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CHAPTER 1

General Introduction

1.1 General Framework

Air pollution is known to be one of the major contributors to climate change and therefore needs to
be monitored and further understood. People can live without food and water for days but cannot sur-
vive without air for even a few moments. Population growth, industrialization, increased wealth and
changing societal attitudes are among the significant changes that took place in the world. Needless
to say, these changes in society and the economy may lead to an increase in air pollution. More-
over, it is important to analyze, model and understand the impacts of air pollution for the sustainable
development of communities.

In several of their studies, the World Health Organization [168] stated that air suspended particles
are an important factor of population health risk. Thus, inhaling air with particulate matter will cause
irritation even to a minimum chronic organ. Another factor is that dust can be absorbed by plants or
animals and can lead to its presence in the food chain. In addition, particles may sometimes contain
even a small amount of toxic compounds which could affect negatively the human organs or cells.

As a consequence, it is helpful to study and to understand the mechanisms that generate this
pollution to better fight its causes and reduce its impact. Thus, the identification of the particles from
different origins that contribute to air pollution in dense urban areas would be very helpful to suggest
potential actions that will reduce their emissions. The aim of this work is focused on this objective
by integrating all information such as chemical measurements, expert knowledge in order to provide
reliable results about the identification of sources of fine particulate matters.

In Europe, a set of instructions govern maximum concentrations for several pollutants. Thus, for
particulate matter whose diameter is lower than 10µm (PM10), the instruction 2008/50/CE defines
the maximum concentration at 50µg.m−3 and tolerates 35 exceeding days. Europe constrains some
regions such as Haut de France to limit their emissions due to numerous exceedings. Particularly, the
Pas-de-Calais Detroit from Picardie Region to Belgium involves each day a huge maritime traffic.

Thus, ECUME project, funded by the french DREAL agency, was devoted to understand the
reasons of these extreme situations. Professor Courcot (UCEIV lab, Dunkerque) and his team (F.
Ledoux, C. Roche) has conducted the study. Their work consisted in conducting a data campaign over
a long period and to collect data for further analysis, and understand the different features of sources.
The numerical analysis was based on previous algorithms [96] developed in LISIC lab, which were
relying on informed NMF with flexible set values and bounds.
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Despite these satisfactory interpretations of the results, this thesis would like to answer the ques-
tion whether dropping bounds constraints in NMF methods would be a good idea or not. It gives also
the opportunity to develop new iterative methods which are consistent with the used constraints along
iterations. Several outliers may be present in the collected data, so this work will also explore robust
methods able to cope with outliers.

1.2 Objective

Starting from a matrix of concentrations associated with uncertainties, the objective of this thesis
is to identify the different emitting sources with their relative contribution. A source is characterized
by a matrix called the profile matrix which is stable over time. The profile matrix defines a set of
proportions of emitted chemical species. Restoring the profiles of the different sources and their
relative contributions is therefore the main stake of this thesis.

From a theoretical point of view, this problem is tackled in the frame of matrix factorization where
the profile matrix and the contribution matrix are to be estimated. The noise on the collected data is
of unknown distribution and may not assimilated to a Gaussian distribution. Moreover, the Signal to
noise ratio (SNR) of the collected data is probably relatively small and the measurements are corrupted
with outliers that may come from different physical origins. In addition to that, some knowledge is
available on the profile matrix and or the contribution matrix

— The profile and the contribution matrices are non negative.
— The rows of the profile matrix sum to 1.
— Some entries of the profile matrix are known.
So the aim of this thesis is to solve a non-negative matrix factorization problem informed by the

above knowledge and subject to outliers. The methods developed are dedicated to the identification
of sources of pollution in the air.

1.3 Thesis outline

In addition to this general introduction, the thesis is organized into five regular chapters and a
general conclusion. This thesis is decomposed into a state of the art on classical non-negative matrix
factorization methods (chapter (3)), a chapter on robust NMF methods (Chapter (4)) and a chapter (5)
which highlights Informed NMF methods with set values and sum-to 1 variables. Original contribu-
tions of this thesis are essentially concentrated in chapter (6) where new methods are developed.

1.3.1 State of the art

Chapter (2) reviews the complete chemical sensing problem, starting from the sensor model to the
physical phenomenon under study. A special focus is performed on general mixtures models which
essentially govern the overall source apportionment problem. Moreover, a matrix factorization point

2



of view together with an optimization framework is adopted. Usual Constraints associated with such
an optimization problem are investigated with a special emphasis on non-negativity and sum-to-1
constraints.

In accordance with the definition of the source apportionment problem, the framework of this the-
sis is oriented towards non-negative matrix factorization methods since non-negativity of the factors
is the central hypothesis of the problem.

1.3.2 Non Negative Matrix Factorization (NMF)

Chapter (3) provides an overview on classical NMF problems, by examining uniqueness con-
ditions for exact NMF and KKT conditions for the approximate NMF problem. It also highlights
several families of methods to solve this approximate problem. A special focus is also performed on
weighted NMF problems which arise in chemical sensing where data are associated with uncertain-
ties. The weight concept could be also adapted to the context of outliers which is further studied.

1.3.3 Robust NMF methods

Chapter (4) explores the impact of outliers present in the data for regression and NMF. Then,
several robust regression methods and robust NMF are investigated, with a special care on modified
cost functions.

1.3.4 Existing Informed NMF methods with set values and sum-to 1 variables

Chapter (5) is devoted to explore methods which involve set values row sum-to-1 variables. Each
kind of information is investigated alone first, then both knowledge are incorporated by exploiting an
informed NMF with set values and applying some specific normalization procedures.

1.3.5 New Informed NMF Methods

Chapter (6) first defines a parametrization consistent with row sum-to-1 profile and set values. This
parametrization is used to develop new iterative algorithms which live at each iteration in the subspace
of the parametrization. These new algorithms are developed together with a weighted Frobenius cost
function and two weighted robust cost functions.

Validation are proposed along this chapter with two two simulation studies. Moreover, data from
the ECUME project are exploited to extract estimated profiles which are compared with expert re-
quirements.
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1.4 General Conclusion

Finally, the General Conclusion (7) recalls the theoretical contributions discussed and investigated
in this thesis and presents several perspectives of this work.
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CHAPTER 2

State of the Art

2.1 Introduction

This chapter presents the various types of models encountered in the source separation field. A
particular focus is on the family of linear models which are based on instantaneous mixture models.
Then, the range of sensors used for measurements are discussed. Typically, the sensor model is
provided with its technical description.

Then, the set of usual hypotheses associated to the mixtures models are reviewed. These hy-
potheses are combined with the general definition of the criterion by incorporating them either as soft
or hard constraints. Once the whole model is obtained, the problem becomes a special matrix fac-
torization problem which can be formulated as a non-negative optimization problem. Lastly, through
a small description of the desired application, several tracks which will be further developed are
presented.

2.2 General Sensor Models

This section is focused on sensors. Indeed, sensors play an important role in the quality of the sep-
aration process. Therefore, the input output characteristics of various kinds of sensors are introduced
and the different available devices for air pollution are emphasized.

2.2.1 Sensor characteristics

The characteristic of a sensor is considered as its major feature. The sensor generally yields an
electric output such as a voltage or a current corresponding to a physical quantity. Its characteristics
provides the information to estimate the true physical value. Thus, the sensor’s characteristic is usually
represented by a voltage as a function of the true physical value. Typical characteristics of various
sensors are illustrated in Figure (2.1). They are here divided into two categories: linear and non linear.
The perfect linear sensor is represented by the red line whereas all the remaining curves represent
non linear sensors. While the Green curve is associated with the concave type, the Magenta curve
represents the convex type and the black curve denotes a sensor with saturation (hard thresholding) in
which only part of the data can be retrieved. For example, the data between 1 and 8 can be recovered
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Figure 2.1 – Characteristics of Linear and non Linear Sensors.

because there is a linear correspondence between them. On the contrary, physical variables less than
1 and greater than 8 can not be retrieved.

Another possible issue related to sensor modelling is related to its time response. In this case,
it may be modelled by a linear convolutive model. In the context of air pollution the observed phe-
nomenon is very slowly varying, and consequently the time response of the sensor is generally not
tricky.

2.2.2 Sensor devices for Air pollution

In this subsection, the emphasis is specifically on sensor devices for air pollution. Several types
of sensors [133] exist according to their aim. First low cost and small size sensors for gas species are
listed. Secondly, large size samplers which can deal simultaneously with several particulate matter
species are highlighted.

2.2.2.1 Small size sensors

They are all dedicated to the measurement of a particular gas species only. Their measurements
may be automated via their integration into electronic equipment.
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1. Electro-catalytic sensors:
They are small size sensors with a very affordable cost. One advantage is the simplicity of
their operation. They just measure the amount of heat emitted by the combustion of the gas
under study which comes into contact with a previously heated metal. However, they have
several disadvantages, e.g., the measurements are not precise and are not stable. They need
also to be calibrated regularly.

2. Semi Conductor sensors:
They work almost as the previous sensors. An advantage is that the measurements are stable
over time. The disadvantage is that they may be corrupted by certain gases and consequently,
the sensors become unusable.

3. Infrared Sensors:
They are based on a different concept which is the principle of selective absorption of the light
i.e specific to a particular gas. They measure the amount of light absorbed for a given duration
of time. This type is very reliable and is stable over time. The disadvantage is that they are not
available for all gases and are of high cost.

4. Electrochemical sensors:
These types of sensors are based on the principle of an electric cell with the gas to be measured
as the reactive. The sensor yields an electrical potential related to the target gas concentration.
Based on the reactive defined by the manufacturer, it is possible to have elements which react
to a specific gas to be measured. These sensors are very reliable and are stable over time.
However, they are of high cost.

2.2.2.2 Digital samplers

Contrary to sensors, digital samplers may be used to evaluate the particulate Matter (PM) mass
into a specific air volume, enabling to compute a concentration.

It is designed to measure air suspended particulate matter concentration. Various classes of sizes
exist, e.g., PM10 or PM2.5 and PM1 for particles whose diameter is lower than 10,2.5,1 µm respec-
tively. There are reference samplers, such as the german LECKEL SEQ 47/50 device, or the italian
FAI Hydra Dual, which work on two channels, in order to measure simultaneously the concentration
PM2.5 and PM10. The other reference sampler is the DA80 device from Digitel which is shown in
Figure (2.2).

The principle of the DA80 device is to pump an air volume periodically in order to trap the
particles present in the air on a filter. The sampler is equipped with a system able to control precisely
the inlet flow. Besides, the available filtering system allows to keep on the filter the particles that
correspond to PM2.5. Then, the filter is automatically stored and a new filter is installed. Afterwards,
the concentration is determined in a lab, based on a particulate mass measure on the filter. The unit

7



Figure 2.2 – Equipment used for sampling.

is able to record various measurements including the concentration of the particulate matter, the time
of collection of each sample, the pressure and the temperature. The measurements are collected every
24 hours and wind measurements are also available in the 60-minute period.

The chemical analysis performed in a lab does not detect particulate matter concentrations be-
low a specific limit LDD. Thus, the true DA80 model corresponds to the model with a single hard
thresholding (2.1) (for lower values) with a species depending cutoff parameter corresponding to the
low detection limit (LDD j). In this case, the measure will be assumed to be equal to LDD j

2 , and the
relative uncertainty will be considered equal to 100%. The DA80 model will be approximated to be
completely linear in conjunction with the assumption that the uncertainty is very large for these small
values.

Besides to the above sampling devices, the Grimm and Dust monitor 1.108 is an optical sam-
pling device which quantifies particulate matter according to different size bins. The sampling period
could be adjusted to shorter values as the other devices, but it works differently since it provides a
concentration for each size bin.

To conclude, the DA80 sampler has been used for different campaigns and it is considered in this
thesis as a completely linear model.
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2.3 General Linear Mixture Models

Various types of mixture models exist in the literature [32]. They may be classified according to
the observation model that relates the observations to the different sources.

Here, the linear mixtures and their derivations are highlighted and non linear mixtures are excluded
from this study. The interested reader may have a look at [36] where post non linear models and linear
quadratic models are investigated.

As a result, different formulations of linear mixtures are developed below.

2.3.1 Linear Instantaneous Mixtures

Suppose that n observations resulting from p sources emitting activity at any time t are collected.
The sources are mixed by a specific gain in each source sensor channel. The mixtures are observed by
the different sensors. The observation xi(t) of sensor i at time t can be written as a linear combination
of the different sources at the same instant t:

xi(t) =
p

∑
j=1

gi j f j(t) ∀i = 1, . . . ,n, (2.1)

where gi j is the attenuation of the transmission channel from source j to sensor i, ∀i = 1, . . . ,n,
and f j(t) is the emission of source j at time t.

The integration of various sensors leads to the following matrix formulation:
x1(t)
x2(t)

...
xn(t)

=


g11 g12 · · · g1p

g21 g22 · · · g2p
...

...
. . .

...
gn1 gn2 · · · gnp

 ·


f1(t)
f2(t)

...
fp(t)

 , (2.2)

or in a condensed form
x(t) = G f (t), (2.3)

where
— G is the mixing matrix of size n× p and is supposed to be invariant over time or samples. This

means that the mixing process is always the same over time.
— x(t), [x1(t), . . . ,xn(t)]T is the n×1 column vector accounting for the observations at time t.
— f (t) , [ f1(t), . . . , fp(t)]T stands for the p× 1 column vector gathering the different source

signals at time t.
Considering m samples xk = x(k ·Te), for k = 1, . . . ,m and Te is the sampling period, the expression

(2.3) reads
xk = G f

k
, (2.4)
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where f
k
= f (k ·Te).

Grouping m time samples together leads to an exact matrix product resulting from equation (2.4),

X = G ·F, (2.5)

where X , [x1, . . . ,xm] and F , [ f
1
, . . . , f

m
] stand for the n×m measurement matrix and the p×m

source matrix, respectively.

The formulation described in (2.5) is the usual convention adopted in Blind Signal Processing
where the time is ordered by the rows. The symmetric point of view may be found in physics where
the time is usually ordered by the columns. This leads to define a symmetric expression obtained from
the previous one, e.g.,

XT = FT GT . (2.6)

In the following chapters, equation (2.5) is considered as the basis with an exchange in the definition
of n and m.

Such linear mixture models may be applied in various fields such as:

— Telecommunication [35, 145]: multiple radio identification signals (RFID) are observed si-
multaneously by several sensors and each observation consists of an instantaneous linear com-
bination of the various observed source signals.

— Biomedical [139, 92]: The model is implemented to process and to analyze the cardiac activity.
The atrial and the ventricular activities are separated from the data that are collected by the
electrodes placed on the surface of the skin. In similar studies, the instantaneous linear mixing
model is applied to the electrocardiogram of pregnant women in order to separate the activity
of the fetal heart from the activity of the mother’s heart.

— Acoustics and signal processing audiophonic [163, 126]: The instantaneous linear model is
not generally valid. There are few exceptions. It can be applied when multiple sources are
sequentially recorded in the studio and are mixed by a sound engineer, using a mixer, with no
added post-processing effect.

— Multispectral/ hyperspectral imaging: The same images of a geographical area are gathered at
different wavelengths. Then, a data cube whose two axes indicate the spatial coordinates and
the third provides the spectral information is generated. The observed spectral information in
each voxel is perceived as an instantaneous linear mixture of the sources spectra [115, 110].
This concept can be also implemented in astrophysics and in remote sensing applications
[79, 9]. Alternatively, for each wavelength, the collected images can be viewed as mixture
snapshots of the source images.

— Chemistry [112, 113, 103]: The measurements of the optical fluorescence spectra and the
Infrared Spectroscopy sampling are considered as instant linear mixing sources spectra. Sim-
ilarly, in the environment, air pollution or water measurements may be treated as a linear
instantaneous mixing problem, if the following conditions are fulfilled: First, the sources are
not too far from the sensor compared with the distance traveled by the air during the sampling
period of the data. Second, there is mainly no reaction between the species. Third, the sensors
do not exhibit any non-linearity. In this work, these conditions are assumed to be checked.
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2.3.2 Mixtures with attenuation and time delay

They are also called anechoic mixtures. They represent an extension of linear instantaneous mix-
tures where the time of arrival of the various signals to the sensors are subject to time delays due to
the single-path propagation of the sources to the sensors. The observation xi(t) can be expressed as:

xi(t) =
p

∑
j=1

gi j f j(t− ti j) ∀i = 1, . . . ,n, (2.7)

where gi j and ti j respectively correspond to the attenuation and the time delay due to the propagation
from the source j to sensor i. As this model may be seen as a special case of convolutive mixtures,
the matrix form will be only provided in the corresponding subsection.

The anechoic mixture model is mainly used in acoustics and it assumes that the environment is
slightly reverberant. It is to be noted that this type of model is widely applied in source localization
[87] and that some localization methods of multiple sources [11, 127] are directly inspired by the
above model (Eq 2.7) . Furthermore, the approach [5] based on (Eq 2.7) has been proposed for image
processing, where the shift is not temporal but spatial, i.e., each source is offset horizontally and
vertically.

2.3.3 Convolutive mixtures

In most cases, the emissions from the sources to the sensors follow a multipath propagation that
can be expressed as a sum of various mono-path propagation of the sources, i.e.,

xi(k) =
p

∑
j=1

+∞

∑
q=0

gi jq f j(t− ti jq) (2.8)

where gi jq and ti jq are respectively the (q+1)th attenuation and the time delay due to the propagation
from the source j to the sensor i. Thus, Eq. (2.8) can be written as a linear combination of the filtered
version of the sources:

xi(t) =
p

∑
j=1

gi j(t)∗ f j(t) (2.9)

where the symbol ∗ denotes the convolution operator and gi j(t) is the propagation from Source j to
Sensor i. In practice, most of the blind source separation approaches consider that gi j is a filter of
finite impulse response of order Q, the maximum order of all the channels. By using the discrete
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notations explained in section (2.3.1), the previous equations Eqs. (2.8, 2.9) can be written as follows:

xi(k) =
p

∑
j=1

Q

∑
q=0

gi j(q) f j(k−q) ∀i = 1, . . . ,n, (2.10)

=
p

∑
j=1

gi j(k)∗ f j(k) ∀i = 1, . . . ,n, (2.11)

where gi j(k) is the modeling of the impulse response of the filter representing the propagation channel
from Source j to Sensor i subject to the conditions of Sample k. By letting Gk be the n× p matrix
that consists of the various impulse responses gi j(k) at a sample time k, Eq. (2.8) can be written in a
matrix form by swapping the order of the sums and by turning out Gk , i.e,

xk =
Q

∑
q=0

Gk f
k−q

(2.12)

where f
k−q

, [ f1(k−q), . . . , fp(k−q)]T and xk , [x1(k), . . . ,xn(k)]T . Equation (2.12) can be formu-
lated as a general matrix product [157, 130, 107] by stacking K samples measurements,

xk = G0 f
k
+ . . .+GQ f

k−Q
,

xk−1 = G0 f
k−1

+ . . .+GQ f
k−Q−1

,
...
xk−K+1 = G0 f

k−K+1
+ . . .+GQ f

k−K−Q+1
.

(2.13)

Then, it is possible to define an augmented vector x̌k ( of size (n ·K)× 1) made with the past
measurements vectors xk− j,

x̌k , [xT
k ,x

T
k−1, . . . ,x

T
k−K+1]

T (2.14)

Similarly, the p ·(K +Q)×1 vector f̌
k

may be defined as the concatenation of past vectors f
k
,

f̌k , [ f T
k
, f T

k−1
, . . . , f T

k−K−Q+1
]T (2.15)

Finally, the convolutive mixture may be written as a specific matrix factorization form,

x̌k = Ǧ · f̌
k

(2.16)

where the matrix Ǧ is a specific sylvester matrix

Ǧ =


G0 · · · GQ 0 0 · · · 0
0 G0 · · · GQ 0 · · · 0

0
. . . . . . . . . . . . . . . 0

0 · · · 0 G0 G1 · · · GQ

 . (2.17)

It should be mentionned that several approaches are implemented in the frequency domain by applying
a time frequency transformation to the observations [129]. The factorization model in Eq. (2.5) is then
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used successively and independently for each considered frequency. Consequently, the given mixture
is approximated by a linear instantaneous model with complex values. This problem is easier to deal
with in comparison with Eq. (2.17). However, other difficulties appear and complicate the separation
problem when the results are transformed back to the time domain.

Lastly, convolutive mixtures are usually applied in acoustic field [129, 157].

2.3.4 Conclusion

Different kind of linear mixtures encountered in the literature are presented in the above subsec-
tions. It is shown that the data matrix may be linked to a special matrix product. The estimation of one
factor (or both factors) requires additional assumptions that are investigated in the following sections.

2.4 Brief Overview of Factorization Methods

In this section, the factorization methods related to the linear mixture model are introduced. All
these approaches require extra information related to one of the factors. They can be mapped into five
large classes dealing with:

— source orthogonality
— statistical independence
— sparse assumption
— the normalization of one factor
— the non-negativity of one or both factors.

2.4.1 Principal components analysis (PCA)

Principal Components Analysis (PCA) is a multivariate statistical method introduced by K. Pear-
son [128] and then developed by H. Hotelling in 1933 [68]. The principle of PCA relies on a dimension
reduction of the whole data including a large number of features which are geometrically related, to
form a subspace of principal components. In this section, the matrix optimization viewpoint which
bridges both the geometrical and statistical point of views is adopted.

Some geometrical interpretations are usually stated. It consists in finding a subspace of dimension
p that best fits the n centered data vectors (∈ IRm) in a least square sense. This subspace is shown to
be defined by the p basis vectors which are gathered into the matrix Up ( of size m× p). This search
may be formulated as an optimization problem subject to the orthogonality constraint. Let’s define X ′

as the centered data matrix X , then X ′ may be written as an approximate matrix factorization [161]
subject to an orthogonality constraint, i.e.,

X ′ ≈ X ′ ·Up ·UT
p s.t. UT

p ·Up = Ip (2.18)
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Finding a solution to this problem amounts to perform a Truncated Singular Value Decomposition
(TSVD) restricted to the p highest singular values.

From a statistical setting, PCA aims at finding the right subspace (with dimension p) that maxi-
mizes the spreading of the projected data. Vidal [161] showed that the best p column vectors from Up

maximize the Frobenius norm of the matrix (X ′ ·Up) which, in turn, reflects the data spreading into
the subspace. These column vectors are obtained by computing the eigenvectors corresponding to the
p greater eigenvalues of the covariance matrix Σx , X ′ ·X ′T .

As an extension, PCA could be also applied into the field of low rank approximation. Schuermans
[149, 117] developed some weighted low rank approximations which may be viewed as weighted
extensions of Eq. (2.18). Let us stress that Singh & al. proposed a unified view [152] which highlights
the connection between general factorization models and related PCA approaches.

Besides, PCA is known to be sensitive to outliers, which comes from the least square formulation
of the optimization criterion. In fact, this leads to the effect that a single abnormal point may corrupt
completely the estimation. To overcome this inconvenient, robust extensions of PCA have been in-
vestigated in order to split the data matrix into a low rank matrix and a sparse one, such as projection
pursuit approaches [18, 170].

To conclude, PCA and related methods cover a very wide and active research field which leads
to the approximization of a particular approximate matrix factorization of the centered data matrix.
However, PCA seems inappropriate to solve the application of this thesis for several reasons:

— The orthogonality of the factors does not make sense in the thesis’s application,
— Principal components may be negative and it is not the case,
— In the presence of outliers, the outcome of PCA is affected by even few abnormal points.

As a consequence, other techniques should be reviewed.

2.4.2 Independent Component Analysis (ICA)

Independent Component Analysis is a classical approach to separate source signals from multiple
mixtures of these sources. In the frame of linear mixture models, ICA amounts to find a separation
matrix S which enables to recover the source signals Y in the observation signals X, i.e.,

Y = S ·X . (2.19)

Ideally, S should be equal to the pseudo-inverse of matrix G. Practically, the source signals can be
recovered to a scale factor and a permutation. This leads to express a special link between S and G

S ·G' D ·P, (2.20)

where D is a diagonal matrix which consists of the scale factors and P accounts for a permutation
matrix.
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The first methods were proposed by Jutten and Herault [74, 78]. Then, Comon generalized the
concept of ICA [31]. He showed that, if the source signals are mutually independent and not Gaussian,
it is possible to extract these signals up to a scale factor and a permutation matrix by minimizing the
dependence measure between the estimated signals. Different independence measures were developed
to perform the source separation, e.g.,

— the maximization of the non Gaussianity by using higher order statistics such as 4th order
cumulants or Kurtosis [73].

— the maximization of the neguentropy which accounts for a dissimilarity measure to a Gaussian
distribution [72].

— the minimization of the mutual information
— the maximization of the likelihood of source signals assuming that they belong to a specific

probability density family [6].
— The non negative Independent Component analysis based on the newton optimization [121].

Besides, some approaches were used with second order statistics in conjunction with extra temporal
assumptions based on non stationarity [154, 131] or autocorrelation [158, 7] leading to some famous
algorithms such as SOBI [7].

By taking into account the application in question, the independence between factors appears to
be unrealistic. Thus, it won’t be discussed in this document.

2.4.3 Sparse Component Analysis(SCA)

Sparsity is an assumption which receives a growing interest in the community since the last
decade. A signal is said to be sparse if it is often zero while its variance is not. Usually, the sig-
nal needs to be transformed into another domain to become sparse. While a few authors consider the
separation problem as a penalized sparse inverse problem [12], most approaches [134]

— perform a joint sparse transformation (Discrete Cosinus Transform (DCT), Short-Time Fourier
Transform (STFT), wavelets) of the observations,

— estimate the mixing parameters, i.e., the matrix G,
— carry out the estimation of the matrix F as an inverse problem.

The corresponding approaches can be classified according to their source sparseness assumption:

1. Many methods assume the sources to be W-disjoint orthogonal [77], i.e., in each time-frequency
point, at most one source is active. The estimation of the sources is reduced to a clustering
problem [174].

2. Some approaches [1, 37, 134, 138, 136, 108, 135] assume that the sources can overlap except
in a few zones (or points in [138]) where one source is only active.

3. The remaining methods use a sparse assumption in between the above families. They assume
the W-disjoint orthogonality with a single-source activity confidence measure to enhance the
estimation of the mixing matrix [3].
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Besides these historical techniques, other SCA techniques relax the sparsity assumption by assum-
ing that several, say k, sources are always active (with k strictly lower than the number of observations)
and by clustering the intersection of the hyperplanes which can be estimated in these zones [64, 115,
13]. Other authors assume that one source is silent in some zones and estimate the corresponding
demixing column in these zones [140]. It is to be noted that the SCA techniques were also extended
to other applications such as audio source localization in [11, 127].

Interestingly, SCA was recently revisited by extending sparse NMF techniques to audio signals
[50]. Another trend consists of looking for a specific co-sparse operator which promotes sparsity
[116].

However, in the context of the thesis’s application, sparsity-based methods seem not be appropriate
since none of both factors should be considered as sparse. For example, the loadings—i.e., the entries
of G—may not be considered as sparse signals. In particular, temporal areas where a subset of sources
are active, can not be easily identified. Similarly, the above sparse assumption is not satisfied for F
and determining a sparsifying transformation well-suited for the considered application is tricky. As
a consequence, this assumption will not be further explored in the following chapters.

2.4.4 Non-negativity based methods

Historically, ICA or PCA based methods suffer from poor interpretability of their results. In sev-
eral applications, negative components contradict the physical meaning. As an example, a grayscale
image or physical quantity have non negative values. As a consequence, non-negativity based methods
received a growing attention in the last decades.

Essentially, Non-negativity based methods aim at finding matrix factors that satisfies the linear
mixture model (2.5) in the least square sense. The minimization of the Frobenius norm of the mod-
elling error enables the optimization of both factors. However, this problem remains ill-posed because
it may provide non unique solutions, especially with respect to the scale matrix and the permutation
matrix. Another issue is due to multiple local minima, which generally require several initializations.

The first studies, denoted Positive Matrix Factorization (PMF), appeared in 1994-1997 with Paatero’s
work [125, 2, 124] and consist in solving the problem in a least square sense around an operating point
by linearizing the criterion. Their methods [125] were able to deal with uncertainties provided by the
users which help stabilizing the solution with respect to noise. However, their methods present some
drawbacks:

— The increase of the input matrix’s size leads to an increase in the model’s time consumption.
— It does not allow any control on the initialization and the stopping criteria.

Despite these inconvenients, many environmental studies have been successfully conducted using
PMF.
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Non-negative Matrix Factorization (NMF) became popular in 1999 with Lee and Seung’s work
[95, 94], who developed some multiplicative update rules. However, these methods does not allow to
ensure the convergence toward a global minimum [147]. To enforce some properties of the solutions,
many NMF methods may be expressed into the general following formulation,

min
G,F�0

J (X ,GF) = min
G,F�0

D(X ||GF)+λGRG(G)+λF RF(F), (2.21)

where
— D stands for a general norm or more generally a divergence between the data matrix X and

its estimation. The most classical function is the Frobenius norm which is an extension of the
Euclidian distance intended for vectors to matrices.

