 1 = 2, n 2 ≥ 3 in which we take μ 3 to be zero. Finally we have:

Proposition 4.3.10. If we set m = max(-λ 2 -μ 1 , -λ 1 -μ 2 ) and d 0 = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 1 2 m + λ 3 + μ 3 + 2(ν 2 -ν n 1 n 2 ) + n 1 +n 2 -4 k=1 (ν k+2 -ν n 1 n 2 -k ) if n 1 , n 2 ≥ 3 1 2 m + μ 3 + 2ν 2 -ν 2n 2 + n 2 -1 k=1 ν k+2 if n 1 = 2 1 2 m + λ 3 + 2ν 2 -ν 2n 1 + n 1 -1 k=1 ν k+2 if n 2 = 2 , then we have, for all d ∈ N such that d > d 0 , g λ+d(1,1),μ+d(1,1),ν+d(2) = g λ+ d 0 +1 (1,1),μ+ d 0 +1 (1,1),ν+ d 0 +1 (2) .
Proof. It is exactly in the same way as the proof of Proposition 4.3.6.

Remark 4.3.11. We can notice that, in the cases where n 1 = 2 or n 2 = 2, we have two possible bounds: the one which concerns only these cases, or the general one, which we can use by considering λ (respectively μ) of length 3 by setting λ 3 = 0 (respectively μ 3 = 0). We will come back to this in Remark 4.3.16.

Remark 4.3.12. As after Proposition 4.3.6, we have also here that the inclusion X ss (M⊗

L ⊗d ) ⊂ X ss (L) is true for all d > d 0 , d ∈ Q.

Slight improvement of the previous bounds

In Propositions 4.3.6 and 4.3.10, we got an integer or half-integer d 0 such that the sequence (g λ+dα,μ+dβ,ν+dγ ) d is constant for all integers strictly greater than d 0 . We now want to prove that, if this d 0 is an integer, this sequence of Kronecker coecients already stabilises for our bound d 0 . We need at rst, in the following subsection, to expose a well-known result of quasipolynomiality.

Piecewise quasipolynomial behaviour of the dimension of invariants in an irreducible representation

This part of the chapter is quite disconnected with the others. The inspiration for the proofs given here is the article [START_REF] Kumar | Dimension of zero weight space: An algebro-geometric approach[END_REF], in which the case of T -invariants is studied. Note also that the quasipolynomial behaviour of this kind of multiplicities can be seen as a consequence of the work of E. Meinrenken and R. Sjamaar on [Q, R] = 0 (it is explained in Section 13 of [START_REF] Paradan | Witten non abelian localization for equivariant K-theory[END_REF]). The following settings concern this subsection and only this one.

Let G be a connected complex reductive group, and H be a subgroup of G, also reductive. We consider a maximal torus T , a Borel subgroup B of G such that T ⊂ B, and the corresponding ag variety X = G/B. We denote by X * (T ) the (multiplicative) group of characters of T , and by Q and Λ respectively the root lattice and the weight lattice. Λ + (resp. Λ ++ ) denotes the dominant (resp. dominant regular) weights.

Let us recall that X * (T ) can be embedded as a sublattice of Λ (let set ι :

X * (T ) → Λ) and that Q ⊂ ι(X * (T )) ⊂ Λ.
Set X * (T ) + = ι(X * (T )) ∩ Λ + , and

m : X * (T ) + -→ N λ -→ dim V (λ) H ,
where V (λ) is the irreducible G-module with highest weight λ. The result we want to show is that m is piecewise quasipolynomial. For a more precise statement, let us consider X * (R) = ι(X * (T )) ⊗ Z R, X * (R) + the cone spanned by X * (T ) + , and X * (R) ++ the relative interior of this cone.

Here we use the more standard denition of semi-stability: if L is a H-linearised line bundle on X, a point x ∈ X is said semi-stable (with respect to L) if there exist n ∈ N * and σ ∈ H 0 (X, L ⊗n ) H such that {y ∈ X s.t. σ(y) = 0} is ane and contains x. To avoid confusion with the notion of semi-stability that we use everywhere but in this subsection, we denote by X ss st (L) the set of these semi-stable points with respect to L. Finally let us denote by C 1 , . . . , C N the chambers in X * (R) ++ , i.e. the GIT-classes of maximal dimension. Let us recall that the chambers are the relative interiors of convex rational polyhedral cones in X * (R) ++ (see [START_REF] Ressayre | The GIT-equivalence for G-line bundles[END_REF]). For all k, denote by X ss st (C k ) the set of semi-stable points common to all L λ for λ ∈ C k . Lemma 4.3.13. There exists a sublattice Γ of ι(X * (T )) of nite index such that, for all k ∈ 1, N , for all λ ∈ Γ, the H-linearised line bundle

L λ = G × B C -λ descends to a line bundle on X ss st (C k ) H (i.e. the restriction of L λ to X ss st (C k ) is H-isomorphic to the pull-back of a line bundle on X ss st (C k ) H).
Proof. For better readability we have divided this demonstration into four steps.

First step: we want to prove that, for all k ∈ 1, N , there exists a sublattice Γ k of ι(X * (T )) of nite index such that, for all λ ∈ Γ k ∩ C k (where

C k = C k ∩ ι(X * (T ))), L λ descends to X ss st (C k ) H. Let k ∈ 1, N . We set A k = {λ ∈ C k s.t. L λ descends to X ss st (C k ) H}.
Then it is clear that A k is stable by addition. Thus consider Γ k the lattice generated by

A k . It satises A k = Γ k ∩ C k and so, for all λ ∈ Γ k ∩ C k , L λ descends to X ss st (C k ) H. Let us now check that Γ k is of nite index in ι(X * (T )). It suces to prove that there exists n ∈ N * such that, for all λ ∈ C k , nλ ∈ Γ k , i.e. L nλ L ⊗n λ descends to X ss st (C k ) H. For all λ ∈ C k = C k ∩ ι(X * (T )) and x ∈ X ss st (C k ) ⊂ X ss st (L λ )
, by denition we know that there exist n x,λ ∈ N * and σ x,λ ∈ H 0 (X, L

⊗n x,λ λ ) H such that σ x,λ (x) = 0. Let λ ∈ C k . Then the algebra R = n≥0 H 0 (X, L ⊗n λ ) H
is of nite type. Let us set σ 1 , . . . , σ r a system of generators of R (we can choose

σ i ∈ H 0 (X, L ⊗n i λ ) H for some n i ∈ N * ). Write n λ = r i=1 n i ∈ N * . Then, for x ∈ X ss st (C k ), there exists σ x,λ = σ ⊗a 1 1 ⊗ • • • ⊗ σ ⊗ar r
with a 1 , . . . , a r ∈ N not all zero such that σ x,λ (x) = 0. So there exists i ∈ 1, r such that σ i (x) = 0. Hence σ

⊗n 1 ...n i-1 n i+1 ...nr i (x) = 0 with σ ⊗n 1 ...n i-1 n i+1 ...nr i = σ 0 ∈ H 0 (X, L ⊗n λ λ
) H . Thus, if we denote by χ the character by which H x acts on the ber L ⊗n λ λ x , we have

∀h ∈ H x , χ(h)σ 0 (x) = h.σ 0 (x) = σ 0 (h.x) = σ 0 (x),
and so χ is trivial. We have just proven that, for all x ∈ X ss st (C k ), H x acts trivially on L ⊗n λ λ x . In other words, by Kempf's Descent Lemma (see e.g. Lemma 3.8 in [START_REF] Kumar | Descent of line bundles to GIT quotients of ag varieties by maximal torus[END_REF]), L n λ λ descends to X ss st (C k ), i.e. n λ λ ∈ Γ k . Now, C k is nitely generated, since it is the intersection of a lattice and a closed convex rational polyhedral cone (see e.g. Section 5.18 from [START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Eciency[END_REF] on Hilbert bases). So if we take λ 1 , . . . , λ p generators, by setting n = p i=1 n λ i ∈ N * we get:

∀λ ∈ C k , nλ ∈ Γ k .
Thus Γ k is of nite index in ι(X * (T )).

Second step: Now we set

Γ = N k=1 Γ k . It is a sublattice of ι(X * (T )) of nite index, since Γ 1 , . . . , Γ N are. Moreover, for all k ∈ 1, N , for all λ ∈ Γ ∩ C k ⊂ Γ k ∩ C k , L λ descends to a line bundle denoted L(k) λ on X ss st (C k ).
Third step: Let k ∈ 1, N . We can notice that Γ ∩ C k is a semigroup: it is the intersection between a lattice and the interior of a convex rational polyhedral cone. Let us consider Z k the subgroup of Γ generated by Γ ∩ C k . Let λ ∈ Z k . It can be written as

λ 1 -λ 2 , with λ 1 , λ 2 ∈ Γ ∩ C k . Then we dene L(k) λ = L(k) λ 1 ⊗ L(k) λ 2 * , which is a line bundle on X ss st (C k ) H. If λ = λ 1 -λ 2 also (λ 1 , λ 2 ∈ Γ ∩ C k ), then λ 1 + λ 2 = λ 1 + λ 2 ∈ Γ ∩ C k and so L(k) λ 1 +λ 2 L(k) λ 1 +λ 2 .
Moreover, by uniqueness of the line bundle to which a line bundle can descend (cf. [START_REF] Teleman | The quantization conjecture revisited[END_REF], 3), L(k)

λ 1 +λ 2 L(k) λ 1 ⊗ L(k) λ 2
, and similarly for L(k) λ 1 +λ 2 . Thus,

L(k) λ 1 ⊗ L(k) λ 2 * L(k) λ 1 ⊗ L(k) λ 2 *
, and our L(k) λ is well dened. As a consequence L λ descends to a line bundle on X ss st (C k ) H for all λ ∈ Z k .

Fourth step: To conclude, let us prove that Z k = Γ. We consider γ 1 , . . . , γ r a system of generators of Γ, and a norm . on X * (R). Set d = max{ γ i ; i ∈ 1, r }. Then there exists λ ∈ Γ ∩ C k such that B(λ, d), the closed ball of center λ and radius d, is contained in C k . Hence λ + γ i ∈ B(λ, d) ⊂ C k for all i ∈ 1, r . So, for all i, λ + γ i ∈ Γ ∩ C k , and thus γ i ∈ Z k . Hence Z k = Γ, which proves the lemma.

The following result is then a classical one. The proof we write here is an adaptation (but with less quantitative results) from the one by Kumar and Prasad in [START_REF] Kumar | Dimension of zero weight space: An algebro-geometric approach[END_REF], which was in the case of T -invariants.

Theorem 4.3.14. Let μ = μ + Γ be a coset of Γ in ι(X * (T )) and k ∈ 1, N . Then there exists a polynomial f μ,k : X * (R) → R with rational coecients such that,

∀λ ∈ C k ∩ μ, m(λ) = f μ,k (λ).
Proof. Let μ and k be as in the above statement. Applying the Borel-Weil-Bott Theorem we get that, for all λ ∈ X * (T ) + , H 0 (X, L λ ) V (λ) * and, for all p > 0, H p (X,

L λ ) = {0}. As a consequence, since dim V (λ) H = dim (V (λ) * ) H , m(λ) = dim H 0 (X, L λ ) H .

Let us begin by considering

λ ∈ C k ∩ μ. Denote by π the standard quotient map X ss st (C k ) → X ss st (C k )
H and, for any H-equivariant sheaf S on X ss st (C k ), by π * (S) H the H-invariant direct image sheaf of S by π (it is then a sheaf on the GIT-quotient). Then, by [START_REF] Teleman | The quantization conjecture revisited[END_REF], Remark 3.3(i),

H p (X ss st (C k ) H, π * (L λ ) H ) {0} if p > 0 H 0 (X, L λ ) H if p = 0 .
And thus, if χ is the Euler-Poincaré characteristic,

χ(X ss st (C k ) H, π * (L λ ) H ) = p≥0 (-1) p dim H p (X ss st (C k ) H, π * (L λ ) H ) = m(λ).
Take now λ ∈ C k ∩ μ. We consider P (containing B) the unique parabolic subgroup of G such that L λ descends as an ample line bundle L P λ on G/P via the standard projection

q : X = G/B → G/P . Let ν ∈ C k ∩ ι(X * (T )).
Then, by [START_REF] Teleman | The quantization conjecture revisited[END_REF], 1.2, for any small enough rational ε > 0, the pull-back q * (L P λ ) is adapted to the stratication on X coming from q * (L

P λ ) ⊗ L ⊗ε ν . So, by [Tel00], Remark 3.3(ii), ∀p ∈ N, H p X ss st (q * (L P λ ) ⊗ L ⊗ε ν ) H, π * (q * (L P λ ) H ) H p (X, q * (L P λ )) H . Moreover, q * (L P λ ) = L λ and X ss st (q * (L P λ ) ⊗ L ⊗ε ν ) = X ss st (L λ+εν ) = X ss st (C k ) (because λ + εν ∈ C k if ε is small enough), and thus ∀p ∈ N, H p (X ss st (C k ) H, π * (L λ ) H ) H p (X, L λ ) H .
Consequently we have once again

m(λ) = χ(X ss st (C k ) H, π * (L λ ) H ).
We now introduce a Z-basis (γ 1 , . . . , γ r ) of the lattice Γ. For any λ = μ + r i=1 a i γ i ∈ C k ∩ μ (i.e. with a 1 , . . . , a r ∈ Z),

π * (L λ ) H π * (L μ ) H ⊗ L(k) a 1 γ 1 +•••+arγr
by denition of the lattice Γ and the projection formula for π * , and with the notation L dened in the proof of Lemma 4.3.13. Finally, for any such λ we apply the Riemann-Roch Theorem for singular varieties (see e.g. [START_REF] Fulton | Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF], Theorem 18.3), to the sheaf π * (L λ ) H and get

m(λ) = χ(X ss st (C k ) H, π * (L λ ) H ) = n≥0 X ss st (C k ) H (a 1 c 1 (γ 1 ) + • • • + a r c 1 (γ r )) n n! ∩ τ (π * (L μ ) H ),
where, for all i, c 1 (γ i ) is the rst Chern class of the line bundle 

d ∈ Q such that d > d 0 , X ss (M ⊗ L ⊗d ) ⊂ X ss (L), then dim H 0 (X, M ⊗ L ⊗d 0 ) G = dim H 0 (S, M) H .
Proof. Let us write = dim H 0 (S, M) H , consider a d 0 ∈ N as in the statement above, and denote by C 1 , . . . , C N the chambers (i.e. GIT-classes of maximal dimension) in QL ⊕ QM = {L ⊗a ⊗ M ⊗b ; a, b ∈ Q} for the action of G on X. Since, for all d > d 0 (d ∈ Q), X ss (M⊗L ⊗d ) ⊂ X ss (L), and thanks to the results by N. Ressayre (cf. [START_REF] Ressayre | The GIT-equivalence for G-line bundles[END_REF]) concerning the GIT-fan, the situation is necessarily the following: the M ⊗ L ⊗d for d > d 0 are in a chamber, say for instance C 1 ; L belongs to C 1 , the closure of this chamber; M ⊗ L ⊗d 0 belongs also to C 1 . We can draw a picture of this situation: in QL ⊕ QM, the set of semi-ample line bundles is a closed convex cone. As a consequence, up to multiplication by a positive rational number, this set can be represented by a line or a segment. The two cases can here be treated in the same way, so we assume for instance to be in the case of a line. Then the situation of the chambers is typically:

C i 1 C i 2 C i 3 C i 4 C i 5
If M ⊗ L ⊗d 0 ∈ C 1 , then X ss (M ⊗ L ⊗d 0 ) ⊂ X ss (L) and Proposition 4.2.7 gives immediately that dim H 0 (X, M ⊗ L ⊗d 0 ) G = . So we assume from now on that M ⊗ L ⊗d 0 ∈ C 1 \ C 1 :

C 1 L M ⊗ L ⊗d 0 (if L belongs to the boundary of C 1 ,

this does not change what follows).

Applying Lemma 4.3.13 and Theorem 4.3.14, we get that there exists a sublattice Γ of nite index of the lattice ZL ⊕ ZM = {L ⊗a ⊗ M ⊗b ; a, b ∈ Z} such that, for all γ = γmodΓ ∈ (ZL ⊕ ZM)/Γ, there is a polynomial P γ with rational coecients such that

∀N ∈ C 1 ∩ γ, dim H 0 (X, N ) G = P γ (N ).
In particular, if we denote γ0

= (M ⊗ L ⊗d 0 )modΓ, dim H 0 (X, M ⊗ L ⊗d 0 ) G = P γ0 (M ⊗ L ⊗d 0 ).
We then consider the polynomial function in one variable

P : d -→ P γ0 (M ⊗ L ⊗d ).
We want to prove that P is constant and we know that, for all integers d > d 0 such that (M⊗L ⊗d )modΓ = γ0 , P (d) = dim H 0 (X, M ⊗ L ⊗d ) G = . It is consequently sucient to notice that there exist innitely many such d's: if we denote by N 1 = M ⊗a 1 ⊗ L ⊗b 1 and N 2 = M ⊗a 2 ⊗ L ⊗b 2 the elements of a Z-basis of Γ, each d ∈ N(b 1 a 2a 1 b 2 ) + d 0 does the trick. Finally, P is constant and dim H 0 (X, M ⊗ L ⊗d 0 ) G = P (d 0 ) = .

Thanks to this result we can improve slightly Propositions 4.3.6 and 4.3.10, and get Theorems 4.1.4 and 4.1.5.

Remark 4.3.16. We had previously noticed that, in the case of the triple (1, 1), (1, 1), (2) , if n 1 = 2 (or n 2 = 2), there were two ways to compute a bound: by using the formula in the previous theorem which is special to this case, by using the formula valid for n 1 , n 2 ≥ 3, setting λ 3 = 0 (or μ 3 = 0) and considering λ (or μ) as a partition of length 3.

Let us compare the two bounds we can obtain. For instance for three partitions of the form (λ 1 , . . . , λ n 1 ), (μ 1 , μ 2 ), and (ν 1 , . . . , ν 2n 1 ) (with n 1 ≥ 3), we obtain by the rst method:

D 2 = 1 2 (m + λ 3 + 2ν 2 -ν 2n 1 + ν 3 + ν 4 + • • • + ν n 1 +1 ) .
And by the second method we get:

D 2 = 1 2 (m + λ 3 + 2ν 2 + ν 3 + ν 4 + • • • + ν n 1 +1 ) . So we have D 2 ≤ D 2 and D 2 -D 2 = ν 2n 1 2
. Similarly, for (λ 1 , λ 2 ), (μ 1 , μ 2 ), and (ν 1 , . . . , ν 4 ),

D 2 = 1 2 (m + 2ν 2 -ν 4 + ν 3 ) , whereas D 2 = 1 2 (m + 2ν 2 + ν 3 + ν 4 ) .
Once 

Possibility of recovering already existing bounds by our method

In the case of Murnaghan's stability, there are some already existing bounds for the stabilisation of the sequence (see the Introduction). An interesting fact is that we can recover (and sometimes improve) some of them by our method, if we choose one-parameter subgroups dierent from the one that we had chosen. We focus only on two of the four bounds we cited: Brion's one (denoted by D B ), and the second one from Briand, Orel- lana, and Rosas, which we denote by D BOR2 (these authors introduced two bounds, and this one is the second). They are the ones who have a form similar to our bound; the two other ones seem far too dierent to be obtained this way.

