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The Goals and Structure of the Present Document
[Introductory Comments]

The present document describes the doctor-thesis research-project in the domain of
theoretical nuclear physics – more precisely in the domain of theoretical nuclear structure.
In this project we will present numerous results of the realistic calculations which can be
– and will be – compared with the experimental data. However the main interest in this
project will be not so much on

Reproducing the Existing Experimental Data

but rather

Reproducing the Existing Experimental Data
and first of all

Predicting as Reliably as Possible Results in the Unknown Zones.

Our starting point is an observation that all so far known realistic theoretical models of
nuclear structure depend on adjustable parameters, and – as observations of some other
authors indicate – quite a lot of attention has been focussed in the past literature on the
developments of the models themselves, whereas much, much less attention has been payed
to the role of the parameter adjustment procedures.

This second aspect is receiving quickly increasing attention in our domain of research
following a very fast progress in the specialised domain of science devoted to this issue:

The Inverse-Problem Theory of Applied Mathematics.

Inverse-Problem Theory addresses generally the issues of mathematical modelling e.g. in
sciences, economy or politics, developing the mathematical methods whose importance lies
in the fact that they are independent of any practical realisations. Perhaps paradoxically,
the methods of adjustment of parameters for the reliable modelling can today be seen as
mathematically (often much) more involved than the physical models themselves.

Why so much attention payed in our domain of physics now – and why so late?

It has been very well known to those working on mathematical modelling, and this for
long years that the uncontrolled, untested results of the parameter adjustment procedures
such as minimisation of the χ2-test are very likely meaningless1. The reasons will be
discussed in this document in several places, but one of the principal ones is related to the

1In their introduction to the book-chapter Modelling of Data, the authors of Numerical Recipes, the
book whose first editions date about 30 years back, [1] (p. 651), observe with sarcasm:

“Unfortunately, many practitioners of parameter estimation never proceed beyond determining the
numerical values of the parameter fit. They deem a fit acceptable if a graph of data and model

‘ l o o k s g o o d ’.
This approach is known as chi-by-the-eye. Luckily, its practitioners get what they deserve.”

[i.e. - what the authors of the book meant here is: ‘They’ obtain a meaningless result.]
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so-called ill-posed inverse problem and/or divergencies of the algorithms most often related
to the parametric correlations in the modelling, cf. Chapter 1 of this document. It will also
be shown in this document that the so-called good fit quality in some zone of interest and
the extrapolation of the predictions to the other zones behave as (almost) uncorrelated
data sets. In other words, especially in the case of problems with the algorithmic stability,
the predictions addressing new zones may depend ‘exponentially’ on the details in the fitted
area... implying de facto null predictive power.

It is being repeated today in an increasing number of publications that after performing
the parameter adjustment the rudimentary applications of the very well known mathemat-
ical tools of the inverse problem theory are necessary – without them the predictions of
the modelling ‘nears playing with the random numbers’.

These were just a few comments related to the question: “Why so much attention2

payed now?” Concerning the second one: “Why so late, in nuclear physics given the fact
that the issue was quite hot in other domains of research?” – It is difficult and perhaps not
very instructive to analyse the historical tendencies like this one, however, one mechanism
is certainly measurable in terms of important amounts of the research budgets. Indeed,
the majority of the present day experimental research in nuclear physics is performed in
the world-unique centres where each experiment – before being accepted – undergoes a
detailed scrutiny. It then follows that the reliable theoretical predictions are very precious
in optimising the experimental conditions and in avoiding unnecessary loss of the beam
time – where from a considerable increase of interest in the high quality modelling for the
experimental applications.

Interests and Motivations of the Present Project

In the present project we will be interested in detecting and examining the mecha-
nisms of destabilisation of the theory predictions for the nuclear structure applications.
Importantly, we wish not only to be able to detect the problems of uncertainties of theory
predictions but also learn about the efficient methods of countering their negative effects.
With these goals in mind we will apply certain methods inspired by the Inverse-Problem
Theory of applied mathematics, combined with the probability calculus and the Monte-
Carlo simulation techniques. We will be able to illustrate the impact of the experimental
errors and estimate for the first time in the present context the realistic sizes of the predic-
tion uncertainties as well as the mechanism of their propagation (and the ‘speed’ of their
increase) when the combination of the proton and neutron numbers of the studied nuclear
species approach the exotic nuclear zones.

The present project has been conceived as an introductory contribution to a number of
international collaborations aiming at the research of nuclei of increasing exoticity. As it is
well known, when the difference between the neutron and the proton numbers approaches
its extremes, the nuclear life-times decrease very quickly, approaching and quickly exceed-
ing the present-day instrumental detection limits. The idea proposed3 is to search, within

2Recently, there have been organised entire nuclear physics conferences devoted exclusively to the issue
of parameter-determination, modelling uncertainties and the inverse-problem related issues, signifying the
new important trend.

3The project along these lines has been formally proposed to one of the funding agencies and we
have learned recently that the project has been accepted. This would allow to the team of 7 proponents
participating in the project to realise it and we hope to be able to contribute with our information about
the optimisation of the Hamiltonians to the implied large scale calculations of the new generation.
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the specially optimised large scale calculations, for the nuclear isomers (long lived excited
states) living longer than the corresponding ground-states thanks to specific quantum sym-
metries. Such configurations will very likely offer the new possibilities of populating and
detecting the very exotic-nuclei ‘in revolutionary (Z,N)-plane areas’ – if the isomers in
question live orders of magnitude longer than the respective ground-state configurations.

To be more precise: One class of isomers which are at the target of the discussed
project are the so-called high-K isomers. Their long life-times are principally due to the
presence of stable axial symmetry and the increasing total spins aligned with the symmetry
axis. Another class are the so-called shape isomers. Their long life-times are expected to be
caused either by the fact that an excited state may have a very different, hopefully higher
fission barrier (as compared to the ground-state configuration) – or – by exotic symmetries
such as octahedral and tetrahedral ones4. Indeed, the latter two symmetries are known to
generate neither dipole nor quadruple moments, thus neither E2 nor E1 transitions what
is expected to contribute to the nuclear stability by orders of magnitude.

As far as the future applications of the present project is concerned, we hope to
contribute with various variants of the mean-field Hamiltonian parameters as
well as estimates of the prediction uncertainties for the exotic-nuclear isomers
in exotic nuclei.

Even though the applications of the results of the present project to the mentioned
large scale calculations of the isomeric properties are among important motivations of the
present project – these calculations are expected to be advanced soon in the future.

As far as the accomplished chapters of the project are concerned, we were able
to perform the systematic studies of the single-nucleon energy uncertainties and
their impact on the predicted levels - in particular for a series of examples in
the super-heavy nuclei. We succeeded in detecting, examining and eliminating
the parametric correlation in our realistic nuclear mean-field approach with the
help of the Monte-Carlo methods thus contributing to the stabilisation of the
model for the large scale calculations.

There are many other detailed groups of results which are presented case by case in this
document; here we limited ourselves to a few strategical lines of the motivations.

4One possibility would be to follow up the results of the very recent article from our group: “First
Evidence for the Presence of Nuclear Octahedral and Tetrahedral Symmetries in a Rare Earths Nucleus”
by J. Dudek, D. Curien, I. Dedes, K. Mazurek, S. Tagami, Y. R. Shimizu and T. Bhattacharjee, July 2017,
(submitted for publication).
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The Structure of the Present Document

The present document is split into Chapters in each of which a series of correlated
aspects, be it mathematical or in terms of the calculations results are collected together.

Chapter 1 is devoted to the description of some general features of the uncertainties in
mathematical modelling. We introduce the Inverse Problem in the context of the quantum
theories and combine its strategical notions with the elements of the probability calculus
for the present nuclear context. We also discuss certain mathematical/technical aspects
needed for the project which include the powerful Singular Value Decomposition theorem,
Monte-Carlo simulation techniques and the efficient method of non-linear minimisation in
the multi-dimensional spaces.

Chapter 2 is focussed on the relatively detailed description of our realisation of the realistic
phenomenological nuclear mean-field theory. This includes the definition of various variants
of the Hamiltonian as well as the description of the method of numerical solutions of the
associated Schrödinger equation. For that purpose we present the spherical basis used to
apply the diagonalisation solution-method and the way of calculating the matrix elements
with arbitrary interactions of spherical symmetry. We present briefly how the experimental
data for the mean-field single-nucleon energies are extracted from the raw experimental
data. Finally we introduce an advanced Woods-Saxon Hamiltonian in which the most
important, nuclear-structure dependent terms such as spin-orbit or tensor interaction terms
are described in some details.

Chapter 3 presents the results of the calculations, the first part of which is based on the
detailed analysis of the exact simulation model. With the help of this mathematical con-
struction we present certain practical aspects of the mathematics of the inverse problem.
We introduce an essential distinction between the intraneous and extraneous prediction
regimes and discuss and illustrate the differences between the two. We devote some discus-
sion to the specific notion of the so-called exact theories which, in the realistic cases (and
if they exist – we do not know of any in the domain of the nuclear structure) are shown to
possibly loose any significance - if the instrumental precision is not sufficient: This brings
us to what we refer to as NO-GO property even-for-the-exact-theories. Finally we discuss
the powerful notion of the induced exact models – which is a central tool for the realistic
estimates of the prediction performance of the realistic models.

Chapter 4 shows our analysis of the detection and elimination of the parametric corre-
lations using the Monte-Carlo method. These correlations in the realistic cases become
strongly non-linear and may involve more than two parameters. We compare the results
for the traditional Woods-Saxon Hamiltonian with the modernised version whose construc-
tion of the spin-orbit potential is based on the microscopic arguments. In this version the
spin-orbit potential depends on the nucleonic densities and is calculated using the designed
self-consistency algorithm. In this way, and in the spirit of the advanced phenomenological
methods, we combine the parametric robustness of the central potential – discussed in the
text – with the self-generated simplicity of the density-dependent spin-orbit term.

Chapter 5 illustrates the overall performance of the density-dependent version of the
Woods-Saxon Hamiltonian which is expected to be used routinely in the large scale cal-
culations of the nuclear isomeric properties mentioned above. We show in particular that
the density-dependent spin-orbit potential, which depends formally on 4 parameters (two
parameters less as compared to the traditional one) performs fully comparably to the orig-
inal traditional variant. However we also demonstrate that the 4 coupling constants of the
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density depended Hamiltonian are strongly (but linearly) correlated. These correlations
can trivially be eliminated and we arrive at the conclusion that the density dependent
spin-orbit potential with one free parameter performs comparably well, and occasionally
better than the traditional, spin-orbit interaction potential depending on 6 parameters.

Chapter 6 gives some synthetic remarks about the FORTRAN programmes developed
entirely for the purpose of this project; one part of the programming was devoted to the
solution of the Schrödinger equation, whereas another one, based on the free distribution of
the Xfig graphical system has been developed entirely by us for the graphical applications
used in this document.
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Chapter 1

Predictive Power and
Inverse Problem in Quantum Theories

In this Chapter we begin by introducing the notion of predictive power of a physical
theory. It will be explained that obtaining ‘good’ or ‘bad’ results not only depends on the
uncertainties of the experimental information, but also on the physical model’s errors. This
brings us to the issue of ‘parameter optimisation’, and at the same time to the underlying
mathematical theory known in the literature under the name of inverse problem. We will
introduce all the mathematical framework around the inverse problem theory needed for
this project, and the mathematical tools necessary for practical solutions. We will combine
probability theory aspects together with the inverse problem, for a better description of
the concept of Predictive Power in stochastic terms. This will finally lead us to formulating
our realisation of the Monte-Carlo simulations techniques.

1.1 Predictive Power of a Mathematical Model

The issue of introducing and/or making precise the notion of prediction uncertainties,
or – as formulated more colloquially – of predictive power of mathematical modelling, turns
out to be a relatively complex one, as presented below with the help of a few examples.
Summarised in a few words: It always has to do with trying to optimise a certain outcome
of mathematical modelling – before testing, most often against some experimental data –
usually via adjustment of some elements of the model (e.g. parameters) to the results of
the already existing experiments.

Let us consider a few examples. Usually, in various domains of research or technology,
we may wish to know something about the expected result before an empirical verification.
For example, when exploring the oil fields in geophysics, it is important to know where to
start drilling since installing one ‘pump’ may cost up to a billion of dollars. Consequently a
modelling efforts will be necessary based on the geological structure of the area of interest.
In political life of every state, candidates to the presidency wish to know who advances
towards the victory before the actual day of vote. Therefore a careful (costly) collection,
analysis and interpretation of the opinion pols, usually referred to as sampling, are of
utmost importance. All the associated information treatment and related modelling meth-
ods usually involve application of advanced mathematical approach based on the theorems
elaborated in the framework of applied mathematics (see below).

1
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In physics, and in particular in nuclear physics – the research domain of the present
thesis – we wish to learn how to approach in the most economical way “t h e unknown”, for
example completing the Chart of Nuclei with the very exotic, yet unknown nuclear species.
For this, we would need to give certain indications about selected, particular structural
properties of the poorly known or totally unknown nuclei so that the experimental condi-
tions can be optimised – and this at the possibly lowest instrumental costs. Towards this
goal, advanced theoretical modelling will be necessary and the optimisation of the model
parameters will play the most crucial role so that the finally predicted result is trustworthy
and as stable agains all sorts of uncertainties as only possible. Checking ex-post if the
theoretical prediction is in agreement with the experimental information will provide the
next step in the process of improving the completeness and reliability of the theoretical
description and, more generally, the mathematical modelling.

When discussing theory’s ‘predictive power’, one usually has not much doubt about
what is meant. We often assume without saying (as it turns out also even without verify-
ing) that the theory in question can predict and produce reliably the results, which usually
address the experimentally unknown region. But as soon as we attempt posing more pre-
cise questions, serious difficulties are likely to arise, already at the semantic level. Below
we will give some examples before addressing more precisely the issue of the definition of
prediction uncertainties and predictive power.

Model Prediction – What Does It Mean: To Predict?

Consider a given mathematical model (or ‘theory’, as theorists prefer). Any calculation
performed with this theory and addressing yet unknown information-range can be called
a prediction. It is only after the corresponding experimental verification that we may say
if the predicted result – and thus the prediction – is or is not acceptable, in other words:
if it is a good or a poor prediction. Therefore, since performing any calculation before
the actual experiments are performed can always be called a prediction, each prediction
has always a predictive power. Therefore this term alone does not represent any particular
feature and to become useful, it must be complemented with some qualifiers. For instance,
we may need to specify what we call good predictive power. But being good for someone
may not be good enough for someone else. Therefore, the discussed terminology (we avoid
at this point the word ‘definition’) carries a dose of subjective judgement and arbitrariness.
Consequently, we will need to approach the issue of some objective criteria or, if impossible,
some relative criteria, which will allow to examine theory’s prediction capacities, and thus
predictive power, by minimising the effect of explicit or implicit subjective judgement.
We will discuss this problem again after introducing some notions related to the issue of
probability in the context of mathematical modelling.

1.1.1 About Uncertainties of Theoretical Modelling

All today known theories which address the structure of subatomic systems can be
considered incomplete. Thus each of them usually addresses some fragments of the more
complete set of data, a part of the full information at hand. This has to do with the fact that
the present day knowledge of the nucleon-nucleon interaction, even though progressing in
time, is still rather limited. Somewhat colloquially: In principle, what we aim at knowing
is what is sometimes referred to as the ‘full truth about the system’. Thus, ideally, we
would wish to have a theory which perfectly and exactly describes the physical systems of
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interest and therefore can give the full1 information about all the observables we may be
interested in. Along these lines of thinking, solving the ‘true’ Schrödinger equation within
a given non-relativistic theory, based on the ‘true’ Hamiltonian, Ĥtrue, will, by definition,
precisely describe all the nuclear interactions – thus implied quantum mechanisms, states
and transitions and, in particular, the exact energies of the system, etrue

n .

Let us follow this line of thinking by observing that physical theories, even though
incomplete, evolve and improve with time, so that we could express this evolution by
writing

Ĥ = ĥ1 + ĥ2 + ... + ĥn + ... (1.1)

Above, Ĥ represents our actual knowledge, ĥi – with increasing index ‘i’ – represent, say,
the newer and newer interaction terms found along the progress, and ĥn represents the last
one found so far. Therefore, since the ‘full truth Hamiltonian’ remains unknown, we can
write our present-day knowledge Hamiltonian using the following symbolic form

Ĥ = Ĥtrue + δĤignor ↔ Ĥtrue = Ĥ − δĤignor, (1.2)

where δĤignor represents symbolically our ignorance, the lack of knowledge which as long
as present, will always lead to the theoretical uncertainties, sometimes referred to as the-
oretical errors. Let us emphasise that this part of our discussion uses so far a rather
descriptive/colloquial terminology involving such objects as ‘operators Ĥtrue and δĤignor’;
these terms are not uncommon in working discussions – but what are they when it comes
to comparison with experiment?

In reality, what we have called so far ‘operators Ĥtrue and δĤignor’ are de facto abstract
symbols, whose exact mathematical form remains unknown. The role of these symbols is
to help us in guiding the heuristic discussions. In ‘practice’ we will never be able to act
with these ‘operators’ on e.g. basis wave functions in order to calculate for instance the
corresponding matrix elements. It becomes clear that, even if useful when deriving the final
mathematical expressions – which will help us working on the prediction capacities of the
modelling – the final results of such considerations, e.g. of the mathematical derivations,
must not depend on any of them.

At this point let us make a few steps further towards a more precise meaning of such
terms as ‘exact theories’ and ‘exact Hamiltonians’. Since we have introduced already the
symbol Ĥtrue - let us suppose, as the working hypothesis, that its precise mathematical
form has been found. Two scenarios can be envisaged: Either this Hamiltonian depends
on some adjustable parameters, say {p} ≡ {p1, p2, . . . pnp

}, often called coupling constants
- or, conversely, depends on no parameter. Since all the most advanced theories we know
of, belong to the first category, this is what we retain for the rest of the present discussion.

Let us begin with the observation that in order to be able to apply the exact theory
in question, we will need to optimise its adjustable parameters. One might pose the
question of “whether it makes sense to talk about exact theories which depend on adjustable
parameters”, to discuss the notions such as Htrue or Hignor” – or for that matter – if it
makes sense to talk about exact theories at all ? We believe that on the conceptual level
the answer is strongly affirmative. Indeed, if we accept that the evolution represented
symbolically by Eq. (1.1) is driven by some guide-line other than physicist’s fantasy – such
a guideline must represent an idea of following a steady improvement of our knowledge
– the tendency whose limiting case some philosophers call absolute truth. We would not

1The term which first would need to be made precise.
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defend at this place the idea that in nuclear structure physics the questions of this type
have any practical solution in the foreseeable future, but we can be sure that if we never
formulate such questions even in abstract terms - we will never have any chances to find
an answer. This is usually done by trying to reproduce a representative set experimental
data as well as possible, say, {f exp

k ± δf exp
k } where δf exp

k refers to the experimental errors
and k = 1, 2, . . . n. As far as model parameters go, here, one may think of a set of a very
few coupling constants, say κi, i = 1, 2, . . . np, where np is a small integer number. These
coupling constants are expected to describe nearly an infinity (n → ∞) of all imaginable
(or at least available) experimental data. Since the experimental data are, and will always
be, biased due to experimental errors, from the point of view of mathematics they represent
random variables which, as all random variables in probability calculus, are characterised
by their respective probability distributions

Pk(fk) = Pk(fk; f exp
k , δf exp

k ), (1.3)

where, very often, probability distributions2 Pk represent Gaussian (the so-called ‘normal’)
distributions centred at f exp

k , with the ‘sigma-value’ related to the experimental error, in
short: σk ↔ δf exp

k . The presence of the uncertainties of the experimental input, introduced
to any parameter optimisation procedure will generally transmit the random variable char-
acter of the input to the final output result. Thus the deduced optimal parameters are
in fact, from the mathematics point of view, random variables characterised by certain
(derived) probability distributions. The resulting uncertainties of the deduced parameters
can be expressed using the ‘new generation’ of probability distributions

Pκ = Pκ(pκ) or Pκ = Pκ(p1, p2, . . . pnp
). (1.4)

Therefore de facto each parameter of any theory must be considered as a random variable
characterised by the corresponding probability distribution, here Pκ. This implies that,
whichever calculation we perform afterwards, all the calculated quantities, such as e.g. en-
ergies of the system, must also be seen as random variables accompanied by the probability
distributions, for instance, for the eigen-energies

Πρ = Πρ(eρ), (1.5)

in the simplest case [often the probability distributions of a given random variable will
depend on other random variables]. Those latter probability distributions (as well as
those given by eq. (1.4)) can often be determined as the by-products of the optimisation
procedures: this and related problems will be in fact among the goals of the present work.

At this point we arrive at an important observation: even the so-called exact theo-
ries, which are expected to exactly reproduce the known experimental data and therefore
generate no errors – simply do not exist. In the discussions related to “exact theories”
it is easy to let oneself being driven by the tendencies of mixing the conceptual / purist
level of the discussion, with kind of “practical connotations”. For instance, by the very
definition, the exact theory does not have any theory errors and even less “theory errors
caused e.g. by the numerical methods applied in practice”. In order to be able to produce

2By comparison with the standard Gaussian probability distribution,

P (x; µ, σ) ∝ exp[−(x − µ)2/2σ] where µ ≡ 〈x〉 ≡ x̄,

let us observe the analogy between the so-called independent random variables, x and fk as well as the
symbols characterising the experimental results, f exp

k
↔ µ and δf exp

k
↔ σ.
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such an exact result, we would need to know the exact i.e., errorless parameter values – but
this, following the arguments around eqs. (1.3)-(1.4) will never be possible3 since all our
measurements are always biased by instrumental errors and uncertainties. Thus, unless
we are able to construct the theory without any parameters (which could possibly become
exact) - no other theoretical modelling will be able to satisfy the human expectations from
the ‘exact model’.

1.1.2 Mean-Field S.-P. Energies and Experimental Counterparts

In this document we use repetitively the notion with a rather long explicit name mean-
field single-particle (S.-P.) energies. The long name emphasises the fact that the objects
behind this concept exist in our theoretical considerations thanks to the existence of one of
the most powerful and successful theory in nuclear structure physics: The Nuclear Mean
Field Theory. The latter approximate theory uses as the starting-point the nucleon-nucleon
interactions which, as the result of their complexity make finding effectively the solutions
often impossible, almost impossible or very complex, especially for heavy nuclear systems.
However, thanks to the introduction of a universal method which allows for an approximate
elimination of the complex two-body nucleon-nucleon interactions and replacing them by
a one-body effective potential, a number of efficient methods and concepts have been
introduced. Among others, the concept of the mean-field single nucleon energies, fictitious
theoretical constructions which turned out to render excellent services in many branches
of theoretical physics and domains of physics, including the nuclear structure.

The concepts of the nuclear mean-field owe their great interest in nuclear structure
physics to the fact that they allowed to construct, among others, the effective calculation
schemes, which are very successful empirically. But they also allowed for introducing
a number of simplifying notions, secondary concepts and ideas such as nuclear surface
followed by the successful notions of the nuclear shapes and deformations. Those latter
ones brought in the framework and the natural physical justification of other fruitful ideas
such as the nuclear collective motion theory, the one which resulted in the Nobel Prize to
A. Bohr, B. R. Mottelson and L. Rainwater in 1975.

One may be tempted to say that the nuclear mean-field theory gives not only
the mathematical basis for the powerful computer codes which allow for the
very effective nuclear structure calculations, successful interpretations of the
numerous experimental results and predictions of many others thus accelerating
the progress in nuclear structure physics.

In parallel one may seek conceptual analogies between such domains of physics
as thermodynamics and statistical physics and the nuclear mean field theory.

Indeed, this was thermodynamics which allowed to leave the purely microscopic
view of describing the gas particles in the container in terms of Avogadro-
number Newtonian-trajectories and use derived notions addressing the averages.
The new notions such as volume, pressure, temperature, entropy, free-energy of

3The following idea may come to one’s mind: If we cannot obtain the optimal parameters ‘professionally’
by using for this purpose the experimental information – perhaps we can just try to guess their values?
After all, when we know those, the results of the exact theory with exact parameters are expected to
be exact. This optimistic hope may need to be relativised: Since we looking for a single point in a
multi-dimensional space of continuous variables (parameters), the probability of this to happen will be
proportional to what is in topology referred to as measure of a single point – in the continuous space: zero.
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the system etc. – it will be difficult to over-estimate how highly the description
of the thermodynamic systems profited from them and helped ‘imagining things’.

And yet:
These were human-constructed abstract notions – and we made them observable.

In the nuclear mean-field theory we introduce the notion of fictitious, abstract
particles, whose motion is expected to resemble the motion of the real nu-
cleons under the action of an average nuclear interaction... except that the
real nucleons move under the action of all the real interactions which exist in
the real nucleus. We call those fictitious human-constructed abstract notions
mean-field nucleons: We calculate their energies according to the mean-field
theory, with their help construct the hierarchy of the mean-field particle-hole
excitations (thus in this sense fictitious numbers)... and compare very success-
fully with the really measured non-collective excitations. One is tempted to say:

And yet:
These were human-constructed abstract notions – and we made them observable.

The price to pay when working with the mean-field nucleon-energies is: No direct
experimental data available since the single-nucleon energies are not observable – and in
order to extract the ‘experimental mean-field comparable nucleon-energies’ specific extrac-
tion/averaging procedures have been designed. These can be considered very standard
today in the nuclear physics literature and in the following part of this section we will
briefly recapitulate how they are used.

As we have already mentioned, the experimental information which we have at our
disposal and which we use to obtain the parameter values of the model, comes with errors.
The present project focusses on selected properties of the so-called doubly-magic spherical
nuclei. More precisely, we will analyse the properties of the nuclear mean-field single-
nucleon energies using the available experimental information for the following nuclei:

16
8O8,

40
20Ca20,

48
20Ca28,

56
28Ni28,

90
40Zr50,

132
50Sn82,

146
64Gd82 and 208

82Pb126. (1.6)

As one of the realms of applications, we will examine the prediction uncertainties on the
example of spherical super-heavy nuclei, later in this document.

Let us emphasise again (see the text in italic above) that in nuclear structure physics
the so-called experimental single-nucleon energies are in fact complicated and model depen-
dent objects, cf. Ref. [2]. This is because by the very definition, in experiment these objects
represent certain mean values. Similarly as in the case of the nuclear modelling with the
help of the nuclear structure mean field theories, the theoretical mean-field single-nucleon
energies represent a result of a certain averaging (thus mean) of the nucleon-nucleon in-
teractions. Therefore, even though the theory and experimental approaches are consistent
at their conceptual starting points, since they both address certain mean values, the net
result is that the central quantities of interest in this work, the mean-field single-nucleon
energies, are not directly measurable. However, they are in permanent use in the nuclear
structure theory and experiment as well as in many-many thousands of publications and
we will use them in the present work in the same way as the other authors did in the past.

The single particle energies for spherical nuclei are deduced from one-nucleon transfer
reactions, where the neighbouring nuclei with A±1 nucleons are populated or de-populated.
These reactions provide the necessary information needed to extract the single-nucleon
energies, i.e. the excitation energy, angular momentum and parity of the single particle or
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single hole states of a given set of jπ quantum numbers. While any given mean-field single-
nucleon level – always treated as an average – can be seen as coinciding with one nuclear
level in some cases, there are often various levels of the same spin and parity (arising from
excited core configurations) in the same energy region and these mix with the unperturbed
mean-field model state. To recover its energy, one needs to compute the ‘center of gravity’
of the whole group by weighting the energy of each level in proportion to how strongly it
is excited in the transfer reaction (i.e. by its spectroscopic factor S(κ, i)Ei) [2, 3]:

εκ =
∑

i

S(κ, i)Ei, (1.7)

where εκ is the mean-field single-particle energy we are looking for, Ei an actual energy
level of odd nucleus populated in the transfer reaction, and S(κ, i) is the spectroscopic
factor, i.e. the probability that level i contains the single-particle κ. This procedure was
justified by M. Baranger [3], from a theoretical point of view.

As it follows from the underlying formalism ([4], Vol. I, pg. 423; [5], pg. 59), one has
to stress that the appropriate use of Eq. (1.7) to calculate the single-particle energy εκ

requires that the spectroscopic factors must satisfy the normalisation condition
∑

i

S(κ, i) = 1, (1.8)

usually referred to as ‘sum rule’. This is a very helpful element of the information since it
allows:

• To verify whether all the components ‘i’ (also called ‘fragments’) have been seen in
any given experiment – and therefore whether the obtained information is sufficiently
complete, and:

• To verify – taking into account the experimental errors – whether the S(κ, i) values
have been precisely determined, i.e. without any major bias.

Unfortunately, we do not always have the full experimental information needed to
assure Eq.(1.8). The large values of spectroscopic factors usually extracted from transfer
reactions using hadrons as projectiles are not always reliable. Nevertheless, they can be
used, by virtue of an approximation, in the weighting procedure, provided that Eq. (1.7)
is replaced by [2]

εκ =

∑

i
S(κ, i)Ei

∑

i
S(κ, i)

. (1.9)

As it can be seen from Eq. (1.9), the uncertainties of the experimental single-particle
energy estimates originate from two sources: The measured excitation energies Ei, whose
uncertainties due to the instrumental reasons can be considered rather small and usually
do not exceed a few keV – and the spectroscopic factors S(κ, i). The first one depends on
the energy resolution of the instrument, and is usually well controlled under each given
experimental realisation. On the other hand, the spectroscopic factors are calculated using
the measured and theoretical cross sections of the reaction, cf. [2], [5] (page 59)

dσ

dΩ
(θ, Ei)

∣
∣
∣
∣
∣
exp

= S(κ, i) × dσ

dΩ
(θ, Eκ)

∣
∣
∣
∣
∣
th

, (1.10)
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where we assume for the theoretical calculation that the state is a pure particle- or hole-
state. This means that, at the end, our ‘experimental’ single particle energies are in fact
model dependent since, in particular, one has to take into account that the spectroscopic
factors may change depending on the model used. Consequently, it is very important to
have at one’s disposal a large number of reaction data which allow for the cross-checking
before obtaining a reliable result for the spectroscopic factor.

1.2 Inverse Problem Theory of Applied Mathematics

In this section we are going to discuss some selected aspects of the mathematical
theory called Inverse Problem Theory 4 – a chapter of very actively developing sub-field
in the domain of Applied Mathematics. We will establish links between this particular
mathematical theory and the applications to the quantum theory of nuclear structure
focussing on the modelling of the nuclear mean-fields.

Inverse Problem Theory is the sub-field of mathematics, which addresses generally the
mathematical conditions of modelling certain properties, relations, effects or phenomena,
irrespectively of the nature of their particular realisations. The central role in construction
of this theory is played by the fact that the great majority of the models needed in numerous
practical applications, in particular in theoretical physics, depend on parameters. Thus,
accordingly, one says that:

Applying model M on the ensemble of its optimal parameters popt produces the
results d called data. Introducing the corresponding operator, M̂ , one writes
symbolically:

M̂popt = d.

This situation is referred to as solving the direct problem or solving the forward
problem.

However, since the optimal parameter values of any model are usually not known a priori,
it is necessary to find them beforehand. For that purpose one should first:

Determine the optimal set of parameters by solving formally the inverse relation:

M̂−1d = popt

– wherefrom the name solving the inverse problem for the above operation.

4Inverse Problem is a mathematical method which has been intensively studied during the last few
decades – mainly because of the existence of numerous applications. To give an idea about this recent
activity we have performed a Google-test by comparing the number of hits when searching for the strings
of characters ‘Inverse Problem’ on the one hand side and ‘Nuclear Physics’ on the other. The resulting hit-
numbers are: 9,890,000 for Inverse Problem and 6,480,000 for Nuclear Physics. This should be confronted
with the fact that the field of Nuclear Physics is much older than the field of the Inverse Problem, thus
implying that the broadness and the level of activity in the former are very important. There exist
specific journals devoted to this field of mathematics as well as numerous textbooks of varying scope and
mathematical rigour, cf. e.g. references [1, 6–22].
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One of the central issues faced by the inverse problem theory are the mathematical
conditions of existence and stability of the inverse operator M̂−1 since, as it can be shown,
in most of the cases of fundamental practical interest – such an operator simply does
not exist and alternative methods of finding the effective optimal parameter sets must be
sought. Yet, the knowledge of the inverse problem theory gives an important guidance also
in such cases and the related discussion will be followed in the next sections.

The problems of parameter optimisations caused by a possible non-existence of the
inverse operator are complicated further by the fact that the optimisation methods must use
the experimental data which, strictly speaking, are not ‘just numbers’ but random variables
as pointed out earlier. This implies the necessity of taking into account the probability (or,
more adequately:) uncertainty probability-distributions related to the experimental data
which form the input to the optimisation procedures. Solutions to this problem are very
important and can be obtained using the Monte-Carlo methods, one of the central aspects
of the present work.

According to the inverse problem theory, each construction of the solutions of the
inverse problem (read: optimisation of the model parameters) must take into account the
following aspects simultaneously:

• We must construct the model itself, i.e., to start with, select or derive the formalism.
For instance, in the case of the non-relativistic nuclear structure problems, the natural
approach will consists in using the Schrödinger equation with appropriately defined
interaction potential, the latter depending on a number of parameters whose optimal
values will need to be found.

• Having prepared the formalism appropriately, we will need to adequately select and
prepare the experimental information. This fragment of the full procedure is referred
to as ‘sampling’. The accepted data should be representative for the studied problem
and preference to the precise measurements should be given.

• The method of solution of the parameter optimisation problem, should be verified as
adequate for the undertaken research on both conceptual and numerical realisation
levels. Furthermore: The mathematical inverse problem theory provides a number
of mathematical theorems and criteria, which will allow to verify ex post whether the
obtained solutions are meaningful or not. Without that step – as indicated in the
literature – the solutions should by default be assumed meaningless5.

Taking the above three points into account simultaneously is pivotal for meaningful
parameter optimisation, possible detection of ‘pathologies’ such as missing experimental
information, the presence of instabilities, and – very importantly as it will be discussed in
this work – the presence of the parametric correlations.

5As quoted already: In their introduction to the book chapter Modelling of Data, the authors of
Numerical Recipes [1] (p. 651), observe with sarcasm:“Unfortunately, many practitioners of parameter
estimation never proceed beyond determining the numerical values of the parameter fit. They deem a fit
acceptable if a graph of data and model ‘ l o o k s g o o d ’. This approach is known as chi-by-the-eye.
Luckily, its practitioners get what they deserve.” [i.e. - what is meant here is: they obtain a meaningless
result.]
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1.2.1 A Particular Reference Case: Linear Inverse Problem

Let us begin by considering a model whose parametric dependence is linear, i.e., M →
G maps a set of parameters p (causes) to a set of data d (effects) strictly linearly

Gp = d, (1.11)

in which case the solution of the inverse problem reads

G−1d = p, (1.12)

under the condition that the numbers of parameters and data points are equal in which
case G−1 is just an inverse matrix and the considered problem is strictly equivalent to a
system of linear equations in matrix representation. [In what follows we avoid putting
‘huts’ over the operators, for simplicity.]

However, more generally, we will need to assume that p and d are two vectors of
dimensions np and nd, respectively. Therefore, G can be seen as a general nd × np matrix.
In the realistic cases we usually work with np ≪ nd since the number of parameters is
usually requested to be much smaller than the number of data points. In such cases we
may take advantage of the fact that the product GT G is a np ×np square matrix. Applying
GT to the left and right hand sides of Eq. (1.11) we obtain

(

GT G
)

p = GT d. (1.13)

From the above equation we can formally write the matrix equation that will allow us to
calculate the optimal-parameter vector

p =
(

GT G
)−1

GT d. (1.14)

The Problem of Singularities: Ill-Posed Inverse Problems. At this stage, we may
think that the problem is solved. However, the existence of the solution of Eq. (1.14)
depends on whether (GT G)−1 exists or not. The problem usually arises when the rank of
GT G (maximum number of linearly independent rows or columns) is not equal to np. If
this happens, the determinant of the squared matrix is zero and therefore the underlying
matrix is not invertible. The mathematical consequence of this fact is that there is no
unique solution for any given input data vector.

We say that the underlying selection of data (sampling) does not constrain this
particular model since, formally, in the considered case we may have an infinite
number of solutions. We say that the original inverse problem is ‘Ill Posed’.

When this happens either the sampling of the data will need to be modified, or the model
improved.

1.2.2 Least-Squares Problem

When the problem in Eq. (1.13) cannot be solved exactly, we may attempt by-passing
this step by minimising the square of such a ‘generalised distance’ between data and the
model result. For this, we need to introduce a new quantity, say S, which defines the
difference between d and Gp

S = d − Gp. (1.15)
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The ‘optimal’ parameters will be found by minimising the square:

S2 = (d − Gp)T (d − Gp) , (1.16)

imposing that the partial derivatives over the corresponding parameters vanish:

∂S2

∂pj

= 0, j = 1,... np . (1.17)

It will be useful to express the above vanishing condition explicitly with the help of sum-
mations, i.e.:

S2 =
nd∑

i=1



di −
np∑

j=1

Gijpj





(

di −
np∑

k=1

Gikpk

)

, (1.18)

so that

0 =
∂S2

∂pm

=
nd∑

i=1



−
np∑

j=1

Gij
∂pj

∂pm





(

di −
np∑

k=1

Gikpk

)

+
nd∑

i=1



di −
np∑

j=1

Gijpj





(

−
np∑

k=1

Gik
∂pk

∂pm

)

= −
nd∑

i=1

Gim

(

di −
np∑

k=1

Gikpk

)

−
nd∑

i=1



di −
np∑

j=1

Gijpj



 Gim

=
np∑

k=1

nd∑

i=1

GT
miGikpk −

nd∑

i=1

GT
midi +

np∑

j=1

nd∑

i=1

GT
miGijpj −

nd∑

i=1

GT
midi

= 2
np∑

k=1

nd∑

i=1

GT
miGikpk − 2

nd∑

i=1

GT
midi. (1.19)

We can re-write the above expression in the matrix form as follows

∂S2

∂pm

= 2
(

GT G p − GT d
)

m
= 0, (1.20)

which finally leads to
p =

(

GT G
)−1

GT d. (1.21)

A Formal Analogy: Distance Minimisation vs. Linear Inverse Problem. Let us
observe that Eq. (1.14) is formally the same as the just derived Eq. (1.21), which means that
the first equation is the solution of the linear inverse problem and at the same time of the
least-squares problem. Above, the problem of the existence of the solutions of the actual
least-squares problem (or not) has been transformed into the problem of the existence or
not if the inverse matrix (GT G)−1 and will need to be studied on the case by case basis.

1.2.3 Non-Linear Inverse Problem

In the case of the linear models we are able to arrive at an explicit expression for
the optimal model-parameters since we can identify separately the three elements: the
matrices G or GT G acting directly on the parameters p represented by a single vector and
the vector of data d, even though the existence of the solution was not always guaranteed.
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In the case of the non-linear model, we cannot separate the operator from the parameters
with the help of the elementary algebraic operations (matrix multiplications) as we did in
the previous section; but we will show how to by-pass this difficulty soon.

Let us continue by introducing the characteristic features of the non-linearity. Thus,
for the non-linear model, we rather explicitly use the parentheses, ‘(’ and ‘)’, in the same
way as to express a functional dependence, f = f(x), and write

M → G; Gp = d → G(p) = d. (1.22)

Next we will obtain the solutions analogous to the one in Eq. (1.14) by generalising the least-
squares approach introduced earlier into the form known as χ2-minimisation. Let us remind
the reader at this point that the minimisation of the χ2-test corresponds conceptually to
the minimisation, in multidimensional spaces, of a generalised distance between a point
representing the experimental data and the results of the modelling representing the same
physical quantities. Since one demonstrates in topology that there exist an infinite number
of manners of defining the distance in multidimensional spaces - it becomes clear that
selecting one of those cannot be in general considered as equivalent to solving the inverse
problem M−1d = popt.

The non-linear problems are of central importance for us in the present project since
we are going to work with the Schrödinger equation which connects the parameters with
the results/data in a strongly non-linear manner. [We will soon abandon the use of the
term data for the results of the model, even though this way of expressing can be considered
standard in the jargon in the inverse problem theory domain.]

Nuclear Mean-Field Theory in the Context of the Inverse Problem. Consider
a given realisation of the nuclear mean-field theory. The latter is equivalent to saying
that the interaction potential, say V̂ , which generally depends on a number of parameters
p ≡ {p1, p2,... pnp

} is known – so is the related Hamiltonian:

V̂ = V̂ (p) → Ĥ(p) = t̂ + V̂ (p). (1.23)

Solving the implied Schrödinger equation for each given set of parameters,

Ĥ(p)ψn = eth
n (p) ψn, (1.24)

allows to obtain its solutions as functions of the model parameters. Even though both
the energies and the wave-functions depend on these parameters, we do not introduce this
dependence into ψn explicitly, not to complicate the notation. The dependence of the
energies on the parameters will be needed explicitly below but we will slightly modify the
notation as follows:

eth
n ≡ fn(p), (1.25)

where fn(p) are continuous differentiable functions. Our goal is to find the optimal values
of the parameters of the Hamiltonian to assure the best description of the physical system.
For this purpose we will use the known experimental data dexp ≡ {dexp

1 , dexp
2 ,... dexp

nd
}. We

will employ the χ2-minimisation and define for this purpose the measure of the distance
between the data and the model results in the usual form

χ2(p) =
nd∑

i=1

wi [d exp
i − fi(p)]2 , (1.26)

in which wi, called the weight factors, are by definition non-negative – otherwise at the
disposal of the physicist. The choice of the weights is totally subjective.
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The minimum of the above function occurs when its gradient vanishes6, therefore we
impose

∂χ2

∂pj

= 0, j = 1,... np . (1.27)

In order to be able to construct a computer-programmable algorithm finding the solutions
of the above equations we will introduce an iterative algorithm allowing to advance from
the preceding iteration to the next,

p(k+1) = p(k) + ∆p(k), (1.28)

according to a certain prescription. The corresponding prescription will be based on the
Taylor expansion and can be constructed as follows.

To start let us re-write Eq. (1.26) at the iteration number (k + 1):

χ2(p (k+1)) =
nd∑

i=1

wi

[

d exp
i − fi(p

(k+1))
]2

. (1.29)

Taking advantage of the Taylor linearisation, write down

fi(p
(k+1)) = fi(p

(k) + ∆p(k))

≈ fi(p
(k)) +

np∑

j=1

∂fi

∂pj

∣
∣
∣
∣
∣
p=p

(k)
j

(

p(k+1) − p(k)
)

︸ ︷︷ ︸

∆p(k)

. (1.30)

We can simplify the last expression by introducing the short-hand notation for the Jacobian
matrix at each iteration ‘k’ as follows

J
(k)
ij ≡ ∂fi

∂pj

∣
∣
∣
∣
∣
p=p

(k)
j

(1.31)

so that

fi(p
(k) + ∆p(k)) ≈ fi(p

(k)) +
np∑

j=1

J
(k)
ij ×

(

p (k+1) − p (k)
)

. (1.32)

Before continuing, let us define two more auxiliary objects which will simplify the notation:

b
(k)
i =

√
wi

[

d exp
i − fi(p

(k))
]

(1.33)

and
J (k)

ij =
√

wi J
(k)
ij . (1.34)

Inserting Eq. (1.32) to Eq. (1.29) we obtain the linearised expression for χ2 as follows

χ2(p (k+1)) =
nd∑

i=1

wi

[

d exp
i − fi(p

(k+1))
]2

≈
nd∑

i=1

wi



d exp
i − fi(p

(k)) −
np∑

j=1

J
(k)
ij

(

p
(k+1)
j − p

(k)
j

)





2

6At this point we do not complicate the discussion by introducing any distinction between two types of
the extrema (minima vs. maxima) and the saddle points, all satisfying condition (1.27), even though they
are considered in the programming.
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=
nd∑

i=1



b
(k)
i −

np∑

j=1

J (k)
ij ∆p

(k)
j





2

=
nd∑

i=1





np∑

j=1

J (k)
ij ∆p

(k)
j − b

(k)
i





2

. (1.35)

As the next step we introduce the last result into the expression for the gradient. We have
to take into account that when we derive over p (k+1), p (k) should be treated as constant,
therefore

∂χ2

∂pm

= 2
nd∑

i=1





np∑

j=1

J (k)
ij ∆p

(k)
j − b

(k)
i



 ·




np∑

j′=1

J (k)
ij′

∂∆p
(k)
j′

∂pm





= 2
nd∑

i=1





np∑

j=1

J (k)
ij ∆p

(k)
j − b

(k)
i



 ·




np∑

j′=1

J (k)
ij′

∂p
(k+1)
j′

∂pm





= 2
nd∑

i=1





np∑

j=1

J (k)
ij ∆p

(k)
j − b

(k)
i



 ·




np∑

j′=1

J (k)
ij′ δj′m





= 2
nd∑

i=1





np∑

j=1

J (k)
ij ∆p

(k)
j − b

(k)
i



 · J (k)
im

= 2
np∑

j=1

nd∑

i=1

[

J (k)
im

]T ·
[

J (k)
ij ∆p

(k)
j − b

(k)
i

]

, (1.36)

and after simplifying the notation, we obtain
(

J T J
)(k) (

p (k+1) − p (k)
)

−
(

J T
)(k)

b(k) = 0 (1.37)

leading finally to the iterative algorithm

p (k+1) = p (k) +
[(

J T J
)(k)

]−1 (

J T
)(k)

b(k). (1.38)

The last relation allows to construct the effective iteration algorithm which will be used in
many application in the present project.

Let us emphasise that the application of the above algorithm to effectively obtain
the solutions depends on the existence or not of the inverse of the product J T J .

It then becomes clear that the very existence of solutions, as well as the con-
vergence properties of the algorithm depend critically on the properties of the
Jacobian matrix.

The discussion in the next section sheds some light on that subject.

1.3 Theorem about Singular Value Decomposition

Let us begin by rewriting Eq.(1.38) in an equivalent, short form

p = A−1 y where p ≡ p (k+1) − p (k) and y ≡
(

J T
)(k)

b(k), (1.39)
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and where A = J T J represents the matrix whose properties will be examined.

Theorem: Singular Value Decomposition. Any real matrix M of dimension m × n
and rank r ≤ min(m, n) can be factorised as a product of three matrices as follows

M = UΛV T , (1.40)

where U and V are m × m and n × n orthogonal matrices, respectively, and Λ is a m × n
diagonal matrix with all its entries being non-negative where r of them are strictly positive.

m

m

0

0 0

r

r

n

n

n

m

Λ V

M U

Figure 1.1 – A schematic representation of the structure of the singular value decomposition.

This diagonal matrix is usually represented in the literature in the compact form [12]:

Λ = diag{λ1, λ2,... λr, 0, 0, . . . 0}, cf. Figure 1.1, (1.41)

in which, by convention, λ1 > λ2 >... λr. The λi matrix elements are called singular values
of matrix M . In linear algebra, orthogonal matrices are square matrices which satisfy

UUT = UT U = 1 (1.42)

what implies that they also satisfy UT = U−1.

Coming back to Eq. (1.40), we can rewrite the matrix A by applying the previous
theorem to the Jacobian, J ,

J = UΛV T , (1.43)

and consequently

J T =
(

UΛV T
)T

= V ΛT UT = V ΛUT . (1.44)

These last two equations allow to write

J T J = V ΛUT UΛV T = V Λ2V T (1.45)

whereas inverting the last relation gives
(

J T J
)−1

=
(

V Λ2V T
)−1

= V Λ−2V −1 = V Λ−2V T . (1.46)

Above we transformed the
(

J T J
)−1 J T product as follows

(

J T J
)−1 J T = V Λ−2V T V ΛUT = V Λ−1UT , (1.47)

which finally allows us to write

p (k+1) = p (k) +
(

V Λ−1UT
)

b(k). (1.48)
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We can identify
A ≡ V Λ−1UT . (1.49)

Comments About the Singular Values in the Context of Ill-Posedness. The new
expression for the optimal parametric solution tells us that the solution exists unless one
or more entries of matrix Λ are zero or close to it. Indeed, taking into account Eq. (1.49),
let us write (1.48) using the explicit summation format

[p(k+1) − p(k)]j =
n∑

ℓ=1

Vjℓ

1

λℓ

m∑

i=1

UT
ℓk b

(k)
i . (1.50)

The last summation can be performed since all the elements there are known at an iteration
nok; we can introduce an abbreviated notation

Bℓ ≡
m∑

i=1

UT
ℓk b

(k)
i (1.51)

which allows us to write

[p(k+1) − p(k)]j =
n∑

ℓ=1

Vjℓ

1

λℓ

Bℓ, (1.52)

from where we can easily see the role of the vanishing eigenvalues λℓ. It becomes clear
that even if one only among the λℓ in the diagonal matrix is zero, the summation in
Eq. (1.52) diverges and consequently we cannot find the solution of our problem because
the confidence intervals for all the parameters are divergent too.