— R accounts for a penalty term to enforce a desired property in one factor.
Thus, according to the problem under consideration, many properties are able to be incorporated,

— different forms of relaxed orthogonality may be encountered [175, 176]
— sparsity based factor such as l1 norm of one factor. The method is called Non-Negative Sparse

Coding [69].
— The spreading of one matrix factor by minimizing a determinant based function [146, 147].
— Sum-to-one of one factor may be also desired but it will be developed in the next subsection.
Once the criterion is defined, NMF may be solved in different ways according to different tracks.

The methods can be categorized into different classes. They include:
— the class of multiplicative updates and the very large references therein,
— the class of Alternated Non-negative Least Square (ANLS),
— the class of projected gradient based methods [101],
— the class of Alternative Direction Method of Multipliers (ADMM) [155].
All these families of algorithms will be reviewed in details in the next chapter.

2.4.5 Sum-to-one based methods

Although sum-to-one may be viewed as one special desired property of NMF, it is addressed in
this subsection mainly because it is usually used in the framework of the hyperspectral unmixing
under the name of full additivity. However, another viewpoint exists and is often overlooked. Thus,
both views are presented while trying to bridge the gap between them.

Sum-to-one of the columns of F or rows of G: This property may be outlined by the following
equation, i.e.,

Gn×p ·1p×p = 1n×p (2.22)

where 1n×p is the matrix of 1 and of size n× p. This equality states that the p entries in G sum to
1. By transposing Eq (2.5), the above property is exactly similar to the sum-to-one of the columns
of matrix F (or rows of matrix FT ). This property is often encountered in hyperspectral unmixing
where the reflectance data are assumed to be a linear combination of p endmembers weighted by
their corresponding fractional abundances. In this case, abundances at one pixel may be viewed as
a particular row of G, which, as a consequence, sum to 1. The approximated matrix factorization
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Eq (2.5) and Eq (2.22) can be expressed as

min D(X ||G ·F), subject to Gn×p ·1p×1 = 1n×1 (2.23)

The above equation is optimized by splitting the search on G into n independent sub problems i.e.

min D(xT
i ||gT

i
·F) subject to gT

i
1p×1 = 11×1 ∀i ∈ {1 . . .n} (2.24)

As a consequence, the first methods to solve Eq (2.24) rely on a vectorial point of view based on
a linear least square [150]. Then, Heinz proposed to incorporate the sum-to-one information into a
Sum-to-one Constrained Least Square (SCLS) solution [65].

Most authors propose a geometric interpretation (A survey is available in [38]) which views the
data as belonging to a convex hull spanned by the endmembers.

However, the separability property of the problem into subproblems doesn’t hold true for the
second case that is investigated below.

Sum-to-one of the rows of F or columns of G: In the second case, the sum-to-one property is
applied on the rows of F or the columns of G. Depending on which factor it is applied, the sum
concerns n or m entries. It differs from the previous case where it was applied to the p entries. It is
described by Eq. (2.25),

Fp×m ·1m×m = 1p×m (2.25)

Thus, the row sum-to-one matrix F̃ may be computed from any unconstrained version of F such that,

F̃ =
F

F ·1m×m
, (2.26)

where the quotient refers to Hadamard division. Similarly, the expression of G̃ can be defined as,

G̃ = G◦ (1n×m ·FT ), (2.27)

where the operator ◦ represents the entrywise multiplication of the matrices. The implementation of
this transformation to (F,G) doesn’t change the product G ·F , i.e.,

G̃ · F̃ = G ·F (2.28)

If the case of exact factorization is considered, i.e.,

X = G ·F, (2.29)

The multiplication of Eq (2.29) by 1m×m and the combination of the result with (2.25), yield:

Xn×m ·1m×m = Gn×p ·Fp×m ·1m×m = Gn×p ·1p×m (2.30)

In other words, the sum of each row of G is equal to the sum of each row of X . This property is very
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close to the property (2.22) which stands for the full additivity condition encountered for example in
Hyperspectral Unmixing. In this last case, the relation is often treated as an exact constraint. However,
in practice here, the exact equation (2.29) is not reached due to the presence of noise, outliers or
modelling errors. Then, the deduced relation (2.30) becomes only an approximate relation which
comes from the approximate version of Eq (2.29) , i.e.,

Gn×p ·1p×m ≈ Xn×m ·1m×m. (2.31)

To the best knowledge of the authors, constraints introduced in (2.31) are not considered in the litera-
ture except Lantéry [91] who considers them as exact relationships.

As a consequence, the new factorization problem may be addressed only with the hard constraint
(2.25) and by dropping the approximate one,

X ≈ G ·F, subject to Fp×m ·1m×m = 1p×m (2.32)

This formulation corresponds in fact to the point of view adopted in this practical application. In
contrast with the case of Hyperspectral Unmixing, the problem can not be divided into n sub-problems
due to the constraint under consideration. This point leads to completely different procedures to solve
the problem.

Besides, these assumptions are usually coupled with the non-negativity assumption [23].

2.5 Conclusion

In this chapter, an overview of the classical mixture models was provided and a brief review
of different hypotheses which may be coupled with the previous models were presented. The main
properties include: independence, sparsity and orthogonality. Besides, non-negativity and sum-to-one
assumptions can be accounted also for frequent information. All these models in conjunction with the
extra hypotheses can be cast in the frame of approximate matrix factorization which can be tackled by
solving a dedicated optimization problem.

The desired application under consideration in this thesis, air pollution source apportionment, is
also highlighted. The sensor device dedicated here for particulate matter measurement could be con-
sidered as an instantaneous linear one so that source apportionment may be viewed as a whole linear
unmixing problem. Figure (2.3) provides an overview of methods used for source apportionment ac-
cording to the available information. Knowing that the factors are all non-negative, NMF appears
as a nice solution to be investigated. However, the indeterminacies of the blind NMF method which
will be highlighted in the next chapter limit its scope. It seems interesting to develop in this thesis
informed methods (2.3) which lie in between blind ones and regression methods. But first, the next
chapter will be devoted to explore the features of blind NMF methods.
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Figure 2.3 – Different Approaches of estimation for pollution sources.

20



CHAPTER 3

Non-negative Matrix Factorization

3.1 Introduction

In this chapter the basic concepts of Non-negative Matrix Factorization, as well as the families of
algorithms allowing to solve them, are presented. This chapter is considered to be a bibliographical
emphasizing the important characteristics of the given practical problem addressed in this thesis.

Given a data matrix that consists of concentrations of various chemical species collected at a
sampling rate of 12 hours. These data are modelled as an instantaneous linear mixture of pollutant
sources, which can be expressed into a mathematical form: given a data matrix X of size n×m with
xi j � 0, NMF aims to find two non-negative matrices G of size n× p and F of size p×m such that
their product is approximately equal to the data matrix X , i.e,

X ≈ G ·F. (3.1)

In the application considered in this thesis, matrices X , G and F represent the following:

1. X is the collected data matrix where xi j is the chemical concentration of the species j in the
sample i and expressed in ng/m3. Each row of X contains the concentrations of the different
chemical species at the same sample time.

2. G is the contribution matrix where each element gik represents the contribution in ng/m3 of
Source k for Sample i.

3. F is the profile matrix where each element fk j reflects the relative proportion in ng/ng of
chemical Species j for Source k. It represents the quantity of emitted mass by Species j per
unit mass emitted by Source k. As a result, each row of F sums to 1. In this chapter, this last
information is not taken into account.

In this chapter, the optimization problem is is addressed which leads to necessary conditions
required for the solution. Then, different classes of algorithms associated with the classical NMF
problem and its weighted counterpart as well are reviewed. Based mainly on Limem’s thesis [96], this
chapter yet presents an overview of new trends with up-to-date references.

21



3.2 Classic NMF Problem

In this section, the standard formulation of the NMF technique based on the Frobenius distance
is presented. This distance, usually devoted to vectors, is an extension to matrices of the Euclidian
norm. Non-Negative Matrix Factorization (NMF) is a multivariable data analysis approach which is
intended to approximate physically significant components and/or features that characterize a partic-
ular application from the collected non-negative data. In other words, NMF is an approach that is
mainly appropriate for the decomposition of non-negative data. The nonexistence of negative values
is a very important characteristic of several applications in which many physical quantities (such as
intensities, concentrations, frequencies, counts and probabilities) are collected.

The Frobenius based NMF problem is defined as the minimization of the Frobenius similarity
criterion (Eq 3.2)

min
G,F�0

J (G,F) = min
G,F�0

n

∑
i=1

m

∑
j=1

((xi j− (GF)i j))
2 = min

G,F�0
||X−G ·F ||2F (3.2)

where ||.||F denotes the Frobenius norm of a matrix and J (., .) accounts for the appropriate cost
function. The factors must satisfy both conditions G(∈ IRn×p) � 0 and F(∈ IRp×m) � 0, i.e all the
entries of both matrices are non negative. This decomposition (3.2) is obtained for the case of p
sources, i.e. a maximum rank equal to p. This criterion is not convex with respect to both matrices G
and F .

3.3 Exact NMF and Non Negative Rank

This section begins with the definition of the exact NMF of rank r:

The Exact NMF of rank r consists of finding a pair of matrices (G ∈ IRn×r
+ ,F ∈ IRr×m

+ ) such that
X = G ·F . Thus, the answer for exact rank r NMF may be yes or no depending on the existence of
such matrices.

Also, it can be expressed as the solution of the problem defined in Eq (3.2) with a minimum equal
to 0, i.e

||X−G ·F ||2F = 0 (3.3)

The non-negative rank r, denoted rank+(X), can be defined as the minimum number r such that
X = G ·F where G ∈ IRn×r

+ , and F ∈ IRr×m
+ . Also, it implies that it is the minimum number of

non-negative rank-one factors that is required to exactly reconstruct the data matrix X [57].

The non-negative rank may be bounded according to Eq (3.4),

rank(X)6 rank+(X)6 min(m,n) (3.4)

While the left inequality is trivial, the second is based on two basic non-negative factorizations
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X = Im ·X and X = X · In.

The left bound may be reached in special cases. Given rank(X) is equal to 1, X may be factorized
by a non-negative product of rank 1 , g · f . The factorization can be achieved for rank(X) = 2. The
following lemma may be found in [66]:

Proposition 3.3.1. Let X ∈ IRn×m
+ where rank(X)=2, then rank+(X) = 2.

The proof may be found in [66] by using some geometric arguments.

As a conclusion, when rank(X)= 1,2, or min(n,m), it is always possible to perform an exact non-
negative matrix factorization with the same non-negative rank. For matrices with different ranks, the
determination of the non-negative rank is very difficult, but it may help in selecting the right number
of components p in the NMF problem. Indeed, Vavavis [160] has proved the N P hardness of exact
non-negative matrix factorization. As a result, all approximated algorithms are expected to provide a
solution in a non polynomial time.

3.4 KKT conditions for the NMF problem

First, it is useful to stress some basic aspects in optimization theory.

3.4.1 Preliminaries

Let f be a continuously differentiable function defined over a space Ω⊂ IRn toward IR and a point
x∗. If x∗ is a local minimum of the function f (x), then for all vector x in the neighbourhood of x∗,

f (x)� f (x∗) (3.5)

The following lemma is derived from the Taylor expansion of the function f to the first order around
x∗ in conjunction with Equation (3.5).

Proposition 3.4.1. If x∗ is a local minimum of the function f (x), then for all feasible direction d in
the neighbourhood of x∗, ∇ f (x∗)d ≥ 0.

Proposition (3.4.1) means that all possible directions will increase the function f around x∗. Two
cases may be highlighted,

1. If the corresponding point x∗ is inside the domain Ω leading that all directions are acceptable,
Proposition (3.4.1) can be now written as,

∇ f (x∗) = 0 (3.6)

2. If it is on the boundary defined by Ω, then the gradient ∇ f (x∗) is only different from the zero
vector and only. Proposition (3.4.1) is valid.
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Now, consider the optimization problem with equality and inequality constraints defined by

min
x∈D

f (x) s.t hi(x) = 0 ∀i ∈ {1, . . . ,cE}, g j(x)� 0 ∀ j ∈ {1, . . . ,cI} (3.7)

where

1. hi(x) = 0 is the ith equality constraint for i ∈ {1, . . . ,cE}
2. g j(x) � 0 is the jth inequality constraint for j ∈ {1, . . . ,cI}
3. The two gradients ∇g j(x∗) and ∇hi(x∗) are independent.

Therefore, unique constants λi and µ j exist such that,

∇ f (x∗)+
cE

∑
i=1

λi ∇hi(x∗)+
cI

∑
j=1

µ j ∇g j(x∗) = 0, (3.8)

µ j ≥ 0, ∀ j = 1, . . . ,cI, (3.9)

µ jg j(x∗) = 0, ∀ j = 1, . . . ,cI. (3.10)

it could be mentioned that,

1. The above conditions are generally obtained by writing a Lagrangian function that combines
the objective and the constraints.

2. The KKT conditions are only necessary conditions for a local minimum.

3. These conditions are sufficient in the case of a convex function f (x).

3.4.2 First order conditions for the classic NMF problem

The Lagrangian function related to Problem (3.2) can be defined as:

L(G,F,Γ,Λ) =
1
2
||X−G ·F ||2F −Λ◦G−Γ◦F, (3.11)

where Γ (respectively Λ) is the Lagrange multipliers matrix with the same dimensions as F (re-
spectively G) and are associated with the non-negativity constraints. The necessary conditions for a
local minimum states that if (G F) is a local minimum, there exists non negative matrices (Γ, Λ ) such
that:

F � 0, G� 0, (3.12)

∇LF(.) = 0, ∇LG(.) = 0, (3.13)

Γ◦F = 0, Λ◦G = 0. (3.14)

By calculating the gradient of the Lagrangian function, (3.13) can be reformulated as:
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GT ·(G ·F−X)−Γ= 0, (G ·F−X) ·FT −Λ= 0 (3.15)

By using the non-negativity property for both matrices Γ and Λ and by replacing (3.15) into
Eqs (3.13,3.14), the KKT conditions for the NMF problem are obtained:

F � 0, G� 0, (3.16)

GT ·(G ·F−X)� 0, (G ·F−X) ·FT � 0, (3.17)

F ◦
(
GT ·(G ·F−X)

)
= 0, G◦

(
(G ·F−X)) ·FT )= 0. (3.18)

These conditions are the basis of the future problems defined in this thesis. They are usually called
Karush-Kuhn Tucker (KKT) conditions. The third condition (3.18) which is called the complemen-
tary slackness condition expresses that if the factors are not lying on the border, both gradients of
Problem (3.2) are required to be zero. However, it should be stressed again that the KKT conditions
are only the necessary conditions for a local minimum.

3.5 Uniqueness of the NMF solution

This section is devoted to the question of uniqueness of the NMF solution.

Considering that a stationary solution (G, F) is available and an invertible matrix S of dimensions
p× p exists; any solution of the form (Ğ = G ·S, F̆ = S−1 ·F) is equivalent since the same product
G ·F is produced. The stationarity condition for (Ğ, F̆) is given by,

S−1 ·F � 0, G ·S� 0, (3.19)

ST ·GT ·(G ·F−X)� 0, (G ·F−X) ·FT ·(S−1)T � 0, (3.20)

(S−1 ·F)◦
(
ST ·GT ·(G ·F−X)

)
= 0, (G ·S)◦

(
(G ·F−X)) ·FT ·(S−1)T )= 0. (3.21)

These conditions can be easily verified if S is a permutation matrix making the new point a sta-
tionary one. However, the new point is nothing else than the permutation of the original point. In the
general case, it is difficult to establish necessary and sufficient conditions for a unique solution. As a
result, only sufficient conditions of uniqueness are explored in the literature. Besides, the uniqueness
of the solution is often tackled in the frame of the exact factorization which differs from the framework
of this thesis.

A geometric interpretation in IRm
+ of the sufficient conditions is usually proposed for the unique-

ness investigation. Most popular results come from [21], [40].

Definition 3.5.1. The simplicial cone generated by a finite number of independent vectors

( f1, f2, . . . , fp) ∈ IRm
+ is the set CF = {x|x =

p
∑
j=1

g j f
j
, g j > 0}.

Let X be the convex set surrounding the row vectors of the matrix X . According to Chen [21],
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Proposition 3.5.1. The decomposition of X into a product G ·F is unique if and only if the simplicial
cone CF such that X ⊂ CF is unique.

This lemma does not provide a mean to check this condition. Moussaoui [112] proposed some
sufficient conditions which ensure the uniqueness, e.g.,

Proposition 3.5.2. The NMF factorization X = G ·F is unique if the following two conditions are
fulfilled

1. The existence of a monomial 1 submatrix of F with a size of p× p.

2. The existence of a monomial submatrix of G with a size of p× p.

These two conditions [54, 56] are often viewed as the separability of X, (e.g., each column of G
appears as a column of X) and the separability of XT , (e.g., each row of F appears as a row of
X). One of these conditions can be considered as the pure pixel assumption, usually encountered in
Hyperspectral Unmixing.

Figure 3.1 depicts the conditions of the proposition 3.5.2 (left side) and of Donoho and Stodden
(right side) [40] for the simplified case p = 3. By defining first I(F), Im(F)∩ IRm

+, the case of exact
factorization can be interpreted for the condition on F as I(F) = C F and for the condition on G, as
p row vectors of X constitute the edges of the cone I(F). For the Donoho’s case, the conditions are
less restrictive and make possible to guarantee the uniqueness of the solution if p− 1 rows of X are
located on each of the p facets of the cone I(F). Thus, p ·(p−1) rows of X belonging to the facets are
sufficient to guarantee the uniqueness of the solution. These conditions are less restrictive than those
provided by Chen [112].

Proposition 3.5.2 Conditions de Donoho-Stodden [40]

Figure 3.1 – Different cases of Uniqueness for Non-negative Matrix Factorization.

However, these practical conditions are only sufficient conditions and are still very difficult to use.
The supposed context corresponds to the context of the exact NMF factorization. In the framework of
approximate factorization, the solutions should be verified to remain stationary points. In conclusion,
the issue of the uniqueness of the solution still remains an open problem. Another alternative approach
to limit the multiple solutions is to provide additional constraints to the initial NMF problem.

1. A monomial matrix is a permutation of a diagonal matrix with positive diagonal elements
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3.6 Review of the different families of algorithms

The objective of this section is to review the different families of methods to solve the problem
defined in Eq (3.2).

Several methods developed below can be used in order to estimate the unknown parameters but,
before developing them, their common iterative nature may be stressed, which enables to move pro-
gressively toward the limit point.

3.6.1 Multiplicative Method

Multiplicative methods stand for iterates which are multiplied by an entry wise factor at each
iteration. Multiplicative methods can be obtained from heuristic approaches, or from Majorization
Minimization (MM) approaches.

3.6.1.1 Heuristic Approach

The Multiplicative methods usually tackle the Problem in Eq. (3.2) by first reformulating the cost
function using the concept of matrix trace 2 , i.e.,

J (G,F) = Tr
(
(X−G ·F)T (X−G ·F)

)
. (3.22)

By developing the above expression, the cost function J (G,F) may be split into three terms, i.e.,

J (G,F) = Tr(XT ·X)−Tr(FT ·GT ·X)−Tr(XT ·G ·F)+Tr(FT ·GT ·G ·F), (3.23)

= Tr(XT ·X)−2Tr(XT ·G ·F)+Tr(FT ·GT ·G ·F), (3.24)

= J 1− J 2 + J 3. (3.25)

The calculation of the gradient of each function is performed here with respect to matrix F using
theoretical results about matrix differentiation available in [130]. Similarly, the differentiation with
respect to G may be obtained using some analogy results. Since the function J1 is independent of F ,
only J2 and J3 are to be differentiated.

The differentiation of J2 can be written as,

∂J2 = 2(Tr(XT∂(G ·F))) = 2(Tr(XT ·G ·∂F)) (3.26)

By using the property ∂J2 = Tr((∂J2

∂F
)T∂F), it follows that

∂J2

∂F
= 2GT ·X . (3.27)

2. The trace of a matrix is the sum of its diagonal entries
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Similarly, the differentiation of J3 is derived,

∂J3 = ∂(Tr((G ·F)T (G ·F)) = Tr(∂((G ·F))T +Tr((G ·F)T∂(G ·F)) (3.28)

i.e.,
∂J3

∂F
= 2GT ·(G ·F) (3.29)

Based on Eqs (3.27,3.29), the differentiation of J may be expressed as

∂J
∂F

= 2GT ·(G ·F−X) (3.30)

It is possible to write ∂J
∂F

as a difference of the terms ∇
+
F J (G,F) and ∇

−
F J (G,F), defined hereafter,

∇
+
F J (G,F) = 2GT ·(G ·F), (3.31)

∇
−
F J (G,F) = 2GT ·X . (3.32)

The update rules of G and F using the heuristic approach are derived from the previous gradient
definition.

F ← F ◦ ∇
−
F J (G,F)

∇
+
F J (G,F)

, G← G◦
∇
−
GJ (G,F)

∇
+
GJ (G,F)

. (3.33)

Based on Eq (3.31, 3.32), the update rules for NMF with Frobenius cost function are

F ← F ◦ (GT ·X)

(GT ·G ·F)
, G← G◦ (X ·FT )

(G ·F ·FT )
. (3.34)

These update rules ensure the non negativity of the elements of the two matrices G and F . According
to [94], these rules will surely decrease the objective function of the classical NMF. Except in special
cases where one entry is zero, the goal is to find limit matrices from Eq (3.34) whose fractions (next to
G and F) are evolving with each iteration toward matrices whose elements are all 1. This will ensure
the gradient to be cancelled as well as the KKT conditions (3.16,3.17,3.18) to be fulfilled.

3.6.1.2 Majorization Minimization Approach

One of the widely used technique is the Majorization-Minimization (MM) technique, which is
reviewed by Hunter [71]. The MM approach is based on a two-steps approach (3.2) whose principle
consists of:

1. The first step is to define an auxiliary function which majorizes the cost function J (G,F) at
the current operating point.

2. The second step is to perform the minimization of the auxiliary function and repeat the process
with the new operating point.

By looking at the structure of Eq (3.2), it is possible to split the problem into independent sub prob-
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- - - Auxiliary Function
—– Cost Function

H (θk,θk) = J (θk)

H (θk+1,θk) = min
θ

H (θ,θk)

J (θk+1)

θ
k

θ
k+1

Figure 3.2 – Majorization Minimization Algorithm.

lems where the alternate search is limited to one column of F or one row of G.

Definition 3.6.1. Let the two vectors θ and θ
k, be respectively the vectors of the unknown and the

unknown at iteration k 3. A function H (θ,θk) is known as an auxiliary function of J (θ) at the point
θ

k if and only if:

H (θk,θk) = J (θk), (3.35)

H (θ,θk)≥ J (θ). (3.36)

The auxiliary function is a function which majorizes the cost function and is tangent to (θ= θ
k). It

is then possible to find a minimizer θ
k+1 which decreases the original cost function owing to relations

(3.37),
J (θk+1) ≤H (θk+1,θk) ≤H (θk,θk) = J (θk),

(1) (2) (3)
(3.37)

The difficult step of Majorization-Minimization approaches lies in designing an auxiliary function that
is simpler to minimize than the original function. This step is performed either according to Jensen’s
inequality i.e., the case of convex functions J or with quadratic approximations [71]. In the classical
NMF, the function J (G,F) can be reduced to its vectorial formulation and then may be rewritten
according to the second order Taylor expansion of the vector θ, i.e.,

J (θ) = J (θk)+∇J (θk)(θ−θ
k)+

1
2
(θ−θ

k)T GT ·G(θ−θ
k), (3.38)

The second order majoring function takes the general form [66]

H (θ,θk) = J (θk)+∇J (θk)(θ−θ
k)+

1
2
(θ−θ

k)T ·A(θk) ·(θ−θ
k), (3.39)

3. These vectors represent here one row of G or one column of F .
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Given the special matrix A(θk) proposed by Lee and Seung [94] which satisfies Eq (3.35),

A(θk), diag(
GT ·G ·θk

θ
k ). (3.40)

The cancellation of the gradient of H (θ,θk) leads to,

θ
k+1 = θ

k−A(θk)−1 ·∇J (θk) = θ
k +diag(

θ
k

GT ·G ·θk ) ·G
T (x−G ·θk). (3.41)

i.e,

θ
k+1 = θ

k +θ
k ◦ GT (x−G ·θk)

GT ·G ·θk . (3.42)

These equations may be collected for all columns of the matrix F (resp. all rows of G) to provide the
final update rules,

F ← F ◦ (GT X)

(GT GF)
, G← G◦ (XFT )

(GFFT )
. (3.43)

Using the Majorization-Minimization technique for the classical NMF problem, the derived update
rules are the same as those obtained with the heuristic method, i.e., the update rules which are provided
in Eq (3.34).

These multiplicative algorithms are shown to decrease strictly the cost function if none of the
terms contain a zero entry [4] and if each entry of the gradient remains different from 0. In addition,
these algorithms are known to be slowly converging towards a limit point.

3.6.2 Projected Gradient Approaches

The principle of projected gradient approaches relies on classical gradient techniques. Thus,the
basic concepts are first introduced.

3.6.2.1 Basic concepts

Gradient methods constitute reference methods for solving a differentiable optimization problem.
They usually start from a current vector, which moves towards a decrease of the criterion. This
direction may result from several choices. The most popular choice is the opposite of the gradient of
the function to minimize at the operating point.

Definition 3.6.2. dk is a descent direction if, starting from a current vector θ
k, the following property

is fulfilled,
∇J (θk)T ·dk < 0. (3.44)
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Figure 3.3 – Gradient Descent Algorithm.

In this case, every vector of the form

θ
k+1 = θ

k +α
kdk, (3.45)

where αk > 0, leads to the decrease of the function J (.) and stands for the iterate of a gradient like
method. The Gradient algorithm is illustrated in Figure (3.3). Differences between its variants essen-
tially lie in the choice of various descent directions dk, as well as the stepsize αk. Among the classical
ones, dk =−∇J (θk) is the most popular.

3.6.2.2 Projected gradients methods

There is a huge number of methods in this field and each method has its own specificity. Thus, the
common features of these methods are only presented.

Projected Gradient methods update successively G and F . For each matrix, it follows a gradient
like technique which project the iterate onto the non negative orthant, i.e.,

Gk+1 = [Gk−ηG ·Dk
G]

+, Fk+1 = [Fk−ηF ·Dk
F ]

+, (3.46)
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where + stands for [X ]+ = max(ε,X) while Dk
G et Dk

F are the descent directions. The Step sizes ηG

et ηF are for for matrices and may take different forms. Accordingly , several Projected Gradients
methods are available in the literature:

1. The Oblique Projection [111] [76]: this type of method, known as the oblique projection of
Landweber, is a projected gradient following the general scheme (3.46) in which the descent
direction is the opposite of a distorted gradient.

2. Split Gradient Methods [91]: It stands for a gradient scheme where the descent direction is the
opposite of the current gradient. Assuming the gradient under the form −(∇J (Fk)) = P−Q,
a fix point strategy enables, from the third KKT condition, to write the update rule for one
factor as

Fk+1 = Fk +ηF ◦
Fk

Qk ◦
[
−∇J (Fk)

]
(3.47)

where ηF is a matrix of scale factor. Such an update could be used in the frame of NMF, where
a shift needs to be designed in order to ensure non-negativity.

3. Lin’s Projected Gradients [102] [29]: Another popular method is the projected gradient of
Lin in which the descent direction corresponds exactly to the opposite of the gradient. Lin
developped two variants: the first variant updates the two factors successively while the other
updates them simultaneously. Besides, Lin has introduced an update of the scalar step size
which follows the modified Armijo rule, detailed in [102]. However, Lin explained that this
kind of direct updating procedure does not provide a gain in the computation of the cost func-
tion because it will lose its quadratic characteristic when the two matrices are optimized si-
multaneously.

4. Method of potential directions [29][22][118]: This method is based on the subspace tech-
niques by defining potential directions in a subspace. When using the Non-negative Matrix
Factorization, they are applied directly to the columns of the matrix F or the rows of the ma-
trix G separately. In contrast with other methods, they combine 3 potential directions defined
by Nemirovsky [118]: the current gradient, the move from the starting point, and a filtered
version of the P latest gradients. The expression of the step size may be found in [29, Ch.5].

5. Method of Interior Points [109]: This method is usually found in quadratic optimization. It is
not widely used in the context of the Non-negative Matrix Factorization. The method may be
classified into the family of gradient based methods because the step size is searched to check
non-negativity, thus avoiding the usual projection step. The update rules are expressed as,

G←Gk−ηG
Gk

(GkFk ·(Fk)T )
◦ [(X−Gk ·Fk) ·(Fk)T ], (3.48)

F ←Fk−ηF
Fk

(Gk)T ·Gk ·Fk ◦ [(G
k)T ·(X−Gk ·Fk)]. (3.49)

It should be mentioned that if both step sizes are equal to 1, it leads to the previous multiplica-
tive update rules (3.43). In this method, the scalar stepsize is searched at each iteration, to
minimize J (Gk,Fk +ηDk

F) satisfying the non-negativity of the factor.

