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Summary

Dung's theory of abstract argumentation is a widely used formalism in the field of artificial intelligence. It is used to model various types of reasoning, by representing conflicting or defeasible information using an argumentation framework, i.e., a set of arguments and an attack relation. Different so-called semantics have been proposed in the literature to determine, given an argumentation framework, the justifiable points of view on the acceptability of the arguments. The research in this thesis is motivated by the idea that argumentation is not a static process, and that a better understanding of the behaviour and applicability of the theory of abstract argumentation requires a dynamic perspective. We address this issue from three points of view.

First, we identify and investigate two types of change in argumentation. We call them intervention and observation, due to their similarity to the similarly named types of change in the theory of causal Bayesian networks. While intervention amounts to change due to actions (i.e., bringing new arguments/attacks into play), observation amounts to revision due to new information from the environment. We model these two types of change as two types of inference relations. This allows us to contrast and characterize the behaviour of the two types of change, under a number of different semantics, in terms of properties satisfied by the respective inference relations.

Second, we investigate the relation between abduction in logic programming and change in argumentation. We show that, on the abstract level, changes to an argumentation framework may act as hypotheses to explain an observation. The relation with abduction in logic programming lies in the fact that this abstract model can be instantiated on the basis of an abductive logic program, just like an abstract argumentation framework can be instantiated on the basis of a logic program. We furthermore present dialogical proof theories for the main reasoning problem, i.e., finding hypotheses that explain an observation.

Third, we look at change in preference-based argumentation. Preferences have been introduced in argumentation to encode, for example, relative strength of arguments. An underexposed aspect in these models is change of preferences. We present a dynamic model of preferences in argumentation, based on what we call property-based argumentation frameworks. It is based on Dietrich and List's model of property-based preference and provides an account of how and why preferences in argumentation may change. The idea is that preferences over arguments are derived from preferences over properties of arguments and change as the result of moving to different motivational states. We also provide a dialogical proof theory that establishes whether there exists some motivational state in which an argument is accepted. 

Argumentation in Artificial Intelligence

Argumentation is an activity that lies at the heart of how humans persuade and inform each other, how they make decisions and form beliefs, and how they justify and explain these decisions and beliefs. It is for this reason that argumentation is a central discipline within the field of artificial intelligence. The research in this thesis deals with theoretical applications of argumentation, namely as a model to capture in a general way the notion of defeasible reasoning.

Defeasible reasoning is reasoning based on rules of inference that are not necessarily deductively valid. In defeasible reasoning, premises provide support for conclusions, but do not guarantee their truth (it may be the case that the premises are true while the conclusion is false). This means that conclusions arrived at using defeasible reasoning may have to be retracted when additional information is acquired. This is a violation of the monotony property, which states that previously drawn conclusions are never retracted when additional information comes into play. In this sense, defeasible reasoning is non-monotonic.

Classical monotonic reasoning is suitable for formal or mathematical reasoning. Once we establish the truth of a theorem in mathematics, we do not worry about the truth of this theorem when we acquire new information. For example, Euclid proved more than two centuries ago that the set of prime numbers is infinite, and it is impossible that a new discovery will invalidate this truth. Nonmonotonicity is, however, a natural phenomenon in common-sense reasoning, because we often reason using assumptions, general rules with exceptions, rules of thumb, etcetera. This has led to the insight that classical monotonic logics are unsuitable for common-sense reasoning and, starting in the early eighties, much research in the field of Artificial Intelligence has focussed on defeasible, non-monotonic reasoning.

By the early nineties, the number of different defeasible reasoning formalisms was enormous. Some examples are Reiter's default logic [START_REF] Reiter | A logic for default reasoning[END_REF], Pollock's defea-sible logic [START_REF] Pollock | Defeasible reasoning[END_REF], and many variations of logic programming [START_REF] Gelfond | The stable model semantics for logic programming[END_REF][START_REF] Przymusinski | The well-founded semantics coincides with the three-valued stable semantics[END_REF][START_REF] Van Gelder | The well-founded semantics for general logic programs[END_REF]. Some approaches to defeasible reasoning already employed argumentation-theoretic ideas (see Prakken and Vreeswijk [START_REF] Prakken | Logics for defeasible argumentation[END_REF] for an overview). In 1995, Phan Min Dung showed, however, that many formalisms are based on the same underlying principle, which can be modelled using a simple and elegant theory called abstract argumentation [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF]. Since 1995, this theory has led to many new insights about the nature of defeasible reasoning and it has been applied in many areas beyond defeasible reasoning, which includes negotiation, decision making and agent communication.

While argumentation is an inherently dynamic activity, the theory of abstract argumentation neglects the notion of change, and takes a static perspective. The research in this thesis is motivated by the idea that a better understanding of the behaviour and applicability of the theory requires a dynamic perspective. This perspective leads to various questions related to change in the theory of abstract argumentation.

The title of this thesis is Argumentation in Flux, which is a reference to the book called Knowledge in Flux by Peter Gärdenfors's. This book, published in 1988, dealt with the dynamics of epistemic states, and set the stage for the successful and important field of research called belief change, which is active to this day. The goal of this thesis is to combine the perspectives taken by Dung in 1995 and by Gärdenfors in 1988. Before precisely stating the problem that we address, we explain the basics of abstract argumentation, instantiated argumentation (i.e., argumentation as an abstract model of a defeasible reasoning formalism) and a number of extensions of the theory that will be relevant in what follows.

Abstract Argumentation

The starting point in Dung's theory of abstract argumentation is the idea that a debate can be represented using a set of arguments and an attack relation between arguments [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF]. Consider, for example, the following exchange of arguments.

• a: Mary will pass her mathematics exam.

• b: No she won't, because the exam is too difficult.

• c: Yes, but Mary is very smart.

A central idea is that we can reason about the acceptance of arguments even if we abstract away from their content. Thus, we only need to identify the arguments a, b and c, and the attacks among them: c attacks b and b attacks a. Formally, a debate can then be represented by what is called an argumentation framework. This is a pair F = (A, ) where A is a set of abstract arguments and ⊆ A × A is an attack relation between arguments. Thus, an argumentation framework is essentially a directed graph, in which nodes represent arguments and arrows represent attack between arguments. The debate discussed here can be represented by the argumentation framework shown in figure 1 Given an argumentation framework, the main reasoning task is to answer the question: which arguments can be accepted? For the argumentation framework shown in figure 1.1, we can reason as follows: The argument c is left unchallenged and is therefore accepted. The argument b is challenged by c which, as we just established, is accepted. This implies that b must be rejected. Finally, the argument a is challenged by b, but since b is rejected, we can accept a.

There is, however, not in general a single answer to the question of which arguments can be accepted. This is due to the fact that argumentation frameworks that contain cycles (such as mutually attacking arguments) may lead to more than one way in which we can choose which arguments to accept. Consider, for example, the following exchange of arguments, which is represented by the argumentation framework shown in figure 1.2.

• a: Germany will win the finals.

• b: No, Argentina is better.

• c: No, Germany is better. A method to evaluate an argumentation framework, or to determine the points of view on which arguments to accept, is called an argumentation semantics.

We will consider in this thesis a number of different semantics, namely the complete, grounded, preferred and stable semantics [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] as well as the semistable semantics [START_REF] Verheij | Two approaches to dialectical argumentation: admissible sets and argumentation stages[END_REF][START_REF] Caminada | Semi-stable semantics[END_REF]. Each of these semantics yields, according to some set of criteria, a set of extensions (i.e., sets of acceptable arguments) of a given argumentation framework. These extensions represent the points of view on which arguments are acceptable. An alternative representation for such a point of view is a labelling, which assigns to each argument an acceptance status in (meaning accepted), out (meaning rejected) or undecided (neither accepted nor rejected) [START_REF] Caminada | On the issue of reinstatement in argumentation[END_REF]. A basic condition for a labelling to make sense (and a condition satisfied by all the argumentation semantics we consider) is expressed by the following two rules:

1. An argument is labelled in if and only if all attackers are labelled out.

2. An argument is labelled out if and only if some attacker is labelled in. We can conveniently represent a labelling by colouring the nodes of the graph. We use the following convention: white nodes are in, black nodes are out, and gray nodes are undecided. The labellings satisfying the rules discussed above for the argumentation framework shown in figure 1.2 are shown in figure 1. [START_REF] Baroni | On the input/output behavior of argumentation frameworks[END_REF].

In figure 1.3a, b is in and a and c are out; in figure 1.3b, a and c are in and b is out; and in figure 1.3c, all arguments are undecided.

To summarize, argumentation frameworks are abstract representations of a debate, in which we identify only the arguments (without specifying their content) and attacks between arguments. The evaluation of an argumentation framework under a given argumentation semantics leads to a set of extensions or labellings, each representing a possible point of view on which arguments to accept. We will formalize these concepts and explain the difference between the different argumentation semantics in chapter 2.

Several extensions of the notion of an argumentation framework have been developed. An extension that we look at in this thesis are preference-based argumentation frameworks [START_REF] Amgoud | A reasoning model based on the production of acceptable arguments[END_REF][START_REF] Simari | A mathematical treatment of defeasible reasoning and its implementation[END_REF]. Preferences over arguments may be derived from the relative strength of arguments. These preferences suggest that, in some cases, the attack of one argument on another succeeds only on the condition that the latter is not preferred over the former. The notion of a value-based argumentation framework extends this idea [START_REF] Trevor | Persuasion in practical argument using valuebased argumentation frameworks[END_REF]. The idea here is that arguments promote certain values and that different audiences have different preferences over values, from which the preferences over arguments are derived. Thus, a value-based argumentation framework may be evaluated in a different way by different audiences.

Instantiated Argumentation

As we demonstrated, Dung's theory of argumentation is abstract, in the sense that the content of arguments is left unspecified. However, many defeasible reasoning formalisms can be seen as specific forms of instantiated argumentation, where arguments are not anymore abstract, but are instantiated on the basis of a knowledge base.

Instantiated argumentation is based on a three-step process, shown in figure 1.4 (this figure also appears in Baroni et al. [4]). In the first step, an argumentation framework is constructed on the basis of a given knowledge base. The arguments Knowledge Base Argumentation Framework

Extensions of Arguments

Extensions of Conclusions

Step 1: Construction of argumentation framework

Step 2: Determining extensions (under given semantics)

Step 3: Extracting conclusions from extensions in this argumentation framework correspond to defeasible proofs, and attacks are determined by how the different proofs defeat each other. In the second step, an argumentation semantics is applied, resulting in sets of extensions of arguments. In the third step the set of conclusions of the arguments is extracted. The result of this step represents the conclusions of the knowledge base.

Although many non-monotonic reasoning formalisms have been shown to be forms of instantiated argumentation (including Reiter's default logic and Pollock's inductive defeasible logic [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] as well as Nute's defeasible logic [START_REF] Governatori | Argumentation semantics for defeasible logic[END_REF]), we restrict our attention here to logic programming. When modelling logic programming as argumentation, the knowledge bases that we work with are logic programs. Furthermore, arguments are constructed by constructing proof trees consisting of the rules of the logic program, and the defeasibility of these arguments is due to the use of negation as failure. The outcome of the three-step procedure depends on the argumentation semantics that is applied in step two. Various choices that can be made in this regard have been shown to correspond to various semantics for logic programming. For example, using the stable semantics in step two results in an outcome corresponding to the stable model semantics for LP [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF], using the grounded semantics results in an outcome corresponding to the well-founded semantics for LP [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF], the complete semantics corresponds in this way to the three-valued stable semantics for LP [START_REF] Wu | Complete extensions in argumentation coincide with 3-valued stable models in logic programming[END_REF], and the preferred semantics corresponds to the regular model semantics for LP [START_REF] Caminada | On the equivalence between logic programming semantics and argumentation semantics[END_REF].

In addition to defeasible reasoning, it has been shown that the stable marriage problem can be seen as a form of instantiated argumentation [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF].

Change in Argumentation

We now turn to the problem addressed in this thesis. As we pointed out, abstract argumentation theory neglects aspects of change. The theory is agnostic towards change of an argumentation framework, in the sense that it only provides methods to compute a fixed and unchanging evaluation of a given argumentation framework. In real life, however, argumentation is an activity, in which the evaluation of arguments evolves as new arguments and attacks come into play. Thus, the evaluation of an argumentation framework may change due to actions. Furthermore, there is the general problem of belief revision, namely that intelligent agents have to account for changes in their environment and for situations in which beliefs are discovered to be incorrect. This applies to argumentation too: we may arrive, using argumentation, at the conclusion that an argument is accepted, but we have to revise this conclusion if we discover that this is incorrect. Thus, we can distinguish two types of change in argumentation. We will now clarify this distinction by giving some examples of these two types of change, and identifying the issues that arise when attempting to model them. We also briefly survey the literature in which aspects of these two types of change have been considered.

Two Types of Change

Change due to Actions

While the notion of an argumentation framework is essentially static, in the sense that the set of arguments and attacks are fixed, argumentation is an inherently dynamic activity. This is because a debate usually evolves due to new arguments and attacks coming into play. These are essentially actions performed in a debate. Consider the discussion we used earlier:

• a: Mary will pass her mathematics exam.

• b: No she won't, because the exam is too difficult.

• c: Yes, but Mary is very smart. This discussion may continue as follows:

• d: Mary did not pay her tuition fees, so she is barred from taking exams.

The new argument d attacks the argument a and leads to a new evaluation of the argumentation framework. While a was initially in, because its sole attacker b was labelled out, a now becomes out, because d is itself unattacked and therefore in. This is shown in figure 1.5: in the initial situation (figure 1.5a), a and c are in and b is out. When we add the argument d, a becomes out (figure 1.5b).

From a formal point of view, this type of change is easy to deal with, because we can simply add arguments and attacks to an existing argumentation framework and recompute its evaluation. However, it does put some aspects that are usually studied from a static perspective in a different light. For example, several authors have studied properties that represent natural principles that one may expect an argumentation semantics to satisfy. Many of these properties assume a static setting (examples are in-maximialty, (strong) admissibility and (weak) reinstatement [START_REF] Baroni | On principle-based evaluation of extension-based argumentation semantics[END_REF]). One of our goals is to study properties that apply to the dynamic setting.

Another issue is that of computation. The computational complexity of computing the evaluation of an argumentation framework under various semantics has been studied, e.g., by Dunne [START_REF] Dunne | Computational properties of argument systems satisfying graph-theoretic constraints[END_REF], while a number of algorithms have been proposed by Modgil and Caminada [START_REF] Modgil | Proof theories and algorithms for abstract argumentation frameworks[END_REF]. In the dynamic setting, however, the question arises whether recomputing the evaluation of an argumentation framework after it is modified can somehow benefit from reusing the evaluation of the initial argumentation framework. Liao et al. [START_REF] Bei | Dynamics of argumentation systems: A division-based method[END_REF] investigated the role of directionality in this respect. Directionality (a principle first studied by Baroni and Giacomin [START_REF] Baroni | On principle-based evaluation of extension-based argumentation semantics[END_REF]) ensures, if satisfied by an argumentation semantics, that an argument x has an effect on the status of an argument y only if there is a directed path from x to y. This means that, when an argumentation framework is modified, we can divide the argumentation framework into an affected part and an unaffected part, and only the evaluation of the affected part needs to be recomputed.

Revision of Evaluation

The second type of change is concerned with the revision of the evaluation of an argumentation framework due to new information. The relevance of this type lies in the general problem of belief revision: agents have to account for changes in their environment, or for situations in which their beliefs turn out to be incorrect. This applies to argumentation too. We may, through argumentation, arrive at some conclusion, but we have to revise this conclusion if new information to the contrary becomes known.

We demonstrate the general idea using a simple example. Consider again the argumentation framework shown in figure 1.1, in which we accept a and c and reject b. Suppose we simply learn that Mary did not pass her exam. This means that we must reject a. But how are we supposed to revise the overall evaluation of the argumentation framework? This depends on how we account for this information. We may, for example, give up our belief that Mary is very smart. The new information is then accounted for by adding an attacker to c (figure 1.6a). On the other hand, perhaps we are certain that Mary is very smart, and believe that her failing the exam must have had another reason (perhaps Mary did not pay her tuition fees!). In this situation, the new information can be accounted for by adding an attacker to a (figure 1.6b). This example clearly demonstrates the difference between the two type of change: the action of rejecting a by introducing a new attacker simply leads to rejection of a (but not of c) while the information that a is rejected may, depending on how we account for this information, also lead to rejection of c.

From a technical point of view, this type of change can be seen as a kind of goal-oriented change of the argumentation framework. Goal-oriented change in argumentation is usually studied from a multi-agent strategic perspective. From the multi-agent strategic perspective, the revision of the status of an argument is due not to information from the environment, but represents the goal of an agent in a debate. For example, Kontarinis et al. [START_REF] Kontarinis | Rewriting rules for the computation of goal-oriented changes in an argumentation system[END_REF] put this problem as follows: "When several agents are engaged in an argumentation process, they are faced with the problem of deciding how to contribute to the current state of the debate in order to satisfy their own goal, i.e., to make an argument under a given semantics accepted or not." Similar motivations are found in Baumann and Brewka's work on what they call the enforcement problem [START_REF] Baumann | What does it take to enforce an argument? minimal change in abstract argumentation[END_REF][START_REF] Baumann | Expanding argumentation frameworks: Enforcing and monotonicity results[END_REF] as well as other work in this direction [START_REF] Bisquert | Enforcement in argumentation is a kind of update[END_REF][START_REF] Boella | Conditional labelling for abstract argumentation[END_REF]. Work that takes a multi-agent strategic perspective deals mainly with procedural and economical aspects (e.g., how to determine which arguments to attack to satisfy a given goal? And what are the minimal contributions to a debate that achieve this?).

In this thesis, however, we take a single-agent revision perspective, which has been relatively neglected in the literature. That is, the argumentation framework represents the reasoning of a single agent, and the revision of its evaluation is due to new information that the agent receives from the environment. This leads to different questions than those that are relevant when taking a multi-user strategic perspective. For example, to model revision, we need some mechanism by which a rational agent decides how to change his argumentation framework, in order to revise its evaluation due to an observation. We can also approach this from another angle, and focus on properties that characterize a rational way to revise the evaluation of an argumentation framework.

Outside the area of argumentation theory, this is a very common way of looking at revision. The most notable example is the notion of a revision operator, which is widely studied in the area of belief revision [START_REF] Grdenfors | Knowledge in Flux: Modeling the Dynamics of Epistemic States[END_REF]. Given some initial knowledge set K, a revision operator ⊛ takes as input a piece of new information φ and returns a new knowledge set K ⊛ φ that represents a rational way of revising K by φ. This approach permits both constructive characterizations (i.e., the definition of mechanisms that define well-behaved revision operators) as well as postulate-based characterizations (i.e., the definition of properties that characterize a well-behaved revision operator).

