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Résumé

Les propriétées optiques très spécifiques des petits objets métalliques
sont à l’origine des avancées spectaculaires réalisées dans le domaine
de la nanophotonique [1–4]. Ce sont les oscillations collectives des
électrons de conduction qui permettent de telles propriétés optiques.
Ces excitations, où les charges électriques oscillent, soit à la surface
du métal soit directement à l’interieur des nanostructures, sont ap-
pellées résonances plasmons de surface [3]. Dans le premier cas [5],
les plasmons se propagent le long de l’interface entre le métal et le
diélectrique avec une impulsion non-nulle. Cette thèse se concentre sur
le second cas, celui de nanoparticules où les plasmons sont confinés,
ce qui à pour effet de localiser les oscillations des charges électriques
à l’interface avec le milieu diélectrique environnant. Ce type de plas-
mons est appelé plasmon de surface localisé (LSP) et nous utiliserons
la terminologie de plasmons de surface lorsque aucune confusion avec
les plasmons propageants n’est possible.

Tandis que les recherches scientifiques sur les LSPs (ou plasmons)
s’étendent sur plus d’un siècle [12], leurs utilisations remontent à des
temps encore plus anciens [13]. Allant du cas de la nanoparticule
unique [1, 12, 14–35] à celui où un réseau régulier de nanoparticule à
été réalisé [36–67] offrant ainsi un environnement de recherche riche et
permettant des avancées scientifiques diverses dans la compréhension
des intéractions entre la lumière et la matière à l’échelle du nanomètre.
Grâce aux avancées dans le domaine de la miniaturisation [63], les sci-
entifiques sont à présent capables de concevoir des réseaux de nanopar-
ticules où les espaces entre les particules ainsi que les propriétés des
matériaux sont très bien contrôlées. De tels progrès nous permettent de
développer et tester les concepts théoriques présentés dans cette thèse
aidant ainsi dans la conception de nouveaux matériaux possédant de
nouvelles propriétées optiques.

L’étude des excitations collectives dans des dimères constitués de
nanoparticules [71] date de plus de 74 ans après l’article fondateur de
Mie [12] sur la particule unique. Dans de telles structures dimérisées,
les intéractions entre les plasmons de chacune des deux nanoparticules
provoque l’apparition de modes collectifs symétriques et anti-symétriques.
Les modes symetriques sont fortement couplés à la lumière et sont
donc généralement appellés brillants dans la littérature scientifique. À
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l’inverse, les modes anti-symétriques ne se couplent que faiblement à la
lumière sont donc appellés modes sombres.

La description théorique de ces modes plasmoniques collectifs à été
réalisée à travers différentes méthodes [71–78]. Une de ces méthodes
est de partir de la théorie de Mie en utilisant ensuite les équations
de Maxwell [71, 72] afin d’obtenir l’énergie de ces modes. Cependant,
l’absence de symétries sphériques dans le cas du dimère ne permet
pas de réaliser les calculs de façon exacte et nécessite certaines ap-
proximations ou des calculs numériques pour être achevés. L’avantage
de cette approche est qu’elle inclut directement les résonances plas-
moniques multipôlaires. Une méthode simplifiée proposée par Nordlan-
der et al. [73] à été utilisée afin d’obtenir une hybridisation plasmonique.
Dans leur travail, les auteurs ont montré que les modes collectifs d’une
nanoparticule peuvent être décrits comme une superposition d’états liés
et anti-liés constitués de plasmons individuels qui possèdent respective-
ment une énergie faible et élevée. En utilisant leur model, ils ont pu
obtenir les niveaux énergétiques de ces modes plasmoniques couplés
ainsi que leur dépendance avec la distance entre les nanoparticules.

Du côté expérimental, l’avancée des techniques de miniaturisation
ont permis de réaliser des dimères constitués de nanoparticules de taille
ainsi que de séparation très petites, qui ont alors pu être étudiés [79–86].

Ces structures dimérisées en plus de leurs propriétées intrinsèques
intéressantes constitues un excellent point de départ pour l’étude de
structures plus complexes telle que des chaines de nanoparticules.

La proposition d’utiliser une châıne linéaire de nanoparticules métalli-
ques sphériques pour propager de manière guidée la lumière sur des
distance sub-longueur d’onde [37] a été accompagnée par des calculs
d’électromagnétisme classique basés sur la théorie généralisée de Mie
[36]. En résolvant les équations de Maxwell pour une châıne linéaire
de nanoparticules d’argent de 25 nm de rayon (la lumière excitant la
châıne n’illumine que la première nanoparticule de la châıne), les au-
teurs de la Ref. [37] ont essayé d’optimiser l’écart de distance entre les
nanoparticules pour obtenir une longueur maximale de propagation.
Une longueur de propagation significative n’a été trouvée que pour
une excitation longitudinale (champ électrique parallèle à l’axe de la
châıne). La longueur de propagation maximale (900nm) a été obtenue
pour une distance centre-à-centre de 75nm. De telles châınes, ainsi que
des structures contenant des jonctions ou des coins ont été étudiées par
Brongersma et al. [40] à partir d’un modèle se basant sur des dipôles
ponctuels électriques couplés. À partir de la forme analytique des rela-
tions de dispersion des modes longitudinaux et transverses, ils ont pu
montrer que ces modes ne sont que faiblement affectés par un couplage
pris au delà des plus proches voisins.

En supposant un rayonnement électromagnétique d’une nanopartic-
ule non-couplée, les auteurs de la Ref. [40] ont trouvé des pertes radia-
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tives négligeables basées sur l’estimation de la radiation d’un unique
électron oscillant. Avec ces hypothèses, des atténuations comparables
pour les modes transverses et longitudinaux ainsi que des distances
de propagations similaires à celles obtenues dans la Ref. [37] furent
obtenues. Les résultats de la Ref. [40] ont ensuite été testés en utilisant
des calculs de difference finie dabs la domain temporel (FDTD) pour
une châıne constituée de nanoparticule d’argent [44], confirmant ainsi la
relation de dispersion obtenue en utilisant le modèle des dipôles couplés
de la Ref. [40]. De plus, la possibilité de propager une excitation pulsée
a été confirmée par les auteurs de la Ref. [44], tandis qu’une atténuation
(de 3dB/140nm pour les modes longitudinaux et 3dB/43nm pour les
transversaux) plus élevée que celle prédie dans la Ref. [40] pour une
châıne de nanoparticules d’argent a été observée.

Des études théoriques plus approfondies ont consideré l’influence
des effets du retard de l’intéraction dipôle-dipôle sur les propriétées
plasmoniques d’une châıne. Il a été montré [46, 47] qu’il existe un
comportement non-monotone pour la relation de dispersion des modes
transverses dû à ces effets de retard, alors que les modes longitudinaux
ne sont pas affectés. Dans la Ref. [46] il a été avancé que la concor-
dance de phase entre la dispersion plasmonique et les photons de même
fréquence était responsable de cette non-monotonie. De plus, il a été
montré que les effets des intéractions sur les pertes radiatives donnent
un amortissement radiatif dépendant du mode plasmonique [46,47].

Il a été montré que la décroissance de la propagation plasmonique
dans une châıne électriquement forcée était de nature non-exponentielle,
à la fois pour les modes transverses et longitudinaux [46], avec les modes
transverses subsistant sur des distances plus importantes que les modes
longitudinaux. D’autres travaux utilisant une approche similaire ont
cette fois étudié des châınes ordonnées et désordonnées de nanopartic-
ules métalliques [53]. Tandis que des comportement similaires à ceux
obtenus à la Ref. [46] pour les relations de dispersion et l’amortissement
radiatif ont été observés, il a été introduit une distinction entre deux
type de plasmons : les plasmons ordinaires, des modes sub-radiatifs qui
sont loalisés en présence de désordre et ceux dits extraordinaires, des
modes qui radient quelque soit le désordre présent.

Plus récemment, les propriétées quantiques des châınes de nanopar-
ticules métalliques ont également suscité de l’attention du fait que
de telles châınes pourraient servir d’outils de communication quan-
tiques [57] et pourraient présenter des états intriqués stockés dans les
plasmons collectifs [61].

La première observation expérimentale du champ proche associé
aux plasmons collectifs dans une châıne ordonnée de nanoparticules
à été réalisée par Krenn et al. [38] en utilisant un microscope à bal-
ayage (PSTM). Les images PSTM obtenues pour une châıne de 10000
nanoparticule d’or (Au) de taille 100×100×40nm3 et séparées par une
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distance de 100nm sont cohérente avec la résolution numérique des
équations de Maxwell. En utilisant une technique de spectroscopie en
champ lointain plutôt qu’en champ proche, Maier et al. [42] ont mesuré
les fréquences à longueur d’onde infinies des modes transverses et lon-
gitudinaux pour une châıne constituée de 80 nanoparticules sphériques
d’or d’un diamètre de 50nm et séparées de 75nm. Ces résultats expérimen-
taux ont été confrontés aux prédictions de la Ref. [40] et ont permis
l’accès aux vitesses de groupe des plasmons.

D’autres études expérimentales [43] utilisant un microscope à bal-
ayage optique en champ proche (NSOM), ainsi que des colorants flu-
orescents, ont étudié le transport d’énergie le long d’une châıne de
nanoparticules d’argent de taille 90×30×30nm3 séparées par une dis-
tance de 50nm, et ont obtenu une atténuation de l’excitation plas-
monique de 6dB sur 195nm. De plus, les avancées récentes des tech-
niques expérimentales ont permis d’imager spatialement le champs élec-
trique associé aux plasmons le long de la châıne utilisant un microscope
optique en champ proche [60]. La spectroscopie par perte d’energie des
électrons (EELS) a également éététilisée pour exciter et détecter des
modes sub-radiants dans des châınes de nanoparticules [62].

Nous proposons dans cette thèse une approche générale basée sur
le concept de système quantique ouvert pour étudier les plasmons en
intéraction dans des assemblées unidimensionnelles de nanoparticules
métalliques. Ce modèle nous donnera les outils pour comprendre com-
ment la séparation entre les particules influence la relation de dispersion
ainsi que les méchanismes d’amortissements du système. Il nous per-
mettera également d’étudier la propagation des excitations à travers
des châınes de nanoparticules.

Le chapitre 2 est consacré au cadre théorique de l’approche du
système quantique ouvert dans l’approximation du jellium appliqué
pour une nanoparticule métallique isolée. Partant du hamiltonien mi-
croscopique dans la jauge de Coulomb, nous séparons les coordonnées
en cordonnées du centre de masse (plasmons) et coordonnées relatives
(électrons), qui donne alors lieu à la forme générale du hamiltonien du
système

H = Hpl +Heh +Hpl−eh +Hph +Hpl−ph, (1)

qui est utilisé aux chapitres 3 et 4 (avec l’ajout d’une force externe
dans le chapitre 4). Dans l’Eq. (1), Hpl décrit les plasmons et leurs
intéractions mutuelles, Heh et Hph représentents respectivement les
bains de paires électrons-trous et de photons. Hpl−eh et Hpl−ph sont re-
spectivement les interactions entre le système plasmonique et les bains
de paires électrons-trous et de photons. Le hamiltonien (1) est car-
actéristique d’un système quantique ouvert, où le petit système quan-
tique (plasmon) est couplé à l’environnement (électronique et pho-
tonique) extérieur. L’utilisation de l’approximation de champ moyen
pour le bain électronique permet d’obtenir des résultats analytiques
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concerant le temps de vie des plasmons.
Le couplage entre les plasmons et les électrons est dû à la brisure du

théorème de Kohn [89], à cause du caractère non-harmonique du poten-
tiel de confinement de l’électron. Ce couplage permet alors l’existence
d’un processus où le plasmon se désintègre en produisant une paire
électron-trou (i.e. l’amortissement Landau). À la section 2.3 nous
présentons la méthode pour évaluer cet amortissement Landau utilisant
une rêgle d’or de Fermi qui donne alors

γL
0 =

3vF
4a

g

(

~ω0

EF

)

, (2)

où vF et EF sont respectivement la vitesse et l’énergie de Fermi. Dans
l’expression ci-dessus, ω0 est la fréquence de Mie d’un plasmon dans
une nanoparticule et a est le rayon de la nanoparticule. La fonction
g(ν) est définie par

g(ν) =
2

ν

1+ν
∫

max{1,ν}

dx

x−ν
∫

0

dy
√

(x− y)(x− y − ν). (3)

La forme de l’amortissement Landau (2) est en accord avec celle
proposée par Kawabata et Kubo [14] montrant une relation inversement
proportionnelle à la taille de la nanoparticule a.

À la section 2.4 nous évaluons l’effet du couplage entre les plasmons
et les photons. Ce couplage donne lieu à des pertes radiatives qui sont
une conséquence directe de la radiation provenant de charges accélérées.
Utilisant également une rêgle d’or de Fermi, il est possible d’obtenir
l’expression bien connue de l’amortissement radiatif,

γr
0 =

2ω4
0

3c3
a3, (4)

qui ne dépend pas de la polarisation à cause de la symétrie sphérique
du système. On peut noter que l’amortissement radiatif (4) dépend du
volume de la particule qui est relié au nombre d’électrons constituant
le plasmon. Ce résultat (4) peut également être retrouvé en utilisant
l’électrodynamique classique [70], que nous présentons à l’annexe A.
Cependant, utilser la théorie quantique rend cette présentation plus
uniforme et cohérente.

Nous utilisons au chapitre 3 le cadre théorique du chapitre 2 pour
étudier comment les amortissement Landau et radiatif changent dans le
cas de dimères, qui constituent la brique élementaire de structures plus
complexes telle que la châıne de nanoparticules présentée au chapitre
4.

Nous commençons notre étude en calculant les modes propres des
plasmons collectifs d’un dimère hétérogène représentéà la Figure 1.
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a1 a2
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I IIIII

N1 N2

%d1
%d2

Figure 1: Schéma d’un dimère hétérogène constitué de deux nanopar-
ticules de rayons a1 et a2 contenant, respectivement, N1 et N2 électrons,
séparées d’une distance d l’une de l’autre. ~d1 et ~d2 représentent respec-
tivement le centre de la nanoparticule 1 et 2.

Partant du hamiltonien microscopique du système sous l’hypothèse
que la distance entre les particules d est bien plus grand que le rayons
des nanoparticules an, nous exprimons le hamiltonien sous la forme
suivante:

Hpl =
2
∑

n=1

(

P2
n

2Mn

+
Mn

2
ω̃2
nR

2
n

)

+
Q1Q2

d3
[R1 ·R2−3(R1 ·d̂)(R2 ·d̂)], (5)

où Mn = Nnme et Qn = Nne sont respectivement la masse et la charge
électronique totale de la n-ième nanoparticule, et ω̃n est la fréquence
de Mie du plasmon de la n-ième nanoparticule décallée vers le rouge dû
aux effets de spill-out, [1, 18, 88]

ω̃n = ωn

√

1− Nn,out

Nn

, ωn =

√

Nne2

a3nme

. (6)

Rn etPn à l’Eq. (5) sont respectivement le centre de masse et l’impulsion
du plasmon de la n-ième nanoparticule. Introduisant une description
en seconde quantification avec des opérateurs d’annhilation (création)
pour les plasmons de la nanoparticule n dans la direction σ̂ bσn (bσ†n ),
nous diagonalisons le hamiltonien plasmonique utilisant des transfor-
mations de Bogoliubov. Pour celà, nous utilisons une méthode proposée
par Tsalis [90] pour des hamiltoniens bosoniques quadratiques. Cette
diagonalisation donne alors la forme des fréquences propres des modes
plasmoniques couplés

ωσ
α =

√

(ω̃1 + ω̃2)2

4
+ α

√

(ω̃2
1 − ω̃2

2)
2

4
+ 4η2σΩ

2ω̃1ω̃2, (7)
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avec α = ±, ηx(y) = 1, ηz = −2 et

Ω =
1

2

2
∏

n=1

[

ω̃n

1−Nout,n/Nn

]1/2
(an
d

)3/2

. (8)

Nos résultats obtenus pour les fréquences et vecteurs propres con-
firment ceux présentés dans la littérature scientifique (i.e. évolution de
l’énergie propre en fonction de la distance d entre les particules en
d−3 provenant de l’intéraction dipôle-dipôle) [71, 73, 75]. Les modes
propres obtenus sont de deux natures: symétriques (i.e. plasmons ori-
entés parallèlement) qui sont fortement couplés à la lumière et donc
dénommé modes lumineux; et anti-symétriques (i.e. plasmons orientés
anti-parallèlement) couplés faiblement à la lumière et dits modes som-
bres.

À la section 3.3, nous utilisons les résultats du chapitre 2 pour
obtenir les expressions analytiques de l’amortissement Landau des modes
collectifs

γσ,L
± =

2
∑

n=1

3vnF
4an

∆uσ2
±,n

(

ωn

ωσ
±

)3

g

(

~ωσ
±

En
F

)

, (9)

où g(ν) est la fonction définie à l’Eq. (3) et

∆uσ
n± = uσ

n± − ūσ
n±, (10)

avec

uσ
n,α = sign[αησ]

n−1 ω
σ
α + ω̃n

2
√

ω̃nωσ
α

√

ωσ2
α − ω̃2

n̂

2ωσ2
α − ω̃2

1 − ω̃2
2

, (11)

et

ūσ
n,α = sign[αησ]

n−1 ω
σ
α − ω̃n

2
√

ω̃nωσ
α

√

ωσ2
α − ω̃2

n̂

2ωσ2
α − ω̃2

1 − ω̃2
2

, (12)

où n̂ = 1(2) pour n = 2(1).
L’expression analytique de l’amortissement radiatif des modes col-

lectifs est présentée à la section 3.4:

γσ,r
± =

2ωσ3
±

3c3

(

2
∑

n=1

√

ωna3n∆uσ
n,±

)2

, (13)

où ∆uσ
n,± est défini à l’Eq. (10).

Dans le cas d’un dimère homogène, le taux de décroissance du mode
sombre est nul tandis que celui du mode brillant est deux fois plus im-
portant que celui d’une nanoparticule unique. Dans le cas d’un dimère
hétérogène, le mode sombre irradie toujours. De plus, pour une polar-
isation longitudinale, l’amortissement radiatif du mode lumineux aug-
mente en augmentant la distance séparant les nanoparticules jusqu’au
point qu’il dépasse en intensité l’amortissement Landau du mode.
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Les résultats présentés au chapitre 3 sont en excellent accord avec
les résultats expérimentaux existants [79, 80, 85, 86] ainsi qu’avec les
calculs numériques [75], ceci encourageant donc l’utilisation de notre
modèle analytique.

Le chapitre 4 est consacré à l’étude d’une châıne homogène de
nanoparticules. Nous commençons par étendre le hamiltonien (1) du
système en ajoutant le forçage électrique externe nécessaire pour décrire
correctement les expériences,

H = Hpl +Heh +Hpl−eh +Hph +Hpl−ph +Hdrive. (14)

Considérant une châıne finie, nous utilisons alors une transformation
sinusöıdale

bσn =

√

2

N + 1

∑

q

sin (nqd) bσq , (15)

et une transformation de Bogoliubov

Bσ
q = cosh θσq b

σ
q + sinh θσq b

σ†
q , (16)

afin d’obtenir les modes propres des plasmons collectifs, montrant ainsi
la relation de dispersion déjà calculée dans la littérature [40]

ωσ
q = ω0

√

1 + 4ησ
Ω

ω0

cos (qd). (17)

Les opérateurs Bσ
q (Bσ†

q ) détruisent (créent) un plasmon collectif avec
une impulsion q dans la direction σ̂.

Utilisant ces modes propres des plasmons collectifs, nous dérivons
une équation mâıtresse pour la matrice densité des degrés de libertés
plasmoniques pour la polarisation σ = x, y, z ρσ. Dans cette dérivation,
nous nous plaçons dans la limite de faible couplage ainsi que dans une
approximation de processus markoviens.

L’approximation de faible couplage permet d’assurer que les intér-
actions entre les plasmons et les bains ne changent pas les états de
ces bains. L’hypothèse markovienne permet de prendre en compte le
fait que le temps caractéristique d’évolution du système est bien plus
élevé que le temps de corrélation des électrons présents dans le système
plasmonique.

L’équation mâıtresse donne alors

ρ̇σ =− i
∑

q

ω̃σ
q

[

Bσ†
q Bσ

q , ρ
σ
]

−
∑

q

γσ
q

2

(

Bσ†
q Bσ

q ρ
σ + ρσBσ†

q Bσ
q − 2Bσ

q ρB
σ†
q

)

+ i
∑

q

Aσ
q f(t)

2ω̃σ
q

[

Bσ†
q +Bσ

q , ρ
σ
]

, (18)
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où l’amplitude Aσ
q est donnée par

Aσ
q = −2

√

2

N + 1
σ̂ · ǫ̂ sin (qd) ΩRω̃

σ
q

√

ω0

ωσ
q

. (19)

Cette équation mâıtresse (18) est obtenue sous la forme de Lindblad,
avec des taux de décroissance obtenus avec les règles d’or de Fermi.

Évaluant la règle d’or de Fermi pour les taux de décroissances
présents dans l’équation (18) nous obtenons pour l’amortissement Lan-
dau

γσ,L
q =

3vF
4a

(

ω0

ωσ
q

)4

g

(

~ωσ
q

EF

)

, (20)

et l’amortissement radiatif

γσ,r
q =

3π|ησ|γr
0

4k0d

(

ωσ
q

)2
+ sgn{ησ}

(

cq
)2

ω0ωσ
q

Θ
(

ωσ
q − cq

)

, (21)

des plasmons collectifs d’une châıne homogène infinie.
Les amortissements radiatifs obtenus (21) sont en excellent accord

avec les précédents résultats numériques obtenus [46], montrant une
nette séparation entre des modes super-radiants (i.e. taux de décroissance
supérieur à celui de la nanoparticule unique) et sub-radiants (i.e. taux
de décroissance inférieur à celui de la nanoparticule unique).

À la section 4.4, nous utilisons l’équation mâıtresse (18), où nous
ajoutons phénoménologiquement les pertes Ohmiques afin de dériver
des équations du mouvement pour des moments dipolaires adimen-
sionnés dans l’espace réciproque,

σ̈q + γσ
q σ̇q + Ωσ

q
2σq = Aσ

q f(t), (22)

avec Ωσ
q
2 = ω̃σ2

q + (γσ
q /2)

2, et où l’amplitude du terme de forçage Aσ
q

est défini par l’Eq. (19).
Nous considérons ensuite deux scénarios de propagation plasmonique

: à la section 4.4.1 nous étudions le cas d’un forçage électrique continu
et monochromatique, et dans la section 4.4.2 celui d’une courte impul-
sion laser pour exciter le plasmon.

