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Résumé

Les amas globulaires sont des objets célestes autogravitants constitués de centaines de milliers d'étoiles et qui orbitent généralement autour d'une galaxie. À travers l'étude de leurs compositions chimiques et plus généralement de leurs propriétés, ils nous offrent une opportunité d'appréhender l'histoire de leurs galaxies hôtes.

Dans cette thèse, je me suis intéressé aux propriétés des amas globulaires dans différents environnements. Tout d'abord, je me suis concentré sur les amas globulaires de l'amas de la Vierge, un amas de galaxies très dense situé à environ 16,5 Mpc. J'ai utilisé les données observées par le relevé NGVS (Next Generation Virgo Survey) pour définir un échantillon d'amas globulaires avec des magnitudes très précises et qui contient 1846 amas globulaires autour de M87 (la galaxie centrale de l'amas de la Vierge) dans les magnitudes u * , g, r, i, z et K s .

J'ai ensuite comparé les couleurs de ces amas avec celles d'autres amas globulaires originaires de la Voie Lactée. La comparaison entre ces deux échantillons, représentatifs d'environnements distincts, met en avant des différences de couleurs encore jamais observées. L'origine exacte de cette modification est encore énigmatique, mais il est probable que ces différences de couleurs soient provoquées par des variations d'abondances chimiques dans les étoiles des amas, directement ou indirectement liées à l'environnement.

Dans l'optique de comprendre ces différences, j'ai effectué, dans la seconde partie de ma thèse, une comparaison entre nos amas globulaires observés et des amas globulaires synthétiques basés sur 10 modèles de synthèse de populations stellaires (SPS). La comparaison observation-théorie démontre l'incapacité des modèles à bien reproduire statistiquement les couleurs des amas globulaires autour de M87, alors que l'accord est raisonnable avec les amas de la Voie Lactée. En d'autres termes, en l'état actuel les modèles ne rendent pas compte de la diversité d'environnement identifiée dans ma thèse. Mon analyse apporte une contrainte forte pour la calibration de ceux-ci.

Pour quantifier l'influence d'écarts en couleurs sur l'estimation d'âge et de métallicité prédite par les modèles, je me suis intéressé à estimer ces deux paramètres pour les amas globulaires autour de M87 à partir des 10 modèles d'amas synthétiques sus-mentionnés. Au final, les estimations pour les amas autour de M87 sont différentes de celles obtenues pour les amas de la Voie Lactée puisque ces deux familles d'amas n'ont pas les mêmes couleurs. Bien qu'il soit logique de s'attendre à des différences d'âge et de métallicité entre ces amas, l'amplitude des différences est beaucoup trop importante. De fait, les estimations finales ne peuvent pas être décisives pour clarifier l'histoire de formation de ces amas.

Pour finir, le dernier chapitre de cette thèse est consacré à une brève étude des propriétés spatiales des amas globulaires autour de M87. Dans cette analyse, j'ai repéré une anomalie sur les couleurs de certains amas globulaires qui, si elle est confirmée, pourrait être la marque d'une galaxie plus petite récemment accrétée par M87.

Dans le but de caractériser l'univers qui nous entoure, il est nécessaire d'introduire des mesures et des outils adaptés aux échelles étudiées. Il paraît logique de ne pas parler de notre distance à l'étoile la plus proche du système solaire, Proxima du Centaure, en mètre (∼ 4 . 10 16 m). Cela étant, on utilise le mètre et ses dérivés (mm,cm,km) pour étudier les objets à l'échelle terrestre. Pour des objets du voisinage solaire, on introduit l'UA (pour unité astronomique), définie comme la distance terre soleil (∼ 150 . 10 6 km). Enfin, pour des distances à l'échelle galactique et extra-galactique, on parle en parsec, défini par une parallaxe annuelle de 1 arc-seconde (où l'arc-seconde est une mesure d'angle égale à 1/3600 degré). Plus exactement, la parallaxe annuelle d'une étoile représente l'angle sous lequel il serait possible de voir le demi-grand axe de l'orbite terrestre depuis cette étoile. Si cette parallaxe vaut 1 arc-seconde, alors l'étoile se situe à 1 parsec. De la même manière, pour mesurer le temps ou l'âge des objets de l'univers, on utilise les années (e.g. le milliard d'années est abrégé "Gyr" dans cette thèse), pour mesurer la masse, on utilise la masse solaire (M ⊙ ≈ 2 × 10 26 kg) et pour mesurer la taille d'un objet, on utilise la taille angulaire en arc-seconde (et ses dérivés arc-minute, degré).

Pour caractériser l'expansion de l'univers (mise en évidence par la loi de Hubble ; Hubble 1929), on définit un facteur d'échelle relatif au temps et à la distance d'un objet, appelé "redshift" ou décalage vers le rouge. Basé sur l'effet Doppler, le redshift est produit par l'éloignement des galaxies (i.e l'expansion de l'univers) qui décale le spectre de chaque objet vers des longueurs d'onde plus rouges. Ce facteur étant approximativement logarithmique par rapport au temps, un redshift de 0, 1 ou 10 correspond respectivement à l'univers local, l'univers il y a environ 8 Gyr ou l'univers il y a environ 13 Gyr. La réionisation, étape importante qui correspond au moment où les atomes de l'univers ont été ionisés par le rayonnement intense des premières générations d'étoiles, semble avoir un redshift d'environ 6 (Fan et al., 2006).

La vie des étoiles

Les étoiles sont des composantes essentielles de l'univers. Pendant leurs vies, elles forment de nombreux éléments chimiques (autres que l'hydrogène) à travers les réactions de fusion nucléaire. Elles sont donc responsables de l'apport en métaux (éléments plus lourds que l'hélium) dans l'univers.

Les étoiles se forment principalement grâce à l'effondrement d'un nuage moléculaire qui se fragmente pour donner plusieurs coeurs proto-stellaires. Si la température d'un coeur atteint la température de fusion de l'hydrogène (∼ 10 MK) alors la chaîne de réactions nommée 'proton-proton' démarre (formation d'hélium à partir d'hydrogène). Dans le cas FIGURE 1.1 -Fr : Tracé d'évolution stellaire schématique pour une étoile de 5 M ⊙ . Les différentes phases évolutives sont la séquence principale (ZAMS), la sous-branche des géantes (SGB), la branche des géantes rouges (RGB), la branche horizontale (HB) et la branche asymptotique des géantes (E/TP/P-AGB). La figure est tirée de Carroll & Ostlie (1996) En : Evolutionary track for a 5 M ⊙ star. All the different evolutionary phases are labeled on the figure. This figure is taken from [START_REF] Carroll | An Introduction to Modern Astrophysics[END_REF] où la température dépasse ∼ 15 MK, la chaîne CNO (Carbone-Azote-Oxygène) peut aussi démarrer (à ∼ 17 MK, elle devient la source d'énergie principale Schuler et al. 2009). Dans les deux cas, on considère que la proto-étoile a atteint la séquence principale (où "Main Sequence" en anglais) et devient donc une étoile. Cette étape est généralement la plus longue phase évolutive d'une étoile. Pour une étoile de type solaire (∼ 1 M ⊙ ), cette étape dure environ 10 Gyr, mais plus la masse de l'étoile est grande, plus cette étape est courte (à peine quelques Myr pour une étoile d'environ 50 M ⊙ ).

Le séquence principale se finit lorsque le coeur de l'étoile se compose principalement d'hélium et que les réactions de fusion proton-proton ont lieu uniquement en couche autour de ce coeur d'hélium. C'est la sous-branche des géantes (SGB). La pression radiative dans les couches extérieures au coeur fait augmenter le rayon de l'étoile et en conséquence, fait refroidir la surface de l'étoile. A ce moment, la différence de température entre les différentes couches de l'étoiles entraine un fort phénomène de convection qui amène du combustible autour du coeur et expulse des produits dans les couches extérieures. Le coeur continue d'accumuler de l'hélium mais l'équilibre entre gravité et pression radiative commence à vaciller ce qui provoque une augmentation de la température, une augmentation du taux de fusion de l'hydrogène et par conséquent une augmentation de la luminosité de l'étoile. C'est la branche des géantes rouges (RGB). Lorsque la pression radiative ou thermique n'est plus assez importante pour contre-balancer la gravité, le coeur s'effondre sous le poids de celleci. Cette effondrement produit une augmentation de la température qui, lorsqu'elle atteint CHAPITRE 1. Contexte et outils Les mesures astrophysiques environ 100 MK permet le démarrage du processus 'triple-alpha' qui fusionne l'hélium du coeur pour produire des métaux. L'augmentation de la pression radiative due à ces réactions fait augmenter la taille du coeur de l'étoile mais ralentit les réactions proton-proton des couches de l'étoiles ce qui fait diminuer le rayon total de l'étoile mais augmenter sa température. C'est la branche horizontale (HB). Les réactions triple-alpha dans le coeur de l'étoile produisent du carbone et de l'oxygène. De fait, les fusions de l'hydrogène et de l'hélium continuent autour de ce coeur. Plus exactement, ce sont les fusions de l'hydrogène dans les couches qui produisent beaucoup d'énergie et, périodiquement, lorsque la température le permet, les fusions de l'hélium prennent le relais et augmentent fortement. Cette phase de variation de luminosité est appelée TP-AGB pour "Thermally Pulsing Asymptotique Giant Branch".

Bien que toutes les étape de la vie d'une étoile dépendent de sa masse, celles citées précédemment sont plutôt communes pour des étoiles de masse initiale supérieure à environ 0.5 M ⊙ (excepté pour la branche horizontale). Cependant, en fin de vie, la masse d'une étoile va jouer un grand rôle. Sans rentrer trop dans les détails, après la branche asymptotique des géantes, en l'absence d'une température suffisante pour initier les réactions de fusion dans leur coeur, les étoiles de masse intermédiaire (avec une masse finale inférieure à environ 2.5 M ⊙ ) vont se contracter et l'énergie libérée va expulser les couches supérieures de l'étoile. En conséquence, le coeur de l'étoile, libéré de ses couches, va devenir une naine blanche alors que les couches expulsées vont donner une nébuleuse planétaire (à l'origine de l'émission nébulaire). Pour les étoiles plus massives (avec une masse finale supérieure à environ 2.5 M ⊙ ) les réactions de fusion vont continuer jusqu'à accumuler un coeur de fer (plus précisément du fer-56 ; la fusion du fer-56 consomme de l'énergie et ne peut donc pas démarrer). Lorsque la masse de ce coeur dépasse la limite de Chandrasekhar (Chandrasekhar, 1931, réévaluée à 1.4 M ⊙ depuis), le coeur s'effondre en produisant une quantité gigantesque d'énergie ce qui produit une supernova (de type II). Le coeur, quant à lui, forme une étoile à neutron (un pulsar si la rotation de l'étoile devient très grande) ou un trou noir en fonction de la masse finale de l'étoile. Cette explosion va expulser, dans le milieu environnant, les éléments précédemment synthétisés dans les couches de l'étoile. Ces éléments sont appelés les éléments alpha (O,Ne, Mg, Si, S, Ar, Ca,Ti) et leurs abondances par rapport au fer ([α/Fe]) sont couramment utilisées en astrophysique. La plupart de ces étapes sont récapitulées sur la Figure 1.1.

Pour finir, les étoiles peuvent être classées selon leur type spectral. Il s'agit d'une classification principalement relative à leurs températures de surface. Bien qu'il existe maintenant d'autres types, les plus connus, triés par ordre décroissant de leur température, sont O, B, A, F, G, K, M et L. Une étoile chaude (> 25000 K) sera de type O alors qu'une étoile plus froide (∼ 5000 -6000 K) sera de type G. En plus de cette lettre, une sous-classification variant de 0 jusqu'à 9 existe pour chaque type (avec une étoile O0 plus chaude qu'une étoile O9). On trouvera aussi souvent un chiffre romain (I, II, III, IV, V) après la classification pour exprimer le stade évolutif (plus exactement, il s'agit de la "classe de luminosité") de l'étoile (e.g V correspond à la séquence principale).

Les populations stellaires

Comme son nom l'indique, une population stellaire est un ensemble d'étoiles (de différentes masses) potentiellement accompagné de gaz, de poussières et de matière noire (pour résumer très brièvement, la matière noire, associée au modèle ΛCDM, est composée de particules non-collisionnelles, qui n'émettent pas de rayonnement électromagnétique et qui sont utilisées pour expliquer certaines observations astrophysiques). Plusieurs types de populations stellaires peuplent l'univers. Pour n'en montrer que quelques uns, quatre populations sont présentées en figure 1.2. Il s'agit, de gauche à droite, d'un amas ouvert, d'un amas globulaire, d'une galaxie spirale et d'une galaxie elliptique. Les amas ouverts sont composés des quelques centaines d'étoiles toutes liées entre elles par la gravitation et cette population mesure en moyenne quelques parsecs (environ 8 parsecs selon Kharchenko et al., 2013). Tout comme les amas ouverts, les amas globulaires sont composés d'étoiles mais en beaucoup plus grand nombre. Cette population stellaire étant essentielle dans cette thèse, je la présente en détail dans la section 1.2. Il existe aussi des naines ultra-compactes (où "Ultra-Compact Dwarfs" ; UCD), qui possèdent des propriétés similaires aux amas globulaires mais avec une taille plus grande (entre 10 et 50 parsecs ; Haşegan et al. 2005;Liu et al. 2015). Enfin, il y a les galaxies, composées d'étoiles, de gaz, de poussières et d'un halo de matière noire. Cependant, dans cette dénomination de "galaxie" se cachent plusieurs types de galaxies. Pour les classifier, il existe différents schémas. Dans la classification de Hubble (nommée séquence de Hubble ;Hubble, 1926), les galaxies sont triées en fonction de leur morphologie entre : elliptiques (une distribution de lumière régulière et sans motifs ; avec la dénomination E0-7), spirales (un disque plat avec des étoiles formant des bras spiraux, un halo sphérique autour du disque et une structure centrale appelé "bulbe" ; avec la dénomination S suivi d'une lettre), lenticulaires (similaire aux spirales mais sans bras spiraux visibles ; S0) ou encore irrégulières (Irr). Dans la classification de Vaucouleurs (qui est une extension de celle d 'Hubble ;[START_REF] De Vaucouleurs | [END_REF], la classification pour les galaxies spirales est plus détaillée et l'auteur introduit le concept de "early-types" et "late-types". En résumé, les "early-types galaxies" regroupent les galaxies elliptiques et lenticulaires alors que les "late-types" correspondent aux galaxies spirales et irrégulières.

Lorsque l'on s'intéresse en détail aux étoiles d'une population stellaire sans gaz, sans poussière et avec une évolution passive (i.e une population assez simple), on s'aperçoit que la distribution des masses n'est pas uniforme : il y a plus d'étoiles de faibles masses que d'étoiles massives. Dans le but de comprendre et de modéliser cette distribution, on utilise une fonction de masse initiale (IMF ; Φ(M)) souvent définie par le nombre d'étoiles par intervalle de masse : dN = Φ(M) dM. Les IMF les plus connues sont celles de Salpeter (où Φ(M) = ε 0 . M -2.35 ; Salpeter, 1955), de Chabrier (Chabrier, 2003) ou encore de Kroupa (où Φ(M) = M -α avec α = 0.3, 1.3 ou 2.3 en foncton de la masse de l'étoile ; Kroupa, 2001).

De manière générale, lorsqu'on étudie cette même population stellaire simple, à un âge donné, dans un diagramme couleur-magnitude (CMD), on s'aperçoit que les étoiles occupent un lieu particulier que l'on appelle "isochrone". Ce tracé est dicté par les différences de temps d'évolution pour chaque étoile : les étoiles massives vont évoluer très vite (i.e quitter la séquence principale) alors que les étoiles de faibles masses vont stagner sur la séquence principale énormément de temps. En conséquence, quel que soit l'âge de la population, il existe un isochrone qui prédit, dans un CMD, la position de chacune des étoiles de cette population en fonction de l'étape évolutive supposée de chaque étoile. De plus, comme chaque étoile a un temps de vie dicté par sa masse, il existe, sur chaque isochrone, CHAPITRE 1. Contexte et outils Les mesures astrophysiques une masse d'étoile spécifique pour laquelle les étoiles sont en train de quitter la séquence principale. La position de cet évènement sur un CMD est appelé le "turn-off". En pratique, il est possible d'avoir accès à de nombreux isochrones. Pour ne citer que quelques tracés connus, il existe les isochrones de BaSTI (A Bag of Stellar Tracks and Isochrones ; Pietrinferni et al. 2004), Darthmouth (Dotter et al., 2008) ou encore Padova (e.g. Bertelli et al. 1994;Girardi et al. 1996Girardi et al. , 2000)).

Observations et grands relevés

Dans le but de caractériser les différentes populations stellaires de l'univers, il est nécessaire d'acquérir des données sur ces objets. Pour ce faire, deux types d'observations sont possibles. D'une part, il y a les observations dites photométriques basées sur la lumière intégrée dans des filtres (parfois nommés en fonction du domaine de longueurs d'onde qu'ils transmettent e.g. "U" pour l'UV, "B" pour le bleu ou "R" pour le rouge). D'autre part, il y a les observations spectroscopiques basées sur le flux reçu à chaque longueur d'onde (dans un domaine restreint de longueurs d'onde dicté par le spectrographe utilisé). Chacune de ces méthodes nous donne accès à différentes propriétés de l'objet étudié. Dans les sections suivantes, j'aborde quelques notions relatives à ces méthodes ainsi que quelques-uns des différents grands relevés photométriques et spectroscopiques qui ont beaucoup aidé à faire progresser nos connaissances sur l'univers et plus particulièrement sur les amas globulaires.

Photométrie

Comme introduit dans la partie précédente, la photométrie nous donne une information sur la lumière intégrée dans une certaine bande de longueurs d'onde. La valeur obtenue est exprimée en "magnitudes" et la bande de longueurs d'onde est sélectionnée par un filtre. Un filtre parfait possède une transmission de 1 dans la bande voulue et 0 ailleurs. En réalité, les difficultés techniques et observationnelles (e.g. l'absorption atmosphérique) réduisent la qualité du filtre. Un exemple de 5 courbes de transmission utilisées pendant cette thèse est montré en Figure 1.3 (par abus de langage, une courbe de transmission, qui regroupe le filtre, la transmission atmosphérique et la sensibilité du détecteur, est souvent plus simplement appelé "filtre") .

En fonction des longueurs d'onde acquises, un filtre donnera une information différente. Par exemple, un filtre UV sera sensible aux étoiles O-B (étoiles jeunes et chaudes qui émettent beaucoup dans l'UV) alors qu'un filtre IR(-proche) sera utile pour étudier les étoiles froides. Cela étant, les grands relevés photométriques possèdent généralement plusieurs filtres répartis le long du spectre électromagnétique (i.e de l'UV jusqu'à l'IR proche) pour maximiser la quantité d'information disponible. De plus, avec l'accès à deux filtres, il est possible d'obtenir une couleur définie par la différence de deux magnitudes ; standardisée par M courte longueur d ′ onde -M grande longueur d ′ onde . Selon les filtres utilisés, elle permet notamment d'obtenir des informations sur la température d'une étoile ou sur la métallicité d'un amas globulaire.

Il existe beaucoup de relevés photométriques avec différentes caractéristiques (comme les filtres, le télescope utilisé, la couverture spatiale etc. ...). Afin de ne pas faire une liste exhaustive de tous les relevés effectués à ce jours, je me limite à quelques exemples de grands relevés photométriques ayant eu/ qui auront sûrement un impact considérable sur l'étude des amas globulaires.

Tout d'abord, l'un des relevés ayant donné lieu au plus grand nombre d'articles astrophysiques de l'histoire (environ 5 800 selon leur site) est le Sloan Digital Sky Survey (SDSS ; Gunn et al. 1998;York et al. 2000). Ce relevé fût originellement disponible en 2000 (SDSS-I) pour une durée de (dans les deux hémisphères Nord et Sud) dans les filtres u, g, r, i et z (avec des évolutions dans les filtres ; Doi et al. 2010). Pour ne citer que quelques analyses centrées sur les amas globulaires et utilisant SDSS, je mentionnerai l'étude de Vanderbeke et al. (2014) s'intéressant à la relation couleur-métallicité pour les amas galactiques (voir section 1.2.2) ou encore l'étude de Peacock et al. (2011) sur la couleur des amas globulaires de M31 comparée à des modèles. En plus de ces analyses, il est important de mentionner que SDSS représente une référence pour la calibration photométrique de beaucoup de relevés postérieurs à SDSS. En d'autres termes, la photométrie de certains relevés est attachée à celle de SDSS.

Avec l'aide du Hubble Space Telescope (HST) trois autres relevés importants en matière d'amas globulaires ont été possibles. Les trois ont été effectués à l'aide de la caméra "Advanced Camera for Survey"(ACS) installée sur le HST. Ce sont les relevés "ACS Virgo Cluster Survey" (ACSVCS ; Côté et al. 2004), "ACS Fornax Cluster Survey" (ACSFCS ; Jordán et al. 2007) et "ACS Survey of Galactic Globular Cluster (ACS-SGGC ; Anderson et al. 2008). Comme leur nom l'indique, ces trois relevés s'intéressent à trois environnements bien précis : l'amas de galaxies de Virgo, celui de Fornax et le halo de notre galaxie. Les deux premiers utilisent les filtres F475W (similaire au filtre g) et F850LP (similaire au filtre z). A l'inverse, le relevé ACS-SGGC est basé sur les filtres F606W (∼ r) et F814W (∼ i). A eux trois, ils combinent de nombreux résultats importants en matière d'amas globulaires comme des études sur la branche horizontale des amas galactiques (Dotter et al. 2010 ; ACS-SGGC), sur la mise en évidence de deux populations dans la branche des sousgéantes de NGC 1851 (Milone et al. 2008 ; ACS-SGGC), sur la relation Masse-Métallicité des amas (Mieske et al. 2010 ; ACSVCS et ACSFCS) ou encore sur la taille des amas de Virgo (Jordán et al. 2005;[START_REF] Masters | American Astronomical Society Meeting Abstracts #213[END_REF]ACSVCS et ACSFCS).

L'une des évolutions du relevé ACSVCS, utilisé pendant cette thèse, est le relevé Next CHAPITRE 1. Contexte et outils

Les mesures astrophysiques

Generation Virgo cluster Survey (NGVS ; Ferrarese et al. 2012) ainsi que le relevé IR complémentaire NGVS-IR (Muñoz et al., 2014). Ces deux relevés combinent les filtres u * , g, r, i, z et K s et seront discutés extensivement dans la suite de cette thèse.

En ce qui concerne l'IR, beaucoup d'informations sont obtenues grâce au relevé Two Micron All-Sky Survey (2MASS ; Skrutskie et al. 2006). Ce relevé couvre plus de 99 % de la sphère céleste dans les bandes J (1.25µm), H (1.65µm) et K s (2.16µm). La plupart des études combinent les données de 2MASS avec d'autres données optiques. Par exemple, la caractérisation des amas globulaires de M31 dans l'optique et l'IR avec l'ajout des catalogues de Galleti et al. (2004) et Wang et al. (2014) (IR basée sur 2MASS) au catalogue "Revised Bologna Catalog" (Galleti et al., 2004) en optique. Cela a permis une sélection plus précise des amas globulaires (via les bandes IR ; Galleti et al. 2004) ainsi qu'une étude de la fonction de luminosité des amas de M31 (Wang et al., 2014). En complement, grâce à leurs couvertures spatiales complètes, les relevés 2MASS et son successeur UKIDSS (UKIRT Infrared Deep Sky Survey ; Lawrence et al. 2007) peuvent aussi être utilisés comme référence pour calibrer la photométrie d'autres relevés dans les bandes J, H, et K s .

Pour finir, il est important de mentionner quelques exemples de futurs grands relevés qui vont sans aucun doute nous aider à caractériser les objets de l'univers et en particulier les amas globulaires. Tout d'abord, le Large Synoptic Survey Telescope (LSST) est un télescope en construction qui sera à l'origine d'un relevé ultra-profond (jusqu'à une magnitude de 27.5 dans la bande r i.e 5 mag de mieux que SDSS) dans les filtres g, r, i, z, Y (et surement u) de tout l'hémisphère sud. L'accès à ce catalogue va surement donner lieu à un grand nombre d'études révolutionnaires sur les amas extra-galactiques. Dans un futur plus proche (le relevé est actuellement en cours d'observation), le relevé Canada-France Imaging Survey (CFIS) utilisant le CFHT (Canada-France-Hawaï Télescope) est un bon candidat pour effectuer de nouvelles découvertes. Ce relevé sera basé sur deux filtres : le filtre r associé à CFIS WIQD (Wide + Image Quality + Deep) et le filtre u associé à CFIS LUAU (Legacy for the U-band All-sky Universe). Les deux composantes vont observer respectivement ∼ 5000 et ∼ 10000 degrés carré dans l'hémisphère Nord et pourront donc être utilisées en combinaison avec SDSS pour permettre d'améliorer nos connaissances en matière d'amas globulaires (entre autres). De plus, l'un des objectifs de CFIS est aussi de pouvoir compléter le futur grand relevé qui va être observé par Euclid : un télescope spatial doté d'un miroir de 1.2 m de diamètre qui a pour but d'observer ∼ 15000 degrés carré du ciel dans les longueurs d'onde optique et surtout infra-rouge.

Spectroscopie

Contrairement à la photométrie, la spectroscopie permet, grâce à un spectrographe, de décomposer le flux lumineux d'un objet dans des intervalles de longueur d'onde plus ou moins fin. Le résultat de cette décomposition est appelé un spectre et se représente comme une distribution des flux en fonction des différentes longueurs d'onde. La taille des intervalles de longueur d'onde utilisés est dictée par la résolution instrumentale du spectromètre. Plus exactement, on parle généralement de pouvoir de résolution défini comme R = λ / ∆λ avec λ la longueur d'onde et ∆λ l'intervalle de longueur d'onde le plus petit possible qui permet à deux raies spectrales d'être séparées (ou parfois, à tort, simplement assimilé à la largeur à mi-hauteur d'une raie ; Robertson 2013). Plus la valeur du pouvoir de résolution est grande plus le spectre sera détaillé. Un exemple de 3 spectres aux pouvoirs de résolution différents est présenté en Figure 1. 4. Il est possible d'exprimer un spectre en F λ ou en F ν . F λ s'écrit en erg.s -1 .cm -2 .Å -1 alors que F ν s'exprime en erg.s -1 .cm -2 .Hz -1 . Sachant qu'il existe une relation entre la longueur d'onde (λ ) et la fréquence (ν) tel que λ = c / ν (avec c la vitesse de la lumière), il existe une relation pour passer de F λ à F ν avec : λ × F λ = ν × F ν .

Lors du calcul d'une magnitude à partir d'un spectre (il est possible de calculer une CHAPITRE 1. Contexte et outils

Les mesures astrophysiques FIGURE 1.4 -Fr : Exemple de 3 spectres tirés de 3 librairies stellaires différentes (BaSeL, Lejeune et al. 1997;Westera et al. 2002 ;MILES, Sánchez-Blázquez et al. 2006 ; PHOE-NIX, Husser et al. 2013). La librairie de BaSeL possède une faible résolution (R∼ 200), celle de MILES une résolution intermédiaire (avec une FWHM ou largeur à mi-hauteur de ≈ 2.4 Å i.e R ∼ 2000) et enfin celle de PHOENIX une très haute résolution (R∼ 500 000).

En : Example of spectra extracted from 3 stellar libraries (BaSeL, MILES, and PHOE-NIX) with 3 different spectral resolutions (respectively R∼ 200, ∼ 2000, and ∼ 500000).

The stellar parameters for each spectrum are [Fe/H] = -1.0, logg = 5.00, and T e f f = 8000 K. magnitude à partir d'un spectre en convoluant le flux du spectre avec le filtre souhaité), l'utilisation d'une de ces deux unités permet d'obtenir une magnitude dans une référence particulière. Plus précisément, une magnitude dans le système AB sera obtenue en utilisant F ν tel que mag AB = -2.5 log(Fc ν ) -48.6 (Fc ν est le résultat de la convolution de F ν avec un filtre) alors que F λ sera privilégié dans le calcul d'une magnitude dans le système Véga tel que mag Vega = -2.5 log(Fc λ ) -2.5 log(Fc Vega λ ) (même si, dans ce cas, il est aussi possible d'utiliser F ν ).

Dans le cas où la bande de longueur d'onde couverte par le spectre est suffisamment grande, et que les transmissions des filtres sont disponibles, il est donc possible d'obtenir toutes les informations photométriques souhaitées à l'aide d'un spectre. En plus de cela, un spectre permet d'étudier les abondances chimiques à travers la profondeur des raies spectrales ainsi que la vitesse radiale d'un objet par effet Doppler (décalage des raies spectrales). Cependant, l'acquisition d'un spectre est soumise à plus de contraintes que l'acquisition d'une magnitude en photométrie. En effet, à l'inverse de la photométrie, le nombre d'objets observés en spectroscopie est restreint (même en considérant les spectrographes multi-objets). De plus, la réduction complète d'un spectre demande beaucoup de temps et les codes de réduction automatique ne sont généralement pas efficaces à 100 % (au vu du nombre restreint de spectres disponibles il est nécessaire de ne pas en gâcher et donc, parfois, de réduire certains spectres à la main).

Néanmoins, il existe plusieurs grands relevés spectroscopiques ayant un impact sur notre compréhension des amas globulaires. Par exemple, le relevé Apache Point Observatory Galactic Evolution Experiment (APOGEE/SDSS ; [START_REF] Majewski | APOGEE Team APOGEE-2 Team[END_REF]) s'est intéressé CHAPITRE 1. Contexte et outils Les amas globulaires à plus de 100 000 étoiles géantes rouges pour en déduire leurs vitesses radiales ainsi que leurs abondances chimiques précises. Ce relevé a notamment pu être utilisé pour l'étude des populations stellaires multiples dans les amas globulaires à travers des variations d'abondances chimiques (Ventura et al., 2016;Schiavon et al., 2017). D'autres relevés comme le Sages Legacy Unifying Globulars and Galaxies Survey (SLUGGS ; Brodie et al. 2014) s'intéresse à plusieurs galaxies "early-types" en utilisant une combinaison de la photométrie (filtres g, r et i) et de la spectroscopie (un intervalle de quelques centaines d'angström autour des raies spectrales Ca II à ∼ 8500 Å). Grâce à cette combinaison, les collaborateurs de ce relevé ont déjà publié plusieurs articles concernant les amas globulaires autour de ces galaxies. Pour ne citer que quelques exemples (mais sans rentrer dans les détails), Forbes et al. (2017) ont obtenu un catalogue de plus de 4000 vitesses radiales d'amas globulaires, Usher et al. (2015) ont mis en évidence une complexité dans la relation couleur-metallicité des amas alors que Forbes et al. (2015) ont tenté de contraindre l'époque de formation des amas globulaires.

Bien que cette thèse soit centrée sur les amas globulaires, il est aussi intéressant de mentionner certains grands relevés spectroscopiques qui ont pour but de générer une base de données de spectres stellaires (nommée librairie stellaire). Ces spectres stellaires sont extrêmement utiles dans l'amélioration des modèles d'amas globulaires et de galaxies (voir section 1.4). Parmi ces relevés, il y a, par exemple, le projet "X-shooter Spectral Library" (XSL ; Chen et al. 2014) ou encore le projet MILES (Sánchez-Blázquez et al., 2006).

Pour finir, il est important de mentionner le "Extremely Large Telescope" (ELT) et le futur télescope spatial "James Webb Space Telescope" (JWST) et leurs instruments (notamment le spectrographe de JWST opérant entre 0.6 et 5 µm) qui vont certainement permettre des avancées astrophysiques majeures dans le domaine IR et qui permettront de repousser la distance à laquelle la spectroscopie des amas est possible.

Les amas globulaires 1.2.1 Définition

Un amas globulaire est un objet céleste, communément sphérique, composé de très nombreuses étoiles. Cet ensemble d'étoiles forme une structure auto-gravitante (avec une densité d'étoiles inversement liée au rayon) qui orbite autour d'une galaxie hôte. De manière générale, on observe des amas globulaires autour de nombreuses galaxies. Dans notre Voie Lactée, au vu de leur relative proximité, il est possible de distinguer individuellement les étoiles d'un amas. A l'inverse, dans des galaxies plus lointaines, les amas ressemblent à des sources ponctuelles et sont donc parfois difficilement discernables d'une étoile d'avant-plan.

Ces ensembles d'étoiles s'étalent généralement sur quelque parsecs. La taille d'un amas est souvent définie par son rayon de demi-lumière (le rayon dans lequel 50 % de la luminosité de l'amas est émise). Ce rayon augmente avec la distance galacto-centrique (distance au centre de la galaxie) et dépend aussi des propriétés de la galaxie hôte comme sa couleur (Jordán et al., 2005) : dans le cas de galaxies 'early-type', plus la couleur de la galaxie est rouge, plus le rayon de demi-lumière des amas est faible.

En ce qui concerne la masse totale d'un amas, elle dépend, elle aussi, de la galaxie hôte. Dans le cas de la Voie Lactée, les amas globulaires ont une masse comprises entre 10 4 M ⊙ et maximum 10 6 M ⊙ (Mandushev et al., 1991). Dans certaines galaxies plus éloignées, les amas peuvent être beaucoup plus massifs atteignant facilement 10 6 M ⊙ et parfois même 10 7 M ⊙ , comme dans M87 par exemple. Les origines de ces différences restent floues mais sont probablement liées aux mécanismes de formation des amas. Ce sujet est abordé dans la suite de ce manuscrit en Section 1.2.3.

Contrairement à une galaxie, le milieu inter-stellaire (ISM) à l'intérieur d'un amas glo-
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Les amas globulaires bulaire ne contient que très peu de gaz et de poussière. Historiquement, la fraction de gaz était même considérée comme nulle, mais Roberts (1960) a révisé ce résultat et prédit une fraction de gaz environ égale à 0.5% de la masse de l'amas globulaire. Son analyse est basée sur la quantité non-négligeable de gaz éjectée par une grande majorité des étoiles de l'amas lors de leur évolution en naine-blanche. A cela, l'auteur ajoute un mécanisme pour réduire cette quantité de gaz, par pression dynamique (ram pressure stripping en anglais), lors du passage de l'amas dans le plan de sa galaxie hôte. Il a fallut attendre jusqu'en 2003 avec Evans et al. (2003), pour confirmer observationnellement la découverte de gaz dans un amas globulaire (M15 en l'occurrence). Cependant, au vu de la quantité de gaz trouvée (beaucoup plus faible qu'escomptée), le simple mécanisme prôné par Roberts n'est pas suffisant pour expliquer une telle diminution de la quantité de gaz. De ce fait, d'autres mécanismes ont été évoqués tels que l'expulsion du gaz par des explosions de supernova, par des vents crées par des pulsars (Spergel, 1991) ou encore, plus récemment, par collisions d'étoiles (Umbreit et al., 2008).

Propriétés

Fréquence spécifique

Le terme 'Fréquence spécifique' est défini pour la première fois dans Harris & van den Bergh (1981). Historiquement, il s'agit d'un paramètre qui reflète, pour une galaxie, sa capacité à former des amas globulaires i.e la fraction de masse stellaire contenue dans ses amas. Cette variable (nommée S N ) relie le nombre d'amas associés à une galaxie (N t ) à la magnitude absolue de celle ci (M V ; normalisée à M V = -15 ≈ M Voie Lactee V ) tel que :

S N = N t × 10 -0.4(M V +15)
(1.1)

Cette fréquence spécifique prend généralement des valeurs entre <1 et 20 en fonction des propriétés de la galaxie. Par exemple, d'après l'étude de Peng et al. (2008) pour 100 galaxies de l'amas de Virgo, S N varie avec la magnitude M V de la galaxie. Pour une galaxie de faible ou haute magnitude (M V > -18 ou M V < -21), la fréquence spécifique sera en moyenne plus élevée (S N > 2) que pour une galaxie de magnitude intermédiaire (-21 < M V < -18 ; S N < 2). Par ailleurs, la fréquence spécifique dépend aussi du type de la galaxie (Elmegreen, 1999). Pour une galaxie spirale, S N aura tendance à être inférieur à 1 (van den Bergh & Harris, 1982;[START_REF] Goudfrooij | [END_REF] alors que pour une galaxie elliptique, S N sera généralement compris entre 2 et 10, voir plus pour des galaxies cD comme M87 (Harris & van den Bergh, 1981). Dans le cas des galaxies naines, les valeurs de la fréquence spécifique sont beaucoup plus dispersées et localisées entre 2 et 20 (Durrell et al., 1996;Puzia & Sharina, 2008). L'intérêt principal de la fréquence spécifique est donc de comparer l'efficacité à former des amas globulaires pour plusieurs galaxies et ainsi de comprendre les évènements qui ont conduit à ces différences. En théorie, S N a pour but d'estimer la fraction de masse stellaire d'une galaxie contenue dans ses amas globulaires. Cependant, au vu de la définition de la fréquence spécifique, c'est la magnitude de la galaxie et non sa masse qui est prise en compte. En d'autres termes, le rapport masse-sur-luminosité d'une galaxie influence le calcul de S N et il est donc difficile de comparer équitablement, par exemple, des galaxies elliptiques et spirales (M/L elli = 10 et M/L spir < 4 selon Faber & Gallagher 1979). Pour remédier à ce problème, Zepf & Ashman (1993) ont suggéré un nouveau paramètre, nommé sobrement T, défini par :

T = N t (M G * /10 9 M ⊙ ) (1.2)
N t représente le nombre d'amas globulaires d'une galaxie et M G * la masse de celle-ci (normalisée à 10 9 M ⊙ ). A travers l'utilisation de ce nouveau paramètre, Zepf & Ashman ont CHAPITRE 1. Contexte et outils

Les amas globulaires trouvé pour les galaxies elliptiques < T elli > = 5.3 et pour les spirales < T spir > = 2.2 i.e les galaxies elliptiques ont approximativement 2 fois plus d'amas globulaires par unité de masse que les galaxies spirales. D'autres auteurs ont aussi suggéré différents paramètres en complement de T et de S N . Dans sa revue de 1991, Harris définit la luminosité spécifique comme :

S L = 100L GC / L galaxy (1.3)
L GC fait référence à la luminosité totale des amas globulaires et L galaxy à celle de la galaxie. L'avantage de cette équation réside dans l'influence minime des amas de très faible luminosité impossibles à observer dans la plupart des galaxies lointaines. Dans le même but mais plus récemment, Peng et al. (2008), ont défini une variante à la luminosité spécifique : la masse spécifique tel que :

S M = 100M GC / M galaxy (1.4)
M GC et M galaxy représentent respectivement la masse totale des amas globulaires et celle de la galaxie. En résumé, quel que soit le paramètre choisi (S N , T, S L ou S M ), l'efficacité à former des amas globulaires n'est pas la même pour toutes les galaxies de l'univers. Ces différences sont le résultat, pour chaque galaxie, d'une histoire atypique dans laquelle des évènements ont inhibé ou amélioré la formation d'amas globulaires. Ce sujet est abordé dans la Section 1.2.3.

Métallicité

En astrophysique, la composition chimique des objets de l'univers est communément séparée en trois proportions : X, Y et Z. X reflète le proportion (en masse) d'hydrogène, l'élément principal dans l'univers. La proportion d'hélium (qui est le second élément le plus répandu) est associée à Y. Enfin, Z, que l'on nomme la métallicité représente la proportion de "métaux" définie comme tous les éléments chimiques plus lourds que l'hélium. Comme expliqué en Section 1.1.1, c'est à partir des réactions successives à l'intérieur des étoiles que les métaux sont créés. Par la suite, ces métaux sont disséminés dans l'univers à travers différents événements (e.g lors de l'explosion de supernova ou lors de la création d'une nébuleuse planétaire). Enfin, de nouvelles générations d'étoiles seront créées à partir de nuages de gaz préalablement enrichis par les générations précédentes. La proportion de métaux (i.e la métallicité) est donc une donnée extrêmement utile en astrophysique. Elle permet de comprendre un peu plus l'origine des objets et leur composition.

Généralement, le terme "métallicité" correspond à Z, mais par abus de langage, il est aussi possible d'appeler "métallicité" le rapport [Fe/H] 

N(Fe) N(H) = f Fe (α) × Z / m Z (α) (1 -Y -Z) / m H (1.7)
f Fe est la fraction (en quantité) de fer par rapport à tous les éléments plus lourds que l'hélium, m Z est la masse atomique moyenne des métaux pondérée par leurs nombres d'atomes et enfin m H est la masse atomique de l'hydrogène. Dans cette équation, f Fe et m Z dépendent de la fraction d'éléments α de l'objet étudié. En remplaçant l'équation 1.7 dans l'équation 1.6, on obtient la vraie relation qui relie Z et [Fe/H] : La métallicité d'un amas globulaire est donc une information essentielle qui nous donne accès aux caractéristiques de son lieu de formation ainsi qu'aux propriétés de ses étoiles. Elle varie généralement de [Fe/H] = -2.5 jusqu'à [Fe/H] = 0.5. De nombreuses études ont estimé la métallicité des amas globulaires. Certaines s'intéressent aux amas résolus (dans lesquels il est possible de distinguer les étoiles individuellement) et d'autres aux amas globulaires beaucoup plus lointains (généralement à peine plus larges qu'une étoile). Dans les deux cas, il existe des méthodes spécifiques pour estimer la métallicité.

[Fe/H] ob j = log 10 f Fe (α) m sun Z f sun Fe m Z (α) × Z (1 -Y -Z) × X sun Z sun (1.8)
Pour les amas résolus, il est possible d'utiliser la position de chaque étoile dans un diagramme couleur-magnitude et ainsi, grâce à un modèle d'isochrone, d'obtenir une information sur la métallicité (e.g Alcaino et al. 1994;Piotto et al. 1999;Momany et al. 2003;Campos et al. 2013). De même, en se basant sur les étoiles variables (RR lyrae) d'un amas, une estimation de la métallicité peut être obtenue grâce à une relation empirique entre la période de variabilité et [Fe/H] (Jurcsik & Kovacs, 1996;Kains et al., 2012). Il est aussi possible de combiner l'information (spectroscopique ou photométrique) de chaque étoile appartenant à l'amas pour obtenir la luminosité intégrée de l'amas globulaire. Dans ce dernier cas, les mêmes méthodes que pour les amas non-résolus en étoiles peuvent être appliquées. Par exemple, l'estimation de métallicité à partir du calcul de la profondeur de certaines raies d'absorption dans le spectre de l'amas. Pour cette méthode, ce sont les mesures de raies d'absorption basées sur le système de Lick (les indices de Lick ; Worthey et al. 1994, avec plusieurs améliorations e.g Vazdekis et al. 2010) qui sont les plus utilisées (e.g Puzia et al. 2005b;Lilly & Alvensleben 2006 pour des exemples d'applications). Cependant, d'autres raies comme le triplet du Calcium (CaII) CaT peuvent être utilisées pour obtenir une information sur la métallicité (e.g Armandroff & Zinn 1988;Battaglia et al. 2008;Usher et al. 2012;Sakari & Wallerstein 2016). Il est toutefois important de noter que dans le cas des amas globulaires extra-galactiques, la relation exacte entre métallicité et profondeur du CaT est encore soumise a quelques incompréhensions (Foster et al., 2010;Chung et al., 2016). De manière plus générale, certaines études comparent le spectre complet d'un amas globulaire avec un modèle théorique au lieu de se restreindre à quelques indices (e.g Koleva et al. 2008;Cezario et al. 2013). Enfin, il existe des méthodes basées sur les couleurs de l'amas globulaire en utilisant la comparaison entre couleurs observées et théoriques (e.g Montes et al. 2014). C'est cette comparaison qui est principalement utilisée dans le travail de recherche présenté dans ce manuscrit.
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Age

L'âge d'un objet donne une information directe sur les événements et les périodes dont il a été témoin. Historiquement, les premières études sur l'âge des amas globulaires galactiques étaient basées sur la position du "turn-off" des étoiles de l'amas dans un diagramme couleur-magnitude (e.g. Sandage, 1970;Carney, 1980). Ces études ont donné lieu aux premières estimations de l'âge des amas globulaires avec une valeur typique entre 10 et 15 Gyr, ce qui était déjà comparable à l'âge de l'univers de 14 Gyr (e.g. Kazanas et al., 1978). Au vu de ces âges très vieux, certaines études utilisaient les amas globulaires pour contraindre l'âge minimal de l'univers.

Par la suite, grâce à la relative simplicité des amas globulaires (ensemble d'étoiles d'âges proches avec très peu de gaz) et à leurs âges très vieux, ils ont acquis le statut de témoins de l'histoire des galaxies. En effet, chaque interaction que subit une galaxie (e.g une fusion) va affecter son système d'amas (cf Section 1.2.3). Ainsi, connaitre précisément les âges et les métallicités d'un système d'amas globulaires associé à une galaxie hôte permettrait de retracer les événements que cette galaxie a vécu. C'est dans ce contexte que les études sur l'âge et la métallicité des amas se sont multipliées.

Parmi ces études, on retrouve différentes méthodes d'estimation d'âge. Ce sont généralement les mêmes que celles employées pour obtenir une information sur la métallicité (basé sur la photométrie ou sur la spectroscopie ; Section 1.2.2). Dans le cas des amas proches résolus, l'accès à l'information individuelle de chaque étoile a permis de fortement contraindre les valeurs d'âges et de métallicités (à travers les diagrammes couleurmagnitude). Aujourd'hui, il semble admis que les amas globulaires galactiques ont généralement entre 10 Gyr et 13 Gyr (e.g. Harris, 1996;VandenBerg et al., 2013VandenBerg et al., , 2016)). Cependant, dans le cas des amas non résolus, la question de l'âge est bien plus complexe. De nombreuses études ont mis en évidence la présence d'amas d'âges intermédiaires (entre 5 et 8 Gyr) ou même plus jeunes (inférieur à 4 Gyr). Pour citer quelques exemples : en se basant sur les indices de Lick de plusieurs amas globulaires autour de M31, Puzia et al. (2005b) ont trouvé une population d'amas âgée d'environ 5-8 Gyr en plus d'une population plus vieille d'environ 10 Gyr. Toujours en utilisant les indices de Lick, Woodley et al. (2010) ont obtenu un âge inférieur à 8 Gyr pour près de 32 % de leur échantillon d'amas autour de NGC 5128 (dont 18% plus jeunes que 5 Gyr). D'autres études spectroscopiques comme Park et al. (2012) (NGC 4636) ou encore Cenarro et al. (2007) (NGC 1407) confirment aussi cette tendance, avec la présence d'amas globulaires potentiellement plus jeunes que 5 Gyr.

En ce qui concerne les estimations photométriques de l'âge des amas, elles sont souvent considérées comme moins fiables que les estimations spectroscopiques. Bien que dans certains cas les deux estimations s'accordent, il arrive que la découverte d'amas jeunes basée sur la photométrie ne soit pas confirmée par l'utilisation de la spectroscopie. Par exemple, pour NGC 4365, des âges photométriques jeunes (Puzia et al., 2002) sont en désaccord avec les âges spectroscopiques vieux (Brodie et al., 2005). Ces différences, liées aux incertitudes sur la valeur de l'âge (photométrique ou spectroscopique), sont principalement dues à la dégénérescence entre l'âge et la métallicité (Mould & Aaronson, 1980;Worthey et al., 1994). Plus précisément, comme montré dans la Figure 1.5, il s'agit de la difficulté, dans les longueurs d'onde optiques, à différencier le spectre d'un amas jeune/riche en métaux et celui d'un amas vieux/pauvre en métaux. Ce problème est l'un des freins majeurs aux estimations d'âges et de métallicités.

Il existe plusieurs solutions pour tenter de réduire cette dégénérescence. L'une des plus connues est l'utilisation de certaines raies d'absorption plus ou moins sensibles à l'âge ou à la métallicité (e.g. les indices de Lick ; Worthey et al., 1994;Worthey & Ottaviani, 1997;Trager et al., 1998). Historiquement, sachant que les étoiles jeunes possèdent des raies d'absorption d'hydrogène plus importantes que leurs homologues plus vieilles (O'Connell, 1976), il a été proposé que certaines raies de Balmer (H β : 4861 Å, H γ : 4341 Å et H δ :
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Les amas globulaires 4102 Å) pouvaient être utilisées pour estimer l'âge sans relation avec la métallicité. Par la suite, bien que cette sensibilité accrue à l'âge ait été confirmée dans de nombreuses études (e.g. Puzia et al., 2005c), la définition exacte des indices (basée sur les longueurs d'onde utilisées, sur la résolution du spectre ou encore sur le signal-sur-bruit) influe sur leur capacité à bien séparer l'âge de la métallicité. C'est pour cette raison que plusieurs indices basés sur la même raie d'absorption peuvent exister dans la littérature. Par exemple, dans le cas de H β , l'un des premiers indices associés à cette raie est Hβ Lick (un des indices de Lick). Cependant, cet indice ne permettait pas de parfaitement lever la dégénérescence entre âge et métallicité car il présentait toujours une faible sensibilité à la métallicité (Korn et al., 2005). Pour tenter de corriger ce problème, des évolutions de cet indice, basés sur des intervalles de longueurs d'onde qui ne sondent pas les mêmes éléments chimiques, ont vu le jour (e.g Hβ 0 ; Cervantes & Vazdekis 2009). Outre ces problèmes de définitions, la raie H β est connue pour être très sensible à la présence d'émissions nébulaires dans le spectre de l'objet [START_REF] González | Source : Dissertation Abstracts International[END_REF]. Ainsi, il est nécessaire de soustraire l'émission nébulaire du spectre étudié pour obtenir une estimation d'âge non biaisée avec H β . Bien que cette étape soit maintenant parfaitement possible (e.g. Sarzi et al., 2006), cette dépendance entre H β et l'émission nébulaire a renforcé l'interêt porté aux raies de Balmer d'ordre supérieur (H γ et H δ ). Les indices développés autour de ces raies (e.g. Vazdekis & Arimoto, 1999;Jones & Worthey, 1995) sont aussi de très bons indicateurs de l'âge d'une population. Cependant, non sans défaut, ils sont sensibles à l'abondance totale d'éléments α ([ α/Fe] ; Thomas et al. 2004;Korn et al. 2005) et aux étoiles bleues atypiques (e.g. "Blue HB", "Blue Stragglers").

Dans le cas où une information spectroscopique n'est pas disponible (au vu des contraintes de temps nécessaires pour obtenir un spectre), il est possible, en photométrie, d'utiliser des filtres spécifiques pour réduire la dégénérescence entre l'âge et la métallicité. Plus précisément, il s'agit de la combinaison entre des longueurs d'onde optiques et infrarouges (Puzia et al., 2002;Kissler-Patig et al., 2002). Néanmoins, les erreurs générées par les incertitudes photométriques et les filtres utilisés réduisent l'efficacité de cette méthode (Anders et al., 2004). Nous verrons dans ce manuscrit que des insuffisances dans la modélisation de couleurs des populations stellaires peuvent aussi compromettre les résultats.

Au final, il n'existe pas encore de méthode parfaite pour lever la dégénérescence entre l'âge et la métallicité. Cependant, ce domaine de recherche reste très actif notamment avec l'arrivée de nouveaux modèles théoriques beaucoup plus détaillés en termes d'évolution chimique. Le but étant de définir de meilleurs indices uniquement sensibles aux paramètres voulus (Vazdekis, 2008). De plus, la mise en lumière de ces indices optimaux peut permettre le développement de filtres à bande étroite (autour de ces indices) à partir desquels il sera possible d'estimer avec précision l'âge et la métallicité d'une population stellaire, sans avoir recours à la spectroscopie.

Couleurs

La couleur des amas globulaires est une caractéristique au centre de nombreuses études, notamment car elle permet d'accéder à une estimation de l'âge et la métallicité des amas globulaires (comme introduit dans les Sections 1.2.2 et 1.2.2). La couleur reflète donc l'origine de l'amas et par extension l'histoire de sa galaxie hôte.

L'un des progrès majeurs de ces dernières années en matière d'amas globulaires extragalactiques est la découverte de deux populations distinctes d'amas autour d'une galaxie. Initiée par Zinn (1985) à travers une étude dynamique puis par Zepf & Ashman (1993) avec une étude en couleur, cette découverte indique que certaines galaxies possèdent une population d'amas bleus et une population d'amas rouges avec des caractéristiques bien distinctes. Par la suite, cette propriété (qui se traduit par une distribution bimodale des couleurs des amas globulaires) fut largement confirmée pour de nombreuses galaxies massives (e.g. Ostrov et al., 1993;Whitmore et al., 1995;Elson & Santiago, 1996;Lee et al., 1998). 
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Cependant, cette bimodalité en couleur n'est pas commune à toutes les galaxies. En effet, elle dépend de la luminosité totale de la galaxie hôte (Peng et al., 2006). Comme le montre la Figure 1.6 (tirée de l'analyse de Peng et al. (2006) sur des galaxies de l'amas de Virgo), une galaxie de faible luminosité (e.g. VCC 2000) ne possède pas de distribution en couleur bimodale (mais asymétrique) alors que pour une galaxie de forte luminosité (e.g VCC 1030), deux pics distincts apparaissent. Cela étant, le panneau au bas de la Figure 1.6 montre que lorsqu'on ordonne des galaxies selon leurs luminosités, on aperçoit distinctement le pic des amas globulaires bleus présent à un gz constant même pour des galaxies de faible luminosité et le pic d'amas rouges qui devient de plus en plus rouge avec la luminosité de la galaxie hôte.