Let us observe an apparently paradoxical functioning of these transformations:
In Eq. (1.43) and Eq. (1.44) which underlie our considerations, the possible
zero eigenvalues of the matrix Λ cause that some columns of the matrix U in
the case of calculating J and some columns of the matrix V when calculating
J T will not contribute. Consider more closely the case of J T ; if, say, λℓ=5 = 0
the column Vj5 should disappear from our considerations. Considering the last
expression Eq (1.52), we conclude that, paradoxically, the column with the in-
dex corresponding to vanishing eigen-values λℓ (and thus infinity for the fraction
1
λℓ

) simply do not contribute to the summations and, more precisely, the cor-
responding columns of the matrix V viz. Vjℓ should in fact disappear from our
considerations7.

Strict Divergences vs. ‘Just’ Destabilising the Computer Algorithm. Let us
emphasise that even though Eq. (1.50)–Eq. (1.52) indicate the presence of the singularity
very precisely as the ‘yes/no’ condition, in practical numerical algorithms the situation is
much more complicated. This is because one of the λ-values may approach 0 gradually
from one iteration to another with the result that the strong divergence arises within the
algorithm without necessarily dividing by zero! It may then happen that the ‘optimal
parameters’ approach the borders of acceptable ranges not because of the properties of the

7In this case we arrive at a new situation in which it is not so much the parametric correlations which
perturb the algorithm but rather a parameter is demonstrated not to be a justified part of the model ? at
the given sampling which is considered predefined.
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experimental data – but rather as the result of the ‘poorly controlled, numerically small
values in the denominators’.

Trying To Quantify the Divergence Level: Condition Number. In applied math-
ematics one introduces an indicator of ill-posedness in the form of the parameter called
condition number [6, 12]. The latter is defined as the ratio between the biggest and the
smallest eigenvalues {λi}:

cond(A) =
max({λi})

min({λi})
. (1.53)

If cond(A) is very large, the problem is considered ill-conditioned/ill-posed. Defining the
exact limits between the ‘large’ and the ‘small’ is somehow arbitrary in this context. For
instance, for linear problems, cond(A) ≃ 1 is considered as a sign of the well-posed problem.
On the other hand, if cond(A) >> 1, the problem is considered ill-posed. Condition number
of the order of some thousands can already be of concern. If min({λi}) → 0, the quotient
in Eq. (1.53) tends to infinity.

Parametric Correlations within the Algorithm. One of the very powerful methods
in approaching the ill-posedness and possibly counteracting its negative effects is related
to the mechanism of parametric correlations mentioned above. As noticed earlier, if two
or more columns of A are linearly dependent, it follows that A is singular. But this
information translates into the condition of the type

pj = f(pi) (1.54)

for a given i and j. The presence of such correlations can be detected using the Monte-
Carlo methods as it will be presented later in this work. This can be used as an alternative
sign of ill-posedness, which can be investigated with the help of Eqs. (1.53). Let us remind
the reader that that the parametric correlation in the form of Eq. (1.54) is manifested
by the flat-bottom valleys on the plane (pi, pj) and the two facts represent alternative
manifestations of the same.

1.4 ‘Good Looking’ Results – Possibly Insignificant

In relation to the ill-posedness and, more generally, the possible physical in-significance
of the ‘optimal parameters’ obtained via χ2-minimisation, we will need to investigate a
number of related issues:

• Routinely verify the sequence of the singular values and analyse the consequences of
some nearly vanishing; identify the condition number;

• Using the automated minimum search – How can we be sure that we arrived at the
absolute-minimum solution and not at a local minimum with the very close χ2-value?
– and/or whether the ‘optimum’ is not the result of an instability, Eqs. (1.52)-(1.53)-
(1.54)?

• How can we profit from the detection of the parametric correlations in the initial
variant of the problem, in order to reformulate it via elimination of such correlations
thus arriving at the stable new, but equivalent, formulation?

• How to influence the sampling of the experimental data in order to diminish the
chances of ill-posedness?
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We will formulate our answers these questions in the next sections and chapters of this
document.

1.5 Inverse Problem and Probability Considerations

In the preceding sections we have introduced the notion of the Inverse Problem and
discussed the role of the underlying mathematical theory in optimisation of the parame-
terisations of the models. Let us emphasise that in all the cases in which the inverse of the
operator M̂ in the formal position of the problem,

M̂(p) = d, (1.55)

is not known or - even worse - does not exist, the physicists usually bypass the problem
rather than solving it: instead of attempting the impossible, i.e. p = M̂−1d, one rather
minimises the generalised distance between experiment and theory. One of the infinitely
many realisations of this idea is the minimisation of the χ2-test, the latter having in itself
an infinite number of realisations since the weight factors in its definition remain arbitrary.
This type of ‘generally accepted’ arbitrariness adds to the uncertainties of the final result
of the optimisation procedures which employ the bypassing of the possibly unique solu-
tion of the inverse problem via minimisation. Let us remind the reader at this point that
the minimisation of the χ2-test corresponds conceptually to the minimisation, in multidi-
mensional spaces, of a generalised distance between a point representing the experimental
data and the results of the modelling representing the same physical quantities. Since one
demonstrates in topology that there exist an infinite number of manners of defining the
distance in multidimensional spaces - it becomes clear that selecting one of those cannot
be in general considered as equivalent to solving the inverse problem M−1d = popt.

The presence of the arbitrariness in the approach is equivalent to saying that there
exist numerous alternative hypotheses. We may be justified to ask the questions about
the relative viability / probability of one vs. another possible hypothesis. By introducing
the relative probability hypotheses we parametrise our ignorance. In other words, we may
formulate the general approach / method which focuses on finding the relative probabilities
of what we think the right answers are.

Under such considerations, theory parameters p and experimentally known data d
are treated as random variables with their corresponding probability distributions. In
this context let us begin by recalling some useful concepts which will allow to advance
towards more and more precision – in accordance with the methods developed within
applied mathematics.

1.5.1 Sampling: Degree of Freedom in Inverse Problem Theory

The term sample in the inverse problem theory is applied to any set of data representing
experiment. Any sub-sets of a sample is also called sample. In particular, a sample can be
composed of one single datum.

The term sampling refers to the ensemble of procedures which are applied to prepare
and select the data points which will compose the sample(s).

The importance of these notions in the inverse problem theory consists in the fact that
the solutions of the inverse problem as well as their very existence depends not only on the
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model itself but, on the equal footing, on the sample employed. In other words: the same
mathematical algorithm may lead to an ill-posed or well-posed inverse problem depending
on the choice of the data sampling.

1.5.2 Random Variables and Probability Density

In probability theory a random variable is a variable whose possible values are the
numerical outcomes of a random phenomenon. It is usually represented by X. Different
results of experiments are used to code numbers x1, x2,... xn, which are called realisations
of variable X.

Once we know all the realisations of the random variable, we can construct the oc-
currence frequency histograms. For this purpose we consider a stretch of the x-axis and
dividing it into nhist intervals of length ∆xi, we attribute the numbers of occurrences, fi,
to each interval. The corresponding normalisation condition reads

nhist∑

i=1

fi∆xi ≡
nhist∑

i=1

Pi = 1, (1.56)

where Pi is called the occurrence probability of each interval ‘i’: [xi, xi +∆xi]. As n → +∞
and ∆xi → 0, the constructed histograms tends to a smooth profile which allows defining
the probability density f(x). In this case the size of the interval is infinitesimal ∆x ≡ dx,
therefore the probability of finding one realisation value of X in the interval [x, x + dx] is

dP (x) = f(x)dx (1.57)

and, in analogy to Eq.(1.56):

∫ +∞

−∞

dP (x) =
∫ +∞

−∞

f(x)dx = 1. (1.58)

It is important to notice that f(x) is always non-negative since it originates from the
occurrence-counting and consequently after normalisation 0 ≤ f(x) ≤ 1.

Expected Value. The mean value or expected value, µ, of a random variable X is defined
using the probability density as

µ ≡ E[X] =
∫ +∞

−∞

xf(x)dx. (1.59)

It can be interpreted as a weighted average, where each realisation value is multiplied by
its occurrence probability. Equation (1.59) refers to the continuous case, but we can of
course define it for the discrete case as well. Then we may write in analogy:

µ =
n∑

i=1

xiPi, (1.60)

as long as Eq. (1.56) is satisfied, otherwise one may need to normalise the discrete distri-
bution by

∑

i Pi = 1. In the case of all the points being equiprobable, we may define µ as
the arithmetical mean value

µ =
1

n

n∑

i=1

xi. (1.61)
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Variance vs. Standard Deviation. In probability theory, variance σ2 measures, in an
abstract way, the distance between the running variable and the expectation value. It is
defined using the probability density as follows

σ2 = E[(X − µ)2] =
∫ +∞

−∞

(x − µ)2f(x)dx, (1.62)

where µ is defined by Eq.(1.59). The standard deviation σ is then defined as the square
root of the variance

σ =
√

σ2. (1.63)

We can also define variance and standard deviation for discrete distributions. In such
a case, we have

σ2 =
n∑

i=1

Pi(xi − µ)2, (1.64)

where µ is given by Eq.(1.60). In the particular case of equiprobable distributions, the
above expression takes the form

σ2 =
1

n

n∑

i=1

(xi − µ)2. (1.65)

It turns out that the broader the data distribution, the bigger the variance of the
standard deviation. Conversely, the narrower the distributions, the more precise the final
result.

1.5.3 Covariance Matrix - A Linear-Correlation Test

In Section 1.2 we discussed the ill-posedness of the inverse problem possibly arising
from the parametric correlations among the parameters of the model. Consequently, it will
be important to construct the method which helps detecting these correlations. The tool
used to detect correlation between two different random variables X and Y is the special
function called covariance, defined as

cov(X, Y ) ≡ E[(X − E(X))(Y − E(Y ))]. (1.66)

Continuous variables. In the case of continuous random variables, following the previous
definition in Eq.(1.59) we obtain

[covX]ij = cov(Xi, Xj) =
∫

(xi − µi)(xj − µj)f(x)dx. (1.67)

Discrete variables. Here, following definition in Eq.(1.61):

[covX]ij = cov(Xi, Xj) =
1

n

n∑

k=1

(x
(k)
i − µi)(x

(k)
j − µj). (1.68)

In both cases, we can construct the full N × N covariance matrix for all the elements of
X. Consider now the non-diagonal elements of this matrix, [covX]ij for i Ó= j. One shows
that for the uncorrelated variables [covX]ij → 0.



1.5.3 Covariance Matrix - A Linear-Correlation Test 21

The diagonal elements of the covariance matrix are equal to the variances of each of
the X vector elements

[covX]ii = cov(Xi, Xi) =
1

n

n∑

k=1

(x
(k)
i − µi)

2 = σ2
i . (1.69)

Covariance Matrix and the Inverse Problem. Let us consider the linear form of the
inverse problem (equivalent to Eq.(1.12)), where the vector of parameters p ∈ R

np can be
found from the data d ∈ R

nd with the help of the np × nd matrix M

p = M−1d. (1.70)

Suppose that the measurement of d has been performed K times, allowing to calculate the
mean value d̄ for each vector element and consequently p̄. Therefore we can calculate the
covariance matrix for the data vector

[cov d]ij = cov(di, dj) =
1

K
K∑

k=1

(d
(k)
i − d̄i)(d

(k)
j − d̄j), (1.71)

where i, j = 1, ... nd. For the parameter vector we can also construct the covariance matrix

[cov p]ij = cov(pi, pj) =
1

K
K∑

k=1

(p
(k)
i − p̄i)(p

(k)
j − p̄j), (1.72)

recalling that i, j = 1, ... np. Using Eq.(1.70) we can combine Eq.(1.71) and (1.72) as follows

[cov p]ij =
1

K
K∑

k=1

[

(Md)
(k)
i − (Md)i

] [

(Md)
(k)
j − (Md)j

]

=
1

K
K∑

k=1

[
nd∑

ℓ=1

Miℓ

(

d
(k)
i − di

)
] [

nd∑

m=1

Mjm

(

d
(k)
j − dj

)
]

=
1

K
K∑

k=1

[
nd∑

ℓ=1

Miℓ

(

d
(k)
i − di

)
] [

nd∑

m=1

(

d
(k)
j − dj

)

MT
mj

]

=
nd∑

ℓ=1

nd∑

m=1

Miℓ

[

1

K
K∑

k=1

(

d
(k)
i − di

) (

d
(k)
j − dj

)
]

MT
mj

=
nd∑

ℓ=1

nd∑

m=1

Miℓ [cov d]lm MT
mj (1.73)

we find
[cov p]ij = M [cov d]ij MT . (1.74)

In the case of independent measurements, we can expect that the data are not corre-
lated, which means that in Eq.(1.74) the only non-zero matrix elements of [cov d]ij are the
diagonal terms. Keeping this in mind and taking also into account Eq.(1.69) in the most
simplified case where we assume that all the data have the same standard deviation σd, we
can write

[cov d]ij = σ2
d1. (1.75)

Thus, Eq.(1.74) transforms to
[cov p]ij = σ2

dMMT . (1.76)
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Finally, we can relate the above with the result in Eq.(1.38)

M ≡ (J T J )−1, (1.77)

and therefore

[cov p]ij = σ2
dMMT = σ2

d(J T J )−1
[

(J T J )−1
]T

= σ2
d(J T J )−2. (1.78)

Correlation Matrix – Pearson Coefficients. We arrived at the expression for the
covariance matrix for the parameters. However, since each parameter has its own units
and each model has its own parameters, it is more useful to normalise the last expression
and obtain the parameter correlation coefficients also called Pearson coeffcients:

rij =
[cov p]ij

σi σj

, (1.79)

which are the matrix elements of the correlation matrix. The advantage of this normalisa-
tion is that −1 ≤ rij ≤ 1 for whichever parameter units and model selected. In this way,
we can compare the matrix elements, for the same model or comparing models and identify
the one that has more or less correlations between its parameters. How to interpret the
elements of this matrix will be explained later.

1.6 Minimisation – Levenberg-Marquart Method

The direct solving of the inverse problem will not be possible in this project since
the inverse of the operator M does not exist – or at least it is not known. We will work
with the nuclear mean-field methods employing the model Hamiltonians based on the non-
linear interaction potentials – the parameter optimisation will be based on the non-linear
least-squares approach. For the minimisation we will use the so-called Levenberg-Marquart
algorithm (LMA), also known as Damped Least-Squares (DLS). It is more robust that the
Gaussian-Newton algorithm, because LMA can find the minimum even if the initial guess
was far from the final solution.

To explain how it works, recall Eq.(1.38) as the starting point to pose the minimisation
problem: (

J T J
)

∆p = J T [d − f(p)], (1.80)

and remember that ∆p = p(k+1) − p(k), where (k) stands for the iteration number. As
observed earlier, if the Jacobian matrix is not full-rank, we cannot find the solution to our
problem since the underlying matrix is not invertible. For this reason, Levenberg added
[23] a diagonal contribution to J T J to avoid the singularity of the Jacobian matrix

(

J T J + λ1
)

∆p = J T [d − f(p)]. (1.81)

The damping factor λ is non-negative and modified at each iteration. The disadvantage of
this proposition is that for large values of λ

(

J T J + λ1
)

≈ λ1 (1.82)

and therefore the information from J T J is not used at all. For this reason, Marquardt
ref. [24], suggested to replace the identity matrix in front of λ by the diagonal matrix
composed of eigen-values of the matrix J T J , resulting with

[

J T J + λ diag(J TJ )
]

∆p = J T [d − f(p)], (1.83)
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the central defining-relation for the Levenberg-Marquardt algorithm. If we are far from
the minimum, the damping factor λ will be increased to help the algorithm to find the
right path. Conversely, if we are close to the minimum, λ is decreased thus, giving more
importance to J T J .

Our minimisation programs in various variants are all based on the application of the
Levenberg-Marquardt algorithm.

1.7 Introductory Comments of the χ2-Test Definition
for the Present Project

As it is known from topology, a distance d(a, b) between two points in an n-diensional
space (under some extra conditions making precise certain mathematical aspect) is an
arbitrary function which

• is non-negative, d(a, b) ≥ 0;

• is symmetric, d(a, b) = d(b, a);

• satisfies the rule of the triangle, d(a, c) ≤ d(a, b) + d(b, c)

Keeping this in mind, the χ2-function chosen for the present thesis can be seen a a very
special choice among an infifnite number of mathematically acceptable possibilities. Its
non-normalised version is taken in the form

χ2 =
nd∑

i=1

wi[e
exp
i − eth

i (p)]2 (1.84)

where eexp
i and eth

i are the experimental and theoretical single particle energies, respec-
tively. Here, it becomes clear that the choice of the quantity inside the square-brackets
are standard elements of the definition, however wi stays under subjective choice. In this
case, since the spherical since the spherical single particle levels appear with degeneracies
(2j + 1) degeneracy, we naturally chose

wi = 2ji + 1 (1.85)

At this point, the reader is referred to Chapter 7 for more details.

Let us add in passing that certain experimental fitting algorithms include another arbi-
trary choice of the weight factors containing some measure of the experimental uncertainty
in the denominators – according to the principle “the bigger the error the smaller the weight
factor”, for instance w ∝ 1/σ2. We do not enter into this type of considerations given the
fact that this would bias our considerations in a manner difficult to control. Indeed, the
estimates of the experimental values of various mean-field nucleonic levels coming form dif-
ferent types of experiments, different groups of physicists and different subjective choices
within each individual analysis would possibly combine incomparable error estimates.

1.8 Monte-Carlo Simulation Techniques

The Monte-Carlo simulation techniques are based on the repetitive algorithms which
allow performing a given estimate under changing certain conditions, e.g. minimisation of
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a χ2-test a big number of times, say NMC . Each repetition can be viewed as a test of a new
hypothesis following a certain protocol, for instance testing the experimental input data
according to the numerically generated probability distribution; at this point the Monte-
Carlo methods use the numerical random number generators allowing to model any given
probability distribution needed. For instance, one may be able to use the Monte Carlo
methods to simulate e.g. the Gaussian uncertainty distributions of the experimental data
and study the propagation of the information represented by such an input distribution
down to the resulting probability distributions of the resulting final ‘optimal’ parameters.

In the case of simulating the experimental data uncertainty distributions we employ
the Gaussian (also called normal) probability distributions; they are characterised by the
random variable, say x, and two parameters usually denoted µ, the mean value and σ, the
width parameter:

G(x; µ, σexp) =
1

√

2πσ2
exp

exp
[

−(x − µ)2/(2σ2
exp)

]

; (1.86)

these distributions are peaked at µ ≡ dexp.

After having generated the normal-distributed data set NMC times, we proceed with
the χ2 minimisation to obtain the corresponding NMC sets of the resulting parameters
with the help of which we can construct their histograms of probability distributions, the
Pearson correlation matrix, correlation ‘dot-plots’ which are discussed in the next section,
etc.

1.8.1 Parametric Correlation Analysis

The success of the Monte-Carlo methods depends on statistics of computer-generated
output, usually the bigger the statistics the better. Having sufficient statics allows us to in-
troduce certain standard analysis tools detecting the presence of the parametric correlation
– such as Pearson Correlation-Matrix introduced earlier. The normalised correlation coef-

Figure 1.2 – Examples of two-dimensional (x, y) distributions of data-points with their
corresponding values of Pearson coefficient. The bottom row results show correlated dis-
tributions which give rij ≈ 0. The distributions in the upper row are the closest to what
we will obtain in the realistic simulations related to the present project. From Wikipedia
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient.

ficient rij, cf. discussion around Eq.(1.79), can take the values between −1 to 1. Obtaining
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rij = ±1 means a total positive or negative linear correlation between parameters pi and
pj, for illustration cf. middle row of Figure 1.2. In other words, the more rij approaches
the limits ±1 the stronger the linear correlation between the corresponding parameters,
cf. the first row of the figure. On the other hand, rij → 0 means only that there is no linear
correlation between the parameters pi and pj; in other words, the possible information
about the non-linear correlations must be sought using different means. The appropriately
adapted Monte-Carlo techniques provide one of the most powerful tools in this respect;
these will be the diagrams which we refer in jargon as dot-plots, examples of which are
given in Figure 1.2.

The dot-plots are two-dimensional distributions obtained from the Monte Carlo simu-
lation results projected on the (pi, pj)-plane, where the axes represent the pi and pj param-
eters, respectively. To illustrate the functioning of such a Monte-Carlo technique, suppose
we are optimising a model which depends on np parameters. We assume that the un-
certainty distributions of each of the original experimental data points are known. With
the help of the random number generator we generate a big number, say NMC ∼ 106,
of experimental datas sets according to these known probability distributions (such pro-
cedures will also be presented in details later on in this document). Performing NMC

runs of minimisation, we generate NMC sets of parameters (more precisely, np-tuplets of
parameters i.e. {p1, p2, . . . pnp

}k for k = 1, 2, . . . NMC). To construct the (i, j)-dot-plot
we place a dot on the (pi, pj)-projection plane for all the two-dimensional points with the
coordinates {pi, pj}k from the set of NMC np-tuplets. In other words, dot-plots represent
two-dimensional probability distributions in the parameter space.

Some examples of these type of diagrams are shown in Figure 1.2. Let us note that
in the bottom row of Figure 1.2 we can only find out about the existence of parametric
correlations from the dot-plots since rij is zero in all those cases.

The discussed illustration should alert the reader about the (very) limited useful-
ness of the correlation matrix tests in the non-linear problems which dominate
in the physics applications.

Yet, as it seems, many authors let themselves being satisfied with the discussion of the
possible uncertainties in their work limiting the discussion to the properties of the Pearson
matrix.

Special comment should be made concerning Figure 1.2: contributor to Wikipedia
took care that the points in the bottom row of the picture are distributed around central
gravity point, therefore giving rij ≈ 0 as indicated in the figure.

1.8.2 Pseudo-experimental Data and Possibly Exact Testing

The experimental data which we have at our disposal and which we use for adjusting
the values of the model parameters are limited and usually not sufficient for various kinds of
test-considerations. For this reason, one may introduce the concept of pseudo-experimental
data. The basic principle of this idea is as follows. To start with, we use the best existing set
of experimental data to adjust the optimal set of what we refer to as reference-parameters.
Such a set assures that the model performs closely to its best limits which one can expect
with the given limited experimental input. With the reference parameters known, we
calculate the full set of theory results e.g. all the single-particle energy levels which can be
provided by the model, generally much more than what is known experimentally.
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After these preliminaries the real experimental data can be replaced by the calculated
pseudo-experimental ones. The latter can be used to perform various tests. For instance,
since the pseudo-experimental data reproduce the model reference-parameters exactly, they
can be used for an exact modelling with the performance properties close to what is needed
in order to describe the real data. This would allow testing the stability of the predictions of
the model when arbitrarily increasing (decreasing) the number of data points or to perform
the extra tests with varying data uncertainties. In particular: With this construction we
can apply / develop the Monte Carlo techniques, testing the Gaussian-noise effects on the
pseudo-experimental data. We can profit from the fact that with the pseudo-experimental
data we cover the information range for the whole system and not only for a part of it – as in
the case of the real experimental data. In this way we can detect which data-points are the
most relevant for the most stable functioning of the parameter optimisation procedures
or – to the contrary – are the most ‘passive’. This type of information is very useful
for optimising the new-experiment conditions for the usually ‘overbooked’ experimental
facilities and are very useful in theory-experiment collaboration projects.



Chapter 2

Spherical Nuclear Mean-Field Model

Let us recall that the present project is focussed on examining the stability properties of
the parameter adjustment procedures together with the related predictive power. We also
aim at exploring certain aspects of the underlying inverse problem theory by employing,
among others, the Monte-Carlo methods. Consequently, to an extent, the exact form of the
Schrödinger equation and/or the interaction potential can be seen as playing a secondary
role – under the condition that they can be considered realistic in the description of the
physical observables of interest for us. Since we will be primarily interested in the mean-field
single-nucleon energies, the possible choice could lie between the realistic phenomenological
mean-field Hamiltonian in the Woods-Saxon form or the more microscopic form of e.g. the
Skyrme Hartree-Fock type.

In arriving at the final decision we used the experience gained within the preceding PhD
thesis completed in our group, B. Szpak [25]. In this latter thesis it has been shown that the
choice of the Hamiltonian in the form of the spherical Skyrme-Hartree-Fock approach leads
to a ‘pathologically complex’ mechanism of parametric correlations. Indeed, it is fair to say,
as B. Szpak has shown, that in many situations Skyrme Hamiltonian leads to the parametric
correlations in the form ‘everyone with everyone’, cf. Figure 2.1. Selecting this type of the
Hamiltonian would bring us to the perspective of working on the parametric correlation
removal [read: learning how to construct and implement parameter removal techniques]
for the Hamiltonian which depends on up to 12 constants (in the considered realisation)
where de facto only two or three among these parameters can be considered independent.
This would mean a very challenging task - since the removal of the parametric correlations
is in the literature either treated by what is considered as standard prescriptions1 or not
at all. Therefore we were tempted to opt for a less complex inverse problem context, not
too complicated by the possibly highest degree of parametric correlations. This ‘highest
degree of parametric correlations’ may be considered as a somewhat pathological property
specifically of the Skyrme interactions, which are based on the expansions of the zero-
range interactions having at their roots the Dirac δ-distribution. We thought that the
ideal test ground for this kind of the project will be a model Hamiltonian with possibly
a few two-parameter correlations of the pi vs. pj type, preferably. Let us emphasise that
the possible ill-posedeness of the inverse problem depends on both the model itself and the
sampling of the data. It goes without saying that enlarging the sampling by adding the
new experimental data, e.g. new-measured mean-field energies or nuclear radii, possibly

1This means using the so-called regularisation methods; the latter consist in replacing the original
problem by another ‘similarly looking’ problem and solving that one, hoping that the results of the original
one and the replacement one are ‘nearly the same’ - or at least similar. Our approach is by decision different.

27
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taking into account explicitly the coupling between the nuclear single-particle levels and
the nuclear collective surface vibrations may in principle influence the form and even the
presence of parametric correlations – and requires case by case analysis. However for the
Hamiltonians in which visibly the majority of the parameters are correlated – and not
necessarily only in the form of the binary relations as it is the case for the Skyrme effective
Hamiltonians – the manipulations with the sampling is unlikely to be sufficiently effective
to modify the parametric correlations in any qualitatively noticeable fashion.
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Figure 2.1 – Illustration from B. Szpak PhD Project (unpublished). The parameters of the
Skyrme-HF SIII-Scheme Hamiltonian were fitted to 208Pb mean-field single-particle energies.
Illustration shows various correlations between the parameters of the Skyrme-Hamiltonian sug-
gesting that there are rather very few independent parameters.

In the present project we wished to implement and test the powerful Monte-Carlo
algorithms to detect and remove parametric correlations. For that, the ultra-short c.p.u.-
execution times of the Schrödinger equation algorithms are primordial. We therefore de-
cided to use the phenomenological realisation of the mean-field algorithm with the Woods-
Saxon Hamiltonian, especially since B. Szpak has demonstrated the existence of occa-
sional and non-trivial convergence problems of the self-consistent Skyrme-Hartree-Fock
code. These would have most probably slowed down the collection of the Monte-Carlo
results due to the causes inessential from the point of view of the principal goals here.

In this chapter the presentation of the nuclear mean field model used in the present
document will be given. We focus on the spherical doubly magic nuclei, therefore we will
consider a scalar, spherically symmetric potential when constructing the Schrödinger equa-
tion. We will employ the numerical method of solution with the help of the diagonalisation
technique. This implies the convenience of using the spherical harmonic oscillator basis
with the corresponding wave functions in the form of the generalised Laguerre polynomials
and the spherical harmonics – in a spherical coordinate system.
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2.1 Spherical Woods-Saxon Hamiltonian

Let us begin by introducing the Hamiltonian which will be used to describe the mean-
field single-nucleon energies in this project. The general structure of the Hamiltonian
considered here has the form

Ĥ(þr ) = t̂ + V̂C(þr ) + V̂SO(þr ) +
[

V̂E(þr ) ↔ electrostatic potential for protons
]

, (2.1)

where þr is the position-vector of a nucleon and t̂, the nucleon kinetic energy operator
defined as

t̂ = − ~
2

2m
∇2. (2.2)

The Laplace operator, ∇2, takes the following well known expression in spherical coordi-
nates

∇2 =
1

r2

[

∂

∂r

(

r2 ∂

∂r

)

+
1

sin ϑ

∂

∂ϑ

(

sin ϑ
∂

∂ϑ

)

+
1

sin2 ϑ

∂2

∂ϕ2

]

. (2.3)

The so-called central potential, V̂C(þr ) → V̂C(r), has been chosen in the Woods-Saxon form

V̂C(r) =
V c

1 + exp[(r − Rc)/ac]
(2.4)

where V c is the depth-parameter of the potential well, rc in Rc = rcA1/3 is the radius-,
and ac-, the diffuseness parameters. The third term on the right-hand side in Eq. (2.1)
represents the spin-orbit potential. In its traditional representation – in contrast to the
density-dependent self-consistent realisation, which will be introduce later – it has the
form:

V̂SO(þr ) → V̂SO(r) =
1

r

dvso(r)

dr
þℓ · þs (2.5)

where by definition

vso(r)
df.
=

λso

1 + exp [(r − Rso)/aso]
. (2.6)

In analogy to V c in the central potential, λso represents the strength of the spin-orbit
phenomenological interaction, rso in Rso = rsoA1/3 is the spin-orbit radius parameter and
aso, the spin-orbit diffuseness parameter.

The operators of spin þs and of orbital angular-momentum þℓ couple to the combined
total angular momentum operator þ given by

þs + þℓ = þ. (2.7)

Taking the square of the latter expression, the product þℓ · þs can be expressed as

þℓ · þs =
1

2
(þ 2 − þs 2 − þℓ 2), (2.8)

which, when acting on the eigenstates of ̂2, ℓ̂2 and ŝ2, transforms the latter into

þℓ · þs ≡ 1

2
[j(j + 1) − ℓ(ℓ + 1) − s(s + 1)] . (2.9)

Finally, the last term in the Hamiltonian of Eq. (2.1) is the electrostatic Coulomb
potential acting only at the protons. For the uniform charge density it takes the form:

V̂E(þr ) → V̂E(r) = ~cα(Z − 1)







3−(r/Rcoul)2

2Rcoul , for r ≤ Rcoul,
1
r
, for r > Rcoul,

(2.10)
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where c is the speed of light, α is the fine-structure constant and, as in the cases of the
central and spin-orbit potential, Rcoul = rcoulA1/3 is the Coulomb radius parameter. In the
present work we assume that the Coulomb radius is proportional to the central one:

rcoul = fc · rc, (2.11)

where fc is a positive constant. However, in what follows we work most of the time with
the approximation fc = 1, leaving possible refinements for later.

The central potential depth and the spin-orbit strength can be defined separately for
each nucleus and type of particles, however here we chose to parametrize them in terms of
the proton Z and neutron N numbers and introduce two auxiliary parameters, for each of
them. Thus, for the central potential depth we have

V c = Vo

(

1 ± κc
N − Z

N + Z

)

, (2.12)

and for the spin-orbit strength

λso = λo

(

1 ± κso
N − Z

N + Z

)

. (2.13)

In both cases, the plus sign (+) stands for protons and the minus sign (−) for the neutrons.

At this point, we have completely defined our Hamiltonian which depends on twelve
parameters, six for the protons and six for the neutrons:

{Vo, κc, rc
π,ν , ac

π,ν , λo, κso, rso
π,ν , aso

π,ν}. (2.14)

The subscripts π, ν refer to proton and neutron parameter sets, respectively.

2.2 Solving the Schrödinger Equation

We can proceed to solve the Schrödinger equation

ĤΨn = enΨn, (2.15)

to obtain the single particle energies and wave functions of the individual nucleons. To
be able to employ the diagonalisation method, we will need to introduce the harmonic
oscillator basis wave functions {Φk}; they will be specified in the following section. With
the help of these wave functions we may express the so far unknown solutions of the
Schrödinger equation, Ψn, as

Ψn =
∑

n

cnkΦk, (2.16)

where cnk are some unknown coefficients and Φk denotes a given set of orthonormal basis
vectors (basis wave-functions). We can introduce Eq. (2.16) into Eq. (2.15) obtaining

Ĥ
∑

n

cnkΦk = en

∑

n

cnkΦk. (2.17)

Multiplying both sides of the last equations by Φ∗
k′ and integrating over the whole space

we obtain
∑

k

cnk

∫

dV Φ∗
k′ĤΦk =

∑

k

cnkenδkk′ , (2.18)
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where we have used the orthonormality of the basis. The results of the integration are the
matrix elements of our Hamiltonian. Using the standard ‘bra-ket’ notation, we write

〈k′|Ĥ|k〉 =
∫

dV Φ∗
k′ĤΦk. (2.19)

With the above notation we can rewrite Eq. (2.18) in the following form:

∑

k

cnk

(

〈k′|Ĥ|k〉 − enδkk′

)

= 0. (2.20)

It represents a system of linear equations for the unknown coefficients cnk. This system
has the non-trivial solutions if and only if

det
(

〈k′|Ĥ|k〉 − enδkk′

)

= 0. (2.21)

In this way we arrived at the diagonalisation problem for the Hamiltonian matrix

Hkk′ = 〈k′|Ĥ|k〉. (2.22)

In the following sections we will present the methods used in this work in order to find
effectively the numerical solutions of the Schrödinger equation of interest.

2.3 Spherical Basis

Since this work addresses selected properties of the spherical nuclei, we will use the
harmonic oscillator basis in the spherical coordinates. To begin with, consider a spin-
less particle moving in the spherically-symmetric harmonic oscillator potential. We will
introduce the separation of the radial and angular variables as follows [26]

φnℓmℓ
(r, ϑ, ϕ) = fnℓ(r) Yℓmℓ

(ϑ, ϕ), (2.23)

where n, ℓ and mℓ are certain integer numbers. The radial functions fnℓ(r) are defined by

fnℓ(r) =
Rnℓ(r)

r
, (2.24)

where Rnℓ(r) takes the form

Rnℓ(r) = Nnℓ e− 1
2( r

a)
2

(
r

a

)(ℓ+1)

L
(ℓ+ 1

2
)

n

[(
r

a

)2
]

, (2.25)

and where L
(ℓ+ 1

2
)

n are the generalised Laguerre polynomials, Ref. [27], Eq. No. (22.3.9).
After the same reference, the normalisation constant, Nnℓ, is given by

Nnℓ =

√
√
√
√

2 n+ℓ+2 n!

a(2n + 2ℓ + 1)!!
√

π
(2.26)

assuring the normalisation condition
∫ ∞

0
r2f 2

nℓ(r)dr =
∫ ∞

0
R2

nℓ(r)dr = 1. (2.27)
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Finally ‘a’ is the so-called stretching factor

a =

√

~

mω
. (2.28)

The angular components in Eq. (2.23) are the spherical harmonics, whose standard expres-
sion is

Yℓmℓ
(ϑ, ϕ) =

√
√
√
√

2ℓ + 1

4π

(ℓ − mℓ)!

(ℓ + mℓ)!
P mℓ

ℓ (cos ϑ) ei mℓ ϕ. (2.29)

The above form shows explicitly the separate dependence on ϑ and ϕ, cf. Ref. [28],
Eq. No. (1), p. 133. Above, P mℓ

ℓ are the associated Legendre polynomials and we have

− ℓ ≤ mℓ ≤ +ℓ. (2.30)

To take into account that the nucleons are s = 1/2 spinors we will introduce the
corresponding spinor wave functions, χsms

,

χ+ ≡ χ 1
2

+ 1
2

=

(

1
0

)

χ− ≡ χ 1
2

− 1
2

=

(

0
1

)

. (2.31)

They are eigenfunctions of the operators þs 2 and sz,

Next we will need to construct wave-functions which are eigenstates of the operators
þ 2, þℓ 2 and þs 2 simultaneously. This can be achieved using the Clebsch-Gordan coupling
and the Clebsch-Gordan coefficients C (ℓmℓ; s, ms|jmj). Combining this information with
Eq. (2.23) we obtain

Φn;jmj ,ls(r) =
∑

mℓms

C (ℓmℓ; s, ms|jmj) φnℓmℓ
(r, ϑ, ϕ)χsms

; (2.32)

the expression in which the conservation condition

mℓ + ms = mj (2.33)

must be satisfied.

For spin s = 1/2 particles, in Eq. (2.32) the only two non-zero terms are the ones
which correspond to the two possible values of ms, i.e. −1/2 and +1/2. This means that
for each value of ℓ we have two possible values for the total angular momentum j = ℓ+1/2
and j = ℓ−1/2. Therefore, the corresponding Clebsch-Gordan coefficients are, cf. Ref.[28],
table 8.1, p. 271:

For j = ℓ + 1
2

and fixed mj:

C++
ℓmj

≡ C(ℓ, mℓ = mj + 1
2
; s, ms = +1

2
|j = ℓ + 1

2
, mj) = +

√

ℓ+mj+ 1
2

2ℓ+1
, (2.34)

C+−
ℓmj

≡ C(ℓ, m′
ℓ = mj − 1

2
; s, m′

s = −1
2
|j = ℓ + 1

2
, mj) = +

√

ℓ−mj+ 1
2

2ℓ+1
. (2.35)

For j = ℓ − 1
2

and fixed mj:

C−+
ℓmj

≡ C(ℓ, mℓ = mj + 1
2
; s, ms = +1

2
|j = ℓ − 1

2
, mj) = −

√

ℓ+mj+ 1
2

2ℓ+1
, (2.36)
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C−−
ℓmj

≡ C(ℓ, m′
ℓ = mj − 1

2
; s, m′

s = −1
2
|j = ℓ − 1

2
, mj) = +

√

ℓ−mj+ 1
2

2ℓ+1
, (2.37)

where we have introduced the extra short-hand notation in terms of the coefficients C++
ℓmj

,
C+−

ℓmj
, C−+

ℓmj
and C−−

ℓmj
. Shortening even more the notation we write down the new forms of

the wave-functions as

φ+
n; jmj ,ls ≡ φnℓ;mj+ 1

2
χ 1

2
+ 1

2
and φ−

n; jmj ,ls ≡ φnℓ;mj− 1
2
χ 1

2
− 1

2
, (2.38)

with the help of which the wave functions in Eq. (2.32) take the following final form:






j = ℓ + 1
2

: Φn; jmj ,ℓs(r) = C++
ℓmj

φ+
n; jmj ,ls + C+−

ℓmj
φ−

n; jmj ,ls ,

j = ℓ − 1
2

: Φn; jmj ,ℓs(r) = C−+
ℓmj

φ+
n; jmj ,ls + C−−

ℓmj
φ−

n; jmj ,ls .
(2.39)

2.4 Matrix Elements of the Hamiltonian

With the basis functions defined, we can proceed to calculate the matrix elements of
the Hamiltonian matrix Hkk′ = 〈k′|Ĥ|k〉. To begin with, let us explicitly write down the
wave functions of our new basis with the help of the ensemble of the relevant quantum
numbers:

k ≡ {n; jmj, ℓs} and k′ = {n′; j′m′
j, ℓ′s′}. (2.40)

The Hamiltonian considered depends on spin only through þs 2 and this implies that it
is diagonal in terms of the spin wave functions χ 1

2
,+ 1

2
and χ 1

2
,− 1

2
. Therefore the matrix

elements have the following structure

j = ℓ + 1
2

: 〈k′|Ĥ|k〉 = C++
ℓ′ m′

j
C++

ℓ mj

∫

dr (φ+
n′; j′m′

j
,ℓ′s′)

∗ Ĥ φ+
n; jmj ,ls

+ C+−

ℓ′ m′

j
C+−

ℓ mj

∫

dr (φ−

n′; j′m′

j
,ℓ′s′)

∗ Ĥ φ−
n; jmj ,ℓs (2.41)

and

j = ℓ − 1
2

: 〈k′|Ĥ|k〉 = C−+
ℓ′ m′

j
C−+

ℓ mj

∫

dr (φ+
n′; j′m′

j
,ℓ′s′)

∗ Ĥ φ+
n; jmj ,ls

+ C−−

ℓ′ m′

j
C−−

ℓ mj

∫

dr (φ−

n′; j′m′

j
,ℓ′s′)

∗ Ĥ φ−
n; jmj ,ls. (2.42)

The basis is composed of the wave functions which are eigenstates of all the operators the
Hamiltonian commutes with, i.e. þ 2, þℓ 2 and þs 2. Because of this fact, the above matrix
elements vanish unless ℓ′ = ℓ, m′

j = mj and s′ = s. Therefore, we can rewrite the latter
expressions in the form

∫

dr (φ+
n′; j′m′

j
,ℓ′s′)

∗ Ĥ φ+
n; jmj ,ls =

∫

dr (φ−

n′; j′m′

j
,ℓ′s′)

∗ Ĥ φ−
n; jmj ,ls

= δℓℓ′ δss′ δjj′ δmjm′

j
〈n′ℓ′|Ĥ|nℓ〉, (2.43)

where
〈n′ℓ′|Ĥ|nℓ〉 ≡

∫ ∞

0
R∗

n′ℓ′(r)ĤRnℓ(r) dr. (2.44)

As the final step, we will obtain the explicit expressions for the matrix elements of the
Hamiltonian, treating the kinetic energy operator and the central and spin-orbit interac-
tions separately.
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It will be convenient to replace formally the Hamiltonian in Eq. (2.44) by a generic
symbol, say operator Ô:

〈n′ℓ′|Ĥ|nℓ〉 → 〈n′ℓ′|Ô|nℓ〉 ≡
∫ ∞

0
Rn′ℓ′(r)ÔRnℓ(r) dr. (2.45)

Recall that the Rnℓ(r) depend on the Laguerre polynomials and on the argument (r/a)2.
To calculate the implied integrals it will be convenient to introduce the following change
of variables

z ≡ r 2

a 2
→ r = a

√
z → dr =

a

2

dz√
z

. (2.46)

Introducing the latter form into Eq. (2.45) and combining with Eq. (2.24) we find out that
the non-zero matrix elements have the form

〈n′ℓ|Ô|nℓ〉 =
a

2
Nn′ℓ Nnℓ

∫ ∞

0
dz e−zzℓ+ 1

2 L
(ℓ+ 1

2
)

n′ (z) Ô(a
√

z) L
(ℓ+ 1

2
)

n (z) . (2.47)

From Eq. (2.47) the kinetic energy matrix elements can be expressed using the following
analytical result

〈n′ℓ|T̂ |nℓ〉 = a ~ω Nn′ℓ Nnℓ

∫ ∞

0
dz e−z zℓ− 1

2










1

2
(ℓ + 1 − z)L

ℓ+ 1
2

n′ (z) + z
dL

ℓ+ 1
2

n′

dz








1

2
(ℓ + 1 − z)L

ℓ+ 1
2

n (z) + z
dL

ℓ+ 1
2

n

dz



 +
ℓ(ℓ + 1)

4
L

ℓ+ 1
2

n′ (z)L
ℓ+ 1

2
n (z)






, (2.48)

whereas the interaction terms need numerical integration procedures.

2.5 Density Dependent Spin-Orbit Potential

The spin-orbit interaction introduced in Eq. (2.5) is a pure phenomenological construc-
tion and it does not take into account explicitly any nucleon-nucleon interactions which
take place in the nucleus. In this section we present an alternative choice of the defini-
tion of the spin-orbit potential, using the Hartree-Fock approach formalism. Following
the ‘microscopic generalisation of the WS-Universal’ in [29], we will obtain a generalised
Woods-Saxon approach with the density-dependent spin-orbit interaction which will in-
volve a self-consistency condition in its algorithm.

2.5.1 Derivation of the Density-Dependent Spin-Orbit Potential

Let us consider the mean-field interaction V (þr ) originating from a two-body, interac-
tion, say v̂N−N :

V (þr ) ∼
∑

i

∫

Ψ∗
i (þr

′ )v̂N−N(þr − þr ′)Ψi(þr
′) d3þr ′. (2.49)

In what follows we will use the isospin-conservation property, which allows to represent the
full nucleonic density as a sum of the proton and neutron contributions

ρ(þr ) → ρ (r) =
∑

i

|Ψi(r)|2 = ρπ(r) + ρν(r). (2.50)
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Above, Ψi are the single-nucleonic wave-functions labelled with the help of the quantum
numbers {i} = { n, j, mj; ℓ }, and ρπ/ν(r) refer to the proton/neutron density functions,
respectively. It will be convenient to introduce the Taylor expansion in the form

ρ(r′) ≃ ρ(r) + (r − r′) · ∇ρ|r=r′ . (2.51)

It is out of the scope of this document to give all the details of the derivation of the density
dependent spin-orbit interaction. Further details of the entire ‘step-by-step’ mathematical
derivation can be found in [29]. The corresponding new form of the spin-orbit interaction
is [29]

V̂SO(r) = λ
1

r

dρ(r)

dr
þℓ · þs, (2.52)

where λ is the strength parameter. Since the nucleonic density is the sum of the proton
and neutron contributions, it will be instructive to introduce the isospin dependence into
the previous expression. We obtain the following form of the spin-orbit potential – the one
acting on the protons:

V̂ π
SO(r) =

1

r

[

λππ
dρπ(r)

dr
+ λπν

dρν(r)

dr

]

þℓ · þs , (2.53)

and the one acting on the neutrons:

V̂ ν
SO(r) =

1

r

[

λνπ
dρπ(r)

dr
+ λνν

dρν(r)

dr

]

þℓ · þs. (2.54)

With this new formulation we describe the spin-orbit potential with 4 parameters for
protons and neutrons {λππ, λπν , λνν , λνπ}, instead of 6 parameters within the traditional
formulation.

2.5.2 Interpretation and Comments

The newly introduced form of the spin-orbit potential has some evident structural
differences as compared to its traditional formulation in Eq. (2.5), in that it is free from
all the geometrical parameters such as the diffuseness aso or the radius rso. It will be
shown that the traditional formulation of the spin-orbit potential presents the parametric
correlations which, as already discussed in Chapter 1 of this document, generally destabilise
the capacities of predictions of any model. Therefore, decreasing the total number of spin
orbit parameters from 6 for the traditional definition to 4 for the present, microscopic one,
may help to stabilise the parametrisation and consequently make the predictions with the
underlying Hamiltonian more reliable.

On the one hand this may be seen as a very welcome feature, since we are interested
in predicting the nuclear structure of exotic and very exotic and/or super-heavy nuclei,
the properties of which are not always known nowadays with the certainty one may wish
to have. Since the spin-orbit potential with six correlated parameters may not extrapo-
late reliably from the fitting region into far-away lying regions on the (Z, N)-plane, any
alternative form, in particular based on the more microscopic considerations – in principle
opens new possibilities.

On the other hand, we have to be sure that this important modification of the structure
of the modelling and the expected improvements is not only apparent. We know that the
central potential parameters determine to first order the whole spatial distribution of the
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nucleons in the nucleus. Moreover, it turns out that the central potential parameters are
the ones which extrapolate most reliably far away from the fitting range. Indeed:

• From electron scattering on nuclei we deduce, that the diffusivity can be considered
independent on the nuclear mass and/or size of the nucleus, allowing to fix ac to
a constant value for all the nuclei, without taking into account neither Z nor N
dependence;

• The hadron scattering experiments tell us that the nuclear effective mass distribution
radius Rc ∼ A1/3 with a very good precision, what allows to extrapolate the informa-
tion about the central radii of nuclei in a rather certain way with Rc = rcA1/3, with
a single constant rc;

• From the nucleonic-binding systematics we know that the effective depth of the cen-
tral potential is almost constant with the first order modification term proportional
to the neutron excess the latter defined by (N − Z)/(N + Z). Consequently, the
central depth taken as a function of two parameters as already shown in Eq. (2.12)
is considered as a very reliable form.

Taking into account these facts, we may therefore expect that the spatial nucleonic den-
sity distributions are well described with the help of the six geometric central potential
parameters (three for the protons and three for the neutrons). Consequently, expressing
the spin-orbit interaction as functionally dependent on the densities promises an evolution
into the right direction. We will show that this is indeed the case later in this document.