In the single-agent revision perspective, the goal-oriented change of the argumentation framework can be seen as a form of abduction. That is, the agent needs to find some change to the argumentation framework that explains the new information.

Intervention and Observation

We identified two types of change in argumentation, namely change due to actions in a debate, and revision of the evaluation due to new information. This distinction resembles the distinction between intervention and observation in causal Bayesian networks. For this reason, we call the two types of change intervention in argumentation and observation in argumentation. We give a short explanation of intervention and observation in causal Bayesian networks, and then discuss the similarities with the two types of change in argumentation.

Intervention and Observation in Causal Bayesian Nets

Causal Bayesian networks are structures used to represent probabilistic causal relationships between random variables. A causal Bayesian net is a directed acyclic graph, in which nodes represent random variables and edges represent relations of causal influence. Informally speaking, a causal Bayesian net (like a Bayesian net) carries conditional independence relations between different variables of a given probability distribution. That is, once the values of all parent nodes (i.e., all direct causes) of a given node X are known, the value of X is probabilistically independent of all the other ancestor nodes (i.e., all indirect causes). This is called the Markov assumption. In addition-and this is what distinguishes causal Bayesian nets from regular Bayesian nets-it is assumed that edges actually represent a directed causal relation, which is not guaranteed by the Markov assumption alone. We suffice with this informal description, and refer the reader to Pearl [START_REF] Pearl | Causality: models, reasoning and inference[END_REF] for details.

Figure 1.7 (left side) shows an example of a causal Bayesian net (taken from Pearl [START_REF] Pearl | Causality: models, reasoning and inference[END_REF]). It represents the causal relationships between the season (X 1 ∈ {wet, dry}), the state of the sprinkler (X 2 ∈ {on, off}), the rain (X 3 ∈ {yes, no}), wetness of the pavement (X 4 ∈ {yes, no}), and slipperiness of the pavement (X 5 ∈ {yes, no}). The causal relationship between the season and the state of the sprinkler is because the sprinkler is set in advance according to the season. Furthermore, the season influences the probability of rain and the state of the sprinkler, which both influence wetness of the pavement. In turn, wetness of the pavement influences slipperiness of the pavement.

A causal Bayesian network makes it possible to draw inferences on the basis of two types of events. These are interventions and observations, which leads to the notion of intervention-based inference and observation-based inference. First of all, if we observe an event then, a causal Bayesian network informs us about both the possible causal explanations for this event as well as other events caused by it. For example, if we observe that the sprinkler is on, we may infer, as a causal explanation, that the season is dry. This, in turn, may decreases the probability of rain. Other events that may be caused by the sprinkler being on are a wet pavement and, indirectly, a slippery pavement. Thus, observation-based inference involves both backwards abductive reasoning about causes, as well as forward reasoning about effects. Formally, observations in causal Bayesian nets are modelled like in regular Bayesian nets. That is, observing an event amounts to setting the value of the corresponding variable and recomputing the probabilities of the other events conditional on the observed event, using the conditional independence relations encoded by the graph.

Interventions, however, represent actions where something in the environment is changed. Interventions are modelled by modifying the causal Bayesian network to take the corresponding change in the environment into account. We may, for example, turn on the sprinkler. In the causal Bayesian network, we thus fix the value of X 3 to on. Because the influence of the season on the state of the sprinkler is no longer in effect, we furthermore remove the arrow from X 1 to X 3 . This is the general idea of how an intervention is interpreted: the original causal Bayesian net is modified by fixing the value of a variable and removing its dependence on its typical causes. The modification corresponding to the intervention of turning on the sprinkler is shown in figure 1.7 on the right.

An important difference between observation and intervention is the way in which they propagate through the causal Bayesian network. An observation propagates to variables that play a role in the causal explanation of the observed event, as well as variables that represent direct and indirect effects of the observed event. An intervention, on the other hand, propagates only to the direct and indirect effects of the variable whose value is fixed. In other words: causal explanation plays no role in determining how an intervention affects other variables.

Intervention and Observation in Argumentation

The distinction between the two types of change in argumentation that we identified resembles the distinction between intervention and observation in causal Bayesian networks. For this reason we refer to the two types of change as intervention in argumentation and observation in argumentation:

• Given an argumentation framework, an intervention represents a (hypothetical) action in a debate. The action leads to change in the evaluation of the argumentation framework that reflects the effects of the action.

• Given an argumentation framework, an observation represents a new piece of information about the status of one or more arguments. An observation leads to a revised evaluation of the argumentation framework, which accounts both for the explanation of the observation, as well as its effects.

The two types of change in argumentation lead to two types of entailment we can perform on the basis of a given argumentation framework. Interventionbased entailment is concerned with the consequences of (hypothetical) actions performed in an argumentation framework, and observation-based entailment is concerned with the consequences of new information from the environment about the evaluation of an argumentation framework. This perspective allows us to model the two types of change in a uniform way, and to compare the two in terms of their behaviour, such has how interventions and observations propagate through an argumentation framework.

Research Questions

Our main goal in chapter 3 and 4 is to formally develop a model to study change due to intervention and observation in argumentation, and to study and compare the behaviour of these two types of change. We start in chapter 3 by looking at intervention. We model change due to intervention as a form of entailment between interventions and consequences of interventions. This allows us to study the behaviour of an argumentation framework from a dynamic perspective, by focussing on properties satisfied by these entailment relations. The questions we address are the following.

• How can we model intervention-based entailment in argumentation?

• How does intervention-based entailment behave with respect to some general principles of well-behaved inference?

• What is the role of directionality and noninterference in the behaviour of intervention-based entailment?

In chapter 4 we look at obervation. Like we do for intervention, we model change due to observation as a form of entailment between observations and consequences of observations. The first question we address is the following.

• What is a rational way for an agent to revise the evaluation of an argumentation framework to account for an observation?

This question breaks down into the following two sub-questions.

• By what mechanism does a rational agent decide how to change his argumentation framework in order to revise its evaluation due to an observation?

• What are the conditions that characterize a rational way to revise the evaluation of an argumentation framework due to an observation?

Having modelled the two types of change as two forms of entailment, we are in a position to compare the two.

• What are the main differences between intervention and observation in terms of how interventions and observations propagate through an argumentation framework?

In chapter 5 we focus on abduction in argumentation. The problem of abduction has, in the field of artificial intelligence, been extensively studied in the context of logic programming (see, for example, Denecker and Kakas [START_REF] Denecker | Abduction in logic programming[END_REF] for an overview). Furthermore, it has been shown that logic programming can be seen as a form of instantiated argumentation. This raises the following question.

• Is there a model of abduction in abstract argumentation that can be seen as an abstraction of abduction in logic programming, in the same way that abstract argumentation has been shown to be an abstraction of logic programming?

Proof theories in argumentation answer the question whether or not an argument is accepted under a given semantics. These proof theories are often presented as two-person dialogue games played according to particular sets of rules. As such, they relate different semantics to stereotypical patterns found in real world dialogue. For example, the grounded semantics has been shown to relate to a kind of persuasion dialogue, while the preferred semantics relate to Socratic-style dialogue [START_REF] Caminada | Grounded semantics as persuasion dialogue[END_REF][START_REF] Martin | Preferred semantics as socratic discussion[END_REF]. Having defined a model for abduction in argumentation, one may wonder whether there are stereotypical dialogue patterns that correspond to the main reasoning tasks associated with this model, namely to find explanations for a given observation. This leads to the following research question.

• Having defined a model of abduction in abstract argumentation, is it possible to define dialogical proof procedures for the problem of finding explanations for a given observation?

In chapter 6 we focus on change in preference-based argumentation frameworks. Preferences are usually assumed to be fixed and no account is provided of how or why they may change. This leads to the final research question.

• How can change in preference-based argumentation be modelled?

Thesis Overview

• Chapter 2: Preliminaries

We first present the necessary basics of argumentation theory: argumentation frameworks and extension-based semantics [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] and labelling-based semantics [START_REF] Caminada | On the issue of reinstatement in argumentation[END_REF][START_REF] Martin | A logical account of formal argumentation[END_REF]. Based on these concepts we define a logical labelling language, which provides us with the flexibility we need to reason about interventions and observations in abstract argumentation.

We then present the necessary basics of the KLM approach to non-monotonic inference due to Kraus, Lehmann and Magidor [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF]. This includes both syntactical characterisations (the so called KLM properties for wellbehaved non-monotonic inference), semantical characterisations, and the results connecting these characterizations.

• Chapter 3: Intervention-Based Entailment in Argumentation

We model change due to intervention (i.e., actions in a debate corresponding to new arguments and attacks being added) as a form of entailment between interventions and consequences of interventions. This allows us to study the behaviour of an argumentation framework from a dynamic perspective, by focussing on properties satisfied by these entailment relations.

This puts us in a position to study a number of properties of different argumentation semantics, by investigating how these entailment relations behave with respect to some general principles of well-behaved inference. These principles are based on the KLM properties for well-behaved nonmonotonic inference.

We then investigate the role of directionality and noninterference in the behaviour of intervention-based entailment. These properties ensure that the effect of an intervention propagates throughout the argumentation framework in a well-behaved manner.

• Chapter 4: Observation-Based Entailment in Argumentation

We model change due to observation, i.e., new information leading to a revised evaluation of an argumentation framework. Like we do for intervention, we model it as a form of entailment between observations and consequences of observations.

Having modelled the two types of change as two forms of entailment, we are in a position to compare the two. Specifically, we study the differences between intervention and observation in terms of how interventions and observations propagate through an argumentation framework.

• Chapter 5: Abduction in Argumentation and Logic Programming

We develop a model of abduction in abstract argumentation, based on the idea that changes to an argumentation framework act as hypotheses to explain the support of an observation. We present dialogical proof theories for the main reasoning tasks (i.e., finding hypotheses that explain skeptical/credulous support) and we show that our model can be instantiated on the basis of abductive logic programs. Chapter 2 Preliminaries

Abstract Argumentation

The central notion in abstract argumentation theory is that of an argumentation framework, which is a directed graph represented by a set A of arguments and a binary relation over A called the attack relation. [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] To simplify our discussion we assume that A is finite, and that it is a subset of an infinite set U called the universe of arguments. Given an argumentation framework (A, ) we say that an argument a ∈ A attacks an argument b ∈ A if and only if (a, b) ∈ . We will mostly use infix notation and write a b instead of (a, b) ∈ . We extend this notation as follows. Given a set B ⊆ A, we say that x attacks B (written x B) whenever x y for some y ∈ B and, conversely, that B attacks x (written B y) whenever x y for some x ∈ B. Given two sets B, B ′ ⊆ A we say that B attacks B (written B B ′ ) whenever x y for some x ∈ B and y ∈ B ′ . In addition, we write x y whenever it is not the case that x y, and similarly for x B, B x and B B ′ . Given an argumentation framework F we furthermore denote by x -(resp. B -) the set of arguments attacking x (resp. some x ∈ B) and by x + (resp. B + ) the set of arguments attacked by x (resp. some x ∈ B).

An important idea in abstract argumentation is that we can reason about the acceptability of arguments without specifying their content. In chapter 5 we work with argumentation frameworks whose arguments have content that is generated on the basis of a logic program. In this section, however, we do not assign any meaning to abstract arguments. Given an argumentation framework, the main reasoning problem is to determine the positions that a rational agent should take with respect to the acceptability of the arguments. Solutions to this problem can be represented by extensions, which are sets of simultaneously acceptable arguments. They can also be represented by labellings, which are functions that associate with every argument a label that indicates the argument's acceptance status. We use the labelling-based approach in chapters 3 and 4 and the extension-based approach in chapters 5 and 6. The necessary basics of the two approaches are presented in the following two subsections.

Extension-Based Semantics

An extension-based semantics is defined by specifying the conditions that an extension (a set of arguments) must satisfy in order to represent a rational point of view. 1 We represent a semantics by a function E σ (F ) that returns all extensions of F under the semantics σ.

Two basic properties for an extension to represent a rational point of view are conflict-freeness and admissibility. An extension E is conflict-free if is not selfattacking (i.e., no member of E attacks another member of E). Furthermore, E is admissible if it defends all its members, where defence by E of an argument x is defined as follows.

Definition 2.1.2. [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] Let F = (A, ) be a framework. An extension E ⊆ A defends an argument y ∈ A if and only if for all x ∈ A such that x y it holds that E

x. We let D F (E) denote the set of all arguments y ∈ A such that E defends y. 2Definition 2.1.3. [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] Let F = (A, ) be an argumentation framework. An extension

E ⊆ A is Co Gr Pr SS St {a, c} ✓ ✓ ✓ ✓ {a, d} ✓ ✓ ✓ ✓ ∅ ✓ ✓ Table 2.1: Extensions in figure 2.1b. • conflict-free (E ∈ E Cf (F )) iff E E.
• admissible

(E ∈ E Ad (F )) iff E is conflict-free and E ⊆ D F (E).
Using these properties we can define the most widely used semantics, namely the complete, grounded, preferred, semi-stable and stable semantics.

Definition 2.1.4. Let F = (A, ) be an argumentation framework. An extension E ⊆ A is

• complete (E ∈ E Co (F )) iff E ∈ E Ad (F ) and E = D F (E). [42]
• grounded

(E ∈ E Gr (F )) iff E ∈ E Co (F ) and there is no E ′ ∈ E Co (F ) such that E ′ ⊂ E. [42] • preferred (E ∈ E Pr (F )) iff E ∈ E Ad (F ) and there is no E ′ ∈ E Ad (F ) such that E ⊂ E ′ . [42] • semi-stable (E ∈ E SS (F )) iff E ∈ E Ad (F ) and there is no E ′ ∈ E Ad (F ) such that A \ (E ′ ∪ E ′+ ) ⊂ A \ (E ∪ E + ). [27]
• stable (E ∈ E St (F )) iff E is conflict-free and for all x ∈ A \ E, it holds that E

x. [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] Table 2.1 shows the extensions under each of these semantics for the argumentation frameworks shown in figure 2.1b. What are the intuitions behind these semantics? First of all, a complete extension represents a point of view that is admissible (i.e., it is conflict-free and defends all its members) and additionally includes all arguments it defends. Note that every argumentation framework has at least one complete (and hence admissible) extension [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF]. The grounded extension is a complete extension that is minimal with respect to set-inclusion. It represents the most sceptical point of view and it is always unique. The grounded extension is also characterized by a fix point theory.

Proposition 2.1.1. [42, Theorem 25] Given an argumentation framework F , the grounded extension of F coincides with the least fixed point of D F .

A preferred extension represents one of the maximally credulous positions that one can take. It is an admissible extension that is maximal with respect to set inclusion. Note that every argumentation framework has at least one preferred extension. 

Co Gr Pr SS St

{a} ✓ ✓ {b, d} ✓ ✓ ✓ ✓ ∅ ✓ ✓ Table 2.2: Extensions in figure 2.2.
A stable extension is a conflict-free extension that makes a decision on all arguments. This means that every argument is either a member of the extension or it is attacked by the extension. Note that stable extensions are also preferred.

Proposition 2.1.3. [42, Theorem 25] For all F ∈ F, E St (F ) ⊆ E Pr (F ).
Not every preferred extension is, however, stable. Moreover, a stable extension is not guaranteed to exist. Both facts are demonstrated by the argumentation framework shown in figure 2.1c, which has one extension that is complete, grounded and preferred, namely the empty set, but has no stable extension.

The semi-stable semantics was introduced by Caminada [START_REF] Caminada | Semi-stable semantics[END_REF], although it is the same as what Verheij called the admissible stage semantics [START_REF] Verheij | Two approaches to dialectical argumentation: admissible sets and argumentation stages[END_REF]. A semi-stable extension is an admissible extension E whose range, which is the set E ∪ E + , is maximal with respect to set inclusion. The range of E is intuitively the set of arguments about which the extension makes a decision, i.e., those accepted and those rejected. Note that every stable extension is also semi-stable and every semi-stable extension also preferred.

Proposition 2.1.4. [27, Theorem 1 and 2] For all F ∈ F, E St (F ) ⊆ E SS (F ) ⊆ E Pr (F ).
An attractive feature of the semi-stable semantics is that it coincides with the stable semantics if a stable extension exists but, unlike a stable extension, the existence of a semi-stable extension is guaranteed. This is not true under the preferred semantics, because not every preferred extension is always stable. This is demonstrated by the argumentation framework shown in figure 2.2, of which the extensions are shown in table 2.2 (this example is due to Caminada [START_REF] Caminada | Semi-stable semantics[END_REF]).

Here, the extension {a} is preferred but not semi-stable.

Sceptical and Credulous Acceptance

An argument is said to be sceptically accepted under a semantics σ if the argument is a member of all σ extensions, and credulously accepted if it is a member of some σ extension. Intuitively, a credulously accepted argument is an argument that may survive the conflict, depending on the position taken, whereas a sceptically accepted argument survives the conflict no matter what position is taken.

Definition 2.1.5. Let F = (A, ) be an argumentation framework and σ a semantics. An argument x ∈ A is sceptically accepted under the σ semantics if and only if x ∈ E for every E ∈ E σ (F ). An argument x ∈ A is credulously accepted under the σ semantics if and only if x ∈ E for some E ∈ E σ (F ).

Note that the set of arguments sceptically accepted under the complete semantics always coincides with the grounded extension. Furthermore, since the grounded extension is unique, sceptical and credulous acceptance under the grounded semantics coincide.

Figure 2.1b demonstrates that the grounded semantics can be too sceptical in some scenarios. Here, neither c nor d is a member of the grounded extension. As a result, the argument a is also not a member of the grounded extension. But we may still conclude that a is accepted, even if we do not know whether to accept c or d. The preferred semantics correctly captures this, because a is indeed sceptically accepted under the preferred semantics, while b and c are not. 

Inclusion Relations Between the Different Semantics

Labelling-Based Semantics

An alternative way to represent a position on which arguments to accept is by using labellings. The labelling-based semantics that we present here are the same as the extension-based semantics presented earlier, but their formalization is different. While an extension only captures the arguments that are accepted in a given position, a labelling assigns to each argument an acceptance status. This general approach can be traced back to Pollock [START_REF] Pollock | Cognitive Carpentry: A Blueprint for how to Build a Person[END_REF], Jakobovits and Vermeir [START_REF] Jakobovits | Robust semantics for argumentation frameworks[END_REF] and Verheij [START_REF] Verheij | Two approaches to dialectical argumentation: admissible sets and argumentation stages[END_REF].