Les calculs numériques dans le cas d’un forçage continu pour une
châıne de 1000 nanoparticules d’argent (Figure 2(a)-(d)), montrent dis-
tinctement deux régimes quasistatiques. Pour des courtes distances, les
excitations décroissent de façon exponentielle pour décrôıtrent algébräı-
quement pour des distances plus importantes. L’ajustement des lois de
puissances pour les décroissances algébräıques donnent les exposants 1
(2) pour les modes transverses (longitudinaux). Le changement d’une
décroissance exponentielle à une de type algébräıque est une conséquence
du comportement discontinu de l’amortissement radiatif en fonction
de l’impulsion des plasmons. Ainsi, la décroissance exponentielle tire
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Figure 2: (a)-(d) Ecart type moyenné dans le temps et normalisé
du moment dipôlaire présent sur la nanoparticule n résultant d’une
excitation monochromatique à la fréquence ωd = ω0 de la 1ère nanopar-
ticule d’une châıne de N = 1000 particules avec une distance entre
les particules de d = 3a. Les lignes en pointillés rouges et bleues
correspondent respectivement aux solution numériques de l’équation
(22) pour les modes transverses et longitudinaux en incluant les pertes
ohmiques, Landau et radiatives. Les pointillés épais et les lignes grises
correspondent aux résultats analytiques qui ne prennent pas en compte
l’amortissement radiatif, i.e. pertes Ohmiques et Landau. Les tailles des
nanoparticules sont (a) kFa = 50, (b) kFa = 100, (c) kFa = 200, et (d)
kFa = 300. Les lignes noires pleines et pointillées sont les ajustements
algébräıques pour les modes transverses et longitudinaux respective-
ment (voir texte). (e)-(f) Longueur de propagation ξσ d’aprés l’Eq.
(23) pour les modes (e) transverses (f) et longitudinaux en fonction
a et d. Les paramètres choisis pour la figure sont γa/ω0 = 0.027,
~ω0/EF = 0.47, et ω0/ckF = 1.1 × 10−3, correspondant à une châıne
de nanoparticules d’argent. Les décalages fréquenciels (Lamb) sont ici
négligés.

uniquement son origine de processus non-radiatifs. Utilisants celà et
négligeant l’amortissement radiatif (qui ne contribue qu’a la décroissance
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algébräıque), nous avons calculé de manière analytique les expressions
de l’amplitude et de la longueur de propagation liées à la propagation
des plasmons

ξσ =
d

arcsinh(γnr/4|ησ|Ω)
, (23)

où γnr = γL
0 + γa est la partie non-radiative de l’amortissement d’une

nanoparticule unique.
Dans le cas d’une impulsion laser de courte durée, nous avons testé

le fait que l’amortissement radiatif n’influence que faiblement la prop-
agation de l’impulsion (Figure 3). Ainsi, nous avons calculé, comme
dans le cas du forçage continu, les expressions analytiques des moments
dipôlaires locaux.

De nos résultats, nous pouvons conclure que même si la propaga-
tion plasmonique est possible et pourrait être détectée, l’atténuation
des excitations est suffisamment importante pour rendre la détection
sur grande distance inutile [11]. Cependant, il a été avancé dans la
littérature que l’utilisation des plasmons collectifs pour la transmission
de signaux [37, 40] ne serait que possible pour des relativement cour-
tes distances. Notre travail permet donc à partir de notre modèle de
trouver des moyens de minimiser les pertes qui limitent les possibles
applications de réseaux de nanoparticules [11].

Pour conclure, notre approche basée sur un système quantique ou-
vert peut s’adapter à tout types de réseaux réguliers de nanoparticules
métalliques, donnant ainsi un grand nombre de possibilités pour de
potentielles applications. Utilisant uniquement quelques approxima-
tions, nous avons été capables d’appréhender la physique de la propa-
gation et de l’amortissement des plasmons collectifs dans des châınes
de nanoparticules métalliques. De plus, le fait d’utiliser une descrip-
tion quantique nous à permis d’inclure l’amortissement Landau, qui
constitue un élément essentiel de la description du temps de vie des
plasmons dans des nanoparticules de petites tailles.
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Figure 3: Moment dipolaire de la nanoparticule n en fonction du
temps résultant d’une impulsion laser de courte durée sur la première
nanoparticule. Les modes transverses et longitudinaux sont respective-
ment représentés en pointillés rouges et en lignes bleues. Les paramètres
dans la figure correspondent à ceux d’une châıne infinie de particules
d’argent de rayons a = 200 k−1

F = 16.6 nm et séparées d’une distance
d = 3a.
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Chapter 1

Introduction

The very peculiar optical properties of small metallic objects are at
the origin of the spectacular advances recently achieved in the field of
nanophotonics [1–4]. The collective oscillations of the conduction elec-
trons are responsible for these optical properties. These excitations,
where the electronic charge oscillates at a metal surface or within a
nanostructure are generally referred to as surface plasmon resonances
[3]. In the first case, [5] the plasmons propagate along the metal-
dielectric interface and have non-zero momentum. The focus of our
work will be the second case of metallic nanoparticles, where plasmons
become confined yielding an oscillating pile up of the electronic charge
at the interface with the surrounding dielectric, and are referred to
as localized surface plasmons (LSPs). Using the shorter terminology
of surface plasmons is usually adopted when there is no possibility of
confusion with the surface-propagating oscillations.

LSPs are of particular interest in confining light at the nanoscale.
Their dynamics can be resolved in time in pump-probe experiments [6].
In terms of applications the usage of the LSPs can range from spec-
troscopy to the realization of metamaterials [3]. On the one hand, the
local spectroscopy benefits from the high electric field intensities present
in the vicinity of the nanoparticle, as used for the surface enhanced Ra-
man scattering (SERS) of molecules [7]. This effect can be even further
enhanced due to the interaction between LSPs [8]. On the other hand,
the LSPs in nanoparticle arrays may be exploited to achieve new mate-
rials with unusual optical properties (i.e. metamaterials). This feature
is of particular interest for developing plasmonic circuitry [2], as well
as for fundamental research on novel physical states, such as massless
Dirac bosons originating from arrays of metallic nanoparticles arranged
on a honeycomb lattice [9, 10].

Although plasmonics with the use of LSPs has many potential ap-
plications, it is highly susceptible to losses present in its metallic com-
ponents [11]. These losses are the main reason for limitations of the
use of nanoparticle arrays for practical purposes. Thus, understand-
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ing the mechanisms behind them is of great importance for the field of
plasmonics.

While the scientific research on LSPs (plasmons for short) spans over
a century [12] their application goes even further to ancient times [13].
Going from the single nanoparticle case [1,12,14–35] to the state where
a regular array of nanoparticles was achieved [36–67] defines a rich
research field with various points to advance in an understanding of
light-matter interaction at the nanoscale. Thanks to the advancement
in the miniaturization procedures [63], scientists are now able to fab-
ricate nanoparticle arrays with given regular spacings and controlled
material properties. Such advancements give the possibility to develop
and test our theoretical concepts, helping in the design of novel mate-
rials with interesting optical features.

1.1 Localized surface plasmon

The initial theoretical research on the optial properties of a single spher-
ical particle was done in 1908 by Mie [12]. Using Maxwell’s equations
the author showed the method of obtaining the extinction spectrum for
a spherical dielectric sphere. Using the appropriate dielectric function,
one is able to adapt the method for metals. In addition, under the
condition that the radius of the sphere is much smaller than the wave-
length of the incoming light, one obtains a condition for the resonance
in the extinction spectrum. This condition, using the Drude model for
the dielectric function [5], leads to the following expression for the res-
onance frequency of the metallic sphere (corresponding to the dipolar
plasmon):

ω0 =
ωp√

ǫd + 2ǫm
. (1.1)

The above mentioned frequency is called the Mie frequency, where ωp =
√

4πnee2/me is the plasmon frequency of the metal, with ne, e and me

standing for the electron density, charge and mass, respectively. ǫd
is the correction to the dielectric constant of the metal coming from
the screening of d electrons, while ǫm is the dielectric function of the
embedding medium. In the case of alkali metals in vacuum, the Mie
frequency simplifies to ω0 = ωp/

√
3.

The investigation of electron dynamics in an isolated nanoparticle
can be performed using various theoretical approaches out of which the
most relevant for us is the open quantum system approach [14,17,19,22,
24–27,30]. Another useful method is based on density functional theory
[33]. A different theoretical approach to the electron dynamics in an
isolated metallic nanoparticle incorporates a quantum hydrodynamic
model [31, 35, 68].

The plasmon resonance described by Mie’s theory has a finite linewidth,
as observed in the experiments (see Figure 1.1) [20]. Figure 1.1 (repro-
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Figure 1.1: The black curves show light-scattering spectra from a single
gold and a single silver cluster with 60nm diameter. The red curves
show Lorentzian fits to the spectra. Reproduced from Ref. [20]

duced from Ref. [20]) shows examples of the light-scattering spectra
from single gold and silver nanoparticles. The observed spectra show a
clear resonance with an envelope fitting almost perfectly to a Lorentzian
function. The width of the resonance was associated with the Ohmic
(or absorption) losses in the metal (described by the decay rate γa) due
to inelastic scattering of electrons based on classical conductivity the-
ory [5]. Nevertheless there exist additional sources of energy dissipation
which lead to linewidths that depend on the size of the nanoparticle
(see Figures 1.2 and 1.3).

Figure 1.2 (reproduced from Ref. [20]) shows scattering spectra of
single particles with different sizes (ranging from 20 to 150 nm). In the
figure we observe a tendency of the linewidth to increase with increasing
size of the particles. Figure 1.3 (reproduced from Ref. [28]) shows the
dependence of the spectral width on the inverse diameter 1/Deq. We
observe two regimes (i) for particles smaller than 20 nm the spectral
width increases with decreasing size, and (ii) for particles larger than
20 nm the spectral width increases with increasing size. These two
regimes are linked to two size-dependent mechanisms of damping.

Among the two size-dependent sources of the damping, is a classical
phenomenon associated with the accelerated charges [70], this corre-
sponds to the radiative losses (i.e. radiation damping). The magnitude
of the radiation damping is proportional to the number of electrons in
the nanoparticle, and therefore it scales as a3, where a is the nanoparti-
cle radius. Thus, this mechanism is increasingly important for relatively
large nanoparticles with a > 15 nm (see Figures 1.2 and 1.3).
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Figure 1.2: Scattering spectrum of single particles for various particle
sizes (black curves). The cluster diameters are indicated. The blue
curves show the result of Mie theory calculations using the dielectric
function of gold from Ref. [69]. Reproduced from Ref. [20].

The other relevant size-dependent mechanism, called Landau damp-

ing, was first studied theoretically by Kawabata and Kubo in finite-size
metallic clusters [14] using their linear response theory. It describes a
process in which a plasmon is decaying by creating particle-hole pairs.
This process results in a damping governed by a rate

γL =
3vF
4a

gKK

(

~ω0

EF

)

, (1.2)

with vF and EF being the Fermi velocity and energy, respectively. Note
that γL scales as a−1 and becomes important for small nanoparticles
with a < 10 nm (see Figure 1.3). The function

gKK(ν) = ν−3

1
∫

ν0

dx [x3(x+ ν)]1/2, (1.3)

with ν0 = 1− ν and 0 for ν < 1 and ν > 1, respectively. This function
was later corrected by Ruppin and Yatom [15] for a missing factor of
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Figure 1.3: Spectral width ΓR of the LSP resonance in different single
Ag nanoparticles embedded in SiO2 matrix, as a function of the inverse
diameter 1/Deq. Reproduced from Ref. [28].

π, and further corrected by Yannouleas and Broglia [17] to incorporate
corrections due to the used asymptotes of Bessel function in Ref. [14].
Moreover, the result in Eq. (1.2) was later further refined as to in-
clude the oscillations of the linewidth as a funciton of nanoparticle size
and the effect of the embedding matrix [19, 22, 24–26]. The presence
of two different size-scalings between the cases of radiation and Lan-
dau damping is a key ingredient for the optical properties of metallic
nanoparticles and play a key role in the minimization of the total width
(i.e. maximization of the plasmon lifetime).

1.2 Nanoparticle dimers

The extension to the collective excitation studies in a system consti-
tuted by a particle dimer was performed [71] 74 years after the found-
ing paper of Mie [12]. In dimer structures, the interaction between
individual plasmons on each nanoparticle gives rise to symmetric and
anti-symmetric modes. The former are strongly coupled to light, and
are thus referred to as bright modes in the literature. The latter are
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weakly coupled to the light, and thus called dark modes.

The theoretical description of these coupled plasmonic modes has
been performed through various methods [71–78]. One possible ap-
proach is to start from the Mie theory and use Maxwells’s equations
[71,72] in order to obtain the energies of the modes. The lack of spher-
ical symmetry in the case of dimers renders the calculations involved,
which cannot be carried in an exact way, but need to be approximate
or numerically computed. The advantage of the Mie approach is that
it includes effects of the multipolar plasmon resonances. A simpli-
fied approach proposed by Nordlander et al. [73] was used to obtain
plasmon hybridization. In their work, the authors showed that the col-
lective modes of the nanoparticle can be viewed as bonding and anti-

bonding states composed of the individual plasmons, which have lower
and higher energy, respectively. Using their model they obtained the
energy levels of the coupled plasmonic modes as well as their depen-
dence on the interparticle distance.

Aside for the studies of the energy eigenstates of the system, the
lifetime of the collective plasmons plays an important role limiting any
potential nanoplasmonic applications [11]. The changes in radiation
damping with respect to the case of a single nanoparticle were studied
by Dahmen et al. [74], using a dipolar approximation. This approach
resulted in an oscillatory behavior of the radiation linewidth as a func-
tion of the interparticle distance. These results were also confirmed by
Smith [76].

Studies including Landau damping were performed in Ref. [75],
through the use of time-dependent local density approximation (TD-
LDA) calculations. The results of these calculations are presented in
Figure 1.4 (reproduced from Ref. [75]). The figure shows optical ab-
sorption of the homogeneous dimer with radius R = 16 a0 (left panel
in Figure 1.4) and R = 24 a0 (right panel in Figure 1.4) for different
interparticle separations d, with a0 being one Bohr radius. From the
spectra we can observe a shift of the plasmon resonances and a change
in their widths with decreasing separation (from upper curve down).
Although TDLDA captures the effect of Landau damping, it does not
show what is the effect of the interaction between plasmons in differ-
ent nanoparticles onto the damping. The advantage of this numerical
technique is that it includes the tunneling effects that may occur for
nanoparticles that are almost touching each other. In such cases, a
new plasmonic resonance, called a charge transfer plasmon, appears
(see bottom curves in Figure 1.4).

Up to the initiation of our studies, there was no complete survey
of the influence of the interaction between plasmons onto the damping
mechanisms occurring in nanoparticle dimers. In Chapter 3 we present
such a study based on a model which incorporates both radiation and
Landau damping in a self-contained way.
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Figure 1.4: TDLDA absorption spectra for R = 16 a0 (left
panel) and R = 24 a0 (right panel) for different separations d =
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, and 24 a0 (from bottom curve up),
where a0 is one Bohr radius (0.0529 nm). Reproduced from Ref. [75].

On the experimental front, thanks to the advancement in the fabri-
cation techniques, nanoparticle dimers with very small sizes and sepa-
rations have been achieved [79–86]. Using lithographic methods, Jain et

al. [81,86] managed to fabricate metallic nanodisk pairs with controlled
interparticle separation. The results of the absorption experiment per-
formed on these samples are presented on Figure 1.5. Figure 1.5 (a)
shows a transmission electron micrograph of lithographically-fabricated
nanodisc dimers with diameters of 44 nm and controlled interparticle
separation. Figure 1.5(b) shows the extinction spectra of these dimers
for a longitudinal polarization and varying separation. One can observe
a decrease of the plasmon energy and its linewidth with increasing sep-
aration. Figure 1.5(c) presents the extinction spectra of the fabricated
dimers for the transverse polarization. From the figure one finds a
slight increase of the plasmon energy and decrease of its linewidth with
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Figure 1.5: (a) Lithographically-fabricated array of 88 nm diameter
gold nanodisc pairs with controlled interparticle separation, in this
case 12 nm (inset is a magnified SEM image clearly showing the in-
terparticle gap). Extinction spectra show that LSP resonance of the
particle pair (b) red-shifts with decreasing gap for polarization along
the interparticle axis. (c) Blue-shifts very slightly with decreasing gap
for polarization orthogonal to the interparticle axis. Reproduced from
Ref. [81].

increasing separation.

Other authors studied [79, 80] the characteristics of the symmetric
modes with polarization parallel (longitudinal) and orthogonal (trans-
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Figure 1.6: Experimental EELS data set of a symmetrical silver
nanoparticle dimer, showing plasmon energies as a function of elec-
tron probes position. The spectra are obtained at regular intervals of
4 nm. Reproduced from Ref. [85].

verse) to the interparticle axis confirming earlier theoretical develop-
ments. Nevertheless, those experiments using light as the excitation,
have a major setback, which is their inability to excite the anti-symmetric
modes (the dipole moment of homogeneous dimers is zero and almost
zero in the case of heterogeneous dimers). This setback was solved with
the introduction of the experimental technique called electron energy

loss spectroscopy (EELS) [84, 85]. In an EELS experiment, a beam of
electrons is sent in the vicinity of the particles and, due to the inter-
action of the nanoparticle electrons with the electric field induced by
the electron beam, a plasmon may be exited. Since the interaction is
repulsive, placing the beam in the space between the nanoparticles will
excite the antisymmetric (dark) mode. Moreover, the spatial mapping
of the bright and dark modes is also possible using EELS. An example
of the EELS spectra from Ref. [85] is presented in Figure 1.6. In this
figure the EELS spectra for different positions of the electron beam
are presented. At position (A) of the beam (the lowest and uppermost
curve) we observe the resonance corresponding to the bright mode with
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longitudinal polarization. In position (B1) and (B2) of the beam we
see small peaks at around 3.6 eV identified by the authors as the bulk
plasmon. The plasmon resonance of the dark mode can be seen for the
electron beam in position (C).

The dimer structures, besides their own interesting applications set
a good starting point toward the study of more complex arrays such as
nanoparticle chains.

1.3 Theoretical approaches on plasmon

guiding

The proposal of using a chain of metallic spherical nanoparticles as
a sub-wavelength-scale light guide was issued in 1998 by Quinten et

al. [37]. The transmission of the electromagnetic energy results from the
electromagnetic coupling between the particles. Using the generalized
Mie theory [36], the authors of Ref. [37] obtained the equations for the
expansion coefficients (in the basis of the vector spherical harmonics) of
the electromagnetic wave scattered by the metallic nanoparticle chain
in the case where the incoming field is a plane wave absorbed by the
first nanoparticle. Solving these equations for the chain of N identical
nanoparticles separated by a distance d and using a superposition of
the obtained scattered fields, they were able to calculate the intensity
of the electromagnetic field along the chain.

As an example Quinten et al. calculated an intensity of the elec-
tric field for a chain of 50 Ag nanoparticles with radii 25 nm [37].
The resulting intensity followed an exponential decay along the chain
(see Figure 1.7). In addition, the authors found that the polarization
of the incoming light highly influenced the propagation of the signal
along the chain. It was shown that only for a polarization parallel
to the chain axis (i.e. longitudinal polarization) the propagation was
significant. Moreover, the authors of Ref. [37] tried to determine an
optimal interparticle distance maximizing the possible propagation. In
Figure 1.7 the results of this study are presented. It was found that
the best propagation length (900 nm) was obtained for the interparti-
cle distance d = 3a, where a is the radius of the nanoparticles, which
corresponds to the uppermost curve in Figure 1.7.

Studies of a similar chain as the one of Ref. [37], as well as struc-
tures containing corners and junctions, were conducted by Brongersma
et al. [40]. These authors used a considerably simpler model of elec-
trostatically coupled point dipoles. It was shown that the equations
of motion for these dipoles are these of an ensemble of coupled driven
harmonic oscillators, with damping terms due to both radiative and
non-radiative losses.

The solution proposed in Ref. [40] was that of a traveling wave.
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Figure 1.7: Decay of the field intensity in the chain axis direction.
Values are taken at identical positions of each particle as shown by
the open circles in the inset. The given parameter dij/a is the ratio
of interparticle (center-to-center) distance and particle radius. The
intensities are normalized to the irradiated light-field intensity. Note
the strong nonexponential decay for dij/a > 3. Reproduced from Ref.
[37].

Using as an approximation the small damping limit and assuming that
the radiation damping is the same as the one of an isolated nanopar-
ticle, Brongersma et al. obtained an analytical form for the dispersion
relation for the plasmon frequency as well as an analytical form of the
plasmon attenuation. The former was shown to be only weakly depen-
dent on couplings beyond nearest neighbors, while the latter depended
on both radiative and non-radiative damping mechanisms. Moreover,
these authors argued that the estimation of the radiative losses based
on the single oscillating electron proved that the radiative term might
be dropped, since it is much smaller than the non-radiative one. In the
sequel these authors showed that the above-mentioned approximations
led to a similar result for the propagation length as the one found by
Quinten et al. [37], with the exception that not only the longitudinal
but also the transverse modes present a significant propagation. The
attenuation coefficients were estimated to be 3dB/500nm for the longi-
tudinal mode and 6dB/500nm for the transverse modes, as compared
to 2.4dB/500nm for the longitudinal mode reported in [37].

Later on, within the same group, Maier et al. [41, 44] used the fi-
nite difference time domain (FDTD) simulation to confirm their point
dipole model [40], but using Au nanoparticles instead of Ag ones. Fig-
ure 1.8 shows a plasmon pulse propagation along the chain of spherical
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Figure 1.8: (a) Pulse peak position over time in a plasmon waveguide
consisting of spherical particles for both longitudinal (black spheres)
and transverse (black triangles) polarization. The spheres along the
ordinate indicate the position of the Au nanoparticles. Snapshots of
the x (y) component of the electric field in the xy plane for longitudinal
(transverse) polarization are shown in upper (lower) inset. (b) Time
snapshots of the electric field for transverse pulse propagation showing
a negative phase velocity with an anti-parallel orientation of the phase
and group velocities. Reproduced from Ref. [44].

Au nanoparticles obtained in those studies. In panel (a) of Figure 1.8 a
plasmon peak position is depicted for both transverse (black triangles)
and longitudinal (black squares) modes showing that the group veloc-
ity of the longitudinal mode is higher than the group velocity of the
transverse modes. Panel (b) of Figure 1.8 presents time snapshots of
the pulse propagation of the transverse mode showing that it has a neg-
ative phase velocity. Based on the FDTD simulations Maier et al. [44]
estimated the attenuation coefficients of the longitudinal and trans-
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Figure 1.9: Imaginary part of the normal mode frequencies of the full
retarded solution for a 20-sphere chain of lossless metal particles. The
dashed vertical line corresponds approximately to kmode = ω/c, with
kmode being the plasmon momentum. Reproduced from Ref. [46].

verse modes to be 3dB/140nm and 3dB/43nm, respectively, which are
a factor of 2 to 3 higher than their estimates based on the point dipole
model. This discrepancy was argued to be due to the finite size of the
studied chain.

Further theoretical studies focused on the retardation effects in the
dipole-dipole interaction for the point dipole model. It was shown
[46, 47] that the retardation in the interaction causes a nonmonotonic
behavior in the dispersion relation of the transverse modes (lower panel
in Figure 1.10), as opposed to the longitudinal one (upper panel in Fig-
ure 1.10). The authors of Ref. [46] argued that this nonmonotonic
behavior present for the transverse modes arises from the phase match-
ing between plasmon dispersion and the free photon of the same fre-
quency. Moreover, the influence of the interaction onto radiation losses
was shown [46, 47] to lead to the mode dependent radiation damping
presented in the lower panel of Figure 1.9. The mode-dependence of
the radiation damping leads to the separation of the modes into bright
modes (kmode ≤ ω/c) influenced by radiation damping and into dark
modes (kmode ≥ ω/c) immune to radiation losses. Here kmode denotes
the momentum of the plasmonic mode.
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Figure 1.10: Dispersion curves for the longitudinal (upper panel) and
transverse (lower panel) modes. Solid black lines represent the qua-
sistatic limit of an infinite chain. Points represent results for a finite
chain with N = 20: Black circles are for the quasistatic approximation,
green squares for the full retarded solution with a lossy metal, red tri-
angles for the full retarded solution and an ideal metal. The dashed line
in the left panel is the light line, ω = ck. Reproduced from Ref. [46].
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Furthermore, Weber et al. [46] investigated the propagation of the
plasmon along the chain under a continuous pumping. For this study
they considered chains of Ag nanoparticles with radii 25 nm and center-
to-center distance 75 nm, that is the same parameters as previously
studied in Refs. [37, 40]. It was shown [46] that initially the modes
corresponding to both polarizations decay in a non-exponential fash-
ion, with the transverse mode decaying faster. Nonetheless, for longer
distances the signal decay progressively became exponential-like. Such
a conclusion turned out to be in contradiction with earlier reports sug-
gesting that the decay of the transverse modes is weaker than the decay
of the longitudinal mode for long distances. Moreover, the resulting de-
cay length for the longitudinal mode (700 nm) was comparable to the
one obtained by Quinten et al. in Ref. [37] (900 nm). The difference in
the propagation of the transverse modes between the results of Weber
et al. and Quinten et al. was argued by the former group to be due to
the inclusion of retardation effects.