2.5.3 Nucleonic Density Functions

The general expression of the nuclear density has already been given in Eq. (2.50)
above. Since it will be important for us to program explicitly the corresponding expressions
to be able to perform the effective calculations of the matrix elements of the Hamiltonian,
in this section we will explicitly give the corresponding form in terms of the basis wave
functions.

In order to calculate the density-dependent spin-orbit matrix elements, we need first
of all to calculate the density, and this can only be done once we know the eigen-functions
Ψ(r). This leads to a self-consistent procedure to compute the nuclear density: We first
diagonalise the Hamiltonian using the traditional form of the Wood-Saxon spin-orbit. Then
we introduce the so obtained solutions to construct the density functions and next we begin
iterating the diagonalisation with the new spin-orbit potential until the differences between
the nth and (n + 1)st iteration are negligible.

The particle density is defined as the sum of all the individual probabilities:

ρ(r) =
∑

occup

ρnlj(r), (2.55)

where
∑

occup means summation over the occupied states. Let us focus first on the density
for a certain main quantum number N and total angular momentum j:

ρN
j (r) =

j
∑

mj=−j

∣
∣
∣ΨN ; jmj ,ℓ(r)

∣
∣
∣

2
(2.56)
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with
ΨN ; jmj ,ℓ(r) =

∑

n

cN
jℓnΦn; jmj ,ℓs(r), (2.57)

where the wave functions Φn; jmj ,ℓs(r) are already given by Eq. (2.39). Since the product
Ψ∗

N ; jmj ,ℓΨN ; jmj ,ℓ is the same for both projections given by j = ℓ ± 1/2, let us introduce
the following notation for simplicity

C+
jmj

≡ C±+
ℓmj

and C−
jmj

≡ C±−
ℓmj

. (2.58)

Now, using the full notation of the wave function, the density function in Eq. (2.56) reads

ρN
j (r) =

j
∑

mj=−j

∑

n1

cN
jℓn1

(

C+
jmj

f ∗
n1ℓY

∗

ℓ;mj− 1
2
〈χ+| + C−

jmj
f ∗

n1ℓY
∗

ℓ;mj+ 1
2
〈χ−|

)

·
∑

n2

cN
jℓn2

(

C+
jmj

fn2ℓYℓ;mj− 1
2
|χ+〉 + C−

jmj
fn2ℓYℓ;mj+ 1

2
|χ−〉

)

. (2.59)

The above multiplication gives four terms, however only two are non-zero since 〈χ+|χ−〉
and 〈χ−|χ+〉 vanish and therefore the summation can be simplified to

ρN
j (r) =

∑

n1,n2

cN
jℓn1

cN
jℓn2

fn1ℓfn2ℓ

[ j
∑

mj=−j

(

C+
jmj

)2 ∣
∣
∣Yℓ;mj− 1

2

∣
∣
∣

2
+

j
∑

mj=−j

(

C−
jmj

)2 ∣
∣
∣Yℓ;mj+ 1

2

∣
∣
∣

2
]

. (2.60)

It can easily be shown that both terms in Eq. (2.60) give the same result since they do not
depend on the alignment of the angular momentum þℓ and spin þs. In what follows we will
derive the explicit expression for j = ℓ + 1/2 and mj = mℓ + 1/2, the first step being to
change the summation index

j
∑

mj=−j

(

C+
jmj

)2 ∣
∣
∣Yℓ;mj− 1

2

∣
∣
∣

2
=

ℓ∑

mℓ=−ℓ−1

ℓ + mℓ + 1

2ℓ + 1
|Yℓmℓ

|2 =
ℓ∑

mℓ=−ℓ

ℓ + mℓ + 1

2ℓ + 1
|Yℓmℓ

|2 . (2.61)

In [28], p. 150, Eq. (1) and (2) we find

ℓ∑

mℓ=−ℓ

|Yℓmℓ
|2 =

2ℓ + 1

4π
and

ℓ∑

mℓ=−ℓ

mℓ |Yℓmℓ
|2 = 0, (2.62)

which simplifies Eq. (2.61) to

j
∑

mj=−j

(

C+
jmj

)2 ∣
∣
∣Yℓ;mj− 1

2

∣
∣
∣

2
=

1

4π

(

j +
1

2

)

. (2.63)

Introducing the previous result into Eq. (2.60) we obtain the following expression for the
partial particle density

ρN
j (r) =

2j + 1

4π

∑

n1,n2

cN
jℓn1

cN
jℓn2

fn1ℓ(r)fn2ℓ(r). (2.64)

Next, we can perform the summation over all the occupied states, just taking into account
that we can replace the summation over j by the one over ℓ,

ρ (r) =
∑

N,ℓ,n1,n2

1

2π
fn1ℓ(r)fn2ℓ(r)

[

(ℓ + 1)cN
ℓ+ 1

2
n1

cN
ℓ+ 1

2
n2

+ ℓ cN
ℓ− 1

2
n1

cN
ℓ− 1

2
n2

]

. (2.65)

It is important to notice that the latter expression has no dependence on the angles, in
accordance with the spherical symmetry of the system, and moreover it takes into account
the ‘magnetic’ degeneracy of the states.
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2.5.4 Gradient of the Density Function

The new spin-orbit interaction depends on the gradient of the density, therefore it will
be necessary to obtain the explicit expression for it. The final expression of the density
depends only on r via the product of the two radial functions (fn1ℓfn2ℓ), consequently:

d

dr
(fn1ℓfn2ℓ) =

d

dr

(
1

r2
Rn1ℓRn2ℓ

)

= − 2

r3
Rn1ℓRn2ℓ +

1

r2

(

dRn1ℓ

dr
Rn2ℓ + Rn1ℓ

dRn2ℓ

dr

)

, (2.66)

where we used Eq. (2.23). Using again the change of variables introduced in Eq. (2.46) we
can rewrite the above equation in terms of z:

d

dr
(fn1ℓfn2ℓ) = − 2

(a
√

z)3
Rn1ℓRn2ℓ +

2

a3
√

z

(

dRn1ℓ

dz
Rn2ℓ + Rn1ℓ

dRn2ℓ

dz

)

. (2.67)

Recall, that the radial function Rnℓ treated as a function of z, has the form

Rnℓ

(

z
)

= Nnℓ e− z
2 z

1
2

(ℓ+1) L
(ℓ+ 1

2
)

n (z), (2.68)

and therefore its derivative with respect to z takes the form

dRnℓ(z)

dz
= Nnℓ e−z/2z

1
2

(ℓ−1)

[

1

2
(ℓ + 1 − z)L

ℓ+ 1
2

n (z) + z
dL

ℓ+ 1
2

n (z)

dz

]

. (2.69)

Inserting Eq. (2.68) and (2.69) into Eq. (2.67) and simplifying, one obtains

d

dr
(fn1ℓfn2ℓ) =

2

a3
√

z
Nn1ℓ Nn2ℓ e−zzℓ

·


(ℓ − z)L
ℓ+ 1

2
n1 L

ℓ+ 1
2

n2 + z




dL

ℓ+ 1
2

n1

dz
L

ℓ+ 1
2

n2 + L
ℓ+ 1

2
n1

dL
ℓ+ 1

2
n2

dz







 . (2.70)

Finally, we can write the full expression for the density function gradient

1

r

dρ

dr
=

1

πa4

∑

N,ℓ,n1,n2






Nn1ℓ Nn2ℓ e−zzℓ−1

·
[

(ℓ + 1)cN
ℓ+ 1

2
n1

cN
ℓ+ 1

2
n2

+ ℓ cN
ℓ− 1

2
n1

cN
ℓ− 1

2
n2

]

·


(ℓ − z)L
ℓ+ 1

2
n1 L

ℓ+ 1
2

n2 + z




dL

ℓ+ 1
2

n1

dz
L

ℓ+ 1
2

n2 + L
ℓ+ 1

2
n1

dL
ℓ+ 1

2
n2

dz














. (2.71)

The latter expressions have been programmed to be able to construct the mixed proton-
neutron expressions necessary according to Eqs. (2.53) and (2.54).

2.5.5 Tensor Interaction Term

The spin-orbit and tensor nucleon-nucleon interactions play an important role in the
elementary theory of the nuclear interactions; both these terms exist on their own footing
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and application of the Hartree or Hartree-Fock formalisms leads to the implied one-body
mean-field potentials. This property applies also to the Skyrme-Hartree-Fock formalism
[30],[31],[32] and references therein. The tensor force is one of the most important compo-
nents in the nucleon-nucleon interaction, being associated with the exchange of the lightest
meson between the two nucleon, viz. the pion. Again it would be out of the scope of the
present document to present a very detailed analysis of the mentioned formalism; instead
we would like to present only the basic concepts to show how we introduced the tensor
interaction into our problem.

Let us begin by introducing the Skyrme interaction in space configuration, defined
with a zero-range (local) δ-function and as a sum of a 2-body interaction plus a 3-body
interaction [30], if α = 1 and for only the ground-state of the even-even nuclei,

v12 = t0(1 + x0P̂σ)δ(þr12)

+ 1
2
t1(1 + x1P̂σ)[þk′2δ(þr12) + δ(þr12)þk

2]

+ t2(1 + x2P̂σ)þk′δ(þr12)þk

+ 1
6
t3(1 + x3P̂σ)ρα

(
r1+r2

2

)

δ(þr12)þk

+ iW0(þσ1 + þσ2)þk
′ × δ(þr12)þk

+ vt(r), (2.72)

where þr12 ≡ þr1 − þr2 is the relative distance between two particles, þk and þk′ are the relative
momentum operators defined by

þk = +
1

2i
(þ∇1 − þ∇2) acting on the right, and (2.73)

þk′ = − 1

2i
(þ∇′

1 − þ∇′
2) acting on the left. (2.74)

In Eq. (2.72), the first 3 terms and the last two correspond to the 2-body interaction and
the fourth one stands for the 3-body interaction, which has been transformed to a 2-body
interaction by averaging over one of the particles. The tensor contribution vt(r) reads [32]

vt(r) = 1
2
te

{ [

3(þσ1 · þk′)(þσ2 · þk′) − (þσ1 · þσ2)þk
′2

]

δ(þr12)

+ δ(þr12)
[

3(þσ1 · þk )(þσ2 · þk ) − (þσ1 · þσ2)þk
2

] }

+ to

[

3(þσ1 · þk′)δ(r)(þσ2 · þk) − (þσ1 · þσ2)þk
′ · δ(þr12)þk

]

. (2.75)

Let us remark in passing that the notation of the tensor interaction is not unique, the
differences among authors lie in their definitions of the parameters te and to. From the in-
teraction in Eq.(2.72) one can construct the Hamiltonian. It turns out that the central and
the tensor interactions introduce a correction to the spin-orbit interaction. In [30], Vau-
therin and Brink only considered the central one, whereas in [33], [32] both contributions
are considered. Therefore, the spin-orbit correction due to tensor component reads

∆ þWq(þr ) = α þJq(þr ) + β þJq′(þr ), (2.76)

where q and q′ stand for protons, p, or neutrons, n, and q′ Ó= q. The new constants
introduced, α and β, are both sums of the central and tensor contributions, viz.:

α = αc + αt and β = βc + βt, (2.77)
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where the constants with subscript c come from the central-interaction contribution, and
the ones with subscript t come from the tensor contribution.

In Eq. (2.76) we introduce a new quantity, þJq(þr ), known as spin-density or spin-current.
It is defined as follows

þJq(þr ) = (−i)
∑

i,σ,σ′

φ∗
i (þr, σ, q)

[

þ∇φi(þr, σ′, q) × 〈σ|þσ|σ′〉
]

, (2.78)

where the summation runs only over all the occupied states. The wave functions φi rep-
resent the single particle states, as defined in Eq. (2.31), which we copy for convenience
below:

φi(þr, σ, q) =
Rγ(r)

r

∑

mℓms

C (ℓmℓ; s, ms|jmj) Yℓmℓ
(ϑ, ϕ)χsms

(σ)χq(τ). (2.79)

Above, i = {q, n, ℓ, j, mj} and γ = {q, n, ℓ, j}, whereas q denotes the particle charge.
Since we are working with doubly-magic spherical nuclei, it can be shown [30] that the
spin-density þJq(þr) can be written down as

þJ(þr ) =
þr

r
J(r), (2.80)

where
J(r) =

∑

κ

Jκ(r); (2.81)

again summation extends over all the occupied states. The one-single-particle state spin-
density Jnℓj, with κ = {nℓj}, is

Jκ(r) =
(2jκ + 1)

4πr3
g(ℓκ, jκ)R̃2

κ(r), (2.82)

where subscript nlj defines the spectroscopic label and g(ℓ, j) is given by

g(ℓ, j) = j(j + 1) − ℓ(ℓ + 1) − s(s + 1)

= j(j + 1) − ℓ(ℓ + 1) − 3

4
, (2.83)

since we are considering s = 1/2 particles. The meaning of R̃i(r) will be defined in the next
section. Considering the imposed spherical symmetry, the spin-correction in Eq. (2.76) can
be rewritten to take the form

∆Wq(r) = αJq(r) + βJq′(r). (2.84)

At this point, we can write the full expression of the spin-orbit potential, following our
approach:

V̂ q
SO(r) =

1

r

[

λqq
dρq(r)

dr
+ λqq′

dρq′(r)

dr
+ ∆Wq(r)

]

þℓ · þs

=
1

r

[

λqq
dρq(r)

dr
+ λqq′

dρq′(r)

dr
+ λ(t)

qq Jq(r) + λ
(t)
qq′Jq′(r)

]

þℓ · þs, (2.85)

where superscript (t) stands for tensor.
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2.5.6 Spin-Density Function

Similarly to the presentation in Section 2.5.4 we will explicitly write down the ex-
pression for the spin-density function Jq(r). Let us begin by defining R̃nℓ appearing in
Eq. (2.82):

R̃i(r) ≡ cN
nℓjRnℓ(r), (2.86)

where coefficients cN
nlj are obtained through the Hamiltonian diagonalisation and they are

the same as those in Eq.(2.57). Introducing the above definition to Eq. (2.81) we arrive at

J(r) =
1

4πr3

∑

Nℓjn1n2

(2j + 1)
[

j(j + 1) − ℓ(ℓ + 1) − 3

4

]

cN
n1ℓjc

N
n2ℓjRn1ℓ(r)Rn2ℓ(r). (2.87)

The above square bracket can be calculated for parallel and anti-parallel spin configuration
separately as

j = ℓ +
1

2
−→ (2j + 1)

[

j(j + 1) − ℓ(ℓ + 1) − 3

4

]

= +2ℓ(ℓ + 1), (2.88)

j = ℓ − 1

2
−→ (2j + 1)

[

j(j + 1) − ℓ(ℓ + 1) − 3

4

]

= −2ℓ(ℓ + 1). (2.89)

Taking them into account, allows to rewrite Eq. (2.87) without summation over j:

J(r) =
1

2πr

∑

Nℓn1n2

ℓ(ℓ + 1)
(

cN
n1ℓ+ 1

2
cN

n2ℓ+ 1
2

− cN
n1ℓ− 1

2
cN

n2ℓ− 1
2

)

fn1ℓ(r)fn2ℓ(r), (2.90)

where we used the definition

fnℓ(r) =
Rnℓ(r)

r
. (2.91)

Since in Eq. (2.84) we are interested in the product Jq(r)/r, it is more convenient to cal-
culate the following expression

1

r2
fn1ℓ(r)fn2ℓ(r) . (2.92)

Remembering that

Rnℓ(z) = Nnℓ e− z
2 z

1
2

(ℓ+1)L
(ℓ+ 1

2
)

n (z) (2.93)

and taking into account the change of variables r → z as introduced in Eq.(2.45) we obtain

1

r2
fn1ℓ(r)fn2ℓ(r) =

1

a4
Nn1ℓ Nn2ℓ ez z(ℓ−1)L

(ℓ+ 1
2

)
n1 (z) L

(ℓ+ 1
2

)
n2 (z). (2.94)

The result in Eq. (2.94) can be finally introduced into Eq. (2.89) and we arrive at:

1

r
J(r) =

1

2πa4

∑

Nℓn1n2

[

Nn1ℓ Nn2ℓ ez z(ℓ−1)L
(ℓ+ 1

2
)

n1 (z) L
(ℓ+ 1

2
)

n2 (z)

· ℓ(ℓ + 1)
(

cN
n1ℓ+ 1

2
cN

n2ℓ+ 1
2

− cN
n1ℓ− 1

2
cN

n2ℓ− 1
2

) ]

. (2.95)

This is the generic expression for the proton or neutron contributions which have been
presented in Eq. (2.85) and were used for computer code programming.
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2.6 Experimental Data for Spherical Nuclei

The experimental data used to constrain our spherical mean-field Hamiltonian param-
eters are the mean-field correspondent single-particle energies of the following 8 spherical
doubly-magic nuclei

16
8O8,

40
20Ca20,

48
20Ca28,

56
28Ni28,

90
40Zr50,

132
50Sn82,

146
64Gd82 and 208

82Pb126 . (2.96)

As we already mentioned in Section 1.1.2, the single nucleon energies are not directly ob-
servable. They are deduced from the measurements of the single-particle transfer reactions
involving the single particle or single-hole states in the neighbouring nuclei with Z ± 1 and
N ± 1. In order to illustrate the nucleon mean-field energy extraction procedures we will
focus on 208Pb nucleus, one of the best studied in this domain of nuclear structure.

In Section 1.1.2 and in particular in Eq. (1.9) we have introduced the expressions
involving the mean energy εκ of all the measured fragments of the states with same spin
and parity. This, combined with the nucleon separation energies of the neighbouring nuclei,
defines the sought single particle energies in the considered nucleus:

eκ = −|Sq| − |εκ| (2.97)

for a state κ measured in a A − 1 nucleus, and

eκ = −|Sq| + |εκ| (2.98)

for a state κ measured in a A + 1 nucleus. In both cases Sq denotes the nucleon separation
energy, q indicating the type of particle: protons, p, or neutrons, n. Table 2.1 shows the
neutron and proton separation energies for 208Pb nucleus [2].

To extract the single particle energies of 208Pb which has Z = 82 protons and N = 126
neutrons, we need the information about:

• The neutron single-hole states of 207Pb;

• The neutron single-particle states of 209Pb,

• The proton single-hole states of 207Tl, and:

• The proton single-particle states of 209Bi.

In the case of extracting the neutron single particle energies, the range of the excitation
energies was rather small and some states were considered pure [2]. The results for the
208Pb single particle energies can be found in Tables 2.2 and 2.3 for neutrons and protons,
respectively.

Sn(208Pb) [keV] Sn(209Pb) [keV] Sp(208Pb) [keV] Sp(209Bi) [keV]

7367.87 (0.05) 3937.4 (1.3) 8004(5) 3799.0 (0.8)

Table 2.1 – Neutron and proton separation energies in 208Pb, for the 126th and 127th

neutrons and 82nd and 83rd protons [34].

In what follows, Tables 2.4 and 2.5 show the results for the single particle energies
adopted for the nuclei considered in the present thesis.
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Neutron State κ No.Frag [ref] εκ [MeV] eκ [MeV]

209Pb

νd3/2 1 2.54 −1.40

νg7/2 1 2.49 −1.45

νs1/2 1 2.03 −1.91

νd5/2 1 1.57 −2.37

νi11/2 1 0.78 −3.16

νg9/2 1 0.00 −3.94

GAP N = 126 3.43

207Pb

νp1/2 1 0.00 −7.37

νf5/2 1 0.57 −7.94

νp3/2 1 0.89 −8.27

νi13/2 9 [35] 2.40 −9.80

νf7/2 4 [36] 3.00 −10.40

Table 2.2 – Values of the neutron single particle levels eκ located around the neutron
Fermi level of 208Pb measured in 209Pb and 207Pb, as shown in the first column. The
second column indicates the neutron orbitals, the third one contains the information about
how many fragments were taken into account to calculate the mean energy given the fourth
column. Finally, the fifth column presents the binding energies for each state, adopted as
single particle energies.

Proton State κ No.Frag [ref] εκ [MeV] eκ [MeV]

209Bi

πf5/2 5 [37] 3.44 −0.36

πi13/2 5 [37] 1.97 −1.83

πf7/2 2 [37] 1.31 −2.49

πh9/2 1 [37] 0.00 −3.80

GAP Z = 82 4.30

207Tl
πs1/2 3 [38] 0.10 −8.10

πd3/2 1 [38] 0.35 −8.35

πh11/2 2 [38] 1.35 −9.35

Table 2.3 – Values of the proton single particle levels eκ located around the proton fermi
level of 208Pb measured in 209Bi and 207Tl. The second column indicates the proton orbital,
the third one gives the number of fragments [and the references] one had to take into account
to calculate the mean energy value in the third column. Finally, the fifth column indicates
the binding energies for each state, adopted as single particle energies.
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16
8O8

Proton orbital εκ [MeV] Neutron orbital εκ [MeV]

πd3/2 5.51 νd3/2 1.60
πs1/2 −0.10 νs1/2 −3.27
πd5/2 −0.60 νd5/2 −4.14

GAP Z = 8 8.44 GAP N = 8 8.23

πp1/2 −9.04 νp1/2 −12.37
πp3/2 −15.36 νp3/2 −18.55

40
20Ca20

Proton orbital εκ [MeV] Neutron orbital εκ [MeV]

νf5/2 −1.38
πp1/2 2.42 νp1/2 −4.20
πp3/2 0.71 νp3/2 −5.86
πf7/2 −1.09 νf7/2 −8.36

GAP Z = 20 5.32 GAP N = 20 5.25

πd3/2 −6.41 νd3/2 −13.61
πs1/2 −9.14 νs1/2 −16.26

νd5/2 −21.50

48
20Ca28

Proton orbital εκ [MeV] Neutron orbital εκ [MeV]

πf5/2 −3.90 νf5/2 −1.20
πp3/2 −5.20 νp1/2 −2.86
πf7/2 −9.23 νp3/2 −4.62

GAP Z = 20 7.15 GAP N = 28 5.34

πs1/2 −16.38 νf7/2 −9.95
πd3/2 −16.67 νd3/2 −12.52

νs1/2 −12.60

56
28Ni28

Proton orbital εκ [MeV] Neutron orbital εκ [MeV]

πg9/2 2.80 νg9/2 −6.50
πp1/2 0.40 νp1/2 −9.10
πf5/2 0.30 νf5/2 −9.50
πp3/2 −0.70 νp3/2 −10.20

GAP Z = 28 7.15 GAP N = 28 5.34

πf7/2 −5.00 νf7/2 −14.60
πs1/2 −7.90 νs1/2 −17.80
πd3/2 −8.50 νd3/2 −18.40

Table 2.4 – Experimental values of the single particle energies for 16O, 40Ca, 48Ca, 56Ni.
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90
40Zr50

Proton orbital εκ [MeV] Neutron orbital εκ [MeV]

νd3/2 −4.60
πg7/2 0.40 νg7/2 −4.40
πd5/2 −1.30 νs1/2 −5.63
πg9/2 −5.15 νd5/2 −7.15

GAP Z = 40 3.20 GAP N = 50 4.85

πp1/2 −8.35 νg9/2 −12.00
πp3/2 −9.86 νp1/2 −12.60
πf5/2 −10.09 νp3/2 −13.00

νf5/2 −13.50

132
50Sn82

Proton orbital εκ [MeV] Neutron orbital εκ [MeV]

νf5/2 −0.397
νh9/2 −0.841

πd3/2 −7.228 νp1/2 −1.039
πd5/2 −8.706 νp3/2 −1.548
πg7/2 −9.668 νf7/2 −2.402

GAP Z = 50 6.139 GAP N = 82 5.006

πg9/2 −15.807 νh11/2 −7.408
πp1/2 −16.109 νd3/2 −7.343

νs1/2 −7.675
νd5/2 −8.998
νg7/2 −9.770

146
64Gd82

Proton orbital εκ [MeV] Neutron orbital εκ [MeV]

πd3/2 −1.70 νh9/2 −5.80
πh11/2 −1.90 νp3/2 −6.20
πs1/2 −1.95 νf7/2 −7.34

GAP Z = 64 3.43 GAP N = 82 3.90

πd5/2 −5.38 νs1/2 −11.24
πg7/2 −5.71 νd3/2 −11.26

νh11/2 −11.99

Table 2.5 – Experimental values of the single particle energies for 90Zr, 132Sn, 146Gd.
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Chapter 3

Uncertainties of Theory Predictions

In this chapter we present the conceptual framework and mathematical properties
related to the solution of the inverse problem in view of the optimisation and stabilisation
of the parameter adjustment procedures – via direct illustrations. Even though we are
aiming at modelling of the realistic nuclear mean-field properties focussing on the single-
nucleon energies, we wish to present first the rather complex procedures and properties
using a simple exactly soluble model.

One may say, roughly, that the leading line of this section is this: in modern physics
or for that matter in any other research domain, to present the theory result ‘by giving
just a number’, strictly speaking has no meaning for a specialist – as emphasised by the
explicit requests by certain Publishers [39], the latter reference demanding that the theory
prediction uncertainties are routinely tested 1 before accepting the publication. The present
chapter will be devoted to the illustrations of certain practical aspects of what publishers
begin requesting, first using the mathematical toy model and next in a realistic context.

Let us complete this short introduction with some comments about a possible abuse
of the language and, perhaps, an abuse in typography by allowing for a relatively frequent
presence of quotation marks (‘ ’). They will often be employed in this chapter with the
purpose of diminishing the arrival and the impact of likely misunderstandings. Indeed,
we will be confronted with what may turn out to be a severe semantical problem, in that
several words used currently in the discussions and literature - strictly speaking cannot
be interpreted according to their exact meaning throughout several discussions or com-
ments which follow. To give a few examples, beginning with nearly trivial: If a sequence
of numbers were just generated by us with the computer, but they serve in the role of
experimental data - we will refer to them as ‘experimental’ data. Next: Suppose we need
the term optimal parameters - but we demonstrated earlier that the applied adjustment
procedures may have infinitely many different, non-equivalent definitions/realisations. It
follows that any calculations will necessarily involve the personal judgement of a physicist,
wherefrom the term optimisation should in fact refer rather to optimisation by Mme A. B.,
alternatively Mr X. Y., and cannot be associated with any exact notion in mathematical
sense. In such a context we will write: ‘optimal’ parameters. Knowing that a frequent use
of the quotation marks may be sometimes received as slightly irritating... – we will use
those symbols only when really an alert will be needed.

1It is more and more evident from the progress in the publication trends that ‘changing a parameter at
the input and looking at the modification on the output’ is not considered as any valid test of the model
uncertainties. Instead, application of the standard theorems of the Inverse Problem theory of Applied
Mathematics is more and more often expected.
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3.1 Inverse Problem Seen Through an Exact Model

Let us begin by certain semantical issues first: In this text, the term exact model,
refers to a model capable of reproducing the data of a predefined class exactly. In other
words: for an exact model there must exist at least one set of parameters “for which the
modelling curve passes through the data points of the class mentioned”.

It turns out that nearly all mechanisms and properties of mathematical modelling,
which may be needed by a physicists within the inverse problem theory, can be tested and
illustrated down to an arbitrary detail before applying them in a realistic physical context.
For the sake of illustration, in this section we will discuss an exactly soluble four-parameter
toy model. It presents practically all the features of interest in this work when trying to
learn about any more advanced, realistic physical theory, from the point of view of the
parameter determination procedures, their limitations and advantages.

Mathematical Model and Its ‘Experimental’ Data Sampling. Let us begin the
presentation of the soluble model in question, whose certain elementary features were
introduced in Ref. [40], by defining the sampling: the set of numbers which will be used in
the role of the experimental data. For this purpose we will introduce a generating function
denoted fg(x) as a continuous function of its real argument x. The numbers which further
on will be called experimental data will be generated by defining a certain sequence of
reference x-arguments denoted {x1, x2, . . . , xnd

}. The generating function can be defined
arbitrarily but for the present realisation of the modelling it will be convenient to set it as
a simple exponential:

fg(x) = exp(x). (3.1)

To advance in the construction of our illustrative model, we will let ourselves being
guided by various steps we usually follow, when constructing our physical theories. With
this goal in mind let us introduce our ‘reference experimental data’ as

f exp
i ≡ fg(xi) = exp(xi), for i = 1, 2, . . . nd. (3.2)

Here, reference xi-values will be selected to be of the order of unity, to fix the attention.
From now on the experimental data are considered to be known.

The Issue of ‘Experimental’ Errors. To stay as much realistic as possible we will
also simulate the presence of the experimental errors since we are interested in studying
the impact of those errors on the final results, such as the parameter-, and prediction
uncertainties. For this purpose we introduce a new set of numbers, say {δf exp

i }, playing
the role of the experimental errors. Thus the reference experimental data transform into a
new sequence in accordance with the usual requirements, when presenting the experimental
result:

f exp
1 → f exp

1 ± δf exp
1 , f exp

2 → f exp
2 ± δf exp

2 , . . . f exp
nd

→ f exp
nd

± δf exp
nd

. (3.3)

Constructing an Heuristic Model with Parameters: Employing Symmetries I.
We assume that the ‘new theory’ behind the ‘new phenomenon’ represented by the data in
(3.2)-(3.3) needs to be constructed ‘from scratch2’. Thus the first step will be to analyse the

2Let us emphasise that, quite generally, we construct our theories ‘from scratch’ on a case by case basis.
Here we made our selection in trying to be pedagogical without pretending being general. Even though the
details will change from case to case, possibly from physicist to physicist, what will be the most important
goal at this stage is to arrive at the mathematical model expression(s) which contain the best-adapted
model-parameters at this step of the construction. The mathematical model will be represented a few lines
below with the help of a model-generating function Gg, see below.
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asymptotic behaviour: What are the ‘phenomenological model expressions’ which describe
the new data at the smallest and at the largest value-limits?

Knowing the form of the data-generating function, fg(x), it comes as no surprise to
us that the un-alerted physicist will still arrive at her/his ‘asymptotic phenomenological
model description at the low-value limit’ with the linear structure of the modelling so that
she/he would write:

f exp
i ≈ A + Bxi ≈ exp(xi), for small xi, (3.4)

where A and B are parameters of the model under construction. Here we have explicitly
introduced the approximately equal sign (≈) because of the use of the data in the presence
of the error-bars. Indeed, the latter could be big, small and/or varying irregularly, and
make the exact deductions impossible at this point.

Analysing briefly the symmetries of the model we can conjecture that it is composed
of two terms of opposite parities, one even (a constant A) and one odd (the one which is
linear in xi).

Constructing an Heuristic Model with Parameters: Employing Symmetries II.
Similarly we may extend the simple analysis of the experimental data in terms of the
few-parameter phenomenological-expressions to the large value limit, and since we might
expect now that the data represent a combination of an even and an odd symmetry terms,
it is not impossible, perhaps even very likely, that our imaginary physicist Mme A. B
(Mr X. Y ) arrives at the following expression:

Large value asymptotic limit : f exp
i ≈ C sinh(xi) + D cosh(xi), (3.5)

From an Asymptotic to the Global Description: Constructing the Model. Still
in the process of constructing and improving our phenomenological few-parameter model,
we can combine the last two equations to construct the hypothetical, more complete version
with the new, four-parameter model-expression, as the new working hypothesis:

Heuristic Proposition : f exp
i ≈ A + Bxi + C sinh(xi) + D cosh(xi). (3.6)

It will be convenient to introduce, for the sake of the following development, a model
generating-function, say Fg(x), analogous to the data generating-function fg(x) in Eq. (3.1)
in the form

Fg(x; A, B, C, D) ≡ A + Bx + C sinh(x) + D cosh(x). (3.7)

Optimal Parameters: χ2-Minimisation Rather Than Solving Inverse Problem.
We may say that at this point we have at our disposal both the experimental data set,
{f exp

i }, with the corresponding errors, and the theoretical model represented by the model-
generating function Fg(x; A, B, C, D). The next logical step is to determine the “optimal3”
values of the parameters {A, B, C, D}, on which our model depends. For this purpose we
may choose applying the minimisation of the χ2-test function given by

χ2(A, B, C, D)
df
=

nd∑

i=1

[f exp
i − Fg(xi; A, B, C, D)]2

=
nd∑

i=1

{exp(xi) − [A + Bxi + C sinh(xi) + D cosh(xi)]}2 . (3.8)

3We use the double quotation marks at this particular point to underly the results of our discussion
in Chapter 1, which has led us to the conclusion that the method of minimising the generalised distance
between experimental data and the model results is highly, since (∞2), non-unique. The physicist may
and perhaps even should keep this permanently in mind when developing new theories ‘from scratch’.
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Let us remark in passing that the above definition does not address at this point such
issues as e.g. calculation of the root-mean-square deviations of the considered quantities
and the issue of the normalisation of the above expression is left apart as inessential here.

Our Construction Defines In Fact an Exact Model! Let us emphasise, that our
construction presented so far has all the features of an exact theory. Indeed, in the absence
of errors, we obtain the exact solution by setting

A = 0, B = 0, C = 1 and D = 1, (3.9)

since then

A + Bxi + C sinh(xi) + D cosh(xi) → sinh(xi) + cosh(xi) = exp(xi) = fg(xi), (3.10)

the relation which reproduces exactly the toy-model experimental-data by construction.
However, we know and we need to keep in mind that the experiment is never error-less,
and therefore we will never obtain the exact solution after the parameter optimisation.
Therefore, even though the model allows to study the exact theories we better emphasise
here the abstract sense of this term in the great majority of realistic applications – some
of those realistic ones will be of principal interest in this project.

Monte-Carlo Approach and the Experimental Data Treatment. Since, as dis-
cussed earlier in this document, the experimental data represent, from the mathematics
point of view, some random variables characterised by their probability distributions, we
will generate those distributions numerically using the random-number generator. For that
purpose we introduce the Gaussian distributions N (µi, σi), centred at µi = exp(xi), with
the standard deviations denoted σi, the latter defined uniquely by f exp

i . Thus the errors of
the reference experimental data define the Gaussian characteristics

f exp
i ± δf exp

i ↔ {µi, σi}. (3.11)

Once we have defined all the errors in Eq. (3.11) we may generate, according to the
usual principles of the Monte-Carlo approach, the sequence of NMC Gaussian distributed
experimental data sets {f exp

1 , f exp
2 , . . . f exp

nd
, }k for k = 1, 2, . . . NMC . The index ‘MC’

stands for Monte-Carlo, and the values of NMC are of the order of 105 or more.

Probability Distributions for the Model Parameters: Histograming Technique.
To obtain the probability distributions of the model parameters, we repeat the adjustments
and find, for k = 1, 2, . . . NMC , all the sets of parameters {A, B, C, D}k. These results
will allow us to construct the occurrence-probability histograms for each parameter, and
determine, among others, their most probable values. As the next step in the applications,
knowing the probability distributions for the parameters (also referred to as parameter
uncertainty distributions) we will be able to analyse the prediction results together with
their probability distributions – thus uncertainties. All these aspects will be illustrated in
detail below in this section.

The Notion of Intraneous and Extraneous Prediction Ranges and Predictions.
The considered model depends on np = 4 parameters. To allow for relatively simple and
pedagogical illustrations, while preserving all the mathematical/algebraic rigour and all
features of the parameter adjustment analysis, we will use the smallest non-trivial choice
for the number of input data points: nd = 5 > np. Furthermore, to fix some numbers for
the numerical applications we arbitrarily selected

xi ∈ [0.0, 0.4] → f exp
i = exp(xi), i = 1, 2, 3, 4, 5 . (3.12)
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Definition of the above set of experimental data will allow to introduce an important notion
of what we refer to as intraneous and extraneous prediction zones. More precisely: We will
fit the optimal parameters using the nd data points, {f exp

1 , . . . f exp
nd=5}. All calculations with

the model-generating function Fg(x; A, B, C, D) for x Ó= xi will be our model predictions.

As it turns out, we have in fact two zones with clearly distinct asymptotic-behaviour
prediction-properties (for continuous parametric behaviour models) as illustrated below:
The one lying inside of the fitting area for which

f exp
1 < fg(x) < f exp

nd
; zone called Intraneous, (3.13)

and the one for which

fg(x) < f exp
1 and f exp

nd
< fg(x); zone called Extraneous. (3.14)

Thus the predictions made for the points lying among {f exp
1 , . . . f exp

5 } will be called intra-
neous predictions.

Let us mention as a kind of alert message, that some authors use for the same two
situations, not quite correctly, the terms interpolations and extrapolations, respectively.
[Recall: In mathematics, the term e.g. interpolation refers to “passing a curve of an a
priori given definition, for instance polynomial type, through a given sequence of points”
– a property which almost never applies in case of the fitting].

The Final Numerical Input-Details Before Modelling and Illustrating. To pre-
pare the model for the extraneous prediction calculations we will introduce an auxiliary
interval analogous to the one in eq. (3.12):

Xj ∈ [1.0, 2.0], (3.15)

which will be used to perform the calculations, among others, of the predictions and their
uncertainties in the extraneous zone.

Let us put together the numerical information necessary to run the calculations with
the present model. For the sampling points (model reference values) we set arbitrarily

xr
1 = 0.0, xr

2 = 0.1, xr
3 = 0.2, xr

4 = 0.3 and xr
5 = 0.4, (3.16)

the sequence, which defines our reference experimental data (three digit precision) using
Eq. (3.1):

f r
1 = 1.0, f r

2 ≈ 1.11, f r
3 ≈ 1.22, f r

4 ≈ 1.35 and f r
5 ≈ 1.49. (3.17)

Taking into account Eq. (3.12) and Eq. (3.13), for the intraneous predictions we define the
following three reference argument-values

xin
1 = 0.15, xin

2 = 0.25 and xin
3 = 0.35, (3.18)

corresponding to the exact (again three digit precision) ‘measurement-result’ values

f in
1 ≈ 1.16, f in

2 ≈ 1.28, f in
3 ≈ 1.42. (3.19)

Concerning the extraneous predictions we arbitrarily define the following reference argument-
values:

X1 = 1.2, X2 = 1.4, X3 = 1.6, X4 = 1.8 and X5 = 2.0, (3.20)

from where, applying again Eq.(3.1), one finds that the corresponding exact ‘predicted
measurement’ values are:

F1 ≈ 3.32, F2 ≈ 4.06, F3 ≈ 4.95, F4 ≈ 6.06 and F5 ≈ 7.39. (3.21)
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Final Remarks about the Error Probability Distributions. Since our goal from
now on will be to study and analyse the impact of the experimental errors on the ‘optimal’
parameter-values as well as prediction and their probability (or: uncertainty) distributions,
in what follows we will introduce the simple working hypothesis of the common, i.e. i-
independent, constant uncertainty, σi → σexp, for all the ‘experimental’ input data – at
any given test-run. By switching from one error hypothesis to another we will repeat the
ensemble of necessary calculations for another value, say σ′

exp, but again common for all
the ‘experimental’ data points.

Moreover, we will use the same sets of ‘experimental’ data with fixed σexp to make
predictions either inside the fitting range, which for that reason are called intraneous
predictions, or outside of the fitting zone, called therefore extraneous predictions – the
terms defined earlier in this section.

3.1.1 Parametric Uncertainty Distributions: First Illustrations

Let us begin by emphasising again that even though the discussed model is by con-
struction exact, thus capable of reproducing the mathematical truth exactly, the latter
situation will never be achieved outside of the purely mathematical considerations since
there do not exist error-less experimental data. At the same time, increasingly poor quality
of the data will generally lead to exceeding any maximum prediction-uncertainty allowed
by the constructor of the model/theory within her/his given context, for instance: “the un-
certainty of at least one of the predicted observables Fj must not exceed one (or two? or
three?) standard deviation(s)”. This will bring us to the paradoxical property of:

Uselessness of even of the exact models under realistic instrumental conditions.

We will refer to this feature as NO-GO property of an exact model - as discussed below.

Uncertainty Distributions of ‘Optimal’ Model Parameters. Figure 3.1 together
with Table 3.1 illustrate the properties of the (uncertainty) probability distributions for
the model parameters. These distributions are obtained using the combined technique of
constructing the occurrence-histograms, which are then complemented by the fitted Gaus-
sian curves illustrated in the Figure. The four diagrams illustrate {A, B, C, D}-parameter
occurrence distributions obtained with the help of the Monte Carlo simulations using
σexp = 0.0005, 0.001, 0.005 and 0.01, respectively.

The results are summarised in Table 3.1, which shows for each case the most probable
value and the corresponding confidence interval for each parameter obtained by employ-
ing the calculated distributions. Notice a quick increase of the width of the distributions
implied by the increasing error bars of the ‘experimental’ data. At the largest σexp con-
sidered we arrive at the situation of a near overlapping of the peaks which correspond to
the exact-model exact-solutions A = B = 0 and C = D = 1, cf. in particular right-bottom
panel of Figure 3.1.

Let us notice that the presented calculation results correspond to an exact model in
which we have introduced the Gaussian-parameterised, thus symmetric, error distributions.
Consequently the peak positions of the distributions are always at the right (exact) original
positions. This implies that in the imposed variant of our model, the experimental errors
with symmetric error-bars will not perturb the expected value of each parameter. Let us
mention furthermore that the approach discussed has more freedom (not exploited at this
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Figure 3.1 – Probability (uncertainty) distributions of parameters A, B, C and D for the in-
creasing experimental errors parameterised with σexp = 0.0005, 0.001, 0.005, 0.01. Top left:
σexp = 0.0005; top right: σexp = 0.001; bottom left: σexp = 0.005; bottom right: σexp = 0.01.
The simulations performed with 5 sampling points, given by Eqs. (3.16)-(3.17). The surface under
each curve is normalised to 1. It needs emphasising that even though the curves might look sim-
ilar the units on the horizontal axis are very different and thus the figure illustrates a variation
which is extremely strong.

point) allowing for more advanced modelling. Indeed, referring to Eq. (3.11), we may notice
that σexp, whose variation was employed here, influences exclusively the error bars, δf exp

i ,
whereas f exp

i remained untouched. One could envisage an extension allowing to vary this
element stochastically as well, but this variant will not be discussed here.

Possible Correlation Between Terms of the Same Symmetry. Another specific
feature which attracts attention is the behaviour of the parameter adjustment algorithm
with respect to the symmetries of various terms – even if the final expression does not obey
any particular symmetry. Indeed, on the one hand side our exact model, cf. Eqs. (3.6)-(3.7),
is the sum of two even terms

A + D cosh(x) (3.22)

and two odd terms
Bx + C sinh(x), (3.23)

whereas, on the other hand side, the underlying model-generating function exp(x) is neither
odd nor even. It turns out that the standard deviations of the same symmetry terms are
very similar: A as compared to D and for B as compared to C.

Comments About the Stochastic Significance. Let us slow down for commenting
about some specific features which are perhaps not clearly discernible from the graphical
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σexp A ± σA B ± σB C ± σC D ± σC

0.0005 0.00 ± 0.16 0.00 ± 0.79 1.00 ± 0.81 1.00 ± 0.16
0.0010 0.00 ± 0.32 0.00 ± 1.59 1.00 ± 1.61 1.00 ± 0.32
0.0020 0.00 ± 0.64 0.00 ± 3.16 1.00 ± 3.21 1.00 ± 0.64
0.0050 0.00 ± 1.60 0.00 ± 7.91 1.00 ± 8.02 1.00 ± 1.60
0.0100 0.00 ± 3.24 0.00 ± 15.9 1.00 ± 16.2 1.00 ± 3.24
0.0200 0.00 ± 6.45 0.00 ± 31.8 1.00 ± 32.2 1.00 ± 6.45

Table 3.1 – The uncertainty ranges of the exact {A = 0, B = 0, C = 1, D = 1} parameter values
with their standard-deviations obtained using increasing values of σexp. Observe that the exact
model in (3.6)-(3.7) has been chosen as a sum of even [A + D cosh(x)] and odd [Bx + C sinh(x)]
terms modelling exp(x), which is neither even nor odd. It turns out that the standard deviations
for the even-symmetry terms, A and D, are approximately equal (similar can be said about the
odd-symmetry terms B and C). This latter observation may have instructive consequences for
practitioners developing their modelling methods for any new experimental information. Observe
that within this particular model, σA, σB, σC and σD increase essentially proportionally to σexp.

illustration in Figure 3.1. For that purpose let us focus on the last illustration in Figure 3.1,
corresponding to σexp = 0.01, and observe that the exact values of B and C parameters,
which are of the order of unity, are predicted to lie within the h u g e interval whose
length measured in terms of ±3σ is of almost ∼ 96 units. In this context, the following
Figure 3.2, presents a short reminder for a quick reference.

Figure 3.2 – From Wikipedia: A reminder about the standard deviation σ and the stochastic
meaning ±2σ and ±3σ intervals [To be used when interpreting the results in Figure 3.1]. Recall:
68% of the data lie within 1 standard deviation, 95% within 2 and 99.7% within 3.

In particular, the Full Width at Half Maximum (FWHM) which is used in the literature
as a standard characteristic of the width of the probability distribution curves, among
others for the Gaussian distributions is given by

FWHM = 2
√

2 ln 2 σ ≈ 2.355 σ. (3.24)

Referring in this context to Eqs. (3.6) or (3.7) which determine the variation of the
model-generating function we notice an extremely high uncertainty which bypasses by
orders of magnitude the exact values of the parameters in this model.

Globalising the Perspective: Recall, that when constructing exact models for the
inverse problem simulations and for modelling prediction uncertainties of the
type we constructed here, it is up to a physicist to control the global performance
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of the model via generating functions, fg(x) and Fg(x), cf. Eqs. (3.1) and (3.7)
which remain an element of a subjective decision. This adds to the qualities of
the approach, which in this way takes the format of an even more elastic and
powerful tool. By choosing a strongly varying, exponential generating function,
we do hope being able to discover all possible ‘surprises’ or forms of what at
first glance may seem as unexpected 4 mathematical feature(s), but could remain
‘hidden’ otherwise.

Such a strong impact of the experimental errors on a quick increase of the uncertainty
widths of the resulting parameter values – one could think – will have dramatic effect
on the predictions of the model. It will therefore be instructive to examine the error
propagation to the intraneous and extraneous prediction regimes. These results are shown
in the following sections.

3.1.2 Uncertainty Distributions: Extraneous Prediction Regime

Let us begin by showing the results for the extraneous predictions. The diagrams
in Figure 3.3 show the results obtained, as before, for the increasing experimental data
uncertainness σexp = 0.0005, 0.001, 0.005 and 0.01 , for the extraneous-prediction values:

F1 ≈ 3.32, F2 ≈ 4.06, F3 ≈ 4.95, F4 ≈ 6.06 and F5 ≈ 7.39 . [cf. Eq. (3.21)] (3.25)

Let us observe, as already noticed in the case of the parametric uncertainty distribu-
tions, that the confidence intervals of each Fj increase with increasing σexp very quickly;
the corresponding values are given within the field of each figure with the colour codes cor-
responding to the curves. In the discussed illustration, as in the case of the preceding one,
the units on the x-axis increase very quickly so that the diagrams are very similar looking,
whereas in reality they are not at all. To be more specific, we recall, with the help of Fig-
ure 3.2, that even when considering only the one standard deviation interval [µ − σ, µ + σ]
which contains 68% of the ‘data’ (here: cases of interest) the uncertainties may become
unacceptably large. Whereas in some cases this may be immediately evident, e.g. if the
observable in question is by definition positive, whereas stochastic estimate of the uncer-
tainties allows for a large proportion of the negative values, in some other cases a more
detailed analysis may be necessary. Table 3.2 summarises the results of our simulations.

Two characteristic observations can be made on the basis of the information in the
Table. Firstly, and rather naturally, the standard deviation uncertainties for the extraneous
predictions shown here increase with increasing ‘experimental’ error, σexp, in a certain rate
which reflects the variation of σexp chosen by us. But secondly, and more importantly, the
character (or ‘speed’) of this tendency changes very quickly, when the prediction zone gets
farther and farther away from the fitting zone (intraneous zone) – cf. results in columns
2 and 6. Consequently (for the sake of this example we take the 5th line in the Table)
whereas predictions represented by F1 = 3.32 ± 2.68 may look not very certain but almost

4Indeed, for instance the totally different behaviour of the modelling in terms of the intraneous and
extraneous performance of predicting was, in its extreme, surprising even for members of our team. But
on this occasion we have discovered that many authors confuse the ‘acceptable behaviour of the fit – thus
intraneous prediction – with the powerful extraneous predictions’. The modelling discussed here shows
that these two can be generally considered nearly independent, as illustrated in the following sections.
However this property has decisive consequences for the applications in nuclear structure, first of all for
the very exotic and super-heavy nuclei international research programs.
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Figure 3.3 – Uncertainty probability distributions of the calculated extraneous predictions,
cf. Eq. (3.25), obtained using the Monte Carlo results for parametric uncertainties in Figure
3.1. Top left: σexp = 0.0005; top right: σexp = 0.001; bottom left: σexp = 0.005; bottom right:
σexp = 0.01. In each figure, the histograms have been shifted to 0 in the x-axis scale for easier
comparison. Again, the surface under each curve is equal to 1.

acceptable in many contexts, the prediction F5 = 7.39±17.9 will most likely be considered
unacceptable, in many cases.