L'implication cachée derrière la bimodalité est que, si la couleur est traduite linéairement (ou presque) en métallicité (Geisler & Forte, 1990;Cohen et al., 2003;Harris et al., 2006), cela semble indiquer qu'il existe des scénarios de formation différents pour chacune des populations (cf Section 1.2.3). En effet, le seul moyen d'expliquer une bimodalité en métallicité est d'invoquer une formation différente (et sûrement différée) des deux populations : l'une dans un nuage moléculaire faible en métallicité et l'autre dans un nuage qui a été enrichi en métaux au préalable. Cependant, dans le cas où la relation entre couleur et métallicité n'est pas linéaire, il est possible que la bimodalité en couleur n'implique pas une bimodalité en métallicité (e.g. Yoon et al., 2006Yoon et al., , 2011)). Bien qu'il existe des études qui indiquent l'existence de cette bimodalité en métallicité (basées sur des observations spectroscopiques ; e.g. Beasley et al. 2008), la possibilité d'une unimodalité en métallicité pourrait remettre en cause l'histoire supposée de formation des amas et de la galaxie.

Dans ce contexte, l'accès à la relation précise entre couleur et métallicité (souvent abrégée CMR) représente un grand enjeu. Malheureusement, le progrès dans ce domaine demande une grande quantité d'amas globulaires avec une métallicité parfaitement connue. En utilisant la spectroscopie il est possible d'obtenir une estimation précise de la métallicité d'amas globulaires mais en nombre très limité. Et à l'inverse, la photométrie permet d'obtenir une information en couleur pour de nombreux amas mais l'estimation photométrique de la métallicité reste encore incertaine. Pour finir, même dans le cas parfait où un échantillon assez important pourrait être trouvé, l'accès à cette relation devrait se faire en utilisant des amas d'un âge similaire (généralement ∼ 10 Gyr), car l'âge influe aussi sur la forme de la relation couleur-métallicité.

Toujours au sujet de la couleur des amas, lorsque l'on s'intéresse à un système d'amas globulaires en particulier (associé à une galaxie), il existe aussi une relation entre la couleur moyenne d'un amas de la population bleue et sa luminosité. Traduite en unités plus intuitives, il s'agit d'une corrélation entre la masse de l'amas (liée à la luminosité) et sa métallicité (liée à la couleur) : plus la masse de l'amas est grande, plus la métallicité augmente. Cette relation, souvent appelé le "blue-tilt" ou plus sobrement "relation Masse-Metallicité", a été trouvée tant dans des galaxies elliptiques (Harris et al., 2006;Mieske et al., 2006;Strader et al., 2006;Cockcroft et al., 2009) que dans des galaxies spirales (Spitler et al., 2006). Néanmoins, il arrive que certaines études ne trouvent pas de "blue-tilt" dans leurs données comme par exemple pour la Voie Lactée (d'après le catalogue de Harris 2010), M49 (Strader et al., 2006), ou encore M87 (Waters et al., 2009). Dans ces derniers cas, les raisons avancées sont soit un manque d'amas (dans le cas de la Voie lactée), soit une erreur de photométrie (dans le cas de M87 : en utilisant les mêmes données que Waters et al. (2009), Peng et al. (2009) confirme la présence d'un "blue-tilt"), soit un possible effet de l'environnement (dans le cas de M49 ; Mieske et al. 2006). L'explication communément admise pour décrire la relation masse-métallicité est le processus d'auto-enrichissement qui intervient dans les amas massifs (Mieske et al., 2006;Strader et al., 2006). Plus exactement, à partir d'une certaine masse (∼ 10 6 M ⊙ selon Bailin & Harris 2009), un proto-amas est capable de garder le gaz éjecté lors de l'explosion de ses supernovas et donc de s'auto-enrichir à CHAPITRE 1. Contexte et outils Les amas globulaires FIGURE 1.6 -Fr : Haut : Histogrammes montrant la distribution de couleur (gz) pour deux galaxies de l'amas de Virgo (VCC 2000et VCC 1030). Bas : Chaque ligne verticale représente l'histogramme de (gz) en fonction de la magnitude absolue de la galaxie hôte. Il s'agit de 100 galaxies de l'amas de Virgo obtenues grâce au relevé ACSVCS (Advanced Camera Survey-Virgo Cluster Survey). En résumé, plus la galaxie hôte a une magnitude absolue faible (i.e. très lumineuse), plus la population rouge est présente et éloignée de la population bleue. Images tirées de Peng et al. (2006) En : Top : Histograms showing the (g-z) distribution of the GC systems belonging to two galaxies (VCC 2000 andVCC 1030). Bottom : Assembly of the (g-z) color-distributions of the GC systems of 100 early-type galaxies, sorted by their absolute magnitude (one vertical line is associated with one galaxy). These figures are taken from Peng et al. (2006) CHAPITRE 1. Contexte et outils Les amas globulaires partir de ce gaz riche en métaux. En pratique, l'étude de Peng et al. (2009) a confirmé cette idée en montrant qu'il existait une masse limite à partir de laquelle le "blue-tilt" dans M87 apparaissait. Dans le cas des amas de la population rouge, aucune relation entre la masse et la métallicité n'a été observée. Cependant, selon les modèles théoriques comme Bailin & Harris (2009), il semble qu'une telle relation devrait pouvoir être observée pour des amas rouges assez massifs.

En résumé, ces deux relations (couleur-métallicité et couleur-luminosité) sont essentielles à la compréhension de la formation des amas globulaires. Cependant, il est encore nécessaire de réduire les incertitudes pour converger vers des relations précises e.g. de savoir si elles sont propres à chaque galaxie comme suggéré dans Usher et al. (2015).

Dynamique

Un autre moyen d'étudier l'histoire d'une galaxie est de s'intéresser à la dynamique de ses amas. De manière générale, les amas globulaires orbitent autour de leur galaxie hôte. Cependant, de manière plus précise, il semble que chacune des deux populations (que je qualifierai ici pour simplifier de riche ou pauvre en métaux) possède des propriétés dynamiques intrinsèques.

Dans le cas de la Voie Lactée, c'est grâce à cette différence de dynamique dans les amas que Zinn (1985) Une dynamique similaire est observée dans d'autres galaxies spirales comme M31 (Huchra et al., 1991;Barmby et al., 2000) ou M81 (Schroder et al., 2002) avec une rotation des amas riches en métaux dans le même sens que le gaz du disque et aucune rotation pour les amas pauvres en métaux (dans les barres d'erreurs).

Pour les galaxies elliptiques, il est beaucoup plus difficile de conclure quant à un modèle possible de dynamique. Les premières études dynamiques sur des galaxies elliptiques individuelles comme M87 (Mould et al., 1987) ou NGC 1399 (Grillmair et al., 1994) ont observé la présence d'une dispersion de vitesse élevée pour les amas, de l'ordre de 370 km/s. Par la suite, les études plus récentes ont confirmé cette tendance avec des dispersions de vitesse importantes (e.g. 312 ± 27 km/s pour M49 dans Côté et al. 2003) tout en s'intéressant aussi à la dynamique des deux populations d'amas MP et MR. Dans le cas des amas MP, les observations tendent à prouver qu'ils possèdent une dispersion de vitesse plus élevée que les amas MR. Ainsi, par exemple, elle est de 291 ± 14 km/s pour les MP et de 255 ± 13 km/s pour les MR autour de NGC 1399 (Richtler et al., 2004), ou encore de 342 ± 33 km/s pour les MP et de 264 ± 34 km/s pour les MR autour de M49 (Côté et al., 2003). Cette différence de dispersion de vitesse entre MP et MR est cohérente avec la différence de distribution spatiale des deux populations. En effet, tout comme dans les galaxies spirales, les amas MP dans les galaxies elliptiques sont plus étendus spatialement autour de la galaxie que les MR, beaucoup plus centrés. La question qui semble toujours en suspens est de savoir s'il existe une vitesse de rotation pour les deux populations d'amas dans les galaxies elliptiques. Dans le cas particulier de M87, Côté et al. (2001) ont conclu quant à la présence d'une rotation de l'ordre de 170 km/s pour les amas MP et MR. Cependant, dans
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Les amas globulaires l'étude de Strader et al. (2011), les auteurs observent une vitesse de rotation beaucoup plus faible (voir nulle) pour les deux populations, argumentant que la vitesse obtenue par Côté et al. (2001) était biaisée par certains amas extrêmes. Cette difficulté pour évaluer la vitesse des amas semble liée à des événements d'accrétion récents autour de M87 produisant des structures aux dynamiques particulières (Romanowsky et al., 2012). Dans d'autres cas, toutes sortes de dynamiques des amas MP et MR peuvent être observées. Pour NGC 1399, Richtler et al. (2004) ne trouvent aucune rotation pour les deux populations. Pour M49, certaines études observent une rotation des amas MP de l'ordre de 100 km/s et potentiellement une très faible rotation des amas MR (Zepf et al., 2000;Côté et al., 2003). Dans le cas de NGC 5128, l'étude de Woodley et al. (2007) trouve que les deux populations possèdent une vitesse de rotation similaire. Enfin pour M60, Hwang et al. (2008) trouvent un rotation similaire de l'ordre de 150 km/s pour les deux populations. Ces exemples montrent que, à la différence des galaxies spirales, il n'existe pas de schéma dynamique commun à chacune des galaxies elliptiques. Néanmoins, grâce au récent relevé SLUGGS (Brodie et al., 2014) qui regroupe de nombreuses galaxies elliptiques, il sera sans doute possible de comprendre plus précisément la dynamique des différentes populations d'amas. Pour l'instant, ce relevé a déjà publié plusieurs articles dont Forbes et al. (2017) montrant une relation entre les vitesses de dispersion totales des amas et la masse de la galaxie hôte (plus la masse de la galaxie est élevée, plus la vitesse de dispersion est grande).

Dans cette partie concernant la dynamique des amas globulaires, je n'ai pas abordé le mouvement interne des étoiles d'un amas. De manière générale, dans le cas des amas globulaires de la Voie Lactée et des nuages de Magellan, les études spectroscopiques basées sur des modèles dynamiques montrent que la dispersion de vitesse des étoiles dans le centre de l'amas est comprise entre ∼ 3 et 20 km/s [START_REF] Pryor | [END_REF]Dubath et al., 1997). Sachant que cette vitesse diminue quand la distance au centre de l'amas augmente (Dubath et al., 1997), les vitesses ailleurs que dans le coeur de l'amas peuvent être plus faibles. De manière plus précise, il faut savoir que les études du mouvement des étoiles d'un amas basées sur des modèles dynamiques (e.g. Baumgardt et al., 2003) forment un domaine à part entière qui n'intervient pas dans cette thèse.

Abondances chimiques

Dans une partie précédente, j'ai introduit ce que certains auteurs (e.g. Brodie & Strader, 2006) ont appelé la plus grande découverte de la décennie en matière d'amas globulaires extragalactique. Pour terminer ce tour d'horizon au sujet des découvertes rattachées aux amas globulaires, je présente dans cette partie la plus grande découverte de la décennie en matière d'amas globulaires galactiques cette fois.

Les amas globulaires sont souvent considérés comme des SSPs (ou populations stellaires simples comme introduit dans la section 1.1.2). En théorie, il s'agit d'un ensemble de nombreuses étoiles de même âge, de même composition chimique (hélium et métaux) mais avec des masses différentes qui sont distribuées initialement en suivant une IMF. Dans un diagramme couleur-magnitude (CMD), les étoiles de cet ensemble sont donc, en théorie, situées sur un unique isochrone. A l'inverse, une galaxie, plus complexe en terme de composition, sera modélisée comme une somme pondérée de SSPs.

En réalité, lorsque l'on observe les étoiles d'un amas dans un diagramme couleurmagnitude, on s'aperçoit qu'elles ne se superposent pas parfaitement avec un simple isochrone. Par exemple, déjà en 1967, Sandage & Wildey ont mis en évidence que la branche horizontale et les étoiles de la séquence principale de l'amas NGC 7006 ne pouvaient pas être modélisées par un même isochrone (i.e. avec une même composition). Ce problème (nommé "second parameter problem" en anglais) implique l'existence d'un second paramètre (autre que la métallicité) pour expliquer les différences observées dans la branche horizontale. Dans ce même article, Sandage & Wildey suggèrent que le second paramètre 
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Dans le même temps, les études sur la composition chimique des étoiles moins évoluées de l'amas (e.g. celles de la séquence principale : MS) concluaient, comme pour les géantes rouges, à la présence d'une variation d'amplitude de CN et de CH (e.g. Hesser & Bell, 1980;Cannon et al., 1998;Cohen, 1999) et même de sodium (e.g. Briley et al., 1996). En théorie, les étoiles de la MS ne sont pas capables de ramener les éléments formés dans leur coeur (potentiellement du carbone, de l'azote et de l'oxygène grâce aux cycle CNO) vers leur surface. Il n'est donc pas possible d'obtenir ces variations d'abondances dans les étoiles de la MS sans intervention extérieure.

Néanmoins, c'est en 2001 avec l'étude de Gratton et al. que l'origine de ces variations d'abondances chimiques fut admise. Dans cette étude, les auteurs ont montré qu'il existait des anti-corrélations entre Na et O et entre Mg et Al dans les étoiles de la MS (plus précisément autour du "turn-off" des amas NGC 6752 et NGC 6397). Ce phénomène n'était donc pas restreint aux étoiles géantes. Cependant, comme il n'est pas possible de former du sodium (Na), du magnésium (Mg) ou de l'aluminium (Al) dans des étoiles de la MS, ces éléments (i.e les anti-corrélations) ne pouvaient pas être créés d'eux mêmes dans ces étoiles. Il était donc nécessaire d'invoquer un scénario de formation basé sur différentes générations d'étoiles dans un même amas (e.g. Cottrell & Da Costa, 1981). Les étoiles massives de la première génération évoluent et synthétisent des métaux qui, par la suite, enrichissent le gaz à l'intérieur du proto-amas. Ensuite, une seconde génération d'étoiles est formée à partir de ce gaz enrichi. Ce scénario indique donc qu'il existe de multiples populations d'étoiles dans un amas globulaire. Depuis l'étude de Gratton et al., l'anti-correlation Na-O dans tous types d'étoiles d'un même amas a été largement confirmée (e.g. Ramírez & Cohen, 2002;Carretta et al., 2004Carretta et al., , 2006)). De nos jours, pratiquement tous les amas galactiques ont révélé une variation d'abondance chimique dans leurs étoiles (Gratton et al., 2012) plus ou moins prononcée en fonction de la masse de l'amas (Carretta et al., 2009a). Ainsi, tous les amas globulaires galactiques semblent posséder deux (ou plus) générations d'étoiles. On considère qu'environ 70 % des étoiles d'un amas appartiennent à la seconde génération et 30 % à la première (Carretta et al., 2009a). Un exemple d'anti-correlation où les différentes populations apparaissent est présenté en Figure 1.7.

En complément des analyses spectroscopiques sur les abondances chimiques, les études photométriques basées sur les diagrammes couleur-magnitude d'amas globulaires ont elles aussi confirmé l'existence de plusieurs populations d'étoiles. D'abord au niveau de la branche des géantes (Lee et al., 1999;Pancino et al., 2000) et plus tard au niveau de la séquence principale (Bedin et al., 2004;Piotto et al., 2005Piotto et al., , 2007)). Dans ce genre de diagramme, plusieurs séquences apparaissent, trahissant une différence de propriétés. Chaque séquence peut donc être associée à une population d'étoiles. Dans certains cas il peut s'agir d'une différence d'âge de l'ordre de 10 8 -10 9 ans (e.g. Milone et al. 2008 ; voir même plus, dans le cas particulier d'ωCen : Villanova et al. 2007), d'une différence de métallicité de l'ordre de ∆ [Fe/H] ∼ 0.1 -0.3 dex (e.g. Piotto et al., 2005;Milone et al., 2008) ou encore d'une variation d'abondance d'hélium (D'Antona et al., 2002;Piotto et al., 2007;Milone et al., 2008).

Bien que le scénario basé sur ces deux générations d'étoiles semble admis de nos jours, les caractéristiques des étoiles massives de la première génération capables d'enrichir la seconde génération (souvent nommée à partir de l'anglais "polluters") restent encore à définir (il s'agit uniquement des étoiles massives car les étoiles de faible masse de la première génération restent sur la séquence principale quelques milliards d'années et ne peuvent donc pas enrichir le milieu inter-stellaire). Sans rentrer trop profondément dans les détails, il existe trois types de polluants majoritairement étudiés dans la littérature. Le premier type est associé aux étoiles de la branche asymptotique des géantes ("AGB" en anglais) possédant une masse d'environ 4-10 M ⊙ (Ventura et al., 2013;Decressin et al., 2009 Maeder & Meynet, 2006;Decressin et al., 2007;Krause et al., 2013). Enfin le troisième type de polluant possible est basé sur les étoiles super-massives (> 10 4 M ⊙ Denissenkov & Hartwick, 2014). II est important de noter que, pour l'instant, aucun des modèles basés sur ces trois polluants ne parvient à reproduire les différences d'abondances observées dans les amas (pour plus d'informations sur les avantages et les inconvénients de chaque polluants : Gratton et al. 2012).

En résumé, en étudiant en détail les étoiles d'un amas globulaire, les différences d'abondances et de populations trahissent une composition plus complexe qu'une simple SSP. Cependant, comparé à une galaxie, les différences d'âge, de métallicité ou encore d'abondance d'hélium entre les différentes populations d'un amas sont très faibles. Ainsi, au premier ordre, un amas globulaire peut être considéré comme une population simple relativement à une galaxie. Néanmoins, à l'avenir, il est important de bien garder à l'esprit que la simplification amas globulaire-population simple est amené à se complexifier.

Formation

Avec les avancées conséquentes décrites précédemment, les scénarios de formation des amas sont en constante évolution pour tenter de décrire parfaitement les propriétés empiriques des amas. Dans cette partie, je m'intéresse à deux notions. La première décrit les scénarios de formation d'un amas globulaire à partir d'un nuage moléculaire. La seconde présente les processus qui permettent d'obtenir une bimodalité tant en couleur qu'en métallicité.

Scénarios de formation des amas

Le meilleur moyen pour commencer à caractériser un phénomène est, tout d'abord, de l'observer. Dans le cas des amas globulaires, malgré les progrès en matière d'instrumentation, il est toujours très difficile d'observer les différents stades évolutifs de leur formation. En effet, en supposant que les amas sont des objets très vieux, il est nécessaire d'examiner des galaxies à très haut redshift pour entrevoir leur naissance. Or, ces galaxies très lointaines sont peu lumineuses et dotées d'une taille apparente minuscule. Dans ce contexte, il est nécessaire d'appréhender la formation des amas sous des angles différents. Sachant que les amas sont composés d'étoiles, il parait indispensable d'invoquer une formation basée sur l'effondrement d'un nuage moléculaire. A partir de là, plusieurs approches sont possibles. Certaines, théoriques, modélisent la formation à très haut redshift et d'autres, plus observationnelles, s'intéressent, par exemple, aux amas plus jeunes pour en déduire des points communs avec les amas globulaires vieux.

Dans ce dernier cas, une approche possible est basée sur des études mettant en lien les amas globulaires et les amas massifs jeunes (e.g. Portegies Zwart et al., 2010;Longmore et al., 2014;Kruijssen, 2014). Ces amas massifs jeunes (semblables aux amas globulaires en termes de structure) ont la particularité d'être observés uniquement dans des environnements denses similaires à l'environnement d'une galaxie à sursaut de formation stellaire, ou lors d'une fusion de deux galaxies (e.g. Whitmore & Schweizer, 1995;Bastian et al., 2006;Li et al., 2017). Certaines études comme Kruijssen (2014) ont donc fait le parallèle, suggérant que les amas globulaires se sont eux aussi formés dans un environnement à très haute densité mais dans des galaxies à plus haut redshift (z > 2). Or, dans le cas des galaxies à z=2-3, la formation stellaire ainsi que la densité du gaz était beaucoup plus importants que dans l'univers local Kruijssen (2015). En effet, à z=2-3, il existe un pic de formation stellaire (Hopkins & Beacom, 2006) qui suggère la présence d'une importante densité de gaz (Daddi et al., 2010;Swinbank et al., 2011;Kruijssen & Longmore, 2013). Ainsi, les amas globulaires pourraient être le résultat d'une formation stellaire dans toutes ces galaxies à Une autre approche de la formation des amas se base sur des analyses des variations d'abondances chimiques. Ces études ont pour but de comprendre la formation des multiples générations d'étoiles dans les amas à partir d'un même nuage moléculaire. Les principaux scénarios pour cette approche ont été développés dans la section précédente (cf. Sec. 1.2.2). Néanmoins, à but comparatif, il est intéressant de mentionner que, dans un de ces scénarios, l'amas doit posséder une masse supérieur à 10 4 M ⊙ pour afficher une anti-corrélation Na-O (Carretta et al., 2010).

Ensuite, il existe une approche plus cosmologique qui invoque des scénarios de formation autour de z=10 expliqués par l'âge très vieux des amas globulaires. A ce redshift, les principales régions de formation stellaire sont les halos de faible masse (ensemble de matière noire et de matière baryonique). Déjà en 1984, Peebles suggère que les halos de 10 8 M ⊙ (avec 10 6 M ⊙ de gaz) s'effondrent les premiers pour créer la première génération d'étoiles (et d'amas globulaires). Il invoque un scénario pour enlever la matière noire de l'amas par interactions avec la galaxie hôte (car les amas globulaires ne possèdent théoriquement pas de matière noire), tout en gardant l'amas intacte. Par la suite, de nombreux autres modèles de formation d'amas basés sur des mini-halos de matière noire (de 10 6-8 M ⊙ ; Mashchenko & Sills, 2005a,b), sur l'effet du rayonnement UV (Abe et al., 2016), sur l'effet du front de ionisation (Cen, 2001) ou même sur les éjections de galaxies (Scannapieco et al., 2004) ont vu le jour. Ces modèles semblent être capables de reproduire les observations d'amas globulaires. Cependant, Il est important de noter que les scénarios basés sur des halos de matière noire individuels possèdent une incohérence générant une vitesse angulaire importante et fictive pour les amas globulaires (Brodie & Strader, 2006). Il est donc souvent nécessaire d'invoquer un mécanisme capable de réduire ce moment angulaire (par exemple, former un amas dans un nuage moléculaire très grand puis enlever l'excédant de matière après coup).

Finalement, la dernière approche abordée dans cette section prône la formation des amas globulaires à partir de galaxies naines accrétées et perturbées. Des études pionnières dans ce domaine comme [START_REF] Zinnecker | The Harlow-Shapley Symposium on Globular Cluster Systems in Galaxies[END_REF] et [START_REF] Freeman | Our fossil Galaxy[END_REF] décrivent la possibilité que, dans le potentiel d'une galaxie massive, des galaxies naines dotées d'un noyau soient perturbées et privées de la majorité de leur gaz, produisant ainsi un amas globulaire avec le noyau restant. Cette idée, non unanimement admise, expliquerait aussi la formation des naines ultra-compactes ("UCD"). Dans le cas de M87, la récente étude de Ferrarese et al. (2016) conclut quant au nombre non négligeable (∼ 1200) de galaxies naines accrétées sur M87. En plus de ramener leurs propres systèmes d'amas globulaires, ces galaxies naines accrétées, privées de tous leurs gaz, évoluent potentiellement en amas globulaires (ou en UCD) avec le reste de leurs noyaux.

En résumé, de nombreux scénarios de formation d'amas globulaires, plus ou moins cohérents entre eux, existent. Ils donnent une vision globale de la formation d'un amas à partir d'un nuage moléculaire, sans pour autant converger vers un unique scénario.

Scénarios de formation de la bimodalité

A la suite de la découverte de plusieurs populations d'amas autour d'une galaxie, de nombreux modèles ont vu le jour pour tenter d'expliquer ce phénomène. Il s'agit de comprendre comment deux populations aux caractéristiques différentes peuvent être formées autour d'une même galaxie.

Dans le modèle proposé par Ashman & Zepf (1992), les auteurs prédisent la formation d'amas globulaires lors de l'interaction ou la fusion de deux galaxies riches en gaz. Plus précisément, chaque galaxie possède, au départ, une population d'amas dite initiale dotée d'une métallicité très faible. Cette population est formée lors de l'effondrement de la protospirale i.e lors de la formation de la galaxie. Ensuite, lors d'interactions ou même de fusion avec une autre galaxie, la compression du gaz, produit une région de formation stellaire à CHAPITRE 1. Contexte et outils Les amas globulaires l'origine de la création de nouveaux amas globulaires (plus métalliques que ceux de la population initiale). Dans le cas de la fusion de deux galaxies spirales, la galaxie nouvellement formée (potentiellement elliptique) possède donc à la fois des amas pauvres en métaux de chaque galaxie et des amas riches en métaux formés dans les régions de formation stellaire. Il apparait donc une distribution bimodale en métallicité. Il est important de noter que la bimodalité était déjà suspectée par Zinn (1985) mais la bimodalité en couleur n'était pas encore confirmée en 1992. Ce modèle a aussi l'avantage de globalement expliquer les différences de fréquence spécifique entre les galaxies spirales et elliptiques. Cependant, sans prise en compte de l'accrétion, il n'est pas possible, grâce à ce modèle, d'expliquer certains cas particuliers comme M87 (McLaughlin et al., 1994;Forbes et al., 1997).

En suivant une idée similaire basée sur la fusion de galaxies, certaines études prévoient la formation d'une bimodalité dictée par des fusions à hauts et bas redshifts (e.g. Kravtsov & Gnedin, 2005;Li & Gnedin, 2014). Plus exactement, les amas MP sont formés lors de fusion de petites galaxies au début de l'univers (z ∼ 10) alors que les amas MR apparaissent suite aux fusions de galaxies plus massives à z ∼ 3-5. Dans ce modèle, les amas MP sont donc nécessairement beaucoup plus vieux que les amas MR (∼ Gyr). Forbes et al. (1997) présentent un autre modèle basé sur deux phases distinctes. La première, qui a lieu dans les premiers temps de l'univers, forme des amas MP in situ lors de la formation de la future galaxie hôte. Après une période qualifiée de «dormante» où la formation stellaire est arrêtée, une seconde phase de formation d'amas apparait dans la galaxie hôte. Lors de cette seconde phase, les amas sont formés à partir du gaz enrichi des générations précédentes et sont donc MR : on retrouve l'idée de bimodalité. Ce modèle progresse dans la représentation du système d'amas globulaires des galaxies très massives. Plus exactement, il prédit que le nombre d'amas MP dans ce genre de galaxies est plus important que le nombre d'amas MR (contrairement à la prédiction de Ashman & Zepf 1992). Des études complémentaires à ce modèle s'intéressent au processus physique responsable de la période dormante entre les deux phases de formation stellaire. Une explication envisagée est le phénomène de ré-ionisation qui arrête la formation stellaire (Santos e.g. 2002, mais ce n'est pas une option soutenue par Forbes et al. 2015).

Le dernier modèle développé dans cette section est basé sur l'étude de Côté et al. (1998) et invoque des phénomènes d'accrétion pour expliquer la bimodalité. A l'inverse du modèle de Ashman & Zepf (1992), ce modèle prédit que la population initiale de la galaxie est MR dû à l'enrichissement rapide du gaz à l'intérieur de la galaxie (e.g. Greggio, 1997). Par la suite, la distribution bimodale en métallicité se crée par l'apport en amas MP par les galaxies satellites perturbées ou accrétées. Cette théorie se base sur l'existence d'une relation entre la métallicité des amas MR et la luminosité de la galaxie hôte (Forbes et al., 1997, relation qui n'est pas observée pour les amas MP). La galaxie étant, dans ce modèle, le lieu de formation des amas MR, on retrouve logiquement cette relation (car une galaxie plus massive aura un enrichissement en métaux plus important qu'une galaxie de plus faible masse). Le principal avantage de ce modèle est qu'il quantifie l'importance de l'accrétion dans le processus de formation de la bimodalité.

Récemment, Renaud et al. (2017) ont mené des simulations numériques sur la formation et l'évolution d'amas stellaires dans la Voie Lactée. D'après cet article, les amas MP de la Voie Lactée seraient accrétés par des galaxies satellites alors que les amas MR se seraient formés in situ dans la galaxie mais aussi pendant des fusions avec la Voie Lactée. Cela suggère que la formation de la bimodalité n'est pas dictée seulement par un des modèles cités précédemment, mais au contraire par une combinaison de ces derniers, basée sur des processus d'accrétion et de fusion. 

L'environnement

Dans la plupart des cas en astrophysique, le terme environnement reflète l'ensemble des conditions physiques et chimiques extérieures à un objet (e.g. pression et densité du gaz, potentiel gravitationnel, type de gaz, etc...) qui agissent sur ce même objet. Dans cette partie, j'introduis tout d'abord les raisons qui peuvent conduire à une différence d'environnement puis les conséquences de ce changement sur différents types d'objets comme les galaxies ou les amas globulaires.

Origines des différences d'environnement

La théorie la plus communément admise en ce qui concerne le début de notre univers est celle du Big Bang. Cette théorie, basée sur une expansion de l'univers, explique l'évolution à partir d'un univers extrêmement petit, dense et chaud vers l'univers que nous connaissons de nos jours (gigantesque et froid). Durant cette expansion, l'univers est donc amené à se refroidir. Aux premiers instants, la température élevée de l'univers impose que tout l'hydrogène soit dans un état ionisé ce qui provoque des interactions constantes avec les photons environnants. Après environ 380 000 ans, lorsque la température de l'univers diminue en dessous de celle d'ionisation de l'hydrogène, les interactions entre rayonnement et matière diminuent drastiquement : c'est le découplage rayonnement-matière. A partir de ce moment, les photons ne sont plus arrêtés dans leurs mouvements. La meilleur trace observable de cet évènement est le fond diffus cosmologique ('Cosmic Microwave Background' en anglais : CMB). Le CMB est un rayonnement observé dans tout le ciel, composé des photons émis lors du découplage rayonnement-matière. Il reflète l'état de l'univers 380 000 ans après le Big Bang. La première observation du CMB résulte de l'étude de Penzias et Wilson (Penzias & Wilson, 1965) qui conclut à l'existence d'un signal micrométrique d'origine extragalactique. Suite à l'importance de cette découverte, de nombreuses observations ont été menées pour caractériser le CMB. Pour ne citer que les plus connues, une cartographie complète a été effectuée par le télescope COBE en 1992 (Smoot et al., 1992), puis par WMAP en 2003 (Spergel et al., 2003) et enfin, récemment, par Planck en 2013(Planck Collaboration et al., 2014). L'amélioration des techniques et de la résolution montrée dans la figure 1.8 reflète l'un des principaux résultats contenus dans le CMB : les fluctuations de température. Vu la relation entre température et densité, ces anisotropies reflètent des fluctuations dans la densité de l'univers primordial. De par la nature de la gravité, ces différences de densité, au départ infimes, ont mené à la création de structures filamentaires telles que nous les connaissons aujourd'hui. L'univers n'est donc pas uniforme, il existe des régions qui sont quasiment vides et d'autres qui sont denses et plus ou moins peuplées de galaxies. Tout ceci conduit à des différences d'environnement selon la position de l'objet étudié. Pour avoir un ordre d'idée, la densité de galaxies varie de 0.2 ρ 0 dans les parties presque vides de l'univers (où ρ 0 est une estimation de la densité moyenne du champ comme définie par Geller & Huchra 1989) jusqu'à 1000 ρ 0 dans les groupes compacts.

Effets connus sur les populations stellaires

Sur les galaxies

Il existe plusieurs estimateurs qui permettent de quantifier la densité de l'environnement. Pour n'en citer que quelques uns, il est possible d'utiliser, pour un objet particulier, le nombre de galaxies voisines ayant des propriétés bien définies (magnitude, vitesse et distance à cet objet ; Blanton & Moustakas 2009), un modèle itératif de recherche de groupes de galaxies (Yang et al., 2007) ou plus simplement le nombre de galaxies à une distance donnée de l'objet (Balogh et al., 2004). Ces méthodes permettent de classifier les différents environnements visibles. Parmi les environnement les plus étudiés, on retrouve bien entendu le Groupe Local (avec ses deux principales galaxies : la Voie Lactée et M31) mais aussi des environnements plus denses comme les amas de galaxies de la Vierge (où Virgo en anglais), Abell 1367 ou encore Coma. Ces trois derniers groupes de galaxies ont la particularité d'avoir des propriétés différentes. Virgo est toujours dans un état perturbé et possède beaucoup de galaxies spirales. Abell 1367, tout comme Coma, est dans un état d'équilibre mais Abell 1367 possède un grand nombre de galaxies spirales à l'inverse de Coma (Boselli & Gavazzi 2006. L'intérêt de ces groupes de galaxies réside dans la présence, en leur sein, de phénomènes dictés par l'environnement.

Plus exactement, l'influence de l'environnement sur un objet se traduit par différents phénomènes qui peuvent être classés en deux catégories (Boselli & Gavazzi, 2006). La première regroupe toutes les interactions basées sur la force de gravité (e.g. interaction de marée) tandis que la seconde inclut toutes les interactions hydrodynamiques dues au gaz chaud composant le milieu inter-galactique (e.g. pression dynamique).

En ce qui concerne la première catégorie, on retrouve plusieurs types d'interactions de marée. Tout d'abord, il y a les interactions entre galaxies, qui affectent le gaz, la poussière, les étoiles et même la matière noire (e.g. Icke, 1985;Mihos & Bothun, 1997;[START_REF] Berentzen | Astronomische Gesellschaft Meeting Abstracts[END_REF]. Ce genre de phénomène est commun dans les amas de galaxies mais la vitesse de déplacement rapide des galaxies considérées réduit grandement le temps d'interaction (environ 10 8 ans selon Boselli & Gavazzi 2006 contre quelques milliards d'années à l'extérieur des amas de galaxies). Ensuite, il y a les interactions avec le potentiel gravitationnel de l'amas de galaxies (Merritt, 1984;Miller, 1986). Selon Henriksen & Byrd (1996), ce potentiel peut accélérer la vitesse de certains nuages moléculaires présents dans le disque d'une galaxie et ainsi induire une augmentation de la formation stellaire à travers l'augmentation de la pression dynamique (Elmegreen & Efremov, 1997). Enfin, certains études (e.g. Moore et al., 1996Moore et al., , 1998) ) combinent les deux phénomènes précédents et parlent de harcèlement gravitationnel (ou "galaxy harassment" en anglais).

Dans le cas de la seconde catégorie, centrée sur les interactions hydrodynamiques, on peut notamment citer l'effet, nommé pression dynamique du gaz ("ram pressure stripping" en anglais ; Gunn & Gott 1972;[START_REF] Abadi | [END_REF], qui explique comment le milieu inter-CHAPITRE 1. Contexte et outils L'environnement galactique (IGM) d'un amas de galaxies peut affecter, voire même retirer, une majeure partie du gaz d'une galaxie. Plus exactement, c'est la forte vitesse de déplacement de la galaxie à travers le milieu dense et chaud qu'est l'IGM qui transforme la galaxie (e.g. Kenney et al., 2004;Crowl et al., 2005). Ensuite, il y a le phénomène de strangulation (Larson et al., 1980;Bekki et al., 2002) développé autour de l'idée que la formation stellaire est alimentée par l'afflux de gaz venant du halo. Cette interaction agit en deux étapes. D'abord, le halo d'une galaxie est retiré par interaction avec l'IGM ce qui élimine l'afflux de matière. Par la suite, en l'absence de nouveau gaz pour nourrir la formation stellaire, celle-ci s'épuise. Finalement, il existe aussi deux interactions basées sur une idée similaire de zone de contact entre ISM et IGM. La première, nommée interaction visqueuse ("Viscous stripping" en anglais ; Nulsen 1982) explique comment le gaz de l'ISM peut acquérir de l'énergie grâce aux frottements visqueux. Dans la seconde interaction, appelée évaporation thermale ("thermal evaporation" en anglais ; Cowie & Songaila 1977), le gain d'énergie est obtenu grâce à la différence de température entre IGM et ISM. Dans les deux cas, ce gain d'énergie peut expulser le gaz de la galaxie.

Il est important de noter que tous les phénomènes décrits précédemment ont été développés autour d'une découverte majeure relative aux amas de galaxies. Plus précisément, à travers l'étude des groupes de galaxies comme Virgo, Coma ou Abell 1367, il a été montré qu'il existait une relation entre la morphologie des galaxies et la densité de l'environnement (Dressler, 1980). Plus exactement, Whitmore et al. (1993) démontre que la fraction de galaxies spirales diminue avec le rayon au centre de l'amas de galaxies. Dans cette étude, les auteurs montrent que cette fraction passe d'environ 60 % à l'extérieur de l'amas à environ 5 % dans le coeur des amas de galaxies. Par la suite, dans l'étude de Park & Hwang (2009), les auteurs ajoutent une distance caractéristique en dessous de laquelle les propriétés (la morphologie) des galaxies commencent à dépendre de la distance au centre de l'amas de galaxies. Cette distance est estimée à 1-3 fois le rayon du Viriel. De plus, dans cette étude, les auteurs confirment que cette dépendance environnementale peut être causée par les interactions hydrodynamiques et gravitationnelles à l'intérieur des amas de galaxies. Ce résultat est aussi confirmé par Hernández-Fernández et al. (2012), avec une préférence pour l'arrêt de la formation stellaire à travers les interactions de "strangulation" et de "harcèlement gravitationnel".

Le corollaire à cette découverte est que la fraction de galaxies elliptiques massives augmente vers le coeur des amas de galaxies. Il existe donc une relation entre la masse stellaire et l'environnement i.e. il y a plus de galaxies massives dans les régions plus denses (e.g. Blanton & Moustakas, 2009).

De manière générale, il semble qu'à l'inverse de la morphologie des galaxies, les relations d'échelle ("scaling relations" en anglais) ne soient pas grandement affectées par l'environnement (e.g. Park et al., 2007). Ces relations d'échelle reflètent les tendances entre les différentes propriétés physiques des galaxies comme la masse, la taille ou la magnitude (e.g. la relation de Faber-Jackson entre la luminosité et la dispersion de vitesse ; Faber & Jackson 1976 ; ou celle de Tully Fisher pour les galaxies spirales ; Tully & Fisher 1977). Il est important de noter que cette non-dépendance à l'environnement des relations d'échelle est couramment observée mais pas absolue. Par exemple, la couleur des galaxies spirales semble être un peu plus bleue lorsque la densité de l'environnement est faible (Park et al., 2007). L'analyse fine de grands relevés futurs permettra de préciser ces dépendances.

Sur les amas gobulaires

Dans la partie 1.2.2, j'ai introduit la fréquence spécifique S N ainsi que son utilité pour comprendre la formation stellaire des galaxies. L'un des points importants qui est souligné précise que cette fréquence spécifique dépend de la morphologie de la galaxie (Elmegreen, 1999). Une galaxie elliptique (S N ∼ 6) aura un nombre d'amas globulaires supérieur à une CHAPITRE 1. Contexte et outils L'environnement FIGURE 1.9 -Fr : Fréquence spécifique des galaxies peu lumineuses (M z >-19) en fonction de la distance au centre de l'amas de Virgo (assimilé au centre de M87). Les galaxies naines au centre de l'amas présentent une fréquence spécifique supérieure à celle plus éloignées. Cette figure est tirée de Peng et al. (2008). En : Specific frequency of dwarf galaxies around the Virgo core (associated with M87). The specific frequency drops with the distance to the Virgo core. This figure is taken from Peng et al. (2008) galaxie spirale (S N ∼ 1) de même magnitude. Par ailleurs, j'ai aussi mentionné ci-dessus qu'il existait une relation entre la morphologie d'une galaxie et son environnement (Dressler, 1980;Whitmore et al., 1993) : la fraction de galaxies elliptiques augmente avec la densité de l'environnement, au détriment de la fraction de galaxies spirales. De par ces informations, on devine qu'il existe un grand nombre d'amas globulaires dans les amas de galaxies. Par exemple, les galaxies cD au centre des amas de Virgo (M87) et de Coma (NGC 1399) possèdent à elles seules de l'ordre de 10 000 amas globulaires chacune. Dans l'étude de Peng et al. (2008), les auteurs quantifient l'influence de l'environnement sur la fréquence spécifique de plusieurs galaxies ayant des propriétés similaires. Dans le cas des galaxies massives (i.e lumineuses : définies dans l'article telles que M z <-19), Il apparait que S N ne varie pas avec la distance au centre de l'amas (i.e l'environnement). Cependant, dans le cas des galaxies moins lumineuses (M z >-19 ; nommées galaxies naines), une tendance est observée en fonction de la distance au centre de l'amas. Cette corrélation est résumée en Figure 1.9. On constate que les galaxies naines proches du centre de l'amas (à une distance comprise entre 0.2 Mpc et 1 Mpc) possèdent une fréquence spécifique supérieure à celles qui en sont plus éloignées. De plus, les auteurs ne trouvent aucune différence entre les propriétés empiriques des galaxies naines à faible et haute fréquence spécifique. Ce résultat suggère une influence de l'environnement sur l'histoire de formation stellaire des galaxies naines. En partant de l'idée que les amas stellaires massifs se forment préférentiellement dans les environnements denses (Harris & Pudritz, 1994;Elmegreen & Efremov, 1997;Ashman & Zepf, 2001), les auteurs invoquent un scénario dans lequel les galaxies naines proches du centre de l'amas ont réussi à convertir plus de masse stellaire en amas globulaires que celles à l'extérieur de l'amas. En conséquence, cela implique aussi une différence dans l'intensité du pic de formation stellaire des deux populations i.e un pic de formation plus fort pour les galaxies naines au centre de l'amas. Curieusement, les galaxies CHAPITRE 1. Contexte et outils L'environnement FIGURE 1.10 -Fr : Diagramme de la métallicité des deux populations d'amas globulaires (MP et MR) en fonction de la magnitude de différentes galaxies hôtes. Plus la luminosité de la galaxie hôte est forte, plus la métallicité des deux populations est élevée et plus la proportion d'amas MR augmente relativement aux amas MP (ce qui explique la courbe noire). Cette figure est tirée de l'analyse de Peng et al. (2006) En : Metallicity of both MP and MR GC populations as a function of the host galaxy magnitudes. The metallicity of the two populations increases with the host galaxy magnitude. In addition, the total fraction of MR GC is also increasing with the host galaxy luminosity (it explains the black line which shows the average metallicity of the GC population as a whole). This figure is taken from Peng et al. (2006) CHAPITRE 1. Contexte et outils Les modèles de synthèse de populations stellaires naines très proches du centre de l'amas ne partagent pas une fréquence spécifique élevée. En effet, selon les auteurs, à cette distance, le gradient de potentiel gravitationnel de l'amas de galaxie est si fort que les amas globulaires sont expulsés des galaxies naines par effet de marée.

En complément de cet effet sur le nombre d'amas globulaires, l'environnement semble aussi affecter la taille de ceux-ci. En effet, déjà en 1956, van den Bergh avait mis en évidence une relation entre le rayon de demi-lumière des amas de la Voie Lactée et leur distance au plan galactique. Plus tard, van den Bergh et al. (1991) précise cette relation avec une taille qui varie avec le rayon au centre de notre galaxie (R GC ) en R 0.5 GC . Il est important de préciser que dans cette étude, les auteurs n'observent pas de différence entre la taille de la population d'amas MP et MR. Cependant, des analyses ultérieures montrent que les amas MR ont une taille plus faible que les amas MP (entre 10 % et 30 % selon les études ; Kundu & Whitmore 1998;Puzia et al. 1999;Larsen et al. 2001;Jordán et al. 2005). Sachant que la distribution spatiale des amas MP est plus étendue que celle des amas MR, une différence de taille entre les deux populations peut annihiler ou simplement biaiser la relation taille des amas-rayon galacto-centrique. Pour éviter ce biais, les études citées dans la suite de ce paragraphe analysent la taille des deux populations indépendamment. Dans le cas des galaxies extérieures au Groupe Local, il a fallu attendre l'arrivée du télescope Hubble pour de plus amples analyses. Par exemple, l'étude de Jordán et al. (2005) affirme que dans toutes les galaxies "early-type" analysées (amas de Virgo), il existe une relation entre la taille des amas MP et la distance au centre de la galaxie. Cependant, les auteurs trouvent une relation beaucoup moins prononcée que celle pour les amas de la Voie Lactée (une pente plus faible ; en prenant en compte uniquement les amas MP de la Voie Lactée pour éviter un possible biais). Il pourrait être intéressant de savoir si cette différence de pente est un résultat morphologique (entre elliptiques et spirales) ou si elle est produite par l'environnement dense de l'amas de galaxie.

Comme introduit plus tôt dans cette thèse, il existe des différences dans les propriétés des deux populations d'amas (MP et MR) telles que la taille, la distribution, ou la dynamique. Cependant, en ce qui concerne les effets de l'environnement sur ces deux populations, la question reste ouverte. Certaines études comme Geisler et al. (1996) trouvent une faible variation de la métallicité de chaque population en fonction de la distance au centre de la galaxie alors que d'autres n'en détectent aucune (e.g. Larsen et al., 2001). Il est important de répéter que, comme la distribution spatiale des amas MP est plus étendue que celles des amas MR, certains biais peuvent apparaître si la distinction entre MP et MR n'est pas bien effectuée. De manière plus certaine, comme montré dans la Figure 1.10, on sait que la métallicité de chaque population augmente avec la masse de la galaxie hôte (e.g. Peng et al., 2006). Cela étant, la présence accrue de galaxies massives à l'intérieur des amas de galaxies provoque nécessairement une population d'amas MR plus riche en métaux dans les environnements denses qu'à l'extérieur. Cependant, on ne sait toujours pas si deux galaxies de même masse mais localisées dans un environnement différent arborent des populations d'amas différentes.

1.4 Les modèles de synthèse de populations stellaires

Définition

La synthèse de populations stellaires est une technique qui consiste à générer des données spectrophotométriques (comme la distribution d'énergie spectrale, les couleurs, les indices etc.) pour une population d'étoiles synthétiques avec quasiment n'importe quelles propriétés données (comme l'âge, la metallicité, l'IMF, l'histoire de formation stellaire ou encore la morphologie de la branche horizontale). De manière générale, le résultat de cette CHAPITRE 1. Contexte et outils Les modèles de synthèse de populations stellaires synthèse est un spectre intégré de la population stellaire souhaitée. Sachant que les objets extra-galactiques sont très souvent observés à travers un signal intégré (spectre ou magnitude), l'utilisation de cette technique permet un accès à une donnée directement comparable. On comprend alors que la finalité de cette technique est de comparer les modèles aux observations et ainsi de pouvoir déduire l'âge, la métallicité, la masse ou encore les abondances chimiques de l'objet observé (e.g. Puzia et al., 2005c). Comme ces données sont capitales pour comprendre l'univers, la qualité et la précision du spectre synthétique sont généralement essentielles.

En pratique, le processus de synthèse est codé dans des modèles numériques de synthèse de populations stellaires (SPS ou EPS pour "evolutionary population synthesis"). GA-LAXEV [START_REF] Bruzual | [END_REF], PEGASE (Fioc & Rocca-Volmerange, 1997) ou encore FSPS (Conroy et al., 2009) en sont quelques exemples, exploités dans cette thèse. Il convient de noter que dans la plupart des cas, les modèles n'ont pas de nom particulier et sont simplement référencés par rapport au nom de leur auteur (e.g. Maraston, 2005) ou de la librairie utilisée (e.g. Vazdekis et al., 2010).

Dans les parties suivantes, je décris plus précisément le fonctionnement de tels modèles ainsi que les problèmes qui les entourent.

Fonctionnement

Pour analyser le fonctionnement des modèles de synthèse de populations stellaires, il est pratique de s'intéresser d'abord aux populations stellaires simples (SSP)

Comme je l'ai dit précédemment, il s'agit d'un ensemble d'étoiles théorique de même abondance chimique initiale, créé en un instant pendant un sursaut de formation stellaire et qui évolue passivement ensuite. Cette population représente la pierre angulaire de tous les modèles de synthèse de populations stellaires. D'une part, elle est assez simple à modéliser et d'autre part, elle se compare bien à un amas globulaire. Cela étant, pour obtenir un modèle adapté aux observations, la plupart des auteurs ont calibré leurs modèles sur des amas globulaires existants (généralement ceux de la Voie Lactée).

Le calcul du spectre synthétique d'une SSP est basé sur trois composantes principales : l'IMF, la librairie stellaire et les isochrones. La fonction de masse initiale décrit la répartition des étoiles de différentes masses dans la SSP (généralement il y a peu d'étoiles très massives et beaucoup d'étoiles peu massives). Les isochrones décrivent à chaque instant les propriétés de chacune des étoiles dans la SSP. Les spectres stellaires de chacune des étoiles à chaque instant sont obtenus grâce à la librairie stellaire. En résumé, le spectre d'une SSP est écrit de la manière suivante (équation 1.9) :

F SSP (λ , Z, Age) = M 2 M 1 F * (λ , Z, Age, Masse) . d IMF(Masse)
(1.9) Cassarà et al. (2013). On peut ensuite s'intéresser aux populations stellaires complexes (CSP). Ces populations correspondent généralement aux galaxies, dont l'histoire de formation stellaire est plus étendue dans le temps qu'un simple sursaut de formation stellaire. Cela étant, il ne s'agit plus de modéliser l'évolution passive d'une population d'étoiles aux mêmes abondances chimiques initiales. Historiquement, pour représenter le spectre observé d'une CSP, de nombreuses études ont essayé d'utiliser une combinaison linéaire de spectres d'étoiles (Spinrad & Taylor 1971;Faber 1972;Pickles 1985). Cependant, cette approche produisait CHAPITRE 1. Contexte et outils Les modèles de synthèse de populations stellaires FIGURE 1.11 -Fr : Schéma explicatif du processus de synthèse de populations stellaires. Il récapitule les équations 1.9 et 1.10. SFH correspond à l'histoire de formation stellaire de la population stellaire complexe. Il est possible de prendre en compte l'ISM directement dans l'intégrale mais ce processus n'est pas inclus dans tous les modèles En : Sketch of the process which explains the process behind the synthesis of stellar populations. The first row is related to equation 1.9 whereas the second one is summarizing equation 1.10 beaucoup trop de paramètres libres pour être efficace. Il s'est avéré plus judicieux de modéliser une CSP à l'aide d'une combinaison de SSP (aussi nommée "burst population" ; e.g. Gunn et al., 1981;Charlot & Bruzual, 1991). C'est toujours cette technique qui est utilisée dans le modèles actuels. Pour la combinaison de SSP, les poids utilisés dépendent du taux de formation d'étoiles de la CSP à un instant donné. En résumé, le spectre d'une CSP s'écrit (équation 1.10) :

F * (λ , Z,
F galaxie (λ , Age obs ) = Age obs t = 0 F SSP (λ , Z, Age obs -t) . SFR(t) d t (1.10)
Age obs correspond à l'âge théorique de la CSP. L'âge d'une SSP dépend du moment de sa création (si une SSP est créée à l'instant t alors cette SSP est âgée de Age obst).

Pour mieux comprendre le lien entre l'équation 1.9 et 1.10, un schéma explicatif du processus de synthèse de populations stellaires est présenté en Figure 1.11.

Il est important de mentionner qu'il existe plusieurs techniques d'intégration. Dans ce paragraphe (avec les équations 1.9 et 1.10), j'ai présenté la méthode la plus connue, nommée "isochrone synthesis technique" (IST ; Charlot & Bruzual, 1991;Bruzual A. & Charlot, 1993). Cependant, il existe d'autres méthodes d'intégration comme la "fuel-consumption theorem-based technique" (FCT) développée, par exemple, dans les articles de Renzini & Voli (1981); Maraston (1998Maraston ( , 2005)). Dans la première technique, la variable intégrée dans l'équation 1.9 est la masse de l'étoile considérée i.e les étoiles sont triées en fonction de leurs masses. Concernant la seconde approche, elle est basée sur un théorème introduit par Renzini & Voli (1981) qui stipule que la contribution d'une étoile (lors d'une phase de sa vie post-séquence principale) à la luminosité bolométrique intégrée est proportionnelle à la quantité de combustible utilisée (pendant cette phase). En résumé, c'est la quantité d'hydrogène et d'hélium dans le coeur stellaire qui est prise en compte. Dans l'étude de Charlot & Bruzual (1991), les auteurs effectuent une comparaison entre les deux techniques et concluent que les modèles utilisant la FCT sous-estiment légèrement la luminosité bolométrique des populations jeunes et sur-estiment la luminosité des populations plus vieilles CHAPITRE 1. Contexte et outils Les modèles de synthèse de populations stellaires (age > 10 Gyr). Malgré ces légères différences, les auteurs concluent que les deux techniques semblent viables.

