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Abstract

The thesis addresses the upcoming particle physics programme foreseen at

the Beijing Electron Positron Collider II (BEPCII), for which the Beijing

Electron Spectrometer III (BESIII) is being upgraded. The work presented

focused on the upgrade of the central tracker of the experiment by exploring

the possibilities offered by a new approach using CMOS Pixel Sensors (CPS)

instead of the present gas drift chamber.

The MDC inner chamber of BESIII suffers from ageing effects which lead

to performance degrading in terms of detection efficiency, momentum resolu-

tion and spatial resolution. From the analysis in 2013, the efficiency of the

MDC inner cell could be around 70% and its spatial resolution degraded from

∼ 120µm to ∼ 300µm in the worst case. This ageing effect would prevent BE-

SIII from collecting the foreseen data sample and decrease the precision of the

measurements. The collaboration decided therefore to upgrade the original in-

ner chamber with a newly designed one or with a tracker using more advanced

technology. The project of a Silicon Pixel Tracker (SPT) was proposed in this

perspective.

Two issues in SPT development have been studied: a low material budget

of a long ladder and the detecting geometry optimization. CPS prototypes

using large pixel pitches and an improved rolling-shutter readout architecture

have been tested and studied to validate the sensor performance of a spatial

resolution ∼ 10 µm, an integration time ∼ 20.8 µs and a power consumption

around 80 mW/cm2. Therefore, the materials from cooling system are limited

to guarantee the low material budget of the ladder. For tracker optimiza-

tion, a general method and the related software based on tracking algorithms,

numerical geometry scans and Geant4 Monte-Carlo simulations, has been de-

veloped and applied for BESIII SPT. The total number (3) of ladders and



the tracker layout with a uniform spacing have been determined for the opti-

mal momentum measurement for a sensor spatial resolution ∼10 µm and for

a ladder material budget ∼ 0.36%X0. To achieve a higher tracking efficiency,

a double-sided ladder may be considered to replace the innermost one-sided

ladder with acceptable tracking performance degradation for low momentum

trajectories.

Keywords: pixel detector, tracker optimization, CPS test, tracking algorithm



Résumé en Français

R.1 Introduction

La thèse se place dans le contexte du programme de physique prévu auprès

du collisionneur BEPCII (Beijing Electron Positron Collider II), pour lequel

l’expérience BESIII (Beijing Electron Spectrometer III) doit subir une jou-

vence. Mon travail concerne l’amélioration des performances de la trajec-

tométrie centrale de l’expérience, en explorant une nouvelle approche utilisant

les capteurs à pixels CMOS (CPS) en remplacement partiel de la chambre à

dérive actuelle.

BEPCII réalise des collisions e+ +e− dont l’énergie dans le centre de masse at-

teint Ecm ∼ 2−4.6 GeV et avec une luminosité instantanée de 1 × 1033 cm−2 s−1.

Les deux anneaux de stockage et le point d’interaction conçu de la machine

sont représentés sur la figure 1.1. Le programme de BESIII, le seul détecteur

auprès de la machine BEPCII, inclut la spectroscopie des hadrons légers, la

physique du quark charmé et du charmonium, et la physique du lepton tau. La
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Figure 1: Les deux anneaux de stockage et le point d’interaction conçu

de BEPCII
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figure 1.3 illustre les sous-systèmes de détection de BESIII. L’élément central

Figure 2: Les sous-systèmes de détection sur l’expérience BESIII[1]

de l’expérience est le trajectomètre actuel, qui exploite un détecteur gazeux

de type chambre à dérive multi-couche (multilayer drift chamber ou MDC).

La MDC permet de localiser les points d’interaction des particules le long de

leur trajectoire avec une résolution . 130µm, qui conduit à une résolution sur

l’impulsion d’environ 0.5%@ 1 GeV/c.
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R.2 Travaux effectués

Motivation

La partie interne de la MDC souffre d’effets liés au vieillissement du détecteur,

ce qui diminue les performances en termes d’efficacité de détection et de résolu-

tion. Une analyse conduite en 2013 a montré que ces effets pouvaient dégrader

l’efficacité jusque vers 70% et la résolution spatiale vers 300µm dans le pire des

cas. La dégradation des performances est illustrée dans la figure 1.9 et la figure

1.10. Dans ces conditions, le vieillissement empêcherait BESSIII d’accumuler

Figure 3: L’efficacité de détection de fil unique en fonction de l’indice

de couche du MDC [2].

une quantité suffisante de données pour atteindre la précision statistique visée

sur les mesures du programme de physique. C’est pourquoi la collaboration en-

visage soit le renouvellement des cellules internes de la chambre MDC soit leur
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Figure 4: La résolution spatiale dans le plan R-φ de chaque couche en

fonction de l’indice de couche du MDC [2].

remplacement par un trajectomètre exploitant une technologie plus avancée.

Le projet de Silicon Pixel Tracker (SPT) a été proposé dans cette perspective.

Problématiques et méthodologies

Le développement du SPT soulève deux problématiques principales afin de

garantir la résolution voulue sur l’impulsion : obtenir des éléments de détec-

tion (dit échelles) avec un budget de matière suffisamment faible et optimiser

leur disposition géométrique. La technologie des capteurs à pixel CMOS (CPS)

semble bien adaptée pour répondre à ces contraintes. L’expérience STAR [3]

a validé le concept d’un détecteur composé de tels capteurs. En utilisant

les circuits MIMOSA-28 développés à l’IPHC pour construire des échelles de
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détection refroidies par flux d’air, un budget de matière de ∼ 0.37%X0
∗ a

été atteint pour une résolution spatiale intrinsèque de ∼ 3.5 µm. Cependant,

l’acceptance géométrique du SPT de BESIII requiert des échelles 2,5 fois plus

longues que celles développées dans STAR tout en conservant un budget de

matière similaire. Ceci n’est possible qu’avec des CPS dissipant une puis-

sance thermique plus faible pour conserver le refroidissement à air, qui garanti

l’absence de matériaux additionnels pour le refroidissement.

Le développement de CPS de très faible consommation de puissance est en

cours au sein de l’expérience ALICE auprès du Large Hadron Collider selon

deux stratégies. La première consiste à modifier entièrement la stratégie de

lecture des pixels et a conduit au capteur ALPIDE. La seconde s’appuie sur

l’architecture de MIMOSA-28 mais avec une taille de pixel agrandie et vise

la création du capteur MISTRAL. Une partie de cette thèse s’intéresse à la

validation des prototypes de CPS à grands pixels à travers des tests réalisés

avec un faisceau de particules chargés.

La seconde partie de ce travail vise l’optimisation de la géométrie du trajec-

tomètre. Une méthode générale a été développée et implémentée sous forme

logicielle. Elle s’appuie sur une simulation Monte-Carlo portée par l’outil

GEANT4, des algorithmes de reconstruction de trajectoire et la possibilité de

tester de nombreuses géométries différentes. La méthode est ensuite appliquée

au cas du SPT de BESSIII.

∗La longueur de radiation X0 (en g cm−1) représente l’épaisseur moyenne, pour un matériau donné,
après laquelle un électron de haute-énergie ne conserve qu’une fraction 1/2 de son énergie initiale après
radiations par bremsstrahlung [4]
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R.2.1 Caractérisation de prototypes de capteurs

Le développement de l’architecture pour MISTRAL requiert la caractérisation

de différents prototypes avec des faisceaux de particules à des énergies au delà

du GeV. La géométrie simplifiée de ces tests autorise la mesure de la résolution

spatiale et de l’efficacité de détection d’un capteur positionné perpendiculaire-

ment au faisceau. Dans un premier temps, un dispositif comprenant 4 capteurs

MIMOSA-28 accolés dans le même plan est utilisé pour comprendre et mettre

au point l’algorithme d’alignement, c’est à dire la détermination de la posi-

tion des capteurs par rapport au faisceau avec une résolution inférieure au

micromètre.

Par la suite, le circuit FSBB (Full Size Building Block) est testé sur le faisceau.

FSBB comprend des pixels plus grands, 22.0×32.5 µm2 contre 20.7×20.7µm2

pour MIMOSA-28, il est fabriqué dans le process TowerJazz 0.18 µm plus

évolué et représente un tier de la surface totale du capteur final MISTRAL.

L’analyse des données montre qu’il est possible de trouver des paramètres

nominaux de fonctionnement du circuit pour obtenir une efficacité de détection

supérieur à 99%, un taux de fausses détections inférieur à 10−5/pixel/lecture

et une résolution spatiale ∼ 4.5 µm. Ces résultats sont illustrés dans la figure

3.10. Les performances du capteur sont étudiées en dehors du point nominal de

fonctionnement, notamment avec des courants de polarisation plus faibles pour

l’amplificateur présent dans chaque pixel et pour le comparateur déterminant

la présence d’un signal ou non. Dans ces conditions de courant faibles, la

résolution spatiale n’est pas affectée, l’efficacité s’améliore légèrement et le
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Figure 5: L’efficacité de détection (courbe noire), le taux de fausses

détections (courbe bleue) et le résolution spatiale (courbe rouge) le long

des côtés courts (solide) et longs (en pointillés) des pixels en fonction

du seuil de discriminateur (en multiples de bruit thermique) du capteur

FSBBbis-HR18 avec des pixels 22.0×32.5 µm2.
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taux de fausses détections augmente d’un facteur 2 à 4, demeurant toutefois

dans les limites tolérables. L’étude valide ainsi la possibilité de diminuer la

dissipation de puissance du circuit (courant plus faible), sans dégrader les

performances, ce qui présente l’intérêt de limiter la puissance du système de

refroidissement et donc du budget de matière.

R.2.2 Outil générique d’optimisation de la géométrie d’un

trajectomètre

Le problème étudié est celui de la configuration d’un trajectomètre interne

auprès d’un collisionneur. Il s’agit d’un ensemble de couches cylindriques con-

centriques autour du point de collision des faisceaux. La contrainte externe est

le rayon maximal du dispositif et les paramètres libres comprennent le nombre

de couches et leurs distances relatives. L’optimisation porte sur la résolution

obtenue au final sur la mesure de l’impulsion des particules et l’extrapolation

de leur trajectoire à proximité du point de collision.

La formule analytique de Gluckstern [5] est utilisée pour obtenir la résolution

en fonction des paramètres de la géométrie testée. Une attention particulière

est portée à la gestion de la diffusion multiple, qui dépend du budget de matière

de chaque couche de détection. Un ensemble de géométries, couvrant l’espace

des paramètres possibles, sont évaluées itérativement par un logiciel créer spé-

cifiquement. Les résultats de cette méthode rapide sont validés par compara-

ison, pour quelques points, à une simulation complète et beaucoup plus lente

exploitant une simulation Monte-Carlo utilisant la plateforme GEANT4 et un



xxiv Résumé en Français

algorithme de reconstruction de trajectoire prenant en compte la diffusion mul-

tiple. La figure 5.5 illustre les résultats obtenus pour différentes configurations

géométriques possibles pour l’expérience BESSIII. Les géométries connexes (3

à 6 couches), optimisées pour des trajectoires de 0.3 GeV et de 1.0 GeV avec

un angle polaire θ = 0, sont donnés dans le tableau 5.5.

N For PT Step (mm) Layer positions (mm)

3 all any 72.58, 86.04, 99.50

4 0.3 0.45 72.58, 72.58, 85.59, 99.50

4 1.0 0.45 72.58, 84.25, 87.83, 99.50

5 0.3 0.67 72.58, 72.58, 78.64, 90.75, 99.50

5 1.0 0.67 72.58, 72.58, 83.35, 87.39, 99.50

6 0.3 0.90 72.58, 72.58, 79.76, 92.32, 99.50, 99.50

6 1.0 0.90 72.58, 72.58, 84.25, 87.83, 99.50, 99.50

Table 1: Géométries optimisées pour SPT détecteur avec une résolution

spatiale ∼ 10 µm.

Dans la mesure où la pluspart des particules détectées ont une impulsion

< 0.5 GeV, il apparaît que la configuration à trois couches avec un espacement

uniforme doit être favorisée.
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Figure 6: Résolution relative sur l’impulsion mesurée en fonction de
l’impulsion pour les trajectoires des pions courbées par le champ magné-
tique. Pour chaque géométrie, les lignes correspondent aux calculs alors
que les points avec barres d’erreur sont issus des simulations Monte-
Carlo.
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R.2.3 Intérêt d’ échelles de détection double-face

Le groupe de Strasbourg a déjà démontré la possibilité de construire un élé-

ment de détection à partir d’un unique support mécanique et équipé de cap-

teurs sur chaque face. Il s’agit des échelles double-face PLUME (Pixelated Lad-

der with Ultra-Low Material Embedding) [6] qui offrent un budget de matière

le plus faible possible. Les points de mesure rapprochés ( la distance entre

les deux faces est de 2 mm) permettent par ailleurs d’obtenir une information

supplémentaire à une simple position, puisqu’il est possible d’estimer la direc-

tion locale de la trajectoire. Les échelles PLUME présentent donc un intérêt

particulier pour les couches internes du SPT de BESIII, pour lequel le budget

de matière et la résolution sur les paramètres des trajectoires revêtent une

importance considérable.

La configuration par défaut du SPT comprend trois couches simples, soit

3-plans, chacune avec un budget de matière équivalent à ∼ 0.36%X0/. La

configuration alternative remplace la couche la plus interne par une échelle

double-face dont le budget de matière atteint ∼ 0.51%X0, soit 4-plans.

La méthode discutée dans la section précédente est utilisée pour évaluer les

performances des deux configurations. Comme élément de comparaison sup-

plémentaire, une pseudo-efficacité de reconstruction des trajectoires est définie

comme suit : la trace est considérée comme correctement reconstruite si

trois vrais points sont associés et, dans le cas de la géométrie 4-plans, une

mauvaise association sur les 4 points est tolérée. Les conclusions suivantes
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sont obtenues. La géométrie 3-plans permet une meilleure résolution sur

l’extrapolation des trajectoires vers le point d’interaction pour les impulsions

inférieures à 1 GeV/c, cependant sa pseudo-efficacité est plus faible de 16% par

rapport à la configuration 4-plans pour les impulsions inférieures à 0.1 GeV/c

et un niveau de bruit avoisinant 100 mm−2 s−1 sur le premier plan de détection.

R.3 Conclusion et Perspectives

Cette thèse a étudié les performances de capteurs pixellisés et l’optimisation de

la géométrie d’un nouveau trajectomètre interne multi-couche pour l’expérience

BESIII. Les bons résultats initiaux obtenus avec le prototype FSBB, com-

portant des pixels de grande taille, ont été confirmés par la caractérisation

d’un circuit ultérieur, MIMOSA22THRb [7]. Il est ainsi validé, qu’un pixel

de 39.0×50.8 µm2 permet d’atteindre une résolution spatiale intrinsèque de

l’ordre de 10 µm avec une efficacité de détection proche de 100%. Cette con-

firmation ouvre la voie pour le développement d’échelle de grande longueur,

supérieure au mètre, dont BESSIII a besoin.

Un logiciel générique proposant une stratégie d’optimisation pour un trajec-

tomètre pixellisé a été mis au point et appliqué au cas particulier du SPT de

BESSIII. Il a permis de montrer qu’une configuration à trois couches simple-

face optimise la résolution sur les trajectoire alors qu’une option incluant une

couche double-face atteint une efficacité de reconstruction supérieure.

Les travaux réalisés permettent de conclure plus généralement sur les disposi-
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tifs de trajectométrie, notamment pour un futur collisionneur électron-positon

en Chine (CEPC). Ils indiquent la possibilité de remplacer les dispositifs de

détection gazeux usuellement employés à grand rayon mais limitant le taux

d’interaction observables, par des dispositifs exploitant entièrement la tech-

nologie des capteurs à pixels CMOS. L’outil logiciel donne également la pos-

sibilité dans les études d’optimisation de considérer à la fois la résolution sur

l’impulsion et celle sur l’extrapolation des trajectoires, qui sont deux quan-

tités majeures pour l’identification robuste des états finals produits dans les

collisions.



Introduction

In the field of τ -charm physics, the BEijing Spectrometer III (BESIII) experiment at

Beijing Electron Positron Collider II (BEPCII) is remarkable for its fruitful results in-

cluding a series of discoveries like four-quark bound states and precise measurements for R

parameter, the τ mass and various decay modes of J/ψ, ψ′ and ψ(3770). One of the dom-

inating sub-detector to bring the physics results is the multilayer drift chamber (MDC)

which is the main tracker constructed with a spatial resolution better than 130µm on

average and a high transfer momentum resolution around 0.5%@1GeV/c. Nevertheless,

it suffers from ageing effects which lead to performance degrading in terms of detection

efficiency, momentum resolution and spatial resolution. From the analysis in 2013, the

efficiency of the MDC inner cell could be around 70% and its spatial resolution degraded

from ∼ 120µm to ∼ 300µm in the worst case. This ageing effect would prevent BESIII

to take as much data as its designed and would decrease the precision of measurements.

The collaboration decided therefore to upgrade the original inner chamber with a newly

designed one or with a tracker using more advanced technology. The project of a Silicon

Pixel Tracker (SPT) was proposed in this perspective.

CMOS Pixel Sensor (CPS) also named as Monolithic Active Pixel Sensor (MAPS),

first developed at IPHC, has offered an opportunity for nuclear and particle physics ex-

periments to address the physics studies requiring accurate spatial resolution and low ma-

terial budget. Therefore, it is possible now to open up a research frontier to replace a gas

chamber with a CPS based silicon tracker. The CPS technology has been fully validated

by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven

National Laboratory. New generations of CPS for particle physics applications are being

researched and developed under the promotion of ALICE experiment at the large hadron

collider (LHC) for the upgrade of its vertex detector. On the other hand, a more radia-

tion tolerant technique of High voltage CMOS pixel sensor is favoured by detectors like
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A Toroidal LHC ApparatuS (ATLAS) and the Compact Muon Solenoid (CMS), both of

which were constructed for high luminosity p-p collisions. Benefiting from the rapid ex-

pansion of CPS technology in high energy physics experiments, this thesis could address

the development of BESIII inner tracker using CPS sensors to replace the original gas

chamber.

The required spatial resolution for BESIII is less demanding than for vertex detectors

like the Heavy Flavor Tracker (HFT) in STAR, because the generated D mesons are almost

at rest and there is no production of a jet from hadronizations. Therefore, the spatial

resolution of CPS sensors that are developed for vertex detectors exceeds the requirement

of a tracker and leads to a waste of power consumption and data transmission bandwidth.

The CPS with larger pixel size is then favoured by BESIII. As the main specification of a

tracker, the momentum resolution of the inner tracker is chosen as the figure of merit to

guide the geometry optimisation. In this thesis, several sensors with larger pixel pitches

have been tested to validate the latest CPS technology and the general considerations

of detector design problems in tracking theory have been discussed and summarized.

With the answers of the mathematical optimisation problem for tracking, the potential of

CPS applications in BESIII will be explored by evaluating and optimising several tracker

designs.

The chapters composing the thesis are organised as below:

• In Chapter 1, Beijing spectrometer III (BESIII) experiment at Beijing Electron

Positron Collider II (BEPCII) will be introduced. The physics goals and detector

design of BESIII will be presented and the ageing effect of the multilayer drift

chamber will be emphasised since it is the motivation for this thesis.

• In Chapter 2, CMOS pixel sensor technology and performance will be presented

to demonstrate the possibility of CPS to meet the requirements of BESIII inner

tracker and vertex detectors in future colliders. The mature rolling-shutter design

architecture and the latest asynchronous readout strategy will be illustrated with the

design of state-of-the-art MIMOSA-28 chip and the design of the frontier ALPIDE

chip respectively. Sensor test facilities and their physics objectives will also be

introduced.

• In Chapter 3, general considerations of sensor design optimisation for BESIII will be

presented. To verify the latest CPS technology, the data taken from the beam test of

single arm large area telescope (SALAT) and the test about full size building block
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(FSBB) sensors will be analysed. Considering the published results of MIMOSA-

22THRb, the sensor performance with different pixel sizes and CMOS processes will

be compared to show that the new TowerJezz 0.18 µm technology could make CPS

work with larger pixel size, lower power consumption and higher readout speed than

MIMOSA-28 in AMS 0.35 µm process, which offers more options for CPS designs.

• In Chapter 4, the two widely used tracking algorithms, generalized least squares

(GLS) method and Kalman filtering/smoothing technique will be shown with deriva-

tions and examples. The implications of tracker parameters like the number of

layers, the intrinsic resolution of each layer and the length of lever arm, will be

illustrated using parabola model and a simple tracker geometry with uniform spac-

ing. A Kalman filter implementation for beam trajectories will also be presented.

Concerning track reconstruction efficiency, the method used in STAR experiment

will be introduced for the related calculations.

• In Chapter 5, the general strategy to optimize barrel silicon pixelated trackers will

be given using tracks in the bending plane, and the geometry optimization for

vertexing will also be presented using telescope systems. In addition, the income

of a double-sided ladder like the Pixel Ladders with Ultra-low Material Embedding

(PLUME) on tracking performance, will also be discussed. The R&D is based on

the algorithms described in Chapter 4.

• In Chapter 6, simulation tools and the relevant results will be presented. The

standalone Geant4-based simulation software will be presented. It is developed for

silicon tracker studies and the validation of the optimization strategy in Chapter

5. The full Monte-Carlo simulations processed in BESIII offline software system,

will also be illustrated to show the overall performance of the silicon pixel tracker

intensified with the outer gas chamber of BESIII.

• In the last chapter, the results of this thesis will be summarized with the main

conclusions, and the perspectives of CPS based vertex detector at Circular Electron

Positron Collider (CEPC) will be foreseen.





Chapter 1

Detectors and physics in the BES-III

experiment at BEPC-II

In this chapter, the physics motivation and the experiment facilities including the collider

BEPCII and the detector BESIII will be presented. The requirements on the tracker

system is given by the momentum distribution of the final states in important physics

channels. Due to the higher background and increased physical events coming from the

improved peak luminosity, the ageing effect of BESIII gas chamber becomes more serious,

therefore the influence of this effect will be emphasized in this chapter to show the urgency

of the Research and Development (R&D) of a new inner tracker.

1.1 Physic of BESIII experiment

As the standard model has been well tested and confirmed by numerous experiments in

the electroweak sector, new physics are searched mainly through two approaches: One is

the searching in higher energy region like the experiments ATLAS and CMS at LHC; the

other is to observe with precise measurements and high luminosity in those colliders like

the B-factory KEKB and the charm-factory BEPCII. On the other hand, the quantum

chromodynamics (QCD) of the strong sector in standard model has also been verified

precisely in the case of very high energy transfer, but its predictions are limited for low

energy physics due to the loss of applicability of the perturbation theory. Therefore, the

understanding of the strong interaction in low energy region is at the frontier of particle

physics. As a hopeful non-perturbative approach, the lattice QCD and its improved
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calculation accuracy could bring more predictions including the properties of glueballs

and hybrid states. However, the reliability of the calculations still require the calibration

from precise experiments. The hadrons and their decay products in tau-charm energy

region for which BEPCII/BESIII is built, play a decisive role in calculations of lattice

QCD. In these two types of precise measurements, the BESIII collaboration has already

made great contributions since 2009. The main physics topics in BESIII are introduced

in the following sections.

1.1.1 Studies of electroweak interactions

The well constructed electroweak theory could be tested using the measurements of related

branching fractions with high precision and the efficient particle reconstructions in BESIII.

1.1.1.1 Precise measurements of CKM matrix elements

Since the observed quarks in weak interactions are not their mass eigenstates, the CKM

matrix which is proposed by Cabibbo [8] and generalized by Kabayashi and Maskawa [9],

is required to describe the relations between the eigenstates in weak interactions and their

mass eigenstates in strong interactions. By convention, CKM matrix is applied on the

mass eigenstates of down-type quarks (d, s, and b):
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, (1.1.1)

where only 4 independent parameters (three mixing angles and one complex phase for

CP violation) are to be determined because of the property of unitary matrix and the

5 absorbed phases from the 6 quark fields. In BESIII, the magnitudes of |Vcd| and |Vcs|
could be deduced from the measured branching fractions of the semileptonic decays of

D mesons including: D0 → π−e+νe, D0 → π−µ+νµ, D0 → K−e+νe, D0 → K−µ+νµ,

D+ → K̄0e+νe, D+ → K̄0µ+νµ, etc. The relations [10, 11, 12] of semileptonic decay

width for D0 → K−(π−)e+νe, the form factor |fK(π)
+ (0)| and the CKM elements |Vcs(d)|
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are given below:

Γ(D0 → K−e+νe) =
B(D0 → K−e+νe)

τD0

= 1.53|Vcs|2|fK
+ (0)|2 × 1011s−1, (1.1.2)

Γ(D0 → π− e+νe) =
B(D0 → π− e+νe)

τD0

= 3.01|Vcd|2|fπ
+(0)|2 × 1011s−1. (1.1.3)

Since the form factors could be calculated by lattice QCD, the magnitudes of the re-

lated CKM elements could be extracted from Equation 1.1.3 and Equation 1.1.2. The

systematic error of this method is given by
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On the other hand, the form factors could also be extracted using the measured branching

fractions, the current |Vcs(d)| values and D0 lifetime τD0 in PDG [4] with the system error:

∆f
K(π)
+ (0)

f
K(π)
+ (0)

=

√

√

√

√

(

∆B

2B

)2

+

(

∆τD0

2τD0

)2

+

(

∆Vcs(d)

Vcs(d)

)2

. (1.1.5)

Combining Equation 1.1.3 and Equation 1.1.2, the ratio |Vcd|/|Vcs| could be determined

from the two branching fractions and the lattice QCD ratio |fπ
+(0)|/|fK

+ (0)| with a higher

precision, as both the measurement error and the calculation uncertainty are significantly

reduced.

1.1.1.2 Precision tests of lepton universality

As an assumption in standard model, the lepton universality has been verified using

leptonic or semileptonic decays of τ and measurements of the branching fraction ratio of

µ and τ decays with electron production. For example, tau-muon universality could be

tested using the equation below:

B(τ− → e−ν̄eντ )

B(µ− → e−ν̄eνµ)
=

ττ

τµ

(

mτ

mµ

)5

, (1.1.6)
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and the muon-electron universality leads to

Γ(τ− → e−ν̄eντ ) = Γ(τ− → µ−ν̄µντ ). (1.1.7)

Compared with the electron positron colliders working in a higher energy range, BEPCII

could control the background by running under the production threshold of charmed

mesons. Since tau pair production could reach the maximum cross-section rapidly after

the production threshold, high statistics of pure tau pairs are guaranteed. In addition, the

tau data in BESIII samples of ψ′, ψ′′ and D+
s D−

s are cleaner than the data in B−factories

[13]. Consequently, the branching fractions of the dominating decay channels of τ could

be measured with very low system uncertainties. Considering the precise calculations on

the cross-section of tau pair production near the threshold energy, τ mass measurement

accuracy could also be improved significantly.