A Working Conclusion at this Stage of the Discussion. We believe that the most
important observation at this stage can be formulated as certain warnings. They
could have been considered ... nearly trivial ... will it not be for the numerous
publications, which violate their essence. Remarks in the role of the warnings:

- The uncertainties of the extraneous predictions may grow very quickly with
the distance form the fit-zone and may become fully unacceptable;

- Thus the validity of conclusions – including verification whether the predic-
tion uncertainties lie within the zone of acceptability in the physics context –
especially those which involve extraneous predicting, must be tested;

- Can such testing be done routinely in every physical case of interest and using
‘professional’ mathematical tools?

The answer to the last question is affirmative, such test can be performed nearly
always using the concept of pseudo experimental data and an associated notion
of ‘induced exact modelling’; these concepts will be presented, illustrated and
discussed in detail later on in this document.
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σexp F1 ± σF1 F2 ± σF2 F3 ± σF3 F4 ± σF4 F5 ± σF5

0.0005 3.32 ± 0.13 4.06 ± 0.24 4.95 ± 0.39 6.06 ± 0.61 7.39 ± 0.90
0.0010 3.32 ± 0.27 4.06 ± 0.48 4.95 ± 0.78 6.06 ± 1.21 7.39 ± 1.79
0.0020 3.32 ± 0.53 4.06 ± 0.95 4.95 ± 1.56 6.06 ± 2.41 7.39 ± 3.56
0.0050 3.32 ± 1.34 4.06 ± 2.39 4.95 ± 3.91 6.06 ± 6.04 7.39 ± 8.92
0.0100 3.32 ± 2.68 4.06 ± 4.81 4.95 ± 7.87 6.06 ± 12.2 7.39 ± 17.9
0.0200 3.32 ± 5.39 4.06 ± 9.60 4.95 ± 15.7 6.06 ± 24.3 7.39 ± 35.8

Table 3.2 – By construction, Fi are the exact values of the extraneous predictions. Their
standard-deviation uncertainties σi are calculated using Monte-Carlo approach as discussed in
the text, for various σexp, the latter mimicking experimental errors. It is up to physicist to decide
which value of the prediction confidence interval is still acceptable in the context. For the exper-
imental errors which lead to exceeding that value, the exact model in question is unacceptable
(read: useless in the context!) – the situation which we refer to as NO-GO property.

Let us emphasise that depending on the details of the modelling-algorithm the extra-
neous predictions may deteriorate in a more or less dramatic rate – and this is not the
main point of the present working conclusions. The main point is to say that not verifying
this aspect in every case studied makes the predictions resembling slightly a poker-game:
Nothing certain can be said about the quality of the extraneous predictions of such a model

The results of the simulations, here addressing the extraneous predictions, have shown
the importance of two elements as far as the quality of the final result is concerned. Thus
not only:

• An acceptable, possibly the best root-mean-square deviations and verified(!) as stable
as possible a performance in the fitting zone, but also:

• The effective distance between the extraneous prediction zone and the actual fit area.

Having established these properties we will compare our conclusions with the analogous
ones for the intraneous predictions in the following section.

3.1.3 Uncertainty Distributions: Intraneous Prediction Regime

It may come as a surprise that the results in this section differ, should one say: dra-
matically5 – from the results in the previous section. Indeed, the 4 diagrams in Figure 3.4
show the results analogous to those in the preceding section, but for the intraneous range,
i.e. the predictions lie in between the reference points, cf. Eq. (3.17). As it can be ob-
served, despite the very wide confidence intervals obtained in the case of the extraneous
predictions, the predictions for fi are very precise giving confidence intervals even smaller
than the input error σexp.

Let us emphasise at this point, that the uncertainty distributions for the parameters
A, B, C and D are common for the modelling in the two prediction zones, intraneous
and extraneous, i.e., for {fi} and {Fj}. Therefore, the ‘good-results’ for the intraneous
predictions need to be confronted with the ‘disastrously poor’ confidence intervals for the

5A number of comments which relativise the results of certain observations presented in this section
will still be given slightly below.
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Figure 3.4 – Probability uncertainty distributions of intraneous predictions in Eq. (3.14) obtained
from the Monte Carlo results of Figure 3.1. Top left: σexp = 0.0005; top right: σexp = 0.001;
bottom left: σexp = 0.005; bottom right: σexp = 0.01. In each figure, the histograms have been
shifted to 0 in the x-axis scale for better comparing the results and show that the distributions
have nearly the same width for each fi. The surface under each curve is equal 1.

parametric distributions in Table 3.1, at least for some σexp-values and comparably bad
results for some extraneous predictions. One may conclude that, primarily, the same qual-
ity parameter uncertainty-distributions may lead to (very) good or (very) bad prediction
uncertainty distributions, depending on whether one is considering the intraneous or the
extraneous prediction intervals.

σexp f1 ± σf1 f2 ± σf2 f3 ± σf3

0.0005 1.1618 ± 0.0004 1.2840 ± 0.0004 1.4191 ± 0.0004
0.0010 1.1618 ± 0.0008 1.2840 ± 0.0008 1.4191 ± 0.0008
0.0020 1.1618 ± 0.0016 1.2840 ± 0.0016 1.4191 ± 0.0016
0.0050 1.1618 ± 0.0039 1.2840 ± 0.0040 1.4191 ± 0.0040
0.0100 1.1618 ± 0.0078 1.2840 ± 0.0079 1.4191 ± 0.0080
0.0200 1.1618 ± 0.0158 1.2840 ± 0.0158 1.4191 ± 0.0160

Table 3.3 – Results analogous to those in Table 3.2 with which they should be compared, but
for intraneous predictions; for details – see the text.

Table 3.3 shows the confidence intervals for the intraneous predictions of the model.
The incomparably better performance in terms of the stochastic description of uncertainties
deserves noticing, given the fact that the confidence intervals are down to 5 orders of
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magnitude (!) better in this case. Comparison of these results with the preceding one
allows us to formulate a few synthetic comments which follow.

Uncertainties: Parameters, Intraneous and Extraneous Predictions. Let us put
together, in the from of concluding observations, the results indicating that the
excellent intraneous zone predictions, Table 3.3, are obtained with parameters
which are very uncertain stochastically, Table 3.1 – the same parameters, which
have led to the extraneous predictions ... dominantly unacceptable, cf. Table 3.2.

A physicist may choose to retain at this point that, even though the detailed
performance of the model may depend on the particular context, that generally
one must accept as mater of the rule that the quality of the fit and that of
the intraneous predictions might have not much in common with the quality of
the extraneous predictions, usually those latter ones which are in the center of
attention.

Finally, let us emphasise that the very notion of intraneous and extraneous
prediction zones introduced in Ref. [40] plays a central role in formulating the
distinction between the two concepts and the implied very different performance
of the model in both cases.

As a by-product of the preceding discussion one arrives at yet another feature which
will help to use the semantics more appropriately: The notion of ‘useless exact theories’
and the so called NO-GO Property, or, more colloquially: NO-GO Command.

3.1.4 The NO-GO Command: Even for the Best, Exact Models

After having presented the above title let us simplify one of the already obtained
results, shortened to one phrase:

“The farther away the extraneous prediction zone from the fitting region,
the broader the uncertainty distribution of the extraneous prediction.”

Combining this with another affirmation

“There do not exist error-less experimental data”,

we arrive at the series permanent potential conflicts between the two restrictions, which,
from the practitioner’s perspective, can be formulated like this:

No matter how hard (or: how long time) we work on deriving the complex
mathematical expressions behind an exact 6 theory in physics, it will be strictly

6In Chapter 1, we have already commented on the semantical limitations, or surprises, in the context of
the notion of an ‘exact theory’, and in particular we alerted the reader that our discussion of that aspect
is limited to theories depending on adjustable parameters. We believe, despite all the alerts formulated
here and related to the limitations of the use of exact theories (we do not know of any in nuclear physics),
that such constructions, once achieved – will play an important role no matter the limitations related to
stochastic significance of the associated solutions of the inverse problem and, most evidently, they will give
a strong motivation for the unprecedented technological developments.
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speaking ‘useless in the context’, as long as the instrumental capacities do not
allow for obtaining a sufficiently constraining precision for theory’s parameters.

The same affirmation can be presented in an alternative formulation: If for
one reason or another, theory predictions are needed with an a priori prescribed
precision, whereas the knowledge of the parameters – because of the present-
day instrumental limitations – is not sufficiently precise, even an exact theory
becomes ‘useless in the context’.

Since the sizes of the extraneous-prediction uncertainty-distributions grow quickly
with the distance form the fitting area (read: from the present-day knowledge)
there will always exist a risk that at the sufficiently large distance from the fit-
ting zone, the extraneous predictions will become meaningless and the model –
‘useless in the context’.

Last but not least – Final clarifying statements: Above we refer to the exact
theoretical models, whose parameter-adjustment stability as well as the stochas-
tic significance of the final result have been verified using established methods
of applied mathematics. We encountered numerous situations in this project,
in which the acceptable description of the data has been achieved employing the
parameter values lying in the unphysical ranges: Thus the agreement with the

data as well as ‘all model predictions’ can, under these circumstances, be inter-
preted as equivalent to employing random numbers to compare with the data.

Some (or one) of above alerts may motivate a physicist to declare, that even an exact
model cannot be used in her/his pre-defined context. We nick-name this mechanism the
NO-GO property of an exact modelling. Needless to say, similar conclusions apply to the
a priori inexact modelling, even though very likely in a less ‘spectacular’ general framing.

3.1.5 A Summary and Preliminary Conclusions

One of the most important implications of the simulations presented in the previous
sections is that one must not conclude about the quality of the extraneous predictions
from the quality of the intraneous ones. As we have illustrated using a simplified model
– and some other authors arrived at similar conclusions using different methods – the so-
to-speak good r.m.s. results in the intraneous zone do not translate at all into any similar
r.m.s. quality in the extraneous zone – the property, information which seemingly still only
rather a few authors are aware of.

All these properties must be studied separately on the case by case basis.

Let us emphasise that precisely this particular feature leads to serious misunderstand-
ings and lies at the origin of inconsistent predictions or conclusions in the literature. In
Figure 3.5 we try illustrates this mechanism by showing the quickly increasing standard
deviation (equivalently: uncertainty of predictions) while increasing the distance between
the fitted, intraneous zone, and the extraneous zone for two different values of σexp. The
five black open circles in this Figure indicate the reference points (fitting zone) taken for
the minimisation.

In order to obtain the results presented in Figure 3.5 we have calculated the standard
deviation for the curves Fg(x) in Eq. (3.7) with the help the NMC Monte-Carlo parameter
sets {A, B, C, D}. The formula for the standard deviation has been given in Eq. (1.61) and
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Eq. (1.63). With the help of the cited expressions, we define the mean deviation at each x
value as

µF (x) =
1

NMC

NMC∑

i=1

[Ai + Bi x + Ci sinh(x) + Di cosh(x) − exp(x)]. (3.26)

It follows that the standard deviation as a function of x takes the form

σF (x) =







1

NMC

NMC∑

i=1

[∆Fi(x) − µF (x)]2







1/2

(3.27)

where we defined

∆Fi(x) = Ai + Bi x + Ci sinh(x) + Di cosh(x) − exp(x). (3.28)

To illustrate the varying uncertainty of the prediction we then employ the standard de-
viation – equivalently: confidence interval – by plotting in Figure 3.5 the two corresponding
curves, +σF (x) and −σF (x), given by Eq. (3.27).

Let us have a practical look at the illustration in the Figure. If the user decides for
her/his mathematical and/or physical reasons that e.g. σF (x) > 2 is not allowed for the
model to be of practical use in the given context, then the results described by (e.g.) the
red curve can not be considered useful for x > 1.2 . Let us emphasise that both σF -curves
presented in Figure 3.5 behave almost perfectly in the intraneous regime.

In what follows we will perform an analogous simulation but for the realistic case,
using a realistic mean-field Hamiltonian in place of a toy-model formula.
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3.2 Realistic Modelling: Introductory Elements

Having introduced in the preceding sections the main features of the exact mathemat-
ical approach, which allows for examining various features of the Inverse Problem down
to all the details which a physicist may need, we will turn to the realistic applications
in the nuclear mean-field theory context. To this end, we will introduce the mean-field
Hamiltonian presented in Eq. (2.1) in its so-called traditional Woods-Saxon representation
with the expression of the spin-orbit in the form of Eq. (2.5). With this choice we will be
working with the modelling dependent on two sets of 6 parameters,

{V c, rc, ac, λso, rso, aso}π,ν (3.29)

one for the protons, π, and the other for the neutrons, ν. Since the primary goal at
this time is to construct the uncertainty probability distributions for the single particle
energies for doubly-magic spherical nuclei, the idea is to profit from the experience with
the toy model discussed so far. Following this strategy we will: introduce a Gaussian noise
for the sampling points (in this case, experimental single particle level energies), proceed
with adjustment of parameters, calculate the energy spectra obtained with the optimal
parameters and, following the Monte-Carlo Ansatz, repeat this procedure a reasonably big
number of times, NMC ∼ 105. With the so obtained results we will be able to construct the
occurrence histograms for parameters and single particle energy levels and by studying and
analysing the widths and the obtained histograms we will be able to discuss the prediction
capacities of the studied model.

In in order to provide a direct analogy with the previous case of the exact model,
we will construct what we refer to as an induced exact model via the concept of pseudo-
experimental data, introduced in Section 1.8.2. Following the prescription given there, we
first adjust the parameters in Eq. (3.29) by performing the χ2-fit to the experimentally
known energy levels of 208Pb, cf. Table 2.2 and 2.3. In this way we construct what we refer
to as the reference parameter set, which is presented in Table 3.4.

Recall that the role of the induced exact model is to provide the test-ground environ-
ment – an algorithm for which the exact optimal solutions of the parameters are known
– under the conditions that, apart from small deviations in terms of the actual parameter
values, the performance of the induced exact model is very similar to the performance of the
original one. Since the parametric details do not matter for the undertaken-test purposes,
we decided to fix ac

π = ac
ν = 0.75 fm and aso

π = aso
ν = 0.70 fm, as the values close to the

so-called WS-Universal parameter values [41–46]. The impact of this particular limiting
choice on the calculated mean-field energies is minimal. Indeed, the central diffuseness
value is very close to its universal value ac

univ, which has been used as optimal by many au-
thors within the last 30 years or so, and varying it within the range of ac

univ ± 0.1 fm makes
the single particle energy levels move nearly parallel with only a small fraction of relative
variations. Concerning the choice of the spin-orbit diffuseness, it will always be compen-
sated by the spin-orbit strength parameter, as discussed in more detail in Section 4.2.2.
Figure 3.6 shows the structure of the theoretical levels, as compared to the experimental
ones, using the parameter values given in Table 3.4.

To construct the Monte-Carlo modelling of the experimental uncertainties, Gaussian
uncertainty-distributions have been introduced to the exact pseudo-experimental energies,
thus simulating in such a way the experimental errors in the framework of the induced
exact model. In this first approach we decided to apply the same Gaussian noise to all the
input data. For this purpose we use a common parameter, say σref., which is an analogue
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V c (MeV) rc (fm) ac (fm) fc λso (MeV fm2/~2) rso (fm) aso (fm)

protons −67.59 1.19 0.75 0.82 24.52 1.05 0.70
neutrons −39.32 1.38 0.75 – 31.82 0.99 0.70

Table 3.4 – Reference central and spin-orbit potential parameters for protons and neutrons used
to construct the values of the pseudo-experimental single particle energies for 208Pb.

of σexp used in the case of the toy model presented in the previous sections of this chapter.

Let us introduce some auxiliary quantities which will be practical in the rest of this
discussion. First of all, we will introduce the root-mean-square deviation for just one
nucleus defined by

r.m.s.1 =







∑

i

[

(2ji + 1)(eexp
i − eth

i )2
]

∑

i

(2ji + 1)







1/2

, (3.30)

where j refers to the single-nucleon orbital angular-momentum. Next, let us introduce
an analogous quantity for N nuclei, when considered simultaneously in the parameter
adjustment

r.m.s.N =


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

N∑

k=1
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1/2

. (3.31)

Finally we will define the root-mean-square deviation (calculated with any set of pa-
rameters obtained under all possible varying circumstances, e.g. obtained with any one
single-nucleus fit, or a few nuclei fit) calculated using the energies of the eight spherical
nuclei considered in this document (16O, 40Ca, 48Ca, 56Ni, 90Zr, 132Sn, 146Gd and 208Pb):

R.M.S. =







8∑
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k
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i

(2ji,k + 1)


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1/2

. (3.32)

As it can immediately be seen form the above definition, R.M.S. describes an average
quality of the parametric fit tested with all the doubly-magic spherical-nuclei for which we
have the experimental data at our disposal. Let us remark in passing, that when considering
only one nucleus for the fitting, i.e. N = 1, the results of Eq. (3.30) and Eq. (3.31) coincide.
Similarly, when taking all the nuclei for the fitting, thus for N = 8, Eqs. (3.31) and (3.32)
give the same result.

To estimate a ‘reasonable’ test-value of σref. for the realistic calculations, we have
calculated the R.M.S. deviation while fitting the parameters to the eight spherical nuclei
considered. The result is close to 600 keV and this value was retained as the reference error
value in the following discussion of the Monte-Carlo simulations.

After comparing the values of the deviations, r.m.s., R.M.S. and maximum absolute
error Mx-abs., of Figures 3.6 and 3.7, we confirm that setting σref. = 600 keV is a reasonable
order of magnitude for simulating the experimental uncertainties. With this decision, one
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Figure 3.6 – Comparison of theoretical and experimental single nucleon energies for 208Pb: Neu-
trons (upper panel) and protons (lower panel) obtained using the parameters presented in Table
3.4. The theoretical results have been used as pseudo-experimental values to construct the induced
exact realistic model. The parameter values and the errors associated with the plotted spectra are
given in the fields of the figures. The quantity r.m.s. has been calculated using Eq. (3.29), con-
sidering only the 208Pb energies; the quantity R.M.S. originates from Eq. (3.32). Finally, Mx-abs
stands for the maximum absolute error between the left and right columns of each panel.

can proceed to construct what it is usually referred to as ‘noisy’ data. In this case, we
generated NMC = 20 000 random Gaussian-distributed sets of reference data, which we
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Figure 3.7 – Comparison between the theoretical and experimental single nucleon energies for
208Pb: Neutrons (upper panel) and protons (lower panel). These results have been obtained
fitting the WS-Hamiltonian parameters, Eq. (3.29), to the energies of 16O, 40Ca, 48Ca, 56Ni, 90Zr,
132Sn, 146Gd and 208Pb – simultaneously. The parameter values and the errors associated with the
illustrated spectra are given in the fields of the figures. The quantity r.m.s. has been calculated
using Eq. (3.29), considering only the 208Pb energies; the quantity R.M.S. was obtained using
Eq. (3.32). Finally, Mx-abs stands for the maximum absolute error between the left and right
columns of each panel.
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used to fit the parameters, obtaining in this way NMC sets of parameters {pMC}. They
serve to calculate the corresponding NMC single particle energy sets {eMC} for 208Pb,
allowing finally to construct the occurrence histograms.

Let us notice that even though the fit for the single 208Pb case may be considered
excellent given very low r.m.s. values, cf. Figure 3.6, the resulting parameters do not allow
for acceptable predictions for the whole nuclear range as it can be deduced from the huge
R.M.S. values. This is certainly not a (qualitatively) surprising an observation - but we
give the precise indications here based on the real data.

Working Conclusion 1: We may now pose the question of the physicist’s optimal
choice relative to her/his context. In the case of the intraneous predictions,
which in present context translate into the calculations for 208Pb nucleus itself
and/or some of its neighbours, the choice would clearly be: Use the local fit.

3.2.1 Simulating the Level Uncertainty Distributions

Figure 3.8 shows the results for the smooth histograms obtained from the Monte-
Carlo simulations as explained above. More precisely, these are the results for the neutron
single particle energies of the main shell-closures Nmain = 5 and Nmain = 6. After the
construction of the histograms and the corresponding normalisation so that the surface
under each distribution is equal to one, a Gaussian distribution was fitted to each one,
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Figure 3.8 – Normalised, smoothed histograms showing the Monte-Carlo simulated probability
density distributions of uncertainties for the neutron single particle energies within Nmain = 5
and Nmain = 6 main-shells and 2d3/2 and 3s1/2 corresponding to Nmain = 4; nucleus 208Pb. The
short thick bars indicate the peak position of each distribution; the long thin bars represent the
experimental values of the energies, cf. Table 2.2. The numbers printed between the bars indicate
the occupation particle numbers in that energy region. The assumed experimental uncertainty
common for all the levels is σref. = 600 keV (see text). The normalisation is such that the surface
under each curve is equal to 1. The values of the FWHM for each level can be found in the first
row of Table 3.5.

and we checked that the position of the maximum and the full width at half maximum of
the ‘raw histogram’ and the fitted Gaussian were the same and this is how the smoothed
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probability density distributions in Figure 3.8 were obtained. In Figure 3.9, we show the
analogous results but for the proton single particle energies corresponding to the N = 4
and N = 5 main-shells. In both figures, the thick short bars and thin long bars represent
the distribution peak positions and the experimental values of the levels (where known),
respectively.

Competition-Winning Experimentally-Known Orbitals. Let us emphasise that in
cases in which a level is not known experimentally, which means that it was not considered
for the parameter adjustment, its uncertainty distribution is on the average broader than
in the case where the level is known experimentally. In the case of neutrons in Figure 3.8
and also Table 3.5, the uncertainty distributions of levels 1h9/2 and 1j15/2, which are not
known experimentally, and therefore not taken into account in the minimisation procedure,
happen to be twice as broad as the average of the others in the lightest isotopes, i.e. the
closest to the fitting area. Observe that in the same figure, the next broadest distributions
correspond to big-ℓ orbitals, 1i13/2 and 1i11/2.

Regarding the proton case in Figure 3.9 and Table 3.6, the same effects can be signalled.
Observe that the FWHM for 1g7/2 level, again not known experimentally, is bigger than
the ones known experimentally and of those which has lower ℓ values as 2d5/2, 3p3/2 or
3p1/2.
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Figure 3.9 – Similar to the preceding one but for the protons. The values of the FWHM for each
level can be found in the first row of Table 3.6.

The Richer the Sampling the Narrower the Uncertainty Distribution. The fact
that for 208Pb case studied, on the average, the neutrons have narrower uncertainty distri-
butions than the protons, may be caused by the fact that the number of levels considered in
the fitting procedure was bigger in the case of neutrons, i.e. 11 levels, whereas we have only
7 levels for the protons. This difference implies that the neutron parametrisation may be
considered better constrained than the one of the protons and therefore the resulting final
uncertainty distributions obtained are narrower. This statement could be considered as an
argument in favour of intensifying experimental efforts to find more information about the
experimental mean-field single-nucleon levels.

Let us notice that the gap Z = 114 for protons comes from a direct extrapolation of
the information on the mean-field single-particle levels from 208Pb, cf. Figure 3.9. In other
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Nmain = 5 Nmain = 6

Z N 2f7/2 1i13/2 1h9/2 3p3/2 2f5/2 3p1/2 2g9/2 1j15/2 1i11/2 3d5/2 4s1/2 2g7/2 3d3/2

82 126 0.96* 1.33* 1.76 0.76* 0.90* 0.74* 0.83* 2.20 1.36* 0.77* 0.77* 1.05* 0.78*

114 164 1.30 1.46 2.22 1.03 1.19 1.00 0.87 1.77 1.64 0.73 0.74 1.01 0.78
114 170 1.47 1.44 2.33 1.19 1.34 1.15 0.79 1.52 1.59 0.58 0.59 0.88 0.62
114 172 1.55 1.46 2.39 1.27 1.42 1.23 0.81 1.46 1.60 0.58 0.59 0.88 0.61
114 180 1.92 1.67 2.66 1.64 1.78 1.59 1.06 1.35 1.75 0.81 0.79 1.04 0.80
114 184 2.12 1.83 2.81 1.84 1.98 1.80 1.24 1.38 1.87 0.99 0.95 1.19 0.96
114 196 2.74 2.38 3.34 2.46 2.60 2.42 1.83 1.71 2.35 1.56 1.49 1.74 1.51
114 214 3.64 3.28 4.15 3.35 3.50 3.29 2.71 2.49 3.14 2.38 2.26 2.57 2.30
114 228 4.28 3.94 4.76 3.97 4.14 3.92 3.33 3.12 3.74 2.95 2.79 3.16 2.84

Table 3.5 – Realistic Monte-Carlo calculation results of the FWHM values [in MeV] of the neu-
tron single particle levels covering the nuclear main shells Nmain = 5 and 6 for the 278−342

114Fl164−228

super-heavy isotopes indicated. The 208Pb results have been extracted from the curves in Fig-
ure 3.7; they show strong variations depending on the quantum characteristics of each individual
state. The asterisk indicates that the level is known experimentally, i.e. taken for the parameter
adjustment.

Nmain = 4 Nmain = 5

Z N 1g7/2 2d5/2 1h11/2 2d3/2 3s1/2 1h9/2 2f7/2 1i13/2 2f5/2 3p3/2 3p1/2

82 126 1.93 1.17 1.16* 0.94* 0.99* 1.36* 1.04* 1.25* 1.13* 1.39 1.37

114 164 1.79 1.01 1.20 0.88 0.92 1.38 1.08 1.22 1.19 1.41 1.45
114 170 1.99 1.18 1.31 0.99 1.00 1.36 0.92 1.05 0.99 1.19 1.20
114 172 2.07 1.27 1.38 1.06 1.06 1.38 0.90 1.02 0.88 1.14 1.14
114 180 2.45 1.66 1.70 1.44 1.40 1.60 1.02 1.07 0.85 1.07 1.01
114 184 2.66 1.88 1.89 1.66 1.60 1.77 1.16 1.18 0.95 1.12 1.04
114 196 3.30 2.55 2.50 2.34 2.26 2.36 1.72 1.68 1.47 1.50 1.39
114 214 4.28 3.54 3.44 3.36 3.25 3.33 2.65 2.57 2.41 2.33 2.23
114 228 5.01 4.27 4.14 4.11 3.98 4.07 3.36 3.26 3.14 3.02 2.92

Table 3.6 – Realistic Monte-Carlo calculation results of the FWHM values [in MeV] of the proton
single particle levels covering the nuclear main shells Nmain = 4 and 5 for 278−342

114Fl164−228 super-
heavy isotopes indicated. The 208Pb results have been extracted from the curves in Figure 3.7;
they show strong variations depending on the quantum characteristics of each individual state.
The asterisk indicates that the level is known experimentally, i.e., the corresponding energies were
taken for the parameter adjustment.

words, in order to constrain better the underlying uncertainties some more experimental
data on the single particle energies would be helpful – be it about the levels in 208Pb, or
– even better – on the light-super-heavy nuclei. Here one could envisage the experiment-
theory collaboration which would aim at constructing the data basis which would allow
the analysis of the gap evolution with increasing the neutron number - in analogy with the
studies of the proton gaps in e.g. the Nickel isotopes showing a strong dependence of this
gap on the neutron numbers
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3.2.2 Focus on Super-Heavy Nuclei

Recall that one of the main goals of the present project is to evaluate the predictions
for the unknown nuclear regimes. Such predictions must be obtained using the data on the
nuclear areas known experimentally today. In particular, we would like to study the spec-
troscopic properties of the mean-field single-nucleon energies in the super-heavy nuclei. In
this case, and as an analogy to the procedure engaged with the toy model in the previous
sections, we would like to show/detect the point where one can no more use the realistic
model for predicting mean-field single-nucleon properties far from the fitting range. For
this reason, taking the parameters obtained in the Monte-Carlo simulations which have
been used to produce the energy distributions of Figures 3.8 and 3.9, we predict the en-
ergy level distributions for some 114Fl-isotopes. The results of the FWHM of the isotopes
studied are given in Tables 3.5 and 3.6 for neutrons and protons, respectively.

Nuclear Structure Effects: Non-Monotonic Variations. Let us observe that in
general, when increasing the number of neutrons in the Fl-nucleus, thus considering heavier
and heavier isotopes, the uncertainty widths of the studied distributions keep increasing,
as well. However, the distributions do not change monotonically, neither as functions
of the neutron number N , nor as functions of the angular momentum ℓ. The average
tendencies can be summarised as follows. First of all, one may note that on the average
the confidence intervals increase by a factor of ∼ 3 when the neutron level moves from
N = 126 to N = 228.

Deeply-Bound States in the Role of Extraneous Prediction Zones. Another
systematic tendency visible from the presented results is that the uncertainties increase
when the energy of individual nucleons moves away from the fitted zone, which can be
seen as extraneous predictions within a given nucleus. This is visible for the deeply bound
levels, whose distribution widths rapidly increase up to ∼ 8 MeV (!), cf. Tables 3.7 and
3.8 for neutrons and protons, respectively.

Perspectives: How To Diminish the Uncertainties of Predictions? At this point,
one may ask what can be done in order to diminish the uncertainties the predicted levels –
in other words: to stabilise the modelling. One suggestion will be related to counteracting
the parametric correlations, the mechanism introduced in Chapter 1, which will be followed
in the next Chapters of this project. Another suggestion, based on the observations in this
section, will be to improve the experimental constraints via increased number of good
quality experimental data points. These aspects will be discussed in the next chapters as
well.
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Nmain = 0 Nmain = 1 Nmain = 2 Nmain = 3 Nmain = 4

Z N 1s1/2 1p3/2 1p1/2 1d5/2 2s1/2 1d3/2 1f7/2 2p3/2 1f5/2 1g9/2 2p1/2 1h11/2 2d5/2 1g7/2 2d3/2 3s1/2

82 126 6.11 5.34 5.32 4.49 4.11 4.54 3.56 3.01 3.70 2.57 2.96 1.63 1.93 2.75 1.82 1.72

114 164 5.79 5.15 5.12 4.44 4.09 4.45 3.67 3.13 3.76 2.84 3.10 2.01 2.18 3.01 2.09 1.97
114 170 6.05 5.42 5.39 4.70 4.36 4.71 3.92 3.40 4.00 3.06 3.36 2.17 2.42 3.20 2.33 2.21
114 172 6.14 5.51 5.48 4.79 4.45 4.80 4.01 3.49 4.08 3.14 3.45 2.24 2.51 3.27 2.42 2.30
114 180 6.51 5.88 5.86 5.17 4.84 5.17 4.38 3.87 4.43 3.50 3.84 2.56 2.89 3.60 2.80 2.68
114 184 6.70 6.07 6.05 5.36 5.03 5.36 4.57 4.07 4.62 3.69 4.04 2.75 3.09 3.77 3.00 2.88
114 196 7.26 6.64 6.62 5.94 5.62 5.94 5.15 4.68 5.18 4.28 4.64 3.33 3.71 4.32 3.62 3.50
114 214 8.07 7.47 7.46 6.78 6.48 6.78 6.01 5.56 6.02 5.15 5.51 4.22 4.60 5.14 4.51 4.39
114 228 8.67 8.08 8.08 7.40 7.11 7.41 6.64 6.20 6.64 5.79 6.15 4.88 5.25 5.76 5.15 5.03

Table 3.7 – Realistic Monte-Carlo calculation results of the FWHM values [in MeV] of the low-
energy (deeply bound) neutron single particle levels covering the nuclear main shells Nmain = 0
to 4 for 208Pb and 114Fl super-heavy isotopes indicated.

Nmain = 0 Nmain = 1 Nmain = 2 Nmain = 3

Z N 1s1/2 1p3/2 1p1/2 1d5/2 1d3/2 1f7/2 2s1/2 1f5/2 1g9/2 2p3/2 2p1/2

82 126 5.16 4.52 4.59 3.79 3.85 2.96 3.22 2.93 2.04 2.15 1.99

114 164 4.16 3.70 3.77 3.14 3.21 2.51 2.59 2.52 1.82 1.74 1.61
114 170 4.49 4.01 4.09 3.44 3.51 2.79 2.90 2.78 2.05 2.02 1.89
114 172 4.60 4.12 4.19 3.55 3.61 2.89 3.01 2.88 2.14 2.12 1.99
114 180 5.04 4.56 4.63 3.97 4.04 3.29 3.46 3.29 2.53 2.56 2.43
114 184 5.26 4.78 4.85 4.19 4.25 3.51 3.69 3.51 2.73 2.79 2.66
114 196 5.92 5.43 5.50 4.83 4.90 4.14 4.36 4.16 3.36 3.47 3.35
114 214 6.86 6.38 6.44 5.77 5.85 5.08 5.34 5.12 4.30 4.45 4.36
114 228 7.55 7.06 7.13 6.46 6.55 5.77 6.06 5.83 4.99 5.18 5.09

Table 3.8 – Realistic Monte-Carlo calculation results of the FWHM values [in MeV] of the low-
energy (deeply bound) proton single particle levels covering the nuclear main shells Nmain = 0 to
3 for 208Pb and 114Fl super-heavy isotopes indicated.



Chapter 4

Detecting Model Instabilities
and Stabilising Predictions
of Modelling

In the first chapter of this document, we presented the arguments suggesting that a
presence of parametric correlations within the mathematical model destabilises the results
of the parameter optimisation procedures leading at the end to the loss of reliability of the
model predictions. In such cases, a small variation of the input data may cause dramatic
changes in the obtained results for the optimal parameters. Therefore, being able to detect
and control the parametric correlations within the model is a prerequisite for possibly
improving the predictive power of any theory.

In this Chapter we present a systematic overview of the realistic numerical
calculations which employ Monte-Carlo techniques and allow for discovering
the typical mechanisms and their relative importance – a kind of who is who?
– in the creation of the parametric correlations and their role as modelling-
destabilisation factors.

In what follows we will also discuss a selection of our solutions based on a phenomenolog-
ical but realistic nuclear mean field approach aiming at a systematic improvement of the
stochastic quality of the parameter optimisation procedures and, as an implication, of the
quality of the theoretical predictions.

4.1 Parametric Correlations

An undesired consequence of the presence of parametric correlations is that, depending
on their precise form, they may turn the inverse problem into an ill-posed inverse problem,
i.e. either the solution is not unique (if it exists at all) or it does not continuously change
with the modification of the input sampling. In other words – in the best case, i.e., if a
solution can be obtained at all – any small change in the input may cause a very strong
variation in the final results. There exist various ways of detecting the ill-posedness and
its ‘degree of intensity’. In this section we will focus on the detection of the presence of
parametric correlations and examine Monte-Carlo based methods of their elimination.
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4.1.1 Detecting Ill-Posedness Using the S.V.D. Theorem

The Singular Value Decomposition (S.V.D.) theorem has been presented in Chapter 1
and will be used in what follows. To prepare the test-grounds we optimise the parameters
of the traditional Woods-Saxon Hamiltonian, cf. Eq. (2.14) for a single nucleus: 208Pb.
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Figure 4.1 – Calculated 208Pb neutron single particle energies, left column, resulting from the
optimisation of parameters of the traditional-WS Hamiltonian. The experimental energies are
given in the right column and the parameter values on the right side of the figure. One finds
from top to bottom: r.m.s.-deviation from Eq. (3.30), R.M.S.-deviation from Eq. (3.32) and the
maximum absolute error, Mx-abs. [Experimental data from Tables 2.2 and 2.3]
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Figure 4.2 – The same as in Fig. 4.1 but for the protons.
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Figures 4.1 and 4.2 show the results for the single nucleon energies in 208Pb nucleus
for neutrons and protons, respectively, together with the optimal-parameter values and
various parameter-quality measures of the type of the root-mean-square deviation. Note
the difference between the results in Figures 4.1 and 4.2 and those in Figure 3.6, where
the parameters ac and aso were fixed. In the present case, Figures 4.1 and 4.2, all the six
parameters are active in the χ2-minimisation. We arrive at describing 11 neutron levels
using 6 WS-parameters with the r.m.s.-deviation of 0.16 MeV and 7 proton levels with
the r.m.s.-deviation of 0.08 MeV. However, the predictions for 8 doubly-spherical nuclei,
Eq. (3.32), with the so-obtained parameters result in the R.M.S.-deviations not far from
2 MeV for both protons and neutrons, i.e. with the quality-estimate worse by more than an
order of magnitude as compared to the single, central nucleus data. Such a big difference
may be a sign of a ‘pathological’ behaviour of the model and/or its so-obtained ‘optimal’
parameters. It is therefore justified to ask why the description of the whole nuclear range
looks so bad as compared to the one-nucleus description and what can one do to improve
the performance of the modelling.

The first alarm-setting indicator of the ill-posedness (or ill-conditioning) in parameter-
optimisation problems is the so-called condition number, which can be calculated using the
Singular Value Decomposition theorem, cf. Eq. (1.53). We will employ this criterion sepa-
rately for the neutrons and protons. The calculated condition number [recall: it is defined
as the ratio of the biggest to the smallest eigen-value in the singular value decomposition]
for the neutrons is

cond(A)ν =
312.99

0.13
= 2.39 × 103, (4.1)

and for the protons

cond(A)π =
505.76

0.12
= 4.13 × 103. (4.2)

The results cond(A)ν/π & 103 tell us that our problem is indeed ill-posed [6, 12]. However,
since these results do not tell us which parameters make our problem ill-conditioned, we will
use the same Monte-Carlo techniques as in Chapter 3 to detect the parametric correlations
and identify which parameters are correlated.

4.1.2 Detecting Parametric Correlations Using Pearson Matrix

In these exploratory simulations the experimental error-bars will be defined with the
help of a single parameter σexp – fixed for all experimental levels. The dependence of the
results on the a choice of this type will be tested later. We will begin tests for the pres-
ence/absence of parametric correlations, by employing the correlation matrix, Eq. (1.79)
also referred to as Pearson matrix. We will show how the parametric-correlations depend
on the actual σexp and on the size and type of the sampling in order to establish a quantita-
tive link between the typical input to the inverse problem with the parameter optimisation
output – in our framework of interest.

Sampling: 208Pb Neutron Levels. We begin with the neutron levels and calculate the
Pearson correlation matrix for the hypothesis σexp = 600 keV. Results in Tables 4.1 and 4.2
for the neutron and proton parameters, respectively, show that apart from the diagonal
terms, only one non-diagonal matrix element in each table is close to 1, viz. the correlation
coefficients (V c, rc) equal to 0.9902 for neutrons and 0.9705 for protons1.

1Note that the correlation matrix is by construction symmetric.



4.1.2 Detecting Parametric Correlations Using Pearson Matrix 74

It will be instructive to logically split the full (6 × 6) matrix in Tables 4.1 and 4.2 into
four (symmetric) separate blocks which involve:

• Correlations between central-potential parameters alone;

• Correlations involving the spin-orbit potential parameters alone;

• Mixed correlations between the central-, and spin-orbit potential parameters.

V c
ν rc

ν ac
ν λso

ν rso
ν aso

ν

V c
ν 1.0000 0.9902 −0.0083 0.3786 0.3560 0.0726

rc
ν 0.9902 1.0000 0.0401 0.3922 0.3602 0.0785

ac
ν −0.0083 0.0401 1.0000 0.2432 −0.2290 −0.1858

λso
ν 0.3786 0.3922 0.2432 1.0000 0.1157 0.4965

rso
ν 0.3560 0.3602 −0.2290 0.1157 1.0000 0.1403

aso
ν 0.0726 0.0785 −0.1858 0.4965 0.1403 1.0000

Table 4.1 – Correlation matrix between the neutron Hamiltonian parameters. Each Pearson
matrix-element has been obtained using Eq. (1.70) from the Monte-Carlo simulations results,
taking into account only the 208Pb neutron levels and imposing σexp = 600 keV.

V c
π rc

π ac
π λso

π rso
π aso

π

V c
π 1.0000 0.9705 0.1816 0.0017 0.1503 −0.0117

rc
π 0.9705 1.0000 0.3888 0.0719 0.1382 −0.0194

ac
π 0.1816 0.3888 1.0000 0.2895 0.0465 −0.1294

λso
π 0.0017 0.0719 0.2895 1.0000 0.5085 0.6100

rso
π 0.1503 0.1382 0.0465 0.5085 1.0000 0.2469

aso
π −0.0117 −0.0194 −0.1294 0.6100 0.2469 1.0000

Table 4.2 – The same as in Table 4.1, but for the protons.

Observations and Discussion

1) In the ‘central – central’ block, only the potential depth and potential radius are
strongly correlated, both for the neutrons and protons. The other non-diagonal matrix
elements of this block are significantly smaller (close to zero) in the case of the neutrons.

In contrast, in the case of protons the radius and diffuseness parameters (rc
π, ac

π) are
partially correlated in the present realisation of the modelling. This is most likely related
to the presence of the Coulomb term, which in the present calculations was defined as the
electrostatic potential generated by the uniform charge distribution and kept fixed without
any adjustment. Such a term modifies rather strongly (and probably not in a very physical
way) the effective diffusivity of the resulting final potential which is the sum of the nuclear
and electrostatic contribution. An illustration of the corresponding geometrical relations
involving the diffusivity effect will be shown later.

2) In the spin-orbit – spin-orbit block the protons and neutrons behave slightly differ-
ently. On the basis of the results in Table 4.1 one can deduce that the neutron spin-orbit
potential parameters are not as strongly correlated as the central potential pair (V c, rc).
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Indeed, the matrix elements involving the radius parameter (λso
ν , rso

ν ) and (rso
ν , aso

ν ) are both
close to 0.1, and only (λso

ν , aso
ν ) is close to 0.5 .

In the case of protons, all the three mentioned pair combinations lead to systematically
bigger correlation coefficients. The third pair of this block (λso

ν , aso
ν ) deserves some extra

comments. The corresponding values of the correlation coefficients are ≈ 0.5 for the neu-
trons and ≈ 0.6 for the protons. This correlation maybe expected and understood because
of the form of the spin-orbit potential in Eq. (2.6). Indeed, calculating the derivative of
the form-factor vso(r) analytically, one can easily see that the spin-orbit potential depends
explicitly on the ratio (λso/aso). It then follows that there must be an automatic com-
pensation between variations of these two parameters during the process of minimisation
implying their correlation.

3) In the ‘non-diagonal central - spin-orbit’ block we may observe that all the combina-
tions lead to possibly only weakly correlated pairs with the absolute values of the Pearson
matrix-elements all smaller than 0.4.

At this point, having analysed the results for the correlation matrix in Tables 4.1 and
4.2 one my be tempted to think that we know how the parameters of the Hamiltonian
are correlated (de-correlated) and make the first conclusions. However, one should empha-
sise that the Pearson correlation-matrix coefficients, rij, contain the information only about
the linear dependencies, which may exists between parameters, but not about other forms,
cf. Figure 1.1. Therefore, it becomes important to continue with the two-dimensional cor-
relation analysis. A preparatory discussion of the expected topological properties of such
diagrams has been given in Chapter 1, where we introduced what we referred to as dot-plots.

4.2 Parametric Correlations and Monte-Carlo Method

Let us begin with a synthetic information about the illustrations of the Monte-Carlo
simulations (the latter introduced earlier Chapter 1 and Chapter 3).

The Monte-Carlo results for all the possible correlations of central to central and spin-
orbit to spin-orbit pairs of parameters are shown on Figures 4.3 - 4.14 for neutrons and
protons. Each figure is composed of 4 different panels, showing the same correlation but
for different values of σexp, defined as 50 keV, 200 keV, 400 keV and 600 keV. In this way
one can oversee the evolution of the parametric correlations with increasing input error.
Since the structure of the ‘dot-plots’ does not represent any universal/general pattern, in
what follows we will proceed examining the results on the case-by-case basis.
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4.2.1 Central-to-Central Potential Parameter-Correlations

Let us begin the discussion with the strongest correlations manifested by the relatively
large values of the non-diagonal Pearson coefficients, rij ∼ 1, in Tables 4.1 and 4.2, corre-
sponding to the central potential depth, V c-, and central potential radius, rc- parameters.
The corresponding dot-plots are shown in Figures 4.3 and 4.4 for neutrons and protons,
respectively. Comparison clearly manifests that there is a quadratic (‘parabolic’) corre-
lation between these two parameters. It has been demonstrated by a direct fit using the
expression

rc = α · (V c)2 + β · V c + γ . (4.3)

Comparison of the results for different values of σexp shows that the parabolic correlations
persist and the ‘dot-plot lengths’ of the obtained Monte-Carlo correlation curves increase
with increasing σexp. Moreover, the Pearson coefficients denoted rxy in the Figures remain
nearly constant with rxy ≈ 0.99 for neutrons and rxy ≈ 0.97 for protons. This tells us that
the presence of the correlation between V c and rc does not depend on the value of the
experimental error.

Tables 4.3 and 4.4 present the values of the parabola coefficients after fitting according
to Eq. (4.3). These numerical values correspond to the results presented graphically in
Figures 4.3 and 4.4. Let us emphasise that except for some (insignificant) fluctuations, all
the parabolas have approximately the same equation.

σexp [keV] αν [fm Mev−2] βν [fm Mev−1] γν [fm]

50 0.0003312 0.0471418 2.7147683
200 0.0004261 0.0546548 2.8635372
400 0.0004329 0.0553661 2.8814337
600 0.0004267 0.0549670 2.8757360

Table 4.3 – Neutrons: Fitted parabola-coefficients of Eq. (4.3) corresponding to the indicated
values of σexp; for the graphical illustration, cf. Figure 4.3.

σexp [keV] απ [fm Mev−2] βπ [fm Mev−1] γπ [fm]

50 0.0002467 0.0436343 2.9735560
200 0.0001917 0.0369053 2.7678581
400 0.0001684 0.0341338 2.6870053
600 0.0001971 0.0378265 2.8064431

Table 4.4 – Similar to Table 4.3 but for the protons.
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Figure 4.3 – Correlations between the neutron central potential depth parameter, V c
ν , and the

central potential radius parameter, rc
ν , in 208Pb, which turn out to be parabolic, see the text.

As indicated in each panel: top left, σexp = 50 keV; top right σexp = 200 keV; bottom left
σexp = 400 keV; bottom right σexp = 600 keV. Let us note that the Pearson coefficients rxy shown
at the bottom of each diagram stay approximately constant, independent of σexp.
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Figure 4.4 – The same as in Fig. 4.3 but for the protons in 208Pb.
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Figures 4.5 - 4.6 represent projections of the χ2-minimisation results in the from of
the ‘dot-plots’ onto the plane (V c, ac) for neutrons and protons. The fact that the shapes
of the distributions manifest nearly radial symmetry together with the vanishing of the
Pearson coefficient, suggests that the corresponding pairs of parameters can be considered
uncorrelated.
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Figure 4.5 – Test for the parametric correlation between the neutron central depth V c
ν and central

diffuseness ac
ν . Top left, σexp = 50 keV; top right σexp = 200 keV; bottom left σexp = 400 keV;

bottom right σexp = 600 keV. Let us note that the rxy coefficient changes with σexp, but its
absolute value remains small. These results indicate the lack of parametric correlations between
the two parameters indicated.
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Figure 4.6 – Similar to Fig. 4.5 but for protons.
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Figures 4.7 - 4.8 represent projections of the χ2-minimisation results in the from of
the ‘dot-plots’ onto the plane (rc, ac) for neutrons and protons. The fact that the Pearson
coefficients are nearly zero and the shapes of the distributions manifest nearly radial sym-
metry, suggests that the corresponding pairs of parameters can be considered uncorrelated.
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Figure 4.7 – Similar to the preceding one but for the neutron central radius rc
ν and central dif-

fuseness ac
ν in 208Pb. As before, the radial symmetry of the diagrams suggests that the parameters

are uncorrelated and the small values of the Pearson coefficient confirm this.
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Figure 4.8 – Similar to that in Fig. 4.7 but for the protons.
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4.2.2 Spin-Orbit – Spin-Orbit Parametric Correlations

Projections (λso, aso). When analysing the correlation matrices in the preceding sec-
tions, we have noticed that the correlation of between (aso,λso) can be justified analytically,
because the spin-orbit potential depends explicitly on the fraction λso/aso. Figures 4.9 and
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Figure 4.9 – Parametric correlation between the neutron spin-orbit diffuseness aso
ν and spin-

orbit strength λso
ν in 208Pb. Top left, σexp = 50 keV; top right σexp = 200 keV; bottom left

σexp = 400 keV; bottom right σexp = 600 keV.
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Figure 4.10 – Similar to the one in 4.9, but for the protons.