Later studies of chains with fully retarded dipole-dipole interac-
tion investigated the influence of disorder onto the system properties.
Merkel et al. [53] studied both, ordered and disordered chains, using a
similar approach as Weber et al. [46], confirming the previous findings
(dispersion and damping). Ref. [53] also reported a double exponen-
tial decay for ordered chains, in which the transverse modes propagate
for longer distances. In addition, two types of plasmons were discussed:
ordinary, subradiative modes which localize in the presence of any disor-
der strength, and extraordinary, radiative modes which weakly depend
on the disorder.

More recent developments focused on quantum effects for the plas-
mon propagation in nanoparticle chains. Lee et al. [57] introduced
a quantum model for a nanoparticle chain connected to the plasmon
reservoirs in order to study the possibility of a coherent qubit trans-
fer. The role of the qubit is played by the plasmonic wave packet. It
was shown that, even under realistic conditions, coherent transfer is
possible on short distances, thus opening the possibility for metallic
nanoparticle chains to act on short distances as on-chip nanophotonic
quantum comunication devices.

Other work investigating quantum properties of metallic nanopar-
ticle chains was done by Pino et al. [61]. Using a simple quantum
model based on nearest neighbor interaction with constant damping
and using the master equation in Lindblad form, the authors obtained
the equations of motion for the plasmons. Using their model, the au-
thors presented a prescription how to calculate propagation length and
entanglement of the plasmonic excitation.

The theoretical investigations of nanoparticle chains, summarized
in this secion, spanned many fronts covering important properties (dis-
persion, damping and propagation). In Chapter 4 of this thesis we will
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Figure 1.11: (a) Constant height PSTM image recorded above the chain
of Au nanoparticles (individual size 100×100×40nm3) separated from
each other by a distance of 100nm and deposited on an ITO substrate.
A comparison with a numerical simulation (b) shows that the bright
spots are not on top of the Au particles (the surface projections of
the particles correspond to the white squares). The intensity scale of
the experimental data (a) is normalized to the one of the numerical
calculation. Reproduced from Ref. [38].

present a model for ordered homogeneous metallic nanoparticle chains
incorporating all the important properties discussed earlier. Moreover,
using this model we show the origin of the exponential decay in the
plasmon propagation reported earlier [37, 40, 46].

1.4 Experimental treatment of nanoparti-

cle chains

The first experimental observation of the near field associated with col-
lective plasmons in ordered nanoparticle chains was reported by Krenn
et al. [38]. This experiment used the electron beam lithography tech-
nique to fabricate a chain of 10000 Au nanoparticles on an indium-
tin-oxide (ITO) substrate (see Figure 1.11). The nanoparticle shape
was akin to oblate spheroids with dimensions 100× 100× 40 nm3 and
interparticle separation of 100 nm. In order to measure the near field
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around the metallic nanoparticles the authors of Ref. [38] used a photon
scanning tunneling microscope (PSTM). PSTM works similarly to the
standard STM, where the tip measures tunneling of electrons. Instead
of electrons, a PSTM measures photons which undergo total internal
reflection in the sample when the tip of the PSTM (which has an optical
fiber) is nearby. In order to confirm that the PTSM truly measures the
near field, Krenn et al. compared the measurements to their numerical
simulations for both single nanoparticle as well as the full chain. The
numerical scheme which they used was Green’s dyadic technique [87]
with a reference system of the ITO substrate and the nanoparticles
treated as a perturbation. In the computations the authors assumed
that the incoming electric field was TM (transverse magnetic) polar-
ized and incident through the substrate under the condition of total
internal reflection. The result of their investigations was the proof that
the PSTM truly measures the optical near field intensity close to the
metallic objects. They also reported the observation of the squeezed
optical near field coming from the coupled plasmons in the chain. The
main comparison between numerical simulation and experimental mea-
surements is presented in Figure 1.11, where we observe both exper-
imentally [panel (a)] and numerically [panel (b)] obtained intensities.
The comparison gives encouragement to the statement, that PSTM
measures near-field. Moreover, in the figure we see that regions with
high intensities are present in between the nanoparticles.

Contrary to the near field measurements presented by Krenn and
coworkers, the experiments by Maier et al. [41,42] used far field polar-
ization spectroscopy to study the influence of the near field coupling
between plasmons in Au nanoparticle chains. Using electron beam
lithography, they fabricated the Au nanoparticle chains with particle
diameters of 50 nm and various interparticle separations as well as
various chain length. From the far field measurements the authors suc-
ceeded to obtain energies of both, the longitudinal and the transverse
modes, depending on the polarization of the illuminating light. Typical
far field extinction spectra of single nanoparticles and a nanoparticle
chain is presented in Figure 1.12. In the figure we observe a compari-
son between extinction spectra of an isolated Ag nanorod and a linear
chain of Ag nanorods. We see that in addition to the blue-shift of the
resonance peak its linewidth and extinction value are increased .

In Ref. [42] these authors investigated a dependence of the central
peak position (the energy of the lowest momentum mode) obtained
from the far field measurements onto the interparticle separation. They
fabricated three chains of 80 closely spaced Au nanoparticles with di-
ameters of 50 nm and center-to-center separations of 75 nm, 100 nm
and 125 nm. This corresponds to a radius over interparticle distance
ratio a/d of 1/3, 1/4 and 1/5, respectively. The measurements of the
shift of the peaks for both longitudinal and transverse modes confirmed
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Figure 1.12: Far field extinction spectrum of a plasmon waveguide con-
sisting of Ag nanorods with a 3 : 1 aspect ratio and a surface to surface
spacing of 50 nm between adjacent particles showing that the plas-
mon resonance peak shifts to higher energies (red triangle and Lorentz
fit) compared with the extinction spectrum of isolated, non interacting
particles (black squares and Lorentz fit). The exciting light is polar-
ized along the long axis of the nanorods, perpendicular to the chain
axis. The inset shows a scanning electron micrograph of the plasmon
waveguide layout under study. Reproduced from Ref. [43].

their predictions from the point dipole model [40], pointing towards the
relevance of near-field coupling between the particles. In another article
Maier et al. [41] studied different chain lengths of Au nanoparticles and
compared the obtained peak energies to those obtained by the FDTD
calculations. Furthermore, based on their point dipole model [40] they
estimated the attenuation of the plasmon propagation for the longitu-
dinal mode, which turns out to be much larger than the ones predicted
for Ag nanoparticle chains [37, 40, 46].

In their work from 2003 [43] Maier et al. shifted from the spherical
Au nanoparticle chains to Ag nanorod chains (see inset in Figure 1.12).
Using electron beam lithography the authors fabricated a chain of Ag
nanorods with dimensions 90×30×30 nm3 and surface-to-surface spac-
ing of 50 nm. The goal of the experiment was to probe the energy
transport along the chain via plasmon propagation. In order to obtain
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a local excitation the authors used the tip of the illumination mode near
field optical microscope. Energy transport was probed by placing flu-
orescent molecules in the vicinity of the nanoparticle chain away from
the illuminated particle. The authors of Ref. [43] managed to observe
transport of energy along the chain and estimated the losses along the
chain to be 6dB per 195± 28nm.

More recent experimental developments focused on the spatial imag-
ing of the plasmon modes. Appuzo et al. [60] mapped the propagating
plasmon using a scanning near field optical microscope in elliptical Au
nanocylinders. The elliptic parameters were measured to be D1 = 211
nm, D2 = 66 nm with the thickness of the nanocylinder of 30 nm.
The center-to-center distance was 150 nm. Successfully measured near
field of the propagating lowest momentum plasmon was compared to
the numerical simulations. Other experiments performed by Barrow et

al. [62] used the EELS technique to investigate the dark modes of a
short nanoparticle chains (form 2 to 5).

Most of the experimental work on coupled nanoparticle systems did
not probe the propagation of the excitation, with an exception of Refs.
[43, 58] which proved the existence of plasmon propagation. Rather
than propagation the experiments proved the existence of the collective
behavior of the plasmons, which is at the origin of the propagation.
The main issue, concerning propagation, that needs to be addressed
relates to the influence of the intrinsic losses onto the limitation of the
propagation [11]. Our investigation of nanoparticle chains in Chapter
4 will focus on this exact issue.

1.5 Outlook of the thesis

In this thesis we propose a general open quantum system approach to
interacting plasmons in one dimensional assemblies of metallic nanopar-
ticles. The proposed model will give us tools to obtain a deeper under-
standing on how the interparticle interaction influences the dispersion
relation and damping mechanisms in the system. It will also allow us to
investigate the propagation of excitations through nanoparticle chains.
The thesis is organized as follows:

In Chapter 2 we review the theoretical framework to calculate the
properties of the plasmon inside an isolated spherical metallic nanopar-
ticle. We start from the microscopic Hamiltonian for electrons and
show how one obtains through separation of the coordinates (center-
of-mass and relative) a coupling between plasmons and electronic and
photonic baths. Further, using a mean-field approximation and semi-
classical expansions we show how one can evaluate damping rates for
the plasmons.

In Chapter 3 we turn to the investigation of nanoparticle dimers,
which is a building block of more complex nanoparticle-based metas-
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tructures. Using the theoretical framework presented in Chapter 2 we
extend the model to the interacting plasmons case. Using Bogoliubov
diagonalization we obtain coupled plasmonic modes. Using techniques
from Chapter 2 we obtain both Landau and radiation damping of the
coupled plasmonic modes, which we then analyze for various sizes of
the system.

In Chapter 4 we focus on nanoparticle chains. Extending further the
model obtained in Chapter 3, we investigate coupled plasmonic modes
of the chain. Using a master equation approach, which we derive under
Markovian hypothesis and in the weak-coupling regime, we evaluate
dissipation rates (Landau and radiation) for the collective plasmons.
Further, with the use of master equations we investigate the plasmon
propagation along the chain under continuous and pulsed excitations
of the plasmon. We find that the plasmonic excitation decays in two
regimes. For short distance from the excitation position, the decay is
exponential, and algebraic for longer distances. We show that the expo-
nential decay is of purely non-radiative origin, and use this observation
to derive an analytical expression for the propagation length in the case
of continuous excitation.

Finally we conclude the thesis in Chapter 5 and give some perspec-
tives that our work offers.
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Chapter 2

Lifetime of the localized

surface plamon in isolated

single spherical metallic

nanoparticles

The localized surface plasmon in an isolated metallic spherical nanopar-
ticle undergoes two types of damping: radiative damping due to the ra-
diation of the accelerated electrons into the far field and non-radiative
damping, which is composed of bulk Ohmic losses and size-dependent
Landau damping. In this chapter we review the theoretical framework
to investigate the problem of localized surface plasmon lifetimes in an
isolated spherical metallic nanoparticle [1, 14, 17, 19,24,25,91].

Section 2.1 introduces microscopic Hamiltonian and with the sepa-
ration into the center-of-mass (plasmon) and relative coordinates (elec-
trons), the origin of the coupling between plasmon and electrons as well
as the plasmon and photons is shown. The mean-field approximation
introduced in Section 2.2 allows evaluation of the Landau damping us-
ing semiclassical expansion in Section 2.3 [14, 17, 19, 24, 25], and the
radiation damping in Section 2.4 [91, 92].

2.1 Microscopic Hamiltonian

Let us consider a single isolated spherical metallic nanoparticle with
radius a containing Ne electrons. Writing the microscopic Hamiltonian
for the electrons within the jellium approximation [88], i.e. with the
positive ions as a uniformly charged sphere of radius a, and in the
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Coulomb gauge (i.e. ∇ ·A(r) = 0), one has

H =
Ne
∑

i=1

{

[pi + eA(ri)]
2

2me

+ U(ri)

}

+
e2

2

Ne
∑

i,j=1
i 6=j

1

|ri − rj|

+
1

8π

∫

d3r (E⊥2(r) + c2B2(r)), (2.1)

where e and me are the electron charge and mass, respectively, and
c is the speed of light. In the above equation ri is the position of
the i-th electron and pi its momentum, A(ri) is the vector potential
at position ri with associated transverse electric and magnetic fields,
E⊥(r) = −(1/c)∂A(r)/∂t and B(r) = ∇ ×A(r), respectively. While,
the longitudinal part of the electric field reads E‖ = −∇φ(r), with φ(r)
being responsible for the electron-electron interaction (c.f. second term
on the right-hand-side of Eq. (2.1)). Note, that the jellium model is an
approximation simple enough to be applied to spherical nanoparticles
and, at the same time, accurate enough to catch the essential physics
of the considered system [88].

The single-electron potential in Eq. (2.1) coming from the positively
charged sphere

U(r) =
Nee

2

2a3
(r2 − 3a2)Θ(a− r)− Nee

2

r
Θ(r − a), (2.2)

is harmonic with the Mie frequency ω0 =
√

Nee2/mea3 inside the
nanoparticle and Coulomb-like outside (see Figure 2.1). In Eq. (2.2)
Θ(x) is the Heaviside step function.

Since in most of the nanoparticles experimentally under considera-
tion the number of electron is too large to be able to diagonalize the
Hamiltonian (2.1) exactly, there exists a particularly useful decompo-
sition of it [21,93] by introducing the center-of-mass coordinate (corre-
sponding to the localized surface plasmon) and the relative coordinates.
The electronic center-of-mass coordinate writesR =

∑Ne

i=1 ri/Ne and its

conjugate momentum P =
∑Ne

i=1 pi. Noting that the photons respon-
sible for the plasmon decay are the optical ones (ω0 is in the optical
range), one may rewrite the Hamiltonian (2.1) with A(ri) ≃ A(0), as

H =
P2

2Neme

+Heh +
Ne
∑

i=1

[U(|R− r′i|)− U(r′i)] +Hph +Hpl−ph, (2.3)

where the relative coordinate Hamiltonian reads

Heh =
Ne
∑

i=1

[

p′
i
2

2me

+ U(r′i)

]

+
e2

2

Ne
∑

i,j=1
i 6=j

1

|r′i − r′j|
, (2.4)
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Figure 2.1: Single electron confinement potential produced by a homo-
geneously charged jellium sphere.

with r′i = ri − R and p′
i = pi − P/Ne. In Eq. (2.3) the Hamiltonian

Hph = 1
8π

∫

d3r (E⊥2(r) + c2B2(r)) describes the free photon energy
(c.f. last term on the right-hand-side of Eq. (2.1)). The last term on
the right-hand-side of Eq. (2.3) describes the plasmon-photon coupling
Hpl−ph = e

me
P ·A(0).

Assuming that the center-of-mass displacement R is much smaller
than the radius of the nanoparticle, one can expand the third term in
the right-hand-side of Eq. (2.3) to second order in |R|/a to get

U(|R− r′|)− U(r′) ≃ R · ∇U(r′) +
1

2
(R · ∇)2U(r′), (2.5)

where the derivatives are taken at r′ = r (i.e. R = 0). Using the
expression of the single electron confinement (2.2) one has

R · ∇U(r′) = meω
2
0R ·

[

r′Θ(a− r′)− r′a3

r3
Θ(r′ − a)

]

, (2.6)

(R · ∇)2U(r′) ≃ R2Nee
2

a3
Θ(a− r′). (2.7)

Inserting the above equations into the Hamiltonian (2.3) one gets

H = Hpl +Heh +Hpl−eh +Hph +Hpl−ph, (2.8)

where the center-of-mass (plasmonic) part reads

Hpl =
P2

2Neme

+
1

2
Nemeω̃0R

2. (2.9)

39



The resonance frequency ω̃0 is shifted with respect to the the Mie fre-
quency due to the spill-out effect [1, 18, 88]

ω̃0 = ω0

√

1− Ne,out

Ne

. (2.10)

Here Ne,out is the number of electrons that are outside of the nanopar-
ticle , i.e. ri > a.

The third term in the right-hand-side of Eq. (2.8) represents the
coupling between the center-of-mass (plasmon) and the relative coor-
dinates (electrons)

Hpl−eh =
Ne
∑

i=1

R · ∇U(ri). (2.11)

Such a coupling stems from the breakdown of Kohn’s theorem [89],
which states that for a purely harmonic confinement the center-of-mass
and the relative coordinates are decoupled. The breakdown of the the-
orem comes from the Coulombic part of the single electron confinement
(2.2), which originates from the positive ionic background. If the con-
finement were a purely harmonic one, then Eq. (2.11) would identically
be zero.

The last term on the right-hand-side of Eq. (2.8) corresponds to the
plasmon-photon coupling

Hpl−ph =
e

me

P ·A(0). (2.12)

The full Hamiltonian (2.8) is characteristic of an open quantum sys-
tem [19,22, 24–27,30, 91]. That is, a small quantum system coupled to
an environment that induces dissipation. In the case of the Hamiltonian
(2.8) the coupling of plasmons (2.9) to the electronic (2.11) and pho-
tonic (2.12) baths, leads to a dissipation of the former. This dissipation
is govern by the Landau and radiation damping rates, respectively.

2.2 Mean-field approximation and second

quantization

Although the separation into the relative and center-of-mass coordi-
nates is very useful, due to the large number of electrons it is still
difficult to solve the problem exactly. This is why one may introduce
a mean-field approximation to the relative coordinates [19, 22, 24, 25],
and moreover rewrite the center-of-mass Hamiltonian (2.9) in its sec-
ond quantized form. It will be especially helpful in determining the
Landau damping of the plasmon which is a pure quantum effect. Since
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Figure 2.2: LDA self-consistent potential V as a function of the radial
coordinate r for a sodium nanoparticle containing Ne = 1760 valence
electrons. The radius a is indicated by the vertical dotted line. The
Fermi level is marked by the dashed line. a0 is the Bohr radius. Re-
produced from Ref. [25].

the radiation damping is a classical phenomena, one may use classi-
cal electromagnetism to evaluate it [70]. Obviously the same result
is obtainable in a quantum manner [91], since classical phenomena of
radiation corresponds to spontaneous emission of photons.

Introducing the annihilation and creation operators for the localized
surface plasmon in the σ̂ = x̂, ŷ, ẑ direction

bσ =

√

Nemeω̃0

2~
σ̂ ·R+

i√
2Neme~ω̃0

σ̂ ·P, (2.13)

bσ† =

√

Nemeω̃0

2~
σ̂ ·R− i√

2Neme~ω̃0

σ̂ ·P, (2.14)

one writes the center-of-mass Hamiltonian (2.9) as

Hcm =
∑

σ=x,y,z

~ω̃0b
σ†bσ. (2.15)

Since the relative-coordinate Hamiltonian (2.4) contains the electron-
electron interactions one replaces it by its mean-field counterpart [19,
22, 24–26]. In second quantization one can express the relative Hamil-
tonian (2.4) as

Heh =
∑

α

εαc
†
αcα, (2.16)
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where the operator c†α (cα) creates (annihilates) an electron in the state
|α〉 with the energy εα in the self-consistent mean-field potential V .
From local density approximation (LDA) calculations [25] the form of
the potential V can be approximated by a spherical square well of height
V0 (see Figure 2.2). Noting that the typical plasmon energy is lower
than the work function of the metal of which the nanoparticle is com-
posed of (we see that the excited electron will not ionize). Therefore, in
what follows we take the limit of the height of the potential to infinity
(V0 −→ ∞).

Rewriting the coupling Hamiltonian (2.11) in second quantized form
within the mean-field approximation, one has

Hc =
∑

σ=x,y,z

∑

αβ

Λ(bσ + bσ†)σ̂ · dαβc
†
αcβ, (2.17)

where

dαβ = 〈α|rΘ(a− r) +
ra3

r3
Θ(r − a)|β〉. (2.18)

Within the approximation of an infinite height for the self-consistent
potential, the above expression becomes a dipole matrix elements read-
ing

dαβ = R(εα, εβ)

(

∑

s=±

Amαmβ

ℓαℓβs

x̂− isŷ√
2

+Amαmβ

ℓαℓβ0
ẑ

)

, (2.19)

with the radial part given by [17]

R(εα, εβ) =
2~2

mea

√
εαεβ

(εα − εβ)2
. (2.20)

The angular part of Eq. (2.19) is expressed in terms of Wigner-3j sym-
bols as [30]

Amαmβ

ℓαℓβs
= (−1)mα+s

√

(2ℓα + 1)(2ℓβ + 1)

×
(

ℓα ℓβ 1
0 0 0

)(

ℓα ℓβ 1
−mα mβ s

)

. (2.21)

Notice that the expression above encapsulates the angular momentum
selection rules ℓα = ℓβ ± 1, mα = mβ (for s = 0) and mα = mβ ∓ 1 (for
s = ±1).

In Eq. (2.17) the constant

Λ =

√

~meω3
0

2Ne

, (2.22)

neglects the spill-out effect. The reason behind this approximation is
that the spill out effect scales with 1/kFa [25] (where kF is Fermi’s
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wavevector) and since Landau damping also scales with 1/kFa [14, 17,
19,22,24,25], keeping the spill-out effect would amount to higher order
corrections in kFa ≫ 1. Thus, one restricts oneself only to the first
order in 1/kFa by neglecting the spill-out effect in the coupling (2.17).

The free photon Hamiltonian (c.f. forth term on right-hand-side of
Eq. (2.3)) in second quantization reads [91]

Hph =
∑

k,λ̂k

~ωka
†

kλ̂k

a
kλ̂k

, (2.23)

where a
kλ̂k

(a†
kλ̂k

) annihilates (creates) a photon with momentum k,

transverse polarization λ̂k (λ̂k · k = 0) and dispersion ωk = c|k|.
The vector potential in second quantization reads [91]

A(r) =
∑

k,λ̂k

√

2π~

Vωk

(

λ̂kak,λ̂k
eik·r + λ̂∗

k
a†
k,λ̂k

e−ik·r
)

(2.24)

leads to the plasmon-photon coupling (c.f. last term on right-hand-side
of Eq. (2.3)) in the form

Hpl-ph = i~
∑

σ=x,y,z

∑

k,λ̂k

√

πω3
0a

3

Vωk

(

bσ† − bσ
)

(

σ̂ · λ̂kakλ̂k
+ σ̂ · λ̂∗

k
a†
kλ̂k

)

.

(2.25)

The above coupling leads to a process in which plasmon is annihilated
(created) by creation (annihilation) of the photon. We will use this
coupling to determine the radiative losses for the plasmons.

2.3 Landau damping

One may now evaluate the Landau damping linewidth of the plasmon
first excited state. Assuming a weak coupling Hpl−eh, the inverse life-
time of the plasmon can be approximated by the Fermi golden rule

γσ,L =
2π

~

∑

eh

|〈0σ, eh|Hpl−eh|1σ, 0〉|2δ(~ω0 − Ee + Eh), (2.26)

where the sum goes over all the possible electron |e〉 and hole |h〉 states
in the self-consistent potential V , with |0〉 representing the ground state
of the electron bath. The state |1σ〉 represents a plasmon in the first
excited state with a polarization σ̂. In Eq. (2.26) δ(x) is Dirac’s delta
function.