1.1.2 Studies of strong interactions

As the perturbation theory has limitations in tau-charm energy region, parameter calcula-

tions in QCD are with large uncertainties. The data taken in BESIII could help theorists

to develop their theories or methods like Lattice QCD. Main topics are summarized below:

• Using related calculation results, parameters like the mass of charm quark and the

coupling constant αs for strong interaction could be measured. For instance, R value

scan, tau decay and J/ψ inclusive radiative decay could be used to study αs.

• The hadron spectrum study in tau-charm energy range could be studied with a high

precision. As the best process to study glue balls, the radiative decays of J/ψ could

be analysed using partial wave analysis to search for the possible candidates and

even to study their properties. In addition, hybrid states and the normal mesons

could be studied by a series of processes including the radiative or hadronic decay

of J/ψ, decay of ψ(2S) and the other charmonium states, the non-leptonic decays

of D or Ds, the semi-leptonic decay of τ , etc.

• Charmonium states and their decays could be used to study and develop QCD

theories. Some input parameters of the potential model and non-relativistic QCD

(NRQCD) could be determined by BESIII measurements. As an important topic,
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the spin-singlet P-wave state hc(
1P1) could be studied in BESIII with better statis-

tics and lower background compared with B-factories. Another famous problem in

the study of charmonium dynamics is the ρπ puzzle: The ratio of the branching

fraction of some J/ψ decays to that of ψ′ decays with the same final states, deviates

from the perturbative-QCD predictions severely. As almost all the decay channels

from the related charmonium states could be measured precisely in BESIII, A better

comprehension of this puzzle could be foreseen.

1.1.3 Searches for new physics

As a high luminosity experiment in the precision frontier, rare decays and non standard

model processes could be measured to search for new physics. The weak decays with

D/Ds production and lepton family number violating decay modes of J/ψ samples, the

flavor-changing neutral current (FCNC) decays of D meson samples and CP violating

effect in D0D̄0 mixing and Ds/D decays are interesting processes in BESIII. They are

used for the precision test of standard model and the limit constrains of possible new

mechanisms.

1.2 Beijing Electron Positron Collider II

As the successor of Beijing electron positron collider, BEPCII has reached its designed

peak luminosity 1 × 1033 cm−2 s−1 at beam energy 2×1.89 GeV in April 2016. The machine

consists of three components: the linear accelerator, the beam transportation line and

the two storage rings. Electrons and positrons could be accelerated to 1.89 GeV or even

2.5 GeV in the updated 202 m-long linear accelerator [14]. After the beam injection, the

transportation line will transport the e− and e+ beams into their storage rings respectively.

As shown in Figure 1.1, the two 237.5 m-long rings are used to store 93 bunches of electrons

and the same number of bunches of positrons respectively and guide them to collide with

a bunch spacing time around 8 ns. The bunch interval is therefore around 2.4 m and the

crossing angle is ∼ 22 mrad in the horizontal direction. The main design parameters of

the machine are summarized in Table 1.1

At the interaction point, beam pipe is designed with minimal materials to reduce its

interactions with the particles produced in the beam collisions. The cross-section view
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Parameters Designs

Centre of mass Energy (GeV) 2 − 4.6

Circumference (m) 237.5

Number of rings 2

Radio-frequency(RF) frf (MHz) 499.8

Peak luminosity (cm−2s−1) at 2 × 1.89 GeV ∼ 1033

Number of bunches 2 × 93

Beam current (A) 2 × 0.91

Bunch spacing (m/ns) 2.4/8

Bunch length σz (cm) 1.5

Bunch width σx (µm) ∼ 380

Bunch height σy (µm) ∼ 5.7

Relative energy spread 5 × 10−4

Crossing angle (mrad) ±11

Table 1.1: Main design parameters of BEPCII [1]
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Figure 1.1: The storage rings and the designed interaction point of BEPCII

of the interaction region is shown in Figure 1.2 with the beam pipe, the MDC inner end

Figure 1.2: The cross-section view of the interaction region of BESIII

plates and the inner tube. The beryllium central pipe welded on the copper extension

on both sides, is 29.6 cm long with an inner radius of 31.5 mm. To reduce beam related

backgrounds like synchrotron photons and to withstand the heat from the radiation on a

solid pipe, the central region is designed using 14.6 µm gold coated on the inner surface

of the 0.8 mm beryllium wall, a 0.8 mm channel full of pure mineral oil for cooling and

a 0.6 mm thick beryllium outer wall. The radiation length for a straight trajectory from
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the primary vertex in the bending plane is 1.04%X0.

1.3 The current design of BESIII

The BEijing Spectrometer III (BES-III) shown in Figure 1.3 is the only detector to explore

particle physics at BEPC-II. It contains the multilayer drift chamber (MDC), time-of flight

(TOF) detector, the CsI(Tl) electromagnetic calorimeter (EMC), the superconducting

solenoid magnet (SSM) supporting 1 T magnetic field and the muon identifier (MU). The

polar angle coverage of BESIII is 21◦ < θ < 159◦. In one calendar year, the expected

Figure 1.3: Schematic diagram of the BESIII detector[1]

data samples are summarized in Table 1.2. And the main parameters and performance

of BES-III are listed in Table 1.3. Brief introductions of all the sub-detectors are given in

the following sub-sections.
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states
Energy Peak luminosity Cross section

Events/year
(GeV) (1033 cm−2s−1) (nb)

J/ψ 3.097 0.6 3400 1.0 × 1010

ψ(2S) 3.686 1.0 640 3.0 × 109

τ+τ− 3.670 1.0 2.4 1.2 × 107

D0D̄0 3.770 1.0 3.6 1.8 × 106

D+D− 3.770 1.0 2.8 1.4 × 106

D+
s D−

s 4.030 0.6 0.32 1.0 × 106

D+
s D−

s 4.170 0.6 1.0 2.0 × 106

Table 1.2: Predicted data samples in BESIII for one year’s running [1, 15]

1.3.1 Multilayer drift chamber

The multilayer drift chamber (MDC) is designed to reconstruct the trajectories and to

measure the momentum of the charged final states created by e+e− collisions in BEPCII

, with a high precision to fulfil the physics goals aiming at precise measurements and new

physics in τ − c energy range. Meanwhile, the measurements of charges ionized by the

flying particles could be used in particle identification by checking their dE/dx spectrum.

The momentum distributions of the charged final states in J/ψ and D0 decays are shown

in Figure 1.4 and Figure 1.5 respectively. They indicate that most of the charged particles

have a momentum lower than 1.5 GeV and the averaged momentum of pions(kaons) is

around 0.4(0.65) GeV. In addition, the electrons coming from D0 decay have the mean

momentum around 0.3 GeV and the most probable momentum lower than 0.25 GeV.

Therefore, the tracker system in BESIII is extremely sensitive to material effects like the

multiple scattering for all charged particles, and the energy loss of electrons and positrons.

These effects raise the requirements on material budget of the inner tracker system. A

gaseous tracker is thus favoured by BESIII, and the transverse momentum resolution of

MDC is determined to be better than σpt
/pt = 0.32%pt ⊕ 0.37%/β [15].

In the radial range from 59 mm to 810 mm, the MDC is designed with two parts: the

inner chamber which consists of the inner carbon-fibre wall (0.45%X0) and 8 detecting

layers, and the outer chamber which starts at 182.5 mm and contains 35 detecting layers.

To reduce multiple scattering, there is no separation wall between the two chambers.
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Subsystem parameters Performance

MDC

Single wire σrφ(µm) 130

σP /P (1 GeV/c) (%) 0.5

σ(dE/dx) (%) 6

EMC

σE/E (1 GeV/c) (%) 2.5

Position resolution (1 GeV/c) (cm) 0.6

TOF

σT (ps)

Barrel 100

End cap 110

MU

No. of layers (barrel/end cap) 9/8

Cut-off momentum (MeV/c) 0.4

SSM magnet field (T) 1.0

∆Ω/4π 93%

Table 1.3: Detector parameters and performance of BESIII [1]
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(a) Momentum distribution of pion (b) Momentum distribution of kaon

(c) Momentum distribution of proton

Figure 1.4: Momentum distributions of charged particels produced from J/ψ decays (BE-
SII data)[16].
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(a) Momentum distribution of pion (b) Momentum distribution of kaon

(c) Momentum distribution of electron

Figure 1.5: Momentum distributions of charged particels produced from D0 decays (BESII
data)[16].
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The working gas is a helium based mixture He/C3H8 (60/40) with a radiation length

around 550 m. This leads to an averaged radiation length X0 ∼218 m assuming that the

materials of wires are distributed uniformly in the chamber [16]. As the result of MDC

configurations, the single wire spatial resolution is better than 130 µm in r − φ plane

in average to guarantee the transverse momentum resolution ∼ 0.5% for heavy charged

particles at 1 GeV/c, and the position resolution at the impact point (IP) is ∼2 mm in

the beam direction. Moreover, the dE/dx resolution for particles in the bending plane is

6% better than the design goal and a 98% hit reconstruction efficiency in a cell is also

achieved [17].

1.3.2 Time of flight system

The time of flight (TOF) counters between MDC and EMC are used to measure the flight

time of the charged particles, which will contribute on particle identification, cosmic ray

rejection and the level 1 trigger. The main components to make up the TOF incorporate

plastic scintillators and photomultiplier tubes. To cover almost the same solid angle as

that of MDC, there are two sub-systems: the barrel TOF with time resolution around

100 ps to cover the angle |cos(θ)| < 0.83 and the end cap TOF with time resolution

∼110 ps covering the range 0.85 < |cos(θ)| < 0.95.

1.3.3 CsI(Tl) electromagnetic calorimeter

The CsI(Tl) crystal based electromagnetic calorimeter (EMC) could measure the energy

and position of photons and electrons precisely in the energy range from 20 MeV up to

2 GeV just outside of the TOF system. And a good e/π discrimination is guaranteed for

the range above 200 MeV. Therefore, EMC could also offer the trigger information for

neutral particles. The material budget of the crystals is about 15X0 which is a length of

28 cm. The designed energy resolution and position resolution are σE/E = 2.5%
√

E and

σ ≤ 6 mm/
√

E at 1 GeV respectively.

1.3.4 Muon identifier

Muon identifier (MU) is the outermost sub-detector used for identification and measuring

of muons with momenta above 0.4 GeV/c. The resistive plate counters (RPC) are used
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for muon hit reconstruction, and steel plates are placed between two counters to absorb

the other charged particles. The spatial resolution in φ direction is better than 1.2 cm,

and the detecting efficiency is greater than 0.95%.

1.4 Ageing effect of MDC in BES-III

The deterioration problem of the inner chamber and its influence to physics studies will

be presented in this section. Gas chambers have the ageing effect because of gas polymer

condensing on electrodes and charge accumulation on these insulating layers, which lead to

gain decrease and a lower signal to noise ratio. In addition, the ageing effect on cathodes

named as Malter effect [18] could prevent positive ions to absorb electrons, which may

result in a very high electric field to emit electrons. Once the electrons drift to the anodes,

avalanches near the sensing wires will generate more positive ions to enhance this effect,

thus the continuous self-discharge will make the chamber extremely noisy or even dead due

to the high currents. To solve the cathode ageing problem, water vapour could be injected

to the gas mixture to absorb the electrons from Malter effect, but it will result in gain

decreases. Although using higher operating voltages on wires could increase the gain,

the ageing effect will be accelerated. Consequently, the tracking efficiency and spatial

resolution of a gas chamber will deteriorate under high irradiations.

The ageing effect in MDC of BESIII has been studied by literature [19]. As the hit

rate in the outer chamber is much lower, the influence of ageing is not serious. However,

the gain decrease in the inner chamber (the first 8 layers) is dramatic. The hit rates

of single wires obtained from random triggered events at the beginning of each run are

shown in Figure 1.6 to illustrate the crucial radiation environment of the inner chamber

compared with the outer one. To avoid the influence on temperature, the data used

for this analysis are taken on similar dates in each year. The changes of hit rate in

different years are mainly due to the optimisation of machine running parameters. The

gain decrease is studied using Bhabha events and accumulated charges calculated from

the cell currents in related years [19]. The results of relative gains with respect to the gain

in 2009 are shown in Figure 1.7 and Figure 1.8, where the gains of all the 8 layers in the

inner chamber decrease dramatically. In the worst case, the degradation of the first layer

has a factor about 29% during the 5 years operation. Finally, the implications for tracking

performance could be seen from the decreased hit efficiency and spatial resolution in the
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Figure 1.6: Single wire hit rate in May of each year as a function of MDC layer index
[19].

Figure 1.7: Gain decrease of cells in each year obtained from Bhabha events as a function
of layer indices [19].
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Figure 1.8: Gain decrease of cells in each year according to accumulated charges and
ageing ratio as a function of layer indices [19].

analysis using the data taken in 2012. The hit efficiency of wires in each layer is shown

in Figure 1.9. According to the beam test results in 2007, the hit efficiency of the first 8

Figure 1.9: Single wire hit efficiency as a function of MDC layer index (analysis in 2012)
[2].
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layers was better than 98% [17]. The efficiency of the first 4 layers declined seriously. At

the first layer, hit efficiency even decreased almost 29% [19]. Compared with the tested

spatial resolution < 130 mm for 1 GeV muon in 2009 [19], the spatial resolution is also

affected greatly for layers in the inner chamber as shown in Figure 1.10.

Figure 1.10: Spatial resolution in R-φ plane of each layer as a function of MDC layer
index (analysis in 2012) [2].

1.5 Summary and conclusion

In this chapter, the BESIII experiment was introduced with the ageing effects of MDC,

the motivation of this thesis. As the only collider and detector focusing on the physics

in τ -charm region currently, the BESIII experiment at BEPCII is remarkable for its

performance and fruitful results. Nevertheless, the ageing effect of the inner chamber of

the main tracker system has led to performance degrading in detection efficiency, spatial

resolution and thus momentum resolution of the tracker. Since both data acquisition and

data quality are influenced seriously, it is quite urgent to develop a new generation of

inner tracker for BESIII to face the coming challenges in some similar physics studies of

B-factories. Because a gas chamber suffering strong radiations cannot get free from ageing

effects, the study on using CMOS Pixel sensors to construct an inner tracker is profound

and promising.





Chapter 2

CMOS Pixel Sensor

Complementary metal-oxide-semiconductor (CMOS) refers to the family of processes to

implement CMOS circuits and the design style of integrated circuits itself. In CMOS

design, both p-channel metal-oxide-semiconductor field effect transistor (MOSFET) and

n-channel MOSFET are used to realize its low static power consumption, fast response in

both high-to-low and low-to-high output transitions, noise immunity and high integration

density. On the strength of CMOS technology, the pixel sensing circuits, the analogue

shaping amplifier, the analogue to digital converter (ADC) and even the zero suppression

circuits for fast data transmission could be implemented into one chip, which is the reason

why CPS was also named as monolithic active pixel sensor (MAPS) at the beginning.

The performance of CPS has been fully validated by the project of the Detector R&D

towards the International Linear Collider founded by EU (EUDET) using MIMOSA-26

chips and the Heavy Flavor Tracker (HFT) containing two layers of MIMOSA-28 chips

with the spatial resolution ∼3.5 µm in STAR experiment. Figure 2.1 shows the Distance

of the Closest Approach (DCA) resolution which could be achieved in 200 GeV Au-Au

data taken at RHIC in 2014 [20]. With a preliminary alignment, the pointing resolution

of 750 MeV pions is ≤60 µm in both x-y plane and z direction. Figure 2.2 shows the

background reduction performance of the HFT in the D0D̄0 invariant mass signal [21].

This chapter will start from the particle interactions with matter to illustrate the

detecting principles of CPS and then introduce the mature designs for charged particle

detection. The specification of CPS and the related test methods are also presented.
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Figure 2.1: DCA resolution for TPC tracks with one hit from the Intermediate Silicon
Tracker (IST) and two hits from the PiXel Layers (PXL) as a function of transverse
momentum in STAR 2014 data [20].

Figure 2.2: D0D̄0 invariant mass signal in STAR 2014 Au-Au data [21].
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2.1 Particle interactions with matter and detecting

principles of CPS

The interactions between the passing particles and the medium are essential processes

of particle detection and measurements. On the other hand, the material effects like the

energy loss and the multiple Coulomb scattering bring uncertainties on the reconstructions

of hits and tracks in a detector. Therefore, they are introduced before the explanation of

CPS operation principles and the tracker optimization based on tracking algorithms.

2.1.1 Electronic energy loss of charged particles

The mean energy loss due to ionization and excitation of atoms along the flying path of

charged heavy particles in the medium can be described by the Bethe equation:

〈

−dE

dx

〉

electronic

= Kz2 Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

]

, (2.1.1)

where x is the mass per unit area,

K is a constant ∼ 0.307 075 MeV mol−1 cm2,

z is the charge number of the charged particle,

Z and A are the atomic number and atomic mass (in g mol−1) of the medium respectively,

me is the rest mass of an electron,

Wmax is the maximum energy transfer of the incident particle in a single collision,

I is the mean excitation energy of the absorber,

δ(βγ) is the density effect correction.

Equation 2.1.1 is accurate with a few percent in the range 0.1 ≤ βγ ≤ 1000 for materials

with moderate Z and incident particles like muons, pions and protons [4]. For ions,

additional corrections for finite target size and higher order photon coupling are required

[4, 22]. If additional low energy corrections are applied into the Bethe equation properly,

the accuracy could be in 1% down to β ≈ 0.05 which is ∼ 1 MeV for protons [4, 23, 24,

25, 26]. For βγ > 1000, radiative energy loss has to be considered.

The maximum energy transfer Wmax for a projectile with mass M is given below [4]:

Wmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
(2.1.2)
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The mean excitation energy I for different materials could be found in literatures [23, 24,

25, 26, 27] and the online tables of PDG website. The last term in Equation 2.1.1, the

density effect correction, could be calculated as follows:

δ(βγ) =







































2(ln 10)x − C̄, if x ≥ x1;

2(ln 10)x − C̄ + a(x1 − x)k, if x0 ≤ x < x1;

0, if x < x0(nonconductors);

δ0102(x−x0), if x < x0(conductors)

(2.1.3)

in which C̄ = 2 ln(I/~ωp) + 1 with the plasma energy ~ωp =
√

ρ < Z/A > × 28.816 eV.

The relevant parameters of some materials of interest in this thesis are listed in Table 2.1.

Some coefficients like a, k, x0 and x1 for δ(βγ) calculations can be estimated analytically

Z A [g/mol] ρ [g/cm3] I [eV] a k = ms x0 x1 C̄ δ0

4(Be) 9.01218 1.848 63.7 0.80392 2.4339 0.0592 1.6922 2.7847 0.14

6(C) 12.0107 1.700 78.0 0.20762 2.9532 0.0480 2.5387 3.1550 0.14

14(Si) 28.0855 2.329 173.0 0.14921 3.2546 0.2015 2.8716 4.4355 0.14

29(Cu) 63.5460 8.960 322.0 0.14339 2.9044 -0.0254 3.2792 4.4190 0.08

Table 2.1: The parameters of some materials [27]

by equations described in References [28, 27] in case of the materials without related

measurements.

The mean rate of energy loss for restricted energy transfer T ≤ Wcut ≤ Wmax is also

summarized in Reference [4]. This rate depends on the value of Wcut. In addition, the

mean loss rate is influenced dramatically by the rare knock-on electrons which take a

large amount of energy away from the incident particle. Therefore, the mean energy loss

is only useful for thick absorbers.

To estimate energy loss in materials with moderate thickness∗ x (in g cm−2), one should

use the most probable energy loss given below [29, 30, 31]:

∆p = ξ

[

ln
2mec

2β2γ2

I
+ ln

ξ

I
+ 0.2000 − β2 − δ(βγ)

]

(2.1.4)

∗It refers to κ ≤ 0.05 − 0.1, where the constant κ ≡ ξ/Wmax is used in Vavilov’s equation.
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where ξ = (K/2) 〈Z/A〉 z2(x/β2) MeV. The related energy loss probability distribution is

named as straggling function which has been studied by several physicists using different

methods summarized in literatures [31, 32]. The Landau-Vavilov distribution works well

for moderate thickness, and it leads to the ∆p above and a full width at half maximum

(FWHM) wL ≈ 4ξ. However, the ∆p given in Equation 2.1.4 is overestimated while

wL is underestimated significantly for very thin absorbers. In the case κ < 0.6, the

straggling functions given by the convolution method coincides with experimental data

[31]. Figure 2.3 presents the straggling functions for 500 MeV pions penetrating different

thickness in silicon.

Figure 2.3: Straggling functions for 500 MeV pions penetrating different thickness in sili-
con. The distributions are normalized to have equal maximum [4].

The mean rates of electronic energy loss for electrons and positrons include differ-

ent corrections from Møller cross section (in t/u-channel) and Bhabha equation (in s/t-

channel) respectively. Although the form is different, the mean electronic energy loss of

e+/e− is similar to that of charged heavy particles [4]. However, the radiative energy loss

of e+/e− is much higher for the interested range of βγ due to the small mass me.
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2.1.2 Radiative energy loss of e+/e−

Bremsstrahlung is the main source of radiative energy loss for e+/e−. The relations and

conclusions described here are for outer or external Bremsstrahlung in which the incident

particle has small scattering angles. The differential cross section with respect to photon

energy is described by
dσ

dk
= 4αr2

e

1

k

[

f(Z,
k

E
)

]

(2.1.5)

where re is the classical electron radius, f(Z, k
E

) is a function of the atomic number Z

and the ratio of the photon energy k to the energy E of the incident particle. Function

f(Z, k
E

) is related to screening and its form for the complete screening is summarized in

literature [33]. Substituting y = k/E into Equation 2.1.5 and considering all possible

energy transfer fractions, the energy loss rate due to Bremsstrahlung reads:

−dE

dx
=

NA

A

∫ E

0
k

dσ

dk
dk

= 4αE
NA

A

(

1

4πǫ0

e2

mec2

)2
∫ 1

0
f(Z, y)dy, (2.1.6)

which indicates that −dE/dx is proportional to E/m2 of the incident particle.∗ Therefore,

it is natural to define the radiation length X0 over which the electron has 1/e of its initial

energy left in average due to Bremsstrahlung, such that the energy loss rate could be

written as −dE/dx = E/X0. The equation to calculate X0 is given in Reference [33].

The tabulated values for some materials are also available:

X0 = 4αr2
e

NA

A

{

Z2 [Lrad − f(Z)] + ZL′
rad

}

, (2.1.7)

in which the two parameters Lrad and L′
rad are given in Table 2.2. The Coulomb correction

f(Z) used in literature [33] is shown below:

f(z) ≈ 1.202z − 1.0369z2 + 1.008z3/(1 + z), (2.1.8)

where z = (αZ)2.

The radiative energy loss of e−/e+ is greater than the ionization loss when Ee > 40 MeV

∗It is also valid for charged heavy particles like muons
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Z Lrad L′
rad

1 5.31 6.144

2 4.79 5.621

3 4.74 5.805

4 4.71 5.924

≥ 5 ln(184.15Z−1/3) ln(1194Z−2/3)

Table 2.2: The parameters for X0 calculation [4, 33]

in silicon. The critical energy Ec is thus defined as the energy of the incident electron

or positron at which the loss rates due to Bremsstrahlung and ionization are equal. But

the alternative definition from Rossi [34] is more accurate to describe the transverse

development of electromagnetic cascades. In this case, Ec is the energy at which the

ionization loss of one radiation length is equal to the electron energy. The formulae to

calculate Rossi’s Ec [34] are shown below:

Ec ≈































610 MeV

Z + 1.24
, for solids;

710 MeV

Z + 0.92
, for gases.

(2.1.9)

In addition, electronuclear interactions will dominate e−/e+ energy loss for extremely high

energy (E > 109 TeV) [4, 35].

2.1.3 Radiative energy loss of muons

The radiative energy loss of muons have been well studied and summarized in literatures

[4, 27]. Considering the electronic stopping power described by the Bethe equation, the

total loss rate is described by [36]:

〈−dE/dx〉 = a(E) + b(E)E (2.1.10)
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where a is the electronic energy loss and b includes the contributions from direct e+e−

pair production, bremsstrahlung and muon photonuclear interactions [27]:

b ≡ bpair + bbremsstrahlung + bnuclear (2.1.11)

The b-values of muons in iron are shown in Figure 2.4.

Figure 2.4: b-values as a function of muon energy in iron [27].

The critical energy for muons Eµc is defined by Eµc ≡ a/b, such that energy losses due

to ionization and the radiative processes above are equal. The approximated equations

to calculate Eµc for elements except hydrogen are given by [4]:

Eµc ≈































5700 GeV

(Z + 1.47)0.838
, for solids;

7980 GeV

(Z + 2.03)0.879
, for gases.

(2.1.12)
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More accurate values could be found in PDG’s website∗. The muon critical energies of

iron and silicon are 347 GeV and 582 GeV respectively.

2.1.4 Energy loss of photons

Photons mainly loss energies through photoelctric effect, Compton scattering and pair pro-

duction. In addition, The Rayleigh scattering (coherent/elastic scattering) also contribute

photon attenuation in low energy region. The rest beam intensity I of mono-energetic

photons with an initial intensity I0 penetrating a mass thickness x (in g cm−2) is given by

[37]:

I = I0 exp [−(µ/ρ)x] (2.1.13)

where µ is the attenuation coefficient and ρ is the density of the absorber. The mass

attenuation coefficient µm is then defined by:

µm ≡ µ/ρ = σtotNA/A, (2.1.14)

in which σtot is the total cross section of photon-matter interactions. The photo mass

attenuation length is given by λ = 1/µm. Figure 2.5 from UCSD’s website† shows the

mass attenuation coefficients as a function of photon energy for the predominant processes

in silicon. The related data is also available in NIST’s database‡. The photoelectric effect

dominates the attenuation below 50 keV and the pair production is predominant when

Ephoton > 15 MeV. In the energy region of our interest, the photonuclear interactions

could be neglected, but they will dominate photon attenuation for extremely high energy

in the order of 1020 eV [4].

2.1.5 Small-angle multiple scattering

Particles passing through a medium will change their flying directions with an angle θspace

due to multiple Coulomb scatterings. The related theories have been reviewed by several

literatures [4, 38, 39]. Only the small angle scatterings which could be described using

Gaussian distributions, are introduced here. The distribution of the projected angle θplane

∗http://pdg.lbl.gov/2016/AtomicNuclearProperties
†http://www-ferp.ucsd.edu/LIB/PROPS/PHOTON/
‡https://www.nist.gov/pml/xcom-photon-cross-sections-database
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Figure 2.5: Photon attenuation coefficients as a function of photon energy in silicon.

of θspace on a plane is approximated to a Gaussian for its central 98%. The approximated

standard deviation θ0 for single charged projectile could be described by [40, 41]:

θ0 = σθplane
≈ 13.6MeV

βpc

√

X

X0

[

1 + 0.088 log10

(

X

X0

)]

(2.1.15)

where β is the speed of the flying particle divided by the light speed c, p is the momentum

of this projectile, X0 is the radiation length and X is the equivalent mass length of the path

in the penetrated materials. Compared with the Gaussian fitting to the central 98% of the

scattering angle distribution given by Molière theory[38, 42, 43], the accuracy of Equation

2.1.15 is better than 11% for all atomic number Z and for 0.001 < X/X0 < 100 when

β = 1 [41]. Equation 2.1.15 is referenced by Particle Data Group (PDG) with a modified

form in which a constant z indicating the charge of the projectile particle is multiplied

[4]. However, article [41] illustrated that the consideration for β and z dependence in the

lowest order should result in an equation shown below:

θ0 ≈ 13.6MeV

pc

z

β

√

X

X0

[

1 + 0.088 log10

(

Xz2

X0β2

)]

(2.1.16)
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This form works quite well for small atomic number Z but with pour accuracy for large

Z and small X because of a worse estimation on the influence of β. Fortunately, for a

silicon detector with Z = 14, it is safe to use equation 2.1.15 and equation 2.1.16 when

β ≈ 1. By checking the related plots in reference [41], one can find that the accuracy for

singly charged particle and for 0.001 < X/X0 < 1 in a silicon scatterer is close to 2%.