4.10 show the dot-plots for these correlations for neutrons and protons, respectively. Indeed,
one may notice an approximate linear correlation tendency between these two parameters:
As aso increases, λso increases too. This tendency seems not to depend very much on the
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value of σexp. For this reason, and analogously to the case of (V c, rc) projection-plots, in
this case we fitted a straight line according to relation

λso = µ aso + η (4.4)

whose coefficients can be found in Tables 4.5 and 4.6 for neutrons and protons, respectively.

σexp [keV] µν [MeV fm/~2] ην [MeV fm2/~2]

50 12.6003 22.2214
200 14.1110 22.0808
400 10.2562 24.3898
600 9.7807 25.5061

Table 4.5 – Fitted straight line coefficients of Eq. (4.4) for σexp indicated; here for the neutrons.

σexp [keV] µπ [MeV fm/~2] ηπ [MeV fm2/~2]

50 13.7688 12.9248
200 13.5820 13.1520
400 16.3167 13.0680
600 14.2411 15.7030

Table 4.6 – Similar to Fig. 4.5 but for the protons.

Attention: In the case of the neutrons, a closer inspection of the diagrams (especially)
for σexp = 50 keV and σexp = 200 keV, indicates that the points seem to center around
two different values of aso

ν . This suggests the necessity of further verifications. Therefore,
one becomes even more motivated to test the characteristics of the projections of the
distributions in question onto other projection planes and this strategy will be followed
next.
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Projections (rso, aso). Let us turn to the discussion of the (rso, aso)-projections beginning
with the neutrons. The distribution of points forms two ‘bubbles’ getting more and more
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Figure 4.11 – Parametric correlation between the neutron spin-orbit radius, rso
ν , and spin-orbit

diffuseness, aso
ν , in 208Pb. Top left, σexp = 50 keV; top right σexp = 200 keV; bottom left σexp =

400 keV; bottom right σexp = 600 keV. Note a strong variation of Pearson coefficient rxy with σexp.
Observe the presence of two solutions manifested by the two-maximum structure of the diagrams.
The first is referred to as compact (smaller value of the radius parameter) whereas the other one
as non-compact (larger value of the radius parameter). Both are perfectly physical as discussed
in the PhD project by N. Schunck, Ref. [47], who showed that the compact solution describes the
rotational properties of nuclei systematically better.
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Figure 4.12 – Similar to the one in fig. 4.11, but for the protons.

separate when σexp decreases. It is instructive at this point to compare the values of the
Pearson coefficient rxy: For σexp = 50 keV, the Pearson coefficient is ∼ −0.9, even though
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the points do not form any clear-cut straight line correlation. It evolves towards zero when
σexp increases.

A New Form of Parametric Correlations: Two Separate Distributions of Points.
The non-linear correlation analysis seen from Figure 4.11 shows not only that the distri-
bution is not linear but moreover, manifests a two-centre structure. The presence of the
‘double-bubble’ structure indicates that there exist two ‘optimal solutions’ for the spin-
orbit radius. The smaller radius solution is called compact configuration and the bigger
radius solution is called non-compact configuration. This effect has been already studied
in the PhD Thesis of N. Schunk [47] and it was discussed and explained in terms of the
specific form of the spin-orbit potential as proportional to the gradient of the Woods-Saxon
potential, nearly constant inside of the nucleus, thus peaked at the surface.

In the case of protons, the clear ‘double-bubble’ structure is not present in our results.
This has to do with the perturbations of the diffusivity properties of the full (nuclear
plus Coulomb) potential via phenomenological and oversimplified representation of the
Coulomb term, but we do not intend to examine this effects at this time. The more
appropriate approach would be to generate the Coulomb potential using the calculated
density distributions what goes beyond the scope of the present project.
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Correlations (rso, λso). Finally, let us turn to the (rso, λso)-projection in Figures 4.13 and
4.14, for neutrons and protons, respectively. In the case of the neutrons, the coexistence
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Figure 4.13 – Parametric correlation between the neutron spin-orbit radius rso
ν and spin-orbit

strength λso
ν in 208Pb. Top left, σexp = 50 keV; top right σexp = 200 keV; bottom left σexp =

400 keV; bottom right σexp = 600 keV. Note again that the rxy varies strongly with σexp.
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Figure 4.14 – Similar to the one in fig. 4.13, but for the protons.

between the spin-orbit compact and non-compact configurations in terms of rso is again
manifested. In the case of the two-centre distributions representing parametric correlation
a ‘phenomenological’ way of ‘removing correlations’ will be to fix one of the two solutions,
compact or non-compact, and treat them as two alternative solutions.

In the case of protons the clear-cut compact/non-compact coexistence is not present
anymore. One may notice only some traces of it in the from of the tail seen at the limit of
increasing rso values.
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4.3 Uncertainties of Nucleonic Energy Levels

In this section we will present the results of our Monte-Carlo study focussing on the
uncertainties of the final predictions of the single-nucleon levels. We report on the results
of eliminating the parametric correlations in order to examine the possible consequences
in terms of the stabilisation of the result – equivalently: diminishing the final prediction
uncertainties. We begin by presenting the uncertainty estimates in the presence of all the
six parameters of the model treated as fully independent from one another when optimising
the parametrisation. In other words we accept that some of them then may be correlated
but we perform the calculations ignoring this mechanism at first.

This presentation will be followed by a discussion of the results of various variants of
the predictions, each time removing – step by step – more and more parametric correlations.

4.3.1 Prediction-Uncertainties at Full Parametric Freedom

We begin by presenting the single-nucleon energy-uncertainty probability-distributions2

for 208Pb. They were obtained using the Monte-Carlo techniques in the preceding section
when studying the properties of the Hamiltonian optimisation, cf. Figures 4.3 – 4.14.

Construction of the Uncertainty Probability Histograms. To construct the un-
certainty probability histograms3 also referred to as occurrence histograms, we divide the
abscissa into small intervals and count the number of times that some value of our choice, for
instance energy eigenvalue or the value of a given model-parameter, falls into so predefined
interval. We obtain in this way a distribution in the form of a histogram (step-like function)
which – after normalisation, cf. Eq. (1.56) – becomes uncertainty probability-distribution
for a given nucleonic level or a model parameter. Finally, by fitting a continuous Gaussian
distribution to each of the so obtained normalised histograms, we deduce the Gaussian
characteristics µ and σ for each level or parameter.

2In what follows, the exact term – single-nucleon energy-uncertainty probability-distributions – will
most of the time, when it does not cause ambiguities, be shortened to ‘uncertainty distribution’ or ‘energy
probability distribution’.

3Recall: These are the diagrams, which give a measure of the uncertainty of the model-quantities of
our choice, e.g. energy eigen-values, and/or parameter uncertainty by associating with each value of the
variable the corresponding occurrence probability. Since the normalised occurrence fractions lie in the
interval [0,1], the maximum value 1 being excluded because of the finite errors of the input experimental
data – no value is certain – what encourages us to use the term uncertainty probability.
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The First Look at Uncertainty Probability Histograms: Neutrons. Figure 4.15
shows the Monte Carlo results for the probability distributions of the neutron single-particle
energies in 208Pb around the neutron occupation number N = 126. The Full Width at Half
Maximum (FWHM) of each of those levels are given in Table 4.7.
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Figure 4.15 – Neutron-energy probability-density distributions for 208Pb within the Nmain=5
and Nmain = 6 nuclear main-shells and 2d3/2 and 3s1/2 corresponding to Nmain = 4. All the
six Hamiltonian parameters are treated as independent from one another. The normalisation of
the curves is such that the surface under each curve is equal to 1. The thick short vertical bars
indicate the position of the distribution peaks. The thin long vertical bars represent the position
of the experimental values for the known nuclear levels. The numbers between the short bars
indicate the occupation. The assumed experimental error is σexp = 600 keV common for all the
single-particle levels. The FWHM of each distribution can be found in Table 4.7. Observe the
difference between the present illustration and the one in Figure 3.8, where the parameters were
fitted to the pseudo-experimental level energies; in the present case the parameters are fitted to
the experimental energies of 208Pb.
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Nmain = 5 Nmain = 6

Z N 2f7/2 1i13/2 1h9/2 3p3/2 2f5/2 3p1/2 2g9/2 1j15/2 1i11/2 3d5/2 4s1/2 2g7/2 3d3/2

82 126 1.09* 1.38* 1.99 0.76* 1.04* 0.77* 0.98* 2.37 1.39* 0.88* 0.79* 1.10* 0.82*

114 164 1.43 1.53 2.55 1.05 1.31 1.03 0.99 1.77 1.73 0.77 0.75 1.02 0.83
114 170 1.59 1.54 2.63 1.22 1.49 1.20 0.91 1.53 1.69 0.63 0.59 0.91 0.67
114 172 1.66 1.58 2.68 1.30 1.57 1.28 0.92 1.48 1.70 0.62 0.59 0.92 0.67
114 180 2.00 1.81 2.91 1.67 1.93 1.65 1.14 1.39 1.85 0.84 0.78 1.11 0.84
114 184 2.19 1.96 3.06 1.87 2.14 1.85 1.30 1.42 1.98 1.01 0.94 1.27 1.00
114 196 2.78 2.51 3.55 2.48 2.76 2.47 1.85 1.74 2.46 1.57 1.47 1.83 1.53
114 214 3.66 3.38 4.35 3.37 3.67 3.36 2.70 2.48 3.28 2.39 2.25 2.69 2.33
114 228 4.31 4.04 4.96 4.01 4.33 4.00 3.32 3.10 3.91 2.98 2.80 3.31 2.86

Table 4.7 – Realistic Monte-Carlo calculation results of the FWHM values [in MeV] of the neutron
single particle levels within the nuclear main shells Nmain = 5 and 6, for 114Fl super-heavy isotopes
indicated. The 208Pb results, first line, have been extracted from the curves in Figure 4.15. They
show strong variations depending on the quantum characteristics of each individual state. The
asterisk indicates that the corresponding level in 208Pb is known experimentally and was taken
for the parameter adjustment via χ2-minimisation.

The First Look at the Uncertainty Probability Histograms: Protons. Figure 4.16
shows analogous results but for the case of protons, for the 208Pb levels around the proton
occupation number Z = 82. The Full Width at Half Maximum (FWHM) of each of those
levels are given in Table 4.8.
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Figure 4.16 – Similar to Figure 4.15 but for the proton energy levels within the Nmain=4 and
Nmain = 5 nuclear main-shells. The values of the FWHM of each distribution can be found in
Table 4.8. Presented results correspond to the fit to the real experimental levels whereas those
in the similar-looking Figure 3.9 were obtained using the pseudo-experimental data.
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Nmain = 4 Nmain = 5

Z N 1g7/2 2d5/2 1h11/2 2d3/2 3s1/2 1h9/2 2f7/2 1i13/2 2f5/2 3p3/2 3p1/2

82 126 1.96 1.28 1.20* 1.03* 1.01* 1.38* 1.11* 1.26* 1.22* 1.46 1.43

114 164 1.82 1.14 1.24 0.99 0.95 1.38 1.10 1.20 1.21 1.40 1.41
114 170 2.02 1.34 1.37 1.11 1.06 1.33 0.96 1.02 0.98 1.20 1.17
114 172 2.10 1.43 1.44 1.18 1.13 1.35 0.96 0.99 0.94 1.17 1.11
114 180 2.49 1.82 1.79 1.56 1.50 1.57 1.10 1.07 0.95 1.08 1.03
114 184 2.70 2.04 1.98 1.77 1.71 1.74 1.25 1.20 1.06 1.14 1.08
114 196 3.37 2.71 2.61 2.46 2.37 2.36 1.82 1.73 1.59 1.55 1.48
114 214 4.38 3.69 3.55 3.48 3.37 3.37 2.76 2.65 2.55 2.40 2.35
114 228 5.12 4.42 4.25 4.23 4.10 4.14 3.47 3.35 3.28 3.09 3.05

Table 4.8 – The same as in table 4.7 but for the protons, covering the nuclear main shells
Nmain = 4 and 5, in 114Fl super-heavy isotopes indicated.

A Mini Summary

At this point we may attempt a first synthetic, semi-qualitative overview.

• Firstly, on the average, the uncertainties increase with increasing ℓ-quantum number
of the level, however:

• Secondly – the fluctuations around this average trend are clearly visible, and:

• Thirdly, at this point only some symptoms of the mechanism can be signalled:

Whenever the experimental information about a given level is not known,
the uncertainty obtained via the Monte-Carlo testing seems to be bigger.
Even though, “intuitively” one may consider this as “something to be ex-
pected”, let us emphasise that there is no explicit mechanism (element in
the algorithm) which could be identified as responsible for this type of cor-
relations.

This trend will need to be verified later using better designed test-constructions.

• The results for the super-heavy nuclei given in the tables reveal a very quick increase
in the uncertainties with an increase of the neutron number at the fixed proton
number. However, the ℓ-dependence of the level widths shows its own tendencies.



4.3.2 Correlation: rc = f(V c) – Its Impact on Uncertainties 89

4.3.2 Correlation: rc = f(V c) – Its Impact on Uncertainties

After establishing the presence of parametric correlations between the central-depth
and the central-radius parameters, which could be written in terms of a simple functional
dependence of the form rc = f(V c), happening to be parabolic, cf. Section 4.1.2, we
will proceed to examining the consequences of its removal from the model. The parameter
elimination in this case consists in expressing the central radius as a function of the central-
depth rc = f(V c) following Eq. (4.3) and Tables 4.3 and 4.4. In this way, rc is no more
considered as a minimisation parameter since its value is given by V c, and instead of
minimising the χ2 over six parameters, we minimise it over five only, viz.:

{V c, ac, λso, rso, aso}π,ν . (4.5)

We have re-run the Monte Carlo simulations under the above conditions with σexp =
600 keV. The results for the neutrons and protons are summarised in Figures 4.17 - 4.19
and Tables 4.9 and 4.10.

Uncertainty Distributions for 208Pb: Comparison for Neutron Levels. Let us
observe, that for the low ℓ-values, comparison of the results in Tables 4.9 and 4.7 indicates
systematically smaller width-values, when the parametric correlation is removed. For ex-
ample for 3p3/2, after elimination, the width decreases more than 26%, from 0.76 MeV to
0.56 MeV. Similarly, in the case of levels 3p1/2, 2g9/2, 3d5/2, 4s1/2 and 3d3/2, the corre-
sponding widths decrease by up to 43%. Concerning the big-ℓ levels we may note that,
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Figure 4.17 – Equivalent to Figure 4.15 but imposing rc
ν = f(V c

ν ), Eq. (4.3). The values of the
FWHM of each distribution can be found in Table 4.7.

on the average, their original widths are preserved. This may possibly be due to the fact
that these levels are more sensitive to the spin-orbit potential and the corresponding spin-
orbit potential parameter correlations and therefore the changes in the central-potential
parametric freedom has less impact on them.

Comparing Levels for 114Fl-Isotopes: Neutrons. Let us begin as before by analysing
the low-ℓ levels but for heavier and heavier nuclei. Note that the widths of 3d5/2, 4s1/2 and
3d3/2 for (Z = 114, N ≤ 184) presented in Table 4.9 are systematically smaller as compared
to the ones shown in Table 4.7, at least up to a neutron number N = 184. Emphasise
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Nmain = 5 Nmain = 6

Z N 2f7/2 1i13/2 1h9/2 3p3/2 2f5/2 3p1/2 2g9/2 1j15/2 1i11/2 3d5/2 4s1/2 2g7/2 3d3/2

82 126 1.02* 1.37* 1.97 0.56* 0.99* 0.61* 0.82* 2.34 1.37* 0.57* 0.45* 1.01* 0.56*

114 164 1.41 1.51 2.54 0.99 1.29 0.98 0.92 1.77 1.71 0.59 0.52 0.99 0.69
114 170 1.57 1.53 2.65 1.15 1.45 1.14 0.81 1.53 1.67 0.35 0.24 0.86 0.48
114 172 1.64 1.56 2.70 1.24 1.53 1.22 0.82 1.47 1.69 0.34 0.20 0.87 0.47
114 180 1.99 1.80 2.96 1.62 1.91 1.61 1.06 1.38 1.86 0.62 0.51 1.07 0.69
114 184 2.18 1.96 3.11 1.83 2.12 1.82 1.23 1.42 2.00 0.83 0.73 1.24 0.88
114 196 2.80 2.52 3.63 2.48 2.77 2.47 1.82 1.76 2.51 1.47 1.37 1.83 1.48
114 214 3.72 3.42 4.47 3.41 3.71 3.40 2.72 2.55 3.37 2.36 2.22 2.73 2.34
114 228 4.40 4.09 5.12 4.08 4.39 4.07 3.37 3.20 4.03 2.99 2.80 3.36 2.90

Table 4.9 – Equivalent to Table 4.7 with which these results should be compared, but imposing
rc

ν = f(V c
ν ). The 208Pb neutron level distribution widths were extracted from the results in

Figure 4.17.

that for 4s1/2 level, the distribution widths decreases for N ≤ 184 in some cases by ∼ 63%
(!). The bigger-ℓ states have slightly improved, for example 2g9/2, whose distributions are
∼ 10% narrower for N ≤ 184.

Moreover: For states corresponding to N > 184, nearly no modifications can be
signalled and this independently of the ℓ-value.

Absolute Limits in Predicting: A New Manifestation of the NO-GO Property.
Comparing the results in Table 4.9, we easily notice that the uncertainties of the levels
grow extremely quickly with increasing neutron number in the super-heavy nuclei illus-
trated. In particular, for nuclei with N > 184, there is practically no difference in terms
of uncertainty widths between Tables 4.7 and 4.9. In contrast to the lighter isotopes in
which removing parametric correlations has lead to an improvement in terms of prediction
uncertainties, for N > 184 the distribution peaks are extremely large and overlapping in
an important manner. Figure 4.18 shows precisely this effect comparing the results ob-
tained for 278Fl and 342Fl nuclei. Whereas for the case of 278Fl uncertainty distributions
can be still differentiated, for the case of 342Fl distribution widths are very broad, making
impossible to conclude something about the model prediction capacities at this zone.
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Figure 4.18 – Equivalent to Figure 4.17 but for the 278Fl super-heavy nucleus (top) and 342Fl
(bottom). The values of the FWHM of each distribution can be found in Table 4.9. Let us
emphasise that the distributions are extremely broad, especially for low-lying levels, with FWHM
between 4 and 5 MeV in the N=5 shell.
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Comparison for 208Pb: Proton Levels. The results for the protons visible from
Fig. 4.19 are similar to those for the neutrons discussed previously. In particular, for the
low-ℓ levels we find systematically narrower uncertainty distributions. More specifically,
for levels 3s1/2, 2f7/2, 2f5/2, 3p3/2 and 3p1/2 we find the uncertainties between 13% and 60%
lower. Similarly to the neutron case – and as expected, the central-potential parameter
correlation-removal has less impact on the high-ℓ orbital energies.
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Figure 4.19 – Equivalent to Figure 4.16 but imposing rc
π = f(V c

π ), Eq. (4.3). The values of the
FWHM of each distribution can be found in Table 4.10.

Nmain = 4 Nmain = 5

Z N 1g7/2 2d5/2 1h11/2 2d3/2 3s1/2 1h9/2 2f7/2 1i13/2 2f5/2 3p3/2 3p1/2

82 126 1.92 1.27 1.17* 1.03* 0.79* 1.32* 0.73* 1.28* 1.06* 0.60 0.76

114 164 1.79 1.10 1.19 0.95 0.73 1.36 0.83 1.20 1.12 0.86 0.99
114 170 2.00 1.34 1.34 1.11 0.91 1.31 0.68 0.99 0.86 0.48 0.64
114 172 2.08 1.43 1.42 1.19 1.01 1.34 0.69 0.96 0.81 0.39 0.54
114 180 2.49 1.87 1.80 1.62 1.46 1.57 0.95 1.03 0.83 0.40 0.44
114 184 2.72 2.10 2.01 1.86 1.70 1.75 1.15 1.16 0.97 0.61 0.60
114 196 3.42 2.81 2.68 2.59 2.44 2.40 1.82 1.73 1.59 1.32 1.28
114 214 4.47 3.85 3.68 3.66 3.50 3.46 2.84 2.71 2.63 2.37 2.33
114 228 5.26 4.61 4.42 4.45 4.28 4.26 3.60 3.45 3.42 3.15 3.10

Table 4.10 – Equivalent to Table 4.8 but imposing rc
π = f(V c

π ). The 208Pb distributions were
extracted from Figure 4.19.

Comparison for 114Fl-Isotopes: Proton Levels. In this case we find also that the
widths decrease mainly in 3s1/2, 2f7/2, 2f5/2, 3p3/2 and 3p1/2 for N ≤ 184 up to 66% in
some cases (for example 3p3/2 with N = 172). Let us specifically notice that the uncertainty
for 1i13/2, despite its big ℓ-value, decreases after central parametric removal and this by
about ∼ 30%.

As in the case of neutrons, the NO-GO point is unavoidable.
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4.3.3 Spin-Orbit Parametric Correlations and Uncertainties

In full analogy with the previous tests of the removal of correlations in the case of
central potential we proceed to remove the spin-orbit parameter correlations with the help
of the function λso = g(aso), following Eq. (4.4) with the parameter values from Tables 4.5
and 4.6, for neutrons and protons, respectively. After verifications related to this particu-
lar couple of parameters we will turn to the effects specific to the dependence on the rso

parameter. We begin with the Monte-Carlo results for σexp = 600 keV.

Correlation λso = g(aso). In this case, since the strength-parameter of spin-orbit
potential is no more considered as a minimisation variable, the χ2 will be minimised over
the following four parameters only

{V c, ac, rso, aso}π,ν . (4.6)

Let us emphasise that in this case we removed two parametric correlations at the same
time, namely rc = f(V c) and λso = g(aso). The results can be found in Tables 4.11 and
4.12 for neutrons and protons, respectively.

Nmain = 5 Nmain = 6

Z N 2f7/2 1h9/2 1i13/2 3p3/2 2f5/2 3p1/2 2g9/2 1j15/2 1i11/2 3d5/2 4s1/2 2g7/2 3d3/2

82 126 0.95* 1.82 1.31* 0.55* 0.76* 0.42* 0.42* 2.15 1.35* 0.38* 0.41* 0.85* 0.57*

114 164 1.34 2.44 1.61 1.00 1.21 0.92 0.86 1.76 1.75 0.58 0.56 0.93 0.68
114 170 1.44 2.46 1.58 1.09 1.30 0.98 0.73 1.51 1.67 0.33 0.25 0.67 0.33
114 172 1.50 2.49 1.60 1.15 1.36 1.04 0.75 1.45 1.66 0.31 0.20 0.64 0.25
114 180 1.82 2.66 1.79 1.50 1.68 1.39 1.01 1.36 1.76 0.62 0.49 0.77 0.43
114 184 2.01 2.79 1.94 1.70 1.88 1.59 1.20 1.41 1.87 0.84 0.71 0.93 0.64
114 196 2.62 3.26 2.48 2.34 2.50 2.23 1.82 1.79 2.33 1.50 1.34 1.52 1.28
114 214 3.55 4.08 3.38 3.27 3.43 3.16 2.75 2.61 3.17 2.40 2.20 2.42 2.15
114 228 4.24 4.72 4.07 3.94 4.11 3.82 3.42 3.27 3.83 3.03 2.79 3.07 2.76

Table 4.11 – Neutron case: Equivalent to Table 4.7, with which these results should be compared,
but imposing λso

ν = g(aso
ν ) in addition to rc

ν = f(V c
ν ).

Nmain = 4 Nmain = 5

Z N 1g7/2 2d5/2 1h11/2 2d3/2 3s1/2 1h9/2 2f7/2 1i13/2 2f5/2 3p3/2 3p1/2

82 126 2.09 1.43 1.15* 1.04* 0.89* 1.27* 0.70* 1.22* 0.92* 0.63 0.77

114 164 1.93 1.21 1.17 0.93 0.76 1.34 0.83 1.22 1.05 0.89 0.99
114 170 2.22 1.51 1.35 1.15 1.01 1.32 0.69 1.01 0.74 0.49 0.59
114 172 2.33 1.62 1.43 1.25 1.13 1.35 0.71 0.98 0.67 0.40 0.47
114 180 2.80 2.12 1.86 1.73 1.63 1.63 1.04 1.08 0.76 0.42 0.36
114 184 3.04 2.37 2.10 1.99 1.89 1.83 1.27 1.24 0.93 0.65 0.56
114 196 3.79 3.14 2.84 2.77 2.68 2.52 2.01 1.89 1.61 1.41 1.30
114 214 4.89 4.26 3.94 3.91 3.82 3.62 3.11 2.96 2.70 2.53 2.42
114 228 5.70 5.07 4.76 4.74 4.65 4.45 3.93 3.77 3.52 3.35 3.24

Table 4.12 – Similar to that in Table 4.11 but for the protons.
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Correlation λso = g(aso) – Neutrons: Observations and Discussion

Comparison for 208Pb: Neutron Levels. Comparing the results of Table 4.11 with
the ones in Table 4.9 we note that the uncertainty widths indeed decreased for some levels.
This is mainly the case for 2f5/2, 3p3/2, 2g9/2, 3d5/2 and 2g7/2 orbitals. However, big-ℓ
orbitals are almost not impacted by the removal of this particular parametric correlation.
At this point we should recall that there still exists yet another, third parametric correlation
which have been recognised in the form of two-centre correlation distributions nicknamed
compact-vs.-non-compact spin-orbit solutions – and the removal of this one was not yet
considered.

Comparison for 114Fl-isotopes: Neutron Levels. Concerning the results for these
super-heavy elements, no major changes can be noticed as compared to the results in Ta-
ble 4.9. In this case, only 2g7/2 and 3d3/2 orbitals seem to have been impacted by the
parameter removal and once again the NO-GO property seems to be present for N > 184.

Correlation λso = g(aso) – Protons: Observations and Discussion

Comparison for 208Pb and 114Fl-isotopes: Proton Levels. In this case, it will be
instructive to compare the results for 208Pb and 114Fl at the same time. Results for the
protons in Table 4.12 do not seem very encouraging. All the widths increased as compared
to the results in Table 4.10. One may associate this effect with the fact, that the presence
of the Coulomb potential influences significantly the shape of the WS central potential and
in particular the effective diffusivity thereof.

Another difference between the neutrons and protons can be associated with the fact
that we know experimentally the energies of 11 orbitals in the first case and only 7 in
the second. Since we discovered empirically, as discussed earlier, that the level widths for
the orbitals whose energies are not known experimentally have a tendency to be broader
– some systematic effect of worsening in terms of the level widths in the protons is to be
expected.
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4.3.4 Comments – Diffusivity of the Central Potentials: ν-vs.-π

Figure 4.20 shows separately the profile of the WS-central and electrostatic potentials
for the protons (green and purple solid lines, respectively), together with their sum (red
solid line) which is to be compared with the neutron WS-central potential (blue). Large
differences between the neutron (blue line) and the proton (red line) potentials visible
from the right panel deserve noticing. They show that the proton-potential diffuseness-
parameter should be systematically much bigger in order to provide finally similar profiles
for the protons and neutrons – wherefrom an extra systematic impact.
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Figure 4.20 – Potential profiles as functions of r. Blue and green lines represent the Woods-Saxon
central potential, cf. Eq. (2.4), for neutrons and protons, respectively. Purple line represents the
Coulomb (electrostatic) potential for protons, cf. Eq.(2.10). Red curves represent the sum of
the WS central potential and the electrostatic contribution for protons. Right panel is just an
expansion on the y-axis of the left one. The parameter values used to obtain them come from
Figures 4.1 and 4.2.

This clearly indicates that the Coulomb radius should be treated as an independent
parameter, but it was not our priority at this time to enter this issue as commented earlier.
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4.3.5 Correlation in the Form of Two-Center Distribution

When eliminating the parametric correlations as discussed so far we were confronted
with the simplest possible position of the problem: We had the correlations in the ‘one-
to-one’ functional form in terms of two couples of parameters, i.e. either rc = f(V c) for
the central-, or λso = g(aso) for the spin-orbit potentials. However, the correlations in-
volving parameters rso and λso have a different structure of ‘double-bubble bi-dimensional
distributions’ and cannot be treated in the same way. In this sense we encounter a new
situation: parametric correlations which cannot be represented in a ‘classical form’ of the
type y = f(x) since the correlations are represented by two distributions centred around
two distant points: Here in the (aso, rso)-plane. Following the results in Figures 4.11-4.14
we can define the couples (aso, rso)comp. and (aso, rso)non−comp., whereas from Eq. (4.4) we
determine in addition λso

comp. and λso
non−comp.. The final combinations are given in Table 4.13.

Type/name rso
ν [fm] λso

ν [MeV fm2/~2] aso
ν [fm]

compact 0.93 30.0 0.46
non-compact 1.22 28.0 0.25

Table 4.13 – Compact and non-compact solutions for neutron spin-orbit parameters obtained
from the Monte-Carlo results of Figures 4.11-4.14.

We have re-run the Monte-Carlo simulations two more times for the neutrons:

• Fixing the three spin-orbit parameters to their compact solution, and

• Fixing the three spin-orbit parameters to their non-compact solution.

Under these conditions, the final minimisation parameters are:

{V c, ac}ν . (4.7)

In the next section we will discuss the results of the full parameter elimination taking
into account the just presented two centre correlations in their ‘compact’ and ‘non-compact’
configurations.
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4.4 Full Elimination of Parametric Correlations

In this section we discuss the effects of the complete removal of all the parametric
correlations detected in the studied Hamiltonian. We begin by analysing the results for
208Pb, extending the discussion for the super-heavy 114Fl-isotopes in the second step.

4.4.1 Monte Carlo Results for 208Pb: Neutrons

In what follows we will present the results of the consecutive, step-by-step parametric
correlation removal by testing the removal’s impact on the neutron levels in 208Pb. The
results will be presented in the form of a series of tables, which will serve as the basis for
comparisons. The structure of the tables is as follows:

• Row no. 1: Results of the Monte Carlo calculations with all the 6 parameters of
the Hamiltonian considered independent and thus minimising the χ2 in the full 6-
dimensional space;

• Row no. 2: We impose rc
ν = f(V c

ν ) thus eliminating the central-potential radius-
parameter from the minimisation which is performed in this case in a 5-dimensional
subspace of the original space;

• Row no. 3: We keep the preceding condition activated and add an extra one by im-
posing λso

ν = g(aso
ν ), in which case the minimisation is performed in the 4-dimensional

space spanned by the remaining parameters;

• Row no. 4: We keep both preceding conditions simultaneously activated and add
the first (rso, λso)maxleft

constraint from the ‘double-bubble’ distribution (compact
solution); now, since λso is a function of aso the χ2 is minimised in a 2-dimensional
space only;

• Row no. 5: The same as 4, but fixing the constraint as (rso, λso)maxright
(non-compact

solution).

Table 4.14 shows the 208Pb results for the neutron levels around the N = 126 shell
closure. In the present test we consider the levels which are in majority known experimen-
tally – except for two; those known are marked with the asterisks. Results indicate that
the uncertainty-widths decrease systematically for the big majority of levels presented in
this Table (except for 2g9/2 and 4s1/2), down to the ‘compact constraint’, line no. 4. One
may notice that whereas the widths of the levels corresponding to small ℓ-values decrease
approximately by a factor of two, the similar variation associated with the higher ℓ-levels
is much smaller – yet strictly speaking no general rule has been established.

Comparison of the results in the last two rows indicates strong irregularities for nearly
a half of the considered levels, but the root-mean-square deviations remain nearly un-
changed and always below 20 keV. The results for the two experimentally unknown levels
in Table 4.14, i.e. 1h9/2 and 1j15/2, seem very encouraging: their uncertainty widths de-
crease by more than 50% (!) – a signal of a significant improvement of the predictive
power.
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Let us observe that the differences between the compact and the non-compact variants
are important and far from systematic. This implies that the mechanism in question should
be studied more in detail e.g. when extending the number of nuclei for which the present
analysis is performed. Let us remark in passing that the two maxima of the ‘double-bubble’
structure correspond to two local χ2-minima as tested in the PhD project of B. Szpak [25];
thus the presence of such two solutions can be seen as an opportunity to be explored
especially when richer experimental information will allow for more advanced tests on the
r.m.s. and R.M.S. level.

Nmain = 5 Nmain = 6

2f7/2∗ 1i13/2∗ 1h9/2 3p3/2∗ 2f5/2∗ 3p1/2∗ 2g9/2∗ 1j15/2 1i11/2∗ 3d5/2∗ 4s1/2∗ 2g7/2∗ 3d3/2∗ r.m.s. Inv

1.09 1.38 1.99 0.76 1.04 0.77 0.98 2.39 1.39 0.88 0.79 1.13 0.83 0.16 1
1.02 1.37 1.97 0.56 0.99 0.61 0.82 2.35 1.37 0.57 0.45 1.02 0.56 0.16 0
0.95 1.31 1.82 0.55 0.76 0.42 0.42 2.15 1.35 0.38 0.41 0.85 0.57 0.16 0
0.50 1.18 0.96 0.28 0.54 0.36 0.44 0.98 1.34 0.32 0.40 0.09 0.38 0.18 0
0.79 1.27 1.85 0.56 0.41 0.10 0.25 1.88 1.02 0.26 0.41 0.98 0.72 0.29 0

Table 4.14 – The FWHM values [in MeV] associated with the neutron single particle uncertainty
distributions for the main shells Nmain = 5 and 6 in 208Pb. The resulting r.m.s.-deviations [in
MeV], cf. Eq. (3.30), are given in the last but 1 column. The last column controls the level
ordering: except for the first variant, line no. 1, where one level inversion is reported, in all other
cases all the theory levels respect the experimental order. The content of each row has been
defined in the list of 5 items at the beginning of this section. The asterisks indicate the levels
which are known experimentally, thus included when minimising the χ2-test.

We continue the analysis with an extension to the deeply-bound neutron main shells
for 208Pb. These results are given in Tables 4.15 and 4.16. Notice that in both tables, the
distribution-widths get narrower when all the parametric correlations are eliminated and
the spin-orbit radius-parameter is fixed to its compact solution.

Nmain = 3 Nmain = 4

2p3/2 1f5/2 2p1/2 1g9/2 2d5/2 1g7/2 1h11/2 2d3/2 3s1/2

3.11 4.07 3.07 2.87 2.02 3.14 1.82 1.96 1.76
3.11 4.12 3.09 2.83 2.01 3.16 1.80 1.94 1.74
2.82 3.55 2.77 2.70 1.81 2.78 1.78 1.73 1.57
1.85 1.79 1.60 1.85 1.20 1.13 1.50 1.01 1.00
2.31 3.20 2.59 1.45 1.45 2.56 1.02 1.62 1.34

Table 4.15 – The same as Table 4.14 but for the neutron levels within Nmain = 3 and 4 shells.
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Nmain = 0 Nmain = 1 Nmain = 2

1s1/2 1p3/2 1p1/2 1d5/2 1d3/2 2s1/2 1f7/2

6.28 5.53 5.50 4.73 4.79 4.24 3.86
6.31 5.53 5.57 4.70 4.86 4.26 3.81
5.75 5.09 4.94 4.38 4.21 3.86 3.59
3.47 3.02 3.09 2.59 2.51 2.38 2.21
3.70 4.15 4.36 3.29 3.80 3.29 2.33

Table 4.16 – The same as Table 4.14 but for the neutron levels within Nmain = 0, 1 and 2 shells.

Preliminary Conclusions: We can summarise the results presented so far by saying that
the removal of the parametric correlations diminishes the uncertainties of the predictions
for the majority of the single nucleon levels and that the effect is particularly strong for the
deeply bound states for which (no experimental information available there) the uncertainty
widths are particularly big to start with. Within this average trend there are important
fluctuations what implies that when it comes to discussing particular problems, e.g. in
relation any given experiment, the analysis must be performed on the case-by-case basis.
Results presented in Table 4.14 show that the spin-orbit compact configuration gives a
better description in terms of r.m.s.-deviation than the non-compact one as well as in
terms of uncertainty widths. The latter conclusion holds not only for the results presented
in Table 4.14 but also for the low energy levels in Tables 4.15 and 4.16.

4.4.2 Results for the Single 208Pb Nucleus Tests: Summary

We find it instructive to compare the calculated and experimental single nucleon en-
ergies when minimising the χ2 in the space of the only two remaining independent param-
eters4, cf. eq. (4.7). The results are given Figure 4.21. Even though the r.m.s.-deviation is
slightly worse when working with really independent parameters only, r.m.s = 0.20 MeV
instead of 0.16 MeV, nevertheless:

We arrive at reducing the global R.M.S.-deviation for the 8 known spherical
nuclei from 1.86 MeV to 1.56 MeV, an encouraging measure of improvement of
the predictive power.

Moreover, we arrived at eliminating the inversion originally present in Figure 4.1 between
levels 4s1/2 and 2g7/2.

Control Test of Parametric Elimination. We may expect that if the parametric
correlations present in the original central potential have been successfully removed, the
remaining free parameters should present no correlations in the final parameter-adjustment
test. Figure 4.22 shows the corresponding test for the neutrons. The related Pearson
coefficient being very close to zero informs us that there are no linear correlations left
among the two parameters what allows us, for aesthetic reasons, to select the axis units
in such a way that the final ‘dot-plot’ represents radial symmetry – just better visualising
the fact that there are all originally present correlations removed in this case.

4Recall that the correlation of the form y = f(x) can usually also be expressed in the form x = x(y),
and it is up physicist to select one of the two alternative forms according to some convenience criteria.
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The Differences with the Proton Case. An analogous test for the protons shows that
according to Pearson coefficient, whose value remains at the level of 0.5, the parametric
correlations have not been eliminated. This confirms our earlier conjecture that by fixing
the Coulomb potential as parameter-free, we also impact rigidly the diffusivity properties of
the full (nuclear plus Coulomb) potential. In other words, the diffusivity of the full potential
is influenced “by an external element” viz. the fixed Coulomb term, and thus ‘diffusivity
coupling’ with the remaining parameters of the Hamiltonian is different as compared the
neutrons. As mentioned earlier, taking this mechanism fully into account would require
either a new extra parameter related to the Coulomb part or changing the definition of
the Coulomb potential and calculating it out of the single-proton wave functions. Such
techniques are discussed separately in the next Chapter and we intend to focus on those as
much more promising ones for the large scale nuclear structure calculations – as compared
to the fully phenomenological (traditional Woods-Saxon) approach.
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4.5 Prediction Results for Neutrons in 114Fl-Isotopes

In this section we present the results of our predictions for the isotopes of 114Fl using
the full-scale parameter-correlation removal-techniques discussed in the preceding sections
– thus with the effective parametric freedom of the Hamiltonian reduced to two parameters:
V c

0 and ac
0. The corresponding uncertainty distribution-widths are presented in Table 4.17

and Table 4.18 for compact and non-compact solutions, respectively.

In the preceding sections we arrived at the conclusion that for the 208Pb nucleus the
most stable predictions are obtained for the compact variant of the spin-orbit potential
parametrisation. The similar conclusion will be reached in the case of neutrons in various
isotopes of Flerovium.

Comparing the results in Tables 4.17 and 4.18 with results in Table 4.7, one notices
that the levels widths for 2f7/2, 1h9/2, 2f5/2, 3p3/2, 3p1/2, 1i11/2, 3d5/2, 4s1/2 and 3d3/2 are
narrower for the compact solution. Specifically one finds that for the 1h9/2 level the results
differ by about 50% between the two solutions. At the same time the results for the level
1i13/2 seem to be comparable with a slight preference for the non-compact solution.

Finally, let us mention a certain specificity noticed for 2g9/2, 1j15/2 and 2g7/2 levels. As
it turns out, for N ≤ 184 these levels are narrower in the case of the non-compact solution
whereas the tendency is inverted for N > 184.

Nmain = 5 Nmain = 6

Z N 2f7/2 1i13/2 1h9/2 2f5/2 3p3/2 3p1/2 2g9/2 1i11/2 1j15/2 3d5/2 4s1/2 2g7/2 3d3/2

114 164 0.92 1.42 1.14 0.89 0.72 0.76 0.71 1.39 1.23 0.51 0.48 0.61 0.48
114 170 0.90 1.43 1.02 0.88 0.68 0.74 0.49 1.18 1.17 0.23 0.22 0.51 0.23
114 172 0.93 1.46 1.01 0.91 0.70 0.77 0.45 1.13 1.17 0.16 0.17 0.53 0.18
114 180 1.11 1.63 1.06 1.11 0.90 0.98 0.50 1.00 1.29 0.32 0.33 0.73 0.38
114 184 1.24 1.74 1.15 1.24 1.04 1.12 0.63 1.00 1.40 0.49 0.50 0.89 0.54
114 196 1.69 2.17 1.52 1.72 1.52 1.60 1.09 1.21 1.82 1.00 0.97 1.39 1.04
114 214 2.41 2.88 2.20 2.45 2.23 2.32 1.80 1.77 2.53 1.69 1.63 2.12 1.71
114 228 2.93 3.43 2.72 2.99 2.75 2.84 2.31 2.25 3.08 2.17 2.08 2.65 2.18

Table 4.17 – Realistic Monte Carlo results for the FWHM [in MeV] of the probability distributions
of the neutron levels within main shells Nmain = 5 and 6 for different super-heavy 114Fl-isotopes.
They have been obtained imposing rc

ν = f(V c
ν ) and compact spin-orbit parameters.

Nmain = 5 Nmain = 6

Z N 2f7/2 1h9/2 1i13/2 3p3/2 2f5/2 3p1/2 2g9/2 1j15/2 1i11/2 3d5/2 4s1/2 3d3/2 2g7/2

114 164 1.03 2.16 1.31 0.90 1.12 0.77 0.67 1.90 1.58 0.50 0.50 0.77 0.74
114 170 1.11 2.32 1.10 0.96 1.22 0.79 0.60 1.59 1.69 0.39 0.23 0.44 0.47
114 172 1.16 2.38 1.06 1.02 1.27 0.83 0.63 1.50 1.75 0.42 0.18 0.34 0.42
114 180 1.46 2.69 1.03 1.32 1.57 1.13 0.91 1.23 2.04 0.71 0.42 0.21 0.45
114 184 1.64 2.86 1.09 1.50 1.74 1.31 1.10 1.18 2.21 0.90 0.61 0.36 0.60
114 196 2.21 3.40 1.45 2.06 2.29 1.87 1.70 1.28 2.76 1.46 1.17 0.91 1.17
114 214 3.07 4.22 2.19 2.90 3.11 2.69 2.56 1.81 3.61 2.26 1.92 1.67 2.00
114 228 3.69 4.84 2.78 3.50 3.72 3.29 3.18 2.31 4.24 2.83 2.45 2.20 2.57

Table 4.18 – Similar to Table 4.17 but for non-compact spin-orbit parameters.
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• For the final summary-comparison, Figures 4.23, 4.24 and 4.25 below illustrate the
results of Tables 4.7 and 4.17 for 278

114Fl164, 298
114Fl184 and 342

114Fl228, respectively.

• Results in Figures 4.23 - 4.25 show that the removal of the parametric correlations
(bottom panels) leads to a decrease of the N = 114 gap. This result shows that predictions
for the N = 114 gap are sensitive to details in the present-day experimental information
and, consequently, a new experimental input may play a decisive role at the present status
of the analysis.

• In reference to the results in Fig. 4.25 one can remark that we are at the NO-GO
limit: even if the distribution-widths decrease, their sizes are still so large that there exist
big overlaps among them.
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Figure 4.23 – Neutron probability density distributions for 278Fl fitting with full parametric
freedom (top) and after full parametric correlation removal, imposing compact spin-orbit solution
(bottom). The values of the corresponding FWHM can be found in Tables 4.7 and 4.17 for top
and bottom results, respectively.
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Figure 4.24 – Similar to Figure 4.23 but for 298Fl.
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Figure 4.25 – Similar to Figure 4.23 but for 342Fl.
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4.6 Experimental Errors and Modelling Uncertainties

In the previous sections we have discussed the uncertainty distributions of single-
nucleon energy-levels. They were obtained using Monte-Carlo method assuming a com-
mon error of 600 keV for all the experimentally known levels. We have shown that the
uncertainty distributions resemble very closely the Gaussian form and that their widths
decrease significantly when correlations are removed. The strongest improvement was ob-
tained when the correlations including the spin-orbit radius parameter were eliminated.

It can be expected, and our preliminary results confirmed this expectation, that when
the experimental error bars decrease, certain alternative forms of the uncertainty distribu-
tions appear thus revealing possibly interesting new stochastic features generated by the
realistic Hamiltonians. This part of the research program is important since the ultimate
goal of the instrumental progress is to increase the precision – thus to decrease the error
bars. Should the stochastic features of the inverse-problem based modelling – like ours –
change importantly, when the precision increases, to study such stochastic effects should
be one of the first goals. Therefore it will be instructive to focus now on the limiting case
of very small experimental error bars. We will take as a model of an excellent experimen-
tal precision the σexp = 50 keV case and illustrate in detail the forms of the uncertainty
distributions the goal being to focus on the possibly non-Gaussian structures.

Figure 4.26 illustrates the uncertainty distributions for the neutron single particle
energies in 208Pb around N = 126. These distributions where generated using Monte-
Carlo simulation with the experimental errors represented by σexp = 50 keV. Minimisation
over the full set of the six Hamiltonian parameters has been employed in this case. A clear
appearance of the double-hump structure histograms deserves emphasising. Such an effect
may be induced by parametric correlations but if real – it may cause serious complications of
the stochastic interpretation of the theory predictions. Indeed, strictly speaking a double
hump structure of the probability distribution implies that two theoretical energy levels
with the same quantum number characteristics, e.g. 2f7/2, are possible within the model.
Similar mechanism has been signalled in the PhD thesis of B. Szpak [25], and was attributed
to the parametric correlations among in the spin-orbit parameters of the Hamiltonian but
it was not investigated further. Let us also remark that the appearance of these double-
hump structures does not depend on whether the predicted level is or not experimentally
known.



4.6 Experimental Errors and Modelling Uncertainties 107

208

82
Pb

126

-11 -10 -9 -8 -7

Neutron Energy (MeV)

0

2

4

6

8

10

P
ro

b
a
b
il
it
y

D
en

si
ty

2f7/2 1i13/2 1h9/2 2f5/2 3p3/2 3p1/2

208

82
Pb

126

-5 -4 -3 -2 -1

Neutron Energy (MeV)

0

2

4

6

8

10

P
ro

b
a
b
il
it
y

D
en

si
ty

2g9/2 1i11/2 1j15/2 3d5/2 4s1/2 2g7/2 3d3/2

Figure 4.26 – Realistic Monte-Carlo calculations showing the probability density distributions
for the neutron levels of 208Pb within the main shells Nmain = 5 (top) and 6 (bottom). The
simulations have been run imposing σexp = 50 keV to the neutron single particle energies ex-
perimentally known (solid vertical bars) for 208Pb and minimising the χ2 over the full set of
Hamiltonian parameters. The surface under each curve is equal to 1.

In what follows we will investigate the evolution of these relatively complex stochastic
structures with the removal of various forms of parametric correlations.
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Imposing rc
ν = f(V c

ν ) Removal: Results with Five Independent Parameters.
As demonstrated with the results in Figure 4.3, the parabolic dependence between the
central-depth and the central-radius parameters does not depend on σexp, at least in any
important manner. Figure 4.27 illustrates the results obtained when imposing rc

ν = f(V c
ν )

showing that the double-hump structures become markedly asymmetric. In Figure 4.27
the right peak of 2f7/2, 1h9/2, 1j15/2 and 3d3/2 is narrower than in the case of Figure 4.26.
On the other hand, 2f5/2 and 3d5/2 seem to narrow their right peak. This may help us
understand why there was no much difference between Table 4.7 and Table 4.9.
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Figure 4.27 – The same as Figure 4.26 but imposing rc
ν = f(V c

ν )

The above simple comparison suggests that the parameter-correlation removal may
have important impact on the for of the corresponding profiles thus encouraging to proceed
with the removal of the remaining parametric correlations related to the spin-orbit term
in the Hamiltonian; this will be done as before using the following information.