6. Proximal methods (Nesterov,...) The search for an optimal step size is often a critical step in
every Gradient Descent scheme. In 1983, Nesterov proposed to replace this step by an inner
iterative gradient descent. In the case of NMF, this inner loop [60] consists of the minimization

32



of the proximal 4 function of J (G, .) at an operating point Y k, obtained from a filtered version
of Fk. It finally amounts to a simple gradient scheme with a constant scalar stepsize around the
filtered version Y k of Fk. Recently, some extended versions of Nesterov NMF were developed
in the field of blind mobile sensors calibrations [44].

As a summary, a general principle from Lin [102] can be highlighted: the low cost per iteration often
comes at the price of a high number of iterations while a fast convergence is usually attained with a
high cost per iteration.

3.6.3 Exact Block coordinate methods

In the previous methods, an exact computation of the factor was not required at each outer it-
eration. This was the case of multiplicative updates or projected gradient based methods. In this
section, some methods which solve each sub-problem in an exact way are presented. Kim and Park
recently proposed an unified view of this class of problems under the name of exact block coordinate
[85] which is able to perform several non negative least square procedures. The latter approach re-
lies on the assumption that the unknown parameter space may be split into separable closed convex
sets. This method allows to view the minimization separately on each subset successively. It involves
Alternating Non-negative Least Squares methods as well as Hierarchical Alternating Least Square .

3.6.3.1 Alternating Non-negative Least Squares (ANLS) Methods

These methods corresponds to dividing the space of the search into two blocs i.e,

Gk+1 = argmin
G�0
||X−G ·Fk||2F (3.50)

Fk+1 = argmin
F�0
||X−Gk ·F ||2F (3.51)

Each subproblem can be divided into m independent sub problems of type Non negative least
square (NNLS) [20], each focuses on the search of one column of F (resp. one row of G), which can
be outlined as

min
f�0

∥∥x−G · f
∥∥2

2
, (3.52)

where x et f stands for one column of X and F respectively.

A class of methods for solving such problems are active set methods, which consist in iteratively
separating the indexes into two classes. The first class contains the zero entries (saturated entries) and
the second containing the indexes of positive components. As soon as the index partitioning is known,
the solution becomes a classical least square solution with a close form expression. Then, different
partitions of indexes were explored to converge to the right solution. This algorithm was originally
developed by Lawson and Hanson [93] and was further integrated into Matlab as the lsqnonneg func-
tion. A fast version of this algorithm were developed by Bro and De Jong [16] by computing only once

4. The proximal function is the extension of the concept of projection onto a convex set [30].
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some common matrices. Recently, Kim and Park have applied this strategy to NMF on a modified
cost function involving a sparseness penalty function [84] [83] and have extended it to the framework
with a block pivoting strategy [82].

3.6.3.2 HALS methods

These methods come from a partitioning into 2p blocks coordinates. The initial problem (3.2)
may be reformulated as the minimization of p subproblems,

arg min
G.,L�0,FL,.�0

J (G.,L,FL,.) = arg min
G.,L�0,FL,.�0

‖R(−L)−G.,L ·FL,.‖2
F ∀L ∈ {1 . . . p}, (3.53)

where R(−L) is the residual matrix built as the difference between the data matrix and the approximate

product without the Lth source, i.e., R(−L) = X −
p
∑

l=16=L
G.,l ·Fl,.. The new matrices G.,L and FL,. are

special column and row matrices of G and F , according to G , [GT
.,1; . . . ;GT

.,p]
T and F , [F1,.; . . . ;Fp,.].

Each of this problem may be solved exactly by searching for a single entry of the matrix F and
extending it to the complete row of F 5, i.e.,

F∗L,. =

[
GT
.,L ·R(−L)

GT
.,L ·G.,L

]
+

, ∀L ∈ {1, . . . , p}. (3.54)

The above expression may be similarly extended to G, i.e.,

FL,. =

[
GT
.,L ·R(−L)

GT
.,L ·G.,L

]
+

, G.,L =

[
R(−L)·FT

L,.

FL,. ·FT
L,.

]
+

, ∀L ∈ {1, . . . , p}. (3.55)

Ho discovered the algorithm at the same period [66] which was called Rank-1 Residu Iteration (RRI).
Fast implementations of these methods have been proposed to decrease the number of flops per it-
eration. One challenging aspect consists in the choice of the order of updating these 2 p blocks.
Consequently, two versions are widely used,

G.,1→ F1,.→ G.,2→ F2,. . . .→ G.,p→ Fp,. (3.56)

G.,1→ G.,2 . . .→ G.,p→ F1,.→ F2,. . . .→ Fp,. (3.57)

Gillis and Glineur [55] have proposed to modify this classical order by repeating the process on G
several times. Extended versions of theses algorithms can be found in [28] and in [86] for orthogonal
NMF.

5. It should be mentioned that HALS update a row of F whereas usual ANLS basically update a column of F
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3.6.4 Alternative Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) is a very popular method which gained
lot of attention during the past years due to the huge demand from some applications such as large-
scale and data-distributed machine learning [123], compressed sensing [172], image restoration [59]
and video process and matrix completion [58]. ADMM is considered to be a simple computational
technique based on the augmented Lagrangian method [52] [156]. The principle of ADMM is based
on the concept of variable partitioning which enables to split the function to minimize into several
independent terms. Variable splitting is often presented in two blocks, i.e.,

min f (x)+g(y) s. t. Ax+By = c (3.58)

where A, B and c are matrices or vectors of appropriate size.

The augmented Lagrangian function of (3.58) is defined as

LA(x,y,λ) = f (x)+g(y)+λ
T (Ax+By− c)+

γ

2
||Ax+By− c||22 (3.59)

where λ and γ are Lagrangian parameters. The classical ADMM algorithm is an extension of the
augmented Lagrangian mulipliers methods which performs a minimization with respect to x, y, λ

sequentially, i.e,

xk+1← argminLA(x,yk,λk) (3.60)

yk+1← argminLA(xk+1,y,λk) (3.61)

λ
k+1← λ

k +δ.γ.(Axk+1 +Byk+1− c) (3.62)

where δ is a step length.

ADMM has recently been extended to solve NMF problems by introducing some auxiliary matri-
ces G+ and F+ of appropriate size constrained to be positive [173] [15], i.e the NMF problem may be
expressed as,

min
G,F,G+,F+

J (G,F) s.t. X = G ·F,G = G+,F = F+,G+ � 0,F+ � 0 (3.63)

The augmented Langrangian function of Eq (3.63) may be similarly written

L(X ,G,F,G+,F+,ΓG,ΓF) = ||X−G ·F ||2F +< ΓG,G−G+ >+< ΓF ,F−F+ > (3.64)

+
γG

2
||G−G+||2F +

γF

2
||F−F+||2F (3.65)

where < ., . > accounts for scalar product of the vectorial form of each matrix argument and ΓG, ΓF ,
γG, γF are Lagrangian parameters.

The ADMM method for (3.63) is derived by successively minimizing the augmented Lagrangian
function with respect to the variables G,F ,G+,F+,ΓG,ΓF , one at a time while assigning the remaining
variables to their latest values. All these steps may be written in closed form expressions, which are
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available in [178], i.e. allowing to get simple schemes.

However, there is no real guarantee that such methods converge to a stationary point [171] owing to
the partitioning into more than 2 blocks and the required strict convexity of the function to minimize.
Some extensions of this small introduction were proposed in the field of matrix completion [171].
More recently, Févotte proposed to deal with some special cost functions denoted β-divergences and
proposed some ADMM formulations in a similar way [156]. Nowadays, the use of ADMM in NMF
remains an unconventional track as it is still an open field.

3.6.5 Bayesian Approach for NMF

The NMF problem may be formulated in a statistical setting by using an additive random i.i.d. 6

noise to the receptor model, which may be formulated into a matrix form, i.e.,

X = G ·F +E, (3.66)

where E is the matrix of individual noise. The most classical framework is the Gaussian model,

P(X |G ·F) = (
1√

2π.σ
)nm exp−

||X−G·F ||2F
2σ2 (3.67)

This probability is called likelihood of the data and its maximum is equivalent to the classical NMF
problem (3.2). Several variants of the last model involve modelling the data variance as an individual
Gamma prior [148] or to break the Gaussian model into a Poisson distribution [164].

The Bayesian approach consists in defining some prior distribution on the factors which incor-
porate some prior knowledge. Usually, matrices F and G are considered to be independent variables
[122] [113] [148]. The main challenge is to design appropriate prior information on both G and F by
defining a prior distribution p(G) and p(F). In order to ensure the non-negativity of the factors, it is
necessary to choose probability densities with positive supports. Several choices for these factors in-
clude the rectified Gaussian [148] [46], gamma priors [164] or Student-t Distributions [90]. By using
the Bayes’ theorem, the joint posterior distribution of the unknown factors is given by

p(F,G|X) =
p(X |F,G)× p(F)× p(G)

p(X)
(3.68)

where p(X |G,F) is the likelihood of the observations and p(X) is the probability density of the ob-
servations. It should be noted that assuming the two matrices G and F are independent, the joint
distribution reduces to a simple product p(G,F) = p(G)p(F), and p(X) appears as a normalization
term. Eq (3.68) may be written as,

p(F,G|X) ∝ p(X |F,G)× p(F)× p(G) (3.69)

and MAP estimation is usually performed by taking the maximum of Eq (3.69) or its logarithm. The

6. i.i.d. stands for independent and identically distributed
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two matrices G and F can be calculated from Eq (3.69) and by using several Bayesian estimators
[141] which essentially perform approximate computations except in the case of special conjugate
distributions. Thus, the posterior law allows the estimation of the two matrices either by the joint
law or by the marginalization of the latter. The property of independence between the two estimated
matrices G and F makes it possible to express the joint law as a posteriori p(G,F |X) with the help of
the marginals laws a priori. In fact, it is almost impossible to calculate the expression p(G,F |X). thus,
all the Bayesian algorithms use Markov Chain Monte Carlo (MCMC) in order to generate samples
that are distributed according to posterior marginal laws.

The markov chain is a sequence of random variables such that the next value of the sequence is
depending only on the previous value. ConsiderΘ(t) to be a state at iteration t. The next stateΘ(t+1)
is only depending on the current state Θ(t). Two major algorithms, the Metropolitan Hasting Algo-
rithm and the Gibbs Sampling can be implemented to compute the next set of values that will form
the Markov chain from which the elements of the matrices G and F are estimated. Having initialized
the algorithm, the Metropolitan Hasting [62] [114] can be summarized as follows:

1. Generate a random variable (candidate variable) by sampling from a proposal distribution that
depends only on the previous state.

2. Check if the generated candidate variable satisfies a defined condition. If it is satisfied, the
generated variable will be the new state. Otherwise, the previous value will be assigned. This
procedure will be repeated for a large number of iterations.

As for the Gibbs Sampling algorithm [53, 19], it is illustrated as follows:

Suppose θ1,θ2 ∼ p(θ1,θ2) and it can be sampled from p(θ1|θ2) and p(θ2|θ1). Beginning with an
initial value θ0

1,θ
0
2, the Gibbs sampler is given by:

1. Sample θ
j
1 ∼ p(θ1|θ( j−1)

2 ) and then

2. Sample θ
j
2 ∼ p(θ2|θ

( j)
1 )

Taking into account that,

p(θ2|θ1) =
p(θ1,θ2)

p(θ1)
(3.70)

p(θ1|θ2) =
p(θ1,θ2)

p(θ2)
(3.71)

Where p(θ2|θ1) and p(θ1|θ2) are the conditional distribution, p(θ1) and p(θ2) are the marginal dis-
tribution and p(θ1,θ2) is the joint distribution.
Gibbs sampling differs from the Metropolitan Hasting in the sense that it accepts all the generated
candidate points and it requires that the conditional distribution of each variable to be known.

Note that the Gibbs Sampling algorithm appears to be simpler in the context of NMF. However, it
is sometimes difficult to apply due to the conditional marginal distribution to compute.
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As a summary, the Bayesian NMF is still difficult to apply in some specific NMF contexts where
many constraints need to be incorporated or when the database is very large leading to very intensive
computations.

3.7 Weighted Non Negative Matrix Factorization (WNMF)

3.7.1 Introduction

The classical NMF problem (3.2) considers the errors resulting from all the collected data to be
identical. However, sometimes, data are of a heterogeneous nature. That is, they result from an
acquisition process which exhibits different degrees of confidence. This will result mostly from either
the conditions under which the measurements have been collected or from the different nature of the
various sensors. It could be also even due to the loss of the data. Thus, the most reliable information
should be very well considered. This information is encoded with the weight concept, which is defined
to be high for a reliable element and low for the inverse situation. It is also defined as the confidence
into the corresponding data xi j,

Wi j ,
1

σ2
i j

(3.72)

where σi j accounts for the individual uncertainty of xi j.

The new NMF problem becomes now the extension of problem (3.2), renamed as the Weighted
NMF problem [61, 66]. Thus, Eq (3.22) can be extended to introduce the weight matrix W and it
reads

J (G,F) =
n

∑
i=1

m

∑
j=1

Wi j(xi j− (GFi j)
2 = Tr((X−G.F)T .((X−G.F)◦W )) (3.73)

The weighted NMF problem can be defined as

min
G,F�0

J (G,F) = min
G,F�0

Tr((X−G.F)T .((X−G.F)◦W )) (3.74)

Although the extension of the original equation is straightforward, the solution of the WNMF problem
is much more complex Therefore, it is necessary to use iterative algorithms to converge to local
minima.

3.7.2 Outline of the main algorithms

While Srebo & al tackled a close problem by forgetting the non-negativity constraints [117],
Guillamet & al [61] have investigated the weighted NMF problem in the field of image classification.
The work of Ho [66] unified this problem by developing extended expressions. Therefore, the work
of Ho, which is also reported in [96] is introduced hereafter.

KKT conditions may be obtained by differentiating J (G,F) with respect to each of the factor.
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KKT conditions of the weighted case are expressed as

F � 0, G� 0,
GT ·(W ◦ (G ·F−X))� 0, (W ◦ (G ·F−X)) ·FT � 0,
F ◦
(
GT ·(W ◦ (G ·F−X))

)
= 0, G◦

(
(W ◦ (G ·F−X)) ·FT

)
= 0.

(3.75)

The update rules of the weighted NMF problem may be obtained either by the heuristic method from
the differentiation of J (G,F) or by using the Majorization Minimization strategy. They all lead to the
same expressions which are:

F ← F ◦ GT ·(X ◦W )

GT ·(W ◦ (G ·F))
, G← G◦ (W ◦X) ·FT

(W ◦ (G ·F)) ·FT . (3.76)

Some important aspects should be highlighted, i.e,
1. The Non-negativity is naturally achieved in multiplicative expressions.
2. The weighted Euclidean cost function is never increasing for the proposed update.
3. A limit point is reached if the third KKT condition is verified.
4. In the case where W = 1n×m, the update rules correspond to the original classical NMF as

shown in Eq (3.34).
Moreover, Ho [66] proposed an extension of HALS method to the weighted case. In contrast to

multiplicative methods, it solves exactly the subproblem related to one factor at each iteration.

As a summary, depending on the context, some methods are favored to others. Moreover, the
weight concept is extensively encountered in the field of blind calibration with missing entries [41,
42].

3.8 Applications

The Non-negative matrix factorization (NMF) has received a growing attention since the last
decades. The assumption of non-negativity which is the basis of NMF can be applied in a wide range
of natural signals, such as amplitude spectra, pixel intensities, and occurrence counts. The NMF and
its variants have found their ways in applications in various fields:

1. Environmental Science and chemometrics in which concentrations are investigated. It may
range from indoor [120] or outdoor air pollution [67], to river pollution [106] and soil pollution
[182]. Individual sources of pollution are searched for so that one factor is the source by
species factor while the other stands for the samples by sources factor. The important aspect
is that each data is usually equipped with an individual uncertainty, which leads to weighted
NMF methods.

2. Image Processing applications: Image data processing where relevant components of images
are to be extracted. The emphasis lies mainly in face recognition [153] and image classifica-
tion problems [177] such as the handwritten digit recognition.
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3. Biomedical applications: microarray data analysis where the non-negative data correspond
to gene expression levels is one such application. Also, the NMF was successfully applied
for cancer classification, EEG signal separation and classification, the investigation of protein
fold recognition [OP06] and medical imaging modalities such as Magnetic Resonance Imag-
ing (NMR), Positron Emission Tomography (PET) or fluorescence spectroscopy.

4. Data Mining: applications are associated with Text mining [165], language modeling, and
document clustering. The NMF is implemented to extract topics or semantic features from the
collections of documents. For example, X may be a n by m word by document matrix. A set
of features are derived from the documents. The factorization of X is performed into a word
by feature matrix and a feature by document matrix.

5. Sound recognition and classification: acoustic features are extracted from sound recordings
yielding for example instrument-specific patterns and solving the acoustic source separation
problem.

6. Speech recognition (Speech denoising and Speaker separation): It is another application in
which NMF and its extensions are applied with success. In audio processing, the basic role
of NMF is to find a locally optimal factorization of a short-time magnitude spectrogram i.e.,
decompose into two components where the first component consists of the spectra of the events
occurring in the signal and the second component reflects their time-varying gains. Earlier
works on speech processing include the separation quality and the implementation of the NMF
technique as a preprocessing step for conventional speech recognition procedures. Others
researchers have implemented the NMF algorithm as a data-based features’ extractor.

7. Recommender Systems: In a recommender system, there is a set of users who are voting
about a set of items (for example movies). This provides a possibly incomplete matrix of
votes similar to the data matrix X . The previous linear mixture model with the Non-negativity
is used to define latent features associated for example with the movie genre. As a result, the
NMF may be used to recover the latent features [89, 34].

8. Blind Sensor Calibration may be formulated as a weighted NMF problem with missing entries.
According to the model of the sensor taken into account, it may lead to different formulations
of the structured NMF problem [41, 42].

3.9 Conclusion

In this chapter, the objective was to introduce the basics of Non-negative Matrix Factorization.
First, NMF has been addressed as an optimization problem using the Frobenius norm. The concept
of non negative rank has been defined and sufficient conditions for the uniqueness of the solution of
exact NMF –which is closely related to non negative rank– are reviewed. In the case of approximate
NMF, necessary conditions for a local minimum, denoted KKT conditions, are provided.

Moreover, several approaches to solve the classical problem are reviewed. Among the classical
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approaches, the multiplicative updates, the Alternated Non negative Least Square and the projected
Gradient Approaches were presented. Some promising NMF methods, such as ADMM, Block coor-
dinate or Bayesian NMF are also briefly revised.

Besides, the weighted NMF problem has been introduced and interesting solutions have been
provided. The concept of weight appears to be attractive in the field of chemical sensing, where the
data are provided with an associated uncertainty. In the next chapter, the data which are typically
corrupted with abnormal data are discussed. Consequently, weight updating schemes could be an
interesting track to be pursued with the weighted NMF problem.
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CHAPTER 4

Robust NMF methods

4.1 Introduction

The previous chapter was devoted to an overview of Matrix factorization methods and constraints
encountered in the literature. The objective of this chapter is to discuss robustness issues.

Data may be tainted with atypical measures which may cause classical algorithms to fail. Such
an issue is often addressed in the field of robustness where the challenge is to design new algorithms
whose results account for these data. It is mainly developed for regression and it has been rarely
investigated in the field of matrix factorization. From a practical viewpoint, only studies of robustness
performance are available in the literature references. Moreover, chemical data are often collected
with a significant proportion of abnormal data. As a result, the scope of this chapter is to define the
features of the expected outlying data and consequently, to review the different available schemes
to solve such a problem. That is, low rank plus sparse decomposition approach and NMF based on
modified cost functions are presented and discussed.

4.2 Outliers

In the previous chapters, the discussion was about the regular data obtained from the generating
process which are governed by Eq (3.2). However and in most cases, the collected data could be
somehow corrupted [143] i.e., it is very common that some of the observations are different from the
majority and they are identified as outliers. Hawkins proposed a definition of outliers [63]

Definition 4.2.1. An outlier is an observation which deviates so much from the other observations so
as to arouse suspicions that it was generated by a different mechanism.

This definition may be applied to scalar or vectors. In the case under consideration, the data matrix
X is split into n row vectors xi ∈ IRm, where n is the number of data. Mathematically the proportion of
contaminated data, ε, is introduced and the problem can be viewed as a mixture of two distributions,
the regular distribution Tn and the abnormal distribution Ta, i.e.,

xi ∼ T = (1− ε)Tn + εTa (4.1)

The scalar ε is usually a small quantity and is often assumed to be known. In addition, the regular
distribution is often considered as a centered narrow Gaussian distribution while the abnormal one is

43



a wide normal distribution.

Another point of view is associated with the statistical multivariate Tukey model [159] i.e.,

xi = (I−B) ·y
i
+B ·oi (4.2)

where y
i
(resp oi) stands for the regular vector data at time i (resp. abnormal data). B is a diagonal ma-

trix defined by B , diag(B1, . . . ,Bm) and B1, . . . ,Bm are random Bernouilli variables with p(Bi) = εi.
The special case in which y

i
and B oi, are independent is often considered. A special case in which

p(B1 = B2 . . . = Bm) = 1 accounts for full dependence of a vector and it leads to a vector which is
either completely abnormal or completely regular. Such an outlier is called structural outlier or row
outlier.

Another interesting case is the completely independent model in which B1 = B2 . . . = Bm are
completely independent. This assumption is related to the entrywise outlier case. The assumption
εi = ε ∀i ∈ {1, . . . ,m} leads to a probability of the vector xi to be clean p(xi) = (1− ε)p which may
rapidly decrease with the value of p and the latter will be abnormal for large m and even for small ε.

Another case is the case of grouped outliers [169] in which a sparsity level is required for each
vector and consequently, a maximum number of outlying components in each vector may be found.

In chemical sensing, outliers can occur for several reasons such as recording errors, transmission
errors or an unexpected contamination prior to chemical analysis. They could also occur due to some
exceptional conditions which account for accidental releases. However, outliers should constitute a
small proportion of the whole data and consequently the regular model remains essentially valid.

It is very critical to know in advance the location of outliers because they will give a clear insight
on any change in the production process or in the experimental situation. Moreover, their detection in
a prior procedure is a difficult task. As a consequence, the estimation and the detection of outliers are
usually performed in an embedded way.

In the regression context, methods based on l2 norms are often implemented to identify outliers.
However, such methods can be very sensitive to outliers in a way that the fitted model is attracted
by them and, as a consequence, the deviating observations, a phenemenon referred to as the masking
effect can not be distinguished on one hand. On the other hand, some of the data can be labelled as
outliers whereas they are not since methods try to fit all data including outliers. This effect is called
swamping effect. In the least square regression, outliers are defined as the data points with the highest
residual error associated with the fitted model. Usual Regression methods attempt then to fit all the
collected points in the same way. Figure (4.1) shows an example of a performed regression in [49].
The regression line corresponds to expected regular points and the two dashed lines represent the
upper and lower boundaries of the average spreading of the data. Usually, outliers are expected to be
outside this bounded area. However, the points with the highest residuals are not the true outliers in
this example. They are just points which are far away from the regression and they do not correspond
well to the majority of points.

In the NMF context, the problem is much more harder since neither the profile matrix nor the
contribution are known. Figure (4.2) presents the situation encountered in air pollution where data

44



Figure 4.1 – Regression problem with the presence of Outliers.

vectors are spanned by three source profiles. Profiles appear as vertices of the simplicial cone. Regular
points are assigned a blue color whereas the red color accounts for the outlying data. Since a geometric
interpretation of NMF may consist in identifying those points which are vertices, the red points could
appear as source profiles depending whether it is labelled as a regular point or not. Moreover, an
outlier may also lie inside the simplicial cone, so that it will be impossible to detect.

In conclusion, it is very hard to detect the presence of outliers and the difficulty varies according
to the dimensionality, i.e., it is much easier to identify the points that are far from the main data in
one dimension and it becomes more difficult as the dimensionality increases because outliers could
be in any direction and are not concentrated along a particular direction. In the NMF context, the lack
of knowledge of both factors may lead to consider a special point either as a source profile or as an
irregular point and consequently, results are possibly inconsistent.

4.3 Robust Statistics and Robustness Properties

Robust statistics is a wide area of research. It has gained a lot of attention and importance during
the past years. Nowadays, many researchers are working on introducing the concept of robustness into
the classical methods and are trying to develop new useful robustness theories. Thus, it is becoming
necessary to always take into account this concept in any statistical data analysis [48]. Due to various
deviations (the presence of outliers) of the processed data, the basic and usual assumptions such as
normality and independence, may be not satisfied. Thus, the statistical estimators will not give the
expected results and consequently, they emphasize the need to develop new estimators to deal with
such deviations.
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Figure 4.2 – Geometric point of view for chemical data corrupted with outliers.

Robust statistics is related with to the concept of stability of statistical procedures. It is defined by
an approximate parametric model and at the same time deals with the presence of deviations based on
ideal assumptions. If outliers exist, the estimated parameters can be far from the real values.
The classical methods such as the least square try as much as possible to fit the processed data points
by minimizing the sum of the squared residuals in order to estimate the desired parameters. However,
they make almost impossible to detect the presence of outliers because all the data points have the
same weight and large deviations are spread over the residuals.

Robust statistics is a very good approach to cope with outliers by finding a fit that is similar to the
case in which outliers do not exist. Then, the outliers can be easily defined due to their large residuals.
Robust statistics must reduce the effect of the outliers and ensure good results. It is necessary not to
ignore the outliers but to investigate and interpret them. Furthermore, robust estimators will resist the
presence of outliers and provide a good estimation of the data.

4.3.1 Robustness indexes

The focus in this subsection is on some of the indexes currently used in Robust Statistics [49] to
evaluate the stability of algorithms.

— The main idea behind the robustness is that if there is a contamination in the collected data,
the robust estimator will not be affected. One way to assess the performance of the estimator
under such circumstances is by varying one collected data point. Let’s assume that one single
component of the data matrix is replaced by an outlier with a varying gap z. The goal is to
measure the difference between the estimation obtained with the corrupted data and the clean
regular data over the ratio of contaminated data ε. This fraction should be evaluated when ε

goes toward zero with respect to the variable z. This ratio is defined as the Empirical Influence
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Function (EIF), i.e.,

EIF(z,T,Tn) = lim
ε→0

T ((1− ε)Tn + εδz)−T (Tn)

ε
, (4.3)

where T (.) is the estimator under evaluation defined with either the contaminated density
(1−ε)Tn +εδz or the regular one Tn. The variable δz is the probability density which puts all
the mass at z.
When using a non robust estimator, even a single outlier will affect the estimator and the EIF
in this case is usually unbounded. When a robust regression estimator is applied, the EIF is
bounded and its shape will give a good idea on how the estimator behaves with respect to the
outliers. The shape of the EIF should be as smooth as possible in order to get stable results
with respect to the number of outliers.

— The breakdown point relies on the definition of maxbias curve. Intuitively, the breakdown
point reflects the proportion of contaminated data that an estimator could support before crash-
ing. The maxbias accounts for the worse gap with the regular estimation with respect to the
proportion of abnormal data. The curve is obtained as

maxbias(r,T,Tn) = sup
T ∈Vε(Tn)

||T (T )−T (Tn)|| (4.4)

where r stands for the number of abnormal data among n data and ε is the ratio of contaminated
data. Vε(Tn) is the neighborhood of the regular distribution related to ε according to Eq (4.1).
Usually, r out of n observations are corrupted. So, the breakdown point is the minimum ratio
where the maxbias curve goes to infinity, i.e.,

ε
∗
n(T,Tn) = min

r

( r
n
, s.t. maxbias(r,T,Tn) = ∞

)
(4.5)

It is defined for an estimator as the point on the x-axis where the bias curve goes towards
infinity. This point gives the percentage of the data that can be considered as outliers before
the estimator starts to provide bad results (for a non robust estimator, the percentage is zero
whereas it can be up to 50 for a robust estimator). In conclusion, the goal is to design a robust
estimator with a high breakdown point.

— Another measure is the statistical efficiency. It is often measured by a l2 norm of the original
data. However, robust estimators do not yield the best statistical efficiency, since robust esti-
mators are trying to minimize a different measure of fit. A modest increase in the statistical
efficiency is highly desirable.