In addition to the deflection angle θplane, the other related quantities including the

lateral displacement y and the chord angle ψ are shown in Figure 2.6. The useful standard

Figure 2.6: A scattered track in the paper plane at depth x with the deflected angle θplane,
the chord angle ψplane and a displacement yplane [4].

deviations and y − θ covariance are given below:

σψplane
=

1√
3

θ0, σyplane
=

1√
3

xθ0, Cov(yplane, θplane) =
1

2
xθ2

0 (2.1.17)

2.1.6 CPS detection principles

The average energy to generate an electron-hole pair in silicon is only ∼ 3.68 eV for

charged particles [31]. Therefore, several electron-hole pairs could be produced even for

one collision of the incident particle. The minimum ionization energy loss rate is ∼
3.876 MeV cm−1, such that about 105 electron-hole pairs, on average, will be produced

for a relativistic muon passing through 1 µm silicon. The most probable yield is smaller,

around 60 pair/µm∗ for thin absorbers (∼30 µm) [31, 44]. The CPS is designed to collect

these charges using an n-well in the p-epitaxial layer shown in Figure 2.7. The produced

electrons diffuse in the epitaxial layer thermally and drift in the depleted region of the

∗It is around 50 pair/µm for 10 µm silicon.



30 2.1. Particle interactions with matter and detecting principles of CPS

(a) AMS 0.35 µm Opto-CMOS (C35O) process with 15-
20 µm epitaxial layer.

(b) TowerJazz 0.18 µm CMOS Image Sensor (CIS) process
with high resistivity epitaxial layer and deep p-well [44].

Figure 2.7: CPS schematic diagrams using different CMOS processes.
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n-well diode (a reverse-biased p-n junction). They are also reflected by the higher p-doped

substrate and p-wells. Consequently, most of the charges are collected by the diode to

generate the signal of a hit from the incident particle.

The AMS 0.35 µm Opto-CMOS process (C35O) shown in Figure 2.7a was used to

develop the state-of-the-art mimosa-28. PMOS transistors (planted on an n-well) cannot

be used in the detecting region due to the charge collection competition with the n-well

diode. Hence, only simple circuits could be implemented. In addition, the resistivity of the

epitaxial layer in this process is lower, which lead to a thin depleted region in the collecting

diode. As the requirements of CPS on readout speed and power consumption are getting

more stringent, TowerJazz 0.18 µm CMOS Image Sensor (CIS) process shown in Figure

2.7b, is introduced in CPS design. The deep p-well prevents the PMOS structure from

absorbing electrons, so more complex circuits could be realized in CPS sensing region.

The high-resistivity (> 1 kΩ cm) epitaxial layer makes larger depleted region possible to

improve the signal to noise ratio (SNR).

2.1.7 CPS noises

The typical signal in one pixel is only a few hundreds of electrons. To achieve a high

SNR, circuits should be optimized to reduce the related noises. In the pixel array, the

pedestals of the outputs of the pixels are different. Fixed pattern noise (FPN) is thus

defined as the standard deviation of its distribution. In the readout circuits of one pixel

unit, the temporal noise (TN) is mainly a sum of the kTC noise (thermal noise) during

the reset phase of the collecting diode, the short noise caused by the leakage fluctuation

of the diode, and the flicker noise (1/f noise) of the transistors. The thermal noise of the

collecting electrode is a few tens of equivalent noise charges (ENC) and the short noise is

only a few ENC for an integration time of 100 µs in room temperature for non-irradiated

sensors. Most of the temporal noise could be eliminated using correlated double sampling

(CDS) method, except the random telegraph signal (RTS) noise with a step-like output

signature in small transistors. The measurements of these noises are described in Section

2.4.1.
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2.2 CPS chip design of MIMOSA series

Minimum Ionizing particle MOS Active pixel sensor (MIMOSA) series are developed by

PICSEL (Physics with Integrated Cmos Sensors and ELectron machines) group at IPHC.

Many accomplishments including the EUDET telescope using mimosa-26, shown in Figure

2.8, and HFT of STAR experiment using mimosa-28, have been achieved. The pixel layers

of HFT and the top view of Mimosa28 are shown in Figure 2.9. The main characters of

mimosa sensors are listed in Table 2.3, which includes the process technology, thickness

of the epitaxial layer, pixel pitch size, number of metal layers, number of pixels with

digital/analogue readout and the application description. The main specifications of the

Figure 2.8: Photo of EUDET telescope using Mimosa26 sensors

state-of-the-art MIMOSA-28 are summarized in Table 2.4.

The typical design strategies of MIMOSA sensors are introduced in the following

sections. Basic circuits for signal generation in each pixel and the readout architectures

in chip level are presented to show the optimized solutions for particle detection.
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(a) Photo of PXL ladders (b) Top view of MIMOSA-28

Figure 2.9: Pixel layers (PXL) of HFT in STAR experiment

Chip Process Epi. (µm) Pitch
(µm)

Nmetal pixel Description

M22AHR AMS0.35 HiRes 10/15/20 18.4
20.7

4 73k digital
4.6k analog

Prototype
for EUDET

M26 AMS0.35 14 18.4 4 660k digital
EUDET chip

M26AHR AMS0.35 HiRes 10/15/20 18.4 4 660k digital

M28 Ultimate AMS0.35 HiRes 15/20 20.7 4 890k digital STAR chip

Table 2.3: List of chosen MIMOSA chips



34 2.2. CPS chip design of MIMOSA series

Parameter Performance/Description

Process AMS 0.35 µm (C35O)

Pixel pitch 20.7 µm × 20.7 µm

Spatial resolution & 3.6 µm

Pixel matrix 928 (rows) × 960 (columns)

Read architecture Rolling-shutter (column parallel)

Epitaxial layer 20 µm, high resistivity(> 400 Ω · cm)

Sensor thickness 50 µm

Integration time ∼ 185.6 µs

Output bandwidth 2 × 160 Mbits/s LVDS

Power consumption ∼ 160 mW/cm2 at 3.3 V

Radiation tolerance > 0.15 MRad & 3 × 1012 neq/cm2

Table 2.4: Specifications of MIMOSA-28

2.2.1 Readout architectures in Pixel level

The objective of the readout circuits in one pixel is to collect the ionized charges (electrons)

generated from an incident particle and to generate the signal for subsequent processes.

Two basic architectures using reverse-biased diodes are shown in Figure 2.10. The three

(a) Three transistors (b) Self-biased diode

Figure 2.10: Signal encoding of the pixel readout circuits [45]

transistor (3T) design in Figure 2.10a, includes a switch M1 to reset the state of the

sensing diode, a source follower M2 to output voltage signals and the row selection switch
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M3. The collected charges lead to a voltage drop on the sensing diode, and then the

transistor M2 makes the signal readable for the following circuits. Figure 2.10b shows the

Self-bias diode (SB) structure with one forward biasing diode to replace the reset switch

M1 in the 3T architecture. Using a long recharge constant and small time window for

signal reading, the SB structure could work without the dead time caused by the reset

process in the 3T-pixel.

As the potential on the sensing diode cannot be the same after a reset or a recharging,

the correlated double sampling (CDS) is mandatory for both of the pixel designs. Fur-

thermore, CDS can eliminate most of the temporal noises (e.g., κTC noise of the diode) in

the circuits. The physics signals of the two pixel structures are shown in Figure 2.11. The

(a) Three transistors (b) Self-biased diode

Figure 2.11: Signal encoding of different pixel structures. The CDS values (Subtracting
the first sample from the second one) are illustrated with red histograms.

CDS circuit, which consists of a capacitor and a clamping switch, can also be implemented

into the pixel structure after a pre-amplifier as shown in Figure 2.12 for a SB-pixel. The

first sample is read in the reading phase, then the second sample is taken in a calibration

phase after the clamping process. The two samples will be sent to a discriminator or an

analogue-to-digital converter (ADC) for digitization.
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Figure 2.12: CDS circuits design [45]

2.2.2 Readout architectures in Chip level

2.2.2.1 The rolling-shutter readout

Rolling-shutter is a widely used method to read a pixel array in the CMOS imaging sensor

of a modern digital camera. Figure 2.13 shows the schematic diagram of this readout

architecture. Pixel signals are read row by row and then compared by the discriminators

integrated in the pixel circuits or in a digital region at the end of pixel columns.

This column parallel readout is an optimal solution for full frame reading with a low

power consumption and a relative high integration speed. In addition, the circuits in one

pixel could be simple, such that designs using only NMOS transistors (like the pixels in

MIMOSA-26 and MIMOSA-28) are acceptable. Using this architecture and proper pixel

designs, applications on photon detecting or beam monitoring could be foreseen. However,

the pixel occupancy in a vertex detector is below than one percent. The fired pixels are

minor, therefore the asynchronous pixel readout used in ALPIDE sensors could have a

higher time resolution (faster integration) and a lower power consumption. Because of

the same reason, rolling-shutter architecture requires zero suppression and sparse readout

circuits to reduce data transmission bandwidth.
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Figure 2.13: Schematic diagram of rolling-shutter readout [44]

2.2.2.2 Zero suppression and sparse readout

The fired pixels due to physics signals are of a small number in one frame, such that

a sparse readout for the rolling-shutter architecture is necessary to increase data trans-

mission speed. One solution is to use a zero suppression (SUZE) architecture shown in

the block diagram of Figure 2.14 of MIMOSA-28, to record only the information of fired

pixels. SUZE includes three parts: the sparse data scan (SDS), the multiplexer and the

Figure 2.14: zero suppression logic of MIMOSA-28 [46]

memory management. First, the 960 columns are processed in 15 banks in parallel for
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sparse data scan. Each bank could handle 64 pixels and output a maximum of 6 states

which consists of the address of the first fired pixel and the number of successive fired

pixels, and one status indicating the number of states. Second, the data of the 15 banks

are extracted out to generate a maximum of 9 states and one status indicating the to-

tal number of states and their common line address. Finally, the data with only fired

pixels are buffered by the memory management module for readout. The algorithm and

implementation details can be found in literature [47] and the user manual of Ultimate 2

(MIMOSA-28).

2.2.3 Upgraded designs

The general basic circuits and architectures used in MIMOSA series have been introduced.

Some details like radiation hardness designs and noise reduction circuits are skipped. In

addition, prototypes including MIMOSA-32 and MIMOSA-34 to explore the potential

of TowerJazz 0.18 µm technology have been developed and studied. Modifications like

in-pixel discriminators have been implemented and studied using AROM-0. New features

like a rolling-shutter to read two rows (two discriminators for each column) simultaneously

and the large pixel pitch (> 36 µm) have also been validated to reduce power consumption

and integration time by prototypes like FSBB-M0 and MIMOSA-22THRb for the R&D

of the sensor MISTRAL-O.

2.3 CPS Chip design of ALPIDE series

ALPIDE (ALice PIxel DEtector) chips are designed using TowerJazz 0.18 µm CIS pro-

cess for Alice vertex detector upgrade with a very fast readout speed and a low power

consumption, which benefits from its in-pixel discriminator optimisation, asynchronous

hit-driven readout architecture and the physics signal nature that only a small fraction of

pixels are fired by incident particles in the integration period. The prototype pALPIDE-1

with a pixel pitch 28 µm × 28 µm has a spatial resolution around 5 µm, a time resolution

& 4 µs ∗ and a power consumption . 40 mW cm−2 [48]. This architecture is decided to be

the baseline design for ITS upgrade of ALICE experiment.

Figure 2.15 shows the schematic diagram of the Address-Encoder and Reset-Decoder

∗The peaking time of the amplifier is around 2 µs which allows data to be discriminated and strobbed
in some 2 µs[48].
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Figure 2.15: The AERD asynchronous readout structure of pALPIDEfs chip[49].
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(AERD) readout structure used in ALPIDE sensors. The in-pixel circuit (Pixel front-end)

is optimised to work with a low power consumption and a fast readout speed. A current

comparator with a bias of only 20 nA is used for discrimination. It generates a pulse with

a peaking time around 2 µs and a total shaping time around 4 µs when the pixel is fired by

the impinging particle. This data will be latched as a STATE once a strobe is applied for

this fired pixel. The AERD circuits for each two columns propagate the information and

related digital signals of a fired pixel. The address of the pixel with the highest priority is

read and reset by the periphery circuits first. Finally, data are compressed and assembled

into events for subsequent transmissions. The design details and optimization discussions

are introduced in reference [49].

2.4 Sensor characterisation and test methods

The basic CPS designs have been illustrated in previous text, and sensor specifications

with the related test methods will be presented in this section. The specifications could be

studied in two types of tests: the laboratory test and a beam test using charged particles.

During the development phase of a sensor, features like charge collection efficiency

(CCE), charge to voltage factor (CVF), signal to noise ratio (SNR), temporal noise (TN)

of a pixel and the fixed pattern noise (to describe pedestal dispersion) of a pixel array are

of interest. These parameters could be tested using X-ray, Beta-ray or laser sources in a

lab.

A beam test is used to study CPS performance like detecting efficiency, intrinsic spatial

resolution and fake hit rate, which are input parameters for a tracker design. Accelerators

generating high energy electron/proton/pion beams and a telescope system are needed.

In addition, the radiation tolerance of the sensor could be evaluated by the measure-

ments of all the specifications after a given radiation dose.

For a final CPS design, the probe test, which is a fast lab test system using probing card

designed with sensor reloading feature, is used for CPS quality control in the production

phase.



2. CMOS Pixel Sensor 41

2.4.1 Laboratory calibrations

In the laboratory test, both analogue and digital data are acquired for analysis. Even dig-

ital sensors contain some test pixels with analogue outputs. The test set-up of MIMOSA-

18∗ is shown in Figure 2.16. The proximity board is used to place a CPS sensor with

Figure 2.16: The block diagram of the lab test set-up for MIMOSA-18.

suited pre-amplifiers. The auxiliary board is then connected by flat cables to offer the

voltage supply for the front-end and to buffer digital or analogue signals for long-distance

data transmissions using network cables. The third VME board, named as imager USB

board, provides clocks and reset signals, processes the analogue-digital conversion using

a 12-bits ADC, and packs data with USB protocol for their transmissions to a PC.

In laboratory tests, Iron-55 is a widely used X-ray source to study charge collection

performance. The main emissions of 55Fe decays include 5.19 keV Auger electrons (∼
60%), x-rays with energy of 5.9 keV (∼ 24.4%) and 6.5 keV photons (∼ 2.85%). These

Auger electrons are absorbed on the surface of silicon, and the attenuation lengths of the

two photon components are about 29 µm and 38 µm respectively.† The electron-hole pair

yield of a 5.9 keV photon in silicon is about 1600 [50], which is used to calibrate the gain

of the pixel readout circuits.

Figure 2.17 shows the charge collection distributions of a seed‡ pixel in solid red, a

cluster of 4 pixels with the highest signals in dashed blue and a cluster of 25 pixels centred

at the seed in black. The large collection peaks are from the diffused charges whose origins

are photon electron conversions in the epitaxial layers, while the small calibration peaks

come from rare events in which the interactions occur inside the depleted region of a

sensing diode. As almost all the charges are collected by one pixel for events of the

∗MIMOSA-18 is a sensor with analogue outputs.
†http://henke.lbl.gov/optical_constants/atten2.html
‡A seed pixel is the one with the highest signal among its neighbours.
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Figure 2.17: Charge collection distributions of a CPS [45]. The solid red curve is from the
charges collected by the seed pixel. The dashed blue one is from a cluster of four pixels
with the highest outputs. The black distribution is from the data of a cluster containing
25 pixels with the seed pixel in the centre. Bias of the blue calibration peaks is due to
pixel temporal noises and the cluster reconstruction algorithm.
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calibration peaks, CVF is then given by the ratio of 1600 to the ADC value of the first

calibration peak which refers to the 5.9 keV photons. In the solid red curve, the ratio of

the most probable ADC value at the collection peak to that at the first calibration peak,

gives the CCE of the seed pixel. Comparing the positions of the collection peaks, one can

conclude that a seed pixel collects ∼ 37% of the total charges, a 4-pixel cluster collects

∼ 80% and a 5 × 5 cluster collects almost 100%.

The temporal noise (TN) of a pixel and the fixed pattern noise (FPN) of the array

could be extracted out directly from the analogue outputs. Nevertheless, it is tricky in

case of digital sensors. A threshold scan of noise runs∗ is usually processed to generate

S-curves (transfer functions) as shown in Figure 2.18. Both pixel noises and discriminator

Figure 2.18: Transfer functions of the pixels in matrix A of a FSBBbis chip.

noises are included in each curve. The combined noise distribution of the pixel and its

related discriminator circuits can be extracted out by a fit using a cumulative Gaussian

or the error function. The width of this distribution is taken as the temporal noise of the

pixel, and the mean value is defined as its pedestal. Temporal noise distribution in sensor

level is then defined by the temporal noises of all pixels, and a threshold distribution is

∗The sensors are shielded from particle sources to present their intrinsic noise level.
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defined using all the pedestal values. Figure 2.19 shows the related noise distributions of

the matrix A in a FSBBbis∗ sensor. Finally the mean value of the sensor’s temporal noise

(a) Temporal noises of all pixels (b) Pedestal dispersion of the matrix

Figure 2.19: Temporal noise distribution and threshold distribution of 85696 pixels in the
matrix A (416 rows × 208 columns) of a FSBBbis sensor. 4 noisy rows (row 412 to row
415) at the end, are removed from the threshold scan.

distribution is used as TN of the sensor while the standard deviation of the threshold

distribution in Figure 2.19b defines the FPN.

SNR could be studied in the lab test using electron sources or in a beam test, but

radioactive sources of X-rays and gamma-rays are not favoured, as the signal strength

from them is different with that from the fast heavy particles generated in particle physics

experiments.

2.4.2 Beam test

The beam test facility used for CPS studies is the telescope system like the EUDET

telescope shown in Figure 2.8. It consists of several reference CPS sensors with known

performance, a device under test (DUT), their mechanical support and cooling system, a

∗Full Size Building Block (FSBB) is a chip designed as a block of a large chip containing three blocks.
FSBBbis designed with a pixel pitch around 22×32.5 µm2 using TowerJazz 0.18 µm process.
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trigger system using scintillators and Photomultiplier Tubes (PMT), and a data acquisi-

tion system.

The SNR of a CPS could be measured without tracking. Figure 2.20 shows the results

of MIMOSA-34 chips to optimize the epitaxial thickness and diode size. Consequently, a

(a) SNR of MIMOSA-34 with different epi-
taxial thickness.

(b) SNR of MIMOSA-34 with different
diode size.

Figure 2.20: Signal-to-noise ratio (SNR) of seed pixels in different MIMOSA-34 chips [51].

high resistivity epitaxial layer of 20 µm and a diode size (dominating parameter) around

8 µm2 are favoured with the MPV of SNR ∼ 20% better.

The intrinsic spatial resolution and detecting efficiency are the two properties which

rely on beam tests. Efficiency is defined by the number of the associated hits on the

DUT divided by the total number of tracks reconstructed from the reference sensors. The

spatial resolution of the DUT, σDUT , has to be extracted from the residual∗ distributions.

That is σDUT =
√

σ2
residual − σ2

tel, where σtel is the track uncertainty at the DUT position.

For a beam of 120 GeV pions, multiple scattering of materials could be neglected. But it

has to be considered into σtel for beams like 4 GeV electrons. The resolution of a binary

output sensor could be estimated using σ ≈ pitch/
√

12, but charge sharing in adjacent

pixels improves the spatial resolution when charge of gravity (COG) algorithm is used

for hit reconstruction. This effect is shown in Figure 2.21. In addition, noise runs after

the warm-up data taking are used to obtain the fake hit rate of a sensor. Since the

∗A residual is the difference between the pointed track position and the associated hit position.
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Figure 2.21: MIMOSA resolution VS pixel pitch [51]. The theoretical resolution
(pitch/

√
12) is shown with the dashed line.
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beam is shut down, the DUT works in triggerless mode. The main results of a beam

test could be summarized in a three-color plot as shown in Figure 2.22. Moreover, the

Figure 2.22: Efficiency (black), resolution (red) and fake hit rate (blue) as a function of
threshold for MIMOSA-28.

running parameter, the discriminator threshold, is also determined from the plots. With

an efficiency better than 99% and a fake hit rate below 10−5/pixel/frame, the thresholds

between 5 times and 8 times of the TN, are preferred.

2.4.3 Probe test

Probe test is used for sensor quality monitoring in the production phase. A dedicated

probe card is developed to contact the sensors on a wafer. With the DAQ system and

photon/radiation sources, the bench test is processed to check the quality of the sensors.

2.5 Summary and conclusion

Within this chapter, we introduced CPS principles, basic design strategies and sensor

characterisations with the related test methods. Based on these understanding and the

presented performance of MIMOSA sensors, the potential of their usage in high energy

physics experiments like BESIII, could be foreseen.
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For BESIII inner tracker, the requirement on spatial resolution is not as strict as

that of STAR and Alice, such that a larger pixel pitch could be helpful to reduce power

consumption and to increase readout speed. Since MIMOSA-28 is a well validated chip

in STAR experiment and most of its specifications are good enough for BESIII, the group

decided to build a prototype of BESIII inner silicon tracker with MIMOSA-28 chips. As

for the real size detector, sensor optimization and layout designs will be discussed in the

following chapters based on the performance of MIMOSA-28.
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Sensor design optimization for

BESIII

During the development of CPS, the goal is to make very thin sensors with a high detecting

efficiency, a fast readout speed, a low power consumption and a good spatial resolution

which means a small pixel pitch. Under the given technical conditions, sensor design is

a task to find the balance of all these parameters. For instance, faster readout speed

and smaller pixel size lead to a higher power consumption. This trade-off is exactly what

happened in sensor optimisation for BESIII. To replace a very long gas chamber compared

with the silicon trackers or vertex detectors used in high energy physics experiments, the

first worry is about the material budget, as the spatial resolution of CPS sensors usually

exceeds the requirement. For BESIII trigger rate, the readout speed of MIMOSA-28 is

good enough for its pixel occupancy. Therefore, the dominating factor in CPS design,

is to reduce power consumption of the sensor to avoid additional cooling materials for

the long ladders. A natural solution is to enlarge the pixel pitch, thus the number of

channels to read the pixel array in the rolling-shutter architecture will be reduced to

save power. However, a large pixel size may bring a higher noise level, a lower detecting

efficiency and a higher pixel occupancy. This leads to the designs with newly balanced

parameters. Meanwhile, the TowerJezz 0.18 µm technology enables more complex circuit

implementations to help to improve all the sensor specifications. The new CPS sensors

with different pixel sizes and improved readout designs have been developed recently. In

this chapter, the general sensor design considerations will be applied in BESIII and the

related beam test analysis were processed to study the performance of MIMOSA-28 (with
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a pixel pitch, 20.7×20.7 µm2) and FSBB/FSBBbis (22×32.5 µm2). In conjunction with

the test results of MIMOSA-22THRb (39×50.8 µm2), the analysis results could give the

design constraints on condition of the current technologies.

3.1 Detector requirements and CPS design consider-

ations

The requirements of the silicon pixel tracker (SPT) in BESIII are listed in Table 3.1. Most

Parameters BESIII inner tracker (Requirements) STAR PXL (Achieved)

Particle rate ∼ 104 Hz/cm2 ∼ 106 Hz/cm2

Spatial resolution σrφ ∼ 100 µm, σZ ∼ 400 µm & 3.6 µm

σpT
/PT ∼ 0.5% @ 1 GeV (with MDC) N/A

Efficiency ∼ 98% ∼ 99.9%

Material budget < 0.5% X0/layer (1.5% in total) ∼ 0.37% X0/layer

Radiation tolerance

TID ∼ 8.4 kRad/year 150 kRad

NIEL ∼ 3 × 1011 Neq/cm2/year 3 × 1012 Neq/cm2

Maximum Ladder length ∼ 52 cm (bilateral support) ∼ 20 cm (unilateral)

Table 3.1: The requirements of BESIII inner tracker and the related performance achieved
by STAR Pixel Layer (PXL) using MIMOSA-28.

of the requirements have already been fulfilled by MIMOSA-28. Since the momentum

resolution is mainly decided by the length of a tracker lever arm, it is not a problem

to reach the goal σPT
/PT ∼ 0.5% at 1 GeV conditioned on the given limits of material

budget. Related studies will be presented in the following chapters. The potential risk

exists in the sturdiness and cooling of a long ladder. As mentioned at the beginning of

this chapter, the key point of CPS optimization for BESIII is its power consumption.

A lower requirement on cooling could be fulfilled with air cooling and even a flow with

lower speed, which may reduce the related vibration and thus save materials for mechanic

support.

The new generation of CPS for particle physics applications is being studied under
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the promotion of ALICE experiment. Lower power consumption CPS could be achieved

through two strategies: a larger pixel pitch (MISTRAL sensor) and a data driven readout

architecture (pALPIDE sensor). The TowerJazz 0.18 µm process used for CPS devel-

opment, offers new features like high resistivity epitaxial layer, deep p-well and more

metal-layers to optimize sensor design for lower power consumption and faster readout at

the same time. The pALPIDE-1 (28×28 µm2) prototype consumes only 1/4 the power of

MIMOSA-28 and is able to cope with a hit rate at least 10 times higher [48]. It offers the

new potential of CPS in a data-driven readout using TowerJazz 0.18 µm. On the other

hand, Our study focuses on the optimization of the pixel pitch. The special situation of

this study is that the spatial resolution of CPS dose not need to be so small. Therefore, a

larger pixel pitch and a rectangular shape for fewer columns (fewer discriminators) could

be used to reduce power consumption. Together with the R&D of MISTRAL sensors,

this thesis includes the validation of the large pixel CPS prototypes and the related beam

test analysis.

3.2 Beam tests for CPS towards a large pixel pitch

The pixel pitch sizes of MIMOSA-28, FSBBbis and MIMOSA-22THRb are in ascending

order. The last two sensors are technique exploring prototypes developed for ITS upgrade

of ALICE experiment. FSBBbis includes corrections and improvements for its predecessor

FSBB developed for validation of TowerJazz 0.18 µm process and a double-row rolling-

shutter. MIMOSA-22THRb focuses on the performance study of large pixels with a pitch

of 39×50.8 µm2 or 36×62.5 µm2.

The beam test results of MIMOSA-22THRb have been published in literature [7].