Three-Valued Labellings

We follow Caminada [START_REF] Caminada | On the issue of reinstatement in argumentation[END_REF], who defined the semantics described in the previous section using three-valued labellings. The benefit of three-valued labellings over extensions is that these labellings not only distinguish arguments that are accepted and not accepted, but also those that are explicitly rejected and those

Complete Extension

Grounded Extension Preferred Extension

Semi-Stable Extension Stable Extension is a is a is a is a Figure 2.3: Inclusion relations between different semantics.
that are undecided. This means that each argument is assigned one of the following three labels:

• in meaning that the argument is accepted,

• out meaning that the argument is rejected, and

• und (for undecided ) meaning that the argument is neither rejected nor accepted.

Formally, a labelling of an argumentation framework F = (A, ) is a function from A to {in, out, und}.

Definition 2.1.6. A labelling of an argumentation framework (A, ) is a function L : A → {in, out, und}. Given a label l ∈ {in, out, und} we define L -1 (l) as {x ∈ A | L(x) = l}. Given an argumentation framework F , we let L(F ) denote the set of all labellings of F .

Given an argumentation framework F = ({x 1 , . . . x n }, ) we will also denote a labelling L ∈ L(F ) by the set of pairs {(x 1 , L(x 1 )), . . . , (x n , L(x n ))}.

Properties of Labellings

We now define a number of properties that form the basis of the labelling-based semantics that we consider. First of all, an argument is said to be legally in if all its attackers are labelled out, legally out if some attacker is labelled in, and legally und if no attacker is labelled in and some attacker is labelled und. [START_REF] Martin | A logical account of formal argumentation[END_REF] Intuitively, an argument is legally labelled if its label is justified on the basis of the labels of the attackers.

Definition 2.1.7. [START_REF] Martin | A logical account of formal argumentation[END_REF] Let F = (A, ) be an argumentation framework and let L ∈ L(F ). An argument x ∈ A is said to be:

1. Legally in in L with respect to F iff L(x) = in and for all y ∈ x -, L(y) = out.

2. Legally out in L with respect to F iff L(x) = out and for some y ∈ x -, L(y) = in.

3. Legally und in L with respect to F iff L(x) = und and for all y ∈ x -, L(y) = in and for some y ∈ x -, L(y) = und.

We say that a labelling L satisfies in-legality, out-legality or und-legality if every argument labelled in, out or und is also legally in, out or und.

Definition 2.1.8. Let F = (A, ) be an argumentation framework and let L ∈ L(F ).

• L satisfies in-legality iff for all x ∈ A s.t. L(x) = in, x is legally in in L.

• L satisfies out-legality iff for all x ∈ A s.t. L(x) = out, x is legally out in L.

• L satisfies und-legality iff for all x ∈ A s.t. L(x) = und, x is legally und in L.

We furthermore use the properties called reinstatement and rejection [START_REF] Baroni | An introduction to argumentation semantics[END_REF]. A labelling satisfies reinstatement if every argument whose attackers are all labelled out is labelled in, and satisfies rejection if every argument of which some attacker is labelled in is labelled out.

Definition 2.1.9. [START_REF] Baroni | An introduction to argumentation semantics[END_REF] Let F = (A, ) be an argumentation framework and let L ∈ L(F ).

• L satisfies reinstatement iff for all x ∈ A s.t. for all y ∈ x -, L(y) = out, we have L(x) = in.

• L satisfies rejection iff for all x ∈ A s.t. for some y ∈ x -, L(y) = in, we have L(x) = out.

Note that every labelling satisfying out-legality and und-legality also satisfies reinstatement, and every labelling satisfying in-legality and und-legality also satisfies rejection.

Conflict-Free, Admissible and Complete Labellings

We say that a labelling is conflict-free if it satisfies in-legality and rejection. This amounts to the condition that every neighbour of every in-labelled argument is labelled out. The set of arguments labelled in in an admissible labelling of an argumentation framework F is an admissible set of F . Moreover, for every admissible set E of F , there is an admissible labelling such that the set of in-labelled arguments is exactly E. This admissible labelling is, however, not in general unique, and hence the mapping between admissible labellings and extensions is not one-toone.

Proposition 2.1.5. Let F be an argumentation framework.

• For all L ∈ L Ad (F ), L -1 (in) ∈ E Ad (F ).
• For all E ∈ E Ad (F ), there is an

L ∈ L Ad (F ) such that E = L -1 (in).
Proof. This follows from [START_REF] Martin | A logical account of formal argumentation[END_REF]Theorem 4].

Unlike the mapping between admissible labellings and extensions, the mapping between complete labellings and extensions is one-to-one.

Proposition 2.1.6. Let F be an argumentation framework.

• For all L ∈ L Co (F ), L -1 (in) ∈ E Co (F ). • For all E ∈ E Co (F ), there is a unique L ∈ L Co (F ) such that E = L -1 (in).
Proof. This follows from [START_REF] Martin | A logical account of formal argumentation[END_REF]Theorem 4].

Grounded, Preferred, Semi-Stable and Stable Labellings

Grounded, preferred, semi-stable and stable labelling are defined by putting additional restrictions on a complete labelling.

Definition 2.1.12. [START_REF] Martin | A logical account of formal argumentation[END_REF] Let F = (A, ) be an argumentation framework. A labelling L is

• grounded (L ∈ L Gr (F )) iff L ∈ L Co (F ) and there is no L ′ ∈ L Co (F ) such that L ′-1 (in) ⊂ L -1 (in). • preferred (L ∈ L Pr (F )) iff L ∈ L Co (F ) and there is no L ′ ∈ L Co (F ) such that L -1 (in) ⊂ L ′-1 (in). Labelling Co Gr Pr SS St {(a, in), (b, out), (c, in), (d, out)} ✓ ✓ ✓ ✓ {(a, in), (b, out), (c, out), (d, in)} ✓ ✓ ✓ ✓ {(a, und), (b, und), (c, und), (d, und)} ✓ ✓ Table 2.3: Labellings in figure 2.1b. • semi-stable (L ∈ L SS (F )) iff L ∈ L Co (F ) and there is no L ′ ∈ L Co (F ) such that L ′-1 (und) ⊂ L -1 (und). • stable (L ∈ L St (F )) iff L ∈ L Co (F ) and L ′ (und) = ∅.
Thus, grounded and preferred labellings are defined by minimizing or maximizing the set of in-labelled arguments. Semi-stable extensions are defined by minimizing the set of arguments that is labelled und. Finally, a stable labelling is a complete labelling in which no argument is labelled und. These definitions correspond to the respective extension-based definitions of these semantics in the following way.

Proposition 2.1.7. Let F be an argumentation framework and let σ ∈ {Gr, Pr, SS, St}. For all L ∈ L Co (F ),

L ∈ L σ (F ) if and only if L -1 (in) ∈ E σ (F ).
Proof. This follows from proposition 2.1.6 together with definition 2.1.12.

The benefit of using labellings over extensions is that we can distinguish arguments that are explicitly rejected (labelled out) and undecided (labelled und). By contrast, an extension only identifies the accepted arguments, and does not explicitly allow a distinction between arguments that are rejected or undecided. For ease of presentation we also represent labellings of argumentation frameworks by colourings of the nodes. We adopt the convention to colour arguments labelled in white, arguments labelled out black, and arguments labelled und gray. Figure 2.4 shows the colourings for three labellings listed in table 2.3.

Properties

The correspondence between labellings and extensions established in proposition 2.1.6 and 2.1.7 means that a number of results carry over from the extensionbased setting to the labelling based setting. We state these results here so that we can refer back to them in what follows. First of all, the inclusion relations between the labelling semantics are the same as those between the extension-based semantics.

Proposition 2.1.8. Let F be an argumentation framework. 

1. L Gr (F ) ⊆ L Co (F ). 2. L St (F ) ⊆ L SS (F ) ⊆ L Pr (F ) ⊆ L Co (F ).
Proof. See preceding discussion.

Like the grounded extension, the grounded labelling is unique.

Proposition 2.1.9. For all F ∈ F, | L F (Gr) |= 1.

Proof. Follows from proposition 2.1.7 together with the fact that the grounded extension is unique.

Like under the extension-based semantics, existence of complete, grounded, preferred and semi-stable labellings is guaranteed, but not of stable labellings.

Proposition 2.1.10. For all

F ∈ F, σ ∈ {Co, Gr, Pr, SS}, L F (σ) = ∅. For some F ∈ F, L F (St) = ∅.
Proof. Follows from proposition 2.1.7 together with the fact that the existence of complete, grounded, preferred and semi-stable extensions is guaranteed, but the existence of stable extensions is not.

Finally, we will later refer later to the property of language independence. [START_REF] Baroni | An introduction to argumentation semantics[END_REF] This property states, if satisfied by a semantics, that isomorphic argumentation frameworks give rise to equivalent (modulo isomorphism) sets of labellings. It is an expression of the idea that arguments are indeed abstract, in the sense that the assigned labels depend only on the topology of the argumentation framework. To define language independence, we need the following notion of isomorphism.

Definition 2.1.13. Let F 1 = (A 1 , 1 ) and F 2 = (A 2 , 2 ) be two argumentation frameworks. We write F 1 = m F 2 if and only if m is a bijection from A 1 to A 2 such that x 1 y if and only if m(x) 2 m(y). We say that F 1 and F 2 are isomorphic if and only if F 1 = m F 2 for some m.

Definition 2.1.14. A labelling-based semantics σ satisfies the language independence principle iff for every

F 1 , F 2 ∈ F such that F 1 = m F 2 it holds that L σ (F 1 ) = {L m | L ∈ L σ (F 2 )}, where L m is a labelling of F 1 defined by L m (x) = L(m(x)).
The language independence property is satisfied by all the semantics that we consider.

Proposition 2.1.11. For all σ ∈ {Co, Gr, Pr, SS, St}, σ satisfies the language independence principle.

Labelling-Based Entailment

Instead of identifying the evaluation of an argumentation framework with a set of labellings, we use a more flexible method based on the notion of labellingbased entailment. This method allows us to model dynamic modes of evaluation (the subject of chapter 3 and 4) in a more convenient way. The idea is to use a symbolic representation in terms of a logical labelling language. The reasoning about argument acceptance under a given semantics can then be captured by an entailment relation between argumentation frameworks and consequences expressed in this language. This language was used before by Booth et al. [START_REF] Booth | A logical theory about dynamics in abstract argumentation[END_REF][START_REF] Booth | Monotonic and nonmonotonic inference for abstract argumentation[END_REF].

Syntax

Given a set A of arguments we denote by lang(A) the language it determines. The atoms of this language are of the form in(x), out(x) and und(x) for some argument x ∈ A. The meaning of these atoms is that the argument x is labelled in, out or und. The language furthermore consists of ⊤ and ⊥ (representing truth and falsity) and is closed under the usual logical connectives.

Definition 2.1.15. Let A ⊆ U be a set of arguments

• An atom is a symbol of the form in(x), out(x) or und(x), where x ∈ A.

• ⊤, ⊥ and every atom is a formula.

• If φ, ψ are formulas then so is (φ ∨ ψ).

• If φ is a formula then so is ¬φ.

• Nothing else is a formula.

We denote the set of formulas by lang(A). Given an argumentation framework F = (A, ) we also write lang(F ) instead lang(A).

Other connectives we use are ∧, → and ↔, defined as usual in terms of ¬ and ∨ (i.e., (φ ∧ ψ) = ¬(¬φ ∨ ¬ψ), (φ → ψ) = (¬φ ∨ ψ) and (φ ↔ ψ) = (φ → ψ) ∧ (ψ → φ)). We omit parentheses if this does not lead to confusion. We shall furthermore denote literals by α, β or γ and, by slight abuse of notation, denote by ¬α the literal that is the negation of the literal α.

Semantics

We define the relation |=, along with a number of related notions, as follows.

Definition 2.1.16. Given an argumentation framework F = (A, ), the relation |=⊆ L(F ) × lang(F ) is defined by:

• L |= ⊤ and L |= ⊥, • L |= in(x) iff L(x) = in, • L |= out(x) iff L(x) = out, • L |= und(x) iff L(x) = und, • L |= ¬φ iff L |= φ, • L |= (φ ∨ ψ) iff L |= φ or L |= ψ.
We say that L satisfies φ whenever L |= φ, and that φ classically entails ψ (written as φ |= ψ) if every labelling that satisfies φ also satisfies ψ.

Labelling-Based Entailment Relations

Posing a query about an argumentation framework F can be interpreted as asking whether some formula φ ∈ lang(F ) is a consequence of F under the semantics σ. This can be seen as a process of entailment between argumentation frameworks and formulas. Accordingly, each semantics determines such an entailment relation, which we call the σ-entailment relation and denote by |= σ .

Definition 2.1.17. Given a semantics σ we define the σ entailment relation |= σ by: 

for all F ∈ F, φ ∈ lang(F ) : F |= σ φ iff ∀L ∈ L σ (F ), L |= φ.

KLM Logics

In this section we present the basics of the influential KLM approach to nonmonotonic reasoning. It is due to Kraus, Lehmann and Magidor [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF] (hence the name KLM) and was extended by Lehmann [START_REF] Daniel | What does a conditional knowledge base entail[END_REF]. The approach contains elements of work on non-monotonic logics by Gabbay [START_REF] Gabbay | Theoretical foundations for non-monotonic reasoning in expert systems[END_REF] and Shoham [START_REF] Shoham | A semantical approach to nonmonotic logics[END_REF] and can be traced back to philosophical work on conditional statements by Adams [START_REF] Adams | The Logic of Conditionals: An Application of Probability to Deductive Logic[END_REF]. The starting point in the KLM approach is the notion of a non-monotonic entailment relation. This is a relation |∼ between formulas of a propositional language where φ |∼ ψ intuitively means that ψ plausibly or defeasibly follows from φ. Non-monotonicity means that, unlike classical monotonic entailment relations, these relations generally do not satisfy the property of Monotony:

(Monotony) If φ |∼ ψ then φ ∧ χ |∼ ψ.
A typical example against monotony is the following: suppose we learn that Tweety is a bird and that it plausibly follows that Tweety flies: bird |∼ flies. If we subsequently learn that Tweety is a penguin, then it no longer follows that Tweety flies. However, monotony implies that it still follows that Tweety flies: bird ∧ penguin |∼ flies. This demonstrates the undesirability of monotony from a common sense reasoning perspective.

One may ask: how should an entailment relation behave in the absence of monotony? This is the question addressed by Kraus, Lehmann and Magidor. They introduced four sets of properties (often called the KLM properties) and corresponding semantic models with the aim of characterizing classes of wellbehaved non-monotonic entailment relations. These are, from the strongest to the weakest, the class of rational, preferential, loop-cumulative and cumulative entailment relations.

In the following two chapters we look at entailment relations for entailment in abstract argumentation on the basis of interventions and observations. These relations are also non-monotonic, and hence we can evaluate and try to characterize their behaviour in terms of the KLM properties. In this section we introduce the definitions and results concerning KLM logics that are relevant to this objective. 

Syntactic Characterizations

(Loop) If φ 0 |∼ φ 1 , φ 1 |∼ φ 2 , . . . , φ k-1 |∼ φ k , φ k |∼ φ 0 then φ 0 |∼ φ k . (Or) If φ |∼ χ and ψ |∼ χ then φ ∨ ψ |∼ χ. (Rational Monotony) If φ |∼ ¬ψ and φ |∼ χ then φ ∧ ψ |∼ χ.
The relation relation |∼ is said to be:

• cumulative iff it satisfies Reflexivity, Right Weakening, Left Logical Equivalence, Cut and Cautious Monotony [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF].

• loop-cumulative iff it is cumulative and satisfies Loop [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF].

• preferential iff it is loop-cumulative and satisfies Or [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF].

• rational iff it is preferential and satisfies Rational Monotony [START_REF] Daniel | What does a conditional knowledge base entail[END_REF].

We briefly explain the intuition behind these properties.

Reflexivity is a basic principle of inference, which states that any premise φ has, among its consequences, φ itself.

Left Logical Equivalence states that the consequences of a premise do not depend on the syntactical representation of the premise. That is, premises that are logically equivalent have the same consequences.

Right Weakening states that if φ non-monotonically entails ψ and ψ classically entails χ, then φ also non-monotonically entails χ.

Cautious Monotony is a weakening of Monotony. It states that strengthening a premise with something that is already a consequence of this premise does not lead to the retraction of consequences.

Cut is the dual of Cautious Monotony. It states that strengthening a premise with something that is already a consequence of this premise does not lead to new consequences. Note that Cautious Monotony and Cut together imply that if φ |∼ ψ then the consequences of φ and φ ∧ ψ coincide.

The Or property states that if χ is a consequence of φ as well as ψ then it is also a consequence of φ ∨ ψ.

Loop states that "if propositions may be arranged in a loop, in a way each one is a plausible consequence of the previous one, then each one of them is a plausible consequence of any one of them" [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF].

Rational Monotony is, like Cautious Monotony, a weakening of monotony. It states that strengthening a premise with something the negation of which is not a consequence does not lead to the retraction of consequences. Intuitively, Rational Monotony states that only information that is completely surprising, in the sense that it is believed to be false, leads to the retraction of a consequence.

Note that it is only the Or property that distinguishes the class of preferential and loop-cumulative entailment relations, because the Loop property is satisfied not only by every loop-cumulative entailment relation but also by every preferential entailment relation (i.e., it is derivable from Reflexivity, Left Logical Equivalence, Right Weakening, Cut, Cautious Monotony and Or).

We mention two properties that can be derived using these properties. The first is Equivalence. It states that two propositions that are consequences of each other have are equivalent in the sense that they have the same consequences.

Equivalence follows from Cautious Monotony, Left Logical Equivalence and Cut and is therefore satisfied by every cumulative entailment relation [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF].

(Equivalence) If φ |∼ ψ, ψ |∼ φ and φ |∼ χ then ψ |∼ χ.
The second property is And. It states that the conjunction of two consequences is also a consequence. This property follows from Cautious Monotony and Cut and is therefore satisfied by every cumulative entailment relation [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF].

(And) If φ |∼ ψ and φ |∼ χ then φ |∼ ψ ∧ χ.

Finally, we mention two properties that do not follow from the properties discussed above. Even though these properties look reasonable at first sight it, turns out that, in the presence of the properties of a cumulative entailment relation, they each imply Monotony [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF].