To conclude, these features are interesting to compute. However, an analytic expression of these
features is quite impossible to provide. As a consequence, extensive computations are required to
estimate these quantities.
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4.3.2 Robust estimators for regression

In regression methods, the data assumes a linear model to be fit (i.e., similar to Eq (3.1)) and the
components g

i,:
are known, i.e.,

xi j = gT
i,:
· f

j
+ ri j ∀ i ∈ {1, . . . ,n} (4.6)

Based on Eq (4.6), a scalar residual may be defined as ri j = xi j−gT
i,:
· f

j
. The M-estimator is defined

as the minimization of a general cost function ρ(ri, j) defined in terms of the residuals. The regression
problem is defined as,

f̂
j
= argmin

f j

i=n

∑
i=1

ρ

(
ri, j

σ̂i, j

)
∀ j ∈ {1, . . . ,m} (4.7)

where σ̂i, j is a robust measure of scale, which can be computed or adapted according to the number of
iterations. Special functions ρ(.) include quadratic l2 norms and l1 norms as the popular choices. The
condition of being insensitive to outliers requires that ρ(.) increases less than r2 for large residuals r.
The efficiency condition imposing the solution to behave as a least square solution in the case without
outlier requires a quadratic behavior for ρ(.) for small residuals.

By differentiating Eq (4.7) with respect to the unknown variables f
j
, the set of M- estimating

equations are obtained:
i=n

∑
i=1

ψ

(
ri, j

σ̂i, j

)
g

i,:
= 0 ∀ j ∈ {1, . . . ,m} (4.8)

where ψ , ρ′. For the quadratic case, ψ(r) = r yields the popular normal equations. Assuming
W (r) = ψ(r)

r , Eq. (4.8) may be interpreted as weighted normal equations, i.e.,

i=n

∑
i=1

wi j

(
xi j−gT

i,:
· f

j

)
g

i,:
= 0 ∀ j ∈ {1, . . . ,m} (4.9)

where the weights are defined as wi j ,
ψ(ri j)

ri j
. Typical measures of fit are provided in Table (4.1),

with a restriction to those functions ρ(.) which are unbounded at infinity. Some authors [49] argue

Table 4.1 – Several popular M-estimator cost functions

Type ρ(r) ψ(r) w(r)
l2 r2

2 r 1
l1 |r| sign(r) 1

|r|

l1− l2 2(
√

1+ r2

2 −1) r√
1+ r2

2

1√
1+ r2

2

Huber

{
if |r|< c
if |r|> c

{
r2

2

c(|r|− c
2)

{
r
c ·sign(r)

{
1
1
|r|

Fair c2
(
|r|
c − log(1+ |r|c )

)
|r|

1+ |r|c

1
1+ |r|c
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that bounded ρ(.) functions are recommended in order to cope with uncertainties present in g
i,:

, e.g.,
correntropy [104], Welsh [179] and Tukey [179] cost functions. However, all these cost functions
have some drawbacks with respect to the requirements to cope with outliers [179].

The computation of the outcome of an M-estimator is a difficult task because an iterative procedure
is required. Usually, this step is performed by an Iterative Re-Weighted Least Square procedure
(IRWLS) which alternately updates the scale and the unknown vector. A correct initialization is
expected in order to compute an approximate weight. When ρ(.) is bounded, the function ψ(.) tends
to zero at infinity. Thus, the latter property impliespossible multiple solutions which yield crucial
initialization step.

This section has given simply an overview of robustness concepts implemented for regression.
Unlike regression approaches in which one matrix is completely known, these concepts are addressed
in the next section in the framework of NMF approaches which are a much harder task because neither
G nor F are known.

4.4 Sparseness Based NMF

4.4.1 Sparseness and low rank concepts

First, the definition of the `p norm for a vector is recalled as,

||r||p =

(
n

∑
i=1
|ri|p

) 1
p

. (4.10)

This definition includes the `2 norm which is obtained with p = 2 and the `1 norm with p = 1. Matrix
norms can be considered as an extension of vector norms. Whereas matrix norms may be defined as
norms induced by vectors, the emphasis is on component wise matrix norms, such as the Lp norm

||A||p = ||vec(A)||p =

(
n

∑
i=1

m

∑
j=1
|ai j|p

) 1
p

. (4.11)

This definition includes the Frobenius norm with p = 2, and the L1 norm with p = 1 as special cases.
Compared to the Frobenius norm, L1 norms have moderate influence on large residuals and it is often
used as a penalty term with respect to a matrix factor. Thus, sparse features could be expected with
L1 penalties. Besides, robustness in the data is often addressed by using L1 as a modified objective
function.

Moreover, L2,1 norms are often used by considering a matrix as a set of column vectors to which
`2 norms are applied, e.g.,

||A||2,1 =
n

∑
i=1

√
m

∑
j=1
|ai j|2. (4.12)
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They could be extended to Lp,q norms and are defined as

||A||p,q =

 n

∑
i=1

(
m

∑
j=1
|ai j|p

) q
p
 1

q

. (4.13)

L2,1 norms have been implemented as modified cost functions in a robust subspace factorization prob-
lem [39] or in a robust NMF problem [88].

Besides, the definition of the nuclear norms are based on the Singular Value Decomposition of a
matrix A =U ·Σ ·V T , where Σ is a diagonal matrix that is defined as Σ= diag(σ1, . . . ,σr)

||A||∗ =
min(n,m)

∑
i=1

σi(A). (4.14)

In fact, the nuclear norm is often viewed as a convex relaxation of the number of non zero eigenvalues
(i.e., the rank). Consequently, it is extensively used as a surrogate function of the rank. The next
section illustrates these aspects.

4.4.2 Related Problems

The Matrix sparseness is a property which is often desired in order to obtain meaningful results.
The matrix viewed as a collection of signals is mapped to a transformed domain where the signal
tends to concentrate the information on few entries. The concept was first implemented in robust PCA
technique in which the data matrix X is splitted into a low rank matrix L and a sparse matrix S that
contains the outlying components [75], e.g.,

X = L+S (4.15)

In such case, the matrix S conveys the few outliers that are present in the data. Except in special cases,
no prior knowledge about the locations of the non zero entries are available. This decomposition is
applied to similar problems such as Robust Principal Components Analysis (RPCA) [17], Robust Ma-
trix Completion [43, 171], and Robust Low Rank Minimization [167]. Usually, factors are obtained
by a relaxed convex optimization problem, called the Principal Components Poursuit, i.e.,

L̂, Ŝ = argmin
L,S

||L||∗+µ ||S||1 s.t. L+S = X (4.16)

The problem may be perfectly solved under incoherence conditions [75], in conjunction with an ana-
lytic expression of the hyper parameter µ.

4.4.3 Sparse NMF

The Robust sparse NMF is based on the decomposition of the data matrix into low rank plus sparse
matrices as defined in Eq (4.15). Furthermore, it assumes that the low rank matrix can be factorized
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into non-negative factors, i.e.,
X = G ·F +S (4.17)

Subsequently, G and F are forced to be non-negative. In order to favor a sparse decomposition of one
factor, Shen [151] proposes an l1 surrogate as the sparsity function. The problem can be formulated
as

argmin
G,F≥0

||X−G ·F−S||2 +λ

m

∑
j=1
||S., j||21 (4.18)

Similarly, Zhang [180] proposes to solve a similar criterion in which the penalty term accounts for a
complete `1 surrogate that acts on the complete matrix S, e.g.,

argmin
G,F≥0

||X−G ·F−S||2 +λ||S||1 (4.19)

The resolution of such a problem involves in its main loop a soft thresholding step which may force S
to be completely 0 if the residual is low. Rapin [137] suggests the use of a hard thresholding approach,
whose behavior is close to a `0 penalty. Moreover, Févotte and Dobigeon [47] applied such concepts
in the field of non-linear Hyperspectral unmixing, where the non linearity is viewed as a deviation
from the linear model’s assumption. In this case, the sparse matrix S includes the potential outliers
and is required to be sparse by using a `2,1 norm. In fact `2,1 norm favors the sparsity of the energy of
each column vector of S so that the whole criterion reads

argmin
G,F≥0

D(X−G ·F−S)+λ||S||2,1 (4.20)

Besides, Woo and Park proposed a `1 control of the sparse matrix with the denseness of one matrix
factor [169] which was devoted to the foreground/background video separation. Thus, the sparse
matrix contains the moving objects.

As a conclusion, low rank plus sparse decomposition appears as a reliable way to deal with out-
liers.

4.5 NMF based on modified cost functions

4.5.1 Introduction

Some modified cost functions have been previously introduced for regression purposes. They may
be viewed as an extension of the classical `2 norms. Most of them can be extended to the context of
NMF by considering matrix norms. However, divergences which are a kind of extensions of norms,
are usually used to measure a discrepancy. Some of the classical ones are then investigated.
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4.5.2 Modified Cost functions

Several cost functions can be chosen to cope with outliers. Some functions can be found in
Table (4.1). Some classical functions are first investigated, namely, αβ-divergences which are essen-
tially discussed in [27], the correntropy cost function and the Huber cost function.

4.5.2.1 Huber function

The Huber dissimilarity measure belongs to the class of M-estimators. It is based on the derivable
connection between `2 and `1 norms. It has been previously defined in Table (4.1).

ρhuber(r),

{
r2

2 if |r|< c

c(|r|− c
2) if |r|> c

(4.21)

Its role is to split the domain according to the value of the residual into the quadratic (`2) behavior
and the linear behavior (`1) . The parameter c is defined as the cutoff parameter that allows to switch
between the two domains. Figure (4.3) shows the behavior of the Huber cost function with a cutoff pa-
rameter that is equal to 1. The Huber cost function has several features which allows its classification
as a robust cost function:

— It is convex but not strictly convex.
— It has a bounded influence function (ψ function provided in Table (4.1)).
— It has a stable minimum.
— It has a continuous first differentiation but it is not twice differentiable.
— It is hybrid between the quadratic (`2) and `1, e.g., it is quadratic for small residual values and

linear for large residual values (i.e it acts as (`1) norm for large residuals and (`2) for small
residuals).

— It has the outlier stability of (`1).
In the context of matrices, the Huber norm is usually defined as a component wise matrix norms

(even though it should be used as a norm induced by vectors), e.g.,

||R||Huber , ||vec(R)||Huber =
n

∑
i=1

m

∑
j=1

ρhuber(ri j). (4.22)

By performing the minimization with iterative algorithms, the cutoff parameter should be estimated
at each iteration. This cost function could be implemented as an interesting starting point to solve
several NMF problems.
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Figure 4.3 – The Huber Cost Function

4.5.2.2 Correntropy

In addition to the Huber loss, the concept of Correntropy is presented. Correntropy is a non linear
local similarity measure between two variables defined as:

V (x, x̂) = E(K (x, x̂)) (4.23)

where E is for the expectation operator and K (., .) is a kernel function which fulfills the shift invari-
ance property of both input arguments. Practically, due to a finite number of samples (xi, x̂i)

n
i=1, the

sample estimation is often implemented e.g.,

V (x, x̂) =
1
n

n

∑
i=1

K (xi, x̂i) (4.24)
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Usually, parametric Gaussian kernels are used

K (x, x̂) =
1

σ
√

2π
Gσ (||x− x̂||2),

1
σ
√

2π
e−

||x−x̂||22
2σ2 (4.25)

The Correntropy should be approximated by a Taylor series expansion around x = x̂, e.g.,

V (x, x̂) =
1

σ
√

2π

∞

∑
k=0

(−1)k

2kk!
E
(
||r||2k

2
σ2k

)
(4.26)

The Correntropy involves even higher order moments of the residual error r , x− x̂ . The Correntropy
assesses how close two random variables are within a neighborhood tuned by the kernel bandwidth σ.
This measure serves to decrease the influence of impulsive noises or outliers.

In Signal Processing and Machine Learning, the Maximum Correntropy Criterion (MCC) is often
used to maximize the similarity between two variables. A dissimilarity measure may be designed by
considering the negative correntropy [181], e.g.,

C(x, x̂) = K (0,0)−V (x, x̂) (4.27)

It is also shown that a negative correntropy is belonging to the class of M-estimators as defined in
the previous sections. Besides, some authors [105] [144] consider the Correntropy Induced Metric
(CIM)– which is defined as the square root of the negative correntropy– as an equivalent dissimilarity
measure,

CIM(x, x̂) =
√

C(x, x̂) =
√

K (0,0)−V (x, x̂) (4.28)

CIM is a metric measure since it fulfills the basic properties of norms. According to the values of the
residuals, three areas may be identified. CIM behaves as a `2 norm for small residuals while moderate
residual values lead to a `1 behavior. When the residuals are very large (an outlier) compared to the
kernel bandwidth σ, CIM is approaching the behavior of `0 norm, which highlights its robustness
properties.

4.5.2.3 αβ-divergences

In this section, the information introduced in [27] and in [96] is mainly summarized. First, a
divergence can be distinguished from a norm because the symmetry property is not satisfied. The αβ-
divergence is developed to perform an asymmetric comparison of two matrices P and Q (exchanging
the order of the comparison modifies the result) and is expressed as,

Dα,β(P||Q) = ∑
i, j

Dα,β(pi j,qi j) (4.29)
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where the individual scalar divergences are defined as

Dα,β(pi j,qi j) =



−1
αβ

(pα
i jq

β

i j− α

α+β
pα+β

i j − β

α+β
qα+β

i j ), (α,β,α+β) 6= 0,
1

α2 (pα
i j ln

pα
i j

qα
i j
− pα

i j +qα
i j), α 6= 0,β = 0,

1
α2 (ln

qα
i j

pα
i j
+(

qα
i j

pα
i j
)−1−1), α =−β 6= 0,

1
β2 (q

β

i j ln
qβ

i j

pβ

i j
−qβ

i j + pβ

i j), α = 0,β 6= 0,
1
2(ln pi j− lnqi j)

2, α,β = 0.

(4.30)

The asymmetric behavior with respect to the value of the residual, implies that different schemes
to address positive or negative outliers may be derived. This argument motivates the use of such
a divergence. Cichoki’s definition is adopted in this work [27]. Cichocki also showed that these
individual measures are always positive. Two special cases may be distinguished:

1. The α-divergence, which may be encountered when α+β = 1.

2. The β-divergence, which accounts for β = 1.

A scale property may be also shown between the data matrix X and the estimated data matrix X̂ ,

Dα,β(λX ‖ λX̂) = λ
α+β Dα,β(X ‖ X̂). (4.31)

Another scale property may also be provided

Dλα,λβ(X ‖ X̂) =
1
λ2 Dα,β(Xλ ‖ X̂λ). (4.32)

The interesting value λ = 1
α+β

states that αβ-divergence reflects a general α-divergence, e.g.,

D
α

α+β (X ‖ X̂) = D
α

α+β
, β

α+β (X ‖ X̂) = (α+β)2 Dα,β(X
1

α+β ‖ X̂
1

α+β ). (4.33)

The differentiation of the criterion with respect to the unknown vector θ yields generalized normal
Equations (4.9), e.g.

∂Dα,β(X ‖ X̂)

∂θ
=−∑

i, j

∂X̂i, j

∂θ
(X̂i j)

α+β−1︸ ︷︷ ︸
weight

ln1−α(Xi j/X̂i j)︸ ︷︷ ︸
α-zoom

, (4.34)

where the function ln1−α(.) is defined as,

ln1−α(z),
{ zα−1

α
, if α 6= 0,

ln(z), if α = 0.
(4.35)

Two effects in Equation (4.34) are highlighted: an α zoom and a weighting effect. Table (4.2) explains
the α zoom effect according to the ratio Xi j

X̂i j
and the values of the parameter α. When α > 1, the

emphasis is set on larger values of the ratio Xi j

X̂i j
(large zoom), and the algorithm updates its estimation

to a better fit. On the contrary, a small zoom implies that the algorithm can accept parameters with bad
fit. The weighting effect (X̂α+β−1

i j ) is discussed according to X̂i j and the values of α+β as illustrated
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Table 4.2 – Properties of α-zoom.

α 0< Xi j

X̂i j
< 1 Xi j

X̂i j
> 1

α> 1 small zoom large zoom
α< 1 large zoom small zoom

Table 4.3 – Weighting effect on the αβ-divergence.

α+β 0< X̂i j < 1 X̂i j > 1
α+β< 1 large weighting small weighting
α+β> 1 small weighting large weighting

in Table (4.3). A large weighting means a good confidence in the data and is forced the algorithm to
find a better fit. On the other hand, a low weighting allows the algorithm to accept a bad fit. Thus, the
combination of these two effects are leads to different scenarios and Figure (4.4) allustrates various
areas as a function of α and β.

— Area 1 (α+ β < 1 and α < 1): the algorithm allows outliers if Xi j > X̂i j for large Xi j. The
estimation has to fit well the low values of Xi j which are emphasized.

— Area 2 (α+β > 1 and α < 1): the algorithm allows outliers if Xi j > X̂i j for small X̂i j. The
estimation is required to fit large amplitudes of Xi j whose relevance is highlighted.

— Area 3 (α+ β < 1 and α > 1): the algorithm allows outliers if Xi j < X̂i j for large X̂i j. The
estimation tries to fit low values whose importance is enhanced.

— Area 4 (α + β > 1 and α > 1): the algorithm allows outliers if Xi j < X̂i j together with a
moderate value of X̂i j. The estimation seeks to fit large values of Xi j.

As a summary and in the context of air pollution, it is preferably that the algorithm should fit large
data and accept some misfit for low range data, i.e. α+β > 1. Moreover, situations where Xi j > X̂i j

are favored regarding the opposite situations. Since a negative residual would not present a physical
meaning for experts, the half space corresponding to α< 1 will be selected.

Therefore, the area of interest is Area 2. These recommendations will be useful to select appro-
priate parameters during the tests.

4.5.3 Robust NMF Methods

In this section, some NMF methods based on the presented modified cost functions are inves-
tigated. That is, the Huber NMF, the Correntropy based NMF, and the αβ-divergences NMF are
addressed even though other kinds of robust NMF can be reviewed. Actually, Kong developed a L21

robust NMF [88] and Ben-Hamza investigated a L1 L2 norm based NMF [8].
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Area 4:
α+β≥ 1
and α≥ 1

Area 3:
α+β≤ 1
and α≥ 1

Area 2:
α+β≥ 1
and α≤ 1

Area 1:
α+β≤ 1
and α≤ 1

α+β = 1

α

β

α = 1

−1 0 1

−1

1

Figure 4.4 – Different areas as a function of α β.

4.5.3.1 Huber NMF

By taking into consideration Eq (4.21), the Huber NMF [45] is expressed as the following opti-
mization problem,

argmin
G,F�0

n

∑
i=1

m

∑
j=1

ρ
Huber(ri j), (4.36)

where ρHuber(.) is the Huber cost function. According to the values of the residuals, the previous
criterion may be differentiated and it leads to the piecewise Frobenius NMF and L1 NMF. It can
be viewed also as a weighted NMF with a weight wi j =

ρ′(ri j)
ri j

for each residual. Thus, a piecewise
expression of the weight can be given as,

wi j ,

{
1 if |ri j|< c,

c
|ri j| otherwise.

(4.37)

The update rules of both matrices G and F are obtained using the weighted NMF rules (3.76). Based
on the work of Ding [39], the cutoff parameter c is usually chosen to be the median and it is usually
expressed as,

c = median(|Ri j|) (4.38)

However, it is suggested that this choice should be modified because half of the data would be labeled
as outliers.

The Huber NMF algorithm may be summarized in Alg. (1) A crucial step in the implementation
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Algorithm 1 Huber NMF description
Reading of X
Initialization of F , G and c
while the stopping rule is not fulfilled do

Compute wi according to Eq (4.37)
Compute G according to Eq. (3.76)
Update F according to Eq. (3.76) )
Update c according to Eq. (4.38)

end while

of this algorithm is the choice of parameter c, which delimits the two areas. Besides, this choice can
be modified adaptively by computing at each iteration the percentage of outliers in the data. In the
next section, NMF based on Correntropy Induced Metric (CIM) will be investigated.

4.5.4 Correntropy based NMF

In this section, existing Robust NMF functions that are based on the Correntropy Induced Metric
(CIM) are presented. However, Du [45] proposed a slightly different concept of CIM that is introduced
earlier.

The CIM-NMF criterion is defined as the square of the CIM measure in which matrix X is repre-
sented as n.m scalar points, i.e.,

argmin
G,F�0

N

∑
i=1

M

∑
j=1

(
1−Gσ(Xi j−

p

∑
k=1

GikFk j)

)
(4.39)

where Gσ(.) is the gaussian distribution defined in Eq (4.25). Its solution is achieved by minimizing
the above equation. Some authors proposed the introduction of an auxiliary matrix W with general
entry wi j and reformulate the problem as an augmented Lagrangian by using the half-quadratic theory
[119], i.e.,

argmin
R,W

n

∑
i=1

m

∑
j=1

[
1
2

wi jr2
i j +ϕ(wi j)] (4.40)

where wi j is viewed as the weight associated with the corresponding data xi j. The weight should be
small for large errors and large for small errors. The term ϕ(Wi j) is the conjugate function of the
negative Gaussian function −Gσ(ri j) [119, 14]. The weight wi j can be calculated by differentiating
each single member of Eq (4.39,4.40) with respect to ri j, i.e.,

−G ′σ(ri j) = wi j ri j. (4.41)

Eq. (4.41) is exactly the definition provided for the weight in Eq (4.9). It yields the following weight
expression,

wi j =
1

σ2 e−
r2
i j

2σ2 , (4.42)
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where σ2 is defined as the average of the squared residual error, i.e.,

σ
2 =

1
2nm

n

∑
i=1

m

∑
j=1

r2
i j (4.43)

Subsequently, the computations of G and F can be reduced to the weighted NMF with an adaptive
choice of weights as provided in Eq. (4.42) 1. Thus, the update rules are those provided in section
Weighted NMF (3.76). The CIM-NMF algorithm is summarized in Alg. (refalg111111).

Algorithm 2 CIM-NMF Algorithm
Reading of X
Initialization of F , G and W
while the stopping rule is not fulfilled do

Compute W according to Eq. (4.42)
Compute G according to Eq. (3.76)
Update F according to Eq. (3.76)
Update σ2 according to Eq. (4.43)

end while

Du [45] proposed an approach in which an entire row of the data matrix is considered as an outlier.
It means that n residual vectors ri ∈ IRm are to be considered. They may be defined as

ri , xT
i,.−FT ·gT

i,.
(4.44)

Consequently, the initial correntropy definition with n points is taken into account and all entries of
a row are assigned the same weight. Therefore, the optimization problem (rCIM for row Corren-
tropy Induced Metric) may be similarly reformulated as the minimization of the following objective
function,

argmin
G,F�0,w

N

∑
i=1

[wi||ri||2 +ϕ(wi)] (4.45)

Using the same half quadratic process, the weight matrix can be written as,

wi = exp(−||ri||2

2σ2 ) (4.46)

A matrix weight W can be formed by defining W = w ·11×m. The rCIM-NMF algorithm can be
summarized as a weighted NMF defined in Alg. (3) with particular weights defined in Eq. (4.46). The
scale factor σ2 is defined as the half average of the square l2 norm of residuals, i.e.,

σ
2 =

1
2n

n

∑
i=1
||ri||2 (4.47)

To conclude, Correntropy allows the definition of several robust NMF, which are equivalent to par-
ticular weighted NMF. In the next section, the focus is on the divergence based NMF approaches.

1. This equivalence should also be proved directly by differentiating the cost function with respect to F and G. The
same weight would appear in the equation.
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Algorithm 3 rCIM-NMF Algorithm description
Reading of X
Initialization of F , G and Weight matrix w
while the stopping rule is not fulfilled do

Compute wi according to Eq 4.46, W = w ·11×m

Compute G according to Eq. (3.76)
Update F according to Eq. (3.76) )
Update σ2 according to Eq. (4.43)

end while

4.5.4.1 αβ-Divergence NMF

In this section, the αβ-divergence NMF problem is formulated as

argmin
G,F�0

Dα,β
W (X ||G ·F) = argmin

G,F�0
∑
i, j

wi j Dα,β(xi j,
p

∑
k=1

gik fk j) (4.48)

The proposed development is an alternative approach to solve Problem (4.48). However, it leads to
the same update rules that are derived in [27]. The whole problem is divided into independent small
problems and the investigation is made using a MM strategy. Due to property of separability of the
criterion, it is possible to deal with one column data x and one column vector f , e.g.,

Dα,β
w (x||G · f ) = ∑

i
wi Dα,β

(
xi||(G · f )i

)
, (4.49)

Eq (4.49) may be expressed as a function hα,β(z),

Dα,β
w (x||G∆ f ) = ∑

i
wi xα+β

i ·hα,β

(
∑ j gi j f j

xi

)
, (4.50)

where the function hα,β(z) is defined as,

hα,β(z),− 1
αβ

[
zβ− α

α+β
− β

α+β
zα+β

]
∀(α,β,α+β) 6= 0, (4.51)

The function hα,β(z) is shown to be convex for all z> 0 in the domain described by β ∈ [min(1,1−α);max(1,1−α)].
In order to preserve this property, the parameters are restricted to this domain. Inspired by Limem’s
work ([96] chap 3 p85), a majoring function can be defined which depends on the starting point f k

j ,

H α,β
1,w ( f j, f k

j ) = ∑
i

wi xα+β

i ∑
j

gi j f k
j

∑l gil f k
l
·hα,β

(
f j ∑l gil f k

l

xi f k
j

)
, (4.52)
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The cancellation of the differentiation of the majoring function H α,β
1,w leads to the simplified expres-

sion, (
f j

f k
j

)α

=
∑
i

wigi j ·xα
i ·(∑l gil f k

l )
β−1

∑
i

wigi j ·(∑l gil f k
l )

α+β−1
. (4.53)

The following expression may be extended to its vectorial form, i.e.,(
f

f k

)α

=
GT
[
w◦ xα ◦ (G f k)β−1

]
GT
[
w◦ (G f k)α+β−1

] . (4.54)

Expression (4.54) can be expressed in a matrix form, e.g.,

Fk+1← Fk ◦Mα,β
F , (4.55)

where Mα,β
F is given by

Mα,β
F =

GT ·
(

W ◦Xα ◦ (G ·F)β−1
)

GT ·(W ◦ (G ·F)α+β−1)

( 1
α
)

. (4.56)

In order to avoid indeterminacies, the operator + (defined as x+ = max(x,ε)) is added to each argu-
ment of the power function,

Mα,β
F =

GT
(

W ◦ (X+)α ◦ ((G ·F)+)
β−1
)

GT ·
(
W ◦ ((G ·F)+)(α+β−1))

)
( 1

α
)

. (4.57)

The new update rule of the contribution matrix may be also similarly obtained, i.e.,

G← G◦


(

W ◦Xα ◦ (G ·F)β−1
)
·FT

(W ◦ (G ·F)α+β−1) ·FT

( 1
α
)

. (4.58)

These equations are shown to be valid in the domain where β ∈ [min(1,1−α);max(1,1−α)]. In
practice, they could be used in a wider domain as soon as the xi j and x̂i j are not too far [27]. Fur-
thermore, the KKT conditions should be fulfilled for the problem shown in Eq (4.48). The KKT
conditions are provided in Limem ’s work ([96] chap 3 p63) and reported hereafter,

F � 0, G� 0,
1
α

GT [W ◦ (GF)β−1 ◦ ((GF)α−Xα)]� 0, 1
α
[W ◦ (GF)β−1 ◦ ((GF)α−Xα)]FT � 0,

F ◦
(
GT [W ◦ (GF)β−1 ◦ ((GF)α−Xα)]

)
= 0, G◦

(
[W ◦ (GF)β−1 ◦ ((GF)α−Xα)]FT

)
= 0.

(4.59)
It could be easily checked that the update rules are consistent with the above KKT conditions.

It is to be noted that some special choices of parameters α and β lead to bridge existing NMF meth-
ods, i.e., α-NMF, β-NMF. Moreover, these update rule are weighted versions of αβ-NMF. As a result
and consistently with the previous robust methods based on Huber NMF or CIM-NMF, weights could
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also be computed adaptively at each iteration. This formulation provides a more flexible framework
to deal with outliers.

4.6 Conclusion

In this chapter, the concept of outliers was introduced and several kinds of outliers can be en-
countered. This problem has often been solved in robust regression and it served as an impetus to
introduce current indexes applied in Robust Statistics. In the presence of outliers (deviations from a
regular model), some authors proposed on one hand to split the data into a sparse matrix and a low
rank matrix. This task is usually performed by an optimization framework which favors the sparsity
of the sparse matrix and the low rank property of the other matrix. On the other hand, the framework
of modified cost functions for an optimization purpose is extensively investigated. The context of
M-estimators appears interesting such that many researchers have tried to extend this optimization
framework to the case of NMF. In this chapter, the correntropy based NMF, the Huber NMF and
the αβ-WNMF are reviewed and they can provide improved solutions. However, the incorporation
of extra information reduces the solution domain. This kind of information is revisited in the next
chapter.
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CHAPTER 5

Existing Informed NMF methods with set
values and sum-to 1 variables.

5.1 Introduction

The previous chapter highlighted the need for special cost functions to cope with irregular points
in the data matrix. αβ-divergences were one of the various modified cost functions which are able to
resist to this kind of abnormal points.

The purpose of this chapter is to investigate informed NMF with special constraints. The focus is
on the sum-to-1 variables due to the definition of the profile matrix. Special structures of the factor
are then studied as part of the NMF problem.