Inserting Eq. (2.17) into Eq. (2.26), the Landau damping reads as

γσ,L = Σσ(ω0), (2.27)
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with

Σσ(ω) =
2π

~2
Λ2
∑

eh

|〈e| σ |h〉|2 δ(~ω − εe + εh). (2.28)

In Eq. (2.28) one can evaluate the summation over electron e and
hole h states by introducing the density of states ̺ℓ(E) with fixed an-
gular momentum ℓ at energy E, which gives

Σσ(ω) = 2
2π

~

∑

ℓe,ℓh

∑

me,mh

∫

dεedεh̺ℓe(εe)̺ℓh(εh)|Λσ̂ ·deh|2δ(~ω−εe+εh),

(2.29)
where the factor of 2 comes from the spin degree of freedom. Inserting
the dipole matrix elements (2.19) into Eq. (2.29) and making the use
of the angular momentum selection rules one gets

Σσ(ω) =
16π

3~m2
eω

4

Λ2

a2

EF+~ω
∫

max{EF,~ω}

dε

×ε(ε− ~ω)
∑

ℓ

̺ℓ(ε) [(ℓ+ 1)̺ℓ+1(ε− ~ω) + ℓ̺ℓ−1(ε− ~ω)] ,

(2.30)

where EF is the Fermi energy of the nanoparticle. Note that the func-
tion Σσ(ω) is independent of the direction σ, due to the spherical sym-
metry of the system. To recover Eq. (2.30) one uses the equalities

ℓ
∑

m=−ℓ

(

Amm+s
ℓℓ+1s

)2
=

ℓ+ 1

3
(2.31)

and
ℓ
∑

m=−ℓ

(

Amm+s
ℓℓ−1s

)2
=

ℓ

3
, (2.32)

for s = 0,±1.
The density of states ̺ℓ(E) with fixed angular momentum ℓ can be

obtained using semiclassical methods [95,96]. The leading order of the
semiclassical form of the density of states ̺ℓ(E) [24] reads

̺ℓ(ε) ≃
√

2mea2ε/~2 − (ℓ+ 1/2)2

2πε
. (2.33)

Inserting the above equation into the expression for the function
Σσ(ω) (2.30) and changing the summation over the angular momentum
ℓ to an integral, in the limit ℓ ≫ 1 one gets

Σσ(ω) =
8

3~m2
eω

4

Λ2

a2

EF+~ω
∫

max{EF,~ω}

dε

2mea2(ε−~ω)/~2
∫

0

dℓ

×ℓ
√

ε(ε− ~ω)
√

2mea2ε/~2 − ℓ2
√

2mea2(ε− ~ω)/~2 − ℓ2.
(2.34)
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Figure 2.3: Function g(ν) defined in Eq. (2.37).

Evaluating the above expression one finds the final form for the function

Σσ(ω) =
(ω0

ω

)3 3vF
4a

g

(

~ω

EF

)

, (2.35)

where the function g(ν) can be represented as an integral through

g(ν) =
2

ν

1+ν
∫

max{1,ν}

dx

x−ν
∫

0

dy
√

(x− y)(x− y − ν), (2.36)

or explicitly written as [17, 24, 25,30]

g(ν) =
1

3ν

[

(1 + ν)3/2 − (1− ν)3/2
]

+
ν

4

(√
1 + ν −

√
1− ν − ν ln ν

)

+

+
ν

2

[(

1 +
ν

2

)

ln
(√

1 + ν − 1
)

−
(

1− ν

2

)

ln
(

1−
√
1− ν

)

]

,

(2.37a)

for ν ≤ 1 and

g(ν) =
1

3ν
(1 + ν)3/2 +

ν

4

(√
1 + ν − ln ν

)

+
ν

2

[(

1 +
ν

2

)

ln
(√

1 + ν − 1
)

− ν

2
ln
√
ν
]

, (2.37b)

for ν > 1. This is a monotonically decreasing function of its argument
ν, as presented in Figure 2.3.

With the use of Eq. (2.35), Landau damping (2.27) can be expressed
as

γL
0 =

3vF
4a

g

(

~ω0

EF

)

. (2.38)
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The above form of the Landau damping agrees with the one proposed
by Kawabata and Kubo (1.2) showing inverse proportionality to the
size of the nanoparticle a. Moreover, the function g(ν) in Eq. (2.38) is
corrected as compared to gKK(ν) (1.3) discussed in the introduction.

2.4 Radiation losses

In this section the evaluation of the radiation damping linewidth of the
plasmon in its first excited state is presented. Towards this end one
may use the Fermi golden rule for the plasmon-photon coupling (2.25)

γσ,r =
2π

~

∑

k,λ̂k

|〈0σ, {1}
k,λ̂k

|Hpl−ph|1σ, {0}k,λ̂k
〉|2δ(~ω0 − ~ωk), (2.39)

where the state |{0}
k,λ̂k

〉 describes photon vacuum. The above process
describes dissipation of the plasmon through spontaneous emission of
a photon. Inserting Eq. (2.25) into (2.39) we get

γσ,r = 2π2
∑

k,λ̂k

ω3
0a

3

Vωk

|σ̂ · λ̂k|2δ(ω0 − ωk). (2.40)

The sum over the photon polarization λ̂k yields [91]

∑

λ̂k

|σ̂ · λ̂k|2 = 1− (σ̂ · k)2
k2

. (2.41)

Inserting the above equation into Eq. (2.40) and changing the summa-
tion over photon wave vector k into integral (i.e. taking limit V → ∞)

∑

k

→ V
8π3

∫

d3k, (2.42)

yields

γσ,r =
ω3
0a

3

4π

∫

d3k
1

ωk

[1− (σ̂ · k̂)2]δ(ω − ωk). (2.43)

Using the spherical coordinates and the dispersion of photons ωk = ck
one can write

γσ,r =
ω3
0a

3

4πc3

∞
∫

0

dωk

2π
∫

0

dφ

π
∫

0

dθ ωk sin θ[1− (σ̂ · k̂)2]δ(ω − ωk). (2.44)

Evaluating the above integrals one finds the final result

γr
0 =

2ω4
0

3c3
a3, (2.45)
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Figure 2.4: Sum of the Landau and radiation damping linewidths as a
function of the size a of Ag nanoparticle. In the figure ~ω0 = 2.6 eV
and EF = 5.49 eV.

which is polarization-independent, due to the spherical symmetry of
the system. Note also that the radiation damping linewidth (2.45)
scales with the volume of the particle, which relates to the number of
electrons composing the plasmon. The same result for the radiation
damping (2.45) can be recovered using classical electrodynamics [70],
which we present in Appendix A, but using quantum theory helps to
make the presentation more uniform.

2.5 Comparison of Landau and radiation

damping

We will now briefly analyze the two different scalings appearing for the
Landau and radiation damping linewidths. In Figure 2.4 we present
the size dependence of the combined linewidth γ = γL

0 + γr
0 for the case

of Ag nanoparticle with the Mie frequency ~ω0 = 2.6 eV and EF = 5.49
eV. As seen in the figure there is an interplay between the scalings of the
Landau (∝ 1/a) and radiation (∝ a3) damping. We see that there exist
clear minimum around 15 nm separating the regions dominated by the
Landau (lower sizes) and radiation (larger sizes) damping mechanisms.
This relation will be modified in the case of nanoparticle dimers once
we include interaction between two plasmons, which will be done in the
following chapter.
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2.6 Conclusion to Chapter 2

In this chapter we have surveyed the theoretical framework used to
calculate the radiation and Landau damping decay rate of the local-
ized surface plasmon in single metallic nanoparticles. Starting from
the microscopic Hamiltonian in the Coulomb gauge and introducing
the relative (electrons) and center-of-mass (plasmon) coordinates al-
lows one to describe how plasmons couple to electronic and photonic
bath. Furthermore, with the help of the Fermi golden rule we showed
how one can evaluate Landau and radiation damping linewidths. Both
of these dampings have different scalings with the size of the nanopar-
ticle. While the former scales with the inverse of the radius ∝ 1/a (c.f.
Eq. (2.38)) the latter scales with the particle volume ∝ a3 (c.f. Eq.
(2.45)). Thus, in the case of an isolated spherical nanoparticle, there
exists an optimal size at which total linewidth is minimal. This size for
the most metals is around 10− 20 nm.

The results obtained in this chapter constitute a starting point to-
ward investigating the influence of the presence of other nanoparticles
onto the Landau and radiation damping linewidths. In the following
chapter we will address the question of how the interaction between
plasmons influences their dissipation mechanisms.
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Chapter 3

Plasmonic properties of

metallic nanoparticle dimers

In this chapter we will investigate the coupled plasmonic modes of a
metallic nanoparticle dimer. In Section 3.1 we present the Hamiltonian
of the system and derive the couplings present therein. In Section 3.2
we calculate the eigenmodes and evaluate their damping rates for both
radiative and non-radiative processes. In Section 3.3 we analyze the
obtained rates for various sizes of the system as well as for the cases of
the homogeneous and heterogeneous dimers. This chapter is based on
the article 1 of my publication list.

3.1 Plasmonic Hamiltonian

We consider a system of two spherical metallic nanoparticles with radii
a1 and a2, separated by a distance d (as presented in Figure 3.1). The
nanoparticles contain respectively N1 and N2 electrons. We assume
that the interparticle separation d is large enough to neglect the tunnel-
ing of electrons and multipolar effects [45]. Under the above assumption
we may write the system Hamiltonian within the jellium approxima-
tion [88] and in the Coulomb gauge as

H =
2
∑

n=1

Nn
∑

i=1

{

[pn,i + eA(ρρρn,i)]
2

2me

+ U2NP(ρρρn,i)

}

+
e2

2

2
∑

n=1

Nn
∑

i,j=1
(i 6=j)

1

|ρρρn,i − ρρρn,j|

+e2
N1
∑

i=1

N2
∑

j=1

1

|ρρρ1,i − ρρρ2,j|
+Hph. (3.1)

In the above equation ρρρn,i is the position of the i-th electron belonging
to the n-th nanoparticle and pn,i its momentum. The vector potential
A(r) is given in Eq. (2.24). The forth term in Eq. (3.1) describes the
electron-electron interaction inside the respective nanoparticles, while
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Figure 3.1: Sketch of a heterogeneous nanoparticle dimer composed of
two metallic nanoparticles with radii a1 and a2 containing, respectively,
N1 and N2 electrons, separated by a distance d. ~d1 and ~d2 denote the
center of nanoparticle 1 and 2, respectively.

the fifth term of the same equation corresponds to interparticle electron-
electron interaction. The last term on the right hand side of Eq. (3.1)
is the free photon Hamiltonian, c.f. Eq. (2.23).

The single electron confinement potential U2NP(ρ) created by the
two positively charged spheres reads

U2NP(ρρρ) =











N1e2

2a3
1

(r21 − 3a21)− N2e2

r2
ρ ∈ I

N2e2

2a3
2

(r22 − 3a22)− N1e2

r1
ρ ∈ II

−N1e2

r1
− N2e2

r2
ρ ∈ III

, (3.2)

where rn = ρρρ−dn, with dn being the location of the center of the n-th
nanoparticle. Here, the regions I and II are inside the nanoparticle 1
and 2, respectively, and the region III corresponds to the space out-
side both nanoparticles (see Figure 3.1). As an example we present a
cut of the potential U2NP(z) along the ẑ direction, for the cases of a
homogeneous nanoparticle dimer (Figure 3.2(a)) and a heterogeneous
dimer with the radii ratio a2/a1 = 1.2 and frequency ratio ω2/ω1 = 1.05
(Figure 3.2(b)).

Assuming that the interparticle separation d is much larger than the
nanoparticle radii an, we expand the Hamiltonian (3.1) to second order
in rn/d. Within this approximation, the expansion of the interparticle
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Figure 3.2: Cut along the ẑ direction of the single electron confining
potential U2NP(r) [ Eq. (3.2)] for (a) a homogeneous nanoparticle dimer
(red solid line) and (b) a heterogeneous nanoparticle dimer (black solid
line). The heterogeneous dimer is described by the radii ratio a2/a1 =
1.2 and frequency ratio ω2/ω1 = 1.05. Regions I, II and III correspond
to the regions depicted in Figure 3.1.

electron-electron interaction entering Eq. (3.1) yields

e2
N1
∑

i=1

N2
∑

j=1

1

|ρρρ1,i − ρρρ2,j|
≃e2

d

N1
∑

i=1

N2
∑

j=1

{

1 +
(r1,i − r2,j) · d̂

d

− (r1,i − r2,j) · [r1,i − r2,j − 3d̂(r1,i − r2,j) · d̂]
2d2

}

.

(3.3)
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Here rn,i denotes the position of i-th electron belonging to the n-th

nanoparticle relative to its center and d̂ = (d2−d1)/|d2−d1|. Similarly,
the expansion of the single particle confinement (3.2) gives

U2NP(ρρρ1,i) ≃ U1(r1,i)−
N2e

2

d

{

1 +
r1,i · d̂

d
− r1,i · [r1,i − d̂(r1,i · d̂)]

2d2

}

,

(3.4a)

U2NP(ρρρ2,i) ≃ U2(r2,i)−
N1e

2

d

{

1 +
r2,i · d̂

d
− r2,i · [r2,i − d̂(r2,i · d̂)]

2d2

}

,

(3.4b)

where

Un(rn) =
Nne

2

2a3n
(r2n − 3a2n)Θ(an − rn)−

Nne
2

rn
Θ(rn − an), (3.5)

is the single particle confinement potential of an isolated nanoparticle
[c.f. Eq. (2.2)].

Using Eqs. (3.3) and (3.4) to express Eq. (3.1), we obtain the Hamil-
tonian

H =
2
∑

n=1

Hn +Hd−d, (3.6)

up to an irrelevant constant. In Eq. (3.6),

Hn =
Nn
∑

i=1

[

(pn,i + eA(ρρρn,i))
2

2me

+ Un(rn,i)

]

+
e2

2

Nn
∑

i,j=1
i 6=j

1

|rn,i − rn,j|
+Hph,

(3.7)
representing the Hamiltonian of the single isolated nanoparticle n (c.f.
Eq. (2.1)), while

Hd−d =
e2

d3

N1
∑

i=1

N2
∑

j=1

[r1,i · r2,j − 3(r1,i · d̂)(r2,j · d̂)] (3.8)

stands for the dipole-dipole interaction between the two electron distri-
butions in the respective nanoparticles. Note that Eq. (3.8) corresponds
to the quasi-static form of dipole-dipole interaction, where plasmons
(dipoles) interact only via their near fields.

As in Chapter 2, it is convenient to express the Hamiltonian (3.6) us-
ing the electronic center-of-mass coordinates Rn =

∑Nn

i=1 rn,i/Nn, Pn =
∑Nn

i=1 pn,i, and relative coordinates r ′
n,i = rn,i−Rn, p

′
n,i = pn,i−Pn/Nn

(n = 1, 2) [21,93]. Moreover, expanding the single particle confinement
potential Un(rn,i) up to second order in the parameter |Rn|/an ≪ 1,
we have

Un(r
′
n,i +Rn)− Un(r

′
n,i) ≃ Rn · ∇Un(rn,i) +

1

2
(Rn · ∇)2Un(rn), (3.9)
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with the derivatives taken at Rn = 0. We then write the Hamiltonian
(3.6) as

H = Hpl +Heh +Hpl−eh +Hph +Hpl−ph. (3.10)

In Eq. (3.10) the plasmonic part of the Hamiltonian Hpl reads

Hpl =
2
∑

n=1

(

P2
n

2Mn

+
Mn

2
ω̃2
nR

2
n

)

+
Q1Q2

d3
[R1 ·R2 − 3(R1 · d̂)(R2 · d̂)],

(3.11)
with Mn = Nnme and Qn = Nne being the total electronic mass and
charge in the n-th nanoparticle, respectively, and ω̃n is the Mie fre-
quency of the plasmon in the n-th nanoparticle red shifted due to the
spill-out effect, [1, 18, 88]

ω̃n = ωn

√

1− Nn,out

Nn

, ωn =

√

Nne2

a3nme

. (3.12)

In Eq. (3.10),

Heh =
2
∑

n=1

Nn
∑

i=1

[

p′
n,i

2

2me

+ Un(r
′
n,i)

]

+
e2

2

2
∑

n=1

Nn
∑

i,j=1
i 6=j

1

|r′n,i − r′n,j|
(3.13)

represents the Hamiltonian for the relative electronic coordinates, while

Hpl−eh =
2
∑

n=1

Nn
∑

i=1

Rn · ∇Un(r
′
n,i)
∣

∣

Rn=0
, (3.14)

is the coupling Hamiltonian between the center-of-mass and relative
coordinates. As in the case of an isolated nanoparticle (c.f. Chapter 2)
this coupling is the consequence of the breakdown of Kohn’s theorem
[89] by the non-harmonic part of the single electron confinement (3.5)
arising from the positive ionic background (see Figure 3.2).

The last term on the right hand side of the total Hamiltonian (3.10)
represents the coupling between plasmons and photons, which similarly
as in the case of an isolated nanoparticle (c.f. Eq. (2.12)) reads

Hpl−ph =
e

me

2
∑

n=1

Pn ·A(dn). (3.15)

This coupling will lead to the dissipation of plasmons via spontaneous
emission of photons.

3.2 Plasmonic eigenmodes

In this section we diagonalize the plasmonic Hamiltonian (3.11) which
will lead to new collective modes. These modes will decay due to the
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coupling to electronic (3.14) and photonic (3.15) baths. Since the cou-
pling of plasmons to the electron bath leads to the Landau damping,
which is a purely quantum mechanical effect, we will work in the second
quantization, as in Chapter 2.

3.2.1 Plasmonic Hamiltonian in second quantiza-

tion

First, let us introduce the annihilation and creation operators

bσn =

√

Nnmeω̃n

2~
Rn · σ̂ +

i√
2Nnme~ω̃n

Pn · σ̂, (3.16a)

bσ†n =

√

Nnmeω̃n

2~
Rn · σ̂ − i√

2Nnme~ω̃n

Pn · σ̂ (3.16b)

for a localized surface plasmon in nanoparticle n with polarization
σ. The above operators satisfy the bosonic commutation relations
[

bσn, b
σ′†
n′

]

= δnn′δσσ′ and
[

b
σ(†)
n , b

σ′(†)
n′

]

= 0.

Using the operators defined in Eq. (3.16) we write the plasmonic
Hamiltonian (3.11) as

Hpl =
2
∑

n=1

∑

σ=x,y,z

~ω̃nb
σ†
n bσn + ~Ω

∑

σ=x,y,z

ησ(bσ1 + bσ†1 )(bσ2 + bσ†2 ), (3.17)

where

Ω =
1

2

2
∏

n=1

[

ω̃n

1−Nout,n/Nn

]1/2
(an
d

)3/2

, (3.18)

with ηx,y = 1 and ηz = −2.

3.2.2 Diagonalization of the plasmonic Hamilto-

nian

The quadratic Hamiltonian (3.17) can be diagonalized using the Bo-
goliubov transformation to read

Hpl =
∑

α=±

∑

σ=x,y,z

~ωσ
αB

†σ
α Bσ

α. (3.19)

This diagonalization is done based on the general method proposed by
Tsalis [90] that we describe in the sequel.

One starts by introducing the operators

|bσ〉 =









bσ1
bσ2
bσ†1
bσ†2









(3.20a)
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〈bσ| = |bσ〉† =
(

bσ†1 bσ†2 bσ1 bσ2
)

(3.20b)

and

|Bσ〉 =









Bσ
+

Bσ
−

Bσ†
+

Bσ†
−









= T σ† |bσ〉 , (3.21a)

〈Bσ| =
(

Bσ†
+ Bσ†

− Bσ
+ Bσ

−

)

= 〈bσ| T σ. (3.21b)

The transformation matrix T σ is defined as

T σ =









uσ
1,+ uσ

1,− ūσ
1,+ ūσ

1,−

uσ
2,+ uσ

2,− ūσ
2,+ ūσ

2,−

ūσ
1,+ ūσ

1,− uσ
1,+ uσ

1,−

ūσ
2,+ ūσ

2,− uσ
2,+ uσ

2,−









, (3.22)

so that the plasmonic Hamiltonian (3.17) can be written as

Hpl =
∑

σ=x,y,z

〈bσ|Hσ
pl |bσ〉 =

∑

σ=x,y,z

〈Bσ|HσD
pl |Bσ〉 , (3.23)

where we have defined the matrix

Hσ
pl =

~

2









ω̃1 ησΩ 0 ησΩ
ησΩ ω̃2 ησΩ 0
0 ησΩ ω̃1 ησΩ

ησΩ 0 ησΩ ω̃2









(3.24)

and the diagonalized plasmonic Hamiltonian matrix HσD
pl

HσD
pl =

~

2









ωσ
+ 0 0 0
0 ωσ

− 0 0
0 0 ωσ

+ 0
0 0 0 ωσ

−









. (3.25)

Imposing that the new operators Bσ
± are bosonic requires that the co-

efficients entering the transformation matrix T σ (3.22) obey

2
∑

n=1

(uσ2
n,± − ūσ2

n,±) = 1. (3.26)

It is worth writing the commutation relation in a general form as

|bσ〉 〈bσ| − (
∣

∣bσ†
〉 〈

bσ†
∣

∣)T = J (3.27)

where

J =









1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1









. (3.28)
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It is easy to see that the requirement for the new operators |Bσ〉 to be
bosonic amounts to the relation [90]

T σ†J T σJ = I, (3.29)

where I is the unit matrix.
In order for the Hamiltonian (3.17) to be diagonal one needs

[Hpl, B
σ
α] = −~ωσ

αB
σ
α and

[

Hpl, B
σ†
α

]

= ~ωσ
αB

σ†
α , (3.30)

or in short
[Hpl, |Bσ〉] = −2JHσD

pl |Bσ〉 . (3.31)

Making use of Eq. (3.21) one may write Eq. (3.31) as

[

Hpl, T σ† |bσ〉
]

= T σ† [Hpl, |bσ〉] = −2T σ†JHσ
pl |bσ〉 . (3.32)

Using now Eqs. (3.21), (3.31) and (3.32) one obtains

JHσD
pl T σ† = T σ†JHσ

pl, (3.33)

or with Eq. (3.29)
HσD

pl J = T σ(−1)Hσ
plJ T σ. (3.34)

Thus in order to obtain the diagonal form of the plasmonic Hamiltonian
(3.17) one needs to diagonalize the matrices 2Hσ

plJ for each σ. The
condition det{Hσ

plJ − ~ωI} = 0 yields the eigenvalue equation

(ω2 − ω̃2
1)(ω

2 − ω̃2
2) = 4η2σΩ

2ω̃1ω̃2. (3.35)

Solving this equation yields the eigenfrequencies of the coupled plas-
monic modes

ωσ
α =

√

(ω̃1 + ω̃2)2

4
+ α

√

(ω̃2
1 − ω̃2

2)
2

4
+ 4η2σΩ

2ω̃1ω̃2, (3.36)

with α = ±.
The eigenvectors of the matrix 2Hσ

plJ determine the coefficients of
the transformation matrix T σ (3.22) through









ω̃1 − ωσ
± ησΩ 0 ησΩ

ησΩ ω̃2 − ωσ
± ησΩ 0

0 ησΩ −ω̃1 − ωσ
± −ησΩ

ησΩ 0 −ησΩ −ω̃2 − ωσ
±

















uσ
1,±

uσ
2,±

ūσ
1,±

ūσ
2,±









= 0. (3.37)

Solving the above system of equations and making use of the condition
(3.26), as well as, (3.35) results in coefficients of the form

uσ
n,α = sign[αησ]

n−1 ω
σ
α + ω̃n

2
√

ω̃nωσ
α

√

ωσ2
α − ω̃2

n̂

2ωσ2
α − ω̃2

1 − ω̃2
2

, (3.38)
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Figure 3.3: Sketch of plasmonic eigenmodes for (a) a homogeneous and
(b) a heterogeneous nanoparticle dimer.

and

ūσ
n,α = sign[αησ]

n−1 ω
σ
α − ω̃n

2
√

ω̃nωσ
α

√

ωσ2
α − ω̃2

n̂

2ωσ2
α − ω̃2

1 − ω̃2
2

, (3.39)

where n̂ = 1(2) for n = 2(1).