Semantic Characterizations

The semantic characterization of the classes of cumulative, loop-cumulative, preferential and rational inference relations is based on models consisting of a preference relation over states and a mapping from states to valuations. These models define an inference relation by letting ψ be a consequence of φ if ψ is true in the most preferred states in which φ is true. The four classes of inference relations are characterized by placing increasingly strong restrictions on these models.

The weakest class of models are the cumulative models. The definition presupposes a set V of valuations associated with a propositional language lang and a satisfaction relation

|=⊆ V × lang. Definition 2.2.2. [62] A cumulative model over V is a triple W = (S, ≺, l)
, where

• S is a set containing elements called states,

• ≺ is a binary relation over S,

• l is a function mapping every state s ∈ S to a non-empty set l(s) ⊆ V ,

• (S, ≺, l) satisfies the smoothness condition (defined below).

For every formula φ ∈ lang we define φ by φ = {s ∈ S | ∀v ∈ l(s), v |= φ}. A state s is said to be ≺-minimal in a set X ⊆ S iff s ∈ X and there is no s ′ ∈ X such that s ′ ≺ s. Furthermore, W is called finite iff S is finite.

Preferences over states are associated with minimality, meaning that a state s is preferred over a state s ′ whenever s ≺ s ′ . The association of preference with minimality rather than maximality is mainly due to historical reasons, namely that preference was associated with minimizing exceptions.

The smoothness condition is rather technical but not of great importance in the current setting. It ensures that, for every formula φ, it is possible to determine the preferred states in φ. In the rest of this chapter we only deal with finite models, in which the smoothness condition is trivially satisfied.

Definition 2.2.3.

[62] A triple (S, ≺, l) satisfies the smoothness condition iff for all φ ∈ lang and s ∈ φ, either s is ≺-minimal in φ, or there is some s ′ ∈ φ such that s ′ is ≺-minimal in φ and s ′ ≺ s.

In a cumulative ordered model the preference relation is a strict partial order. 4Definition 2.2.4. [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF] A cumulative ordered model over V is a triple (S, ≺, l) defined like a cumulative model over V except that ≺ is a strict partial order.

A preferential model is a cumulative model in which every state maps to a single valuation.

Definition 2.2.5. [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF] A preferential model over V is a triple (S, ≺, l) defined like a cumulative-ordered model over V except that for all s ∈ S, l(s) is a singleton. In this case we also denote by l(s) the member of the set instead of the set.

Finally, a ranked model is a preferential model in which states can be ordered according to a numerical ranking.

Definition 2.2.6. [START_REF] Daniel | What does a conditional knowledge base entail[END_REF] A ranked model over V is a triple (S, ≺, l) defined like a preferential model over V except that there exists some mapping R :

S → N such that s ≺ s ′ iff R(s) < R(s ′ ).
A triple (S, ≺, l) determines an entailment relation as follows. The proof of this theorem can be found (for the cumulative, loop-cumulative and preferential case) in [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF] and (for the rational case) in [START_REF] Daniel | What does a conditional knowledge base entail[END_REF].

Chapter 3

Intervention-Based Entailment in Argumentation framework. There are numerous ways in which this argumentation framework can be extended. Figure 3.2 shows three out of many possibilities. In figure 3.2a, a new argument attacking a is added, which causes a to be out, b to be in, e to be out and f to be in, while the labels of c, d and g are not affected. In figure 3.2b and 3.2c, new arguments are added that attack, respectively, c and e. Each of these changes can be thought of as an intervention, or an action in a debate, and each intervention leads to some changes of the evaluation of the argumentation framework with respect to the initial situation.

Our motivation for investigating this type of change is that it allows us to investigate how the evaluation of an argumentation framework under a given semantics changes when new arguments and attacks come into play. Unlike the behaviour of argumentation semantics in a static context (that has been studied using properties like in-maximialty, (strong) admissibility and reinstatement [START_REF] Baroni | On principle-based evaluation of extension-based argumentation semantics[END_REF]) this type of behaviour has been relatively neglected.

We model intervention as a form of entailment. This permits us to study this type of change by looking at the properties satisfied by a precisely defined entailment relation. The properties that we focus on are based on the KLM properties, which we discussed in chapter 2. These properties (Cautious Monotony, Cut, Rational Monotony and Loop) represent general principles of well-behaved inference. In the current setting, these properties express principles of how the evaluation of an argumentation framework changes when new arguments and attacks come into play. For example, Cautious Monotony and Cut together imply that the evaluation of an argumentation framework does not change when a new argument is added that attacks an argument that is already rejected. We present a complete picture of which of these properties are satisfied under the different argumentation semantics that we consider (the complete, grounded, preferred, semi-stable and stable semantics). We furthermore present a number of results concerning argumentation frameworks that are free of odd-length and/or even-length directed cycles.

We also investigate the role of the directionality [START_REF] Baroni | On principle-based evaluation of extension-based argumentation semantics[END_REF] and noninterference [START_REF] Baroni | An introduction to argumentation semantics[END_REF] principles in the behaviour of intervention-based entailment. We show that these principles, if satisfied by the argumentation semantics that is used, ensure that the effects of actions propagate through the argumentation framework in a wellbehaved manner. On the other hand, using an argumentation semantics not satisfying directionality (the stable and semi-stable semantics) or noninterference (the stable semantics) leads to unintuitive behaviour.

Finally, the results we obtain in this chapter serve as a basis to compare the two types of change we identified. In the next chapter we focus on observation in argumentation. Like we do in this chapter, we investigate the behaviour of change due to observation by modelling it as a form of entailment (observationbased entailment). This approach allows us to compare the behaviour of the two types of change by contrasting them in terms of the properties that satisfy.

We proceed as follows. In section 3.2 we present the basic definitions of intervention-based entailment as well as a number of basic results that will be useful in what follows. In section 3.3 we evaluate the notion of intervention-based entailment using the KLM properties discussed in section 2.2. We then investigate in section 3.4 the role of the directionality and noninterference principles in the behaviour of intervention-based entailment. We discuss in section 3.5 related work and we conclude in section 3.6.

Intervention-Based Entailment

Defeat and Provisional Defeat

As we explained, an intervention represents an action in a debate that corresponds to the addition of new arguments and attacks to an argumentation framework. Such an action leads to change of the evaluation of the argumentation framework, and this is the type of change that we aim to model. We simplify our model by abstracting away from the actual arguments and attacks that can be added to an argumentation framework. Instead, we focus only on how the addition of a new argument that attacks an existing argument affects the status of the existing argument.

There are two ways in which the status of a new argument y that attacks an existing argument x may affect the status of x. The first is when y is labelled in, which causes x to be labelled out. The second is when y is labelled und, which causes x not to be labelled in but still leaves open the possibility for x to be labelled und. Note that the third possibility, namely that y labelled out, does not involve any effect on the status of x.

The two effects sketched here are implicit in the definition of a complete labelling. More precisely, the fact that y being labelled in causes x to be labelled out follows from the rejection property of a complete labelling (see definition 2.1.9) and the fact that y being labelled und causes x not to be labelled in follows from the in-legality property of a complete labelling (see definition 2.1.8).

Thus, as far as the effect on the label of an argument is concerned, there are two types of actions that can be performed in a debate on a given argument x. We call these two actions defeat of x (causing x to be labelled out) and provisional defeat of x (causing x not to be labelled in but still leaving open the possibility for x to be labelled und). The distinction between these two types of defeat originates from the work of Pollock [START_REF] Pollock | Cognitive Carpentry: A Blueprint for how to Build a Person[END_REF] and appears in the context of abstract argumentation in the work of Baroni, Giacomin and colleagues (see, e.g., [START_REF] Baroni | Semantics of abstract argument systems[END_REF][START_REF] Baroni | Sccrecursiveness: a general schema for argumentation semantics[END_REF]).

Note that other types of change of the label of an argument x, like making x in, not out, und or not und, cannot be achieved in a direct way through (provisional) defeat. Nevertheless, such types of change can still be achieved in an indirect way. For example, given the argumentation framework a b, the argument b can be made in by defeating a. 1 More generally, we show that any formula that is conflict-free can be made true using only the actions of defeat and provisional defeat on sets of arguments. In this sense, these two actions are functionally complete. This will be proven after we have presented the main definitions.

Formally, we represent an action on an argument x by a literal out(x) (defeat of x) or ¬in(x) (provisional defeat of x). An intervention for F is a set Φ of actions such that no two members of Φ refer to the same argument. Definition 3.2.1. Let F = (A, ) be an argumentation framework. An action for F is a literal of the form out(x) or ¬in(x) for some x ∈ A. We use α, β and γ to denote actions and we denote by Arg(α) the argument occurring in α. We denote the set of all actions for F by Act(F ). Definition 3.2.2. Let F = (A, ) be an argumentation framework. An intervention for F is a set Φ ⊆ Act(F ) such that for all α, β ∈ Φ, Arg(α) = Arg(β) implies α = β. We denote by Int(F ) the set of interventions for F .

The empty intervention ∅ will also be called the vacuous intervention. In what follows we will see that provisional defeat sometimes leads to undesirable behaviour that does not occur if we focus only on defeat. For this reason we also use the notion of a stable intervention, which is an intervention that only consists of defeat. Definition 3.2.3. Let F = (A, ) be an argumentation framework. An intervention Φ ∈ Int(F ) is stable if it consists only of literals of the form out(x), for some x ∈ A. We denote by StInt(F ) the set of stable interventions for F .

Intervention-Based Entailment

The (provisional) defeat of an argument x can be achieved adding a new argument to the argumentation framework that attacks x. To achieve defeat of x, we let this attacker itself be unattacked, so that it is labelled in in every complete labelling, with the effect that x is labelled out. To achieve provisional defeat of x, we let this attacker be self-attacking, so that it is labelled und in every complete labelling, with the effect that x is not labelled in. To formalize this we need a number of definitions. Given an argumentation framework F , an F -mapping is an injective function κ that maps every argument in F to a unique new argument not occurring in F . Definition 3.2.4. Let F = (A, ) be an argumentation framework. An Fmapping is an injective function κ : A → U \ A.

Given an intervention Φ, we denote by F ⊕ κ Φ the argumentation framework that represents the effect of Φ on F by the addition of new attacking arguments according to κ. Definition 3.2.5. Let F = (A, ) be an argumentation framework and κ an F -mapping. Given an intervention Φ ⊆ Int(F ), we define F ⊕ κ Φ by F ⊕ κ Φ = (A ′ , ′ ), where We denote by L σ (F, Φ, κ) the σ labellings of F ⊕ κ Φ restricted to the arguments of F . Definition 3.2.6. Let F = (A, ) be an argumentation framework, κ an Fmapping and σ a semantics. We define L σ (F, Φ, κ) by

• A ′ = A ∪ {κ(x) | out(x) ∈ Φ ∨ (¬in(x)) ∈ Φ}, • ′ = ∪{(κ(x), x) | out(x) ∈ Φ ∨ (¬in(x)) ∈ Φ}∪ {(κ(x), κ(x)) | (¬in(x)) ∈ Φ},
L σ (F, Φ, κ) = L σ (F ⊕ κ Φ) ↓ A.
We can simplify the notation introduced so far because, for any semantics σ satisfying the language-independence principle, and every argumentation framework F and intervention Φ ∈ Int(F ), the set of labellings L σ (F, Φ, κ) is invariant under different choices of κ. Proposition 3.2.1. Let σ be a labelling-based semantics and F an argumentation framework. If σ satisfies the language independence principle then for every two F -mappings κ and κ ′ and every intervention Proof. Let σ be a labelling-based semantics and F = (A, ) an argumentation framework. Suppose σ satisfies the language independence principle. Let κ and κ ′ be two F -mappings. We then have that

Φ ∈ Int(F ) it holds that L σ (F, Φ, κ) = L σ (F, Φ, κ ′ ).
F ⊕ κ Φ = m F ⊕ κ ′ Φ, where m is defined by m(x) = x, if x ∈ A; and m(x) = κ ′ (κ -1 (x)), if x ∈ A. From definition 2.1.14 it then follows that L σ (F ⊕ κ Φ) = {L m | L ∈ L σ (F ⊕ κ ′ Φ)}, where L m is a labelling of F ⊕ κ Φ defined by L m (x) = L(m(x)). From this it follows that L σ (F ⊕ κ Φ) ↓ A = L σ (F ⊕ κ ′ Φ) ↓ A. Via definition 3.2.6 it finally follows that L σ (F, Φ, κ) = L σ (F, Φ, κ ′ ).
Due to this invariance (which holds under all semantics that we consider) we can omit the κ argument and simply denote by L σ (F, Φ) the set L σ (F, Φ, κ) for an arbitrary choice of κ. Definition 3.2.7. Let F = (A, ) be an argumentation framework and σ a labelling-based semantics satisfying the language-independence principle. We define L σ (F, Φ) by 

L σ (F, Φ) = L σ (F, Φ, κ),
For all Φ ∈ Int(F ), φ ∈ lang(F ) : Φ ||= F σ φ iff ∀L ∈ L σ (F, Φ), L |= φ.
Some terminology: Given an argumentation framework F and semantics σ, we say that an intervention Φ ∈ Int(F ) skeptically (resp. credulously) entails φ if we have

Φ ||= F σ φ (resp. Φ ||= F σ ¬φ).
If we speak of entailment without specifying whether it is skeptical or credulous, we refer to skeptical entailment.

Example 3.2.2. Let F be the argumentation framework shown in figure 3.1. We have the following entailments.

• ∅ ||= F Co in(a) ∧ out(g) (see fig. 3.1) • {out(a)} ||= F Co out(e) ∧ out(g) (see fig. 3.2a) • {¬in(a)} ||= F Co und(e) ∧ out(g) (see fig. 3.3a) • {out(c)} ||= F Co out(e) ∧ in(g) (see fig. 3.2b) • {¬in(c)} ||= F Co und(e) ∧ und(g) (see fig. 3.3b) • {out(e)} ||= F Co out(e) ∧ out(g) (see fig. 3.2c) • {¬in(e)} ||= F Co und(e) ∧ out(g) (see fig. 3.3c)
The following example involves an argumentation framework with multiple labellings.

Example 3.2.3. Let F be the argumentation framework shown in figure 3.4.

• Under the grounded semantics we have that normally, a is undecided: • Under the complete semantics we have that normally, a is accepted only if c or d is accepted:

∅ ||= F Gr und(a).
∅ ||= F Co in(a) → (in(c) ∨ in(d)). If we defeat b, this no longer holds: {out(b)} ||= F Co in(a) → (in(c) ∨ in(d)).
• Under the preferred semantics we have, for example, that a is accepted:

∅ ||= F Pr in(a)
. If we provisionally defeat c and b, this no longer holds:

{¬in(c), ¬in(d)} ||= F
Pr in(a).

Definition 3.2.8 forms the basis for the further investigations in this chapter. This is because, for each semantics σ and argumentation framework F , we can investigate the behaviour of σ by checking the properties of ||= F σ . Finally, note that the definition of a Φ-modified argumentation framework is very similar to that of a standard argumentation framework with respect to an argumentation framework with input, which appears in the work of Baroni et al. [START_REF] Baroni | On the input/output behavior of argumentation frameworks[END_REF] on decomposability-related properties of argumentation semantics. Similarly, the notion of intervention-based entailment is related to what they call canonical local functions. The difference is mainly technical. While their approach is based on a function that takes an argumentation framework with input, and returns a set of labellings, in our approach an argumentation framework and semantics determines a relation between input (interventions) and consequences of this input.

Basic Properties

Before continuing we prove some basic properties of intervention-based entailment under the semantics that we consider. Some of the properties are rather obvious, but it useful to state them here so that we can refer back to them later on.

Reflexivity

In a Φ-modified argumentation framework, the intended effect of the intervention Φ is achieved only if the semantics that we use satisfies certain conditions. A sufficient condition is that every σ labelling of an argumentation framework is also a complete labelling. In terms of intervention-based entailment this means that the relation ||= F σ satisfies Reflexivity whenever this condition is satisfied. Definition 3.2.9.

Let F ∈ F. A relation ||= F ⊆ Int(F ) × lang(F ) satisfies Reflexivity iff for all Φ ∈ Int(F ), Φ ||= F α for all α ∈ Φ. Proposition 3.2.2. Let σ be a labelling-based semantics. If for all F ∈ F, L σ (F ) ⊆ L Co (F ), then for all F ∈ F, ||= F σ satisfies Reflexivity.
Proof. Let σ be a semantics and suppose that for F ∈ F, L σ (F ) ⊆ L Co (F ). Let F = (A, ) be an argumentation framework and Φ ∈ Int(F ) be an intervention. We prove that ||= F σ satisfies Reflexivity by showing that, for all α ∈ Φ, Φ ||= F σ α. Let κ be an F -mapping and let

F ′ = (A ′ , ′ ) = F ⊕ κ Φ. Let L be a σ-labelling of F ′ .
Our assumption implies that L is a complete labelling of F ′ . We use the fact that L satisfies out-legality, in-legality, reinstatement and rejection (definition 2.1.8 and 2.1.9).

• Let x ∈ A be an argument such that out(x) ∈ Φ. Definition 3.2.5 then implies that κ(x) ∈ A ′ , κ(x) is unattacked in F ′ and κ(x) ′ x. Reinstatement implies that L(κ(x)) = in and hence rejection implies that L(x) = out.

• Let x ∈ A be an argument such that (¬in(x)) ∈ Φ. Definition 3.2.5 then implies that κ(x) ∈ A ′ , κ(x) ′ κ(x) and κ(x) ′ x. Then in-legality and out-legality imply that L(κ(x)) = und. Finally, in-legality implies that

L(x) = in.
This implies that for all α ∈ Φ, L |= α. Via definition 3.2.8 it follows that for all α ∈ Φ, Φ ||= F σ α.

We now obtain the following.

Proposition 3.2.3. For all F ∈ F, ||= F Co , ||= F Gr , ||= F Pr , ||= F St and ||= F SS satisfy Reflexivity.
Proof. Follows from proposition 3.2.2 and definition 2.1.11 and 2.1.12.

Note that some labelling-based semantics considered in the literature do not satisfy the property that every labelling is complete. Examples are the stage semantics and CF2 semantics [START_REF] Baroni | An introduction to argumentation semantics[END_REF]. We leave the treatment of intervention under these semantics for future work.

Vacuous Interventions

A vacuous intervention Φ does not lead to any change of an argumentation framework. This means that the consequences generated by a relation ||= F σ given the vacuous intervention coincide with the consequences generated given

F by the relation |= σ . Proposition 3.2.4. For all F ∈ F, F |= σ φ iff ∅ ||= F σ φ.
Proof. Follows directly from definition 3.2.5 and 3.2.8.