A second set of contraints which are reviewed are set values in one factor. The solutions which
are essentially provided in Limem’s work [96] are revisited.

Then, both previous constraints are addressed simultaneously by using special normalization of
the previous updates obtained with set values. These methods are investigated and are able to be used
in the field of pollution source apportionment.

5.2 Sum-to -1 variables in NMF problems

Sum-to-1 variables may be encountered in several fields and also in different ways which are
described hereafter.

5.2.1 Sum-to-1 abundances in Hyperspectral Unmixing

The objective of Hyperspectral Unmixing is to recover from a data cube or a data matrix X the con-
stituents spectra F (the endmembers) and their respective abundances contained in matrix G. Usually,
the Linear Mixture Model (LMM) may be satisfied so that LMM can be written as [10]

X = G ·F, (5.1)
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Figure 5.1 – Geometric point of view for Hyperspectral data.

where X ∈ IRn×m, n is the number of pixels and m the number of spectral bands. The abundance
property (or full additivity) states that each row of G sums to 1, which may be expressed as

G ·1p×n = 1n×p (5.2)

X may be interpreted as n data points ∈ IRm which are generated from convex combinations of the
endmembers contained in the rows of F . Since the p endmembers may be represented as belonging
to IRm

+, they may form vertices of a polytope. Due to the non-negative convex combination of these
endmembers, n data points are lying inside a polytope delimited by the vertices formed with the rows
of F . This interpretation is provided in Figure (5.1) in the case of m = 3 spectral bands. It may then
be noticed that each row of G is lying in a p−1 unit simplex due to Eq (5.2).

The sum-to-1 constraint is often taken into account by considering that p variables are lying inside
a p− 1 simplex or by using ADMM [181]. Moreover, Eq. (5.2) may be usually split into individual
constraints, which allows to solve several small problems [65].

5.2.2 Other sum-to-1 variables.

Another property encountered is a row sum-to-1 information associated with the second factor.
Transposing Eq. (5.1) does not change the property. Sum-to-1 acts on the m entries of a row of F .
Thus, it is completely different from the case of full additivity. This property is given as,

Fp×m ·1m×m = 1p×m (5.3)

By using a geometrical viewpoint, the data matrix may be viewed as n row points lying in IRm
+

which are non-negatively spanned by the p profiles. These profiles are belonging to a m− 1 unit
simplex according to Eq (5.3). The n data points are lying inside a convex hull spanned by these p
profile vectors. So, the situation is quite different from the hyperspectral unmixing’s case.
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Figure 5.2 – Geometric point of view for chemical data.

5.2.3 Parametrization of the factors

The exact factorization of the data matrix X = G ·F is assumed to be satisfied with the constraint
of the sum-to-one of F . In this case, the sum of each data row could be evaluated

Xn×m ·1m×m = Gn×p ·Fp×m ·1m×m, (5.4)

= Gn×p ·1p×m, (5.5)

This property states that the sum of each row of X is equal to the sum of each row of G when the exact
factorization is assumed. When only approximate factorization is available, this property becomes an
approximate relationship, i.e.,

Gn×p ·1p×m ≈ Xn×m ·1m×m. (5.6)

To authors best knowledge, such approximate constraints are not considered in the literature except
by the authors from [91] who deal with both exact constraints.

Lantery [91] proposed to take into account such constraints by introducing auxiliary variables
Z and T of appropriate dimensions which are only required to be non-negative and are respectively
related to matrices F and G, 1

F =
Z

Z ·1m×m
and G =

T ◦ (X ·1m×p)

T ·1p×p
, (5.7)

1. These definitions of the auxiliary variables corresponds to sum-to-1 variables along the rows whereas Lantery defined
sum-to-1 variables along the columns. In order to perform the correpondence, the data matrix and the factors has to be
transposed.
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5.2.4 Solving the structured NMF problem

Lantery proposed to deal with such parametrization to solve the approximate NMF problem, e.g.,

argmin
G�0,F�0

J (X ,G ·F) s.t.
{

F ·1m×m = 1p×m,

Gn×p ·1p×p = Xn×m ·1m×p.
(5.8)

Using Eq. (5.7), Problem (5.8) could be formulated as an optimization problem with matrices Z and
T , i.e.,

{T̂ , Ẑ}= argmin
T�0,Z�0

J
(

X ,
T ◦ (X ·1m×p)

T ·1p×p
· Z
Z ·1m×m

)
. (5.9)

The Split Gradient Method (SGM) is an attractive approach [91] to solve the unconstrained Non-
negative Matrix Factorization (NMF) problem as well as Problem (5.8). The SGM may be classified
into Gradient based approaches. Eq (3.47) explains the descent scheme in the case of unconstrained
NMF. Some relations with the multiplicative NMF are established by Lantery [91] in this case.

The purpose of this section is to develop the SGM technique for Problem (5.8). It needs to compute
the gradient of the function J (X , .) with respect to each matrix factor. However, the focus is only on
the rules for matrix F since the rules for G can be obtained similarly. Referring to Eq (5.7), the
differentiation regarding Zi j is taking into account the profile entries located in the same row due to
Eq (5.8). So, the sum is acting on the column index j only, i.e.,

∂J
∂Zik

=
m

∑
j=1

∂J
∂Fi j
·
∂Fi j

∂Zik
. (5.10)

The matrix differentiation with respect to Zik is derived from Eq (5.7)

∂Fi j

∂Zik
=

1
∑l[Z]il

× (δ jk− [F ]i j) (5.11)

where δ jk is the kroneker delta function. It leads to drop the sum of the first term in the bracket, e.g.,

− ∂J
∂Zik

=
1

∑l[Z]il

(
(− ∂J
∂Fik

)−∑
j
[F ]i j(−

∂J
∂Fi j

)

)
(5.12)

Starting from −∂J
∂Z

= P−Q,matrices P and Q may be chosen as

P =

(
−∂J
∂F

)
s

Q =

(
F ◦ (−∂J

∂F
)s

)
·1m×m (5.13)

where the subscript s stands for a shift applied to the partial differentiation (−∂J
∂F

). The SGM frame-
work enables to conduct a gradient descent scheme on Z according to Eq (3.47),

Zk+1 = Zk +η
k
F ◦Zk ◦


(
−∂J
∂F

)
s(

F ◦ (−∂J
∂F

)s

)
·1m×m

−1p×m

 (5.14)
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Using Eq (5.7) and by noticing that the flux along the rows is conservative –namely Zk+1 ·1m×m = Zk ·1m×m–
a simplified equation can be written as,

Fk+1 = Fk +η
k
F ◦Fk

 (−∂J
∂Fk )s(

F ◦ (−∂J
∂F

)s

)
·1m×m

−1p×m

 (5.15)

The same procedure could be applied to G
X ·1m×p

since it is also a sum-to-1 variable, and it leads to a
similar update rule with an extra scale factor, e.g.,

T k+1 = T k +η
k
G ◦T k ◦

 (−∂J
∂G

)s(
G

X ·1m×p
◦ (−∂J

∂G
)s

)
·1m×m

−1p×m

 (5.16)

Then, the update rule for G should be derived by using the conservative property of the sum of T over
iterations, e.g.,

Gk+1 = Gk +η
k
G ◦Gk

 (−∂J
∂Gk )s(

G
X ·1m×p

◦ (−∂J
∂G

)s

)
·1m×m

−1n×p

 (5.17)

It could be noticed that a special form of ηk
F = 1p×m leads to a multiplicative form of both update

rules, e.g. for F ,

Fk+1 = Fk
(−∂J
∂Fk )s(

F ◦ (−∂J
∂F

)s

)
·1m×m

(5.18)

Note also that the shift can be designed in several ways. Lantery proposed to use the following
definition [91] in order to ensure the non-negativity,(

−∂J
∂Fk

)
s
=

(
−∂J
∂Fk

)
−min

i, j

(
−∂J
∂Fk

i j

)
1p×m. (5.19)

Finally, an example should be provided in order to illustrate the rules obtained in a simple case. Let’s
consider the Frobenius cost function, then the partial differentiation yields(

−∂J
∂Fk

)
s
= GT ·(X−G ·F)+η

k1p×m. (5.20)

where ηk is the shift scalar value at iteration k. In the case of a stepsize ηk
F = 1p×m, the update rule is

Fk+1 = Fk ◦
GT ·(X−Gk ·Fk)+ηk1p×m

(Fk ◦ (GT ·(X−Gk ·Fk)+ηk1p×m)) ·1m×m
(5.21)

As a summary, the outline of the algorithm is provided in Algorithm (4)
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Algorithm 4 SGM with sum-to-1 variables
Reading of X
Initialization of G and F
while the stopping rule is not fulfilled do

Compute F with fixed G according to Eq. (5.15)
Compute G with fixed F using Eq (5.17)

end while

5.3 Set Values in the Profile Matrix

5.3.1 Introduction

In several applications, the partial knowledge of variables is available. This knowledge is desired
to be incorporated into algorithms. However, classical algorithms are providing a solution with a
complete free variables. A projection onto the set of constraints may be performed either at the
end of the iterations or at each iteration. The projection within iterations is illustrated in Alg. (5).

Algorithm 5 Projective NMF

while the stopping rule is not fulfilled do
Update G with fixed F
Update F with fixed G
Project F onto the constraint subspace

end while

The projection of NMF within iterations onto the constraints is called here a projective NMF. So, a
special parametrization which takes into account this knowledge is introduced. New algorithms for
this parametrization are intended. The question to answer is whether this kind of algorithm would
correspond to a simple projective NMF along the set of constraints.

5.3.2 Parametrization of the profile matrix

In several applications, the values of some entries of F may be provided by experts. The corre-
sponding parameterization—proposed in [98] and outlined hereafter for the sake of clarity— takes
into account this knowledge. Let Ω be a p×m binary matrix which informs the presence or the
absence of constraints on each element Fi j of the matrix F , i.e.,

Ωi j ,

{
1 if Fi j is known

0 otherwise
(5.22)

Then the p×m binary matrix Ω is defined as Ω , 1p×m−Ω. Φ is the p×m sparse matrix of set
values, i.e.,

Φ, F ◦Ω. (5.23)
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By construction, Φi j—the (i, j)-th element of Φ—is equal to zero when Ωi j = 0. It can be easily
proven that

Φ◦Ω= Φ, Φ◦Ω= 0. (5.24)

From [98], ∆F is defined as the free part of the matrix profile under the form

∆F , F−Φ◦Ω. (5.25)

Following the general procedure in [98]—which combines Eqs. (5.25), (5.23), and (5.24)—the matrix
F is obtained in the following form

F =Ω◦Φ+Ω◦∆F (5.26)

Moreover, it may be noticed that this parametrization involves only non-negative matrices. As a result,
F fulfills the following inequality,

F � Φ. (5.27)

Matrix Φ is fixed and known in advance whereas ∆F accounts for the non-negative free matrix whose
structure is imposed and which has to be found. Now, the parametrization (5.26) is used as a reference
upon which it can be relied on.

5.3.3 New Informed Frobenius NMF versus naive projective Frobenius NMF.

In this section, we intend to develop dedicated methods for solving a NMF problem with con-
straints. The Frobenius case is highlighted here even if other dissimilarities may be used. The NMF
problem under parametrization (5.26) may be reformulated as an optimization problem

{G,F}= argmin
G,F

Tr
(
(X−G ·F)T ((X−G ·F)◦W )

)
,

s. t. G� 0, F � Φ, F =Ω◦Φ+Ω◦∆F.
(5.28)

The function J (., .) is defined as J (., .), Tr
(
(X−G ·F)T ((X−G ·F)◦W )

)
. Problem (5.28) may be

split into 2 coupled subproblems which alternatively set one unknown matrix, i.e.,

Gk+1 = argmin
G�0

Tr
(
(X−G ·Fk)T ((X−G ·Fk)◦W )

)
,

Fk+1 = arg min
F�Φ

Tr
(
(X−Gk ·F)T ((X−Gk ·F)◦W )

)
s. t. F =Ω◦Φ+Ω◦∆F. (5.29)

Let R be the residual matrix defined by R , X −G ·(Ω◦Φ). Appendix (A) derives the expression of
the differentiation of J with respect to the free part of F , i.e.,

∂J
∂4F

= 2Ω◦
(
GT ·((G · [Ω◦4F ]−R)◦W )

)
. (5.30)
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The new method reported hereafter is introduced by using the 3rd KKT condition which is available
in Eq (A.14) 2. It reads

4F ◦Ω◦
(
GT ·(G · [Ω◦4F ])◦W )

)
=4F ◦Ω◦

(
GT ·(R◦W )

)
(5.31)

By considering that4F =4Fk+1 or4F =4Fk, it could be easy to obtain the new update rules, i.e.,

4Fk+1 =4Fk ◦Ω◦ GT ·(R◦W )

GT ·(G · [Ω◦4F ])◦W )
(5.32)

Eq (5.32) should be seen as a projection operator on the free subspace. It behaves as a multiplicative
scheme for the free entries. Note also that it considers equivalent data R instead of X in the classical
scheme. As a consequence, R should be maintained non-negative along iterations. It is straightforward
to check the 3rd KKT condition by using these rules. In contrast, the 2nd KKT condition is not ensured
to be fulfilled since when4Fi j = 0, the corresponding gradient entry may be negative. This problem
is also reported in classical NMF in [66].

Another strategy may be used starting from Eq (5.31) and by moving4F ◦Ω◦
(
GT ·(G · [Ω◦Φ])◦W )

)
to the left side, e.g.,

4F ◦Ω◦
(
GT ·(G · [Ω◦Φ+Ω◦4F ])◦W )

)
=4F ◦Ω◦

(
GT ·(X ◦W )

)
. (5.33)

The previous Equation yields

4Fk+1 =4Fk ◦Ω◦ GT ·(X ◦W )

GT ·(G · [Ω◦Φ+Ω◦4F ])◦W )
(5.34)

This method may be called naive method since it directly projects the unconstrained weighted rules
onto the subspace of free entries. It also checks the 3rd KKT condition. These two methods (5.32,5.34)
may be also compared using the Split Gradient framework. The difference lies in a shift equal to
Ω◦
(
GT ·(G · [Ω◦Φ])◦W )

)
in the numerator and the denominator of the naive method. So the ques-

tion which may be raised is: what is the difference between Eq. (5.32) and Eq. (5.34)? In fact, the
difference comes from a numerical aspect. If Φ is considered to bear most of the information, namely
each column ||Φ:,i||1 >> ||4F:,i||1, then the numeric scheme (5.34) may be very slow due to a ratio of
very large numbers. The number of iterations required becomes very huge. In the opposite case where
||Φ:,i||1 << ||4F:,i||1, both schemes are performing equivalently since the residual matrix is close to
X , i.e., R≈ X .

To conclude, it seems necessary to develop schemes which are not conventional Projective NMF.
That is the purpose of the next section which focuses on the more general framework of αβ-divergences.

5.3.4 Informed αβ-divergence NMF

The problem to tackle here is the constrained NMF problem with a weighted αβ-divergence dis-
similarity. This cost function is able to cope with a reasonable amount of outliers without beeing

2. The method is introduced in [96] by using a MM strategy. It leads exactly to the same expressions.
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grossly affected. This part is a an outline from Limem ’s work [96].

So, the first problem is formulated as

{G,F}= argmin
G,F

Dαβ

W (X−G ·Φ||G ·4F)

s. t. G� 0, F � Φ, F =Ω◦Φ+Ω◦4F.
(5.35)

Problem (5.35) amounts to find an approximate solution to X −GΦ ≈ G4F in the αβ-divergence
sense. Another viewpoint consist in trying to approximate X as X ≈ G ·(Ω◦Φ)+G ·(Ω◦4F , and it
yields the second problem

{G,F}= argmin
G,F

Dαβ

W (X ||GΦ+G4F)

s. t. G� 0, F � Φ, F =Ω◦Φ+Ω◦4F.
(5.36)

Each problem is tackled in [96] using a MM strategy, by focusing on a column vector since each
problem is separable into a set of vectorial subproblems.

The divergence of a column vector for Problems (5.35,5.36) is respectively expressed in the form,

Dα,β
w (x−G ·ϕ||G ·4 f ) = ∑

i
wi Dα,β

(
(x−G ·ϕ)i||(G ·4 f )i

)
, (5.37)

and
Dα,β

w (x||G ·ϕ+G ·4 f ) = ∑
i

wi Dα,β
(

xi||(G ·ϕ)i +(G ·4 f )i

)
. (5.38)

Both equations can be expressed in terms of a single function hα,β(z), defined as,

hα,β(z) =− 1
αβ

[
zβ− α

α+β
− β

α+β
zα+β

]
∀(α,β,α+β) 6= 0, (5.39)

Let Γ be defined as the p× (p− l) orthonormal matrix of free parameters [96] linking the p− l× 1
unknown vector θ and the p×1 free column vector4 f ,

4 f = Γ ·θ, (5.40)

and l is the number of set values in the current column vector. For the sake of clarity, let the matrix U
(with general entry ui j) be

U , G ·Γ. (5.41)

and let λ be λ , α+β−1. Using the previous scale property of the divergence (4.31), Eq. (5.37) and
Eq. (5.38) become

Dα,β
w (x−G ·ϕ||G ·4 f ) = ∑

i
wi (x−G ·ϕ)α+β

i hα,β

(
∑ j ui jθ j

(x−G ·ϕ)i

)
, (5.42)
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and

Dα,β
w (x||G ·ϕ+G ·4 f ) = ∑

i
wi xα+β

i hα,β

(
(G ·ϕ)i +∑ j ui jθ j

xi

)
. (5.43)

The function hα,β(z) has the property of convexity for all z > 0 in the domain of parameters
described by β ∈ [min(1,1−α);max(1,1−α)]. This parameter domain is chosen so that the convexity
property is preserved. Based on the convexity of hα,β(z) and similarly to [96] (chap 3, p 83), two
majoring functions may be deduced by applying twice the Jensen inequality ,

H α,β
1,w (θ j,θ

k
j) = ∑

i
wi (x−Gϕ)

α+β

i ∑
j

ui j θk
j

∑l uil θk
l
·hα,β

(
θ j ∑l uil θk

l

(x−Gϕ)i θk
j

)
, (5.44)

and

H α,β
2,w (θ j,θ

k
j) = ∑

i
wi xλ

i (x−Gϕ)i ∑
j

ui j θk
j

∑l uil θk
l
·hα,β

(
θ j ∑l uil θk

l

(x−Gϕ)i θk
j

)
. (5.45)

Both majoring functions are the basis to design new update rules. Let us begin with the first majoring
function.

5.3.4.1 First approach with residual

By cancelling the differentiation of the auxiliary function (5.44), the update rule of the jth entry
of the vector of the free parameters θ is,

(
θ j

θk
j

)α

=
∑
i

wi ui j ·rα
i ·(∑l uilθ

k
l )

β−1

∑
i

wiui j ·(∑l uilθ
k
l )

λ
. (5.46)

Therefore, the vector of free parameters may be expressed in the form,(
θ

θ
k

)α

=
UT ·

[
w◦ rα ◦ (U ·θk)β−1

]
UT ·

[
w◦ (U ·θk)λ

] . (5.47)

By combining Eq. (5.40) with the above relationship, the expression of one column of the matrix4F
is derived:

4 f k+1

4 f k =

[
Γ ·UT · [w◦ rα ◦ (U ·θk)β−1]

Γ ·UT · [w◦ (U ·θk)λ]

] 1
α

. (5.48)

By replacing U according to Eq. (5.41), and by noticing that Γ ·ΓT = diag(ω) = diag(1p×1−ω), the
new update rule is derived:

4 f k+1←4 f k ◦ω◦Mα,β

f k , (5.49)

where

Mα,β

f k ,

(
GT
[
w◦ rα ◦ (G ·4 f k)β−1

]
GT
[
w◦ rα ◦ (G ·4 f k)λ

] ) 1
α

. (5.50)
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Eq. (5.49) may be extended to the matrix case by noticing that 4 f , ω et ϕ are respectively vectors
extracted from general matrices 4F , Ω et Φ. Then, the free matrix expression is (with Fk+1 =

Ω◦Φ+Ω◦4Fk+1)
4Fk+1 =4Fk ◦Ω◦Mα,β

F (Gk,Fk), (5.51)

where Mα,β
F (G,F) accounts for

Mα,β
F (G,F) =

GT ·
(

W ◦Rα ◦ (G ·(F ◦Ω))β−1
)

GT ·
(
W ◦ (G ·(F ◦Ω))λ

)
( 1

α
)

, (5.52)

and the residual matrix R is defined as R , X−G ·Φ. The corresponding update rule for the contribu-
tion matrix remains unconstrained so that it follows the rule (4.58) which is recalled here

G← G◦


(

W ◦Xα ◦ (G ·F)β−1
)

FT

(W ◦ (G ·F)λ)FT

( 1
α
)

. (5.53)

Equations (5.51,5.52,5.53) are the basis relationships of the Informed NMF method with residual
based on weighted αβ-divergence.

5.3.4.2 Second approach without residual

Similarly, the update rules for the second approach may be obtained. Appendix (B) derives a
complete proof of the update rules. The matrix form of the update rules for F are outlined hereafter

4Fk+1 =4Fk ◦Ω◦Nα,β
F (Gk,Fk), (5.54)

where Nα,β
F (G,F) is given by

Nα,β
F (G,F) =

GT
(

W ◦Xλ ◦R1−β ◦ (G ·(F ◦Ω))β−1
)

GT (W ◦Xλ ◦R1−α−β ◦ (G ·(F ◦Ω))λ)

( 1
α
)

. (5.55)

In addition, the update rules for the contribution matrix remains the same as defined in Eq. (5.53). It
should be stressed that Nα,β

F (G,F) in Eq. (5.55) and Mα,β
F (G,F) in Eq. (5.52) are the same if W is

replaced in the latter expression by
W ,W ′ ◦Xλ ◦R−λ. (5.56)

This means that the update rules for F may be viewed similar if the weights iteratively updated. 3

The update rules of the second approach are based on Eqs (5.55,5.54) and Eq. (5.53) in the domain
(β ∈ [min(1,1−α);max(1,1−α)]) 4. The validity is only guaranteed within this convex domain.
Outside this domain, some additional assumptions on the reconstructed data are needed to ensure the

3. However, the update rules for G would become different.
4. The same argument stands also for the first method.

73



local convexity property [27]. As we chose to set α and β so that they belong to Area 2 in Fig. (4.4),
the convexity domain reduces the possible area to the intersection between Area 2 and the half-plane
β≤ 1.

Besides, Limem [96] proved that the the KKT conditions are fulfilled for both methods 5.

5.3.5 Conclusion

In this section, solutions of NMF Problem with set values are presented and discussed. Dif-
ferent cost functions are investigated leading to different solutions. The special framework of αβ-
divergences enables to propose 2 different NMF solutions depending on the way the dissimilarity
is used. This framework enables to involve many other dissimilarities by an appropriate choice of
parameters α and β. In addition, a weighted approach allows to consider various confidence in the
measurements.

However, only one kind of constraints have been taken into account for the moment, either sum-to-
1 constraints or set values. These one are conflicting since imposing one kind of constraints prevents
to keep the other one. Now, we would like to cope with both kind of constraints in the next section.

5.4 NMF with set values and sum-to-1 variables

5.4.1 Introduction

The distinct implementation of the sum-to-1 constraints and the flexible set values in one factor
has just been investigated. This has led to new update rules for F which are outlined in the previous
sections. However, the simultaneous constraints are not dealt with. Subsequently, the proposed ap-
proach is to drop one constraint and apply an informed NMF scheme intended for the other kind of
constraint, and then to perform a projection step on the remaining subspace corresponding to the other
constraint. Thus, algorithms which are based on such a scheme are investigated in [102] where the

Algorithm 6 Projected Informed NMF scheme

while the stopping rule is not fulfilled do
Compute F with fixed G
Compute G with fixed F
Project onto the subspace of dropped constraints

end while

emphasis is performed on both constraints in conjunction with projected Gradient. Note that,being
multiplicative, the previous algorithms may generally be viewed as a special case of the gradient
descent. As a consequence, a close connection with Lin’s methods [102] may be established.

5. For a complete study of KKT conditions, please refer to [96]
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5.4.2 Formulation of the different problems with both constraints

The general formulation of an approximate NMF solution under described constraints is

argmin
G,F

Dα,β
W (X ||G ·F) s.c.


F � 0,G� 0,
F ◦Ω= Φ,

F ·1mm = 1p×m.

(5.57)

Using the parametrization described in (5.26), Eq. (5.57) reduces to

min
G,∆F

Dα,β
W

(
X ||G ·(Ω◦Φ)+G ·(Ω◦∆F)

)
s.t.
{
∆F � 0,G� 0,
∆F ·1mm = 1p×m−Φ ·1mm.

(5.58)

An alternative inspired by variants found in previous sections may be investigated under the form

argmin
G,∆F

Dα,β
W

(
X−G ·Φ||G ·(Ω◦∆F)

)
s.t.
{
∆F � 0,G� 0,
∆F ·1mm = 1p×m−Φ ·1mm.

(5.59)

Eq. (5.58,5.59) are the reference problems to be solved. The next section is dedicated to review what
was done in Limem’s work [96]. In the following sections, the definition which gathers the different
masks is adopted, e.g.,

Rα,β
F ,

{
Mα,β

F for the problem (5.58),
Nα,β

F for the problem (5.59),
(5.60)

where Mα,β
F is defined according to Eq (5.52) while Nα,β

F relies on Eq (5.55).

5.4.3 NMF with set values and basic normalization

It is proposed to drop first the sum-to-1 constraint, perform an update which takes into account
only the set values, and then to project the results onto the unit simplex. The unit simplex is defined
as a component wise form

m

∑
j=1

fi j = 1 ∀= 1, ....., p, (5.61)

or as its matrix form
Fp×m ·1m×m = 1p×m (5.62)

To project onto the unit simplex 6, a normalization of the current estimate F may be performed. Ac-
cording to [91], it is possible to perform a normalization step (which may be viewed as an oblique

6. The projection onto the unit ball is usually defined by minimizing the Euclidian distance between the original point
and its projection [33].

75



projection)

F̃ =
F

F ·1m×m
. (5.63)

Eq. (5.63) is an `1 row normalization whereas a scaling along the columns of G may be performed,
i.e.,

G̃ = G◦ [1n×m ·FT ]. (5.64)

These two joint steps are called hereafter normalization 1. The product G̃ · F̃ may be evaluated, using
its matrix form,

G̃ · F̃ =
F

F ·1m×m
·
(
G◦ [1nm ·FT ]

)
, (5.65)

or using its general entry,

(G̃ · F̃)i j = ∑
k

Gik

∑
l

Fkl
·Fki ·∑

l
Fkl = ∑

k
Gik Fki = (G ·F)i j. (5.66)

It turns out that G̃ · F̃ = G ·F and it means that the operating point is not changed after these steps.
This ensures that the descent direction proposed in previous algorithms is kept unchanged, and conse-
quently ensures a sufficient decrease of the cost function. However, set values are not preserved, but it
is expected to reach a limit point which checks both constraints including set values. The correspond-
ing algorithm may be outlined as shown below:

Algorithm 7 Structure of the NMF algorithm with normalization

while the stopping rule is not fulfilled do
Compute F with fixed G using Eq (5.55)
Compute G with fixed F according to Eq. (5.53)
Normalization 1 of G and F

end while

The algorithm (7) could be outlined in a single step. To achieve this, the update rule for F is
reformulated as

F̃k+1 =
Ω◦Φ+ F̃k ◦Ω◦Rα,β

F (G̃k, F̃k)[
Ω◦Φ+ F̃k ◦Ω◦Rα,β

F (G̃k, F̃k)
]

1mm

, (5.67)

It is also recalled that ˜ operator means sum-to-1 variable for F and rescaled variable for G. The
contribution matrix G̃k+1 is expressed in its compact form as

G̃k+1 = G̃k ◦Mα,β
G (G̃k, F̃k)◦ (1nm · [Ω◦φ+ F̃k ◦Ω◦Rα,β

F (G̃k, F̃k)]T ) (5.68)

where the expression of Mα,β
G (G,F) is defined in Eq. (4.58). The drawback of this method is in its

unability to keep the set values at the end of each iteration. Now, an alternative solution is investigated.
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5.4.4 Alternative solution with normalization of free entries.

Limem [96] proposed to directly take into account both constraints, set values and the sum-to-1
of the profile matrix F . A new parametrization may be defined as,

F̃ =Ω◦Φ+
Z ◦Ω

(Z ◦Ω) ·1m×m
◦ (1p×m−Φ ·1m×m), (5.69)

where,
— Ω◦Φ accounts for the set values.

— (1p×m−Φ ·1m×m) is the matrix that consists of the sum of each row of the free entries

— Ω◦Z
(Ω◦Z)·1m×m

represents the different proportions of the free components.