Conversion to our settings

In the article [START_REF] Briand | The stability of the Kronecker product of Schur functions[END_REF], the settings are dierent from ours. So, if we want to recover the bounds given here, the rst thing is to convert them into our settings. For the authors, the bound given (for a triple of partitions (α, β, γ)) is the rst integer n for which α[n] = (n -|α|, α 1 , . . . , α (α) ), β[n], γ[n] are partitions and the sequence

(g α[n],β[n],γ[n] ) n
reaches its limit value (we know that it is a stationary sequence). Whereas for us, our bound for a triple (λ, μ, ν) of partitions (such that |λ| = |μ| = |ν|) is the rst integer d such that the sequence (g λ+(d),μ+(d),ν+(d) ) d reaches its limit value. The correspondence between the two points of view is then (we adopt the following useful notation: for a partition δ, δ ≥2 denotes the partition obtained by removing the rst -i.e. biggest-part of δ):

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ α = λ ≥2 β = μ ≥2 γ = ν ≥2 n = d + |λ| = d + |μ| = d + |ν| . M. Brion's bound, which in [BOR11] notations is M B (α, β; γ) = |α| + |β| + γ 1 , then becomes D B (λ, μ, ν) = |μ| -λ 1 -μ 1 + ν 2 .
Similarly the bound D BOR2 , which in their notations is

N 2 (α, β, γ) = |α| + |β| + |γ| + α 1 + β 1 + γ 1 2 , becomes D BOR2 (λ, μ, ν) = -λ 1 + |μ ≥2 | -ν 1 + λ 2 + μ 2 + ν 2 2 .

One parameter subgroups corresponding to D B and D BOR2

Case of D B : We dene the following one parameter subgroup of G:

τ B = 1, 0, . . . , 0 -1, 0, -1, . . . , -1 .
Thus τ B satises μ L (x, τ B ) = 1 and, for all x ∈ π -1 (x),

μ M⊗L ⊗d (x, τ B ) > 0 ⇐⇒ d > max x∈π -1 (x) (-μ M (x, τ B )) = -λ 1 + μ 2 + μ 3 + • • • + μ n 2 + ν 2 -ν n 1 +n 2 -• • • -ν n 1 n 2 .
Until now, we did not make any particular assumption on the ag varieties we considered. We had always taken complete ones, but we could also consider partial ones. Here, let us consider the partial ag variety F (V 1 ⊗ V 2 ; 1, 2, . . . , n 1 + n 2 -1) for the third factor of X. This corresponds to forgetting the terms -ν n 1 +n 2 • • •ν n 1 n 2 in the right-hand side of the inequality above. This way, this right-hand side is just D B (λ, μ, ν). Hence the bound D B can be recovered by our method, with the one-parameter subgroup τ B .

Remark 4.3.17. We can thus have an improvement of D B in the case of a long partition ν: if we keep on with complete ag varieties, we keep the terms -ν n 1 +n 2 • • •ν n 1 n 2 at the end of the bound, and so it gives a lower value (and then better one) for partitions ν of length at least n 1 + n 2 .

Case of B-O-R 2: We dene the following one parameter subgroup of G:

τ BOR2 = 1, -1, 0, . . . , 0 -2, 0, -1, . . . , -1 .
This τ BOR2 satises μ L (x, τ BOR2 ) = 2 and, for all x ∈ π -1 (x),

μ M⊗L ⊗d (x, τ BOR2 ) > 0 ⇐⇒ d > 1 2 max x∈π -1 (x) (-μ M (x, τ BOR2 )) = 1 2 (-λ 1 + λ 2 + 2μ 2 + |μ ≥3 | -ν 1 + ν 2 -ν n 1 +n 2 -1 -• • • -ν n 1 n 2 -n 1 -n 2 +2 -2(ν n 1 n 2 -n 1 -n 2 +3 + . . . +ν n 1 n 2 -1 ) -3ν n 1 n 2 ).
Once again, considering the partial ag variety F (V 1 ⊗ V 2 ; 1, 2, . . . , n 1 + n 2 -2) (slightly dierent from the previous case), we can forget the terms concerning the last parts of partition ν (i.e. -ν

n 1 +n 2 -1 -• • • -ν n 1 n 2 -n 1 -n 2 +2 -2(ν n 1 n 2 -n 1 -n 2 +3 + • • • + ν n 1 n 2 -1 ) - 3ν n 1 n 2 )
and thus recognise D BOR2 (λ, μ, ν) in the right-hand side of the previous inequality. Hence the bound D BOR2 can be recovered by our method, with the one-parameter subgroup τ BOR2 .

Remark 4.3.18. As for D B , we can also have an improvement of D BOR2 by keeping the complete ag variety

F (V 1 ⊗ V 2 ): if (ν) ≥ n 1 + n 2 -1
, our method gives a lower bound.

Tests of our bounds and comparison with existing results

Tests and comparison for (1), (1), (1)

We are now going to test the bound D 1 from Theorem4.1.4 on a dozen examples. We also compare it to the four other bounds exposed in [BOR11] (Vallejo's bound is denoted by D V , and the rst one from Briand, Orellana, and Rosas by D BOR1 ).

The following array presents the results of these bounds on chosen examples. We also added a column giving the minimal integer coming from all the bounds obtainable by our method: ours, D B (a little improved, by Remark 4.3.17), and D BOR2 (likewise, cf. Remark 4.3.18). We denote this by D m . Finally, we calculated with Sage 4 the rst integer denoted D real from which the sequence (g λ+d(1),μ+d(1),ν+d(1) ) d∈N actually stabilises. [START_REF]The bound of Theorem 5.3.17 is for instance 15 for[END_REF], 2), (6, 5, 2, 2), (4, 4, 3, 3, 1) 5 6 5 5 6 5 5 (4, 3, 3), (3, 2 3 , 1), (2 3 , 1 4 ) 3 4 4 5 4 5 4 (5, 5, 4, 4), (6 3 ), (3, 3, 2 4 , 1 4 ) 5 5 5 10 9 11 6 (6, 5, 5), (8, 8), (4, 4, 3, 3, 2) 4 4 4 6 7 7 4 (5 4 ), (4 5 ), (2 4 , 1 12 ) 4 5 4 13 10 14 6 (6 3 ), (3 6 ), (2 6 , 1 6 ) 6 7 6 11 9 11 7 (5, 5, 4, 4), (6 3 ), (3, 2 6 , 1 3 ) 4 4 4 9 8 11 5 (7, 6), (6, 5, 2), (7, 3, 2, 1) 3 3 3 3 3 4 3 (8, 4, 3, 3, 1), (7, 3 4 ), (14, 3, 2) 0 0 0 0 0 0 0 (8, 5, 3, 1), (2, 1 15 ), (4, 3, 3, 2, 2, 1 3 ) 1 3 1 6 6 7 2 (6, 6, 4), (8, 8), (5, 5, 4, 1, 1) 6 7 6 7 8 7 7 (8, 6, 6, 2, 1), (14, 5, 4), (5 4 , 3) 5 6 6 6 6 8 5

triple λ, μ, ν D real D 1 D m D B D BOR2 D V D BOR1 (8,
We can notice (see e.g. the third row in the array) that there exist cases in which our bound is optimal whereas the other known bounds compared here are not. Ours is of course not always better: see e.g. the last row.

Tests of the bound for (1, 1), (1, 1), (2)

Here we compute the bound D 2 from Theorem 4.1.5 for a dozen examples and compare it, in the following array, to the rst integer D real from which the sequence actually stabilises. This last integer was once again computed with Sage. Chapter 5

λ μ ν D 2 D real (5, 5, 4, 4) (6 3 ) (3, 3, 2 4 , 1 4 ) 5 4 (5 4 ) ( 4 

Application to other branching coecients

In literature one can nd results of stability similar to those observed for the Kronecker coecients in various contexts (see [START_REF] Jennifer | FI-modules and stability criteria for representations of classical Weyl groups[END_REF][START_REF] Sam | Proof of Stembridge's conjecture on stability of Kronecker coecients[END_REF][START_REF] Colmenarejo | Stability Properties of the Plethysm: a Combinatorial Approach[END_REF][START_REF] Ying | Stability of the Heisenberg Product on symmetric functions[END_REF]). In this chapter we use our previous techniques to re-obtain and improve quite a few of these results. Actually, as soon as similarly to Chapter 4 we are looking at sequences (d ∈ N being the variable) of coecients given by dim H 0 (X, M ⊗ L ⊗d ) G , with G a connected complex reductive group acting on a projective variety X (both independent of d) and L and M two G-linearised line bundles on X, our previous methods can be applied.

This allows us to look at three other examples of branching coecients, and we begin in Section 5.1 with a look at plethysm coecients. They are the branching coecients arising when one looks at the composition of Schur functors, and are considered to form an extremely dicult problem. A result of stabilisation about them was proven in [START_REF] Sam | Proof of Stembridge's conjecture on stability of Kronecker coecients[END_REF],

and we manage to reprove it. As an application it allows to re-obtain some examples of sequences of plethysm coecients that were proven by L. Colmenarejo in [START_REF] Colmenarejo | Stability Properties of the Plethysm: a Combinatorial Approach[END_REF] to be eventually constant.

The second example that we consider, in Section 5.2, concerns the multiplicities in the tensor product of two irreducible representations of the hyperoctahedral group. This (nite) group is the Weyl group of type B n , which we denote by W n , and can be expressed as a semidirect product: (Z/2Z) n S n . Then we explain that the irreducible W n -modules are indexed by double partitions of n, i.e. ordered pairs of partitions whose sizes sum up to n. This allows to dene the branching coecients corresponding to the tensor product of two such W n -modules. A key point is then that there exists a kind of Schur-Weyl duality in that case, which allows to interpret these coecients as branching coecients for connected reductive groups (see Section 5.2.2). Therefore we obtain in Section 5.2.3 a stability result similar to the one concerning Kronecker coecients and apply it for instance to obtain and study an analogue of Murnaghan's stability.
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Finally we study a third example in Section 5.3: M.Aguiar, W. Ferrer Santos, and W. Moreira introduced in [AFSM15] a product called the Heisenberg product, that they dened on various objects (their goal was to unify many existing related products and coproducts). We are interested in their denition of it in the context of representations of symmetric groups, particularly because it denes coecients called Aguiar coecients in [START_REF] Ying | Stability of the Heisenberg Product on symmetric functions[END_REF] which extend in a way the Kronecker coecients. Moreover L. Ying proved a kind of Murnaghan's stability for these coecients. In Section 5.3.2 we manage to express the Aguiar coecients as branching coecients for connected reductive groups, which allows us to prove the usual general stability result (i.e. the equivalent of stable ⇔ weakly stable) and to get some new examples of stability such as the one proven by Ying. We also discuss bounds of stabilisation in Section 5.3.3, because Ying in addition computed in [START_REF] Ying | Stability of the Heisenberg Product on symmetric functions[END_REF] such a bound in the case of this analogue of Murnaghan's stability. We compute therefore a bound of stabilisation for this example too, as well as for two other examples.

Application to plethysm coecients

Denition and some known stability properties

The plethysm coecients were introduced by J. Littlewood in 1950. To dene them we still denote by S the Schur functor. For any partition λ, we also denote by n λ the dimension of the representation S λ (V ). By Weyl's Dimension Formula, if (λ) ≤ dim(V ),

n λ = 1≤i<j≤ (λ) λ i -λ j + j -i j -i
(see e.g. [START_REF] Goodman | Symmetry, representations, and invariants[END_REF]). The dicult problem of the composition of Schur functors gives rise to the following denition: Denition 5.1.1. Let λ and μ be partitions such that (λ) ≤ n μ and V a complex vector space such that n = dim V ≥ (μ). Then S λ (S μ (V )) is a representation of GL(V ) and thus splits as a direct sum of irreducible ones:

S λ (S μ (V )) = ν s.t. (ν)≤n a ν λ,μ S ν (V ).
The coecients a ν λ,μ are called the plethysm coecients.

Remark 5.1.2. There is a necessary condition (known since the work of Littlewood) on the sizes of the partitions for these coecients to be non zero: if |λ|.|μ| = |ν|, then a ν λ,μ = 0.

There exist for those coecients some stability properties similar to the ones we studied concerning Kronecker coecients. The following four are for example given in [Col17]: Proposition 5.1.3. For any partitions λ, μ, and ν, such that |λ|.|μ| = |ν|, the following four sequences of plethysm coecients are constant for n suciently large:

1. (a ν+(|μ|n) λ+(n),μ ) n , 2. (a ν+nμ λ+(n),μ ) n , 3. (a ν+ (|λ|n) λ,μ+(n) ) n , 4. (a ν+n|λ|π) λ,μ+nπ ) n for any partition π. Furthermore, the rst one has limit zero when (μ) > 1, and the second and fourth are non-decreasing.

Relation with invariant sections of line bundles

Starting from Denition 5.1.1 we get, thanks to Schur's Lemma:

a ν λ,μ = dim(S λ (S μ (V )) ⊗ (S ν V ) * ) G (denoting GL(V ) by G). Then, Borel-Weil's Theorem gives (S ν V ) * H 0 (F (V ), L ν ) and S λ (S μ (V )) H 0 (F (S μ (V )), L * λ ).
Let us keep in mind that, as a vector space, S μ (V ) is simply C nμ . So we obtain the following proposition: Proposition 5.1.4. If V is a complex vector space of dimension n and λ, μ, ν are three partitions such that (λ) ≤ n μ , (μ) ≤ n, and (ν) ≤ n, then

a ν λ,μ = dim H 0 (X μ , L λ,ν ) G ,
where

G = GL(V ), X μ = F (V ) × F (C nμ ), and L λ,ν = L ν ⊗ L * λ .
For instance, it gives interesting things for two of the sequences cited earlier:

a ν+dμ λ+(d),μ = dim H 0 (X μ , L λ,ν ⊗ L ⊗d (1),μ ) G and a ν+(d|μ|) λ+(d),μ = dim H 0 (X μ , L λ,ν ⊗ L ⊗d (1),(|μ|) ) G .
As, in these cases, the projective variety X μ does not depend on d, we can apply our techniques. For comparison, for the two other sequences cited, it would give a variety depending on d and so it would be a lot dierent.

More generally, we are going to consider sequences of general term

a ν+dγ λ+dα,μ = dim H 0 (X μ , L λ,ν ⊗ L ⊗d α,γ ) G ,
where α and γ are partitions such that |α|.|μ| = |γ|.

Application of the previous techniques

Using exactly the same method as for Kronecker coecients, we get the following result (Sam and Snowden obtained the same in [START_REF] Sam | Proof of Stembridge's conjecture on stability of Kronecker coecients[END_REF] by completely dierent methods, whereas Paradan reproved it in [START_REF] Paradan | Stability property of multiplicities of group representations[END_REF]):

Theorem 5.1.5. Let λ, μ, ν and α, γ be partitions such that |λ|.|μ| = |ν| and, for all

d ∈ N * , a dγ dα,μ = 1.
Then the sequence a ν+dγ λ+dα,μ d∈N is non-decreasing and stabilises for d large enough.

Proof. The fact that this sequence is non-decreasing is, as in the case of Kronecker coecients, quite easy: let σ 0 ∈ H 0 (X μ , L α,γ ) G \ {0} (such a section exists because a γ α,μ = 1). Then, for all d ∈ N, we have the following injection:

ι d : H 0 (X μ , L λ,ν ⊗ L ⊗d α,γ ) G -→ H 0 (X μ , L λ,ν ⊗ L ⊗(d+1) α,γ ) G σ -→ σ ⊗ σ 0 ,
and thus a ν+dγ λ+dα,μ ≤ a

ν+(d+1)γ λ+(d+1)α,μ .
For the fact that it stabilises, since it is exactly the same method as for Kronecker coecients, we are not going to write every detail. But here are the principal steps of the proof. First of all,

H 0 (X μ , L λ,ν ⊗ L ⊗d α,γ ) G H 0 (X ss μ (L λ,ν ⊗ L ⊗d α,γ ), L λ,ν ⊗ L ⊗d α,γ ) G H 0 (X ss μ (L α,γ ), L λ,ν ⊗ L ⊗d α,γ ) G for d 0 (because X ss μ (L λ,ν ⊗ L ⊗d α,γ ) ⊂ X ss μ (L α,γ ) for d 0)
. Then, since H 0 (X μ , L ⊗d α,γ ) G C for all d ∈ N * and using Luna's Slice Étale Theorem,

H 0 (X μ , L λ,ν ⊗ L ⊗d α,γ ) G H 0 (G × H S, L λ,ν ⊗ L ⊗d α,γ ) G H 0 (S, L λ,ν ⊗ L ⊗d α,γ ) H
(notations are the same as in the Kronecker coecients' case). Finally, we have also here that the line bundle L α,γ is trivial on S. Thus

H 0 (X μ , L λ,ν ⊗ L ⊗d α,γ ) G H 0 (S, L λ,ν ) H for d 0.
This theorem applies to one of the examples given above: the sequence (a ν+dμ λ+(d),μ ) d∈N . To see that, one just has to check that, for all d ∈ N * , a dμ (d),μ = 1. Let us set d ∈ N * . The coecient a dμ (d),μ is by denition the multiplicity of the irreducible representation S dμ (V ) in the decomposition of Sym d (S μ (V )) (Sym denotes the symmetric power).

First, if v ∈ S μ (V ) is of weight μ (denoted v ∈ S μ (V ) μ ), then v d ∈ Sym d (S μ (V )) is of weight dμ. So dim Sym d (S μ (V )) dμ ≥ 1.
Moreover, dim S μ (V ) μ = 1 and the set of weights in S μ (V ) is Wt(S μ (V )) = {μ} {weights < μ}. So, since a well-known (and easy to understand) fact is that the weights of Sym d (S μ (V )) are among

{χ 1 + • • • + χ d ; χ 1 , . . . , χ d ∈ Wt(S μ (V ))}, dim Sym d (S μ (V )) dμ = 1. Finally, Wt(Sym d (S μ (V ))) ⊂ {χ 1 + • • • + χ d ; χ 1 , . . . , χ d ∈ Wt(S μ (V ))} also gives us that Wt(Sym d (S μ (V ))) = {dμ} {weigths < dμ}.
Thus we have a dμ (d),μ = 1.

Another example with dierent proof

Now what about the other sequence cited as example: (a ν+(d|μ|) λ+(d),μ ) d∈N ? When (μ) = 1, it is the same as before. So assume (μ) > 1.