Type/name rso
ν [fm] λso

ν [MeV fm2/~2] aso
ν [fm]

compact 0.93 30.0 0.60
non-compact 1.22 28.0 0.35

Table 4.19 – Compact and non-compact solutions for neutron spin-orbit parameters obtained
from the Monte-Carlo results with σexp = 50 keV of Figures 4.11-4.14.
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In what follows, we will present the Monte-Carlo result when minimising the χ2 over

{V c
ν , ac

ν} (4.8)

Removing All Parametric Correlations: Compact Solution. Figure 4.28 shows
the neutron energy distributions when in addition the central correlation, the spin-orbit
correlations are removed imposing the compact solution. one notices that the double-hump
structures have completely disappeared whereas all the peaks take the form resembling a
single-Gaussian. The widths of the distributions are now much narrower as compared to
the ones in Figure 4.26.
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Figure 4.28 – The same as Figure 4.26 but imposing rc
ν = f(V c

ν ) and compact spin-orbit solution,
cf. Table 4.19.
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Removing All Parametric Correlations: Non-Compact Solution. In the case of
the non-compact variant of the parameter removal the double-hump structure disappears
as well – even though the details of the characteristics of each distribution as well as the
centre-positions of the distributions differ.
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Figure 4.29 – The same as Figure 4.26 but imposing rc
ν = f(V c

ν ) and non-compact spin-orbit
solution, cf. Table 4.19.

In the present approach to the parametric-correlation removal the two viz. compact and
non-compact variants are permitted by the model: Both serve efficiently the mathematical
goal ‘of removing correlations’ and are mathematically both equally acceptable.

It is then up to the physicist to choose between one of the two according to some
‘physics based’ criteria. Let us remark in passing that the compact configuration seems to
give better results in terms of the root-mean-square deviations; however, these predictions
may depend on the sampling what evidently encourages the search of new observables
possible to include.
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4.7 Annexe A: Synthetic ‘Quick-Look’ Comparison

In what follows we present a series of graphical illustrations which essentially
repeat the information already presented in the preceding Sections. The purpose
here is to change the scale and putting the right diagrams next to each other in
order to allow for a quick conclusive comparison:
• Disappearance of the double-hump distributions,
• Narrowing of single-Gauss-type distributions when correlations are removed.

208Pb: Parametric Correlation Removal Effect – A Summary for Nmain = 5
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Figure 4.30 – Neutron probability distributions for 208Pb in main shell Nmain = 5 for σexp =
50 keV. Top: full parametric freedom (six parameter minimisation); Middle: removing all possible
parametric correlation, imposing compact spin-orbit solution (two parameter minimisation); Bot-
tom: removing all possible parametric correlation, imposing non-compact solution (two parameter
minimisation). The solid vertical lines indicate the experimental position the corresponding level.
The surface under each curve is equal to 1.
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208Pb: Parametric Correlation Removal Effect – A Summary for Nmain = 6
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Figure 4.31 – The same as Figure 4.30 but for the neutron levels corresponding to the main shell
Nmain = 6.
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278
114Fl: Parametric Correlation Removal Effect – A Summary for Nmain = 5, 6
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Figure 4.32 – Realistic Monte-Carlo calculations showing the probability density distributions
for the 278Fl neutron levels within the main shells Nmain = 5 (left column) and 6 (right col-
umn), applying σexp = 50 keV. Top row: full parametric freedom (six parameter minimisation;
middle row: all parametric correlations removed, imposing compact spin-orbit solution (2 param-
eter minimisation); bottom row: equivalent to middle row but imposing non-compact spin-orbit
solution.
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298
114Fl: Parametric Correlation Removal Effect – A Summary for Nmain = 5, 6
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Figure 4.33 – Similar to Figure 4.32 but for 298Fl.
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242
114Fl: Parametric Correlation Removal Effect – A Summary for Nmain = 5, 6

342

114
Fl

228

-14 -13 -12 -11 -10 -9 -8

Neutron Energy (MeV)

0

1

2

3

4

5

P
ro

b
a
b
il
it
y

D
en

si
ty

1i13/2 2f7/2 1h9/2 2f5/2 3p3/2 3p1/2

342

114
Fl

228

-9 -8 -7 -6 -5 -4 -3

Neutron Energy (MeV)

0

1

2

3

4

5

P
ro

b
a
b
il
it
y

D
en

si
ty

1j15/2 2g9/2 1i11/2 3d5/2 2g7/2 4s1/2 3d3/2

342

114
Fl

228

-14 -13 -12 -11 -10 -9 -8

Neutron Energy (MeV)

0

1

2

3

4

5

P
ro

b
a
b
il
it
y

D
en

si
ty

1i13/2 2f7/2 1h9/2 2f5/2 3p3/2 3p1/2

342

114
Fl

228

-9 -8 -7 -6 -5 -4 -3

Neutron Energy (MeV)

0

1

2

3

4

5

P
ro

b
a
b
il
it
y

D
en

si
ty

1j15/2 2g9/2 1i11/2 3d5/2 2g7/2 4s1/2 3d3/2

342

114
Fl

228

-14 -13 -12 -11 -10 -9 -8

Neutron Energy (MeV)

0

1

2

3

4

5

P
ro

b
a
b
il
it
y

D
en

si
ty

1h9/2 2f7/2 1i13/2 3p3/2 2f5/2 3p1/2

342

114
Fl

228

-9 -8 -7 -6 -5 -4 -3

Neutron Energy (MeV)

0

1

2

3

4

5
P

ro
b
a
b
il
it
y

D
en

si
ty

1j15/2 2g9/2 1i11/2 3d5/2 2g7/2 4s1/2 3d3/2

Figure 4.34 – Similar to Figure 4.32 but for 342Fl.
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4.8 Annexe B: Comments About Detecting Correla-
tions

Concerning the techniques of studying parametric correlations, we have presented and
employed one of the methods of detecting their presence and their form using Monte Carlo
approach. Such an approach is based on collecting the statistics: ‘The longer the CPU
simulation time the more viable the resulting information’. The advantage of this technique
consists in the fact that the experimental input errors are taken into account ‘naturally’:
Their presence is an essential element of this stochastic approach.

An alternative approach consists in constructing the projection of the r.m.s.-deviation
onto parameter planes (pi, pj). For this purpose, one tabulates the χ2 using these two
parameters as independent variables, while minimising the χ2 at each (pi, pj)-point over
the remaining ones. The input consists in the experimental energy spectra where no infor-
mation about the uncertainties (error-bars) is present.
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Figure 4.35 – Parametric correlation between spin-orbit radius and spin-orbit strength for the
neutrons. Left panel shows realistic Monte Carlo simulations with the colour scale indicating
the concentration of data points. Right panel: Projection of the r.m.s.-deviations onto the two
dimensional plane with the colour scale representing the r.m.s.-values.

Figure 4.35 compares the two, in principle non-equivalent ways of testing for the
presence of parametric correlations. On the left panel, the colour scale represents the
concentration of points. On the right panel, the colour scale indicates the actual value of
the r.m.s.-deviation. As it can be seen from this comparison the ‘double-bubble’ structure
is present in both representations – yet graphical differences are visible. In particular, the
bigger concentration of black dots around rso

ν -compact solution on the left panel translates
into a steeper valley for the compact solution on the right panel – whereas in the case of
the non-compact solution the flatter distribution of points translates into a flatter energy
landscape.



Chapter 5

Density-Dependent Spin-Orbit
Potential: Parameter Optimisation

Let us briefly remind the reader about the definitions of the spin-orbit interaction
potentials used in this project. It will be instructive to re-introduce the definition of
the traditional form first in order to appreciate clearly the mathematical similarities and
differences between the traditional and the new one, referred to as microscopic – or density
dependent – spin-orbit interaction.

5.1 Short Summary of Mathematical Details

Let us recall first the mathematical form of the spin-orbit interaction in the framework
of the analytical expressions of the potentials according to the traditional formulation of
the Woods-Saxon Hamiltonian.

5.1.1 Traditional Form of the Spin-Orbit Potential

It is by definition proportional to the scalar product of the orbital angular momentum
and the intrinsic spin operators (where from its name):

V̂SO(þr ) → V̂SO(r)
df.
=

1

r

dvso(r)

dr
þℓ · þs (5.1)

where the radial nucleonic-position dependent form-factor is defined by

vso(r)
df.
=

λso

1 + exp [(r − Rso)/aso]
. (5.2)

Adjustable parameter λso represents the strength of the spin-orbit interaction potential,
rso in Rso = rsoA1/3 is the spin-orbit radius parameter and aso, the spin-orbit diffuseness
parameter. The operators of the intrinsic spin þs and of orbital angular-momentum þℓ give
the total angular momentum þ represented by the simple sum:

þs + þℓ = þ, (5.3)

wherefrom
þℓ · þs =

1

2
(þ 2 − þs 2 − þℓ 2). (5.4)

117
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Acting with þℓ · þs on the eigenstates of ̂2, ℓ̂2 and ŝ2 we find the result of its action in the
form

þℓ · þs ≡ 1

2
[j(j + 1) − ℓ(ℓ + 1) − s(s + 1)] . (5.5)

This latter form of the considered expression will be common for both the traditional and
for the microscopic formulation; the latter will be briefly presented next.

5.1.2 Density-Dependent Form of the Spin-Orbit Potential

Recall that according to the microscopic background of the mean-field theory the
elementary building blocks of the one-body potential are provided by the effective two-
body interaction v̂N−N(þr − þr ′). The mean-field interaction V (þr ) originating from the
two-body interaction1 has the form introduced already in Chapter 2:

V (þr ) ∼
∑

i

∫

Ψ∗
i (þr

′ )v̂N−N(þr − þr ′)Ψi(þr
′) d3þr ′, (5.6)

where Ψi(þr
′) are the single-nucleon wave functions. In what follows we use the isospin-

conservation property which allows to represent the full nucleonic density as a sum of the
proton and neutron contributions

ρ(þr ) → ρ (r) =
∑

i

|Ψi(r)|2 = ρπ(r) + ρν(r). (5.7)

Above, ρπ/ν(r) refer to the proton/neutron density functions, respectively. Details of the
mathematical derivation of the final expression for the density-dependent spin-orbit poten-
tial can be found in [29], where it is shown that introducing Taylor expansion

ρ(r′) ≃ ρ(r) + (r − r′) · ∇ρ|r=r′ , (5.8)

one obtains the spin-orbit interaction potential in the form:

V̂SO(r) = λ
1

r

dρ(r)

dr
þℓ · þs. (5.9)

Above, λ is the spin-orbit interaction strength parameter. Since the nucleonic density is
the sum of the proton and neutron contributions, we obtain the following final form of the
spin-orbit potential: The one acting on the protons:

V̂ π
SO(r) =

1

r

[

λππ
dρπ(r)

dr
+ λπν

dρν(r)

dr

]

(þℓ · þs )
∣
∣
∣
π

, (5.10)

and the one acting on the neutrons:

V̂ ν
SO(r) =

1

r

[

λνπ
dρπ(r)

dr
+ λνν

dρν(r)

dr

]

(þℓ · þs )
∣
∣
∣
ν
. (5.11)

1Let us mention in passing that at this point we wish to summarise a schematic approach used in
Ref. [29] to justify the microscopic extension of the phenomenological spin-orbit Woods-Saxon Hamiltonian
into the form of Eqs. (5.9-5.11). This can in no way pretend addressing the formal solution of the many-
body problem with any, so-called realistic assumptions about the mathematical representation of such
interactions [the presence of the hard-core and healing distance mechanisms, diagrammatic techniques,
etc.].
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With this new formulation we describe the spin-orbit potential with 4 parameters for
protons and neutrons {λππ, λπν , λνν , λνπ}, instead of 6 parameters within the traditional
formulation.

Since the numerical calculation of the spin-orbit potential depending on the density
requires an iterative procedure towards auto-reproduction and that, for this new formula-
tion, the protons and neutrons need to be taken into account at the same time, the CPU
demand in this case it is considerably higher than in the traditional version.

5.2 Density-Dependent S-O: Parametric Correlations

Similarly to the presentation scheme introduced in the preceding Chapter we will begin
by analysing the ill-posedness of the problem with the density-dependent description of the
spin-orbit potential with the help of the condition number.

5.2.1 About Ill-Posedness: S.V.D. Theorem, Condition Number

In order to obtain the ‘first glance’ estimates of the quality of the description capacities
of the new formulation vs. experimental data we adjust simultaneously the ten parameters
of the new Hamiltonian

{V c
π , rc

π, ac
π, V c

ν , rc
ν , ac

ν , λππ, λπν , λνν , λνπ} (5.12)

to the experimentally known neutron and proton single particle energies in 208Pb, cf.
Tables 2.2 and 2.3. Figures 5.1 and 5.2 show the results. The optimal parameter val-
ues are given inside the frames together with the root-mean-square deviations, defined
in Eqs. (3.30)–(3.32). The r.m.s.-deviations for neutrons and protons are 0.16 MeV and
0.08 MeV, respectively (cf. Figures 4.1 and 4.2 for the traditional case) showing that the
new description (with two parameters less) is of the same quality as the traditional one.
Notice that the global R.M.S.-deviation is also comparable to the previous case.

As before we will employ the S.V.D.-theorem, cf. Eq. (1.53) and calculate the condition
number as the first indicator for the degree of ill-posedness of the inverse problem. We find

cond(A)πν =
5.10 × 102

4.30 × 10−3
= 1.18 × 105. (5.13)

This result is two orders of magnitude worse as compared to the results obtained in the
traditional variant, cf. Eqs. (4.1) and (4.2) what implies that the inverse problem here
is strongly ill-posed. Therefore, the issue of the parametric-correlation removal can be
considered of even more importance as compared to the previously discussed cases.
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Figure 5.1 – Calculated 208Pb neutron single particle energies, left column, resulting from the fit
of the density-dependent-WS Hamiltonian parameters. The experimental energies are given in
the left column and the parameters on the right side of the figure. One finds, from top to bottom:
r.m.s.-deviation from Eq. (3.30), R.M.S.-deviation from Eq. (3.32) and the maximum absolute
error, Mx-abs.
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Figure 5.2 – The same as in Fig. 5.1 but for the protons.
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5.2.2 Parametric Correlations Studied by χ2-Projection

Since the present-case density-dependent formulation of the spin-orbit potential is
more CPU time consuming, in the present case it will be practical to attempt detecting the
existence of parametric correlations using directly the χ2-test as described in Annex 4.8 of
the preceding Chapter rather than employing the Monte-Carlo simulations. Recall that the
information of interest is obtained in this case through projections of the {pk}-minimised
χ2(pk; k Ó= i, k Ó= j) onto the planes (pi, pj). In what follows we present the parametric
correlations between the four spin-orbit coupling constants: {λππ, λπν , λνν , λνπ}.
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Figure 5.3 – Left: Proton r.m.s.-deviation in MeV projected onto the (λππ, λπν)-plane. For this
introductory test the central potential parameters were kept fixed at the values obtained from
the single fit minimisation, cf. Figs. 5.1 and 5.2. At each (λππ, λπν) value the χ2 was minimised
over λνν and λνπ. The coloured vertical space indicates the value of the proton-r.m.s. in MeV.
Right: Analogous illustration for the neutrons.

Separate Treatment of Parameters (λππ, λπν) of V̂ π
SO, and (λνπ, λνν) of V̂ ν

SO. Fig-
ure 5.3 shows the results for the proton and neutron r.m.s.-projections onto the planes
(λππ, λπν) and (λνν , λνπ), respectively. The two illustrations show clearly linear dependen-
cies between the couples of parameters in question. This type of the dependence can be
parameterised using the expression of the form

λqq′ = α · λqq + β ; α > 0 , β < 0 (5.14)

where q, q′ = π, ν and q Ó= q′.

Couples of Parameters Entering Equations One For V̂ π
SO, and One For V̂ ν

SO.

Having detected the correlations present between the parameters entering V̂ π
SO and

V̂ ν
SO separately, let us continue by analysing the cross-selections, viz. those combining one

parameter of V̂ π
SO with another one in V̂ ν

SO. These results are shown in Figure 5.4.

Top-left panel illustrates the neutron-r.m.s. projection onto the (λππ, λπν)-plane form-
ing a horizontal valley. This illustration carries an important physical message: λππ and
λνν can be considered independent. The top-right panel shows an analogous result for
the proton-r.m.s. projection, and confirms again the independence of these two concerned
parameters. These two results indicate that the parameter elimination procedures which
we will enter next will not need to involve the two relations.

Similar results are shown on the bottom panels of Figure 5.4 for the plane of projection
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Figure 5.4 – Left column: Neutron r.m.s.-deviation projections onto the (λππ, λνν)-plane (top)
and (λπν , λνπ)-plane (bottom). The central potential parameters are fixed, cf. caption to Fig-
ure 5.3, and the minimisation performed over λπν and λνπ. Right column: Analogous illustration
for the protons.

(λπν , λνπ). The results take the same form of horizontal and vertical valleys indicating that
λπν and λνπ are mutually independent, and therefore de-correlated.

Conclusions. We may conclude this part of the discussion as follows. The four parameters

{λππ, λπν , λνν , λνπ} (5.15)

may a priori present 4*3/2 = 6 one-to-one parametric correlations. After examining the
r.m.s.-projection onto planes-(pi, pj), we have determined that the four among six couples
are uncorrelated. The linear correlations are present between λππ and λπν on the one-hand
side, and λνν and λνπ on the other. In other words V̂ π

SO and V̂ ν
SO may be considered inde-

pendent – and this – despite the fact that the proton and neutron densities are determined
using a simultaneous self-consistency algorithm.
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5.3 Microscopic Justification of Linear Correlations

In this Section we are going to construct a microscopic justification scheme for the pres-
ence of the linear correlations between the coupling constants of the spin-orbit interaction
potential used in this Chapter.

λππ λπν λνν λνπ

−400 600 600 −200
−200 400 400 0

0 200 0 200
200 0 −200 400
600 −200 −400 600

Table 5.1 – Five selections of parameters {λππ, λπν , λνν , λνπ} from the bottoms of the valleys
in Figure 5.3. They have been used to calculate the density gradients in Figure 5.5.

For the sake of an illustration, let us focus on the (λππ, λπν) and (λνν , λνπ) valley-
patterns in Figure 5.3. Their forms indicate that independently of the particular choice of
the pair of parameters along the straight line connecting the points at the bottom of the
valley, the results for the χ2 stay constant or nearly constant and very close to the optimal
value.

For testing purposes we selected a sequence of pairs of coordinates of equidistant points
along the two valleys. They are presented in Table 5.1. In our tests the attribution of pairs
between the first two columns and the last two is completely arbitrary and we could have
made another choice between 25 of all possible combinations. This independence between
the pairs selection is as a matter of fact the central point of the following discussion
addressing the issue of the ‘independence of the choice’.
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Figure 5.5 – Proton density gradient (left) and neutron density gradient (right) obtained con-
sidering 5 arbitrary selections of the {λππ, λπν , λνπ, λνν} parameter-sets from Table 5.1. Two
properties deserve emphasizing. Firstly, within the scale of the illustration the curves corre-
sponding to various and very different parameter choices are not distinguishable. Secondly, at
the small distances from the centre of the nucleus, for, approximately, r ∈ [0, 3] fm, the gradient
of the density of the neutrons and the one of the protons are essentially of opposite signs whereas
at relatively large r-values the two functions behave similarly.

Each selection of parameter values from Table 5.1 was used to calculate the density
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gradient profiles for protons and neutrons. These profiles are presented in Figure 5.5, which
shows that the resulting curves are not distinguishable within the scale of the diagram.
Furthermore, in the nuclear interior, more precisely for r ∈ [0, 4.5] fm, approximately, the
density gradients oscillate remaining close to zero, thus contributing relatively little to
the matrix elements of the spin-orbit interaction potential. Moreover, for r ∈ [0, 2.5] fm,
approximately, the proton and neutron gradients fluctuate keeping opposite signs. This
implies that whatever relatively small contributions to the integrals in the matrix elements
the protons and the neutrons separately may provide in this part of the nuclear volume, a
bulk of these contributions will cancel out as the result of summations of the proton and
neutron terms.

At the same time, for big-r values corresponding to the vicinity of the nuclear surface,
Σ, both profiles have a similar structure so that one may write

Close to Σ : ∇ρπ(r) ∝ ∇ρν(r) ↔ ∇ρq′(r) ∝ ∇ρq(r) ↔ ∇ρq′(r) ≈ µ∇ρq(r), (5.16)

where µ is a certain constant, and we find

V̂ so
q =

(

λqq
1

r

dρq

dr
+ λqq′

1

r

dρq′

dr

)

ℓ̂ · ŝ

≈ (λqq + µλqq′)
︸ ︷︷ ︸

≡η

1

r

dρq

dr
ℓ̂ · ŝ = η

1

r

dρq

dr
ℓ̂ · ŝ, (5.17)

where η is yet another constant. It then follows that:

λqq′ =
1

µ
(η − λqq) ↔ λqq′ = α · λqq + β. (5.18)

The above argumentation leads to the same result as the one conjectured in Eq. (5.14)
and can be seen as the microscopic justification of the latter. Thus the fully microscopic
origin of the linear correlations between λππ and λπν on the one hand-side and λνν and λνπ

on the other can be considered ‘discovered’ for the generalised Woods-Saxon Hamiltonian
studied in this Chapter.

The property of the independence of the parameters illustrated in Figure 5.4 suggests
the simplest realisation of such a condition for the parameter optimisation procedure,
viz. choosing the spin-orbit parametrisation in the form

λππ ≈ λπν ≈ λνπ ≈ λνν ≡ λ, (5.19)

at least for 208Pb. To convince ourselves that the proposed relation can be used more
generally, we carried out equivalent r.m.s.-projection tests for other nuclei studied in this
document, and it turns out that solutions in Eq. (5.14) and (5.17-5.18) are also justified,
cf. Annexe A.

5.4 Results of Monte Carlo Simulations

After detecting the shape of the parametric correlations in the present form of the
Hamiltonian, we proceed with the Monte Carlo simulations to study the dependence of the
single particle level uncertainties on σexp as well as on the parameter-correlation removal.
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In the previous chapter we showed that the central diffuseness parameter does not
correlate with the other parameters what suggests the possibility of fixing it – for simplicity,
at least in the exploratory phase – at a certain plausible value. We selected here the values
used as usual with the universal-parameter set of the traditional Woods-Saxon Hamiltonian:

ac
ν = ac

π = 0.7 fm. (5.20)

With this ad hoc assumption the minimisation parameter set reduces to

{V c
π , V c

ν , rc
π, rc

ν , λππ, λπν , λνν , λνπ}. (5.21)

Following the structure of the presentation in the previous Chapter, we begin with the
σexp = 600 keV case, since this value can be considered representative for the present-day
experimental uncertainties of the mean-field single-nucleon energies.

5.4.1 Central Potential Parametric Correlations

Figure 5.6 shows the results of our Monte-Carlo simulations demonstrating a parabolic
dependence between the central-depth and the central-radius parameters, similar to the
one obtained in the case of the traditional Woods-Saxon Hamiltonian. Table 5.2 presents
the values of the coefficients of the two parabolas fitted, for protons and neutrons, cf.
Eq. (4.3).
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Figure 5.6 – Dot-plot representations of the realistic Monte Carlo simulations showing the pro-
jections on the (V c

π , rc
π)-plane (left) and (V c

ν , rc
ν)-plane (right). They have been obtained imposing

σexp = 600 keV.

α [fm MeV−2] β [fm MeV−1] γ [fm]

protons π 0.0001893 0.0361974 2.7404277
neutrons ν 0.0003844 0.0515710 2.8095715

Table 5.2 – Parabola coefficients, cf. Eq. (4.3), fitted to the diagrams presented in Figure 5.6,
for protons and neutrons.

Having determined the form of the central-potential parametric correlations we will
proceed, as in the previous Chapter, to analysing the effect of the spin-orbit parametric
correlations.
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5.4.2 Spin-Orbit Linear Parametric-Correlations: Monte-Carlo

We proceed by showing the dot-plot representation of the correlations for those two
combinations among the density-dependent spin-orbit parameters which were originally
showing the linear correlations. The results are given in Figure 5.7. They are fully analo-
gous to those in Figure 5.3, apart from the scales on the x-, and y-axes, here adapted to
the distributions of the ‘dots’ on the ‘dot-plots’. A careful comparison of Figures 5.7 and
5.3 (taking into account the scale differences) shows that they are fully equivalent: Both
show the same linear parametric correlation. Using the results in Figure 5.7 we calculate
the Pearson coefficient rij ≈ −0.9, thus confirming the strongly linear correlations between
the pairs of parameters studied.
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Figure 5.7 – Dot-plot representations of the realistic Monte Carlo calculations on the (λππ, λπν)-
plane (right) and (λνν , λνπ)-plane (left). The results were obtained imposing σexp = 600 keV and
show a clear linear dependence between the pairs of parameters considered [see the text for more
details].

Conclusion. We obtain a fully consistent image of

Linear correlations present between : λππ and λπν , (5.22)

λνν and λνπ, (5.23)

via both χ2-test and and Monte-Carlo simulations.
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5.4.3 Signs of No-Correlation Patterns: Monte-Carlo

After presenting the case of the detected parametric correlations in the preceding
Section, we will switch now to the case of four other combinations of pairs of parameters
showing originally the horizontal or vertical valley-pattern, thus parametric independence.

Figure 5.8 address this situation. Notice that Figs. 5.8 and 5.4 are equivalent even
though showing the same information in a different manners. Indeed, the dot-plot repre-
sentation of the non-existing correlations should manifest radial symmetry which is indeed
the case, whereas the Pearson coefficients, nearly zero, fully confirm this expectation.
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Figure 5.8 – The same as in Figure 5.7 but for projections on the planes (λππ, λνπ) (top-left),
(λππ, λνν) (top-right), (λνν , λπν) (bottom-left) and (λπν , λνπ) (bottom-right). Let us emphasise
that all the figures manifest consistently parametric independence both ‘graphically’ and via Pear-
son coefficients. Certain small deviations from the radial symmetry may result both form the
insufficient statistics in the Monte-Carlo runs and from the Coulomb term whose contribution
influences diffusivity ‘rigidly’ (no Coulomb parameter adjustment).

Conclusion. We obtain a consistent (χ2-test, Pearson, Monte-Carlo) image of

Linear correlations absent between : λππ and λνπ, (5.24)

λππ and λνν , (5.25)

λνν and λπν , (5.26)

λπν and λνπ, (5.27)

via both χ2-test and and Monte-Carlo simulations.
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5.5 Uncertainties Within Full Parametric Freedom

To keep as much as possible the analogy between the structure of the presentations
in the preceding Chapter 4 and in this one, we will introduce here the results of the
uncertainty distributions for the neutron and proton mean-field energies obtained from the
Monte-Carlo simulations. Table 5.3 and Figure 5.9 refer to the neutron solutions, Table 5.4
and Figure 5.10 to the proton ones.

5.5.1 Properties of the Neutron Levels

Let us observe that there is a systematic difference between the results with the phe-
nomenological description of the spin-orbit interaction and the actual one: The density
dependent variant produces systematically narrower uncertainty widths. This can be seen
comparing Tables 5.3 and 4.7, the latter copied below2 as Table 5.4.

Nmain = 5 Nmain = 6

Z N 2f7/2 1h9/2 1i13/2 3p3/2 2f5/2 3p1/2 2g9/2 1j15/2 1i11/2 3d5/2 2g7/2 4s1/2 3d3/2

82 126 0.89* 1.34 1.13* 0.65* 0.92* 0.67* 0.95* 1.71 1.20* 0.56* 1.06* 0.39* 0.52*

114 164 1.16 1.88 1.29 0.99 1.13 1.00 0.92 1.39 1.60 0.64 0.92 0.58 0.63
114 170 1.23 1.93 1.28 1.04 1.19 1.06 0.86 1.28 1.57 0.58 0.89 0.50 0.58
114 172 1.27 2.10 1.37 1.08 1.18 1.11 0.86 1.38 1.76 0.57 0.90 0.49 0.60
114 180 1.45 2.20 1.49 1.22 1.34 1.21 0.93 1.35 1.77 0.66 0.94 0.57 0.73
114 184 1.57 2.34 1.71 1.32 1.42 1.30 1.06 1.58 1.95 0.74 1.03 0.65 0.81
114 196 1.87 2.49 1.87 1.65 1.69 1.65 1.27 1.55 1.95 1.03 1.19 0.96 1.18
114 214 2.42 2.89 2.37 2.20 2.28 2.14 1.84 1.98 2.27 1.49 1.82 1.46 1.64
114 228 2.84 3.34 2.86 2.59 2.67 2.58 2.25 2.43 2.75 1.86 2.19 1.81 2.06

Table 5.3 – Realistic Monte Carlo calculations of the FWHM [in MeV] of the neutron single
particle energy uncertainty distributions for 208Pb and several Fl-isotopes, within the main shells
Nmain = 5 and 6. The results have been obtained using the density-dependent spin-orbit potential,
minimising the χ2 over the parameters in Eq. (5.21) and imposing the condition in Eq. (5.20).
The asterisk indicates that the level is experimentally known.

Nmain = 5 Nmain = 6

Z N 2f7/2 1i13/2 1h9/2 3p3/2 2f5/2 3p1/2 2g9/2 1j15/2 1i11/2 3d5/2 4s1/2 2g7/2 3d3/2

82 126 1.09* 1.38* 1.99 0.76* 1.04* 0.77* 0.98* 2.37 1.39* 0.88* 0.79* 1.10* 0.82*

114 164 1.43 1.53 2.55 1.05 1.31 1.03 0.99 1.77 1.73 0.77 0.75 1.02 0.83
114 170 1.59 1.54 2.63 1.22 1.49 1.20 0.91 1.53 1.69 0.63 0.59 0.91 0.67
114 172 1.66 1.58 2.68 1.30 1.57 1.28 0.92 1.48 1.70 0.62 0.59 0.92 0.67
114 180 2.00 1.81 2.91 1.67 1.93 1.65 1.14 1.39 1.85 0.84 0.78 1.11 0.84
114 184 2.19 1.96 3.06 1.87 2.14 1.85 1.30 1.42 1.98 1.01 0.94 1.27 1.00
114 196 2.78 2.51 3.55 2.48 2.76 2.47 1.85 1.74 2.46 1.57 1.47 1.83 1.53
114 214 3.66 3.38 4.35 3.37 3.67 3.36 2.70 2.48 3.28 2.39 2.25 2.69 2.33
114 228 4.31 4.04 4.96 4.01 4.33 4.00 3.32 3.10 3.91 2.98 2.80 3.31 2.86

Table 5.4 – The same as the preceding Table but for the traditional Woods-Saxon Hamiltonian
[reproduced from the preceding Chapter for the reader’s convenience].

2Let us remark, nevertheless, that in the present case the central diffuseness parameter is kept fixed.
This will have no impact on the present analysis since our interest is focussed on the variation of uncer-
tainties induced by elimination of parametric correlations.
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Concerning the NO-GO mechanism discussed in the preceding Chapter in the context
of the 114Fl predictions for N > 184, the present results remain analogous: The widths
of the uncertainty distributions remain very large in certain cases so that one can hardly
speak about the quality in predicting and/or predictive power.
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Figure 5.9 – Uncertainty probability distributions for the neutron single particle energies within
the main nuclear shells Nmain = 5 and 6. They have been obtained using realistic Monte Carlo
simulations with σexp = 600 keV using the density-dependent spin-orbit and minimising over the
set of parameters in Eq. (5.21), keeping ac

π = ac
ν = 0.7 fm. The FWHM of each distribution can

be found in Table 5.3. The surface under each curve is equal to 1.
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5.5.2 Properties of the Proton Levels

Proton results, analogous to the neutron results discussed in the preceding Section
are shown in Table 5.5; they can be compared to the analogous results obtained with
the traditional Woods-Saxon Hamiltonian, reproduced here for the reader’s convenience
as Table 5.6. On the average, the widths obtained with the density-dependent spin-orbit
potential are narrower, but fluctuations are non-negligible.

Nmain = 4 Nmain = 5

Z N 1g7/2 2d5/2 1h11/2 2d3/2 3s1/2 1h9/2 2f7/2 1i13/2 2f5/2 3p3/2 3p1/2

82 126 1.19 1.22 0.98* 1.03* 0.99* 1.15* 1.05* 1.18* 1.09* 0.74 0.79

114 164 1.59 1.12 1.30 1.24 0.95 1.62 0.67 1.45 0.86 0.65 0.97
114 170 1.69 1.30 1.40 1.23 1.10 1.59 0.76 1.40 0.77 0.67 1.17
114 172 2.05 1.35 1.81 1.32 1.16 2.08 0.72 1.88 0.77 0.82 0.94
114 180 2.13 1.65 1.89 1.54 1.44 1.94 0.94 1.76 0.87 0.78 0.71
114 184 2.13 1.81 2.02 1.68 1.58 1.72 1.06 1.94 0.98 0.87 0.80
114 196 2.57 2.25 2.32 2.16 2.05 2.10 1.42 2.03 1.34 1.27 1.13
114 214 3.03 2.96 2.77 2.75 2.73 2.23 2.16 2.26 1.82 1.85 1.83
114 228 3.69 3.47 3.46 3.26 3.25 3.02 2.65 3.16 2.34 2.38 2.25

Table 5.5 – Equivalent to Table 5.3 – density-dependent spin-orbit potential – but for the protons,
within main shells Nmain = 4 and 5.

Nmain = 4 Nmain = 5

Z N 1g7/2 2d5/2 1h11/2 2d3/2 3s1/2 1h9/2 2f7/2 1i13/2 2f5/2 3p3/2 3p1/2

82 126 1.96 1.28 1.20* 1.03* 1.01* 1.38* 1.11* 1.26* 1.22* 1.46 1.43

114 164 1.82 1.14 1.24 0.99 0.95 1.38 1.10 1.20 1.21 1.40 1.41
114 170 2.02 1.34 1.37 1.11 1.06 1.33 0.96 1.02 0.98 1.20 1.17
114 172 2.10 1.43 1.44 1.18 1.13 1.35 0.96 0.99 0.94 1.17 1.11
114 180 2.49 1.82 1.79 1.56 1.50 1.57 1.10 1.07 0.95 1.08 1.03
114 184 2.70 2.04 1.98 1.77 1.71 1.74 1.25 1.20 1.06 1.14 1.08
114 196 3.37 2.71 2.61 2.46 2.37 2.36 1.82 1.73 1.59 1.55 1.48
114 214 4.38 3.69 3.55 3.48 3.37 3.37 2.76 2.65 2.55 2.40 2.35
114 228 5.12 4.42 4.25 4.23 4.10 4.14 3.47 3.35 3.28 3.09 3.05

Table 5.6 – The same as in table 5.5 but for the protons, results with the traditional spin-orbit
potential, covering the nuclear main shells Nmain = 4 and 5.
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Figure 5.10 – Similar as in Figure 5.9 but for the proton levels within the main shells Nmain = 4
and 5. The FWHM of each distribution can be found in Table 5.4.

5.5.3 Central Correlation: rc = f(V c) – Impact on Uncertainties

Similarly to the presentation scheme adopted in Chapter 4, the first parametric corre-
lation eliminated in the series is the one between the central-depth and the central-radius
parameters, cf. Figure 5.6. In this case, the remaining parameters taken into account for
the χ2-minimisation are:

{V c
π , V c

ν , λππ, λπν , λνν , λνπ}. (5.28)

Tables 5.7 and 5.8 show the corresponding results obtained for the level distributions widths
for neutrons and protons, respectively.
208Pb Neutron Orbitals. The widths in Table 5.7 are systematically smaller as compared
to the ones of Table 5.3. As noticed previously, the decrease rate depends on the value of the
orbital angular momentum, ℓ, of the state. The uncertainty widths of the levels 3p3/2, 3d5/2

and 3d3/2 become smaller by about 30% with the density-dependent Hamiltonian. On the
other hand, levels 1i13/2, 3p1/2, 2g9/2, 1i11/2 and 2g7/2 improved between 10% and 20% their
distribution widths. The 4s1/2 orbital deserves special attention: its width improved by
67%. Characteristically, the experimentally unknown levels 1h9/2 and 1j15/2, barely improve
when passing to the density-dependent variant in full analogy to the phenomenological
spin-orbit description, cf. comparison between Tables 4.7 and 4.9.

144Fl Isotope Neutron-Orbitals. The uncertainty widths of the levels in the super-
heavy nuclei are also systematically smaller, cf. Table 5.7 as compared to Table 5.3, and
similarly as before the best improvements are observed for the neutron levels with N < 184.
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Nmain = 5 Nmain = 6

Z N 2f7/2 1h9/2 1i13/2 3p3/2 2f5/2 3p1/2 2g9/2 1j15/2 1i11/2 3d5/2 2g7/2 4s1/2 3d3/2

82 126 0.73* 1.33 0.99* 0.45* 0.86* 0.55* 0.79* 1.67 1.08* 0.35* 0.96* 0.13* 0.35*

114 164 1.06 1.87 1.18 0.90 1.09 0.92 0.73 1.31 1.51 0.42 0.81 0.37 0.45
114 170 1.14 1.94 1.17 0.96 1.17 0.97 0.68 1.17 1.50 0.31 0.80 0.21 0.39
114 172 1.22 2.17 1.29 0.98 1.22 1.01 0.74 1.27 1.79 0.34 0.89 0.20 0.50
114 180 1.39 2.32 1.43 1.15 1.36 1.18 0.82 1.25 1.89 0.47 0.96 0.35 0.66
114 184 1.50 2.39 1.51 1.26 1.44 1.28 0.89 1.27 1.92 0.57 1.01 0.48 0.79
114 196 1.82 2.53 1.76 1.61 1.68 1.64 1.18 1.39 1.93 0.94 1.14 0.87 1.17
114 214 2.38 2.93 2.30 2.16 2.28 2.10 1.79 1.86 2.28 1.42 1.81 1.40 1.60
114 228 2.79 3.21 2.62 2.56 2.66 2.54 2.17 2.14 2.51 1.81 2.11 1.77 2.01

Table 5.7 – Realistic Monte Carlo calculations of the FWHM [in MeV] of the neutron single
particle energy uncertainty distributions for 208Pb and several Fl-isotopes, within the main shells
Nmain = 5 and 6. The results have been obtained using the density-dependent spin-orbit potential,
minimising χ2 over the parameters in Eq. (5.28), imposing rc

ν = f(V c
ν ) and ac

π = ac
ν = 0.7 fm.

The asterisk indicates that the level is experimentally known.

208Pb Proton Orbitals. Similarly to the neutron case, the uncertainty widths in Ta-
ble 5.8 are systematically smaller than the ones in Table 5.5 where the results with the full
parametric freedom are collected. The decrease rates are mainly between 20% and 30%,
following the trend: ‘The lower the ℓ, the better the improvement’. In this case the best
improvement is obtained for 3p3/2-orbital, with the distribution width over 60% narrower.

Proton 144Fl-Isotope levels. Again we observe an important improvement in Table 5.8
as compared to Table 5.5. In the present case, even the widths for the orbitals with N > 184
increase significantly, even though at least some distributions remain rather broad. As for
208Pb, the level which obtains the best improvement is 3p3/2, narrowing its width down to
∼ 70% of the original value at N = 172.

Nmain = 4 Nmain = 5

Z N 1g7/2 2d5/2 1h11/2 2d3/2 3s1/2 1h9/2 2f7/2 1i13/2 2f5/2 3p3/2 3p1/2

82 126 0.93 1.05 0.89* 0.92* 0.79* 0.82* 0.73* 1.11* 1.08* 0.33 0.73

114 164 1.28 1.04 1.25 0.95 0.77 1.17 0.38 1.40 0.56 0.43 0.65
114 170 1.40 1.17 1.33 0.96 0.93 1.11 0.48 1.32 0.56 0.55 0.89
114 172 1.79 1.24 1.94 1.01 1.00 1.78 0.61 2.01 0.64 0.25 0.50
114 180 2.04 1.54 2.21 1.33 1.29 1.90 0.76 2.23 0.63 0.46 0.59
114 184 2.13 1.69 2.26 1.48 1.45 1.87 0.87 2.21 0.68 0.60 0.65
114 196 2.37 2.16 2.30 2.06 1.93 1.73 1.30 2.02 1.10 1.07 1.00
114 214 2.91 2.87 2.74 2.63 2.64 2.03 2.03 2.26 1.67 1.73 1.68
114 228 3.43 3.38 3.19 3.15 3.15 2.54 2.55 2.56 2.21 2.27 2.15

Table 5.8 – Realistic Monte Carlo calculations of the FWHM [in MeV] of the proton single
particle energy uncertainty distributions for 208Pb and several Fl-isotopes, within the main shells
Nmain = 4 and 5. The results have been obtained using the density-dependent spin-orbit potential,
minimising χ2 over the parameters in Eq. (5.28), imposing rc

π = f(V c
π ) and ac

π = ac
ν = 0.7 fm.

The asterisk indicates that the level is experimentally known.
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5.6 Full Elimination of Parametric Correlations

In this section we analyse the results obtained after full removal of the parametric
correlations in the density-dependent Hamiltonian what leads to the parametric freedom
of three remaining parameters

{V c
π , V c

ν , λ}. (5.29)

We will begin by analysing the final results of 208Pb and then we will focus our discussion
on the 114Fl-isotope predictions.

5.6.1 Monte Carlo Results for 208Pb

In what follows, to facilitate the interpretation of the results obtained in this section
and corresponding to the full correlation removal we will also recall the results of the partial
correlation removal form preceding sections. We begin with 208Pb neutron orbitals. The
results are collected in the tables which contain:

• Row no. 1: Results of the Monte Carlo simulations under the condition that the
parameters in Eq. (5.21), i.e., {V c

π , V c
ν , rc

π, rc
ν , λππ, λπν , λνν , λνπ} are considered inde-

pendent, and both proton and neutron central diffuseness are kept fixed at 0.7 fm.

• Row no. 2: Similar to the previous case, but we impose rc
π,ν = f(V c

π,ν) thus eliminat-
ing the correlation between the central depth and central radius parameters. This cor-
responds to minimisation over parameters {V c

π , V c
ν , λππ, λπν , λνν , λνπ} cf. Eq. (5.28).

• Row no. 3: Full elimination of the correlations minimising over parameters {V c
π , V c

ν , λ},
cf. Eq. (5.29) under the assumption of all λ-coefficients equal, cf. Eq. (5.19).

Nmain = 5 Nmain = 6

2f7/2∗ 1h9/2 1i13/2∗ 3p3/2∗ 2f5/2∗ 3p1/2∗ 2g9/2∗ 1j15/2 1i11/2∗ 3d5/2∗ 2g7/2∗ 4s1/2∗ 3d3/2∗ r.m.s. [MeV] Inv

0.89 1.34 1.13 0.65 0.92 0.67 0.95 1.71 1.20 0.56 1.06 0.39 0.52 0.21 1
0.73 1.33 0.99 0.45 0.86 0.55 0.79 1.67 1.08 0.35 0.96 0.13 0.35 0.21 1
0.74 1.33 0.81 0.53 0.49 0.45 0.32 1.64 0.80 0.26 0.60 0.12 0.20 0.26 1

Table 5.9 – Uncertainty widths, FWHM [in MeV], calculated using Monte-Carlo simulations with
the density-dependent Hamiltonian for the main shells Nmain = 5 and 6 in 208Pb. The resulting
r.m.s.-deviations [in MeV], cf. Eq. (3.30), are given in the last but 1 column. The last column
controls the level ordering of the theoretical results with respect to the experimental ordering.
The content of each row is defined at the beginning of this section. The asterisks indicate the
levels which are known experimentally, thus included when minimising the χ2-test.

208Pb Neutron Orbitals. Table 5.9 shows the results for the neutron levels of 208Pb
around N = 126. Comparing the first with the last rows of the Table, one notices that all
values are systematically smaller when the density-dependent Hamiltonian is used. The
widths of the orbitals 2f5/2, 2g9/2, 3d5/2, 2g7/2, 4s1/2 and 3d3/2 are narrower by more than
40%, the width of 2g9/2 is 66% smaller, the one of 4s1/2 is 70% smaller. On the other
hand, levels 1i13/2, 3p1/2, 1i11/2, 2f7/2 and 3p3/2 also improved, even though less, by about
20-30%; even the widths of 1h9/2 and 1j15/2 orbitals improved slightly.
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208Pb Neutron Orbitals – Graphical Comparison. Figure 5.11 shows the numerical
results from row no. 1 and row no. 3 transformed into the uncertainty distributions.
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Figure 5.11 – Probability density distributions of the neutron single particle energies of 208Pb
within the main nuclear shells Nmain = 5 and 6. They have been obtained with realistic Monte
Carlo simulations with σexp = 600 keV using the density-dependent spin-orbit potential and
minimising over the full set of parameters {V c

π , V c
ν , rc

π, rc
ν , λππ, λπν , λνν , λνπ} in Eq. (5.21) (top

panel), and using parameters {V c
π , V c

ν , λ} from Eq. (5.29) (bottom panel). In both cases ac
π =

ac
ν = 0.7 fm. The FWHM of each distribution can be found in Table 5.9. The surface under each

curve is equal to 1. Notice that the widths of the majority of levels decrease significantly when
parametric correlations are fully elliminated.



5.6.1 Monte Carlo Results for 208Pb 135

208Pb Proton Orbitals. Table 5.10 shows the results for the 208Pb proton levels around
Z = 82. Similarly to the neutron case, the full elimination of the parametric correlations
leads to systematic and occasionally significant decrease in the uncertainty widths. The
only level that seems to stay unchanged is 1g7/2 (not know experimentally). There are three
remarkable orbitals for which the decrease in the uncertainty widths are very significant.
These are 2f7/2 (78%), 2f5/2 (63%), 3p3/2 (77%) and 3p1/2 (61%). Levels 1h11/2 and 1h9/2

narrowed they distributions by over 50%. The widths of 2d5/2, 2d3/2 and 3s1/2 orbitals are
improved by about 15%, and finally 1i13/2 had a tiny decrease of 7%.

Nmain = 4 Nmain = 5

1g7/2 2d5/2 1h11/2∗ 2d3/2∗ 3s1/2∗ 1h9/2∗ 2f7/2∗ 1i13/2∗ 2f5/2∗ 3p3/2 3p1/2 r.m.s. [MeV] Inv

1.19 1.22 0.98 1.03 0.99 1.15 1.05 1.18 1.09 0.74 0.79 0.17 0
0.93 1.05 0.89 0.92 0.79 0.82 0.73 1.11 1.08 0.33 0.73 0.16 0
1.19 1.03 0.53 0.90 0.85 0.51 0.23 1.09 0.40 0.17 0.31 0.32 0

Table 5.10 – Similar to Table 5.9 but for the protons, main shells Nmain = 4 and 5. Since in
the present calculations the parametric correlations have been removed, some parametric freedom
has been removed as well what implies less freedom in approaching the experimental data and
consequently the r.m.s.-values may increase.

208Pb Proton Orbitals – Graphical Comparison. Figure 5.12 shows the correspond-
ing proton level Gaussian distributions from Row no.1 and Row no.3.
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Figure 5.12 – Similar to Figure 5.11 but for the protons, main shells Nmain = 4 and 5. The
values of the distribution widths are contained in Table 5.10.
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5.7 Monte Carlo Uncertainty-Widths for Fl-Isotopes

In this section we present the results for the uncertainty widths obtained with the
density-dependent Hamiltonian for super-heavy isotopes of 114Fl – after the complete elim-
ination of the parametric correlations.

5.7.1 Uncertainty Widths for Neutron Levels

Table 5.11 shows the results for the neutron levels in Fl-isotopes indicated, within the
main shells around N = 126, after full parametric elimination. These results should be
compared to the ones presented on Table 5.3, the latter copied below as Table 5.12, for
reader’s convenience. The use of the density-dependent spin-orbit potential has a positive
impact on the levels in the Nmain = 6 shell, whose widths significantly decrease as compared
to the case when the Hamiltonian parameters where considered independent. Levels 2g9/2,
3d5/2, 2g7/2, 4s1/2 and 3d3/2 have decrease rates between 50% to 60% for the nuclei with
N ≤ 184.