We participated and analysed the beam tests of MIMOSA-28 based Single Arm Large

Area Telescope (SALAT) modules and FSBBbis sensors. The final goal is to validate the

performance of a sensor with a spatial resolution ∼ 10 µm and a modified rolling-shutter

which reads two rows at a time.

Moreover, each test addresses dedicated objectives. The analysis of a SALAT module,

a structure with 4 MIMOSA-28 sensors to have a larger detecting area, explored the

ladder alignment method and studied the tracking performance of SALAT modules. The

FSBBbis beam test was also used for optimisation of two running parameters Ipix and

Idis for sensor configurations.
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3.2.1 SALAT beam Test

SALAT is a telescope system with a large detecting area (4 times of a MIMOSA-28).

Because of financial reasons, SALAT works with a single arm, i.e., the whole system is

set up on one side of a DUT.

3.2.1.1 Test configurations

In the beam test, the modules were tested first using 4 MIMOSA-28 sensors (working

like a small telescope) to repeat the validation tests for the 4 sensors in each module.

Simultaneously, relative positions of each sensor with respect to the module centre are

recorded for the subsequent ladder∗ alignment. The telescope layout used for this study

is illustrated in Figure 3.1. The front views of the PCB board of the modules are also

shown in 3.1a. Two MIMOSA-28 are on the front, and the other two are glued on the

Mylar foil of the back side. Techniques like UV curing gluing and wire bonding are used

for SALAT fabrication. Once the information of all the modules are recorded, SALAT is

used as the telescope to detect standalone MIMOSA-28 sensors in a configuration shown

in Figure 3.2.

3.2.1.2 Data analysis

The analysis started with the normal alignment method (sensor-by-sensor) to align all

the sensors penetrated by the same tracks. Each SALAT module has to be aligned four

times for its four sensors. The results of this analysis are chosen to be the reference

for the outcomes of the ladder alignment. A dedicated hit map of a SALAT module is

shown in Figure 3.3, in which the gaps between the sensors could be seen and measured.

Figure 3.4a and Figure 3.4b show the measured results of sensor gaps using microscope

photo and beam test analysis respectively. Because sensors are glued in diagonal on each

surface (front/back), the gap between the two sensors on the same side (left/right) cannot

be avoided. For two sensors from different surfaces, the gap may be replaced by an overlap

like the green and yellow part shown in figure 3.4b.

The second analysis is related to the new ladder alignment method. The idea is to

rotate or translate all sensors belonging to the same ladder together. Based on the relative

positions of each sensor with respect to the ladder centre, the new position for each sensor

∗One module is treated like a ladder with 4 sensors
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(a) Schematic diagram with photos.

(b) The configuration diagram. The distance between two modules is
45 mm, and that of the two standalone MIMOSA-28 on each side is only
5 mm.

Figure 3.1: The configuration for SALAT module test.
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Figure 3.2: One of the configurations for MIMOSA-28 test using a SALAT system with
3 modules.

could be calculated directly. In this way, the alignment could be processed more efficiently.

We tried this new algorithm using the position information taken at the beam test of the

configuration in Figure 3.1b. As the calculations of relative positions propagate errors,

the alignment of ladders is more difficult than the normal sensor-by-sensor alignment.

We checked the alignment performance using SALAT modules as references and single

MIMOSA-28 as DUT to correct possible mismatches in the same configuration.∗ The

procedures are given together with the related results as follows:

1. Using modules as references to align the first single mimosa-28 upstream, the moni-

toring plots are given in Figure 3.5. There was a misalignment region in the scattered

plot of ∆U as a function of U (The plot on the second row and the first column),

the local coordinate of the sensor in horizontal direction (along the short end of the

sensor). A biased region of around 1 mm was found. By checking the geometry,

the reason is found at the edges of two sensors which were penetrated by the same

∗The previous analysis of this configuration is to use 4 single sensors as the telescope to record the
relative positions of sensors in each SALAT module. Here, the roles of modules and single sensors are
exchanged.
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Figure 3.3: Hit map of a SALAT module. Four different colours are used four the hits
from 4 MIMOSA-28 sensors inside one module. The distorted rectangular of higher hit
density is the shadow of the scintillator trigger.
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(a) Measurements of SALAT module 8 (b) Centre focused hit map of module 8

Figure 3.4: The configuration for SALAT module test

Figure 3.5: Alignment monitoring plots for a DUT (MIMOSA-28) using SALAT modules
as references. The misalignment is due to the SALAT system.
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tracks, on different quarters of two modules (e.g., the up-left sensor of module 1

and the up-right sensor of module 2). As one module needs four independent align-

ments for each quarter (or each sensor), these two sensors with mismatches belong

to different simple alignment processes. Usually, the alignment algorithm suffers

minimization problems for at least one of them.

2. The roles of SALAT modules and single MIMOSA-28 chips were switched back

to the original ones, i.e., single sensors are used as references. More tracks were

processed to improve the alignment of questionable sensors.

3. Using modules as references again to align single sensors. Figure 3.6 shows the

monitoring plots with module misalignment corrected.

Figure 3.6: Alignment monitoring plots for a DUT (MIMOSA-28) using SALAT modules
as references in the case that the SALAT modules are well aligned.

4. The final procedure is to check the performance of the new ladder alignment al-

gorithm directly in the current configuration before other applications. First, the

original roles are used to re-align modules using the new ladder alignment method.

Second, the roles of DUT and references are exchanged to process the alignment
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for the first single chip upstream. The result is shown in Figure 3.7. There is no

Figure 3.7: Alignment monitoring plots for a DUT (MIMOSA-28) using SALAT modules
as references. SALAT modules are well aligned, but using ladder alignment method leads
to a deformation-like result in the scatter diagram of ∆U VS U .

obvious mismatch like that in Figure 3.5, but the scattered plot of ∆U VS U shows

a deformation-like result, which is not true for that sensor. It means that sensors in

the modules are misaligned slightly after using the ladder alignment implementation.

The procedures above have to be processed for all the modules, then the configuration

in Figure 3.2, could be used for DUT studies with a SALAT telescope. The residual distri-

bution in U direction for the first chip upstream is shown in Figure 3.8a. Compared with

the distribution in Figure 3.8b, using a normal sensor-by-sensor alignment, fewer tracks

(∼ 85%) were reconstructed with a similar uncertainty. Figure 3.9 compares the impact

positions of tracks for different pixel multiplicities∗ using different alignment algorithms.

The patterns are similar, but plots from ladder alignment show a lower statistics.

The conclusions for the ladder alignment algorithm is given below:

∗Pixel multiplicity is the number of fired pixels for a reconstructed hit.
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(a) Using ladder alignment algorithm (b) Using sensor alignment algorithm

Figure 3.8: Residual distributions in U direction
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(a) Using ladder alignment algorithm (b) Using sensor alignment algorithm

Figure 3.9: Track associated hits for different pixel multiplicities. The plots from top
to bottom and left to right correspond to pixel multiplicities from 1 to 9. High density
is shown with higher temprature and the red circles refer to the positions of adjacent
collecting diodes.

1. An unbiased performance requires a more precise alignment of sensors, especially

for those belonging to different quarters of different modules with overlaps.

2. After applying ladder alignment algorithm, fewer tracks are reconstructed from the

SALAT telescope. The reason is due to a slightly worse alignment performance. As

the relative positions of sensors are fixed, the degrees of freedom for each module

are reduced.

3. The performance on DUT studies including sensor tracking efficiency and spatial

resolution is similar with that using the normal alignment procedure.

3.2.2 FSBBbis Test

FSBBbis consists of a slightly enlarged pixel pitch and a double-row rolling-shutter for

a faster readout using TowerJazz 0.18 µm process. The design is optimized for the outer

layer of ALICE ITS. For BESIII, the integration time of FSBBbis (41.6 µs) is beyond the

required. However, a larger pixel pitch accompanied with a similar readout architecture

as that in MIMOSA-28 will lead to a higher pixel occupancy. This double-row readout
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offers new options for reducing integration time with acceptable power consumptions. On

the other hand, the enlarged pixel size (in row direction) is coincident with the pixel

optimization routine in our study. The influence of pixel pitch is thus illustrated step

by step using FSBBbis and MIMOSA-22THRb. Moreover, the beam test analysis of this

sensor is also used for tuning two power consumption related parameters: the bias current

Ipix of the pixel amplifier and the discriminator bias current Idis. Using the same telescope

configuration, the irradiated sensors were also studied to assess the radiation tolerance of

FSBBbis.

The test results of one FSBBbis sensor with an epitaxial layer thickness ∼ 18 µm, are

summarised in the three-colour plot shown in Figure 3.10. For the sensor requirements
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Figure 3.10: Three colour plot of a FSBBbis-HR18 sensor with the pitch around
22.0×32.5 µm2. The solid black line, solid blue line, solid red line and dashed red line
are used to indicate the detecting efficiency, average fake hit rate, spatial resolution in U
direction (along the short side) and in V coordinate (along the long side) as a function of
threshold respectively.

of an efficiency > 99% and a fake hit rate < 10−5/pixel/frame, the thresholds between

7.5 and 11.5 times the temporal noise are suitable. The intrinsic spatial resolution in this

range is better than 5 µm in both U and V directions. One could also find a resolution

degrading for the elongated pixel size in V when higher thresholds are applied.

In the analysis for running parameter optimization, Figure 3.11 was shown to study

the influence on detecting efficiencies. Two sensors without irradiation were tested. For
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(a) Efficiency of sensor 1 (b) Efficiency of sensor 2

(c) Resolution of sensor 1 (d) Resolution of sensor 2

(e) Fake hit rate of sensor 1 (f) Fake hit rate of sensor 2

Figure 3.11: Efficiency, resolution and fake hit rate as a function of threshold for different
Ipix and Idis. The black curves are for the nominal configuration with the highest currents.
The red, blue, green, yellow and pink colours are used for Ipix =20 µA, Ipix =30 µA,
Ipix =40 µA, 90% of the nominal Idis and Ipix =30 µA together with 90% of the nominal
Idis respectively. Dashed lines in the resolution curves are for the V direction (long side)
while solid lines are used for U direction (short side). Plots on the left are the test results
of sensor 1, and these on the right are for the second FSBBbis sensor.
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the first sensor, the nominal configuration (with the highest currents settings for both

Ipix and Idis) has the worst efficiency and resolution, and the improvements due to lower

currents could be found with a small cost in fake hit rate. The conclusions are only

partly consistent with these of the second sensor as the configuration of Ipix =40 µA or

Idis = −10% led to a worse efficiency and resolution. The reason of this different behaviour

on sensors is not clear. In case of a low current Ipix =20 µA, the two sensors have the best

efficiency, increased fake hit rate with a factor of 2 to 4, and a similar spatial resolution.

Since this fake hit rate is still acceptable, decreasing Ipix and Idis is of interest to mitigate

the power dissipation, which in turn helps to reduce the material budget.

3.3 Summary and conclusion

In this chapter, the beam test results of SALAT modules and FSBBbis sensors have been

presented. Considering the published performance of MIMOSA-22THRb sensors shown

in Figure 3.12, the resolutions of sensors with different pixel pitches and on condition of

Figure 3.12: Efficiency (black), resolution (red) and fake hit rate (blue) as a function of
threshold for MIMOSA-22THRb [7].

a good detecting efficiency (> 99%) and a low fake hit rate (< 10−5/pixel/frame) are

summarized in Table 3.2. The resolution of the new TowerJazz 0.18 µm process, degrades

with the increase of pixel pitches. This trend is consistent with the results of sensors

using AMS 0.35 µm process, which are summarized in Figure 2.21 in Chapter 2, and the
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CPS Pixel pitch (U×V [µm]) resolution [µm]

MIMOSA-28 20.7×20.7 ∼ 3.5

FSBBbis 22.0×32.5 ∼ 4.4

MIMOSA-22THRb 39.0×50.8 ∼ 10

Table 3.2: The requirements of BESIII inner tracker and the related performance achieved
by STAR Pixel Layer (PXL) using MIMOSA-28.

10 µm resolution of a large pitch is a new record for CPS sensors. It means that the

SNR and related pixel circuits of such a large pixel are good and functional for particle

detection. Using the double-row rolling-shutter of FSBBbis and a large pixel pitch like

that of the MIMOSA-22THRb, the MISTRAL-M0 sensor designed for ITS outer layer has

the potential to run with a power consumption around 80 mW/cm2 and an integration

time about 20.8 µs. By reducing readout speed, even more power could be saved for the

CPS designs focusing on BESIII requirements. Moreover, the pALPIDE sensors could

work with a power consumption . 40 mW cm−2 [48] using a pixel pitch 28 µm × 28 µm.

Combined with a large pixel pitch for a resolution around 10 µm, ALPIDE architecture

could reach a new limit for low power dissipation. The maximum ladder length for BESIII

SPT is 2.6 times as long as that of the STAR PXL, a power saving factor of 4 is therefore

helpful to loosen the requirements on cooling, which guarantees a low material budget.
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Tracking Algorithms

To reconstruct the trajectory of a charged particle, two types of algorithms are needed.

First, all the hits belonging to one track will be collected by a track finder whose main task

is to solve pattern recognition problems and then to find the track with its parameters.

Algorithms like conformal mapping, Hough transform and cellular animation are popular

methods in track finding. After the track parameters are given, a track fitting algorithm

will be used to optimise the parameters and to output their covariance matrix. The two

widely used methods for fitting are the generalized least squares (GLS) and the Kalman

filter (KF), both of which are originally used to solve linear problems and have been

extended in the non-linear case. Moreover, Kalman filter could be used for track finding,

which benefits from its recursive strategy. Therefore, it will also be used to estimate

tracking efficiencies. The probability that a real hit is associated with the reconstructed

track will also be calculated, which is related to the tracking efficiency and purity of a

detector. The following sections about the least chi-square and Kalman filter will present

the main ideas and the related mathematical derivations. Tracking performance in terms

of impact parameter resolution, momentum resolution and tracking efficiency of a given

tracker design, is then estimated using a tracking algorithm.

4.1 The generalized least squares fitting

The generalized least squares algorithm is a widely used statistical technique to solve

linear regression problems. In charged particle tracking, straight tracks could be handled

naturally while the helix trajectories could be linearised or simplified using parabola
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approximation in r−φ plane. In this section, the generalized linear square fitting algorithm

will be introduced.

4.1.1 Variables and notations

The lower-case letters stand for variables. They could be unknown true values, the known

measured variables and the known user decided independent variables. For example, in

the 2D track fitting equation

η = θ1 + θ2x + θ3x
2.

Letter x stands for user-decided variable which is the position of a telescope plane and is

supposed to be accurate. θ1, θ2 and θ3 are the parameters we need to figure out, and η is

the true value, the real hit position. When η is measured, we could get the measurement

variable y which has a mean value η with an uncertainty σ. To reconstruct a track is

to evaluate the track parameters and their errors from the track fitting equation, such

that measurements should be done in a series of detecting planes located at x1, x2, . . . , xn.

Finally, we get N equations:

η1 = θ1 + θ2x1 + θ3x
2
1

...

ηj = θ1 + θ2xj + θ3x
2
j

...

ηn = θ1 + θ2xn + θ3x
2
n

(4.1.1)

And the notation yj is used as the related measurement of the true value ηj.

The bold lower-case letters designate vectors which are m × 1 matrices with only one

column, while upper-case boldface is used for m×n matrix. Therefore, the fitting problem

in Equations 4.1.1 could be simplified as

y = η + noise = Aθ + noise (4.1.2)
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In the general case, η is a linear function with M parameters:

ηj = fj(θ) = θ1aj1 + θ2aj2 + · · · + θMajM , (4.1.3)

in which j stands for the j’th measurement. The relevant matrices are changed as follows:
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,

The covariance matrix of y could be a diagonal one when the measurements are indepen-

dent to each other. Nevertheless, it’s not the case in particle tracking in which multiple

scattering should be considered. We have a general covariance matrix:

Vy =
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It can be proved that this matrix is symmetric, i.e., σij = σji. The related discussion

could be found in the following section involving multiple scattering.
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4.1.2 Fitting tracks without multiple scattering

As multiple scattering raises the measurement correlations to complicate the covariance

matrix of the observed values, it is easier and more intuitive to start without consider-

ing this material effect. In this case, the covariance matrix for y is a diagonal matrix.

Therefore, we write the chi-square as follows:

χ2 =
N

∑

j=1

(yj − ηj)
2

σ2
j

=
N

∑

j=1

[yj − fj(θ1, θ2, · · · , θM)]2

σ2
j

(4.1.4)

In the matrix notation, equation 4.1.4 reads:

χ2 = (y − Aθ)T V −1

y (y − Aθ) (4.1.5)

This equation also works for the general case considering multiple scattering effects, since

Vy is symmetric.

4.1.2.1 Parameter estimation

The best estimation is to minimize this chi-square which means that the first-order partial

derivative of each parameter should be zero, hence we can write:

∂χ2

∂θl

=
N

∑

j=1

{

2 [yj − fj(θ1, θ2, · · · , θM)]

σ2
j

· (−∂fj

∂θl

)

}

= 0

By substituting fj with equation 4.1.3 and eliminating the constant −2, we find:

N
∑

j=1

{

[yj − (θ1aj1 + · · · + θlajl + · · · + θMajM)]

σ2
j

· ajl

}

= 0, (4.1.6)

such that we get M linear equations with M parameters and therefore all the estimates

θ̂l could be solved.
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In the matrix notation, the partial derivative could be written more simply:

∂χ2

∂θ
= (y − Aθ)T V −1

y (−A) + (y − Aθ)T V −1T
y (−A)

= −2(y − Aθ)T V −1

y A

= −2AT V −1

y (y − Aθ)

= 0

And the set of linear equation 4.1.6 for all the parameters (θ1, θ2, · · · , θM) reads:

AT V −1

y (y − Aθ) = 0

In this way, the estimation for θ could be solved with one formula:

θ̂ = (AT V −1

y A)−1AT V −1

y y (4.1.7)

4.1.2.2 Covariance of parameters

In this section, only matrix notation is used to show the derivation of the covariance of

the estimated parameters. First of all, the definition of covariance for yi and yj is given

below:

Vyij = 〈(yi − yi)(yj − yj)〉 ≡ 〈δyiδyj〉 .

Therefore, the covariance matrix of y could be written by:

Vy =
〈

δyδyT
〉

Since matrix A and Vy are constant matrices and an inverse matrix of a symmetric matrix

is also symmetric, we can derive the covariance matrix of θ̂ as follows:

Vθ̂ = (AT V −1

y A)−1AT V −1

y

〈

δyδyT
〉

V −1

y A(AT V −1

y A)−1

= (AT V −1

y A)−1AT V −1

y VyV −1

y A(AT V −1

y A)−1

= (AT V −1

y A)−1(AT V −1

y A)(AT V −1

y A)−1

= (AT V −1

y A)−1 (4.1.8)
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Although this section started with a simple diagonal Vy without considering multiple scat-

tering, all the equations with matrix notations are also valid for a complex Vy containing

the correlation information of the measurements.

4.1.2.3 An Example in N uniform layers detector

Assuming a particle flying in x-y plane under a magnetic field along z-axis is measured by

N detector layers placed uniformly along x-axis, the trajectory is an arc of a circle. Since

circle function is not linear, the parabola approximation could be a good choice for high

momentum particles. The track equation reads:

y = a + bx + cx2 + noise

where a, b and c are parameters to be figured out. The data we have is the measured value

yj(j ranges from 1 to N) at the relevant layer position xj. To simplify the calculation,

the spatial resolution of each layer is σ and xj = jL
N

in which L is the position of the last

layer. We can write the parameter matrix to be estimated and those constant matrices

given by data and the detector geometry as follows

θ =











a

b

c











, y =

























y1

...

yj

...

yN

























, A =

























1 x1 x2
1

...

1 xj x2
j

...

1 xN x2
N

























, V −1

y =



















1/σ2

. . .
. . .

1/σ2





















4. Tracking Algorithms 71

The parameter covariance matrix could be solved according to equation 4.1.8:

Vθ̂ = (AT V −1

y A)−1

=

















































1 x1 x2
1

...

1 xj x2
j

...

1 xN x2
N

























T
























1/σ2
1 x1/σ2

1 x2
1/σ2

1
...

1/σ2
j xj/σ2

j x2
j/σ2

j
...

1/σ2
N xN/σ2

N x2
N/σ2

N

















































−1

=





















N
∑

j=1
1/σ2

j

N
∑

j=1
xj/σ2

j

N
∑

j=1
x2

j/σ2
j

N
∑

j=1
xj/σ2

j

N
∑

j=1
x2

j/σ2
j

N
∑

j=1
x3

j/σ2
j

N
∑

j=1
x2

j/σ2
j

N
∑

j=1
x3

j/σ2
j

N
∑

j=1
x4

j/σ2
j





















−1

(4.1.9)

Since
∑

xk
j includes the sum of k’th power of integers, the accurate expression of the matrix

above could be expanded by equations A.1.1−A.1.5 in Appendix A.1. If the number of

layers are very large, we could get a simplified matrix. Considering the equation below:

lim
N→∞

N
∑

j=1

(

jL

N

)k

=
∫ 1

δ
xkdx × NLk

=
NLk

k + 1

where δ → 0, the covariance matrix reads:

Vθ̂ =
σ2

N











1 1
2
L 1

3
L2

1
2
L 1

3
L2 1

4
L3

1
3
L2 1

4
L3 1

5
L4











−1

=
σ2

N











9 −36/L 30/L2

−36/L 192/L2 −180/L3

30/L2 −180/L3 180/L4










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Finally, the track parameters could be calculated by Equation 4.1.7 as shown below

θ̂ = (AT V −1

y A)−1AT V −1

y y

= Vθ̂AT V −1

y y

=
σ2

N











9 −36/L 30/L2

−36/L 192/L2 −180/L3

30/L2 −180/L3 180/L4











1

σ2











∑

yj
∑

xjyj
∑

x2
jyj











=
1

N











9 −36/L 30/L2

−36/L 192/L2 −180/L3

30/L2 −180/L3 180/L4





















∑

yj
∑

xjyj
∑

x2
jyj











4.1.3 Chi-square fitting with Multiple scattering

There are mainly two methods to consider multiple scattering into least squares fitting.

The first algorithm takes the multiple scattering as a part of the measurement error. In

this case, one needs to rewrite the covariance matrix for y, and it is not a diagonal matrix

any more. The other method is to estimate all the kink angles for each scattering plane

as described in article [52].

4.1.3.1 Method 1: Include multiple scattering error into the measurement

covariance matrix

Figure 4.1 demonstrates a four-layer detector measuring a track with the original direction

along x-axis. The layers are placed at the positions from r1 to r4, and are perpendicular

to x-axis. As the scattering angle α is small, the material contribution of the i’th layer

(as a scatterer) to the fourth layer is ∆y4_i ≈ αi(r4 − ri) with the index i ranging from

1 to 3. Therefore, the total multiple scattering shift on the j’th layer is the sum of the

contributions from all the previous layers:

∆yj =















j−1
∑

l=1
αl(rj − rl), j > 1

0, j = 1
(4.1.10)
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y

x
o r1 r2 r3 r4

α1

α2

α3

∆y4_1

∆y4_2

∆y4_3

Figure 4.1: Multiple scattering in several layers of a detector

An ideal threshold function could be defined by:

T (z) =











1, z > 0

0, z ≤ 0

With this function, Equation 4.1.10 in an N-layer detector could be rewritten as:

∆yj =
N

∑

l=1

αl(rj − rl)T (rj − rl) (4.1.11)

Since the average scattering angle is 0, we have ∆y = 0. And the deflection angle at each

layer is independent with each other. It means that multiple scattering will not bias our

measurements on y and only contribute to the covariance matrix with the element shown

below:

Vyij = 〈∆yi∆yj〉 + σ2
i δij

=
N

∑

l=1

(ri − rl)T (ri − rl)(rj − rl)T (rj − rl) 〈δαlδαl〉

+ σ2
i δij

(4.1.12)
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where the second term σi is the intrinsic single point resolution on the i’th layer which only

exists in the diagonal elements and 〈δαlδαl〉 is the variance of small multiple scattering

angle with the approximated standard deviation for single charged projectile described

by [40, 41]
√

〈δαlδαl〉 = θ0 ≈ 13.6MeV

βpc

√

X

X0

[

1 + 0.088 log10

(

X

X0

)]

(4.1.13)

or by a formula considering β and z dependence in the lowest order:

σMS ≈ 13.6MeV

pc

z

β

√

X

X0

[

1 + 0.088 log10

(

Xz2

X0β2

)]

(4.1.14)

Equation 4.1.12 contains the sum from l = 1 to l = N , but the term with rl larger

than ri or rj is 0. Therefore, if the layer index i ≤ j, it could be simplified as

Vyij =
i

∑

l=1

(ri − rl)(rj − rl) 〈δαlδαl〉 + σ2
i δij (4.1.15)

With this symmetric covariance matrix Vy, the estimations of track parameters θ̂ and

the covariance matrix Vθ̂ could be calculated using equation 4.1.7 and equation 4.1.8

respectively.

This method using the same equations and procedures as the non scattering case is

easy to use in theory. Nevertheless, its disadvantage is too much time consumption to

inverse Vy when the number of detection layers is large.

4.1.3.2 Method 2: Fitting all kink angles

The kink angles or deflection angles of multiple scattering could be evaluated at the same

time as what we do for track parameters in a modified chi-square function. The key issue

of this method is to evaluate some angles which are not measured. In the Gaussian-like

approximation, these scattering angles have the mean value of zero and the standard

derivative which could be described by equation 4.1.13 and equation 4.1.14, such that a

term
∑

α2
l /σ2

MS could be added into the chi-square function given by [52]:

χ2 =
N

∑

j=1

[yj − fj(θ1, θ2, · · · , θM) − ∆yj]
2

σ2
j

+
N

∑

l=1

(αl − 0)2

σ2
αl

(4.1.16)
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where, fj is the linear function of the j’th measurement which is represented in equation

4.1.3, and ∆yj described by equation 4.1.11, is the displacement coming from multiple

scattering.

4.2 Kalman Filter

In modern particle physics experiments, Kalman Filter is a widely used algorithm for

track finding and fitting. The original Discrete Kalman Filter is a recursive solution

to the discrete-time version of the Wiener problem in signal processing[53]. The theory

description and derivations in this section mainly refer to literatures [53, 54, 55].