Let us set d ∈ N * and compute a 

(d|μ|) (d),μ . This coecient is the multiplicity of Sym d|μ| (V ) inside Sym d (S μ (V )). If Sym d|μ| (V ) appears in Sym d (S μ (V )), then there exist vectors of weight (d|μ|) in Sym d (S μ (V )). But we already explained what weights of Sym d (S μ (V )) look like. So, if Sym d|μ| (V ) appears in Sym d (S μ (V )), then (d|μ|) = χ 1 + • • • + χ d with χ 1 , . . . , χ d ∈ Wt(S μ (V )). Then, for all i ∈ 1, d , χ i = (|μ|). But (|μ|) is not a weight of S μ (V ) (because (μ) >
λ+(d),μ = dim H 0 (X ss μ (L λ,ν ⊗ L ⊗d α,γ ), L λ,ν ⊗ L ⊗d α,γ ) G = 0.
We recover the result from Proposition 5.1.3.

Application for the hyperoctahedral group

Notations and coecients studied

For n ≥ 2, we consider the group W n = (Z/2Z) n S n , which is the Weyl group in type B n (if we see the root system of type B n in R n with basis (ε 1 , . . . , ε n ), S n acts by permuting the ε i , whereas 1 i = (0, . . . , 0, 1, 0, . . . , 0) ∈ (Z/2Z) n acts just by

ε i → -ε i ).
It is called the hyperoctahedral group, and it is known (cf. [START_REF] Jennifer | FI-modules and stability criteria for representations of classical Weyl groups[END_REF] or [START_REF] Geck | Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras[END_REF]) that its rational irreducible complex representations can be built up from the ones of S n and are classied by double partitions of n. These are ordered pairs of partitions (α

+ , α -) such that |α + | + |α -| = n.
When (α + , α -) is a double partition, we choose to denote by M α ± the associated irreducible representation of W |α ± | (where |α ± | stands for |α + |+|α -|). Given two double partitions (α + , α -) and (β + , β -) of the same integer, consider the non-negative integers

n γ ± α ± ,β ± such that M α ± ⊗ M β ± = (γ + ,γ -) M ⊕n γ ± α ± ,β ± γ ±
, where the direct sum runs over all double partitions of |α ± |.

Schur-Weyl duality in that case

Let V + and V -be two complex vector spaces and set V = V + ⊕ V -. Then the groups GL(V ± ) = GL(V + ) × GL(V -) and W n act on V ⊗n . (For W n , S n acts simply by permuting the factors in V ⊗n , and 1 i ∈ (Z/2Z) n acts by multiplying by -1 the i-th factor in V ⊗n .) Furthermore, these two actions commute and thus GL(V ± ) × W n acts on V ⊗n .

Proposition 5.2.1. As a representation of GL(V ± ) × W n , V ⊗n decomposes as a direct sum of irreducible representations in the following way:

V ⊗n = (α + ,α -) V α ± (GL(V ± )) ⊗ M α ± ,
where the direct sum runs over all double partitions of n such that (α + ) ≤ dim(V + ) and (α -) ≤ dim(V -). Moreover, V α ± (GL(V ± )) denotes the irreducible representation

S α + (V + ) ⊗ S α -(V -) of GL(V ± ).
Proof. This result comes from [START_REF] Sakamoto | Schur-Weyl reciprocity for Ariki-Koike Algebras[END_REF].

We now consider complex vector spaces

V 1 = V + 1 ⊕ V - 1 and V 2 = V + 2 ⊕ V - 2 and we set GL(V ± 1 ) = GL(V + 1 ) × GL(V - 1 ), GL(V ± 2 ) = GL(V + 2 ) × GL(V - 2 ).
Then, on the one hand,

V ⊗n 1 ⊗ V ⊗n 2 = ⎛ ⎝ (α + ,α -) V α ± (GL(V ± 1 )) ⊗ M α ± ⎞ ⎠ ⊗ ⎛ ⎝ (β + ,β -) V β ± (GL(V ± 2 )) ⊗ M β ± ⎞ ⎠ = α ± ,β ± ,γ ± S α + (V + 1 ) ⊗ S α -(V - 1 ) ⊗ S β + (V + 2 ) ⊗ S β -(V - 2 ) ⊗ M γ ± ⊕n γ ± α ± ,β ± ,

Stability results and analogue of Murnaghan's stability

General result and examples

According to the previous section, we nd ourselves in the same situation as for Kronecker coecients. As a consequence, the same demonstration as in Section 4.2 can be applied here.

Theorem 5.2.4. If α ± = (α + , α -), β ± = (β + , β -), and γ ± = (γ + , γ -) are three double partitions such that

∀d ∈ N * , n dγ ± dα ± ,dβ ± = 1,
then the triple they form is stable in the sense that, for every double partition λ ± = (λ + , λ -), μ ± = (μ + , μ -), and ν ± = (ν + , ν -), the sequence

n ν ± +dγ ± λ ± +dα ± ,μ ± +dβ ± d∈N stabilises for d large enough.
Example 1: There is in this situation an analogue of Murnaghan's stability. It has already been observed and proven in [START_REF] Jennifer | FI-modules and stability criteria for representations of classical Weyl groups[END_REF], and we retrieve it here: according for instance to Proposition 5.2.3, we notice that n

(1),∅

(1),∅ , (1),∅

= g (1),( 1),(

(∅ here stands for the empty partition, of size and length zero). Then we can apply the previous theorem to conclude that, for all double partitions (λ + , λ -), (μ + , μ -), and (ν + , ν -) of the same integer, if we increase repetitively by one the rst part of the partitions λ + , μ + , and ν + , the associated sequence of coecients c eventually stabilises.

Example 2: Let us consider the following triple of double partitions:

(2), (2) , (2), (2) , (2), (2) Lemma 5.2.5. For all d ∈ N * , n d (2),( 2)

d (2),(2) ,d (2),(2) = 1.
Proof. Let us set d ∈ N * . We proved that the coecient n d (2),( 2)

d (2),(2) ,d (2),( 2 
)
is the multi-

plicity of Sym 2d (V + 1 ) ⊗ Sym 2d (V + 2 ) ⊗ Sym 2d (V - 1 ) ⊗ Sym 2d (V - 2 ) in Sym 2d (V + 1 ⊗ V + 2 ⊕ V - 1 ⊗ V - 2 ) ⊗ Sym 2d (V + 1 ⊗ V - 2 ⊕ V - 1 ⊗ V + 2 ) (if V + 1 , V - 1 , V + 2
, and V - 2 are large enough vector spaces). But we have (cf. for example [START_REF] Fulton | Representation theory. A rst course[END_REF], Exercise 6.11)

Sym 2d (V + 1 ⊗ V + 2 ⊕ V - 1 ⊗ V - 2 ) = m+n=d Sym m (V + 1 ⊗ V + 2 ) ⊗ Sym n (V - 1 ⊗ V - 2 ) = m+n=d, λ + m, λ -n S λ + (V + 1 ) ⊗ S λ + (V + 2 ) ⊗S λ -(V - 1 ) ⊗ S λ -(V - 2 ).
And the same kind of formula exists for

Sym 2d (V + 1 ⊗ V - 2 ⊕ V - 1 ⊗ V + 2 ). Hence, Sym 2d (V + 1 ⊗ V + 2 ⊕ V - 1 ⊗ V - 2 ) ⊗ Sym 2d (V + 1 ⊗ V - 2 ⊕ V - 1 ⊗ V + 2 ) = (λ + ,λ -),(μ + ,μ -) s.t. |λ ± |=|μ ± |=2d S λ + (V + 1 ) ⊗ S μ + (V + 1 ) ⊗ S λ + (V + 2 ) ⊗ S μ -(V + 2 ) ⊗S λ -(V - 1 ) ⊗ S μ -(V - 1 ) ⊗ S λ -(V - 2 ) ⊗ S μ + (V - 2 ) = λ + ,λ -,μ + ,μ -,ν 1 ,ν 2 ,ν 3 ,ν 4 S ν 1 (V + 1 ) ⊗ S ν 2 (V + 2 ) ⊗ S ν 3 (V - 1 ) ⊗ S ν 4 (V - 2 ) ⊕m ν 1 ,ν 2 ,ν 3 ,ν 4 λ ± ,μ ±
, where this last sum runs over partitions verifying

|λ ± | = |μ ± | = 2d, and 
m ν 1 ,ν 2 ,ν 3 ,ν 4 λ ± ,μ ± = c ν 1 λ + ,μ + c ν 2 λ + ,μ -c ν 3 λ -,μ -c ν 4 λ -,μ +
is a product of four Littlewood-Richardson coecients. Henceforth, the multiplicity of

Sym 2d (V + 1 ) ⊗ Sym 2d (V + 2 ) ⊗ Sym 2d (V - 1 ) ⊗ Sym 2d (V - 2 ) is λ + ,λ -,μ + ,μ - c (2d) λ + ,μ + c (2d) λ + ,μ -c (2d) λ -,μ -c (2d) λ -,μ + ,
where we take the sum over partitions such that |λ

+ |+|λ -| = |μ + |+|μ -| = |λ + |+|μ + | = |λ + | + |μ -| = |λ -| + |μ -| = |λ -| + |μ + | = 2d, i.e. |λ + | = |λ -| = |μ + | = |μ -| = d. Then n d (2),(2) d (2),(2) ,d (2),(2) = λ + ,λ -,μ + ,μ -d c (2d) λ + ,μ + c (2d) λ + ,μ -c (2d) λ -,μ -c (2d) λ -,μ + .
Finally, the Littlewood-Richardson rule shows that c

(2d) λ,μ = 0 unless λ = μ = (d).
And in that last case, the coecient is 1. This concludes the proof of the lemma. Proposition 5.2.6. For every triple (λ + , λ -), (μ + , μ -), (ν + , ν -) of double partitions, the sequence

n ν ± +d (2),(2) λ ± +d (2),(2) ,μ ± +d (2),(2) d∈N stabilises for d large enough.
Proof. This is a direct consequence of the previous lemma and of Theorem 5.2.4.

An example of an explicit bound

We can also here compute in some special and not too dicult cases a bound for the stabilisation of the sequence of coecients. We do this in the case analogous to Murnaghan's stability (Example 1). As before we set L = L ((1),∅),((1),∅),((1),∅) and M = L λ ± ,μ ± ,ν ± . If we consider the usual projection (cf. Section 4.3.1)

X X L L π :
such that L is the pull-back of an ample line bundle L, we notice that X and L are exactly the same as in Section 4.3.2. Then we know that it is sucient to determine when π -1 (x) ⊂ X us (M ⊗ L ⊗d ) (same notation as in 4.3.2 for x). As a consequence, if we consider for instance the one-parameter subgroup τ 0 = 1, -1, 0, . . . , 0 0, . . . , 0 -1, 1, 0, . . . , 0 0, . . . , 0

of G, we have as before μ L (x, τ 0 ) = 2. And

max x∈π -1 (x) (-μ M (x, τ 0 )) = -λ + 1 + λ + 2 -μ + 1 + μ + 2 + 2 ν + 2 -ν + (λ + ) (μ + )+ (λ -) (μ -) + (λ + )+ (μ + )-4 k=1 ν + k+2 -ν + (λ + ) (μ + )+ (λ -) (μ -)-k + (λ -)+ (μ -) k=1 ν - k -ν - (λ + ) (μ -)+ (λ -) (μ + )-k+1 .
Theorem 5.2.7. Let (λ + , λ -), (μ + , μ -), and (ν + , ν -) be double partitions of the same integer. We set m = (λ + ) (μ + ) + (λ -) (μ -), n = (λ + ) (μ -) + (λ -) (μ + ), and

D = ⎡ ⎢ ⎢ ⎢ 1 2 ⎛ ⎝ -λ + 1 + λ + 2 -μ + 1 + μ + 2 + 2 ν + 2 -ν + m + (λ + )+ (μ + )-4 k=1 ν + k+2 -ν + m-k + (λ -)+ (μ -) k=1 ν - k -ν - n-k+1 ⎞ ⎠ ⎤ ⎥ ⎥ ⎥ . Then, for all d ≥ D (d ∈ N), n (ν + +(d),ν -) (λ + +(d),λ -),(μ + +(d),μ -) = n (ν + +(D),ν -) (λ + +(D),λ -),(μ + +(D),μ -) .

5.3

The Heisenberg product and the Aguiar coecients

Denition and rst properties

Construction

The Heisenberg product was rst dened by Marcelo Aguiar, Walter Ferrer Santos, and Walter Moreira in [START_REF] Aguiar | The Heisenberg Product: from Hopf algebras and species to symmetric functions[END_REF]. They dened it in dierent contexts, but we will only be interested in one of them, related to what we have done before: the representations of the symmetric group. In this context, this product extends in particular what is sometimes called the Kronecker product (meaning the tensor product of S k -modules).

Remark 5.3.1. Let us recall that, for all nonnegative integers a and b, S a × S b can naturally be seen as a subgroup of S a+b . We denote the corresponding injective group morphism by ι a,b : S a × S b → S a+b . On a dierent side, for any nonnegative integer a, S a can be considered as a subgroup of S a × S a through the diagonal embedding Δ a : S a → S a × S a .

Consider from now on two symmetric groups: S k and S l . Here is the denition of the Heisenberg product: Denition 5.3.2. Let V and W be two (complex) representations of S k and S l respec- tively. Let i ∈ max(k, l), k + l . One has the following inclusions:

S i-l × S k+l-i × S i-k S i S i-l × S k+l-i × S k+l-i × S i-k S k × S l Id S i-l ×Δ k+l-i ×Id S i-k ι i-l,l • Id S i-l ×ι k+l-i,i-k ι i-l,k+l-i ×ι k+l-i,i-k
We then set

(V W ) i = Ind S i S i-l ×S k+l-i ×S i-k Res S k ×S l S i-l ×S k+l-i ×S i-k (V ⊗ W ) (which is an S i -module)
, and the Heisenberg product of V and W is

V W = k+l i=max(k,l) (V W ) i .
A remarkable result proven in [START_REF] Aguiar | The Heisenberg Product: from Hopf algebras and species to symmetric functions[END_REF] is that this product is associative. Denition 5.3.3. Let λ k and μ l. The Heisenberg product between the associated irreducible representations of the symmetric group decomposes as:

M λ M μ = k+l i=max(k,l) ν i M ⊕a ν λ,μ ν .
The coecients a ν λ,μ are called the Aguiar coecients. We will adopt the convention that, if the weights of the partitions λ, μ, and ν are not compatible to dene an Aguiar coecient (i.e. |ν| / ∈ max(|λ|, |μ|), |λ| + |μ| ), then a ν λ,μ = 0.

Remark 5.3.4. As written earlier, the Heisenberg product extends the Kronecker one:

when k = l, the lower term (V W ) k of V W is just Res S k ×S k S k (V ⊗W ).
As a consequence, when the three partitions λ, μ, and ν have the same size, the Aguiar coecient a ν λ,μ coincides with the Kronecker coecient g λ,μ,ν .

First stability results by Li Ying

In this paragraph we recall some results from [START_REF] Ying | Stability of the Heisenberg Product on symmetric functions[END_REF]. If λ is a partition and n a positive integer, λ[n] is the sequence (n-|λ|, λ 1 , λ 2 , . . . , λ (λ) ). The main result of [START_REF] Ying | Stability of the Heisenberg Product on symmetric functions[END_REF] is then: Theorem 5.3.5. Let λ and μ be two partitions, and d and h be two nonnegative integers.

Then the decomposition of the S n+h -module

(M λ[n] M μ[n-d] ) n+h stabilises when n ≥ |λ| + |μ| + λ 1 + μ 1 + 3h + 2d.
Moreover, the stabilisation begins exactly at this particular integer.

The rst part of the theorem can be expressed in terms of Aguiar coecients as follows:

Proposition 5.3.6. For all partitions λ and μ, nonnegative integers d and h, integer n such that n ≥ |λ| + |μ| + λ 1 + μ 1 + 3h + 2d, and ν n + h,

a ν λ[n],μ[n-d] = a ν+(1) λ[n+1],μ[n-d+1] .
The proof of the previous proposition is strongly based on a remarkable expression of the Aguiar coecients in terms of Littlewood-Richardson and Kronecker coecients: Proposition 5.3.7. For all partitions λ, μ, and ν,

a ν λ,μ = α,β,δ,η,ρ,τ c λ α,β c μ η,ρ g β,η,δ c τ α,δ c ν τ,ρ .
Li Ying deduces also from Proposition 5.3.6 a bound for the stabilisation of a sequence of Aguiar coecients once λ, μ, and ν are xed: Corollary 5.3.8. For all partitions λ, μ, and ν, and nonnegative integers d and h, the sequence of general term a ν [n+h] λ

[n],μ[n-d] stabilises when n ≥ 1 2 (|λ| + |μ| + |ν| + λ 1 + μ 1 + ν 1 - 1) + h + d.

Stability results by the previous methods

The Aguiar coecients as branching coecients

In order to use on the Aguiar coecients the same methods that we used on Kronecker coecients, we express these as branching coecients for connected complex reductive groups.

Theorem 5.3.9. The Aguiar coecients are the branching coecients for the groups

GL(V 1 ) × GL(V 2 ) → GL V 1 ⊕ (V 1 ⊗ V 2 ) ⊕ V 2 .
More precisely, if λ, μ, and ν are three partitions then, for all (complex) nite dimensional vector spaces

V 1 and V 2 such that (λ) ≤ dim(V 1 ), (μ) ≤ dim(V 2 ), and (ν) ≤ dim V 1 ⊕ (V 1 ⊗ V 2 ) ⊕ V 2 , S ν V 1 ⊕ (V 1 ⊗ V 2 ) ⊕ V 2 = λ,μ S λ V 1 ⊗ S μ V 2 ⊕a ν λ,μ (as representations of GL(V 1 ) × GL(V 2 )).
Proof. Let λ, μ, ν, V 1 , and V 2 be as above. Then, using well-known properties of the Littlewood-Richardson and the Kronecker coecients (recalled for instance in Part 1 of [SS12]: (3.11.1), (3.12.1), and (3.9.1)):

S ν (V 1 ⊕ V 1 ⊗ V 2 ⊕ V 2 ) = τ,ρ c ν τ,ρ S τ (V 1 ⊕ V 1 ⊗ V 2 ) ⊗ S ρ V 2 = τ,ρ,α,δ c ν τ,ρ c τ α,δ S α V 1 ⊗ S δ (V 1 ⊗ V 2 ) ⊗ S ρ V 2 = τ,ρ,α,δ,β,η c ν τ,ρ c τ α,δ g β,η,δ S α V 1 ⊗ S β V 1 ⊗ S η V 2 ⊗ S ρ V 2 = τ,ρ,α,δ,β,η,λ c ν τ,ρ c τ α,δ g β,η,δ c λ α,β S λ V 1 ⊗ S η V 2 ⊗ S ρ V 2 = τ,ρ,α,δ,β,η,λ,μ c ν τ,ρ c τ α,δ g β,η,δ c λ α,β c μ η,ρ S λ V 1 ⊗ S μ V 2 = λ,μ a ν λ,μ S λ V 1 ⊗ S μ V 2 ,
using Proposition 5.3.7.