The new collective plasmonic modes have an intuitive pictorial rep-
resentation. In Figure 3.3 we present a sketch of the ± plasmonic
modes for different polarizations (σ̂ = x̂(ŷ), ẑ, transverse and longitu-
dinal, respectively). In addition, we color-coded the strength of the
interaction between the ± plasmons and the light, noting that for anti-
parallel alignment of the plasmons (+ mode in transverse direction and
− mode in longitudinal direction) we have a low net dipole moment,
meaning weak coupling to the light. Thus, we refer to these modes as
dark while the other two (red arrows in Figure 3.3) as bright.

In Figure 3.4 we present the eigenfrequencies [c.f. Eq. (3.36) ] as
a function of the interparticle separation d defined in Figure 3.1. We
see that the dependence of ωσ

± on the interparticle distance comes from
the coupling constant Ω [c.f. Eq. (3.18)] and it is proportional to d−3.
The limit of vanishing coupling Ω/

√
ω1ω2 → 0 (i.e. (aqa2/d

2)(3/2) →
0 corresponds to isolated particles (dotted lines in Figure 3.4). For
the heterogeneous dimer (thick red and black lines on Figure 3.4) we
use the parameters from the previous section (i.e. a2/a1 = 1.2 and
ω2/ω1 = 1.05). In Figure 3.4 we observe changes in frequencies ap-
proximately proportional to d−3 that reach asymptotic values (dotted
lines) of Ω/

√
ω1ω2 → 0 rather quickly. We see a stronger modulation

of frequency for the longitudinal modes (over 5% between d/
√
a1a2 = 3

to 4) as compared to the transverse ones. These results are consistent
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Figure 3.4: Eigenfrequencies of the ± plasmonic modes defined in Eq.
(3.36) as a function of interparticle distance d for the (a) longitudinal
and (b) transverse directions. Thick red and black lines correspond to
respectively bright and dark plasmonic modes of a heterogeneous dimer
with radii ratio a2/a1 = 1.2 and frequency ration ω2/ω1 = 1.05. Thin
red and black lines correspond to respectively bright and dark plas-
monic modes of a homogeneous dimer. Dotted lines represent asymp-
totes for Ω/

√
ω1ω2 → 0.

with both, experimental [79, 80, 86] and theoretical [33, 73, 75, 77, 82]
findings.
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3.3 Landau damping

Now that we obtained the eigenstates of the coupled system, we may
address their lifetime. We first treat the purely quantum dissipation
channel, which comes from the coupling of plasmons to electrons [c.f.
Eq. (3.14)].

3.3.1 Second quantized Hamiltonian

Assuming that electronic correlations are not important for the present
problem, similarly as in Eq. (2.16) we approximate the Hamiltonian
(3.13) by its mean-field counterpart

Heh =
2
∑

n=1

∑

α

εnαc
†
nαcnα, (3.40)

where c†nα (cnα) creates (annihilates) electron in a state |nα〉 with en-
ergy εnα in a self-consistent potential Vn. Note that the form of Eq.
(3.40) implicitly assumes that tunneling of electrons between the two
nanoparticles is suppressed. Density functional theory calculations [75]
suggest that the self-consistent potential V can be approximated by two
spherical square wells of height V0 centered around each nanoparticle

V (ρρρ) =

{

0 ρρρ ∈ I & II
V0 ρρρ ∈ III

, (3.41)

where regions I and II correspond to the inside of the first and second
nanoparticle respectively, and region III is outside of the nanoparticles
(see Figure 3.1).

With our mean-field approximation the coupling between the center
of mass and relative coordinates (3.14) takes the form

Hpl−eh =
2
∑

n=1

∑

σ=x,y,z

∑

αβ

√

~

2meNnω̃n

(

bσ†n + bσn
)

×〈nα |σ̂ · ∇Un(r)|nβ〉c†nαcnβ. (3.42)

By relating the collective and relative coordinates, this expression pro-
vides a way to calculate the decay rate of the coupled plasmonic modes
within a quantum-mechanical approach.

3.3.2 Fermi’s golden rule

We now turn to the evaluation of the non-radiative linewidth of the
collective plasmonic modes. Their Landau damping decay rates are
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given by the zero-temperature Fermi’s golden rule as

γσ,L
± =

2π

~

2
∑

n=1

∑

eh

∣

∣

〈

{eh}n, {0}σ±
∣

∣Hpl−eh

∣

∣{0}n, {1}σ±
〉∣

∣

2

×δ(~ωσ
± − Ene + Enh), (3.43)

where the sum
∑

eh runs over all electron and hole states, |en〉 and
|hn〉 respectively, in each nanoparticle. The state

∣

∣{1}σ±
〉

represents
a collective ± plasmon in the first excited state with polarization σ.
Inserting the coupling Hamiltonian from Eq. (3.42) and inverting the
transformation for bosonic operators Bσ

± defined in Eq. (3.21)

|bσ〉 =
(

T σ†
)−1 |Bσ〉 = J T σJ |Bσ〉

=









uσ
1,+ uσ

1,− −ūσ
1,+ −ūσ

1,−

uσ
2,+ uσ

2,− −ūσ
2,+ −ūσ

2,−

ūσ
1,+ ūσ

1,− −uσ
1,+ −uσ

1,−

ūσ
2,+ ūσ

2,− −uσ
2,+ −uσ

2,−

















Bσ
+

Bσ
−

Bσ†
+

Bσ†
−









, (3.44)

we write the Landau damping linewidth as

γσ,L
± =

2π

~

2
∑

n=1

∑

eh

∣

∣

〈

{eh}n, {0}σ±
∣

∣

2
∑

n′=1

∑

σ′=x,y,z

∑

αβ

∑

τ=±

Λn′∆uσ′

n′τ σ̂
′ · dn′

αβ

× (Bσ′

τ +Bσ′†
τ )c†n′αcn′β

∣

∣{0}n, {1}σ±
〉∣

∣

2
δ(~ωσ

± − Ene + Enh),

(3.45)

where

Λn =

√

~meω3
n

2Nn

, (3.46)

and
∆uσ

n± = uσ
n± − ūσ

n±. (3.47)

In evaluating Eq. (3.45) we approximated the self-consistent poten-
tial V (3.41) as infinite outside the nanoparticles, thus neglecting the
spill-out effect. Such an assumption is justified by density functional
theory calculations for dimers, [75] as well as the assumption that the
plasmon energies for the considered nanoparticles are smaller than the
work function. The dipole matrix elements dσ,n

αβ = 〈nα| σ̂ · ∇Un(r) |nβ〉
evaluated under the above approximation yield

dn
αβ = Rn(Eα, Eβ)

(

∑

s=±

Amαmβ

ℓαℓβs

x̂− isŷ√
2

+Amαmβ

ℓαℓβ0
ẑ

)

(3.48)

with the radial part given by [17]

Rn(Eα, Eβ) =
2~2

mean

√

EαEβ

(Eα − Eβ)2
. (3.49)

60



The angular part of Eq. (3.48) is expressed in terms of Wigner-3j sym-
bols, see Eq. (2.21).

Simplifying Eq. (3.45) we get

γσ,L
± =

2π

~

2
∑

n=1

∑

eh

|Λn∆uσ
n,±σ̂ · dn

eh|2δ(~ωσ
± − Ene + Enh). (3.50)

Evaluating the above expression gives the Landau damping linewidth
in the form

γσ,L
± =

2
∑

n=1

∆uσ2
±,nΣ

σ
n(ω

σ
±), (3.51)

with

Σσ
n(ω) =

2π

~2
Λ2

n

∑

eh

|〈e|σ̂ · r|h〉|2δ(ω − ωeh), (3.52)

where ωeh = (εe − εh)/~. The expression for Σσ(ω) was evaluated in
Chapter 2 to yield Eq. (2.35). Thus, evaluating Eq. (3.51), we write
the Landau damping linewidth in the form

γσ,L
± =

2
∑

n=1

3vnF
4an

∆uσ2
±,n

(

ωn

ωσ
±

)3

g

(

~ωσ
±

En
F

)

, (3.53)

where the function g(ν) is defined in Eq. (2.37).

For the homogeneous dimer Eq. (3.53) simplifies to

γσ,L,hom.
± =

3vF
4a

(

ω0

ωσ4
±

)4

g

(

~ωσ
±

EF

)

. (3.54)

In Figure 3.5 we present the behavior of the Landau damping decay
rate for the homogeneous and heterogeneous nanoparticle dimers [Eqs.
(3.53) and (3.54)] with varying nanoparticle separation d. We observe
a decrease (increase) of the Landau damping with the increasing inter-
particle distance for the − (+) modes, which is opposite of the trends
for the eigenfrequencies, see Figure 3.4. In addition, we see a much
bigger modulation, going up to 25% for the longitudinal modes [see
Figure 3.5(a)]. Moreover, we observe a crossover between the dark and
bright modes in the case of the longitudinal modes of the heterogeneous
dimer [thick red and black solid lines in Figure 3.5(a)].

The increase of Landau damping with decreasing interparticle dis-
tance d for the longitudinal bright mode [red thin and thick lines in
Figure 3.5(a)] is consistent with density functional calculations [75].
Note that in the density functional calculations the authors of Ref. [75]
only considered internal processes, thus the origin of the damping pre-
sented in their work was only quantum (i.e. Landau damping).

61



0.5

0.75

1

1.25

1.5

3 4 5 6 7

γ
x
(y
),
L

±
/√

γ
L 1
γ
L 2

d/
√

a1a2

γ
x(y),L
+

γ
x(y),L
−

0.5

0.75

1

1.25

1.5

γ
z
,L

±
/√

γ
L 1
γ
L 2

γ
z,L
+

γ
z,L
−

(b)

(a)

Figure 3.5: Landau damping γσ,L
± [c.f. Eq. (2.29)] as a function of the

interparticle distance d for the (a) longitudinal and (b) transverse di-
rections. Thick red and black lines correspond to, respectively, bright
and dark plasmonic modes of the heterogeneous dimer with radii ra-
tio a2/a1 = 1.2 and frequency ration ω2/ω1 = 1.05. Thin red and
black lines correspond to respectively bright and dark plasmonic modes
of the homogeneous dimer. Dotted lines represent asymptotes for
Ω/

√
ω1ω2 → 0. On the figure γL

n is the Landau damping of an iso-
lated nanoparticle n.

3.4 Radiation damping

In this section we address the other mechanism of dissipation of the
coupled plasmonic modes described by their coupling to the photonic
bath (3.15). This mechanism classically is described by the radiation
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of accelerated charges. Thus, this section will be a revisit of the related
problem of radiation from two point dipoles [76].

Inserting the expression for the momentum conjugated to the center-
of-mass displacements

Pn = i

√

Nnme~ωn

2

∑

σ=x,y,z

σ̂
(

bσ†n − bσn
)

, (3.55)

and the expression of vector potential A(r) (2.24) into the coupling
Hamiltonian (3.15) we get

Hpl−ph =i~
∑

σ=x,y,z

2
∑

n=1

∑

k,λ̂k

√

πω3
na

3
n

Vωk

(

bσ†n − bσn
)

×
(

σ̂ · λ̂ka
k,λ̂k

eik·dn + σ̂ · λ̂∗
k
a†
k,λ̂k

e−ik·dn

)

. (3.56)

Using the inverse transformation for Bσ
± Eq. (3.44), we write the cou-

pling Hamiltonian (3.56) in the following form

Hpl−ph =i~
∑

σ=x,y,z

2
∑

n=1

∑

τ=±

∑

k,λ̂k

√

πω3
na

3
n

ωkV
Uσ
n,τ

(

Bσ†
τ − Bσ

τ

)

×
(

σ̂ · λ̂ka
k,λ̂k

eik·dn + σ̂ · λ̂∗
k
a†
k,λ̂k

e−ik·dn

)

, (3.57)

where Uσ
n,τ = uσ

n,τ + ūσ
n,τ .

3.4.1 Fermi’s golden rule

In a similar manner as in the case of the Landau damping, we now
turn to the evaluation of the Fermi golden rule for the coupling Hamil-
tonian (3.57) in order to get the radiative decay rate for the collective
plasmonic modes. The golden rule reads

γσ,r
± =

2π

~

∑

k,λ̂k

∣

∣

∣
〈{1}

k,λ̂k
, {0}σ± |Hpl−ph| {0}k,λ̂k

, {1}σ±〉
∣

∣

∣

2

δ(~ωσ
± − ~ωk),

(3.58)
and represents the process of annihilating a plasmon from its first ex-
cited state |{1}σ±〉 and creating a photon in the state |{1}

k,λ̂k
〉. The

summation in Eq. (3.58) runs over all possible photon states with the
wavevector k and polarization λ̂k. Inserting the coupling Hamiltonian
obtained in Eq. (3.57) to Fermi’s golden rule (3.58) we get

γσ,r
± = 2π2

∑

k,λ̂k

1

ωkV
|σ̂ · λ̂k|2

∣

∣

∣

∣

∣

2
∑

n=1

√

ω3
na

3
nU

σ
n,±e

−ik·dn

∣

∣

∣

∣

∣

2

δ(ωσ
±−ωk). (3.59)
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Changing the summation in Eq. (3.59) over photon wavevector k

into an integral (2.42) (i.e. taking the continuous limit V → ∞) we
write the radiative decay rate as

γσ,r
± =

1

4π

∞
∫

0

dkk2

π
∫

0

dθ sin θ

2π
∫

0

dφ
1

ωk

(1− |σ̂ · k̂|2)
[

ω3
1a

3
1U

σ2
1,± + ω3

2a
3
2U

σ2
n,±

+ 2
√

ω3
1a

3
1ω

3
2a

3
2U

σ
1,±U

σ
2,± cos(kd cos θ)

]

δ(ωσ
± − ωk). (3.60)

Note that in evaluating the above expression we used Eq. (2.41). To
proceed, we make use of the photon dispersion relation ωk/c = k to
change the integration variable. Moreover, due to symmetry reasons
the radiative decay rates of the plasmons polarized in the transverse (x̂
and ŷ) directions are equal. After evaluating the integral in Eq. (3.60)
over ωk and φ we get

γσ,r
± =

|ησ|ωσ
±

4c3

1
∫

−1

dt(1 + sign[ησ]t
2)
[

ω3
1a

3
1U

σ2
1,± + ω3

2a
3
2U

σ2
2,±

+ 2
√

ω3
1a

3
1ω

3
2a

3
2U

σ
1,±U

σ
2,± cos(ωσ

±dt/c)

]

, (3.61)

where t = cos θ. The above integral yields the final form for the radia-
tion damping

γσ,r
± =

2ωσ
±

3c3

{

ω3
1a

3
1U

σ2
1,± + ω3

2a
3
2U

σ2
2,±

+ 3ησ

√

ω3
1a

3
1ω

3
2a

3
2U

σ
1,±U

σ
2,±fσ

(

ωσ
±d

c

)}

, (3.62)

with

fx(y)(t) =

[

sin t

t
+

cos t

t2
− sin t

t3

]

, (3.63)

fz(t) =

[

cos t

t2
− sin t

t3

]

. (3.64)

Assuming that the interparticle distance d is much smaller than the
± plasmon wavelengths we expand Eq. (3.62) to third order in the
parameter ωσ

±d/c ≪ 1 to get the form

γσ,r
± =

2ωσ3
±

3c3

(

2
∑

n=1

√

ωna3n∆uσ
n,±

)2

, (3.65)

where ∆uσ
n,± were defined in Eq. (3.47).
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Rewriting the above expression for the homogeneous dimer gives

γσ,r,hom.
± =

ω2
0ω

σ2
±

3c3
a3 (1± sign[ησ])

2 = γr
0

ωσ2
±

2ω2
0

(1± sign[ησ])
2 , (3.66)

where γr
0 is the single nanoparticle plasmon radiation decay [c.f. Eq.

(2.45)]. From the above equation we see that for the dark modes (+
mode in ẑ direction and − modes in x̂ and ŷ directions) we have a
vanishing radiation damping. The immunity to radiation losses makes
these modes interesting from the point of view of the energy storage. Al-
though, there exist a setback regarding inability to excite these modes
using light, this issue is resolved using the electric field of an elec-
tron beam in EELS (electron energy loss spectroscopy) experiments
[62, 84, 85]. Although immune to radiation damping, dark modes are
still subject to Landau damping (3.54) and Ohmic losses.

We present the radiation damping [Eqs. (3.65) and (3.66)] as a func-
tion of the interparticle distance d for the homogeneous and hetero-
geneous nanoparticle dimer in Figure 3.6. We observe a very small
modulation for the bright modes of the homogeneous dimer (thin red
solid lines), while the dark modes, as shown in Eq. (3.66), have van-
ishing radiation damping (thick dashed black lines). In contrast, we
see a much larger modulation in the case of the heterogeneous dimer
(thick solid red and black lines). In the transverse direction [panel (b)
of Figure 3.6], we have a monotonic change of radiation damping for
both dark and bright modes. The observed modulation for the trans-
verse modes exceeds 50%. Note that the modulation of the Landau
damping for the transverse modes [see Figure 3.5(b)] reached around
10%. The situation is even more interesting for the longitudinal mode,
where as in the case of Landau damping [thick red and black solid lines
in Figure 3.5(a)] we observe a crossover between the bright and dark
modes [thick red and black solid lines in Figure 3.6 (b)]. In addition,
we observe a much larger modulation for the dark longitudinal mode
(reaching almost 100%), as compared to all the other modes.

For large interparticle distances d (i.e. d/
√
a1a2 ≃ 7) in the case

of the bright homogeneous nanoparticle modes (thin red solid lines in
Figure 3.6), the value of the radiation damping linewidth is the double
of that of an isolated nanoparticle. The reason is that in this regime we
may view the power radiated from the system as coming from a single
point, with twice the number of electrons of each nanoparticle.

The observed trends of the bright longitudinal mode damping rates
(increase of both Landau and radiation damping with decreasing dis-
tance d) are consistent with experimental findings [79, 80, 86]. For the
case of the bright transverse modes, Refs. [79, 80, 86] found that the
full width at half maximum of the plasmon resonance is also increasing
with decreasing interparticle distance d. Our results show a competi-
tion between radiation (increase of the linewidth with decreasing d) and
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Figure 3.6: Radiation damping γσ,r
± [c.f. Eq. (3.65) ] as a function of

the interparticle distance d for the (a) longitudinal and (b) transverse
directions. Thick red and black lines correspond to respectively bright
and dark plasmonic modes of a heterogeneous dimer with radii ra-
tio a2/a1 = 1.2 and frequency ratio ω2/ω1 = 1.05. Thin red and
black dashed lines correspond to respectively bright and dark plasmonic
modes of a homogeneous dimer. We note γr

n is the radiation damping
of an isolated nanoparticle n.

Landau (decrease of the linewidth with decreasing d) damping in this
area [see Figures 3.5(b) and 3.6(b)]. This leads to a conclusion that
the experiments [79, 80, 86] used nanoparticles for which the radiation
damping was dominant.
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3.5 Size effects in nanoparticle dimers

Since Landau damping follows a 1/a scaling [c.f. Eq. (3.53)], while
radiation damping scales as a3 [c.f. Eq. (3.65)] we will now turn to
see these two scalings interplay with each other. To this end we will
consider the particular cases of a homogeneous dimer composed of two
Ag nanoparticles and a heterogeneous dimer composed of an Ag-Au
pair. We take the following values of the Mie frequencies [1] and Fermi
energy: ~ωAg = 2.6 eV, ~ωAu = 2.2 eV, EAg

F = 5.49 eV, EAu
F = 5.53

eV.

In Figures 3.7 and 3.8 we present the sum of Landau and radiation
damping as a function of the nanoparticle size a1 for the homogeneous
(Ag-Ag) and heterogeneous (Ag-Au) dimer, respectively, keeping the
ratio of interparticle distance to radius constant (i.e. d/a1 = 3). We
observe that for the dark modes of the homogeneous dimer the sum
follows only the a−1 size dependence of the Landau damping, since it is
immune to the radiation losses [c.f. Eq. (3.66)]. In contrast, the case of
the dark modes of the heterogeneous dimer is influenced by radiation
damping.

For all modes (with the exception of the dark mode of the homoge-
neous dimer) we observe a clear minimum of the total damping rates.
This minimum gives the optimal sizes of the particles for which the life-
time of coupled plasmonic modes is the longest. It is worth mentioning
that the minimum damping for the bright mode of the homogeneous
dimer (red solid lines in Figure 3.7) is weakly influenced by the polar-
ization, and stays in the range 10 − 15 nm. The situation is not as
simple as in the case of the heterogeneous dimer (see Figure 3.8). We
see that the minimal damping for the heterogeneous dimer bright mode
in the longitudinal direction is located in a similar range as those of the
homogeneous dimer bright modes, while in the case of the transverse
directions we see a clear shift of the minimum toward larger radii [panel
(b) of Figure 3.8]. The opposite behavior is exhibited by the dark modes
of the heterogeneous dimer (black solid lines in Figure 3.8), meaning
that the dark mode in the longitudinal direction has a minimum at a
larger size than the one in the transverse direction.

As we saw in Figures 3.7 and 3.8, there exist certain sizes of the
nanoparticles at which damping is minimal, with the exception of the
dark modes of the homogeneous dimer. Note that the latter follows
from the fact that the interparticle distance d is much smaller than the
wavelength of the plasmons, leading to radiation damping in the form
(3.65). In reality, even for the dark modes of the homogeneous dimer
radiation damping will get noticeably bigger for increased size of the
nanoparticles and/or interparticle separation. Moreover, this scenario
exceeds the scope of our approximations.

We will now turn to a broader picture of the damping and analyze
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Figure 3.7: Sum of radiation and Landau damping of a homogeneous
(Ag-Ag) nanoparticle dimer as a function of the nanoparticle size a1
for the (a) longitudinal and (b) transverse directions. Black (red) solid
lines represent dark (bright) plasmonic modes. In the figure d = 3a1.

its behavior while changing both the size and interparticle distance,
independently. We are using again particular cases of the Ag-Ag ho-
mogeneous dimer and the Ag-Au heterogeneous dimer with size ratio
a2/a1 = 1.2.

In Figure 3.9 we present two-dimensional maps of γσ
± = γσ,L

± + γσ,r
±

for the homogeneous Ag-Ag dimer modes as a function of the size a1
and interparticle distance d. From panels (a) and (d) of the figure we
see that the low damping regions are pushed toward greater particle
sizes, as expected of the dark modes. On panels (b) and (c) we observe
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Figure 3.8: Sum of radiation and Landau damping of heterogeneous
(Ag-Au) nanoparticle dimer as a function of the nanoparticle size a1
for the (a) longitudinal and (b) transverse directions. Black (red) solid
lines represent dark (bright) plasmonic modes. In the figure a2/a1 = 1.2
and d = 3

√
a1a2.

a range of the sizes a1 at which damping is minimal with little influence
of the separation d. These regions are similar in width and span sizes
in the range of 10− 20 nm.

Figure 3.10 presents the sum γσ
± = γσ,L

± + γσ,r
± as a function of the

size a1 and interparticle distance d for the heterogeneous dimer Ag-Au
with the fixed ratio a2/a1 = 1.2. Panels (a) and (d) of the figure show
the dark modes while panels (b) and (c) present the bright modes. We
see that the situation is more complex than in the case of homogeneous
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Figure 3.9: Sum of Landau and radiation damping for the homoge-
neous Ag-Ag nanoparticle dimer as a function of particle size a1 and
interparticle distance d. Panels (a) and (d) show dark modes while (b)
and (c) show bright modes.
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Figure 3.10: Sum of Landau and radiation damping for the heteroge-
neous Ag-Au nanoparticle dimer as a function of particle size a1 and
interparticle distance d. Panels (a) and (d) show dark modes while (b)
and (c) show bright modes. In the figures a2 = 1.2a1.

dimer Ag-Ag.