Nmain = 5 Nmain = 6

Z N 2f7/2 1h9/2 1i13/2 3p3/2 2f5/2 3p1/2 2g9/2 1j15/2 1i11/2 3d5/2 2g7/2 4s1/2 3d3/2

114 164 1.07 1.62 1.13 0.90 1.00 0.87 0.47 1.56 0.79 0.44 0.69 0.45 0.54
114 170 1.22 1.91 0.92 1.01 1.10 0.96 0.40 1.18 1.05 0.25 0.45 0.22 0.29
114 172 1.29 2.05 0.87 1.07 1.16 1.02 0.46 1.07 1.20 0.25 0.42 0.20 0.25
114 180 1.64 2.48 0.85 1.41 1.45 1.30 0.83 0.71 1.64 0.57 0.48 0.47 0.43
114 184 1.84 2.69 0.94 1.60 1.62 1.47 1.05 0.62 1.85 0.77 0.61 0.66 0.61
114 196 2.42 3.29 1.51 2.20 2.20 1.98 1.66 0.92 2.43 1.34 1.16 1.22 1.16
114 214 3.32 4.15 2.43 3.08 3.00 2.73 2.57 1.77 3.26 2.10 1.93 1.98 1.93
114 228 3.96 4.76 3.11 3.69 3.58 3.31 3.20 2.45 3.86 2.68 2.51 2.52 2.49

Table 5.11 – Realistic Monte Carlo simulations showing the FWHM [in MeV] of the neutron
levels within main shells Nmain = 5 and 6 for different 114Fl-isotopes after imposing full parametric
correlation elimination: rc = f(V c) and λππ = λπν = λνπ = λνν . The input experimental error is
σexp = 600 keV.

Nmain = 5 Nmain = 6

Z N 2f7/2 1h9/2 1i13/2 3p3/2 2f5/2 3p1/2 2g9/2 1j15/2 1i11/2 3d5/2 2g7/2 4s1/2 3d3/2

114 164 1.16 1.88 1.29 0.99 1.13 1.00 0.92 1.39 1.60 0.64 0.92 0.58 0.63
114 170 1.23 1.93 1.28 1.04 1.19 1.06 0.86 1.28 1.57 0.58 0.89 0.50 0.58
114 172 1.27 2.10 1.37 1.08 1.18 1.11 0.86 1.38 1.76 0.57 0.90 0.49 0.60
114 180 1.45 2.20 1.49 1.22 1.34 1.21 0.93 1.35 1.77 0.66 0.94 0.57 0.73
114 184 1.57 2.34 1.71 1.32 1.42 1.30 1.06 1.58 1.95 0.74 1.03 0.65 0.81
114 196 1.87 2.49 1.87 1.65 1.69 1.65 1.27 1.55 1.95 1.03 1.19 0.96 1.18
114 214 2.42 2.89 2.37 2.20 2.28 2.14 1.84 1.98 2.27 1.49 1.82 1.46 1.64
114 228 2.84 3.34 2.86 2.59 2.67 2.58 2.25 2.43 2.75 1.86 2.19 1.81 2.06

Table 5.12 – Realistic Monte Carlo calculations of the FWHM [in MeV] of the neutron single
particle energy uncertainty distributions for several Fl-isotopes, within the main shells Nmain = 5
and 6. The results have been obtained using the density-dependent spin-orbit potential, min-
imising the χ2 over the parameters in Eq. (5.21) and imposing the condition in Eq. (5.20) - full
parametric freedom. [Copied here for reader’s convenience.]
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Nmain = 5 Nmain = 6

Z N 2f7/2 1i13/2 1h9/2 2f5/2 3p3/2 3p1/2 2g9/2 1i11/2 1j15/2 3d5/2 4s1/2 2g7/2 3d3/2

114 164 0.92 1.42 1.14 0.89 0.72 0.76 0.71 1.39 1.23 0.51 0.48 0.61 0.48
114 170 0.90 1.43 1.02 0.88 0.68 0.74 0.49 1.18 1.17 0.23 0.22 0.51 0.23
114 172 0.93 1.46 1.01 0.91 0.70 0.77 0.45 1.13 1.17 0.16 0.17 0.53 0.18
114 180 1.11 1.63 1.06 1.11 0.90 0.98 0.50 1.00 1.29 0.32 0.33 0.73 0.38
114 184 1.24 1.74 1.15 1.24 1.04 1.12 0.63 1.00 1.40 0.49 0.50 0.89 0.54
114 196 1.69 2.17 1.52 1.72 1.52 1.60 1.09 1.21 1.82 1.00 0.97 1.39 1.04
114 214 2.41 2.88 2.20 2.45 2.23 2.32 1.80 1.77 2.53 1.69 1.63 2.12 1.71
114 228 2.93 3.43 2.72 2.99 2.75 2.84 2.31 2.25 3.08 2.17 2.08 2.65 2.18

Table 5.13 – The same as the preceding Table but for the traditional Woods-Saxon Hamiltonian
imposing compact spin-orbit solution [reproduced from the preceding Chapter for the reader’s
convenience].

Partial Summary, Remarks and Comments. In the case of the density-dependent
potential and for the very lightest isotopes we observe a slight improvement of uncertainty
widths for N = 5 (not as good as in the 208Pb case) and on the average much better for the
N = 6 shell. However for N > 184, in majority of the cases the parameter removal does
not improve the trend. This is very likely due to the fact that in these nuclei we approach
the NO-GO regime according to which the uncertainty widths are very large to start with
what causes a strong overlapping of the distributions and thus much smaller impact of the
potential variations on the final calculated eigenstates.

Comparing with the results for the traditional potential we may notice that the re-
sults with the density dependent potential – thus depending on one spin-orbit potential
parameter – are of comparable quality.
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Figure 5.13 – Probability density distributions for neutrons within the main nuclear shells
Nmain = 5 and 6 from Monte Carlo simulations with σexp = 600 keV using the density-dependent
spin-orbit potential, top and middle panels. Minimisation over parameters in Eq. (5.21) (top
panel, full parametric freedom), and using parameters on Eq. (5.29) (centre panel, full elimi-
nation), keeping in both cases ac

π = ac
ν = 0.7 fm. Bottom panel: Full parametric correlation

elimination using traditional Woods-Saxon Hamiltonian and imposing compact solution for the
spin-orbit parameters. The FWHM of each distribution can be found in Tables 5.3, Table 5.11
and 5.13, for top, middle and bottom panels, respectively. Cf. synthetic comments after Fig. 5.15.
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Figure 5.14 – Similar to Figure 5.13 but for 298Fl.
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Figure 5.15 – Similar to Figure 5.13 but for 342Fl.

Partial Summary and Comments. Let us observe that the results with the density-
dependent Hamiltonian in which the spin-orbit term depends on one single parameter lead,
after elimination of the parametric correlations, to the results for the uncertainty widths
which are better or comparable with the traditional version results, the latter depending
on 6 spin-orbit parameters. At the same time, the density-dependent algorithm allows
naturally to include both the microscopically calculated Coulomb and the tensor terms,
both expected to improve the description. The latter two options have been programmed
but are not a part of this project.
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5.7.3 Uncertainty Widths for Proton Levels

The uncertainty widths after full parametric correlation elimination are presented in
Table 5.14. Comparing them to the results Table 5.5, here copied as Table 5.15 for reader’s
convenience, it can be seen that the results for N < 184 have improved with respect to the
case with full parametric freedom.

For the heaviest isotopes the results are comparable in both cases considered. This
confirms the earlier conclusions related to the neutrons i.e. of approaching the NO-GO
regime with very large uncertainty widths from the very beginning (i.e. in the case of the
full parametric freedom).

Nmain = 4 Nmain = 5

Z N 1g7/2 2d5/2 1h11/2 2d3/2 3s1/2 1h9/2 2f7/2 1i13/2 2f5/2 3p3/2 3p1/2

114 164 1.13 0.91 0.66 0.84 0.75 0.47 0.49 1.11 0.51 0.54 0.54
114 170 1.39 1.12 0.68 1.05 0.95 0.48 0.29 0.77 0.28 0.20 0.19
114 172 1.51 1.19 0.72 1.16 1.03 0.61 0.30 0.76 0.28 0.14 0.11
114 180 1.91 1.59 0.99 1.56 1.42 0.94 0.63 0.44 0.59 0.44 0.38
114 184 2.13 1.79 1.19 1.78 1.63 1.17 0.85 0.44 0.81 0.66 0.61
114 196 2.90 2.44 1.76 2.43 2.28 1.98 1.49 0.86 1.47 1.29 1.32
114 214 3.83 3.29 2.73 3.54 3.22 2.95 2.41 1.79 2.53 2.24 2.24
114 228 4.51 3.99 3.44 4.19 3.91 3.64 3.10 2.50 3.22 2.89 2.99

Table 5.14 – Similar to Table 5.11 (full parametric correlation elimination) but for the proton
levels within main shells Nmain = 4 and 5.

Nmain = 4 Nmain = 5

Z N 1g7/2 2d5/2 1h11/2 2d3/2 3s1/2 1h9/2 2f7/2 1i13/2 2f5/2 3p3/2 3p1/2

114 164 1.59 1.12 1.30 1.24 0.95 1.62 0.67 1.45 0.86 0.65 0.97
114 170 1.69 1.30 1.40 1.23 1.10 1.59 0.76 1.40 0.77 0.67 1.17
114 172 2.05 1.35 1.81 1.32 1.16 2.08 0.72 1.88 0.77 0.82 0.94
114 180 2.13 1.65 1.89 1.54 1.44 1.94 0.94 1.76 0.87 0.78 0.71
114 184 2.13 1.81 2.02 1.68 1.58 1.72 1.06 1.94 0.98 0.87 0.80
114 196 2.57 2.25 2.32 2.16 2.05 2.10 1.42 2.03 1.34 1.27 1.13
114 214 3.03 2.96 2.77 2.75 2.73 2.23 2.16 2.26 1.82 1.85 1.83
114 228 3.69 3.47 3.46 3.26 3.25 3.02 2.65 3.16 2.34 2.38 2.25

Table 5.15 – Realistic Monte Carlo calculations of the FWHM [in MeV] of the proton single
particle energy uncertainty distributions for several Fl-isotopes, within the main shells Nmain = 4
and 5. The results have been obtained using the density-dependent spin-orbit potential, min-
imising the χ2 over the parameters in Eq. (5.21) and imposing the condition in Eq. (5.20) - full
parametric freedom. [Copied here for reader’s convenience.]
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Figure 5.16 – Uncertainty probability density distributions of the proton single particle energies
within the main nuclear shells Nmain = 4 and 5 for 278Fl. They have been obtained from realistic
Monte Carlo simulations with σexp = 600 keV using the density-dependent spin-orbit and min-
imising over the set of parameters in Eq. (5.21) (top panel), and using parameters on Eq. (5.29)
(bottom panel), keeping in both cases ac

π = ac
ν = 0.7 fm. The FWHM of each distribution can be

found in Table 5.5 and Table 5.13, for top and bottom results, respectively. The surface under
each curve is equal to 1. Observe systematic and significant improvements accompanying the
parametric-correlation removal.
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Figure 5.17 – Similar to Figure 5.16 but for 298Fl. Improvements in terms of the uncertainty
widths are rather systematic but less pronounced as compared to the previous case.
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Figure 5.18 – Similar to Figure 5.16 but for 342Fl. In this case the very broad starting point
distributions [compare the vertical scales in this and the preceding Figures] get on the average
even broader as compared to the full parametric freedom case in the top panel.
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5.8 Increase in Sampling and the Predictive Power

In the preceding sections we have demonstrated the improvement of the model perfor-
mance after removal of the parametric correlations from the density-dependent Hamiltonian
by imposing:

• The parabolic dependence between the central radius and the central depth, and:

• Reducing the number of independent spin-orbit coupling constant from four to one.

Indeed, both have a positive impact on the uncertainty distributions of the predictions by
reducing their widths in the great majority of the cases of interest. Our analysis so far was
focused on the sampling composed of one single nucleus: 208Pb. In this Section we will
extend our discussion related to the impact of the parametric correlation removal when
more than one nucleus compose the experimental sample.

5.8.1 Increasing the Sampling: Neutrons in 132Sn and 208Pb

In this section we will present the results with the sampling extended to two nuclei:
208Pb and 132Sn. Since in the present case the sampling is composed of more than one
nucleus, the potential depth will be parameterised with the help of the isospin factor
(N −Z)/(N +Z) and the two parameters: Vo and κc, see Chapter 2 and the full parameter
space is composed of

{Vo, κc, rc
π,ν , ac

π,ν , λππ, λπν , λνν , λνπ}. (5.30)

Figure 5.19 shows the impact of just increasing the sampling (top: single nucleus
fit, bottom two nuclei fit) when acting with full parameter-correlation removal. Whereas
the local r.m.s. values are getting slightly worse, the predictive power increase since the
R.M.S. values decrease from 1.65 MeV to 1.39 MeV. One possibility of illustrating the pre-
dictive power and the impact of the sampling would be to fix one nucleus, e.g. the highest
in the sample - and tabulate the r.m.s. of this particular nucleus for various variants of
increasing sampling by taking 208Pb, 132Sn etc.; we prefer a global estimate as presented
here.

Figure 5.20 compares one of the diagrams from the preceding Figure (complete cor-
relation removal while fitting two nuclei) with the results for the full parametric freedom
case, again with two nuclei in the fit:

Let us emphasise the confirmation of the expected mechanism: The R.M.S. is
worse in the case of the using of the full parametric freedom (since parameters
are correlated what destabilises the predictions) and is being improved when the
parametric correlations are eliminated, the change being from R.M.S.=1.58 MeV
to R.M.S.=1.39 MeV. And this can be considered as a good starting point, the
tensor interactions and the microscopic calculations of the Coulomb potential
being the next steps on the list.

For this reason, some conclusion is somehow clear at this point: whereas the sampling
will always remain as a subjective choice mainly depending on the physical context, the
parametric correlation elimination can be seen as an ‘absolute need’ required by mathemat-
ically formulated criteria which remain an indisputable part of the mathematical posing of
the inverse problem.
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Figure 5.19 – Top: Calculated 208Pb neutron single particle energies, resulting from the fit
of the density-dependent-WS Hamiltonian parameters after full parametric correlation removal.
Bottom: Similar to the preceding one but fitting to the experimental levels of 208Pb and 132Sn
simultaneously. Notice that increasing of the sampling resulted in decreasing of the R.M.S. from
1.65 MeV to 1.39 MeV.
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Figure 5.20 – Top: Calculated 208Pb neutron single particle energies, while to the experimental
levels of 208Pb and 132Sn simultaneously – here employing the full parametric freedom of the
Hamiltonian. Bottom: Similar to the preceding one but with the full removal of the parametric
correlations. Notice that increasing of the sampling resulted in decreasing of the R.M.S. from
1.65 MeV to 1.39 MeV. Let us notice that the results for 208Pb remain unchanged whereas the
results for the Pb-Sn r.m.s. change from 0.31 MeV to 0.37 MeV, i.e. not significantly. Interestingly,
the predictive power for all the 8 nuclei, R.M.S. is improved (as it should be) from 1.58 MeV to
1.39 MeV.



5.8.2 Increasing the Sampling: Protons in 132Sn and 208Pb 149

5.8.2 Increasing the Sampling: Protons in 132Sn and 208Pb

Figures 5.21 and 5.22 present results analogous to those in Figures 5.19 and 5.20, but
for the protons. The tendencies represented in the figures are strictly analogous. In par-
ticular, in reference to Figure 5.21, we notice that the global R.M.S. deviation is improved
(variation from 1.55 MeV to 1.31 MeV) when increasing the sampling by considering 132Sn
together with 208Pb. This improvement is accompanied by just a slight deterioration of the
local description in the case of 208Pb. Figure 5.22 compares the results before and after
parametric correlation elimination, when the sampling is composed of 132Sn and 208Pb.
As it was expected, global R.M.S.-deviations improve when parametric correlations are
removed, here from 1.67 MeV to 1.31 MeV [about 20% improvement].
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Figure 5.21 – Top: Calculated 208Pb proton single particle energies, resulting from the fit of the
density-dependent-WS Hamiltonian parameters after full parametric correlation removal. Bot-
tom: Similar to the preceding one but fitting to the experimental levels of 208Pb and 132Sn
simultaneously. Notice that increasing of the sampling resulted in decreasing of the R.M.S. from
1.55 MeV to 1.31 MeV.
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Figure 5.22 – Top: Calculated 208Pb proton single particle energies, while to the experimental
levels of 208Pb and 132Sn simultaneously – here employing the full parametric freedom of the
Hamiltonian. Bottom: Similar to the preceding one but with the full removal of the parametric
correlations. Notice that increasing of the sampling resulted in decreasing of the R.M.S. from
1.67 MeV to 1.31 MeV.
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5.8.3 A Short Summary

Calculations show that in the case of 208Pb there is a clear improvement in terms of the
uncertainty widths for the great majority of orbitals when the parametric correlations are
eliminated. It also should be noted that in this case the uncertainty widths are generally
small or at least not very large, of the order of 1 MeV. However, in the test case of the
superheavy Flerovium nuclei the situation is different in that the widths quickly approach
3-to-4 MeV limits at the heaviest isotopes considered.

As it turns out, the presence of the very large widths imposes a certain loss of the
sensitivity of the reaction: Parameters of the Hamiltonian vs. eigenvalue properties. When
this happens the impact of the removal of the parametric correlations gets weaker and
weaker and finally disappears for the heaviest isotopes.

We are learning in this way that the model imposes its own limitations as far as the
extraneous predictions are concerned – in full agreement with the exact models studied in
Chapter 2. We refer to it as the NO-GO property or NO-GO Command. This allows to
formulate strong warning statements as far as the predictions for the superheavy nuclei are
concerned:

The present model (probably the most parameter-stable ‘on the market’) does not
provide stochastically significant predictions for isotopes with N > 184 - as long
as the experimental input uncertainties are characterised by σexp = 600 keV.

Two improvement paths are envisaged.

• Firstly, by differentiating among the experimental errors individually, level-
after-level, taking into account the detailed information rather than employing
an average (σexp = 600 keV) we may improve the initial sampling conditions
and thus cause narrowing the initial uncertainty widths provided by the model.

• Secondly, by introducing explicitly the tensor interaction terms (programmed
and tested but not applied systematically yet) together with the microscopic cal-
culations of the Coulomb potential with the help of the wave functions (like
density-dependent spin-orbit term) rather than using a rather primitive approx-
imation based on the uniform charge density we should be able to improve the
microscopic quality of the description3.

• Final observation: Recall that by applying this very approach to the spin-
orbit interaction we were able to obtain the same quality of the description with
the help of one parameter rather than six. This allows to hope that further
improvements in the form of the Hamiltonian together with the more careful
experimental error estimates will improve the prediction capacities.

3Obviously the appropriately chosen spectroscopic observables in the form of new single-particle level-
energies would be welcome as indicators of the spectroscopic information; it is not clear at this point
whether – and to what extent – adding global ‘observables’ such as experimental diffusivity or radii spoil
the r.m.s. features.
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5.9 Annexe A: Spin-Orbit Parametric Correlations for
Nuclei other than 208Pb

In what follows we present a series of illustration demonstrating that the correlations
between the pairs of parameters (λππ, λπν) and (λνν , λνπ) are also linear for the other nuclei
used in the present thesis, similarly to 208Pb, the latter shown in Figure 5.3.
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Figure 5.23 – Left: Proton r.m.s.-deviation in MeV projected onto the (λππ, λπν)-plane for 16O
nucleus. The central potential parameters were kept fixed at the optimal values for 16O. At each
(λππ, λπν) value the χ2 was minimised over λνν and λνπ. The colour scale gives the proton-
r.m.s. deviation in MeV. Right: Analogous illustration for the neutrons.
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Figure 5.24 – Equivalent to Figure 5.23 but for 40Ca.
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Figure 5.25 – Equivalent to Figure 5.23 but for 48Ca.
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Figure 5.26 – Equivalent to Figure 5.23 but for 56Ni.
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Figure 5.27 – Equivalent to Figure 5.23 but for 132Sn.
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Figure 5.28 – Equivalent to Figure 5.23 but for 146Gd.



Chapter 6

Summary, Conclusions
and Perspectives

The present doctor-thesis project belongs to the field of theoretical nuclear physics
within the sub-field of nuclear structure theory. Its particularity lies in the fact that even
though we model the experimental phenomena reproducing selected observables, the main
purpose lies not so much in reproducing them as well as possible – but rather in using this
information in order to be able to predict the today unknown facts in a way that satisfies
certain criteria of stability and stochastic reliability.

Specificity of the Project. We follow the above guideline in the present research project
employing methods of nuclear structure theory combined with the mathematical methods of
strongly developed today a branch of Applied Mathematics called Inverse Problem Theory.
The latter mathematical theory is sometimes nicknamed the ‘mathematics of modelling’.
It combines in an abstract manner the mathematical tools that are common to all mathe-
matical models of certain realities, no matter the particular model or (e.g. physical) reality.
In a great majority of modelling approaches used in physics, the central role is played by
an appropriate determination of the model’s optimal parameter values. According to the
Inverse Problem Theory, any optimal parameterisation to become acceptable must be first
tested, employing certain mathematical criteria, to verify a number of conditions, among
others the conditions of stability and continuity.

The application of such criteria is one of the central issues in the present project.

The Present Project: Selection of the Nuclear Model. The goal of the present
project is to study prediction capacities of a selected nuclear structure theory. Therefore
the selected for this purpose nuclear theory together with its Hamiltonian must not only
be realistic, but, optimally, also applicable to all the nuclei throughout the Periodic Table.
Only under these conditions we will be able to profit from the information e.g. about the
existing nuclei to ‘sharpen the tools’ in preparation for the predictions for the exotic nuclei,
especially since studying the latter is one of the frontier tasks in our domain today. For this
purpose we have chosen the nuclear mean-field theory which satisfies such criteria. Indeed it
is ‘universally applicable’ to atomic nuclei with all combinations of the proton and neutron
numbers throughout the Periodic Table. It appears in two realisations. The first one will
be qualified as phenomenological since it uses the pre-defined phenomenological mean-field
potentials, whereas the second one is usually qualified as microscopic even though, strictly
speaking both are phenomenological. (We avoid here terms such as e.g. “macroscopic” since

155
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the latter one has a reserved meaning in the macroscopic-microscopic method of Strutinsky
referring to the Liquid-Drop-Model energy part only). The latter uses a parametrisation of
the nucleon-nucleon interactions as the input and provides the mean-field potentials with
the help of the Hartree-Fock type selfconsistent approaches.

We had a choice of selecting between both of the two realisations of the nuclear mean-
field theory, since both were used for a long time in our group and there exist advanced
numerical programs using both1 strategies. For reasons which are justified in what follows
we decided to use the phenomenological variant of the nuclear mean-field theory and in
particular focusing on the analysis of the mean-field single-nucleon energies in spherical
nuclei. This choice allows to straightforwardly extend the use of the newly tested param-
eterisations in the framework of the large scale total energy calculations for the deformed
nuclei – in particular exotic and superheavy ones.

The Present Project: Selection of the Mathematical Tools. One of the main results
of the Inverse Problem Theory pertinent for the present project is that the determination
of the optimal parameters of any model is hurt (or made impossible) by what is called
parametric correlations. As it very often happens not all parameters of the model can
be considered independent from one another. This mechanism depends on two elements:
the mathematical structure of the model itself and the choice of the experimental data
employed to optimise the parameters. Thus it is a condition since qua non to determine
the presence (or absence) of parametric correlations within any project which aims at
parameter optimisation – before attempting any predictions and/or interpretations within
the model in question.

One of the most powerful and elegant a method of determining the parametric corre-
lations as well as the uncertainty probability distributions for the predictions – suggested
in Applied Mathematics – is the Monte-Carlo technique. It is based on repetitive solutions
of the Schrödinger equation under stochastically controlled variation of the input, and this
– a very large number of times, NM−C . The best conditions correspond to NM−C → ∞.
It then follows that the CPU time needed for each solution plays a very crucial role. As
it is well known, the phenomenological variants of the mean-field theory require negligi-
ble CPU program execution times compared to the Hartree-Fock approaches. Moreover,
it has been found out in another PhD project obtained in collaboration with our group2

that the Skyrme-Hartree-Fock iteration processes very often fail and need to be treated
‘manually case-by-case’ making the automatic data collection nearly impossible. Since the
main goal of this project was defined as the study of the model-prediction stability and
the methods of stabilisation of the ill-posed modelling, the problems with the iteration
convergence would have been an unnecessary complication for the main goals. Thus we
decided against using the Skyrme-Hartree-Fock approach for this project and selected the

1
One of the early versions of phenomenological Woods-Saxon related computer programs has been published in:

1) Single-Particle Energies, Wave-Functions, Quadrupole-Moments and g-Factors in Axially Deformed Woods-Saxon Potential with Applications to

the 2-Center-Type Nuclear Problems; S. Ćwiok, J. Dudek, W. Nazarewicz, J. Skalski and T. Werner, Comp. Phys. Comm. 46 (3) (1987) 379,

but much more advanced unpublished versions of the code exist. The infrastructure of the Woods-Saxon code has been used to produce the full
series of the Skyrme-Hartree-Fock type codes:

2) Solutions of the Skyrme-Hartree-Fock Equations in the Cartesian Deformed Harmonic-Oscillator Basis. (I) The Method;
J. Dobaczewski and J. Dudek, Comp. Phys. Comm. 102 (1) (1997) 166-182;

3) Solutions of the Skyrme-Hartree-Fock Equations in the Cartesian Deformed Harmonic-Oscillator Basis. (II) The Program HF_ODD;
J. Dobaczewski and J. Dudek, Comp. Phys. Comm. 102 (1) (1997) 183-209

4) Solution of the Skyrme-Hartree-Fock Equations in the Cartesian Deformed Harmonic-Oscillator Basis (III): A New Version of the Program;
J. Dobaczewski and J. Dudek, Comp. Phys. Comm. 131 (1) (2000) 164-186

. . .
9) Solution of the Skyrme-Hartree-Fock-Bogolyubov Equations in the Cartesian Deformed Harmonic-Oscillator Basis – (VIII) HF_ODD (v2.73y): A
New Version of the Program; N. Schunck, J. Dobaczewski, W. Satuła, P. Ba̧czyk, J. Dudek, Y. Gao, M. Konieczka, K. Sato, Y. Shi, X. B. Wang
and T. R. Werner; Comp. Phys. Comm. 216 (2017) 145-174

2
B. Szpak, PhD-thesis, Institute of Nuclear Physics, Polish Academy of Sciences, Cracow 2012.
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phenomenological solution with the Woods-Saxon potential.

Woods-Saxon Mean-Field Hamiltonian: choices with ‘Incidental Advantages’.
As it turns out, for this particular project the traditional parametrisation of the phe-
nomenological mean field in terms of the three-parameter Woods-Saxon potential has sev-
eral advantages, which make out of the implied Hamiltonian an ideal academic test case.
Indeed, all the three of them: The potential radius, diffusivity and depth parameters lead
to experimental one-to-one test possibilities by measuring directly or indirectly anyone of
the three geometrical properties, thus offering extremely precious control opportunities.
Moreover it has been known for some time that the Woods-Saxon potential depth and
radius parameters are quadratically correlated for any experimental data input, whereas
the corresponding spin-orbit potential leads to a linear correlation between the spin-orbit
strength and the spin-orbit diffusivity (all discussed in the thesis). With this information
at hand one can focus the research of the unknown inverse problem mechanisms under
simplified and well understood extra conditions – all that would have been impossible with
alternative mean-field approaches.

Exact Model With Exact Solutions: Learning about the tools. After having
introduced the methods related to the nuclear structure model used in this document
and to the principles of the inverse problem together with its stochastic elements in the
parameter optimisation – in Chapters 1 and 2 – we have formulated an exact mathematical
toy model allowing to study various mechanisms within the inverse problem approach in
Chapter 3. The exact model in question allows to examine all the elements which appear in
the realistic problems such as sampling, its choice, control, possible optimisation, studying
what we refer to as intraneous and extraneous model-prediction regimes, existence of the
parametric correlations within the model, etc. In Chapter 3 we discuss in detail the meaning
and the role of the ‘exact models/theories’ arriving at a number of instructive – not to say
surprising – conclusions:

a. Any exact theory depending on parameters becomes inexact since there always exist
experimental errors related to the experimental data employed to optimise the parameters,

b. When the experimental data become less and less precise, at a certain point even an
exact model becomes useless since, after by-passing certain critical error-values, the data
do not constrain the model anymore. We refer to this mechanism a NO-GO condition for
the exact models, but even more dramatic realisations of it occur within non-exact ones.

c. There exists in general a great difference between the quality of performance of the
model within its intraneous regime (‘predictions in between the data points’, alternatively
‘within the fitting zone’) and the extraneous regime (predictions for the zones farther and
farther away from the fitting zone). More precisely, a possibly good quality of a fit in
the intraneous area does not imply at all anything about the quality of the extraneous
predictions. Assuming to the contrary without any proof – as often found in the literature
– seems to be committing a grave error.

d. We learned in particular that the so called ‘good description’ within the intraneous zone
may still occur with the parameter values outside of the physical regime what is equivalent
to playing with random numbers when describing physical observables.

e. To avoid all these ‘surprises’ physicists should carefully analyse at least the issue of
the parametric correlations and follow the rules known in the Inverse Problem Theory of
Applied Mathematics. [The Inverse Problem Theory offers a selection of approaches which
allow for going beyond “just pure” χ2-fitting; some of them are used in the present project,
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but the richness of possibilities bypasses the framework of a single project like this one and
includes e.g. Bayesian techniques, various techniques called “regularisation methods” etc.]

All these and several more effects and results are discussed in Chapter 3.

Realistic Studies of Parameter Optimisation: Traditional Woods-Saxon Case.
In Chapter 4 we present the systematic analysis of the problem of parametric correlations
in a realistic nuclear context as well as the impact of the experimental errors on the
uncertainties of the theory predictions. We focus the discussion on the properties of the
data in relation to the 208Pb nucleus (which provides an example of an intraneous zone)
and on the superheavy nuclei selected as isotopes of Flerovium (Z = 114) – extraneous
zone.

We found out as the result of calculations that the uncertainty widths are systemati-
cally larger for the orbitals not known experimentally – and thus not used by the adjustment
procedures. We confirmed via numerical calculations the parabolic correlation between the
central potential depth- and radius-parameters and a linear one between the spin-orbit
strength and diffusivity parameters. However we also found out that there exists a new
class of correlations which take the form of two (rather than a unique) distributions centred
around spin-orbit radius parameter rso ≈ 0.8 fm, called compact, and rso ≈ 1.2 fm, called
non-compact. This forces us to introduce two full classes of solutions called compact and
non-compact, analogously. From the mathematics point of view they should be treated as
equivalently acceptable but they are not physically equivalent and it is up to a physicist to
take decisions. For instance, including extra observables, may help in defining the choice
more favourable in a given context, e.g. taking into account the rotational properties of
deformed nuclei N. Schunck, in his PhD project [47], was able to establish that the compact
solution works systematically better.

We were able to eliminate the parametric correlations reducing the original space of
six independent parameters for each kind of nucleons to two only, selected as the central
depth and the central diffusivity parameters. We have shown by direct verification that
the parameter elimination reduces the condition number by two orders of magnitude thus
improving the stability of the final predictions accordingly. At the same time we were able
to show that the widths of the level uncertainty distributions are systematically diminished
when the parametric correlations are eliminated. This mechanism is not straightforward:
different levels react differently and the corresponding detailed information is provided.

Applying the method to Flerovium isotopes show a very quick increase in the uncer-
tainty widths of the single particle orbital energies which approach the limit of FWHM
≈ 4-to-5 MeV at the neutron number N = 228. This leads to a very strong overlap be-
tween various levels and implies that the Hamiltonian parameter changes do not translate
into any strong changes of the level uncertainties. In this sense we arrive at the NO-GO
property in the realistic problem of superheavy nuclei.

Towards Woods-Saxon Hamiltonian of New Generation: Density Dependence.
It has been demonstrated in one of the earlier studies performed by our group that the
traditional Woods-Saxon Hamiltonian can be transformed into a more microscopic version
involving the density-dependent spin-orbit potential. For this purpose the Hartree-Fock
microscopic techniques are used and the spin-orbit potential form is derived which depends
on the gradients of the nucleonic densities - with the reduced number of parameters: The
traditional spin-orbit potential depends on six parameters, three for the protons and three
for the neutrons, whereas the new one on four. Within this (still phenomenological) for-
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mulation we profit from the exemplary robustness of the Woods-Saxon central-potential
properties while improving the realistic description of the spin-orbit coupling considerably.

We have found out using both analytical and numerical methods that among 4·3/2=6
possible binary correlations among those four spin-orbit potential parameters there exist
only two relations which are strictly linear whereas all other parameters are uncorrelated.
This – as discussed in detail in the document – allows us to introduce the specific condition:
All the four spin-orbit potential parameters being equal.

We have demonstrated that the new (so-called second generation) Woods-Saxon Hamil-
tonian provides nearly the same performance in terms of the comparison with the ex-
perimental data with five independent parameters less! – as compared to the traditional
formulation.

We have eliminated the parametric correlations and shown that the uncertainty widths
are systematically smaller after correlation removal – under the condition of working outside
of the NO-GO zone. Within the NO-GO zone there is no visible impact of the parametric
correlation removal and, as we have discovered, one enters the zone of a limited impact of
the parameter variation on the final result.

Synthetic Comments Related to this Research Project. Whereas the previous
conclusions were grouped according to their chronological appearance in this document,
i.e. ‘chapter after chapter’ addressing various elements of the progress such as lessons
from the exact mathematical model, their applications to the most elementary form of
the Hamiltonian3, generalisation to the Hamiltonian said ‘of the new generation’ – we will
terminate this series with a few global and/or synthetic comments and conclusions.

To our knowledge we have for the first time analysed systematically the parametric
correlations focussing on their detection, elimination, impact on the final results compared
case by case via testing various orbitals with various quantum characteristics, on various
nuclei and sets of nuclei etc., all that with concrete numerical results and within a realistic
environment (‘real nuclei and data’). We have applied for the first time the cross-checking
of the prediction stability using simultaneously the Pearson-matrix test, SVD and condi-
tion number tests and extensive Monte-Carlo tests. Our results and conclusions are fully
consistent, qualitatively and quantitatively, and convergent independently of the variant
of the model used and we believe that this provides a solid starting point for the more
advanced steps (see below).

We believe that the results of the project provide a new light towards the universality
issue4 and within the more microscopic and thus more realistic realisation of the mean-field:

Indeed, a very successful Universal Woods Saxon Hamiltonian in use also today
employs 12 adjustable ‘universal’ parameters selected once for all the nuclei; at
the time of their optimisation no attention was played to the destabilising role
of the parametric correlations. With the arrival of the density dependent spin-
orbit potential and with the full removal of the parametric correlations we arrive

3Let us mention in passing that the traditional form of the Woods-Saxon Hamiltonian in its ‘universal
realisation’, be spherical or deformed, is being used in a big number of nuclear structure publications every
year despite the fact that the original articles on that subject appeared long ago in the previous century.
As a matter of example, only in one Journal (we selected for this test Physical Review C) and only within
one year (our choice 2013) there appeared about 10 articles using the ‘Universal Woods Saxon’ approach in
various nuclear structure calculations. The authors choose this realistic model just because of its remarkable
predictive power and a single choice of parameters for all the nuclei in the Periodic Table.
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at the new universal parameterisation involving only 3 numbers (parameters)
fixed once for all to describe all the nuclei in the Periodic Table. To complete
this research with the final, global test, the large scale calculations of the nuclear
properties for the spherical and deformed nuclei should be envisaged 4.

Perspectives and Challenges. As it often happens, completed-research results bring
light to certain anterior issues but usually contribute to the progress by challenging with the
new questions. We have shown that assuming an average experimental input uncertainty
of the order of 600 keV we impose limits on the predictive power in terms of increasing
nucleon numbers in superheavy nuclei which are synonymous in this project with extreme
extraneous prediction zones: Beyond N = 184, the stochastic uncertainties seem to be too
large to be trustworthy. Similar can be said about the deeply bound states in all heavy
nuclei studied.

The question arises: What can be done to improve the situation?

We can envisage a number of scenarios which can be seen as relatively straightforward
prolongation of this research.

• Firstly, the error estimates can be treated in a finer manner by using the error estimates
adapted to each experimental level rather than employing the average estimate.

• Secondly, it is known that an important source of uncertainties, when working with
the mean-field single particle levels in spherical nuclei, originates from the coupling of
the individual nucleons with the collective surface vibrations. It is straightforward to
include in our codes a Random Phase Approximation (RPA) subprogram for treating this
type of coupling in a dedicated manner, estimate the vibration-coupling corrections to the
individual levels us use the corrected ones for the parameter optimisation.

• Another improvement can be guided by the success with the density-dependent spin-orbit
potential. Indeed, we have noticed at several occasions that the electrostatic Coulomb
potential calculated from the fixed in space uniform charge distribution poses problems in
that it influences the coupling with the nuclear diffusivity and via the latter one, introduces
an extra coupling with the other parameters thus destabilising the prediction scheme. In
the new realisation of the project such a potential would be calculated directly from the
proton microscopic density distribution.

• Yet another improvement on the list would consist in introducing explicitly the tensor-
interaction corrections to the mean-field central and spin orbit potentials. The importance
of such corrections increases with the spin-unsaturation within the nucleus and these effects
are expected to play an increasing role in superheavy nuclei. The corresponding sub-
programs have been written and tested and are ready for the follow-up projects.

• Another point to take into account is the pairing between nucleons by solving the BCS
Equations. The program code is already prepared for this, allowing us to calculate the
occupation probabilities of the different nucleon energy states.

4We were informed recently that the challenge of running the large scale calculations for hundreds
of nuclei throughout the Periodic Table was convincing for one of the Funding Agencies which accepted
financing the related three year project involving a number of senior researchers and postdoctoral fellows.



Chapter 7

Computer Programs
Written for the Present Project

The programming charge within the present project consisted in writing three prin-
cipal computer codes and a number of minor ones, all programmed using Fortran77 for
reasons of compatibility with certain existing codes. The biggest of them, of the volume
of about 90 000 lines of the FORTRAN instructions contains a certain number of standard
application subroutines downloaded form external libraries. However, nearly 80% of the
code volume corresponds entirely to the parts conceived, programmed and tested for the
purposes of this project. It solves of the Schrödinger equation with several variants of the
interaction potentials using diagonalisation method and spherical harmonic oscillator ba-
sis. It controls also various other options related to minimisation, Monte-Carlo simulations,
random number generation etc., see the next sections.

The typical versions of the fortran programs and the typical versions of the test-
outputs, cf. especially graphical ones, are given for the quick reference of the reader in the
annex file:

WSPHER-15-PROGRAMS_Annex-package

It contains the fortran source wspher_15.f, the corresponding standard input data file
wspher_15.d and the standard output example-file wspher_15_WSUNIV.out.

The other two programs served the graphical purposes as needed for the project. They
were created by us in Fortran77 using the free access standard graphical interface package
called Xfig. The first of the two programs, figlat_pl19.f, plots various types of the one-
dimensional diagrams including curves or energy levels (’ladder plots’) – with identification
labelling. Another one, Xfig_Map_17.f, plots the two-dimensional diagrams (‘geographi-
cal maps’). The graphical programs and examples of the illustrations produced by them
can be found in the annex directory:

WSPHER-15-PROGRAMS_Annex-package/Xfig_Plotting

In the rest of this chapter we include a number of comments about the functioning of
the related programs and associated algorithms.
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7.1 Parameter Optimisation Structure

The central line in the present thesis project consists in the parameter optimisation
analysis and the statistical significance of the optimisation results. The associated com-
puter program has been constructed around the minimisation (optimisation) package the
latter downloaded from an external library. In terms of proportions of the necessary new
programming to complete the code, the dominating part of the program had to be con-
structed ‘from scratch’. The newly written parts contain not only the solution of the
Schrödinger equation via diagonalisation within the spherical harmonic oscillator basis,
but also control of various options of minimisation depending on the number of nuclei, in-
cluding or not the condition on the experimental radii, using or not the tensor component,
using or not the Monte-Carlo option etc.

The use of the Monte-Carlo algorithms requires various variants of the random-number
generators; the corresponding subprograms have been downloaded from an external library.

The code contains various options which allow for testing the sampling and predictions
e.g. via selecting a given subset of experimental data but calculating the implied r.m.s. de-
viations for the full set and/or required subset. All these option and the general flexibility
of the program require quite some volume of extra coding instructions which needed to be
conceived, programmed and tested. Specific complications are related to the programming
of the Jacobian matrix and related partial derivatives, which need to be treated numerically
using the finite difference methods within the cojugated gradient algorithms – and this –
taking into account several variants of the principal algorithm. Needless to say, all these
options with the requirement of the possibility of using anyone of the cross-combinations
increases considerably the complexity of the code.

7.1.1 The χ2-Test Definition

The forms of the χ2-function needed for the sake of the present project have already
been introduced in Eq. (1.21) but in a relatively compact manner. Let us begin by remind-
ing in what follows the general definition of this function

χ2 =
nd∑

i=1

wi

[

eexp
i − eth

i (p)
]2

, (7.1)

where we have introduced the experimental eexp and theoretical eth single particle energies.
Whereas the differences in the square brackets are the standard element of the definition,
the weights wi depend on a subjective choice by physicist. In the case of the spherical single
particle levels characterised by the angular momentum quantum number j the natural
choice is:

wi = (2ji + 1). (7.2)

This form of the weight factor is natural in the case of fitting the data for one single
nucleus. However, when taking into account at the same time several nuclei, what implies
e.g. combining the data for light and heavy nuclei at the same time, with the definition in
Eq. (7.2) we favour the states with bigger total angular momentum j. Thus the heavier
the nucleus, the higher j-states will be occupied giving the higher relative weight to the
heavy nuclei. This type of the correlation is not necessarily what we may wish to accept
in order not to loose the information coming from the light nuclei.
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For example, the state with the highest j-value in 16O is j = 5/2, whereas the highest
j in 208Pb is j = 13/2. Thus using Eq. (7.2) we give much higher importance to 208Pb as
compared to 16O, which will hardly have any impact on the values of the final parameters.
To achieve more freedom in controlling this mechanism we added an extra weight factor,
w̃, depending on the relative mass of any given nucleus with respect to the mass of the
heaviest nucleus under considerations:

w̃κ =
208

Aκ

(7.3)

where Aκ denotes the mass of any given nucleus No. κ, and 208 is the mass of 208Pb, the
heaviest nucleus for which we have experimental data. With these weight factors the final
expression of the χ2 to be minimised is

χ2 =

N∑

κ=1

w̃κ

nκ∑

i=1

{

(2jiκ + 1)
[

eexp
iκ − eth

iκ(p)
]2

}

N∑

κ=1

w̃κ

, (7.4)

where N is the number of nuclei we take into account and nκ is the number of energy levels
for the nucleus No. κ. This is the function to be minimised using the Levenberg-Marquardt
algorithm, cf. Section 1.6. The optimal values of the parameters {p} are expected to define
a minimum of χ2 in which case

∂χ2

∂p
= 0. (7.5)

The minimisation routine will need the partial derivatives and particular the Jacobian
matrix generated by χ2. Calculating the derivatives of χ2 according to (7.5) reduces to
calculating the derivatives of eth(p). Since these energies are generated numerically as
the solutions of the Schrödinger equation they are calculated numerically using the finite
difference method.

Finite Differences: Definition. Knowing that the classical definition of the derivative
f ′(x) of a certain function f(x) is

f ′(x) = lim
h→0

f(x + h) − f(x)

h
, (7.6)

one can define what it is called the forward derivative for eth(p)

∂eth(p)

∂p
=

eth(p + δp) − eth(p)

δp
, (7.7)

The above equation can be used to calculate the derivative of eth(p) with respect to p what
requires increasing the number of diagonalisations by one to calculate eth(p + δp) for each
component of the parameter-vector p.

However, as one shows in the elementary lecture courses of numerical methods the
so-called centred derivative

∂eth(p)

∂p
=

eth(p + δp) − eth(p − δp)

2 δp
. (7.8)

offers the quadratic precision, error ∼ δp2, whereas the preceding one offers the precision
only up to a linear term, error ∼ δp, thus Eq. (7.8) is the one programmed in our codes.
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7.1.2 The Fitting Procedure

At this place we wish to limit ourselves to a few words of precision about the differences
between the fitting procedure when using the traditional (phenomenological) definition of
the spin-orbit, cf. Eq. (2.5), as compared to density-dependent definition, cf. Eq. (2.51).

The main difference is the self-consistency requirement used in the density-dependence
case. The first step for the iterative process is to calculate the cN

nlj coefficients, cf. Eq. (2.56),
using the traditional description of the spin-orbit potential. Next, we use these to calculate
the nuclear density and density gradient and we diagonalise again the Hamiltonian but
this time using the density-dependent formulation. With the new cN

nlj, one can recalculate
the density and its gradient, and therefore diagonalise once more the Hamiltonian. This
iterative precess finishes when the single particle energies obtained from the Hamiltonian
diagonalisation of the latest iteration and the preceding one are less than a certain ε given
as the input value to the programme:

√
∑

i

[

e
(k)
i − e

(k−1)
i

]2 ≤ ε, (7.9)

where k indicates the iteration. It turns out that, typically, for ε ∼ 10−3 the number of
necessary iterations is around k ≈ 6.

Another difference between the two variants of the Hamiltonian becomes visible when
comparing the calculation for one nucleus and for several nuclei simultanously. On the
one hand, since the density-dependent description depends at the same time on the proton
and neutron densities, in the process of fitting one needs to take into account both the
proton energies and the neutron energies simultaneously, therefore we need to minimise at
the same time over the proton and the neutron parameters. This makes the parametric
optimisation procedure slower because there are more partial derivatives to calculate using
the finite differences at each step.

7.2 Numerical Integration

A very important aspect of the solution of the Schrödinger equation using the diago-
nalisation method is the calculation of the matrix elements of the Hamiltonian, which have
an explicit integral form; these are calculated numerically using Gauss-Laguerre quadra-
ture theorem. This algorithm is combined with the package of subroutines calculating the
Laguerre-functions and their derivatives to express the densities and calculate numerically
the matrix elements.

The numerical integration of the matrix elements of the Hamiltonian involves the
integrals for any given operator Ô, cf. Eq. (2.46)

〈n′ℓ|Ô|nℓ〉 =
a

2
Nn′ℓ Nnℓ

∫ ∞

0
dz e−zzℓ+ 1

2 L
(ℓ+ 1

2
)

n′ (z) Ô(z) L
(ℓ+ 1

2
)

n (z) . (7.10)

The numerical integration expression using the so-called generalised Gauss-Laguerre quadra-
ture theorem is given by

∫ ∞

0
e−xf(x)dx =

∑

i

wif(xi) (7.11)

cf. [27] Eq. (25.4.45).
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Due to the presence of zℓ+ 1
2 in Eq. (7.10), we could have chosen the integration weights

wi proportional to it. However, we chose the wi to be proportional to zℓ− 1
2 because of the

form of the kinetic energy matrix elements, cf. Eq. (2.47). Consequently, Eq. (7.10) takes
the form

〈n′ℓ|Ô|nℓ〉 =
a

2
Nn′ℓ Nnℓ

∫ ∞

0
dz e−zzℓ− 1

2 z L
(ℓ+ 1

2
)

n′ (z) Ô(z) L
(ℓ+ 1

2
)

n (z)

=
a

2
Nn′ℓ Nnℓ

NGL∑

i=1

wi zi L
(ℓ+ 1

2
)

n′ (z) Ô(z) L
(ℓ+ 1

2
)

n (z) , (7.12)

where NGL is the number of integration points.

7.3 Code Variants

The essential skeleton of the code is the parameter optimisation block taking into
account one or more nuclei at the same time. One may also chose which parameters are
optimised and which stay constant during the process of the minimisation.

Since we were interested in different aspect of the modelling and model predictive
power, different variants of the code were developed in order to have as much as possible
a detailed analysis of the problem.

Variant 1 - Direct Diagonalisation. This is the simplest calculation variant. After
introducing the required parameter values the code provides the single particle energies for
the nuclei specified.

Variant 2 - Simple Fit. This is the parameter optimisation variant where one
chooses the number of nuclei and the parameters over which the minimisation needs to be
performed. The results are the values of the optimal parameters and the single particle
energies of the desired nuclei calculated from these parameters.

Variant 3 - Single Particle Energies as Functions of One Parameter. In
this case we perform the calculations for a single nucleus. Defining the sequence of the
parameter values, we tabulate the single particle energies. The parameters over which we
do not tabulate can either remain fixed or they can be optimised via χ2-minimisation.

Variant 4 - Mapping of χ2. This is one of the techniques developed to detect
parametric correlations. In this case, the χ2 is projected onto a plane. In this case, the χ2

is tabulated as a function of the two parameters, whereas the remaining parameters are
either kept fixed or are optimised via minimisation.