Problèmes connus

Depuis les années 70, il y a eu énormément de progrès en matière de synthèse de populations stellaires. Les librairies stellaires se sont perfectionnées avec des spectres d'étoiles de meilleure qualité (e.g avec la diminution de la résolution des spectres) et pour des étoiles plus évolué (e.g. AGB, étoiles carbonées ; Lançon & Mouhcine 2002;Aringer et al. 2009). De la même manière, les isochrones se sont précisés, prenant en compte des phases évolutives plus complexes avec plus de paramètres (e.g. l'ajout des éléments alpha ; Bergbusch & Vandenberg 1992;Salaris et al. 1993). Cependant, malgré toutes ces évolutions, les modèles de synthèse de populations stellaires sont toujours soumis à quelques problèmes plus ou moins importants que je souhaite aborder dans cette section.

Ces problèmes sont majoritairement liés à deux des trois composantes principales des modèles EPS, à savoir les isochrones et la librairie stellaire (comme déjà suggéré par Charlot et al. 1996). Historiquement, les premières versions d'isochrones utilisées dans les modèles EPS ne contenaient que certaines phases d'évolution stellaire particulières, principalement du début de la séquence principale jusqu'à la branche des géantes rouge. Cela étant, l'évolution de la branche asymptotique des géantes n'était pas prise en compte dans les modèles. Cependant, de nombreuses études ont montré que l'influence des AGB était non-négligeable pour modéliser précisément une galaxie ou un amas jeune (e.g. Maraston, 1998;Lançon, 1999;[START_REF] Bruzual | Stellar Populations as Building Blocks of Galaxies[END_REF]Tonini et al., 2009). En effet, comme suggéré dans l'étude de Maraston (1998), les étoiles TP-AGB dominent le flux (optique et infra-rouge proche) du spectre d'une SSP âgée d'environ 1 Gyr. La figure 1.12 (tirée de cette même étude) récapitule la contribution à la luminosité bolométrique des étoiles de chacune des phases évolutives (séquence principale, sous-branche des géantes, branche des géantes rouge, branche horizontale et branche asymptotique des géantes).

Néanmoins, bien que toutes les études s'accordent à dire que l'influence des TP-AGB est réelle, l'amplitude exacte de cet effet reste, en revanche, bien moins déterminée. Les études précédemment citées comme Maraston (1998Maraston ( , 2005) ) tendent à prédire une influence forte des TP-AGB alors que d'autres, plus récentes, suggèrent un effet plus faible (Kriek et al., 2010;Zibetti et al., 2013). Dans ces dernières, au lieu de calibrer l'amplitude de l'effet des TP-AGB sur les amas jeunes des nuages de Magellan (e.g [START_REF] Frogel | [END_REF], les auteurs utilisent des échantillons de galaxies post-sursaut de formation stellaire. Dans l'étude de Girardi et al. (2013), les auteurs affirment qu'il existe un sursaut de flux nommé "AGB-boosting" qui affecte les amas stellaires entre 1,5 et 1,6 Gyr (l'âge typique des amas jeunes des nuages de Magellan). En conséquence, Girardi et al. (2013) suggèrent qu'il ne faut pas calibrer l'effet global des TP-AGB sur des objets atypiques qui subissent un sursaut de flux unique et rapide. Bien que la majorité des isochrones publiés récemment prennent en compte la branche asymptotique des géantes (e.g. Marigo & Girardi, 2007;Marigo et al., 2008), il paraît clair que la question des TP-AGB n'est toujours pas entièrement résolue et cela induit toujours des incertitudes dans les modèles. Il est important de noter que, dans le cadre de cette thèse, lorsque l'on s'intéresse aux amas globulaires, l'influence des TP-AGB est très faible (<2 % selon la Maraston 1998 ; car les amas sont vieux) et ce sont plutôt les étoiles RGB qui dominent le flux optique et infra-rouge proche.

Le deuxième problème lié aux isochrones (et ayant beaucoup plus d'influence sur les amas globulaires) est le problème de la branche horizontale. Comme introduit dans la section 1.2.2, pour une même métallicité, la morphologie de la branche horizontale d'un amas globulaire peut prendre différentes formes, e.g. plutôt bleue ou plutôt rouge (c'est le "second parameter problem"). Cette morphologie affecte énormément l'estimation d'âge d'un amas globulaire (Lee et al., 2000). Il n'existe que très peu de modèles de synthèse de populations Les modèles de synthèse de populations stellaires stellaires prenant en compte cette diversité de morphologies. Certains codes comme celui de Maraston (2005) et de Maraston & Strömbäck (2011) proposent deux types de branches horizontales, une bleue ou une rouge. Néanmoins, comme la compréhension du "second parameter problem" est encore imparfaite, l'estimation de l'âge et de la métallicité des amas globulaires reste dépendante de la morphologie de la branche horizontale (e.g. dans le cas des amas globulaires extra-galactiques où aucune donnée sur la branche horizontale ne peut être acquise).

Pour finir, je mentionnerai les problèmes liés aux librairies stellaires. Il existe différents types de librairies, basés soit sur des spectres théoriques (modélisés à partir de codes stellaire), soit sur des observations, soit enfin sur des librairies théoriques calibrées sur des observations (qualifiées de semi-empiriques). Le but commun à chacune de ces librairies est de remplir l'espace des paramètres log g, T e f f et Z pour pouvoir associer un spectre stellaire à chaque point d'une isochrone. En pratique, lorsque l'espace des paramètres n'est pas parfaitement couvert, il est nécessaire d'interpoler entre les spectres disponibles (e.g. [START_REF] Prugniel | Astronomical Spectroscopy and Virtual Observatory[END_REF]. Nécessairement deux interpolateurs différents peuvent donner des résultats différents. Bien qu'il soit utile de converger vers des méthodes d'interpolation standards, rapides et efficaces à toutes longueurs d'onde, le type d'interpolateur n'est pas le problème majeur des librairies stellaires.

Avec l'augmentation de la résolution des observations ainsi que l'accès à de nouveaux domaines de longueurs d'onde, l'étude des raies spectrales plus faibles, relatives à toutes sortes d'éléments chimiques, est devenue commune. Cela étant, les modèles actuels sont amenés à s'adapter et donc à produire des spectres de même qualité (voir meilleurs) dans le but de déduire précisément les propriétés d'un objet. Cependant, bien que certaines librairies stellaires optiques suivent cette évolution, il y a un grand retard pour les longueurs d'onde UV et IR. En d'autres termes, pour ne pas restreindre leurs résultats aux longueurs d'onde optiques, la plupart des modèles actuels combinent une librairie précise à haute résolution dans l'optique (e.g. MILES ; Sánchez-Blázquez et al. 2006) avec une librairie base résolution dans les autres domaines (typiquement la librairie de BaSeL ; Lejeune et al. 1997;Westera et al. 2002). Dans le cas de BaSeL, bien que très pratique au vu de son énorme domaine de longueurs d'onde (de 91 jusqu'à 160 µm), l'absence de variation d'abondance des éléments alpha et la faible résolution des spectres entrainent nécessairement un retard comparé aux observations actuelles.

Des nouvelles librairies voient le jours, comme PHOENIX (Husser et al., 2013) ou encore XSL (X-shooter Spectral Library ; Chen et al. 2014) mais l'utilisation de ces librairies dans les modèles requiert du temps et une modification du fonctionnement des modèles (avec l'intervention de nouveaux paramètres comme les éléments alpha, ou d'autres variations d'abondances chimiques). De plus d'autres éléments comme l'hélium ne sont pas encore pris en compte dans les nouvelles librairies stellaires, or l'abondance d'hélium (Y) change au cours de la vie d'une étoile et possède un effet sur [Fe/H] (voir équation 1.8). Pour l'heure, le retard des modèles en matière de spectres stellaires est l'un des problèmes majeurs qui affectent les estimations d'âge, de métallicité, de masse ou encore d'abondance chimique de nombreuses études.

En bref ...

Les amas globulaires sont les objets stars de cette thèse. Leur étude donne accès à de nombreuses informations sur les étoiles, les galaxies et sur l'astrophysique en général.

A l'échelle galactique, les propriétés globales des amas globulaires comme l'âge et la métallicité permettent de connaître l'époque de formation des amas et les évènements qui ont mené à leur naissance (e.g. la fusion de deux galaxies). Cela permet donc en principe de retracer l'histoire d'une galaxie simplement en utilisant ses amas globulaires.

A l'échelle stellaire, la composition chimique des étoiles de l'amas nous informe notamment sur les propriétés des différentes générations d'étoiles. Cela donne accès à l'histoire de l'amas globulaire et par extension à l'histoire de sa galaxie hôte.

A travers ce rôle d'ADN d'une galaxie, les amas globulaires sont au centre de nombreuses études. Malgré cet intérêt indéniable, de multiples questions restent encore ouvertes autour de ces objets :

• Dans quelle mesure l'environnement d'un amas globulaire modifie t-il ses propriétés ?

• Existe-t-il une bimodalité en métallicité qui implique une formation différée/différente des amas autour d'une même galaxie ?

• Tous les amas sont-ils composés de plusieurs générations d'étoiles et comment précisément expliquer les processus d'anti-corrélation d'abondances ?

• Quel est le lien entre les amas jeunes massifs récemment formés et les amas globulaires ?

Cette thèse se concentre sur le premier des points ci-dessus, mais les résultats obtenus ont parfois un impact sur les autres.

Pour ce faire, je m'intéresse à l'influence de l'environnement pour deux environnements distincts : l'un dense (l'amas de galaxies de Virgo) et l'autre très peu (la Voie Lactée).

Dans une première partie, je calibre le relevé "Next Generation Virgo Survey" (chapitre 2) pour ensuite effectuer une sélection d'un échantillon d'amas globulaires autour de M87 (chapitre 3).

Dans une seconde partie, cet échantillon est comparé à d'autres échantillons d'amas globulaires originaires de notre galaxie (et d'ailleurs) pour analyser l'influence de l'environnement sur les propriétés empiriques des amas (chapitre 4).

Finalement, dans une dernière partie, je m'intéresse aux prédictions de plusieurs modèles de synthèse de populations stellaires. Plus exactement, j'analyse leur capacité à bien reproduire les amas de Virgo (chapitre 5), puis j'étudie les estimations d'âge et de métallicité en sortie de ces modèles (chapitre 6). Le dernier chapitre de cette partie est consacré à une analyse de la distribution spatiale des amas (chapitre 7).

PARTIE I LE RELEVÉ NGVS CHAPITRE 2

Calibration photométrique 2.1 Introduction au chapitre

Le relevé NGVS est la principale source de données que j'ai utilisée. Dans ce chapitre, je présente tout d'abord un extrait de l'article Powalka et al. (2016a) qui traite de la calibration photométrique du relevé NGVS. Cette calibration est essentielle car elle permet d'évaluer les erreurs aléatoires et systématiques qui affectent le relevé. Ensuite, en Section 2.3, je décris les travaux complémentaires (relatifs à la calibration photométrique) que j'ai été amené à faire durant ma thèse mais qui n'ont pas encore donné lieu à une publication.

L'extrait d'article suivant cette section détaille les étapes de réduction qui ont permis de passer d'un ensemble de données brutes au catalogue final de NGVS. Les premières étapes sont expliquées en détail dans l'article de référence de NGVS : Ferrarese et al. (2012). Pour résumer, les observations du relevé NGVS se sont déroulées au Canada-France-Hawaï Telescope (CFHT) en utilisant la caméra MegaCam composée de 36 CCDs. Pour chaque filtre, plusieurs images ont été acquises (voir la Table 2 de Ferrarese et al. 2012). Afin d'obtenir des images profondes, il est nécessaire de combiner ces images. Pour ce faire, dans chaque image, chaque champ de vue d'un CCD est calibré par rapport à SDSS (en utilisant des étoiles de ce champ). Ensuite, une première étape de soustraction du ciel est appliquée aux images. Une fois toutes ces opérations effectuées, les images sont combinées.

Par la suite, les magnitudes de chaque objet ont été calculées en utilisant une technique de correction d'ouverture (e.g. Howell, 1989). Cette technique a pour but de mesurer la totalité de l'émission d'une source en corrigeant localement de la contamination du ciel. Plus exactement, il s'agit de comparer la magnitude d'un objet de référence dans deux ouvertures spécifiques : une large contenant "toute" la lumière de l'étoile de référence et une plus petite (d'un rayon ∼ FWHM pour maximiser le S/N de l'objet). Une fois la contamination du ciel estimée pour la référence, les magnitudes des autres objets proches sont corrigées par cette même valeur. La photométrie est ensuite une nouvelle fois comparée (et si besoin, rattachée) au catalogue SDSS. Ces étapes concluent la calibration standard de NGVS.

Une calibration alternative est aussi examinée. La méthode utilisée est nommée "Stellar Locus Regression" (SLR ; High et al. 2009). Elle permet de calibrer un relevé en rattachant les couleurs de la distribution des étoiles à une référence (e.g un modèle ou encore les mêmes étoiles observées dans un autre relevé).

Finalement, à la suite de l'extrait d'article, je présente un travail sur les transformations entre différents systèmes de filtres. Il permet de mettre en avant l'importance de ces relations. Plus précisément, je quantifie l'influence de différentes relations sur un échantillon d'amas globulaires synthétiques.

Article [English]

The following subsections are part of the article Powalka et al. (2016a) entitled "The Next Generation Virgo Cluster Survey (NGVS). XXV. Fiducial panchromatic colors of Virgo core globular clusters and their comparison to model predictions" and published with the following co-authors : Ariane Lançon, Thomas H. Puzia, Eric W. Peng, Chengze Liu, Roberto P. Muñoz, John P. Blakeslee, Patrick Côté, Laura Ferrarese, Joel Roediger, Rúben Sánchez-Janssen, Hongxin Zhang, Patrick R. Durrell, Jean-Charles Cuillandre, Pierre-Alain Duc, Puragra Guhathakurta, S. D. J. Gwyn, Patrick Hudelot, Simona Mei, and Elisa Toloba.

Optical and near-infrared images

The Next Generation Virgo Cluster Survey (NGVS, Ferrarese et al. 2012) is a deep imaging survey of 104 deg 2 of the sky towards the Virgo galaxy cluster (located at 16.5 Mpc distance, Mei et al. 2007), carried out with the MegaCam wide field imager on CFHT [START_REF] Boulade | Instrument Design and Performance for Optical/Infrared Ground-based Telescopes[END_REF]. In this article, we focus on the core region of the Virgo cluster, an area of 3.62 deg 2 roughly centered on M87 for which K s -band data have been obtained with the CFHT/WIRCam instrument as part of the NGVS-IR project (Muñoz et al., 2014).

The processing of the MegaCam images is described in Ferrarese et al. (2012). Four MegaCam pointings cover the core region of Virgo, and NGVS images for these are available in the u * , g, r, i and z bands1 . Several methods of background subtraction and image combination were used by Ferrarese et al. (2012) to produce image stacks for the individual pointings of the survey. Among these, we chose to work with the stacks built using the Me-gaPipe global background subtraction and combined with the artificial skepticism algorithm (Stetson et al., 1989). These provide highest accuracy photometry for sources of small spatial extent, and therefore they also served as a basis for the analysis of ultra-compact dwarf galaxies of Liu et al. (2015). The limiting magnitudes for point-sources are of 26.3 in the u * band, 26.8 in g, 26.7 in r, 26 in i, and 24.8 in z (5σ ; Ferrarese et al. 2012). Over the core region, the average seeing in the stacked images is better than 0.6" in i, around 0.7" in g and r and around 0.8" in u * and z. All final images have the same astrometric reference frame, tied to the positions of stars in the Sloan Digital Sky Survey, and the same grid of pixels, with a scale of 0.186"/pixel.

The processing of the NGVS-IR K s images is described by Muñoz et al. (2014). Nine WIRCam fields are required to cover the area of each one of the four MegaCam pointing of the core region. Of the 36 WIRCam pointings hence requested, only 34 were actually observed, leaving out an area of 40" × 20" at the extreme South-West of the core area (see Muñoz et al. 2014 for an image of the footprint). Any raw images with a seeing worse than 0.7" were rejected before stacking, which typically resulted in 80 individual dithered images being combined for each WIRCam field. This made it possible to produce stacked images with the same pixel scale as the MegaCam stacks, although the original WIRCam pixel scale is of 0.3"/pixel. The stacking of sky-subtracted images was performed with the Swarp software (Bertin et al., 2002), using Lanczos-2 interpolation. Over the area of the Virgo core region, the mean K s seeing is similar to that of the i-band MegaCam images.

The diffuse light of the giant elliptical galaxy M87 extends over a significant fraction of the core region of Virgo, and makes the automatic detection of star clusters difficult in the central parts. Therefore, this light was modeled and subtracted from the stacks of the M87 area in all passbands before the object detection and the photometric measurements were performed. A simple galaxy model based on elliptical isophotes was found sufficient for this purpose.

Overview of the photometric calibration procedures

The photometric analysis of GC stellar populations relies on comparisons between observed and synthetic colors. Hence we endeavour to characterize our empirical and synthetic photometry in detail. As in previous publications of the NGVS collaboration, we work with AB magnitudes in the native passbands of the NGVS and NGVS-IR observations.

Before proceeding, it is worth recalling that empirical and synthetic photometry have different sources of systematic errors. While the former depends on the nightly choice of photometric standard stars and the previous absolute calibration of these in the passbands of interest, synthetic photometry is a direct implementation of the AB magnitude definition. Synthetic photometry thus provides the exact AB photometry associated with any given spectral energy distribution (SED), as long as the adopted transmission curves are adequate. The latter condition, of course, is never perfectly met. And when used for calibration purposes, synthetic photometry is limited by uncertainties on both the transmission curves and the assumed SEDs. Empirical AB magnitude systems are also imperfect. They depend on the adopted SEDs of rare primary standards, on networks of secondary standards, on corrections for variable extinction, on aperture corrections and on transformation equations to or from the systems in which the standards were initially measured. Even data sets as widely used as the Sloan Digital Sky Survey, to which the NGVS/MegaCam photometry is tied, are described as approximate AB systems in the literature (Schlafly & Finkbeiner 2011, Betoule et al. 2013, SDSS calibration pages2 ).

A brief outline of the steps followed to measure and calibrate the magnitudes of globular clusters is given here, to guide the reading of the details provided in the remainder of these sections.

(a) The first calibration step is part of the construction of image stacks. Before combining individual MegaCam images (Ferrarese et al., 2012), a comparison of the instrumental magnitudes of point sources with SDSS magnitudes is used to determine individual zero points for each of the 36 detector chips of the camera. This corrects first order changes in transmission related to position within the field of view (see Betoule et al. 2013 for a different approach), as well as differences in the atmospheric extinction. For this procedure, point sources are selected via a cross-match with the SDSS point source catalog.

The WIRCam stacks of Muñoz et al. (2014) are calibrated using 2MASS point sources as a reference. Again, differences in zero points between the detector chips of the camera are accounted for.

(b) We then proceed to determine local aperture corrections for point sources (Section 2.2.3). The sample of point sources used for this step is cleaned of contaminants using the near-UV to near-IR photometry and a measure of compactness.

(c) Using the stars selected in step (b), we compare the aperture corrected magnitudes respectively to PSF-magnitudes in SDSS and to aperture corrected magnitudes in the UKIRT Infrared Deep Sky Survey (Lawrence et al., 2007;[START_REF] Carroll | An Introduction to Modern Astrophysics[END_REF], to improve the calibration relative to these external surveys (Section 2.2.4). Note that we transform the external photometry to the MegaCam and WIRCam systems before comparison, and not the reverse. The zero points of each image stack are reajusted at this step, based on all the stars of one field of view. This provides our first set of final data. Systematic uncertainties on the AB magnitudes obtained this way come from departures of the SDSS and UKIDSS photometry from a true AB system, as well as from the transformations between these systems and the NGVS passbands.

(d) With the purpose of offering a color calibration independent of the SDSS and UKIDSS surveys, a second calibration method is implemented : the observed stellar locus in color-color space is forced to match the stellar locus obtained from synthetic AB photometry of theoretical stellar SEDs. This provides our second set of final colors. Systematic uncertainties here do not depend on SDSS or UKIDSS but rather on the choice of adequate synthetic stellar spectra and filter transmission curves.

Globular cluster photometry from steps (c) and (d) are made available with this article. A budget of systematic errors is given in Section 3.2.6. We use the first of the two calibrations by default in the main body of this paper, but provide further comments on the second in the Section 2.2.6.

Point source photometry

To measure aperture magnitudes, we used the SExtractor software (Bertin & Arnouts, 1996). The local background subtraction of SExtractor was switched on for these measurements, using a sky annulus of ∼ 5" width around the sources. The sky is locally very flat, in particular after subtraction of M87, and the sky subtraction contributes negligible random errors except in areas contaminated by the halos of bright/saturated stars, or near other galaxies (in total a few percent of the Virgo core area). Work on the one-by-one subtraction of more galaxies is ongoing but not available as yet.

Aperture corrections for point sources were computed separately for four image stacks, each corresponding to the area of one MegaCam pointing. For this purpose, the star sample was cleaned on the basis of magnitude (bright but not saturated), compactness in the NGVS images, and the relative location in a preliminary uiK diagram (Muñoz et al., 2014). The latter criterion is very effective at rejecting contaminants, as illustrated in Section 3.2 in the context of the selection of GCs. Point source fluxes were measured in a series of apertures, and aperture corrections were computed using the curves of growth (as in Liu et al., 2015). The average aperture corrections vary significantly between the four MegaCam pointings of the Virgo core region due to seeing differences. Typical aperture correction maps for one MegaCam pointing are shown in Figures 2.1 and 2.2. The discrete maps were smoothed with a gaussian kernel (σ = 1.6") to provide corrections at any location.

Figure 2.1 illustrates the spatial distribution of the aperture corrections applied in the i band. Note that this figure differs from the one in Liu et al. (2015). Here, each star is colored using the difference between magnitudes in two SExtractor apertures, without attaching the "infinite" aperture estimate to SDSS PSF-magnitudes (as was done in the figure of Liu et al. 2015). The varying ranges of the color scales of the four panels shows that the average aperture correction differs between pointings, due to differences in average seeing. Similar amplitudes of spatial patterns, and a similar spread between pointings, are seen in the other photometric passbands, with one exception in the r band described below.

Figure 2.2 shows the aperture correction in NGVS pointing +0+0 (Ferrarese et al., 2012) in the r band. In this one particular case, unfortunately, the seeing distribution of individual stacked images was much broader than usual. As a consequence, aperture corrections within the gaps between rows of detector chips differ more from neighbouring values than in typical cases.

In the WIRCam K s image stacks, the spatial variations of the aperture corrections mainly echo seeing differences between the individual WIRCam pointings that compose one Me-gaCam field of view (Figure 2.3). The number of 2MASS stars per WIRCAM field with reasonable signal-to-noise is too small to measure aperture correction variations within a pointing reliably, and UKIDSS (which would provide a denser star grid) is not available systematically over the whole area. We note that the K s point-source size (FWHM) is more dispersed over the area of one MegaCam pointing than the i-band size. But globally, over the whole area of the Virgo core region, the K s aperture corrections are more uniform than the optical ones because only images with a seeing better than 0.7"were used in WIRCam stacks.

In the remainder of this thesis, we use apertures of 7 or 8 pixels in diameter (1.3"or 1.48", i.e. about twice the seeing) as the basis for any aperture-corrected photometry of stars. Globular cluster measurements are discussed in Section 3.2.3.

Our photometric error estimates are based on SExtractor errors, with a correction for the correlation between neighbouring pixels that results from the geometrical transformations applied to the original images before stacking. For the MegaCam images, the stacks roughly preserve the initial pixel size and are computed with Lanczos-3 interpolation. In that case, a correction factor of roughly 1.5 should be applied to the error bars for point and point-like sources (Ilbert et al., 2006;Coupon et al., 2009;Raichoor & Andreon, 2012) 3 .

For the WIRCam images, the correction factor to be applied to SExtractor errors is larger because the final pixels are significantly smaller than the original ones. The artificial star experiments we performed to estimate completeness (Muñoz et al., 2014) show that SExtractor errors for point sources should be multiplied by a factor of 2.5. This is consistent with the findings in Bielby et al. (2012) In the following, the term "SExtractor errors" refers to the error values before application of the recommended factors. But "errors" refer to the corrected values, and these are applied in any analysis.

Photometric calibration against external catalogs

The first version of the photometry we provide is calibrated on external survey catalogs. For MegaCam, the Sloan Digital Sky Survey Data Release DR10 is used as a reference (Ahn et al., 2014). The SDSS PSF-magnitudes of stars common to both surveys (mostly main sequence stars of spectral types later than F) are converted to the MegaCam system using the transformation in Ferrarese et al. (2012). The NGVS aperture corrected point source magnitudes are then compared with these transformed SDSS magnitudes, to derive one zero point offset per field of view. This zero point correction then applies to all sources in that field of view, be they stars or other objects.

Because the transformations are an important element of the calibration of the magnitude zero points in this section, we display them in the first five panels of Figure 2.4 together with stars common to NGVS and SDSS. The amplitude of the dispersion is primarily due to the random photometric erros in SDSS. Only one zero point per image is derived in the calibration against SDSS, hence the relevant errors are the average differences between the various displayed loci (over the range of colors most populated with stars). The NGVS magnitudes used in the figure are taken after calibration, hence by construction the stars are located, on average, on the calibration line, with (sample dependent) mean offsets smaller than 0.01 mag.

The transformations are also compared with those obtained from synthetic photometry in Figure 2.4. We used three libraries of synthetic stellar spectra : the MARCS library of Gustafsson et al. (2008), the BaSeL 3.1 library (Lejeune et al. 1997, Lejeune et al. 1998and Westera et al. 2002) and the PHOENIX library of Husser et al. (2013). The assumed stellar temperatures, surface gravities and metallicities along the NGVS stellar locus are obtained from the Besançon model of the Milky Way (Robin et al. 2003, Robin et al. 2004), to which adequate magnitude cuts were applied. For reasons that will become apparent in Section 2.2.6, our preferred library is the PHOENIX library.

The transmission curves for the synthetic photometry were taken from Betoule et al. (2013) for MegaCam 4 . It includes all telescope and instrument components as well as typical telluric absorption features 5 .

Although the transformation equations are not actually fits to the synthetic data, the similarity is quite impressive. Average residuals between the synthetic data and the reference lines (over the range of colors most populated with NGVS+SDSS stars and hence most relevant to the calibration) are smaller than 0.01 mag, i.e. smaller than the dispersion expected from the photometric errors of SDSS. We note that there are essentially no stars of type F and hotter in the calibration sample. Had there been many, a linear transformation equation would have been inadequate for u * . Indeed, u * MegaCamu SDSS rapidly deviates from a straight line when (ug) < 0.7, as a consequence of the strong Balmer jump in the spectra of hotter stars.

In the near-infrared, we tied the WIRCam K s photometry to UKIDSS DR8 (Hewett et al. 2006, Dye et al. 2006, Hodgkin et al. 2009) 6 . Although shallower by about 3 magnitudes than NGVS-IR, the UKIDSS point source catalog is deeper and more precise than 2MASS.

Both UKIDSS and 2MASS K band transmissions have larger effective wavelengths than the WIRCam K s filter (for which an all inclusive transmission curve is given in Muñoz et al. 2014). Over the range of colors of stars in common with NGVS-IR, i.e. 0 < (H -K) UKIDSS < 0.35 mag, the quantity ∆ K = K WIRCam -K UKIDSS varies with a global dependence on color given by 0.27 × (H -K) UKIDSS (Muñoz et al., 2014). Note that (H -K) UKIDSS in this expression is the native UKIDSS value, in Vega magnitudes, while we use AB magnitudes everywhere else in this paper (K WIRCam [AB] = K WIRCam [Vega] + 1.827, Muñoz et al. 2014). The actual relation between ∆ K and color is not linear but shows curvature over the whole color range, and starts off essentially flat for (H -K) UKIDSS < 0.2 mag (last panel of Fig. 2.4). We have used the synthetic values of ∆ K in this restricted range of colors for the re-calibration of the NGVS-IR zero point, because all the collections of stellar spectra agree there, while cool M dwarf models become progressively more uncertain at lower temperatures.

The NGVS photometry obtained here is used as a default in the remainder of this thesis. A budget of systematic errors is given in the context of globular cluster photometry in Section 3.2.6 (subsections 3.2.6 to 3.2.6,and Tab. 3.4). An alternative calibration based on the direct comparison of empirical and synthetic stellar loci in color-color planes is 4. Betoule et al. provide transmissions for various annuli around the center of the MegaCam field of view. We use the fourth radius (70 mm from the center of the filter), which within a few millimagnitudes is equivalent to using an area-weighted average of the local transmissions.

5. The transmission curves are available with the online version of this paper and are plotted in Fig. 1.3. 6. The aperture-corrected magnitudes provided in UKIDSS catalogs as kAperMag3 are used for stars considered in Section 2.2.6, but then only used as a second choice in Section 2.2.6.

Extinction correction

The foreground extinction towards the Virgo core region is low. Schlegel et al. (1998) report 0.06 < A(V) < 0.16, while Schlafly & Finkbeiner (2011) produce values that are typically 15 % lower. Over 90 % of the field, including the M87 region, A(V) < 0.10.

Extinction coefficients for the MegaCam and WIRCam filters were provided in an appendix of Muñoz et al. (2014), using the extinction law of Cardelli et al. (1989) with R(V) = 3.1 and stellar spectra of a variety of spectral types. We have used the values they derived for a solar type star. Changes between extreme stellar types lead to changes in A(λ )/A(V ) smaller than 0.02 in r, i, z and K s , than 0.03 in u * and than 0.07 g. Towards Virgo, errors on A(λ ) due to the color-dependence of extinction coefficients are therefore smaller than 0.01 mag.

Based on the above, typical reddening corrections amount 0.06 mag in (ui), and 0.04 mag in (gi) and (i -K s ). Rescaling A(V) from the value of Schlegel et al. (1998) to that of Schlafly & Finkbeiner (2011) reduces (ui) towards M87 by 0.011 mag and (i -K s ) by 0.007 mag. In the following, when correcting for extinction on individual lines of sight, we have used the values of E(B-V) of Schlegel et al. (1998) for consistency with previous publications of the NGVS collaboration.

Alternative calibration via Stellar Locus Regression

As mentioned earlier, we have explored a second calibration method, that relies on synthetic colors of stars instead of the stellar fluxes of external surveys. Although this new method looks promising, the choice of an external spectral library as a reference remains a limiting factor. Hence, we restrict this section to a description of the method and its key ingredients, and to an assessment of the differences with the the previous photometry. We then use the calibration in Section 2.2.4 for the analysis of GCs.

The SLR Method

Stellar Locus Regression (SLR) was introduced under this name by High et al. (2009), who used it to calibrate colors of new photometric surveys against colors in pre-existing, supposedly well-calibrated ones. In brief, the method forces the loci of point sources in color-color space to agree in the two surveys, assuming this locus is (at least roughly) universal. It does not provide an absolute flux calibration, but explicitely focuses on colors. Here, we have adapted the method to attach the NGVS/NGVS-IR stellar locus to the locus predicted by theoretical stellar spectra.

In principle, it makes sense to require a good match between empirical and synthetic stellar colors whenever the final purpose is to compare empirical colors of stellar populations with synthetic ones. However, in practice this test is not as relevant as it may seem : the stars we see in surveys such as the NGVS are essentially all on the lower main sequence, while the red and near-IR light of globular clusters or galaxies comes mostly from red giants. Here, we explore this second calibration simply as an alternative to the calibration against SDSS and UKIDSS. As a side product, this allows us to assess model spectra of cool dwarf stars.

In the SLR of High et al. (2009), the color transformation equation is written as

c = κ + (1 + B) c 0 (2.1)
where c is a vector of new (possibly uncalibrated) colors, c 0 is the vector of assumed true colors (the reference color locus), κ accounts for zero point shifts due for instance to at-mospheric extinction and differences between the effective wavelengths of the used and reference filters, and (1 + B) is the color transformation matrix. The method assumes that the color transformations between the reference and adopted passbands are known, i.e. (1 + B) is known (from standard star observations). The problem is then essentially reduced to searching for the optimal offsets κ.

In our case, we use synthetic photometry as a reference and we assume the NGVS and NGVS-IR transmission curves are well known, so Eq. 2.1 reduces to c = κ + c 0 .

The stellar locus regression has been implemented as in High et al. (2009) : we minimize the weighted sum of the color-distances between the dereddened empirical stellar colors, after shifting with κ, and the respectively closest point on the synthetic locus. The photometric errors are used for the inverse-variance weighting.

Choice of a reference library and of fitted colors

The main difficulty in the application of the SLR is the choice of the reference stellar locus. The results also depend on the choice of colors used in the fit.

For instance, due to the large dependence of u band fluxes on stellar metallicity and galactic dust extinction, High et al. (2009) advise against using SLR for the u filter. The u * transmission extends across the Balmer jump of stellar spectra. In this region, spectra are particularly sensitive to stellar parameters such as temperature, gravity and also metallicity. This is seen clearly in the locus of the synthetic stars in color-color planes involving u * .

Figure 2.5 shows the effective temperature sequences of synthetic stars at a given surface gravity, for five metallicities (red : [Fe/H] = 0.0, blue : -0.5, green : -1, magenta : -1.5, cyan = -2), in six such color-color diagrams. These sequences illustrate the large sensitivity of the colors to metallicity, especially at low effective temperatures (red end of the sequences), thus creating a strong dependence on the assumed distribution of metallicities along the observed sequence (i.e. the model for the M dwarf population of the Milky Way disk and halo). Figure 2.6 in this thesis already showed that the colors of the lower main sequence are also highly dependent on the adopted collection of theoretical spectra ; this remains true for the u * band.

The thick black line in Figure 2.5 shows the locus defined by the Besançon model of the Milky Way towards Virgo. While the match to the NGVS data (shifted here by the vector of SLR shifts obtained when including u * in the optimization) seems reasonable to the eye, an examination of the actual scales of the offsets to the locus of the Virgo stars is alarming : they amount several tenths of a magnitude in places. In the ugr or the uiK diagram, the preferred model locus does not have a shape compatible with the observed stellar locus, which indicates that either the filter transmissions involved are not known well enough or the stellar models, including the choice of stellar parameters along the sequence, are not optimal. In view of the estimated uncertainties on the filter transmissions, the latter reason is believed to be predominant.

As a consequence, we have decided to determine SLR shifts only for (gr), (ri), (iz), and (i -K s ) at first, which sample the energy distribution from g to K s .

The first three of the colors listed above are the ones also used by High et al. (2009). As these authors highlight, the colors must be chosen so the stellar locus displays a kink in at least one color-color plane, otherwise the fit is not well constrained (the offsets along the stellar locus would be arbitrary). Our choice satisfies this requirement as subsequent figures will show.

As a source of stellar spectra for synthetic photometry, we have used the collections already mentioned in Section 2.2.4 : the PHOENIX theoretical spectral library of Husser et al. (2013), the MARCS model collection of Gustafsson et al. (2008), and the semi-empirical library BaSeL 3.1. We also considered the empirical library of Pickles (1998), which has robust colors for near-solar metallicity, but we ended up not using it because its sampling of metallicity is too scarce. While all these libraries agree rather well for the colors of main sequence stars of types F to K, their colors fan out in very different ways at cool temperatures, where the molecular bands of M dwarfs become increasingly important.

The typical stellar properties of the NGVS stars vary along the stellar locus from Milky Way halo-like at the blue end, to thin and thick disk-like at the red end. The stellar parameters we used are derived from the Besançon model of the Milky Way (Robin et al., 2003(Robin et al., , 2004) ) 7 in the NGVS footprint, taking into account the saturation and detection limits of the survey in all passbands. Besançon model stars were sorted into bins of 500 K width, from ≈3000 K to ≈6500 K. The statistical properties of log(g), [Fe/H], [α/Fe] that we have used to choose spectra for each bin are listed in Table 2.1. We note that the BaSeL library has only solar abundance ratios, so in that case changes of [α/Fe] were not accounted for.

In Figure 2.6, the BaSeL (red), PHOENIX (black) and MARCS (blue) libraries are shown superimposed to our NGVS stellar locus. At the red end, the discrepancies between those libraries are large. The PHOENIX library fits the shape of our empirical distributions well in all color-color diagrams, with only a small tilt of the M-dwarf sequence with respect to observations in the plot of (ri) vs. (g -K s ). As only shifts and not change of shape are allowed in the SLR calibration, we conclude that only the PHOENIX library is appropriate for our purpose, and we discard other libraries in the remainder of this section.

Important features in these color-color diagrams are the kinks seen in all but the riz diagrams. The locus of these kinks controls shifts along the color-color sequences of stars. As these shifts are also applied to globular clusters, they directly affect the metallicity estimates of the latter.

SLR results

To account for spatial variations of extinction over the area of the survey, we deredden NGVS stars before estimating the best vector of corrections, κ. We then apply these corrections to all objects in the NGVS data set. Figure 2.7 shows the stellar locus obtained after the SLR calibration and the arrow illustrates the displacement applied.

The SLR offsets found with the method above are κ = [(gr) : 0.058, (ri) : 0.019, (iz) : 0.016, (i -K s ) : 0.133]. The offsets in (ri) and (iz) are marginally consistent with our estimated bounds on errors in Section 3.2.6. The shifts in (gr) and (i -K s ) are larger than expected. Figure 2.7 shows this may be related to the slight tilt of the slope of the PHOENIX sequence in the gri and gKri planes. The slope on the red side of the kink in the stellar locus differs between models and the observations. κ partly compensates for the difference this generates at low temperatures. 

Summary of the photometric calibration

Our default photometric calibration rests on three steps : the construction of image stacks that account for differences in photometric zero points between detector chips, the computation of local aperture corrections for point sources, and the comparison with SDSS and UKIDSS (after transformation to the NGVS passbands). We use the extinction map of Schlegel et al. (1998) but have provided the comparison with Schlafly & Finkbeiner (2011) in Section 2.2.5.

We have also implemented an alternative calibration of the colors, based on stellar spectral libraries, a model for the stellar population of the Milky Way, and synthetic photometry. Because some of the color shifts suggested by that calibration are large, we suspect biases exist even in the best models for the colors of lower main sequence stars on the line of sight towards Virgo. Our preferred calibration to date is the first one.
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Pour s'assurer de la robustesse de ses données, il est important de les comparer avec d'autres catalogues présents dans la littérature. Cependant, la majorité d'entre-eux ne sont pas disponibles dans le même système de filtres que NGVS. Il peut donc être intéressant d'évaluer les erreurs qui découlent de l'utilisation d'une relation de transformation entre différents filtres.

Analyse des transformations entre différents filtres

Les transformations entre différents systèmes de filtres sont couramment utilisées pour comparer deux échantillons observés avec deux instruments différents. Par exemple, pour comparer un échantillon d'amas globulaires obtenu avec un instrument A (possédant les filtres A) et un autre obtenu avec un instrument B (possédant les filtres B), il faut, soit convertir les magnitudes A dans le système B, soit l'inverse. Il est important de noter que ces relations sont uniquement utilisées dans le cas de la photométrie puisque, si le spectre de l'objet étudié est disponible, il est directement possible de calculer les deux magnitudes (dans les systèmes A et B) avec les courbes de transmission des filtres de A et de B.

Généralement, au premier ordre, les relations de transformation ont la forme suivante : M A -M B = Slope × Color B + ZP. Avec M la magnitude (dans le système A ou B), Slope la pente de la relation, Color une couleur (contenant M B ) et ZP pour 'zero point' qui est l'ordonnée à l'origine. Dans ce cas, Il est donc possible de convertir les magnitudes du système B dans le système A.

En pratique, pour établir ces relations (et donc trouver la valeur de Slope et de ZP), il est nécessaire d'avoir une référence. Il peut s'agir d'objets en commun observés dans les deux systèmes (e.g. des étoiles), ou d'une référence théorique comme des spectres. La plupart du temps, les étoiles sont utilisées. Cependant, le choix de cette référence peut changer les paramètres de la relation et donc modifier la photométrie obtenue après transformation.

Dans cette partie je vais analyser et quantifier trois causes possibles de différences pour la transformation des filtres MegaCam vers les filtres SDSS. Il est important de noter que les filtres SDSS et MegaCam ont des transmissions assez semblables. Cela étant, les valeurs données par la suite peuvent être plus élevées dans le cas de filtres plus divergents.

Influence du choix d'une référence théorique ou observationnelle

La plupart des relations de transformation citées dans la littérature sont basées sur un ensemble d'étoiles. Il peut être observationnel i.e basé sur les mêmes étoiles observées dans les deux systèmes de filtres ou il peut être théorique i.e basé sur des librairies de spectres stellaires. Pour quantifier l'influence de ces deux choix sur la photométrie obtenue après transformation, je m'intéresse aux systèmes de filtres SDSS et MegaCam.

Dans le cadre du projet NGVS, les auteurs de Ferrarese et al. (2012) décrivent un ensemble de relations observationnelles pour transformer une magnitude SDSS en une magnitude MegaCam. Ces relations sont basées sur un ensemble d'étoiles brillantes communes aux deux relevés (voir Figure 2.4).

Pour obtenir des relations théoriques, trois librairies stellaires sont utilisées. Il s'agit de MARCS, BaSeL et PHOENIX. Pour chacune de ces librairies, une relation est calculée à partir des étoiles entre ∼4000 K et 6500 K (avec les mêmes propriétés que celles données dans la Table 2.1).

Au final, je dispose de quatre relations de transformation, toutes basées sur un échantillon (observationnel ou théorique) d'étoiles. Toutes ces relations sont montrées dans la Figure 2.8. Les étoiles observées sont présentées en noir alors que les modèles de MARCS, BaSeL et PHOENIX sont respectivement affichés en bleu, rouge et orange. 
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On constate que la relation basée sur des étoiles observées est comparable aux trois relations théoriques pour les filtres g, r et z. La plus grande différence est observée pour le filtre i où les pentes des relations théoriques sont plus importantes que celle de la relation observationnelle.

Pour quantifier les différences de photométrie produites par le choix d'une relation particulière, je calcule à partir d'une couleur SDSS la photométrie MegaCam obtenue pour chacune des relations. Par exemple, pour une valeur y de la couleur (ri) SDSS , j'obtiens 4 valeurs possibles de (ri) MegaCam . J'attribue à la variable ∆ max r-i (y) l'écart maximum entre ces 4 valeurs. Ensuite, je défini la variable ∆mag qui représente la moyenne de ces différences maximales dans chaque couleur. Pour un point donné (x,y) du diagramme (g-r) vs (r-i), ∆mag (x,y) = moyenne(∆ max g-r (x) , ∆ max r-i (y)). Les résultats de cette analyse sont donnés dans la Figure 2.9. Le panneau du haut représente le diagramme (g-r) en fonction de (r-i) alors que celui du bas montre (g-r) en fonction de (i-z). Dans chaque panneau, le lieu typique des galaxies distantes, des amas globulaires et des étoiles est entouré en pointillés.

De manière générale, on constate qu'il existe une différence plus importante entre les relations dans le diagramme griz que dans le diagramme grri. Cet écart est lié à l'utilisation de la magnitude z qui apporte une contrainte additionnelle. On peut remarquer que l'amplitude des différences est assez restreinte dans le cas des amas globulaires et des étoiles entre ∼ 6500 et 4500 K (avec ∼ 0.008 mag pour griz et ∼ 0.005 mag pour grri). Cependant, pour les galaxies à haut (i-z)/(r-i) ainsi que pour les étoiles plus froides que 4000 K (i.e les plus rouges), on constate que l'utilisation d'une relation particulière au lieu d'une autre peut amener des différences de couleur transformée de l'ordre de 0.03 mag pour griz et 0.017 mag pour grri. La raison de cette différence est l'utilisation d'objets de référence qui ne correspondent pas aux couleurs des objets étudiés. En d'autres termes, il ne faut pas utiliser des relations de transformation basées sur des étoiles de ∼ 6500 K pour transformer des étoiles de ∼ 3000 K ou des galaxies de couleurs plus extrêmes. A l'inverse, si la référence est bien adaptée aux objets étudiés alors les différences de photométrie produites par des relations basées sur une référence observationnelle ou théorique sont minimes.

Influence du type de l'objet de référence Dans la partie précédente, nous avons vu que, pour limiter les différences de photométrie finale entre plusieurs relations, le choix des objets de référence (pour calibrer la relation de transformation) devait être adapté avec les couleurs des objets étudiés. Dans cette partie, nous allons nous intéresser à l'influence du type de l'objet de référence par rapport aux objets étudiés. En d'autres termes, nous allons quantifier les différences de photométrie pour des amas globulaires engendrées par des relations basées sur des amas globulaires ou sur des étoiles.

La relation basée sur des étoiles observées est la même que précédemment. Pour les amas globulaires, j'utilise le modèle de synthèse de population stellaire PEGASE pour obtenir des spectres de SSPs (approximativement des amas globulaires) avec différentes propriétés (0.0001 < Z < 0.02 ; 1 < Age < 15 Gyr). A l'aide de ces spectres, je calcule les magnitudes nécessaires à l'établissement des relations de transformation en utilisant les filtres SDSS et MegaCam (Betoule et al., 2013). Deux relations théoriques basées sur PEGASE sont considérées : la première se base sur les amas ayant une métallicité (i.e des couleurs) typique mais restreinte d'amas globulaires (-1.7 < [Fe/H] <-0.7) alors que la seconde est générée en utilisant tous les amas possible (-2.30 < [Fe/H] < 0 ; 1 < Age < 15 Gyr). Le choix de ce sous-intervalle en métallicité (-1.7 < [Fe/H] <-0.7) permet d'étudier les relations de transformation à une échelle plus réduite où des différences de pente existent par rapport à l'échantillon complet. Les trois relations de transformation obtenues sont présentées dans la Figure 2.10. FIGURE 2.9 -Fr : Présentation de deux diagrammes couleur-couleur (g-r en fonction de r-i et g-r en fonction de i-z dans le système SDSS). Chacun des diagrammes est codé par la différence maximum de couleur MegaCam obtenue en utilisant des relations de transformation distinctes (basées sur des étoiles observées ou théoriques). Les contours représentent les lieux typiques de chaque population (galaxie, amas globulaire et étoile). En : Example of two color-color diagrams (g-r SDSS versus r-i SDSS and g-r SDSS versus iz SDSS ) color-coded by the maximum MegaCam photometric differences produced by the use of different transformation relations (based on observed stars and theoretical stars). More precisely : for one value of g-r SDSS, i and r-i SDSS, j (in the gri diagram), each one of the 4 transformation relations produces a resulting value of g-r MegaCam, i and r-i MegaCam j . The maximum difference between the 4 resulting values of g-r MegaCam, i is averaged with the maximum difference between the 4 resulting values of r-i MegaCam, j . This mean difference value (∆mag) is thus associated with the value of g-r SDSS, i and r-i SDSS, j . The contours show the loci of galaxies, GCs, and stars. 
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De la même manière que dans la partie précédente, deux diagrammes couleur-couleur (grri et griz) sont montrés dans la Figure 2.11. Le paramètre ∆mag est maintenant basé sur une différence entre la photométrie obtenue avec la relation générée avec les étoiles et celles générées avec les amas globulaires.

On constate que les différences moyennes dans les deux diagrammes sont de l'ordre de 0.006 mag, ce qui est faible. Cette valeur varie de 0.003 mag pour les amas bleus jusqu'à 0.01 mag pour les amas rouges (ce qui devient un peu plus inquiétant). Cela veut dire que, dans le cas des amas globulaires, l'utilisation d'une relation de transformation SDSS-MegaCam basée sur des étoiles ou sur des amas (de couleurs similaires) ne change pas significativement la photométrie MegaCam finale. Cependant, il est important de rappeler que les filtres SDSS et MegaCam ont des transmissions très proches et donc que la conclusion de cette section n'est pas forcement valable pour d'autres systèmes de filtres. Il est aussi nécessaire de garder à l'esprit que les amas globulaires ont une couleur comparable à celles des étoiles utilisées pour calibrer la relation de transformation basée sur les étoiles, ce qui explique en partie le changement minime de couleurs finales.

Influence des filtres utilisés

Pour finir cette analyse sur les relations de transformation, je quantifie les différences de couleurs générées par l'utilisation, pour un même système de filtres (e.g. SDSS), de transmissions différentes. Ces courbes de transmission interviennent uniquement dans le cas où les magnitudes sont obtenues à partir d'un spectre (qu'il soit théorique ou observé). En conséquence, j'utilise dans cette section les spectres de SSPs calculés par PEGASE (les mêmes que ceux décrits précédemment). Deux groupes de magnitudes SDSS sont ensuite obtenues en convoluant ces spectres avec deux ensembles de courbes de transmission présentés dans la Figure 2.12. Les magnitudes MegaCam sont uniquement calculées à l'aide des filtres de Betoule et al. (2013) comme précédemment. Au final, deux relations de transformation sont obtenues à partir des deux distributions d'amas présentées dans la Figure 2.13. On constate que la différence de pente entre les deux relations est non négligeable (> 0.01) pour les filtres g et i alors qu'elle est beaucoup plus faible pour les filtres r et z.

Un fois les relations acquises, je réitère l'analyse des sections précédentes pour comparer les différences de photométrie MegaCam finale obtenues par l'utilisation de l'une ou l'autre des relations. Le résultat est montré dans la Figure 2.14. On constate que, dans le lieu typique des amas globulaires, les deux relations donnent des couleurs MegaCam qui diffèrent d'environ 0.008 mag (∼ 0.006 mag pour les amas les plus bleus jusqu'à ∼ 0.010 mag pour les amas les plus rouges). Bien que cet écart n'est pas dominant par rapport aux erreurs aléatoires typiques (∼ 0.03 mag) , il met en avant l'influence du choix d'une courbe de transmission pour établir une relation de transformation entre deux filtres. FIGURE 2.11 -Fr : Présentation de deux diagrammes couleur-couleur (g-r en fonction de r-i et g-r en fonction de i-z dans le système SDSS). Chacun des diagrammes est codé par la différence moyenne de couleur MegaCam obtenue en utilisant des relations de transformation distinctes (basées sur des étoiles observées ou sur des amas globulaires théoriques). Le contour représente le lieu typique des amas globulaires. En : Example of two color-color diagrams (g-r SDSS versus r-i SDSS and g-r SDSS versus iz SDSS ) color-coded by the maximum MegaCam photometric differences produced by the use of different transformation relations (based on observed stars or on theoretical GCs). More precisely : for one value of g-r SDSS, i and r-i SDSS, j (in the gri diagram), each one of the 3 transformation relations produces a resulting value of g-r MegaCam, i and r-i MegaCam j . The maximum difference between the 3 resulting values of g-r MegaCam, i is averaged with the maximum difference between the 3 resulting values of r-i MegaCam, j . This mean difference value (∆mag) is thus associated with the value of g-r SDSS, i and r-i SDSS, j . The contour shows the loci of GCs. FIGURE 2.12 -Fr : Exemple de deux ensembles de courbes de transmission pour les filtres SDSS. La courbe rouge réfère aux transmissions données par J.Annis alors que la courbe noire correspond aux filtres de Doi et al. (2010). En : Example of 2 sets of SDSS transmission curves. The red ones are given by J.Annis whereas the black curves are taken from Doi et al. (2010). FIGURE 2.14 -Fr : Présentation d'un diagramme couleur-couleur (g-r en fonction de r-i dans le système SDSS). Ce diagramme est codé par la différence moyenne de couleur MegaCam obtenue en utilisant des relations de transformation distinctes (basées sur des amas globulaires théoriques dont les magnitudes sont calculées en utilisant des filtres SDSS distincts ; voir Fig. 2.12). Le contour représente le lieu typique des amas globulaires. En : Example of a color-color diagram (g-r SDSS versus r-i SDSS ) color-coded by the maximum MegaCam photometric differences produced by the use of different transformation relations (based on theoretical GCs computed with two different sets of SDSS filters). More precisely : for one value of g-r SDSS, i and r-i SDSS, j (in the gri diagram), each one of the 2 transformation relations produces a resulting value of g-r MegaCam, i and r-i MegaCam j . The difference between the 2 resulting values of g-r MegaCam, i is averaged with the difference between the 2 resulting values of r-i MegaCam, j . This mean difference value (∆mag) is thus associated with the value of g-r SDSS, i and r-i SDSS, j . The contour shows the loci of GCs. Ce chapitre est dédié à la sélection de l'échantillon d'amas globulaires qui sera utilisé dans la suite de cette thèse. Au vu de son importance, nous avons essayé d'obtenir l'échantillon le plus propre possible et de quantifier au mieux les erreurs systématiques et aléatoires qui pourraient altérer la qualité de la photométrie.

La section suivante décrit la procédure qui a été menée pour passer du catalogue final complet de NGVS (obtenu dans le chapitre précédent) jusqu'à l'échantillon d'amas globulaires. Finalement, dans la dernière section de ce chapitre, un travail complémentaire de comparaison avec d'autres échantillons d'amas de M87 basés eux aussi sur NGVS est présenté.