Corollary 5.3.10. Let λ, μ, ν be three partitions. Taking V 1 and V 2 as in the previous theorem, we set:

G = GL(V 1 ) × GL(V 2 ), X = F (V 1 ) × F (V 2 ) × F V 1 ⊕ (V 1 ⊗ V 2 ) ⊕ V 2 ,
and

L = L λ ⊗ L μ ⊗ L * ν (G-linearised line bundle on X). Then a ν λ,μ = dim H 0 (X, L) G .
Proof. It works exactly as in the case of Kronecker coecients (i.e. one uses Schur Lemma and Borel-Weil Theorem).

Consequences and new examples of stable triples

Since the Aguiar coecients can be expressed as dim H 0 (X, L) G , for well-chosen G, X, and L (cf previous paragraph), the same techniques as for Kronecker coecients apply. This allows to obtain the following:

Theorem 5.3.11. Let α, β, and γ be three partitions such that, for all d ∈ N * , a dγ dα,dβ = 1. Then, for all triple (λ, μ; ν) of partitions, the sequence (a ν+dγ λ+dα,μ+dβ ) d∈N stabilises.

Denition 5.3.12. A triple (α, β; γ) of partitions such that a γ α,β = 0 and that, for all triple (λ, μ; ν) of partitions, (a ν+dγ λ+dα,μ+dβ ) d∈N stabilises is said to be Aguiar-stable.

With Theorem 5.3.11 we re-obtain immediately Li Ying's result on the stabilisation of the Aguiar coecients (minus the bound of stabilisation), which can be reformulated as follows:

Corollary 5.3.13. The triple (1), (1); (1) is Aguiar-stable.

Proof. For all d ∈ N * , according to Remark 5.3.4, a (d)

(d),(d) = g (d),(d),(d) = 1.
Remark 5.3.14. On a more general note, the same reasoning shows that every stable triple (i.e. in the sense of Kronecker coecients) is Aguiar-stable. For results producing stable triples, see [START_REF] Stembridge | Generalized Stability of Kronecker Coecients[END_REF], [START_REF] Manivel | On the asymptotics of Kronecker coecients[END_REF], [START_REF] Vallejo | Stability of Kronecker coecients via discrete tomography[END_REF], and Chapter 6.

We can also give some other explicit examples of small Aguiar-stable triples: Proposition 5.3.15. The triples 

d(2) d(2),d(1) = α,ρ,τ,β,η,δ c (2d) α,β c (d) η,ρ g β,η,δ c τ α,δ c (2d) τ,ρ .
But the Littlewood-Richardson rule shows that the coecient c

(2d)
α,β is zero unless α and β have only one part, and |α| + |β| = 2d (and then this coecient is 1). As a consequence,

a d(2) d(2),d(1) = ρ,τ,η,δ, n∈ 0,2d c (d) η,ρ g (n),η,δ c τ (2d-n),δ c (2d) τ,ρ .
The same is true for the coecient c

(d)
η,ρ and the partitions η and ρ. So

a d(2) d(2),d(1) = τ,δ, n∈ 0,2d m∈ 0,d g (n),(d-m),δ c τ (2d-n),δ c (2d) τ,(m) .
And then the Kronecker coecient

g (n),(d-m),δ is zero unless n = d -m. Moreover, if this is veried, g (n),(n),δ is zero unless δ = (n) (and then this coecient is 1). Hence a d(2) d(2),d(1) = τ, n∈ 0,d c τ (2d-n),(n) c (2d) τ,(d-n) .
The coecient c τ (2d-n),(n) is then zero unless |τ | = 2d. Furthermore, the other coecient c

(2d) τ,(d-n) is zero unless |τ | = 2d -d + n = d + n. So a d(2) d(2),d(1) = τ 2d c τ (2d-d),(d) c (2d) τ,(d-d) = τ 2d c τ (d),(d) c (2d) τ,(0) .
Finally this product is zero unless τ = (2d) (by the Littlewood-Richardson rule, for instance). Thus a

d(2) d(2),d(1) = c (2d) (d), (d) c (2d) 
(2d),(0) = 1, and (2), (1); (2) is Aguiar-stable by Theorem 5.3.11.

Some explicit bounds of stabilisation

The same method as for Kronecker coecients can be used to get explicit bounds of stabilisation. Let us x from now on an Aguiar-stable triple (α, β; γ) and a triple (λ, μ; ν) of partitions. We also consider vector spaces V 1 and V 2 as before (of dimension at least 2), and denote

V = V 1 ⊕ V 2 ⊕ V 1 ⊗ V 2 , such that a γ α,β (= 1) = dim H 0 (X, L) G and a ν λ,μ = dim H 0 (X, M) G , with G = GL(V 1 ) × GL(V 2 ), X = F (V 1 ) × F (V 2 ) × F (V ), L = L α ⊗ L β ⊗ L * γ , and M = L λ ⊗ Lμ ⊗ L ν . We x nally a basis (e 1 , . . . , e n 1 ) of V 1 and a basis (f 1 , . . . , f n 2 ) of V 2 .
For the three examples of Aguiar-stable triples that we are going to study in this section (namely (1), (1); (1) , (2), (1); (2) , and (2), (1); (3) ), we must begin by considering the projection:

π : X -→ X = P(V 1 ) × P(V 2 ) × P(V * ) (W 1,i ) i , (W 2,i ) i , (W i ) i -→ W 1,1 , W 2,1 , {ϕ ∈ V * s.t. ker ϕ = W n 1 n 2 +n 1 +n 2 -1 } .
We also denote by L the ample line bundle on X whose pull-back by π is L.

Proposition 5.3.16. The G-orbit O 0 of x 0 = Ce 1 , Cf 1 , C(e * 1 +e * n 1 +f * 1 +f * n 2 +ϕ n ) ∈ X (where n = min(n 1 , n 2 ) and ϕ n = n i=1 e * i ⊗ f * i ) is open in X.
Moreover, if we denote respectively by O 1 , O 2 , and O 3 the G-orbits of

x 1 = Ce 1 , Cf 2 , C(e * 1 + e * n 1 + f * 2 + f * n 2 + ϕ n ) , x 2 = Ce 1 , Cf 1 , C(e * n 1 + f * 1 + f * n 2 + ϕ n ) ,
and

x 3 = Ce 1 , Cf 1 , C(e * 1 + e * n 1 + f * n 2 + ϕ n ) in X, then O 1 ∪ O 2 ∪ O 3 = { Cv 1 , Cv 2 , C( ϕ 1 ∈V * 1 + ϕ 2 ∈V * 2 + ϕ ∈(V 1 ⊗V 2 ) * ) ∈ X s.t. ϕ 1 (v 1 )ϕ 2 (v 2 ) ϕ(v 1 ⊗ v 2 ) = 0}.
In addition, among {O 1 , O 2 , O 3 }, no orbit is contained in the closure of another one.

Proof. We consider an element Cv 1 , Cv 2 , C( ϕ 1

∈V * 1 + ϕ 2 ∈V * 2 + ϕ ∈(V 1 ⊗V 2 ) * ) ∈ X.
Similarly to what we did in the case of Kronecker coecients (see the proof of Proposition 4.3.3), we are only interested in the orbits which will contain all others in their closures. Then, considering the usual isomorphism

(V 1 ⊗ V 2 ) * Hom(V 1 , V *
2 ), we say that ϕ corresponds to a linear map ϕ : V 1 → V * 2 , on which G acts by conjugation. As a consequence we only need to consider the case when ϕ is of maximal rank (n, that is), since all the orbits with ϕ of lower rank will be contained in the closure of such an orbit.

Thus we rather consider an element

x = Cv 1 , Cv 2 , C( ϕ 1 ∈V * 1 + ϕ 2 ∈V * 2 + ϕ n ) ∈ X, with ϕ n = n i=1 e * i ⊗ f * i ∈ V * 1 ⊗ V * 2 , corresponding to a linear map ϕ n : V 1 → V * 2 .
Then the linear maps ϕ 1 , ϕ 2 , ϕ n , ϕ n , together with the vectors v 1 and v 2 , give some vector subspaces of V 1 , V 2 , and V 1 ⊗ V 2 , whose relative positions will give us descriptions of the orbits we are interested in:

in V 1 : Cv 1 , ker ϕ n ⊂ (ϕ n ) -1 (Cv 2 ) ⊥ , and ker ϕ 1 ; in V 2 : Cv 2 , ker t ϕ n ⊂ ( t ϕ n ) -1 (Cv 1 ) ⊥ , and ker ϕ 2 ; in V 1 ⊗ V 2 : Cv 1 ⊗ v 2 and ker ϕ n .
Then we see that there is an open orbit, O 0 , characterised by:

ϕ 1 (v 1 ) = 0, ϕ n (v 1 ) = 0, ker ϕ n ⊂ ker ϕ 1 (or rather, if n = n 1 , (ϕ n ) -1 (Cv 2 ) ⊥ ⊂ ker ϕ 1 ), ker ϕ 1 ⊂ (ϕ n ) -1 (Cv 2 ) ⊥ , ϕ 2 (v 2 ) = 0, t ϕ n (v 2 ) = 0, ker t ϕ n ⊂ ker ϕ 2 (or rather, if n = n 2 , ( t ϕ n ) -1 (Cv 1 ) ⊥ ⊂ ker ϕ 2 ), ker ϕ 2 ⊂ ( t ϕ n ) -1 (Cv 1 ) ⊥ , ϕ n (v 1 ⊗ v 2 ) = 0.
And the point x 0 given above veries all these conditions. andO 3 , characterised by the same equations as O 0 except for:

Finally the subset { Cv 1 , Cv 2 , C(ϕ 1 + ϕ 2 + ϕ) ∈ X s.t. ϕ 1 (v 1 )ϕ 2 (v 2 )ϕ(v 1 ⊗ v 2 ) = 0} can be written as O 1 ∪ O 2 ∪ O 3 for three orbits O 1 , O 2 ,
ϕ n (v 1 ⊗ v 2 ) = 0 for O 1 , ϕ 1 (v 1 ) = 0 for O 2 , ϕ 2 (v 2 ) = 0 for O 3 .
Then it is easy to check that x 1 ∈ O 1 , x 2 ∈ O 2 , and x 3 ∈ O 3 .

Murnaghan case and comparison with the results by Li Ying

In the case when (α, β; γ) = (1), ( 1

); (1) , L = O(1) ⊗ O(1) ⊗ O(1). Moreover, since dim H 0 (X, L) G = 1 and since Cv 1 , Cv 2 , C(ϕ 1 + ϕ 2 + ϕ) ∈ X → ϕ(v 1 ⊗ v 2 ) gives a non-zero G-invariant section of L over X, X us (L) = { Cv 1 , Cv 2 , C(ϕ 1 + ϕ 2 + ϕ) ∈ X s.t. ϕ(v 1 ⊗ v 2 ) = 0}.
Thus, according to Proposition 5.3.16 (and its proof ),

X us (L) = O 1 .
Then the one-parameter subgroup τ 1 = 1, 0, . . . , 0 0, 1, 0, . . . , 0 is destabilising for

x 1 : μ L (x 1 , τ 1 ) = 1.
Moreover a calculation similar to what we did (several times) for Kronecker coecients yields:

max x∈π -1 (x 1 ) -μ M (x, τ 1 ) = -λ 1 -μ 1 + ν 1 + 2ν 2 + n 1 +n 2 -1 k=1 ν k+2 .
As usual, it follows that: Theorem 5.3.17. The sequence of general term a ν+ (d) 

λ+(d),μ+(d) is constant when d ≥ -λ 1 - μ 1 + ν 1 + 2ν 2 + n 1 +n 2 -1 k=1 ν k+2 .
Retrieving Li Ying's bound with our method: This is possible by choosing a dierent one-parameter subgroup destabilising x 1 . First we express this bound in our settings: if we rewrite the sequence a

ν[n+h] λ[n],μ[n-m] n (settings from [Yin17]) as a γ+(d) α+(d),β+(d) d , then n ≥ |λ| + |μ| + |ν| + λ 1 + μ 1 + ν 1 -1 2 + h + m ⇐⇒ d ≥ -|α| -α 1 + α 2 -|β| -β 1 + β 2 + 3|γ| -γ 1 + γ 2 -1 2 .
As a consequence, if we consider the one-parameter subgroup

τ 1 = 2, 0, 1, . . . , 1 0, 2, 1, . . . , 1 , it destabilises x 1 : μ L (x 1 , τ 1 ) = 2. Moreover, max x∈π -1 (x 1 ) -μ M (x, τ 1 ) = -2λ 1 -λ 3 -• • • -λ n 1 -2μ 1 -μ 3 -• • • -μ n 2 + 2ν 1 + 4ν 2 +3(ν 3 + • • • + ν n 1 +n 2 -2 ) + 2(ν n 1 +n 2 -1 + • • • + ν n 1 n 2 -n 1 -n 2 +5 ) +ν n 1 n 2 -n 1 -n 2 +6 + • • • + ν n 1 n 2 +n 1 +n 2 -3 ,
which gives even a slight improvement of Li Ying's bound for long partitions ν (i.e. of length > n 1 + n 2 -2), according to the previous expression of this bound.

Proposition 6.1.4. The set of stable triples in Kron n 1 ,n 2 is the intersection of Kron n 1 ,n 2 with a union of faces of the Kronecker cone PKron n 1 ,n 2 .

As a consequence we want to nd ways to produce such faces of PKron n 1 ,n 2 , which contain only stable triples. There already exists one result in this direction, proven independently by L. Manivel (in [START_REF] Manivel | On the asymptotics of Kronecker coecients[END_REF]) and E. Vallejo (in [START_REF] Vallejo | Stability of Kronecker coecients via discrete tomography[END_REF]), expressed in terms of additive matrices: a matrix A = (a i,j ) i,j ∈ M n 1 ,n 2 (R) having entries which are non-negative integers is said to be additive if there exist integers

x 1 > • • • > x n 1 and y 1 > • • • > y n 2 such that, for all (i, j), (k, l) ∈ 1, n 1 × 1, n 2 , a i,j > a k,l =⇒ x i + y j > x k + y l .
The result of Manivel and Vallejo is then that any such additive matrix gives an explicit face of PKron n 1 ,n 2 which contains only stable triples. This face is moreover regular, which means that it contains some triple (α, β, γ) of regular partitions (i.e. α, β, and γ have respectively n 1 , n 2 , and n 1 n 2 pairwise distinct parts, with the last one being possibly 0), and it has the minimal dimension possible for a regular face: n 1 n 2 .

In this chapter we obtain results producing, from an additive matrix, more faces of this kind. Actually, rather than looking precisely at an additive matrix, we look instead at what we call the order matrix, which sort of encodes the type of the additive matrix: considering an additive matrix A = (a i,j ) i,j whose coecients are pairwise distinct1 , instead of the coecients of A we write their rank in the decreasingly-ordered sequence of the a i,j 's. Then our rst result (see Section 6.3.4) is: Theorem 6.1.5. Any conguration of the following type in the order matrix:

k k + 1 row i j j + 1
gives an explicit regular face of the Kronecker cone PKron n 1 ,n 2 , of dimension n 1 n 2 , containing only stable triples. The same result is true for each conguration of the type Obtaining these results is based on the notions of dominant and well-covering pairs, coming from the work of N. Ressayre and that we present in Section 6.2, as well as the usual interpretation that we use for the Kronecker coecients in terms of sections of line bundles on ag varieties (see Proposition 3.1.5). At the end of this chapter (in Section 6.4), we apply our results as well as Manivel and Vallejo's to all possible order matrices of small size (namely 2×2, 3×2, and 3×3) in order to have a look at the number of new interesting faces of PKron n 1 ,n 2 that we can produce.

6.2 Denitions and a few general results

Denitions in the general context

For now G is a connected complex reductive group acting on a smooth projective variety X. Let us consider a maximal torus T in G, τ a one-parameter subgroup of T (denoted by τ ∈ X * (T )), and C an irreducible component of X τ , the set of points in X xed by τ . We denote by G τ the centraliser of τ (i.e. of Im τ ) in G and set

P (τ ) = {g ∈ G s.t. lim t→0 τ (t)gτ (t -1 ) exists}.
Notice that P (τ ) is a parabolic subgroup of G and that G τ is the Levi subgroup of P (τ ) containing T . Consider then

C + = {x ∈ X s.t. lim t→0 τ (t).x ∈ C},
which is a P (τ )-stable locally closed subvariety. For any x ∈ C, we dene the following subspaces of T x X, the Zariski tangent space of X at x:

T x X >0 = {ξ ∈ T x X s.t. lim t→0 τ (t).ξ = 0}, T x X <0 = {ξ ∈ T x X s.t. lim t→0 τ (t -1 ).ξ = 0}, T x X 0 = (T x X) τ , T x X ≥0 = T x X >0 ⊕ T x X 0 , T x X ≤0 = T x X <0 ⊕ T x X 0 .
Theorem 6.2.1 (Biaªynicki-Birula).

(i) C is smooth and, for any x ∈ C, T x C = T x X 0 .

(ii) C + is smooth and irreducible and, for any x ∈ C, T x C + = T x X ≥0 .

We can now consider η :

G × P (τ ) C + -→ X [g : x] -→ g.x .
The following denition comes from [START_REF] Ressayre | Geometric Invariant Theory and the Generalized Eigenvalue Problem[END_REF].

Denition 6.2.2. The pair (C, τ ) is said to be dominant if η is, and covering if η is birational. It is said to be well-covering when η induces an isomorphism onto an open subset of X intersecting C.

In the context of Kronecker coecients

We consider from now on V 1 and V 2 two complex vector spaces of dimension respectively n 1 and n 2 . We then set 

G 1 = GL(V 1 ), G 2 = GL(V 2 ), G = G 1 × G 2 , Ĝ = GL(V 1 ⊗ V 2 ). We also choose T 1 , T 2 , T = T 1 × T 2 ,
g α,β,γ = dim H 0 (G/B × Ĝ/ B, L α,β,γ ) G .
We consider in addition parabolic subgroups P of G and P of Ĝ containing the Borel subgroups. All corresponding Lie algebras will be denoted with lower case gothic letters.

We consider X = G/P × Ĝ/ P , on which G acts diagonally. We nally denote by W and Ŵ the Weyl groups associated to G and Ĝ respectively, and by W P (resp. Ŵ P ) the Weyl group of the Levi subgroup of P (resp. P ) containing T (resp. T ). The latter is canonically a subgroup of W (resp. Ŵ ).

We also give notations concerning the root systems: let us denote by Φ (resp. Φ) the set of roots of G (resp. Ĝ), with Φ + and Φ -(resp. Φ+ and Φ-) the subsets of positive and negative ones with respect to the choice of B (resp. B). Finally, the set of roots of p is denoted by Φp .