Variant 5 - Monte Carlo Simulations. This variant was already discussed in
Sect. 1.8. The goal of this variant is to obtain occurrence histograms of the parameters
and single particle energies. For this purpose, a Gaussian noise is defined according to some
standard deviation, σexp, defined via input. The experimental data are introduced, they
are transformed into ‘noisy’ data and the χ2-minimisation is performed. Repeating this
operation a large number of times, say NMC , allows us to obtain NMC sets for the fitted
parameters. Next, with each set of so obtained parameters we can calculate the single
particle energies for the desired nuclei, and/or to construct the occurrence histograms.
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Résumé

Le présent document décrit un projet de recherche de doctorat dans le domaine de la
physique nucléaire théorique - plus précisément dans le domaine de la structure nucléaire
théorique. Dans ce projet, nous présentons de nombreux résultats de calculs réalistes qui
peuvent être et seront comparés aux données expérimentales. Cependant, l’intérêt principal
de ce projet ne sera pas tellement de seulement

reproduire des données expérimentales existantes

mais plutôt de
reproduire des données expérimentales existantes

et surtout
prédire d’une manière aussi fiable que possible les résultats dans les zones inconnues.

Notre point de départ est l’observation selon laquelle tous les modèles théoriques réalistes
de la structure nucléaire dépendent de paramètres réglables. Comme le montrent d’autres
auteurs, une grande attention a été portée dans la littérature passée sur les développements
des modèles eux-mêmes, alors qu’une attention bien moindre a été accordée au rôle des
procédures d’ajustement des paramètres.

On accorde une attention croissante à ce deuxième aspect dans notre cadre de recherche
suite à un progrès très rapide dans le domaine spécialisé de la science consacré à ce sujet :

la théorie du problème inverse dans les mathématiques appliquées.

1 Pouvoir de prédiction et problème inverse dans les
théories quantiques

En discutant la théorie du pouvoir prédictif, on a généralement peu de doute à propos
de ce que l’on veut dire. Nous supposons souvent sans le dire que la théorie en question peut
prédire et produire de manière fiable des résultats qui traitent de la région expérimentale-
ment inconnue. Mais dès que nous tentons de poser des questions plus précises de sérieuses
difficultés sont susceptibles de se produire, déjà au niveau sémantique. Ci-dessous, nous
donnerons quelques exemples avant d’aborder plus précisément le résultat de la définition
des incertitudes de prédiction et du pouvoir prédictif.
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1.1 Problème inverse : poser le problème et les stratégies de résolution 170

Prédiction du modèle : que signifie « prédire » ?

Considérons un modèle mathématique donné, ou « théorie » expression que préfèrent
les théoriciens. Tout calcul effectué avec cette théorie et s’intéressant à des informations
encore inconnues peut être appelé une prédiction. Ce n’est qu’après la vérification expé-
rimentale correspondante que nous pouvons dire si le résultat prédit, autrement dit la
prédiction, est ou n’est pas acceptable. En d’autres termes, s’il s’agit d’une prédiction
bonne ou mauvaise. Par conséquent, puisque l’exécution de tout calcul avant que les ex-
périences soient effectuées peut toujours être appelée une prédiction, chaque prédiction a
toujours une puissance prédictive. Subséquemment celle ci ne délivre à elle seule aucune
qualité du modèle et pour devenir utile, elle doit être complétée par quelques qualificatifs.
Par exemple, nous devrons peut-être spécifier ce que nous appelons bon pouvoir prédictif.
Mais être bon pour quelqu’un peut ne pas être assez bon pour quelqu’un d’autre. Par
conséquent, la terminologie discutée (nous éviterons à ce stade le mot « définition ») com-
porte une dose de jugement subjectif et arbitraire. C’est pourquoi nous devrons aborder la
question de certains critères objectifs ou, si ce n’est pas possible de certains critères relatifs,
qui permettront d’examiner les capacités de prédiction de la théorie, et donc le pouvoir
prédictif, en minimisant l’effet d’un jugement subjectif explicite ou implicite.

1.1 Problème inverse : poser le problème et les stratégies de
résolution

Considérons un opérateur Ô qui, agissant sur un ensemble de paramètres {p}, génère un
ensemble de résultats habituellement appelés données {d}. Nous écrivons symboliquement :

Ô({p}) = {d}. (13)

La réalisation de l’opération dans l’Eq. (13) s’appelle la résolution d’un problème direct.
Cependant, une telle opération peut être faite si, et seulement si, les valeurs des paramètres
sont connues. Dans les applications réalistes, afin de pouvoir commencer à utiliser notre
théorie, nous devons d’abord trouver l’ensemble des paramètres optimaux {popt}. Pour cela,
nous aurons besoin en principe de construire l’inverse de l’opérateur Ô dans l’Eq. (13) :

{popt} = Ô−1({dexp}). (14)

La réalisation de cette tâche s’appelle la résolution du problème inverse. Les solutions
formelles d’un tel problème mathématique avec la correspondance Ô ↔ Ĥ, où Ĥ est dans
notre cas le hamiltonien d’un système nucléaire, n’existent tout simplement pas.

Nous disons que le problème est bien-posé si pour chaque d il existe une solution p
qui est unique et continue. Si l’une de ces conditions n’est pas satisfaite, nous disons que
le problème est mal-posé. Dans ce cas, l’opérateur Ô n’a pas d’inverse, ce qui implique que
les données expérimentales ne limitent pas les paramètres du modèle et par conséquent ils
ne peuvent pas être déterminés. De plus l’existence ou non de l’opérateur inverse dépend
non seulement du problème mathématique lui-même, mais aussi de l’ensemble des données
{d}.

Si l’opérateur n’a pas d’inverse ou si son inverse est inconnu, une approche couramment
appliquée consiste à contourner la résolution du problème inverse. Pour cela, l’une des
méthodes les plus souvent utilisées est la minimisation du χ2. En suivant une telle approche,
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on minimise la distance entre les prédictions théoriques {eth} et les données expérimentales
{eexp} en minimisant la fonction test χ2 :

χ2({p}) ∼
nd∑

i=1

[

eexp
i − eth

i ({p})
]2

. (15)

Ci-dessus, nd est le nombre de données expérimentales à notre disposition et les données
{d} sont les énergies {e} du système. En minimisant la fonction χ2 dans l’Eq. (15) sur
l’ensemble des paramètres {p} nous pouvons trouver les paramètres optimaux qui peuvent
être utilisés pour simuler les données expérimentales de manière réaliste.

Si le problème inverse est mal-posé, l’utilisation de la minimisation de la fonction χ2

à la place de la véritable résolution du problème inverse conduit à des déviations entre la
théorie et l’expérience qui «semblent acceptables», malheureusement les paramétrisations
ainsi obtenues sont totalement instables. Ce problème a récemment été reconnu comme bien
réel et de grande importance - du moins en physique nucléaire - et il existe des conférences
internationales sur ce sujet organisées ces dernières années1. La présente thèse peut être
replacée dans le cadre des études de solutions de ce type de problèmes dans le contexte de
la physique de la structure nucléaire, et plus précisément, les approches de champs moyens
nucléaires reconnues comme empiriquement parmi les plus efficaces dans notre domaine.

Il arrive souvent qu’en tentant de résoudre le problème inverse d’une manière ou d’une
autre, on détecte l’existence de corrélations paramétriques : les paramètres ne sont pas
indépendants les uns des autres. La corrélation paramétrique est encore un autre signe
de problème inverse mal-posé, auquel cas différentes méthodes de contournement de la
difficulté appelées méthodes de régularisation doivent être considérées.

1.2 Incertitudes théoriques et erreurs expérimentales

Cette thèse utilise la théorie stochastique du pouvoir prédictif 2 à partir des hypothèses
suivantes. Soit une théorie T d’un certain phénomène P utilisant les observables quantiques
F̂1, F̂2, ... , F̂n. Ces dernières devraient être caractérisées par leurs valeurs propres dont les
ensembles sont notés à l’aide d’accolades

[

F̂1 → {f1}, F̂2 → {f2}, . . . F̂n → {fn}
]

(16)

ainsi que par leur distribution de probabilité

P1 = P1(f1), P2 = P2(f2), . . . Pn = Pn(fn). (17)

Le fait que les valeurs propres des observables possèdent des incertitudes conformément aux
distributions de probabilité est dû au fait que les données expérimentales sont connues avec
des barres d’erreur et aussi à ce que les théories elles-mêmes introduisent des incertitudes
en raison de termes négligés ou de termes inconnus.

Toutes les théories connues qui décrivent la structure des systèmes subatomiques
peuvent être considérées comme incomplètes. Cela tient au fait que la connaissance ac-
tuelle de l’interaction nucléon-nucléon, même si elle progresse dans le temps, est encore

1Focus Issue : Enhancing the interaction between nuclear experiment and theory through information
and statistics (ISNET), J. Phys. G : Nucl. Part. Phys. 42 (2015)

2formulé et discuté dans “Open Problems in Nuclear Theory”, article invité, J. Dudek et collaborateurs,
J. Phys. G : Nucl. Part. Phys. 37 (2010) 064031.
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assez limitée. Un peu familièrement : en principe, ce que nous voulons connaître est ce
qu’on appelle parfois la « vérité complète sur le système ». Comme le « vrai hamiltonien »
reste inconnu, nous pouvons écrire notre hamiltonien de connaissance actuelle en utilisant
la forme symbolique suivante

Ĥ = Ĥtrue + δĤignor ↔ Ĥtrue = Ĥ − δĤignor, (18)

où δĤignor représente notre ignorance. Il existe des moyens efficaces bien connus de limiter
l’impact négatif de notre manque de connaissance à partir de l’incomplétude des infor-
mations. Ces moyens consistent à parametrer notre ignorance, autrement dit, trouver les
probabilités relatives de ce que nous pensons que les bonnes réponses sont.

L’information expérimentale que nous avons utiliser pour obtenir les valeurs des diffé-
rents paramètres de notre modèle contient des erreurs. Ce projet se concentre sur les pro-
priétés sélectionnées des noyaux sphériques dits doublement magiques. Plus précisément,
nous analyserons les propriétés des énergies à un seul nucléon du champ moyen nucléaire
en utilisant les informations expérimentales disponibles pour les noyaux suivants :

16
8O8,

40
20Ca20,

48
20Ca28,

56
28Ni28,

90
40Zr50,

132
50Sn82,

146
64Gd82 and 208

82Pb126. (19)

Dans la physique de la structure nucléaire, les énergies soi-disant expérimentales à un seul
nucléon sont en fait des objets complexes et dépendants du modèle, cf. Ref. [2].

Gardant à l’esprit qu’à la fois les théories et les données expérimentales viennent avec
des erreurs, ces incertitudes sont propagées par la modélisation aux paramètres. Ainsi, les
valeurs optimales des paramètres {p} sont des variables aléatoires et par conséquent sont
caractérisées par des distributions de probabilité P = P(p).

Quel que soit le calcul que nous effectuons après, cela implique que toutes les quantités
calculées doivent être impérativement vues comme des variables aléatoires accompagnées
par leur distribution de probabilité, comme par exemple pour les énergies propres

Πρ = Πρ(eρ). (20)

1.3 Simulation Monte-Carlo

Les techniques de simulation de Monte-Carlo sont basées sur les algorithmes répétitifs
qui permettent d’effectuer une certaine estimation en changeant certaines conditions, par
exemple la minimisation d’un test χ2 un grand nombre de fois, disons NMC . Chaque ré-
pétition peut être considérée comme un test d’une nouvelle hypothèse suivant un certain
protocole, par exemple tester les données d’entrée expérimentales en fonction de la distri-
bution de probabilité générée numériquement. À ce stade, les méthodes de Monte-Carlo
utilisent les générateurs de nombres aléatoires numériques permettant de modéliser toute
distribution de probabilité donnée nécessaire. Par exemple, on peut utiliser les méthodes
de Monte Carlo pour simuler les distributions d’incertitude gaussiennes des données expé-
rimentales et étudier la propagation de l’information représentée par une telle distribution
d’entrée jusqu’aux distributions de probabilité résultantes des paramètres «optimaux» fi-
nals résultants.

Analyse des corrélations paramétriques - Matrice de Pearson. Avec les résultats
obtenus de la simulation Monte Carlo, on peut construire different outils d’analyse pour
étudier les correlations paramétriques. Un de ces outils est la matrice de correlation de
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Pearson, qui informe sur la possible corrélation linéaire existante entre les paramètres du
modèle. Les elements de matrice rij sont définis de la façon suivante

rij =

n∑

k=1
(pi,k − p̄i)(pj,k − p̄j)

√
n∑

k=1
(pi,k − p̄i)2

√
n∑

k=1
(pj,k − p̄j)2

(21)

où n est le nombres d’éléments, dans ce cas n = NMC et p̄i est la moyen arithmétique du
paramètre pi. Ce coefficient rij peut prendre différentes valeurs dans l’interval [−1, +1].
Si rij = ±1, il existe une correlation parfaitement linéaire entre les deux paramètres pi

and pj. En d’autres termes, plus rij s’approche des limites ±1 plus forte est la corrélation
linéaire entre les deux paramètres correspondants, voir la première ligne de la Figure 1.2
(p. 24). D’autre part, rij → 0 signifie seulement qu’il n’y a pas de corrélation linéaire entre
les paramètres pi et pj ; en d’autres termes, les informations possibles sur les corrélations
non linéaires doivent être recherchées en utilisant des moyens différents. Les techniques
Monte-Carlo adaptées de manière appropriée constituent l’un des outils les plus puissants
à cet égard ; ce seront les diagrammes que nous désignerons par diagrammes à points
(dot-plots), dont des exemples sont donnés dans la Figure 1.2 (p. 24). Ces diagrammes
sont des distributions bidimensionnelles obtenues à partir des résultats de simulation de
Monte Carlo projetés sur le plan (pi, pj) - où les axes représentent les pi et pj paramètres,
respectivement.

Données pseudo-expérimentales. Les données expérimentales dont nous disposons et
que nous utilisons pour ajuster les valeurs des paramètres du modèle sont limitées et ne sont
généralement pas suffisantes pour divers types de considérations de test. Pour cette raison,
on peut introduire le concept de données pseudo-expérimentales. Le principe de base de
cette idée est le suivant. Pour commencer, nous utilisons le meilleur ensemble de données
expérimentales existant pour ajuster l’ensemble optimal de ce que nous appelons para-
mètres de référence. Un tel ensemble assure que le modèle fonctionne à son meilleur regime
ce que l’on peut attendre avec des données expérimentales limitées. Avec les paramètres de
référence connus, nous calculons l’ensemble complet des résultats théoriques, par exemple
tous les niveaux d’énergie qui peuvent être fournis par le modèle, généralement beaucoup
plus que ce qui est connu expérimentalement. Après ces préliminaires, les données expéri-
mentales réelles peuvent être remplacées par les données pseudo-expérimentales calculées.
Ces dernières peuvent être utilisées pour effectuer différents tests. Par exemple, puisque
les données pseudo-expérimentales reproduisent exactement les paramètres de référence du
modèle, elles peuvent être utilisées pour une modélisation exacte avec les propriétés de
performance proches de ce qui est nécessaire pour décrire les données réelles.

2 Modèle du champ moyen nucléaire sphérique

Nous nous concentrons sur l’étude du pouvoir prédictif d’un hamiltonien nucléaire
réaliste impliquant un potentiel central de Woods-Saxon avec deux variantes pour l’inter-
action de spin-orbite : i) d’abord un potentiel spin-orbite en sa representation traditionnelle
phénoménologique et ii) un potentiel spin-orbite dépendant de la densité.

Dans le présent projet, nous avons souhaité implémenter et tester les puissants algo-
rithmes de Monte-Carlo pour détecter et supprimer les corrélations paramétriques. Pour
cela, le temps d’exécution de c.p.u. ultra-court des algorithmes de résolution de l’équation
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de Schrödinger est primordial. Nous avons donc décidé d’utiliser la réalisation phénomé-
nologique de l’algorithme de champ moyen avec le hamiltonien de Woods-Saxon, d’autant
plus que B. Szpak [25] a démontré dans sa thèse que le choix du hamiltonien sous la forme
de l’approche sphérique de Skyrme-Hartree-Fock conduit à un mécanisme pathologique-
ment complexe de corrélations paramétriques. B. Szpak a montré que, dans de nombreuses
situations, le hamiltonien de Skyrme conduit aux corrélations paramétriques sous la forme
« tout le monde corrélé avec tout le monde », voir Figure 2.1 (p. 28).

2.1 Hamiltonien de Woods-Saxon sphérique

Commençons par introduire le hamiltonien qui sera utilisé pour décrire les énergies de
particule individuelle de champ moyen dans ce projet. La structure générale du hamiltonien
considérée ici a la forme

Ĥ(þr ) = t̂ + V̂C(þr ) + V̂SO(þr ) +
[

V̂E(þr ) ↔ potentiel électrostatique pour les protons
]

, (22)

où þr est le vecteur position d’un nucléon et t̂, l’opérateur d’énergie cinétique du nucléon.

On a choisi le potentiel central, V̂C(þr) → V̂C(r) sous la forme de Woods-Saxon

V̂C(r) =
V c

1 + exp[(r − Rc)/ac]
(23)

où V c est le paramètre de profondeur du puits de potentiel, rc dans Rc = rcA1/3 est le para-
mètres de rayon, et ac le paramètres de diffusion. Le troisième terme à droite dans Eq. (22)
représente le potentiel spin-orbite. Dans sa représentation traditionnelle (contrairement à
la réalisation auto-cohérente dépendant de la densité, qui sera introduite plus tard) elle a
la forme suivante :

V̂SO(þr ) → V̂SO(r) =
1

r

dvso(r)

dr
þℓ · þs (24)

où par définition

vso(r)
df.
=

λso

1 + exp [(r − Rso)/aso]
. (25)

Par analogie à V c dans le potentiel central, λso représente la force de l’interaction phéno-
ménologique spin-orbite, rso in Rso = rsoA1/3 est le paramètre de rayon spin-orbite et aso

le paramètre de diffusion spin-orbite.

Enfin, le dernier terme du hamiltonien de l’Eq. (22) est le potentiel coulombien électro-
statique agissant uniquement sur les protons. Pour la densité de charge uniforme, il prend
la forme :

V̂E(þr ) → V̂E(r) = ~cα(Z − 1)







3−(r/Rcoul)2

2Rcoul , for r ≤ Rcoul

1
r
, for r > Rcoul

(26)

où c est la vitesse de la lumière, α est la constante de structure fine et, comme dans le cas
du potentiel central et spin-orbite, Rcoul = rcoulA1/3 est le paramètre de rayon de Coulomb.
Dans le présent travail, nous supposons que le rayon de Coulomb est proportionnel au
rayon central :

rcoul = fc · rc, (27)

où fc est une constante positive. Cependant, dans ce qui suit nous travaillons la plupart
du temps avec l’approximation fc = 1, laissant des raffinements possibles pour plus tard.
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Les paramètres profondeur du potentiel central et force du potentiel spin-orbite peuvent
être définies séparément pour chaque noyau et type de particules, mais ici nous avons choisi
de les paramétrer en termes de nombres de protons Z et de neutrons N et d’introduire deux
paramètres auxiliaires pour chacun d’eux. Ainsi, pour la profondeur du potentiel central
nous avons

V c = Vo

(

1 ± κc
N − Z

N + Z

)

, (28)

et pour la force du potentiel spin-orbite

λso = λo

(

1 ± κso
N − Z

N + Z

)

. (29)

Dans les deux cas, le signe plus (+) représente les protons et le signe moins (−) pour les
neutrons.

À ce stade, nous avons complètement défini notre hamiltonien qui dépend de douze
paramètres, six pour les protons et six pour les neutrons :

{Vo, κc, rc
π,ν , ac

π,ν , λo, κso, rso
π,ν , aso

π,ν}. (30)

Les indices π, ν se réfèrent aux ensembles de paramètres pour les protons et les neutrons,
respectivement.

2.2 Potentiel spin-orbite dépendant de la densité

L’interaction spin-orbite introduite dans l’Eq. (24) est une pure construction phéno-
ménologique et ne prend pas explicitement en compte les interactions nucléon-nucléon qui
ont lieu dans le noyau. Dans cette section, nous présentons un choix alternatif de la dé-
finition du potentiel spin-orbite en utilisant le formalisme d’approche de Hartree-Fock.
Après la généralisation microscopique de WS-Universal dans [29], nous obtiendrons une
approche généralisée Woods-Saxon avec l’interaction spin-orbite dépendante de la densité
qui impliquera une condition d’auto-cohérence dans son algorithme.

Il est hors de portée de ce document de donner tous les détails de la dérivation de
l’interaction spin-orbite dépendante de la densité. Pour plus de détails sur la dérivation
mathématique «pas à pas», voir [29]. La nouvelle forme correspondante de l’interaction
spin-orbite est [29]

V̂SO(r) = λ
1

r

dρ(r)

dr
þℓ · þs, (31)

où λ est le paramètre de force. Puisque la densité nucléonique est la somme des contribu-
tions des protons et des neutrons, il sera instructif d’introduire la dépendance en isospin
dans l’expression précédente. On obtient la forme suivante du potentiel spin-orbite, celui
qui agit sur les protons :

V̂ π
SO(r) =

1

r

[

λππ
dρπ(r)

dr
+ λπν

dρν(r)

dr

]

þℓ · þs , (32)

et celui qui agit sur les neutrons :

V̂ ν
SO(r) =

1

r

[

λνπ
dρπ(r)

dr
+ λνν

dρν(r)

dr

]

þℓ · þs. (33)

Avec cette nouvelle formulation, nous décrivons le potentiel spin-orbite avec quatre para-
mètres pour les protons et les neutrons {λππ, λπν , λνν , λνπ}, au lieu de six paramètres avec
la formulation traditionnelle.
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3 Incertitudes des prédictions théoriques

Dans ce chapitre, nous avons présenté le cadre conceptuel et les propriétés mathéma-
tiques liées à la solution du problème inverse en vue de l’optimisation et de la stabilisation
des procédures d’ajustement des paramètres par des illustrations directes. Bien que nous
cherchions à modéliser les propriétés réalistes du champ moyen nucléaire en se concentrant
sur les énergies à un seul nucléon, nous souhaitons d’abord présenter les procédures et les
propriétés assez complexes en utilisant un modèle simple exactement soluble.

Il s’avère que presque tous les mécanismes et propriétés de la modélisation mathé-
matique, qui peuvent être nécessaires aux physiciens dans la théorie du problème inverse,
peuvent être testés et illustrés jusqu’à un certain détail arbitraire avant de les appliquer
dans un contexte physique réaliste. Pour illustrer cette section, nous allons discuter un
«modèle-jouet» à quatre paramètres exactement soluble. La discussion complète et dé-
taillée peut être trouvée dans le Chapitre 3, ici nous nous concentrerons uniquement sur
les conclusions importantes et les implications trouvées.

Incertitudes : paramètres, prédictions internes et externes. Nous allons mettre
ensemble, dans les observations finales, les résultats indiquant que les excellentes prédictions
dans la zone interne, Tableau 3.3 (p. 58), sont obtenues avec des paramètres qui sont très
incertains, Tableau 3.1 (p. 54) et ce sont les mêmes paramètres qui ont conduit à des
prédictions externes inacceptables, voir Tableau 3.2 (p. 57).

Un physicien peut choisir de retenir à ce stade que, même si la performance détaillée du
modèle peut dépendre du contexte particulier, il faut généralement accepter comme règle
que si la qualité de l’ajustement et celle des prédictions internes est assurée cela n’implique
pas nécessairement la qualité des predictions externes, qui sont au centre de l’attention.
Lorsque les données expérimentales deviennent de moins en moins précises, il existe un
seuil où le modèle exact choisi ici n’a plus aucun qualité de prédiction. En effet, après
avoir dépasser une certaine valeur critique d’erreur, les données ne limitent plus le modèle.
Nous appelons ce mécanisme une «condition NO-GO» pour les modèles exacts, mais des
réalisations encore plus spectaculaires se produisent dans des modèles non exacts.

Enfin, soulignons que la notion même de zones de prédiction intrinsèques et étrangères
introduite dans la Réf.[40] joue un rôle central dans la formulation de la distinction entre
les deux concepts et la performance implicite très différente du modèle dans les deux cas.

Nous avons fourni une analogie directe du «modèle-jouet» exact, nous avons testé
les mêmes caractéristiques avec notre modèle réaliste Woods-Saxon en construisant ce
que nous appelons modèle exact induit par le concept de données pseudo-expérimentales,
précédemment défini.

4 Détection des instabilités du modèle et stabilisation
des prédictions de la modélisation

Une conséquence non désirée de la présence de corrélations paramétriques est que, selon
leur forme précise, elles peuvent transformer le problème inverse en un problème inverse
mal posé, c’est-à-dire que la solution n’est pas unique si elle existe ou elle ne change pas
continument avec la modification de données d’entrée. En d’autres termes - dans le meilleur
des cas, c’est-à-dire, si une solution peut être obtenue - toute petite variation de l’entrée
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peut provoquer une très forte variation des résultats finals. Il existe différentes façons de
détecter une mauvaise posture et son «degré d’intensité». Dans cette section, nous nous
concentrerons sur la détection de la présence de corrélations paramétriques et examinerons
les méthodes basées sur une simulation Monte-Carlo pour leur élimination.

4.1 Détection des correlations paramétriques

Dans ces simulations exploratoires, les barres d’erreur expérimentales seront définies à
l’aide d’un seul paramètre σexp fixé pour tous les niveaux expérimentaux. La dépendance
des résultats sur le choix de ce paramètre sera testée plus tard. Nous commencerons les tests
de présence/absence de corrélations paramétriques, en utilisant la matrice de corrélation,
Eq. (21) également appelée matrice de Pearson. Nous montrerons comment les corrélations
paramétriques dépendent de la valeur de σexp et de la taille et du type de l’échantillonnage
afin d’établir un lien quantitatif entre l’entrée typique au problème inverse avec la sortie
d’optimisation de paramètre - dans notre cadre d’intérêt.

Échantillonnage : niveaux de neutrons3 du 208Pb. Nous commençons avec les niveaux
de neutrons et calculons la matrice de corrélation de Pearson pour l’hypothèse σexp =
600 keV. Les résultats du Tableau 4.1 (p. 74) pour les paramètres neutroniques montrent
qu’à part les termes diagonaux, un seul élément matriciel non diagonal dans cette table est
proche de 1, à savoir le coefficient de corrélation pour (V c, rc). Le paramètre de la diffusion
centrale ne semble pas être corrélé avec les autres paramètres. Dans le cas des paramètres
spin-orbite, on peut en déduire que les paramètres des neutrons ne sont pas aussi fortement
corrélés que la paire (V c, rc) du potentiel central. La matrice de corrélation de Pearson pour
(λso

ν , aso
ν ) mérite quelques commentaires supplémentaires. Les valeurs correspondantes des

coefficients de corrélation sont autour de 0.5 pour les neutrons. Cette corrélation peut être
attendue et comprise à cause de la forme du potentiel spin-orbite dans Eq. (24). En effet,
en calculant la dérivée du facteur de forme vso(r) analytiquement, on peut facilement voir
que le potentiel spin-orbite dépend explicitement du ratio (λso/aso). Il s’ensuit qu’il doit y
avoir une compensation automatique entre les variations de ces deux paramètres au cours
du processus de minimisation impliquant leur corrélation.

Cependant, il ne faut jamais arrêter l’analyse des corrélations paramétriques en étu-
diant les éléments matriciels de la matrice de corrélation de Pearson, car elle n’informe que
sur les corrélations linéaires possibles existant entre les paramètres, mais pas sur les autres
formes, cf. Figure 1.2 (p. 24). Par conséquent, il est nécessaire de poursuivre avec l’analyse
bidimensionnelle de corrélation. Une discussion préparatoire des propriétés topologiques
attendues de tels diagrammes a été donnée dans le Chapitre 1, où nous avons introduit ce
que nous avons appelé les diagrammes à points (dot-plots).

Les résultats de Monte-Carlo pour toutes les corrélations possibles entre les paires de
paramètres central-central et de spin-orbite-spin-orbite sont présentés pour les neutrons et
les protons sur les Figures 4.3 - 4.14 (p. 77 - 84). Chaque figure est composée de quatre
panneaux différents, montrant la même corrélation mais pour différentes valeurs de σexp,
définies comme 50 keV, 200 keV, 400 keV et 600 keV. De cette façon, on peut superviser
l’évolution des corrélations paramétriques avec l’augmentation de l’erreur d’entrée. Étant
donné que la structure des « diagrammes à points » ne représente aucun modèle univer-
sel/général, nous procéderons dans ce qui suit à l’examen des résultats au cas par cas.

Correlations entre les paramètres du potentiel central. En analysant les figures

3Dans ce résumé, nous nous concentrerons sur les résultats des neutrons.
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mentionnées dans le paragraphe précédent, nous avons montré qu’il existe une dépendance
quadratique entre les paramètres de la profondeur centrale et du rayon central, nous avons
pu déterminer sa forme exacte en ajustant l’expression

rc = α · (V c)2 + β · V c + γ . (34)

Lorsque le diagramme arbore une symétrie radiale, on peut en conclure que les paramètres
impliqués sur les axes ne sont pas corrélés. Cela se produit entre la profondeur centrale et
la diffusion centrale d’une part, et le rayon central et la diffusion centrale, d’autre part.

Correlations entre les paramètres du potentiel spin-orbite. Pour les paramètres
spin-orbite, on peut remarquer une tendance de corrélation linéaire approximative entre
(aso, λso) : si aso augmente, λso augmente aussi. Cette tendance ne semble pas dépendre
beaucoup de la valeur de σexp. En ce qui concerne les corrélations entre (rso, aso) et (rso, λso)
elles apparaissent comme des corrélations non linéaires manifestant une structure à deux
centres. La présence de cette structure à « double bulle » indique qu’il existe deux «
solutions optimales » pour le rayon spin-orbite. La solution de rayon plus petit s’appelle
configuration compact et la solution de plus grand rayon est appelée configuration non-
compacte. Cet effet a déjà été étudié dans la thèse de N. Schunk [47] et a été discuté
et expliqué en termes de la forme spécifique du potentiel spin-orbite proportionnelle au
gradient du potentiel Woods-Saxon, presque constant à l’intérieur du noyau, et variant
fortement à la surface.

4.2 Incertitudes des niveaux d’énergie nucléonique

Dans cette section, nous discutons des distributions de probabilité d’incertitude des
énergies de particules individuelles obtenues en utilisant les techniques de Monte Carlo
dans la section précédente, à savoir pour chaque ensemble de paramètres, nous pouvons
calculer toutes les énergies de particules individuelles d’un noyau désiré.

Construction des histogrammes de probabilité d’incertitude. Pour construire les
histogrammes de probabilité d’incertitude, nous divisons l’abscisse en petits intervalles et
comptons le nombre de fois où une valeur de notre choix, par exemple la valeur propre de
l’énergie ou la valeur d’un paramètre-modèle donné, est dans l’intervalle prédéfini. On ob-
tient ainsi une distribution sous la forme d’un histogramme (fonction pas-à-pas) qui, après
normalisation, devient la distribution de probabilité d’incertitude pour un niveau nucléo-
nique donné ou un paramètre du modèle. Enfin, en ajustant une distribution gaussienne
continue à chacun des histogrammes normalisés ainsi obtenus, nous déduisons les carac-
téristiques gaussiennes µ et σ pour chaque niveau ou paramètre. Avec cela, nous avons
pu construire les distributions d’incertitude de niveau d’énergie pour 208Pb et différents
isotopes du flérovium (Z = 114) 278Fl, 298 Fl et 342Fl.

Conclusions synthétiques pour la liberté paramétrique complète. Lorsque les six
paramètres du hamiltonien sont traités indépendamment, le comportement des distribu-
tions de niveaux peut être résumé comme suit :

• premièrement, en moyenne, les incertitudes augmentent avec l’augmentation de le
nombre quantique ℓ du niveau ;

• deuxièmement, et cependant, les fluctuations autour de cette tendance moyenne sont
clairement visibles ;
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• troisièmement, et à ce stade, seulement quelques symptômes du mécanisme peuvent
être signalés :

chaque fois que l’information expérimentale sur un niveau donné n’est pas
connue, l’incertitude obtenue par le test de Monte-Carlo semble être plus
grande ;

cette tendance devra être vérifiée plus tard en utilisant des constructions de test
mieux conçues ;

• les résultats pour les noyaux super-lourds donnés dans les Tableaux 4.7 (p. 87) et 4.8
(p. 88) révèlent une augmentation très rapide des incertitudes avec une augmentation
du nombre de neutrons au nombre de protons fixé. Cependant, la dépendance en ℓ
des largeurs de niveau montre ses propres tendances.

Elimination des corrélation paramétriques. La corrélation existant entre le para-
mètre rayon central et le paramètre profondeur centrale peut être supprimée en utilisant
une fonction simple qui nous permet d’écrire rc = f(V c), et comme on l’a déjà dit, est
parabolique, cf. Eq. (34). De cette façon, rc n’est plus considéré comme un paramètre de
minimisation puisque sa valeur est donnée par V c, et au lieu de minimiser le χ2 sur six
paramètres, nous le minimisons sur seulement cinq : {V c, ac, λso, rso, aso}π,ν .

Concernant les corrélations paramétriques spin-orbite, rappelons qu’elles sont présen-
tées comme une structure à double bulles. Par conséquent, aucune fonction « habituelle
» du type y = f(x) ne peut être définie. Dans ce cas, notre solution est de sélectionner
deux solutions séparées correspondant aux deux maxima de distributions. Les résultats
sont donnés dans le Tableau 4.13 (p. 96).

Dans ces conditions, nous avons réexécuté les simulations de Monte-Carlo deux fois de
plus pour les neutrons :

• en imposant rc = f(V c) et en fixant les trois paramètres spin-orbite à leur solution
compacte ;

• en imposant rc = f(V c) et en fixant les trois paramètres spin-orbite à leur solution
non-compacte.

Dans ces conditions, les paramètres de minimisation finals sont : {V c, ac}.

Conclusions. Après avoir éliminé toutes les corrélations paramétriques possibles, la réac-
tion des distributions d’incertitudes de niveau peut être résumée comme suit :

• l’élimination des corrélations paramétriques diminue les incertitudes de prédiction
(distributions d’incertitudes plus étroites) pour la majorité des niveaux du noyau
208Pb ;

• les largeurs d’incertitude dépendent de la valeur ℓ de l’état nucléonique ;

• les corrélations paramétriques du potentiel centrale ont un impact plus fort sur les
états avec ℓ faible ;

• les corrélations de paramètres du potentiel de spin-orbite ont un impact sur tous les
niveaux, où la solution compacte semble donner de meilleurs résultats en termes de
déviation R.M.S. que la solution non-compacte ;
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• l’extrapolation des résultats de 208Pb devient plus précise après élimination des cor-
rélations paramétriques pour les noyaux pas trop lourds

• après avoir dépassé une certaine distance critique de la zone d’ajustement [ou pour
N > Ncrit ≈ 184 neutrons], les largeurs de distribution sont si larges que l’on ne peut
rien dire des capacités de prédiction, une manifestation du mécanisme de NO-GO.

5 Potentiel spin-orbite dépendant de la densité : op-
timisation des paramètres

En variante, nous avons également considéré une interaction spin-orbite dépendante
de la densité qui inclut la condition d’auto-cohérence itérative, voir Eq.(32) - (33).

Puisque la formulation du potentiel spin-orbite dépendante de la densité est plus longue
en temps de C.P.U., dans le cas présent il sera pratique de tenter de détecter l’existence
de corrélations paramétriques en utilisant directement le test χ2 - comme décrit dans
l’annexe 4.8 du chapitre 4 plutôt que d’utiliser les simulations de Monte-Carlo. Rappe-
lons que l’information d’intérêt est obtenue dans ce cas par des projections sur le plan
(pi, pj) du χ2(pk; k Ó= i, k Ó= j) minimisé. Les Figures 5.3 (p. 121) et 5.4 (p. 122) pré-
sentent les corrélations paramétriques entre les quatre constantes de couplage spin-orbite :
{λππ, λπν , λνν , λνπ}.

Ces figures montrent que parmi les 4×3
2

c’est-à-dire six corrélations paramétriques
possibles entre les quatre paramètres spin-orbite, il n’y a que deux corrélations. En outre
ces corrélations semblent parfaitement linéaires entre λππ et λπν d’une part et λνν et λνπ

d’autre part. En d’autres termes, on peut considérer que V̂ π
SO et V̂ ν

SO sont independents -
et ce malgré le fait que les densités de protons et de neutrons sont déterminées en utilisant
un algorithme d’auto-cohérence simultanée.

5.1 Justification microscopique des corrélations linéaires

En analysant le profil de gradient de densité pour les protons et les neutrons, on peut
observer que pour les petites valeurs de r, les gradients de protons et de neutrons fluc-
tuent en gardant des signes opposés. Cela implique que, quelle que soit la contribution
relativement faible aux intégrales dans les éléments matriciels que les protons et les neu-
trons peuvent fournir séparément dans cette partie du volume nucléaire, une partie de ces
contributions s’annulera à la suite des sommations des termes proton et neutron.

Dans le même temps, pour les grandes valeurs de r correspondant au voisinage de la
surface nucléaire, Σ, les deux profils ont une structure similaire pour que l’on puisse écrire

Proche de Σ : ∇ρπ(r) ∝ ∇ρν(r) ↔ ∇ρq′(r) ∝ ∇ρq(r) ↔ ∇ρq′(r) ≈ µ∇ρq(r), (35)

où µ est une certaine constante, et nous trouvons

V̂ so
q =

(

λqq
1

r

dρq

dr
+ λqq′

1

r

dρq′

dr

)

ℓ̂ · ŝ

≈ (λqq + µλqq′)
︸ ︷︷ ︸

≡η

1

r

dρq

dr
ℓ̂ · ŝ = η

1

r

dρq

dr
ℓ̂ · ŝ, (36)
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où η est une autre constante. Il s’ensuit que :

λqq′ =
1

µ
(η − λqq) ↔ λqq′ = α · λqq + β (37)

ce qui justifie la corrélation paramétrique linéaire présentée dans la Figure 5.3 (p. 121).

La propriété de l’indépendance des paramètres illustrés dans la Figure 5.4 (p. 122)
suggère la réalisation la plus simple d’une telle condition pour la procédure d’optimisation
des paramètres, viz. en choisissant la paramétrisation spin-orbite sous la forme

λππ ≈ λπν ≈ λνπ ≈ λνν ≡ λ, (38)

pour 208Pb et les autres noyaux étudiés dans le présent projet.

5.2 Résultats des simulations Monte Carlo

Après avoir détecté la forme des corrélations paramétriques dans la forme actuelle du
hamiltonien, nous procédons aux simulations de Monte Carlo pour étudier la dépendance
des incertitudes des niveaux de particules individuelles sur σexp ainsi que sur l’élimination
des corrélations de paramètres.

Dans le chapitre précédent, nous avons montré que le paramètre de la diffusion centrale
n’est pas corrélé avec les autres paramètres ce qui suggère la possibilité de le fixer - pour la
simplicité, au moins dans la phase exploratoire - à une certaine valeur plausible. Nous avons
sélectionné ici les valeurs utilisées dans l’ensemble des paramètres universels du hamiltonien
de Woods-Saxon traditionnel :

ac
ν = ac

π = 0.7 fm. (39)

Avec cette hypothèse ad hoc, les paramètres de minimisation sont réduits à

{V c
π , V c

ν , rc
π, rc

ν , λππ, λπν , λνν , λνπ}. (40)

Les diagrammes à points de la Figure 5.6 (p. 125) confirment à nouveau la dépendance
quadratique existant entre la profondeur centrale et le rayon central. Les Figures 5.7 (p. 126)
et 5.8 (p. 127) montrent une image entièrement cohérente respectivement pour les paires
linéairement corrélées et non corrélées des paramètres spin-orbite.

Éliminer les corrélations paramétriques. Comme nous l’avons fait dans le chapitre 4,
la corrélation paramétrique existant entre la profondeur centrale et le rayon central peut
être facilement supprimée en définissant rc = f(V c) et en utilisant la fonction parabo-
lique. Concernant les corrélations paramétriques spin-orbite dans ce cas, nous les éliminons
en imposant la condition sur Eq. (38). Cela conduit à la liberté paramétrique des trois
paramètres restants

{V c
π , V c

ν , λ}. (41)

Résultats des distributions d’incertitude. En ce qui concerne les résultats de prédic-
tion de Monte Carlo pour le noyau 208Pb, toutes les largeurs d’incertitude sont systéma-
tiquement plus petites lorsque les corrélations paramétriques sont supprimées. Encore une
fois, l’amélioration dépend de la valeur de ℓ de l’état : d’une manière générale, plus la valeur
de ℓ est petite, plus l’amélioration est importante en termes de largeur de distribution.
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En ce qui concerne les résultats pour les éléments super-lourds, pour les isotopes les
plus légers, on observe une légère amélioration des largeurs d’incertitude pour Nmain = 5
et en moyenne beaucoup mieux pour Nmain = 6. Cependant pour N > 184, dans la
majorité des cas, l’elimination des correlations paramétriques n’améliore pas la tendance.
Ceci est très probablement dû au fait que dans ces noyaux nous approchons au régime
NO-GO selon lequel les largeurs d’incertitude sont très grandes, ce qui provoque un fort
chevauchement des distributions et donc un impact beaucoup plus faible sur les variations
des états d’énergie propres.

5.3 Augmentation de l’échantillonnage : neutrons dans 132Sn et
208Pb

Notre code est préparé pour considérer les énergies de particules individuelles prove-
nant de plus d’un noyau. Cela nous permet d’augmenter l’échantillonnage d’entrée pour
notre procédure d’ajustement. Dans ce cas, nous avons décidé de considérer en même temps
les énergies des neutrons à une seule particule de 132Sn et 208Pb. À partir des résultats des
Figures 5.19 - 5.22 (p. 147 - 151) nous concluons que la deviation r.m.s. se dégradent légère-
ment pour 208Pb, cependant nous avons une amélioration en termes de puissance prédictive
parce qu’en augmentant l’échantillonnage et en éliminant les corrélations paramétriques la
deviation R.M.S. diminue.

6 Conclusions et Perspectives

Le projet de doctorat actuel appartient au domaine de la physique nucléaire théorique
dans le sous-domaine de la théorie de la structure nucléaire. Sa particularité réside dans
le fait que même si nous modélisons les phénomènes expérimentaux reproduisant des ob-
servables sélectionnées, l’objectif principal n’est pas tant de les reproduire aussi bien que
possible - mais plutôt d’utiliser ces informations pour pouvoir prédire des faits aujourd’hui
inconnus d’une manière qui satisfait certains critères de stabilité et de fiabilité stochastique.

Nous avons effectué une analyse détaillée des corrélations paramétriques du hamil-
tonien de Woods-Saxon traditionnel et du hamiltonien de Woods-Saxon dependant de la
densité. En utilisant les calculs de Monte-Carlo, nous avons identifié les paramètres corrélés
et leur corrélation. Ainsi nous avons réussi à les éliminer toutes dans le potentiel de spin-
orbite dépendant de la densité et dans le potentiel central. Ce faisant, nous avons observé
comment les distributions de probabilité pour les niveaux individuels de nucléon ont été
rétrécies, améliorant ainsi le pouvoir prédictif du modèle.

En utilisant un modèle mathématique simple qui contient toutes les caractéristiques
génériques de toute théorie, nous avons démontré la « propriété NO-GO » : il existe une
valeur critique de l’erreur expérimentale au delà de laquelle même les modèles exacts de-
viennent inutilisables puisque leurs paramètres ne sont plus récupérables.

Perspectives et défis. Comme il arrive souvent, les résultats de recherche complétés
apportent de la lumière à certains problèmes antérieurs, mais contribuent habituellement au
progrès en remettant en cause des nouvelles questions. Nous avons montré qu’en supposant
une incertitude d’entrée expérimentale moyenne de l’ordre de 600 keV, cela induit une limite
sur la puissance prédictive lors de l’augmentation du nombre de nucléons dans les noyaux
super lourds qui se situent dans ce projet dans des zones de prédiction externes extrêmes :
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au delà de N = 184, les incertitudes stochastiques semblent trop grandes pour être dignes
de confiance. Une conclusion similaire peut être énoncée sur les états profondément liés
dans tous les noyaux lourds étudiés.

La question se pose : que peut-on faire pour améliorer la situation ?

Nous pouvons envisager un certain nombre de scénarios qui peuvent être considérés comme
un prolongement relativement simple de cette recherche.

• Tout d’abord, les estimations d’erreur peuvent être traitées de manière plus fine en
utilisant les estimations d’erreur adaptées à chaque niveau expérimental plutôt qu’en
utilisant l’estimation moyenne.

• Deuxièmement, on sait qu’une source importante d’incertitudes, lorsqu’on travaille
avec les niveaux de particules individuelles dans les noyaux sphériques, provient du
couplage des différents nucléons avec les vibrations collectives de surface. Il est simple
d’inclure dans nos codes un sous-programme de Random Phase Approximation (RPA)
pour traiter ce type de couplage de manière dédiée, d’estimer les corrections de cou-
plage de vibration aux niveaux de particules individuelles et d’utiliser les corrections
pour l’optimisation des paramètres.

• Une autre amélioration peut être guidée par le succès du potentiel spin-orbite dépen-
dant de la densité. En effet, nous avons remarqué à plusieurs reprises que le potentiel
coulombien électrostatique calculé à partir de la distribution uniforme de charge dans
l’espace pose des problèmes en ce qu’il influence le couplage avec la diffusion du po-
tentiel central nucléaire et par le second introduit un couplage supplémentaire avec
les autres paramètres déstabilisants le schéma de prédiction. Dans la nouvelle réali-
sation du projet, un tel potentiel serait calculé directement à partir de la distribution
de densité microscopique des protons.

• Une autre amélioration consisterait à introduire explicitement les corrections de l’in-
teraction tenseur aux potentiels central et spin-orbite en champ moyen. L’importance
de ces corrections augmente avec l’insaturation du spin dans le noyau et ces effets
devraient jouer un rôle croissant dans les noyaux super-lourds. Les sous-programmes
correspondants ont été écrits et testés et sont prêts pour les projets de suivi.
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Irene DEDES NONELL
Approche stochastique

du problème du pouvoir prédictif
dans la modélisation du champ moyen

Résumé

Les résultats de notre étude des capacités de modélisation théorique axées sur les ap-
proches phénoménologiques nucléaires dans le cadre de la théorie du champ-moyen sont
présentés. On s’attend à ce qu’une théorie réaliste soit capable de prédire de manière sat-
isfaisante les résultats des expériences à venir, c’est-à-dire avoir ce qu’on appelle un bon
pouvoir prédictif. Pour étudier le pouvoir prédictif d’un modèle théorique, nous avons dû
tenir compte non seulement des erreurs des données expérimentales, mais aussi des incer-
titudes issues des approximations du formalisme théorique et de l’existence de corrélations
paramétriques. L’une des techniques centrales dans l’ajustement des paramètres est la so-
lution de ce qu’on appelle le Problème Inverse. Les corrélations paramétriques induisent
généralement un problème inverse mal-posé; elles doivent être étudiées et le modèle doit
être régularisé. Nous avons testé deux types de hamiltoniens phénoménologiques réalistes
montrant comment éliminer théoriquement et en pratique les corrélations paramétriques.
Nous calculons les intervalles de confiance de niveau, les distributions d’incertitude des pré-
dictions des modèles et nous avons montré comment améliorer les capacités de prédiction
et la stabilité de la théorie.

Mots clés: structure nucléaire; théorie du champ-moyen nucléaire; energies single partic-
ule; problème inverse; incertitudes stochastiques des prédictions de modélisation

Abstract

Results of our study of the theoretical modelling capacities focussing on the nuclear
phenomenological mean-field approaches are presented. It is expected that a realistic theory
should be capable of predicting satisfactorily the results of the experiments to come, i.e.,
having what is called a good predictive power. To study the predictive power of a theoretical
model, we had to take into account not only the errors of the experimental data but
also the uncertainties originating from approximations of the theoretical formalism and
the existence of parametric correlations. One of the central techniques in the parameter
adjustment is the solution of what is called the Inverse Problem. Parametric correlations
usually induce ill-posedness of the inverse problem; they need to be studied and the model
regularised. We have tested two types of realistic phenomenological Hamiltonians showing
how to eliminate the parametric correlations theoretically and in practice. We calculate
the level confidence intervals, the uncertainty distributions of model predictions and have
shown how to improve theory’s prediction capacities and stability.

Keywords: nuclear structure; nuclear mean-field theory; single nucleon energies; inverse
problem; stochastic uncertainties of modelling predictions