From panel (c) of the figure we see that the range of sizes which
minimize the damping is reduced as compared to Figure 3.9(c) for the
Ag-Ag dimer. The opposite behavior appears for the bright mode in
the longitudinal direction [compare panels (b) of Figures 3.9 and 3.10],
where the sizes range spans from 10 − 25 nm. The broadest range of
sizes for minimization of the damping (i.e. 10−30 nm) is present for the
transverse dark mode (see Figure 3.10(a)). At the same time the lon-
gitudinal dark mode has a noticeably lower range (see Figure 3.10(b)),
which follows from the dependence on the interparticle distance of its
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Landau and radiation damping (see solid black lines in Figures 3.5(a)
and 3.6(a)).

Note that in Figures 3.9 and 3.10 the white zones are regions for
which the interparticle spacing is lower than allowed by our model.
The borderline is determined by d = 3

√
a1a2 which is a lower limit for

the dipole-dipole interaction (for interparticle spacing below this limit,
multipolar interaction might play a role [45]).

3.6 Conclusions to chapter 3

In this chapter we extended the theoretical framework of Chapter 2
for the case of nanoparticle dimers. Dimer structures are the most
basic arrays, thus investigating them sets a good starting point toward
further studies, such as nanoparticle chains studied in Chapter 4.

As a result of the study on the nanoparticle dimers we obtained
the answers to the question: How does the interaction between plas-
mons influence their lifetime? We have found that the Landau damping
linewidth varies with the interparticle distance having a modulation of
up to 25% in the case of the longitudinal modes. The radiation damping
linewidth was found to vary strongly with respect to the intrerparticle
distance in the heterogeneous dimer systems. In the case of the ho-
mogeneous dimers the collective modes separate into strongly radiative
bright modes (with radiation damping twice as big as the one of an
isolated nanoparticle) and non-radiative dark modes.

We started with the microscopic Hamiltonian for the system of two
metallic nanoparticles in the Coulomb gauge. Using the jellium ap-
proximation and separating the system into center-of-mass and relative
coordinates lead us to a near-field dipole-dipole interaction between
plasmons and to the coupling of plasmons to electrons and photons.
We diagonalized the plasmonic part of the total Hamiltonian and ob-
tained new collective modes, dubbed ±, for all polarizations, σ̂ = x̂, ŷ
and ẑ.

Using our results we analyzed the influence of various parameters on
plasmon damping. We showed that there exists an optimum nanopar-
ticle size range for which we may minimize the damping and that this
range varies among different modes.
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Chapter 4

Plasmon propagation in

one-dimensional metallic

nanoparticle assemblies

In this chapter we investigate the plasmonic properties of one-dimensional
chains of nanoparticles. In Section 4.1 we present the Hamiltonian of
the systems as well as the plasmonic eigenmodes of the chain. In Sec-
tion 4.2 we present a derivation of the master equation for the reduced
density matrix describing a plasmon evolution in the presence of elec-
tronic and photonic environments. In Section 4.3 we evaluate damping
rates found in the final form of the master equation. Using the master
equation we investigate the propagation of the plasmon along the chain
in Section 4.4. This chapter is based on article 2 of my publication list.

4.1 Hamiltonian of the system

We consider a linear chain of N identical spherical metallic nanoparti-
cles with a radius a, separated by a distance d, as sketched in Figure 4.1.
Each nanoparticle can sustain a localized surface plasmon resonance
which couples to the neighboring ones via quasi-static dipole-dipole
interaction.

We write the full Hamiltonian of the system, extending the models
presented in chapters 2 and 3 [c.f. Eqs. (2.8) and (3.10)], as

H = Hpl +Heh +Hph +Hpl-eh +Hpl-ph +Hdrive, (4.1)

where Hpl is a plasmonic Hamiltonian, Heh corresponds to the elec-
tronic bath and Hph is a free photon Hamiltonian. Hpl−eh describes the
coupling between plasmons and electrons, while Hpl−ph corresponds to
the plasmon-photon coupling. Hdrive is an external driving term.

73



ẑ
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Figure 4.1: Sketch of a linear chain of N identical spherical metallic
nanoparticles of radius a separated by a distance d of each other.

4.1.1 Plasmonic Hamiltonian

The first part of the system Hamiltonian [the first term on the right-
hand-side of Eq. (4.1)] consists of the near-field coupled system of lo-
calized plasmons described by

Hpl = ~ω0

N
∑

n=1

∑

σ=x,y,z

bσ†n bσn + ~Ω
N−1
∑

n=1

∑

σ=x,y,z

ησ
(

bσn + bσ†n
)(

bσn+1 + bσ†n+1

)

(4.2)

with n the index identifying the particle number in the chain (see Fig-
ure 4.1). Each nanoparticle supports a dipolar plasmon with resonance
frequency ω0 which, for alkaline nanoparticles in vacuum, and neglect-
ing the spill-out effect [1], corresponds to the Mie frequency.

Our open chain of coupled metallic nanoparticles is conveniently
described using the basis

bσn =

√

2

N + 1

∑

q

sin (nqd) bσq , (4.3)

with q = πm/(N + 1)d the plasmonic momentum, where the integer
m ∈ [1,N ]. Using Eq. (4.3), the plasmonic Hamiltonian (4.2) is ex-
pressed in momentum space, yielding yielding

Hpl =
∑

qσ

[~ω0 + 2ησ~Ωcos (qd)] bσ†q bσq + ~Ω
∑

qσ

ησ cos (qd)
(

bσ†q bσ†q + bσq b
σ
q

)

.

(4.4)

The above Hamiltonian can be diagonalized by means of a bosonic
Bogoliubov transformation. We introduce new bosonic operators ex-
pressed as a linear combination of the bσq and bσ†q in the form

Bσ
q = cosh θσq b

σ
q + sinh θσq b

σ†
q . (4.5)

The above form of the new operators ensures that they satisfy bosonic
commutation relations

[

Bσ
q , B

σ′†
q′

]

= δqq′δσσ′ ,
[

Bσ(†)
q , B

σ′(†)
q′

]

= 0. (4.6)
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Inverting the transformation from Eqs. (4.5)

bσq = cosh θσqB
σ
q − sinh θσqB

σ†
q , (4.7)

and inserting it into the plasmonic Hamiltonian (4.2) gives

Hpl =
∑

qσ

[

(~ω0 + 2ησ~Ωcos qd) cosh 2θσq

−2ησ~Ωcos qd sinh 2θσq
]

Bσ†
q Bσ

q +
∑

qσ

[

ησ~Ωcos qd cosh 2θσq

−1

2
(~ω0 + 2ησ~Ωcos qd) sinh 2θσq

]

(

Bσ
qB

σ
q +Bσ†

q Bσ†
q

)

. (4.8)

Imposing a diagonal form for the above Hamiltonian, we obtain the
condition for the unknown coefficients θσq

θσq =
1

2
atanh

(

2ησΩcos qd

ω0 + 2ησΩcos qd

)

. (4.9)

Inserting Eq. (4.9) into the plasmonic Hamiltonian (4.8) yields

Hpl =
∑

σ=x,y,z

∑

q

~ωσ
qB

σ†
q Bσ

q , (4.10)

where the eigenfrequencies of the collective plasmons are given by

ωσ
q = ω0

√

1 + 4ησ
Ω

ω0

cos (qd). (4.11)

Their dependence on q depicted in Figure 4.2 is in agreement with the
previous theoretical work [40].

Including the far field and the associated retardation in the dipole-
dipole interaction between the nanoparticles along the chain leads to
only a slight quantitative modification of the dispersion relations (4.11)
[46], justifying that we simply consider the near-field interaction be-
tween nearest neighbors [cf. Eq. (4.2)]. In Eq. (4.10), the bosonic oper-
ators Bσ

q and their adjoints Bσ†
q [cf. (4.5)] annihilate and create a collec-

tive plasmon excitation with momentum q and polarization σ along the
chain, respectively. The coefficients of the Bogoliubov transformation
in Eqs. (4.5) and (4.7) read

cosh θσq =
1√
2

√

1 + 2ησ(Ω/ω0) cos(qd)
√

1 + 4ησ(Ω/ω0) cos(qd)
+ 1 (4.12a)

and

sinh θσq =
sgn {ησ cos(qd)}√

2

√

1 + 2ησ(Ω/ω0) cos(qd)
√

1 + 4ησ(Ω/ω0) cos(qd)
− 1. (4.12b)
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Figure 4.2: Collective plasmon dispersions (4.11) for the longitudinal
(blue solid line) and transverse (dashed red line) modes. In the figure
interparticle distance d = 3a.

4.1.2 Electronic environment

The electronic environment composed of electron-hole excitations was
introduced in Chapter 2 for the special case of N = 2 [c.f. Eq. (3.40)].
The generalization to arbitrary N is straightforward and gives

Heh =
N
∑

n=1

∑

α

εnαc
†
nαcnα. (4.13)

The coupling Hamiltonian Hpl-eh in Eq. (4.1) reads [c.f. Eqs. (2.17) and
(3.42)]

Hpl-eh = Λ
N
∑

n=1

∑

σ=x,y,z

∑

αβ

(

bσn + bσ†n
)

〈nα|σ|nβ〉c†nαcnβ, (4.14)

with Λ =
√

~meω3
0/2Ne. The coupling Hamiltonian (4.14) is responsi-

ble for Landau damping of the collective plasmons.

4.1.3 Photonic environment

The photonic environment was introduced in Chapter 2 in Eq. (2.23).
The plasmon-photon coupling in Eq. (4.1) takes the form [91] [c.f. Eq.
(3.15)]

Hpl−ph =
e

me

N
∑

n=1

Pn ·A(dn). (4.15)
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Here

Pn = i

√

Neme~ω0

2

∑

σ=x,y,z

σ̂
(

bσ†n − bσn
)

(4.16)

is the momentum associated with the plasmon on nanoparticle n, and
the vector potential A(dn) introduced in Chapter 2 [c.f. Eq. (2.24)], is
evaluated at the position of the center of the n-th nanoparticle dn =
ẑ(n − 1)d. Together Eqs. (4.16) and (2.24), yield the plasmon-photon
coupling (4.15) which takes the form [c.f. Eq. (3.56)]

Hpl-ph = i~
N
∑

n=1

∑

σ=x,y,z

∑

k,λ̂k

√

πω3
0a

3

Vωk

σ̂ · λ̂k

(

bσ†n − bσn
)

×
(

a
kλ̂k

eik·dn + a†
kλ̂k

e−ik·dn

)

. (4.17)

4.1.4 Driving force

The last term of the full system Hamiltonian (4.1) is a driving term
representing an electric field with a wavelength much larger than the
nanoparticle size, acting on the first nanoparticle in the chain. It reads

Hdrive = ~ΩRf(t)
∑

σ=x,y,z

(

bσ1 + bσ†1
)

σ̂ · ǫ̂ (4.18)

with ΩR = eE0

√

Ne/2me~ω0 the Rabi frequency, where E0 is the am-
plitude of the electric field, and ǫ̂ its polarization. In Sec. 4.4 we will
consider two scenarios: First the case of a monochromatic electric field
f(t) = sin(ωdt) with ωd the driving frequency. Second the case of ex-
tremely short laser pulse, modeled by f(t) = δ(ω0t).

4.2 Reduced density matrix

The dynamics of the system is most conveniently described in terms
of the reduced density matrix ρσ of the collective plasmonic degrees of
freedom with polarization σ.

The evolution of the subsystem with polarization σ̂ is given by the
equation of motion

ρ̇σtot(t) = − i

~
[Hσ +Heh +Hph, ρ

σ
tot(t)] , (4.19)

with ρσtot being a density matrix of the plasmonic subsystem together
with the baths, and where Hσ reads

Hσ = Hσ
pl +Hσ

pl−eh +Hpl−ph, (4.20)
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with

Hσ
pl =

∑

q

~ωσ
qB

σ†
q Bσ

q , (4.21)

Hσ
pl-eh = Λ

N
∑

n=1

∑

αβ

(

bσn + bσ†n
)

〈nα|σ|nβ〉c†nαcnβ, (4.22)

Hσ
pl−ph = i~

N
∑

n=1

∑

k,λ̂k

√

πω3
0a

3

Vωk

σ̂ · λ̂k

(

bσ†n − bσn
)

×
(

a
kλ̂k

eik·dn + a†
kλ̂k

e−ik·dn

)

. (4.23)

Assuming that the driving field does not affect the coupling of plasmons
to the electronic and photonic environments we omit it for the time
being (i.e. Hdrive = 0). We write Eq. (4.19) in the interaction picture
as

˙̃ρσtot(t) = − i

~

[

H̃σ
pl−eh(t) + H̃σ

pl−ph(t), ρ̃
σ
tot(t)

]

, (4.24)

with
ρ̃σtot(t) = eiH0t/~ρσtot(t)e

−iH0t/~, (4.25)

and

H̃σ
pl−eh(t) = eiH0t/~Hσ

pl−ehe
−iH0t/~, (4.26)

H̃σ
pl−ph(t) = eiH0t/~Hσ

pl−phe
−iH0t/~, (4.27)

where H0 = Hpl +Heh +Hph. Integrating Eq. (4.24) and inserting the
result back in (4.24) yields the integro-differential equation

ρ̃σtot(t) = − i

~

[

H̃σ
pl−eh(t) + H̃σ

pl−ph(t), ρ̃
σ
tot(0)

]

− 1

~2

t
∫

0

ds
[

H̃σ
pl−eh(t) + H̃σ

pl−ph(t),
[

H̃σ
pl−eh(s) + H̃σ

pl−ph(s), ρ̃
σ
tot(s)

]]

,

(4.28)

and tracing out electronic and photonic degrees of freedom gives

ρ̃σ(t) = − i

~
TrehTrph

[

H̃σ
pl−eh(t) + H̃σ

pl−ph(t), ρ̃
σ
tot(0)

]

− 1

~2

t
∫

0

ds

×TrehTrph

[

H̃σ
pl−eh(t) + H̃σ

pl−ph(t),
[

H̃σ
pl−eh(s) + H̃σ

pl−ph(s), ρ̃
σ
tot(s)

]]

.

(4.29)

A usual approximation at this point is to assume the weak coupling
regime [91]: The perturbations Hpl−eh and Hpl−ph do not change sig-
nificantly the electronic and photonic environments respectively. Thus,
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both electronic and photonic baths stay in thermal equilibrium during
the time evolution of the plasmonic system. Moreover, assuming that
correlations between plasmons and environments may be neglected on
the timescales at which we consider the evolution of the system, we
may write

ρσtot(t) ≈ ρσ(t)⊗ ρeh ⊗ ρph, (4.30)

where ρeh (ρph) is density matrix of the electronic (photonic) environ-
ment.

Inserting Eq. (4.30) into the first term of the right-hand-side of Eq.
(4.28) with the use of Eqs. (4.14) and (4.17) we have

TrehTrph

[

H̃σ
pl−eh(t) + H̃σ

pl−ph(t), ρ
σ(0)⊗ ρeh ⊗ ρph

]

=

N
∑

n=1

∑

σ=x,y,z

[

bσ†n (t)− bσn(t), ρ
σ(0)

]

[

∑

αβ

Λ〈nα|σ|nβ〉Treh
{

ρehc
†
nα(t)cnβ(t)

}

+
∑

k,λ̂k

√

πω3
0a

3

Vωk

σ̂ · λ̂kTrph

{

ρph

(

a
kλ̂k

(t)eik·dn + a†
kλ̂k

(t)e−ik·dn

)}



 = 0,

(4.31)

where the first term of the squared bracket vanishes due to the non-
diagonal form of dipole moment matrix elements (i.e. 〈nα|σ|nα〉 = 0)
and the second vanishes due to identity Trph(ρphakλ̂k

) = 0. We therefore
arrive at the equation of motion for the reduced density matrix in the
form

˙̃ρσ(t) ≃ − 1

~2

t
∫

0

dsTrehTrph

×
[

H̃σ
pl−eh(t) + H̃σ

pl−ph(t),
[

H̃σ
pl−eh(s) + H̃σ

pl−ph(s), ρ̃
σ(s)⊗ ρeh ⊗ ρph

]]

.

(4.32)

Using Eq. (4.31) we may simplify the above equation to

˙̃ρσ(t) ≃− 1

~2

t
∫

0

dsTreh

[

H̃σ
pl−eh(t),

[

H̃σ
pl−eh(s), ρ̃

σ(s)⊗ ρeh

]]

− 1

~2

t
∫

0

dsTrph

[

H̃σ
pl−ph(t),

[

H̃σ
pl−ph(s), ρ̃

σ(s)⊗ ρph

]]

. (4.33)

We now turn to the evaluation of the traces in the above equa-
tion starting with trace over electrons. Inserting the expression for the
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coupling (3.14) we get

Treh

[

H̃σ
pl−eh(t),

[

H̃σ
pl−eh(s), ρ̃

σ(s)⊗ ρeh

]]

=
N
∑

n=1

N
∑

n′=1

∑

αβα′β′

Λ2

×〈nα|σ|nβ〉〈n′α′|σ|n′β′〉Treh
[

(bσn(t) + bσ†n (t))c†nα(t)cnβ(t),

×
[

(bσn′(s) + bσ†n′ (s))c
†
n′α′(s)cn′β′(s), ρ̃σ(s)⊗ ρeh

]]

, (4.34)

or by expressing the plasmonic annihilation and creation operators bσn
and bσ†n by the normal mode ones (4.5)

bσn =

√

2

N + 1

∑

q

sin(qdn)(cosh θσqB
σ
q − sinh θσqB

σ†
q ), (4.35)

we may write

Treh

[

H̃σ
pl−eh(t),

[

H̃σ
pl−eh(s), ρ̃

σ(s)⊗ ρeh

]]

=
2

N + 1

N
∑

n=1

N
∑

n′=1

∑

qq′

∑

αβα′β′

×Λ2〈nα|σ|nβ〉〈n′α′|σ|n′β′〉(cosh θσq − sinh θσq )(cosh θ
σ
q′ − sinh θσq′)

× sin(qdn) sin(q′dn′)Treh
[(

Bσ
q (t) + Bσ†

q (t)
)

c†nα(t)cnβ(t),

×
[(

Bσ
q′(s) + Bσ†

q′ (s)
)

c†n′α′(s)cn′β′(s), ρ̃σ(s)⊗ ρeh

]]

. (4.36)

Putting the explicit time dependence of the annihilation and creation
operators into the above equation with the use of the relation

˙̃O(t) =
i

~
eiH0t/~ [H0,O] e−iH0t/~, (4.37)

for any operator O, we get

Bσ
q (t) = Bσ

q e
−iωσ

q t, (4.38)

for the collective plasmons and

cnα(t) = cnαe
−iωαt, (4.39)

for the electrons and where ωα = εα/~ and

a
kλ̂k

(t) = a
kλ̂k

e−iωkt, (4.40)

for the photons. Inserting Eq. (4.39) into the trace (4.36) we get

Treh

[

H̃σ
pl−eh(t),

[

H̃σ
pl−eh(s), ρ̃(s)⊗ ρeh

]]

=
2

N + 1

N
∑

n=1

N ′

∑

n′=1

∑

qq′

∑

αβα′β′

×Λ2 sin(qdn) sin(q′dn′)〈nα|σ|nβ〉〈n′α′|σ|n′β′〉
×(cosh θσq − sinh θσq )(cosh θ

σ
q′ − sinh θσq′)e

i(ωα−ωβ)tei(ωα′−ωβ′ )s

×Treh

[

(

Bσ
q (t) + Bσ†

q (t)
)

c†nαcnβ,
[(

Bσ
q′(s) + Bσ†

q′ (s)
)

× c†n′α′cn′β′ , ρ̃σ(s)⊗ ρeh

]]

. (4.41)
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The last term of the right-hand-side of the above equation yields

Treh

[

(

Bσ
q (t) + Bσ†

q (t)
)

c†nαcnβ,
[(

Bσ
q′(s) + Bσ†

q′ (s)
)

c†n′α′cn′β′ , ρ̃σ(s)⊗ ρeh

]]

=
[

Bσ
q (t) + Bσ†

q (t),
(

Bσ
q′(s) + Bσ†

q′ (s)
)

ρ̃σ(s)
]

Treh

{

ρehc
†
nαcnβc

†
n′α′cn′β′

}

−
[

Bσ
q (t) + Bσ†

q (t), ρ̃σ(s)
(

Bσ
q′(s) + Bσ†

q′ (s)
)]

Treh

{

ρehc
†
n′α′cn′β′c†nαcnβ

}

,

(4.42)

where the traces over electronic degrees of freedom leads to

Treh

{

ρehc
†
n′α′cn′β′c†nαcnβ

}

=δα′β′δαβf(εα′)f(εα) + δnn′δα′βδαβ′

×[1− f(εα)]f(εα′), (4.43)

where f(ε) = 1/(exp[(ε−EF)/kBT ]+1) is the Fermi-Dirac distribution,
with kB being the Boltzmann constant and T temperature. With the
use of 〈nα|σ|nβ〉 = σ̂ ·dαβ and the fact that dαα = 0 we may write Eq.
(4.41) as

Treh

[

H̃pl−eh(t),
[

H̃pl−eh(s), ρ̃
σ(s)⊗ ρeh

]]

=
∑

q

{

Cσ
q (s− t)

[

Bσ
q (t) + Bσ†

q (t),
(

Bσ
q (s) + Bσ†

q (s)
)

ρ̃σ(s)
]

−Cσ
q (t− s)

[

Bσ
q (t) + Bσ†

q (t), ρ̃σ(s)
(

Bσ
q (s) + Bσ†

q (s)
)]}

, (4.44)

where the correlation function Cσ
q (τ) is defined as

Cσ
q (τ) =

∑

αβ

Λ2(cosh θσq − sinh θσq )
2|σ̂ · dαβ|2f(εβ)[1− f(εα)]e

i(ωα−ωβ)τ .

(4.45)
Following a similar derivation [c.f. Eqs. (4.34) – (4.36)] for the second

term of the right-hand-side of Eq. (4.33) we get

Trph

[

H̃σ
pl−ph(t),

[

H̃σ
pl−ph(s), ρ̃

σ(s)⊗ ρph

]]

=
−2

N + 1

N
∑

n=1

N
∑

n′=1

∑

qq′

∑

kk′λ̂kλ̂
′

k′

× ~
2πω3

0a
3

√VV ′ωkωk′

sin(qdn) sin(q′dn′)(cosh θσq + sinh θσq )(cosh θ
σ
q′ + sinh θσq′)

×(σ̂ · λ̂k)(σ̂ · λ̂′
k′)Trph

[

(

Bσ†
q (t)− Bσ

q (t)
)

(

a
kλ̂k

eik·dn + a†
kλ̂k

e−ik·dn

)

,

×
[(

Bσ†
q′ (s)− Bσ

q′(s)
)(

a
k′λ̂

k′
eik

′·dn′ + a†
k′λ̂

k′

e−ik′·dn′

)

, ρ̃σ(s)⊗ ρph

]]

.