Let us consider τ ∈ X * (T ). It is known that the irreducible components of X τ are the G τ v -1 P/P × Ĝτ v-1 P / P , for v ∈ W P \W/W P (τ ) and v ∈ Ŵ P \ Ŵ / Ŵ P (τ ) . We then x two such v and v, and denote by C the corresponding irreducible component of X τ . Therefore, if (α, β, γ) is a triple of partitions such that L α,β,γ descends to a line bundle on X that we will also denote by L α,β,γ then, for any x ∈ C, C * acts via τ on the bre (L α,β,γ ) x over x. This action is given by an integer n which, since C is an irreducible component, does not depend on x ∈ C. We then set μ L α,β,γ (C, τ ) = -n. Lemma 6.2.3. For any dominant pair (C, τ ) we consider the set of all triples (α, β, γ) ∈ PKron n 1 ,n 2 such that μ L α,β,γ (C, τ ) = 0. Then it is a face of PKron n 1 ,n 2 (possibly reduced to zero). Moreover it can also be described as:

{(α, β, γ) s.t. X ss (L α,β,γ ) ∩ C = ∅}.
We denote this face by F(C).

Note that this result is actually valid in the general context of Section 6.2.1, where X is any smooth projective variety and G is a connected complex reductive group acting on X. The equivalent of PKron n 1 ,n 2 is then the cone L s.t. ∃N ∈ N * , H 0 (X, L ⊗N ) G = {0} .

Proof. It comes directly from [START_REF] Ressayre | Geometric Invariant Theory and the Generalized Eigenvalue Problem[END_REF], Lemma 3. Lemma 6.2.4. If P = B or P = B, and if (C 1 , τ 1 ) and (C 2 , τ 2 ) are two well-covering pairs such that F(C 1 ) = F(C 2 ), then there exists g ∈ G such that g.C 2 = C 1 . Proof. This comes from [START_REF] Ressayre | Geometric Invariant Theory and Generalized Eigenvalue Problem II[END_REF], Lemma 6.5.

Ressayre also proved, in [START_REF] Ressayre | Geometric Invariant Theory and the Generalized Eigenvalue Problem[END_REF], that any regular face of PKron n 1 ,n 2 is given by a well-covering pair2 . Finally, another consequence of [Res11] is that, if C is a singleton and (C, τ ) is well-covering, then the face F(C) is a regular face of minimal dimension of PKron n 1 ,n 2 (i.e. n 1 n 2 ).

6.3 Application to obtain stable triples 6.3.1 Link between well-covering pairs and stability Theorem 6.3.1. Assume that (C, τ ) is well-covering. Then, for all G-linearised line bundles L on X such that μ L (C, τ ) = 0,

H 0 (X, L) G H 0 (C, L| C ) G τ .
Proof. It is Theorem 4 of [START_REF] Ressayre | Geometric Invariant Theory and the Generalized Eigenvalue Problem[END_REF]. Remark 6.3.2. If we only make the hypothesis that (C, τ ) is dominant (and μ L (C, τ ) = 0), we still have that

H 0 (X, L) G → H 0 (C, L| C ) G τ .
Corollary 6.3.3. Assume that (C, τ ) is well-covering, and that G τ has a dense orbit in Then μ L α,β,γ (C, τ ) = 0 and therefore

∀d ∈ N * , g dα,β,γ = dim H 0 (X, L α,β,γ ) G = dim H 0 (C, L| C ) G τ ≤ 1
since G τ has a dense orbit in C.

A sucient condition to get dominant pairs

We now want to see that we can indeed obtain dominant or well-covering pairs (C, τ ).

For this we consider respective bases of the vector spaces V 1 and V 2 : (e 1 , . . . , e n 1 ) and (f 1 , . . . , f n 2 ). They give also a basis of V 1 ⊗ V 2 : (e i ⊗ f j ) i,j ordered lexicographically (i.e.

(e 1 ⊗ f 1 , e 1 ⊗ f 2 , . . . , e n 1 ⊗ f n 2 )), sometimes denoted (ê 1 , . . . , ên 1 n 2 )3 . Thanks to these bases we will often identify G 1 , G 2 , and Ĝ respectively with GL n 1 (C), GL n 2 (C), and GL n 1 n 2 (C). We nally take B and B the respective Borel subgroups of G and Ĝ formed by the upper-triangular matrices, and set from now on X = G/B × Ĝ/ B.

Start now from a one-parameter subgroup τ of T which is supposed to be dominant, regular, and even Ĝ-regular. In particular, τ has the form

τ : C * -→ T t -→ ( ⎛ ⎜ ⎝ t x 1 . . . t xn 1 ⎞ ⎟ ⎠ , ⎛ ⎜ ⎝ t y 1 . . . t yn 2 ⎞ ⎟ ⎠) , with non-negative integers x 1 > • • • > x n 1 , y 1 > • • • > y n 2 .
We then create the matrix M = (x i + y j ) i,j ∈ M n 1 ,n 2 (R). Since τ was taken Ĝ-regular, it has pairwise distinct coecients. From this we dene what we will call the order matrix of τ : it is a matrix having the same size as M but whose coecient at position (i, j) is the ranking of the coecient x i + y j when one orders the coecients of M decreasingly (we will usually circle that ranking when we write the order matrix in order to highlight the dierence with the coecient x i + y j ).

Giving such an order matrix is equivalent to giving a ag ŵ. B/ B xed by T (and then a well-dened ŵ ∈ Ŵ ): to each matrix position (i, j) ∈ 1, n 1 × 1, n 2 we associate the element e i ⊗ f j of the basis of V 1 ⊗ V 2 . Then we create a T -stable complete ag in V 1 ⊗ V 2 by ordering the elements e i ⊗ f j according to the numbers in the order matrix.

Example: For the one-parameter subgroup Then the ag ŵ. B/ B happens to be

τ : C * -→ T t -→ ( ⎛ ⎝ t 4 t 2 1 ⎞ ⎠ , t 3 1 
Ce 1 ⊗ f 1 ⊂ Ce 1 ⊗ f 1 ⊕ Ce 2 ⊗ f 1 ⊂ Ce 1 ⊗ f 1 ⊕ Ce 2 ⊗ f 1 ⊕ Ce 1 ⊗ f 2 ⊂ Ce 1 ⊗ f 1 ⊕ Ce 2 ⊗ f 1 ⊕ Ce 1 ⊗ f 2 ⊕ Ce 3 ⊗ f 1 ⊂ Ce 1 ⊗ f 1 ⊕ Ce 2 ⊗ f 1 ⊕ Ce 1 ⊗ f 2 ⊕ Ce 3 ⊗ f 1 ⊕ Ce 2 ⊗ f 2 ⊂ Ce 1 ⊗ f 1 ⊕ Ce 2 ⊗ f 1 ⊕ Ce 1 ⊗ f 2 ⊕ Ce 3 ⊗ f 1 ⊕ Ce 2 ⊗ f 2 ⊕ Ce 3 ⊗ f 2 ,
which we denote by

fl(e 1 ⊗ f 1 , e 2 ⊗ f 1 , e 1 ⊗ f 2 , e 3 ⊗ f 1 , e 2 ⊗ f 2 , e 3 ⊗ f 2 ) ∈ F (V 1 ⊗ V 2 ).
This corresponds to ŵ = 1 2 3 4 5 6 1 3 2 5 4 6 = 2 3 4 5 notation as a product of transpositions ∈ S 6 Ŵ .

As usual with such a one-parameter subgroup, we get two parabolic subgroups P (τ ) and P (τ ) of G and Ĝ respectively. According to the hypotheses made on τ , P (τ ) = B in that case, and P (τ ) is a Borel subgroup denoted instead B(τ ). The set of positive (resp. negative) roots of Ĝ for this choice of Borel subgroup is denoted by Φ+ (τ ) (resp. Φ-(τ )). The unipotent radicals of B, B, and B(τ ) are respectively denoted U , Û , and Û (τ ), while those of the respective opposite Borel subgroups will be U -, Û -, Û -(τ ).

Consider now two elements v ∈ W and v ∈ Ŵ . They give

C = {x 0 } = {(v -1 B/B, v-1 B/ B)},
an irreducible component of X T . As usual we then have

C + = Bv -1 B/B × B(τ )v -1 B/ B and η : G × B C + -→ X [g : x] -→ g.x .
On root spaces for non-negative weights (i.e. on T x 0 C + = T x 0 X ≥0 ), T [e:x 0 ] η is just the identity (cf Theorem 6.2.1). As a consequence,

T [e:x 0 ] η is an isomorphism ⇐⇒ T [e:x 0 ] η| u -: u --→ u -∩ v -1 u -v ⊕ û-(τ ) ∩ v-1 û-v is an isomorphism.
Then, if we dene orb :

U --→ X u -→ u.x 0 ,
we have T [e:x 0 ] η| u -= T e orb. Moreover T e orb is an isomorphism if and only if it is injective, i.e. if and only if the isotropy subgroup U - x 0 of x 0 in U -is nite. As a consequence, T e orb is an isomorphism if and only if the Lie algebra of U - x 0 is {0}. Therefore,

T [e:x 0 ] η is an isomorphism ⇐⇒ u -u -∩ v -1 u -v ⊕ û-(τ ) ∩ v-1 û-v as T -modules ⇐⇒ β∈Φ -∩v -1 Φ + g β β∈ Φ-(τ )∩v -1 Φ- g β as T -modules.
Let us denote by ρ the morphism of restriction of roots of Ĝ (which are morphisms from T to C) to characters of T . Moreover, notice that one has Φ-(τ ) = ŵ Φ-, where ŵ ∈ Ŵ is the element coming from the order matrix, as explained above. Then Φ-(τ )∩ v-1 Φ-= ŵ Φ-∩ ((v ŵ) ∨ ) -1 Φ+ , denoted 4 by ŵ Φ (v ŵ) ∨ . Thus:

T [e:x 0 ] η is an isomorphism ⇐⇒ ρ Φ-(τ ) ∩ v-1 Φ-⊂ Φ -∩ v -1 Φ + and ρ : Φ-(τ ) ∩ v-1 Φ--→ Φ -∩ v -1 Φ + is bijective ⇐⇒ ρ ŵ Φ ((v ŵ) ∨ ) -1 ⊂ Φ(v -1 ) and ρ : ŵ Φ ((v ŵ) ∨ ) -1 -→ Φ(v -1 ) is bijective,
where, for all u ∈ W (resp. û ∈ Ŵ ), Φ(u) = Φ -∩ uΦ + (resp. Φ(û) = Φ-∩ û Φ+ ). We sum it up in the following proposition: Proposition 6.3.9. If ρ ŵ Φ ((v ŵ) ∨ ) -1 ⊂ Φ(v -1 ) and ρ : ŵ Φ ((v ŵ) ∨ ) -1 -→ Φ(v -1 ) is bijective, then the pair (C, τ ) is dominant. Remark 6.3.10. It is a classical result that, for u ∈ W (resp. û ∈ Ŵ ), the cardinal of the set Φ(u) (resp. Φ(û)) corresponds to the length of the element u (resp. û) of the Coxeter group W (resp. Ŵ ), denoted (u) (resp. (û)). As a consequence Φ(v -1 ) = (v -1 ) = (v).

In this context (C = {(v -1 B/B, v-1 B/ B)}), there is a characterisation of wellcovering pairs given by Ressayre in [START_REF] Ressayre | Geometric Invariant Theory and the Generalized Eigenvalue Problem[END_REF], Proposition 11: Lemma 6.3.11. The pair (C, τ ) is well-covering if and only if it is covering and

v -1 . ⎛ ⎝ α∈Φ -∩vΦ - α ⎞ ⎠ + ρ ⎛ ⎝ v-1 . α∈ Φ-∩v Φ-(τ ) α⎞ ⎠ = α∈Φ - α.
Lemma 6.3.12. If v and v are chosen as in Proposition 6.3.9, then:

(C, τ ) is covering =⇒ (C, τ ) is well-covering.
Proof. Assume that v and v are chosen as in Proposition 6.3.9 and that (C, τ ) is covering.

Then:

v -1 . ⎛ ⎝ α∈Φ -∩vΦ - α ⎞ ⎠ + ρ ⎛ ⎝ v-1 . α∈ Φ-∩v Φ-(τ ) α⎞ ⎠ - α∈Φ - α = α∈Φ -∩v -1 Φ - α - α∈Φ - α + ρ ⎛ ⎝ α∈ Φ-(τ )∩v -1 Φ- α⎞ ⎠ = - α∈Φ -∩v -1 Φ + α + α∈Φ -∩v -1 Φ + α = 0
and, by the previous lemma, (C, τ ) is well-covering.

Element v of length 0: an existing result

The rst and simplest case to satisfy the condition of Proposition 6.3.9 is the case when Φ(v -1 ) = 0, i.e. (v) = 0. This means that v = 1 W , the unit in W . But then we also need that Φ ((v ŵ) ∨ ) -1 = 0, i.e. ŵ-1 v-1 ŵ0 = ((v ŵ) ∨ ) -1 = 1 Ŵ . Thus v-1 = ŵ ŵ0 gives a dominant pair (C, τ ).

Moreover the Schubert condition given in Lemma 6.3.8 is not dicult to check here: according to the form of C = {(B/B, ŵ ŵ0 B/ B)}, the rst Schubert variety to consider is just B/B, which is a single point, whereas the second one is B ŵ0 ŵ-1 B(τ )/ B(τ ) = B ŵ0 B/ B, which is the whole variety Ĝ/ B. Hence the product of the two Schubert classes is in fact the class of a point, and then (C, τ ) is well-covering by Lemma 6.3.8 and Lemma 6.3.12. Theorem 6.3.13. Each order matrix corresponding to a dominant, regular, Ĝ-regular one-parameter subgroup τ of T gives a well-covering pair (C, τ ) with:

C = (B/B, ŵ ŵ0 B/ B) .
As a consequence the corresponding face F(C) of the Kronecker cone PKron n 1 ,n 2 contains only stable triples.

This theorem is actually an already existing result, due independently to L. Manivel (see [START_REF] Manivel | On the asymptotics of Kronecker coecients[END_REF]) and E. Vallejo (see [START_REF] Vallejo | Stability of Kronecker coecients via discrete tomography[END_REF]). Let us now explain their result and why it is exactly what we have.

We consider a matrix A = (a i,j ) i,j ∈ M n 1 ,n 2 (R) having entries which are non-negative integers. We call λ and μ its 1-marginals, i.e. the nite sequence of integers (λ 1 , . . . , λ n 1 ) and (μ 1 , . . . , μ n 2 ) given by

λ i = n 2 j=1 a i,j
and

μ j = n 1 i=1 a i,j ,
and we suppose that λ and μ are partitions (i.e. are non-increasing). Moreover, we denote by ν the π-sequence of A, i.e. the (nite) non-increasing sequence (ν 1 , . . . , ν n 1 n 2 ) formed by the entries of A.

Denition 6.3.14. The matrix A is said to be additive if there exist integers

x 1 > • • • > x n 1 and y 1 > • • • > y n 2 such that, for all (i, j), (k, l) ∈ 1, n 1 × 1, n 2 , a i,j > a k,l =⇒ x i + y j > x k + y l .
Theorem 6.3.15 (Manivel, Vallejo). Assume that the matrix A is additive. Then the triple (λ, μ, ν) of partitions is a stable triple.

Manivel and Vallejo gave dierent proofs of this result. What we want to highlight here is that it corresponds to Theorem 6.3.13.

Proof. The parabolic subgroup P of Ĝ we consider this time is the one corresponding to the shape of -ŵ0 .ν, i.e. the one such that L * ν is the pull-back of an ample line bundle on Ĝ/ P . Furthermore, we take P = B, and so Y = G/B × Ĝ/ P .

The matrix A gives a ag in Ĝ/ P , similarly to what we explained about the order matrix of a one-parameter subgroup of T : the ordering of the coecients a i,j in non-decreasing order (it is dierent from before) gives a partial (since some of these coecients can be equal) ordering of the elements e i ⊗ f j of the basis of V 1 ⊗ V 2 . Then this ordering corresponds to a T -stable partial ag in V 1 ⊗ V 2 that is precisely an element of Ĝ/ P .

Example: The additive matrix 3 2 3 1 gives the ag

(Ce 2 ⊗ f 2 ⊂ Ce 2 ⊗ f 2 ⊕ Ce 1 ⊗ f 2 ⊂ Ce 2 ⊗ f 2 ⊕ Ce 1 ⊗ f 2 ⊕ Ce 1 ⊗ f 1 ⊕ Ce 2 ⊗ f 1 = V 1 ⊗ V 2 ) ∈ F (1, 2; V 1 ⊗ V 2 ), which we will denote by fl e 2 ⊗ f 2 , e 1 ⊗ f 2 , {e 1 ⊗ f 1 , e 2 ⊗ f 1 } .
The obtained ag is thus of the form û P / P , with û ∈ Ŵ S n 1 n 2 . In the previous example, the ag can for instance be written with û = (1 4 3).

Remark: This element û is in general not uniquely dened: what is unique is its class in Ŵ / Ŵ P , but it is sucient to pick one representative û ∈ Ŵ of this one.

We then set

x 0 = (B/B, û P / P ) ∈ Y.

The point x 0 is xed by T , and we can check (this is an easy computation) that, for any one-parameter subgroup τ of T ,

μ L λ,μ,ν (x 0 , τ) = 0.
Since A is additive, there exist integers

x 1 > • • • > x m and y 1 > • • • > y n such that, for all (i, j), (k, l) ∈ 1, m × 1, n , a i,j > a k,l =⇒ x i + y j > x k + y l .
This means that, if we consider the following one-parameter subgroup τ of T :

τ : C * -→ T t -→ ( ⎛ ⎜ ⎝ t x 1 . . . t xm ⎞ ⎟ ⎠ , ⎛ ⎜ ⎝ t y 1 . . . t yn ⎞ ⎟ ⎠) ,
it is dominant, regular, and veries that, for all α ∈ Φ, v-1 . α ∈ Φ \ Φp =⇒ α, τ > 0. (6.1) Moreover, we can always assume that τ is Ĝ-regular5 . As a consequence, C = {x 0 } is an irreducible component of Y τ (cf Remark 6.3.5).

This pair (C, τ ) corresponds actually to the same pair as in Theorem 6.3.13: consider the order matrix of the one-parameter subgroup τ of T and ŵ ∈ Ŵ the well-dened (since τ is dominant, regular, Ĝ-regular) Weyl group element we associated to such an order matrix. First case: Assume that the coecients of the matrix A are pairwise distinct. Then the relation between ŵ and û is simply û = ŵ ŵ0 . Then the pair (C, τ ) is exactly the one of Theorem 6.3.13 and thus the face F(C) of PKron n 1 ,n 2 contains only stable triples. Finally, considering what we have written before, (λ, μ, ν) ∈ F(C). Second case: Assume some of the coecients of A are equal. Then the relation between ŵ and û is rather that û and ŵ ŵ0 are the same modulo multiplication by Ŵ P on the right. But this means that the two still dene the same partial ag in Ĝ/ P and, for the same reasons as in the rst case, the triple (λ, μ, ν) is on the face of the Kronecker cone PKron n 1 ,n 2 given by Theorem 6.3.13. As a consequence it is stable. Moreover, the face of PKron n 1 ,n 2 ∩ {(α, β, γ) s.t. L * γ is a line bundle on Ĝ/ P } given by (C, τ ) with C = {(B/B, û P / P )} ⊂ Y is simply the intersection of this former face with the subspace {(α, β, γ) s.t. L * γ is a line bundle on Ĝ/ P }.