Starting with an unnormalized version of F satisfying Eq. (5.23), then Eq. (5.69) suggests a new way
to normalize a current profile F , while preserving set values, i.e.,

F̃ =Ω◦F +
Ω◦F

(Ω◦F) ·1mm
◦ (1p×m−Φ ·1mm) (5.70)

Eq. (5.70) is the reference equation for a new normalization, denamed as N2 normalization. From
Eq. (5.54), the new normalized free part ∆F̃k can be written as,

4F̃k+1 =
Ω◦Rα,β

F ◦4F̃k[
Ω◦Rα,β

F ◦4F̃k
]
·1m×m

◦ (1p×m−Φ ·1m×m). (5.71)

Then, it results in a complete normalized profile matrix,

F̃k+1 =Ω◦Φ+
Ω◦Rα,β

F ◦4F̃k[
Ω◦Rα,β

F ◦4F̃k
]

1m×m

◦ (1p×m−Φ ·1m×m), (5.72)

which yields an expression related to the normalized profile F̃k at iteration k,

F̃k+1 =Ω◦Φ+
Ω◦ F̃k ◦Rα,β

F[
Ω◦ F̃k ◦Rα,β

F

]
1m×m

◦ (1p×m−Φ ·1m×m). (5.73)

It should be stressed that this solution does not preserve the operating point (without normalization)
and it may change the descent direction when processing the normalization. The update rule for G is
not constrained at all because no scaling is allowed for G, it remains the same as previously except
that the mask is applied with F̃k, i.e.,

Gk+1 = Gk ◦Mα,β
G (Gk, F̃k), (5.74)
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Table 5.1 – Different methods with Normalization

Methods Rules on F Rules on G Mask on F Mask on G
αβ-N1-CWNMF-R Eq (5.67) Eq (5.68) Mα,β

F (G̃k, F̃k) Mα,β
G (G̃k, F̃k)

αβ-N1-CWNMF Eq (5.67) Eq (5.68) Nα,β
F (G̃k, F̃k) Mα,β

G (G̃k, F̃k)

αβ-N2-CWNMF-R Eq (5.73) Eq (5.74) Mα,β
F (Gk, F̃k) Mα,β

G (Gk, F̃k)

αβ-N2-CWNMF Eq (5.73) Eq (5.74) Nα,β
F (Gk, F̃k) Mα,β

G (Gk, F̃k)

5.4.5 Algorithm summary

Table (5.1) outlines the different algorithms and the corresponding acronyms used herafter. They
are all expressed in the form αβ−N−CWNMF(−R) for Normalized and Constrained Weighted αβ-
NMF (with or without) residuals. Practically, the two normalizations used above are formulated as N1

or N2. It is stressed that a backward update of the mask is applied and is computed with the previous
operating point Gk or G̃k and F̃k which is a slight modification of what has been proposed in [96]. As
a summary, four methods can be used to solve the constrained NMF problem.

In addition, other informed methods should have been adapted to this context. However, they can
not be mentioned as reference methods because they are not available in the litterature. First, a semi
informed Lantéri method [91] could be imagined where only the update of F would be required to
follow a sum-to-1 scheme. A projected version of Lanteri’s method onto the set values is another
approach. The projection corresponds then to the mapping of Lantéri’s update onto the set values.

5.5 Conclusion

In this chapter, sum-to-1 variables are first investigated. It is mentioned that each profile row
accounts for a sum-to-1 variable which is noticed as a different situation from abundances in hyper-
spectral unmixing. Then, Lantery’ Split Gradient Method is reviewed with a specific parametrization.

In a second part, set values in NMF problems are discussed and dedicated methods in the frame-
work of αβ-divergences are presented, which yields two different update rules depending on the way
the dissimilarity is performed.

Then, both sum-to-1 and set values constraints are considered in the NMF problem. It is tackled
by using the previous update rules followed by a inner projection onto the unit simplex, called nor-
malization. This normalization is either performed on a complete row of F or performed only on the
free remaining variables of one row. However, each solution has its own drawbacks and none of them
is completely satisfactory.

As a result, in the next chapter, the core of this thesis is presented and new informed NMF methods
are developed and are implemented in the interior domain of the whole constraints.
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CHAPTER 6

New Informed NMF methods

6.1 Introduction

In this chapter, new Informed NMF-based methods to address the source apportionment problem
are proposed and presented. They incorporate the sum-to-1 property and set values in the profile
matrix F .

The theoretical aspect of this chapter is based on the conference articles that are written during
this thesis [26, 25, 24]. The first part is devoted to present a new parametrization of the profile matrix
F which serves as a basis to develop new algorithms.

In the second part, new algorithms are presented, with a special emphasis on specific cost func-
tions. All these algorithms are based on Split Gradient Methods developed by Lanteri et al [91] to-
gether with the new parametrization. Three variants of these methods are proposed and each depends
on the cost function under consideration. Thus, the weighted Frobenius, the weighted αβ-divergence
and the weighted Huber cost function are considered in order to achieve the factorization process. In
each case, the corresponding update rules are derived and the analytical expressions are introduced.

In the third part, experiments are conducted using respectively "a toy simulation", a medium
scale simulation extracted from real data, and a real data case. The performance of each approach is
investigated in order to evaluate the potential improvement over existing methods.

6.2 Parametrization of the profile matrix

In many applications, the values of some components of the profile matrix may be provided by
experts. In addition, each row of the profile matrix sums to 1. So, the objective of this section is to
provide a parametrization which takes into account the above knowledge i.e., both constraints.

The general parametrization of the profile with set values used in chapter (5) is first recalled

F =Ω◦Φ+Ω◦∆F. (6.1)

It should be noted that each row of F sums to 1 implies that

(Ω◦∆F) ·1m×m = 1p×m−Φ ·1m×m � 0 (6.2)
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Figure 6.1 – Geometric plot of an informed source profile.

This means that Ω ◦∆F may be viewed as a scaled sum-to-1 variable as in [91]. As a consequence,
an unconstrained matrix Z 1 of the same size as the profile matrix F is defined, such that

F ◦Ω=Ω◦∆F =
Ω◦Z

(Ω◦Z) ·1m×m
◦(1p×m−Φ ·1m×m). (6.3)

Thus, the new parameterization is derived from Eq. (6.1) i.e.,

F =Ω◦Φ+
Ω◦Z

(Ω◦Z) ·1m×m
◦(1p×m−Φ ·1m×m). (6.4)

where Ω◦Z is required to be non-negative.

As an example, assume that F is a 1×3 profile matrix with Ω = [0,0,1] and Φ = [0,0,0.4]. The
expert knowledge then consists in the last entry of the source profile which is equal to 0.4.

The definition of Φ leads to

11×3−Φ ·13×3 = [0.6,0.6,0.6]. (6.5)

As a consequence, the parameterization based on Eq. (6.4) reads

F =

[
Z11 ·0.6

Z11 +Z12
,

Z12 ·0.6
Z11 +Z12

,0.4
]
. (6.6)

Figure (6.1) illustrates potential positions of the single source profile which may be on the green
segment delimited by the two green extreme points. The blue point is an example of such profile.
More generally, a source profile is defined as part of a polyhedron in IRm

+.

1. Z is only required to be non-negative.

80



As for Eq. (6.4), a similar parameterization may be applied to G. In that case, the sum of each
row of G should be equal to the sum of each row of X . Such a strategy was proposed in [91] for
non-informed NMF. However, such parameterization is not applicable here because it is only valid
in the framework of an exact factorization. Indeed, while the parameterization (6.4) is derived from
the definition of the profile matrix, only an approximate row sum constraint may be applied to G. In
addition, outliers may affect even more this relationship.

The parameterization (6.4) is the basis to develop the new informed methods. In the next section,
the Split Gradient NMF is adapted to the context of this new parametrization and it will take into
account several robust cost functions.

6.3 Informed Split Gradient NMF methods

6.3.1 Several problems to solve

The first problem to tackle is based on the Frobenius cost function in conjunction with the previous
parametrization [26], e.g.,

minJ (G,F), min
G�0,F�0

‖X−G ·F‖2
F ,W s.t. F satisfies Eq. (6.4), (6.7)

The αβ-divergence cost function is a robust cost function which extends the previous one, so the new
problem can be formulated as [25],

minJ (G,F), min
G�0,F�0

Dα,β
W (X ||G ·F) s.t. F satisfies Eq. (6.4), (6.8)

Another cost function which is able to cope with outliers is the weighted Huber cost function

minJ (G,F), min
G�0,F�0

R Huber
σ (R) s.t. F satisfies Eq. (6.4), (6.9)

where R is defined as the residual matrix and the weighted Huber cost function is given by

R Huber
σ (R), ∑

i, j
ρ

Huber(
ri, j

σi, j
). (6.10)

All these problems are difficult to split into independent vectorial problems. Thus, a MM strategy
may be difficult to apply and consequently, new tracks should be explored. That is, a SGM scheme
based on partial differentiation of auxiliary variables is adopted in the following.

6.3.2 Computation of ∂J
∂Z

Since the parametrization is related to a matrix Z, a scheme which is related to Z is to be derived.
To achieve this objective, the differentiation of J (.) with respect to its general term Zik, which is
related to the i-th row of F only, is required. The differentiation is then expressed as a sum of partial
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differentiations with respect to each general entry of F belonging to the same row, e.g.,

∂J
∂Zik

=
m

∑
j=1

∂J
∂Fi j
·
∂Fi j

∂Zik
. (6.11)

The first step involves the differentiation of Eq. (6.4) to express ∂Fi j

∂Zik
, e.g.,

∂Fi j

∂Zik
= (1−

m

∑
l=1
Φil)

∂

∂Zik

(
Ωi jZi j

∑
m
l=1ΩilZil

)
. (6.12)

Noticing that ∂
∂Zik

(∑m
l=1ΩilZil) =Ωik, Eq (6.12) can be written as:

∂

∂Zik

(
Ωi jZi j

∑
m
l=1ΩilZil

)
=

Ωikδ jk

∑
m
l=1ΩilZil

+Ωi jZi j
∂

∂Zik

(
1

∑
m
l=1ΩilZil

)
, (6.13)

=
Ωikδ jk

∑
m
l=1ΩilZil

−
Ωi jZi j(

∑
m
l=1ΩilZil

)2Ωik, (6.14)

where δ jk is the Kronecker function and is equal to 1 when j = k. Eq. (6.12) is then expressed as:

∂Fi j

∂Zik
= (1−

m

∑
l=1
Φil)

Ωi j

∑
m
l=1ΩilZil

[
δ jk−

ΩikZi j

∑
m
l=1ΩilZil

]
. (6.15)

In the second step, J (.) is differentiated with respect to Zik using Eq. (6.11). The substitution of
Eq. (6.15) into Eq. (6.11) leads to

∂J
∂Zik

=
1−∑lΦil

(∑m
l=1 ZilΩil)

(
∂J
∂Fik

.Ωik−
Ωik

(∑m
l=1 ZilΩil)

m

∑
j=1

(
∂J
∂Fi j

.Zi j.Ωi j)

)
, (6.16)

which can be transformed into a matrix form by noticing that the sums in the above equation corre-
spond to the right multiplication by 1m×m.

∂J
∂Z

=
1p×m−Φ ·1m×m

(Z ◦Ω) ·1m×m
◦
[
∂J
∂F
◦Ω−Ω◦

(
(
∂J
∂F
◦ Z ◦Ω
(Z ◦Ω) ·1m×m

) ·1m×m

)]
. (6.17)

By noticing that for any matrices A and B,

(
B

A ·1m×m
) ·1m×m =

(B ·1m×m)

(A ·1m×m)
(6.18)

and that

Ω◦Z
(Ω◦Z) ·1m×m

=
Ω◦F

1p×m−Φ ·1m×m
, (6.19)
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the matrix form of Eq. (6.16) is

∂J
∂Z

=
1p×m−Φ ·1m×m

(Z ◦Ω) ·1m×m
◦
[
∂J
∂F
◦Ω− Ω

1p×m−Φ ·1m×m
◦
(
(
∂J
∂F
◦F ◦Ω) ·1m×m

)]
. (6.20)

Let U ,−∂J
∂F

. The matrix (−∂J
∂Z

) may be written with respect to U as

(−∂J
∂Z

) =Ω◦
(

U−
(U ◦Ω◦F) ·1p×m

1p×m−Φ ·1m×m

)
◦
(

1p×m−Φ ·1m×m

(Z ◦Ω) ·1m×m

)
. (6.21)

The third KKT condition with respect to Z (which is a necessary condition to get a stationary point)
is expressed as Z ◦ ∂J

∂Z
= 0. This expression may be written with respect to F by using the property

(6.3), i.e.,

F ◦Ω◦ ∂J
∂Z

= 0. (6.22)

In the case of a stationary point (F = Fk = Fk+1), combining Eqs. (6.21) and (6.22) yields

Ω◦Fk ◦U− (U ◦Ω◦Fk) ·1m×m

1p×m−Φ ·1m×m
◦Fk+1 ◦Ω= 0. (6.23)

Since (Fk+1 ◦Ω) is the free part of Fk+1, it turns out that the free part of the profile matrix is given by

Fk+1 ◦Ω=Ω◦ Fk ◦U
[U ◦Ω◦Fk] ·1m×m

◦ (1p×m−Φ ·1m×m) (6.24)

The update rule for F follows the general scheme

Fk+1 =Ω◦Φ+Ω◦ Fk ◦U
[U ◦Ω◦Fk] ·1m×m

◦ (1p×m−Φ ·1m×m). (6.25)

which is consistent with the previous parametrization (6.4).

6.3.3 Design of a shift

In this subsection, the proof that the third KKT condition is fulfilled with the new matrix Us

(instead of U) is provided. The new form for Us is proposed and is available hereafter.

Theorem 1. Every Us of the form Us =U +S ·1m×m fulfills the third KKT condition (6.23).

Provided that U satisfies the condition (6.23), it amounts to check the necessary condition at
convergence,

Ω◦Fk ◦ (S ·1m×m)−
((S ·1m×m)◦Ω◦Fk) ·1m×m

1p×m−Φ ·1m×m
◦Fk+1 ◦Ω= 0. (6.26)

By using the property

((S ·1m×m)◦B)◦1m×m = (S ·1m×m)◦ (B ·1m×m), (6.27)
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it turns out that

Ω◦Fk ◦ (S ·1m×m)−
(S ·1m×m)◦ ((Ω◦Fk) ·1m×m)

1p×m−Φ ·1m×m
◦Fk+1 ◦Ω= 0. (6.28)

Knowing that (Ω◦Fk) ·1m×m = 1p×m−Φ ·1m×m, it leads that the necessary condition to get a station-
ary points is

Ω◦Fk ◦ (S ·1m×m)− (S ·1m×m)◦Fk+1 ◦Ω= 0 (6.29)

Given that F reachs a limit point (Fk = Fk+1), the necessary condition (6.29) is always fulfilled. This
completes the proof.

Provided this result, the new update rule is defined as

Fk+1 =Ω◦Φ+Ω◦ Fk ◦Us

[Us ◦Ω◦Fk] ·1m×m
◦ (1p×m−Φ ·1m×m). (6.30)

At this point, some possible choices of matrix S 2 which ensures the non-negativity of Us should be
highlighted. To achieve this goal, assume a specific form of U i.e,

U = P−Q (6.31)

P and Q could be always chosen such that they are non-negative. As a consequence, S should be
chosen as S , Q so that Us is

Us = P−Q+Q ·1m×m (6.32)

Since Ω ◦Ω = Ω, the replacement of U by Ω ◦U could be proposed in Eq (6.25). Consequently, S
could be chosen as S ,Ω◦Q. Thus, another possible expression of Us can be defined, i.e.,

Us =Ω◦P−Ω◦Q+(Ω◦Q) ·1m×m. (6.33)

Note that the last equation may be numerically more attractive since the shift may be lower than
in Eq (6.32). Thus, the ratio is far from 1 in Eq (6.30) (a situation which favors large changes in
the update). The two options (6.32,6.33) are extensively used hereafter in solving the mentionned
problems.

6.4 Solving the different Problems

This section summarizes the different update rules of the problems defined above. It is essentially
based on the scheme (6.30) which is adapted to the context of each specific cost function.

2. Lantery proposed to choose Us as Us ,U−Umin1m×m.
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6.4.1 Solution to Problem (6.7)

In the case of a weighted Frobenius cost function, the partial differentiation of J (.) with respect
to F is available in Eq (3.75) by looking at the left part of the second equation. So, U is expressed as

U = GT ((X−G ·F)◦W ) (6.34)

In this case, Q should be chosen equal to Q = GT ·(G ·F ◦W ). As a consequence, Us may be defined
as

Us = GT · ((X−G ·F)◦W )+
[
GT ·((G ·F)◦W )

]
1m×m. (6.35)

Another choice should be

Us =Ω◦
(
GT · ((X−G ·F)◦W )

)
+
(
Ω◦
[
GT ·((G ·F)◦W )

])
·1m×m. (6.36)

These two options are combined with the mentioned update rules for F in Eq (6.30). In addition, these
rules are completed by an unconstrained weighted Frobenius version of G available in Eq (3.76) and
recalled hereafter,

G = G◦ (W ◦X) ·FT

(W ◦ (G ·F)) ·FT (6.37)

As a summary, the update rule of F satisfies (i) the non-negativity of F , (ii) sum-to-1 constraints and
set values and (iii) the third KKT condition.

6.4.2 Solution to Problem (6.9)

In this section, another strategy suggests the use of a robust cost function between the components
of Eq. (2.5). The weighted Huber cost function accounts for a weighted Frobenius norm for small
residuals while providing weighted `1 penalization to large residuals.

The Huber cost function is an M-estimator [70] technique that can cope very well with the pres-
ence of outliers. It is a robust cost function designed to provide less residuals to large entries of R. It
is based on `2 and `1 norms.

The update rules of the profile matrix F which are consistent with the KKT conditions are de-
termined by differentiating J (.) in Eq. (6.9) with respect to F in both cases. For that purpose, the
following weight matrices W1 and W2 are defined:

W1,i j ,
1

σ2
i j
, W2,i j ,

{
1 if (GF−X)i j

σi j
< c,

c·σi j
|GF−X |i j

otherwise.
(6.38)

The matrix W2 should be seen as an adaptive re-weighting matrix and is depending on the small/large
weigthed residuals. In the case of a single data point labelled as an outlier, the weight in W2 is propor-
tional to the inverse of the residual value and is less than 1. Since W2 = 1n×m for the `2 component of
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the cost function, the differentiation of J (.) with respect to a single entry Fr j is given by,

∂J
∂Fr j

= Gir(GF−X)i jW1i j . (6.39)

The differentiation of J (.) for the `1 component yields

∂J
∂Fr j

=
n

∑
i=1

c
σi j
·Gir ·sign((GF−X)i j). (6.40)

Then, using the definition of the sign function, an equivalent expression is derived, i.e.,

∂J
∂Fr j

=
n

∑
i=1

c ·σi j

σ2
i j
·Gir ·

(GF−X)i j

|GF−X |i j
. (6.41)

Lastly, Eq. (6.42) is derived from Eq. (6.38)

∂J
∂Fr j

= Gir(GF−X)i jW1i jW2i j . (6.42)

Equations (6.39) and (6.42) yield a unified matrix expression, i.e.,

∂J
∂F

= GT [W ◦ (GF−X)], (6.43)

where W accounts for the generalized weight matrix defined as

W ,W1 ◦W2. (6.44)

The differentiation of J (.) has a similar expression for both the quadratic and the linear components of
the Huber function. The difference is in the reweighting process for large residuals, as explained with
the definition of W2. As a consequence, U follows the same expression as in Eq. (6.34) and possible
shifted versions of Us are described in Eq. (6.35,6.36).

6.4.2.1 Update rules for G

As stated earlier, the contribution matrix G is unconstrained. Once again, the weight W should be
taken into account in the update rules. Due to the symmetry in the expression of the weighted Huber
cost function, the differentiation with respect to G leads to a similar equation to Eq. (6.43) i.e,

∂J
∂G

= [W ◦ (G ·F−X)] ·F (6.45)

The Expression (6.45) is similar to the expression resulting from the differentiation of the quadratic
loss function in [66], with a weight matrix which depends on the individual residual defined in
Eq. (6.44). Thus, the expression of the update rules for G follows the same scheme in addressing
Problem (6.7), as described in Eq. (6.37). It should be mentioned however that the update of the
weight matrix should be made prior to the computation of F and G. This implies that the cutoff
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parameter, which is an adpative parameter, should be carefully tuned.

6.4.2.2 Choice of the cutoff parameter

The cutoff parameter is an adaptive parameter depending on the residuals. It is usually selected
as the median of the residuals [45]. In the framework of this thesis, it is related to weighted residuals.
While it could also be chosen as the median—i.e., half of the data are labeled as outliers— this choice
prevents to update the matrices in a sufficient way at each iteration and as a consequence, a different
strategy should be proposed. At the beginning of the NMF algorithm, all the data should be processed
in the quadratic region of the Huber function. Thus, c should go to the maximum value of the data. At
the end of the algorithm , it is expected that c should tend to an intermediate value. This will lead to
identify the outliers points. As a consequence, an heuristic choice of c could be proposed and is based
on the quantile function with a probability value linearly depending on the current iteration number k,
i.e.,

c = quantile(Rσ,1− k
Itermax

∗0.1) (6.46)

where Rσ is the residual matrix and its general entry Rσ
i j ,

ri j
σi j

, and Itermax is the maximum number
of iterations. This choice implicitly states that a maximum of 10 percent of the data may be labeled
as outliers data. This value of c was found to be a good trade-off in the preliminary tests. Different
strategies are also proposed by setting some constant percentage of outliers over iterations such as 10
or 20 percent.

6.4.2.3 Huber Algorithm

The algorithm may be summarized as follows:

Algorithm 8 Weighted Huber Informed NMF description (Huber SG-CWNMF).

while the stopping rule is not fulfilled do
Compute R and the weighted residuals Rσ

Compute c according to Eq. (6.46)
Update W according to Eqs. (6.38) and (6.44)
Update F according to Eq. (6.30) with Eq. (6.35) or Eq. (6.36)
Update G at fixed F according to Eq. (6.37)

end while

6.4.3 Solution to Problem (6.8)

The weighted αβ-divergence may be used as a robust cost function. Except the second kind of
shift (6.33), it has been completely investigated in [25]. The partial differentiation of the criterion
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with respect to F is expressed as

∂J
∂F

=
1
α

GT · [W ◦ (G ·F)β−1 ◦ ((G ·F)α−Xα)] (6.47)

By recalling that U ,−∂J
∂F

and by dropping the scalar factor in Eq. (6.47), U can be written as

U = GT ·(W ◦ (Xα ◦ (G ·F)β−1))−GT ·(W ◦ (G ·F)α+β−1). (6.48)

The non-negativity of F should be preserved and is automatically ensured when U is positive. An
analytic shift equal to the sum of the negative part of −∂J

∂F
provided in Eq. (6.47) is proposed. Thus,

the shifted matrix Us, consistent with the scheme in Eq (6.32) is given by

Us =GT ·(W ◦ (Xα ◦ (G ·F)β−1))−GT ·(W ◦ (G ·F)α+β−1)

+ [GT ·(W ◦ (G ·F)α+β−1)] ·1m×m.
(6.49)

An alternative solution for Us follows the scheme described in Eq. (6.33), and it yields

Us =Ω◦
[
GT ·(W ◦ (Xα ◦ (G ·F)β−1))

]
−Ω◦

[
GT ·(W ◦ (G ·F)α+β−1)

]
+
(
Ω◦ [GT ·(W ◦ (G ·F)α+β−1)]

)
·1m×m.

(6.50)

The update rules of the proposed αβ-divergence Split-Gradient Method for Constrained Weighted
NMF (αβ-SG-CWNMF) consist of using Us defined either in Eq. (6.49) or in Eq. (6.50) instead of
U in Eq. (6.25). The update rules with both matrices Us satisfy (i) the non-negativity of F , (ii) the
sum-to-one constraints, and (iii) the third KKT condition.

G remains unconstrained in the considered Problem and the update rules should take into account
the weight matrix W . Therefore, a Weighted αβ-NMF (αβ-WNMF) approach yields the following
update rules for G:

Gk+1 = Gk ◦N α,β
G (Gk,Fk) (6.51)

where,

N α,β
G ,


(

W ◦
(

Xα ◦ (G ·F)β−1
))
·FT

(W ◦ (G ·F)α+β−1) ·FT

( 1
α
)

. (6.52)

Eqs. (6.30,6.51) and the choice of Us described either in Eq. (6.49) or in Eq. (6.50) leads to the solution
of Problem (6.8). Also, it addresses the first Problem (6.7) by selecting α = 1 and β = 1.

6.5 Summary of the different algorithms

This section summarizes the different algorithms described before and the available options. Up-
date rules and acronyms may be found in Table (6.1). The weight definition is based mainly on W1 as
expressed in Eq. (6.38). S1 or S2 refers to the choice of the shift defined in the references. While SG
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Table 6.1 – Different methods with various shifts and weights

Methods Rules on F Rules on G Us Weight W
SG-CWNMF-S1 Eq (6.30) Eq (6.37) Eq. (6.35) W =W1

SG-CWNMF-S2 Eq (6.30) Eq (6.37) Eq. (6.36) W =W1

αβ-SG-CWNMF-S1 Eq (6.30) Eq (6.51) Eq. (6.49) W =W1.
( α+β

2 )

αβ-SG-CWNMF-S2 Eq (6.30) Eq (6.51) Eq. (6.50) W =W1.
( α+β

2 )

Huber -SG-CWNMF-S1 Eq (6.30) Eq (6.37) Eq. (6.35) W =W1 ◦W2

Huber -SG-CWNMF-S2 Eq (6.30) Eq (6.37) Eq. (6.36) W =W1 ◦W2

means Split Gradient, CWNMF refers to Constrained Weighted NMF. The left part of the acronym
indicates the special choice of the cost function such as Huber or αβ- divergence. These methods will
be extensively evaluated by performing various experiments.

6.6 Initialization issues

In the total absence of prior knowledge, some authors suggest to perform some random initial-
izations for both factors. However, this strategy implies several runs and does not fit with informed
situations.

The prior knowledge is proposed on F as an approximate initial matrix. Then, the second factor is
computed by using a weighted Frobenius criterion with constraints. Let wi, xi, and g

i
be the ith row of

W , X , and G, respectively. The ith row of the contribution matrix minimizes a weighted least-square
cost function under some specific constraints, i.e.,

J(g
i
) =

(
xT

i −FT gT
i

)T
·Dwi ·

(
xT

i −FT gT
i

)
, (6.53)

where Dwi = diag(wi). This function may be written under a quadratic form

J(g
i
) =

1
2

gT
i
·H ·gT

i
+u′ ·gT

i
, (6.54)

with H = 2F ·Dwi ·FT and u′ =−2xi ·Dwi ·FT . Initializing G consists in estimating g
i
for each i

min
gi

J(g
i
) s.t. gT

i
� 0,∑

i
g

i
= ∑

i
xi,and xT

i � ΦT ·gT
i
. (6.55)

The three constraints state that (i) each entry of g
i

is non-negative, (ii) the contributions must be
normalized because the profiles are proportions, and (iii) the known part of the data has to be lower
than the whole data. In practice, Eq. (6.55) is solved using the interior-point convex algorithm from
Matlab.
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6.7 Validation on a toy simulation example

6.7.1 Introduction of the toy simulation

The data is made with 50 samples and 7 species (Iron Fe, Calcium Ca2+, Sulfate SO2−
4 , Zinc

Zn, Magnesium Mg2+, Aluminium Al and Chromium Cr) with a known uncertainty measure σi j—
provided by a chemical expert— and associated with each data point xi j. Thus, the matrix X has a
size of 50× 7 . Each collected data point xi j is corrupted by a uniform noise ranging in the interval
[−min(λσi j;xi j);λσi j] while preserving the positivity of the collected data i.e xi j is greater than 0.
Note that λ is also related to an input Signal-to-Noise Ratio (SNR). The profile matrix—whose ini-
tialization is provided by chemical experts—consists of three (partially correlated) industrial profiles.
The exact profile matrix is provided in Table (6.2).

Fe Ca2+ SO2−
4 Zn Mg2+ Al Cr

Source 1 0.7 0.1 0.08 0.06 0.04 0.02 0
Source 2 0.3 0.4 0.005 0 0.2 0.075 0.02
Source 3 0.4 0.2 0.08 0 0.12 0.2 0

Table 6.2 – Exact profile matrix

The contribution matrix G is initialized as the solution of a weighted and constrained least-square
cost function [132].