(4.46)

We introduce the array factor defined as

Fk,q =

√

2

N + 1

N
∑

n=1

sin(nqd) e−ik·dn , (4.47)
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which is straightforwardly evaluated to yield

Fk,q =
i eikzd

√

2(N + 1)

∑

κ=±

κ e−iκ(N+1)(q+κkz)d/2
sin (N [q + κkz]d/2)

sin ([q + κkz]d/2)

(4.48)

with kz the z component of the photon momentum k. With the help
of Eq. (4.47) we rewrite Eq. (4.46) as

Trph

[

H̃σ
pl−ph(t),

[

H̃σ
pl−ph(s), ρ̃

σ(s)⊗ ρph

]]

= −
∑

qq′

∑

kk′λ̂kλ̂
′

k′

× ~
2πω3

0a
3

√VV ′ωkωk′

(cosh θσq + sinh θσq )(cosh θ
σ
q′ + sinh θσq′)

×(σ̂ · λ̂k)(σ̂ · λ̂′
k′)Trph

[

(

Bσ†
q (t)− Bσ

q (t)
)

(

a
kλ̂k

F ∗
k,q + a†

kλ̂k

Fk,q

)

,

×
[(

Bσ†
q′ (s) + Bσ

q′(s)
)(

a
k′λ̂

k′
F ∗
k′,q′ + a†

k′λ̂
k′

Fk′,q′

)

, ρ̃σ(s)⊗ ρph

]]

,

(4.49)

where the trace over photon degrees of freedom gives

Trph

[

(

Bσ†
q (t)− Bσ

q (t)
)

(

a
kλ̂k

F ∗
k,q + a†

kλ̂k

Fk,q

)

,
[(

Bσ†
q′ (s) + Bσ

q′(s)
)

×
(

a
k′λ̂

k′
F ∗
k′,q′ + a†

k′λ̂
k′

Fk′,q′

)

, ρ̃σ(s)⊗ ρph

]]

,

=
[

Bσ†
q (t)− Bσ

q (t),
(

Bσ†
q′ (s)− Bσ

q′(s)
)

ρ̃σ(s)
]

(4.50)

×Trph

{

ρph

(

a
kλ̂k

F ∗
k,q + a†

kλ̂k

Fk,q

)(

a
k′λ̂

k′
F ∗
k′,q′ + a†

k′λ̂
k′

Fk′,q′

)}

−
[

Bσ
q (t) + Bσ†

q (t), ρ̃σ(s)
(

Bσ
q′(s) + Bσ†

q′ (s)
)]

(4.51)

×Trph

{

ρph

(

a
k′λ̂

k′
F ∗
k′,q′ + a†

k′λ̂
k′

Fk′,q′

)(

a
kλ̂k

F ∗
k,q + a†

kλ̂k

Fk,q

)}

.

In the above equation the trace over photons yields

Trph

{

ρph

(

a
kλ̂k

F ∗
k,q + a†

kλ̂k

Fk,q

)(

a
k′λ̂

k′
F ∗
k′,q′ + a†

k′λ̂
k′

Fk′,q′

)}

= δkk′

[

(1− nph(ωk))F
∗
k,qFk,q′ + nph(ωk)Fk,qF

∗
k,q′

]

(4.52)

where nph(ω) = 1/(exp[~ω/kBT ]− 1) is the Bose-Einstein distribution
for the photons. In the large chain limit N ≫ 1 we have Fk,qF

∗
k,q′ →

|Fk,q|2δqq′ , thus allowing us to write Eq. (4.49) as

Trph

[

H̃pl−ph(t),
[

H̃pl−ph(s), ρ̃
σ(s)⊗ ρph

]]

=
∑

q

{

Dσ
q (s− t)

[

Bσ
q (t)− Bσ†

q (t),
(

Bσ
q (s)− Bσ†

q (s)
)

ρ̃σ(s)
]

−Dσ
q (t− s)

[

Bσ
q (t)− Bσ†

q (t), ρ̃σ(s)
(

Bσ
q (s)− Bσ†

q (s)
)]}

, (4.53)
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where the correlation function Dσ
q is defined as

Dσ
q (τ) =

π~2ω3
0a

3

V (cosh θσq + sinh θσq )
2
∑

k,λ̂k

1

ωk

|σ̂ · λ̂k|2|Fk,q|2

×
(

[1 + nph(ωk)]e
iωkτ + nph(ωk)e

−iωkτ
)

. (4.54)

Inserting the results for the traces Eqs. (4.44) and (4.53) in Eq.
(4.33) we arrive at

˙̃ρσ(t) ≃− 1

~2

∑

q

t
∫

0

dτ

×
{

Cσ∗
q (τ)

[

Bσ
q (t) + Bσ†

q (t),
(

Bσ
q (t− τ) + Bσ†

q (t− τ)
)

ρ̃σ(t− τ)
]

− Cσ
q (τ)

[

Bσ
q (t) + Bσ†

q (t), ρ̃σ(t− τ)
(

Bσ
q (t− τ) + Bσ†

q (t− τ)
)]

+Dσ∗
q (τ)

[

Bσ
q (t)− Bσ†

q (t),
(

Bσ
q (t− τ)− Bσ†

q (t− τ)
)

ρ̃σ(t− τ)
]

−Dσ
q (τ)

[

Bσ
q (t)− Bσ†

q (t), ρ̃σ(t− τ)
(

Bσ
q (t− τ)− Bσ†

q (t− τ)
)]}

.

(4.55)

The correlation functions (4.45) and (4.54) which contain all infor-
mation about the evolution of the electronic and photonic baths, are the
sums of oscillating exponentials. Thus, for large number of degrees of
freedom (i.e. large bath limit) they interfere destructively, allowing the
approximation that the correlation functions Cσ

q (τ) and Dσ
q (τ) decrease

as a function of τ on very short timescale τc (called the correlation
time). For τ > τc, Cσ

q (τ),Dσ
q ≈ 0. The above assumption amounts

to the Markovian approximation [91, 94]. This simplification allows us
to change the upper limit of the integral in the right-hand-side of Eq.
(4.55) to ∞, thus implying that we consider evolution of the system on
a timescale t ≫ τc.

Moreover, both the coupling of the plasmons with electrons (4.14)
and with photons (4.17) are weak, and since the right-hand-side of Eq.
(4.55) is already quadratic in the coupling we may omit the evolution
of the density matrix between t− τ and t leading to

˙̃ρσ(t) ≃− 1

~2

∑

q

∞
∫

0

dτ

×
{

Cσ∗
q (τ)

[

Bσ
q (t) + Bσ†

q (t),
(

Bσ
q (t− τ) + Bσ†

q (t− τ)
)

ρ̃σ(t)
]

− Cσ
q (τ)

[

Bσ
q (t) + Bσ†

q (t), ρ̃σ(t)
(

Bσ
q (t− τ) + Bσ†

q (t− τ)
)]

+Dσ∗
q (τ)

[

Bσ
q (t)− Bσ†

q (t),
(

Bσ
q (t− τ)− Bσ†

q (t− τ)
)

ρ̃σ(t)
]

−Dσ
q (τ)

[

Bσ
q (t)− Bσ†

q (t), ρ̃σ(t)
(

Bσ
q (t− τ)− Bσ†

q (t− τ)
)]}

.

(4.56)
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Now, inserting the time evolution of the normal modes operators
(4.38) into Eq. (4.56) and using the rotating wave approximation (i.e.
omitting the terms proportional to e±i2ωσ

q τ ) in addition to the use of

∞
∫

0

dτ e±iΩτ = ±iP 1

Ω
+ πδ(Ω), (4.57)

where P denotes the Cauchy principal value, we obtain in the zero
temperature limit the master equation for the density matrix in the
Lindblad form [26,27,91]

ρ̇σ =− i
∑

q

ω̃σ
q

[

Bσ†
q Bσ

q , ρ
σ
]

−
∑

q

γσ
q

2

(

Bσ†
q Bσ

q ρ
σ + ρσBσ†

q Bσ
q − 2Bσ

q ρB
σ†
q

)

. (4.58)

We may extend this equation by adding the effect of the driving
field (4.18) through

ρ̇σ = −(i/~) [Hdrive, ρ
σ] , (4.59)

which leads to final form of the master equation (4.58)

ρ̇σ =− i
∑

q

ω̃σ
q

[

Bσ†
q Bσ

q , ρ
σ
]

−
∑

q

γσ
q

2

(

Bσ†
q Bσ

q ρ
σ + ρσBσ†

q Bσ
q − 2Bσ

q ρB
σ†
q

)

(4.60)

+i
∑

q

Aσ
q f(t)

2ω̃σ
q

[

Bσ†
q +Bσ

q , ρ
σ
]

, (4.61)

where the amplitude Aσ
q is defined as

Aσ
q = −2

√

2

N + 1
σ̂ · ǫ̂ sin (qd) ΩRω̃

σ
q

√

ω0

ωσ
q

. (4.62)

The rate γσ
q = γa + γσ,L

q + γσ,r
q entering the master equation (4.60)

and describing the decay of a collective plasmonic mode {q, σ} into
the ground state consists of three components: (i) the non-radiative
bulk Ohmic losses characterized by the (mode-independent) decay rate
γa [which is phenomenologically incorporated in the master equation
(4.60) and not through a first-principle calculation], (ii) the non-radiative
Landau damping linewidth γσ,L

q , and (iii) the radiative losses with decay
rate γσ,r

q .
The non-radiative Landau damping decay rate arising from the cou-

pling Hamiltonian (3.14) reads

γσ,L
q =

ω0

ωσ
q

Σσ(ωσ
q ) (4.63)
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with Σσ(ω) defined in Eq. (2.28) and evaluated in Eq. (2.35). The
radiative decay rate originating from the plasmon-photon interaction
(4.17) is given by

γσ,r
q = 2π2ω2

0ω
σ
q

a3

V
∑

k,λ̂k

|σ̂ · λ̂k|
2

ωk

|Fk,q|2δ(ωσ
q − ωk), (4.64)

In the master equation (4.60), the eigenfrequency ω̃σ
q = ωσ

q − (δσ,Lq +
δσ,rq ) contains the redshifts due to the interaction with electronic [21,
23, 25] and photonic [91] environments, which read, respectively,

δσ,Lq =
2

~2
Λ2 ω0

ωσ
q

P
∑

eh

|〈e|σ|h〉|2 ωeh

ω2
eh − ωσ

q
2

(4.65)

and

δσ,rq = 2πω2
0ω

σ
q

a3

V P
∑

k,λ̂k

|σ̂ · λ̂k|2|Fkq|2
1

ω2
k
− ωσ

q
2
. (4.66)

Nonetheless, these shifts are very small and we will neglect them in our
study of the plsamon propagation.

4.3 Nonradiative and radiative decay rates

of the collective plasmonic modes

We now turn to the evaluation of the nonradiative and radiative decay
rates given by the Fermi golden rule expressions in Eqs. (4.63) and
(4.64), respectively.

4.3.1 Landau damping

Evaluating the Landau damping (4.63) with the use of Eq. (2.35) yields

γσ,L
q =

3vF
4a

(

ω0

ωσ
q

)4

g

(

~ωσ
q

EF

)

, (4.67)

where g(ν) is defined in Eq. (2.37).
The nonradiative decay rate (4.67) scales as the inverse of the nanopar-

ticle size, so that for small enough nanoparticles Landau damping dom-
inates over radiation damping (which scales as the particle volume, see
Sec. 4.3.2).

The Landau damping decay rates of the transverse and longitudi-
nal collective plasmon modes are shown in Fig. 4.3 as a function of
momentum. Once scaled with the Landau damping decay rate of a sin-
gle nanoparticle [14, 17, 24] γL

0 [c.f. (2.38)], the nonradiative linewidths
of the coupled plasmons show a significant modulation as a function of
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Figure 4.3: Landau damping decay rate from Eq. (4.67) as a func-
tion of momentum for the transverse (red dashed lines, σ = x, y) and
longitudinal (blue solid lines, σ = z) collective plasmonic modes for an
interparticle separation d = 3a. The thick (thin) lines correspond to
~ω0/EF = 0.5 (~ω0/EF = 1).

the wavelength of the modes (between −25% and +45% for the longi-
tudinal mode). The higher the frequency of the mode, the lower is its
Landau damping linewidth, as for an isolated nanoparticle [27]. No-
tice also that the dependence of γσ,L

q on the ratio ~ω0/EF is rather
weak (thick and thin lines in Fig. 4.3 correspond to ~ω0/EF = 0.5
and 1, respectively). This is due to the relatively smooth behavior of
the monotonically decreasing function g(ν) [defined in Eq. (2.37)] for
realistic values of the ratio ν = ~ω0/EF.

4.3.2 Radiative damping

In the Fermi golden rule (4.64) for the radiative decay rate of the col-
lective plasmons, the summation over photon polarizations was done in
Eq. (2.41), while the sum over photonic momenta k is performed in the
continuous limit (V → ∞). Using spherical coordinates for the integral
over k, we arrive at

γσ,r
q =

3|ησ|
8

γr
0

(

ωσ
q

ω0

)2

×
∫ π

0

dθ sin θ
(

1 + sgn{ησ} cos2 θ
)

|Fkσ
q ,q|2 (4.68)
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for the radiative decay rates of the transverse (σ = x, y) and longitu-
dinal (σ = z) collective plasmons, respectively. γr

0 [c.f. (2.45)] is the
radiation damping decay rate of a single isolated nanoparticle, and

|Fkσ
q ,q|2 =

1

2(N + 1)

{

∑

κ=±

sin2
(

N [q + κkσ
q cos θ]d/2

)

sin2
(

[q + κkσ
q cos θ]d/2

)

−2 cos([N + 1]qd)
∏

κ=±

sin
(

N [q + κkσ
q cos θ]d/2

)

sin
(

[q + κkσ
q cos θ]d/2

)

}

, (4.69)

where kσ
q = ωσ

q /c. In the infinite chain limit (N → ∞), the expression
above reduces to

|Fkσ
q ,q|2 ≃ π

∑

κ=±

δ([q + κkσ
q cos θ]d), (4.70)

so that the remaining integral in Eq. (4.68) is easily performed, yielding

γσ,r
q =

3π|ησ|γr
0

4k0d

(

ωσ
q

)2
+ sgn{ησ}

(

cq
)2

ω0ωσ
q

Θ
(

ωσ
q − cq

)

. (4.71)

In Fig. 4.4, we compare our analytical results for transverse (a)
and longitudinal (b) plasmonic modes in infinite chains (N → ∞),
Eq. (4.71), to a numerical evaluation of Eq. (4.68) for finite chains
containing N = {5, 10, 20} nanoparticles. As one can see from Fig.
4.4, the behavior of the finite chain approaches the analytical infinite
chain limit with a rather good agreement already for N = 20. For
N = 50, the continuous black line representing the analytical result of
Eq. (4.71) in Fig. 4.4 and the numerical data points (not shown in the
figure) almost coincide.

The expression (4.71) shows that dark plasmonic modes with a
wavelength smaller than ∼ 2π/k0 (q & k0), i.e., outside of the light
cone, have a vanishing radiative decay rate. This behavior comes from
the destructive interference of the electric field associated with small do-
mains of in-phase LSPs, resulting in subradiant collective modes which
do not couple to light. The results in Eq. (4.71) and in Fig. 4.4 also
show that most of the collective plasmons with a wavelength larger
than ∼ 2π/k0 (q . k0) are superradiant, with radiative decay rates
that exceed the one of a single nanoparticle γr

0. Moreover, as illus-
trated in the inset in Fig. 4.4, the expression (4.71) shows that the
radiative linewidth γσ,r

q , scaled with γr
0/k0d, is almost a universal func-

tion of q/k0. In the limit of uncoupled nanoparticles (Ω → 0) it is
easy to show that

∫

dq γσ,r
q = πγr

0/d for both, the transverse and the
longitudinal mode.

The behavior of the radiative decay of the transverse and longitu-
dinal plasmonic modes in Fig. 4.4 has been demonstrated by means of
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Figure 4.4: Radiation damping decay rate from Eq. (4.68) as a func-
tion of momentum for the (a) transverse and (b) longitudinal collective
plasmonic modes for k0d = 1 in chains with d = 3a that contain var-
ious numbers N of nanoparticles. The thick solid lines correspond to
N → ∞, [cf. Eq. (4.71)]. The inset shows the radiation damping decay
rate from Eq. (4.71) for the transverse (red dashed lines) and longitu-
dinal (blue solid lines) collective plasmonic modes for k0d = 0.25, 0.5
and 1 from the thin to the thicker line.

sophisticated numerical and semi-analytical calculations in the past, in-
cluding retardation in the interaction between the nanoparticles [46,47,
51–53, 65]. Our transparent analytical result (4.71) shows that a qua-
sistatic description of the interparticle interactions is sufficient to de-
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scribe, at least qualitatively, radiative energy losses in metallic nanopar-
ticle chains.

4.4 Plasmon propagation along the nanopar-

ticle chain

After having obtained analytical expressions for the nonradiative and
radiative lifetimes of the collective plasmons in Sec. 4.3, we are now in a
position of studying the plasmon propagation along the chain. To this
end, we introduce the (dimensionless) dipole moment σn = 〈bσn + bσ†n 〉
bared by nanoparticle n. This quantity can be calculated from its
time evolution in momentum space, itself obtained from the master
equation (4.60) using that 〈Ȯ〉 = Tr {ρ̇O} for any operator O. Using
the above relation for σq = 〈Bσ

q + Bσ†
q 〉 [cf. Eq. (4.5)] and momentum

πσ
q = 〈Bσ

q − Bσ†
q 〉 we get

σ̇q = iωσ
q π

σ
q − γσ

q

2
σq + i

Aσ
q f(t)

2ωσ
q

, (4.72a)

π̇σ
q = iωσ

q σq −
γσ
q

2
πσ
q . (4.72b)

Taking the time derivative of Eq. (4.72a) and using Eq. (4.72b) we get

σ̈q + γσ
q σ̇q + Ωσ

q
2σq = Aσ

q f(t), (4.73)

with Ωσ
q
2 = ω̃σ2

q +(γσ
q /2)

2, and where the amplitude of the driving force
Aσ

q is defined in Eq. (4.62). In the following we first consider the case
of a continuous drive by a monochromatic electric field, and then the
case of the irradiation of the first nanoparticle by an extremely short
(δ-like) laser excitation.

4.4.1 Continuous driving by a monochromatic elec-

tric field

We start by considering the case where the first nanoparticle in the
chain is illuminated by a long-wavelength monochromatic electric field
at the driving frequency ωd, for which f(t) = sin(ωdt). The stationary
solution of Eq. (4.73) then reads

σq = Sσ
q sin (ωdt) + Cσ

q cos (ωdt) (4.74)

with

Sσ
q = Aσ

q

Ωσ
q
2 − ω2

d
(

ω2
d − Ωσ

q
2
)2

+
(

γσ
q ωd

)2 (4.75a)

89



and

Cσ
q = Aσ

q

−γσ
q ωd

(

ω2
d − Ωσ

q
2
)2

+
(

γσ
q ωd

)2 . (4.75b)

The root mean square dipole moment is defined as

√

∆σ2
n =

√

σ2
n − σn

2, (4.76)

where the bar denotes time averaging. Since the time-averaged dipole
moment is zero (i.e. σ̄n = 0), Eq. (4.76) therefore reads

√

∆σ2
n =

1√
N + 1

√

(S̃σ
n )

2 + (C̃σ
n)

2. (4.77)

with

S̃σ
n =

∑

q

sin (nqd)
√

ωσ
q /ω0

Sσ
q (4.78a)

and

C̃σ
n =

∑

q

sin (nqd)
√

ωσ
q /ω0

Cσ
q . (4.78b)

In Figs. 4.5(a)-(d) we present numerical results for the average sta-
tionary dipole moment on nanoparticle n [cf. Eq. (4.77)] for the trans-
verse (red dashed lines) and longitudinal modes (blue solid lines) along
a chain composed of N = 1000 Ag nanoparticles. Panels (a) to (d) in
Fig. 4.5 correspond to nanoparticle radii kFa = 100, 350, 500 and 750,
respectively, with kF the Fermi wavevector, keeping the interparticle
distance fixed to d = 3a.

We observe two different regimes for the decay of the dipole moment
along the chain: Over the first few nanoparticles of the chain, the decay
of the excitation is purely exponential

√

∆σ2
n

∆σ2
1

= e−(n−1)d/ξσ , (4.79)

with ξσ the propagation length for the polarization σ. Remarkably, such
an exponential decay is exclusively due to nonradiative decay mech-
anisms of the collective plasmons, i.e. absorption losses and Landau
damping. Indeed, the numerical evaluation of Eq. (4.77) without radi-
ation damping (4.71) reproduce almost perfectly the exponential decay
of
√

∆σ2
n shown in Figures 4.5(a)-(d).

For longer distances along the chain, the decay of the excitation is
algebraic [see thick solid and dashed lines in Figures 4.5(a)-(d) which
correspond to

√

∆σ2
n ∼ 1/nζσ ]. This algebraic decay results solely

from the radiation damping rate (4.71) and its behavior as a function
of momentum. The latter for the transverse modes is discontinuous
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Figure 4.5: (a)-(d) Normalized time averaged root mean square dipole
moment on nanoparticle n resulting from a monochromatic excitation
at frequency ωd = ω0 of the 1st nanoparticle in a chain with N = 1000
and interparticle distance d = 3a. Dashed red and solid blue lines
correspond respectively to the numerical evaluation of Eq. (4.77) for
the transverse and longitudinal modes, including, absorption losses,
Landau and radiation damping. The thick dashed and solid gray lines
corresponding to the analytical result (4.90) include only nonradiative
losses, i.e. absorption and Landau damping. The nanoparticle sizes are
(a) kFa = 50, (b) kFa = 100, (c) kFa = 200, and (d) kFa = 300. The
thick dashed and solid black lines are algebraic fits for the transverse
and longitudinal modes, respectively (see text). (e)-(f) Propagation
length ξσ from Eq. (4.91) for (e) transverse (f) longitudinal modes as
a function of a and d. the parameters in the figure are γa/ω0 = 0.027,
~ω0/EF = 0.47, and ω0/ckF = 1.1 × 10−3, corresponding to a chain
of Ag nanoparticles. The frequency shifts (4.65) and (4.66) have been
neglected.

(for N ≫ 1) at q ≈ k0 [see Fig. 4.4(a)], yielding ζx,y ≃ 1 [see thick
dashed lines in Figs. 4.5(a)-(d)], while for the longitudinal mode [see
Fig. 4.4(b)], the monotonic decaying behavior of the radiative damping
rate for q . k0 yields ζz ≃ 2. The algebraic behavior of the plasmon
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decay along the chain becomes more dominant for increasing nanopar-
ticle size and interparticle distance, at the constant ratio d = 3a used
in Figures 4.5(a)-(d). This is a result of the increasing influence of
the radiation damping on the overall collective plasmon linewidth for
increasing nanoparticle sizes.

Within the perspective of energy transfer, the initial exponential
regime witnessed in Figures 4.5(a)-(d) is the determinant one. There-
fore, it is useful to search for the maximization of the propagation length
ξσ defined in Eq. (4.79) within the parameter range of the present
model. Below we provide an analytical calculation of the root mean
square dipole moment (4.77) in the weakly-coupled nanoparticle regime,
and subsequently we deduce the propagation length ξσ as a function of
the parameters of our model.