Pour résumer, la sélection des amas globulaires de NGVS commence par une mise en commun des objets sur les 4 images (ou pavés) qui composent le champ NGVS autour de M87. Pour ce faire, une première élimination grossière est faite sur la base des magnitudes (M < 60 mag) ainsi que sur leurs erreurs (err M SExtractor < 0.5 mag). Ensuite, les 4 pavés sont combinés et les zones d'intersections entre chaque pavé sont traitées de manière à ne contenir que des objets présents dans les deux pavés (ou dans les quatre pour la zone d'intersection au milieu du champ). Une fois une image globale du champ acquise, une nouvelle étape de réduction plus drastique est effectuée. Les magnitudes (M > 18 mag ; la valeur dépend du filtre mais est environ égale à 18 ; pour enlever les étoiles saturées), leurs erreurs (err M SExtractor < 0.06 mag) ou encore la largeur des objets (FWHM SExtractor < 4 px ; pour enlever les objets vraiment trop larges) sont utilisées. Pour la suite, la sélection des amas se fait dans un diagramme uiK s (ui en fonction de i -K s ) modifié par un critère de compacité. Le diagramme uiK s a l'avantage de séparer les amas, les étoiles et les galaxies (contrairement à d'autres diagrammes uniquement basés sur des magnitudes dans le domaine optique). Pour accentuer les distinctions entre les différents lieux des populations, on utilise un critère de compacité C i . Il est défini par la différence (e.g. dans la magnitude i) entre la magnitude corrigée dans une ouverture faible (e.g. dans une ouverture de 4 pixels ; i 4 ) et celle dans une ouverture plus grande (e.g. dans une ouverture de 8 pixels ; i 8 ) : la correction d'ouverture étant dans les deux cas basée sur la fonction d'étalement des sources ponctuelles. Ce critère reflète l'étendue de l'objet étudié. Pour une étoile, les magnitudes dans ces deux ouvertures seront théoriquement similaire donc C i ∼ 0. A l'inverse, pour une galaxie, i 4 contiendra moins de flux de l'objet que i 8 donc C i > 0 (en pratique, C i > 0.2 pour les galaxies). Le diagramme uik peut donc être modifié par ce critère tel que : u 8i 8 vs. i 8 -K s 8 devient u 8i 8 -(i 4i 8 ) vs. i 8 -K s 8 + (i 4i 8 ) i.e u 8i 4 vs. i 4 -K s 8 . En réalité, pour accentuer davantage les différences entre les différentes populations, j'utilise Introduction au chapitre une fonction exponentielle de l'indice de compacité. Cette fonction est définie dans la section 3.2.1. Grâce à la séparation produite dans ce diagramme, il est possible de sélectionner à la main l'échantillon d'amas globulaires. Il contient à ce stade 2321 objets.

Par la suite, en raison d'un problème de qualité d'image dans l'un des pavés du champ de vue en bande r, certains amas situés dans des zones mal couvertes aux bords des rangées de détecteurs de la caméra MegaCam ont été rejetés. L'échantillon est donc réduit de 2321 à 1846 amas.

J'estime ensuite la contamination de notre échantillon à l'aide d'un catalogue spectroscopique de redshift d'objets dans la direction de l'amas de Virgo. Parmi les 783 objets commun avec notre échantillon (celui avec 2321 amas), seulement 17 ne possèdent pas le redshift d'un objet de l'amas de Virgo. On en déduit une contamination d'environ 2 %, augmentée à environ 5 % en prenant en compte la densité de sources d'avant et d'arrière-plan aux limites du lieu des amas globulaires dans l'espace des couleurs.

Dans la deuxième partie de l'article, une analyse de l'échantillon est menée. Elle décrit la masse typique des amas globulaires, leurs magnitudes ainsi qu'une distribution d'énergie spectrale (SED) de référence reproduisant le lieu caractéristique des amas globulaires dans chaque diagramme couleur-couleur. Cette SED est aussi utilisée pour montrer que la distribution des amas autour de M87 ne peut pas, statistiquement, être réduite à un polynôme. En d'autres termes, la largeur de la distribution des amas globulaires dans un diagramme couleur-couleur est réelle.

Finalement, dans la dernière partie de l'article, nous examinons les erreurs systématiques qui peuvent affecter notre échantillon. Parmi ces erreurs, il y a notamment les erreurs relatives au relevé SDSS, celles relatives aux étapes de calibration de NGVS sur SDSS ou encore celles relatives à la correction de l'extinction. Toutes ces erreurs sont ensuite récapitulées dans un budget des erreurs systématiques.

Pour finir ce chapitre, je compare l'échantillon précédemment trouvé à deux autres échantillons d'amas autour de M87 obtenus avec NGVS. Le premier est obtenu par un groupe extérieur à la collaboration NGVS ayant utilisé les archives publiques dans les bandes u, g, r, i et z (Oldham & Auger, 2016). Nécessairement, sans la bande K s et sans le critère de compacité, cet échantillon est contaminé par des étoiles et des galaxies. Le second est obtenu par des membres de NGVS (principalement Eric Peng) et a pour but d'être appliqué à tout les pavés de NGVS en atteignant des magnitudes plus faibles que dans mon échantillon de référence, quitte à avoir un taux de contamination un peu plus élevé.

Article [English]

The following subsections are part of the article Powalka et al. (2016a) entitled "The Next Generation Virgo Cluster Survey (NGVS). XXV. Fiducial panchromatic colors of Virgo core globular clusters and their comparison to model predictions" and published with the following co-authors : Ariane Lançon, Thomas H. Puzia, Eric W. Peng, Chengze Liu, Roberto P. Muñoz, John P. Blakeslee, Patrick Côté, Laura Ferrarese, Joel Roediger, Rúben Sánchez-Janssen, Hongxin Zhang, Patrick R. Durrell, Jean-Charles Cuillandre, Pierre-Alain Duc, Puragra Guhathakurta, S. D. J. Gwyn, Patrick Hudelot, Simona Mei, and Elisa Toloba.

Selection

The selection of the globular clusters is a crucial point in our study. Our purpose is to provide typical globular cluster colors and SEDs as a benchmark for comparisons with model predictions and other GC systems, not to discuss the number distribution of GCs over the range of possible colors. Therefore, our main concern is to limit contamination by foreground stars or background galaxies and to work with objects that have good photometry. Completeness is not a target, except that we wish to sample the whole range of colors along the main direction of the GC color sequence.

Our starting point is a merged NGVS + NGVS-IR catalog of over a million sources in the Virgo core region. Preliminary processing includes the rejection of objects that lack data in one or more filters (catalog magnitude > 60), the rejection of sources with magnitude error larger than 0.5 mag, and the removal of duplicate or erroneous objects in regions of overlap between pointings. Figure 3.1 shows this catalog in the uiK diagram (Muñoz et al., 2014). From red to blue (i -K s ) colors, the most conspicuous sequences in this diagram correspond to background galaxies with various star forming histories at redshifts up to ∼1.5, globular clusters (which merge into the redshift sequence of passive galaxies at the red end), and foreground main sequence stars. Although the uiK diagram provides a better separation between sequences than any other color-color diagram, there is a significant overlap between populations in this deep and exhaustive catalog.

At this point, we applied stricter selection criteria on our sample to remove saturated sources (the limit depends on the filter and on the seeing but it is typically around 18 mag [AB] whatever the filter), large objects (half-flux radius > 4 pixels) and sources with large errors (SExtractor errors > 0.06 mag in any filter). The sources surviving these cuts are shown in the top panel of Figure 3.2.

Our final cleaned selection then exploits both the uiK diagram and size information. Massive globular clusters and DGTOs (Dwarf Galaxy Transition Objects) in Virgo are marginally resolved in images with 0.6" seeing (48 pc), such as the NGVS i and NGVS-IR K s images. Absolute sizes vary accross the pilot region because the various individual fields were observed in different seeing conditions. A good way to quantify whether an object is more spatially extended than a star is to compute the difference between two aperturecorrected magnitudes in the same filter. We will write such differences APCORn-APCORm, with n and m standing for the aperture diameters in pixels. These differences are on average zero for stars (the local aperture correction absorbs any spatial variations of the PSF), but are positive for extended sources. We have used both APCOR4-APCOR8 and APCOR4-APCOR16, finding that both behave similarly. In the standard uiK diagram [(i -K s ) on the y-axis, (ui) on the x-axis], extended objects tend to lie to the upper left of the stellar sequence. By adding (APCOR4-APCOR8)(i) to (i -K s ) and subtracting that quantity from (ui), extended sources are efficiently moved away from the stellar sequence. Moreover, this translation effect can be improved by adding a non-linear function of (APCOR4-APCOR8)(i). Our implementation depends more strongly on compactness outside the supposed range of GC colors as indicated in Eq. 3.1 and Eq. 3.2. This may bias slightly against Most sources are background galaxies. The foreground stars are mainly along the bottom sequence, and the globular clusters are located just above it and below the two large regions of galaxies. At the red end of the GC sequence (ui > 3), redshifted passively evolving galaxies are found. The color coding maps the density of objects. possible unresolved blue clusters, but improves the rejection of stellar contaminants.
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Between C i,min and C i,max :

C i = (APCOR4 -APCOR8)(i) (3.1)
Outside this range :

C ′ i = exp(1 +C i ) + K (3.2)
where the constant is set by the requirement of continuity at C i,min and C i,max . In our case, C i,min = 0.02 and C i,max = 0.2. This 'modified' uiK diagram is shown in the bottom panel of Figure 3.2.

In the standard uiK diagram, the GC sequence suffers from contamination by halo main sequence stars, in particular at the blue end. It is fortunate that blue clusters tend to be the most extended (Jordán et al., 2005) : taking size into account therefore effectively separates halo stars from blue globular clusters. At the red end, many extended passive galaxies are also efficiently moved away from the globular cluster sequence.

The final selection of GCs, shown in Figure 3.3, is obtained by applying a conservative sigma clipping algorithm in the modified uiK diagram. We use a polynomial fit of the current GC locus as a reference and broaden it by 0.1 mag in both colors. GCs distant from this broad locus by more than 3 times the uncertainty on their colors are rejected. We are left with 2321 globular clusters with median errors in u, g, r, i, z, K s of, respectively, 0.02, 0.008, 0.008, 0.01, 0.02 and 0.08 mag. In the following subsection, we compare our selected globular clusters to several spectroscopic datasets from the literature.

Comparison with spectroscopic samples

The NGVS collaboration maintains a 'master spectroscopic catalogue' that includes all objects within the NGVS footprint with measured redshifts, collected from the literature, or part of the NGVS collaboration efforts to target objects in the field. In particular, data from the literature includes the SDSS DR10 release, the NASA Extragalactic Database for extended objects (Binggeli et al., 1985), and catalogues of Hanes et al. (2001), andStrader et al. (2011). Spectroscopic campaign were carried out by the NGVS team using Anglo-Australian Telescope 2dF observations and Multiple Mirror Telescope Hectospec observations by E. Peng and Keck DEIMOS observations by R. Guhathakurta.
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Among our selection of 2321 globular clusters, 783 have a measured redshift. All but 17 are bona fide Virgo globular clusters according to the spectroscopic data. Among those 17, 5 are considered galaxies and 12 stars. Figure 3.4 shows our sample together with the matched spectroscopic targets in RA-DEC (left) and in color-color space (right). Globular cluster overdensities are visible near M87 but also around NGC 4473, NGC 4438 or M86 (in the North-West corner of the field, from the East to the West). We note that the spectroscopic catalog has no objects associated with NGC 4438 and NGC 4435.

Extrapolating from this test, we estimate the contamination of our full GC sample to be limited to about 50 objects out of 2321 (i.e. about 2 %). Eyeball estimates based on the distribution of sources in the modified uiK diagram (Fig. 3.2) would allow contaminations of up to 100 objects, i.e. about 5 %.

We note that the colors of the matched spectroscopic sample span the whole range of colors of our photometric GC catalog (Fig. 3.4). This provides confidence that our reddest objects are not background ellipticals and our bluest ones not foreground stars.

Aperture photometry of globular clusters

As globular clusters are marginally resolved sources in the NGVS survey, the point source aperture corrections do not strictly apply to them. However, these aperture corrections efficiently absorb the spatial variations of the PSF (mostly due to seeing variations with time), and we can limit any bias in color measurements by applying aperture corrections to relatively large measurement apertures.

To test this assertion, we have compared aperture-corrected magnitudes (APCORmagnitudes hereafter) and the corresponding colors (APCOR-colors) as a function of the compactness parameter already used earlier (APCOR4-APCOR8 in the i band). As expected, the comparison between globular cluster APCOR-colors measured in 2 apertures of which one is small, shows a difference that depends strongly on compactness. For example for apertures of 4 and 8 pixels the amplitude of this trend along the GC compactnesssequence exceeds 0.1 mag for (gi), (ui) and (iz). However, the amplitude of the trend drops to 0.01 mag or less in all colors (Xi) when APCOR-colors in 7 and 8 pixels are compared (we note that the difference between APCOR-magnitudes from 7 and 8 pixels still changes by ∼0.03 mag along the compactness-sequence). For apertures larger than 8 pixels, for instance APCOR-colors measured in 8 and 16 pixels, no systematic trends with compactness are detected. The analysis in this thesis is based on APCOR-colors measured in 8 pixel apertures, APCOR16 colors being noisier for faint objects.

r band seeing issues

During the data acquisition for NGVS pointing +0+0 in the r band (the pointing containing M87), the seeing has varied significantly more than for all other pointings and filters. As a consequence, the point sources located along the gaps between the individual rows of detectors have sizes that differ from other locations (the number of exposures combined in these pixels is smaller than elsewhere). The local aperture corrections cannot be determined with a spatial sampling as small as these gaps. The consequences are outliers in color-color diagrams that involve the r band. Figure 3.5 shows the effect on the globular cluster sequence : two abnormal branches are seen on either side of the main locus.

Our goal is to have a clean sample of GC colors. Thus for the purpose of this thesis we have removed all the objects with abnormal r-band photometry from our reference sample. This last modification reduced our sample from 2321 to 1846 globular clusters.

Properties of the GC sample

At this point, we have a clean sample of 1846 globular clusters. As announced previously, this catalog is available in numerical form and an extract is given in Tab. 3.1.

This GC sample is designed to provide a robust reference locus in color space, as opposed to being complete in volume or magnitude. Each of the 1846 clusters was selected to have good photometry across the whole spectrum. The population of the red end of the GC sequence (metal rich clusters) is limited by the requirement of good quality u * photometry, and the number of objects at the blue end by requirements in z and K s . The typical magnitudes of the GCs in the sample are provided in Tab. 3.2. At the blue end of the sequence, this corresponds to typical masses of 1.6 × 10 6 M ⊙ , and at the red end to masses of 3.3 × 10 6 M ⊙ . These masses are typically a factor of 10 above the turn-over of the GC mass function (Jordán et al., 2007).

Color distributions of the GCs will be discussed in detail in Section 5.2.2. Using these, we have determined fiducial loci in color-color diagrams, and fiducial SEDs for various locations along the GC sequence. The purpose of these is to provide an easy graphical reference when comparing color distributions with models (Section 5.2.2). As the Virgo core region contains GCs with a variety of histories and environements, one may expect different GCs to contain different stellar populations (age, metallicity, chemical abundances, etc), and we warn that the fiducial SEDs would not capture this diversity.

The fiducial SEDs are based on maximum likelihood polynomial fits to GC color-color distributions. The likelihood L of a polynomial is the probability of obtaining the observed color-color distribution when drawing from this polynomial parent distribution, taking into account the errors on the colors and their covariance (we treat the errors as gaussian in this process). Numerically, the polynomial f is segmented into a large number of small segments f j , which are here assigned equal prior probability (flat prior).

L = N GC ∏ i=1 p(c i | f ) = ∏ i ∑ j p(c i | f j ).p( f j )
Here p(c i | f ) is the probability, for cluster i in the sample, to be observed with colors c i if it originally was located on the polynomial, and p(c i | f j ) is the same for location f j on the polynomial. p( f j ) is a constant.

Figure 3.6 shows a set of fiducial SEDs obtained as a function of (g -K s ), a color with a large range of values compared to error bars. To first order, the sequence may be seen as an empirical illustration of the effects of metallicity, combined with a possible effect of age. To define these SEDs, polynomials were fitted respectively to the loci in diagrams of (ug), (gr), (ri), (iz) and (z -K s ) versus (g -K s ). The values of the polynomials at a set of (g -K s ) colors define the fiducial SEDs.

Thanks to the large number of clusters and to the small individual photometric errors for each GC, the fiducial sequence is extremely well defined. Bootstrap resampling provides the 3 σ error bars shown in Fig. 3.6 (most of these are too small to see, and all are smaller than the systematic errors on the GC photometry). The fiducial SEDs can also be modified by changing the order of the adopted polynomial, removing more or fewer outliers, and other fitting process differences. However the modifications obtained with various reasonable variants of the fitting details are of small amplitude compared to the systematic effects we intend to discuss in the comparison with models and observations later on.

To conclude the description of the sample, we have tested whether or not the empirical GC color distribution is statistically compatible with an infinitely tight theoretical colorlocus, given by the fiducial SEDs just described. To quantify the goodness-of-fit, we used the following reduced χ 2 :

χ 2 = 1 N GC N GC ∑ i=1 min j (c i -c f j ) t Σ -1 (c i -c f j ) (3.3)
where c i contains the colors considered, Σ is the covariance matrix, c f j holds the colors of a point of the fiducial locus, and min j takes the minimum along the polynomial. N GC is a proxy for the number of degrees of freedom of the fit. We fitted two-color distributions with polynomials of orders 2 to 5, and explored the effects of removing up ten GCs with strongest individual impacts on the fit and the χ 2 . All in all, using several combinaisons of colors, we did not find a best χ 2 below 1.23 for a single color-color diagram. Conversely, we found a number of color-color planes in which the best χ 2 in these tests remained above 3, for instance (iz) vs. (gi), or (ui) vs (gi). For good representations of the data, the χ 2 would not exceed 1 by more than a few (N GC ) -1/2 (i.e. a few times 0.023). Hence there is real dispersion across the main locus of the data.

Budget of systematic errors

The online catalog of GCs provides individual uncertainties on the magnitude measurements, as described in Section 2.2.4. In addition to these random errors, we have mentioned a variety of sources of possible systematic errors on the photometry. We provide a summary of these here, with estimated bounds in Tab. 3.4.

Systematic errors in the external reference catalogs

The NGVS MegaCam photometry is calibrated against SDSS stars, thus any systematic errors in the SDSS photometry has a direct effect on NGVS. Currently, the relative calibration within SDSS DR10 seems to be well known, with studies by Padmanabhan et al. (2008), Bramich & Freudling (2012), Schlafly & Finkbeiner (2011). The precision of the internal calibration is estimated to be around 2 % in the u * band and 1 % in the g, r, i and z filters. Regarding the absolute calibration of SDSS (which is known not to be on an exact AB magnitude system), limits are more difficult to set. The SDSS DR10 documentation 1 indicates a likely offset of 0.04 mag in u * , in the sense that u SDSS,AB = u SDSS -0.04. An offset of 0.02 mag in z in the opposite direction is also advocated there. These offsets are considered known to no better than 0.01 mag, and possibly slightly less precisely for u * . We have not implemented these zero point shifts in our data but discuss their effect whenever necessary. In summary, we adopt limits on the systematic errors of 0.04 mag in the u * filter, 0.01 mag in g, r, i, and 0.02 mag in z, and note that there is a preferred direction for the offsets in u * and z 2 .

Similarly, the K s band is affected by any systematic errors in the UKIDSS photometry (DR8). Based on the various tests presented by Hodgkin et al. (2009), we assign a bound of 0.02 magnitudes on systematic errors to this photometry.

Systematic errors in the calibration of NGVS with respect to the external catalogs

The calibration of NGVS relative to SDSS or UKIDSS is affected slightly by the dispersion in the photometry of stars in common between the surveys. The dispersion seen around the mean trend in the calibration figures (Fig. 2.4) is due mainly to dispersion in the SDSS and 2MASS/UKIDSS catalogs, NGVS being deeper. The number of stars available for the calibration reduces errors on the mean to a few millimagnitudes in all filters.

Small differences are seen in Fig. 2.4 between the reference transformation curve used in the u * , g, r, i, z data processing and modern synthetic photometry (see the detailled analysis done in Section 2.3.1). We take this as an indication of possible systematics in the transformation between systems. As an estimate of their amplitude, we adopt the mean difference between the empirical and the synthetic loci, over the range of colors of stars actually observed in the survey. The offsets are smaller than 50 mmag in u * , 5 mmag in g, 5 mmag in r, 8 mmag in i, and 2 mmag in z.

The transmission curves adopted for NGVS have impact on the locus of synthetic colors Our calibration of the WIRCam K s photometry against UKIDSS involves a conversion from AB magnitudes to Vega magnitudes. We have converted our WIRCam K s AB magnitudes to Vega magnitudes for this purpose. The offset used, determined in Muñoz et al. (2014), is based to the best of our knowledge, on the same reference Vega spectrum as used for UKIDSS (Hewett et al., 2006), i.e. a spectrum originally provided by Bohlin & Gilliland (2004) 3 . Therefore we take it that this source of error adds little to those already included in the absolute UKIDSS errors and the errors due to transmission changes, described above.

Systematic errors in the reddening corrections

Systematic errors can also occur in the dereddening process, with the choice of a particular local value of A(V) or E(B-V), and of wavelength dependent extinction coefficients. The different total extinction estimates of Schlegel et al. (1998) and Schlafly & Finkbeiner (2011) translate into differences of 19 mmag for u * , 14 mmag for g, 11 mmag for r, 8 mmag for i, 6 mmag for z and 1 mmag for K s when using the extinction law of Cardelli et al. (1989), in the sense that the Schlafly & Finkbeiner (2011) reddening corrections are smaller (cf. Section 2.2.5). The use of extreme stellar types to derive extinction coefficients for a given extinction law produces a span of extinction magnitudes in the Virgo region inferior to 5 mmag in u * , 10 mmag in g, and 2 mmag for the r, i, z and K s filters. Using the extinction law of Fitzpatrick (1999) instead of Cardelli et al. (1989) changes Virgo magnitudes by 10 mmag maximum.

Systematic errors in the SLR method

The SLR method relies on spectral libraries and transmission curves. The use of a different library or a different set of stellar parameters along the stellar locus can induce very large changes of the vector of color-shifts, κ. For example, the differences between our pre-3. That Vega spectrum was made available at the time on the Hubble Space Telescope Science Institute web pages as alpha.lyr.stis.003 or alpha.lyr.stis.005, these two files leading to identical results for the K s band. ferred set of parameters (black line in Fig. 2.7) and a set composed of solar metallicity stars all with [α/Fe] = 0 and log(g) = 5.0 produces a color difference of ∆ κ(mmag.)

= [∆ (g -r) = 37, ∆ (r -i) = 19,∆ (i -z) = 15, ∆ (i -Ks) = 2]
. The varying parameters given by the Besançon model of the Milky Way are more reasonable than a set with uniform composition and gravity, reducing this source of systematics somewhat. L'échantillon décrit précédemment a pour but d'avoir une contamination extrêmement réduite. De ce fait, de nombreux amas globulaires n'ont pas passé toutes les étapes de réduction. Dans cette section, nous allons comparer les différents échantillons d'amas obtenus avec NGVS autour de M87. Il est important de noter que les deux autres échantillons présentés n'ont pas été créés dans le même but que notre échantillon. La comparaison n'a donc pas pour but de dénigrer l'un ou l'autre des échantillons.

Le premier échantillon est tiré de l'étude de Oldham & Auger (2016). Les auteurs, n'ayant pas accès au catalogue NGVS décrit dans le chapitre précédent, ont effectué leur catalogue d'amas globulaires à partir des archives NGVS. Seules les bandes u * , g, r, i et z ont été utilisées et les magnitudes dans chacune de ces bandes ont été déterminées par un ajustement de la PSF (pour "point spread function" ou "fonction d'étalement du point" en français) en utilisant SExtractor et PSFex Bertin & Arnouts (1996). Les auteurs n'ont donc pas eu accès à la bande K s , essentielle pour séparer les amas globulaires des étoiles et des galaxies, ni à l'indice de compacité pour améliorer cette séparation. Au final, le catalogue de Oldham & Auger (2016) contient 17620 amas globulaires potentiels contre 1846 dans notre catalogue. Leur catalogue est ensuite analysé comme s'il contenait quatre populations distinctes basées sur la couleur et la luminosité : la population d'amas bleus, la population d'amas rouges, les étoiles de la Voie Lactée et finalement les galaxies distantes. A l'aide d'une étude bayésienne chaque amas obtient une probabilité d'appartenir à chacune des quatre populations. Pour effectuer une comparaison acceptable, parmi les 17620 amas initiaux, je ne considère que ceux qui possèdent une probabilité d'être un contaminant inférieure à 0.5 (i.e. P gala < 0.5 et P MW < 0.5). Il en résulte 10415 candidats d'amas globulaires. Sachant que la magnitude K s n'est pas disponible dans le catalogue des auteurs Oldham & Auger (2016), j'identifie ces 10415 objets dans le catalogue NGVS contenant la bande K s et je rattache à chaque amas la magnitude K s associée.

Le deuxième échantillon comparé n'est pas encore publié. Il est principalement produit par Eric Peng (un collaborateur de NGVS) et se base sur un algorithme nommé "déconvolution extrême" (qui est aussi le nom de catalogue "XD" pour "eXtreme Deconvolution" ; voir Bovy Jo et al. 2011 pour le principe général). Pour résumer, l'algorithme ajuste des gaussiennes pour chacune des populations. Plus exactement, la classification est faite dans des intervalles de magnitude et dans différents diagrammes couleur-couleur. L'amplitude des gaussiennes est amenée à varier avec l'intervalle de magnitude mais la position et la variance restent fixées. La bande K s est utilisée lorsqu'elle est disponible. Le critère de compacité est utilisé comme une couleur dans la classification. Au final, chaque objet étudié obtient une probabilité d'être un amas globulaire, une étoile ou une galaxie. De la même manière que précédemment, je sélectionne dans le catalogue uniquement les objets tel que la probabilité d'être un amas est supérieure à 0.5 (P GC > 0.5). Le catalogue contient alors 16180 amas globulaires. Contrairement à notre échantillon, la technique employée pour ce catalogue n'a pas pour but de générer un échantillon sans contamination, mais plutôt d'être automatisée à tous les pavés de NGVS.

Dans le but de comparer les trois échantillons, j'utilise simplement le diagramme uiK qui permet directement de voir l'étendue de la contamination. Le résultat est montré dans la décrit dans cette thèse (Powalka et al., 2016a). Cet élargissement vient des barres d'erreurs plus importantes pour les objets peu brillants inclus dans le catalogue "XD". Cependant, la forme semble reproduire la même distribution d'amas. La raison de cette observation est l'utilisation de gaussiennes centrées sur le lieu typique des amas i.e l'algorithme utilisé dans le catalogue "XD" va automatiquement sélectionner les objets autour de la distribution des amas. On ne retrouve donc pas de branches typiques comme pour le catalogue de Oldham & Auger (2016).

Pour notre catalogue, on constate que la distribution en couleur est beaucoup fine que pour les deux autres échantillons. Cela est produit par la sélection drastique effectuée pour ce catalogue. Comme spécifié dans la section précédente, le but est d'avoir uniquement des amas globulaires avec une photométrie précise et quasiment aucune contamination.

CHAPITRE 4

Comparaison avec des amas globulaires appartenant à d'autres galaxies

Introduction au chapitre

Ce chapitre a pour but de comparer les couleurs de l'échantillon d'amas globulaires obtenu précédemment avec celles d'échantillons d'origines différentes. Par "origines différentes", j'entends principalement une différence de galaxie hôte, mais il peut aussi s'agir d'une différence de catalogue (pour une même galaxie ; e.g. comme l'analyse faite dans la Section 3.3).

La première partie de ce chapitre est réservée à une comparaison détaillée avec un échantillon spectroscopique d'amas appartenant à la Voie Lactée. L'utilisation de spectres précis permet de directement calculer les couleurs des amas sur les spectres, sans avoir besoin d'utiliser des transformations entre différents filtres (ce qui réduit les incertitudes possibles cf. Section 2. Au vu de la qualité de la photométrie de ces deux échantillons, une comparaison précise est possible. Comme détaillé dans l'article, cette comparaison permet d'entrevoir des différences dans certaines relations couleur-couleur entre les amas de M87 et ceux de la MW. Avant les résultats de cette lettre, nous savions que les amas globulaires de M87 sont, en moyenne, plus métalliques (i.e plus rouges), plus nombreux ou encore plus massifs que ceux de la MW (car M87 est une galaxie elliptique beaucoup plus lumineuse et massive que la Voie Lactée). Cependant, dans cette lettre, nous montrons que la diversité observée dans les relations couleur-couleur ne peut pas être expliquée uniquement par des effets de masse, d'IMF, d'erreurs de calibration, d'âge, de métallicité, ou encore d'extinction. Ces résultats impliquent qu'il existe un autre paramètre (ou plusieurs ; probablement lié aux propriétés de la galaxie hôte) capable de modifier les couleurs dans amas. Il pourrait, par exemple, s'agir de variations d'abondances chimiques (e.g. C, N, O) entre M87 et la Voie Lactée i.e des différences liées à l'environnement.

Dans la Section 4.3, j'introduis une conséquence de ce résultat sur les relations couleurmétallicité. Ensuite, je présente différentes comparaisons avec d'autres échantillons d'amas globulaires dans le but de (potentiellement) mettre en évidence un effet de l'environnement. Malheureusement, la qualité insuffisante de la photométrie de ces échantillons (déterminée par les incertitudes intrinsèques et la transformation vers le système photométrique de NGVS) empêche de conclure quant à l'influence supposée d'un paramètre lié à l'environnement.

Introduction

Globular clusters (GCs) come in different colors, which are low-resolution diagnostics of the rich collection of astrophysical parameters that characterize their constituent stellar populations. It is well established that there are blue and red populations of GCs in every massive galaxy (Zepf & Ashman, 1993;Peng et al., 2006), which correspond to metal-poor and metal-rich stellar populations (Puzia et al., 2005b,c;Colucci et al., 2009Colucci et al., , 2014)), and that their proportion depends on the environment, in particular, the mass of the host galaxy (Forbes et al., 1997;Côté et al., 1998;Gebhardt & Kissler-Patig, 1999;Larsen et al., 2001) and the galactocentric distance (Geisler et al., 1996;Harris, 2009;Strader et al., 2011). In general, the GC system color distribution of a more massive galaxy will be broader and its mean shifted to redder colors than in a less massive one. This trend is often interpreted as a radial metallicity gradient. It can be due to 1) the changing ratio of red and blue GCs and/or 2) the decreasing (i.e. bluer) peak color of red and blue GC sub-populations as a function of galactocentric radius (Harris, 2009;Strader et al., 2011;Oldham & Auger, 2016). In most previous studies, such analyses were based on a single photometric color of rich GC systems (Peng et al., 2006[START_REF] Peng | NGVS-S : A Comprehensive Spectroscopic Survey of Virgo[END_REF]Jordán et al., 2015). Those studies that used color-color planes as diagnostic tools were hampered by relatively small GC sample sizes to be able to assess any environmental dependence (Puzia et al., 2002;Hempel & Kissler-Patig, 2004).

In this thesis, we present a detailed color-color plane analysis of the GC photometric properties in the pilot region of the Next Generation Virgo Cluster Survey (NGVS/NGVS-IR, see Ferrarese et al., 2012;Muñoz et al., 2014). We compare various GC sub-samples located in different environments around the central massive cD Virgo galaxy M87 and in the MW. While M87 constitutes one of the densest environments in the local universe (D ≃ 16.5 Mpc, see Mei et al., 2007;Blakeslee et al., 2009), the MW environment shows a relatively shallow and smooth gravitational potential (Tully, 2015).

The data Next Generation Virgo Survey GCs

The NGVS-GC sample used for our analysis is taken from (Powalka et al., 2016a, hereafter Paper I). It contains 1846 GCs within the 3.62 deg 2 field around M87 (the Virgo core region) and provides photometric observations in u * , g, r, i, z and K s filters. This sample contains objects with SEXTRACTOR magnitude errors smaller than 0.06 mag in each band, typical magnitudes around 21 in i, and typical masses of about 2 × 10 6 M ⊙ . Paper I provides limits on systematic photometric errors (of order 2-3 % in most bands, 5 % in u), and notes these would lead to global shifts in color-color diagrams. Here, we apply the offsets u AB =u SDSS -0.04 mag and z AB =z SDSS + 0.02 mag recommended in the Sloan Digital Sky Survey (SDSS) Data Release 10 ( Ahn et al., 2014), that were discussed but not applied in Paper I. The GC sample was selected in a "modified uiK diagram", that combines (u-i) and (i-K s ) color information with a compactness index measured on the NGVS i-band images (i.e. structural information of the sources). This ensures a very robust separation between GCs, stars and galaxies, in contrast to any separation one would obtain from optical colors alone. The estimated contamination of the GC sample is of about 5 %, and is mainly due to stars at the blue end of the GC color distribution or to compact background galaxies. For all additional information, we refer the reader to Paper I.

Milky Way GCs

Several photometric MW GC samples exist in the literature which are mainly based on optical Johnson-Cousins or SDSS photometry (e.g. Harris, 2010;Vanderbeke et al., 2014). Using such data in comparisons with MegaCam photometry requires transformation relations between systems. Unfortunately, we found that the choice of a transformation relation and the internal uncertainties of these literature data introduce random and systematic uncertainties larger than the effects we wish to discuss, thus preventing a meaningful analysis. A dedicated study, extended to other galaxies, is presented in Section 4.3.2.

Pending further analysis of these photometric transformation uncertainties, we favour the use of VLT/X-shooter spectra of MW GCs. Eleven are available to us, taken from the target sample of the Panchromatic High-Resolution Spectroscopic Survey of Local Group Star Clusters (NGC 104, NGC 288, NGC 362, NGC 1851, NGC 1904, NGC 2298, NGC 2808, NGC 6656, NGC 7078, NGC 7089, and NGC 7099 ;Schönebeck et al., 2014) The spectra cover the near-UV to near-IR wavelengths and are calibrated to an absolute flux accuracy of better than ∼ 5%, allowing for the computation of accurate synthetic colors directly in the AB system of the NGVS data.

X-shooter flux calibration errors occur on various scales (e.g. Moehler et al. 2014). Errors on small scales are partly averaged out in broad band flux measurements, resulting in magnitude errors below 0.01 mag. Errors on larger spectral scales, or errors in the merging of data from two independent arms of the X-shooter instrument, can affect the colors more. The 5% bound applies to these (i.e. +/-2.5%). A random distribution of possible large scale errors within the bounds leads to an estimated 1-sigma error of 0.02 mag on colors (this has been tested by perturbing the GC calibration with 90 perturbation functions with a broad variety of shapes, all within the 5% bounds). We are aware of no reason that should induce color-dependent systematic errors on the color indices, other than uncertainties in the transmission curves, and such errors are below 0.01 mag (see Paper 1).

The metallicities of the Galactic GC sample span a range between -2.3 (NGC 7078) < [Fe/H] <-0.7 (NGC 104). The MW GC spectra have been obtained in drift-scan mode, i.e., the telescope was slewed across the clusters during the integration. Each GC was targeted with multiple scans at various locations, such that the total area covered by all scans corresponds to ∼ 0.35 πr 2 h about the GC cluster center (r h is the GC half-light radius). The sky subtraction was performed with dedicated sky drift-scans taken at positions typically ∼ 1 • away from the GC centers. For each cluster, all reduced scans have been stacked into a final spectrum that contains the luminosity weighted contributions of ∼ 10 5 GC stars. A more detailed description of this data set will be presented in an upcoming paper (Schönebeck et al. 2016, in prep.).

The synthetic colors of the MW clusters were computed with the transmission curves of Betoule et al. (2013), as recommended in Paper I. Extinction corrections are based on the values of the McMaster catalog (Harris, 2010).

Results

The Influence of the Environment

The NGVS pilot field includes several Virgo galaxies and their GC systems. In Figure 4.1, we use the proximity to host galaxies to define four GC subsets. Subset A contains the GCs within 20 kpc of M87, while subset B covers the outer regions of M87 out to 200 kpc (r < 41.6 ′ ). Sub-sample C includes all the GCs located even further out from M 87, with the exception of those located around other relatively large galaxies, which are grouped in subset D.

We begin to analyze the optical griz color-color distributions of these four subsets in Figure 4.2, and observe that they differ both in mean color and shape. To guide the eye, and to recall the typical degeneracy between age and metallicity in the predicted colors of single stellar populations (SSP), we superimpose a set of models from [START_REF] Bruzual | [END_REF] with ages 6<t <13 Gyr and metallicities 0.0002<Z<0.03. While this degeneracy is strong in all model sets with given abundance ratios, we caution that the actual loci and shapes of synthetic distributions remain strongly model-dependent, as illustrated extensively in Paper I.

Samples A, B and C demonstrate that the (g-r) 0 -(i-z) 0 color-color distribution changes significantly with distance to the center of M87. This is highlighted in the density plots of the bottom row of Figure 4.2 : for the peak of the distribution (usually referred to as the blue peak) we report color differences of ∆(i-z) ≃ 0.06 mag and ∆(g-r) ≃ 0.03 mag between subsets C and A. Unlike sample A, samples B and C exhibit a shallower colorcolor relation and are increasingly offset towards bluer average colors. This evolution is consistent with B containing a composite of A and C GCs. We note that the color-color relation of the MW GCs (black diamonds) best matches subset C.

To characterize the influence of the environment, we have computed the maximumlikelihood linear relation between (g-r) 0 and (i-z) 0 for each GC sample. These fitted lines mainly help emphasizing the overall trend of the color-color distribution. Sub-samples D and A share similarly steep slopes, whereas the computed MW GC color-color slope is shallowest but similar to that of Virgo sample C. However, we caution that the MW GC sample contains only 11 data points. Despite this limitation it can be stated that the GCs located nearest to M87 host stellar populations with significantly different properties than those in set C or in the MW sample.

Differences between GC color distributions have been discussed mainly in terms of metallicity distributions in the past. Our results indicate that extra parameters are required. Considering metallicity together with age remains insufficient, because of the strong degeneracy between age and metallicity predicted by old SSP models in the relevant color-color planes. At least a third parameter is necessary.

Comparison between Virgo and Milky Way GCs

We present in Figure 4.3 three additional color-color diagrams (grz, uiK, and gri along with the griz plane from Figure 4.2) comparing NGVS GCs (colored dots) with the MW GCs (black diamonds). The locus of M87 GCs (subset A) is impressively tight, although the dispersion around this locus is slightly larger than what is expected from random photometric errors. In general, the color distributions of M87 and MW GCs are strikingly different, in particular in the grz and griz planes. The M87 clusters have redder r-z and i-z colors than MW clusters. Moreover, the slopes of the trends differ for the two samples.

In the top right panel of Figure 4.3, vectors show the shifts in the griz plane resulting from : the average extinction vector ; the change of the index of a power-law IMF from -0.3 to -4.3 (the vector depends on age and metallicity, hence the ellipse) ; an age difference of 10 Gyr at Z = 10 -4 , and the same at Z = Z ⊙ . None of these changes induces a variation that would reasonably explain the observations (see Section 4.2.4).

Using the MW clusters in the grz diagram to guide the eye, we find that the Virgo sample contains a subset of some 30 red GCs whose colors align with those of the MW GCs, rather than with those of M87. We select the most obvious of these in the grz panel of Figure 4.3 (inside the blue polygon) and display them as blue dots in the other panels, referring to these as subset E1 . It is worth noting that these particular clusters, like any other cluster with colors similar to those of MW GCs, would have been easily mistaken for stars on the basis of optical colors alone (grey dots in Figure 4.3). The uiK diagram, however, clearly separates them from stars, as do their slightly extended radial profiles, which are akin to typical GCs, but about 2× narrower than the ones expected for Ultra Compact Dwarfs (UCDs) at the Virgo distance. Moreover, four of the subset E objects are spectroscopically confirmed as GCs, whereas no data is available for the other 22 candidates.

The subset E GCs are uniformly spread over the NGVS pilot field, with some of them clustered around M86 and NGC 4438 (Figure 4.4). We do not observe any overdensity around M87, which strongly suggests that they were formed in an environment other than the M87 host halo. In a recent study, Ferrarese et al. (2016) estimated that a significant fraction of the GCs in the Virgo core may be inherited from infalling galaxies, that were themselves fully or partly shredded by tidal forces. It is thus plausible that the GCs identified here are born in an environment less dense than the Virgo core.

Discussion

Our data for Virgo and MW GCs suggests that the dependence of GC color distributions on environment is more complex than previously thought. In particular, their discussion cannot be restricted to the existence or absence of a bimodal metallicity distribution. GCs in different environments may have color-color distributions that differ in slope in addition to being offset from each other. This result puts the definition of the usual blue and red sub-populations in question, and calls for a larger variety of GC formation scenarios.

Before examining physical parameters that may play a role in this complexity, we examine and eliminate potential observational biases.

Photometry : Systematic errors in the photometry would not explain differences in the shapes of the distributions, nor would they produce differences between the subsets we have defined within the NGVS sample. A size-color relation is known among GCs in various galaxies based on Hubble Space Telescope data (e.g. Jordán et al., 2005;Puzia et al., 2014), with blue clusters typically being ∼ 20% larger than red ones. If the aperture corrections applied to NGVS clusters left size-dependent effects in the colors, we would expect those to be strongest at the blue end of the distribution, while we observe the largest internal deviations at the red end. There is also a known size-luminosity relation for bright GCs in massive galaxies (Puzia et al., 2014) and we might expect the color-color relations to deviate between bright and faint GCs. No such trend was found in our data either. Finally, we have checked that the trends we describe within NGVS are not residual effects of seeing differences between the individual fields of view combined to cover the Virgo core region.

Dust Extinction : As the Virgo core region is located at high galactic latitude (b = 74 o ), the extinction corrections are small (Schlegel et al., 1998) : E (B-V) = 0.0246 mag and σ E (B-V) = 0.0037 mag across the field. A change of the extinction law or a rescaling of the extinction vector would shift the color distributions without much changing their shape. We have found no spatial correlation between color-based subsets of clusters and the extinction map of Schlegel et al. (1998).

Size effects in the MW GCs : The observation areas of the MW GCs are restricted to ∼ 0.35 πr2 h around their respective centers. Efficient mass segregation could have raised the relative number of massive stars around the center, compared to the cluster as a whole. A changed proportion of a certain type of stars (e.g. main sequence, blue straggler or red giant branch) may cause a non-negligible color variation. We tested this by adding stellar spectra of relevant types to the X-shooter spectra of the clusters. The direction found for these variations is always roughly parallel to the MW sequence in the griz plane and, therefore, cannot explain the difference with the GC locus around M87.

Having found no observational bias to explain the observed color distributions, we consider physical causes. As age and metallicity are highly degenerate in the griz diagram, we consider parameters other than these two.

GC mass : MW GCs are typically about 10× less massive than those in the Virgo sample. If GC mass was driving the color differences in the griz diagram, the Virgo clusters in subset E would be expected to have systematically lower masses than the other Virgo GCs in our dataset.

We have estimated Virgo GC masses using SSP model inversion using predictions of 7 recent models (Powalka et al., 2017). The mean estimated masses of each of our Virgo subsets are yet similar (2.2 × 10 6 M ⊙ for A, D and for the clusters isolated as subset E in griz and 1.8 × 10 6 M ⊙ for B and C). In addition, we show in Figure 4.5 two extreme 10%-iles of the Virgo GCs mass distribution, with masses ≤ 8.2 × 10 5 M ⊙ (Q10, similar to the MW GCs) and ≥ 3.7 × 10 6 M ⊙ (Q90). Although there is a lack of low-mass Virgo GCs at red colors 2 , we find no significant correlation between GC mass (or luminosity) and the association with one or the other color-color sequence. This implies that the GC colors are mainly influenced by the global environment, rather than by the local environment set by the GC mass. However, a complete low-mass GC sample would be necessary to perfectly 

Initial Mass Function (IMF)

: Models constructed with a range of extreme IMFs produce a marginal modification (see Figure 4.3), dwarfed by the age and/or metallicity variations expected for the GC samples (Puzia et al., 2006).

Chemical Variance : At this stage of the analysis, we attribute much of the dependence between the GC color-color locus and environment to abundance variations. In massive MW clusters, detailed studies have shown that stars with a large range of chemical abundances may coexist, even when heavy-element stellar abundances are homogeneous (see e.g. the recent review of Renzini et al. 2015). Several previous studies have also hinted at abundance variations in M87 GCs (Sohn et al., 2006;Kaviraj et al., 2007;Bellini et al., 2015). Abundance ratios influence the morphology of the horizontal branch (HB), which strongly influences the relation between optical and near-infrared colors (Conroy & Gunn, 2010;Maraston & Strömbäck, 2011). However, the tight locus of our Virgo GC sample in the uiK diagram is incompatible with wild variations of the HB morphology between clusters (unless some other parameters conspire to counteract the effect of the HB variations). A FIGURE 4.5 -(g-r) 0 versus (i-z) 0 color-color diagram for three GC samples selected by their masses which provides evidence that mass is not the driving factor in the difference between Virgo GCs in subset E or elsewhere. similar argument also tends to exclude largely varying proportions of blue stragglers.

To explain our observations, a spectral effect localized in the range of the r, i, z bands would be more suitable. Molecular bands that depend on the surface abundances of CNOcycle elements, may produce such an effect. Unfortunately, very few SSP models allow for CNO abundance variations, mostly because stellar spectral libraries are incomplete. The computations recently started by Aringer et al. (2016) are, as yet, sampled too sparsely (e.g in metallicity and gravity for N-enhanced models) to conclude whether or not CNO abundances produce the required changes in color. Models that consistently vary light element abundances both in the stellar evolution tracks (HB morphology) and in the stellar spectra (molecular bands) are lacking. Finally, varying [α/Fe] ratios might also play a role, for instance via molecular bands and the near-infrared CaII triplet. Self-enrichment via core collapse supernovae is very limited in MW clusters (Renzini et al., 2015), but the story may be different at the masses of the Virgo GCs studied here, as suspected in several studies (e.g Mieske et al., 2006). We have briefly assessed this point using SSP model predictions from PEGASE (Le Borgne et al., 2004, modified by MP, AL, and P. Prugniel) with two stellar libraries at [α/Fe] =0.0 and 0.4 dex. We present more details on this analysis in Section 5.3.2. In summary, the increase of [α/Fe] produces a shift in the model predictions qualitatively from the MW towards the M87 GC sequence, but the amplitude of this shift is 4× smaller than the observed offset. Other studies such as Lee et al. (2009b) found similar color offset amplitudes.

Conclusion

In this letter, we conduct a comparison of the optical color-color properties of GC samples from different environments. We find that previous descriptions of the effects of environment on GC color-distributions are insufficient to capture the actual diversity seen in color-color planes : the samples studied exhibit separate color-color relations unexplained by the commonly accepted age and metallicity variations.

With the environmental subdivision in the NGVS pilot field, we observe that the Virgo subset A (i.e. GCs within 20 kpc of M87) exhibit a steeper color-color relation than the MW and the Virgo C sample (i.e. GCs located far from massive Virgo galaxies).

We note that a reduced subset of the NGVS GCs shares a color trend with the MW GCs. The spatial distribution of this subset lends credence to differences related to the environment. However, a spectroscopic confirmation of a larger sample would be strongly desirable to support the identification of this subpopulation.

We also confirm a relation between the mean GC color and the galactocentric distance to M87. We find a shift towards redder average colors with decreasing galactocentric radius, ≃2 times larger in (i-z) 0 than in (g-r) 0 , although they share similar dynamic color ranges (i.e. ∆color/σ color ).

Finally, we show that photometric calibration, dust extinction, GC mass or IMF variations are unable to explain the observations. A possible explanation for the measured color-environment correlations might be the imprint of global elemental abundance variations in the stellar atmospheres of GC stars. The lack of correlation with GC luminosity and mass of the variance in the color-color relations implies that such changes might not be due to the local GC environment, but should have their cause in the global host galaxy environment.

To conclude, we believe that the complex relation between environment and chemical enrichment of GC populations could be a major constraint on galaxy formation models in the future decades. This result could modify our current vision of the formation and assembly of GC systems, mainly by considering GCs conjointly with their host galaxy. A more precise and quantitative assessment will be needed in the future to deepen our understanding of these observations. 

Travaux complémentaires 4.3.1 Implications pour la relation couleur-métallicité des amas globulaires

A travers l'étude précédente, nous avons vu qu'il existait potentiellement un paramètre autre que l'âge, la métallicité ou la masse capable de modifier les couleurs des amas globulaires. Avant de tenter de découvrir l'origine de ce paramètre inconnu, il peut être intéressant de comprendre les implications physiques d'un tel résultat. L'une d'elles (qui n'est pas vraiment développée dans l'article) porte sur la forme de la relation couleur-métallicité des amas (CMR pour "color metallicity relation" en anglais).

Une modélisation simple permet d'illustrer quel type de variation de la CMR est nécessaire pour expliquer les lieux distincts des amas de M87 et de la MW dans un diagramme couleur-couleur. Autrement dit, en partant de la différence de métallicité théorique entre des amas typiques de M87 et des amas typiques de la Voie Lactée, il est possible de retrouver les observations de l'article Powalka et al. (2016b) en modifiant la forme de la CMR.

Pour ce faire, j'ai fabriqué deux échantillons d'environ 2000 objets. Pour le premier échantillon, j'attribue aux 2000 objets des métallicités aléatoires qui, au final, reproduisent une distribution en métallicité similaire à une galaxie massive (e.g. M87). A l'inverse, pour le deuxième échantillon, les métallicités sont attribuées pour reproduire une distribution en métallicité correspondant à une galaxie beaucoup moins brillante (e.g. la MW). La relation masse-métallicité et les statistiques antérieurs permettent de supposer qu'une galaxie massive aura des amas MP et MR plus métalliques, plus nombreux et plus massifs qu'une galaxie moins massive.

A partir de là, pour chacun des échantillons, j'utilise l'équation d'une CMR donnée dans Blakeslee et al. (2009) pour construire deux relations couleur-métallicité fictives pour transformer la distribution en métallicité en deux distributions en couleurs color1 et color2. Bien que la forme des CMRs soit amenée à changer en fonction de chaque couleur, je fais l'hypothèse que les deux CMRs pour les couleurs color1 et color2 ont une forme similaire basée sur l'équation de Blakeslee et al. (2009) mais décalée de 0.4 mag pour la couleur color2. En résumé, à partir d'une distribution en métallicité et de deux CMRs, j'ai accès à une distribution d'amas globulaires fictifs dans l'espace color1-color2.

La relation couleur-métallicité est souvent, par default, considérée comme indépendante de la galaxie. Ce résultat commence à être mis en doute par certaines études récentes comme Usher et al. (2015). Cela étant, je m'intéresse au diagramme color1-color2 qu'il est possible d'obtenir en prenant en compte, ou non, cette hypothèse.

J'ai donc effectué deux tests, tous deux partant des mêmes distributions en métallicité initiales. L'un, nommé "Same CMRs", utilise la même CMR pour les deux galaxies synthétiques considérées (similaire à M87 et à la MW). A l'inverse, le deuxième, nommé "Diversity of CMRs", est développé autour d'une CMR différente pour la couleur color2 entre M87 et la MW. Dans chacun des cas, à partir des CMRs, je calcule les couleurs des 2000 objets dans les deux échantillons définis précédemment en utilisant leurs métallicités attribuées. Cependant, pour mieux modéliser un échantillon d'amas globulaires réel, je choisis d'introduire une largeur aléatoire à la CMR. En conséquence, j'utilise des relations élargies en couleur par une loi normale de FWHM = 0.1 mag pour la couleur color1 et FWHM = 0.08 mag pour color2 (ces valeurs sont aléatoires).

Grâce à ça, j'ai accès à la distribution dans le diagramme color1-color2 des amas globulaires synthétiques pour les deux galaxies dans les deux hypothèses analysées. Pour des raisons de visualisation, je ne montre que la densité des amas globulaires à l'aide de contours pour chacun des deux scénarios. Les résultats ainsi que le procédé sont schématisés dans la Figure 4.6.

En résumé, dans le test "Same CMR", on observe des distributions que l'on peut qualifier de symétriques pour les amas dans l'espace color1-color2. Plus exactement, comme galaxies En : Sketch explaining the two toy models I have designed in this Section in order to reproduce the observations described in the letter (Powalka et al., 2016b). Starting from two different metallicity distributions for two galaxies like M87 and the MW, I compute the colors of two fictitious samples using different color-metallicity relations (CMR). In the first test ("Same CMR"), the CMRs for both galaxies in both synthetic colors (color1 and color2) are similar. It represents the common vision of the GC CMRs. As a consequence, the resulting color-color diagram is symetrical in both colors. In the second test ("Diversity of CMRs"), the CMR for M87 in the color color2 is modified by an unknown parameter links to the environment. In this scenario, an asymetry is produced in the color-color diagram. Moreover, the diagram is now similar to the observation of Powalka et al. (2016b). In summary, the color differences that we observed in the letter (between M87 and the MW) support the idea that the CMR of GCs depend on the host galaxy. A l'aide de cette étude, on peut suggérer que, dans nos observations, le paramètre inconnu lié à l'environnement modifie certaines relations couleur-métallicité des amas de M87 ce qui produit un changement de pente dans l'espace couleur-couleur.