Let us start with simple measurements of a constant η for n times. Then we have:

yi = η + wi

where yi is the i’th value we get and wi stands for the i’th measurement error we can not

know. In the easiest case, the best estimate of η is shown below:

η̂n =
1

n

n
∑

i=1

yi

This expression could be written in terms of η̂n−1 and yn:

η̂n =
n − 1

n
· 1

n − 1

n−1
∑

i=1

yi +
yn

n

=
n − 1

n
η̂n−1 +

yn

n

= η̂n−1 +
1

n
(yn − η̂n−1) (4.2.1)

The trick is straightforward, but this derivation shows the hint towards the much more

complex Kalman Filter whose key idea is to calculate the current estimator ( η̂n) from the

prior estimate (η̂n−1) and the difference between the current measurement ( yn) and the

previous estimator ( η̂n−1). In this simple case, a factor 1/n delivers the difference to η̂n

in the second term, which will be derived later and will be replaced by the Kalman gain.
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4.2.1 The Discrete Kalman Filter

The random process which could be solved by Kalman filtering can be generally modelled

by the system state equation

θk+1 = Fkθk + wk (4.2.2)

and the measurement equation

yk = Hkθk + vk (4.2.3)

The related notation explanations are listed in Table 4.1

Notation Dimension Description

θk m × 1 the k’th state vector (at time tk)

Fk m × m process propagator from state k to state k+1

wk m × 1 process noise vector assumed with a mean
value of 0 and a known covariance

Qk m × m the diagonal covariance matrix of wk

yk n × 1 the k’th measurement vector

Hk n × m ideal measurement matrix which connects
the state vector with the measurements

vk n × 1 the measurement error independent from wk

and with a known covariance structure

Vk n × n the diagonal covariance matrix of vk

Table 4.1: Notation Elaboration

To solve the estimation problem above, Kalman filtering requires the prior (a priori)

estimate θ̂−
k for the current state vector and the related estimation covariance matrix:

C−
k =

〈

(

θk − θ̂−
k

) (

θk − θ̂−
k

)T
〉

(4.2.4)

These prior informations are predicted before the state update. Since we have the mea-

surement of current state yk, the estimation of the current state θk could be improved by
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a similar technique used in equation 4.2.1:

θ̂k = θ̂−
k + Kk

(

yk − Hkθ̂−
k

)

(4.2.5)

in which θ̂k is the updated (a posteriori) estimate and Kk is the kalman gain∗ which will

be determined later using minimum mean-square error (MMSE) method.

Before finding the form of Kk, the error covariance matrix of the current estimation

have to be indicated:

Ck =
〈

(

θk − θ̂k

) (

θk − θ̂k

)T
〉

(4.2.6)

By considering that vk is independent from the error (θk − θ̂−
k ) and then substituting

equation 4.2.3 and equation 4.2.5 into equation 4.2.6, we have

Ck =
〈[

θk − θ̂−
k − Kk

(

Hkθk + vk − Hkθ̂−
k

)]

[

θk − θ̂−
k − Kk

(

Hkθk + vk − Hkθ̂−
k

)]T
〉

=
〈[(

θk − θ̂−
k

)

− KkHk

(

θk − θ̂−
k

)

− Kkvk

]

[(

θk − θ̂−
k

)

− KkHk

(

θk − θ̂−
k

)

− Kkvk

]T
〉

=
〈

(

θk − θ̂−
k

) (

θk − θ̂−
k

)T
〉

−
〈

(

θk − θ̂−
k

) (

θk − θ̂−
k

)T
〉

Hk
T Kk

T

− KkHk

〈

(

θk − θ̂−
k

) (

θk − θ̂−
k

)T
〉

+ KkHk

〈

(

θk − θ̂−
k

) (

θk − θ̂−
k

)T
〉

Hk
T Kk

T

+ Kk

〈

vkvk
T

〉

Kk
T

= C−
k − C−

k Hk
T Kk

T − KkHkC−
k

+ Kk

(

HkC−
k Hk

T + Vk

)

Kk
T (4.2.7)

= (I − KkHk) C−
k (I − KkHk)T + KkVkKk

T (4.2.8)

The expression 4.2.7 and expression 4.2.8 are general for the updated error covariance

matrix. They can be used for any type of blending factor Kk in equation 4.2.5. The prior

∗Depending on the derivation, this mixing factor Kk could have different forms and values. In this
thesis, only Kalman gains will be introduced.
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covariance matrix C−
k , the measurement error Vk and the measurement matrix Hk are

already known, such that Ck is only a function of Kk. Sine the trace of matrix Ck is the

sum of mean-square errors, we could minimize it by asking its derivative with respect to

Kk equal to zero. By applying formula A.2.1 and formula A.2.2 in Appendix A.2 into Ck

expansion 4.2.7 in which all the covariance matrices are symmetric, we have

d [tr(Ck)]

dKk

= −C−
k Hk

T −
(

HkC−
k

)T
+ 2Kk

(

HkC−
k Hk

T + Vk

)

= −2C−
k Hk

T + 2Kk

(

HkC−
k Hk

T + Vk

)

(4.2.9)

To minimize the trace of Ck, we require

d [tr(Ck)]

dKk

= 0 (4.2.10)

Finally the Kalman gain reads

Kk = C−
k Hk

T
(

HkC−
k Hk

T + Vk

)−1
(4.2.11)

Substituting equation 4.2.11 into equation 4.2.7, the updated covariance matrix could be

written with the optimal gain (Kalman gain Kk) as follows:

Ck = C−
k − C−

k Hk
T

(

HkC−
k Hk

T + Vk

)−1
HkC−

k (4.2.12)

= C−
k − Kk

(

HkC−
k Hk

T + Vk

)

Kk
T (4.2.13)

= (I − KkHk) C−
k (4.2.14)

Note that equations (4.2.12-4.2.14) are only valid for the optimal gain which is derived

from MMSE method. All the equations to calculate Ck are identical, but some of them

may be more efficient or easier to be processed in a given engineering condition. After

this step, the current state and its error covariance matrix are figured out, such that the

Kalman filter is ready to process the next state. Because the process noise wk has zero

mean and is independent to all the other noises wi in which i Ó= k, the prediction of the

next state vector θ̂−
k+1 could be written as below

θ̂−
k+1

= Fkθ̂k (4.2.15)
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The related error covariance matrix of the predicted state could be written as

C−
k+1

=
〈

(

θk+1 − θ̂−
k+1

) (

θk+1 − θ̂−
k+1

)T
〉

(4.2.16)

Considering that the process noise wk and the measurement noise vk have no correlation

and substituting equation 4.2.2 and equation 4.2.15 into equation 4.2.16, we have

C−
k+1

=
〈

[

Fk

(

θk − θ̂−
k

)

+ wk

] [

Fk

(

θk − θ̂−
k

)

+ wk

]T
〉

= Fk

〈

(

θk − θ̂k

) (

θk − θ̂k

)T
〉

Fk
T + Qk

= FkCkFk
T + Qk (4.2.17)

Once we have all the formulae, the Kalman filter recursive loop could be summarized in

figure 4.2. One important trick which has to be emphasized is that the general expression

4.2.6 to update error covariance matrix Ck is computational superior that the one shown

in figure 4.2, due to the fact that the general expression is naturally symmetric to avoid

the possible round-off errors and to overcome some problems coming from suboptimal

gains and incorrect Qk or Vk[53, 55]. Compared with the least squares algorithm, the

inputs of Kalman filter have to include the prior estimation θ̂−
0

of state vector and its

covariance matrix C−
0

. This fact leads to the shortcoming of Kalman filter, that an

improper prediction at the beginning could deteriorate the final results.

4.2.1.1 Alternative form of the Kalman Filter

The Kalman Filter loop shown in figure 4.2 can be manipulated with a variety of forms[53,

55, 56, 57]. When the inverses of matrices C−
k , Ck and Vk exist or can be calculated, the

following alternative form of the Kalman Filter illustrated in figure 4.3 could be convenient

in computation. Different from the normal Kalman Filter procedure, the first goal is to

compute C−1
k rather than the Kalman gain Kk. Recall that the error covariance matrix

is given by equation 4.2.12.

Ck = C−
k − C−

k Hk
T

(

HkC−
k Hk

T + Vk

)−1
HkC−

k (4.2.18)
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INPUT

LOOP

OUTPUT

Initialize with a prior estimate
θ̂

−

0 , C
−

0

Input data from measurements
y0, y1, . . .

Compute Kalman gain:
Kk = C

−

k
Hk

T
(

HkC
−

k
Hk

T + Vk

)

−1

Update the estimate
θ̂k = θ̂

−

k
+ Kk

(

yk − Hkθ̂
−

k

)

Ck = (I − KkHk) C
−

k

Predict for the next loop
θ̂

−

k+1
= Fkθ̂k

C
−

k+1
= FkCkFk

T + Qk

Estimated results
θ̂0, θ̂1, . . .

C0, C1, . . .

k = 0

k = k + 1

Figure 4.2: Kalman Filter Loop. The line refers to the data flow which contains all
the results calculated by the previous step. The dashed line indicates that θ̂−

0
and C−

0

come from a model or a proper prediction rather than from the measurements, and these
initialized values will be only used for the first recursion.
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INPUT

LOOP

OUTPUT

Initialize with a prior estimate
θ̂

−

0 , C
−

0

Input data from measurements
y0, y1, . . .

Compute covariance matrix:
C

−1

k
= (C−

k
)−1 + HT

k
V

−1

k
Hk

Invert C
−1

k
to get Ck

Comput Kalman gain:
Kk = CkHT

k
V

−1

k

Update estimate:
θ̂k = θ̂

−

k
+ Kk

(

yk − Hkθ̂
−

k

)

Project ahead:
θ̂

−

k+1
= Fkθ̂k

C
−

k+1
= FkCkFk

T + Qk

Invert C
−

k+1

Estimated results
θ̂0, θ̂1, . . .

C0, C1, . . .

k = 0

k = k + 1

Figure 4.3: Alternative Kalman Filter Loop. The line refers to the data flow which
contains all the results calculated by the previous step. The dashed line indicates that θ̂−

0

and C−
0

come from a model or a proper prediction rather than from the measurements,
and these initialized values will be only used for the first recursion.
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Using the matrix inversion lemma A.4.1 as shown in the justification of Equation A.4.8,

it is straightforward to prove that:

C−1

k = (C−
k )−1 + HT

k V −1

k Hk (4.2.19)

The following procedure shows that the product of the right sides of equation 4.2.18 and

equation 4.2.19 reduces to the identity matrix:

[

C−
k − C−

k Hk
T

(

HkC−
k Hk

T + Vk

)−1
HkC−

k

]

[

(C−
k )−1 + HT

k V −1

k Hk

]

= I + C−
k HT

k V −1

k Hk − C−
k Hk

T
(

HkC−
k Hk

T + Vk

)−1

[

Hk + HkC−
k HT

k V −1

k Hk

]

= I + C−
k Hk

T
(

HkC−
k Hk

T + Vk

)−1 [(

HkC−
k Hk

T + Vk

)

V −1

k Hk

−Hk − HkC−
k HT

k V −1

k Hk

]

= I

Since C−1
k could be calculated before Kk, it is possible to derive the alternative expression

for Kalman gain to reduce computing time. Inserting CkC−1
k and V −1

k Vk into equation

4.2.11, we have

Kk = C−
k Hk

T
(

HkC−
k Hk

T + Vk

)−1

= CkC−1

k C−
k Hk

T V −1

k Vk

(

HkC−
k Hk

T + Vk

)−1

= CkC−1

k C−
k Hk

T V −1

k

(

HkC−
k Hk

T V −1

k + I
)−1

Substituting equation 4.2.19 into this Kk expression above, we obtain

Kk = Ck

[

(C−
k )−1 + HT

k V −1

k Hk

]

C−
k Hk

T V −1

k

(

HkC−
k Hk

T V −1

k + I
)−1

= Ck

(

I + HT
k V −1

k HkC−
k

)

Hk
T V −1

k

(

HkC−
k Hk

T V −1

k + I
)−1

= CkHk
T V −1

k

(

I + HkC−
k Hk

T V −1

k

) (

HkC−
k Hk

T V −1

k + I
)−1

= CkHk
T V −1

k (4.2.20)
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Once the Kalman gain is figured out, the state vector θk could be updated by using

Equation 4.2.5. An alternative form expressed with covariance matrix rather than the

Kalman gain is also possible. Substituting Equation 4.2.19 and Equation 4.2.20 into

Equation 4.2.5 leads to

θ̂k = θ̂−
k + CkHk

T V −1

k

(

yk − Hkθ̂−
k

)

= Ck

[

(

C−
k

)−1
θ̂−

k + Hk
T V −1

k yk

]

(4.2.21)

The main expressions in the alternative Kalman Filter have now been derived. In the

following prediction step after Kalman gain computation and estimate updating, similar

calculations will be processed as the normal Kalman Filter but one more task to invert

the predicted covariance matrix C−
k+1.

Compared with the normal Kalman Filter, this alternative could start with an infinite

prior covariance matrix. On the other hand two ((m × m)) matrix inversions can not be

avoided, such that when the state vector has a large dimension, the alternative Kalman

filter will not be as fast as the regular Kalman procedure which contains the matrix

inversions with the dimension (n × n) that is correlated to the measurement vector yk.

In charged particle tracking under magnetic field, state vector has the dimension m = 5

while the measurement vector is in the order of n = 3.

4.2.2 Derivations using conditional probability density

The key ideal of Kalman filter is to minimise the mean-square error. Except the derivation

of using the creative Equation 4.2.5 to update the state vector in the previous section, A

kalman filter can also be derived from the point of view of conditional probability density,

which introduces Equation 4.2.5 naturally.

The choice of the estimate θ̂k should minimize the mean-square error in Equation 4.2.6

on condition of the given data samples. The Mean Square Error (MSE) is recalled and
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expanded as below:

〈

(

θk − θ̂k

) (

θk − θ̂k

)T
〉

=
〈(

θkθk
T − θkθ̂k

T − θ̂kθk
T + θ̂kθ̂k

T
)〉

=
〈

θkθk
T

〉

− 〈θk〉 θ̂k

T − θ̂k

〈

θk
T

〉

+ θ̂kθ̂k

T

=
〈

θkθk
T

〉

+
(

θ̂k − 〈θk〉
) (

θ̂k − 〈θk〉
)T − 〈θk〉 〈θk〉T

(4.2.22)

Since only the middle term in the right side of Equation 4.2.22 depends on θ̂k, the MMSE

method requires

θ̂k =
〈

θk|y∗
k

〉

(4.2.23)

where y∗
k stands for all the measurements up to the k’th state, that is the stream y0,

y1, . . . , yk. For a given data set, the state vector θk in Equation 4.2.6 is implicitly on

condition of y∗
k. Though Equation 4.2.23 is derived for the update step in Kalman filter,

the same procedure could be applied in both the prediction and the smoothing.

Assuming all the noises and estimates have Gaussian distribution, The task to find the

optimal estimate is now replaced by writing the explicit form of the probability density

function of θk conditioned on the measurements set y∗
k

p(θk|y∗
k) = N

(

θ̂k, Ck

)

(4.2.24)

Kalman filter is started with the prior estimate θ̂−
k and its related covariance matrix C−

k

which are predicted from the data stream y∗
k−1

when k ≥ 1 or from some knowledges

used for the initialization. The state density function on condition of y∗
k−1

reads

p(θk|y∗
k−1

) = N

(

θ̂−
k , C−

k

)

(4.2.25)

The measurement model in Equation 4.2.3 connects the current state θk and its measure-

ment yk and leads to the density function below:

p(yk|y∗
k−1

) = N

(

Hkθ̂−
k , HkC−

k Hk
T + Vk

)

(4.2.26)
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Since the measurement noise vk is independent from the state θk, the joint Gaussian

distribution of yk and θk conditioned on y∗
k−1

could be written as follows

p(θk, yk|y∗
k−1

) = N









θ̂−
k

Hkθ̂−
k



 ,





C−
k C−

k HT
k

HkC−
k HkC−

k HT
k + Vk







 (4.2.27)

By using lemma A.3.4 in Appendix A.3 into Equation 4.2.27, one can find the probability

density function of θk conditioned on y∗
k

p(θk|y∗
k) = p(θk|yk, y∗

k−1
)

= N

(

θ̂−
k + C−

k HT
k

(

HkC−
k HT

k + Vk

)−1 (

yk − Hkθ̂−
k

)

,

C−
k − C−

k HT
k

(

HkC−
k HT

k + Vk

)−1
HkC−

k

)

(4.2.28)

Comparing the relevant terms of Equation 4.2.24 and Equation 4.2.28 leads to the update

equations

θ̂k = θ̂−
k + C−

k HT
k

(

HkC−
k HT

k + Vk

)−1 (

yk − Hkθ̂−
k

)

(4.2.29)

Ck = C−
k − C−

k HT
k

(

HkC−
k HT

k + Vk

)−1
HkC−

k (4.2.30)

Considering the definition of Kalman gain in Equation 4.2.11, the state and its covariance

matrix update equation are exactly what we have derived in the previous section about

the normal Kalman Filter.

4.2.3 The figure of merit in tracking

In generalized least squares fitting algorithm, track parameters are optimised by minimis-

ing the global chi-square function. Consequently, a track will always have a chi-square

value to tell the goodness of fit, which is useful in practice to chose good tracks by setting

a threshold. Kalman filter can construct a similar chi-square value.

After the filtering process, the residual rk of the current measurement could be written:

rk ≡ yk − Hkθ̂k (4.2.31)

Then by using state update Equation 4.2.5 and the alternative Kalman gain Equation
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4.2.20 the covariance matrix Rk of the residual could be derived as follows:

Rk =
〈

rkrT
k

〉

=
〈

(

yk − Hkθ̂k

) (

yk − Hkθ̂k

)T
〉

= Vk − VkKT
k HT

k − HkKkVk + HkCkHT
k

= Vk − HkCkHT
k (4.2.32)

= (I − HkKk) Vk (4.2.33)

The chi-square increment in filtering is then given by

χ2
F = rT

k R−1

k rk (4.2.34)

The global chi-square until the current residual rk reads:

χ2
0 = rT

0
R−1

0
r0

χ2
k = χ2

k−1 + rT
k R−1

k rk, k ∈ Z, k ≥ 1

in which, χ2
k−1 is the value calculated for the previous state when k ≥ 1.

In track finding, one important goal it to get rid of the outliers from the track. Those

outliers are some hits that do not belong to the reconstructed track. The global least

squares fit could reject hits with large residuals only when multiple scattering is not

dominating. Nevertheless, when multiple scattering could not be ignored, The kalman

filter and smoother could overcome this disadvantage of the global fitting by using the

chi-square of predictions[58]. Like Equation 4.2.31, the residual of prediction r−
k is defined

as

r−
k ≡ yk − Hkθ̂−

k (4.2.35)

As the current measurement yk is independent on the predicted state θ̂−
k , it is straight-
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forward to write the related covariance

R−
k =

〈

(

r−
k

) (

r−
k

)T
〉

=
〈

(

yk − Hkθ̂−
k

) (

yk − Hkθ̂−
k

)T
〉

= Vk + HkC−
k HT

k (4.2.36)

Then the chi-square of the prediction reads

χ2
P = (r−

k )T (R−
k )−1r−

k (4.2.37)

It is easy to show that the chi-square of prediction is equivalent to the filtered chi-square.

Substituting the update Equation 4.2.5 into the residual of Equation 4.2.31 and choosing

Equation 4.2.33 of the residual covariance, the chi-square of filtering yields

χ2
F = (r−

k )T (I − HkKk)T
V −1

k (I − HkKk)−1 (I − HkKk) r−
k

= (r−
k )T (I − HkKk)T

V −1

k r−
k

Using the Kalman gain in Equation 4.2.11 and considering the symmetry of all the co-

variance matrices lead to

χ2
F = (r−

k )T
(

Vk + HkC−
k HT

k

)−1
VkV −1

k r−
k

= Vk + HkC−
k HT

k

= χ2
P

It means that one can do the outlier elimination before updating the current state by

using the predicted chi-square χ2
P . For the hit or the measurement yk belongs to the

reconstructed track with a well known covariance matrix, χ2
F follows the χ2 distribution

whose degree of freedom is equal to the dimension of yk. Therefore, a hit could be rejected

when its χ2
P is larger than a given cut value. Once a Kalman smoother is also applied,

there is also a similar smoothed chi-square to take on this work and to offer a better

performance to overcome noise hits. Nevertheless one has to refit the track if a hit is

rejected in the smoothing process.
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4.2.4 Smoothing

One may notice that a local recursive algorithm just takes the previous measurements

to estimate the current state, such that only the final state is dealt with all the data we

have. To improve the estimation of the specified state or all the states, a technique named

smoothing is often used to combine all the information from the whole data samples to

get the optimal estimates. There are three categories of problems in smoothing[56]

• Fixed-interval smoothing is used to deal with the measurements with fixed data

interval or data span (i.e., the number of all states is fixed). In this off-line smoother,

the optimal estimate of a certain state or all the states could be found.

• Fixed-point smoothing will only estimate a single fixed state with continuing updated

data. This smoother could be used for on-line data smoothing and the first state

could be chosen as the fixed-point to be optimised with the new measurements just

acquired.

• Fixed-lag smoothing is to smooth the state which has a fixed distance (a fixed number

of states away) from the current state. This smoother could also be used in on-line

data flow. It is similar to the fixed-interval smoothing since it also incorporates a

forward filtering sweep and a backward smoothing sweep with only a fixed number

of states instead of all the previous states.

In the tracking problem of charged particles, track segments are often reconstructed to

constitute a full trajectory, which means the fixed-interval smoother could take its ad-

vantages of finding the optimal estimates for all the hits inside a track and of combining

the target segment to the neighbour segments from its two sides. Therefore, only the

fixed-interval smoothing algorithm will be presented in this section. The details of the

other two smoothers could be found in references [53, 55, 56, 59].

4.2.4.1 Expressions of the optimal smoother

The straightforward idea to use all the measurements to optimise the estimate of index

k is to combine two filtered results θ̂k and θ̂−
k,b shown in Figure 4.4, in which θ̂k is the

result of a forward filter started from the first measurement and θ̂−
k,b is a prediction, the

outcome from the backward filter started at the last index T .
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0 k(fixed) T

FORWARD FILTER θ̂k

BACKWARD FILTER θ̂−
k,b

Figure 4.4: Smoothing based on the Forward and backward filters

To derive the necessary formulae of the backward filter, the required equations of the

forward Kalman filter are recalled in Table 4.2. The backward filter loop is a recursion in

The model:

θk+1 = Fkθk + wk

yk = Hkθk + vk

The update:

C−1
k = (C−

k )−1 + HT
k V −1

k Hk

θ̂k = Ck

[

(

C−
k

)−1
θ̂−

k + Hk
T V −1

k yk

]

The prediction:

θ̂−
k+1 = Fkθ̂k

C−
k+1 = FkCkFk

T + Qk

Table 4.2: Forward Kalman filter

reversed direction, such that the model will be changed as below:

θk,b = Fk
−1θk+1,b − Fk

−1wk

Since the covariance matrix could be updated by the prediction directly, its update formula
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shares the same form with the forward filter:

C−1

k = (C−
k )−1 + HT

k V −1

k Hk (4.2.38)

C−1

k,b = (C−
k,b)

−1 + HT
k V −1

k Hk (4.2.39)

The prediction equation for the previous state and its covariance could be derived from

the model with similar processes as the forward Kalman filter:

θ̂−
k,b = Fk

−1θ̂k+1,b (4.2.40)

C−
k,b =

〈

(

θk,b − θ̂−
k,b

) (

θk,b − θ̂−
k,b

)T
〉

=
〈

Fk
−1

[(

θk+1,b − θ̂k+1,b

)

− wk

]

[(

θk+1,b − θ̂k+1,b

)

− wk

]T (

Fk
−1

)T
〉

= Fk
−1 (Ck+1,b + Qk) (Fk

−1)T (4.2.41)

With the predicted covariance matrix above and the filtered covariance of Equation 4.2.39,

the state vector in backward filtering could also be updated using Equation 4.2.21

θ̂k = Ck,b

[

(

C−
k,b

)−1
θ̂−

k,b + Hk
T V −1

k yk

]

(4.2.42)

Finally, some important relations in backward filter is summarized in Table 4.3

The smoothed estimate we seek is a linear combination of θ̂k and θ̂−
k,b. The reason

to use prediction of the backward filter is on account of the fact that the data at index

k is already taken into account in the forward filter. Using the same idea to construct

Equation 4.2.5 in the state update step, we can write the smoothed state:

θ̂s
k = Mθ̂k + M ′θ̂−

k,b (4.2.43)

The three estimates contains the true value θk and the related estimation error θ̃s
k, θ̃k
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The model:

θk,b = Fk
−1θk+1,b − Fk

−1wk

yk = Hkθk + vk

The update:

C−1
k,b = (C−

k,b)
−1 + HT

k V −1
k Hk

θ̂k = Ck,b

[

(

C−
k,b

)−1
θ̂−

k,b + Hk
T V −1

k yk

]

The prediction:

θ̂−
k,b = Fk

−1θ̂k+1,b

C−
k,b = Fk

−1 (Ck+1,b + Qk) (Fk
−1)T

Table 4.3: Backward Kalman filter

and θ̃−
k,b. Replacing the estimates with θk and the relevant error, we have

θ̃s
k = M(θ̃k + θk) + M ′(θ̃−

k,b + θ̃k) − θk

= Mθ̃k + M ′θ̃−
k,b + (M + M ′ − I)θk

The unbiased estimation requires that the term containing θk is zero. Therefore, it is

straightforward to write the relation between M and M ′.

M ′ = I − M (4.2.44)

Substituting Equation 4.2.44 into Equation 4.2.43 yields

θ̂s
k = Mθ̂k + (I − M )θ̂−

k,b (4.2.45)

Therefore, the error covariance matrix of θ̂s
k could be written in terms of the two inde-
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pendent matrices Ck and C−
k,b.

Cs
k =

〈

θ̃s
kθ̃s

k

T
〉

=
〈

[

Mθ̃k + (I − M )θ̃−
k,b

] [

Mθ̃k + (I − M )θ̃−
k,b

]T
〉

= M

〈

θ̃kθ̃k

T
〉

MT + (I − M)
〈

θ̃−
k,b(θ̃

−
k,b)

T
〉

(I − M)T

= MCkMT + (I − M)C−
k,b(I − M)T (4.2.46)

Like the process to find the Kalman gain Kk, we chose the matrix M to minimize the

trace of Cs
k with the help of Equation A.2.2

d
[

tr(Cs
k)

]

dM
= 2MCk + 2(I − M )C−

k,b(−I)

= 2MCk + 2(M − I)C−
k,b

= 2M(Ck + C−
k,b) − 2C−

k,b

= 0

The form of matrix M is then written:

M = C−
k,b(Ck + C−

k,b)
−1 (4.2.47)

The term I − M is also given:

I − M = I − C−
k,b(Ck + C−

k,b)
−1

= Ck(Ck + C−
k,b)

−1 (4.2.48)

It is convenient to start with the covariance matrix Cs
k. Substituting Equation 4.2.47 and

Equation 4.2.48 into Equation 4.2.46 leads to

Cs
k = C−

k,b(Ck + C−
k,b)

−1Ck(Ck + C−
k,b)

−1C−
k,b + (swap C−

k,b and Ck)

To simplify the expression above, the matrix inversion lemma results in Equation A.4.3
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and Equation A.4.5 are used in the following process:

Cs
k = C−

k,b(Ck + C−
k,b)

−1
[

Ck
−1 + (C−

k,b)
−1

]−1
+

Ck(Ck + C−
k,b)

−1
[

Ck
−1 + (C−

k,b)
−1

]−1

=
[

Ck
−1 + (C−

k,b)
−1

]−1
(4.2.49)

= Ck(Ck + C−
k,b)

−1C−
k,b (4.2.50)

= C−
k,b(Ck + C−

k,b)
−1Ck (4.2.51)

The other two identical expressions could be derived using Equation A.4.2 and Equation

A.4.4.