Relative Strength

The following proposition concerns the relative strength of the different intervention-based entailment relations. This is due to the inclusion relations between the corresponding semantics.

Proposition 3.2.5. For all F ∈ F,

1. ||= F Co ⊆||= F Gr , 2. ||= F Co ⊆||= F Pr ⊆||= F SS ⊆||= F St .
Proof. Follows from definition 3.2.8 and proposition 2.1.8.

Consistency of Interventions

Because every argumentation framework has at least one complete, grounded, preferred and semi-stable labelling, every intervention yields consistent consequences under the complete, grounded, preferred and semi-stable semantics.

Proposition 3.2.6. For all F ∈ F, σ ∈ {Co, Gr, Pr, SS} and

Φ ∈ Int(F ), Φ ||= F σ ⊥.
Proof. Follows from definition 3.2.8 and proposition 2.1.10.

Provisional defeat leads to the addition of a self-attacking argument. This means that the resulting argumentation framework has no stable labellings. Thus, under the stable semantics, only stable interventions generate consistent conclusions.

Proposition 3.2.7. For all F ∈ F and Φ ∈ Int(F ), if Φ is not stable then Φ ||= F St ⊥.
Proof. See preceding discussion.

Enforceability Of Formulas

We already mentioned that any constraint on the labels of arguments that is conflict-free can be made true using only the actions of defeat and provisional defeat. We now make this formal. First a definition: a formula is conflict-free with respect to an argumentation framework if it is satisfied by at least one conflict-free labelling of this argumentation framework.

Definition 3.2.10. Let F ∈ F. A formula φ ∈ lang(F ) is conflict-free with respect to F if and only if there is some L ∈ L Cf (F ) such that L |= φ.
The following theorem states that, given an argumentation framework F , every formula that is conflict-free with respect to F is a consequence of some intervention. Conversely, every consequence of every intervention is conflict-free with respect to F . This holds under the complete, grounded, preferred and semistable semantics, but not under the stable semantics. Note that, for the sake of readability, we have moved some of the longer proofs, including the proof for the following two theorems, to section 3.7.

Theorem 3.2.8. Let F be an argumentation framework and σ ∈ {Co, Gr, Pr, SS}. The following are equivalent.

1. For some Φ ∈ Int(F ), Φ ||= F σ φ.
2. φ is conflict-free with respect to F .

Proof. See section 3.7

Under the stable semantics we have the following. Given an argumentation framework F , every formula that is stable conflict-free with respect to F is a consequence of some intervention Φ that is consistent (i.e., for which we do not have Φ ||= F St ⊥). Conversely, every consequence of every intervention that is consistent is stable conflict-free with respect to F . Definition 3.2.11. A formula φ ∈ lang(F ) is stable conflict-free with respect to F if and only if there is some L ∈ L Cf (F ) such that L -1 (und) = ∅ and L |= φ. Theorem 3.2.9. Let F be an argumentation framework. The following are equivalent.

1. For some Φ ∈ Int(F ) we have Φ ||= F St φ and Φ ||= F St ⊥.
2. φ is a stable conflict-free with respect to F .

Proof. See section 3.7

These results show that, given an argumentation framework F and a semantics σ, any constraint φ, as long as it is (stable) conflict-free, can be translated into an intervention Φ that makes φ true. As the following example demonstrates, however, there may be more than one intervention that makes a given constraint true. This result shows that the actions of defeat and provisional defeat are sufficient to make an argumentation framework satisfy any constraint on the status of the arguments, as long as this constraint is (stable) conflict-free. In the next chapter we look at observation-based entailment, and the selection of (minimal) interventions that make a constraint (now taken to be an observation) true will play a central role. In that setting, these interventions play the role of explanations for the observation, and their selection can be seen as a process of abduction.

Note that Baumann and Brewka have proven a result for extension-based semantics that is related to what we prove in theorem 3.2.8 and 3.2.9, namely that every conflict-free set of an argumentation framework can be turned into a (unique) complete extension by adding a new argument attacking existing arguments [START_REF] Baumann | Expanding argumentation frameworks: Enforcing and monotonicity results[END_REF]. 

KLM Properties

Intervention-based entailment allows us to evaluate the different semantics in terms of their behaviour in a dynamic context, where we not only focus on the evaluation of an argumentation framework in isolation, but instead focus on the evaluation of an argumentation framework given the possible interventions. We characterize the behaviour of a semantics σ in terms of the properties satisfied by a relation ||= F σ for every possible argumentation framework F , as well as for a number of special classes (argumentation frameworks that are even-cyclefree, odd-cycle-free or completely cycle-free). A property that is not satisfied in general is monotony, which we define for intervention-based entailment as follows.

Definition 3.3.1. Let F ∈ F. A relation ||= F ⊆ Int(F ) × lang(F ) satisfies Monotony iff for all Φ, Ψ ∈ Int(F ) and φ ∈ lang(F ), if Φ ||= F φ then Φ ∪ Ψ ||= F φ.
An example of the failure of Monotony is easy to come up with. For example, let F be the argumentation framework shown in figure 3 

Definition 3.3.2. Let F ∈ F. A relation ||= F ⊆ Int(F ) × lang(F ) satisfies Transitivity iff for all α, β, γ ∈ Act(F ), if {α} ||= F β and {β} ||= F γ then {α} ||= F γ Definition 3.3.3. Let F ∈ F. A relation ||= F ⊆ Int(F ) × lang(F ) satisfies Contraposition iff for all α, β ∈ Act(F ), {α} ||= F β then {¬β} ||= F ¬α.
The following two examples demonstrate their failure. Pr in(d) but this is not the case. The reason is that defeat of c justifies acceptance of d as long as b is not accepted. Defeating a not only justifies rejection of c, but also acceptance of b, and hence acceptance of d is not justified if we defeat a.

• We have {out(b)} ||= F

Pr in(c). According to contraposition it then follows that {¬in(c)} ||= F Pr ¬out(b), but this is not the case. The reason is that, while defeating b indeed justifies acceptance of c, provisionally defeating c does not justify non-rejection of b.

These examples can be adapted to apply to the other semantics.

The KLM properties that we discussed in section 2.2.1 are desirable properties for well-behaved non-monotonic inference. Thus, we can ask: how well-behaved are the different argumentation semantics with respect to these properties? This is the question we address in this section.

We already proved that Reflexivity is satisfied under all semantics that we consider. It is furthermore clear from definition 3.2.8 that every relation

||= F σ sat- isfies Right Weakening (if φ |= ψ and Φ ||= F σ φ then Φ ||= F σ ψ
), and that it trivially satisfies a form of Left Logical Equivalence, because logical equivalence of two interventions implies syntactical equivalence (Φ |= Ψ and Ψ |= Φ implies Φ = Ψ). In the rest of this section we consider variations of the remaining KLM properties, namely Cautious Monotony, Cut, Rational Monotony and Loop. For each property, we formulate an analogue that is appropriate for interventionbased entailment. We then determine the conditions under which each property is satisfied, and we demonstrate the failure if they are not satisfied. We omit discussion of the Or property, as it involves disjunction in the premise, which cannot be expressed by an intervention.

Cautious Monotony

Cautious Monotony states that we do not lose consequences if we strengthen a premise, if what we add is already a consequence of this premise. We express this for intervention-based entailment as follows.

Definition 3.3.4. Let F ∈ F. A relation ||= F ⊆ Int(F ) × lang(F ) satisfies Cautious Monotony iff for all Φ ∈ Int(F ), α ∈ Act(F ) and φ ∈ lang(F ), if Φ ||= F α and Φ ||= F φ then Φ ∪ {α} ||= F φ.
In the setting of intervention-based entailment, Cautious Monotony states that if an argument x is already rejected (resp. not accepted) then defeating (resp. provisionally defeating) x does not lead to loss of consequences. We believe that this is an intuitive property for intervention-based entailment. It corresponds to a natural principle: if a new argument comes into play that defeats an argument that we already reject, we do not change our mind about the status of any of the other arguments.

In what follows we will see that some semantics behave better when we focus only on stable interventions. For this reason we also define the following weakening of Cautious Monotony, which we call 

||= F ⊆ StInt(F ) × lang(F ) satisfies Stable Cautious Monotony iff for all Φ ∈ StInt(F ), φ ∈ lang(F ) and x ∈ A, if Φ ||= F out(x) and Φ ||= F φ then Φ ∪ {out(x)} ||= F φ.
Our first result is that Cautious Monotony is satisfied under the complete and grounded semantics. Note that the counterexample above does not rely on the fact that c is selfattacking. Cautious Monotony fails in a similar way if we let c be part of any odd-length directed cycle.

Theorem 3.3.1. For all F ∈ F, ||=
In section 3.3.6 we show that the absence of odd-length cycles is a sufficient condition for the satisfaction of Stable Cautious Monotony (but not of Cautious Monotony) under the preferred, semi-stable semantics and stable semantics.

Cut

The Cut property can be seen as the converse of Cautious Monotony. It states that we do not gain consequences if we strengthen a premise, if what we add is already a consequence of this premise. We express this for intervention-based entailment as follows.

Definition 3.3.6. Let F ∈ F. A relation ||= F ⊆ Int(F ) × lang(F ) satisfies Cut iff for all Φ ∈ Int(F ), α ∈ Act(F ) and φ ∈ lang(F ), if Φ ||= F α and Φ ∪ {α} ||= F φ then Φ ||= F φ.
We believe that this is an intuitive property for intervention-based entailment.

The motivation is the same as for Cautious Monotony: if a new argument comes into play that defeats an argument that we already reject, we do not change our mind about the status of any of the other arguments. 

||= F ⊆ StInt(F ) × lang(F ) satisfies Stable Cut iff for all Φ ∈ StInt(F ), φ ∈ lang(F ) and x ∈ A, if Φ ||= F out(x) and Φ ∪ {out(x)} ||= F φ then Φ ||= F φ.
Cut is, like Cautious Monotony, satisfied under the complete and grounded semantics. But unlike Cautious Monotony, Cut is also satisfied under the preferred semantics. Nevertheless, Stable Cut is satisfied under the stable semantics.

Theorem 3.3.6. For all F ∈ F, ||= F St satisfies Stable Cut.
Proof. See section 3.7

Cut, as well as Stable Cut, may fail under the semi-stable semantics. This is demonstrated by the following example. SS in(c), but this is not the case.

Note that, like the counterexample for the failure of Cautious Monotony under the preferred, semi-stable and stable semantics, the counterexample above does not rely on the fact that a and e are self-attacking. Cut fails under the semistable semantics in a similar way if we let a or e be part of any odd-length directed cycle. In section 3.3.6 we show that the absence of odd-length cycles is a sufficient condition for the satisfaction of Stable Cut under the semi-stable semantics.

It is worth noting that, in the KLM framework, Cautious Monotony and Cut imply Equivalence, which expresses that two propositions that are each other's consequence are equivalent in terms of the consequences they generate [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF]. For intervention-based entailment we express this as follows.

Definition 3.3.8. Let F ∈ F. A relation ||= F ⊆ Int(F ) × lang(F ) satisfies Equivalence iff for all α, β ∈ Act(F ) and φ ∈ lang(F ), if {α} ||= F β, {β} ||= F α and {α} ||= F φ then {β} ||= F φ.
In the current setting Cautious Monotony and Cut also imply Equivalence. Under the complete and grounded semantics, both Cautious Monotony and Cut are satisfied and thus Equivalence as well. It can be verified that Equivalence is not generally satisfied under the preferred, semi-stable and stable semantics.

Rational Monotony

Rational Monotony is, like Cautious Monotony, a weakening of Monotony. It states that strengthening a premise with something the negation of which is not a consequence does not lead to the retraction of consequences. In the intervention-based setting, this means that strengthening an intervention by adding something that is already a credulous consequence (as opposed to a skeptical consequence, as in Cautious Monotony) does not lead to the retraction of consequences. For intervention-based entailment we express this as follows.

Definition 3.3.9. Let F = (A, ) be an argumentation framework. A relation

||= F ⊆ Int(F ) × lang(F ) satisfies Rational Monotony iff for all Φ ∈ Int(F ), α ∈ Act(F ) and φ ∈ lang(F ), if Φ ||= F ¬α and Φ ||= F φ then Φ ∪ {α} ||= F φ.
Rational Monotony has been argued for as an attractive property for nonmonotonic inference because it expresses the principle that only information that is completely surprising, in the sense that it believed to be false, should force one to withdraw conclusions [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF]. Others have argued, however, that this principle is too strong (see, for example, [START_REF] Stalnaker | What is a nonmonotonic consequence relation?[END_REF]).

Rational Monotony may fail under the complete, preferred, semi-stable and stable semantics. This is demonstrated by the following example. Speaking in loose terms, the failure of Rational Monotony is due to the fact that an intervention may 'override' the relationship between the status of different arguments, which is accompanied by loss of consequences. In the example above, it is the defeat of c that overrides the relation that exists between the status of d and b expressed by in(d) → in(b). Indeed, we have

∅ ||= F Co in(d) → in(b) but not {out(c)} ||= F Co in(d) → in(b).
The only semantics under which intervention-based entailment satisfies Rational Monotony is the grounded semantics. This follows from the fact that the grounded labelling is unique, which implies the following.

Proposition 3.3.8. For all F ∈ F, Φ ∈ Int(F ) and φ ∈ lang(F ), either Φ ||= F Gr φ or Φ ||= F Gr ¬φ.
Proof. Follows from definition 3.2.8 and proposition 2.1.9.

This means that for all F , Φ ∈ Int(F ) and α ∈ Act(F ) we have Proof. See preceding discussion.

Loop

Loop states that "if propositions may be arranged in a loop, in a way each one is a plausible consequence of the previous one, then each one of them is a plausible consequence of any one of them" [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF]. According to Kraus, Lehmann and Magidor, this is a desirable property for non-monotonic inference. In the current setting we express it as follows.

Definition 3.3.10. Let F = (A, ) be an argumentation framework. A relation

||= F ⊆ Int(F ) × lang(F ) satisfies Loop iff for all α 1 , . . . , α k ∈ Act(F ), if {α 0 } ||= F α 1 ,{α 1 } ||= F α 2 ,. . . ,{α k-1 } ||= F α k ,{α k } ||= F α 0 then {α 0 } ||= F α k .
The following example demonstrates the failure of Loop under all semantics. . This counterexample also applies to the preferred, grounded, semi-stable and stable semantics.

It is easy to check that the construction of this counterexamples applies to every unattacked odd-length directed cycle (i.e., not attacked by arguments outside the cycle) of length more than one, and hence that the existence of such a cycle is a sufficient condition for the failure of Loop. It is an open question whether the absence of odd-length directed cycles is a sufficient condition for the satisfaction of Loop. In section 3.3.8 we do show, however, that the absence of any directed cycle (both odd and even) ensures satisfaction of Loop.

Summary

Let us summarize the results obtained so far. Table 3.1 shows whether the KLM property referred to in each row is satisfied by the relation ||= F σ for every argumentation framework F . A check mark indicates that the property is satisfied for all F ∈ F, and a cross mark indicates that the property fails for some F ∈ F. This table summarizes the positive results obtained in theorem 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.5, 3.3.6 and 3.3.9 and the negative results demonstrated in example 3.3.2, 3.3.4, 3.3.5 and 3.3.6.

Co Gr Pr SS St

(Stable) Cautious Monotony ✓ ✓ ✗ ✗ ✗ (Stable) Cut ✓ ✓ ✓ ✗ ✓ Rational Monotony ✗ ✓ ✗ ✗ ✗ Loop ✗ ✗ ✗ ✗ ✗
Table 3.1: Properties satisfied by ||= F σ for all F ∈ F.

Odd-Cycle-Free Argumentation Frameworks

It has been argued (e.g. by Bench-Capon [START_REF] Trevor | Value-based argumentation frameworks[END_REF]) that odd-length directed cycles in argumentation frameworks have the nature of a paradox, in the sense that nothing can be accepted. This suggests that argumentation frameworks that contain no odd-length directed cycles may exhibit better behaviour than those that do, as these argumentation frameworks can be thought of as being free of paradoxes. In this section we determine whether the properties discussed in the preceding sections that fail under some of the semantics we consider, nevertheless hold if the argumentation framework contains no odd-length directed cycles. We call these argumentation frameworks odd-cycle-free.

Definition 3.3.11. Let F = (A, ) be an argumentation framework. A sequence x 0 , . . . , x n of arguments is called an odd cycle if and only if n is odd;

x 0 = x n ; and x i x i+1 for all 0 ≤ i < n. We say that F is odd-cycle-free if it contains no odd cycles. Dung has shown that odd-cycle-freeness implies coherence, which is the condition that the set of preferred and stable extensions coincide [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF]. 2 Because the existence of at least one stable extension implies that the stable and semi-stable extensions coincide, this result implies that odd-cycle-freeness implies that the preferred and stable extensions also coincide with the semi-stable extensions. We state this result for labelling-based semantics.

Proposition 3.3.10. If F is odd-cycle-free then L Pr (F ) = L SS (F ) = L St (F ).
We have shown that Cautious Monotony may fail under the preferred, semistable and stable semantics, and that Cut may fail under the semi-stable semantics. Odd-cycle-freeness is, however, a sufficient condition for the satisfaction of Stable Cautious Monotony and Stable Cut under the preferred, semi-stable and stable semantics. The results obtained in this section show that, indeed, odd-cycle-free argumentation frameworks behave better in the sense that they ensure satisfaction of Stable Cautious Monotony and Stable Cut under semantics that do not satisfy these properties in general.

Odd-cycle-freeness does not ensure satisfaction of Rational Monotony. To see why, consider again example 3.3.5, which demonstrates the failure of Rational Monotony. This example relies on an argumentation framework that is oddcycle-free. 

Even-Cycle-Free Argumentation Frameworks

The next class of argumentation frameworks are those containing no even-length directed cycles. Whereas odd-length directed cycles have the nature of a paradox, even-length directed cycles have the nature of a dilemma, in the sense that they force one to select one of two possibilities. In this section we look at the behaviour of argumentation frameworks that contain no odd-length directed cycles. We call these argumentation frameworks even-cycle-free.

Definition 3.3.12. Let F = (A, ) be an argumentation framework. A sequence x 0 , . . . , x n of arguments is called an even cycle if and only if n is even;

x 0 = x n ; x i
x i+1 for all 0 ≤ i < n; and for all 0 ≤ i, j < n s.t. i = j, x i = x j . 3 We say that F is even-cycle-free if it contains no even cycles.