Travaux complémentaires

Diversity of CMRs

Comparaison avec d'autres échantillons d'amas

Comparaison avec d'autres échantillons d'amas dans la littérature Dans cette partie, je compare l'échantillon d'amas globulaires sélectionné dans le Chapitre 3 avec plusieurs catalogues d'amas globulaires disponibles dans la littérature. Le but de cette analyse est de comparer les couleurs de ces différents échantillons pour mettre en évidence, ou non, des différences sur les couleurs (et ainsi potentiellement observer un effet de l'environnement). Pour ce faire, nous avons vu qu'il est nécessaire d'utiliser un diagramme griz (gr vs. iz) ou encore ugr (ug vs. gr). Cependant, les bandes u et z (ou des analogues avec des longueurs d'onde similaires) ne sont pas souvent disponibles. A l'inverse, il est assez courant d'obtenir des magnitudes correspondant aux bandes g, r ou encore i. En conséquence, je compare en premier lieu tous les échantillons dans le diagramme gri puis seulement quatre échantillons dans le diagramme ugr.

Pour effectuer cette comparaison, j'utilise 6 sources dans la littérature qui s'intéressent aux amas globulaires de 7 galaxies :

-M31 : La photométrie pour les amas globulaires de cette galaxie est obtenue dans les filtres SDSS (griz) dans l'article de Peacock et al. (2010). Les erreurs sur les magnitudes sont données dans le catalogue tout comme l'extinction, E(B-V).

-NGC 3923 : Pour cette galaxie, la photométrie de ses amas est obtenue dans les filtres SDSS' (g ′ r ′ i ′ ; ∼ USNO) dans l'article de Faifer et al. (2011). Les magnitudes sont déjà dérougies et les erreurs photométriques sont données.

-NGC 4649 : Les amas de NGC 4649 sont eux aussi tirés de Faifer et al. (2011) 

(g ′ r ′ i ′ ).
-NGC 524 : La photométrie dérougie et les erreurs en magnitude sont obtenues dans Faifer et al. ( 2011) (g ′ r ′ i ′ ).

-NGC 3115 : La photométrie dérougie et les erreurs en magnitude sont obtenues dans Faifer et al. ( 2011) (g ′ r ′ i ′ ).

-NGC 1399 : La photométrie des amas du centre de Fornax est acquise dans l'article de Kim et al. (2013). Les magnitudes sont données dans les filtres de Johnson/Cousins (UBVI) et les erreurs associées sont aussi disponibles. Il ne s'agit pas uniquement de NGC 1399 car certains amas appartiennent à d'autres galaxies proches de NGC 1399.

Pour des raisons de simplicité, cet échantillon est appelé "Fornax".

- 2014), aucun de ces échantillons ne possèdent des magnitudes dans le système MegaCam. Il est donc nécessaire d'utiliser des relations de transformation pour effectuer une comparaison efficace. Comme démontré dans la Section 2.3.1, ces relations de transformation induisent des erreurs systématiques sur les magnitudes finales. Afin de réduire au maximum ces erreurs, il est important d'utiliser des objets de référence (pour déterminer la relation) identiques aux objets étudiés (e.g. des amas globulaires si l'échantillon étudié est composé d'amas globulaires) et possédant des couleurs similaires à celles des objets analysés. Pour respecter ces conditions, j'ai choisi des amas théoriques basés sur le modèle PEGASE avec une métallicité [Fe/H] comprise entre -1.7 et 0.0 ainsi qu'un âge entre 6 et 15 Gyr. La procédure consiste à dérougir les magnitudes dans les filtres initiaux (en utilisant R V = 3.1, une valeur de E(B-V) et une valeur de A(λ )/A V ) puis de transformer les magnitudes dans le système MegaCam avec les relations calculées avec les amas théoriques de PEGASE.

Au final, cet exercice permet de comparer les différents échantillons dans le système MegaCam. Les Figures 4.7,4.8 et 4.9 récapitulent les comparaisons effectuées. Dans la Figure 4.7, je compare les échantillons de galaxies autres que la Voie Lactée dans un diagramme gri. De manière générale, on observe parfois des différences systématiques entre certains échantillons et la distribution des amas autour M87. Cependant, il est difficile de connaître la cause exacte de ces différences et leurs véracités physiques. A l'exception de NGC 1399, les autres échantillons d'amas sont beaucoup plus dispersés que les amas de NGVS. Dans la Figure 4.8, on constate que, au vu des barres d'erreurs pour les échantillons de Peterson (1993) et de Vanderbeke et al. (2014), il est difficile de conclure quant à la cohérence des trois échantillons. Finalement, dans la Figure 4.9, je montre quatre échantillons dans le diagramme ugr (qui est un très bon indicateur d'un potentiel effet de l'environnement sur les couleurs). Comme pour la Figure 4.7, on observe de faibles différences systématiques entre les échantillons extra-galactiques et celui de M87. L'échantillon de la MW de Schönebeck et al. (2014) montre une différence de couleurs avec M87, alors que celui de Peterson (1993) est soumis à de trop grandes barres d'erreurs pour conclure.

En résumé, on observe parfois des différences systématiques entre les échantillons analysés et celui de NGVS. Cependant, au vu des erreurs aléatoires sur la photométrie de chaque échantillon, il est impossible de conclure quant à une différence de couleur systématique entre les amas. De plus, il existe des erreurs systématiques qui ne sont pas prisent en compte dans cette analyse. Ces erreurs viennent de l'utilisation des relations de transformation (i.e surtout des filtres utilisés et de la référence). Comme démontré dans la Section 2.3.1, une différence dans la transmission des filtres peut avoir une grande influence sur la relation. Il est donc important de connaitre la transmission exacte du filtre qui correspond à la magnitude utilisée. De plus, certains auteurs augmentent ces erreurs potentielles en convertissant leurs magnitudes dans un système plus connu (comme SDSS) avant de les publier (avec des relations potentiellement non adaptées).

Comparaison avec un échantillon d'amas de M49 tiré de NGVS

Pour finir ce chapitre s'attachant à comparer certains échantillons existant dans la littérature avec l'échantillon généré pendant cette thèse, je m'intéresse brièvement à une comparaison interne à NGVS. Plus exactement, je sélectionne un échantillon d'amas autour de M49 (la seconde galaxie elliptique géante de Virgo présente dans le champ NGVS) que je confronte avec celui des amas autour de M87.

Il est important de noter qu'il n'est pas possible d'effectuer la même sélection d'amas autour de M49 que celle faite pour M87 dans le Chapitre 3. En effet, on ne dispose pas encore de la bande K s (réduite) pour isoler les amas globulaires des étoiles et des galaxies. L'utilisation exclusive de diagrammes couleur-couleur avec des magnitudes dans les lon- 

CHAPITRE 4. Comparaison avec des amas globulaires appartenant à d'autres galaxies

Travaux complémentaires gueurs d'onde optique n'est pas suffisante pour effectuer une sélection convenable. Pour obtenir un échantillon d'amas autour de M49, j'utilise un catalogue extérieur basé sur des observations spectroscopiques du MMT (Multiple Mirror Telescope) mis à ma disposition par des collaborateurs. Dans ce catalogue, un échantillon restreint d'amas globulaires a été sélectionné en fonction de la vitesse radiale et de la photométrie des détections (ce catalogue n'est pas encore publié et je ne fais pas partie de l'équipe qui le gère). Il ne s'agit pas d'un catalogue complet des amas autour de M49. Plus précisément, les biais de sélection semble avoir ôté un grand nombre d'amas rouges. La comparaison dans cette section est donc uniquement préliminaire et mérite d'être encore complétée.

Pour obtenir les magnitudes MegaCam des amas de M49, je croise les données spatiales du catalogue initial avec le catalogue globale de NGVS. Au final, j'obtiens un échantillon de 449 amas globulaires autour de M49 dans la photométrie MegaCam. Cependant, le catalogue NGVS utilisé pour M49 n'a pas été réduit de la même manière que les quatre panneaux centraux de NGVS (le "pilot-field"). Il peut donc exister des petites erreurs systématiques entre les photométries des objets. Pour résoudre ce problème, j'utilise une SLR relative sur les étoiles de chaque région. Plus exactement, je fais l'hypothèse que les distributions des étoiles de chaque région dans l'espace couleur-couleur sont identiques. En prenant la couleur (gi) et les étoiles dans le champ de vision de M87 comme référence (une référence est indispensable comme point d'ancrage pour contraindre la SLR), j'égalise les deux distributions d'étoiles dans plusieurs espaces couleur-couleur. Les valeurs des corrections de couleur obtenues pour les étoiles dans le champ de vision de M49 sont typiquement de 10 mmag (le choix d'une autre couleur de référence donne des modifications du même ordre de grandeur). J'applique alors ces modifications à la photométrie des amas de M49 et je compare les deux échantillons d'amas (Figure 4.10).

On observe qu'il existe de légers décalages systématiques mais que, globalement, les deux distributions d'amas présentent des couleurs similaires. Comme annoncé précédemment, le manque d'amas rouges pour l'échantillon de M49 est probablement lié aux biais de sélection. Il pourrait être utile de refaire cette analyse en utilisant la bande K s de VIS-TA/ESO (il est d'abord nécessaire de réduire les données dans cette bande) pour sélectionner un échantillon plus complet d'amas autour de M49. Cela pourrait servir à analyser si des effets similaires à ceux observés autour de M87 sont visibles (une modification des relations couleur-couleur en fonction de la distance au centre de la galaxie). En : 4 color-color diagrams comparing a GC sample of M49 (red) derived with NGVS, with the NGVS M87 GCs (black). The M49 GC sample cannot be selected the same way as the M87 one because we do not yet have the K s photometry in that area (which is crucial to distinguish stars, galaxies, and GCs). Therefore, we select the M49 GCs using radial velocities from spectroscopic sample observed with the MMT together with optical colors (this catalog was made available to me by members of the NGVS collaboration, but is not published yet). We cross-match this spectroscopical sample with the NGVS catalog to obtain the MegaCam magnitudes. However, M87 and M49 GC magnitudes have not gone through exactly the same reduction steps. Hence, they might be shifted with respect to each other by small systematic errors. In order to correct these uncertainties, we use a relative SLR on the stellar locus in each region. It allows to correct for small shifts (∼ 10 mmag) in the magnitudes of the different regions. It is worth mentionning that there are different selection biases in the two samples (selection is responsible for the lack of red GCs in the M49 sample).

CHAPITRE 5

Comparaison des amas de M87 avec 10 modèles SSP

Introduction au chapitre

Ce chapitré est dédié à la comparaison des amas de M87 avec plusieurs codes de synthèse de populations stellaires (SPS : comme définie la Section 1.4). Chacun de ces codes SPS permet d'obtenir des couleurs synthétiques d'amas globulaires à partir d'une IMF, d'une librairie stellaire et d'un jeu d'isochrones.

Dans la section suivante, je récapitule le travail de comparaison effectué dans la troisième (et dernière) partie de l'article Powalka et al. (2016a). Ce travail se limite à une comparaison en couleurs et ne s'intéresse pas à estimer l'âge et la métallicité des amas autour de M87 (ce travail d'estimation est traité dans le chapitre 6). A la suite de cet extrait d'article, je détaille deux travaux complémentaires en rapport avec la comparaison entre modèles et observation.

La comparaison effectuée dans cet article est basée sur 7 codes SPS. Chaque code permet de développer un ou plusieurs modèle(s) de population stellaire simple (SSP) en fonction des IMF, des librairies stellaires ou encore des isochrones disponibles. Au total, je dispose de 11 modèles SSP avec chacun des spécificités différentes (récapitulées dans l'article). Il est important de noter que les modèles SPS sont entretenus par leurs auteurs, et qu'ils sont donc amenés à évoluer. Les versions utilisées au moment de l'écriture de l'article sont donc potentiellement anciennes. Pour cette raison, il existe des différences de versions entre cet article et celui du chapitre 6. Néanmoins, quelles que soient les versions, les conclusions de chaque article restent inchangées.

L'article se décompose en plusieurs sous-sections. La première décrit en détail les modèles SSP utilisés. Ensuite, les deux sous-sections suivantes montrent les résultats de la comparaison entre les amas de M87 et les modèles. Ces résultats sont visualisés sous la forme de diagrammes couleur-couleur, d'abord uniquement pour les longueurs d'ondes optiques et infra-rouges puis avec l'ajout de la bande u * . A la suite de cette analyse en couleurs, je montre une comparaison basée sur les distributions d'énergie spectrales (SEDs) des modèles et des observations. Dans la partie discussion je m'intéresse aux modifications produites par la SLR ou encore par les librairies stellaires. Pour finir, je conclus l'article et je mets à disposition du lecteur plusieurs diagrammes couleur-couleur non fournis dans l'article.

Dans la section réservée aux travaux complémentaires, je décris tout d'abord une méthode alternative permettant de classer les modèles en fonction de leur accord avec des données. Cette méthode repose sur le facteur de Bayes entre deux modèles. Elle n'est pas développée dans l'article Powalka et al. (2016a) pour ne pas induire une fausse conclusion sur un possible "meilleur" modèle alors que, dans notre cas, aucun des modèles SSP utilisés Introduction au chapitre ne reproduit convenablement les données des amas de M87 (de manière statistique). Cependant, dans le cadre de cette thèse, je décris son fonctionnement général et je l'applique à notre échantillon d'amas globulaires dans une démarche informative.

Dans le second travail, j'analyse si l'effet de l'environnement observé dans le chapitre précédent peut être obtenu à l'aide des modèles. Plus exactement, je m'intéresse à l'influence du rapport [α/Fe] sur les couleurs synthétiques d'une population stellaire simple. Pour ce faire, nous avons modifié le code de synthèse de populations stellaires PEGASE pour prendre en compte différents rapports [α/Fe].

Article [English]

The following subsections are part of the article Powalka et al. (2016a) named "The Next Generation Virgo Cluster Survey (NGVS). XXV. Fiducial panchromatic colors of Virgo core globular clusters and their comparison to model predictions" with the help of the following co-authors : Ariane Lançon, Thomas H. Puzia, Eric W. Peng, Chengze Liu, Roberto P. Muñoz, John P. Blakeslee, Patrick Côté, Laura Ferrarese, Joel Roediger, Rúben Sánchez-Janssen, Hongxin Zhang, Patrick R. Durrell, Jean-Charles Cuillandre, Pierre-Alain Duc, Puragra Guhathakurta, S. D. J. Gwyn, Patrick Hudelot, Simona Mei, and Elisa Toloba.

The models

Numerous population synthesis models are available in the literature and can be used to estimate ages and metallicities of stellar populations from empirical SEDs. In this section, we describe the codes we have used, as well as the generic assumptions made to construct synthetic SEDs for globular clusters with each of them. Comparisons between the resulting SEDs, and with the NGVS globular cluster colors, are made in Section 5.2.2.

In this paper, we consider only models for single stellar populations, containing stars of a single age and chemical composition. This assumption is questionable, especially for a sample of massive clusters, since photometric and spectroscopic studies of resolved massive clusters nearby revealed the existence of multiple subpopulations. Our analysis is meant to provide a reference point for future studies, in which these assumptions could be relaxed.

We have considered six commonly used stellar population synthesis codes (SPS codes hereafter), for which predictions can be obtained via dedicated webpages.

From each SPS code, we obtained a set of synthetic spectral energy distributions for single stellar populations, i.e. synthetic SSP models (sSSP hereafter). [Fe/H] was varied from -2 to 0.17 (with three exceptions among the 11 sSSPs mentioned below), and ages between 6 and 13 Gyr. The majority of the GCs in the Virgo sample are assumed to be old. Nevertheless, these restrictions on age and metallicity must be kept in mind in the comparisons below, and possibly be relaxed in future studies of individual objects.

We adopted the initial mass function (IMF) of Kroupa (1998) or Kroupa (2001) as available with the codes. The discrepancies due to changes in the IMF are smaller than other discrepancies between model families, so we will not show any assessments of these here.

Whenever possible, we used the SPS codes to compute synthetic spectra, and derived synthetic photometry from them ourselves with the filters described in Section 2.2.4. For codes that allow the input of customized transmission curves, we compared our synthetic photometry with the one produced by those codes, finding that differences were negligible (less than 0.05 %).

To account for the redshift effect, we have computed all the model colors at the typical redshift of the Virgo cluster. This correction (which reaches 15 mmag in the g band and 5 mmag in the i band) has been obtained directly by a computation of the colors on a redshifted spectrum, or otherwise by the use of a redshift-correction based on the Maraston (2005) model and the PÉGASE models.

The sSSP models differ from each other by the stellar evolution tracks they rest upon and by the stellar library used to predict spectrophotometric properties. We briefly describe these choices below.

Two first sets of sSSPs, labelled BC03 and BC03B hereafter, are taken from [START_REF] Bruzual | [END_REF] 1 . We selected the 1994 version of the Padova isochrones as input [START_REF] Alongi | [END_REF]Bressan et al., 1993;Fagotto et al., 1994a,b;Girardi et al., 1996). The default synthetic spectra (BC03) combine optical stellar spectra from STELIB (Le Borgne et al., 2003) between 3200 and 9500 Å with the BaSeL 3.1 spectral library outside this wavelength range (Lejeune et al. 1997, Lejeune et al. 1998and Westera et al. 2002). For the BC03B set, the BaSeL stellar library was used instead at all wavelengths.

Three sets of sSSPs, labelled C09PB, C09BB and C09PM, are based on the Flexible Stellar Population Synthesis (v2.4) model of Conroy et al. (2009). The first one (C09PB) is computed with the Padova 2007 set of isochrones (Girardi et al., 2000;Marigo & Girardi, 2007;Marigo et al., 2008) and the BaSeL 3.1 spectral library. The second one (C09BB) is modeled with the BaSTI isochrones (Pietrinferni et al., 2004;Cordier et al., 2007) and the BaSeL 3.1 library. For the final one (C09PM), we used the Padova 2007 isochrones and the MILES spectral library (Sánchez-Blázquez et al., 2006). MILES spectra extend from 3500 to 7500 Å and can only provide fluxes in the g and r filters, so they are extended with the BaSeL spectral library beyond this range. The C09PM and C09BB sets do not reach down to [Fe/H] ∼ -2 dex, but instead respectively start at [Fe/H] = -1.39 and -1.82.

Two sets of sSSPs, labelled M05 and MS11, were constructed using the models of Maraston (2005) and Maraston & Strömbäck (2011). The former uses the Cassisi isochrones (Cassisi et al., 1997b(Cassisi et al., ,a, 2000) ) and the BaSeL 3.1 library. This model offers two options for the morphology of the horizontal branch (HB) : a red HB and a bluer one. The red HB produced a better representation of our observations, so the blue HB will not be shown in this paper. The latter set (MS11) also uses the Cassisi isochrones and a combination of the MILES library and the BaSeL 3.1 library. Both these models are computed using algorithms based on fuel-consumption instead of the more common isochrone synthesis.

We also considered one model from the web interface CMD 2.72 provided by the Padova group (labelled PAD hereafter). This model uses the PARSEC 1.2S isochrones (Bressan et al., 2012;Tang et al., 2014;Chen et al., 2014Chen et al., , 2015) ) and it is based on the PHOENIX BT-Settl library [START_REF] Allard | IAU Symposium[END_REF] for effective temperatures lower than 4000 K, and on ATLAS9 ODFNEW (Castelli & Kurucz, 2004) otherwise. This version of PARSEC isochrones does not take into account thermally pulsing asymptotic giant branch (TP-AGB) stars. Although the tendency is for the estimated TP-AGB contributions to be revised downwards at old ages (Gullieuszik et al., 2008;Girardi et al., 2010;Melbourne et al., 2012;Rosenfield et al., 2014), the complete lack thereof is expected to produce a lack of nearinfrared flux. Another issue with the PAD models is that no spectra are available from the web site. The synthetic photometry is based on filter transmissions older than the ones we now prefer. Discrepancies such as these may produce offsets of a few percent, in particular in i.

The sSSP labelled PEG is produced with PÉGASE (Fioc & Rocca-Volmerange, 1997) 3The isochrones are the Padova 1994 set and the BaSeL 2.2 spectral library provides the photometry.

Finally, we have considered two sSSPs based on the model of Vazdekis et al. (2012). We have chosen to compute these models with the Padova 2000 isochrones. The first one, labelled VAZ_MIUSCAT, uses the MIUSCAT library with a wavelength range from 3464 to 9468 Å. It only allows us to compute the g, r and i magnitudes. The second one, labelled VAZ_MIUSCAT_IR, is based on the MIUSCAT-IR library which extends from 3464 Å to 49999 Å. However, the values of [Fe/H] currently available for the spectra are restricted to -0.40, 0 or 0.22. Due to the wavelength and [Fe/H] ranges, the display of these sSSPs is done separately.

All these sSSPs are produced with the simplest assumptions possible : there is no dust (so no extinction), we chose default mass-loss parameters, zero binary fractions, etc. Ove-rall, the aim was to compute for each SPS code the same distribution of GCs parameters.

In the following section, this set of models is compared to our GC sample using colorcolor diagrams (Section 5.2.2 and 5.2.2) and SEDs (Section 5.2.2).

Models versus data

To provide GC ages and metallicities, one needs to connect the various model predictions with the empirical GC color distributions. Because the age and metallicity information is hardwired in each model depending on the particular set of assumptions (see Section 5.2.1), we will pay particular attention to the differences in the derived GC age and metallicity distributions.

Optical-NIR color-color diagrams

Color-color diagrams provide a powerful global overview of all the assessed objects, as well as direct insight into the physical properties of GCs. In the case of old globular clusters, even a single color carries information on metallicity (e.g. Cantiello & Blakeslee 2007 ;Puzia et al. 2002), although as we shall emphasize the relation between color and [Fe/H] remains model-dependent. Color-color diagrams of GC samples in principle allow access to a second parameter, typically age. The distribution in the 5-dimensional colorspace available for the NGVS clusters should improve the age and metallicity assessments. In practice however, they also highlight differences between models.

The locus of sSSP models with respect to the robust NGVS globular cluster sample in various color-color diagrams is shown in Figs. 5.1, 5.2, 5.3, and 5.4 (additional color-color diagrams are shown in Figure 5.11 after the conclusion). The first two are restricted to the MegaCam colors g, r, i, and z, the last two include K s .

In the gri diagram (ri vs. gr, Fig. 5.1), age and metallicity are degenerate in the models. This is essentially also the case in the giz diagram (iz vs. gi, Fig. 5.2) and the gKiz diagram (iz vs. g -K s , Fig. 5.3). The age-metallicity degeneracy is best broken in planes such as the riK diagram of Fig. 5.4 (i -K s vs. an optical color, here ri). This property has already been highlighted in the literature (e.g. Puzia et al. 2002).

Large discrepancies are seen between models in all color-color planes, despite the fact that all model grids cover the same range in age and [Fe/H] (with the exception of C09PM and C09BB, that lack the lowest metallicities). A model set that seems best in one colorcolor plane is not usually best in all the others.

The range in color spanned by the models in (gr) and (gi) corresponds quite well to the range observed (Figs. 5.1 and 5.2). On the contrary, several models fall short of reproducing the observed range of colors in (iz) (Figs. 5.2 and 5.3), (ri) (Figs. 5.1 and 5.4) or (i -K s ). The models M05 and M11, which are known to have among the strongest AGB contributions in the literature at intermediate ages, struggle at older ages to reach the optical-near-IR colors of the reddest observed clusters. The PAD grid stops at an even smaller (iz) color index, about 0.1 mag bluer than the red end of the observed cluster distribution. This could seem a natural consequence of the lack of any TP-AGB stars in the PAD models, if this same model grid did not extend right to the end of the observed distributions in (ri), (g -K s ) or (i -K s ). In this case, this may argue for a systematic difference in the molecular absorption in the z band between observed and synthetic GCs. The BC03 grid produces color ranges very similar to the PAD grid, although it is based on different isochrones and a different stellar library. BC03 and PAD however have in common that they do not use BaSeL, the library that provides z and K s band fluxes in all other cases. Now looking at the loci of the grids instead of their range in color, we find a variety of behaviors again. It is important to keep in mind that zero point offset errors in the NGVS photometry could shift the distributions but not modify their shape. Errors in individual extinction corrections would increase the dispersion. The shapes of the model grids could, on the other hand, be affected by errors in the assumed filter transmission curves as well as the input stellar physics.

Surprisingly, it is in the riK diagram (Fig. 5.4) that the behaviour of the models is most uniformly satisfactory : the model grids are located within the bounds of the empirical color distribution, though sometimes with significant deviations from the fitted line of typical colors. As the color spreads of the various model grids differ, any given cluster could however be assigned rather different absolute metallicities and ages depending on the model adopted. In the gKiz diagram (Fig. 5.3), the model loci are satisfactory except for BC03 and PAD which, as already mentioned, do not produce red-enough (iz) colors at high metallicity. In the giz diagram (Fig. 5.2), the shapes of the model grids are mostly adequate, but a uniform offset in (gi) or in (iz) would seem required to match the data. Applying the offset of 0.02 mag in z suggested by the SDSS DR10 calibration pages would act in the right direction for most models (see Section 3.2.6).

The purely optical gri diagram (Fig. 5.1) is not uniformly well matched. In several model grids, the slope of (ri) as a function of (gr) is too shallow compared to the data. In general, the models match the blue end of the GC distribution better than the red end. This could be because the Milky Way globular clusters frequently used to calibrate population synthesis models are mostly metal poor. However some models, such as C09PM or MS11, behave rather well at the red end in the gri plane. These two have in common that they exploit the MILES spectral library at optical wavelengths, which has an effect on the g band fluxes (Maraston & Strömbäck 2011 and also Section 5.2.2). We confirmed this trend with the MIUSCAT/MILES-based models of Vazdekis et al. (2012) in Fig. 5.5. Finally, we note that the C09PM and C09PB models display a complex dependence with age and metallicity at the blue end, which is not seen in other model collections that also use Padova isochrones.

UV-optical-NIR color color diagrams

To study the effect of u * photometry on the relative locations of the empirical and theoretical color distributions, we use the three color-color diagrams in Figs. 5.6, 5.7, and 5.8.

The dynamic ranges of the synthetic (ui), (ug) and (ur) colors agree well with the observed range. Any zero point errors compatible with our error budget (including the possible 0.04 offset in u * between SDSS and true AB magnitudes) would be small on the scale of the figures, and would not affect any conclusion in this section.

The ugr diagram (Fig. 5.8) confirms that the spectral region around the g band is matched best by models built with the MILES spectral library (C09PM and MS11). The g magnitude is used in the two colors that define this diagram, exacerbating the discrepancies already seen in gri (Fig. 5.1). The majority of the models lack flux in g at a given u * and r.

The locus of the empirical color distribution is very tight both in the uiK and in the ugr diagrams, and this is reflected in the model grids. As in previous diagrams, there are some irregularities in the predictions of the C09 models at low metallicities, that can be traced back to their internal interpolation procedures. Only a subset of the models predicts that the addition of the u * band helps break the age-metallicity degeneracy. According to MS11, this would be best done in the ugr diagram, while other models predict that the degeneracy is best broken in uiK.

In summary, while many model colors are roughly satisfactory, none of the theoretical sets we have examined, over the range of ages and compositions we have explored, satisfactorily matches the well-defined locus of the Virgo clusters in all the color-color diagrams. Each model grid has its strengths and weaknesses in the above comparison, and we have not found strong arguments to favour one over the others overall. The calibration is that of Section 2.2.4 (see Figure 5.10 for a version of these plots using the SLR calibration). For each model set, the thick solid and dashed lines represent the metallicity tracks at given ages, with metallicity increasing from the bottom left to the top right. The metallicities of the grid nodes are [Fe/H] = [-2, -1.5, -1, -0.5, 0, 0.17] (except for C09BB and C09PM, see Section 5.2.1). Alternating thin solid and dotted lines connect models of constant age, at [6,8,10,13] Gyr. The red line represent the polynomial fit defined in Section 3.2.5. The model grids are degenerate in age and metallicity in this particular color-color diagram. 

Spectral Energy Distributions

While a color-color diagram provides only two colors but for all GC ages and metallicities, one SED allows a view of a set of possible colors but for only one GC (of given metallicity and age).

In Figure 5.9 we compare the fiducial SEDs of Virgo core globular clusters defined in Section 3.2.5, with nine sets of synthetic energy distributions for 10 Gyr-old stellar populations. The SEDs shown correspond to a given set of (g -K s ) colors : [0.6 = Blue, 1.0 = Cyan, 1.2 = Green, 1.6 = Red, 1.8 = Magenta]. The metallicity associated with each of the plotted models is also given, to facilitate the comparison between models.

A quick overview of these theoretical SEDs confirms the wide range of fluxes that different models can predict. These discrepancies between models and observations, which easily reach 10 %, were expected based on the inspection of the color-color diagrams. They are larger at high metallicities than in the low metallicity regime. At low metallicities, models that match the bluest (g-K s ) colors tend to match also the rest of the SED. But this does not mean that the matching models all have the same metallicity. As an extreme example, (g -K s ) = 0.6 is obtained with C09PB at Z = 2 × 10 -3 and with PEG or BC03 at Z ≃ 1.3 × 10 -2 . The MILES-based model MS11 is intermediate. Some sets of models do not reach (g -K s ) values as high as 1.8 mag for the metallicities we have computed (in those cases less than five model SEDs are shown in Fig. 5.9). Our nine model grids extend to [Fe/H] = 0.17. For five of these, this is not sufficient to reach (g -K s ) = 1.8 at an age of 10 Gyr. The reason why (g -K s ) = 0.6 is not reached with C09PM is only that these models are not available below [Fe/H] = -1.39.

In the color-color diagrams of Section 5.2.2, we had highlighted two main patterns : the relatively blue (iz) indices for the PAD and BC03 models at high metallicity, and the larger g band flux relative to u * and r in the C09PM and MS11 models. Both patterns can be seen in the SEDs, by inspecting the slope of the colored lines between i and z, or the ugr energy distributions. The associated (model-dependent) metallicities are listed. The special label Z = X is used when the required (g -K s ) is not reached with a particular model set, and no line is drawn.

Discussion

SLR calibration

The comparison of the observed GC colors with models in Section 5.2.2 is based on the data calibration against SDSS and UKIDSS (Section 2.2.4). Here we briefly discuss the effect of adopting, instead, the Stellar Locus Regression against synthetic stellar AB photometry (Section 2.2.6).

The amplitude of the SLR color-corrections based on the PHOENIX library of stellar spectra and on stellar parameters from the Besançon model of the Milky Way, is consistent with our budget of systematic errors for (ri) and (iz), but not for (gr) and (i -K s ). Although the PHOENIX spectral library, combined with the Besançon model, performs better than the other libraries we have tested, we must keep in mind that it is only an approximate representation of the true stellar colors. Following High et al. (2009), we have avoided using the u * band in the calculation of SLR color-corrections. We have however included the K s band. The large SLR corrections to (gr) and (i -K s ) are driven by the stellar locus in the three last panels of Fig. 2.6. At a given (ri) (bottom panels), the data must be shifted to redder (gr) and (g -K s ) to match the synthetic stellar locus. Then the plot of (gr) versus (i -K s ) requires a significant shift in (i -K s ).

The SLR color-correction vector, κ, points towards redder colors for all color indices. Taken at face value this suggests the dereddening corrections we have applied to the data might be excessive. The amplitude of κ, however, is much larger than allowed by our estimated maximal uncertainties on A(V). In (gr) and (i -K s ) the amplitude is even larger than the total reddening towards the Virgo core region. We doubt this correction would be correct.

Based on the above, we prefer the initial calibration of the data, and restrict the discussion of the effects of the SLR to a few main trends. The re-calibrated data are compared with model grids in various color-color diagrams in Figure 5.10.

The SLR corrections bring the Virgo core GC data closer to the models in the gri diagram and in the giz diagram (in the latter, one has to keep in mind that SDSS advocates 0.02 mag be subtracted from z magnitudes). The SLR-corrected colors seem to be too red compared to the models in the riK and gKiz diagrams.

In any analysis of cluster properties, the main effect of using SLR-corrected colors would be a higher metallicity estimate. After the SLR-correction, more of the red GCs find no match in the model grids, and the models at [Fe/H] = -2 lie outside the distribution of observed colors. For a further discussion of GC metallicities, we refer the reader to the following Chapter.

Isochrones and libraries

The synthetic colors of globular cluster models depend on the assumed stellar evolution prescriptions, the resulting isochrones, and the adopted stellar spectral libraries. Our choice of models allows us to re-evaluate the validity of these ingredients in defining the ugrizK colors of GCs in the Virgo core region.

The C09PB and the C09BB models of Conroy et al. (2009) respectively use Padova 2007 and BaSTI 2007 isochrones. This modification mainly affects the metal poor GCs in the gri, giz and riK diagrams (Figs. 5.1, 5.2 and 5.3), with resulting differences in color that reach 0.05 magnitudes. With that population synthesis code, the Padova 2007 isochrones produce a wider spread in colors than the BaSTI 2007 isochrones. The BC03 model can also be computed with two different sets of isochrones, which are Padova isochrones from 1993-1994 (shown in our figures) and Padova isochrones of Girardi et al. (2000), not shown). The resulting differences are below 0.05 magnitudes in all the colors in our diagrams. Now turning to the spectral libraries, we can quantify the effects of replacing the BaSeL library with the MILES library at optical wavelengths, by comparing C09PB and C09PM in the gri diagram (Fig. 5.1). The offset in (g-r) is about 0.05 magnitudes. Between BC03 and BC03B in the same diagram, the effect is of similar amplitude for red clusters, but smaller than in the Conroy implementation for blue clusters. In the gKiz diagram however (Fig. 5.3) the replacement of one library with the other has larger impact in the implementation of Bruzual & Charlot than with the code of Conroy et al. Here, the critical issue is the algorithm used to connect the purely optical MILES spectra with those of the panchromatic BaSeL one.

The PEG and BC03B predictions are based on very similar ingredients, and in general they agree rather well (color-color diagrams, and SEDs of Fig. 5.9). Differences in the details show the impact of particular implementation choices. Examples are the interpolation scheme between the few metallicities for which Padova isochrones are available, the interpolations between the spectra available in the original BaSeL library, or the detailed treatment of the TP-AGB. These numerous differences are known to produce significant effects on spectra, and make it very difficult to trace back differences in colors to a single physical origin (see Koleva et al. 2008 for a discussion of these subtle effects on the analysis of Milky Way globular cluster spectra).

Our inspection of the various models in color-color space does not allow us to point to a single "best model" that would, within the range of ages and metallicities we have considered, match the shapes and locations of the empirical distributions in all projections in a statistically acceptable way. However, we confirm that the careful flux calibration of the MILES library improves the modelling of optical spectra over pre-existing libraries. The BaSeL library on the other hand has the interesting property that it helps reaching the reddest (iz) colors seen at high metallicity in the Virgo core region, i.e. around M87. Direct consequences of the adopted stellar evolution prescriptions are smaller, or at least more difficult to isolate, than these effects of the spectral libraries.

Width of the NGVS GC distribution

The width of the locus of the GCs in the multi-dimensional color space is larger than can be explained by the random photometric errors. Several physical causes probably all contribute to this dispersion to some degree.

First, the observed GCs may have a range of ages. As we have shown in various colorcolor diagrams, the age-metallicity degeneracy is strong and the dispersion expected from ages spread between 6 and 13 Gyr is insufficient to explain the dispersion in the observed GC colors. One way to broaden the predicted distribution is to include ages younger than 6 Gyr. Indeed, a fraction of the clusters in the core of Virgo might have been born in relatively recent gas-rich interaction events, as a side-effect of the hierarchical merging that progressively built up the stellar mass in the center of the galaxy cluster.

The stochastic sampling of the stellar mass function in each cluster is another source of natural dispersion at a given age and metallicity. The clusters selected in this paper are massive (> 10 6 M ⊙ ), hence these stochastic effects are small. Based on models by Fouesneau & Lançon (2010), we find that they would be strongest in colors involving the u * and the K s filters, and that they remain of the order of 0.01 magnitude or less for the ages and masses of interest here. This does not suffice to explain the observed color spread.

To obtain even more variety, we may invoke more complex star formation histories than a single chemically homogeneous star formation episode, or reconsider other simplifying assumptions of the models. In the Milky Way, the assumption of a single age and a chemically homogeneous stellar population breaks down for essentially all the massive globular clusters that have been studied in detail. Hence it is likely that massive clusters in Virgo would also host more complex populations than we have assumed here.

Internal spreads in age and metallicity by themselves lead to modified integrated colors. Changes in abundance ratios significantly add to this diversity, for instance via the effects of CNO abundances on molecular bands in red giant spectra, or via the effects of helium abundances on horizontal branch temperatures. The models of Maraston & Strömbäck (2011) with a blue horizontal branch do not explain the observed colors as a whole better than the models with a red horizontal branch. Using toy models constructed with PÉGASE, for which we artificially varied the temperature of horizontal branch stars, we reach the same conclusion. On the other hand recent HST-based UV studies of M87 established the presence of hot stellar populations in its globular clusters (Sohn et al. 2006 andBellini et al. 2015), which is an indication for the presence of hot horizontal branch stars. Consequently, a mix of horizontal branch morphologies is likely to contribute to the dispersion in colors we have seen. Similarly, varying fractions of blue stragglers, or stellar rotation statistics, or strong changes in the stellar mass function will spread out the colors.

Finally, we note our GC sample in the Virgo core region combines objects located around M87, around smaller Virgo galaxies such as M86 or NGC 4438, and in the intracluster region of the Virgo core. The detailed properties of each of these subpopulations differ, indicating a link with environment that we describe in Powalka et al. (2016b). Previous studies hinted at systematic differences between GC subsets. For instance, Harris (2009) showed that the typical color of the blue subsample of clusters around elliptical galaxies depends both on the distance to the galaxy center and on the GC luminosity, and Forte et al. (2013) suggest the blue and red GC subpopulations of M87 follow distinct color-color relations. The respective role of age, metallicity and additional parameters in explaining these remains to be clarified.

Stellar population properties derived from colors

The well-defined color-locus of the brightest Virgo core GCs has allowed us to illustrate the amplitude of the variation in the predictions from different sSSP models. Nevertheless, colors will remain easier to measure than spectra for remote objects in the universe, and it therefore remains desirable to provide color-based estimates of stellar population properties such ages and metallicities.

In the next Chapter, we present SP properties of the Virgo core clusters based on a statistical analysis (Powalka et al., 2017).

Conclusions

In Powalka et al. (2016a), we have used the Next Generation Virgo Survey to provide near-ultraviolet to near-infrared colors for a representative sample of luminous GCs in the Virgo core. The sample was selected in a plane that combines the color information of the uiK diagram and a compactness index, measured on the NGVS images with the best seeing (i band).

In this section, we have compared the colors in our globular cluster catalog with 11 commonly used models for single age, single composition stellar populations, with ages between 6 and 13 Gyr and [Fe/H] between -2 and 0.17. Despite a rough global agreement, we have shown that none of the 11 models provides a statistically satisfactory match to the NGVS data. Moreover, this comparison has highlighted patterns in the predictions around the z and g bands which are likely related to the choice of stellar spectral library made in the models.

Finally, we have not provided in this paper any ranking of the models based on their ability to match the Virgo core GC data. This ranking would depend on the exact set of colors used in the assessment, and also on the method used to measure goodness-of-fit. More importantly, it would convey the misleading impression that we recommend using one particular model and discarding the others. The ability of any of the models to represent the data is currently too imperfect to justify such a radical approach.

Additional Color-Color diagrams based on the external catalogs calibration

For the convenience of future comparison with other data sets, we provide two additional color-color diagrams in Figure 5.11. Like those discussed in the main body of the article, they are based on the calibration against external catalogs, described in Section 2.2.4. Le ratio de Bayes (B ratio ), comparant deux modèles 1 et 2, est défini par le rapport des P(sSSP|D). A partir de ce ratio de Bayes et du théorème de Bayes, il est aussi possible de définir le facteur de Bayes (B f actor ) tel que :

B ratio = P(sSSP 1 |D) P(sSSP 2 |D) = P(D|sSSP 1
) . P(sSSP 1 ) P(D|sSSP 2 ) . P(sSSP 2 ) = B f actor . P(sSSP 1 ) P(sSSP 2 ) P(sSSP i ) représente l'a priori du modèle i (ou "prior" en anglais). Dans notre cas, nous ne considérons aucun a priori sur les modèles, autrement dit, tous les modèles sont équiprobables i.e P(sSSP 1 ) / P(sSSP 2 ) = 1. Le facteur de Bayes et le rapport de Bayes sont donc égaux.

B f actor = P(D|sSSP 1 ) P(D|sSSP 2 ) (

Nos données contiennent N GC = 1846 amas globulaires indépendants dans n couleurs différentes (e.g. 4 ou 2). On a donc (en utilisant la règle générale des produits ; "Chain rule" en anglais) :

P(D|sSSP i ) = N GC ∏ k=1 P(x k |sSSP i )
où x k contient les valeurs des n couleurs associées à l'amas k. Les modèles que l'on utilise sont construis sur une grille d'âge et de métallicité. Cela étant, en utilisant la loi des probabilités totales, on a :

P(x k |sSSP i ) = ∑ age,Z P(x k |age, Z, sSSP i ).P(age, Z|sSSP i )
Dans cette équation, nous calculons P(x k |age, Z, sSSP i ) à partir de la fonction de vraisemblance (L ; ou "likelihood" en anglais) en supposant que les erreurs photométriques sur les couleurs sont gaussiennes :

P(x k |age, Z, sSSP i ) = L(x k , age, Z, sSSP i ) = 1 (2 π) n |Σ| e -1 2 (x k -µ) T Σ -1 (x k -µ)
où µ = µ(age, Z) contient les valeurs des n couleurs du modèle i avec un âge et une métallicité donnés. Σ est la matrice de covariance des erreurs photométriques de l'amas k et l'exposant T renvoie à la transposée de la matrice. P(age, Z|sSSP i ) correspond à la distribution a priori des âges et métallicités (nommé prior par la suite). Il s'agit par exemple de donner des poids différents à chaque point de la grille âge/métallicité d'un modèle. Comme il n'y a pas un prior particulièrement évident, je choisis de marginaliser sur plusieurs priors potentiellement possibles. Cela étant, dans cette partie, pour montrer un exemple d'utilisation du facteur de Bayes à l'aide de priors, je choisis 3 priors en métallicité différents censés représenter la distribution des FIGURE 5.12 -Fr : Tableau contenant les valeurs du logarithmes des facteurs de Bayes du modèle A par rapport au modèle B ainsi que le χ 2 réduit de chacun des modèles. Les valeurs ont été calculées pour les amas globulaires de NGVS en utilisant 4 couleurs (ug, gr, ri, iz). Lorsque le logarithme du facteur de Bayes est supérieur à 2, cela veut dire que le modèle A est statistiquement meilleur que le modèle B. En : Table containing the logarithm of the Bayes factor of the model A compared to the model B and the reduce χ 2 of the ten models for the NGVS GCs using 4 colors (ug, gr, ri, iz). A value higher than 2 for the logarithme of the Bayes factor means that the model A is statistically better than the model B. FIGURE 5.13 -Fr : Tableau contenant les valeurs du logarithmes des facteurs de Bayes du modèle A par rapport au modèle B ainsi que le χ 2 réduit de chacun des modèles. Les valeurs ont été calculées pour les amas globulaires de la Voie Lactée en utilisant 4 couleurs (ug, gr, ri, iz). Lorsque le logarithme du facteur de Bayes est supérieur à 2, cela veut dire que le modèle A est statistiquement meilleur que le modèle B. En : Table containing the logarithm of the Bayes factor of the model A compared to the model B and the reduce χ 2 of the ten models for the MW GCs using 4 colors (ug, gr, ri, iz). A value higher than 2 for the logarithme of the Bayes factor means that the model A is statistically better than the model B. containing the logarithm of the Bayes factor of the model A compared to the model B and the reduce χ 2 of the ten models for the MW GCs using 2 colors (ui, iz). A value higher than 2 for the logarithme of the Bayes factor means that the model A is statistically better than the model B.

amas globulaires en métallicité (j'applique un prior uniforme aux âges des grilles de modèles). Il s'agit d'une loi de puissance (d'indice -0.9), d'une gaussienne (µ Z = 0.0002 et sigma Z = 0.0089), d'une distribution bimodale (µ Z,1 = 0.0004, sigma Z,1 = 0.004, µ Z,2 = 0.017 et sigma Z,2 = 0.004). Les paramètres pour chacune des catégories de priors (loi de puissance, gaussienne et gaussienne bimodale) ont été choisis de manière à maximiser la vraisemblance totale (de tous les modèles confondus) du prior parmi 200 autres tests de paramètres. Cependant, il est important de rappeler qu'il s'agit uniquement d'exemples de priors. Pour calculer P(age, Z|sSSP i ), je marginalise donc sur les 3 priors équiprobables :

P(age, Z|sSSP i ) = 1 N priors N priors ∑ j=1 P(age, Z|prior j , sSSP i )
Il est alors possible de calculer les facteurs de Bayes pour tous les modèles. Dans les tableaux 5.12, 5.13 et 5.14, je montre les valeurs du logarithme du facteur de Bayes pour tous les modèles ainsi que le χ 2 réduit associé à chaque modèle. Le χ 2 réduit est simplement calculé avec la distance au meilleur point du modèle et en utilisant un nombre de degrés de liberté de l'ordre de N GC × N color (où N color est le nombre de couleurs utilisées). Le tableau 5.12 est obtenu à partir des 1846 amas autour de M87 et 4 couleurs (ug, gr, ri, iz). Le tableau 5.13 est basé sur les 11 amas de la Voie Lactée et 4 couleurs (ug, gr, ri, iz) et enfin le tableau 5.14 est aussi basé sur les 11 amas de la Voie Lactée mais uniquement pour 2 couleurs (ui, iz). Lorsque le logarithme du facteur de Bayes du modèle A par rapport au modèle B est supérieur à 2 (Kass & Raftery, 1995), cela implique que le modèle A est statistiquement meilleur que le modèle B. En ce qui concerne le χ 2 réduit, si la valeur est supérieure à ∼ 1, alors le modèle concerné n'est pas une bonne représentation des données.

Pour les données NGVS et 4 couleurs (tableau 5.12), les logarithme des facteurs de Bayes entre deux modèles sont très largement supérieurs à 2. Cela est produit par un très grand nombre d'amas situés loin en dehors de l'enveloppe des couleurs prédites par certaines grilles (et à l'intérieur de certaines autres), ce qui génère des grandes différences de 123 CHAPITRE 5. Comparaison des amas de M87 avec 10 modèles SSP Travaux complémentaires vraisemblance. On constate que le modèle MS11 possède un facteur de Bayes supérieur à 1 quel que soit le modèle auquel il est comparé. Bien que ce modèle soit statistiquement plus proche des données que les autres, son χ 2 réduit est tout de même largement supérieur à 1 (∼ 2.86). MS11 n'est donc pas statistiquement une bonne représentation des données NGVS (en terme de χ 2 ).

Pour les données de la Voie Lactée (tableaux 5.13 et 5.14), les valeurs des logarithmes des facteurs de Bayes sont moins dispersées mais toujours parfois largement supérieurs à 2. Le modèle M05 possède tous ses facteurs de Bayes supérieurs à 1 quel que soit le modèle auquel il est comparé que ce soit dans l'étude à 4 couleurs ou bien dans celle à 2 couleurs. En terme de χ 2 réduit, M05 est statistiquement acceptable pour la Voie Lactée et 4 couleurs. Dans le cas à 2 couleurs, tous les modèles excepté C09BB sont statistiquement une bonne représentation des données des amas de la MW. Il est intéressant de constater qu'un modèle 1 avec un meilleur χ 2 réduit qu'un modèle 2 ne veut pas forcement dire que le facteur de Bayes de 1 par rapport à 2 est supérieur à 1. Par exemple, pour PEG et C09PB, le logarithme du facteur de Bayes privilégie le modèle PEG alors que son χ 2 réduit est supérieur à celui du modèle C09PB. Cela vient du fait que le facteur de Bayes prend un compte la vraisemblance de tous les points du modèle alors que le χ 2 réduit ne s'intéresse qu'au point du modèle avec le meilleur χ 2 .

En résumé, le facteur de Bayes peut être utilisé pour effectuer une comparaison de deux modèles à l'aide de priors sur les modèles. Le résultat permet de connaitre lequel des deux modèles est, globalement, le plus proche des données. Cependant, il ne peut pas servir à quantifier la qualité d'un modèle de manière absolue comme pour le χ 2 .

Influence du rapport [α/Fe] sur les modèles

Dans cette section, je tente de quantifier l'influence du rapport [α/Fe] sur les modèles et ainsi de savoir si les différences photométriques trouvées dans la Section 4.2 peuvent être expliquées par une variation de ce rapport. En pratique, très peu de modèles de synthèse de populations stellaires permettent de modifier l'abondance des éléments α. En effet, une telle modification implique l'utilisation d'une librairie adaptée (avec des spectres d'étoiles enrichis ou appauvris en éléments α) ainsi que des tracés d'isochrones prenant en compte ces variations. De plus en plus, ces deux composantes peuvent être trouvées séparément dans la littérature. Cependant, actuellement, il est difficile de trouver un modèle qui combine les deux dans des gammes de longueurs d'onde, d'âge et de métallicité adaptées à notre étude (basée sur ugrizKs). Néanmoins, certains modèles ont déjà beaucoup progressé dans ce domaine, comme par exemple le modèle basé sur la librairie MILES (Vazdekis et al., 2010) qui permet une étude de l'influence du rapport [α/Fe] (entre 0.0 et 0.4) pour des longueurs d'ondes entre ∼ 3500 Å et ∼ 7400 Å (filtres g et r ; grâce à Vazdekis et al. 2015).

Cela étant, dans une première approche nous (Ariane Lançon, Philippe Prugniel et moimême) avons modifié le code de synthèse de populations stellaires PEGASE en utilisant la librairie PHOENIX (Husser et al., 2013) pour plusieurs valeurs de [α/Fe]. Ensuite, dans une deuxième approche, j'ai comparé nos résultats avec ceux prédis par le modèle de MILES.

Pour un modèle comme PEGASE, la grille de spectres stellaires à 3 dimensions (température T e f f , métallicité Z et gravité de surface log g) est un ingrédient essentiel pour générer un spectre de population stellaire. A chaque instant, pour chaque étoile d'une population, ces trois paramètres sont dictés par les tracés d'isochrones. Pour générer le spectre final de la population, le modèle va donc chercher les spectres d'étoiles correspondant aux prédictions des isochrones dans la grille stellaire. Dans le cadre de notre étude sur l'influence de [α/Fe], nous avons tout d'abord remplacé, pour chaque point de la grille de PEGASE, les spectres initiaux de PEGASE (i.e ceux de la librairie de BaSeL) par les spectres stellaires de PHOENIX en gardant [α/Fe] = 0 (et les mêmes paramètres T e f f , Z et log g). Les spectres de PHOENIX étant uniquement disponibles en [Fe/H], il est nécessaire de trans-Travaux complémentaires former [Fe/H] en Z pour les utiliser dans la grille. Cette transformation s'effectue grâce à l'équation 1.5. Pour assurer un échantillonnage précis de la grille, il est important d'avoir un interpolateur qui génère un spectre en tout point de la grille (i.e. entre les noeuds). Cette interpolation est effectuée en utilisant un interpolateur similaire à celui décrit dans [START_REF] Prugniel | Astronomical Spectroscopy and Virtual Observatory[END_REF]. Pour les endroits de la grille qui ne disposent pas de spectres PHOENIX, nous avons (temporairement) laissé les spectres initiaux de BaSeL.

Par la suite, au lieu d'utiliser des spectres avec [α/Fe] = 0, nous avons remplacé la grille par des spectres avec [α/Fe] = 0.4. Cependant, lors de cette opération, l'équation qui relie [Fe/H] à Z se complexifie à cause de la présence accrue d'éléments α (voir éq. 1.8). Il est donc important de prendre en compte le rapport [α/Fe] = 0.4 ainsi que l'abondance d'hélium dans la transformation [Fe/H]-Z. De la même manière, nous avons aussi créé une grille avec des spectres PHOENIX à [α/Fe] = 0.8. En pratique, notre démarche de remplacement des spectres BaSeL par les spectres PHOENIX demande à être améliorée. En effet, actuellement, nous convertissons la valeur de [Fe/H] PHOENIX des spectres de PHOENIX en Z BaSeL des spectres de BaSeL à l'aide de l'abondance d'hélium donné dans les spectres de PHOENIX. Or, une autre approche serait de convertir Z BaSeL en [Fe/H] BaSeL à l'aide de l'abondance d'hélium présente dans les isochrones et ainsi de rattacher [Fe/H] 

BaSeL à [Fe/H] PHOENIX après-coup.
Dans tous les cas, il est essentiel de mentionner que nous n'avons pas introduit les modifications des isochrones produites par un rapport [α/Fe] positif (e.g. Lee et al., 2009a;Vazdekis et al., 2015). Cela étant, les effets que nous observons sont simplement la conséquence de spectres enrichis en éléments α sur des tracés non-enrichis en éléments α.