The fact that an additive matrix gives in fact a face of minimal dimension (among regular faces) of the cone PKron n 1 ,n 2 was already explained by Manivel in [Man15a].

Second case: length 1

At rst we need some more notations: for i ∈ 1, n 1 , j ∈ 1, n 2 , and k ∈ 1, n 1 n 2 (which corresponds to a pair (i , j ) ∈ 1, n 1 × 1, n 2 , see Footnote 3), ε i , η j , and εk = ε(i ,j ) are the characters of T 1 (the set of diagonal matrices in G 1 ), T 2 (same in G 2 ), and T respectively, dened by

ε i : ⎛ ⎜ ⎝ t 1 . . . t n 1 ⎞ ⎟ ⎠ -→ t i , η j : ⎛ ⎜ ⎝ t 1 . . . t n 2 ⎞ ⎟ ⎠ -→ t j ,
and εk :

⎛ ⎜ ⎝ t 1 . . . t n 1 n 2 ⎞ ⎟ ⎠ -→ t k .
Assume that Φ(v -1 ) = 1, i.e. (v) = 1. This means that v = v -1 = s α , with α a simple root of G (and then Φ(s α ) = {-α}). There are two kinds of such α:

the roots of G 1 = GL(V 1 ), which are the ε i -ε i+1 , for i ∈ 1, n 1 -1 , the roots of G 2 = GL(V 2 ), which are the η i -η i+1 , for i ∈ 1, n 2 -1 .
In addition, since we also want Φ

((v ŵ) ∨ ) -1 = 1, it is necessary that ((v ŵ) ∨ ) -1 = s α, for α a simple root of Ĝ, i.e. a εk -εk+1 for k ∈ 1, n 1 n 2 -1 . Then we have ŵ. Φ(s α) = {ε ŵ(k+1) -ε ŵ(k) }.
As a consequence we see that α and α will be suitable if and only if

ŵ(k) = (i, j) ∈ 1, n 1 × 1, n 2 1, n 1 n 2 and ŵ(k + 1) = (i, j + 1),
or ŵ(k) = (i, j) and ŵ(k + 1) = (i + 1, j).

Then all the translates of Xv correspond to

(H 1 ⊂ • • • ⊂ H n 1 n 2 -1 ) ∈ F (V 1 ⊗ V 2 ) s.t. dim(H k 0 ∩ S) ≥ 1 , for all vector subspaces S of V 1 ⊗ V 2 of dimension n 1 n 2 -k 0 .
First case: v = 1, (j 0 j 0 + 1) = s β j 0 (i.e. ŵ(k 0 ) = (i 0 , j 0 ) for some i 0 and ŵ(k 0 + 1) = (i 0 , j 0 + 1)). Then

X s β j 0 = Bs β j 0 B/B = Vect(e 1 ) ⊂ • • • ⊂ Vect(e 1 , . . . , e n 1 -1 ) , Vect(f 1 ) ⊂ • • • ⊂ Vect(f 1 , . . . , f j 0 -1 ) ⊂ F j 0 ⊂ Vect(f 1 , . . . , f j 0 +1 ) ⊂ • • • ⊂ Vect(f 1 , . . . , f n 2 -1 ) ∈ F (V 1 ) × F (V 2 ) ; F j 0 of dim j 0 . As a consequence, ι(X s β j 0 ) is the set of all ags (H 1 ⊂ • • • ⊂ H n 1 n 2 -1
) such that there exists a subspace F j 0 of dimension j 0 of V 2 verifying Vect(f 1 , . . . , f j 0 -1 ) ⊂ F j ⊂ Vect(f 1 , . . . , f j 0 +1 ) and, for all k ∈ 1, n 1 n 2 corresponding to some (i, j),

H k = H k-1 + Vect(e 1 , . . . , e i ) ⊗ F j 0 when j = j 0 H k = H k-1 + Vect(e 1 , . . . , e i ) ⊗ Vect(f 1 , . . . , f j ) otherwise .
Then a generic translate of Xv is

(H 1 ⊂ • • • ⊂ H n 1 n 2 -1 ) ∈ F (V 1 ⊗ V 2 ) s.t. dim(H k ∩ S) ≥ 1 for S of dimension n 1 n 2 -k 0 which does not intersect Vect(ê ŵ(1) , . . . , ê ŵ(k 0 ) ). Thus ι(X s β j 0 ) ∩ Y = (H 1 ⊂ • • • ⊂ H n 1 n 2 -1 ) ∈ ι(X s β j 0 ) s.t. H k ∩ S = {0} = (H 1 ⊂ • • • ⊂ H n 1 n 2 -1 ) ∈ ι(X s β j 0 ) s.t. F j 0 = Vect(f 1 , . . . , f j 0 -1 , f j 0 +1 ) (since ŵ(k 0 + 1) is (i 0 , j 0 + 1))
. This is a singleton, and the Schubert condition is then veried. As a consequence, the pair (C, τ ) is covering, and hence well-covering by Lemma 6.3.12.

Second case:

v = (i 0 i 0 + 1), 1 = s α i 0 . It is sucient to exchange the roles of V 1 and V 2 .
These kinds of properties of ŵ are really easy to read on the order matrix, which allows us to reformulate the previous theorem in the following equivalent way: Theorem 6.3.17. For any dominant, regular, Ĝ-regular one-parameter subgroup τ of T , each conguration of the following type in the order matrix:

k k + 1 row i j j + 1 gives a well-covering pair (C, τ ), with C = 1, (j j + 1) .B/B, ŵ(k k + 1) ŵ0 . B/ B .
Hence we obtain a regular face of the Kronecker cone PKron n 1 ,n 2 , of dimension n 1 n 2 and containing only stable triples:

F(C) = (α, β, γ) ∈ PKron n 1 ,n 2 s.t. ŵ(k k + 1) .γ T = α, (j j + 1).β ,
where α, (j j + 1).β and ŵ(k k + 1) .γ are respectively identied with characters of T and T .

Likewise, each conguration of the type

k k + 1 row i row i + 1 column j gives a well-covering pair (C, τ ) with C = (i i + 1), 1 .B/B, ŵ(k k + 1) ŵ0 . B/ B .
Example: The order matrix which comes for instance from the one-parameter subgroup

τ : t -→ ( t 1 , t 2 1 )
and corresponds to ŵ = (2 3) ∈ S 4 Ŵ , gives two dierent well-covering pairs according to the previous theorem:

one with C 1 = (1 2), 1 .B/B, ŵ(1 2) ŵ0 =(1 4 3) . B/ B , the other with C 2 = (1 2), 1 .B/B, ŵ(3 4) ŵ0 =(1 2 4) . B/ B .
It is not dicult to see that they cannot come from additive matrices: with Lemma 6.2.4 in mind, we can normalise these well-covering pairs by the action of G so that C is of the form {(B/B, û B/ B)}.

(

2), 1 .C 1 = B/B, (1 2 4). B/ B , (1 2), 1 .C 2 = B/B, (1 4 3). B/ B . 1 
Then we see that these û cannot be a ŵ ŵ0 , for a ŵ coming from an additive matrix. Hence, thanks to Lemma 6.2.4, these two examples give two new faces F(C 1 ) and F(C 2 ) of the Kronecker cone PKron 2,2 which contain only stable triples. The equations of the subspaces spanned by these faces in (α, β, γ) s.t. |α| = |β| = |γ|, (α) ≤ 2, (β) ≤ 2, (γ) ≤ 4 are easy to write:

α 1 = γ 1 + γ 4 β 1 = γ 1 + γ 2 for F(C 1 ), α 1 = γ 2 + γ 3 β 1 = γ 1 + γ 2 for F(C 2 ).
We can in addition for instance give a minimal list of inequalities describing the face F(C 1 ) inside the previous vector space of dimension 4:

γ 2 ≥ γ 3 ≥ γ 4 γ 1 -γ 2 ≥ γ 3 -γ 4 .
We can then notice that this face is a simplicial face. It is moreover interesting to note that the previous inequalities are not entirely those saying that γ is dominant. In the case of a face obtained by the theorem of Manivel and Vallejo, this minimal list of inequalities would in fact exactly be γ

1 ≥ γ 2 ≥ • • • ≥ γ n 1 n 2 . 6.3.5 Third case: length 2 2. Φ(v -1 ) = {ε i+1 -ε i , ε j+1 -ε j }, with i, j ∈ 1, n 1 -1 and |i -j| ≥ 2, 3. Φ(v -1 ) = {η i+1 -η i , η j+1 -η j }, with i, j ∈ 1, n 1 -1 and |i -j| ≥ 2, 4. Φ(v -1 ) = {ε i+1 -ε i , ε i+2 -ε i }, with i ∈ 1, n 1 -2 , 5. Φ(v -1 ) = {ε i+2 -ε i+1 , ε i+2 -ε i }, with i ∈ 1, n 1 -2 , 6. Φ(v -1 ) = {η i+1 -η i , η i+2 -η i }, with i ∈ 1, n 2 -2 , 7. Φ(v -1 ) = {η i+2 -η i+1 , η i+2 -η i }, with i ∈ 1, n 2 -2 .
Then we must also have ((v ŵ) ∨ ) -1 = s αs β , for α, β simple roots of Ĝ. As before, this

yields three kinds of Φ ((v ŵ) ∨ ) -1 : (a) Φ ((v ŵ) ∨ ) -1 = {ε k+1 -εk , εk +1 -εk }, with k, k ∈ 1, n 1 n 2 -1 and |k -k | ≥ 2, (b) Φ ((v ŵ) ∨ ) -1 = {ε k+1 -εk , εk+2 -εk }, with k ∈ 1, n 1 n 2 -2 , (c) Φ ((v ŵ) ∨ ) -1 = {ε k+2 -εk+1 , εk+2 -εk }, with k ∈ 1, n 1 n 2 -2 .
And nally some of the cases 1 to 7 are compatible with some of the cases (a) to (c), and will give as in Paragraph 6.3.4 congurations (concerning ŵ) providing v -1 and v-1 which verify the condition from Proposition 6.3.9. After removing those which are not possible for a ŵ coming from a dominant, regular, Ĝ-regular one-parameter subgroup (i.e. coming from an additive matrix), we obtain the following:

Conguration A O (corresponding to cases 1 and (a)):

There exist k, k ∈ 1, n 1 n 2 -1 such that |k -k | ≥ 2 and ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ŵ(k) = (i, j) ŵ(k + 1) = (i + 1, j) ŵ(k ) = (i , j ) ŵ(k + 1) = (i , j + 1)
.

It corresponds to the following situation in the order matrix:

k k + 1 row i j j + 1 k k + 1 row i row i + 1 j (k, k + 1, k , k + 1 pairwise distinct)
This gives:

v -1 = (i i + 1), (j j + 1) and v-1 = ŵ(k k + 1)(k k + 1) ŵ0 (with |k -k | ≥ 2).
Conguration B O (cases 2 and (a)):

There exist k, k ∈ 1, n 1 n 2 -1 such that |k -k | ≥ 2 and ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ŵ(k) = (i, j) ŵ(k + 1) = (i + 1, j) ŵ(k ) = (i , j ) ŵ(k + 1) = (i + 1, j ) , with |i -i | ≥ 2.
It corresponds to the following situation in the order matrix:

k k + 1 row i row i + 1 column j k k + 1 row i row i + 1 column j (k, k + 1, k , k + 1 pairwise distinct) (pairwise distinct) This gives v -1 = (i i + 1)(i i + 1), 1 and v-1 = ŵ(k k + 1)(k k + 1) ŵ0 (with |i -i |, |k -k | ≥ 2).

Conguration C O (cases 1 and (b)):

There

exists k ∈ 1, n 1 n 2 -2 such that ŵ(k) = (i, j) ŵ({k + 1, k + 2}) = {(i + 1, j), (i, j + 1)} .
It corresponds to two types of situation in the order matrix:

k k + 1 k + 2 row i row i + 1 j j + 1 k k + 2 k + 1 row i row i + 1 j j + 1
And this gives

v -1 = (i i + 1), (j j + 1) and v-1 = ŵ(k k + 1)(k + 1 k + 2) =(k k+1 k+2)
ŵ0 .

Conguration D O (cases 1 and (c)):

There

exists k ∈ 1, n 1 n 2 -2 such that ŵ({k, k + 1}) = {(i, j + 1), (i + 1, j)} ŵ(k + 2) = (i + 1, j + 1) . 
It corresponds to two types of situation in the order matrix:

k + 2 k k + 1 row i row i + 1 j j + 1 k + 2 k + 1 k row i row i + 1 j j + 1
And this gives

v -1 = (i i + 1), (j j + 1) and v-1 = ŵ(k + 1 k + 2)(k k + 1) =(k k+2 k+1) ŵ0 .

Conguration E O (cases 4 and (b) on the one hand, and 5 and (c) on the other):

There

exists k ∈ 1, n 1 n 2 -2 such that ⎧ ⎨ ⎩ ŵ(k) = (i, j) ŵ(k + 1) = (i + 1, j) ŵ(k + 2) = (i + 2, j)
.

It corresponds to the following situation in the order matrix:

k k + 1 k + 2 row i row i + 1 row i + 2 column j
And this conguration gives two dierent pairs (v -1 , v-1 ): 

v -1 = (i i + 1 i + 2), 1 and v-1 = ŵ(k k + 1 k + 2) ŵ0 , and v -1 = (i i + 2 i + 1), 1 and v-1 = ŵ(k k + 2 k + 1) ŵ0 .
F(C) = (α, β, γ) ∈ PKron n 1 ,n 2 s.t. (v -1 ŵ0 ).γ T = v -1 .(α, β) .
Remark 6.3.19. As we wrote, the two congurations 

k k + 1 k + 2 row i row i + 1 row i + 2 column j k k + 1 k + 2 row i j j +
C 3 = (1 2), (1 2) .B/B, ŵ(1 2 3) ŵ0 =(1 4 3 2) . B/ B and C 4 = (1 2), (1 2) .B/B, ŵ(2 4 3) ŵ0 =(1 2 3 4) . B/ B .
Once again we can normalise these C's:

(1 2), (1 2) .C 3 = B/B, (2 4). B/ B , (1 2), (1 2) .C 4 = B/B, (1 3). B/ B .
The equations dening the subspaces spanned by the corresponding faces possibly reduced to zero F(C 3 ) and F(C 4 ) of the Kronecker cone PKron 2,2 are respectively:

α 1 = γ 1 + γ 4 β 1 = γ 2 + γ 4 and α 1 = γ 2 + γ 3 β 1 = γ 2 + γ 4 .
One can then check that F(C 3 ) and F(C 4 ) are indeed not reduced to zero:

(5, 5), (5, 5), (3, 3, 2, 2) ∈ F(C 3 ) ∩ F(C 4 ) (it is really a non-stable almost stable triple). But in fact, F(C 3 ) and F(C 4 ) are equal: the equations of the subspace that they span can be rewritten as

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ γ 1 = γ 2 γ 3 = γ 4 α 1 = γ 1 + γ 3 β 1 = γ 1 + γ 3 .
So we have actually found only one face of PKron 2,2 , which is not regular and contains only almost stable triples.

6.4 Application to all cases of size 2×2, 3×2, and 3×3 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ γ 1 = γ 2 γ 3 = γ 4 α 1 = γ 1 + γ 3 β 1 = γ 1 + γ 3 .
In total, we have then found 4 new distinct (by Lemma 6.2.4) regular faces of PKron 2,2 which contain only stable triples, whereas 2 others were already known. And we have also found 1 non-regular face containing only almost stable triples.

All order matrices of size 3×2

Let us do exactly as in the previous case. Five order matrices are possible here:

⎛ ⎝ ⎞ ⎠ , ⎛ ⎝ ⎞ ⎠ , ⎛ ⎝ ⎞ ⎠ , ⎛ ⎝ ⎞ ⎠ , and ⎛ ⎝ ⎞ ⎠ .
We number them in that order from 1 to 5 and will denote accordingly some possible corresponding one-parameter subgroups:

τ 1 = (4, 2, 0|1, 0), τ 2 = (2, 1, 0|3, 0), τ 3 = (4, 1, 0|2, 0), τ 4 = (4, 3, 0|2, 0), τ 5 = (4, 2, 0|3, 0).

We have then 5 additive faces with: (1 5 2 6) C

C (1) 0 = B/B, ( 1 
(1) 2

(1 5)(2 6)(3 4) C

(1) 3

(1 6 2 5) C

(2) 1

(1 6)(3 4 5) C

(2) 2

(1 6 3 2 4 5) C

(2) 3

(1 4 5 3 2 6) C

(2) 4

(1 6)(2 4 3) C

(3) 1

(1 5 2 3 6) C

(3) 2

(1 4 3 5 2 6) C

(3) 3

(1 6)(2 4 5) C (4) 1 (1 6)(2 5 3) C (4) 2 (1 6 3 4 2 5) C (4) 3 (1 6 2 5 4) C (5) 1 (1 6)(3 5) C (5) 2 (1 6)(2 4)
(The numbers written in exponent between parentheses indicate from which order matrix the considered well-covering pairs come.) Theorem 6.3.18 gives also 20 dominant pairs, written in the same kind of table :   name of C element û giving C C (1) 4

(1 5 2 6 3) C

(1) 5

(1 3 4 5)(2 6) C

(1) 6

(1 5)(2 6 4 3), C

(1) 7

(1 4 6 2 5) C

(2) 5

(1 4 5 3 6) C

(2) 6

(1 2 6)(3 4 5) C

(2) 7

(1 6 5)(2 4 3) C

(2) 8

(1 6 3 2 4) C

(3) 4

(1 5)(2 4 6) C

(3) 5

(1 5 2)(3 6) C

(3) 6

(1 4 6 2 3 5) C

(3) 7

(1 3 6)(2 5) C

(3) 8

(1 5 2 3 4 6) C (4) 4

(1 6 2 5 4 3) C (4) 5

(1 6 4)(2 5) C (4) 6

(1 5 3)(2 6) C (4) 7

(1 5)(2 6 4) C (4) 8

(1 4)(2 5 6) C

(5) 3

(1 5 6 2 4) C

(5) 4

(1 5 3 6 2)

If we check here one by one whether these dominant pairs are actually well-covering, we nd that eight of them indeed are: those given by C 

⎨ ⎩ α 1 = γ 1 + γ 5 α 2 = γ 2 + γ 6 β 1 = γ 1 + γ 2 + γ 3 and ⎧ ⎨ ⎩ α 1 = γ 1 + γ 6 α 2 = γ 2 + γ 4 β 1 = γ 1 + γ 2 + γ 3 .
We can for instance notice that (4, 3, 2), (8, 1), (4, 3, 1, 1) belongs to F(C

(2) 5 ), whereas (4, 3, 1), (7, 1), (4, 2, 1, 1) is in F(C

(2) 6 ). Then, since these faces contain each some triple (α, β, γ) of partitions which is such that either α and β are regular (meaning that the parts of α are pairwise distinct, as are those of β), or γ is regular (likewise), a theorem from [START_REF] Ressayre | Geometric Invariant Theory and the Generalized Eigenvalue Problem[END_REF] (Theorem 12) ensures that these two dominant pairs are in fact well-covering. Moreover, Lemma 6.2.4 proves that the two (thus regular) faces are distinct. This is interesting because they come from the same Conguration E O, appearing in the rst column of the order matrix number 2. Hence this kind of conguration can indeed give two dierent regular faces of PKron n 1 ,n 2 (cf Remark 6.3.19). Lemma 6.2.4 furthermore ensures that all the regular faces corresponding to the 28 well-covering pairs that we presented are pairwise distinct. Looking in more details at the 12 other dominant pairs, which are not well-covering, we can see that they in fact give only two distinct non-regular faces of PKron 3,2 containing almost stable triples: the equations of the subspaces that they respectively span are

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ γ 1 = γ 2 γ 3 = γ 4 γ 5 = γ 6 α 1 = α 2 = γ 1 + γ 3 β 1 = γ 1 + γ 3 + γ 5 and ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ γ 1 = γ 2 γ 3 = γ 4 γ 5 = γ 6 α 1 = 2γ 1 α 2 = γ 3 + γ 5 β 1 = γ 1 + γ 3 + γ 5 .
In total we then obtained 23 new regular faces of PKron 3,2 which contain only stable triples, whereas 5 others were already known. We also got 2 other non-regular faces, containing only almost stable triples.