It was proven by Dvorak [START_REF] Dvořák | Computational aspects of abstract argumentation[END_REF] (strengthening a result obtained by Dunne and Bench-Capon [START_REF] Trevor | Persuasion in practical argument using valuebased argumentation frameworks[END_REF]) that these argumentation frameworks have a unique complete extension, and hence a unique complete labelling.

Proposition 3.3.13. If F is even-cycle-free then |L Co (F )| = 1.
Proof. (Adapted from [START_REF] Dvořák | Computational aspects of abstract argumentation[END_REF]) We prove it by contraposition. Let F = (A, ) be an argumentation framework. Suppose |L Co (F )| = 1. Because |L Co (F )| > 1 it follows that there are two labellings L, L ′ ∈ L Co (F ) such that L = L ′ . Suppose furthermore that L is the grounded labelling of F . Then there is some

x 0 ∈ A such that L ′ (x 0 ) = in and L(x 0 ) = in. Because L(x 0 ) = in, there is a x 1 ∈ A such that x 1
x 0 and L(x 1 ) = out. Furthermore, we have L ′ (x 0 ) = in and thus L ′ (x 1 ) = out and hence there is a x 2 ∈ A such that x 2

x 1 and L ′ (x 2 ) = in. Because L(x 1 ) = out, we furthermore have L(x 2 ) = in. Inductively, we obtain a sequence x 0 , x 1 , x 2 , . . . such that x 0 x 1 x 2 . . .; for each i that is even, L ′ (i) = in; and for each i that is odd, L ′ (i) = out. Now let n be the smallest integer such that x 0 = x n (finiteness of A ensures existence of n). We then have that n is even, and that, for all 0 ≤ i, j < n s.t. i = j, x i = x j . It then follows that x 0 , . . . , x n is an even cycle and hence F is not even-cycle-free.

We now state two immediate consequences of this fact. The first is that evencycle-freeness ensures that intervention-based entailment under the grounded, complete, preferred and semi-stable semantics coincides. The second is that intervention-based entailment under the grounded and stable semantics coincide as far as interventions are concerned that do not yield inconsistent conclusions under the stable semantics.

Proposition 3.3.14. If F is even-cycle-free then ||= F Gr =||= F Co =||= F Pr =||= F SS . Proposition 3.3.15. If F is even-cycle-free then for all Φ ∈ Int(F ), if Φ ||= F St ⊥ then for all φ ∈ lang(F ), Φ ||= F St φ iff Φ ||= F Gr φ.
Let us start with the complete semantics. We have seen that Rational Monotony fails under the complete semantics. But because rational monotony is satisfied under the grounded semantics, proposition 3.3.14 implies that rational monotony is satisfied in the even-cycle-free case under the complete semantics.

Theorem 3.3.16. For all F ∈ F, if F is even-cycle-free then ||= F Co satisfies Rational Monotony.

What about the preferred and semi-stable semantics? Recall that, in the general case, Cautious Monotony fails under the preferred and semi-stable semantics; Cut is satisfied under the preferred semantics but not under the semistable semantics; and the preferred and semi-stable semantics both fail Rational Monotony. Proposition 3.3.14 implies that, in the even-cycle-free case, the preferred and semi-stable semantics satisfy Cautious Monotony, Cut and Rational Monotony. Even-cycle-freeness does not ensure satisfaction of Loop under any of the semantics that we consider, as the counterexample that we used to demonstrate the failure of Loop relies on an argumentation framework that is even-cycle-free.

Theorem 3.3.17. For all F ∈ F, if F is even-cycle-
Table 3.3 summarizes the results obtained here concerning even-cycle-free argumentation frameworks (i.e., theorem 3.3.16, 3.3.17 and 3.3.18).

Co Gr Pr SS St

(Stable) Cautious Monotony ✓ ✓ ✓ ✓ ✗ (Stable) Cut ✓ ✓ ✓ ✓ ✓ Rational Monotony ✓ ✓ ✓ ✓ ✓ Loop ✗ ✗ ✗ ✗ ✗
Table 3.3: Properties satisfied by ||= F σ for every even-cycle-free F ∈ F.

Acyclic Argumentation Frameworks

We now consider the acyclic case. Acyclic argumentation frameworks were called well-founded by Dung [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF].

Definition 3.3.13. Let F = (A, ) be an argumentation framework. We say that F is acyclic if there is no sequence x 0 , . . . , x n of arguments such that x 0 = x n and x i x i+1 for all 0 ≤ i < n.

Obviously, an acyclic argumentation framework is also odd-cycle-free and evencycle-free. Hence, all the properties that are satisfied in the odd-cycle-free and even-cycle-free case are satisfied in the acyclic case. 

F ⊆ Int(F ) × lang(F ) satisfies Stable Loop iff for all x 1 , . . . , x k ∈ A, if {out(x 0 )} ||= F out(x 1 ),{out(x 1 )} ||= F out(x 2 ),. . . ,{out(x k-1 )} ||= F out(x k ), {out(x k )} ||= F out(x 0 ) then {out(x 0 )} ||= F out(x k ).

Co Gr Pr SS St

(Stable) Cautious Monotony ✓ ✓ ✓ ✓ ✓ (Stable) Cut ✓ ✓ ✓ ✓ ✓ Rational Monotony ✓ ✓ ✓ ✓ ✓ (Stable) Loop ✓ ✓ ✓ ✓ ✓
Table 3.4: Properties satisfied by ||= F σ for every acyclic F ∈ F.

Directionality and Noninterference

In this section we study the role of directionality and noninterference in the behaviour of intervention-based entailment. The notion of directionality was introduced by Baroni and Giacomin [6] for extension-based semantics and adapted by Baroni et al. [START_REF] Baroni | An introduction to argumentation semantics[END_REF] for labelling-based semantics. Intuitively, directionality expresses the idea that the notion of attack is directional: an argument x has an effect on the label of an argument y only if there is a directed path from x to y. Noninterference was introduced by Caminada [START_REF] Caminada | Semi-stable semantics[END_REF] and adapted by Baroni et al. [START_REF] Baroni | An introduction to argumentation semantics[END_REF] for labelling-based semantics. It is a weakening of directionality: it states that an argument x has an effect on the label of an argument y only if there is an undirected path between x and y.

Formally, these properties are defined by the condition that certain sets of arguments of an argumentation framework can be evaluated independently of the arguments outside this set. In the case of directionality, these are the unattacked sets of an argumentation framework, which are sets of arguments not attacked by an argument outside this set. In the case of noninterference, these are the isolated sets, which are sets of arguments not attacked by arguments outside this set and not attacking arguments outside this set.

In this section we show that, in the dynamic setting of intervention-based entailment, directionality and noninterference imply that the effect of an intervention propagates through an argumentation framework in a well-behaved manner.

That is, if we use a semantics satisfying directionality, then an intervention involving the argument x only affects consequences about arguments attacked by x, attacked by arguments attacked by x, and so forth. We call this Conditional Directionality. Similarly, noninterference implies that an intervention involving the argument x only affects consequences about arguments connected to x, in either direction, by attacks. We call this Conditional Noninterference.

Directionality

The Directionality Principle

The directionality principle is due to Baroni and Giacomin [START_REF] Baroni | On principle-based evaluation of extension-based argumentation semantics[END_REF] and was later adapted for labelling-based semantics by Baroni et al. [START_REF] Baroni | An introduction to argumentation semantics[END_REF]. Intuitively, it expresses idea that the notion of attack is directional: an argument x has an effect on an argument y only if x attacks y. This is formalized by the condition that the unattacked sets of an argumentation framework (sets of arguments not attacked by an argument outside this set) can be evaluated independently of the rest of the argumentation framework. First some definitions. 

L σ (F ) ↓ B = L σ (F ↓ B).
We can characterize the directionality principle in terms of a labelling-based entailment relation as follows. 

∀B ∈ U (F ), φ ∈ lang(B), (F ↓ B) |= σ φ iff F |= σ φ.
Proof. This follows from definition 2.1.17.

Not all semantics satisfy directionality. While the complete, grounded and preferred semantics do, the semi-stable and stable semantics do not. This was shown by Baroni et al. [START_REF] Baroni | On principle-based evaluation of extension-based argumentation semantics[END_REF]. The failure of the directionality principle under the semi-stable and stable semantics is demonstrated by the following example.

Example 3.4.1. Let F be the argumentation framework shown in figure 3.12. Let σ ∈ {St, SS}. We have

(L σ (F ) ↓ {a, b}) = {{(a, out), (b, in)}}.
But we also have {a, b} ∈ U (F ) and

L σ (F ↓ {a, b}) = {{(a, in), (b, out)}, {(a, out), (b, in)}}.
In terms of labelling-based entailment, this means that we have, for example,

F |= σ in(b) but not F ↓ {a, b} |= σ in(b)
. This is a violation of directionality.

The Conditional Directionality Property

We now introduce the Conditional Directionality property for intervention-based entailment. Informally speaking, Conditional Directionality states that an intervention that applies to an argument x only changes the label of an argument y if there is a directed path from x to y. We make this formal using the relation of structural relevance4 .

Definition 3.4.5. Let F = (A, ) be an argumentation framework. We say that x is structurally relevant to y (written x * y) if x = y or if there is a directed path in F from x to y. We similarly say that B ⊆ A is structurally relevant to B ′ ⊆ A (written B * B ′ ) iff for some x ∈ B and y ∈ B ′ it holds that x * y.

Note that this definition implies that every argument is structurally relevant to itself. We also apply the relation of structural relevance to interventions and formulas. For example, an intervention Φ is structurally relevant to a formula φ whenever the set of arguments occurring in Φ is structurally relevant to the set of arguments occurring in φ.

Definition 3.4.6. Let F = (A, ) be an argumentation framework. We denote by Args(Φ) (resp. Args(φ)) the set of all arguments occurring in Φ (resp. φ). We slightly abuse notation and write φ * ψ, φ * Ψ and Φ * ψ to mean Args(φ) * Args(ψ), Args(φ) * Args(Ψ) and Args(Φ) * Args(ψ), respectively.

The Conditional Directionality property states that an intervention only changes the consequences to which the intervention is structurally relevant. In other words, whether or not a formula is a consequence is independent of any intervention not structurally relevant to this formula. Formally, we express this by saying that the consequences of two interventions Φ ∪ Ψ and Φ are the same as far as consequences to which Ψ is not structurally relevant are concerned. Proof. See section 3.7.

Definition 3.4.7. Let F ∈ F. A relation ||= F ⊆ Int(F ) × lang(F ) satisfies Conditional Directionality iff for all Φ, Ψ ∈ Int(F ) and φ ∈ lang(F ), if Ψ * φ then Φ ∪ Ψ ||= F φ iff Φ ||= F φ.
The complete, grounded and preferred semantics all satisfy the directionality principle and hence for all F ∈ F, the relations ||= F Co , ||= F Gr and ||= F Pr satisfy Conditional Directionality. This does not hold for the semi-stable and stable semantics, which do not satisfy the directionality principle. The following example demonstrates unintuitive behaviour as a result of this. SS in(b), which is a violation of Conditional Directionality. This example shows that under the semi-stable semantics an intervention might affect the labels of arguments to which the intervention is not structurally relevant. This example also applies to the stable semantics.

Noninterference

The Noninterference Principle Noninterference is a weakening of directionality: it states that an argument x has an effect on an argument y only if x and y are connected (in either direction) by an attack. Noninterference was introduced by Caminada [START_REF] Caminada | Semi-stable semantics[END_REF] and adapted by Baroni et al. [START_REF] Baroni | An introduction to argumentation semantics[END_REF] for labelling-based semantics. Formally, noninterference is defined by the condition that the isolated sets (sets of arguments not attacked by arguments outside this set and not receiving attacks from outside this set) can be evaluated independently of the rest of the argumentation framework. Formally, the condition that isolated sets can be evaluated independently of the rest of the argumentation framework means that, given an argumentation framework F and isolated set B ∈ I(F ), the labellings of the restriction of F by B coincide with the labellings of F , restricted by B. Note that, since an isolated set is also an unattacked set, the directionality principle implies the noninterference principle.

Definition 3.4.9.

[4] A labelling-based semantics σ satisfies the noninterference principle if and only if for all F ∈ F and

B ∈ I(F ), L σ (F ) ↓ B = L σ (F ↓ B).
The noninterference principle is characterized in terms of a labelling-based entailment relation as follows. 

∀B ∈ I(F ), φ ∈ lang(B), (F ↓ B) |= σ φ iff F |= σ φ.
Proof. This follows from definition 2.1.17.

The complete, grounded and preferred semantics satisfy the directionality principle and therefore they also satisfy the noninterference principle. Caminada has shown that the semi-stable semantics also satisfies noninterference, but that the stable semantics does not [START_REF] Caminada | Semi-stable semantics[END_REF].

Proposition 3.4.5. The Co, Gr, Pr and SS semantics satisfy the noninterference principle but the St semantics does not.

The failure of the noninterference principle under the stable semantics is demonstrated by the following example.

Example 3.4.3. Let F be the argumentation framework shown in figure 3. [START_REF] Trevor | Value-based argumentation frameworks[END_REF]. Note that {a, b} ∈ I(F ). We have L St (F ) = ∅ and hence

(L St (F ) ↓ {a, b}) = ∅.
But we also have

L St (F ↓ {a, b}) = {{(a, in), (b, out)}}.
In terms of labelling-based entailment, this means that we have, for example,

F |= St ⊥ but not F ↓ {a, b} |= St ⊥.
This is a violation of noninterference.

The Conditional Noninterference Property

The Conditional Noninterference property for intervention-based entailment is related to the noninterference property of a semantics. Informally speaking, Conditional Noninterference states that an intervention that applies to an argument x only changes the label of an argument y if there is an undirected path from x to y. We make this formal using the relation of structural connectedness.

We say that an argument x is structurally connected to an argument y if there is an undirected path between x and y.

Definition 3.4.10. Let F = (A, ) be an argumentation framework. We say that x is structurally connected to y (written x * y) if x = y or if there is an undirected path in F from x to y. We similarly say that B ⊆ A is structurally connected to B ′ ⊆ A (written B * B ′ ) iff for some x ∈ B and y ∈ B ′ it holds that x * y.

It is easy to check that the structural connectedness relation is an equivalence relation, whose classes are exactly the isolated sets of the argumentation framework. Like we did for the relation of structural relevance, we extend the relation of structural connectedness to apply to interventions and formulas. If, e.g., it holds that Args(Φ) * Args(φ) then we also write Φ * φ.

Conditional Noninterference states that an intervention only changes consequences to which the intervention is structurally connected. In other words, whether or not a formula is a consequence is independent of any intervention not structurally connected to this formula. 

* φ then Φ ∪ Ψ ||= F φ iff Φ ||= F φ.
It is easy to see that structural relevance implies structural connectedness, and hence that we have the following. The complete, grounded, preferred and semi-stable semantics all satisfy the noninterference principle and hence for all F ∈ F, the relations

||= F Co , ||= F Gr , ||= F
Pr and ||= F SS satisfy Conditional Noninterference. This does not hold for the stable semantics, which does not satisfy the noninterference principle. The following example demonstrates unintuitive behaviour as a result of this. 

Summary and Discussion of Results

We have shown that, whenever a semantics σ satisfies the directionality and noninterference principle, it holds that for all F ∈ F, the relation ||= F σ satisfies Conditional Directionality and Conditional Noninterference, respectively. The results with respect to the semantics that we consider are shown in table 3.5.

||= F Co ||= F Gr ||= F Pr ||= F SS ||= F St Conditional Directionality ✓ ✓ ✓ ✗ ✗ Conditional Noninterference ✓ ✓ ✓ ✓ ✗ Table 3.5: Properties satisfied by the relation ||= F σ , for all F ∈ F.
It is interesting to contrast the properties of Conditional Directionality and Conditional Noninterference on the one hand, and Cautious Monotony and Cut on the other. While Cautious Monotony and Cut together state that two interventions Φ and Φ ∪ {α} are equivalent in terms of their consequences if α is already a consequence of Φ, Conditional Directionality and Conditional Noninterference implies that Φ and Φ ∪ {α} are the same as far as the consequences to which α is not structurally relevant or connected are concerned. The relation between these properties is that they all express conditions under which a consequence (resp. non-consequence) of an intervention is still a consequence (resp. non-consequence) if we change the intervention.

Although the technical differences between the theories of abstract argumentation and causal Bayesian networks complicates their comparison, the property of Conditional Directionality expresses a principle that also applies to intervention in causal Bayesian networks. This is the principle that in a causal Bayesian network, the effect of an intervened variable propagates only to the direct and indirect effects of this variable. This is because an intervened variable in a causal Bayesian network is made independent of its typical causes.

Related Work

We have developed the notion of intervention-based entailment as a formal tool to study the idea that an argumentation framework is a system whose evaluation changes as new arguments and attacks are added. A similar perspective is taken by Baroni et al. [START_REF] Baroni | On the input/output behavior of argumentation frameworks[END_REF], who study the so called input/output behaviour of argumentation frameworks. Roughly speaking, the idea is that an argumentation framework is seen as a sort of black box, with both input and output, formed by interactions with arguments outside the argumentation framework. They study two types of properties. The first type of properties concern the decomposability of a semantics, or the question of whether putting together the labellings of different subframeworks under a given semantics (while taking into account the interactions between the subframeworks) results in a set of labellings that coincides with the labellings of the whole argumentation framework under the same semantics. The first type of properties concern the replacement properties: the question of whether different argumentation frameworks that behave the same with respect to a given set of input and output arguments are interchangeable in the context of a larger argumentation framework, without affecting the labellings of this larger argumentation framework.

A specific type of decomposability, called SCC-recusiveness, was studied earlier by Baroni et al. [START_REF] Baroni | Sccrecursiveness: a general schema for argumentation semantics[END_REF]. The SCC-recursive scheme exploits the property that an argumentation framework can be decomposed into a set of strongly connected components (SCCs) and that the graph obtained considering SCCs as single nodes is acyclic. This means that this decomposition yields a partial order over SCCs. This partial order can be used for the incremental computation of the extensions of an argumentation framework, by first computing the extensions of the initial SCCs (i.e., those not attacked by other SCCs), and using these results to recursively compute the extensions of the whole argumentation framework.

A semantics is called SCC-recursive if its extensions can be computed using this recursive scheme.

We did not, like the work mentioned here, focus on properties related to decomposability or replacement. Nevertheless, the results that we have obtained contribute, like these properties, to a deeper understanding of the behaviour of an argumentation framework when external input is considered.