Cs
k = Ck − Ck(Ck + C−

k,b)
−1Ck (4.2.52)

= C−
k,b − C−

k,b(Ck + C−
k,b)

−1C−
k,b (4.2.53)

The smoothed covariance matrix Cs
k is calculated with all the information from the mea-

surements and the theory, such that it should be better than any covariance estimated

based on a part of the data. Inversion of the Equation 4.2.49 yields

(Cs
k)−1 = Ck

−1 + (C−
k,b)

−1

The equation above shows (Cs
k)−1 ≥ Ck

−1 and (Cs
k)−1 ≥ (C−

k,b)
−1. Consequently, the

smoothed covariance matrix should satisfy Cs
k ≤ Ck and Cs

k ≤ Ck,b.

Once Cs
k is determined, the form of the smoothed state will be derived naturally. Sub-

stituting Equation 4.2.47 and Equation 4.2.48 into Equation 4.2.45, and using Equation

4.2.50 and 4.2.51 in the derivation process, the smoothed state reads

θ̂s
k = C−

k,b(Ck + C−
k,b)

−1θ̂k + Ck(Ck + C−
k,b)

−1θ̂−
k,b

=
[

I + Ck(C−
k,b)

−1
]−1

θ̂k + Cs
k(C−

k,b)
−1θ̂−

k,b (4.2.54)
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Considering the matrix inversion lemma result A.4.6 into equation 4.2.54 leads to

θ̂s
k =

[

I − Ck(Ck + C−
k,b)

−1
]

θ̂k + Cs
k(C−

k,b)
−1θ̂−

k,b

= (I − Ks
k)θ̂k + Cs

k(C−
k,b)

−1θ̂−
k,b (4.2.55)

in which Ks
k, the smoother gain at index k is defined by

Ks
k ≡ Ck(C−

k,b)
−1

[

I + Ck(C−
k,b)

−1
]−1

(4.2.56)

The other forms of the gain Ks
k could be found by using Equation 4.2.50

Ks
k = Ck(Ck + C−

k,b)
−1

= Cs
k(C−

k,b)
−1 (4.2.57)

Therefore, a more simplified expression for the smoothed state is written as

θ̂s
k = (I − Ks

k)θ̂k + Ks
kθ̂−

k,b (4.2.58)

The two-filter smoothing method is a good choice when there is only one target state to

be estimated. Nevertheless, a flexible tracking algorithm requires more smoothed states

in one trajectory. The following fixed-interval smoother will be presented to bring the

convenience of computation based on a forward Kalman filter and a backward smother.

4.2.4.2 RTS fixed-interval smoothing

The derivation of RTS (Rauch, Tung, and Striebel) smoother is published in literatures

[60, 61]. The idea of this smoother is to process only one forward Kalman filter and a

subsequent backward recursive smoothing sweep. Since all the variables required by the

smoothing loop are already calculated in the filtering algorithm and all the states could

be smoothed, this smoother is tremendously convenient and is therefore widely used in

track fitting. Figure 4.5 shows the schematic diagram of RTS fixed-interval smoothing.

At the end of the normal Kalman filter sweeping, the state vector and its error covariance

matrix are already well estimated as all the measurements have included in the estimation

process, so the backward smoothing loop will start to optimise the estimate at state T −1.

A popular notation in reference to what used to describe conditional probability is
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Loop index k

0 1 2 T-2 T-1 T

Forward filtering sweep
θ̂k|k, Ck|k

Backward smoothing sweep
θ̂k|T , Ck|T

Filtered results
θ̂T |T , CT |T

Equivalent to
Smoothed results

Initialize with
θ̂−

0
, C−

0

Figure 4.5: RTS fixed-interval Smoothing

used in Figure 4.5. θ̂k|T is the estimation at state k by using the measurements until the

index T which means, in this case, all the data, so it is a smoothed state. θ̂k|k−1 indicates

a prediction at index k since the information from measurements between k and T is not

taken into account, while θ̂k|k stands for the filtered state because of involving the data at

the same index k. In smoothing, we prefer to use the measurements in the whole interval,

so a smoothing state like θ̂k|k+1 may be not interested in tracking. To avoid using −1 in

the initializer and to make the notation intuitive and straightforward, the superscript s

and − are used instead of the conditional probability suffix. Table 4.4 shows the notation

system preferred by this thesis and the corresponding notations in conditional probability

style .

The recursive form of the estimated covariance matrix Cs
k in RTS smoother is easy to

derive from the expressions in forward-backward filtering smoother. To achieve the goal

of only using the filtered variable and the previous smoothed covariance, Equation 4.2.52

is a good choice to start with.

Cs
k = Ck − Ck(Ck + C−

k,b)
−1Ck

The inverse term containing the backward filter element is to be replaced. Using Equation
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This thesis conditional style Description

θ̂−
k θ̂k|k−1 the k’th state prediction

θ̂k θ̂k|k the k’th state estimate of the filter

θ̂s
k θ̂k|T the k’th state estimate of the smoother (T >

k)

C−
k Ck|k−1 covariance matrix prediction at k

Ck Ck|k covariance matrix of the estimated state at k

Cs
k Ck|T covariance matrix of the smoothed state at k

(T > k)

Table 4.4: Notation Elaboration in Kalman filter and smoother

4.2.41 and the Kalman filter C−
k+1 update Equation 4.2.17, one can find

(Ck + C−
k,b)

−1 =
[

Fk
−1

(

FkCkFk
T + Ck+1,b + Qk

)

(Fk
−1)T

]−1

=
[

Fk
−1

(

C−
k+1

+ Ck+1,b

)

(Fk
−1)T

]−1
(4.2.59)

where, Ck+1,b could be expressed with the results from the forward filter and the previous

smoothing. Substituting Equation 4.2.38 into Equation 4.2.39 to eliminate the term

HT
k V −1

k Hk and using Equation 4.2.49 yields

Ck+1,b
−1 = (C−

k+1,b)
−1 + Ck+1

−1 − (C−
k+1

)−1

= Cs
k+1

−1 − (C−
k+1

)−1 (4.2.60)

Substituting Equation 4.2.60 into Equation 4.2.59 and using matrix inverse lemma

Equation A.4.7 lead to

(Ck + C−
k,b)

−1

= Fk
T

{

C−
k+1

+
[

(Cs
k+1

)−1 − (C−
k+1

)−1
]−1

}−1

Fk

= Fk
T (C−

k+1
)−1(C−

k+1
− Cs

k+1
)(C−

k+1
)−1Fk (4.2.61)



4. Tracking Algorithms 97

Finally, substituting Equation 4.2.61 into Equation 4.2.52 yields

Cs
k = Ck − Ck(Ck + C−

k,b)
−1Ck

= Ck − Ak(C−
k+1

− Cs
k+1

)Ak
T

= Ck + Ak(Cs
k+1

− C−
k+1

)Ak
T (4.2.62)

in which, the smoothing gain Ak is defined by

Ak ≡ CkFk
T (C−

k+1
)−1 (4.2.63)

= CkFk
T (FkCkFk

T + Qk)−1 (4.2.64)

The update equation below of the smoothed state could be derived using equations

in Section 4.2.4 of two-filter smoothing algorithm. Since its process is too complex, the

derivation from the point of view of conditional probability will be introduced following

the filter proof in Section 4.2.2.

θ̂s
k = θ̂k + Ak(θ̂s

k+1
− θ̂−

k+1
) (4.2.65)

Recalling Equation 4.2.24, we have the probability density of state θk conditioned on the

measurement data set y∗
k:

p(θk|y∗
k) = N

(

θ̂k, Ck

)

(4.2.66)

Given the current state, the Kalman filter model leads to the probability density of the

next state:

p(θk+1|θk) = N

(

Fkθ̂k, Qk

)

(4.2.67)

Using lemma Equation A.3.2, the joint probability density of θk and θk+1 reads

p(θk, θk+1|y∗
k) = N









θ̂k

Fkθ̂k



 ,





Ck CkF T
k

FkCk FkCkF T
k + Qk







 (4.2.68)

Using lemma A.3.4 in Appendix A.3, θk density conditioned on θk+1 and data set y∗
k
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could be written

p(θk|θk+1, y∗
k) = N

(

θ̂k + CkF T
k

(

FkCkF T
k + Qk

)−1 (

θk+1 − Fkθ̂k

)

,

Ck − CkF T
k

(

FkCkF T
k + Qk

)−1
FkCk

)

(4.2.69)

With the given θk+1 and the measurements up to k, the current state θk is independent

of the future measurements. Therefore one can find:

p(θk|θk+1, y∗
T ) = p(θk|θk+1, y∗

k)

Substituting Equation 4.2.64 into Equation 4.2.69 to use the auxiliary matrix Ak yields

p(θk|θk+1, y∗
T ) = N

(

θ̂k + Ak

(

θk+1 − Fkθ̂k

)

,

Ck − Ak

(

FkCkF T
k + Qk

)

Ak
T

)

(4.2.70)

Substituting the C−
k+1 identity 4.2.17 into Equation 4.2.70, one can get the simplified

covariance term Ck|θk+1,y∗

T
as follows

Ck|θk+1,y∗

T
= Ck − Ak

(

FkCkF T
k + Qk

)

Ak
T

= Ck − AkC−
k+1

Ak
T (4.2.71)

Assuming that the smoothed state θ̂s
k+1

and the related covariance Cs
k+1

are known, the

probability density of state θk+1 conditioned on all the data reads

p(θk+1|y∗
T ) = N

(

θ̂s
k+1

, Cs
k+1

)

Consequently, the joint Gaussian probability density of the next state and the current

state conditioned on the whole data set could be written using lemma Equation A.3.2

p(θk+1, θk|y∗
T )

= N









θ̂s
k+1

θ̂k + Ak

(

θ̂s
k+1

− Fkθ̂k

)



 ,





Cs
k+1

Cs
k+1

AT
k

AkCs
k+1

AkCs
k+1

AT
k + Ck|θk+1,y∗

T









(4.2.72)
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where the term Fkθ̂k is the prediction θ̂−
k+1 of the next state. Using the marginal Gaussian

Equation A.3.3 and substituting Equation 4.2.71 into Equation 4.2.72, one can finally have

the probability density of θk conditioned on all the data:

p(θk|y∗
T ) = N

(

θ̂s
k, Cs

k

)

= N

(

θ̂k + Ak

(

θ̂s
k+1

− θ̂−
k+1

)

,

AkCs
k+1

AT
k + Ck − AkC−

k+1
Ak

T
)

(4.2.73)

Finally the smoothed state and its related covariance are given in Equation 4.2.73. All

the equations in RTS smoothing is summarized in Table 4.5.

The initialization:

θ̂s
T = θ̂T

Cs
T = CT

The stacked inputs(0 ≤ k ≤ T ):

θ̂k, Ck, Fk, θ̂−
k , C−

k

The smoothing equations(0 ≤ k ≤ T − 1):

Ak = CkFk
T (FkCkFk

T + Qk)−1

θ̂s
k = θ̂k + Ak

(

θ̂s
k+1

− θ̂−
k+1

)

Cs
k = Ck + Ak(Cs

k+1
− C−

k+1)Ak
T

Table 4.5: Rauch-Tung-Striebel fixed interval smoothing

4.2.5 Applications in tracking

In this section, the kalman filter based straight track fitting algorithm will be introduced.

With proper treatments of coordinates rotation and translation, this tracking method

could be used in beam test directly. But a proper initialization is required for a given

beam and the telescope facility.
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A line in space could be defined with 6 independent parameters, which are the coordi-

nates of the origin þr0 = (x0, y0, z0), the unit vector of the direction of the line þv = (a, b, c)

and l, the distance between the point on the line and the chosen origin point. We have

the constraint
√

a2 + b2 + c2 = 1, and the coordinates of a point (x, y, z) on this line read























x = x0 + l · a

y = y0 + l · b

z = z0 + l · c

In beam test, telescope planes are almost perpendicular to particle trajectories and z axis

is usually defined in the beam direction , such that we have c Ó= 0. The projected lines in

x − z plane and y − z plane could be written as:

x =
a

c
z + x0 − a

c
z0 (4.2.74)

y =
b

c
z + y0 − b

c
z0 (4.2.75)

Each of the projected line could be parametrized by the slope and the intercept. In

x − z plane, θx is defined as the angle from z-axis to the line direction in the range

−π/2 < θx < π/2, then tan θx = a/c is the slop of the projected line. The state vector

which chooses the intercept x0 − tan θxz0 leads to elements containing z0 in the covariance

matrix of multiple scattering noise[62]. The straightforward and convenient solution is to

construct the state vector with the hit position and the slope as follows

θk =

















xk

tan θxk

yk

tan θyk

















(4.2.76)

In this parametrization, the track length l is a function of the two tangents and ∆z. It is

straightforward to get the relation below:

l =
∆z

c
= ∆z

√

1 + tan2 θx + tan2 θy (4.2.77)

in which, ∆z could be the thickness of the scatterer and then l stands for the track length
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in the material, which could be used in Equation 4.1.14 to calculate multiple scattering

error. After choosing the state vector, the measurement matrix could be written directly

from Equation 4.2.3 as the measurements in beam test are only hit positions:

Hk =





1 0 0 0

0 0 1 0





To get the transfer matrix Fk, we need to rewrite Equation 4.2.74 into an recursive form.

At k′th state, the point of the projected line in x − z plane fulfils

xk = tan θxk
zk + x0 − tan θxk

z0,

At (k + 1)′th state, the new point is a function of the previous one:

tan θxk+1
= tan θxk

xk+1 = tan θxk
zk+1 + x0 − tan θxk

z0

= tan θxk
(zk+1 − zk) + xk

Considering Equation 4.2.2, the transfer matrix reads

Fk =

















1 ∆zk 0 0

0 1 0 0

0 0 1 ∆zk

0 0 0 1

















where ∆zk = zk+1 − zk.

The process noise considered in straight line fitting is mainly from multiple scattering.

The Qk matrix has been derived in several literatures[62, 63].

Qk =





























Q22
t2

3
Q22

t
2

Q24
t2

3
Q24

t
2

· · · Q22 Q24
t
2

Q24

· · · · · · Q44
t2

3
Q44

t
2

· · · · · · · · · Q44




























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where t is the thickness of the current scatterer in z−axis and the key elements are given:

Q22 = σ2
MS(1 + tan2 θx)(1 + tan2 θx + tan2 θy) (4.2.78)

Q44 = σ2
MS(1 + tan2 θy)(1 + tan2 θx + tan2 θy) (4.2.79)

Q24 = σ2
MS tan θx tan θy(1 + tan2 θx + tan2 θy) (4.2.80)

in which σMS is the multiple scattering angle deviation described by Equation 4.1.14

with corrected equivalent length X = ρt
√

1 + tan2 θx + tan2 θy and ρ is the density of the

medium.

At each detection layer, measurements and the related uncertainties will be organized

as the matrices below to feed the Kalman filter:

yk =





mx

my



 , Vk =





σ2
x 0

0 σ2
y





where mx and my are the measured values at zk in X-axis and Y-axis respectively. In prac-

tice, the measurement covariance matrix may not be a diagonal one since the alignment

will lead to coordinate rotations and translations.

The last and one of the most important preparation of kalman filter is the initialization.

From the derivation in the viewpoint of conditional probability in Section 4.2.2, one has

to make sure that the initialized state vector and covariance matrix are as close to their

true values as possible.

4.3 Tracking efficiency estimation

Hit finding is usually the task of a track finding algorithm. Since tracking efficiency is one

of the figure of merit of a tracker, one cannot avoid hit finding considerations in the tracker

design. A straightforward idea to estimate tracking efficiency is to use an algorithm like

Kalman filter that could be used both in track finding and track fitting for its recursive

feature of track parameters estimation and their covariance matrix propagation at each

local layer. Therefore, the associated hit could be found by picking the hit closest to the

predicted track intersection on the layer in a given searching window. Assuming that the

noise hits distribute uniformly on a detecting layer, it is possible to do hand calculations

on the probability that a signal hit is associated with a track. The probability calculations



4. Tracking Algorithms 103

in this section are summarized from the notes [64, 65, 66] about the heavy flavour tracker

(HFT) design for Star (Solenoid Tracker at RHIC) experiment at the Relativistic Heavy

Ion Collider (RHIC).

4.3.1 Pileup Probability

The pileup probability Ppileup is the probability that one or more noise hits inside an area

a with a given surface hit density ρ could be found. Obviously, we can write the equation

below:

Ppileup = 1 − PnoNoise (4.3.1)

where PnoNoise is the probability that there is no hit found in area a. It is easier to

calculate PnoNoise first. Assuming the small area a is included in a very larger area A, this

probability for the total number of hits n could be written as:

PnoNoise = (1 − a

A
)n (4.3.2)

in which, n = ρ × A. Applying binomial theorem to equation 4.3.2, one can find:

PnoNoise =
n

∑

k=0

[

n!

k! · (n − k)!
· (− a

A
)k · 1n−k

]

(4.3.3)

Substituting A = n/ρ into equation 4.3.3, we have

PnoNoise =
n

∑

k=0

[

n!

k! · (n − k)! · nk
· (−a · ρ)k

]

(4.3.4)

In case of large n → ∞, equation 4.3.4 reads

PnoNoise =
n

∑

k=0

[

(n − 0) · · · (n − k + 1)

k! · nk
· (−a · ρ)k

]

=
n

∑

k=0

[

(1 − 0
n
) · · · (1 − k−1

n
)

k!
· (−a · ρ)k

]

≈
∞

∑

k=0

[

(−a · ρ)k

k!

]

(4.3.5)
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As equation 4.3.5 is the Taylor series of e−a·ρ, we finally have

Ppileup = 1 − PnoNoise

= 1 −
n

∑

k=0

[

n!

k! · (n − k)! · nk
· (−a · ρ)k

]

≈ 1 − e−a·ρ

(4.3.6)

In this calculation, PnoNoise is calculated from a binomial distribution. When n is

larger than 20 and a/A is smaller than 0.05, it is a good approximation to use Poisson

distribution instead of binomial probability. Since A is a very large area chosen by us,

the conditions to use the Poisson distribution is always satisfied. The Poisson parameter

is given below:

λ = n · a

A

= ρ · A · a

A

= a · ρ

(4.3.7)

Consequently, PnoNoise could be derived quickly as shown in the following

PnoNoise ≈ Poiss(0, λ)

=
λ0 · e−λ

0!

= e−λ

= e−a·ρ

(4.3.8)

4.3.2 Probability of finding the correct hit

In this section, the probability of finding a real hit (PCorrectHit) will be calculated for both

symmetric and asymmetric resolution case. Once a track is associated with a fake hit

which is closer to the predicted track position than the real signal hit on a layer, the track

may be guided away from its correct trajectory and finally becomes a ghost track.

Assuming that charged particles penetrate the same position (0,0) on the detecting

layer to which the tracks are perpendicular, the signal hit density could be described by
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a two dimensional Gaussian distribution:

dPhit =
1

2πσxσy

e
− 1

2

(

x2

σ2
x

+ y2

σ2
y

)

dxdy (4.3.9)

in which σ2
x and σ2

y are the variances of the hit position in x and y respectively. These

variances have already included the intrinsic spatial resolution of the sensor and the track

uncertainty of the current hit at the measurement plane.

4.3.2.1 Symmetric Resolution

If both the spatial resolution of the sensor and the error of the track are symmetric, that is

σx = σy = σ, equation 4.3.9 could be written only as a function of the distance r between

a selected hit and the predicted track position:

dPr =
∫ 2π

0
dPhit

=
∫ 2π

0

1

2πσxσy

e
− 1

2

(

x2

σ2
x

+ y2

σ2
y

)

dxdy

=
∫ 2π

0

1

2πσ2
e− 1

2
· r2

σ2 rdrdφ

=
r

σ2
e− r2

2σ2 dr

(4.3.10)

To find a correct hit means there is no background hit closer to the predicted track

position than the real hit. Considering equation 4.3.8, we can write:

PCorrectHit =
∫ ∞

0
PnoNoise · dPr

=
∫ ∞

0
PnoNoise · r

σ2
e− r2

2σ2 dr

=
∫ ∞

0
e−a·ρ · e− r2

2σ2 · r

σ2
dr

=
∫ ∞

0
e−πρr2 · e− r2

2σ2 · r

σ2
dr

=
∫ ∞

0
e−πρr2 · e− r2

2σ2 d

(

r2

2σ2

)

=
∫ ∞

0
e−πρr2

d
(

−e− r2

2σ2

)

(4.3.11)
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This integration could be solved easily with the hint below:

d(e−πρr2 · e− r2

2σ2 ) = e−πρr2

d(e− r2

2σ2 ) + e− r2

2σ2 d(e−πρr2

)

= e−πρr2

d(e− r2

2σ2 ) + e−πρr2 · e− r2

2σ2 · (−2πρr)dr

= e−πρr2

d(e− r2

2σ2 ) + e−πρr2 · e− r2

2σ2 · (−2πρσ2)d(
r2

2σ2
)

= e−πρr2

d(e− r2

2σ2 ) + 2πρσ2 · e−πρr2

d(e− r2

2σ2 )

= (1 + 2πρσ2)e−πρr2

d(e− r2

2σ2 )

(4.3.12)

Finally we have:

PCorrectHit =
1

1 + 2πρσ2
(4.3.13)

4.3.2.2 Asymmetric resolution

If the coordinate origin is the predicted track position, X axis is along the width of the

sensor and Y axis is along its length, Asymmetric resolution in sensor surface means that

the convolution of track error projected in X and sensor spatial resolution in X is different

from what one can find in Y axis. In this case, equation 4.3.9 describes the hit density.

Figure 4.6 shows a two-dimensional Gaussian distribution, with which one can find that

the contour of equivalent possibility is an ellipse rather than a circle.

The associated hit should be the one in the smallest ellipse whose centre is the predicted

track position. Therefore, if a fake hit is inside of the equivalent probability ellipse defined

by a real hit, the reconstructed track would unfortunately become a ghost track. Assuming

the fake hit is located at point (xfake, yfake) and the real hit is at (x, y), a ghost track

which associates a fake hit have the inequality below:

x2

σ2
x

+
y2

σ2
y

>
x2

fake

σ2
x

+
y2

fake

σ2
y

(4.3.14)

we change the sign larger than (>) into equal (=) to get the largest ellipse for those fake

hits, such that the ellipse equation is written as:

x2
fake

σ2
x · y2 + σ2

y · x2

σ2
y

+
y2

fake

σ2
x · y2 + σ2

y · x2

σ2
x

= 1 (4.3.15)
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Figure 4.6: An example of a 2D Gaussian distribution.

The area a of this ellipse is what we need for the pileup calculation.

a = π ·
√

σ2
x · y2 + σ2

y · x2

σy

·
√

σ2
x · y2 + σ2

y · x2

σx

= π · σ2
x · y2 + σ2

y · x2

σx · σy

(4.3.16)

Using equation 4.3.16, equation 4.3.8 and equation 4.3.9, we can find the probability to
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associate the correct hit with the track in the following derivations:

PCorrectHit =
∫ Y

−Y

∫ X

−X
PnoNoise · dPhit

=
∫ Y

−Y

∫ X

−X

1

2πσxσy

e−a·ρ · e
− 1

2

(

x2

σ2
x

+ y2

σ2
y

)

dxdy

=
4

2πσxσy

∫ Y

0

∫ X

0
e

−π·

(

σ2
x·y2

+σ2
y ·x2

σx·σy

)

·ρ

· e
− 1

2

(

x2

σ2
x

+ y2

σ2
y

)

dxdy

=
4

2πσxσy

∫ Y

0

∫ X

0
e

−

(

2πσxσyρ+1

2σ2
x

)

x2

· e
−

(

2πσxσyρ+1

2σ2
y

)

y2

dxdy (4.3.17)

where X and Y stand for the half width and half length of the hit searching window

respectively. To simplify this expression, we introduce the error function erf(z) which is

shown in equation 4.3.18 and Figure 4.7.

erf(z) =
2√
π

∫ z

0
e−x2

dx (4.3.18)

Using equation 4.3.18, equation 4.3.17 leads to

PCorrectHit =
1

2πσxσyρ + 1
· erf





X

σx

√

2πσxσyρ + 1

2



 · erf





Y

σy

√

2πσxσyρ + 1

2





(4.3.19)

If the searching window is much larger than the resolution, the value of error function

in equation 4.3.19 becomes 1, such that we find:

PCorrectHit =
1

2πσxσyρ + 1
(4.3.20)

Figure 4.8 shows the right hit-track association in a searching ellipse which is defined by

the convolution of track uncertainty and intrinsic spatial resolution of the sensor.

4.3.3 Estimation on tracking efficiency

The tracking efficiency of Monte-Carlo simulation can be defined as the number of tracks

well reconstructed divided by the number of all the true tracks. The question is how to
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Figure 4.7: Error Function

Figure 4.8: The right hit-track association in a searching ellipse.
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define a good track with a proper criteria. For a given track found by the track finder,

one can have requirements on the quality of each hit, on the total number of good hits,

on the number of hits at silicon detector or on the uncertainty of the track. For a long

trajectory that could penetrate silicon pixel tracker and reach a dozen of layers in a

multilayer drift chamber (MDC), the tracking efficiency in MDC could be very close to

100% and at least three hits in silicon tracker could be a reasonable requirement. In this

case, the tracking efficiency could be estimated by multiplying PCorrectHit of each silicon

detecting layer. Although the results of this calculation may be quite different from the

efficiency given by a specified track finding algorithm, this estimation could be used to

compare different designs and then help to choose the tracker layout with a better tracking

efficiency performance.

4.4 Summary and conclusion

In this Chapter, the generalized least squares fitting and the Kalman filtering and smooth-

ing algorithm have been introduced with derivations. When multiple scattering could be

neglected, the least squares could give the covariance matrix of optimized track parame-

ters directly. Based on a parabola model and an uniform layer configuration with intrinsic

spatial resolution σ along the lever arm of a length L, the curvature resolution of a tracker

is proportional to σ/(
√

NL2), the track direction resolution is proportional to σ/(
√

NL)

and the intercept (δy at x = 0) resolution increases with σ/
√

N . In case of tracking with

multiple scattering effects, an explicit solution is hard to derive. Usually, the resolutions

are calculated numerically for a given tracker layout and trajectory properties. This is

the same with a Kalman filter based estimation. To assess the performance of a tracker,

one can use an inward tracking, in which the outermost hit is chosen as the seed and

the track state is updated hit by hit towards the innermost layer. Because of this pro-

cedure, Kalman filter could also be used for track finding. The two tracking algorithms

are identical for track fitting results when the same track model is used, and Kalman

filter is popular now for its fast speed and flexible treatment between two hits. The

main disadvantage of this recursive algorithm is at its initialization. A poor initialization

leads to over/under-estimation of parameter variances and even a failure of track finding.

Tracking efficiency is estimated by using the sum of the probabilities of right associations

between a real hit (not a noise) and the reconstructed track for all the hits. It is named as
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pseudo-efficiency as its value is related to both tracking efficiency and track purity. The

equations and results in this Chapter are used to develop the general strategy for tracker

geometry optimizations in the next chapter.