6.7.2 MER index for performance evaluation

Several performance indexes are available in the literature. However in this work, only the MER
index (MER for Mixing Error Ratio) is considered [162]. It is obtained from each column of G. For
each source, a scalar quantity MER j expressed in dB may be obtained. For one exact vector g

j
and

its estimate ĝ
j
, it is possible to write ĝ

j
under the form

ĝ
j
= ĝcoll

j
+ ĝorth

j
, (6.56)

where ĝcoll and ĝorth are respectively colinear and orthogonal to the exact vector g. This decomposition
allows to express the MER of source j, denoted as MER j, defined as,

MER j = 10 log10

‖ ĝcoll
j
‖2

‖ ĝorth
j
‖2
. (6.57)

Infinite values mean exact separation while 0 dB correspond to an angle equal to 45◦. These values
may be summed up into a vector which gathers the performance of each source. Generally, a global
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Fe Ca2+ SO2−
4 Zn Mg2+ Al Cr

Source 1 0.7 XX XX XX XX XX 0
Source 2 XX 0.4 0.005 0 XX 0.075 XX
Source 3 0.4 XX XX 0 XX XX 0

Table 6.3 – Positions and values of the constraints used in the informed NMF methods. XX means no
constraint.

indicator is obtained by averaging each index over all sources, i.e.,

MER =
1
p

p

∑
j=1

MER j. (6.58)

This index will be extensively used along simulations.

6.7.3 First experiment with 9 constraints

This part is a summary of the simulation part provided in [26]. In this first experiment, outliers
are not considered. 9 constraints (among 21 entries) are associated with the profile matrix as shown
in Table (6.3). The letter (XX) indicates that there is no constraint at the corresponding location of the
Profile matrix. If the value is set to zero, it indicates that the corresponding source does not emit that
species.

The proposed SG-CWNMF method (which is based on the Frobenius norm) is evaluated by per-
forming a comparison with four existing approaches, namely, the blind NMF [95], the WNMF [66],
the SG-WNMF (a weighted version of [91] with the proposed shift of SG-CWNMF), and our in-
formed Frobenius method CWNMF [98]. The performance criterion is the average Mixing Error
Ratio (MER) [162] which is computed on the contribution matrix G. The respective algorithms used
5105 iterations.

Figure (6.2) shows the performance (MER) of the various methods as a function of the input SNR.
The proposed SG-CWNMF clearly outperforms all the other methods (around 2 dB in the noisiest sce-
narios). Additionally, in a noiseless case—not shown in Fig. 6.2—the SG-CWNMF method provides
a MER at least 200 dB higher than those obtained from the other NMF-based methods. However, for
low SNR, the gap with other methods is really small which limits in this case the interest for the new
method.

6.7.4 Second experiment with 9 constraints

This section aims at highlighting the effect of several outliers on the overall performance of inves-
tigated methods. This subsection is essentially based on [24].

The process of data generation is a bit modified with respect to the previous experiment. The
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Figure 6.2 – Performance of the various NMF methods as a function of the input SNR.

collected samples are corrupted by outliers at random locations and are tuned by a gain which is always
greater than one in order to simulate a pollutant contamination. Then, a uniform noise generated from
the interval [−min(λσi j;xi j);λσi j], identical to the previous case, simulates the acquisition process.

Moreover, the constraints recalled in Table (6.3) are the same as in the first experiment. Each
method under study uses the same initialization. The performance of the Huber Split Gradient Con-
strained Weighted NMF (Huber SG-CWNMF) is quantitatively investigated with respect to state-of-
the art methods. Its performance is compared with

— Blind-based separation approaches that are based on β-divergence, namely the original un-
weighted β-NMF [51], the weighted β-NMF [66] and the robust NMF (rNMF) [47] in which
the data matrix is split into a low rank matrix satisfying Eq. (2.5) and a sparse matrix contain-
ing the outliers,

— Informed approaches based on the β-divergence, namely the β-CWNMF with the Residuals
(β-CWNMF-R) and without the residuals (β-CWNMF) [97] with β is set to 0.8,

— a weighted version of the Split Gradient approach developped by Lantéri et al. [91], which
involves a sum-to-1 parameterization (SG-WNMF),

— the newly proposed αβ-SG-CWNMF with α = β = 0.6 [25].
— the Huber upper bound of the performance is computed using the Huber regression method

by assigning F to its real value and by implementing the update rules (6.52) together with the
iterative re-weighting process (6.38).

Figure (6.3) shows the performance of several methods over a wide range of input SNR in the case of
5 outliers. The MER of each method is averaged over the trials inside the same slice of MER.
It turns out that

— The proposed Huber-SG-CWNMF method outperforms all the based-NMF methods as illus-
trated in Figure (6.3), for various input SNR intervals in the presence of 5 outliers.

— The performance of the newly proposed informed NMF behaves very similarly to the bound
in all slices of SNR.

— The rNMF method completely fails in all simulated experiments and as consequence, it is also
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Figure 6.3 – MER versus SNR for 5 outliers.

not shown in Fig. (6.3). This is probably due to the fact that rNMF is not able to split the data
matrix into an appropriate sparse and a low rank matrices. Indeed, the outliers are relatively
small for high input SNR and medium-sized for low SNR. Such a situation is challenging for
rNMF which performs well in the presence of larger outliers.

6.7.4.1 Effect of the number of outliers

A second experiment is performed in order to investigate the influence of the number of outliers
on the performance of the various NMF-based methods. Figure (6.4) shows the computed MER as
a function of the number of outliers for an input SNR of 40dB before introducing the outliers. It is
to be noted that the achieved SNR after corrupting the collected data is shown between brackets in
Figure (6.4). The number of outliers in this experiment varies from 0 to 5 and the SNR is affected by
less than 10dB. The results show that:

— For each method, the MER decreases with the number of outliers.
— Similar to the previous experiment, the proposed Huber SG-CWNMF method outperforms all

the other approaches.
— The performance of the proposed Huber-SG-CWNMF is very close to the Bound for each case.

Moreover, the Huber SG-CWNMF MER is roughly equal to the SNR even in the presence of
outliers.

As a conclusion, the new method shows its relevance in the context of a few irregular data.
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Figure 6.4 – The performance of the NMF approaches as a function of the number of outliers.

6.7.4.2 Effect of various cutoff parameters

As already discussed in subsection (6.4.2.2), the selection of the cutoff parameter might signifi-
cantly affect the results of the new method. The question of constant cutoff or adaptive may be raised.
Consequently, the quantitative evolution of the effect of various choices of the cutoff parameter on the
Huber-SG-CWNMF approach is proposed.

Two constant cutoffs along iterations were investigated (20% and 50%) and two adaptive cutoffs
with linear decrease of the quantile value along iterations are proposed (0 to 10% and 0 to 50% are
outliers). This adaptive case suggests that an increasing number of data may be tagged as outliers
along iterations thus switching to the `1 mode. At the end of the run, there is a possibly 10% or
50% respectively of the data which are viewed as outliers. Figure (6.5) summarizes the different
performances. The legend specifies the percentage of data points considered in the `1 part of the
Huber function at the beginning and at the end of the iterations. It appears that

— The first test of the proposed Huber-SG-CWNMF approach is conducted with an adaptive
cutoff between 0 and 10%. This method outperforms all the others for all slices of input SNR.

— The second test of the proposed Huber-SG-CWNMF approach is conducted with a constant
cutoff of 50%. The method has an acceptable performance for the range between 15dB to
35dB of input SNR but the performance is bad for the remaining intervals.

— The third test of the proposed Huber-SG-CWNMF approach is conducted with a constant
cutoff of 20%. In this case, the method also is performing good and remains close to the
performance of the first conducted test.

— The last test of the proposed Huber-SG-CWNMF approach is conducted with an adaptive
cutoff between 0 and 50%. The performance of this method remains correct in each slice of
SNR.
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In conclusion, the best choice is achieved with the cutoff proposed in Eq. (6.46) as indicated in Fig-
ure (6.5). Moreover, the usual choice of the median proposed in the literature [45] is shown to be
inappropriate.
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Figure 6.5 – Effect of different cutoff strategies on the performance.

6.7.5 Third experiment with 6 constraints

This subsection is essentially based on the results published in [25]. It focuses on the same exam-
ple with only 6 set values. It should be stressed that 0 values have been dropped here. It is important
to check if this change has an impact on the results. They are gathered in Table (6.4).

Fe Ca SO4 Zn Mg Al Cr

Source 1 0.7 XX XX XX 0.04 XX XX
Source 2 0.3 XX XX XX XX 0.075 XX
Source 3 XX 0.2 XX XX 0.12 XX XX

Table 6.4 – Set Values used in the informed NMF methods. XX means no constraint.

In this section, the αβ SG-CWNMF approach is validated experimentally. The performance of the
second newly proposed method is investigated by conducting several experiments with and without
outliers.

The quantitative evaluation is performed with various NMF-based techniques. Four blind methods
are implemented. Two of the algorithms are based on the β-divergence namely the β-NMF [51] and
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the β-WNMF [66]. A value of 0.8 is selected for β for comparaison purposes. The two other blind
approaches are based on the Frobenius cost function, i.e., the robust NMF (rNMF) [47] which places
the outliers into a sparse matrix and the weighted version of the Split-Gradient NMF (SG-WNMF)
that is proposed in [91]. Moreover, two state-of-the-art informed approaches are evaluated, i.e., the
previous informed β-NMF method [97] denoted by β-CWNMF and β-CWNMF-R. The best achieved
performance of the two methods in the experimental simulations is included i.e., the β-CWNMF-R.
All these methods are compared with the new developed Split Gradient Constrained Weighted NMF
(denoted αβ-SGCWNMF) in which α is set to 0.6 and β to 0.6. In addition, the performance of
αβ-WNMF when F is set to the true profile matrix (the corresponding plot is denoted Bound" in the
figure) is presented.

The performance of the proposed method as well as the various NMF based approaches as a
function of the Signal to Noise Ratio (SNR) of the input and for a various number of outliers in
the collected data is illustrated in Fig. (6.6), Fig. (6.7) and Fig. (6.8). While Fig. (6.6) shows the
performance of the NMF methods where the number of outliers is 0, Fig. (6.7) and Fig. (6.8) display
the performance when the number of outliers is 2 and 5, respectively. Each figure displays the MER
in function of the SNR of the input. The SNR varies from 15 to 55dB. The difference between the
three figures is the number of outliers in the collected data. To generate each graph, 400 simulation
experiments are performed for evaluation purposes and each experiment corresponds to a particular
SNR. In these graphs, the Bound MER is roughly equal to the input SNR.

It is to be noted that the shown SNR stands for the SNR that is computed after placing the outliers.
In the case of a large SNR, several small outliers coexist with very low noise. On the contrary, low SNR
may be obtained by medium size outliers with large noise. It turns out in all the three graphs that the
rNMF approach [47] is always failing as noticed earlier. The new proposed method αβ-SGCWNMF
outperforms all the other approaches for every range of SNR. Moreover, it remains very close to the
computed Bound with and without outliers and consequently, this will show its relevance.

In order to confirm this behaviour, another test is performed in which the input SNR is set to
40dB before introducing the outliers. Then, the influence of the number of outliers is shown. The
multiplicative outlier factor is selected such that it enables the increase of the unnoisy entry data by
30 percent. Figure (6.9) shows the dependence of the accuracy of the various approaches in terms of
MER versus the number of outliers. Once again, it is clear that all the methods provide a decreasing
performance when the number of outliers increases. However, the proposed αβ-SGCWNMF outper-
forms all the other approaches and remains very close to the "Bound" obtained by the regression on
G.

As a conclusion, αβ SG-CWNMF seems to bring a significant enhancement in the performance
of the separation process without and with a few outliers.

6.8 Medium scale experimentation

In this section, our methods are investigated in a medium scale simulation drawn from real data
campaign. These data consisted in evaluating concentrations of Air Suspended Particulate Matter over
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a long period. Sampling time was equal to 24 hours. Particles whose diameter was lower than 10µm
were focused on. Species under study were divided into 16 metal tracers (Al, Cr, Fe, Mn, P, Sr, Ti,
Zn, V, Ni, Co, Cu, Cd, Sb, La, Pb), 8 water soluble ionic species ( Na+, NH+

4 , K+, Mg2+, Ca2+,
Cl−, NO−

3 , SO2−
4 ), Carbon compounds either organic (OC) or elementary (EC), and Levoglucosan

and Polyols.
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Figure 6.9 – Performance of the NMF methods as a function of the number outliers. The Performance
Criterion: MER (in dB).

These data were extracted from ECUME Project 3 which consisted in evaluating the impact of
Marine Traffic to the concentration over one city station and one rural station, both located on the
coast of the English Channel. From the validated profile and contribution matrices obtained during
the campaign, simulation data were built by taking into account the individual uncertainty provided

3. ECUME project was funded by the DREAL French agency from 2013 to the beginning of 2016.
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Table 6.5 – Features of the different source profiles

Profiles Type Major species References
Sea salts Natural Cl−,Na+,SO2−

4 ,Mg2+,K+,Ca2+,Sr [80]
Crustal dust Natural Al, Ca2+, Fe, K+, OC, Ti, NO−

3 , Na+ [81]
Primary biogenic emission Natural OC, EC, Polyols, P [166]
Aged sea salts Anthropised NO−

3 , Na+, SO2−
4 , Mg2+,K+, OC,Ca2+,Sr,Cl− [166]

Secondary nitrates Anthropised NO−
3 , OC, NH+

4 , EC, Ca2+,Fe, Zn, Cu [166]
Secondary sulfates Anthropised SO2−

4 , NH+
4 , OC, Ca2+, K+, Fe, Pb, Zn [81]

Biomass combustion Anthropogenic OC, EC, Levoglucosan, NO−
3 , K+, Zn [166]

Road traffic Anthropogenic EC, OC, NO−
3 , Cu, Sb, Zn, Fe [166]

Sea traffic Anthropogenic OC, EC,V, Ni, Co, SO2−
4 , NH+

4 , NO−
3 [166]

Rich metal source Anthropogenic Fe, Al, Cr, Pb, Zn, Mn [166]

by the real campaign. So, the data matrix consists in a 280× 28 matrix associated with individual
uncertainties. The uncertainties are exactly those provided by the chemical analysis.

In addition, several cases with outliers were investigated. It is to be assumed that outliers come
from an additional individual contamination which consist in multiplying the theoretical data entry
by a scalar factor greater than 1. Then, a uniform noise which preserves non-negativity simulates the
measurement process. Among the 280 samples, 5 10 and 20 outliers are considered. The SNR index
drops then in the worst case by 1 dB if the set of outliers are taken into consideration.

6.8.1 Source profiles

In this study, 10 sources are highlighted. Among these sources, some of them are purely natural
or purely anthropogenic but some of them became anthropised. Table (6.5) describes major species
present in each source profile. Other species than those listed in the corresponding source profile may
be assimilated as near 0 entries. It is to be noted that the real profile is perfectly known.Table (C.1)
indicates the different source profiles. Also, it is to be noticed that the source profile is presented here
as a per thousand profile matrix. It means that it sums to thousand instead of 1.

6.8.2 Equality constraints

Equality constraints or set values enable to inform the algorithm about some entries of the profile
matrix. This knowledge is taken into account by specifying matrices Ω and Φ. These matrices are
available in Appendix (C). It is to be stressed that the only used knowledge here is the absence of
some compounds in some source profiles. As a result, matrix Φ reduces to 010×28.
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Figure 6.10 – MER versus input SNR. The case without outliers

6.8.3 Initialization

An approximate prior knowledge of F is used as a starting point for each informed NMF algo-
rithm. Table (C.3) gathers the different entries used. Then, as described in the section (6.6), a quadratic
estimation of the contribution matrix G is performed so that each method has the same initial factors.

6.8.4 Performance evaluation

In all the cases under study, the MER is represented as a function of the input SNR. In this
study, intensive computations are made with 1 million iterations over a platform dedicated for parallel
computing (https://www-calculco.univ-littoral.fr/). In our comparison, only 4 methods are
selected; among them, 1 is uninformed, 1 accounts for the bound and 2 are our informed methods.

In our tests, the input SNR is ranging from 15 dB to 70 dB. The MER index is computed between
the estimated contribution matrix and the exact contribution matrix G but it may also be computed for
the comparison of the profile matrix F . Results are provided for MER into slices of 5 dB width. In our
informed methods, the shift proposed hereafter is the second shift (S2), but this mention is dropped
in the acronyms for clarity. Figure (6.10) shows the performance for the case without outliers while
Figures (6.11,6.12,6.13) respectively describe the case of 5 outliers, 10 outliers and 20 outliers. It
appears that rNMF [47] (not represented here) performs very poorly (MER ≈ 1dB). Moreover, the
bound is computed with an αβ-divergence cost function, and it is equivalent to semi NMF with an
exact profile matrix. It turns out to be roughly equal to SNR in every case.
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Figure 6.11 – MER versus input SNR. The case with 5 outliers

Figure 6.12 – MER versus input SNR. The case with 10 outliers
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Figure 6.13 – MER versus input SNR. The case with 20 outliers

Besides, αβ-WNMF appears as the worst method except for a few slices (70−75 dB) in all cases.
However, the number of outliers taken in account here does not affect the performance of the method,
thus leading to its stability.

In addition to, 2 informed methods were experimented. First, αβ SG-CWNMF appears as a good
method which behaves very similarly to the αβ Bound, but its performance decreases significantly for
large SNR.

Second, Huber SG-CWNMF outperforms the other NMF methods for medium and large SNR, but
is a bit less efficient for low SNR. Practically, it is to be noticed that several trials (among the list of
low SNR) gave poor results for this method thus affecting the overall performance in this slice. These
events cause the Huber method to drop by 1 dB in this slice regarding αβ SG-CWNMF. It seems that
Huber SG-CWNMF seems more sensitive to the noise in low SNR than αβ-SG-CWNMF.

Finally, it seems that the overall effect of outliers seems limited here. However, the quality of
the whole results is not completely satisfying. In light of the toy simulation, the performance of
informed methods close to the αβ Bound is expected. From this point of view, this result seems a bit
disappointing.
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6.9 Real Data Case

The real data campaign has been conducted by Professor D. Courcot and F. Ledoux during C.
Roche Phd thesis 4 [142], from the UCEIV laboratory (Université du Littoral Côte d’Opale). The first
goal of this thesis was to provide ratios of trace species which are specific of some source profiles.
Then, some flexible bound profiles and set profile entries were proposed. Using this knowledge, the
challenge was to implement an informed NMF method–developed in [96]– in order to reconstruct the
origin of Particulate Matter.

Contrary to [142], we would like here to drop the bound information and test whether the new
methods are still competitive.

6.9.1 Context

A data campaign over a long period (16 months) in Le Cap Gris-Nez and over a shorter period
in the port of Calais (3 months) enables to get 281 sample measurements collected with a DA80
sampler. Le Cap Gris-Nez is a rural site while Calais port is an urban site where a huge number of
boats are docking. The DA80 device (6.14) is an equipment which is able to trap particulate matter
on filters, which are stored and a posteriori analyzed by chemists. A special sieve enables to select
only PM10 particulate matter, i.e., whose diameter is lower than 10µm. The machine is also able to
save wind conditions and time. The sampling period was chosen equal to 24 hours. Along this period,
meteorological conditions concentration levels were highly varying. Thus, after analyzing the filters,
several data files were available to address the pollution source apportionment problem.

6.9.2 Input Data

Appendix (D) provides operating conditions for the run performed. Based on expert knowledge
provided by chemists and information described in table (6.5), it allows to specify matrix Ω which
defines 55 set value locations (among 280 profile entries) provided in Table (D.2). In the same way as
in (6.8), matrix Φ is equal to 0p×m.

Moreover, the bound information provided in [142] is decided to be dropped, thus preventing to
guide the run toward a consistent estimate with chemical expertise.

In addition to, an expert initial profile matrix is chosen and provided in Appendix (D).

6.9.3 Results evaluation

The results were obtained in the case of 10 identified sources and 1E6 iterations for each method.
Profiles under study were specified in Table (6.5). However, their estimation remains a difficult task

4. This thesis has been done in the frame of the ECUME project.
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Figure 6.14 – Device used for sampling.

for several reasons listed hereafter
— Data are corrupted with an unknown number of outliers. Their origin may be of various kinds,

such as the presence of a new source which affects the data at some sparse moments.
— an additional overall pollution which may not be assigned to a particular source.
— Some Source profiles may be geometrically close, only a few tracer species are able to distin-

guish them.
— Bounds (Except non-negativity) have been dropped in this study.

Even if a database with existing profiles is available at http://source-apportionment.jrc.ec.
europa.eu/Specieurope/sources.aspx, the list of species under study are usually not the same
leading to difficulties to build an appropriate profile matrix. So, it appears difficult to assess the quality
of the results. It is decided to display the source profiles in a descending order of expected species. A
correct source profile would be then displayed as decreasing proportions from the left to the right of
each figure. On the contrary, a large proportion on the right of profile figure implies that the estimation
has partly failed.
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Table 6.6 – Performance evaluation of αβ SG-CWNMF.

Profiles Max Min Comments
Crustal dust SO2−

4 SO2−
4 very close to the bound

Biomass combustion NH+
4 NH+

4 very close to the bound
Road traffic NO−

3 , OC EC very close to the bound
Sea traffic EC Fe EC very close to the bound
Primary biogenic Na+, NO−

3 , SO2−
4 P underestimated

Table 6.7 – Performance evaluation of the Huber SG-CWNMF method.

Profiles Max Min Comments
Crustal dust SO2−

4 K+ K+very close to the bound
Biomass combustion Mg2+

Road traffic NO−
3 , OC EC EC a bit low

Sea traffic OC Fe OC very close to the bound
Primary biogenic Na+, SO2−

4 P underestimated

The complete list of estimated profiles together with observations are provided in Appendix (D),
only general results are discussed in this section. Roche’s results [142] are denamed as αβ BN2-
CWNMF for αβ Bounded Constrained Weighted NMF in each profile figure of Appendix (D). In
order to evaluate the consistency of the source profiles, the bounds provided in [142] are used to
assess the consistency of our profiles together with Table (6.5). In [142], there were 67 bounds which
were dropped here.

First, αβ WNMF presents 34 bounds inconsistencies over 67. In addition, species which are
expected to be zero are not satisfied. Thus, this method turns out to fail completely. Second, αβ SG-
CWNMF presents 10 entries outside of the bounds which are summarized in Table (6.6), 4 of which
are very close to the proposed bound. So the method appears to be competitive with the one provided
in [142].

Then, the last proposed method (Huber SG-CWNMF) appears to get 10 inconsistencies among 67
bounds. Among the 10 inconsistencies, 3 are very close to the proposed bound.

Moreover, our methods satisfy the major species described in Table (6.5). As a result, both in-
formed methods (Huber SG-CWNMF, αβ SG-CWNMF) are behaving well with respect to the ex-
pected proportions in the overall profile matrix. To conclude, the new methods appear to outper-
form other state-of-the-art methods such as αβ WNMF or rNMF [47] and remains competitive with
Bounded Weighted informed NMF [142] while dropping bounds information.
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6.10 Conclusion

In this chapter, 3 informed non negative matrix factorization methods were developed, each of
them were based on a specific cost function. The proposed methods naturally incorporate the expert
knowledge such as set values (i.e., assign set values to some entries of the profile matrix) and the sum-
to-one of each row of the profile matrix by taking into account a special parametrization. Contrary to
chapter (5), the proposed updates remain always consistent with the constraints along iterations.

The first new proposed NMF approach is referred to as the Split Gradient Constrained Weighted
NMF (SG-CWNMF) approach and update rules derive from the Split Gradient Framework. They can
be viewed as multiplicative updates applied to the free component of the profile matrix. In that sense,
SG-CWNMF approach is far more elegant than a previous method [99]—which sequentially tackles
these constraints—and can be easily extended to a gradient-like technique, as in [91].

The second new informed proposed NMF method for the source apportionment problem is re-
ferred to as αβ Split Gradient Constrained Weighted NMF, i.e αβ SG-CWNMF. It is based on a
weighted αβ-divergence cost function which is able to resist to outliers. Then, a general form of the
update rules is derived heuristically by differentiating the weighted αβ divergence criterion with re-
spect to the newly introduced matrix. By proposing a new analytic shift, new analytic update rules are
proposed.

Finally, a third robust informed NMF method is proposed to address the source apportionment
problem. This approach can be referred to as the Huber Split Gradient Constrained Weighted NMF
(Huber SG-CWNMF). It is based on a weighted symmetric Huber cost function which adaptively
switches between the weighted `2 and `1 norms according to the value of the computed residuals. A
new shift enables to express analytical rules for the Huber case.

A validation has been performed in three different contexts. In the case of simulations, the MER
index expressed in dB has been extensively used for the evaluation of the performance.

First, a toy simulation enables to validate each method in a noisy synthetic data case without
outliers and then with outliers. The two robust methods (αβ SG- CWNMF, Huber SG- CWNMF) are
shown in this case to outperform all the state-of-the-art methods. Moreover, our robust methods are
very close to a bound computed with a robust regression method. In the case of αβ SG-CWNMF,
the experiments were conducted on many couples of α β parameters and the focus afterwards is on
the parameters which fit the situation. In addition, we tested different configurations of the cutoff
parameter in Huber SG-CWNMF methods and an adaptive cutoff seems to work well in this context.

Second, a medium scale simulation inspired from real data has been conducted. It was built from
the estimation of G and F obtained in [142]. Different situations with several outliers were explored
in this case. It appeared that a large number of iterations was required in order to reach a limit point.
It turns out that our robust informed methods were also outperforming αβ WNMF methods in each
slice of input SNR and the MER index was expected to reach the input SNR as in the toy simulation
but the MER was largely lower especially for large SNR.

Finally, a real data situation has been explored, by using data obtained in the work from Roche
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[142] in the frame of the ECUME project. From the previous study, the number of iterations for all
methods has been chosen equal to 1E6. The validation process consisted in comparing the profile
matrix with expected major species and bounds specification provided in [142]. It turns out also that
αβ WNMF was not able to provide a consistent estimation of the profile matrix. It appears also
that our robust informed methods provide consistent results with the expected species and with the
bounds. Moreover, it remains competitive with the method presented in [142] while dropping 67
bound constraints. As a consequence, our methods seem to be an interesting track for further real data
analysis.
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CHAPTER 7

General Conclusion

7.1 Outline of the thesis chapters

This thesis is divided into several parts. In the first part, sensors models are investigated as an
important part of an acquisition process of a physical phenomenon. Besides, general mixtures models
are reviewed with a special emphasis on linear mixture models which essentially govern air pollution
problems. Then, a matrix factorization point of view is adopted to estimate factors present in the
previous models. However, some additional information to the factorization are required to perform an
estimation of factors. Typical properties encountered are independence, orthogonality, non-negativity
and sum-to-1 of factors. In this thesis, the non-negativity together with row sum-to-1 properties are
specifically highlighted.

In a second chapter, the concept of exact Non-negative Matrix Factorization (NMF) is first in-
troduced which is closely related to the definition of Non-negative rank. Sufficient conditions for its
uniqueness are formulated which connects to the concept of separability. Then, the problem of approx-
imate factorization is expressed as an optimization problem whose local minima should satisfy KKT
conditions. Solving such a NMF problem has attracted huge research interests over the last decades
which gave rise to lots of algorithms. We reviewed here the most popular ones, among them, heuristic
based NMF, multiplicative methods, gradient like NMF methods, ADMM and Bayesian methods.

In the chemical sensing community, data are associated with uncertainties which give rise to
weighted NMF problems. Update rules for this problem are visited which may be viewed as an
extension of classical NMF rules. From a general point of view, weights could play an important role
in the case of abnormal data.

In the third chapter, the definition of outliers was introduced along with expected properties of
robust algorithms. Robust statistics is usually addressed in the regression community in which M-
estimators are widely used. As a consequence, robustness is often tackled in the NMF context either
as a low rank plus sparse decomposition or by using modified cost functions which are belonging to
the class of M-estimators. Several robust NMF methods are then investigated such as the Huber NMF,
the Correntropy based NMF and the αβ-divergence NMF. Such a robust algorithm appears attractive
but does not ensures alone to provide a realistic solution.

In order to limit the potential number of stationary points, the work then focuses on informed
NMF with Sum-to-1 information and set values. This chapter reviews various existing solutions with
inner specific normalizations which guarantee at convergence the satisfaction of the prior knowledge.
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However, the current estimate at each iteration was not belonging to the subspace of the prior knowl-
edge.

Then, in the last chapter, new informed NMF based methods are presented taking into consid-
eration both sum-to-1 and set values at each iteration. Several weighted and robust cost functions
were investigated and new update rules fulfilling the KKT conditions for each cost function were
developed. Different versions of these solutions (Huber SG-CWNMF and αβ SG-CWNMF) were
presented according to the shift under consideration.

The experiments were conducted first on a small synthetic dataset in the presence of outliers.
Extensive tests enable to show that both new methods outperform several state-of-the-art methods for
a wide range of SNR with and without several outliers. The enhancement obtained is a few dB in low
SNR while the gap for large SNR is much more significant.

A medium scale experimentation drawn for real dataset enables to build semi-synthetic data with
and without outliers. Estimation of both factors appeared as a complex task provided that all meth-
ods have got difficulties to retrieve the factors. Our methods remain the best among state-of-the-art
methods in every slice of SNR but the bound obtained through a regression method appears to be
significantly better.

This medium scale simulation serves as a starting point for analyzing the real dataset obtained
through ECUME project and performed in the area of Calais during a long period. The run have been
evaluated with expected major species on one hand and bounds provided in [142] in the other hand.
Our both robust methods seem to be consistent with these requirements and seem to be competitive
with the one obtained in [142].