Liao et al. [START_REF] Bei | Dynamics of argumentation systems: A division-based method[END_REF] addressed the question of whether, after modifying an argumentation framework, it is possible to partially reuse extensions computed before the modification, when computing the extensions of the modified argumentation framework. They show that, roughly speaking, directionality ensures the evaluation of the set of arguments not reachable from some argument affected by the modification remains the same. They call this set of unreachable arguments the unaffected part. This is very similar to what the Conditional Directionality property states (that is, consequences referring to arguments not reachable from an argument affected by an intervention remain the same). In a follow-up work, Baroni et al. [START_REF] Baroni | On topologyrelated properties of abstract argumentation semantics. a correction and extension to dynamics of argumentation systems: A division-based method[END_REF] show that the SCC-recursiveness property enables one to reuse the (unchanged) evaluation of the unaffected part when computing the evaluation of the modified argumentation framework.

Sakama [START_REF] Sakama | Counterfactual reasoning in argumentation frameworks[END_REF] studied properties of counterfactual conditionals about the status of arguments in an argumentation framework. He defines a semantics for counterfactual conditionals in abstract argumentation of the form α ✷→ β or α ✸→ β, where α and β are single literals of the form in(x) or out(x). The intended meaning of α ✷→ β (resp. α ✸→ β) is that "if it were the case that α, then it would (resp. might) be the case that β." The interpretation is similar to ours, i.e., the premise is translated into a modification of the argumentation framework within which the consequent is evaluated. In particular, acceptance in the premise is translated by removing all attackers pointing towards the accepted argument. A number of properties of these conditionals are studied, and some of them are similar to the properties we considered. These include Reflexivity and a restricted form of Cautious Monotony, as well as properties such as Transitivity and Contraposition. We have extended these results by, for example, demonstrating the failure of Cautious Monotony under the preferred, semi-stable and stable semantics, and proving results with respect to argumentation frameworks containing no (odd-length or even-length) directed cycles.

Cayrol et al. [START_REF] Cayrol | Change in abstract argumentation frameworks: Adding an argument[END_REF] study the impact of modifying an argumentation framework by adding a single new argument that interacts with old arguments. They define a number of properties that describe the impact of such a modification on the extensions of the argumentation framework, such as restrictiveness, conservativeness and questioning (i.e., modifications that result, respectively, in a smaller, equivalent, and larger set of extensions). They then define necessary and sufficient conditions under which a modification satisfies these properties.

While the properties that we studied in this chapter are, like those studied by Cayrol et al., also about the impact of modifying an argumentation framework, the nature of the type of properties used to describe this impact are of a different nature. For example, all properties used by Cayrol et al. refer to extensions instead of labellings, and hence no distinction is made between out and und labelled arguments. Furthermore, the majority of these properties refer explicitly to the number of extensions before and after the modification, while this number does not appear in the definition of the properties that we consider.

Conclusion and Future Work

We modelled change due to actions performed in a debate by introducing the notion of intervention-based entailment. We simplified our model by abstracting away from the actual new arguments and attacks that may be introduced in a debate, and instead we focussed on two actions: defeat of an argument and provisional defeat of an argument, which are modelled by the addition of a (self-attacking) attacker. We have shown that this is sufficient to obtain a number of fundamental results concerning the behaviour of this type of change.

Nevertheless, there are several directions in which our model can be generalized, which is a subject for future research. For example, we may look at changes to an argumentation framework where elements are removed, or where more complex additions (e.g. addition of arguments that are in turn attacked by existing arguments) are performed.

We investigated how intervention-based entailment behaves with respect to the KLM properties, and obtained a number of surprising results, like the failure of Cautious Monotony and Cut under a number of semantics, except in cases where the argumentation framework contains no odd-length or even-length directed cycles.

Finally, we investigated the role of directionality and noninterference in the behaviour of intervention-based entailment. We showed that these properties ensure that the effect of an action propagates in a well-behaved manner. In particular, directionality of a semantics σ ensures that the for all F ∈ F, the relation ||= F σ satisfies Conditional Directionality, which expresses a principle that also applies to intervention in causal Bayesian networks, namely that the effect of an intervened variable propagates only to the direct and indirect effects of this variable. This raises the question whether notions such as the Markov assumption and the d-separation criterion [START_REF] Pearl | Causality: models, reasoning and inference[END_REF] have analogues in the theory of abstract argumentation. This is a question we plan to address in future work.

A question that we have not addressed is: what is the meaning of intervention in instantiated argumentation? The main obstacle is that the instantiated setting imposes certain restrictions on how an argumentation framework can be modified. If these restrictions are not respected, the labellings of the argumentation framework do not any more correspond to consistent sets of conclusions on the instantiated level. If, for example, an argument x contains no defeasible rules, then it is impossible to construct an instantiated argument that attacks x and hence the rejection of x cannot be enforced. In the instantiated setting, it may furthermore be more appropriate to look at interventions that are expressed in the object language of the instantiation itself.

Another direction for future work is to relate the notion of intervention-based entailment with the relation of strong equivalence of argumentation frameworks [START_REF] Oikarinen | Characterizing strong equivalence for argumentation frameworks[END_REF]. Strong equivalence between argumentation frameworks means that they generate equivalent sets of extensions, and that this equivalence is robust with respect to the addition of new arguments and attacks. The main issue addressed is the characterization of strong equivalence in terms of syntactical (i.e., topology related) conditions. In the setting of intervention-based entailment we can address the question: given two argumentation frameworks F 1 and F 2 , what are the conditions under which it holds that ||= F1 σ =||= F2 σ ?

Proofs

Theorem 3.2.8. Let F be an argumentation framework and σ ∈ {Co, Gr, Pr, SS}. The following are equivalent.

1. For some Φ ∈ Int(F ), Φ ||= F σ φ.

2. φ is conflict-free with respect to F .

Proof. Let F = (A, ) be an argumentation framework and σ ∈ {Co, Gr, Pr, SS}.

(1) to (2): Let Φ ∈ Int(F ) and φ ∈ lang(F ) be a formula such that Φ ||= F σ φ. Suppose, toward a contradiction, that φ is not conflict-free w.r.t. F . Because we have L σ (F, Φ) = ∅, this implies, via definition 3.2.10, that there is some L ∈ L σ (F, Φ) such that L ∈ L Cf (F ). But this implies that there is an L ∈ L σ (F ⊕ κ Φ) for some F -mapping κ, and L ∈ L Cf (F ⊕ κ Φ). This is a contradiction. Hence φ is conflict-free w.r.t. F . (2) to (1): Let φ ∈ lang(F ) be a conflict-free formula w.r.t. F . Let L ∈ L Cf (F ) be a labelling such that L |= φ (definition 3.2.10 ensures existence of L). We define Φ by

Φ = {out(x) | L(x) = out} ∪ {¬in(x) | L(x) = und}. Let κ be an F -mapping, let (A ′ , ′ ) = F ⊕ κ Φ and let L ′ ∈ L σ ((A ′ , ′ )). We prove that L = L ′ ↓ A. Let x ∈ A. Three cases:
1. L(x) = out. Then out(x) ∈ Φ. From definition 3.2.5 it follows that there is an y ∈ A ′ such that y ′ x and y is unattacked in F ′ . Condition 2 and 4 in definition 2.1.11 imply that L ′ (x) = out.

2. L(x) = in. Conflict-freeness of L then implies that for all y ∈ A s.t. y x, L(y) = out and hence out(y) ∈ Φ. From (1) and the fact that out(x) ∈ Φ and ¬in(x) ∈ Φ it then follows that for all y ∈ A ′ s.t. y

x, L ′ (y) = out. Condition 4 in definition 2.1.11 finally implies that L ′ (x) = in.

3. L(x) = und. Then (¬in(x)) ∈ Φ. Conflict-freeness of L then implies that for all y ∈ A s.t. y x, L(y) = in. From ( 1) and ( 2) it follows that for all y ∈ A s.t. y

x, L ′ (y) = in. Furthermore we have one more attacker y ∈ A ′ \ y such that y ′ x, and L ′ (y) = und. Condition 1 and 2 in definition 2.1.11 imply that L ′ (x) = und. 

Hence L = L ′ ↓ A.
∈ L St (F, Φ) such that L ∈ L Cf (F ) or L -1 (und) = ∅.
But this implies that there is an L ∈ L St (F ⊕ κ Φ) for some F -mapping κ, and L ∈ L Cf (F ⊕ κ Φ) or L -1 (und) = ∅. This is a contradiction. Hence φ is conflictfree w.r.t. F . ( 2) to (1): Let φ ∈ lang(F ) be stable conflict-free w.r.t. F . We let L ∈ L Cf (F ) be a labelling such that L -1 (und) = ∅ and L |= φ (definition 3.2.11 ensures existence of L) and define Φ by Φ = {out(x) | L(x) = out}. Now let κ be an F -mapping and define L ′ ∈ L(F ⊕ κ Φ) by L ′ (x) = L(x), if x ∈ A and L ′ (x) = in, otherwise. It then follows that every out-labelled argument in L ′ is attacked by an argument that is labelled in and every in labelled argument is attacked only by arguments that are labelled out and hence L ′ is a stable labelling of F ⊕ κ Φ. Furthermore it is the only stable labelling of F ⊕ κ Φ, because every out-labelled argument is attacked by an argument that is labelled in in every stable labelling of F ⊕ κ Φ. Via definition 3.2.8 it follows that Φ ||= F St φ and Φ ||= F St ⊥.

For the proof of theorem 3.3.1 and 3.3.3 we use the following lemmas.

Lemma 3.7.1. Let F = (A, ) be an argumentation framework and let a ∈ A.

Let {E} = E Gr (F ) and {E ′ } = E Gr (F ⊕ κ {out(a)}) for some F -mapping κ. If E a then E = E ′ ∩ A.
Proof. Let F = (A, ) be an argumentation framework, let a ∈ A and let

F ′ = (A ′ , ′ ) = F ⊕ κ {out(a)} for some F -mapping κ. Let {E} = E Gr (F ) and {E ′ } = E Gr (F ′ })
. Note that we have κ(a) ′ a. Assume E a. We prove E = E ′ ∩ A. We prove the two inclusions separately.

1. E ⊆ E ′ ∩A: We prove this by showing that, for all n ∈ Z,

D n F (∅) ⊆ D n F ′ (∅) (where D n F (∅) is defined by D 1 F (∅) = D F (∅) and for all i > 1, D i F (∅) = D F (D i-1 F (∅))
). Assume towards contradiction that for some n ∈ Z, there is an x ∈ A such that x ∈ D n F (∅) and x ∈ D n F ′ (∅). Let y ∈ A ′ be the argument such that y ′ x while for all z ∈ A ′ such that z ′ y, we have z ∈ D n-1 F ′ (∅) (definition 2.1.2 guarantees existence of y). We then also have y ∈ A (if not, then y = κ(a) and hence x = a, which is a contradiction, because we have E a and thus a ∈ E, and therefore

a ∈ D n F (∅)). Because we have x ∈ D n F (∅), there is some z ∈ A such that z y and z ∈ D n-1 F (∅), while z ∈ D n-1 F ′ (∅)
. By continuing this argument we arrive at

D F (∅) ⊆ D F ′ (∅), which is false. Hence D n F (∅) ⊆ D n F ′ (∅) and, by proposition 2.1.1, E ⊆ E ′ ∩ A. 2. E ′ ∩ A ⊆ E: We prove this by showing that, for all n ∈ Z, D n F ′ (∅) ∩ A ⊆ D ∞ F (∅).
Assume towards contradiction that for some n ∈ Z, there is an

x ∈ A such that x ∈ D n F ′ (∅) ∩ A and x ∈ D ∞ F (∅).
Let y ∈ A be the argument such that y

x while for all z ∈ A such that z y, we have z ∈ D ∞ F (∅) (definition 2.1.2 guarantees existence of y). Let z ∈ A ′ be the argument such that z ′ y and z ∈ D n-1 F ′ (∅) (definition 2.1.2, together with the fact that y ∈ A ′ and y ′ x, guarantees existence of z). We then also have z ∈ A (if not, then z = κ(a) and hence y = a, which is a contradiction, because we then have E y, contradicting that for all z ∈ A s. 

Let {E} = E Gr (F ) and {E ′ } = E Gr (F ⊕ κ {¬in(a)}) for some F -mapping κ. If a ∈ E then E = E ′ ∩ A.
Proof. Let F = (A, ) be an argumentation framework, let a ∈ A and let

F ′ = (A ′ , ′ ) = F ⊕ κ {¬in(a)} for some F -mapping κ. Let {E} = E Gr (F ) and {E ′ } = E Gr (F ′ })
. Note that we have κ(a) ′ a and κ(a) ′ κ(a). Assume a ∈ E. We prove E = E ′ ∩ A. We prove the two inclusions separately.

1. E ⊆ E ′ ∩ A: We prove this by showing that, for all n ∈ Z,

D n F (∅) ⊆ D n F ′ (∅) (where D n F (∅) is defined by D 1 F (∅) = D F (∅) and for all i > 1, D i F (∅) = D F (D i-1 F (∅))
). Assume towards contradiction that for some n ∈ Z, there is an x ∈ A such that x ∈ D n F (∅) and x ∈ D n F ′ (∅). Let y ∈ A ′ be the argument such that y ′ x while for all z ∈ A ′ such that z ′ y, we have z ∈ D n-1 F ′ (∅) (definition 2.1.2 guarantees existence of y). We then also have y ∈ A (if not, then y = κ(a) and hence x = a, which is a contradiction, because we have a ∈ E and hence a ∈ D n F (∅)). Because we have x ∈ D n F (∅), there is some z ∈ A such that z y and z ∈ D n-1 F (∅), while z ∈ D n-1 F ′ (∅). By continuing this argument we arrive at

D F (∅) ⊆ D F ′ (∅), which is false. Hence D n F (∅) ⊆ D n F ′ (∅) and, by proposition 2.1.1, E ⊆ E ′ ∩ A.
2. E ′ ∩ A ⊆ E: We prove this by showing that, for all n ∈ Z,

D n F ′ (∅) ∩ A ⊆ D ∞ F (∅).
Assume towards contradiction that for some n ∈ Z, there is an

x ∈ A such that x ∈ D n F ′ (∅) ∩ A and x ∈ D ∞ F (∅).
Let y ∈ A be the argument such that y

x while for all z ∈ A such that z y, we have z ∈ D ∞ F (∅) (definition 2.1.2 guarantees existence of y). Let z ∈ A ′ be the argument such that z ′ y and z ∈ D n-1 F ′ (∅) (definition 2.1.2, together with the fact that y ∈ A ′ and y ′ x, guarantees existence of z). We then also have z ∈ A (if not, then z = κ(a), which is a contradiction, because we then have

z ′ z, contradicting z ∈ D n-1 F ′ (∅)). Thus we have z ∈ D n-1 F ′ (∅) ∩ A and z ∈ D n-1 F (∅)
. By continuing this argument we arrive at

D F ′ (∅) ∩ A ⊆ D F (∅), which is false. Hence D n F ′ (∅) ∩ A ⊆ D ∞ F (∅) and, by proposition 2.1.1, E ′ ∩ A ⊆ E.
Lemma 3.7.3. Let F = (A, ) be an argumentation framework and let x ∈ A.

Let {L} = L Gr (F ) and {L ′ } = L Gr (F ⊕ κ {out(x)}) for some F -mapping κ. If L |= out(x) then L = L ′ ↓ A.
Proof. Let F = (A, ) be an argumentation framework, let x ∈ A and let F ′ = (A ′ , ′ ) = F ⊕ κ out(x) for some F -mapping κ. Let {L} = L Gr (F ) and {L ′ } = L Gr (F ′ ) and assume L |= out(x). We then have E

x, where {E} = E Gr (F ). Lemma 3.7.1 implies that E = E ′ ∩ A, where {E ′ } = E Gr (F ′ ). We now prove that L = L ′ ↓ A. Proposition 2.1.7 implies that L -1 (in) = L ′-1 (in) ∩ A. We split the remainder of the proof in two parts.

• L -1 (out) ⊆ L ′-1 (out)∩A. Suppose y ∈ L -1 (out). We immediately have that y ∈ A. Completeness of L implies that ∃z ∈ A s.t. z y, L(z) = in and hence z ∈ E. Because E ⊆ E ′ , it follows that z ∈ E ′ and hence L ′ (z) = in. Completeness of L ′ implies that y ∈ L ′-1 (out).

• L ′-1 (out) ∩ A ⊆ L -1 (out). Suppose y ∈ L ′-1 (out) ∩ A. If x = y then
we immediately have y ∈ L -1 (out). In the remainder we assume x = y. Because L ′ is complete there is a z ∈ A ′ s.t. z ′ y and L ′ (z) = in and, since x = y, we have z ∈ A and z y. Thus, there is a z ∈ A s.t. z y, z ∈ E and hence L(z) = in. Completeness of L implies that L(y) = out. 

Thus we have L

-1 (in) = L ′-1 (in) ∩ A, L -1 (out) = L ′-1 (out) ∩ A and conse- quently L -1 (und) = L ′-1 (und) ∩ A. It follows that L = L ′ ↓ A.
L ⊑ L ′ iff L -1 (in) ⊆ L ′-1 (in) and L -1 (out) ⊆ L ′-1 (out).
If for all L ∈ L Co (F ), L(x) = in then L Co (F, {¬in(x)}) ↓ A = L Co (F ).
Proof. Let F = (A, ) be an argumentation framework and let x ∈ A. Assume that for all L ∈ L Co (F ), L(x) = in. We prove that L Co (F, {¬in(x)}) ↓ A = L Co (F ). The ⊇ direction is trivial. We prove the ⊆ direction. Suppose L ∈ L Co (F, {¬in(x)}) ↓ A. Assume towards a contradiction that L ∈ L Co (F ). It then holds that x is illegally und in L w.r.t. F , because all other arguments are legally labelled in L w.r.t. F . More precisely we have L(y) = out for all y ∈ A s.t. y

x. But then we still have that L is an admissible labelling of F . Proposition 3.7.6 then implies that there is an L ′ ∈ L F (Co) such that L ⊑ L ′ . But we then have L ′ (x) = in, which contradicts our assumption. Hence L ∈ L Co (F ).

We are now ready to prove theorem 3.3.2 and 3.3.4.

Theorem 3.3.2. For all F ∈ F, ||= F

Co satisfies Cautious Monotony.

Proof. The proof is similar to the proof of theorem 3.3.1 (using lemma 3.7.5 and 3.7.7).

Theorem 3.3.4. For all F ∈ F, ||= F Co satisfies Cut.

Proof. The proof is similar to the proof of theorem 3.3.1 (using lemma 3.7.5 and 3.7.7).