La modification de notre démarche de remplacement des spectres ainsi que l'ajout de tracés d'isochrones modifiés dans le code PEGASE font partie des nombreux objectifs encore en cours de réalisation.

Néanmoins, grâce à la modification partielle du code PEGASE, nous disposons déjà de résultats préliminaires. Ces résultats sont présentés dans la Figure 5.15 dans deux diagrammes couleur-couleur ugr et griz. Trois rapports [α/Fe] sont montrés (0.0, 0.4 et 0.8) accompagnés par les amas de la Voie Lactée (en noir) et ceux du papier I (en gris).

On constate que, dans le diagramme griz, la modification de couleur induite par l'enrichissement en éléments α se produit dans une direction partant des amas de la MW vers les amas autour de M87. Cependant, dans le diagramme ugr, cette direction semble être inversée (elle se dirige des amas de M87 vers les amas de la MW).

Il est important de mentionner que les amas de la Voie Lactée (surtout ceux du halo) sont connus pour être enrichis en éléments α (e.g. Mendel et al., 2007;Kacharov et al., 2013;San Roman et al., 2015), tout comme les amas globulaires extragalactiques (e.g. Puzia et al., 2005c). Plus encore, il semble que les amas appartenant à une galaxie elliptique sont plus enrichis en éléments α que ceux autour d'une galaxie spirale (Puzia et al., 2005a). Appliqué aux cas de la Voie Lactée et de M87, on comprend que les amas globulaires autour de M87 sont censés avoir un rapport [α/Fe] plus important que ceux de la MW. Cependant, au vu de la Figure 5.15, deux incohérences sont présentes : premièrement, on constate que, dans le diagramme griz, le modèle PEGASE avec un rapport [α/Fe] = 0 semble plus proche des amas de la Voie Lactée que les modèles enrichis en éléments α. Or, on sait que les amas de la MW ont un rapport [α/Fe] > 0. Ensuite, dans le diagramme ugr, les amas globulaires de M87 semblent moins enrichis en éléments α que les amas de la Voie Lactée, ce qui est contraire à ce que l'on attend. La première incohérence pourrait être expliquée par une calibration (historique) des modèles (avec [α/Fe] = 0) sur les amas de la MW. La seconde incohérence reste quant à elle plus intrigante. Plus exactement, si ce second point est confirmé par notre future étude plus approfondie, cela pourrait indiquer que les différences de couleurs observées entre les amas de M87 et ceux de la MW ne sont pas uniquement (du tout ?) causées par une différence en éléments α. Les résultats de la comparaison sont montrés dans la Figure 5.16. On constate que la différence en (gr) produite par un enrichissement des éléments α pour le modèle de PEGASE (∼ 0.01 mag) est comparable à celle obtenue avec le modèle de MILES (∼ 0.015 mag ; quelle que soit la métallicité considérée). L'utilisation d'isochrones modifiés par le rapport [α/Fe] dans le cas du modèle de MILES ne semble donc pas avoir une influence importante pour l'étude de différents rapports [α/Fe].

Dans l'article Vazdekis et al. (2015), les auteurs produisent des figures similaires à la Figure 5.16 mais en étendant l'étude aux magnitudes u et i (en utilisant une correction du flux manquant basée sur les librairies NGSL et MIUSCAT ; Ricciardelli et al. 2012). A la différence de la Figure 5.16, la comparaison est effectuée sur la base de [M/H] ce qui ne permet pas de directement comparer avec nos résultats. Cependant, la tendance générale de l'étude reste valable i.e. la modification en couleur d'un rapport [α/Fe] plus élevé affecte principalement la couleur (ug) et non (gr) ou (ri).

En conclusion, bien que l'étude de l'influence du rapport [α/Fe] ne semble pas prôner un effet en couleur important, il reste essentiel de poursuivre les efforts dans cette direction. Cela inclut l'amélioration du modèle PEGASE que l'on a entrepris (au niveau des isochrones et de la librairie) et, à plus long terme, l'inclusion de variations d'abondances chimiques plus complexes dans les spectres stellaires et dans les isochrones. Ce chapitre est dédié aux méthodes d'estimation d'âge, de métallicité ou encore de masse d'amas globulaires. Comme je l'ai indiqué en introduction, l'estimation de ces paramètres est essentielle pour décrypter la formation et l'évolution des galaxies. Dans ce contexte, je m'intéresse aux amas globulaires autour de M87 et de la MW pour potentiellement comprendre davantage l'histoire de ces deux galaxies.

Cela étant, dans une première partie, je présente un article dans lequel j'examine les prédictions d'âge et de métallicité de plusieurs modèles de synthèse de populations stellaires. Plus exactement, je montre le résultat d'une analyse avec 4/5 couleurs (i.e. ug, gr, ri, iz / g -K s ) et 10 modèles de SSP. Dans le cas de la MW, on observe que les modèles donnent des prédictions comparables à celles trouvées dans la littérature (basées sur des études sur les étoiles résolues). Pour les amas du centre de Virgo (ceux obtenus dans le chapitre 3), les mêmes modèles ont tendance à privilégier des âges plus jeunes (et donc des métallicités plus élevées). Cependant, la fraction d'âges jeunes obtenue est beaucoup plus importante que celle prévue par les scénarios de formation d'amas globulaires. Cela étant, nous analysons en détail l'influence des erreurs systématiques et aléatoires sur les valeurs d'âge et de métallicité. De plus, les effets des librairies stellaires utilisées et de la bande K s sont aussi étudiés. Au final, même en considérant les ajustements maximaux autorisés par nos erreurs, il est impossible de trouver des âges uniquement vieux.

Bien que l'on ne peut pas exclure que de multiples fusions récentes soient à l'origine d'amas jeunes autour de M87, nous rappelons que des biais sont inévitables car, comme démontré précédemment, aucun des modèles ne reproduit correctement (de manière statistique) les données des amas autour de M87. Nous ne pouvons donc pas, en l'état, décrypter avec précision l'histoire du coeur de l'amas de Virgo. Cependant, dans cette article, nous quantifions les variations d'âge produites par l'écart en couleur observé dans la lettre Powalka et al. (2016b) et nous soulignons, au vu de la réduction attendue des erreurs en photométrie, l'importance, dans les années à venir, d'établir des modèles qui prennent en compte ces différences d'environnement.

Dans la seconde partie de ce chapitre, je développe deux travaux complémentaires centrés sur l'estimation de la masse des amas et sur un exemple d'estimation d'âge et de métallicité basé sur un échantillon d'amas spectroscopique.

Introduction

To study the star formation history of the universe, we may either measure star forming activity at all redshifts, or examine the present-day relics of past star formation activity and put them in temporal order. Numerous such relics come in the shape of globular clusters (GCs), whose relatively homogeneous stellar populations have, to first order, evolved passively since the time at which they formed.

In the now dominant picture, metal-poor GCs formed mostly at high redshift in clumpy precursors of galaxies or in dwarf galaxies, possibly as early as the epoch of reionization (Cen, 2001;Spitler et al., 2012) ; while GCs with a variety of metallicities formed over a broader range of ages, from pre-enriched material in galaxies of various masses or during gas-rich galaxy merger events (Ashman & Zepf, 1992;Whitmore, 2000;Li & Gnedin, 2014;Renaud et al., 2017). In such a scenario, the GC population of a large galaxy in the local universe results from a combination of early GC formation, the accretion of GCs from in-falling galaxies, and in-situ formation of GCs during gas-rich mergers (Côté et al., 1998;Kissler-Patig et al., 1998;Ferrarese et al., 2016). And the most massive GCs are tentatively associated with star formation episodes in major mergers (Renaud et al., 2015) or alternatively with stripped compact cores of in-falling galaxies (Liu et al., 2015, and references therein). If measured accurately enough, GC ages and chemical compositions can be used to test this picture, and thus provide fundamental information about the hierarchical assembly of galaxies.

The most robust ages and abundances come from studies of individual stars or of resolved, decontaminated color-magnitude diagrams of star clusters, which are available only for clusters in the Milky Way (MW) and in the Local Group (Perina et al., 2009;Dotter et al., 2011;Beerman et al., 2012;Leaman et al., 2013;VandenBerg et al., 2013). Studies of GCs in such local environments have found metal-poor objects to be old, and established that more metal-rich ones may have old or intermediate ages, with examples as young as ∼6 Gyr (Marín-Franch et al., 2009;Forbes & Bridges, 2010;Dotter et al., 2011). These findings have set the foundation of the theoretical picture sketched above. But it remains unclear to what extent such results are representative of the universe as a whole.

To reach further out, we must rely on the integrated cluster light. Unfortunately, spectra with signal-to-noise ratios sufficient for high quality spectroscopic index measurements or for full-spectrum fitting techniques, remain difficult to obtain in large numbers beyond ∼10 Mpc even with 10m class telescopes (see Puzia et al., 2005c;Usher et al., 2015, for examples). But they hold the promise of great diagnostic power at low and intermediate spectral resolutions (e.g. Puzia et al., 2006;Colucci et al., 2009Colucci et al., , 2012Colucci et al., , 2017;;Schiavon et al., 2013). On the other hand, photometric surveys are producing rapidly growing catalogs of GC measurements in a broad variety of environments (e.g ACSVCS, ACSFCS, NGVS, or SLUGGS respectively Côté et al., 2004;Jordán et al., 2007;Ferrarese et al., 2012;Brodie et al., 2014). Not only are the numbers of candidate GCs rising ; the precision of the measurements has also improved to typically a few percent, and the accuracy to better than 5 percent (Powalka et al., 2016a). In this context, it is useful to provide an update on the analysis of GC colors with Evolutionary Population Synthesis (EPS) models. The issues we highlight in this update are relevant also when using colors to estimate luminosity-weighted ages or metallicities of whole galaxies, or when determining photometric redshifts.

GC color distributions are the basis of a vast body of literature that established strong relations between the empirical properties of GCs and their environment (e.g Peng et al., 2006;Powalka et al., 2016b). A major challenge of these studies is the conversion of color distributions into metallicity distributions. Two main hurdles in this exercise are the agemetallicity degeneracy of broad-band colors and the model-dependence of their interpretation. The precise conversion of colors into metallicity requires prior ideas about age (Geisler et al., 1996). Most studies discuss this problem but then adopt one or a few color-metallicity relations based on EPS model predictions at old ages, or based on old stellar populations in the Local Group. This approach may be unable to capture the real complexity of remote GC populations. A clear manifestation of model-dependence issues is found in the debate on bimodality : while GC color distributions tend to be bimodal at least around massive galaxies, it remains unsettled whether or not this implies a true bimodality of the metallicity distribution (Yoon et al., 2011;Blakeslee et al., 2012;Chies-Santos et al., 2012).

Estimating GC ages from colors is even more difficult than evaluating metallicities, and as a result there are only few attempts in the recent literature. In principle, the combined usage of near-UV, optical and near-IR fluxes should provide a better handle on age than optical colors alone (Puzia et al., 2002;Hempel & Kissler-Patig, 2004;Anders et al., 2004;Kotulla et al., 2009) : the optical-infrared colors are sensitive to metallicity through the temperature of the red giant branch, and near-UV to optical colors then measure the properties of the turn-off, hence age. A first difficulty arises from the possible existence of blue stragglers, hot sub-giants or extended horizontal-branch stars in non-standard proportions. An excess of any of these types of stars can make the short-wavelength colors of stellar populations bluer, leading to artificially young age estimates (Cenarro et al., 2008;Koleva et al., 2008;Xin et al., 2011;Chies-Santos et al., 2011). A second, and equally frustrating difficulty comes again from the model-dependence of theoretical color predictions. In color-color diagrams, the loci predicted by any given population synthesis code for GCs of various old ages and metallicities are generally narrow. When age and metallicity are not fully degenerate, age tends to be related to the position across this narrow locus. Small systematic errors in either the data or the models, if they are oriented across to the main locus, strongly affect age estimates. When different models predict mutually exclusive loci in parts of color-color diagrams, the situation becomes rather confused.

In this article, we re-assess GC age and metallicity estimates in the context of recent high-quality multi-band photometric measurements. Our main working sample consists of ∼ 2 × 10 3 luminous GCs located in the central four square degrees of the Virgo galaxy cluster (i.e. within ∼ 300 kpc projected distance from M87), that were identified as part of the Next Generation Virgo cluster Survey (NGVS ; Ferrarese et al. 2012) and its nearinfrared counterpart NGVS-IR (Muñoz et al., 2014). In the first paper of this series (Powalka et al., 2016a, hereafter Paper I), we provided accurately calibrated u * grizK s magnitudes for these objects. The combination of near-UV, optical and near-IR data, together with strict limits on photometric errors and spatial extent, ensure low contamination by stars or by background galaxies. We showed that the GCs in the Virgo core define a very narrow locus in the (ui) vs. (i -K s ) color-color diagram, but reveal sequences with more substructure in some other color-color combinations. In a subset of diagrams, such as (gr) vs. (iz), the GCs most centrally located (i.e. in M87) separate from many of those located further out (Powalka et al., 2016b). On average, those located centrally have redder (iz) colors at a given (gr) 1 than those located further out. In these diagrams, we also showed that the colors of MW globular clusters resemble those of some of the more external Virgo GCs, rather than those of the clusters inside M87. These findings illustrate that the environmental dependance of GC colors cannot be summarized with just one parameter, because all colors should then vary in unison.

Our aim is to examine what generic trends in terms of age and metallicity result from the comparison of the Virgo core and Milky Way GC colors with standard EPS models. The formal age and metallicity estimates in this article are the typical values one may obtain using a combination of four/five colors from the near-UV to the near-IR, and ten synthetic single stellar population (SSP) models. As we will show, generic trends emerge despite the variance between individual models. We then confront these generic results with the current picture of GC formation and discuss the consequences, keeping in mind that not all the best fits are actually good fits of the GC spectral energy distributions, and that standard EPS models make a number of simplifying assumptions.

The article is organized as follows. In Sections 4.2.2 and 6.2.3, we respectively present the GC samples and the SSP models that we are using in this work. In Section 6.2.4, we describe the methods implemented to estimate the ages and metallicities of the GCs. It leads to Section 6.2.5 where we apply our method first to Milky Way objects, then to the Virgo core GC sample, with an analysis of the results. Section 6.2.6 is devoted to a discussion of the caveats and of the consequences of these results. In Section 6.2.7 we conclude with an overview of our findings.

The data

The first set of data used in this paper is taken from the NGVS pilot field sample of Paper I2 . It consists of 1846 bright GCs in the central 3.62 deg 2 of the Virgo galaxy cluster, observed in the u * , g, r, i, z and K s filters (MegaCam/WIRCam filters of the 4-meter Canada France Hawaii Telescope). These GCs are selected using aperture corrected magnitudes in the uiK diagram (ui versus i -K s ) which significantly reduces the possible contamination by foreground stars or background galaxies (Muñoz et al., 2014). In addition, the sample is restricted to objects with SEXTRACTOR3 magnitude errors smaller than 0.06 mag in each band.

Paper I lists aperture corrected magnitudes for two alternative flux calibrations. Following the recommendations provided there, we adopt the empirical calibration against SDSS (Sloan Digital Sky Survey DR10, see Ahn et al., 2014) and UKIDSS stars (UKIRT Infrared Deep Sky Survey, see Lawrence et al., 2007;[START_REF] Carroll | An Introduction to Modern Astrophysics[END_REF], rather than the calibration against synthetic stellar photometry. We also apply the systematic corrections to u * and z recommended by the SDSS DR10 flux calibration pages 4 , as suggested in the discussion of systematic errors in Paper I (i.e. we apply a shift of -0.04 mag to u * magnitudes and a shift of 0.02 mag to z magnitudes). All colors and fluxes used in the following are dereddened. For more details on the data selection, the individual photometric errors, the extinction corrections, a budget of systematic errors, and an overall description of this sample we refer the reader to Paper I. All in all, it produces a large and well-understood GC photometric sample.

The strict selection criteria of the sample remove low-mass GCs ( 10 5.5 M ⊙ ), with a mass cut-off that depends on the GC metallicity and age. In particular, the limits on u * errors restrict the mass range at the red end of the GC color distribution, compared to the blue end. The GC selection function is complex, and we postpone corrections for completeness to future studies of a larger area in Virgo. Therefore, the catalog only contains bright/massive Virgo GCs, and we defer the detailed studies of inferred distributions, such as discussions of the metallicity bimodality, to subsequent papers. ATLAS ODFNEW refers to Castelli & Kurucz (2004). BaSeL : Lejeune et al. (1997Lejeune et al. ( , 1998)); Westera et al. (2002). BaSTI : Pietrinferni et al. (2004); Cordier et al. (2007). Cassisi : Cassisi et al. (1997b,a, 2000). MILES : (2014,2015). PHOENIX BT-Settl : [START_REF] Allard | IAU Symposium[END_REF]. STELIB : Le Borgne et al. (2003). (*) The MILES library extends from 3464 to 7500 Å. In order to reach u * , i and z magnitudes, we used the combinaison of NGSL and MIUSCAT from Koleva & Vazdekis (2012, they provide wavelengths from ∼1700 Å to ∼9500 Å) and we extrapolated the NGSL+MILES+MIUSCAT spectra from 9500 Å to 10000 Å using Pegase GC spectra. (**) Optical-only libraries are generally combined with BaSeL at UV and IR wavelengths in the original codes.

The Milky Way sample is selected from the target sample of the Panchromatic High-Resolution Spectroscopic Survey of Local Group Star Clusters (NGC 7078, NGC 7089, NGC 362, NGC 1851, NGC 1904, NGC 2298, NGC 2808, NGC 6656, NGC 104, NGC 288, and NGC 7099 ;Schönebeck et al. 2014). It consists of VLT/X-shooter spectra of MW GCs, accurately calibrated in absolute flux (±2.5%) and covering wavelengths from the near-UV to near-IR. As detailed in Powalka et al. (2016b), we derive the MegaCam u * griz magnitudes using the transmission curves of Betoule et al. (2013). The dereddening is done using the extinction values of the McMaster catalog (Harris 2010 ;based on Webbink 1985;Zinn 1985;Reed et al. 1988). For any additional information, we refer to Schönebeck et al. (2014) and future papers.

The models

In Paper I, we compared the locus of the GC sample in various two-color planes with the predictions from seven commonly used EPS codes for simple stellar populations (SSP) at old ages. Only EPS codes with broad age-metallicity coverage and with a range of wavelengths adequate for synthetic u * griz(K s ) photometry, were included. Based on these codes, we produce ten grids of synthetic SSP colors for the present study, with a more extended age range than in Paper I.

The first two are obtained with the EPS code of [START_REF] Bruzual | [END_REF] and are named BC03 and BC03B. The next three, C09PB, C09BB and C09PM are computed with the Flexible Stellar Population Synthesis (FSPS v2.6) of Conroy et al. (2009). We also use a model from Maraston (2005) (2011), named MS11. We embed one model from the CMD 2.8 5 EPS code (Bressan et al., 2012) named PAD, and one based on the PEGASE model (Fioc & Rocca-Volmerange, 1997) 6 , labelled PEG. Finally, we use the model detailed in Vazdekis et al. (2012); Ricciardelli et al. (2012), labelled VM12. For convenience, we recall some of the SSP model properties and ingredients in Table 6.1, and illustrate some of their predicted colors in Figure 6.1 (see Paper I for more diagrams).

Our default grid covers ages between 1 and 14 Gyr with uniform linear sampling in time, and metallicities between 0.0002 and 0.03 with uniform linear sampling in Z. However, two models are unable to cover this grid, namely C09BB and MS11. C09BB does not reach metallicities lower than 0.0003, whereas MS11 does not cover ages lower than 5 Gyr. We include these models in our computation but we verified that these different limits are not biasing our age-metallicity estimates (inferred ages do not pile up at the edges of these grids). All model colors are computed with a Kroupa (1998) or Kroupa (2001) initial mass 5. http://stev.oapd.inaf.it/cgi-bin/cmd 6. We use the code made available as PEGASE-HR by Le Borgne et al. (2004). function (IMF) and calculated at the typical redshift of the Virgo cluster core (z ≃ 0.004). This is done, whenever possible, by measuring synthetic colors on redshifted spectra of SSP models. For SSP models that provide only colors, we apply the k-corrections determined from the SSP model spectra of M05 and PEG.

In this paper, we convert between [Fe/H] and the metallicity Z with the approximate formula [Fe/H] = log(Z/0.02).

The method

Analysis with one Model Grid

The method used in this paper is based on the comparison of observed GC colors and theoretical color predictions with the likelihood function as reference.

In practice, each grid of synthetic SSP colors is sampled at 100 age values between 1 and 14 Gyr, and 550 [Fe/H] values between -2.0 and 0.17. These steps are chosen so that the mean photometric errors of the observed GCs are larger than the spacing between two neighbouring grid points. We assume that the errors on magnitudes are approximately gaussian, and account for correlations between two colors that have a photometric passband in common. Hence the likelihood of any age and metallicity (Z) for a given cluster is written :

L(age, Z) = 1 (2 π) n |Σ| e -1 2 (x-µ) T Σ -1 (x-µ)
where x contains the colors of the cluster, µ = µ(age, Z) contains the model colors for a given age and metallicity, the superscript T denotes the transpose, Σ is the covariance matrix of the random errors on the observed colors, and n the number of colors used. The maximum likelihood provides the adopted estimate of age and metallicity for the cluster.

We have considered Bayesian estimates of age and metallicity as an alternative to maximum-likelihood estimates. In the Bayesian approach, the posterior probability of an age-metallicity pair is proportional to the product of L(age, Z) and the adopted prior probability p 0 (age, Z). The Bayesian estimates of age and metallicity are then the weighted averages of age and metallicity, in which the weights are given by their posterior probabilities. However, in the case of the GCs, the age/metallicity degeneracy frequently results in likelihoods with remote secondary maxima, which leads to meaningless averages, unless one provides strong priors.

We wish to avoid strong priors, because they would mask interesting trends in the model-data comparison that go beyond the well-known age-metallicity degeneracy. Figure 1 shows that individual model grids are offset from the region occupied by Virgo core GCs in (model-dependent) parts of color-color space. For GCs located outside the area occupied by a model grid, selecting even the closest model in color-space via maximum-likelihood will not always provide a good fit. But it will allow us to expose the global direction of the offset between the data and the model grid, and the direction of the corresponding bias in age and metallicity. By setting a prior (for instance by choosing old ages, as was done in numerous GC studies in the literature) we would lose this information.

Analysis with the Combined Model Grid Set

Using ten SSP model grids, we obtain ten different age and metallicity estimates. As we will see in Section 6.2.5, the full width of the distributions of these ten estimates can be very large. But closer examination shows that the full width of the broadest distributions is usually dominated by few outliers, the other estimates being significantly more internally consistent. Which models produce outliers depends on each particular GC color in a complex way.

Based on this result, we have designed a "concordance estimate" (CE) of the age and metallicity of any given GC. This method averages the ten individual estimates using weights that effectively reject outliers. Let ∆Age i be the average of the differences between the age obtained with the i-th model and the age obtained with the other models. ∆[Fe/H] i is the analog for the estimated metallicities. For the GC under study, we write the weight of the i-th model :

w i = (w i,Age × w i,[Fe/H] ) × L max i ∑ N model j=0 L max j
In this expression, w i,Age takes a value of 1 if ∆Age i is smaller than 3 Gyr and 0 if ∆Age i is larger than 7 Gyr, and drops linearly from 1 to 0 between these thresholds. The shape of w i, [Fe/H] is similar, with thresholds at ∆[Fe/H] i of 0.4 and 1 dex. L max i is the maximum likelihood of the i-th model. We note that using a simpler median, or a more complex iterative outlier rejection, would lead to similar results, i.e. ages within about 2 Gyr of those we retained, and metallicities within 0.3 dex.

The CE of age and metallicity, which we write as age and [Fe/H] , represent the photometric estimates the ten models we have considered tend to agree upon. They may still be severely biased, for instance if the model predictions are inappropriate for a common reason (e.g. inadequate chemical composition of the GC constituent stellar populations, unusual stellar mass occupation functions of the contributing stellar evolutionary phases, etc.).

It is worth mentioning that we do not use a weighting scheme based on a global ranking of the models. For instance, such weights could be based on Bayes evidence ratios, that measure the relative ability of any model to reproduce the set of observed GC colors as a whole. The Bayes ratios (which we did compute) are very far from one and would in effect select a single model. But which model is preferred depends sensitively on i) the particular age/metallicity grid size adopted (i.e. whether or not young ages or extreme metallicities are included), ii) the GC subsample characteristics (i.e. whether there are more red or more blue clusters), and iii) the set of photometric passbands used. As shown in Paper I, none of the models available to us provides a statistically acceptable representation of the observed color locus as a whole, and deserves to be strongly predominant. As a consequence, we prefer a concordance estimate based on the internal consistency of the model set for the particular SED coverage of our data.

Results

Milky Way Globular Clusters

To assess our stellar population characterization method in a well studied context, we begin with the analysis of the colors of Milky Way GCs, for which the literature provides reference parameters, and for which synthetic u * , g, r, i, z photometry in the passbands of the NGVS survey is available from flux-calibrated VLT/X-shooter spectra (see Paper I ; Schönebeck et al., 2014;Powalka et al., 2016b). We obtain maximum-likelihood and concordance estimates using the colors (u-g), (g-r), (r-i), and (i-z). We present in Figure 6.2 the age-metallicity likelihood analysis with each of the ten SSP models, for every Milky Way GC. Every SSP model grid gives somewhat different results along with the noticeable degeneracy between age and metallicity illustrated by the shape of the confidence contours.

We summarize the derived age and [Fe/H] values in Table 6.2 together with the literature values. The error bars on our estimates reflect only the discrepancies between the models in the framework of the CE values. These uncertainties are computed as the root mean square deviation of individual estimates from the CE. We find generally reasonable agreement between the results of our SSP model inference method and the literature results, FIGURE 6.2 -Likelihood distributions in the age-metallicity plane for each of the Milky Way GCs as obtained with the ten SSP models (see Tab. 6.1), using u * griz photometry. The contour levels are set to 90 % of the maximum likelihood. The CE is highlighted with a white star. The shaded background shows the sum of the likelihoods obtained with the ten SSP model grids.

which are based on various techniques such as optical and near-IR isochrone-fitting, fullspectrum fitting, RR Lyrae star variability, etc. The GCs are found to be old, with a range of low metallicities. A notable exception is NGC 288 for which the CE age is significantly younger than the literature value. This GC is known to have a well populated blue horizontal branch (HB) (Lee et al., 1994) that could be responsible for this seemingly young age. However, NGC 1904, NGC 2298, and NGC 7089 also share a similar HB morphology without this leading to a young inferred age. Two of the Milky Way GCs (NGC 7078 and NGC 7099) have literature metallicities lower than -2.0 dex, which are outside the formal limits of our SSP models. We keep those GCs in the sample, but flag them as less reliable in their age and [Fe/H] estimates.

Virgo Core Globular Clusters

Applying the same method to the u * griz colors of the Virgo core GCs, we obtain their concordance age and metallicity estimates and illustrate their dynamic ranges in the colorcolor planes shown in Figures 6.3 and 6.4. We note that, in general, the diagrams exhibit a smooth scaling of GC colors with concordance age and metallicity, however, with a no- ticeable degree of degeneracy between these parameters. The uiK diagram shows a continuous increase of assigned metallicity with redder colors along the principal direction of the data distribution. At the same time, the color dynamic range in this diagram is almost entirely degenerate in age, which leads to a relatively narrow sequence of data compared to the other diagrams. This property is what makes the uiK diagram such an ideal tool for separating foreground stars, background galaxies, and star clusters, and selecting GCs at Virgo-like distances with accurate photometry alone (see Muñoz et al., 2014;Powalka et al., 2016a). In contrast, the ugr diagram highlights a distinct gradient of both age and metallicity. Therefore, this diagram turns out to be useful when deriving the age and metallicity of a GC.

Although the M87 core GCs are believed to have spectroscopic old ages (∼ 13 Gyr ; Cohen et al., 1998, see Appendix 6.2.8 for a comparison), our model inference returns numerous ages younger than 6 Gyr, while only few of the inferred ages are old. We will discuss this result extensively in later sections.

As discussed in Powalka et al. (2016b), the (g-r) vs. (i-z) plane displays significantly different relations for Virgo core and Milky Way GCs. A similar deviation is visible in the (ug) vs. (gr) plane. As expected from Section 6.2.5, the Milky-Way GCs are located in the region of color-color space in which our analysis leads to old ages. A subset of Virgo core GCs also populates that region, but the majority of the Virgo GCs (in particular those located closer to M87), are offset. This offset drives differences in derived ages and metallicities when both sequences are analyzed with identical models and methods. We will return to this point after having examined the behaviour of the parameters derived from individual model sets.

Testing Model-to-Model Consistency In an effort to understand how the age and metallicity estimates are affected by the model choice for the 1846 bright Virgo core GCs in our sample, we compute the maximum-likelihood parameters with each SSP model individually. Figure 6.5 illustrates the age-metallicity likelihood distributions for a few examples, sorted by age horizontally and by metallicity vertically.

In general, we find that for any given Virgo GC, the model-dependence of the age and FIGURE 6.5 -Likelihood distributions in the age-metallicity plane for eleven representative Virgo GCs obtained with the ten SSP models using u * griz photometry. The layout is as in Figure 6.2. metallicity estimates is much more significant than for a typical Galactic GC. The detailed aspect of the figure depends on the cluster under study, but a generic feature is the frequent lack of overlap between the contours obtained with various models. Unfortunately, the differences between models, together with their inability to match the multi-wavelength locus of the data, erase the benefits of high quality photometry in passbands that should in principle allow us to better discriminate between age and metallicity effects.

In Figures 6.6 and 6.7, we compare the age and metallicity distributions obtained with each individual SSP model (y-axis) with the CE (x-axis). Using one particular model as a reference, instead of the CE, would have been justified if that model had been able to represent the color locus of Virgo GCs as a whole in a statistically satisfactory fashion. But it was shown in Paper I that none of the ten models satisfies this criterion.

In the case of the metallicity distribution (Figure 6.6), we observe good general agreement on the average values between the models. However, individual models show particular deviations from the CE in some metallicity ranges, as illustrated by the curved density distributions (e.g. BC03B, C09PB, and C09PM). Accumulations of data in the upper right corner of the diagram (i.e. the metal-rich end) and accumulations of data at one numerical value (e.g. in the PAD grid) occur when the GC colors are beyond the borders of the age- For the inferred GC ages (Figure 6.7), we observe significantly more outliers from the one-to-one relation than in the metallicity plots. For some models we find double-peaked distributions. Accumulations of data at attracting values of age are common. Again, these occur mostly when the empirical colors lie outside the envelope of the grid of model colors ; in some cases they are due to a non-monotonic evolution of model color with age, or to slightly sub-optimal sampling.

The individual estimates based on the ten models we have considered in this study, back up the results of the concordance estimate, i.e. a distribution with a seemingly large fraction of young ages (and correspondingly relatively high metallicities). Hence the concordance result is not the result of an inadequate weighting scheme between the models. Taking the numbers at face value, 54 % of the GCs in our Virgo sample would have ages younger than 5 Gyr, and only about 10 % of the sample would be older than 9 Gyr. In Sections 6.2.5 to 6.2.5, we quantify how various parameters may alter these distributions and in particular reduce (or not) the fraction of clusters that get assigned young ages. The studies in those FIGURE 6.8 -Photometric GC age and metallicity distribution functions (based on the 10-models CE) illustrated as kernel-smoothed distributions for 0 σ (blue), 1 σ (orange), 3 σ (red) offsets in the direction which creates the maximum fraction of old GC ages (see Fig. 6.4). In addition, the blue and red dotted curves are, respectively, showing the 0 σ and 3 σ age distributions for a synthetic GC sample with colors based on the intrinsic variance described in Table 6.3 and defined in Section 6.2.5. sections all consider the same set of SSP models.

Plausible Effects of Photometric Zero-Point Errors The age and metallicity differences we find between bright Virgo core GCs and Milky Way GCs are driven by a different location in color-color planes that involve the (ug), (gr) or (iz) colors (Powalka et al., 2016b). A similar displacement has been found recently by Bellini et al. (2015), based on Hubble Space Telescope (HST) observations of Milky Way GCs and of GCs in the central 3' of M87. These authors detect an offset of 0.06 magnitudes in the typical (F606W-F814W) colors between the two GC samples, at a given (F275W-F814W) color. The similarity between their finding and ours is remarkable, considering their data and ours are entirely independent. Bellini et al. (2015) note that the different measurement methods, due among others to the different angular sizes of the objects on the sky, could lead to systematic differences between the photometry of their Virgo GCs and their MW objects, the amplitude of which might erase some of the offset they see. Similarly, our photometry may suffer from systematic errors. We have determined upper bounds on these for NGVS GCs in Paper I and will use these limits here, to evaluate to what extent they may modify inferred age and metallicity distributions.

The error budget given in Table 5 of Paper I lists the estimated maximum systematic errors of our photometric measurements. We interpret these as 3 σ uncertainties, and start by exploring the effect of 1 σ zero-point errors in any direction in multi-dimensional colorcolor space, on GC ages and metallicities. We then compare the fraction of GCs older than 9 Gyr obtained for each of these directions, and isolate the vector for which the fraction is maximal. The direction of this vector is shown in the top panels of Figure 6.4. As expected, it also moves the colors of the Virgo core GCs closer to those of the MW GCs. We note that selecting this direction is equivalent to suggesting that the systematic errors had conspired to separate the samples from each other, both in our data and in those of Bellini et al. (2015).

The age and metallicity distributions obtained for our sample of bright Virgo core GCs, for shifts of 1 and 3 σ along the selected direction (see vectors in the top panels of Fig. 6.4), are shown as orange and red distributions in Figure 6.8. The average age returned by the CE analysis of the offset colors (3 σ ) is about 3 Gyr older than with the original data. Correspondingly, fewer GCs are assigned high metallicities. The average metallicity however FIGURE 6.9 -Comparison of the age (left) and metallicity (right) distribution with different sets of model. On the x-axis, the CE is derived only using MILES based models i.e C09PM, MS11, and VM12, whereas on the y-axis, the CE is derived using the Non-MILES models i.e BC03, BC03B, C09BB, C09PB, M05, PAD, and PEG. The Virgo GC sample is plotted with black dots and the MW GCs is showing with red square. The blue line is the one-toone relation. Each panel shows a kernel-smoothed histogram on each axis that illustrates the 1-dimensional distribution of the data. FIGURE 6.10 -Comparison of the age (left) and metallicity (right) distribution with or without the K s band. On the x-axis, we plot the 7-models CE with five optical/NIR colors (ug, gr, ri, iz, and g -K s ) whereas on the y-axis we derive the 7-models CE with four optical colors (u-g, g-r, r -i, and i-z). The blue line is the one-to-one relation. Each panel shows a kernel-smoothed histogram on each axis that illustrates the 1-dimensional distribution of the data.

changes only by about 0.20 dex.

Before returning to the fraction of sample GCs with assigned young ages, we consider the broadening effect of random errors on the distribution functions.

Broadening by Random Photometric Errors The photometric uncertainties on the observed GC colors are small in our data set, but they are responsible for a significant fraction of the variance across the main locus of the GC observations in color-color space. In Paper I, we attempted to represent the GC distribution with a 1-dimensional fiducial locus, and concluded that the reduced χ 2 -distance of the GCs to that locus was too large for this 1-D locus to be an acceptable parent distribution of the data. Some of the dispersion is real. Looking at this question in more detail, we can identify regions of the color locus in which random errors explain the observed variance, and regions in which they do not. This impacts the interpretation of the width of the inferred age and metallicity distributions.

We investigate the effects of random errors with simulated cluster samples. 1846 artificial GCs are placed on a fiducial 1-dimensional polynomial locus in color space, that represents the typical locus of GCs near M87 and is obtained as described in Paper I. Their (g -K s ) values are those of the observed 1846 Virgo GCs, and their other colors are as given by the 1-D locus. To the magnitudes of the artificial GCs, we add errors drawn from normal distributions with standard deviations equal to those of the corresponding empirical clusters. The artificial object colors are then analysed for age and metallicity using the CE method.

The broadening of the GC locus due to random errors is comparable to the observed broadening at the red end of the distribution, but is narrower elsewhere (Figure 6.11). In each color-color diagram, we quantify the intrinsic variance as a function of (g -K s ) as the difference between the variance observed orthogonally to the 1-D fiducial locus, and the variance obtained in the same direction in the artificial distribution. The results are given in Tab. 6.3. The first column describes position along the color locus. Columns ( 2) to ( 5), ( 6) to ( 9) and ( 10) to (13), respectively, provide the observed dispersion (as a standard deviation), the dispersion in the artifical sample, and the resulting intrinsic dispersion of the colors of the observed sample.

Using the results in Tab. 6.3, we may re-evaluate the width of the CE-based age and metallicity distributions after correction for the broadening by random errors. To this purpose, we construct a sample of synthetic GCs whose intrinsic colors are distributed around the fiducial locus according to the intrinsic variance described in Tab. 6.3. The results of their analysis are overlaid in Figure 6.8 as dotted kernel-smoothed histograms. The resulting ranges of both synthetic age and metallicity distributions are comparable with those of the original distributions. It means that the sole random errors are not artificially creating our age distribution. Even when accounting for random errors and when considering unfavourable systematic errors, the analysis with standard SSP models inevitably leads to a distribution with a seemingly large fraction of young ages.

Influence of the stellar spectral library The conclusion of Paper I emphasized that the stellar spectral libraries used in the EPS models have a strong influence on the predictions in color-color space. In particular, we saw that the models based on the MILES library tend to reproduce the SED around the g band better, whereas the ones using the BaSeL library better match the SED of bright Virgo core GCs in the z band (the z band lies outside of TABLEAU 6.3 -Bright Virgo core GCs : observed and intrinsic color spread across the main locus. The values are standard deviations in magnitudes.
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the MILES wavelength range, hence MILES must be patched with other libraries for these predictions ; see Tab. 6.1).

In this Section, we assess the inferred age-metallicity difference related to the influence of the library. To this end, we derive metallicity and age using two different sets of SSP models. For the first one, we use only models with the MILES library i.e C09PM, MS11, and VM12. For the second one, we take all the models based on other libraries than MILES i.e BC03, BC03B, PEG, PAD, M05, C09BB, and C09PB. We show in Figure 6.9 the age and metallicity obtained with both SSP samples along with the associated histograms for the Paper I Virgo sample (black dots) and for the MW GCs (red squares). For the NGVS GCs, we observe that the estimates with the MILES library tend to favour older ages and lower metallicities. The age histogram of the sample is composed of three peaks, one main between 5 Gyr and 9 Gyr and two others at 13 Gyr and 3 Gyr. The old one (age > 9 Gyr) contains 33 % of the GC sample whereas the intermediate age one (age > 5 and < 9 Gyr) contains 51 % and the young one (age < 5 Gyr) 16 %. On the contrary, the estimates based on the other libraries tend to produce younger ages with a main peak at 3 Gyr and higher metallicities. This histogram gives 67 % of young GCs (age < 5 Gyr), 25 % of intermediate age one, and 8 % of old GCs. Interestingly, for the MW GCs, we do not observe any systematic age and metallicity differences. But for one model set more than half the NGVS Virgo core GCs are assigned ages older than 8 Gyr, whereas for the second set half of the NGVS GCs are given ages below 4 Gyr. This extreme age difference mainly arises from the color difference observed between the MILES and the BaSeL, STELIB, ATLAS ODFNEW / PHOENIX BT-Settl libraries, particularly in the g band. We note that the MS11 model grid does not include ages below 5 Gyr which could in principle bias the estimates toward older ages, but Figure 6.7 shows no pile-up of inferred ages at the lower age limit of the grid, suggesting this bias is not severe 7 .

It is worth mentionning that the ages our procedure returns with the MILES set of models are more consistent with prior expectations than the younger ages inferred with all models. In the MILES-based distribution, the old GCs could be formed in situ in the primordial M87 galaxy whereas the intermediate GCs could be created during the multiple mergers on M87. Because derived distributions still depend on the colors used, and because the MILES-based models are not a fully satisfactory representation of all the SEDs, we do not suggest only a subset of models should be kept and the others discarded. We simply emphasize with this study the strength of the model dependence of the results.

Near-IR photometry Past studies have suggested that the inclusion of near-infrared passbands in the analysis of SEDs helps break the age-metallicity degeneracy (e.g. Puzia et al., 2002;Kissler-Patig et al., 2002;Montes et al., 2014). The extent to which this is expected to be true depends on the exact color combination used (Anders et al., 2004), and also on the particular population synthesis code adopted (see Figures 12 to 16 of Paper I for examples of synthetic color grids parametrized by age and metallicity). K s magnitudes from NGVS-IR are available for the 1846 bright GCs of our Virgo core sample. Here, we briefly examine if added near-IR information modifies the age and metallicity distributions inferred with our CE method.

Unfortunately, we cannot compute u * grizK s colors with every population synthesis code, because some do not reach far enough into the near-IR. Therefore, we compare the age-metallicity estimates derived with and without the K s band using only seven models : BC03, BC03B, C09PB, C09PM, M05, PEG, PAD. We show in Figure 6.10 both age and metallicity estimates computed with (ug), (gr), (ri), (iz), (g -K s ) colors (x-axis) or only with (ug), (gr), (ri), (iz) colors (y-axis).

It appears that the inclusion of the K s photometry does not produce systematically older ages. The metallicity is also only slightly affected, with a just slightly larger fraction of metal-poor GCs (near [Fe/H] ∼ -0.5) when K s is included. For the two sets of colors used, the influence of the K s band is weak. It is likely that the age-metallicity constraints imposed by the K s band are diluted with the 4 other optical colors used in combination with it, and that the expected benefits of adding K s are partly lost because the models do not reproduce the colors as a whole well enough.

Discussion

In Section 6.2.5, we have shown that the analysis of the u * griz(K s ) colors of bright Virgo core GCs, with a collection of standard SSP models, generically leads to distributions of assigned ages and metallicities with strong extensions into the regime of young ages, the seemingly young clusters also having relatively high assigned metallicities. This is the result of the location of these GCs in color-color space, which differs from the locus of the GCs in the Milky Way. On average, the predictions of standard population synthesis models are closer to the locus of the MW globular clusters, and the bright Virgo core GCs lie on the young side of the synthetic SSP color-distributions.

Formal age distributions with tails towards intermediate or young ages have been found previously by various authors, for GCs in a variety of environments. For instance, Puzia et al. (2005c) found several M31 GCs with estimated ages around 5 Gyr and 8 Gyr, based on optical spectrophotometric indices. Park et al. (2012) assessed several giant elliptical galaxies, again using spectrophotometric indices, and concluded the age range of their GCs was broad (from 1 Gyr to 14 Gyr). Usher et al. (2015) combined (gi) colors with stacked optical and calcium-triplet spectra of GCs around various elliptical galaxies, and found ages below 5 Gyr in a small fraction of their galaxy-and-color bins. Based on HST and VLT (adaptive optics) photometry across the ultraviolet, visible and near-IR, Montes et al. (2014) found that 20 % of the innermost GCs of M87 seemed to have young ages.

In comparison with those results, the fraction of young ages obtained for Virgo core GCs when using u * griz(K s ) photometry and ten standard SSP models, appears extreme. For this particular passband combination, only a few individual SSP model grids assign the clusters mostly intermediate and old ages (some of those based on MILES stellar spectra). While the young ages of the concordance estimates are difficult to reconcile with the current views on GC formation, the results for these particular models might be more plausible. Although we caution that this may be incidental (for even these models account for the expected complexity we come back to later in this section), we briefly examine paths that could lead to relatively young objects.

One way of forming clusters late is to invoke mergers of gas-rich galaxies (Whitmore et al., 1993(Whitmore et al., , 1995;;Renaud et al., 2015). Morphological signatures of major mergers disappear on timescales of a few Gyr (Borne & Richstone, 1991, ∼ 2-3 Gyr ;). Unfortunately no detailed high resolution simulations are available to test the formation and survival of globular clusters in a major merger that would occur in as dense and hot an environment as the Virgo cluster. In a recent study, Ferrarese et al. (2016) used the low mass luminosity function of galaxies in the Virgo core to estimate the number of galaxies that might have disrupted over time in what is now M87. The resulting numbers, though uncertain, are of the order of ∼ 10 3 galaxies. In this scenario, these galaxies altogether could have brought in as many as 40 % of the current GC population of M87. In order to produce a large proportion of GCs with intermediate ages this way, one should expect several large wet mergers to have occured between incoming galaxies before their disruption. This sets rather fine-tuned timing constraints, and again simulations would be needed to test this further. Finally, a fraction of the massive star clusters in our Virgo core sample may in fact consist of previous nuclei of infalling galaxies, of which some could contain young or intermediate age populations (Georgiev & Böker, 2014).

More likely, the photometric ages derived with standard SSP models may simply be the result of using unsuitable assumptions for the synthetic stellar populations. Standard SSP models were initially built to reproduce Galactic stellar populations, and indeed we find they lead to results globally consistent with detailed, resolved studies, for a set of Milky Way GCs. Considering the color differences observed between the MW and the M87 GCs, a single relation between colors and the fundamental parameters age and metallicity is essentially excluded (Powalka et al., 2016b;Usher et al., 2015). Our study emphasizes the need for population synthesis models specifically tuned to the particular stellar population properties of the Virgo environment.

The M87 GCs are likely not ideal single stellar populations. In the Milky Way, the colormagnitude diagrams of massive star clusters exhibit multiple stellar populations, i.e. neither the GC abundances nor their ages should be described with a unique value (Piotto et al., 2015;Renzini et al., 2015). The Virgo clusters studied here are all massive, some of them may be previous galaxy nuclei, hence they are likely to be at least as complex as MW GCs.

As mentioned in Section 1, it is known that higher-than-standard proportions of old but blue stars affect colors and spectra in a way that mimics young ages (Cenarro et al., 2008;Koleva et al., 2008;Xin et al., 2011;Chies-Santos et al., 2011). Lee et al. (1994) summarized the wide variety of HB morphologies in the MW GCs. Blue horizontal branches may be due to peculiar helium abundances (e.g. Renzini et al., 2015, and references therein), to strong winds on the red giant branch (e.g. Buzzoni & González-Lópezlira, 2008, and references therein) or to tidally enhanced stellar winds in binary systems (Lei et al., 2015). As a first step, some SSP modelling codes include an option for a red or a blue HB morphology. Using M05/M11 (Maraston, 2005;Maraston & Strömbäck, 2011), we found that the red-HB version was a better representation of the locus of Virgo core GCs in color-color space than the blue-HB version. Blue stragglers or hot subdwarfs are other possible old contributors to the short wavelength light (Han et al., 2007). Fan & de Grijs (2012) compared models with and without blue stragglers and found the effect on estimated ages could reach 0.3 dex. For a 10 Gyr old GC, this translates into 5 Gyr. Photometry at shorter UV-wavelengths than used here could in principle help evaluate the effective temperatures of the hottest stars present. An attempt to identify the contribution of blue horizontal branches using HST imaging of M87 GCs at 275 nm concluded it was too small to be measured, except for a small subpopulation of extreme objects (Bellini et al., 2015).

More generally, no non-solar abundance ratios and no internal chemical abundance spreads are taken into account in the standard SSP models we have used. For instance, the influence of the helium content in stellar isochrones (Chantereau et al., 2015), the CNO abundance variation (Aringer et al., 2016), or the possible α-element enhancement (Lee et al., 2009b;Vazdekis et al., 2015) are known to modify the GC SED. In our recent letter (Powalka et al., 2016b), we suggest that a combination of these effects could produce the color difference observed between the M87 and the MW GCs. In particular, we briefly assessed the modification produced by an α-enhancement of [α/Fe] = 0.4 in the input stellar spectral library of the models. The tests were based on the population synthesis code PE-GASE coupled with synthetic stellar spectra from Husser et al. (2013). Although the direction of the shift may explain part of the observed offset between these two GC populations, its amplitude is 4 × lower than needed. In a very indirect way, the fact that current solarscaled models provide a reasonable match to MW GCs, despite the known [α/Fe]-[Fe/H] anti-correlation among these objects, also suggests α-elements are not the only players. More complex changes in the abundances patterns are probably present between Virgo and the Milky Way. Therefore, next generations of stellar population models will have to include stellar isochrones that account for a variety of initial abundance patterns as well as chemical variation along stellar evolution tracks (e.g. Georgy et al., 2013;Dotter et al., 2017), and stellar libraries with spectra for different chemical abundance patterns. Efforts in these directions are underway (Lee et al., 2009b;Coelho, 2014;Vazdekis et al., 2015;Aringer et al., 2016;Choi et al., 2016), but it will take some time to obtain models that combine all the relevant effects and extend from the near-UV to the infrared. As yet, we found no single model grid that reproduces the observed locus of Virgo core GCs in ugriz(K s ) color-space -once this shortcoming is fixed, we may be able to extract more stringent constraints from photometric surveys.

Summary and conclusion

This paper provides an update on photometric age and metallicity estimates for GCs with high quality, multi-waveband integrated photometry, in different environments.

In previous articles of this series, we acquired 1) the u * grizK s MegaCam/WirCam magnitudes for a sample of Virgo core GCs using the NGVS and 2) the u * griz photometry for a set of 11 MW GCs using well calibrated, integrated VLT/X-shooter spectra. In this paper, we compared these two samples with ten commonly used SSP models using four colors (ug, gr, ri, iz), or five (with g -K s ). We used a weighted scheme to defined a concordance estimate, called CE, which gives the photometric age and metallicity estimates on which the ten models tend to agree.

First, for the MW GCs, we verified the consistency of our estimates with those in the literature. Except for one MW GC (NGC 288), we found similar results, i.e. old ages and mostly metal-poor compositions.

Then, we applied our CE to the Virgo core GCs. We found that the large majority of our 1846 GCs are assigned formal ages younger than 9 Gyr with this method. Although, some earlier studies have found intermediate age GCs (between 5 and 9 Gyr) in galaxies, we raise serious doubts about the absolute ages the comparison of the Virgo GC colors with standard population synthesis models produces. We investigated the possible origins of these results.

First, we used the budget of systematic errors available in Paper I in order to check to what extent these errors could have conspired to produce seemingly young ages. When applying maximal zero-point shifts in the direction in 5-dimensional space that maximizes the fraction of old ages, we were only able to raise the fraction of inferred old ages ( > 9 Gyr) to 39 %. Regarding the metallicity, we only observed a small influence of the shift on the results.

In addition, we investigated the age dispersion caused by the random errors of our sample. To do so, we constructed a artificial GC sample corrected from the broadening by the random errors. The resulting ranges of both age and metallicity distributions still appeared to be comparable with the original sample. We concluded that the random errors are not responsible for the wide range of photometric ages found for Virgo core GCs.

Considering the conclusions of Paper I about the influence of stellar spectral libraries on SSP model colors, we reassessed ages and metallicities, with models using the MILES stellar library on one hand, and with models using other libraries on the other. We found that the MILES-based set favored older Virgo GC ages, with 51 % intermediate ages (5)(6)(7)(8)(9) and 33 % old ages (> 9 Gyr). This last percentage can rise up to 67 % when, in addition to using only MILES-based models, one corrects for maximal zero point errors in the direction of 5-D space producing maximal effect. Conversely, the other set predicts only 25 % intermediate ages and 8 % old ages (with a maximum of ∼ 30 % with the maximal color shift). Surprisingly, the estimates for the MW GCs did not show any systematics as a function of the model set.

Finally, we studied the influence of the K s band on the Virgo GC parameter estimates. Although several studies recommend the use of the K s band to break the age-metallicity degeneracy, the addition of a fifth color (g -K s ) in our computation gave results similar to those with four colors. In the absence of a real modification, we concluded that the K s band constraints might be diluted with the four other optical colors.

We emphasize that the proportion of young assigned ages in our standard-SSP based study of the Virgo sample is related to the color difference and environmental effect that we highlighted in Powalka et al. (2016b). In other words, the calibration of the current SSP models on MW GC data along with the color difference observed between the MW and M87 GCs necessarily induce different photometric age estimates for the two samples when the analysis is performed with the same sets of models. The possible origins of these color differences, other than age and metallicity, are numerous (chemistry, rotation, binarity, extended star formation histories, dynamical effects affecting the stellar mass function, etc.). Anticipating future papers, we note that the colors of several bright M49 GCs are similar to those of M87, inducing similar systematic offsets with respect to the MW.