7.2 Perspectives and Future Work

However, even results along this thesis are promising results, real data situations call for further
possible improvements provided along these tracks:

— One immediate perspective of this work would be to apply bound information in the iterative
process of the new methods developed here. The development is straightforward and we could
expect real improvements in the case of real data analysis.

— Then, new robust cost functions may be explored. In the case of α β-divergences, the param-
eters are selected so as to restore efficiently major species. Moreover, the value of the two
parameters α and β are selected to respect the convexity of the cost function. As a result, the
weighted α β-divergence is investigated in a limited domain in the NMF context. Thus, it
could be envisaged to extend the Huber cost function by combining α β-divergence for small
residuals and the `1 norm for high residuals. The cutoff parameter should be chosen at the
inflection point of α β-divergence thus enabling to get extended convex cost functions for a
wider domain of parameters α β.

— In the case of robust cost functions, Correntropy was discussed theoretically during this thesis.
It was one of the cost function which goes to 1 when the residual goes to infinity. In this
work, unbounded cost functions were tested while experiments were not conducted with such
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bounded cost functions able to deal with outliers. Perhaps, it would be very interesting to
develop new methods according to a weighted Correntropy together with flexible set values
and row sum-to 1 profiles.

— The Bayesian context could be also one of the potential areas that could be further explored.
However the usual Gaussian distribution of the noise should be dropped since outliers may be
also modelled as a mixture of two probabilities densities thus making the problem more diffi-
cult. Moreover, chemical sensing data calls generally for individual uncertainties which does
not fit with usual distributions. Besides, developing some prior probability densities which
check the parametrization and then computing the posterior density becomes analytically im-
possible. The price for this kind of solution lies in the necessary intensive computations of
multiple integrals which may be prohibitive. The benefit for this kind of approach may be
to obtain several solutions which account for local minima of the posterior distribution. So,
in the short term period, it is needed to first simplify the problem and to solve one discussed
problem at a time.

— Lastly, some different kind of information in the profile matrix could be explored. Some
knowledge may be modelled as known ratios of different entries of F which result in a different
parametrization of the profile matrix. Since the parametrization could be flexible, this should
be combined with the parametrization used along this thesis.
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APPENDIX A

Karush-Kuhn-Tucker conditions for
weighted Frobenius NMF with set values

First, the equivalent data as R , X −G ·Φ is defined. It will be used throughout this appendix.
Solving Problem (5.28) leads to consider J (.), defined as,

J (4F) = Tr
(
(R−G(4F ◦Ω))′((R−G(4F ◦Ω))◦W )

)
= J1−2J2 + J3, (A.1)

where 
J1 = Tr (R′(R◦W ))

J2 = Tr
(
(R◦W )′G(4F ◦Ω)

)
J3 = Tr

(
(4F ◦Ω)′G′((G(4F ◦Ω))◦W )

) (A.2)

Second, the following properties can be used

Tr(UT (V ◦W )) = Tr((U ◦W )TV ). (A.3)

and
Tr(V ◦W ) = Tr(V TW ). (A.4)

The differential of J2 may be formulated by relying on property (A.3),

∂J2 = ∂Tr
(
(R◦W )′G(4F ◦Ω)

)
= Tr

(
(R◦W )′∂(G(Ω◦4F))

)
= Tr

(
(R◦W )′G ·∂(Ω◦4F)

)
= Tr

(
(((R◦W )′G)◦Ω′)∂4F

)
. (A.5)

The differentiation of J2 with respect to4F yields,

∂J2

∂4F
=Ω◦ (G′(R◦W )). (A.6)

In the same way, the differential of J3 gives

∂J3 = ∂Tr
(
(4F ◦Ω)′G′[(G(4F ◦Ω)◦W ]

)
= 2 ·Tr

(
(W ◦G(Ω◦4F))′.G.(Ω◦∂4F)

)
. (A.7)
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By using property (A.3), (A.7) may be expressed as,

∂J3 = 2 ·Tr
(
(((W ◦G(Ω4F))′.G)◦Ω′)∂4F

)
. (A.8)

Similarly, the differentiation of J3 with respect to4F leads to

∂J3

∂4F
= 2[G′(W ◦ (G(Ω◦4F)))]◦Ω. (A.9)

Using Eq. (A.6,A.9) enables to express the differentiation of the function J (.) as

∂J
∂4F

= 2Ω◦
(
GT ((G[Ω◦4F ]−R)◦W )

)
. (A.10)

The Lagrangian function is

L(G,F) =
1
2

J (4F)−Tr(ΓG ◦G)−Tr(ΓF ◦4F). (A.11)

Cancelling the differentiation of the Lagrangien with respect to4F yields the following relationships,

∂L
∂4F

=Ω◦
(
G′((G[Ω◦4F ]−R)◦W )

)
−ΓF = 0, (A.12)

which provides the expression ΓF . KKT conditions for solving Problem (5.28) are

4F � 0, G� 0,
∂J
∂4F

� 0, ∂J
∂G
� 0,

4F ◦ΓF = 0, G◦ΓG = 0.

(A.13)

For a sake of clarity, let F∗ ,Ω◦Φ+Ω◦4F . Replacing Eq (A.12) into Eq (A.13) and similarly for
G, it is straightforward to get KKT conditions for the problem under consideration,e.g.,

4F � 0, G� 0,
Ω◦
(
GT ((G ·(Ω◦4F)−R)◦W )

)
� 0, (W ◦ (GF̃−X))F∗ � 0,

4F ◦Ω◦
(
GT ((G ·(Ω◦4F)−R)◦W )

)
= 0, G◦

(
(W ◦ (GF∗−X))F∗T

)
= 0.

(A.14)
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APPENDIX B

Update rules for Weighted αβ-NMF with
set entries.

This appendix is to provide a proof of the update rules for αβ-NMF with set values. For conve-
nience, let λ be λ , α+β−1.

Proposition B.0.1. Update rules for the free part of the profile matrix are

4Fk+1←4Fk ◦Ω◦Nα,β
F (Gk,Fk), (B.1)

where

Nα,β
F (G,F),

GT
(

W ◦Xλ ◦R1−β ◦ (G ·(4F))β−1
)

GT
(

W ◦Xλ ◦R−λ ◦ (G ·(4F))λ
)


( 1
α )

(B.2)

Proof. A column of the data is considered since the divergence may be split into independent partial
divergences. Let k be the current iteration index. Expression (5.41) is incorporated with Eq. (5.40)
provide

Dα,β
w (x ‖ Gϕ+G∆ f ) = Dα,β

w (x ‖ Gϕ+Uθ). (B.3)

The weighted αβ-divergence between two corresponding column vectors is defined as

Dα,β
w (x ‖ G f ) = ∑

i
wi xα+β

i hα,β

(
(Gϕ)i +∑ j ui jθ j

xi

)
(B.4)

where ∀(α,β,α+β) 6= 0,

hα,β(z),
1

αβ

[
α

α+β
+

β

α+β
zα+β− zβ

]
. (B.5)

Noticing that hα,β(z) is convex for z≥ 0 and β ∈ [min(1,1−α);max(1,1−α)] [27] and provided that
hα,β(1) = 0, Jensen’s inequality may be applied twice, e.g.,

hα,β

(
(Gϕ)i +∑ j ui jθ j

xi

)
≤ ri

xi
hα,β

(
∑ j ui jθ j

ri

)
(B.6)

and

hα,β

(
∑ j ui jθ j

ri

)
≤ ∑

j

ui jθ
k
j

∑l uilθ
k
l

hα,β

(
θ j ∑l uilθ

k
l

riθ
k
j

)
, (B.7)
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where the superscript k is the current iteration number and θ j is the j-th element of the free parameters
vector θ introduced in Eq. (5.40). Equation (B.4) with Expressions (B.6) and (B.7) yield the following
auxiliary function:

H α,β
2,w (θ j,θ

k
j) = ∑

i
wi xα+β−1

i ri ∑
j

ui j θk
j

∑l uil θk
l
·hα,β(

θ j ∑l uil θk
l

ri θk
j

). (B.8)

The cancelation of its gradient
∂H α,β

2,w (θ j,θ
k
j)

∂θ j
leads to the optimum, i.e.,

(
θ j

θk
j
)

α

=
∑
i

wi ui j r1−β

i xλ
i (∑l uilθ

k
l )

β−1

∑
i

wi ui jxλ
i r−λ

i (∑l uilθ
k
l )

λ
, (B.9)

which is expressed in its vector form as

(
θ

θ
k )

α

=
UT [w◦ xλ ◦ r1−β ◦ (Uθ

k)β−1]

UT [w◦ xλ ◦ r−λ ◦ (Uθ
k)λ]

. (B.10)

By combining Eq. (5.40) with the above relationship, the expression of one column of the matrix4F
is derived :

4 f k+1

4 f k =

[
ΓUT [w◦ xλ ◦ r1−β ◦ (Uθ

k)β−1]

ΓUT [w◦ xλ ◦ r−λ ◦ (Uθ
k)λ]

] 1
α

. (B.11)

By replacing U according to Eq. (5.41), and by noticing that ΓΓT = diag(ωE), it results in the new
update rule:

4 f k+1←4 f k ◦ω◦N f k , (B.12)

where

N f k ,

(
GT
[
w◦ xλ ◦ r1−β ◦ (G4 f k)β−1

]
GT
[
w◦ xλ ◦ r−λ ◦ (G4 f k)λ

] ) 1
α

. (B.13)

Similarly to [100], the update rules can be derived by writing the matrix form of Eq. (B.13), and that
completes the proof.
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APPENDIX C

Operating conditions for the medium
scale experimentation

C.1 Profile matrix

Table (C.1) specifies the different entries of the true profile matrix for the medium scale experi-
mentation.

C.2 Prior information

Prior information is provided through the specification of bothΩ (C.2) and Φ. We choose to select
only set values which specify the absence of some species in the profile matrix. As a consequence, Φ
is equal to Φ= 0p×m.

C.3 Initial Profile matrix.

The chemists are able to provide an initial profile matrix given in Table (C.3). It is to be noted
that the same initial matrix is applied for informed and uninformed methods. The quantity 1,00E−11
is chosen because uninformed methods are starting approximately with the same profile even if set
values are applied to this entry.
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Table C.1 – Exact Source Profile

Profiles Al Cr Fe Mn P Sr Ti Zn V Ni Co Cu Cd Sb

Sea 0,0019 0 0 0 0,00025 0,2034 0 0 0 0 0 0 0 0
Aged sea 0 7,2351E-05 0 0 0,5 0,4 1,877E-4 0 0 0 0,0001785 1,7941E-05 0 0
Crustal 119,13 8,589E-05 77,35 1,782 3,0680 0,7846 8,9121 1,868 0,3503 0 0,0276 0,0081 0 0
nitrates 4,00E-03 2E-05 3,5 0,11 0,0749 0 0 0,7742 0 0 7,0408E-04 0,1 6,486E-03 0,01975
sulfate 0 5E-05 0 0,02825 0,05313 0 0 0,1334 0 0 0,003287 8,00E-06 0 0
Biomass 0,001 0 2,554 0,05527 0 1,016E-05 0 0,1415 0 0 0 0 0 0,0385
Road traffic 0 0 39,0414 0,1404 2,659 0 0 10,908 0 0 1,00E-08 2,7712 0 0,8964
Sea traffic 0,001147 1,2012E-04 0,1002 0 0 0,0217 9,42E-05 0 7,4920 5,5348 0,1829 1,752E-04 1,315E-06 0
Biogenic 0 0 0 0 14,528 0,04308 8,941E-04 0 0 0 0 0 0 5,2E-04
Metal 64,430 33,332 780,16 33 0,7 2 0 0 0 10 0,15 1,5 1,55 0

Bis La Pb Na+ NH+
4 K+ Mg2+ Ca2+ Cl− NO−

3 SO2−
4 OC EC Levo. Polyols

Sea 0 0 297,03 0 10,71 32,75 9,183 581,02 0 69,08 0 0 0 0
Aged sea 0 0,1 280 0 4 30 10 1,00E+02 395 150 30 0 0 0
Crustal 0,0594 0 1,8333E-04 4,36E-05 5 5 301,81 0 49,95 39,96 384,92 0 0 0
nitrates 7,178E-4 0,2075 0 216,26 3,2 0 0 1,21E-05 730,73 0 45 0 0 9,027E-11
sulfate 0 0,0729 0 260,83 4,43 0 0 8,66E-08 0 680,59 53,84 0 0 0
Biomass 0 0,1007 2,650 2,85E-12 12,26 0,001 11,67 25,48 35,16 56,84 692,10 91,14 69,78 1,477E-07
Road traffic 0,0121 3,353 0 5,14E-010 39,84 0 3,00E-08 3,40E-08 50,19 60,22 301,13 488,81 0 0
Sea traffic 0,0941 0 0 0,0626 0 0 0 0 75,17 300,69 500,76 109,87 0 0
Biogenic 0 0 5,023 0,0968 29,056 0 0 0,2975 0 20,094 854,02 0 0 76,83
Metal 0,2215 22,95 0 0 0 0 0 0 0 50,00 0 0 0 0

Table C.2 – Matrix Ω

Ω Al Cr Fe Mn P Sr Ti Zn V Ni Co Cu Cd Sb

Sea 0 1 1 1 0 0 1 1 1 1 1 1 1 1
Aged sea 1 0 1 1 0 0 0 1 1 1 0 0 1 1
Crustal 0 0 0 0 0 0 0 0 0 1 0 0 1 1
nitrates 0 0 0 0 0 1 1 0 1 1 0 0 0 0
sulfate 1 0 1 0 0 1 1 0 1 1 0 0 1 1
Biomass 0 1 0 0 1 0 1 0 1 1 1 1 1 0
Road traffic 1 1 0 0 0 1 1 0 1 1 0 0 1 0
Sea traffic 0 0 0 1 1 0 0 1 0 0 0 0 0 1
Biogenic 1 1 1 1 0 0 0 1 1 1 1 1 1 0
Metal 0 0 0 0 0 0 1 1 1 0 0 0 0 1

La Pb Na+ NH+
4 K+ Mg2+ Ca2+ Cl− NO−

3 SO2−
4 OC EC Levo. Polyols

Sea 1 1 0 1 0 0 0 0 1 0 1 0 1 1
Aged sea 1 0 0 1 0 0 0 0 0 0 0 1 1 1
Crustal 0 0 0 0 0 0 0 1 0 0 0 1 1 1
nitrates 0 0 1 0 0 0 1 0 0 1 0 0 1 0
sulfate 1 0 1 0 0 0 1 0 1 0 0 0 1 1
Biomass 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Road traffic 0 0 1 0 0 1 0 0 0 0 0 0 1 1
Sea traffic 0 0 1 0 1 0 1 0 0 0 0 0 1 1
Biogenic 1 1 0 0 0 0 1 0 0 0 0 1 1 0
Metal 0 0 1 0 1 0 1 1 1 0 1 1 1 1
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Table C.3 – Matrix Finit

Finit Al Cr Fe Mn P Sr Ti Zn V Ni Co Cu Cd Sb

Sea 0,2 1,00E-11 1,00E-11 1,00E-11 0,01 0,8 1,00E-11 1,00E-11 1,00E-11 1,00E-11 1,00E-11 1,00E-11 1,00E-11 1,00E-11
Aged sea 1,00E-11 0,001 1,00E-11 1,00E-11 1 1 0,01 1,00E-11 1,00E-11 1,00E-11 0,01 0,01 1,00E-11 1,00E-11
Crustal 200 0,001 150 2 2 2 20 2 2 1,00E-11 0,001 0,0001 1,00E-11 1,00E-11
nitrates 1,00E-05 2,00E-006 8 1 0,4 1,00E-11 1,00E-11 4 1,00E-11 1,00E-11 0,001 0,5 0,01 0,2
sulfate 1,00E-11 1,00E-004 1,00E-11 1,00E-004 0,5 1,00E-11 1,00E-11 0,4 1,00E-11 1,00E-11 0,01 1,00E-004 1,00E-11 1,00E-11
Biomass 5 1,00E-11 10 2 9,43E-11 0,001 1,00E-11 1 1,00E-11 1,00E-11 1,00E-11 1,00E-11 1,00E-11 1,006E-10
Road traffic 1,00E-11 1,00E-11 50 1 1,00E+00 1,00E-11 1,00E-11 24 1,00E-11 1,00E-11 1,00E-011 4 1,00E-11 2
Sea traffic 0,01 1,00E-004 0,4 1,00E-11 1,00E-11 0,1 1,00E-004 1,00E-11 18 10 1 1,00E-003 1,00E-004 1,00E-11
Biogenic 1,00E-11 1,00E-11 1,00E-11 1,00E-11 5 7,96E-10 7,96E-10 1,00E-11 1,00E-11 1,00E-11 1,00E-11 1,00E-11 1,00E-11 7,96E-10
Metal 73 70 650 50 3 5 1,00E-11 1,00E-11 1,00E-11 30 1 3 4 1,00E-11

La Pb Na+ NH+
4 K+ Mg2+ Ca2+ Cl− NO−

3 SO2−
4 OC EC Levo. Polyols

Sea 1,00E-11 1E-09 320 5E-05 10 38 11 550 1E-05 70 1E-05 1E-05 9,98E-11 9,98E-11
Aged sea 1,00E-11 0,01 250 1E-08 1 40 15 150 320DA80.eps 210 12 1,00E-011 9,99E-11 9,99E-11
Crustal 0,0001 1E-07 0,0001 0,0001 10 10 250 1,00E-011 30 30 290 1,00E-011 1,00E-10 1,00E-10
nitrates 0,2 0,5 1E-10 300 5 1,00E-011 1,00E-011 0,2 600 1,00E-011 80 1,00E-011 1,00E-10 1,00E-10
sulfate 1,00E-11 0,1 1,00E-008 305 10 1,00E-011 1,00E-011 1,00E-003 1,00E-011 584 100 1,00E-011 1,00E-10 1E-11
Biomass 1,00E-11 1 3 28 72 5 38 66 66 66 510 70 57 9,43E-11
Road traffic 1 9,99 1,00E-10 1,00E-008 57 0,00049 1,00E-006 1,00E-011 79,99 80 260 430 9,99E-11 9,99E-11
Sea traffic 0,5 1,00E-8 1E-11 1,00E-2 1E-11 1E-11 1,00E-11 1E-11 110 250 450 160 8,37E-11 8,37E-11
Biogenic 1,00E-11 7,96E-10 1 1 9 4 1,00E-11 7,96E-10 5 5 800 1E-11 7,96E-10 170
Metal 1 40 1,00E-11 1,00E-2 1,00E-11 1,00E-2 1,00E-11 0,005 0,001 70 0,00164 1,64E-10 1,64E-10 1,64E-10
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APPENDIX D

Operating conditions for the real data
case and results

D.1 Initial Profile matrix.

The chemists are able to provide an initial profile matrix given in Table (D.1). It is to be noted that
the same initial matrix is applied for informed and uninformed methods. ε is a very small quantity to
make the initialization very close to the case of informed methods where set values are zeros.

D.2 Prior information

Prior information is provided through the specification of both Ω (D.2) and Φ. The set value
configuration is the same as those presented in [142]. As a consequence, Φ is equal to Φ= 0p×m.

D.3 Presentation of the profile estimation

This section provides a complete list of estimated profiles. Figure (D.1) shows the different pro-
portions of species present in the rich metal source. Our new methods are consistent with major
species described in Table (6.5) while αβ WNMF provides some inconsistencies. There is a small
overestimation of Phosphorus species in our αβ SG-CWNMF and Huber SG-CWNMF methods.

Figure (D.2) displays the profile of the primary biogenic source. αβ SG-CWNMF and Huber SG-
CWNMF are satifying the requirement for major species but present some overestimation of species
Na+, SO2−

4 and NO−
3 . On the contrary to Figure (D.1), there is a slight underestimation of Phosphorus

species in our αβ SG-CWNMF and Huber SG-CWNMF methods. (D.3) displays the profile of the
Sea Traffic source. αβ SG-CWNMF and Huber SG-CWNMF are satisfying the requirements for main
species except for OC, Fefor Huber SG-CWNMF and EC and Fefor αβ SG-CWNMF. Figure (D.4)
displays the profile of the Road Traffic source. αβ SG-CWNMF and Huber SG-CWNMF are satisfy-
ing the requirements for main species except for NO−

3 or EC and EC. Figure (D.5) displays the profile
of the biomass source. αβ SG-CWNMF and Huber SG-CWNMF are consistent with the expected
species except for NH+

4 for αβ SG-CWNMF and Mg2+for Huber SG-CWNMF. Figure (D.6) shows
the profile of the secondary sulfate source. αβ SG-CWNMF and Huber SG-CWNMF are consistent
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Table D.1 – Matrix Finit

Finit Al Cr Fe Mn P Sr Ti Zn V Ni Co Cu Cd Sb

Sea 0,19 ε ε ε 1,00 8,00 ε ε ε ε ε ε ε ε

Aged sea 0,10 0,01 0,50 0,01 1,00 8,00 0,02 0,02 ε ε 1,00 0,01 0,01 0,01
Crustal 266,67 0,14 150 2,00 ε 2,00 20 0,50 0,50 0,07 0,07 0,07 ε 0,01
nitrates 0,98 0,98 30 0,98 ε 0,98 0,98 20 ε 0,98 0,98 10 0,98 0,98
sulfate 1,00 1,00 30 1,00 ε 1,00 15,00 20 ε 1,00 1,00 1,00 1,00 1,00
Biomass 4,00 ε 9,00 1,00 ε 1,00 1,00 10 ε ε ε 1,00 ε ε

Road traffic 20 1,00 50 5,00 ε 1,00 ε 50 5,00 10 5,00 50 5,00 50
Sea traffic 10 ε 10 ε ε ε ε 5,00 55,00 55,00 30 ε ε ε

Biogenic 0,01 ε 0,01 ε 20 ε ε ε ε ε ε 1,00 ε ε

Metal 80 80 358 40 8 18,00 40 40 30 30 1,00 40 50 30

La Pb Na+ NH+
4 K+ Mg2+ Ca2+ Cl− NO−

3 SO2−
4 OC EC Levo. Polyols

Sea ε ε 320,00 ε 10,00 40,00 10,00 540,08 ε 70,00 0,64 0,09 ε ε

Aged Sea ε 0,01 250,00 ε 10,00 25,00 10,00 200,00 275,30 210,00 8,00 1,00 ε ε

Crustal ε 0,14 10,00 3,00 100,00 70,14 210,00 7,00 20,00 35,07 90,00 12,62 ε ε

nitrates ε 0,98 ε 200,00 0,98 0,98 40,00 0,98 547,30 ε 100,00 40,00 ε ε

sulfate ε 20,00 ε 200,00 34,00 1,00 40,00 1,00 ε 554,00 60,00 16,00 ε ε

Biomass 0,00 0,94 2,83 28,31 70,00 4,72 37,74 66,05 70,00 66,05 500,61 69,29 56,46 ε

Road traffic ε 10,00 ε 10,00 10,00 ε 21,00 2,00 80,00 40,00 271,73 303,27 ε ε

Sea traffic 15,00 10,00 ε 10,00 ε ε 20,00 ε 10,00 30,00 580,00 160,00 ε ε

Biogenic ε ε 1,00 1,00 5,00 4,00 1,00 ε 5,00 5,00 760,00 50,00 ε 146,98
Metal 1,00 80,00 ε 1,00 48,00 10,00 5,00 ε ε 10,00 ε ε ε ε

Table D.2 – Matrix Ω

Ω Al Cr Fe Mn P Sr Ti Zn V Ni Co Cu Cd Sb

Sea 0 1 0 1 0 0 1 1 1 1 1 1 1 1
Aged sea 0 0 0 0 0 0 0 0 1 1 0 0 0 0
Crustal 0 0 0 0 0 0 0 0 0 0 0 0 0 0
nitrates 0 0 0 0 0 0 0 0 1 0 0 0 0 0
sulfate 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Biomass 0 1 0 0 0 0 0 0 1 1 0 0 0 0
Road traffic 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sea traffic 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Biogenic 0 0 0 1 0 0 0 0 1 1 0 0 1 0
Metal 0 0 0 0 0 0 0 0 0 0 0 0 0 0

La Pb Na+ NH+
4 K+ Mg2+ Ca2+ Cl− NO−

3 SO2−
4 OC EC Levo. Polyols

Sea 1 1 0 1 0 0 0 0 1 0 0 0 1 1
Aged sea 0 0 0 1 0 0 0 0 0 0 0 0 1 1
Crustal 0 0 0 0 0 0 0 0 0 0 0 0 1 1
nitrates 0 0 1 0 0 0 0 0 0 1 0 0 1 0
sulfate 0 0 1 0 0 0 0 0 1 0 0 0 1 0
Biomass 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Road traffic 0 0 1 0 0 1 0 0 0 0 0 0 1 1
Sea Traffic 0 0 1 0 0 0 0 0 0 0 0 0 1 1
Biogenic 1 1 0 0 0 0 0 0 0 0 0 0 1 0
Metal 0 0 1 0 0 0 0 1 1 0 1 1 1 1
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Figure D.1 – Estimation of the metal rich source profile.

with all the expected species. Figure (D.7) shows the profile of the secondary nitrate source. αβ

SG-CWNMF and Huber SG-CWNMF are consistent with all the expected species. Figure (D.8)
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Figure D.2 – Estimation of the Primary biogenic source.

shows the profile of the crustal dust source. αβ SG-CWNMF and Huber SG-CWNMF are consistent
with the main expected species except for SO2−

4 for both methods and K+for Huber SG-CWNMF.
Figure (D.9) shows the profile of the Aged sea source. αβ SG-CWNMF and Huber SG-CWNMF
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Figure D.3 – Estimation of the Sea traffic source profile.

are consistent with all the expected species. Figure (D.10) shows the profile of the sea source. αβ

SG-CWNMF and Huber SG-CWNMF are consistent with all the expected species.
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Figure D.4 – Estimation of the Road traffic source profile.
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Figure D.5 – Estimation of the biomass source profile.
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Figure D.6 – Estimation of the secondary sulfate source profile.
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Figure D.7 – Estimation of the secondary nitrate source profile.
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Figure D.8 – Estimation of the crustal dust source profile.
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Figure D.9 – Estimation of the Aged sea source profile.
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Figure D.10 – Estimation of the sea source profile.
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Abstract — Source apportionment for air pollution may be formulated as a NMF problem by
decomposing the data matrix X into a matrix product of two factors G and F , respectively the contribu-
tion matrix and the profile matrix. Usually, chemical data are corrupted with a significant proportion
of abnormal data. Despite the interest for the community for NMF methods, they suffer from a lack
of robustness to a few abnormal data and to initial conditions and they generally provide multiple
minima. To this end, this thesis is oriented on one hand towards robust NMF methods and on the
other hand on informed NMF by using some specific prior knowledge. Two types of knowledge are
introduced on the profile matrix F . The first assumption is the exact knowledge on some of flexible
components of matrix F and the second hypothesis is the sum-to-1 constraint on each row of the
matrix F . A parametrization able to deal with both information is developed and update rules are
proposed in the space of constraints at each iteration. These formulations have been applied to two
kind of robust cost functions, namely, the weighted Huber cost function and the weighted αβ diver-
gence. The target application–namely, identify the sources of particulate matter in the air in the coastal
area of northern France– shows the relevance of the proposed methods. In the numerous experiments
conducted on both synthetic and real data, the effect and the relevance of the different information is
highlighted to make the factorization results more reliable.

Keywords : Informed Non-negative matrix factorization, Robustness, Air pollution.

Résumé — Le démélange de sources pour la pollution de l’air peut être formulé comme un problème
de NMF en décomposant la matrice d’observation X en le produit de deux matrices non négatives G
et F , repectivement la matrice de contributions et de profils. Généralement, les données chimiques
sont entâchées d’une part de données aberrantes. En dépit de l’intérêt de la communauté pour les
méthodes de NMF, elles souffrent d’un manque de robustesse à un faible nombre de données aber-
rantes et aux conditions initiales et elles fournissent habituellement de multiples minima. En con-
séquence, cette thèse est orientée d’une part vers les méthodes de NMF robustes et d’autre part vers
les NMF informées qui utilisent une connaissance experte particulière. Deux types de connaissances
sont introduites dans la matrice de profil F . La première hypothèse est la connaissance exacte de
certaines composantes de la matrice F tandis que la deuxième information utilise la propriété de
somme-à-1 de chaque ligne de la matrice F . Une paramétrisation qui tient compte de ces deux infor-
mations est développée et des règles de mise à jour dans le sous-espace des contraintes sont proposées.
L’application cible qui consiste à identifier les sources de particules dans l’air dans la région côtière du
nord de la France montre la pertinence des méthodes proposées. Dans la série d’expériences menées
sur des données synthétiques et réelles, l’effet et la pertinence des différentes informations sont mises
en évidence et rendent les résultats de factorisation plus fiables.

Mots-clés: Factorisation matricielle non-négative Informée, Robustesse, Pollution de l’air.
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