Since the exponential decay of the plasmon excitation is of nonra-
diative origin, in what follows we neglect the radiation damping (4.71).
Moreover, we neglect the frequency shifts (4.65) and (4.66), as they
represent a very small correction to the collective mode resonant fre-
quencies [25]. To linear order in the coupling Ω/ω0 and to quadratic
order in γσ

q /ω0, using Eqs. (4.11) and (4.67), the coefficients (4.75) read
for ωd = ω0

Sσ
q ≃ Aσ

q

4ω2
0

ησΩω0 cos(qd) + (γnr/4)2

[ησΩω0 cos(qd)]2 + (γnr/4)2
(4.80a)

and

Cσ
q ≃ −Aσ

q

8ω2
0

γnrω0/2 + ησγ
L
0ΩG(~ω0/EF) cos(qd)

[ησΩω0 cos(qd)]2 + (γnr/4)2
, (4.80b)

where γnr = γa + γL
0 is the nonradiative part of the damping rate

corresponding to a single nanoparticle and G(ν) = dg(ν)/dν. In the
large chain limit (N ≫ 1), we replace the summation over plasmon
momentum in Eq. (4.78) by an integral and arrive using Eq. (4.80), to

Sσ
n ≃ −

√

2(N + 1)

2πησ
σ̂ · ǫ̂ΩR

Ω

[

(γnr/4)2

ησΩω0

I
(

γnr

4|ησ|Ω

)

+ J
(

γnr

4|ησ|Ω

)]

(4.81a)
and

Cσ
n ≃−

√

2(N + 1)

4πησ
σ̂ · ǫ̂ΩR

Ω

[

γnr

2ησΩ
I
(

γnr

4|ησ|Ω

)

+ G

(

~ω0

EF

)

γL
0

ω0

J
(

γnr

4|ησ|Ω

)]

(4.81b)

The two integrals appearing in Eq. (4.81) are defined by

In(α) =

∫ π

0

dx
sin x sin (nx)

cos2 x+ α2
(4.82)
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and

Jn(α) =

∫ π

0

dx
sin x cosx sin (nx)

cos2 x+ α2
, (4.83)

where α is real and positive, and n is an integer strictly larger than 0.
It is easy to show that

In(α) =
1

2
Im

∫ 2π

0

dx
sin x einx

cos2 x+ α2
(4.84)

for n odd and In(α) = 0 for n even, while

Jn(α) =
1

2
Im

∫ 2π

0

dx
sin x cos x einx

cos2 x+ α2
(4.85)

for n even and Jn(α) = 0 for n odd. Changing variables to z = eix in
Eqs. (4.84) and (4.85), we arrive at

In(α) = −Im

∮

dz
(z2 − 1)zn

z4 + 2(1 + 2α2)z2 + 1
(4.86)

and

Jn(α) = −1

2
Im

∮

dz
(z4 − 1)zn−1

z4 + 2(1 + 2α2)z2 + 1
, (4.87)

where the two above integrals are taken over the unit circle in the
complex plane. The denominator of the integrands appearing in Eqs.
(4.86) and (4.87) has two simple poles lying outside of the unit circle,
zout± = ±i[(1+α2)1/2 +α], and two simple poles lying inside of the unit
circle, zin± = ±i[(1+α2)1/2−α]. By the residue theorem, we thus arrive
to the final results

In(α) = [1− (−1)n] Im{in}π
2

(√
1 + α2 − α

)n

α
(4.88)

and

Jn(α) = − [1 + (−1)n] Im{in+1}π
2

(√
1 + α2 − α

)n

(4.89)

for all integers n > 1.
With Eqs. (4.88) and (4.89) and to leading order in Ω/ω0 and γσ

q /ω0,
Eq. (4.77) finally reads

√

∆σ2
n ≃ |σ̂ · ǫ̂|√

2|ησ|
ΩR

Ω





√

1 +

(

γnr

4|ησ|Ω

)2

− γnr

4|ησ|Ω





n

. (4.90)

The decay of the plasmon excitation then follows the exponential be-
havior (4.79), with a decay length

ξσ =
d

arcsinh(γnr/4|ησ|Ω)
. (4.91)
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The latter, once scaled with the interparticle distance d, is a mono-
tonically decreasing function of the unique parameter γnr/Ω. For weak
dissipation and/or strong coupling (γnr ≪ Ω), it behaves as ξσ/d ≃
4|ησ|Ω/γnr, while in the opposite regime γnr ≫ Ω, ξσ/d ≃ [ln (γnr/4|ησ|Ω)
+ ln 2]−1.

We show in Figs. 4.5(a)-(d) our analytical result (4.90) for the trans-
verse and longitudinal modes by thick solid and dashed gray lines, re-
spectively. As can be seen from the figure, the agreement between Eq.
(4.90) and the exponential part of the plasmon decay as obtained from
the numerics is excellent, confirming that such an exponential behavior
is solely of nonradiative origin.

The propagation length (4.91) is plotted in Fig. 4.5(e) for the trans-
verse modes and in Fig. 4.5(f) for the longitudinal one for chains of
Ag nanoparticles. The propagation length ξσ is measured in units of
k−1
0 = 76 nm, while a and d are measured in units of k−1

F = 0.83Å. In
these two figures, we only show data points for d > 3a, as our model of
point dipoles interacting through a quasistatic interaction is not valid
for smaller interparticle distances [45].

As can be seen from panels (e) and (f) in Fig. 4.5 and inferred
from Eq. (4.91), the smaller the interparticle distance d and the larger
the nanoparticle radii a, i.e., the larger the coupling constant Ω =
(ω0/2)(a/d)

3, the larger the resulting propagation length ξσ is achieved.
For a fixed d, the maximum ξσ is attained for d/a = 3, that is, at
the limit of validity of the near-field approximation adopted in this
work. It is then expected that the optimal propagation lengths occur
for d/a < 3.

An important conclusion that can be extracted from Figs. 4.5(e)
and 4.5(f) and from Eq. (4.91) is that the longitudinal mode generally
propagates for a longer distance than the transverse one, thus con-
firming previous numerical studies [37, 40, 44] in the framework of a
well-defined criterion. This is due to the fact that the LSPs have an
effective interaction strength in Eq. (3.11) which is twice as much in
the longitudinal case (|ηz| = 2) than in the transverse case (|ηx,y| = 1).

4.4.2 Short laser pulse excitation

We now consider an alternative situation of experimental relevance,
where the first nanoparticle in the chain is irradiated by a very short
laser pulse. In such a case, f(t) = δ(ω0t) and the solution of Eq. (4.73)
can be readily obtained, yielding the (dimensionless) dipole moment on
nanoparticle n,

σn(t) =

√

2

(N + 1)ω0

Θ(t)
∑

q

Aσ
q

(ωσ
q )

3/2
sin (nqd)e−γσ

q t/2 sin (ωσ
q t).

(4.92)
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We have checked by a numerical evaluation of Eq. (4.92) (not shown)
that the radiation damping very weakly affects the decay of the plasmon
excitation along the chain for short distances (below ca. 10 nanoparti-
cles), as is the case for the continuous drive by a monochromatic field
(see Sec. 4.4.1). Along the same lines as in the previous section, in the
following we analytically evaluate Eq. (4.92) by disregarding the radia-
tion damping (4.71). We further ignore the frequency shifts (4.65) and
(4.66). In the large chain limit, and working up to leading order in
Ω/ω0 ≪ 1, we obtain

σn(t) ≃− 4

π
σ̂ · ǫ̂ ΩR

ω0

Θ(t) e−γnrt/2

×
[

Kn

(

2ησΩt, ησγ
L
0G(~ω0/EF)Ωt/ω0

)

sin (ω0t)

+ Ln

(

2ησΩt, ησγ
L
0G(~ω0/EF)Ωt/ω0

)

cos (ω0t)
]

. (4.93)

The two integrals involved in the expression (4.93) describing the
dipole moment resulting from the pulsed excitation of the first nanopar-
ticle in the chain are defined by

Kn(α, β) =

∫ π

0

dx sin (nx) sin x cos (α cos x) e−β cosx (4.94)

and

Ln(α, β) =

∫ π

0

dx sin (nx) sin x sin (α cos x) e−β cosx, (4.95)

where α and β are both real and where n is an integer strictly larger
than zero. Using that

∫ π

0

dx cos (nx) cos (z cos x) = π cos
(nπ

2

)

Jn(z) (4.96)

and
∫ π

0

dx cos (nx) sin (z cos x) = π sin
(nπ

2

)

Jn(z), (4.97)

where Jn(z) denotes the Bessel function of the first kind with z a com-
plex variable, we obtain

Kn(α, β) = πn Im

{

einπ/2
Jn(α + iβ)

α + iβ

}

(4.98)

and

Ln(α, β) = −πn Re

{

einπ/2
Jn(α + iβ)

α + iβ

}

. (4.99)

Together with Eqs. (4.98) and (4.99), we then obtain to leading
order in Ω/ω0 and in γσ

q /ω0 the result

σn(t) =
2ΩR

ω0

σ̂ · ǫ̂ Θ(t)
e−γnrt/2 cos (ω0t+ nπ/2) nJn(2ησΩt)

ησΩt
(4.100)
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Figure 4.6: Dipole moment on nanoparticle n as a function of time
resulting from the excitation of the first nanoparticle by a short pulse
[cf. Eq. (4.100)]. The transverse and longitudinal modes are represented
by red dashed and blue solid lines, respectively. The parameters used
in the figure correspond to an infinite chain of Ag nanoparticles with
radius a = 200 k−1

F = 16.6 nm separated by an interparticle distance
d = 3a.

for the dipole moment on nanoparticle n resulting from a pulsed exci-
tation on the first nanoparticle in the chain.

In Fig. 4.6 we plot the dipole moment (4.100) on nanoparticle n = 1
to 8 as a function of time for the transverse (red dashed lines) and lon-
gitudinal modes (blue solid lines). The parameters used in the figure
correspond to the case of an infinite chain of Ag nanoparticles with ra-
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dius a = 200k−1
F = 16.6 nm and interparticle distance d = 3a. As can

be seen on the figure, the initial excitation propagates for at least n = 8
nanoparticles in the case of the longitudinal mode, corresponding to a
distance of about 400 nm. It is clear from Fig. 4.6 for n = 1 to 4 that
the transverse mode (cf. red dashed lines in the figure) has a longer life-
time than the longitudinal one (blue solid lines). Such a longer lifetime
is associated with lower propagation efficiency. Hence, the longitudinal
mode propagates for longer distances than the transverse mode. For
instance on the 8th nanoparticle, the longitudinal mode is still active
(at the level of a few percent of the initial excitation) while the trans-
verse one is totally suppressed. One may conclude from Fig. 4.6 that,
although the signal is strongly damped, it may still be detectable and
therefore be useful in the prospect of information transfer based on
nanoscale plasmonic metamaterials.

4.5 Conclusions to Chapter 4

In this chapter we have investigated the plasmonic properties of one
dimensional nanoparticle assemblies. Adapting theoretical framework
of Chapters 2, extended in Chapter 3, we developed a simple model of
near-field coupled nanoparticle chain. Within this model we derived a
master equation which was utilized to gain insight into the limitation
of the propagation of the plasmon along the chain.

We presented how the Landau and the radiation damping are modi-
fied through the interaction in the chain of metallic nanoparticles. The
former was shown to have almost 40% modulation with respect to the
plasmonic momentum, while the latter is separated into sub-radiant
and super-radiant modes confirming earlier numerical results [46].

In the propagation study we concluded that the exponential decay
of the signal along the chain was resulting from purely non-radiative
damping mechanisms present in the system. Thanks to that, using few
approximations we obtained analytical expression for the propagation
length.
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Chapter 5

Conclusions and perspectives

In this thesis we have investigated the properties of collective plasmons
in one-dimensional assemblies of spherical metallic nanoparticles. We
have studied the influence of the near-field interaction onto the damp-
ing mechanisms taking place in the system (i.e. Landau and radiation
damping). Using these results we investigated how energy losses limit
the propagation of a plasmonic excitation along metallic nanoparticle
chains.

In Chapter 2 we have reviewed the theoretical framework of the
open quantum system approach within the jellium approximation ap-
plied to an isolated metallic nanoparticle. Starting from the microscopic
Hamiltonian in the Coulomb gauge we introduced the separation of co-
ordinates into center-of-mass (plasmons) and relative (electrons) ones,
which lead to the general form of the system Hamiltonian (2.8), used
throughout the chapters 3 and 4 (with addition of the external driving
force in Chapter 4). The Hamiltonian (2.8) is characteristic of open
quantum systems, where the plasmons are coupled to electronic and
photonic environments. The use of a mean-field approximation for the
electronic bath enables one to obtain analytical results for the plasmon
lifetime.

The coupling between plasmons and electrons originates from the
breakdown of Kohn’s theorem [89], due to the non-harmonicity of the
single-electron confinement potential. This coupling results in a process
in which the plasmon decays by producing an electron-hole pair (i.e.
Landau damping). In Section 2.3 we have reviewed the method of the
evaluation of Landau damping using Fermi’s golden rule.

In Section 2.4 we have surveyed the evaluation of the effect of the
coupling between plasmons and photons. This coupling leads to ra-
diative losses which are a direct consequence of the radiation from ac-
celerated charges. Using also the Fermi golden rule, one obtains the
well-known expression for the radiation damping.

In Chapter 3 we used the theoretical framework of Chapter 2 to
investigate how the radiation and Landau damping change in the case
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of nanoparticle dimers, which are the building blocks of more complex
arrays, such as the nanoparticle chain studied in Chapter 4.

We started our investigation by finding the eigenmodes of the cou-
pled plasmons in a heterogeneous dimer. In Section 3.2, using a Bogoli-
ubov transformation, we determined the eigenstates and eigenenergies
of the plasmonic system. Our findings confirmed tendencies found in
the literature (i.e. scaling of the eigenenergy with the interparticle dis-
tance d as d−3 resulting from dipole-dipole interactions) [71,73,75]. The
obtained eigenmodes were of twofold nature: symmetric (i.e. plasmons
oriented parallel) which is strongly coupled to the light thus dubbed as
a bright mode; and anti-symmetric (i.e. plasmon oriented anti-parallel)
weakly coupled to the light and dubbed a dark mode.

In Section 3.3 we used the results from Chapter 2 in order to find
analytical expressions for the Landau damping decay rate of the col-
lective modes. The behavior of the Landau damping with respect to
the interparticle distance showed a change in the linewidth going up to
25%, for longitudinal modes, with respect to the Landau damping of
an isolated nanoparticle.

The analytical expression for the radiation damping of the collective
modes was obtained in Section 3.4. It was shown that for the case of
homogeneous dimers the radiation damping of the dark mode vanishes
and the one of the bright mode is twice as large as that of an isolated
nanoparticle. In the case of a heterogeneous dimer the dark mode is
always radiating. Moreover, for the longitudinal polarization radiation
damping of the bright mode increases with the increasing interparti-
cle distance to the point where it becomes larger than the radiation
damping of the bright mode.

In Section 3.5 we have presented the size dependence of the total
damping (radiation plus Landau) showing that there exists an optimal
size that minimizes the total linewidth for the case of the bright modes.
Moreover, we also presented two-dimensional maps of the total damping
linewidth as a function of both size and interparticle distance. These
maps appear as a convenient tool for finding the optimal parameters of
the nanoparticle dimer system.

The results presented in Chapter 3 are in very good agreement with
the existing experiments [79,80,85,86] and numerical findings [75], thus
supporting our analytically-tractable model.

In Chapter 4 we have studied homogeneous nanoparticle chains. We
started with the extension of the system Hamiltonian (2.8) by adding
a driving term which is of experimental relevance. Considering a finite
chain, we used a sine transform and the Bogoliugov transformation in
order to obtain the eigenmodes of the collective plasmons, recovering
dispersion relation existing in the literature [40].

Using the collective plasmon eigenmodes we derived a master equa-
tion for the density matrix of the plasmonic degrees of freedom with
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polarization σ = x, y, z. For the derivation of master equation we as-
sumed the weak coupling limit, as well as the Markovian approximation.

The weak coupling approximation constitutes an assumption ensur-
ing that the coupling between the plasmons and the baths does not
change the state of the latter. The Markovian hypothesis accounts
for the fact that we are considering the evolution of the system on
timescales longer than the correlation times present in the plasmonic
system.

In Section 4.2, using the above approximations we obtained a mas-
ter equation in the Lindblad form, with the decay rates given by the
Fermi’s golden rule. We also obtained expressions for Lamb shift due
to coupling to both electron-hole and photonic environments.

In Section 4.3 we evaluated the Landau and radiation damping rates
entering into master equation. We have obtained an analytical expres-
sion for the Landau damping and, in the limit of the infinite chain, for
the radiation damping as well. The latter was in excellent agreement
with previously found numerical results [46], showing the separation
into super-radiative (i.e. damping higher than that of a single nanopar-
ticle) and sub-radiative modes (i.e. damping lower than that of a single
nanoparticle).

In Section 4.4, we used the master equation, to which we also in-
cluded a driving term, and phenomenologically, the mode and size in-
dependent Ohmic losses. From the master equation we derived the
equations of motion for the dimensionless dipole moments in momen-
tum space.

We considered two scenarios of plasmon propagation: in Subsection
4.4.1 we studied the case of the continuous drive using monochromatic
electric field, and in Subsection 4.4.2 we investigated the short laser
pulse excitation of the plasmon.

Numerical solution of the case with continuous drive for the chain
of 1000 Ag nanoparticles, showed two regimes in the quasi-static state.
For short distances the decay of the excitation was exponential and it
changed to an algebraic one for longer distances. The power laws found
by fitting an algebraic decay in the numerically obtained results, yield-
ing the exponent 1 (2) for the transverse (longitudinal) mode. The
change from exponential to algebraic decay was understood to be a
consequence of the discontinuous behavior of the radiation damping as
a function of the plasmonic wavevector. Thus, proving that the ex-
ponential decay is of purely non-radiative origin. Using this fact, and
neglecting radiation damping (which contributes only to the algebraic
decay), we analytically calculated the expression for the plasmon prop-
agation amplitude and the propagation length.

In the case of short laser pulse excitations, we tested that radiation
damping weakly influences the pulse propagation. Thus, as in the case
of continuous drive, we derived analytical expression for the local dipole
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moment.

From our result we conclude that, although the propagation of the
plasmon is possible and could be detected. Nonetheless the order of the
attenuation is high enough to render signal detection on relatively large
distances useless [11]. However, the prospects claimed in the literature
of using collective plasmons for signal transmission [37, 40] might be
only valid for relatively short distance propagation. A useful outcome
of our work is that, our model, when properly adapted, provides a way
to obtain the minimization of the losses that limit possible applications
of nanoparticle arrays [11].

Our open quantum system approach can be easily adapted to any
regular assembly of metallic nanoparticles, giving countless possibilities
for potential applications. Using only a few approximations we were
able to grasp the basic physics behind the propagation and decay of the
collective plasmons in the chains of metallic nanoparticles. Moreover,
working within a quantum description allowed us to properly include
Landau damping, which is an important ingredient for describing the
plasmon lifetime within nanoparticle of small sizes.

The extension of our model toward two [39] and three [66, 67] di-
mensional regular arrays of nanoparicle is straightforward. Among two
dimensional structures [39] there exists a particularly interesting ar-
ray, which is the honeycomb lattice of metallic nanoparticles [9]. For
this special lattice the developed theory predicts the existence of cou-
pled plasmonic states behaving like a massless Dirac bosons. Adapting
our approach to this structure may shine some light onto the limita-
tions of the usage of this peculiar metamaterial. In the case of three-
dimensional cubic arrays of metallic nanoparticles [66,67] adapting our
model can turn out to be useful, especially in order to understand the
limitation of the application of plasmon-polaritons present therein.

In our description, we restricted ourselves only to the interaction
between the plasmons and the driving electric field, but the interaction
of the plasmon with an imposed magnetic field is also possible [30]. In
this case, for an isolated nanoparticle, new collective oscillations are
formed in the plane perpendicular to the magnetic field. Those new
collective excitation are called magnetoplasmons. The investigation of
how the properties of magnetoplasmons change in the presence of inter-
particle interaction is of interest from the theoretical and experimental
point of view.

Throughout our work we only considered near-field coupled par-
ticles. Nevertheless, as we mentioned in the introduction for nearly
touching particles new plasmonic states can form (i.e. charge transfer
plasmon). In addition, multipolar (i.e. quadrupolar, octupolar, etc.)
plasmons may also be excited. The influence of the Landau and ra-
diation damping onto these collective multipolar plasmons of dipolar
plasmons may be important from the practical point of view. Moreover,
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placing a nanoparticle chain within a cavity, as to achieve the strong
coupling regime, may also further modify those properties.

The inclusion of disorder in the nanoparticle arrays is also possible
within our model. Earlier theoretical works [53, 65] provided some in-
sight into the influence of disorder onto radiative losses and plasmon
propagation. Adapting our approach to incorporate disorder allows
to study more realistic systems, with already included quantum dis-
sipation channel. Moreover, such model would be feasible to study
Anderson localization of the plasmons within the array.

Finally, the experiment proving existence of the plasmon propaga-
tion [43] used Ag nanorods instead, as in our model, nanospheres. Thus,
considering non-spherical shapes of the nanoparticle, both isolated [32]
and in assembly [38,43], is of great importance from the theoretical and
experimental perspective.
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Appendix A

Classical radiation of the

point dipole

In this appendix we present the derivation of the radiative losses γr
0

[c.f. Eq. (2.45)] arising from the radiated power using classical electro-
dynamics [70].

The strength of the dipole moment of the plasmon is

p = −eNeR. (A.1)

The fields produced by this dipole oscillating with the frequency ω0 can
be written as

E = k2(r̂ × p)× r̂
eikr

r
+ [3r̂(r̂ · p)− p](

1

r3
− ik

r2
)eikr, (A.2)

B = k2(r̂ × p)
eikr

r
(1 +

i

kr
), (A.3)

where k = ω0/c, with c being the speed of light. Calculating the Poynt-
ing vector S = (c/4π)E ×B∗ and taking the far field limit r → ∞ we
have

S =
ck4p2

4πr2
[1− (p̂ · r̂)2]r̂. (A.4)

Since our problem has spherical symmetry we may choose an arbitrary
coordinate system. Thus for the convenience of the calculation, let us
chose ẑ direction as that of the plasmon oscillations. Now, the Poynting
vector (A.4) can be simplified to

S =
ck4p2

4πr2
sin2 θr̂, (A.5)

where θ is the elevation angle of the spherical coordinates r, φ, θ. The
power radiated per unit of solid angle at the distance r from the dipole
is expressed by

dP

dΩ
= r2r̂ · S =

ck4p2

4π
sin2 θ. (A.6)
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Integrating the above equation over the solid angle

P =
ck4p2

4π

2π
∫

0

dφ

π
∫

0

dθ sin3 θ =
2ck4p2

3
=

2ω4
0p

2

3c3
. (A.7)

The total energy stored in the oscillating dipole (2.9) can be written
as

Etot =
mep

2

2e2Ne

ω2
0. (A.8)

Thus, time-averaged power reads

P̄ =
ω4
0p

2

3c3
=

2ω0Nee
2

3c3me

Etot, (A.9)

and the loss of the energy due to the radiated power may be expressed
as

dEtot

dt
= −P̄ = −1

τ
Etot, (A.10)

where 1/τ = γr is radiative lifetime of the dipole i.e. the inverse of the
radiation damping, which reads

γr
0 =

2ω4
0

3c3
a3. (A.11)

The above expression is the same as Eq. (2.45), thus providing an al-
ternative path for the calculation of radiation damping.
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[7] S. Schlücker, SERS Microscopy: Nanoparticle Probes and Biomed-
ical Applications, ChemPhysChem 10, 1344-1354 (2009).

[8] J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A.
Vial, and P. Royer, Role of localized surface plasmons in surface-
enhanced Raman scattering of shape-controlled metallic particles
in regular arrays, Phys. Rev. B 72, 033407 (2005).

[9] G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani,
Dirac-like plasmons in honeycomb lattices of metallic nanoparti-
cles, Phys. Rev. Lett. 110, 106801 (2013).

[10] T. J. Sturges, C. Woollacott, G. Weick, and E. Mariani, Dirac
plasmons in bipartite lattices of metallic nanoparticles, 2D Mater.
2, 014008 (2015).

[11] J. B. Khurgin, How to deal with the loss in plasmonics and meta-
materials, Nat. Nanotechnol. 10, 2 (2015).
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