Chapter 5

BESIII CPS Inner tracker design

and optimization

To develop a tracker from scratch, the constraints from ladder design and tracker size have

to be determined first. BESIII SPT, as an upgrade of a gas chamber, has already defined

the tracker volume. As a nominal proposal, only the first four layers of the inner chamber

will be replaced by silicon ladders. Therefore, we applied these constraints to the software

we developed for this study. The helix trajectory is coped with in two projections: a circle

segment in r−φ plane and a straight line in r−z∗ plane. The former is used to develop the

general strategy for the optimization of a barrel silicon pixelated tracker, which mainly

focuses on momentum measurements. The later is then used to discuss the designs for

improved impact parameter resolutions.

5.1 Ladder design

The preliminary design of ladders have materials listed in Table 5.1. As for a double-sided

ladder, additional materials with a budget ∼ 0.151% are added for CPS and related flex

cables glued on the opposite surface of the ladder. The geometries studied in this thesis

mainly include the normal ladders as the plume-like ladders may need more studies for

their stability and cooling considerations.

∗For particles with a small PT , the track length s in r − φ should be used. It is a straight track in
s − z plane.
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Material Thickness [µm] Radiation Length [X/X0]

Silicon(CPS) 50 0.053%

Epoxy 10 0.003%

kapton 100 0.036%

Aluminium 50 0.056%

Epoxy 10 0.003%

Carbon Fibre 500 0.211%

Total 720 0.362%

Table 5.1: Materials in one ladder.

5.2 Geometry optimization for tracking

The geometry or spacing of a bubble tracker has been studied by Gluckstern using

weighted least squares and parabola approximation to estimate the covariances of the

trajectory direction and curvature in early 1960s[5]. The optimal spacing for track curva-

ture measurement was given with half of all the N measurements taken at the center of the

tracker and the other half measured at the both ends of the detecting region equally when

multiple scattering is not dominating, that is the layer configuration N/4 − N/2 − N/4 at

positions x = 0, L/2, L where L is the length of the tracker lever arm in a telescope system

or the radial distance from the innermost layer to the outermost in cylindrical trackers.

In 1990s, Karimäki developed the explicit formulae to calculate parameters covariances

of circle tracks by using a non-linear extension of the linear least squares method[67, 68].

The spacing to achieve the best curvature accuracy in Karimäki’s strategy is the same

with Gluckstern’s when N is a multiple of 4. In addition, Karimäki pointed out that the

measurements should be taken symmetrically with respect to the center of the tracker

and maximum the product M(N − M) in which M is the number of the measurements

at x = L/2 (the center). In this thesis, a new formula was proposed to get the optimal

spacing for any N ≥ 3 without the constraint to have the same number of measurements

at the two ends of a tracker on condition of neglected multiple scattering. Compared

with Karimäki’s non-linear least squares calculation, the parabola approximation leads
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to overestimated curvature variance by a factor about (L/R)2/21 ∗ where R is the radius

of the trajectory[68]. Nevertheless this overestimation is close to 0 in the case we tried

to explore the optimal geometry of the tracker since the trajectory will have sufficient

projected momentum that is high enough in the tracking plane to make sure that the

multiple scattering effect is too small to be sensed, which leads to very large track radius

compared with the tracker lever arm L. Therefore, the optimal spacing without consid-

ering multiple scattering could be studied by the convenient parabola approximation on

the condition of extremely small (L/R).

5.2.1 Curvature variance and the optimal spacing without mul-

tiple scattering

We start from the parabola equation below:

y = a + bx + cx2

in which, parameter a is the intercept at x = 0, b is the track direction and c is equal to

1/(2R) half of the track curvature at x = 0. In the case of no multiple scattering, the

generalized least squares will be simplified to the weighted least squares and the variance

matrix of the parameters are given below:

Vθ̂ =





















N
∑

j=1
1/σ2

j

N
∑

j=1
xj/σ2

j

N
∑

j=1
x2

j/σ2
j

N
∑

j=1
xj/σ2

j

N
∑

j=1
x2

j/σ2
j

N
∑

j=1
x3

j/σ2
j

N
∑

j=1
x2

j/σ2
j

N
∑

j=1
x3

j/σ2
j

N
∑

j=1
x4

j/σ2
j





















−1

(5.2.1)

where θ̂ is the vector of the three estimated parameters defined by θ̂ = (a, b, c)T and σj is

the measurement error of the j′th layer located at position xj. To deal with the inversion

in this equation and simplify the derivation, all the layers are supposed to have the same

∗L is the length of the lever arm in Gluckstern’s method, but it stands for track segment length in
Karimäki’s calculation. Therefore, the overestimated factor (L/R)2/21 itself is only valid for small | L

R
|
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spatial resolution σ and the notation X(k) is introduced as follows:

X(k) =
N

∑

j=1

xk
j (5.2.2)

in which, k = 0, 1, 2, 3, 4 and X(0) = N . And the auxiliary matrix AV including all the

geometry information is defined below:

AV ≡











N X(1) X(2)

X(1) X(2) X(3)

X(2) X(3) X(4)











(5.2.3)

Therefore the covariance matrix could be written as

Vθ̂ = σ2A−1

V (5.2.4)

Finally, the explicit expression of the upper-right elements in the symmetric matrix Vθ̂

reads

Vθ̂ =
σ2

|AV |











X(2)X(4) − X(3)X(3) X(2)X(3) − X(1)X(4) X(1)X(3) − X(2)X(2)

NX(4) − X(2)X(2) X(1)X(2) − NX(3)

NX(2) − X(1)X(1)











(5.2.5)

where |AV | is the determinant of matrix AV .

|AV | = N
[

X(2)X(4) − (X(3))2
]

+ X(1)(X(2)X(3) − X(1)X(4)) + X(2)
[

X(1)X(3) − (X(2))2
]

And the track fitting performance is thus found to be determined by the layer spatial

resolution and the spacing, the geometry of the tracker. Naturally, the problem to optimize

the system for the most accurate measurement ability on track curvature is changed into

the minimization of the curvature related variance Vcc with respect to layer positions,

where Vcc is defined by the bottom-right element of the matrix Vθ̂ in Equation 5.2.5. The

related variance Vcc and its partial derivative with respect to the postion of k’th layer are
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shown as follows:

Vcc = σ2 NX(2) − X(1)X(1)

|AV | (5.2.6)

∂Vcc

∂xk

= σ2 num1 · num2

|AV |2 (5.2.7)

in which,

num1 = 2
N

∑

i=1

N
∑

j=1

[xi(xk − xj)(xk − xi)(xj − xi)] (5.2.8)

num2 =
N

∑

i=1

N
∑

j=1

[xj(2xk − xj)(xj − xi)] (5.2.9)

If the indices i and j are exchanged in Equation 5.2.8 and 5.2.9, the values of num1 and

num2 will not be changed, such that we have:

num1 =
N

∑

i=1

N
∑

j=1

[xi(xk − xj)(xk − xi)(xj − xi) + xj(xk − xj)(xk − xi)(xi − xj)]

=
N

∑

i=1

N
∑

j=1

[

−(xk − xi)(xk − xj)(xj − xi)
2
]

(5.2.10)

num2 =
N

∑

i=1

N
∑

j=1

[xj(2xk − xj)(xj − xi) + xi(2xk − xi)(xi − xj)] · 1

2

=
N

∑

i=1

N
∑

j=1

[

(xj − xi)
2(xk − xi + xj

2
)
]

(5.2.11)

Usually to minimize Vcc requires ∂Vcc/∂xk = 0 for all the layers, however it is not possible

in our situation. The minimization can only be solved under certain constrains:

• When xk = x1, xk is the smallest value such that num1 < 0 and num2 < 0. The

partial derivative
∂Vcc

∂x1

> 0

therefore, Vcc(x1) is an increasing function of x1, which means x1 is the smaller the

better to have the smallest variance on track curvature. In practice, the position

of the very first layer is limited by beam pipe and background density in collider

experiments.
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• When xk = xN , xk is the position of the outermost layer in the tracker. num1 < 0

and num2 > 0 lead to
∂Vcc

∂xN

< 0

which is a decreasing function of xN . To have smaller Vcc, xN should be as large as

possible. However it is not possible for particles with low transverse momentum to

reach a layer too far away.

• When x1 < xk < xN , the layer to be studied is an intermediaNNe one located

between the innermost and the outermost. The formalization in Equation 5.2.10

and Equation 5.2.11 leads to the possible solution to this minimization problem.

On condition of the same number of layers placed at x1 and xN , all the other layers

should have the same position xk = (x1 + xN)/2. Then we have:

∂Vcc

∂xk

∣

∣

∣

∣

∣

xk=
x1+xN

2

= 0

∂Vcc

∂xk

∣

∣

∣

∣

∣

xk=
x1+xN

2
+ǫ

> 0

∂Vcc

∂xk

∣

∣

∣

∣

∣

xk=
x1+xN

2
−ǫ

< 0

in which 0 < ǫ ≪ (x1 + xN)/4.

Nevertheless, the optimization up to now does not answer the question how many

layers should be installed at x1 and xN . For instance, in the case N = 8, we have

several optimal geometries for 6, 4 or 2 intermediate layers:

1 − 6 − 1

2 − 4 − 2

3 − 2 − 3

where the three numbers denotes the number of layers located at x1, (x1+xN)/2 and

xN respectively. To find the optimal spacing overall, two positive fractions f1 and f2,

which stand for the ratios of layer number at (x1 + xN)/2 over N and layer number

at xN over N respectively, are introduced. f1 +f2 < 1 should be guaranteed to have
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measurements at three different positions. Moreover, it is without loss of generality

to set x1 = 0 and xN = L where L is the length of the lever arm of the tracker.

Therefore the curvature variance VKK could be derived from Equation 5.2.6:

VKK = 4Vcc =
16σ2

NL4

(

4

f1

+
1

f2

+
1

1 − f1 − f2

)

. (5.2.12)

The minimization of Vcc with respect to f1 and f2 leads to f1 = 0.5 and f2 = 0.25,

that is the same layer spacing configuration N/4 − N/2 − N/4 at begin-center-end

of the tracker given by references[5, 68].

In the case f2 = 1 − f1 − f2, numbers of measurements taken at the two ends of a

tracker are equal. The curvature variance VKK could be simplified as:

VKK =
64σ2

L4

N

Nf1(N − Nf1)
. (5.2.13)

which is exactly the equation obtained by Karimäki [68]. Since Equation 5.2.12 is

more general, it should be used as long as the total number of layers N ≥ 3. When

f2 Ó= 1 − f1 − f2, the number of measurements taken at x = 0 and that at x = L

are not equal, the variance calculated by Equation 5.2.12 is not optimal any more.

The intuitive understanding is that the layers in the middle should be put closer

to the tracker end with more measurements to balance the different weights from

the two sides of the measured track segment. The optimal position for the middle

layers could be found by solving xk from the equation below:

2N(1 − f1 − f2)Nf2L
2(xk − L

2
) + N(1 − f1 − f2)Nf1x

3
k + Nf1Nf2(xk − L)3 = 0.

(5.2.14)

5.2.1.1 Optimal spacing when N is not a multiple of 4

If the positions of the layers are always x = 0, L/2, L, the optimal geometry which is

described by f1 and f2 could be determined by minimizing Vcc in Equation 5.2.12 in the

definition domain∗ of the two fractions without the constraint of equivalent number of

layers at x = 0 and x = L. The first optimal spacing which is unsymmetrical could be

∗Nf1 and Nf2 have to be integers



120 5.2. Geometry optimization for tracking

found at N = 6. The comparison of the optimal∗ unsymmetrical spacing and symmetrical

spacing is shown in Table 5.2, where the variances Vaa
† and Vbb

‡ of the other two track

parameters are also calculated. Although the unsymmetrical optimal spacing 2 − 3 − 1

Configuration(begin-center-end) Curvature variance(4Vcc) Vaa Vbb

2 − 3 − 1 272σ2/NL4 3σ2/N 65σ2/(NL2)

1 − 3 − 2 272σ2/NL4 6σ2/N 89σ2/(NL2)

1 − 4 − 1 288σ2/NL4 6σ2/N 84σ2/(NL2)

2 − 2 − 2 288σ2/NL4 3σ2/N 78σ2/(NL2)

Table 5.2: Comparison of the symmetrical optimal spacing and unsymmetrical spacing
when N = 6

.

is only slightly better than the symmetrical one 2 − 2 − 2 in terms of curvature variance,

2 − 3 − 1 is the optimal when all track parameters variances are considered. By using

this strategy, the geometries to have the most accurate curvature measurement with given

number of layers N ≤ 12 are listed in Table 5.3.

Except this analytical method to optimize tracker geometry, numerical calculation

with a scan of all possible spacing configurations is also possible to find the optimal

layout. The advantage of analytical solution is its very fast speed, however the limitation

is also obvious that it is still quite hard to consider material effects like multiple scattering

which will bring correlations among the measurements to make the error matrix much

more complex.

5.2.2 Numerical geometry scan with multiple scattering involved

The method of geometry or layer spacing scan is inspired by Equation 5.2.1 as the esti-

mated track parameter variance is only a function of layer positions and their intrinsic

spatial resolutions. Considering multiple scattering will only add contributions from mate-

rial budget of each layer into the parameter covariance matrix. This material contribution

∗Optimization is only taken for minimizing curvature variance.
†Vaa = σ2

N
1

1−f1−f2

‡Vbb = σ2

NL2 ( 16

f1

+ 1

f2

+ 9

1−f1−f2

)
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Number of layers Configuration(begin-center-end)

3 1 − 1 − 1

4 1 − 2 − 1

5 1 − 3 − 1

6 2 − 3 − 1 or 1 − 3 − 2

7 2 − 3 − 2

8 2 − 4 − 2

9 2 − 5 − 2

10 3 − 5 − 2 or 2 − 5 − 3

11 3 − 5 − 3

12 3 − 6 − 3

Table 5.3: The optimal spacing for curvature measurement
using N layers (3 ≤ N ≤ 12)

is a function of layer positions, layer thickness in unit of radiation length and momentum

of the trajectory under a given magnetic field. To simplify the calculation and focus on

the scan strategy itself, we require that the momentum direction is perpendicular to the

magnetic field, such that the trajectory is simplified as a piece of circle arc.

5.2.2.1 Spacing scan of N layers and its implementation

The innermost layer and the outermost are fixed at their positions x1 = 0 and xN = L.

And all the other layers could be moved by a user specified step ∆L which has to satisfy

the condition that L/∆L is a multiple of 2(N − 1) for even N and a multiple of (N − 1)

for odd N to make sure that the position at the center of the tracker and the uniform

spacing configuration could occur. Once ∆L is chosen, the second layer should be placed

at x2 which ranges from x1 to xN and then the third layer will be placed at x3 whose

range is from x2 up to xN and the other unfixed layers are settled orderly. Therefore this

process requires N loops. Since we could change the total number of layers in a tracker,

N is a variable, such that the recursive algorithm has to be used in the software. And the

possible positions x = 0, ∆L, 2∆L, . . . , L could be related to a series of numbers, that is

0, 1, 2, . . . , L/∆L, thus all the geometries are changed into all the (N − 2)-combinations
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Figure 5.1: The recursion tree for N = 5 and ∆L =
L

4
.

of the number set.

As the optimal spacing could contain layers placed at the same position, the repeated

values in the number set are allowed. And the number of levels in the recursion tree is

equal to the number of unfixed layers. The simplest tree for 5 detecting layers is shown

in Fig. 5.1. One may notice that the only combination is (1, 2, 3) if no overlap of layers is

required in this example.

5.2.2.2 The choice of a stable track fitting algorithm

After a tracker layout is determined from one combination of the recursion tree, the

curvature variance should be calculated by using a stable track fitting algorithm which

satisfies the conditions below:

• The pull distribution of track parameters should be a standard normal distribution

for the momentum range of interest.

• The tracking performance should be consistent for different track geometries.

The basic test to check the two conditions above is using a toy Monte-Carlo simulation

which only contains measurement uncertainties. By removing multiple scattering influ-

ence, the chosen tracking algorithm should work very well in the interested curvature or

momentum range. In this thesis, a generalized least squares (GLS) fitting and an extended

Kalman filter (EKF) are studied and compared. The toy simulation is generated for pions

which traverse 1 Tesla magnetic field and are detected by three silicon ladders with 10 µm

spatial resolution located at 72.58 mm, 86.16 mm and 99.50 mm from the origin.
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5.2.2.3 Generalized least squares (an extension of Gluckstern’s method)

The matrix notation below is used to define the parameter vector θ, the measurement

vector y and the geometry matrix A as follows:

θ =











a

b

c











, y =

























y1

...

yj

...

yN

























, A =

























1 x1 x2
1

...

1 xj x2
j

...

1 xN x2
N

























,

And the χ2 reads

χ2 = (y − Aθ)T V −1

y (y − Aθ), (5.2.15)

where Vy is the symmetric error matrix of y with the elements given below:

Vyij =
i

∑

l=1

(xi − xl)(xj − xl) 〈δαlδαl〉 + σ2
i δij, (5.2.16)

in which i ≤ j(xi ≤ xj), σi is the intrinsic spatial resolution of the i’th layer and 〈δαlδαl〉
is the variance of multiple scattering angle at the l’th layer with its standard deviation

given in Ref. [69]. In this simple implementation, the detecting layers are perpendicular

to x-coordinate, which works well for ladder sector designs.

The results of toy simulation are shown in Fig. 5.2, where the bias of parabola model

could be seen for the momentum below 0.3GeV. A similar plot could also be drawn

with the position of the second layer changed to 96.16mm and no obvious difference

can be found. The verdict of the generalized least squares and Gluckstern’s method is

summarized below:

1. The curvature estimation has bias for low momentum trajectories as (L/R)2 is too

large for parabola approximation.

2. The estimation of curvature variance is always good for all the tested momentums.

3. Tracking performance is stable for different tracker structures.
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Figure 5.2: Curvature pulls vs momentum of GLS method. The pull of curvature is
defined as (krec − ktrue)/σk, where krec is the reconstructed curvature, ktrue is the true
value and σk is the estimated curvature deviation given by the fitting algorithm. Mean
values and standard deviations of the curvature pulls are shown with black asterisk and
error bar, the skewness of pull distribution and its error are marked in blue.
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5.2.2.4 The extended Kalman filter

Kalman filter based algorithms have been widely used in particle tracking for their fast

speed, advantages in dealing with local process noise like material effects and the ability

to do track finding. The extended Kalman filter (EKF) introduced in Ref. [70] is a non-

line algorithm implemented in the AliExternalTrackParam class of AliRoot project, which

is used as an inward tracking algorithm in this thesis. The tracker described in this

implementation is cylindrical. The toy simulation of default geometry and the modified

one with the second layer at r = 96.16mm are compared in Fig. 5.3

Using the same initialization, the variance of curvature estimated by the default ge-

ometry is well estimated while it is underestimated by the modified one. This result is

reasonable, because one primary condition to derive Kalman gain is the proper initializa-

tion with the correct pre-knowledge about the state and its variance matrix in the first

recursion. On the other hand, there is no bias of the curvature estimation, which verifies

that this non-linear extension works well for circle reconstruction. Consequently, initial-

ization values of EKF algorithm needs to be tuned for each geometry to avoid variance

estimation problems, thus EKF is not convenient to be used in our geometry scan.

5.2.2.5 Geometry scan towards the optimal spacing

The GLS algorithm is chosen to calculate track parameter variances for geometry scan.

The three-layer tracker in the previous toy simulation could be optimized very quickly.

The optimal geometry is always three evenly placed layers regardless of multiple scatter-

ing. To verify the results in section 2, a six layer tracker in the same position range as that

in the toy simulation is scanned in Fig. 5.4 with layer moving step ∼ 0.897 mm and with

a layer thickness of zero (without multiple scattering effect). The optimal configurations

found from Fig. 5.4 are compared with the uniform spacing in Table 5.4. Both the layouts

Index Configuration Middle Position σK(pT = 1GeV )

27601 Uniform 0.113 m−1

4487 2 − 3 − 1 85.143 mm 0.092 m−1

43330 1 − 3 − 2 86.937 mm 0.092 m−1

Table 5.4: Results of the selected geometries
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Figure 5.3: Curvature pulls vs momentum of Kalman filter with the same initial values.
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Figure 5.4: The curvature variance (µm−2) as a function of geometry index given by the

recursion tree for N = 6 and ∆L =
L

30

and the corrected positions∗ of the middle layers are coincident with the calculations in

Section 2.

The same strategy involving multiple scattering could be processed by setting the

correct layer thickness, and the application is introduced in section 4.

5.2.2.6 The choice of N , the total number of layers

Using the same spacing, Equation 5.2.12 indicates that the curvature variance is propor-

tional to 1/N for very high momentum tracks. In this case, N is the larger the better

if financial budget is not a problem. Nevertheless, this direct proportion is broken for

relatively low momentum trajectories. Because of the rise of material effect, too many

layers will smear the hits and make the tracking imprecise. To determine the number of

layers, several values of N could be tried. By comparing the tracking performance of the

optimal spacing for different N , the total number of layers and its related geometry could

∗By using Equation 5.2.14, The corrected position of layout 2 − 3 − 1 is 85.088 mm while that of
layout 1 − 3 − 2 is 86.992 mm



128 5.2. Geometry optimization for tracking

be determined at the same time.

5.2.3 Application on BESIII Silicon pixel tracker

The silicon pixel tracker (SPT) is a proposal to replace the inner gas chamber of BESIII

with CMOS pixel sensor ladders which have the spatial resolution around 10 µm and the

material budget X/X0 ∼ 0.36% [71]. The preliminary position range is from 72.58 mm

to 99.50 mm. In our study, the GLS tracking described in section 3 is used, therefore

the ladders are simply placed perpendicular to x-axis. By using the geometry scan of N

layers where N is 3, 4, 5 or 6, the layouts optimized for 0.3 GeV and 1.0 GeV trajectories

with polar angle θ = 0 are listed in Table 5.5.

N PT Step Layer positions

(GeV) (mm) (mm)

3 all any 72.58, 86.04, 99.50

4 0.3 0.45 72.58, 72.58, 85.59, 99.50

4 1.0 0.45 72.58, 84.25, 87.83, 99.50

5 0.3 0.67 72.58, 72.58, 78.64, 90.75, 99.50

5 1.0 0.67 72.58, 72.58, 83.35, 87.39, 99.50

6 0.3 0.90 72.58, 72.58, 79.76, 92.32, 99.50, 99.50

6 1.0 0.90 72.58, 72.58, 84.25, 87.83, 99.50, 99.50

Table 5.5: Optimized geometries for SPT

The momentum resolutions σpT
/pT calculated by GLS and the results from full Monte-

Carlo simulations are shown in Fig. 5.5. The predictions given by our strategy are in

accord with the simulated data, which indicate that the momentum resolutions of all the

geometries optimized for 0.3 GeV are similar and the 3-layer layout or the 4-layer one

with uniform spacing are more favoured by the tracks with the most probable momentum

around 0.3 GeV. If the physics at 1.0 GeV is more interesting, the last geometry with 6

layers in Table 5.5 could be considered as the baseline design.

In addition, the usage of the aggressive double-sided ladders with a spatial resolution ∼
10 µm was also studied. The comparison of momentum resolution among several layouts
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Figure 5.5: Comparison of momentum and curvature resolutions as a function of momen-
tum of pions flying in the bending plane. The lines denote the predictions from GLS
fitting of different geometries in which layer overlap is permitted while the dotes with
error bars are used for MC results where the minimum layer interval is 1 mm.
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is shown in Figure 5.6. When double-sided ladder used as the innermost layer ∗, the

performance on tracking is close to that of the 3-layer uniform configuration with a small

improvement on high momentum range. When the PLUME-like ladder placed at the

centre between the two normal ladders, the tracking performance is better than that of

the 4-layer layout optimized for 1.0 GeV. Nevertheless, the 3-layer uniform geometry is

still a better choice in the low momentum range (below 0.3 GeV for the default material

budget and 0.5 GeV for ladders with doubled material budget).

5.3 Geometry optimization for vertexing

The momentum resolution and impact parameter resolution of a detector can not be

optimized at the same time. In this section, the optimization of the inner tracker based

on the impact parameter resolution is discussed. The related telescope systems were

studied first with straight tracks, and the parabola model was used latter for the final

decision. As the impact parameter resolution or the resolution of the distance to the

closest approach (DCA) is the figure of merit in this study, we introduced the advanced

ladder technique of the PLUME project, which has MIMOSA-26 glued on both surfaces

of the ladder with a total material budget ∼ 0.35%X0 (PLUME-2). As for our studies,

0.362%X0 is the estimated budget for a normal ladder and 0.513%X0 is used for a double-

sided one. Two detector geometries were compared: The 3-layer uniform geometry used in

the previous section and the 4-layer layout including one PLUME-like double-sided ladder

placed just after the beam pipe. The two layouts including the beam pipe of BESIII, are

shown in Figure 5.7

5.3.1 Radii optimization in a telescope system

When multiple scattering is not dominating, the simplified telescope resolution equation

could give some hints in detector design. In beam test, the tracks are straight lines, such

∗In this case, the normal ladder in the middle is placed at r ≈ 85.4 mm to achieve the best momentum
measuring ability.
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Figure 5.6: Comparison of momentum resolution as a function of momentum of pions
in the bending plane. The black solid line and the green dashed one denote the 3-
layer uniform layout and 3-layer configuration optimized for 1.0 GeV respectively. For
geometries including one double-sided ladder, the red solid and green solid curves are used
for the PLUME-like ladder placed at the innermost position and at the centre respectively.



132 5.2. Geometry optimization for tracking

(a) Layout of three normal ladders.

(b) Layout of four layers.

Figure 5.7: Telescope configurations extracted from BESIII inner tracker.
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that the covariance matrix in Equation 4.1.9 will only keep the upper left 2×2 sub-matrix.
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At x = xDUT , the extrapolated resolution is given below:

σ2
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=
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(5.3.2)

The design optimization of an inner tracker in BESIII is similar to that of a single arm

telescope used for a device located at xDUT = 0. To simplify the problem, a proper

assumption to choose detector layers with the same intrinsic spatial resolution σ and to

set up them at xj > 0 in ascending order (x1 < x2 < . . . < xN), has been applied.

Therefore, the simplified telescope resolution at xDUT reads

σ2
DUT = σ2

N
∑

j=1
x2

j

N
N
∑

j=1
x2

j − (
N
∑

j=1
xj)2

Its partial derivative with respect to the position xk of a target layer in the telescope

could be written.

∂σ2
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∂xk

= σ2

2
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]2 (5.3.3)
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Equation 5.3.3 could be used to optimize the position of the target layer when the other

layers are fixed.

• When the target layer is the first one (k = 1), we have

∂σ2
DUT

∂x1

> 0

σ2
DUT is an increasing function of x1, so the first layer should be as close to the

impact point as possible.

• When the last layer is to be optimised (k = N), we have

∂σ2
DUT

∂xN

< 0

σ2
DUT is a decreasing function of xN , such that the radius of the last layer is the

larger the better.