All order matrices of size 3×3

For this case the numbers begin to become much larger: there are 36 possible order matrices (i.e. 36 types of additive matrices) of size 3×3. As a consequence we do not write all of them here, but they can be found in Appendix A, along with the number of well-covering and dominant pairs that each provides. First Manivel and Vallejo's theorem yields 36 additive faces of PKron 3,3 with this 36 additive matrices. But then if we look in details at these matrices, we nd that Theorem 6.3.17 gives 144 well-covering pairs, i.e. 144 regular faces containing only stable triples. Moreover, Theorem 6.3.18 adds 232 dominant pairs to this, i.e. 232 faces of PKron 3,3 possibly non-regular and not necessarily pairwise distinct containing only almost stable triples. Considering what happened in the two previous cases, we can hope that some of those dominant pairs are in fact well-covering. It would be of course possible to check whether this is true, but it is far too tedious to do it here.

Let us nevertheless give one detailed example of a new face of PKron 3,3 that we can obtain with our results: look at the order matrix ⎛ Then one can notice that (6, 5, 4), (7, 6, 2), (3, 2 6 ) ∈ F(C). As a consequence Theorem 12 from [START_REF] Ressayre | Geometric Invariant Theory and the Generalized Eigenvalue Problem[END_REF] assures that the pair (C, τ ) is well-covering, and F(C) is indeed a regular face of PKron 3,3 containing only stable triples.

A question on Congurations A O to E O

A natural question to ask after Theorem 6.3.18 is the following. According to what we explained earlier right at the end of Section 6.2, it is equivalent to the following question. A rst step to answer this question would be to consider the following one:

Question 4: Is the answer to Question 2 independent from (n 1 , n 2 )?

Chapter 7

About zeroes in the Kronecker cone By a zero in the Kronecker cone PKron n 1 ,n 2 we mean a triple (α, β, γ) ∈ PKron n 1 ,n 2 such that g α,β,γ = 0. The existence of such triples corresponds to the fact that the Kronecker coecients do not have the saturation property, and the problem of understanding these zeroes is an important and dicult one. In this chapter we look at the half-line N * (α, β, γ) for such a zero (α, β, γ), and more precisely at the set Λ(α, β, γ) = {d ∈ N * s.t. g dα,dβ,dγ = 0}. One can notice that in most examples this set is of the form d 0 N * (for a positive integer d 0 ), and we prove in the rst section that, for almost stable triples, it is always the case. Nevertheless this result is not true if the triple is not almost stable: there is a family of counter-examples due to Briand-Orellana-Rosas in [START_REF] Briand | Reduced Kronecker coecients and counter-examples to Mulmuley's strong saturation conjecture SH[END_REF]. Therefore we study in details these known counter-examples in order to try to replicate them, which we have not managed thus far.

Almost stable triples

It is of course obvious that a stable triple of partitions is almost stable, since we have explained that any stable triple (α, β, γ) veries: for all positive integer d, g dα,dβ,dγ = 1 (recall that the denition of almost stable is the same condition with ≤ 1). But one can easily see that the converse is not true: there exist almost stable triples which are not stable.

Example: For α = β = γ = (1, 1) and all d ∈ N * , g dα,dβ,dγ = 0 if d is odd 1 if d is even . So (α, β, γ) is almost stable, but not stable.

We can notice, in the previous example, that Λ (1, 1), (1, 1), (1, 1) = 2N * is a semigroup. Then a reasonable question to ask would be: is Λ(α, β, γ) always of this form for almost stable triples? And for any triple? 107 Remark 7.1.1. The interpretation of the Kronecker coecients as dimensions of spaces of sections of line bundles shows that the Kronecker semigroup (α, β, γ) s.t. g α,β,γ = 0 is indeed a semigroup, as we said before, but it has also a slightly stronger consequence: as soon as g α,β,γ = 0, g λ+α,μ+β,ν+γ ≥ g λ,μ,ν for any triple (λ, μ, ν). Indeed, g α,β,γ = dim H 0 (X, L) G and g λ,μ,ν = dim H 0 (X, M) G for some reductive group G acting on some projective variety X and some G-linearised line bundles L and M on X. Then, if g α,β,γ = 0, there exists a non-zero G-invariant section σ of L. And thus, if (τ 1 , . . . , τ r ) is a basis of H 0 (X, M) G , then (σ ⊗ τ 1 , . . . , σ ⊗ τ r ) is a linearly independent family in H 0 (X, L ⊗ M) G . Hence dim H 0 (X, L ⊗ M) G ≥ dim H 0 (X, M) G . Remark 7.1.2. A straightforward consequence of the previous remark is that the sequence (g dα,dβ,dγ ) d∈N * is non-decreasing when g α,β,γ = 0. Furthermore, if d 0 ∈ Λ(α, β, γ), then d 0 N * ⊂ Λ(α, β, γ). Proof. Let d 0 = min{d ∈ N * s.t. g dα,dβ,dγ = 0}. The fact that, if d is a multiple of d 0 , g dα,dβ,dγ = 0 has already been explained in Remark 7.1.2. We now prove the converse: We can as before write g α,β,γ = dim H 0 (X, L) G , with a product of ag varieties X on which acts a reductive group G and a G-linearised line bundle L on X. Then, ∀d ∈ N * , g dα,dβ,dγ = dim H 0 (X, L ⊗d ) G Moreover, X can be taken so that L is an ample line bundle. In that case, the line bundle L is even very ample (see e.g. [START_REF] Brion | Lectures on the geometry of ag varieties[END_REF], Proposition 1.4.1). As a consequence, S = d≥0 H 0 (X, L ⊗d ) is integrally closed, by [START_REF] Hartshorne | Algebraic geometry[END_REF], Chapter II, Exercise 5.14(a). Take now d ∈ N * which is no multiple of d 0 . Then d = d 0 q + r with q ∈ N and 0 < r < d 0 . By contradiction, let us assume that g dα,dβ,dγ = 0, i.e. H 0 (X, L ⊗d ) G = {0}. Consider σ ∈ H 0 (X, L ⊗d ) G \ {0}. Independently, since g d 0 α,d 0 β,d 0 γ = 0, we can also take σ 0 ∈ H 0 (X, L ⊗d 0 ) G \ {0}. Then there exists c ∈ C such that: Let us signal that the previous result can also be seen as a direct consequence of the works of P.-E. Paradan in [START_REF] Paradan | Stability property of multiplicities of group representations[END_REF]: it follows from the rst statement in Theorem B. Remark 7.1.4. This result does not hold for any triple of partitions: Theorem 2.4 in [START_REF] Briand | Reduced Kronecker coecients and counter-examples to Mulmuley's strong saturation conjecture SH[END_REF] yields that g (6,6),(7,5),(6,4,2) = 0 whereas, for all d ≥ 2, g d(6,6),d(7,5),d(6,4,2) > 0. We will study this example in more details in the next section. Before this we take a moment to nally prove a fact that we have been using the whole time, because it has already been proven by J. Stembridge in [START_REF] Stembridge | Generalized Stability of Kronecker Coecients[END_REF]. So forget only for now that stability and weak-stability are two equivalent notions.

Lemma 7.1.5. If a triple (α, β, γ) of partitions is stable, then it is almost stable.

Proof. Let us consider a triple (α, β, γ) which is not almost stable and write, exactly as in the proof of the previous theorem:

g α,β,γ = dim H 0 (X, L) G
with X a product of (partial) ag varieties, G a connected reductive group, and L an ample G-linearised line bundle on X. Consider the projection to the GIT-quotient: X ss (L) → X ss (L) G. It is then known that some power of L descends to X ss (L) G (see e.g. [START_REF] Teleman | The quantization conjecture revisited[END_REF], 3). Up to replacing L by a power, we can consequently consider that L descends to an ample line bundle M on the GIT-quotient. Then (by [START_REF] Teleman | The quantization conjecture revisited[END_REF], Theorem 3.2(a)), for all d ∈ N * , H 0 (X, L ⊗d ) G H 0 (X ss (L) G, M ⊗d ).

Moreover, by Proposition 8.1 of [START_REF] Dolgachev | Lectures on Invariant Theory[END_REF], since (α, β, γ) is not almost stable, X ss (L) G is not reduced to a point. So dim(H 0 (X ss (L) G, M ⊗d )) ---→ d→∞ ∞. Thus, lim d→∞ g dα,dβ,dγ = ∞, and (α, β, γ) is not stable. Proposition 7.1.6. If a triple of partitions (α, β, γ) is stable, then it is weakly stable.

Proof. If (α, β, γ) is stable, then it is almost stable (see the previous proposition). Moreover, since g α,β,γ = 0 and using Remark 7.1.2, ∀d ∈ N * , g dα,dβ,dγ = 1. Then we look at the isotropy subgroup G x 0 of x 0 in G: let (g 1 , g 2 ) ∈ G x 0 . Therefore g 2 I 2 g -1 1 ∈ C I 2 , i.e. there exists λ ∈ C such that g 1 = λg 2 . Denote from now on g 2 by g. We have moreover λ -1 gHg -1 ∈ C I 2 ⊕CH and then, since the action by conjugation preserves the trace, gHg -1 ∈ CH. But this action preserves also the eigenvalues, and then gHg -1 = ±H.

First case: gHg -1 = H. Then g is diagonal and can then be written g = t 0 0 t -1 with t ∈ C * . Furthermore t 0 0 t -1 0 1 1 0 t -1 0 0 t = 0 t 2 t -2 0 has to be symmetric. Hence t 4 = 1, i.e. t ∈ {±1, ±i}, i.e. g ∈ {± I 2 , ±K}.

Second case: gHg -1 = -H. Then (gI)H(gI) -1 = H, and thus g = g 0 .I -1 with g 0 as in the rst case. This gives g ∈ {±I, ±J}.

Finally we nd that G x 0 ⊂ (λg, g) ; λ ∈ C * , g ∈ Q , and conversely it is not dicult to check that G x 0 = (λg, g) ; λ ∈ C * , g ∈ Q . In particular, the isotropy subgroup G x 0 of x 0 in G is nite and, since dim G = 6 = dim F M 2 (C) , the (G-or G -, since it is the same action) orbit of x 0 is open in F M 2 (C) . As a consequence, H 0 (Y, (L ) ⊗d ) G -→ H 0 P 1 (C) × G.x 0 , (L ) ⊗d G H 0 G × Gx 0 P 1 (C) × {x 0 } , (L ) ⊗d G H 0 P 1 (C) × {x 0 }, (L ) ⊗d Gx 0 H 0 (P 1 (C),

L ⊗d β * ) Q ⊗ H 0 ({x 0 }, (L ) ⊗d ) Gx 0 ,
where L is the line bundle L γ on F M 2 (C) on which the action of G x 0 is twisted by the character χ k | Gx 0 : (λg, g) → λ -2k . Then one can check without problem that G x 0 acts trivially on the bre over x 0 in (L ) ⊗d , and therefore the dimension of the second factor of that last tensor product is 1. Finally, H 0 (X, L ⊗d ) G -→ H 0 P 1 (C), O(2d)

Q .

Proposition 7.2.3. For any positive integer d, g dα,dβ,dγ = dim H 0 P 1 (C), O(2d)

Q = dim (C[x, y] 2d ) Q ,
where C[x, y] 2d denotes the vector space of homogeneous polynomials in two variables x and y, of degree 2d, on which Q ⊂ SL 2 (C) acts by its natural action on (x, y).

Proof. Let d be a positive integer. By the previous lemma, g dα,dβ,dγ ≤ dim H 0 P 1 (C), O(2d) Q .

But we are actually going to prove the equality by computing directly the dimension of H 0 P 1 (C), O(2d) Q and comparing it to the result given by Briand-Orellana-Rosas about g dα,dβ,dγ . Indeed, by standard algebraic geometry,

H 0 P 1 (C), O(2d) Sym 2d (C 2 ) * (C[x, y] 2d ) .
Hence we obtain the second equality stated in the proposition. Now the dimension of the space of Q-invariants in this space of homogeneous polynomials can be computed. Since Q = I, J , it is sucient to look at the action of I and J:

The element I = 0 1 -1 0 acts by: if p + q = 2d, x p y q → (-1) p x q y p . Therefore, The element J = 0 i i 0 acts by: if p + q = 2d, x p y q → (-1) d x q y p . Therefore, (p,q,r)∈P 3d c p,q,r x p y q z r ∈ (C[x, y, z] 3d ) A ⇐⇒ ∀(p, q, r) ∈ P 3d , c p,q,r = (-1) d+r c p,q,r ⇐⇒ ∀(p, q, r) ∈ P 3d , r odd ⇒ c p,q,r = 0 if d is even r even ⇒ c p,q,r = 0 if d is odd .

The matrix B acts by: if (p, q, r) ∈ P 3d , x p y q z r → (-1) q x p y r z q . Therefore, (p,q,r)∈P 3d c p,q,r x p y q z r ∈ (C[x, y, z] 3d ) B ⇐⇒ ∀(p, q, r) ∈ P 3d , c p,q,r = (-1) r c p,r,q .

As a consequence, if d is even:

(p,q,r)∈P 3d c p,q,r x p y q z r ∈ (C[x, y, z] 3d ) H ⇐⇒ ∀(p, q, r) ∈ P 3d , q or r odd ⇒ c p,q,r = 0 q and r even ⇒ c p,q,r = c p,r,q and thus dim (C[x, y, z] 3d ) H = (p, q, r) ∈ P 3d s.t. q ≤ r and q, r are even (p,q,r)∈P 3d c p,q,r x p y q z r ∈ (C[x, y, z] 3d ) H ⇐⇒ ∀(p, q, r) ∈ P 3d , q or r even ⇒ c p,q,r = 0 q and r odd ⇒ c p,q,r = -c p,r,q and thus dim (C[x, y, z] 3d ) H = (p, q, r) ∈ P 3d s.t. q < r and q, r are odd .

=
=
The simplest thing after this would be to identify H as more or less the isotropy subgroup in GL 3 (C) of a sequence of linear spaces of the right dimension, in order to do the reasoning of the proof of Lemma 7.2.2 in the opposite direction. Unfortunately as of now we were not able to do this. But we could maybe in the future nd another way of using this action of H on C[x, y, z] 3d to create a new example like Theorem 7.2.1.

Appendix A List of all possible order matrices of size 3×3

There are 36 possible order matrices (i.e. 36 types of additive matrices) of this size: (for the transposed matrices, one simply has to exchange the roles of V 1 and V 2 ).

Then each one of these matrices gives exactly one additive face of PKron n 1 ,n 2 by the result of Manivel and Vallejo, i.e. one well-covering pair. Moreover, by Theorem 6.3.17, they also give other such pairs. Here are the numbers of new well-covering pairs that each one gives: Each transposed matrix gives furthermore by Theorem 6.3.17 the same number of wellcovering pairs as the original one. As a consequence that makes in total 144 new wellcovering pairs.

In addition to Theorem 6.3.17, Theorem 6.3.18 provides from these 36 order matrices a certain number of dominant pairs. Among them some are probably well-covering while others do not in fact dene a new face of PKron 3,3 . Here are the numbers of dominant pairs that each order matrix gives (for the transposed matrices, it will be the same): 

  1 and the weights of S μ (V ) are in the convex hull of W.μ, where W denotes the Weyl group of G). Thus Sym d|μ| (V ) does not appear in Sym d (S μ (V )), which means that a (d|μ|) (d),μ = 0. As a consequence, X ss μ (L (1),(|μ|) ) = ∅ and there exists D ∈ N such that, for all d ≥ D, X ss μ (L λ,ν ⊗ L ⊗d (1),(|μ|) ) = ∅. Thus, for all d ≥ D, a ν+(d|μ|)

  (2), (1); (2) , (2), (1); (1, 1) , (2), (1); (3) , and (2), (1); (2, 1) are all Aguiar-stable triples. Proof. Let us write the proof in detail for (2), (1); (2) , for instance. The three other ones work similarly. Let d ∈ N * . Then

  a

C.

  Then the face F(C) contains only almost stable triples. Proof. It is an immediate consequence of the previous theorem: let (α, β, γ) ∈ F(C).

Furthermore

  the Congurations B O and E O each have a transposed conguration in which the roles of the rows and columns are exchanged. Those two transposed congurations will be denoted respectively by b O and e O. They also give a pair (v -1 , v-1 ) (or two, in the case of Conguration e O) in which the roles of V 1 and V 2 are exchanged. In other words, v-1 does not change and for instance v -1 = (i i + 1)(i i + 1), 1 (for conguration B O) becomes v -1 = 1, (j j + 1)(j j + 1) (for conguration b O). Theorem 6.3.18. Let τ be a dominant, regular, Ĝ-regular one-parameter subgroup of T . Let C = (v -1 B/B, v-1 B/ B) , with v -1 and v-1 coming from one of the Congurations A O to E O or one of their trans- posed congurations. Then the pair (C, τ ) is dominant and, as a consequence, gives a face not necessarily regular and possibly reduced to zero of the Kronecker cone PKron n 1 ,n 2 which contains only almost stable triples:

  /B, (1 6)(2 4)(3 5) B/ B . Theorem 6.3.17 furthermore gives 15 well-covering pairs: since we normalise them by writing C as (B/B, û B/ B) , we give in the following table the list of elements û ob-tained, together with the name of the singleton C that they give. name of C element û giving C C

5 .