From an alternative point of view, a real GC age difference could be partially responsible for the observed color discrepancies between the GCs from the MW and M87. Although the age difference is not expected to be as high as found in this study, the rich merger history of M87 (in constrast with the MW) lends credence to the formation of distinct stellar populations.

We conclude this paper by a caveat on the absolute age and metallicity estimates. Despite the high quality of the photometric data used here (and expected in future surveys), we cannot as yet reasonably use photometric ages and metallicities to unravel the detailed assembly history of galaxies such as M87. Obtaining models that actually match the multidimensional color-locus of modern collections of GC observations is a formidable task, but it is becoming more and more necessary. The narrow locus of Virgo core GCs in color-color planes will provide strong constraints on new generations of models.

Appendix A : Comparison with Cohen et al. (1998)

Only few databases of spectroscopic ages or metallicities for extragalactic GCs exist in the literature. For M87 GCs, a catalog of spectroscopic metallicities was published by Cohen et al. (1998). It has 92 objets in common with our sample. Figure 6.12 compares the metallicities inferred by Cohen et al. (1998) ([Fe/H] Cohen98 ), with those derived with the CE of our paper ([Fe/H] CE ) for the three subsets of SSP models described in Section 6.2.5). It appears that the set with all the models (blue squares) and the one with the Non-MILES models (black triangles) predict higher metallicities and lower ages than the spectroscopic estimates of Cohen et al. (1998). The relationship between inferred age and inferred metallicity is driven by the well-known age metallicity degeneracy. Conversely, the CE based on the MILES-library models (red circles) are showing reasonable agreement with [Fe/H] Cohen98 (±0.2 dex). Although these two sets of estimates agree in terms of metallicity values (assuming that the [Fe/H] reference is the same), one should keep in mind that the spectroscopic metallicities presented in Cohen et al. (1998) have been derived using a forced age of 12 Gyr. If we repeat our analysis with an imposed age of 12 Gyr, the three sets of models give CEs of metallicity consistent with the spectroscopic estimates. Prior assumption on age play a strong role in photometric and spectroscopic studies of remote clusters. La masse peut être calculée à l'aide de la luminosité d'un objet, de sa distance et en utilisant un modèle. Plus exactement, il s'agit de comparer la magnitude relative d'un objet observé (m ob j ) avec celle d'un objet théorique (m model ; dans laquelle il existe une information sur la masse à travers le rapport masse-sur-luminosité).

Cependant, en pratique, la plupart des modèles calculent un spectre qui est normalisé à une masse solaire et déterminent, à partir de ce spectre, une magnitude absolue M model/1 M ⊙ . En conséquence, il est tout d'abord nécessaire de convertir M model/1 M ⊙ en m model . C'est dans cette étape que la distance d (en parsecs) et le modèle choisit interviennent, avec :

m model/1 M ⊙ -M model/1 M ⊙ = 5 log(d) -5
L'obtention de m model/1 M ⊙ permet ensuite d'obtenir une estimation de la masse (Masse) en imposant m ob j = m model , ou plus précisément : The masses for the MW GCs have been taken from Boyles et al. (2011). (*) As explained in the section 6.3.1, in order to derive the mass of a GC based on a model, one should use an estimate of the metallicity and age of the GC. For the GCs marked with a star(*), the age and metallicity derived in the previous section are wrong which induce that the masses are also wrong. FIGURE 6.14 -Fr : Histogramme de la masse photométrique des amas globulaires de Virgo obtenue à l'aide des modèles de synthèse de populations stellaires de PEG et de C09PB.

m ob j = m model/1 M ⊙ -2.
En : Histograms of two photometric estimates of the Virgo GC masses obtained with the PEG and the C09PB models Travaux complémentaires des spectres avec la même normalisation ou la même unité, ce qui demande l'ajout d'une constante différente pour chaque modèle. Les résultats de l'estimation de la masse des amas de la MW sont donnés dans le tableau 6.4. Pour chacun de ces amas, la masse obtenue est une médiane de la masse prédite par les deux modèles (PEG et C09PB). Une deuxième estimation basée sur les résultats de Boyles et al. (2011) est aussi donnée. De manière générale, on constate un accord plutôt bon entre les deux estimations. Dans le cas des amas NGC 288, NGC 7078, NGC 7089 et NGC 7099, les écarts plus importants entre nos résultats et ceux de la littératures sont principalement produits par une mauvaise estimation de l'âge et de la métallicité de l'amas, ce qui influe sur le rapport masse-sur-luminosité utilisé.

Pour finir, je me suis intéressé à l'échantillon d'amas globulaires autour du centre de l'amas de Virgo obtenu dans le chapitre 3. Pour ces 1846 amas, j'utilise une même distance de 16,5 Mpc qui correspond approximativement à notre distance à l'amas de Virgo (Mei et al., 2007). Dans les figures 6.13 et 6.14, je compare les estimations obtenues avec le modèle PEG et celles obtenues avec C09PB. On constate que les deux modèles prédisent des masses comparables avec une faible dispersion entre leurs résultats. La masse moyenne de l'échantillon est autour de 10 6 M ⊙ avec certains amas aussi massifs que 10 7 M ⊙ .

Estimations spectroscopiques de l'âge et de la métallicité des amas

Dans les sections précédentes, je me suis intéressé à estimer les paramètres physiques des amas globulaires en utilisant des données photométriques. Comme introduit au début de cette thèse, la spectroscopie peut aussi être utilisée pour obtenir les paramètres tels que l'âge et la métallicité d'un amas globulaire. Cela étant, je souhaite aborder brièvement une méthode d'estimation relative à la spectroscopie. Cette méthode est basée sur l'étude des indices spectroscopiques de Lick i.e. de la profondeur de certaines raies spectrales.

Ces indices sont définis pour plusieurs éléments présentés dans le tableau 6.5. La première colonne indique le nom de l'indice étudié et la deuxième contient l'intervalle de longueur d'onde dans lequel il est présent. Les troisième et quatrième colonnes sont les intervalles de longueur d'onde qui définissent deux points d'ancrage autour de l'indice étudié. Enfin, la dernière colonne indique si il s'agit d'un indice atomique (largeur équivalente calculée en Å) ou moléculaire (rapport de flux calculé en magnitudes).

Il est important de noter que les indices de Lick doivent être calculés avec un spectre d'une résolution donnée et précisée dans le tableau 6.6 (défini historiquement entre 8.4 Å < FWHM < 11.5 Å en fonction de la longueur d'onde).

Les deux points d'ancrages F pB et F pR sont obtenus en intégrant le spectre (dégradé à la résolution nécessaire) dans les intervalles de longueurs d'onde associés (de λ 1B à λ 2B et de λ 1R à λ 2R ), tel que : 

F pB = 1 ∆ λ B λ 2B λ 1B F λ dλ et F pR = 1 ∆ λ R λ 2R λ 1R F λ dλ avec ∆ λ B = λ 2B -λ 1B et ∆ λ R = λ 2R -λ 1R .
(Å) -λ 2 (Å) λ 1B (Å) -λ 2B (Å) λ 1R (Å) -λ 2R (Å)) CN 1
4142. In each measurement, each pixel of the flux is pulled from a normal distribution centered on the initial pixel flux values and with a standard deviation equal to the error on the pixel.

CHAPITRE 7

Etude de la distribution spatiale des amas autour de M87

Introduction au chapitre

Dans ce dernier chapitre de ma thèse, je m'intéresse brièvement à la distribution spatiale des amas globulaires autour de M87. Plus exactement, j'analyse la distribution spatiale des couleurs des amas globulaires dans le centre de l'amas de Virgo.

A l'inverse des autres chapitres, celui-ci ne comporte pas de travaux complémentaires mais uniquement une partie dédiée à un résultat préliminaire de spectroscopie.

Dans le chapitre précédent, la comparaison de la photométrie des amas m'a permis de leur attribuer formellement des "âges" et "métallicités" qui, sans être fiables dans l'absolu, résument bien leur positionnement dans l'espace des couleurs. C'est dans ce sens très particulier que les termes "âge" et "métallicité" seront utilisés dans ce chapitre. Dans la lettre, je scinde l'échantillon du chapitre 3 en trois sous-échantillons basés sur l'âge relatif des amas i.e sur leurs couleurs. En effet, comme détaillé dans l'article, l'âge relatif (e.g. 20 % des amas les plus jeunes) représente une position particulière dans l'ensemble 4-D des couleurs. Par exemple, dans un cas plus simple à deux dimensions (ug en fonction de gr ; voir la Figure 7.4), les âges jeunes sont situés à l'opposé des âges vieux par rapport à la distribution des amas : les deux groupes ont donc des couleurs bien distinctes. L'analyse présentée dans ce chapitre est basée sur ce genre de différences de couleurs.

Avant de calculer l'âge en utilisant les couleurs des amas autour de M87, nous avons jugé important de corriger des effets spatiaux pouvant modifier les couleurs de nos amas (e.g. des problèmes de détecteur). Pour ce faire, nous avons imposé que la distribution spatiale des couleurs des étoiles dans le champ de vue soit uniforme. Cette hypothèse est valide s'il n'y a pas de courants stellaires ou autres perturbations stellaires qui produisent une inhomogénéitée des couleurs des étoiles. La méthode exacte est détaillée dans l'article.

Après avoir assuré l'homogénéité des couleurs des étoiles, nous nous sommes intéressés à estimer l'âge des amas. Pour ce faire, nous avons utilisé l' "estimation de concordance" (CE ; définie dans le chapitre précédent) pour 3 groupes de modèles différents. Le premier groupe utilise les modèles basés sur MILES i.e C09PM, MS11 et VM12 (la nomenclature est celle du chapitre 6). Le deuxième groupe utilise uniquement les modèles qui ne sont pas basés sur MILES i.e BC03, BC03B, C09BB, C09PB, M05, PEG et PAD. Finalement, le troisième groupe est composé de tous les modèles précédents (i.e 10 modèles).

Pour chacun de ces groupes, nous divisons les amas en trois sous-échantillons basés sur l'âge relatif des amas. Le premier sous-échantillon (nommé A) est composé de 20 % des amas les plus jeunes, le second (nommé C) de 20 % des amas les plus vieux et le dernier est composé des 60 % des amas restants (i.e un âge relatif intermédiaire ; nommé B).

En étudiant la distribution spatiale de ces sous-échantillons pour chaque jeu de modèles, Introduction au chapitre on observe qu'il existe une zone au sud de M87 dans laquelle les couleurs de la majorité des amas sont significativement différentes de celles des amas situés à l'extérieur. Après avoir testé plusieurs facteurs d'erreurs possibles comme l'extinction ou notre correction des inhomogénéités spatiales, nous concluons à l'existence d'une telle zone sans pour autant conclure sur la nature exacte de cette dernière. Les amas situés dans cette zone sont nommés "PSGCs" pour "Potential Substructure Globular Clusters".

Dans la partie finale, je présente un résultat préliminaire, tiré d'un projet de spectroscopie d'amas globulaires dans lequel je suis impliqué. Je l'obtiens en exploitant le spectre d'un amas globulaire justement situé dans la zone particulière que mon analyse spatiale a mise en évidence au sud de M87. J'ai acquis ce spectre avec l'instrument X-shooter en Mai 2017. Même si sa réduction repose pour l'instant uniquement sur les outils standards de l'ESO ("pipeline"), il s'agit d'une avancée au sujet de l'article, que la comparaison future entre plusieurs spectres enrichira.

Article [English]

The following subsections are part of the article Powalka et al. 2017b (in preparation) named "The Next Generation Virgo Cluster Survey (NGVS). XXV. Potential sub-structure around the Virgo core" with the help of the following co-authors : Ariane Lançon, Thomas H. Puzia, Eric W. Peng, Chengze Liu, Roberto P. Muñoz, John P. Blakeslee, Patrick Côté, Laura Ferrarese, Joel Roediger, Rúben Sánchez-Janssen, Hongxin Zhang, Patrick R. Durrell, Jean-Charles Cuillandre, Pierre-Alain Duc, Puragra Guhathakurta, S. D. J. Gwyn, Patrick Hudelot, Simona Mei, and Elisa Toloba.

The article is still in preparation. In particular, we need to conduct additional statistical tests in order to fully characterize the possible errors on our results.

Introduction

In order to unravel the history of a present-day galaxy, one may try to disassemble all the remnants of past interactions and trace back the events that occured since the galaxy's formation.

Previous seminal studies suggested that globular clusters (GC) could be formed through galaxy mergers (in dense star forming regions ; Ashman & Zepf 1992) or accreted through disrupted galaxies (Côté et al., 1998). Such interactions are known to leave morphological signatures for as long as few Gyr (∼ 2-3 Gyr for a major merger ; Bome& Richstone1991). As the GCs keep the chemical imprints of their birth place, studies of GC populations could potentially help reconstructing such past interactions.

In previous papers (Powalka et al., 2016a, hereafter Paper I), we focused on the GCs in the Virgo core region (around M87) using the data of the Next Generation Virgo Cluster Survey (NGVS/NGVS-IR, see Ferrarese et al., 2012;Muñoz et al., 2014). We estimated the photometric age and metallicity of these GCs using different Single Stellar Population (SSP) models and four colors (Powalka et al. 2017 : hereafter Paper II). Although the absolute age and metallicity are delicate to obtain, we emphasized that the relative values of these estimated parameters contain rich information on the relative position of the GCs in color-space, and may be sensitive to subtle differences such as those induced by modified abundance ratios.

Therefore, in this letter, we analyse the spatial distribution of the energy distributions of Virgo core GCs using derived quantities (mainly formal estimates of age and metallicity) to summarize the SED-information. Knowing that the CD galaxy M87 has experienced multiple mergers, we aim to search for local variations that might indicate differences in GC origins.

The data : Next Generation Virgo Survey GCs

Colors and magnitudes

In this paper, we use the high-quality photometry sample of NGVS Virgo GCs taken from Paper I1 . This dataset consists of 1846 GCs located within a 3.62 deg 2 field of view around M87 with photometry in u * , g, r, i, z from CFHT/MegaCam and K s from CFHT/Wir-Cam. The SExtractor magnitude random errors in this sample are smaller than 0.06 mag in each band and a budget of systematic errors including errors on calibration, extinction, and filter transmission is presented in the same paper. The GC sample contains predominantly bright Virgo GCs with mean magnitudes of approximatively 23. 05, 21.88, 21.32, 21.05, 20.87, and 20.90 AB mag in the u * , g, r, i, z and K s filters, respectively. These magnitudes FIGURE 7.1 -GC spatial distribution, color-coded by the stellar color homogeneity correction detailed in Section 7.2.2 ; The numerically intuitive scaled color bar indicates the relative color offset from the average for each particular filter combination. Each panel represents the correction for one particular color, indicated in the bottom right corner. The black rectangle highlights the position of the potential structure discussed further below. FIGURE 7.2 -Spatial distributions of our sample GCs after separation into three relative age groups (columns for groups A , B and C , containing the 20% formally youngest GCs, C the 20% formally oldest ones, and B the 60% remaining GCs), while each row of the figure is associated with a different set of SSP models. SET1 contains three SSP models based on the MILES library, SET2 seven models based on the BaSeL, STELIB, and AT-LAS libraries, and SET3 groups all ten models used in Paper I. We recall that the formal ages, derived from comparisons between observed colors and SSP models, are not used for their absolute value but only as a particular way of summarizing the position of GCs relative to the typical model locations in color-space. The display color is related to the local density of GCs, as estimated with a kernel density estimator (the same kernel is used in all panels). Blue colors indicate low density, while red colors mark high density regions. The black dashed rectangle south of M87 shows a region containing a relatively dense accumulation of younger GCs. We also point out the central disky alignment of GC belonging to group C that are symmetrically distributed around the M87 core. This structure is aligned with the large-scale GC distribution. correspond to typical GC masses of about 2 × 10 6 M ⊙ at the distance of M87. For additional information on the characteristics of the NGVS photometry we refer the reader to Paper I.

Relative ages and metallicities

In Paper II, we focused on estimating the photometric ages and metallicities of Paper I GCs. We conducted these estimates comparing theoretical colors from ten SSP models available in the literature with our observed GC colors. We derived for any given GC a "concordance estimate" (CE) value, defined as the photometric age and metallicity estimate on which the models tend to agree. In practice, the resulting values rest on several simplifications and uncertainties. The unrealistic approximation of a GC with a SSP, the discrepancies due to random/systematic photometric errors, the model-dependence, and the age-metallicity degeneracy are amongst the main issues which are known to affect the final estimates. In the end, we emphasized how delicate it is to precisely estimate an absolute value of age and metallicity. Therefore, in this letter, we favour the use of the relative age and metallicity scale, which is a surrogate of the relative position of each GC in a multidimensional color space.

Following the analysis in Paper II, we derive for each GC, three different stellar population parameter estimates based on three different sets of SSP models used in Paper II. The first set (SET1) contains three SSP models based on the MILES library for the optical wavelength (C09PM, MS11, VM12). The second one (SET2) includes seven models based on the BaSeL, STELIB, and ATLAS libraries (BC03, BC03B, C09BB, C09PB, M05, PAD, PEG). Finally, the third one (SET3) regroups all these ten models. In this letter, we use these three sets to search for any dependence of our analysis on the input stellar libraries, which reveals inhomogeneities in the spatial distribution of the GC spectral energy distributions (SEDs), which could be signatures of starburst events in the galaxy's past. 

Stellar color homogeneity

In previous papers of this series, point sources common to NGVS and to the SDSS were used to calibrate the NGVS photometry. To assess the internal homogeneity of the photometry more precisely, we investigate the distribution of stars in the NGVS pilot field, using a larger and deeper stellar sample without the restriction of good SDSS photometry. Although the core of Virgo is located in the direction of Milky Way halo structures such as the Sagittarius stream and the Virgo overdensity (Durrell et al., 2014;Lokhorst et al., 2016), we assume average stellar colors are intrinsically uniform over the field of interest. We select the stars for this procedure using the uiKs color-color diagram (see Muñoz et al., 2014, for details). Then, taking the (g-i) color as a reference, we divide the sample into four (g-i) color bins

: i) 1.0 < (g -i) < 1.2, ii) 1.2 < (g -i) < 1.4, iii) 1.8 < (g -i) < 2.0, and iv) 2.5 < (g -i) < 2.7.
In each of these bins, we enforce that for every color in [(ug), (gr), (ri), (iz)] the stellar color maps are spatially uniform. To do that, we derive the mean color within a radius a 0.2 degree of any position, and force this local mean to equal the global mean. For each bin and each color, this provides a map of corrections which ensures a uniform stellar color distribution over the entire NGVS pilot field. After verifying that the four maps show reasonable agreement, we compute their respective average and apply the resulting local color-corrections to the corresponding GC colors.

Figure 7.1 shows the GC spatial distribution, color-coded by the applied colorcorrections, for the four colors that we are using. The highest correction values are observed in the (u-g) and (i-z) maps with an amplitude from -0.04 to 0.06 mag. The other colors (g-r) and (r-i) are less affected by the correction with an amplitude from -0.02 to 0.02 mag. We observe that the (u-g), (g-r), and (i-z) correction maps are not exhibiting similar structure in each of these colors. On the contrary, the (g-r) and (r-i) correction maps highlight a common feature with opposite correction values, as a consequence of our choice of (g-i) to define stellar subsets.

In the following, the relative GC ages are estimated after the inclusion of the above correction in the four colors.

Results

We divide our GC sample, for each SET1-3 with their formal concordance stellar population parameter estimates in three different groups of relative formal age. The first one (A ) comprises 20% of the relatively youngest GCs. The second group (B) contains the intermediate-age GCs (60% of the GC sample for each set) and the last one (C ) takes the 20% of the GCs with the relative oldest ages.

Figure 7.2 illustrates the spatial distribution of each GC sample A , B and C as a function of the three sets of estimates SET1, SET2, and SET3 defined in Section 7.2.2 for various model selections. The color code maps the local density of GCs, derived with a gaussian kernel density estimator with the same bandwidth in each of the nine panels.

We notice that the distributions from the SET1, SET2, or SET3 do not exhibit significant discrepancies for each age group A , B, and C . Although each set gives slightly different absolute ages (see also Paper II), we observe the same relative features independently of the model set. This emphasizes that what we call the 'relative age value' only probes the relative position of any GC in the 4-D color-space, which does not strongly depend on the set of models. Not surprisingly, we find in each panel an over-density of GCs concentrated around M87, a small region which contains about 50% of our GC sample. It is clearly visible at the center of the distribution in each panel. As the GC distribution is not homogeneous and exhibits a centrally concentrated number density profile, we additionally present in Figure 7.3 an alternative color-coding defined by the ratio of the sub-sample density (A , B, or C ) by the full sample density (A + B + C ). This plot represents now the proportion of GCs in each of the A , B, or C samples relative to the full distribution, i.e. a significance map that indicates the local overdensity of a given age group.

Looking at sample A in Figures 7.2 and 7.3, we notice an overdensity of GCs belonging to group A in the South of M87 that is centered on RA = 187.35 and DEC = 12.2 and highlighted by the black rectangle. Surprisingly, in this area, we do not find any large Virgo galaxy which could potentially host this accumulation of GCs. In the left and middle panels of Figure 7.3, we confirm that the area is mainly composed of group A GCs unlike its surrounding which are principally occupied by GCs belonging to group B. This is why in Figure 7.3 we find a lack of group B GCs located in this region. These observations lend credence to a possible GC sub-structure with a 4-D color space position different from those of its neighbouring GCs in the spatial distribution.

Although they seem less apparent, in the group-C panels of Figure 7.3, we notice similar overdensities of GCs in the vicinity of M87 towards the east and west. These features mainly contain formally old GCs unlike the surrounding regions. The relative proximity to M87 may indicate that this GC sub-population was formed in an accretion, potentially of a massive satellite galaxy with its own system of GCs which now form a coherent phasespace structure. This will be target of a future kinematic study. However, we stress that all features are not aligned with the M87 jet structure, but their proximity to the M87 center may reduce the robustness of our result through the potential difficulty of disentangling the light of these GC sub-populations from the M87 light.

In this letter, we focus on the overdensity to the south-east of M87 since it has the strongest signal in the maps. Within this region, ∼ 20 GCs belong to group A with photometrically computed stellar masses (0.4 -3) • 10 6 M ⊙ . Hereafter, these 20 GCs are labelled PSGCs (Potential Substructure GCs). In Figure 7.4, we look at their color-color distributions in the context of the full GC sample. We color-code the symbols with the age and metallicity results from our CE. Top and bottom panels are, respectively, color-coded by the CE age and metallicity derived with SET1 models. In each case, both (u-g) 0 vs. (g-r) 0 and (g-r) 0 vs. (i-z) 0 color-color diagrams are plotted. PSGCs are highlighted with white squares. For both ugr and griz diagrams, we observe that the sequence of the PSGCs is tighter compared to the full GC sample. Although the gradients of photometric CE age and metallicity have a weak meaning, the PSGC locus seems to follow the relatively young isoage contour in both color-color diagrams, whereas we observe no correlation between the PSGCs locus and the relative iso-metallicity tracks. This supports the fact that the overdensity observed in Figures 7.2 and 7.3 has its cause in the combination of the spatial clustering and the 4-D color-space age coherence.

Discussion

Looking at the GC spatial distribution as a function of the relative GC age around M87, we found a relatively small area to the south-east of M87 (∼ 0.1 deg 2 ), where GCs consistently exhibit different color properties than their surrounding counterparts. The strength of this detection lends credence to a potential GC structure orbiting M87, but the absence of a host galaxy in this area poses questions about the origin of this structure. In the following, we try to enumerate the potential physical effects which could produce the PSGCs starting from instrumental issues to astrophysical process.

Instrumental Spatial Inhomogeneity : As explained in Section 7.2.2, we applied to the GC sample a color correction constrained by the uniformity of each stellar color map (see Fig. 7.1). The procedure aims to correct any instrumental spatial inhomogeneity which could potentially produce color discrepancies. However, in practice, the method is computed using the local density within a certain radius (0.2 deg ; in order to surround enough stars), a selected sample of NGVS stars, and using (g-i) as the reference color. The amplitude of the corrections is related to these initial parameters and hence will produce slightly different result for different initial choices. For instance, the increase of the local density kernel radius from 0.2 to 0.3 deg increases the size of the sampled structure and reduces the maximum amplitude of the correction values. For (u-g), (g-r), (r-i) and (i-z), these maximum values are reduced by 5%, 42%, 29%, and 14%, respectively. With the use of another sample of stars also based on NGVS but with a different selection, we observe no significant differences in our results. Finally, our choice of (g-i) as a reference color is induced by the photometric quality of the g and i bands, but a different choice would produce slightly different corrections. In short, the corrections applied in Section 7.2.2 can vary, however, none of these variations significantly affect the results on the region of interest in this letter. Therefore, whatever the correction maps that we use, we observe a structure in the south-east of M87. It is worth mentioning that without applying the stellar-color homogeneity correction, described in Section 7.2.2, the group-A GC overdensity is even stronger.

Extinction : The dereddening of the GC photometry is based on the Schlegel map (Schlegel et al. 1998) as described in Paper I. The average extinction value along the line-of-sight towards M87 is small (i.e. E (B-V ) = 0.024 mag) which has a negligible influence on the PSGCs. In both the Schlafly & Finkbeiner (2011) and the Schlegel et al. (1998) extinction maps, we observe that the NGVS central field is located in a line-of-sight unobscured by dust clouds. The closest cirrus is located ∼ 1 deg south of M87, whereas the PSGCs are centered about 0.2 deg in the same direction. This result is also confirmed in studies of intracluster light in the Virgo core region by Rudick et al. (2010). However, as a sanity check, we assess the potential effect of a stronger and weaker extinction values along the line-ofsight of the PSGCs and recompute the above analysis with 3× more and 3× less extinction, solely for the PSGCs. When multiplying the extinction by a factor 3, we only observe a mean age and metallicity variation of 0.3 Gyr and 0.018 dex, respectively. When dividing by the same factor, these variations reach 0.10 Gyr and 0.03 dex. In both cases, as the extinction along the line-of-sight towards M87 is small, the PSGCs are remain notoriously different from their neighbour GCs and, thus, none of our conclusions are modified.

Physical Substructure : It is virtually certain that M87 must have endured multiple mergers in its past which, according to the theory, add numerous existing and form new GCs in the process (e.g. Hartwick, 2009;Renaud & Gieles, 2013). In practice, in a recent study Ferrarese et al. (2016) found that as many as 40% of the current M87 GCs could come from disrupted satellites. This large number lends support to the idea that, within M87, we should observe GCs of various origins with potentially significantly different chemodynamical properties. Therefore, the GC substructure discovered in this work could belong to the remnant GC system of a disrupted galaxy. In this case, we may observe some similarities in the dynamics of the PSGCs. Hence, we examine the radial velocity of each GC in the corresponding area in the south-east of M87 using literature values [START_REF] Peng | NGVS-S : A Comprehensive Spectroscopic Survey of Virgo[END_REF]. Unfortunately, only seven of the PSGCs have a measured radial velocity available and the large spread of these values, from 800 to 1500 km/s, does not shed clearer light on their dynamical coherence. More radial velocity measurements are needed to assess whether the PSGCs are members of the same dynamical group.

Besides the radial velocity estimates, we examine the physical processes that may lead to a similar GC substructure. If we consider that the PSGCs have been accreted in a recent merger of a smaller satellite galaxy, then these GCs are expected to be generally old (e.g. Puzia & Sharina, 2008;Georgiev et al., 2008). Although the PSGCs are selected due to their formally younger ages, we remind the reader that what we call "relatively young ages" only refers to a particular 4-D color-space position compared to the "formally old", reference GCs (i.e. Milky Way GCs). Besides an age difference, such color discrepancies may also be the result of a different chemical composition or other physical properties (see Powalka et al., 2016b) compared to their surroundings. However, in view of the expected number of dozens of mergers that occurred throughout the assembly history of M87 the fact that we only observe so few PSGCs features points towards an early termination of dissipative mergers which could have contributed younger GCs (e.g. Thomas et al., 2005;Cappellari, 2016).

Alternatively, due to the rich assembly history of M87 and the properties of the PSGCs, we cannot exclude that we are looking at a genuinely young GC substructure. Starting from this assumption, it is possible to trace the presence of planetary nebulae (PNe) created by intermediate-mass stars in relatively young, a few Gyr old star clusters. In a recent study, Longobardi et al. (2015) found that the presence of a population of PNe that could be related to a young halo substructure. Their observations highlight a stream of PNe that could be the result of a recently disrupted satellite galaxy in the M87 halo. The PSGCs are close but not exactly located in the potential origins of the PNe structure (a difference of ∼ 0.05 deg). A more complete assessment is needed to clarify whether or not there is a relation between the PN substructure and the PSGCs that we observed.

Conclusion

The analysis in this letter focused on potential GC structures around the Virgo core cD galaxy, M87. We assessed the spatial distribution of about ≈ 1800 GCs took from Paper I. In order to avoid any instrumental effects, we corrected the GC colors from any colors in-homogeneity in our field of view. To do that, we used a sample of NGVS stars in the same field and we ensured that the stellar color maps in (ug), (gr), (ri), and (iz) colors are homogeneous.

After these corrections, we derived the photometric age and the metallicity of each GC using the CE described in Paper II. Although the absolute age is meaningless, we suggested that the relative age is a good tracer of the relative 4-D color space position. Therefore, we divided the sample into three relative age bins : A) 20 % of the youngest GCs , B) 60% of the relative intermediate age GCs, and C) 20 % of the oldest GCs. These bins regroup the GCs with similar color properties.

Looking at the spatial distributions of each bin, we observed an 0.1 deg 2 overdensity of GCs in the bin A located in the south of M87 (RA = 187.35 and DEC = 12.2). Within the two other bins, B and C, the density of GCs inside and around the area of interest is uniform. Surprinsingly, in this area, we found no large Virgo galaxies which could potentially host these GCs. Therefore, we suggested the presence of a potential GC structure orbiting around M87.

Regarding its origin, we excluded several potential effects from the instrumental issues to the extinction. Then, we looked at the physical processes that could create this GC structure. Although we develloped some clues related to a recent disrupted galaxy, an additionnal spectroscopic dataset is needed to conclude on the sources of this overdensity. CHAPITRE 7. Etude de la distribution spatiale des amas autour de M87 Résultat préliminaire 7.3 Résultat préliminaire L'analyse fine de la photométrie m'a permis de classer les amas suivant leurs couleurs, et d'identifier une région aux couleurs d'amas apparemment particulières. La spectroscopie est nécessaire pour rechercher les causes plus fines de tels écarts. Cela étant, nous avons eu la chance d'obtenir 10 demi-nuits d'observations avec X-shooter (VLT) pour les amas globulaires autour de M87. Ces observations étaient en mode "visiteur", ce qui m'a donné l'occasion d'aller observer directement à Cerro Paranal en Mai 2017. Suite à ces observations, plusieurs spectres des amas dans le centre de Virgo ont été obtenus dont 2 dans la région d'intérêt trouvée dans ce chapitre. Bien qu'une réduction propre de ces spectres demande un certain temps, il est possible d'obtenir un premier aperçu acceptable de ces spectres en utilisant le pipeline de réduction disponible pour X-shooter (v2.9.0). Grâce à cela, j'ai pu débuter l'analyse du spectre d'un amas situé au sud de M87 dans la zone des PSGCs. Ce spectre a un rapport signal-sur-bruit S/N ∼ 31, ce qui rend l'étude des indices possible et potentiellement convaincante.

En suivant une méthode similaire à celle de la Section 6. Par comparaison la prédiction CE basée sur la photométrie NGVS pour ce même amas est de Age ∼ 2.7 Gyr et [Fe/H] ∼ 0.05 (pour le modèle PEGASE uniquement, les estimations photométrique sont de Age ∼ 1.9 Gyr et [Fe/H] ∼ 0.17). On constate que, avec les modèles actuels, les deux sources utilisées (photométrique : NGVS ou spectroscopique : X-shooter) donnent des paramètres (âge et métallicité) comparables. La spectroscopie semble indiquer des métallicités encore plus élevées que celles que donnaient l'analyse photométrique, ou bien simplement une abondance accrue en éléments α (Mg b y étant sensible). Cependant, il est important de rappeler la conclusion du chapitre précédent, c'est à dire que les modèles standards actuels ne semblent pas pouvoir reproduire la diversité observée dans les couleurs des amas de M87. En conséquence, les estimations basées sur ces modèles ne sont pas forcément fiables.

Cette précision mise à part, si on s'autorise à penser que cet amas (PSGC) est plus jeune que 5 Gyr, cela pourrait impliquer une fusion récente de plusieurs galaxies accompagnée d'une formation d'étoiles. De manière générale, il semble que cette zone au sud de M87 abrite des amas globulaires aux propriétés différentes de celles des amas de M87 et de la MW, ce qui rend cette zone intéressante à étudier à l'avenir. In each measurement, each pixel of the flux is pulled from a normal distribution centered on the initial pixel flux values and with a standard deviation equal to the error on the pixel. We observe that the PSGC seems to be young and metal-poor consistently with a recently created GC.

Conclusions

Pour conclure ce manuscrit, je récapitule tout d'abord les résultats importants obtenus durant cette thèse. Ensuite, je développe les progrès qu'il reste encore à faire ainsi que les directions à prendre pour y arriver.

Récapitulatifs Partie I

Dans la première partie de ma thèse, je me suis intéressé au relevé NGVS. Il s'agit de 104 degrés carrés d'observation autour des deux galaxies principales de l'amas de Virgo (M49 et M87) dans les bandes u * , g, r, i, z et K s avec les instruments MegaCam et WIRCam. L'étude menée dans cette thèse s'est principalement concentrée sur les 3,62 degrés carrés centraux autour de M87.

Dans un premier chapitre, j'ai analysé la calibration photométrique de ce relevé en comparant deux calibrations possibles. La première est une calibration basée sur la comparaison des flux d'étoiles communes entre NGVS et un catalogue externe (e.g. SDSS). La seconde est définie par la comparaison des distributions d'étoiles dans un espace couleur-couleur entre NGVS et une référence (e.g. un modèle théorique). Cette seconde méthode s'appelle "Stellar Locus Regression" (SLR).

• La calibration basée sur un catalogue externe est sensible aux erreurs sur le catalogue utilisé. En d'autres termes, toutes les erreurs qui affectent le catalogue externe affecteront aussi le relevé à calibrer. Par exemple, dans le cas de NGVS, l'utilisation de SDSS comme catalogue de référence introduit des incertitudes plus élevées pour les bandes u et z que pour les autres filtres.

• Tout comme la calibration précédente, la SLR est une méthode sensible au choix de la référence. En pratique, les incertitudes sur les librairies stellaires actuelles restreignent l'efficacité de cette méthode. De plus, cette technique requiert un point de référence dans la distribution couleur-couleur des étoiles, appelé "kink". Ce "kink" permet d'assurer la bonne superposition des distributions i.e une bonne calibration du relevé. Cependant, il n'est pas visible pour toutes les combinaisons de couleur, ce qui est un désavantage de la méthode SLR.

Au vu de ces conclusions, j'ai choisi d'utiliser la calibration basée sur un catalogue externe (SDSS) plutôt que la technique SLR. Enfin, pour finir le premier chapitre, j'ai quantifié les erreurs pouvant être produites par de mauvaises relations de transformation. Pour appuyer mes propos, j'ai analysé plusieurs relations de transformation entre les filtres Me-gaCam et SDSS.

• Il existe différents moyens de produire des relations de transformation entre deux systèmes de filtres. Il est commun de voir des relations basées sur des étoiles être utilisées pour étudier des galaxies. Cependant, pour réduire au maximum les erreurs de photométrie, il est nécessaire d'utiliser des relations adaptés aux objets étudiés (tant en termes de couleur qu'en termes de type d'objet). Dans le cas de SDSS et MegaCam, l'utilisation d'une mauvaise relation peut engendrer des incertitudes sur la photométrie finale qui atteignent jusqu'à 45 mmag sur (g-r) et (i-z). Il est important de noter que les filtres MegaCam et SDSS ont des courbes de transmission proches et les incertitudes sont donc potentiellement plus élevées pour d'autres système de filtres moins similaires.

Après avoir vérifié la calibration de NGVS, j'ai sélectionné un échantillon d'amas globulaires autour de M87. Pour ce faire, j'ai effectué plusieurs étapes de réduction pour assurer des erreurs aléatoires très faibles sur les objets (inférieur à 0.06 mag dans chaque bande). A ce niveau, de nombreuses galaxies et étoiles sont encore présentes dans le catalogue. Cela étant, pour sélectionner uniquement les amas, j'ai utilisé une méthode de "sigma clipping" dans un diagramme uiK (u-i vs. i-Ks) modifié par un critère de compacité.

• Le diagramme uiK permet de séparer de manière efficace les galaxies, les étoiles et les amas globulaires. De plus, l'utilisation d'un critère de compacité basé sur les corrections d'ouvertures permet de prendre en compte la taille de l'objet et ainsi d'augmenter la séparation entre les galaxies (très larges), les amas et les étoiles (sources ponctuelles).

• Au final, l'échantillon est composé de 1846 amas globulaires autour de M87 avec une photométrie très précise. De plus, j'ai effectué un budget des erreurs systématiques pouvant affecter cet échantillon. Comparé à d'autres catalogues d'amas autour de M87, notre échantillon se révèle de très bonne qualité.

Partie II

Dans la seconde partie de ma thèse, j'ai comparé les couleurs de l'échantillon des amas de M87 avec plusieurs autres échantillons d'amas appartenant à d'autres galaxies. La comparaison a principalement été faite avec 11 amas globulaires galactiques pour lesquels des spectres de très bonne qualité étaient disponibles. La précision sur la spectro-photométrie des spectres était comparable à celle de NGVS.

• La comparaison entre les amas autour de M87 et ceux autour de la Voie Lactée met en avant des différences de couleur encore jamais observées. Ces différences se traduisent par une diversité de relations couleur-couleur dans les plans griz (g-r vs i-z) et ugr (u-g vs g-r). Après vérification, il ne s'agit pas d'un effet d'extinction, d'IMF, d'incertitudes de calibration, de différence de masses ou de variation d'âge ou de métallicité.

• Cette même comparaison montre qu'il existe des amas de Virgo, généralement éloignés de M87, qui possèdent des couleurs semblables à celles des amas de la Voie Lactée. Il est déjà connu que les fractions d'amas bleus et rouges dépendent de la distance au centre de M87 mais grâce à notre résultat, il semble aussi que cette distance affecte les relations couleur-couleur des amas.

• En résumé, Il semble probable que l'environnement soit à l'origine de ces différences de couleurs. Un environnement dense, comme celui proche de M87, produit des amas suivant une relation (gr)vs.(iz) plus pentue qu'un environnement peu dense comme celui de la Voie Lactée. Cependant, l'origine exacte de cet effet reste énigmatique. Une piste possible se base sur les variations d'abondances chimiques dans les étoiles de l'amas générées par une différence d'environnement.

Par la suite, j'ai comparé d'autres échantillons pour tenter de mettre en avant ces mêmes effets environnementaux pour d'autres galaxies. Cependant, il est nécessaire d'avoir une photométrie de très bonne qualité pour montrer qu'il existe bel et bien un effet d'environnement.

• Pour les autres galaxies étudiées, la qualité de la photométrie ne permet pas pour l'instant de préciser davantage l'effet de l'environnement sur les couleurs.

Partie III

La troisième partie de cette thèse fut consacrée à une étude approfondie des modèles de synthèse de populations stellaires. Ces modèles sont couramment utilisés dans de nombreux domaines de l'astrophysique et sont donc en constante évolution. Pour tester l'efficacité des modèles ainsi que leurs capacités à reproduire les amas de M87 (i.e. des amas dans un environnement différent de celui de la Voie Lactée), j'ai comparé, dans un premier chapitre, les amas observés avec les prédictions photométriques de 10 modèles sSSP.

• Sans parler des observations, on constate que les prédictions photométriques de ces modèles sont majoritairement affectées par le choix de la librairie stellaire et non celui de l'IMF ou du jeu d'isochrones.

• La comparaison directe avec l'échantillon d'amas autour de M87 montre que les modèles utilisés ne sont pas capables de statistiquement bien reproduire les couleurs des observations. Plus précisément, en prenant en compte les 4 couleurs (ug), (gr), (ri) et (iz), le χ 2 reduit du meilleur modèle est toujours largement supérieur à 1 (∼ 2.9).

• La comparaison avec les amas de la Voie Lactée donne de bien meilleurs résultats.

En effet, dans le cas des amas galactiques, le meilleur modèle possède un χ 2 reduit pour les 4 couleurs (ug), (gr), (ri) et (iz) inférieur à 1 (∼ 0.77). Cependant, bien que le meilleur modèle soit acceptable, la majorité des modèles ne reproduisent pas (statistiquement) les couleurs des amas galactiques utilisés.

Pour évaluer si le rapport [α/Fe] des modèles pouvait produire une modification en couleurs similaire à celle observée entre les amas de M87 et ceux de la Voie Lactée, j'ai étudié l'influence de ce rapport dans le modèle PEGASE modifié avec la librairie PHOENIX.

• Le changement du rapport [α/Fe] produit des modifications non-négligeables sur les couleurs des amas théoriques. Cependant, les modifications de couleur produites ne semblent pas pouvoir expliquer les différences liées à l'environnement.

Dans le chapitre suivant, je me suis intéressé aux prédictions d'âge et de métallicité fournies par les modèles. Plus exactement, j'ai quantifié les écarts sur l'âge et la métallicité photométrique qui étaient produits par les différences de couleurs liées à l'environnement (entre les amas de M87 et ceux de la Voie Lactée). Pour ce faire, j'ai calculé l'âge et la métallicité photométrique à partir d'une combinaison des prédictions des 10 modèles, méthode appelée "Concordance Estimate" (CE).

• Dans le cas des amas globulaires de la Voie Lactée, les estimations obtenues par CE donnent des résultats majoritairement en accord avec ceux de la littérature.

• Pour les amas autour de M87, la différence de couleur observée par rapport aux amas de la Voie Lactée engendre des estimations CE peu fiables. En effet, au vu des couleurs des amas de M87, les modèles tendent à artificiellement prédire que ces amas sont très jeunes (∼ 4-5 Gyr). En conséquence, il n'est pas possible d'utiliser de manière décisive les estimations CE des amas pour détailler l'histoire de M87.

Pour finir, dans le dernier chapitre, j'ai mis en évidence un ensemble d'amas globulaires situé au sud de M87 et dont les propriétés photométriques semblent distinctes de celles des amas environnants.

• Au vu des propriétés photométriques et spatiales du groupe d'amas globulaires au sud de M87, il pourrait s'agir de la marque d'un évènement d'accrétion autour de M87.

• Après une analyse préliminaire sur les indices de Lick d'un spectre X-shooter d'un amas situé dans la zone en question, il semble en effet que l'amas possède des propriétés atypiques. Des analyses plus détaillées sont encore nécessaires.

Perspectives

Les résultats trouvés pendant cette thèse ont permis d'améliorer nos connaissances en matière d'amas globulaires, de modèles de synthèse de populations stellaires et d'étoiles. En soulignant les effets d'environnement, ils apportent des éléments nouveaux sur les questions de bimodalité, de populations multiples ou de liens entre amas vieux et amas jeunes qui restent des sujets majeurs de recherche. Cependant, ces conclusions ont aussi apporté de nouvelles interrogations et de nouvelles pistes à suivre. Pour finir cette thèse, j'expose différentes directions qui peuvent être intéressantes à suivre pour progresser à nouveau.

Progrès sur la caractérisation de l'environnement

Tout d'abord, des progrès sont possibles en matière de caractérisation des effets d'environnement sur les spectres et les couleurs.

⊳ ⊲ En premier lieu, il est nécessaire d'effectuer la réduction propre des spectres Xshooter des amas globulaires de M87 et de Centaurus A obtenus en Mai 2017. Par la suite, en utilisant ces spectres, il est possible de les comparer avec ceux des amas de la Voie Lactée et de potentiellement mettre en avant les modifications chimiques qui produisent la diversité de couleurs observée dans cette thèse. Si tel est le cas, la mise en évidence de variations d'abondances chimiques liées à l'environnement serait un résultat majeur. En fonction de la longueur d'onde de ce traceur il pourrait être possible, pour les futurs grands télescopes (e.g. ELT), de sélectionner ou de créer des filtres précis très sensibles aux effets d'environnements.

⊳ ⊲ En continuant l'utilisation de NGVS, il pourrait être intéressant d'inspecter les amas globulaires dans les autres régions de NGVS. Ainsi, il serait possible de voir si les différences de couleurs liées à l'environnement varient linéairement en fonction de la densité de l'environnement ou si de telles différences n'apparaissent que pour les environnements très denses comme M87. Pour ce faire, il serait d'abord nécessaire de réduire la bande K s de NGVS-IR pour pouvoir sélectionner de manière propre les amas globulaires. Par la suite, l'analyse des couleurs en fonction de l'environnement pourrait être étendue à d'autres objets comme les galaxies naines ou les amas jeunes et massifs. ⊳ ⊲ A l'aide des spectres X-shooter des amas de M87, de Centaurus A et de la Voie Lactée, il est possible de modifier un modèle de synthèse de populations stellaires pour prendre en compte l'effet de l'environnement (voir les points précédents). Plus exactement, il serait possible de calibrer le modèle avec différents spectres et de définir un nouveau paramètre initial appelé "environnement". Grâce à cela, les estimations photométriques pourraient être de meilleure qualité.

⊳ ⊲ Nous savons que les amas globulaires sont composés de multiples populations stellaires et non d'une seule. Cependant, dans les modèles actuels, les amas sont toujours modélisés par une unique population stellaire ("simple"). A long terme, il pourrait être intéressant de caractériser la présence de plusieurs populations stellaires dans un spectre et donc de générer des spectres plus complexes dépendant du nombre de populations stellaires dans l'amas étudié. Avec les futurs télescopes comme le ELT il sera possible de distinguer presque individuellement les étoiles d'un amas globulaire extra-galactique. Cela permettra des avancées considérables notamment en matière de populations stellaires multiples.

Progrès divers

⊳ ⊲ En partant de l'hypothèse que les amas massifs jeunes deviendront des amas globulaires, je pourrais utiliser les grands relevés actuels (e.g. NGVS) pour caractériser plus précisément le lien entre les amas jeunes massifs et les amas globulaires. Par exemple, je pourrais regarder si les amas jeunes sont aussi sensibles à l'environnement.

⊳ ⊲ A partant des résultats du Chapitre 7, il serait intéressant d'inspecter les autres régions de NGVS pour étudier s'il est possible de trouver, dans les propriétés des amas globulaires, d'autres marques de récents événements d'accrétion.

⊳ ⊲ Enfin, il est extrêmement utile d'améliorer les estimations d'âge et de métallicité.

Pour cela, je pourrais développer une nouvelle technique d'estimation basée, non pas sur les couleurs ou sur les indices de Lick, mais sur l'utilisation de spectres pondérés très sensibles à l'âge ou à la métallicité. Plus exactement, à l'aide d'un spectre qui fait office de masque, il serait possible d'uniquement prendre en compte les raies sensibles à l'âge (ou à la métallicité). A l'inverse des indices de Lick, cette technique n'a pas besoin de points d'ancrages (parfois incertains) autour de la raie. L'étude des amas globulaires (AGs) nous offre une opportunité d'appréhender l'histoire de leurs galaxies hôtes et ainsi l'histoire de l'univers. Dans cette thèse, je me suis intéressé aux propriétés des AGs dans différents environnements. Tout d'abord, je me suis concentré sur les AGs de l'amas de la Vierge, un amas de galaxies très dense situé à environ 16,5 Mpc. J'ai utilisé les données observées par le relevé NGVS (Next Generation Virgo Survey) pour définir un échantillon qui contient 1846 AGs. J'ai ensuite comparé les couleurs de ces amas avec celles d'autres AGs originaires de la Voie Lactée et j'ai remarqué des différences de couleurs encore jamais observées, dont la nature exacte est encore énigmatique. Pour comprendre ces différences, j'ai ensuite comparé les AGs observés avec des AGs synthétiques basés sur 10 modèles de synthèse de populations stellaires. J'ai aussi étudié les âges et les métallicités ressortant de la confrontation directe des couleurs des AGs à ces modèles. En conclusion, en l'état actuel, les modèles ne rendent pas compte de la diversité identifiée dans ma thèse. Finalement, j'ai effectué une brève étude des propriétés spatiales des AGs autour de M87 pour repérer des marques d'accrétion.

Mots clefs : amas globulaires -galaxies : formation -étoiles : évolution -modèles : synthèse de populations stellaires Through the study of the globular cluster (GC) properties, it is possible to unravel the history of their host galaxies and by extension the history of the universe. During this thesis, I was interested in the GC properties in different environments. First, I looked at the GCs in the Virgo cluster, a dense galaxy cluster located at 16.5 Mpc. I used data from the survey NGVS (Next Generation Virgo Survey) to define a sample of 1846 GCs. Then, I compared the colors of these GCs with those of Milky Way GCs and I noted color differences never yet observed, which are still enigmatic. In order to understand these differences, I compared the observed GCs with synthetic GCs obtained with 10 stellar population synthesis models. I also studied the age and metallicity predictions of those models. In the end, in their current status, the models do not account for the diversity highlighted in my thesis. Finally, I assessed the spatial properties of the GCs around M87 in order to find any signatures of a recent accretion.
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FIGURE 1 . 2 -

 12 FIGURE 1.2 -Fr : Exemples de populations stellaires. De gauche à droite, l'amas ouvert NGC 4755, l'amas globulaire M13, la galaxie spirale M33 et enfin la galaxie elliptique M87. En : Examples of different stellar populations. From the left to the right, an open cluster (NGC 4755), a globular cluster (M13), a spiral galaxy (M33), and an elliptical galaxy (M87)

  FIGURE 1.3 -Fr : Exemple de 5 courbes de transmission u, g, r, i et z couvrant la majeure partie des longueurs d'onde optique. Ces filtres sont utilisés dans le relevé NGVS. En : The 5 transmission curves (u, g, r, i, and z) used in the NGVS survey.

  FIGURE 1.5 -Fr : Comparaison de deux spectres de SSP basés sur la librairie stellaire de MILES et obtenus grâce au modèle de synthèse de population stellaire du même nom. Le spectre bleu est décalé de 2 pour améliorer la visibilité. Ces deux SSPs sont calculées avec le même isochrone, la même IMF et la même abondance [α/Fe]. Seul l'âge et la métallicité diverge, avec un spectre de SSP jeune et riche en métaux (rouge) et l'autre vieux et pauvre en métaux (bleu). La dégénérescence entre l'âge et la métallicité est traduite par la grande similarité entre ces deux spectres. En : Comparison of two MILES-based single stellar population spectra which show the well-known age-metallicity degeneracy. The parameters (age and metallicity) of each spectrum are as labelled. The blue spectrum is shifted vertically by 2 flux units.

  a mis en évidence deux populations distinctes. L'une, considérée comme pauvre en métaux (MP ; [Fe/H] ∼< -1), avec des propriétés dynamiques similaires à une population du halo et l'autre, riche en métaux (MR) avec une dynamique proche d'un système appartenant au disque de la galaxie. Plus exactement, pour la population MP, il semble qu'une très faible (voir aucune) rotation d'ensemble ait lieu (V rot = 50 ± 23 km/s pour Zinn 1985 ; V rot = 30 ± 25 km/s pour Harris 2001) mais que la dispersion de vitesse dans la population soit très grande (σ = 114 km/s pour Zinn 1985 ; σ = 121 ± 9 km/s pour Harris 2001). A l'inverse, pour la population MR, une forte vitesse de rotation est observée (V rot = 152 ± 29 km/s pour Zinn 1985 ; V rot = 118 ± 26 km/s pour Harris 2001) mais la dispersion de vitesse est plus faible (σ = 71 km/s pour Zinn 1985 ; σ = 89 ± 11 km/s pour Harris 2001).
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 17 FIGURE 1.7 -Fr : Diagramme [O/Fe] en fonction de [Na/Fe] montrant l'anti-corrélation Na-O pour l'amas NGC 5904. Les deux populations d'étoiles de l'amas sont indiquées sur le graphique. Dans le cas des points bleus, l'abondance d'oxygène peut être plus faible. La figure initiale est tirée de l'article de Carretta et al. (2009a) En : [O/Fe]-[Na/Fe] diagram showing the Na-O anticorrelation in the Milky Way clusters NGC 5904. The two star populations of the clusters are separated with a black line. Blue points correspond to stars that might have a lower oxygen abundance. This figure is taken from Carretta et al. (2009a)

CHAPITRE 1 .

 1 FIGURE 1.8 -Fr : Frise de comparaison de quatre relevés ayant permit d'étudier le CMB. Les panneaux montrent l'évolution de la résolution dans une même région du CMB. Ce sont ces infimes différences de température qui ont permis de créer l'univers actuel. En : Comparison of four surveys used to unravel the CMB. Each panel is showing the same region and highlights the increase of the image resolution

FIGURE 1 .