• When k index stands for an intermediate layer (1 < k < N), the partial derivative

of σ2
DUT in Equation 5.3.3 changes from a positive value to a negative one as xk

increases in the range x1 < xk < xN . Additionally this xk is also constrained by the

radii of its neighbour layers, so the optimised position of the k’th layer should be

close to one of its neighbour.

In the case that multiple scattering cannot be ignored, numerical calculations could be

processed for the comparison among different geometries. The corrections on track pa-

rameter variances have been introduced in the generalized least squares method described

in Chapter 4.

5.3.2 Pointing resolutions of straight tracks

This study on the pointing resolution of straight tracks helps to optimize the design of

a telescope system and a barrel tracker on its tracking performance in the R − Z plane
∗. The pointing resolution of a DUT at x = 0 for the 3-plane layout shown in Figure

5.7a has been studied for different radii of the ladder in the middle. The calculations

∗For low momentum tracks, the coordinates are Z and the track length in R − φ
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Figure 5.8: The telescope resolution as a function of momentum for the configuration
of 3 normal ladders. Different colours are used for the relevant radii of the ladder in
the middle. The numbers on colours of the palette are positions of the middle ladder in
micros. The spatial resolutions of all layers are 10 µm.

without multiple scattering lead to the middle ladder with a position close to the first

ladder or the outermost. When the material effects are considered, a simple geometry

scan to change the position of the middle layer has been processed. Figure 5.8 shows

the results with different colours indicating the relevant radii. The rainbow palette with

colours changing from purple to red, is chosen for ladder positions (from 74.16 mm to

98.16 mm) in ascending order. The conclusions of the animation to draw this figure are

listed as follows:

• In the low momentum range below 1 GeV, the resolution curve goes down as the

radius increases. This means that the radius of the middle layer is the larger the

better when multiple scattering dominates.
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• In the high momentum range above 4 GeV, the resolution curve goes up first, then

goes down a little, but cannot go lower than the first one. This behaviour happens

for the case of negligible material effects. The best resolution is achieved for the

middle ladder placed close to the innermost one, and a local minimum can be found

in the case of the largest radius of the middle ladder.

• In the moderate momentum range, the smallest radius is related to the local mini-

mum of the resolution, and the optimal configuration is still the one with the largest

radius for the middle ladder.

As for the momenta of interest for BESIII inner tracker, the layout with a middle ladder

positioned close to the innermost is favoured.

The limit to place two ladders close to each other is just the double-sided ladder de-

sign. When the innermost ladder of the 3-layer geometry is replaced by a double-sided

ladder, the new 4-layer configuration will have a better tracing performance when mul-

tiple scattering is not severe. However, the additional material may cause problems for

low momentum tracks. To study the trade-off between the added hit information and the

additional material, a material budget scan is processed to compare the pointing resolu-

tions of the two telescope configurations shown in Figure 5.7. Moreover, the influence of

different incident angles of the tracks could also be studied using this method. Figure

5.9a and Figure 5.9b show the results of pion beams in the material budget scan of the

telescope systems with layer spatial resolution of 10 µm and 3.5 µm respectively. The plots

on the left show the method to find an intersecting momentum at which the resolutions

of the two configurations are the same for a given material budget. As the ladder budget

goes down from 150% of the default design to 3%, the blue curve goes down faster than

the red one, which leads to smaller intersecting momenta (in descending order). The plots

on the right are shown to illustrate the momentum range in which one telescope system

has a better pointing resolution. In the bottom right region of the black curve, the 3

normal ladder geometry overcomes the 4-layer layout, which means the effects from the

additional materials eliminate the contributions of the added hit. As the material bud-

get increases, the momentum range in which the 3-layer configuration wins grows larger.

Comparing these results of layers with different intrinsic spatial resolutions, the system

is more sensitive to multiple scattering for more accurate sensors. The momentum range

favoured by the 3-layer geometry with 3.5 µm sensor resolution is therefore larger than
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(a) Spatial resolution of 10 µm.

(b) Spatial resolution of 3.5 µm.

Figure 5.9: Results of material budget scan using pion beams. The blue curve is the
resolution as a function of momentum for the 4-layer telescope while the red is for the
3-layer one. The black dots are the intersecting momenta at which the two telescope
systems give the same pointing resolution at x = 0 for a certain material budget. The
material budget of each ladder changes from 150% of the default design down to only 3%.
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that with 10 µm resolution for the same material budget. In addition, the resolutions

for a high material budget is also related to the tracking performance of tracks with an

incident angle ∗ larger than 0.

5.3.3 Pointing resolutions from parabola tracks

In the transverse momentum range above 0.3 GeV, the parabola track model is a good

approximation for tracking in the bending plane. Therefore, the vertexing performance

of BESIII inner silicon tracker can be estimated using the least squares fitting. Since

the materials effects of the beam-pipe does not influence the choice of tracker layouts,

it is removed from the study in this section. Figure 5.10a shows the pointing resolution

in R − φ for pion trajectories with a fixed polar angle θ = 90◦ in BESIII coordinate

system, and Figure 5.10b shows that resolution of ladders with doubled material budget

to estimate the performance of a thicker ladder design or the tracking performance of a

smaller polar angle†.

(a) Ladders with default material budget. (b) Ladders with a doubled material budget.

Figure 5.10: Pointing resolution in R − φ for pion tracks in the bending plane.

Consequently, the pointing resolution of the 3-layer uniform layout is similar to that

of the 4-layer configuration containing one double-sided ladder placed at the innermost

position. The two configurations have a better performance for low momentum pions, and

∗The incident angle is zero for the tracks perpendicular to the ladders.
†For a track with a polar angle θ, the multiple scattering contributions on the impact parameter

resolution in R − φ is ∼ θ0/
√

sin θ, which is related to a material budget X/ sin θ.
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their advantage is enlarged at small θ or with higher material budget. The two geometries

marked in green have a better resolution when momentum is higher than 0.5 GeV.

5.4 The performance including MDC outer chamber

The standalone performance of the inner tracker has been studied in the previous sections.

Combined with MDC outer chamber, the overall performance leads to the final decision

of the design geometry. The outer chamber redefines the total radial length L, therefore

changes the results dominated by L. The estimation of the overall tracking performance

was studied using the semi-analytical tool first developed in STAR collaboration and then

improved by the ALICE collaboration [44]. The PT and pointing resolutions are evaluated

based on EKF inward tracking, and the efficiency is estimated using the pseudo-efficiency

introduced in Chapter 4.

Estimations of four BESIII tracking designs are compared: the results of MDC inner

and outer chamber ∗ are drawn with dashed blue lines, the performance of the 3-layer

uniform SPT with MDC outer chamber is shown with dashed red, the curves of the 4-

layer SPT (using a double-sided ladder as the innermost) with MDC outer chamber are

identified with solid red, and the results of the two double-sided ladder SPT with MDC

outer chamber are presented using solid green lines.

In this tool, hit positions are calculated for each tracker geometry. Since the original

version may generate a wrong hit position due to numerical or geometry issues, some

modifications including a hit map implementation are added into this fast tool. Figure

5.11 shows a track in the 3-layer uniform SPT geometry.

The pointing resolutions in R − φ and in Z of these designs are shown in Figure 5.12.

The performance improvement from the double-sided ladders can be seen only in high

momentum range (PT > 1 GeV). The SPT with three normal CPS ladders have the best

pointing resolutions in the momentum range of interest for BESIII.

The momentum resolutions of the four geometries are shown in Figure 5.13. The

nominal SPT inner tracker has the best performance for PT < 1 GeV. Since the parameters

of the pure MDC chamber used in this study are from BESIII technical design report[1],

the performance shown with the blue curves is better than the current MDC which suffers

∗Single wire resolutions of 130 µm in R − φ and 6 mm in Z are applied for all the layers of MDC for
the sake of simplicity.



140 5.5. Summary and conclusion

X
-80 -60 -40 -20 0 20 40 60 80

Y

-80

-60

-40

-20

0

20

40

60

80

Hit Map

(a) Hit map in R − φ.

Z
-80 -60 -40 -20 0 20 40 60 80

R
0

10

20

30

40

50

60

70

80

90
° = 65θBESIII,

° = 65θBESIII_PlumeInnermost,

° = 65θBESIII_TwoPlume, 

° = 65θBESIII_SPT, 

Hit Map
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Figure 5.11: Hit maps of a track in BESIII SPT+MDC geometry. The results are calcu-
lated from pion tracks with a fixed θ = 65◦. R is the coordinate of the projected hit in
R − φ plane. The unit is cm.

from ageing effects. Compared with the pure MDC design, a 10% improvement on the

relative momentum resolution can be found at PT = 1 GeV for SPT.

Finally, the pseudo-efficiencies of tracking for designs using silicon trackers have been

compared in Figure 5.14. The results are estimated using a combination of inward and

outward tracking, thus the pseudo-efficiency of double-sided ladder designs is better even

if good hit-track associations are required for all the sensing layers (one more good asso-

ciation than the 3 normal ladder layout). This effect can also explain the advantage of

the mini-vector reconstructed from the double-sided ladder for its ability to reduce noise

hits. If only one good hit (not a noise) is required for a double-sided ladder, the efficiency

improvement is even higher than that shown in Figure 5.14.

5.5 Summary and conclusion

A general strategy to optimize the design of a barrel pixelated tracker has been presented

in this Chapter. The methods to search for the optimal spacing of N -layer silicon trackers

with or without multiple scattering have been derived and verified by comparing the
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(a) Pointing resolution on R − φ.

(b) Pointing resolution on Z axis.

Figure 5.12: Pointing resolutions of different BESIII tracker designs. The results are
estimated from pion tracks with a fixed θ = 65◦
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Figure 5.13: Relative PT resolution as a function of PT for BESIII tracker designs. The
results are estimated from pion tracks with a fixed θ = 65◦.
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Figure 5.14: Pseudo-efficiency as a function of transverse momentum for different BESIII
tracker designs. The results are estimated from pion tracks with a fixed θ = 65◦.



144 5.5. Summary and conclusion

results of GLS tracking and the analysis of full Monte-Carlo simulations in the simplified

situation where trajectories are circle segments. As for the helix tracks, the corrections of

the track length in material could be calculated from the azimuth and the polar angle to

estimate multiple scattering more accurately. The requirements of tracking algorithms to

be used in geometry scan have also been proposed. Since the numerical scan is compatible

with the other tracking methods, the momentum range of the tracks could be extended

and the energy loss effect could also be involved by choosing a proper fitting algorithm.

Finally, the total number of layers could also be determined by comparing the optimal

spacing of different N in the geometry scan.

Our methods have been applied to optimize the design of BESIII inner silicon tracker.

The standalone performance of the CPS tracker was studied. In the case that only normal

ladders are used, the optimal geometry for momentum (below 0.5 GeV) measurements is

the layout including three layers with uniform spacing. This geometry is used as the

nominal design of SPT. The impact of the aggressive double-sided ladders has also been

estimated. Although the improvements on resolutions are for the momentum range which

is higher than the range of BESIII final states, the improvements on tracking efficiency

could be foreseen.



Chapter 6

Full Monte-Carlo Simulation studies

on CPS inner tracker

The GEANT4 based simulations have been processed to validate the optimized BESIII

silicon pixel tracker. The results for the standalone performance of SPT have already

been shown in previous chapters, and the software (SiTracker) developed for this study

will be presented in this chapter. The nominal design of SPT has been implemented and

simulated in BESIII offline software system by authors in literature [71]. In this thesis,

simulations using single pion events have been processed for the nominal SPT with the

position of the middle ladder modified. This study is used to validate the conclusions of

the analytical tools and to explore the possible improvements of the three-layer structure.

6.1 Software for the standalone simulation of the in-

ner tracker

The software SiTracker is developed based on GEANT4[72, 73, 74] and ROOT [75]. Nor-

mal ladders are constructed inside of a tracker volume filled with air. The double-sided

ladder is created using two normal ladders placed back-to-back with a complete overlap

for the carbon fibre support. Since all the ladders have the same structure, they are

constructed at the positions stored in a C++ vector. Therefore, new ladders could be

inserted through GEANT4 command line interface in SiDetectorMessenger class (derived

from G4UImessenger class). The simulation of one track in the 4-layer geometry with a
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double-sided ladder as the innermost, is shown in Figure 6.1.

Figure 6.1: One event in the software: SiTracker.

Compiled with ROOT, SiTracker can generate a ROOT file which contains a TTree

of run number, event number, number of hits, particle id, ladder number, the position

and the momentum vector of each hit. The simulation for the intrinsic spatial resolution

of CPS is applied later in the analysis using a Gaussian smearing on MC true hit. Finally,

the data is analysed with the tracking software developed in the optimisation studies.

The tracking performance of the geometry shown in Figure 6.1 for 1 GeV pions has been

summarized in Figure 6.2. Curvature is used as a track parameter because it is a Gaussian

variable, which can be found from Figure 6.2a. A pion with PT = 1 GeV has a large radius

around 3.3 m, therefore, it is possible to reconstruct the track with an opposite (a wrong)

bending direction, a negative curvature, due to the limited lever arm length of SPT. To

estimate curvature resolution in a good accuracy, these tracks (the tail at k < 0 in Figure

6.2a) are not excluded. The pull distributions of the three track parameters are also shown

in the sub-figures. All of them have a mean value around 0 and a standard deviation ∼
1, which means the tracking algorithm works well.
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Figure 6.2: Analysis results of MC data.
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6.2 Simulations in BESIII offline software system

6.2.1 BESIII Offline Software System

BESIII Offline Software System (BOSS) [76] is the data processing and analysis software

developed for BESIII experiment. The framework is built on the Gaudi [77] architecture

to handle the GEANT4-based simulation, the calibration developed from the GLAST’s

scheme [78], the reconstruction system for all sub-detectors and the final physics analysis.

6.2.2 Implementation of CPS inner tracker

The silicon pixel tracker (SPT) based on simple ladder structures and the related re-

construction algorithms have been implemented into a branch of BOSS, named as SU-

PERBOSS [71]. The SPT cross-section view and a sector diagram are shown in Figure

6.3. In the preliminary design, the radii of the three layers are 72.58 mm, 86.16 mm and

(a) R − φ view (b) SPT sector

Figure 6.3: Ladders in SPT.

99.5 mm respectively. The related ladder lengths are 38 cm, 45 cm and 52 cm. For track

reconstruction, the combinatorial Kalman filter (CKF) [79, 80] is implemented for SPT.

6.2.3 Simulation Samples and results

Single pion events are used in the simulation of SPT-MDC tracking system for geometry

optimization studies. The pions are shot with a polar angle θ = 80◦ in the 1 Tesla magnetic
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field. To achieve the averaged performance of the tracker, the transverse momentum has a

φ ranges from 0◦ to 360◦. Three values of the radius of the middle layer are tried: 78 mm,

87 mm and 95 mm. A sensor resolution 10 µm is applied.

In the analysis, all the distributions are fitted using double Gaussian distributions to

cope with the influence from non-Gaussian tails. The function used in this thesis is shown

below:

f(x) =
N√
2π





f1

σ1

e
− 1

2

(

x−µ1
σ1

)2

+
1 − f1

σ2

e
− 1

2

(

x−µ2
σ2

)2


 (6.2.1)

Figure 6.4 shows an example of the fit for DCA of 1 GeV pions in R − φ plane. The
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Figure 6.4: DCA [mm] of 1 GeV pions in R − φ.

standard deviation is then given by:

σ =
√

f1σ2
1 + (1 − f1)σ2

2 (6.2.2)

The results of PT resolution are shown in Figure 6.5, together with the BESIII design

goal in a dashed line which is described by [81]:

σPT
/PT = (0.32%PT ) ⊕ (0.37%/β) (6.2.3)
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The performances of all the tree geometries have fulfilled BESIII requirements in the range

Figure 6.5: PT resolution as a function of transverse momentum. The tracks are from
pions of a fixed θ = 80◦.

PT > 0.2 GeV. A smaller radius of the middle layer may lead to a worse PT resolution

when PT < 0.3 GeV. A similar study using single muon events, has been published for

the original MDC (without ageing) in article [81]. Its result is shown in Figure 6.6. The

original MDC only fulfilled the design goal at PT ≥ 0.3 GeV.

DCA resolutions in R − φ are shown in Figure 6.7a. As the radius of the middle layer

increases, the DCA resolution improves at PT < 2 GeV. In Figure 6.7b, the factor of this

improvement is only a few per cent at PT ∼ 1 GeV. The results are coincident with the

conclusions of the rainbow plot drawn for a radius scan in the previous chapter.

Efficiencies based on EKF inward tracking are shown in Figure 6.8. The results of

different geometries are similar. But a slightly worse performance can be found for a

smaller radius of the middle layer.

6.3 Summary and conclusion

In this Chapter, the program for the standalone simulation and the related analysis of the

silicon ladders have been introduced. We developed each piece of the codes almost from

scratch. The analysis results have been compared to the calculations, and they are in very
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Figure 6.6: PT resolution as a function of transverse momentum for single muons in MDC
[81]. The results were published in 2007 for BESIII MDC calibration.

(a) DCA resolution on R − φ (b) Zoomed in

Figure 6.7: DCA resolution in R − φ as a function of momentum. The tracks are from
pions of a fixed θ = 80◦.
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Figure 6.8: Efficiency as a function of transverse momentum. Only inward tracking is
used.

good agreement. Full MC simulations using single pion events have also been processed

and analysed in BESIII offline software system. The results show a better performance

of the SPT design as predicted by our calculations and numerical scans. Therefore,

the general methods developed in this thesis have been fully validated in Geant4 based

simulations.
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Conclusions

The thesis addresses the upcoming particle physics programme foreseen at the Beijing

Electron Positron Collider II (BEPCII), for which the BESIII experimental set-up is be-

ing upgraded. The work presented focused on the upgrade of the central tracker of the

experiment by exploring the possibilities offered by a new approach using CMOS Pixel

Sensors (CPS) instead of the present gas drift chamber. To develop a silicon pixelated

inner tracker for BESIII in such a low energy range for τ − c physics, both sensor perfor-

mance and geometry designs have been studied in this thesis.

CPS design

Considering the test results of sensor MIMOSA22THRb with a spatial resolution ∼10 µm,

the performances of CPS with larger pixel pitch and a lower power consumption have been

guaranteed for the TowerJazz 0.18 µm process, which will help to develop long ladders

used for trackers. Besides, the related beam test technique and analysis results have been

shown for CPS calibrations.

Layout design

A general strategy and software to optimise the design of a barrel pixelated tracker has

been developed, and its application on the BESIII inner silicon tracker indicates that the

layout of three evenly placed CPS layers is favoured by BESIII physics for sensor spatial

resolution ∼10 µm and ladder material budget ∼0.36%X0. To achieve higher tracking

efficiency, a double-sided ladder may be considered to replace the innermost ladder with
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acceptable tracking performance degradation for low momentum tracks.

The Geant4-based simulation tool and the related analysis programs have also been

developed for this study, which offer the data analysis results to validate the calculations

in our optimization strategy and to do a cross-check for different algorithms.

Perspectives

The studies in this thesis are also helpful and instructive to tracker and vertex detec-

tor designs for future experiments like circular electron positron collider (CEPC). As the

large pixel (50 µm) technique in CPS has been verified, CPS ladders could be consid-

ered to cover the gas tracker to improve tracking and vertexing performance with lower

power consumption and faster integration speed at the same time. For the momentum

distributions of the interested final states from physics decays, it is better to optimise

vertex detector and tracker simultaneously as one detector with proper trade-off between

momentum resolutions and impact parameter resolutions.
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Useful mathematical formulae

A.1 The sum of the k-th powers

A.1.0.1 The triangle numbers

n
∑

i=1

i = 1 + 2 + · · · + n =
n(n + 1)

2
(A.1.1)

A.1.0.2 The square pyramidal numbers

n
∑

i=1

i2 = 12 + 22 + · · · + n2 =
n(n + 1)(2n + 1)

6
(A.1.2)

To prove equation A.1.2, one can start with expansions below:

n
∑

i=1

[(i + 1)3 − i3]

=
n+1
∑

i=1

i3 − 1 −
n

∑

i=1

i3

= (n + 1)3 − 1
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At the same time, considering binomial theorem and equation A.1.1, we have:

n
∑

i=1

[(i + 1)3 − i3] =
n

∑

i=1

(i3 + 3i2 + 3i + 1 − i3)

= 3
n

∑

i=1

i2 +
3n(n + 1)

2
+ n

Since the expansions of the same expression are identical, one can find:

3
n

∑

i=1

i2 +
3n(n + 1)

2
+ n = (n + 1)3 − 1,

n
∑

i=1

i2 =
1

3
[(n + 1)3 − 1 − 3n(n + 1)

2
− n]

=
1

3
(n + 1)n(n +

1

2
)

=
n(n + 1)(2n + 1)

6

A.1.0.3 Sum of k-th powers

With a similar technique of proving equation A.1.2 and all the equations for the sum of

lower powers, it is easy to derive the formula of
∑n

i=1 ik for k > 2. The general formula

for the sum of k-th powers is Faulhaber’s formula:

n
∑

i=1

ik =
1

k + 1

k
∑

j=0

(−1)jCj
k+1Bjn

k+1−j, (A.1.3)

where Cj
k+1 is Binomial coefficient and Bj is the first Bernoulli numbers:

Cj
k+1 =

(k + 1)!

j!(k + 1 − j)!
,

B0 = 1, B1 = −1

2
, Bj = −

j−1
∑

k=0

Ck
j

Bk

j − k + 1

For example, we could write the equations for k = 3 and k = 4 as follows:
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1. Sum of the third powers:

n
∑

i=1

i3 =
1

4

3
∑
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(−1)jCj
4Bjn

4−j
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1

4
(B0n
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(A.1.4)

2. Sum of the fourth powers:

n
∑

i=1
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1
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(A.1.5)

A.2 Matrix calculus

A.2.0.1 The derivative of a scalar

The derivative of a scalar f with respect to a matrix A with dimension (n × m) is defined

below

df

dA
=
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
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

The trace of a square matrix C with dimension (m × m) is defined by

tr(C) =
m

∑

i=1

Cii
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It is easy to find that for an arbitrary matrix B with dimension (m × n) we have

d [tr(AB)]

dA
= BT (A.2.1)

Since the trace of a square matrix is equal to the trace of its transpose, it is straightforward

to write

d
[

tr(ACAT )
]

dA
= (CAT )T + (CT AT )T

= ACT + AC (A.2.2)

A.3 Joint Gaussian probability density

A.3.0.1 Joint Gaussian density

The multivariate Gaussian distribution of a column vector θ with dimension m:

θ ∼ N

(

θ̂−, C−
)

,

N

(

θ̂−, C−
)

=
1

√

(2π)m |C−|
exp

[

−1

2

(

θ − θ̂−
)T (

C−
)−1 (

θ − θ̂−
)

]

(A.3.1)

where θ̂− is the mean values and C− is the covariance matrix.

If a new vector y is connected to θ by a linear function below

y = Hθ + v

where H is a constant matrix and v is a random noise with variance V , the probability

density of y conditioned on θ is shown as:

p(y) = N (Hθ, V )
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The joint distribution of θ and y reads





θ

y
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


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

 (A.3.2)

The marginal distribution of y is also given:

y ∼ N

(

Hθ̂−, HC−HT + V
)

(A.3.3)

A.3.0.2 Property of joint Gaussian density

Assuming that the variables x and y satisfy the joint Gaussian distribution below:
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The marginal and conditional densities of x and y read:
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y|x ∼ N
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xyΣ
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xx Σxy

)

(A.3.5)

A.4 Matrix inversion lemma

The matrix inversion lemma, also named as Woodbury matrix identity or Sherman Mor-

rison Woodbury formula, is given below:

(A + UCV )−1 = A−1 − A−1U (C−1 + V A−1U )−1V A−1 (A.4.1)

in which, the dimensions of matrices A, U , C and V are n × n, n × k, k × k and k × n

respectively.
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By using the matrix inversion lemma, several useful formulae could be derived.

• With A = Cf
−1, C = Cb

−1 and U = V = I, one can write the equations below:

(Cf
−1 + Cb

−1)−1

= Cf − Cf (Cb + Cf )−1Cf (A.4.2)

= Cf (Cb + Cf )−1(Cb + Cf ) − Cf (Cb + Cf )−1Cf

= Cf (Cb + Cf )−1Cb (A.4.3)

All the equations above are symmetric, it is obvious to have

(Cf
−1 + Cb

−1)−1 = Cf − Cf (Cb + Cf )−1Cf (A.4.4)

= Cb(Cf + Cb)
−1Cf (A.4.5)

• With A = V = I, U = Cf and C = Cb
−1, the matrix inversion lemma yields

(I + CfCb
−1)−1 = I − Cf (Cb + Cf )−1 (A.4.6)

• With A = C−
k+1, U = −I, C = Cs

k+1
and V = I, we find

(C−
k+1

− Cs
k+1

)−1

= (C−
k+1

)−1 + (C−
k+1

)−1
[

Cs
k+1

−1 − (C−
k+1

)−1
]−1

(C−
k+1

)−1 (A.4.7)

• With A = C−
k , U = C−

k HT
k , C = −

(

HkC−
k Hk

T + Vk

)−1
and V = HkC−

k , the
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matrix inversion lemma leads to

[
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Qingyuan LIU
Development of a CMOS pixel based inner tracker for the BES-III

experiment at BEPC-II

Résumé

La thèse se place dans le contexte du programme de physique prévu auprès du collisionneur Beijing
Electron Positron Collider II, pour lequel l'expérience BESIII (Beijing Electron Spectrometer III) doit
subir une jouvence. Mon travail concerne l'amélioration des performances de la trajectométrie
centrale de l'expérience, en explorant une nouvelle approche utilisant les capteurs à pixels CMOS
(CPS) en remplacement partiel de la chambre à dérive actuelle. Il est validé, qu'un pixel de
39.0X50.8 µm2 permet d'atteindre une résolution spatiale ~10 µm. Cette confirmation ouvre la voie
pour le développement d'échelle de grande longueur. Un logiciel générique proposant une stratégie
d'optimisation pour un trajectomètre pixellisé a été mis au point et appliqué au cas particulier du
BESIII. Il a permis de montrer qu'une configuration à trois couches optimise la résolution sur les
trajectoire alors qu'une option incluant une couche double-face atteint une efficacité de
reconstruction supérieure.

Mots-clés: détecteur de pixels, optimisation du tracker, CPS test, algorithme de suivi de trajectoires

Résumé en anglais

The thesis addresses the upcoming particle physics program foreseen at the Beijing Electron
Positron Collider II, for which the Beijing Electron Spectrometer III (BESIII) is being upgraded. The
work presented focused on the upgrade of the central tracker of the experiment by exploring the
possibilities offered by a new approach using CMOS Pixel Sensors (CPS) instead of the present gas
drift chamber. The performance of CPS with a larger pixel (39.0X50.8 µm2) and a lower power
consumption has been validated, which will help to develop long ladders. A general strategy and
software to optimise the design of a barrel pixelated tracker has also been developed, and its
application on the BESIII silicon tracker indicates that the layout of three evenly placed single-sided
layers is favoured by BESIII physics for the best momentum resolution, with an option using one
double-sided ladder to achieve a higher tracking efficiency.

Keywords: pixel detector, tracker optimization, CPS test, tracking algorithm