 5 Let us give two examples, for C equations dening the subspaces of (α, β, γ) s.t. |α| = |β| = |γ|, (α) ≤ 3, (β) ≤ 2, (γ) ≤ 6 spanned respectively by F(C

α 1

 1 from the dominant, regular, Ĝ-regular one-parameter subgroup τ = (4, 1, 0|7, 5, 0) of T . Theorem 6.3.18 tells us that the pair withC = B/B, (1 9 4 2 6)(5 8) B/ B is dominant (it comes from a Conguration EO in the third column of the matrix). And we can compute the equations of the subspace spanned byF(C) in (α, β, γ) s.t. |α| = |β| = |γ|, (α) ≤ 3, (β) ≤ 3, (γ) ≤ 9 : = γ 4 + γ 6 + γ 7 α 2 = γ 1 + γ 2 + γ 8 β 1 = γ 1 + γ 3 + γ 4 β 2 = γ 2 + γ 5 + γ 6.

Question 1 :

 1 For C obtained from a Conguration between A O and E O, is the face F(C) regular?

  Theorem 7.1.3. Let (α, β, γ) be an almost stable triple of partitions. Then there existsd 0 ∈ N * such that, for all d ∈ N * , d ∈ Λ(α, β, γ) ⇐⇒ d 0 |d

Indeed, σ ⊗d 0 /(σ ⊗qd 0 0 ⊗ σ ⊗r 0 )

 00 ∈ C, since d 0 q + r = d and σ ⊗d 0 and σ ⊗d 0 are both inH 0 (X, L ⊗dd 0 ) G , which is of dimension 1. Thus σ/σ ⊗q 0 is a root of T d 0cσ ⊗r 0 ∈ S[T ], for some c ∈ C. And then σ σ ⊗q 0 ∈ S since S is integrally closed. Hence σ/σ ⊗q 0 ∈ H 0 (X, L ⊗r ) G \ {0}. This is a contradiction because r < d 0 .

  and one can see that C * I 2 acts trivially. So it is actually an action ofG = PGL 2 (C) × PGL 2 (C). C I 2 ⊂ C I 2 ⊕CH ⊂ C I 2 ⊕CH ⊕ C(E + F ) ∈ F M 2 (C) .

c

  p x p y 2d-p ∈ (C[x, y] 2d ) I ⇐⇒ 2d p=0 c p x p y 2d-p = 2d p=0 (-1) p c p x 2d-p y p ⇐⇒ ∀p ∈ 0, 2d , c p = c 2d-p if p is even -c 2d-p if p is odd .

c

  p x p y 2d-p ∈ (C[x, y] 2d ) J ⇐⇒ 2d p=0 c p x p y 2d-p = (-1) d 2d p=0 c p x 2d-p y p ⇐⇒ ∀p ∈ 0, 2d , c p = c 2d-p if d is even -c 2d-p if d is odd . As a consequence, if d is even: 2d p=0 c p x p y 2d-p ∈ (C[x, y] 2d ) Q ⇐⇒ ∀p ∈ 0, 2d even, c p = c 2d-p ∀p ∈ 0, 2d odd, c p = 0 and dim (C[x, y] 2d ) Q = d 2 + 1 = g dα,dβ,dγ (by Theorem 7.2.1);

  the transposed matrices of these ones (that we number in the same order: the transposed matrix of Matrix k O has number 18+k). Respectively associated dominant, regular, Ĝ-regular one-parameter subgroups are for instance (using once again the notation explained in Section 4.3.2 for such subgroups):115 τ 1 = (6, 3, 0|2, 1, 0)τ 2 = (10, 4, 0|5, 2, 0) τ 3 = (8, 2, 0|4, 3, 0) τ 4 = (10, 3, 0|6, 2, 0) τ 5 = (7, 1, 0|4, 2, 0) τ 6 = (8, 5, 0|4, 2, 0) τ 7 = (6, 3, 0|4, 2, 0) τ 8 = (12, 5, 0|10, 6, 0) τ 9 = (12, 5, 0|10, 4, 0) τ 10 = (9, 2, 0|8, 4, 0) τ 11 = (7, 5, 0|4, 3, 0) τ 12 = (12, 8, 0|9, 6, 0) τ 13 = (10, 6, 0|8, 7, 0) τ 14 = (8, 2, 0|9, 4, 0) τ 15 = (8, 4, 0|9, 6, 0) τ 16 = (8, 2, 0|10, 7, 0) τ 17 = (4, 2, 0|6, 5, 0) τ 18 = (4, 1, 0|7, 5, 0)

  donne une telle face explicite de dimension n 1 n 2 .

	k
	k + 1
	On dénit aussi (cf Paragraphe 6.3.5) cinq autres sortes de congurations pouvant ap-paraître dans une matrice d'ordre (appelées Congurations A O à E O), qui mettent cette fois en jeu trois ou quatre de ses coecients. On montre alors que :
	Théorème 1.2.6.
	PKron n 1 ,n 2 , qui ne contient que des triplets stables, et donnée explicitement dans le Paragraphe 6.3.4. De même, toute conguration du type

row i row i + 1 column j Soit τ un sous-groupe à un paramètre dominant, régulier, et Ĝ-régulier de T . Toute conguration d'un des types A O à E O apparaissant dans la matrice d'ordre de τ donne alors une face pas nécessairement régulière et possiblement réduite à zéro du cône de Kronecker PKron n 1 ,n 2 qui ne contient que des triplets presque stables. On conclut ce chapitre en regardant tous les exemples de matrices d'ordre possibles de taille 2×2, 3×2, et 3×3, an de voir combien nos résultats précédents produisent de nouvelles (i.e. par rapport au résultat de Manivel et Vallejo) faces. Par exemple, dans le cas des matrices d'ordre de taille 3×2, on obtient 23 nouvelles faces régulières de PKron 3,2 qui ne contiennent que des triplets stables, alors que 5 autres étaient déjà connues. On obtient également 2 autres nouvelles faces non régulières, qui elles ne contiennent que des triplets presque stables.

  y] 2d désigne le C-espace vectoriel des polynômes homogènes en deux variables x et y, de degré 2d, sur lequel Q ⊂ SL 2 (C) agit par son action naturelle sur (x, y).

  Borel subgroup B of G, containing a maximal torus T of G, and P a parabolic subgroup of G containing B. Then G/B and G/P are projective varieties which are called ag varieties (the former is the complete ag variety, whereas the latter is said to be a partial ag variety if P contains strictly B).

	3.1 Branching coecients expressed geometrically
	When the reductive groups involved in the denition of the branching coecients are connected, there is a nice geometric expression of these coecients in terms of sections of line bundles on ag varieties. Let G be a complex connected reductive group. Consider moreover a

  Hence m(λ) is a polynomial with rational coecients in the variables a i .

	Improvement of the bounds of Sections 4.3.2 and 4.3.3
	We now come back to the notations of Section 4.2.
	Proposition 4.3.15.

L(k) γ i , and τ (π * (L μ ) H ) is a certain class in the Chow group A * (X ss st (C k ) H) ⊗ Z Q. If d 0 ∈ N is such that, for all

  again, D 2 ≤ D 2 . And, this time, D 2 -D 2 = ν 4 . As a conclusion, it is better to use the rst way of computing the bound, and that is what we do later on the examples.

  Then we also obtain another result, concerning other types of congurations in the order matrix (called Congurations A O to E O, and involving now three or four coecients of the order matrix, see Section 6.3.5), and which is more about almost stable triples: and possibly reduced to zero of the Kronecker cone PKron n 1 ,n 2 which contains only almost stable triples.

	Theorem 6.1.6. Each one of the Congurations A O to E O in the order matrix gives a face not necessarily regular
	k	row i
	k + 1	row i + 1
	column j	

  and T ⊃ T respective maximal tori, and B 1 , B 2 , B = B 1 × B 2 , B respective Borel subgroups containing the corresponding tori. Recall then our usual interpretation of the Kronecker coecients (see for instance Proposition 3.1.5): if α, β, and γ are partitions of lengths at most n 1 , n 2 and n 1 n 2 respectively, then there exist explicit line bundles L α , L β , and L γ , on G 1 /B 1 , G 2 /B 2 , and Ĝ/ B respectively, giving a G-linearised line bundle L α,β,γ = L α ⊗ L β ⊗ L * γ on G/B × Ĝ/ B such that:

  We will see later (cf Paragraph 6.4.2) that such congurations can indeed give two dierent faces of PKron n 1 ,n 2 .

	( E O for the former and e O for the latter) each give two a priori dierent dominant pairs . Example: When one applies Theorem 6.3.18 to the same order matrix as in Paragraph 6.3.4, one gets two new dominant pairs: a Conguration C O and a Congura-tion D O can be observed, which give respectively
	1 j + 2

  As before, the subspace of (α, β, γ) s.t. |α| = |β| = |γ|, (α) ≤ 2, (β) ≤ 2, (γ) ≤ 4 spanned by this face has the following equations:

	6.4.1 All order matrices of size 2×2	
	For a dominant, regular, Ĝ-regular one-parameter subgroup τ of T , there are only two
	possible order matrices (i.e. types of additive matrices) in this case:
	and	,

  Question 2: Are the pairs (C, τ ) obtained from Congurations A O to E O well-covering (or simply covering, since by Lemma 6.3.12 it is equivalent in that context)? In the previous examples, we noticed that the faces obtained from Congurations A Is it true that a dominant pair (C, τ ) coming from Theorem 6.3.18 is well-covering if and only if it comes from a Conguration A

	O O were regular every time. On the contrary, those coming from Congurations C and E O and D O were never regular. Note that the examples that we considered were too small to observe a Conguration B O. But our guess would be that this conguration should behave similarly to Conguration A O.
	Question 3: O, B O, or E O?

La notation x désigne la partie entière supérieure du réel x (i.e. l'entier vériant x -1 < x ≤ x ).

We will therefore use this implication in almost (see at the end of Section 7.1) the whole thesis.

Note that this chapter, together with the rst two sections of Chapter 5, forms an article submitted in January 2017.

The notation x stands for the ceiling of the number x (i.e. the integer such that x -1 < x ≤ x ).

The notation x stands for the ceiling of the number x (i.e. the integer such that x -1 < x ≤ x ).

In other words, if V is a complex vector space of dimension n, and λ a partition of length ≤ n, then S λ (V ) is the corresponding irreducible representation of GL(V ). Moreover, all complex irreducible polynomial representations of this group are obtained this way.

the additive maps ϕE • χi : Pic G (X) → R can be extended without problem to Pic G (X) ⊗ Z Q

http://www.sagemath.org/

This assumption in fact does not make us produce less faces at the end.

He even proved it in a much more general setting than PKronn 1 ,n 2 .

The ordering of the basis of V1 ⊗ V2 gives in particular an explicit bijection between 1, n1 × 1, n2 and 1, n1n2 , which we will regularly use to identify the two in what follows.

for any û ∈ Ŵ , û∨ is dened as ŵ0 û, where ŵ0 is the longest element of the Weyl group Ŵ

The set of one-parameter subgroups of T verifying condition (6.1) is an open convex polyhedral cone and, among those subgroups, the not Ĝ-regular ones are elements of some hyperplanes. Thus the set of dominant Ĝ-regular one-parameter subgroups of T verifying condition (6.1) is not empty.

We follow exactly the same reasoning as in the second case, and keep the same notations. We assume here that Φ(v -1 ) = 2, i.e. v -1 = s α s β , for α and β distinct simple roots of G. If s α and s β commute, one then has

According to the dierent possibilities there are for α and β, we then have seven dierent types for Φ(v -1 ):

with the direct sum over all triples (α + , α -), (β + , β -), (γ + , γ -) of double partitions of n. On the other hand,

where GL(V ± ) = GL(V + ) × GL(V -) and

Moreover, one has a branching

denoted by Ĝ and then a decomposition

. Thus, by identication: Proposition 5.2.2. The coecients n γ ± α ± ,β ± are also the coecients in the branching situation G → Ĝ, i.e. for all double partitions (γ + , γ -),

This new expression yields, by Schur's Lemma,

And nally we prove the following proposition:

Proposition 5.2.3. Let (α + , α -), (β + , β -), and (γ + , γ -) be three double partitions of the same integer. Then there exist a complex reductive group G acting on a projective variety X, and a G-linearised line bundle L α ± ,β ± ,γ ± on X such that

Proof. According to what precedes and thanks to Borel-Weil's Theorem, it is sucient to consider complex vector spaces

Two other cases

For (α, β; γ) = (2), (1); (2)

thanks to Proposition 5.3.16 and its proof.

Then we take the same τ 1 as before to destabilise x 1 (still μ L (x 1 , τ 1 ) = 1), and τ 2 = 1, 0, . . . , 0 -1, 0, . . . , 0 which destabilises

Theorem 5.3.18. The sequence of general term a ν+(2d)

For (α, β; γ) = (2), (1); (3) : Then L = O(2) ⊗ O(1) ⊗ O(3) and a non-zero G-invariant section of L over X is given by C(ϕ

Then we take the same τ 2 as before to destabilise x 2 (still μ L (x 2 , τ 2 ) = 1), and τ 3 = -3, -2, . . . , -2 1, 0, . . . , 0, -2 which destabilises x 3 : μ L (x 3 , τ 3 ) = 1. Finally,

Theorem 5.3.19. The sequence of general term a ν+(3d) λ+(2d),μ+(d) is constant when

Chapter 6

Production of stable triples 

Stable triples are of particular interest because of a well-known result that we give now: let us consider the following set, for n 1 and n 2 positive integers:

where the notations are the same as in [START_REF] Manivel | On the asymptotics of Kronecker coecients[END_REF]. A classical result is that Kron n 1 ,n 2 is a nitely generated semigroup, and we consider the cone generated by this semigroup:

It is a rational polyhedral cone called the Kronecker cone, or the Kronecker polyhedron.

Then a result highlighting an important aspect of the stable triples is the following, which can for instance be found in [START_REF] Manivel | On the asymptotics of Kronecker coecients 2[END_REF] (Proposition 2): Remark 6.3.4. If we only make the hypothesis that (C, τ ) is dominant, Remark 6.3.2 tells us that we still have almost stable triples: for all (α, β, γ) ∈ F(C), for all d ∈ N * ,

But note that F(C) can be reduced to zero.

Remark 6.3.5. There is an important particular case when τ is dominant, regular (i.e.

for all α ∈ Φ, α, τ = 0), and Ĝ-regular (i.e. for all α ∈ Φ, α, τ = 0). Then G τ = T and Ĝτ = T . As a consequence, C is a singleton say {x 0 } , and the condition G τ has a dense orbit in C is automatic. Moreover one then has:

All the previous results and remarks lead directly to the following main result: Theorem 6.3.6. i.e. if and only if the intersection between two generic translates in Ĝ/ P (τ ) of P vP (τ )/P (τ ) and P v P (τ )/ P (τ ) contains exactly one point.

In these cases it is easy to then express v -1 and v-1 and we will get the following result: Theorem 6.3.16. As soon as we have

1, n 1 n 2 and ŵ(k + 1) = (i, j + 1), we have a well-covering pair (C, τ ) (and hence a regular face F(C) of the Kronecker cone PKron n 1 ,n 2 containing only stable triples), where

) and ŵ(k + 1) = (i + 1, j), the pair (C, τ ), where

is well-covering. Proof. We have already seen why these two kinds of properties for ŵ give dominant pairs (thanks to Proposition 6.3.9). Then all that remains to be seen is whether these pairs are in fact well-covering, which will be done by looking at the Schubert condition (see Lemma 6.3.8): recall that we have an injective map

We can be a little more precise while describing what ι does on ags:

, with:

Then we want to look at the intersection between two generic translates of

Here, in both cases, there exists

is a Schubert variety of codimension 1, and hence a divisor of

As a consequence it can be rewritten as

corresponding for instance respectively to the one-parameter subgroups

which we will from now on denote by τ 1 = (2, 0|1, 0) and τ 2 = (1, 0|2, 0). Each one of these order matrices gives one face of PKron 2,2 , that we will call additive, coming from the result of Manivel and Vallejo (i.e. Theorem 6.3.13). They are respectively given by

and C

(2)

Then Theorems 6.3.17 and 6.3.18 enable us to nd other faces (all those coming from the rst order matrix will be denoted with an exponent (1) and all others with an exponent (2)). While giving them, we will at the same time normalise the singletons C's as we did in the previous examples: they will all have the form (B/B, û B/ B) with û ∈ Ŵ .

(It allows to apply Lemma 6.2.4 when the pairs are well-covering).

Theorem 6.3.17 applied to the rst possible order matrix gives two well-covering pairs, with C

(1) Let us do the same for the second possible order matrix (it is actually what we did in the examples of the previous section). With Theorem 6.3.17:

And with Theorem 6.3.18:

These examples being small, it is then not dicult to look in details at every possibly non-regular face (i.e. those coming from Theorem 6.3.18). What we nd is that these four dominant pairs actually dene all the same non-regular and non-zero face of PKron 2,2 .

Geometric study of the examples of Briand-Orellana-Rosas

The exact theorem in [START_REF] Briand | Reduced Kronecker coecients and counter-examples to Mulmuley's strong saturation conjecture SH[END_REF] giving the whole family of counter-examples that we have mentioned is:

Theorem 7.2.1 (Briand-Orellana-Rosas). Let i, j, and k be integers such that i > j > 0 and k > 2i + j. Set α = (k, k), β = (k + 1, k -1), and γ = (2k -2i -2j, 2i, 2j). Then, for all d ∈ N * ,

In particular, g α,β,γ = 0 and, if d ≥ 2, g dα,dβ,dγ > 0.

We would like to understand geometrically these examples. Take then integers i, j, k, and partitions α, β, γ of 2k as in the theorem. We know that, if we set

Lemma 7.2.2. Let us denote by Q the quaternionic group, seen as a subgroup of SL 2 (C) (of cardinal 8). Then, for any positive integer d, there is a natural embedding

Let us set some notations concerning the group of quaternions Q:

and then Q = {± I 2 , ±I, ±J, ±K}, with IJ = K = -JI, JK = I = -KJ, and KI = J = -IK.

Proof. Let d be a positive integer. We rst set

The action of G on Y is: ). Then, for all d ∈ N * , H acts linearly on the vector space C[x, y, z] 3d of homogeneous polynomials of degree 3d in three variables x, y, z, via its natural action on (x, y, z). Let d ∈ N * . We can compute the dimension of the space (C[x, y, z] 3d ) H of invariants.

Proposition 7.3.1. The dimension of the vector space (C[x, y, z] 3d ) H is: In particular, f (1) = 0 and f (d) > 0 as soon as d ≥ 2.

Proof. Denote by P 3d the set of all triples of non-negative integers whose sum is 3d.

Then:

The matrix A acts by: if (p, q, r) ∈ P 3d , x p y q z r → (-1) d+r x p y q z r . Therefore,