 1 FIGURE 1.12 -Fr : Contribution à la luminosité bolométrique des étoiles de chacune des phases évolutives (séquence principale, sous-branche des géantes, branche des géantes rouges, branche horizontale et branche asymptotique des géantes). Cette figure est tirée de l'article deMaraston (1998) En : Contribution of different evolutionary phases to the total luminosity of a stellar population as a function of its age. This figure is taken fromMaraston (1998) 

FIGURE 2 .

 2 FIGURE 2.1 -Illustration of the spatial variations of the point source aperture corrections in i within individual pointings. From left to right, then top to bottom, the fields correpond to NGVS MegaCam pointings +0+1, -1+1, +0+0, and -1+0 (Ferrarese et al., 2012).
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 22 FIGURE 2.2 -Illustration of the spatial variations of the point source aperture corrections in r, for NGVS pointing +0+0 (see Ferrarese et al. 2012 for pointing numbering). Color maps the difference between magnitudes measured in apertures of 4 and 8 pixels diameter (0.186"/pix).
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 23 FIGURE 2.3 -Aperture corrections for K s point source photometry across the whole Virgo core area (thirty-four WIRCam pointings covering four MegaCam pointings).

  (factor 2.49) or McCracken et al. (2010) (factor 2).
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 24 FIGURE 2.4 -Transformation between photometric systems. Star in common between NGVS and SDSS, or NGVS and UKIDSS (for K s ) are shown as grey dots. For NGVS and UKIDSS, aperture corrected magnitudes are used ; for SDSS, psf magnitudes are adopted. The NGVS magnitudes are the final values obtained as described in Section 2.2.4. In each panel, a different subset of stars is plotted, restricted so the SDSS or UKIDSS magnitudes used in the panel have errors as follows : σ (u * ) < 0.20, σ (g) < 0.10, σ (r) < 0.10, σ (i) < 0.10, σ (z) < 0.15, σ (H UKIDSS -K UKIDSS ) < 0.04 mag. Synthetic photometry based on model dwarf stars is shown with crosses, based on energy distributions from MARCS models (blue), PHOENIX models (black) and the BaSeL library (red). Along these sequences, stellar parameters are taken from the Besançon model of the Milky Way. The dashed lines in the five first panels follow the equations quoted in Ferrarese et al. (2012).
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 25 FIGURE 2.5 -Color color diagrams which highlight the difficulty of including the u * filter in the SLR procedure. In gray we show the NGVS stars shifted by the SLR correction vector (best u * correction included). The thin lines represent the PHOENIX stars from 3100 K to 6500 K, with log(g) = 4.5, [α/Fe] = 0.0 and different metallicities (red = [Fe/H] = 0.0, blue = -0.5, green = -1, magenta = -1.5, cyan = -2). The large black line is the one computed using the PHOENIX library and the Besançon model, it is also the one used to compute the applied SLR shifts. In some diagrams that include u * , the shape of this black locus does not match the observed locus.

7 .

 7 Version available on line in early 2015.
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 26 FIGURE 2.6 -NGVS stellar locus and predictions for the PHOENIX (black), MARCS (blue), and BaSeL (red) libraries. The observations are calibrated as in Section 2.2.4 and dereddened. The stellar templates are chosen in accordance with the Besançon Milky Way model predictions (Tab. 2.1), except for the BaSeL library which has only solar [α/Fe] ratios.
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 27 FIGURE 2.7 -NGVS stellar locus shifted by the SLR vector κ, with the stellar predictions of the PHOENIX library (gray line) superimposed. The black arrow shows the SLR vector κ multiplied by a factor of 5 for better visibility. The model stellar parameters are based on the Besançon model of the Milky Way. The color coding of the NGVS stellar locus maps the density of stars.

FIGURE 2 .

 2 FIGURE 2.8 -Fr : Exemple de quatre relations de transformation pour passer d'une magnitude SDSS à une magnitude MegaCam. La relation montrée en violet est basée sur des étoiles observées communes à SDSS et à MegaCam. Ces étoiles sont montrées en noir et possèdent des erreurs en magnitude g, r, i ou z inférieures à 0.10 mag. En orange, bleu et rouge, il s'agit respectivement des relations basées sur les librairies stellaires PHOENIX, MARCS et BaSeL pour des étoiles entre ∼4000 K et 6500 K (avec les mêmes propriétés que celles données dans la Table 2.1). En : Example of 4 relations, based on stars, to transform a SDSS magnitude into a Me-gaCam one. The purple relation is based on observed stars common to SDSS and NGVS. Those stars are shown in black and have magnitude errors lower than 0.10 mag in g, r, i or z. The three other relations in orange, blue, and red, are based on the stellar library of, respectively, PHOENIX, MARCS, and BaSeL. Each of those are computed for stars with a temperature between ∼4000 K et 6500 K and with the properties presented in Tab 2.1.

FIGURE 2 .

 2 FIGURE 2.10 -Fr : Exemple de trois relations de transformation pour passer d'une magnitude SDSS à une magnitude MegaCam. La relation montrée en orange est basée sur des étoiles observées communes à SDSS et à MegaCam (en noir). En bleu et rouge, il s'agit respectivement des relations basées sur le modèle de PEGASE pour des amas globulaires avec -1.7 < [Fe/H] <-0.7 ; 1 < Age < 15 Gyr et -2.30 < [Fe/H] < 0 ; 1 < Age < 15 Gyr. Le choix de ce sous-intervalle en métallicité (-1.7 < [Fe/H] <-0.7) permet d'étudier les relations de transformation à une échelle plus réduite où des différences de pente existent par rapport à l'échantillon complet. En : Example of 3 relations, based on stars or on theoretical GCs, to transform a SDSS magnitude into a MegaCam one. The orange relation is based on observed stars common to SDSS and NGVS (black). The two other relations in blue and red, are based on the SSP model of PEGASE for GCs with, respectively, -1.7 < [Fe/H] <-0.7 ; 1 < Age < 15 Gyr and -2.30 < [Fe/H] < 0 ; 1 < Age < 15 Gyr (the corresponding theoretical GCs are shown by color dots).

FIGURE 2 .

 2 FIGURE 2.13 -Fr : Exemple de deux relations de transformation pour passer d'une magnitude SDSS à une magnitude MegaCam. Les deux relations sont basées sur des spectres de SSPs calculés par PEGASE avec les paramètres suivants : -2.30 < [Fe/H] < 0 ; 1 < Age < 15 Gyr. La magnitude SDSS des points oranges et bleus est respectivement calculé en convoluant les spectres d'amas avec les filtres SDSS montrés en rouge et en noir dans la Figure 2.12. En : Example of 2 relations, based on theoretical GCs computed with 2 different sets of filters, to transform a SDSS magnitude into a MegaCam one. Both relations are based on theoretical PEGASE GC spectra with -2.30 < [Fe/H] < 0 ; 1 < Age < 15 Gyr. The red relation is fitting the orange points which are computed using the convolution of the theoretical spectra with the J.Annis SDSS filters. The blue relation and points are computed with the Doi et al. (2010) set of filters.

FIGURE 3 .

 3 FIGURE 3.1 -NGVS pilot-field detections in the uiK diagram. The colors shown are from measurements in 8 pixel diameter apertures (1.48") to which point source aperture corrections are applied (i.e. they are representative only of central colors for extended sources).Most sources are background galaxies. The foreground stars are mainly along the bottom sequence, and the globular clusters are located just above it and below the two large regions of galaxies. At the red end of the GC sequence (ui > 3), redshifted passively evolving galaxies are found. The color coding maps the density of objects.
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 32 FIGURE 3.2 -Top : the uik diagram after removing from the sample shown in Figure 3.1 saturated stars, large objects and sources with large errors. Bottom : the uiK diagram modified using a compactness criterion as explained in Section 3.2.1. The color coding in both panels maps the density of objects.

FIGURE 3 . 3 -

 33 FIGURE 3.3 -Final selection of the NGVS GCs in the modified uiK diagram. The color coding for the GC maps the density of objects.
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 34 FIGURE 3.4 -Top : Selected NGVS GC candidates from our modified uiK diagram (black), spectroscopically confirmed GCs based on matching to literature data (red), and the false positive matches (blue). Bottom : the NGVS GC candidates in the uiK diagram (black), spectroscopically confirmed GCs matched to the literature (red), and the false positive matches (blue).
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 35 FIGURE 3.5 -The r band issues caused by different seeing in the 0-0 tile plotted in the uri diagram. The 2 external and mistaken branchs are highlighted in red.
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 3 Sélection d'un échantillon d'amas globulaires Travaux complémentaires 3.3 Travaux complémentaires 3.3.1 Comparaison avec d'autres échantillons d'amas globulaires de M87 basés sur NGVS
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 37 Dans cette Figure, les trois diagrammes sont à la même échelle. Pour le catalogue de Oldham & Auger (2016) (à gauche), on constate que deux sur-densités d'objets apparaissent au dessus et en dessous de la distribution des amas globulaires. Ces contaminations sont respectivement des étoiles (en bas) et des galaxies d'arrière plan (en haut). Pour le catalogue "XD", la distribution des amas semble beaucoup plus élargie que celle du catalogue

FIGURE 3 . 7 -

 37 FIGURE 3.7 -Fr : Figure de comparaison pour trois échantillons d'amas globulaires basés sur NGVS. Chaque panneau représente un diagramme uiK (ui vs. i -K s ) avec l'un des trois échantillons. De gauche à droite il s'agit du catalogue de Oldham & Auger (2016), "XD" de E. Peng et celui présenté dans cette thèse (Powalka et al., 2016a). En : Comparison of three samples of M87 GCs based on NGVS. Each panel represents one sample in the uiK diagram. From the left to the right, we show the sample of Oldham& Auger (2016), the "XD" catalog of E. Peng and the NGVS collaboration, and the robust sample of bright GCs presented in(Powalka et al., 2016a).

  3.1). La deuxième partie montre une comparaison avec d'autres échantillons d'amas d'origines différentes et tirés de la littérature. Cependant, la qualité photométrique de ces échantillons est plus faible. Cette restriction est causée par l'utilisation de relations de transformation de filtres ainsi que, parfois, par l'absence d'indications sur les transmissions des filtres utilisés (dans les articles de référence pour chacun des échantillons).L'échantillon d'amas de la Voie Lactée comparé dans l'article suivant a été obtenu grâce au relevé Panchromatic High-Resolution Spectroscopic Survey of Local Group Star Clusters dans lequel nous avons utilisé les amasNGC 104, NGC 288, NGC 362, NGC 1851, NGC 1904, NGC 2298, NGC 2808, NGC 6656, NGC 7078, NGC 7089 et NGC 7099. Pour chaque amas, nous avons accès à un spectre (observé par l'instrument X-shooter sur le VLT) qui s'étend d'environ 3000 Å (dans l'UV) jusqu'à environ 24800 Å. Un spectre X-shooter brut est obtenu en 3 segments (ou "arms" en anglais) : le premier (segment UV) de ∼ 3000 Å à ∼ 5595 Å, le deuxième (segment VIS) de ∼ 5595 Å à ∼ 10240 Å et enfin le dernier (segment IR) de ∼ 10240 Å à ∼ 24800 Å. Cependant, en pratique, nous avons uniquement utilisé les segments UV et VIS dans lesquels la réduction des spectres est plus précise. En effet, le segment IR est extrêmement perturbé par l'absorption de l'atmosphère terrestre ce qui peut diminuer la qualité de la calibration. De plus, les longueurs d'onde des filtres MegaCam sont comprises dans les segments UV et VIS, ce qui n'impose pas d'utiliser le segment IR. Pour revenir sur la réduction de ces spectres, elle a été faite dans l'étudede Schönebeck et al. (2014). Sans rentrer dans les détails, l'important pour analyser des couleurs à partir d'un spectre est la précision de la calibration en flux. Avec la précision annoncée dans Schönebeck et al. (2014) (±2,5 %), il est possible d'obtenir une estimation des erreurs possibles Introduction au chapitre sur les couleurs. Ces erreurs sont de l'ordre de ∼ 0.01-0.02 mag, ce qui est comparable aux erreurs aléatoires dans les bandes g, r et i de notre catalogue (les bandes u et z de notre catalogue possèdent des incertitudes plus importantes ∼ 0.03-0.04 mag).

FIGURE 4 .

 4 FIGURE 4.1 -Spatial distribution of the NGVS GC sub-samples. The red GCs are located within a projected radius of 20 kpc from the M87 center. The orange points show GCs between 20 ≤ r < 200 kpc. The blue GCs are defined by r > 200 kpc and being not associated with the M86, NGC 4435, NGC 4438 and NGC 4473. GCs associated with the latter galaxies are indicated by magenta points.
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 42 FIGURE 4.2 -(g-r) 0 versus (i-z) 0 color-color diagram for different GC samples. (Top panels) : Comparison of various NGVS GC sub-samples (from left to right : A, B, C, D), with MW GCs (black diamonds). Circles and squares mark GCs without and with radial velocity information. Linear ML-fits to the NGVS-GC sub-samples and MW GCs are given in the top of each panel. In addition, we show SSP predictions taken from the Bruzual & Charlot (2003) model for metallicities 0.0002 < Z < 0.03 and ages 6 < t <13 Gyr. All colors are de-reddened with extinction values taken from Schlegel et al. (1998). (Bottom panels) : Corresponding density plots for the NGVS GC sub-samples highlighting the colors of the highest-density peaks and their shift from the A GCs toward the C sample, illustrated by solid and dashed lines, respectively.
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 43 FIGURE 4.3 -Color-color diagrams comparing the NGVS sample (colored dots, see Figure 4.1 for the definition of subsets) and the MW GCs (black diamonds). GCs within 20 kpc from the M87 center are highlighted in red and GCs from subset E in blue, four of which are radial-velocity confirmed and marked with yellow contours. The NGVS foreground stars are shown in grey. Circles and squares mark GCs without and with radial velocity information consistent with Virgo cluster membership, respectively. In the top right panel, vectors illustrate the shifts induced by several systematic changes.
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 44 FIGURE 4.4 -Spatial distribution of the GC sub-samples defined in Fig 4.3.
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 4 Comparaison avec des amas globulaires appartenant à d'autres galaxiesArticle[English] clinch this point.
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 4 Comparaison avec des amas globulaires appartenant à d'autres galaxiesTravaux complémentaires
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 46 FIGURE 4.6 -Fr : Schéma explicatif de deux tests pour mettre en avant l'influence d'une différence de relation couleur-métallicité sur un diagramme couleur-couleur. Plus exactement, cela montre que dans le cas "Diversity of CMRs" le diagramme couleur-couleur est proche des observations faites dans la Section précédente i.e. il est possible de reproduire les observations de la lettre(Powalka et al., 2016b) en utilisant une CMR qui dépend de la galaxie hôte. Les points bleus et rouges correspondent aux maximums locaux des populations MP et MR. En : Sketch explaining the two toy models I have designed in this Section in order to reproduce the observations described in the letter(Powalka et al., 2016b). Starting from two different metallicity distributions for two galaxies like M87 and the MW, I compute the colors of two fictitious samples using different color-metallicity relations (CMR). In the first test ("Same CMR"), the CMRs for both galaxies in both synthetic colors (color1 and color2) are similar. It represents the common vision of the GC CMRs. As a consequence, the resulting color-color diagram is symetrical in both colors. In the second test ("Diversity of CMRs"), the CMR for M87 in the color color2 is modified by an unknown parameter links to the environment. In this scenario, an asymetry is produced in the color-color diagram. Moreover, the diagram is now similar to the observation ofPowalka et al. (2016b). In summary, the color differences that we observed in the letter (between M87 and the MW) support the idea that the CMR of GCs depend on the host galaxy. The red and blue points show the local maxima of MP and MR GC populations.
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 47 FIGURE 4.7 -Fr : Diagramme gri pour 6 échantillons d'amas globulaires extragalactiques. Ces 6 échantillons sont définis dans le texte. En gris, il s'agit des amas centraux de NGVS obtenus dans le Chapitre 3. Les erreurs photométriques moyennes de chaque échantillon sont notées en bas à droite de chaque panneau. Chacun de ces échantillons a été transformés dans le système MegaCam en utilisant des relations de transformation qui peuvent induire des erreurs systématiques. En : gri diagram for 6 extra-galactic GC samples compared with the NGVS GCs. Each panel is showing, in red, the GC system of one galaxy (which is written in the top left) along with, in grey, the NGVS GCs defined in Chapter 3. For each galaxy, I had to transform the initial magnitudes (SDSS, SDSS' or Johnson/Cousins) into MegaCam magnitudes. It was done using transformation relations (based on PEGASE models) which induce systematic errors that I did not take into account in this analysis. The mean random errors of each sample are shown in black in the bottom right of each panel.
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 4 FIGURE 4.8 -Fr : Diagramme gri pour 3 échantillons d'amas globulaires galactiques. Ces 3 échantillons sont définis dans le texte(Peterson, 1993;Vanderbeke et al., 2014;Schönebeck et al., 2014). En gris, il s'agit des amas centraux de NGVS obtenus dans le Chapitre 3. Les erreurs photométriques moyennes de chaque échantillon sont notées en bas à droite de chaque panneau. Chacun de ces échantillons a été transformés dans le système MegaCam en utilisant des relations de transformation qui peuvent induire des erreurs systématiques. En : gri diagram for 3 galactic GC samples compared with the NGVS GCs. Each panel shows, in red, a maximum of 11 MW GCs (those used in the letter ;Schönebeck et al. 2014). For the catalog ofPeterson (1993) and Vanderbeke et al. (2014) only 10 and 8 MW GCs are shown because, respectively, NGC 7078 (for Peterson 1993) and NGC 104, NGC 6656, and NGC 7099 (for Vanderbeke et al. 2014) do not have available photometry. For those 2 samples, I also had to transform the initial magnitudes (SDSS' or Johnson/Cousins) into MegaCam magnitudes. It was done using transformation relations (based on PEGASE model) which induce systematic errors that I did not take into account in this analysis. The grey points refer to the NGVS GC sample. The mean random errors of each sample are shown in black in the bottom right of each panel.
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 4 FIGURE 4.9 -Fr : Diagramme ugr pour 4 échantillons d'amas globulaires (2 extragalactiques et 2 galactiques). Ces 4 échantillons sont définis dans le texte. En gris, il s'agit des amas centraux de NGVS obtenus dans le Chapitre 3. Les erreurs photométriques moyennes de chaque échantillon sont notées en bas à droite de chaque panneau. Chacun de ces échantillons a été transformés dans le système MegaCam en utilisant des relations de transformation qui peuvent induire des erreurs systématiques. En : ugr diagram for 4 GC samples (2 extra-galactic and 2 galactic) compared with the NGVS GCs. Each panel shows, in red, the GC system of one galaxy (which is written in the top left) along with, in grey, the NGVS GCs defined in Chapter 3. For each panel (except the GCs from Schönebeck et al. 2014), I had to transform the initial magnitudes (SDSS, SDSS' or Johnson/Cousins) into MegaCam magnitudes. It was done using transformation relations (based on PEGASE model) which induce systematic errors that I did not take into account in this analysis. The mean random errors of each sample are shown in black in the bottom right of each panel.

FIGURE 4 .

 4 FIGURE 4.10 -Fr : Exemple de 4 diagrammes couleur-couleur comparant un échantillon d'amas globulaires autour de M49 (en rouge) avec celui autour de M87 définit dans le Chapitre 3 (en noir). Les détails pour l'obtention du catalogue d'amas autour de M49 sont donnés dans le texte. Le manque d'amas rouges pour l'échantillon de M49 est surement causé par un biais de sélection. En : 4 color-color diagrams comparing a GC sample of M49 (red) derived with NGVS, with the NGVS M87 GCs (black). The M49 GC sample cannot be selected the same way as the M87 one because we do not yet have the K s photometry in that area (which is crucial to distinguish stars, galaxies, and GCs). Therefore, we select the M49 GCs using radial velocities from spectroscopic sample observed with the MMT together with optical colors (this catalog was made available to me by members of the NGVS collaboration, but is not published yet). We cross-match this spectroscopical sample with the NGVS catalog to obtain the MegaCam magnitudes. However, M87 and M49 GC magnitudes have not gone through exactly the same reduction steps. Hence, they might be shifted with respect to each other by small systematic errors. In order to correct these uncertainties, we use a relative SLR on the stellar locus in each region. It allows to correct for small shifts (∼ 10 mmag) in the magnitudes of the different regions. It is worth mentionning that there are different selection biases in the two samples (selection is responsible for the lack of red GCs in the M49 sample).

FIGURE 5 .

 5 FIGURE 5.1gri diagram. The gray dots are the GCs of our robust Virgo sample, after correction for foreground extinction. The calibration is that of Section 2.2.4 (see Figure5.10 for a version of these plots using the SLR calibration). For each model set, the thick solid and dashed lines represent the metallicity tracks at given ages, with metallicity increasing from the bottom left to the top right. The metallicities of the grid nodes are [Fe/H] = [-2, -1.5, -1, -0.5, 0, 0.17] (except for C09BB and C09PM, see Section 5.2.1). Alternating thin solid and dotted lines connect models of constant age, at[6, 8, 10, 13] Gyr. The red line represent the polynomial fit defined in Section 3.2.5. The model grids are degenerate in age and metallicity in this particular color-color diagram.
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 52 FIGURE 5.2giz diagram. Symbols and lines are as in Fig. 5.1.
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 53 FIGURE 5.3 -gKiz diagram. Symbols and lines are as in Fig. 5.1.
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 54 FIGURE 5.4 -riK diagram. Symbols and lines are as in Fig. 5.1.
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 55 FIGURE 5.5 -Two color-color diagrams for the Vazdekis et al. (2012) model. In the gri diagram (left panel), the symbols and lines are as in Fig. 5.1. In the riK diagram, the model is used with the MIUSCAT IR spectral library, for which only metallicities near solar are available. The grid nodes shown are [Fe/H] = [-0.39, 0, 0.17].
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 56 FIGURE 5.6uri diagram. Symbols and lines are as in Fig. 5.1.
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 57 FIGURE 5.7 -uiK diagram. Symbols and lines are as in Fig. 5.1.

FIGURE 5 .

 5 FIGURE 5.8ugr diagram. Symbols and lines are as in Fig. 5.1.

FIGURE 5 .

 5 FIGURE 5.9 -Comparison between empirical and synthetic SEDs. The fiducial SEDs for GCs in the Virgo core are shown in black, for 5 values of (g -K s ) [0.6 = Solid, 1.0 = Dotted-Dashed, 1.2 = Dashed, 1.6 = Solid, 1.8 = Dashed]. These SEDs are identical in all panels. Model SEDs of 10 Gyr-old sSSPs are shown in color, for the same set of (g -K s ).The associated (model-dependent) metallicities are listed. The special label Z = X is used when the required (g -K s ) is not reached with a particular model set, and no line is drawn.

FIGURE 5 .

 5 FIGURE 5.10 -Virgo core GC color-color diagrams with SLR-based photometry. The symbols and lines are as in Fig. 5.1.

FIGURE 5 .

 5 FIGURE 5.11 -The giK and griz diagrams of Virgo core GCs, with NGVS photometry calibrated against external catalogs. The symbols and lines are as in Fig. 5.1.
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 5 Comparaison des amas de M87 avec 10 modèles SSP Travaux complémentaires 5.3 Travaux complémentaires 5.3.1 Comparateur basé sur le facteur de Bayes Le facteur de Bayes peut être calculé pour comparer l'aptitude de deux modèles à expliquer un même jeu d'observations. A l'inverse d'un test du χ 2 , ce facteur ne donne pas d'estimation absolue de la qualité d'un modèle par rapport au données. En partant du théorème de Bayes où sSSP représente la grille d'un modèle et D nos données observées, on a : P(sSSP|D) = P(D|sSSP) . P(sSSP) P(D)

FIGURE 5 .

 5 FIGURE 5.14 -Fr : Tableau contenant les valeurs du logarithmes des facteurs de Bayes du modèle A par rapport au modèle B ainsi que le χ 2 réduit de chacun des modèles. Les valeurs ont été calculées pour les amas globulaires de la Voie Lactée en utilisant 2 couleurs (ui, iz). Lorsque le logarithme du facteur de Bayes est supérieur à 2, cela veut dire que le modèle A est statistiquement meilleur que le modèle B. En : Tablecontainingthe logarithm of the Bayes factor of the model A compared to the model B and the reduce χ 2 of the ten models for the MW GCs using 2 colors (ui, iz). A value higher than 2 for the logarithme of the Bayes factor means that the model A is statistically better than the model B.

CHAPITRE 5 .

 5 Comparaison des amas de M87 avec 10 modèles SSP Travaux complémentaires Pour finir ce chapitre, je compare brièvement les résultats obtenus en modifiant PE-GASE à ceux générés par le code MILES. La comparaison est effectuée pour des rapports [α/Fe] = 0.0 et [α/Fe] = 0.4 et pour deux métallicités [Fe/H] = -1.49 et [Fe/H] = 0.06. Dans le cas du modèle MILES, la métallicité est donnée avec le rapport [M/H] tel que : [Fe/H] = [M/H] -A . [Mg/Fe] où A = 0.75 (Vazdekis et al., 2015) et [Mg/Fe] = 0 si [α/Fe] = 0.0 et [Mg/Fe] = 0.4 si [α/Fe] = 0.4. Les métallicités [M/H] disponibles sont -2.27, -1.79, -1.49, -1.26, -0.96, -0.66, -0.35, -0.25, 0.06, 0.15, 0.26 et 0.40. Pour effectuer la comparaison sur la base de [Fe/H] = -1.49 et [Fe/H] = 0.06, je devrais donc utiliser des valeurs de [M/H] = -1.49 + 0.3 = -1.19 et [M/H] = 0.06 + 0.3 = 0.36. Cependant, ces valeurs ne sont pas disponibles sans interpolation. Je décide de ne pas interpoler entre les métallicités mais plutôt de prendre les valeurs de [M/H] inférieures les plus proches i.e [M/H] = -1.26 et [M/H] = 0.26.

FIGURE 5 .

 5  Influence du rapport [α/Fe] pour le modèle PEGASE (modifié ; voir texte) dans deux diagrammes couleur-couleur (ugr à gauche et griz à droite). La grille synthétique en haut à gauche de chaque panneau indique les paramètres des bordures pour chaque modèle. Les amas du papier I sont montrés en gris et ceux de la Voie Lactée sont indiqués en noir. En : Color modification induced by different [α/Fe] ratios in the PEGASE code on two color-color diagrams (ugr and griz). These modifications are only based on the use of αenhanced spectra and do not take into account any isochrone modifications (which is our next aim). The grid in the top-left corner shows the border values (age or metallicity) plotted for each model. The gray points highlight the NGVS Paper I GCs whereas the black diamonds show the MW GCs.

FIGURE 5 .

 5 FIGURE 5.16 -Fr : Variation de couleur (gr) produite par différents rapports [α/Fe] dans le cas des modèles PEGASE (à gauche) et MILES (à droite) en fonction de l'âge de la population stellaire. Les panneaux de bas montrent la différence g-r [α/Fe] = 0.0 -g-r [α/Fe] = 0.4 pour les deux métallicités utilisées ([Fe/H] = -1.49 en ligne continue et [Fe/H] = 0.06 en pointillé). En : (gr) color variation induced by different [α/Fe] ratios for the PEGASE (left) and MILES (right) models for two iron abundances ([Fe/H] = -1.49 and [Fe/H] = 0.06) as a function of the age of the synthetic stellar population. The lower panels show the difference g-r [α/Fe] = 0.0 -g-r [α/Fe] = 0.4 for the same two iron abundances ([Fe/H] = -1.49 and [Fe/H] = 0.06). As explained in the text, the MILES model uses [M/H] and not [Fe/H]. Therefore, in order to compare both model on the [Fe/H] basis, I used [M/H]= -1.49 and [M/H]=0.06 for the spectra with [α/Fe] = 0.0 and [M/H]= -1.26 and [M/H]=0.26 for the spectra with [α/Fe] = 0.4 i.e. I have decided to use the nearest (lower) available metallicity.

  Sánchez-Blázquez et al. (2006). Padova 1994[START_REF] Alongi | [END_REF];Bressan et al. (1993); Fagotto et al. (1994a,b);Girardi et al. (1996). Padova 2007 :Girardi et al. (2000);Marigo & Girardi (2007);Marigo et al. (2008). PARSEC 1.2S : Bressan et al. (2012); Tang et al. (2014); Chen et al.

  EPS code, labelled M05 and one from Maraston & Strömbäck

FIGURE 6 .

 6 FIGURE 6.1 -Color-color comparison of the Virgo core GCs of Paper I with the 10 SSP model grids used in this article. The grids extend from Age = 1 Gyr to 14 Gyr (instead of 6 Gyr to 13 Gyr for Paper I) and from [Fe/H] = -2.0 dex to 0.17 dex. The only exception is the MS11 grid which starts at 5 Gyr. The NGVS GCs are shown in gray whereas the black diamonds refer to the MW GCs used in this paper .
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 63 FIGURE 6.3 -Color-color diagrams for Virgo (dots) and MW GCs (squares) with their concordance metallicity, [Fe/H] , encoded by their symbol colors. As we do not have the K s band for the MW GCs, the uiK diagram is showing solely the Virgo GCs.
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 64 FIGURE 6.4 -Color-color diagrams for Virgo (dots) and MW GCs (squares) with their concordance age, age , encoded by their symbol colors. As we do not have the K s band for the MW GCs, the uiK diagram is showing solely the Virgo GCs. The black arrow shows the direction in which a shift of the observed colors would maximize the number of old ages the concordance estimate returns (the amplitude of the plotted vector is five times the 1-sigma shift described in Section 6.2.5).
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 66 FIGURE 6.6 -Metallicity distributions predicted by each SSP model (y-axis) compared with the CE (x-axis) for our entire Virgo core GC sample. The color shading of the symbols indicates the local data density, with dark red showing the highest concentrations. We show in beige the one-to-one line which highlights if a model is consistent with the CE i.e with a weighted mean of the other models. Each panel shows a kernel-smoothed histogram on each axis that illustrates the 1-dimensional distribution of the data.
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 67 FIGURE 6.7 -Age distributions predicted by each SSP model (y-axis) compared with the CE (x-axis) for our entire Virgo core GC sample. The color shading of the symbols indicates the local data density, with dark red showing the highest concentrations. We show in beige the one-to-one line which highlights if a model is consistent with the CE i.e with a weighted mean of the other models. Each panel shows a kernel-smoothed histogram on each axis that illustrates the 1-dimensional distribution of the data.

FIGURE 6 .

 6 FIGURE 6.11 -Observed color distribution of our sample of Virgo GCs, and artificial distribution obtained assuming an infinitely narrow parent distribution and random errors distributed as in the observations (offset vertically for clarity).

FIGURE 6 .

 6 FIGURE 6.12 -Comparison between the photometric metallicities of this paper ([Fe/H] CE ) and the spectroscopic metallicities of Cohen et al. (1998) ([Fe/H] Cohen98 ) as a function of the photometric CE ages (AgeCE). The blue squares, black triangles, and red circles are refering to the different set of models used to determine the photometric ages and metallicities (see Section 6.2.5). The grey line is set to 0. The trend which appears in this plot reflects the wellknown age metallicity degeneracy. The MILES based-estimates seem to agree the most with the spectroscopic estimates ofCohen et al. (1998). However, it has to be kept in mind that the spectroscopic estimates have been derived with a forced age around 12 Gyr.

  FIGURE 6.15 -Fr : Deux exemples de détermination des indices de Lick pour H β (gauche) et Mg b (droite). Le spectre initial de l'amas globulaire étudié est représenté en noir. Le spectre rouge correspond au spectre initial (noir) dégradé à la résolution des indices de Lick. La zone jaune montre la zone centrale de l'indice alors que les zones bleues et rouges correspondent aux zones des points d'ancrage. La ligne jaune représente le continu F c qui relie les deux points d'ancrage. En : Two examples of Lick index estimates for the H β (left) and Mg b (right) indices. The initial GC spectrum is shown in black. The red spectrum represents the initial spectrum (black) downgraded to the Lick resolution. The yellow area shows the central band of the index whereas the blue and red areas indicate the anchor point bands. The yellow line highlights the continuum F c which is created by a straight line between the two anchor points.

FIGURE 6 .

 6  Grille H β -Mg b obtenue avec le modèle PEGASE accompagnée par un point observationnel obtenu à l'aide d'un spectre X-shooter (orange). Les valeurs en haut de la grille indiquent la métallicité[Fe/H] alors que celles à droite montrent les différents âges. Les erreurs affichées sont calculées à partir des erreurs sur chaque pixel comme expliqué dans le texte. En : H β -Mg b PEGASE model grid along with an example data point based on a Xshooter spectrum (orange). The numbers on the top of the grid refer to the metallicity[Fe/H] whereas the values on the right indicate the ages. The data point errors are derived using the spectrum pixel errors. More precisely, for each index, I simulated 500 index measurements. In each measurement, each pixel of the flux is pulled from a normal distribution centered on the initial pixel flux values and with a standard deviation equal to the error on the pixel.

FIGURE 7 . 3 -

 73 FIGURE 7.3 -Same GC spatial distributions as in Figure 7.2, except that this time the color of the symbols encodes the local over/under-density of each GC group (A , B or C ) with respect to the local density of the full sample (A + B + C ).

FIGURE 7 . 4 -

 74 FIGURE 7.4 -Color-color diagrams for the full NGVS GC sample used in this study. (Top panels) : (u-g) 0 vs. (g-r) 0 (left) and (g-r) 0 vs. (i-z) 0 color-color diagram (right) where the symbols colors encode the concordance estimates of ages. The white squares mark the PSGC members of the group A , located in the south-east of M87. (Bottom panel) : Similar diagrams as in the top panels, but this time the symbol color is parameterized by the concordance estimates of [Fe/H].

  3.2, je me suis intéressé aux indices H β et Mg b pour ce PSGC. La figure 7.5 montre une partie du spectre concerné autour des indices H β et Mg b ainsi que les outils utilisés pour calculer ces indices. Au final, la position du PSGC dans la grille du modèle PEGASE est donnée dans la figure 7.6. On constate qu'au vu des indices trouvés, l'amas globulaire est plutôt jeune et pauvre en métaux. Plus exactement, un simple test du χ 2 donne un âge de 3.3 Gyr et [Fe/H] ∼ 0.4.

FIGURE 7 . 5 -

 75 FIGURE 7.5 -Fr : Détermination des indices de Lick pour H β (gauche) et Mg b (droite). Le spectre initial de l'amas globulaire étudié (PSGC) est représenté en noir. Le spectre rouge correspond au spectre initial (noir) dégradé à la résolution des indices de Lick. La zone jaune montre la zone centrale de l'indice alors que les zones bleu et rouge correspondent aux zones des points d'ancrage. La ligne jaune représente le continu F c qui relie les deux points d'ancrage. En : Lick index estimates for the H β (left) and Mg b (right) indices. The initial GC spectrum (PSGC) is shown in black. The red spectrum represents the initial spectrum (black) downgraded to the Lick resolution. The yellow area shows the central band of the index whereas the blue and red areas indicate the anchor point bands. The yellow line highlights the continuum F c which is created by a straight line between the two anchor points.

FIGURE 7 . 6 -

 76 FIGURE 7.6 -Fr : Grille H β -Mg b obtenue avec le modèle PEGASE accompagnée par un point observationnel obtenu à l'aide d'un spectre X-shooter d'un PSGC (orange). Les valeurs en haut de la grille indiquent la métallicité [Fe/H] alors que celles à droite montrent les différents âges. Les erreurs affichées sont calculées à partir des erreurs sur chaque pixel. En : H β -Mg b PEGASE model grid along with a data point based on the X-shooter spectrum of a PSGC (orange). The numbers on the top of the grid refer to the metallicity [Fe/H] whereas the values on the right indicate the ages. The data point errors are derived using the spectrum pixel errors. More precisely, for each index, I simulated 500 index measurements.In each measurement, each pixel of the flux is pulled from a normal distribution centered on the initial pixel flux values and with a standard deviation equal to the error on the pixel. We observe that the PSGC seems to be young and metal-poor consistently with a recently created GC.

⊳⊲

  Enfin, pour s'intéresser à d'autres environnements, il serait possible d'utiliser d'autres relevés comme NGFS (Next Generation Fornax Survey) et effectuer une analyse similaire à celle de la thèse. De plus, dans quelques années, les grands relevés comme le LSST, Euclid, JWST vont aussi permettre de s'intéresser à d'autres environnements et à des amas globulaires moins brillants.Progrès sur les modèles de synthèse de populations stellairesEnsuite, des progrès sont possibles en matière de modèles de populations stellaires. ⊳ ⊲ Les nouvelles librairies stellaires (e.g. PHOENIX ou MARCS) commencent à contenir différents spectres avec des variations d'abondances chimiques plus détaillées (e.g. [α/Fe], C-N-O) sur une bande spectrale suffisamment étendue. A court terme, il peut être possible de créer un code basique de synthèse de populations stellaires (simples) basé sur ces nouvelles librairies et où les variations d'abondances pourrait être incluses de manière empirique. Par la suite, il serait intéressant d'inclure ces nouvelles librairies ainsi que de nouveaux jeu d'isochrones dans un modèle existant plus complexe et ainsi fournir à la communauté un modèle nouvelle génération. Plusieurs groupes dans le monde travaillent déjà sur ces avancées. Si l'occasion se présentait, je serais aussi motivé pour participer à leurs efforts.
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	CHAPITRE 1
	Contexte et outils
	IV Conclusions et perspectives
	1.1 Les mesures astrophysiques

  Même si, dans le cas des amas globulaires, cette équation n'est pas souvent utilisée, il est important de noter que les abondances d'hélium et d'éléments α peuvent changer l'estimation de [Fe/H] en fonction de Z. Par la suite, j'utilise la relation définie en équation 1.5 sauf proche de celle du soleil). On remarque que la relation 1.5 utilise la valeur de Z sun . Sachant que cette valeur n'est pas standardisée, elle représente une cause possible d'imprécision.

quand davantage de précision s'impose. Cela implique que (1 -Y -Z) = X ob j ≈ X sun (i.e que l'hydrogène est l'élément largement majoritaire dans le soleil comme dans les amas globulaires) et que

f Fe (α) m sun Z f sun

Fe m Z (α) ≈ 1 (i.e que la quantité d'éléments α dans les amas est

  Le second regroupe les étoiles massives à rotation rapide (de l'anglais Fast Rotating Massive Star : "FRMS"

	CHAPITRE 1. Contexte et outils
	Les amas globulaires
	2016).

; D'Antona et al.,

   SEDs for the GCs in the Virgo core region. g -K s Fu*/Fg Fr/Fg Fi/Fg Fz/Fg FKs/Fg ug gr gi gz The flux ratios are taken in arbitrary units of energy per unit wavelength interval, and the color indices are in AB magnitudes.

	0.4	0.697 0.896 0.741 0.606	0.073 0.923 0.435 0.636 0.747
	0.6	0.658 0.928 0.777 0.645	0.088 0.985 0.472 0.687 0.814
	0.8	0.604 0.960 0.821 0.696	0.106 1.078 0.511 0.747 0.897
	1.0	0.545 0.996 0.877 0.764	0.127 1.190 0.550 0.818 0.998
	1.2	0.489 1.032 0.938 0.844	0.153 1.309 0.589 0.892 1.106
	1.4	0.441 1.067 0.998 0.928	0.184 1.421 0.625 0.959 1.209
	1.6	0.402 1.100 1.049 1.008	0.221 1.520 0.658 1.013 1.299
	1.8	0.372 1.135 1.097 1.085	0.266 1.605 0.692 1.062 1.379
	2.0	0.344 1.179 1.165 1.186	0.320 1.691 0.734 1.127 1.475
	NOTES :		

  More specifically, users who wish to apply the conversions from SDSS to AB magnitudes suggested by the SDSS web pages should remove 0.04 mag from the NGVS u * values published in this paper and add 0.02 mag to the NGVS z values. After these corrections, one may consider reducing the SDSS calibration errors to 0.015 in u * and 0.01 in z Note that uncertainties on A(V) creates systematics that are not independent between passbands. See Section 3.2.6 for the preferred direction of the systematic errors on the SDSS calibration in u * and z.in the calibration figures (Fig.2.4 ; see Section 2.3.1). A few versions of the Megacam filters have been available on CFHT/CADC web pages over the years, prior to the work ofBetoule et al. (2013). Our test for two extreme sets of filters results in discrepancies inferior to 12 mmag in u * , 2 mmag in g,i, 3 mmag in r and 8 mmag in z. If we estimate the main source of uncertainty in the WIRCam K s transmission is telluric absorption, we find that reasonable changes in airmass/humidity change the K s magnitudes by less than 5 mmag.

	TABLEAU 3.4 -Budget of systematic errors		
		Maximum estimated errors in mmag.
		u * g	r	i	z	K s
	SDSS calibration	40 10 10 10 20	
	UKIDSS calibration					20
	Transformation between systems	50 5	5	8	2	
	Color dependance of extinction coefficients 5 10 2	2	2	2
	A(V) : Schlafly vs Schlegel	19 14 11 8	6	1
	Filter transmissions	12 2	3	2	8	5

1. https ://www.sdss3.org/dr10/algorithms/fluxcal.php 2.

  CMRs sont similaires, les deux distributions pour les amas des deux galaxies montrent une relation color1-color2 identique. Cette vision est celle qui était théoriquement attendue avant certains résultats récents commeUsher et al. (2015) (ou par extensionPowalka et al. 2016b). A l'inverse, dans le test "Diversity of CMRs" basé sur des CMRs dépendant de la galaxie hôte, on constate que la relation color1-color2 pour les deux distributions d'amas n'est plus similaire. La pente de la distribution bleue est plus faible que celle de la distribution orange. On constate donc qu'il est en effet possible de reproduire les observations dePowalka et al. (2016b).

	CHAPITRE 4. Comparaison avec des amas globulaires appartenant à d'autres
	galaxies
	Travaux complémentaires
	les

The red and blue points show the local maxima of MP and MR GC populations.

  La deuxième source pour les amas de la MW est obtenue à travers le McMaster cataloguede Harris (2010). Plus exactement, il s'agit des magnitudes UBVRI (filtre Johnson/Cousins) tirées de l'étudede Peterson (1993). Les erreurs sur les magnitudes ne sont pas données dans le catalogue. J'utilise donc une estimation moyenne des erreurs trouvées dans l'articlede Peterson (1993). Cette estimation est de 0.08 mag dans les couleurs U -B, B -V et V -I.

	Une estimation
	de l'extinction, E(B-V), pour chaque amas est aussi donnée dans Harris (2010). Pour
	faciliter la comparaison, je n'utilise pas tous les amas disponibles dans le catalogue
	mais uniquement ceux de l'échantillon de Schönebeck et al. (2014) (à l'exception de
	NGC 7078 qui n'est pas disponible). Finalement, la dernière source analysée pour les
	amas de la MW est Vanderbeke et al. (2014). Ce catalogue donne accès à la photo-
	métrie dérougie des amas dans les filtres SDSS' (g ′ r ′ i ′ z ′ ) ainsi qu'aux erreurs sur les
	magnitudes. Comme pour l'échantillon de Peterson (1993), je ne sélectionne que les
	amas globulaires communs à l'échantillon de Schönebeck et al. (2014). Parmi les 11
	amas, seulement 8 sont disponibles (les 3 amas qui ne disposent pas de magnitudes
	sont NGC 104, NGC 6656 et NGC 7099).

MW : Pour la Voie Lactée, trois échantillons basés sur trois sources différentes sont utilisés. Le premier est décrit en début de Chapitre et correspond aux spectres intégrés des amas de la Voie Lactée tirés

de Schönebeck et al. (2014)

. Il s'agit des amas globulaires NGC 104,

NGC 288, NGC 362, NGC 1851, NGC 1904, NGC 2298, NGC 2808, NGC 6656, NGC 7078, NGC 7089 et NGC 7099. 

Les erreurs en magnitudes sont obtenues à partir de l'erreur de ± 2.5 % sur la calibration en flux des spectres (correspondant à ∼ 0.02 mag). En moyenne, j'utilise donc 0.015 mag pour les couleurs gr, CHAPITRE 4. Comparaison avec des amas globulaires appartenant à d'autres galaxies Travaux complémentaires ri et 0.02 mag pour ug. Mises à part les magnitudes basées sur les spectres des amas de Schönebeck et al. (

  TABLEAU 6.1 -Stellar libraries and isochrone references for the different SSP models used in this paper.

	Model	Stellar library**	Isochrones
	BC03	STELIB	Padova 1994
	BC03B	BaSeL 3.1	Padova 1994
	C09BB	BaSeL 3.1	BaSTI
	C09PB	BaSeL 3.1	Padova 2007
	C09PM	MILES	Padova 2007
	M05	BaSeL 3.1	Cassisi
	MS11	MILES	Cassisi
	PEG	BaSeL 2.2	Padova 1994
	PAD	ATLAS ODFNEW / PHOENIX BT-Settl PARSEC 1.2S
	VM12	MILES*	Padova 2000

  5 log(Masse)En partant de cette méthode, je m'intéresse tout d'abord aux 11 amas de la Voie Lactée présentés dans le début de ma thèse. Pour ce faire, j'ai utilisé la distance à ces amas compilée dans le catalogue McMaster à partir de plusieurs sources, ainsi que deux modèles de synthèse de populations stellaires, PEG et C09PB. L'analyse n'a pas été effectuée sur les 11 modèles utilisés précédemment car je souhaite seulement présenter le principe de détermination de la masse d'un objet à partir d'un modèle. De plus, tous les modèles ne donnent pas CHAPITRE 6. Estimation d'âge et de métallicité pour des amas globulaires

	Travaux complémentaires	
	TABLEAU 6.4 -Comparison of the predicted MW GC masses derived in the section 6.3.1
	and those available in the literature		
	NGC	Mass phot	Mass Literature
	[M ⊙ ] 1.88 × 10 6 0.16 × 10 5 * 6.39 × 10 5 1851 4.16 × 10 5 104 288 362 1904 1.09 × 10 5 2298 0.51 × 10 5 2808 1.77 × 10 6 6656 7.19 × 10 5 7078 4.22 × 10 5 * 7089 3.44 × 10 5 7099 0.81 × 10 5 *	[M ⊙ ] 1.5 × 10 6 1.12 × 10 5 ... 5.51 × 10 5 ... 0.84 × 10 5 1.42 × 10 6 6.44 × 10 5 1.19 × 10 6 1.04 × 10 5 2.41 × 10 5

  Ces deux points, attachés à la longueur d'onde moyenne de chaque intervalle, sont reliés par une droite et servent à définir un continu dans la bande relative à l'indice (nommé F c (λ )). L'indice est ensuite calculé en utilisant l'équation 6.1 si il s'agit d'un indice atomique ou l'équation 6.2 si il est moléculaire.

	CHAPITRE 6. Estimation d'âge et de métallicité pour des amas globulaires
		Travaux complémentaires			
	TABLEAU 6.5 -Wavelength definitions of the Lick/IDS indices as introduced in Worthey
	et al. (1994)					
	Name	Index band	Blue continuum		Red continuum	Units
		λ 1				
			EW =	λ 2 λ 1	(1 -	F BP F c	) dλ	(6.1)
			MAG = -2.5 log	1 ∆ λ	λ 2 λ 1	F BP F c	dλ	(6.2)

  Fr : Deux exemples de détermination des indices de Lick pour H β (gauche) et Mg b (droite). Le spectre initial de l'amas globulaire étudié est représenté en noir. Le spectre rouge correspond au spectre initial (noir) dégradé à la résolution des indices de Lick. La zone jaune montre la zone centrale de l'indice alors que les zones bleues et rouges correspondent aux zones des points d'ancrage. La ligne jaune représente le continu F c qui relie les deux points d'ancrage. En : Two examples of Lick index estimates for the H β

	FIGURE 6.15 -			
					4742.750-4756.500	Å
	4847.875-4876.625 4827.875-4847.875 4876.625-4891.625 Fe5015 4977.750-5054.000 4946.500-4977.750 5054.000-5065.250 H β	Å Å
	Mg 1	5069.125-5134.125 4895.125-4957.625 5301.125-5366.125 mag
	Mg 2	5154.125-5196.625 4895.125-4957.625 5301.125-5366.125 mag
	Mg b	5160.125-5192.625 5142.625-5161.375 5191.375-5206.375	Å
	Fe5270 5245.650-5285.650 5233.150-5248.150 5285.650-5318.150	Å
	Fe5335 5312.125-5352.125 5304.625-5315.875 5353.375-5363.375	Å
	Fe5406 5387.500-5415.000 5376.250-5387.500 5415.000-5425.000	Å
	Fe5709 5696.625-5720.375 5672.875-5696.625 5722.875-5736.625	Å
	Fe5782 5776.625-5796.625 5765.375-5775.375 5797.875-5811.625	Å
	Na D	5876.875-5909.375 5860.625-5875.625 5922.125-5948.125	Å
	TiO 1	5936.625-5994.125 5816.625-5849.125 6038.625-6103.625 mag
	TiO 2	6189.625-6272.125 6066.625-6141.625 6372.625-6415.125 mag
	H δ -A H γ-A	4083.500-4122.250 4041.600-4079.750 4128.500-4161.000 4319.750-4363.500 4283.500-4319.750 4367.250-4419.750	Å Å
	H δ -F H γ-F	4091.000-4112.250 4057.250-4088.500 4114.750-4137.250 4331.250-4352.250 4283.500-4319.750 4354.750-4384.750	Å Å
	The units (mag or Å) refer to two different methods of integration detailed in the text.
		TABLEAU 6.6 -Resolution definitions of the Lick/IDS indices
		Wavelength (in Å)	4000 4400 4900 5400 6000
		Resolution (FWHM in Å) 11.5	9.2	8.4	8.4	9.8
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ser & Bell, 1980), d'autres variations chimiques entre étoiles géantes d'un même amas ont été observées comme pour les éléments C, N (e.g.Carbon et al., 1982), O (e.g.Kraft et al., 1992), Na (e.g.Cohen, 1978;Peterson, 1980; Cottrell & Da Costa, 1981) ou encore Mg et Al (e.g.Norris et al., 1981;Brown & Wallerstein, 1992). Tout ceci a conduit à la mise en évidence d'anti-corrélations dans les étoiles géantes des amas, dont Na-O (e.g.Kraft et al., 1993), C-N (e.g.Suntzeff & Smith, 1991) ou encore Mg-Al (e.g.Kraft et al., 1997). En d'autres termes, les étoiles d'un amas, considérées jusqu'alors comme chimiquement similaires, possédaient en fait des différences d'abondances chimiques dans plusieurs éléments (par exemple certaines étoiles sont riches en sodium et pauvres en oxygène alors que d'autres sont pauvres en sodium et riches en oxygène). L'une des premières explications pour la présence d'anti-corrélations dans les géantes rouges d'un amas était un phénomène de mélange entre les couches internes et la surface de l'étoile dû à la rotation de l'étoiles(Sweigart & Mengel, 1979;Cavallo et al., 1996;Denissenkov et al., 1997).

The filter designation followsFerrarese et al. (2012). The i filter used is the one installed on the instrument in October 2007 (sometimes referred to as i2). As of 2015, the MegaCam filters have been replaced. In the new nomenclature, the filters used in NGVS would be designated as uS, gS, rS, iS, zS, the S referring to the manufacturer, SAGEM.

https://www.sdss3.org/dr10/algorithms/fluxcal.php

Note that Bielby et al. (2012) recommend a factor of 3 for the r and i bands in the CFHT Legacy Survey.

We have removed five objects from the initial subset E, of which we suspect three may be affected by dust lanes, and two might be background galaxies due to their elongated shape. A careful visual inspection confirms that all the remaining candidates (26) have apparently normal GC properties.

This is due to the too faint u-band fluxes of such low-mass, metal-rich GCs, which do not pass our photometric quality selection criteria.

We use the 2012 update made available by the authors upon request, but it differs from the 2003 version only in additional outputs that we have not used.

http://stev.oapd.inaf.it/cgi-bin/cmd

We use the code made available as PÉGASE.2 or PÉGASE-HR by LeBorgne et al. (2004).

Alternatively, these GCs show bluer (g-r) colors at a given (i-z) color.

Data available at : http ://cdsarc.u-strasbg.fr/viz-bin/Cat ?J/ApJS/227/12

Bertin & Arnouts (1996) 

https ://www.sdss3.org/dr10/algorithms/fluxcal.php

In contrast, running the analysis with other model grids after truncating these at 5 Gyr does produce a pile-up.

http://cdsarc.u-strasbg.fr/viz-bin/Cat?J/ApJS/227/12

Par la suite, pour mieux comprendre les caractéristiques des amas globulaires galactiques, des études ont analysé la composition chimique des étoiles des amas. Historiquement, ces analyses étaient concentrées sur les étoiles géantes (situées dans la branche des géantes rouges : RGB) à cause de leur relative brillance et donc leur facilité d'observation. En 1971, Osborn était le premier à mettre en évidence une différence d'abondance d'azote (N) dans deux étoiles de l'amas M10 et M5 et ensuite, une différence de profondeur dans les raies moléculaires de CN et de CH.

Dans les années suivantes, en plus de confirmer ces découvertes (e.g. Zinn, 1977; Hes-
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