For the proof of theorem 3.3.5 we use the following lemmas. Proof. Let F = (A, ) be an argumentation framework and let x ∈ A. Assume that for all L ∈ L Pr (F ), L(x) = out. We prove L Pr (F ) ⊆ L Pr (F, {out(x)}) ↓ A. Suppose that L ∈ L Pr (F ) and assume towards a contradiction that

L ∈ L Pr (F, {out(x)}) ↓ A. Because L ∈ L Co (F ) and L |= out(x) it follows that L ∈ L Co (F, {out(x)}) ↓ A. Thus there must be an L ′ ∈ L Pr (F, {out(x)}) ↓ A such that L -1 (in) ⊂ L ′-1 (in).
From this it follows that there is some y ∈ A such that y x and L ′ (y) = in. This means that all members of A are legally labelled in L ′ w.r.t. F , and hence that L ′ ∈ L Co (F ). But then we have L ∈ L Pr (F ), which is a contradiction. Hence L ∈ L Pr (F, {out(x)}) ↓ A. Lemma 3.7.9. Let F = (A, ) and x ∈ A. If for all L ∈ L Pr (F ), L(x) = in then L Pr (F ) ⊆ L Pr (F, {¬in(x)}) ↓ A.

Proof. Let F = (A, ) be an argumentation framework and let x ∈ A. Assume that for all L ∈ L Pr (F ), L(x) = in. We prove that L Pr (F ) ⊆ L Pr (F, {¬in(x)}) ↓ A. Suppose L ∈ L Pr (F ). If L(x) = out it follows by argument similar to the one used in the proof of lemma 3.7.8 that L ∈ L Pr (F, {¬in(x)}) ↓ A. In the remainder we assume L(x) = und. Assume towards a contradiction that L ∈ L Pr (F, {¬in(x)}) ↓ A. Because L ∈ L Co (F ) and L |= und(x) it follows that L ∈ L Co (F, {¬in(x)}) ↓ A. Thus there must be an L ′ ∈ L Pr (F, {¬in(x)}) ↓ A such that L -1 (in) ⊂ L ′-1 (in). We know that L ′ (x) = in, Thus, there are two cases left:

1. L ′ (x) = out. Because we have L -1 (in) ⊂ L ′-1 (in), there is an y ∈ A such that y x and L ′ (y) = in. This means that all members of A are legally labelled in L ′ w.r.t. F , and hence that L ′ ∈ L Co (F ). But then we have L ∈ L Pr (F ), which is a contradiction. Thus, this case is impossible.

2. L ′ (x) = und. Two sub-cases:

(a) x is legally und in L ′ w.r.t. F . It then follows that L ′ ∈ L Co (F ).

But then we have L ∈ L Pr (F ), which is a contradiction. Thus, this case is impossible.

(b) x is illegally und in L ′ w.r.t. F . It then holds that L ′ ∈ L Ad (F ). Proposition 3.7.6 then implies that there is an L ′ ∈ L F (Co) such that L ′ ⊑ L ′′ . But we then have L ′′ (x) = in, and hence there is an L ′′′ ∈ L F (Pr) such that L ′′′ (x) = in, which contradicts our assumption. Thus, this case is impossible.

Thus we have that L ∈ L Pr (F, {¬in(x)}) ↓ A.

Theorem 3.3.5. For all F ∈ F, ||= F Pr satisfies Cut.

Proof. The proof is similar to the proof of theorem 3.3.1 (using lemma 3.7.8 and 3.7.9).

For the proof of theorem 3.3.6 we use the following lemma.

Lemma 3.7.10. Let F = (A, ) and

x ∈ A. If for all L ∈ L St (F ), L(x) = out then L St (F ) ⊆ L St (F, {out(x)}) ↓ A.
Proof. Follows easily.

Theorem 3.3.6. For all F ∈ F, ||= F St satisfies Stable Cut.

Proof. Similar to the proof of theorem 3.3.1 (using lemma 3.7.10).

For the proof of theorem 3.3.11 we use the following lemmas. Proof. Let F = (A, ) be an argumentation framework and let x ∈ A. Assume that F contains no odd cycles. Assume that for all L ∈ L Pr (F ), L(x) = out. We prove that L Pr (F, {out(x)}) ↓ A ⊆ L Pr (F ). Let κ be an F -mapping and let L ∈ L Pr (F ⊕ κ {out(x)}). Assume towards contradiction that L ↓ A ∈ L Pr (F ).

We show that this implies that there is an L ′ ∈ L Pr (F ) such that L ′ (x) = in. We start by constructing an admissible set E of F . Let κ be an F -mapping and let F ′ = (A ′ , ′ ) = F ⊕ κ {out(x)}. We now define E by E = {y ∈ A | L(y) = in and there is no odd path in F ′ from x to y}.

We first prove that E is an admissible set of F . It is easy to see that E is conflict-free with respect to F . What remains is to show that E ⊆ D F (E). Let y ∈ E and z ∈ A be an argument such that z y. Then L(y) = in and z ′ y and hence admissibility of L w.r.t. F ′ implies that there is a z ′ ∈ L -1 (in) s.t. z ′ ′ z. We prove that (1) z ′ z and (2) z ′ ∈ E.

1. Because there is no odd path in F ′ from x to y and because z ′ y it follows that z = x and hence z ′ ∈ A. This implies z ′ z.

2. Because y ∈ E, there is no odd path in F ′ from x to y and hence no odd path in F ′ from x to z ′ . Furthermore we have z ′ ∈ A (see ( 1)) and hence z ′ ∈ E.

Hence E ⊆ D F (E), meaning that E is an admissible set of F .

We now prove that for all y ∈ A such that y x, there is a z ∈ E s.t. z y. Suppose y ∈ A and y

x. Because F and F ′ contain no odd cycles we have L Pr (F ) = L St (F ) and L Pr (F ′ ) = L St (F ′ ) (proposition 3.3.10). Hence we have L ∈ L St (F ′ ) and L ↓ A ∈ L St (F ). This implies that x is illegally out in L ↓ A w.r.t. F . Hence L(y) = out, and hence there is a z ∈ E ′ s.t. z ′ y. We prove that (1) z ∈ A and (2) there is no odd path in F ′ from x to z.

1. If z ∈ A then x = y, but we then have x x, which is a contradiction because F contains no odd cycles. hence z ∈ A.

2. If there is an odd path in F ′ from x to z then there is an odd path in F ′ from x to x, because z ′ y ′ x. But F ′ contains no odd cycles, and hence there is no odd path in F ′ from x to z.

From this it follows that z ∈ E. Hence for all y ∈ A such that y x, there is a z ∈ E s.t. z y. This in turn implies that there is a preferred extension E ′ of F such that E ⊆ E ′ and x ∈ E ′ . Hence there is a preferred labelling L ′ ∈ L Pr (F ) such that L ′ (x) = in. This is a contradiction. Hence L ↓ A ∈ L Pr (F ). Lemma 3.7.12. Let F = (A, ) and x ∈ A. Assume that F contains no odd cycles. If for all L ∈ L SS (F ), L(x) = out then L SS (F, {out(x)}) ↓ A ⊆ L SS (F ).

Proof. Let F = (A, ) be an argumentation framework and let x ∈ A. Assume that F contains no odd cycles. Assume that for all L ∈ L SS (F ), L(x) = out. We prove that L SS (F, {out(x)}) ↓ A ⊆ L SS (F ). Let L ∈ L SS (F, {out(x)}) ↓ A. Because every semistable labelling is also preferred, it follows that L ∈ L Pr (F, {out(x)}) ↓ A. Because F contains no odd cycles, proposition 3.3.10 implies L SS (F ) = L Pr (F ). Hence for all L ′ ∈ L Pr (F ), L ′ (x) = out. Lemma 3.7.11 then implies that L ∈ L Pr (F ). Applying proposition 3.3.10 again yields L ∈ L SS (F ). Proof. Let F = (A, ) be an argumentation framework and let x ∈ A. Assume that F contains no odd cycles. Assume that for all L ∈ L St (F ), L(x) = out. Because F contains no odd cycles, proposition 3.3.10 implies L St (F ) = L Pr (F ). Hence for all L ∈ L Pr (F ), L(x) = out. Lemma 3.7.11 then implies that L Pr (F, {out(x)}) ↓ A ⊆ L Pr (F ). Furthermore, F ⊕ κ out(x) contains no odd cycles, thus proposition 3.3.10 implies

L St (F, {out(x)}) = L Pr (F, {out(x)}). It follows that L St (F, {out(x)}) ↓ A ⊆ L St (F ).
We are now ready to prove theorem 3.3.11. The semi-stable and stable case follow similarly, using lemma 3.7.12 for the semi-stable case and lemma 3.7.13 for the stable case.

For the proof of theorem 3.3.12 we use the following lemma. Lemma 3.7.14. Let F = (A, ) and x ∈ A. Assume that F is odd-cycle-free. If for all L ∈ L SS (F ), L(x) = out then L SS (F ) ⊆ L SS (F, {out(x)}) ↓ A.

Proof. Let F = (A, ) be an argumentation framework and let x ∈ A. Assume that F is odd-cycle-free. Assume that for all L ∈ L SS (F ), L(x) = out. We prove that

L SS (F ) ⊆ L SS (F, {out(x)}) ↓ A. Let L ∈ L SS (F ). Be- cause L(x) = out we immediately have that L ∈ L Co (F, {out(x)}) ↓ A. We now show that L ∈ L SS (F, {out(x)}) ↓ A. Because F contains no odd cy- cles, proposition 3.3.10 implies L SS (F ) = L St (F ) and hence for all y ∈ A, L(y) = und. This implies that L ∈ L St (F, {out(x)}) ↓ A and, because L St (F, {out(x)}) ⊆ L SS (F, {out(x)}), L ∈ L SS (F, {out(x)}) ↓ A.
We are now ready to prove theorem 3.3.12.

Theorem 3.3.12. For all F ∈ F, if F is odd-cycle-free then ||= F SS satisfies Stable Cut.

Proof. Similar to the proof of theorem 3.3.11 (using lemma 3.7.14).

For the proof of theorem 3.4.3 we use lemma 3.7.15 and 3.7.16. Lemma 3.7.15. Let F = (A, ) be an argumentation framework. If σ satisfies the directionality principle then

Φ * φ implies (Φ ||= F σ φ iff ∅ ||= F σ φ).
Proof. Suppose σ satisfies the directionality principle. Proposition 3.4.1 implies that for all F ∈ F,

∀B ∈ U (F ), φ ∈ lang(B), (F ↓ B) |= σ φ iff F |= σ φ. (3.1) 
Let F = (A, ) be an argumentation framework, Φ ∈ Int(F ) be an intervention, and φ ∈ lang(F ) a formula such that Φ * φ. Let κ be an F -mapping. Define B by B = {x ∈ A | x * φ}. We then have φ ∈ lang(B) and B ∈ U (F ) and hence B ∈ U (F ⊕ κ Φ). We now prove that

∅ ||= F σ φ iff Φ ||= F σ φ: From proposition 3.2.4 it follows that ∅ ||= F σ φ iff F |= σ φ. From 3.1, together with the fact that B ∈ U (F ) and φ ∈ lang(B), it follows that F |= σ φ iff (F ↓ B) |= σ φ. Because (F ↓ B) = ((F ⊕ κ Φ) ↓ B) it follows that (F ↓ B) |= σ φ iff ((F ⊕ κ Φ) ↓ B) |= σ φ. From 3.1 together with the fact that B ∈ U (F ⊕ κ Φ) and φ ∈ lang(B), it follows that ((F ⊕ κ Φ) ↓ B) |= σ φ iff (F ⊕ κ Φ) |= σ φ. From proposition 3.2.4 it finally follows that (F ⊕ κ Φ) |= σ φ iff Φ ||= F σ φ. Hence we have ∅ ||= F σ φ iff Φ ||= F σ φ. Lemma 3.7.16. Let σ ∈ {Gr, Co, Pr, SS, St}, F ∈ F, Φ, Ψ ∈ Int(F ) and let κ be an F -mapping. It holds that Φ ∪ Ψ ||= F σ φ iff Φ ||= (F ⊕ κ Ψ) σ φ.
Proof. Let σ ∈ {Gr, Co, Pr, SS, St}, F = (A, ) an argumentation framework, Φ, Ψ ∈ Int(F ) and let κ be an F -mapping. Because F ⊕ κ (Φ ∪ Ψ) and (F ⊕ κ Φ) ⊕ κ ′ Ψ) are isomorphic and σ statisfies language independence, we have

L σ (F ⊕ κ (Φ ∪ Ψ)) ↓ A = L σ ((F ⊕ κ Φ) ⊕ κ ′ Ψ)) ↓ A. Via definition 3.2.8 it follows that Φ ∪ Ψ ||= F σ φ iff Φ ||= (F ⊕ κ Ψ) σ φ.
We are now ready to prove theorem 3.4.3. Suppose Ψ * φ. We need to prove that

Φ ∪ Ψ ||= F σ φ iff Φ ||= F ′ σ φ. Let κ be an F -mapping and let F ′ = (A ′ , ′ ) = F ⊕ κ Φ. It then follows that Ψ * ′ φ and hence (via lemma 3.7.15) Ψ ||= F ′ σ φ iff ∅ ||= F ′ σ φ. Lemma 3.7.16 then implies that Φ ∪ Ψ ||= F σ φ iff Φ ||= F ′ σ φ. Theorem 3.4.7. If σ satisfies the noninterference principle then for all F ∈ F, ||= F σ satisfies Conditional Noninterference.
Proof. The proof is exactly the same as the proof of theorem 3.4.3, except that every occurrence of U (F ) (i.e., the unattacked sets of F ) is replaced with I(F ) (i.e., the isolated sets of F ).

Chapter 4

Observation-Based Entailment in Argumentation

Introduction

In this section we focus on change in argumentation due to observations. What we mean by an observation is some piece of information from the environment that requires the revision of the status of one or more arguments. The question we address is: what is a rational way for an agent to revise the evaluation of an argumentation framework to account for an observation?

Let us look at an example. Let F be the argumentation framework shown in figure 4.1. The nodes are coloured according to the unique complete (and grounded, preferred, semi-stable and stable) labelling of this argumentation framework. Even though e is accepted, an agent may, through observation, want to revise the status of e to rejected. The rejection of e can be achieved in various ways by changing F . Three of them are shown in figure 4 attacker to a, c and e all account for the rejection of e. This example clearly demonstrates the difference between intervention and observation: while the action of defeating e only affects the label of e and f , the observed rejection of e may (depending on how it is accounted for) also affect the labels of the other arguments.

This example shows that what we are dealing with is a kind of goal-oriented change of the argumentation framework. That is, the goal is to revise the evaluation of the argumentation framework to satisfy a constraint (e.g., rejection of e) and this goal can be achieved by changing the argumentation framework (e.g., by attacking a, c or e). Goal-oriented change in argumentation is usually studied from a multi-agent strategic perspective. From the multi-agent strategic perspective, the revision of the status of an argument is due not to information from the environment, but represents the goal of an agent in a debate. For example, Kontarinis et al. [START_REF] Kontarinis | Rewriting rules for the computation of goal-oriented changes in an argumentation system[END_REF] put this problem as follows: "When several agents are engaged in an argumentation process, they are faced with the problem of deciding how to contribute to the current state of the debate in order to satisfy their own goal, i.e., to make an argument under a given semantics accepted or not." Similar motivations are found in Baumann and Brewka's work on what they call the enforcement problem [START_REF] Baumann | What does it take to enforce an argument? minimal change in abstract argumentation[END_REF][START_REF] Baumann | Expanding argumentation frameworks: Enforcing and monotonicity results[END_REF] as well as other work in this direction [START_REF] Bisquert | Enforcement in argumentation is a kind of update[END_REF][START_REF] Boella | Conditional labelling for abstract argumentation[END_REF]. Considerations that dominate in the multi-agent strategic perspective are mostly of procedural and economical nature. These works fo-cus, for example, on how to determine which arguments to attack to satisfy a given goal, or what the minimal contributions to a debate are to achieve this. By contrast, we take a single-agent revision perspective: the argumentation framework represents the reasoning of a single agent, and the revision of its evaluation is due to new information that the agent receives from the environment. This leads to the following two questions:

1. By what mechanism does a rational agent decide how to change his argumentation framework, in order to revise its evaluation due to an observation?

2. What are the conditions that characterize a rational way to revise the evaluation of an argumentation framework due to an observation?

We address the first question by proposing a model for how a rational agent performs revision, based on an abductive principle. Different hypotheses (which are changes to an argumentation framework) are considered. A hypothesis is an explanation for an observation if it accounts for its truth. An agent accommodates an observation by finding the most plausible explanations for the observation. We simplify this model by abstracting away from the changes that can be made to an argumentation framework, and instead we focus on change represented by interventions. Thus, roughly speaking, an abductive model for a given argumentation framework consists of a set of interventions along with a preference relation encoding their relative plausibility.

Analogous to the notion of intervention-based entailment, we introduce the notion of observation-based entailment. An observation-based entailment for a given argumentation framework F is a relation between observations about the status of the arguments in F and consequences of observations. An observationbased entailment relation is determined by an abductive model by letting something be a consequence of an observation whenever it is a consequence of the most preferred explanations for the observation. This scheme can be applied credulously (i.e., by focusing on explanations for credulous truth of the observation) and sceptically (i.e., by focusing on explanations for sceptical truth of the observation).

We address the second question by showing that the class of observation-based entailment relations for a given argumentation framework F (i.e., the observation-based entailment relations determined by some abductive model for F ) is characterized by a strengthening of the class of preferential (in the credulous case) and loop-cumulative (in the sceptical case) entailment relations. This characterization is complete in the credulous case, but not in the sceptical case. This result gives a handle on how credulous and sceptical observation-based entailment differ: while credulous entailment satisfies the Or rule, sceptical entailment generally does not.

Having introduced the notion of observation-based entailment, we are in a position to compare it with intervention-based entailment. We investigate the main difference between these two types of entailment, which is related to how the effects of interventions and observations propagate through an argumentation framework. The results we obtain also demonstrate the role of the principles of directionality and noninterference in observation-based entailment. Namely, these principles ensure (if we make some reasonable further assumptions) that the effect of an observation propagates through the argumentation framework in a well-behaved manner.

The overview of this chapter is as follows. In section 4.2 we present the basic definitions of the notion of an abductive model, which represents a mechanism by which a rational agent decides how to change his argumentation framework, in order to revise its evaluation due to an observation. This leads to the notion of credulous and sceptical observation-based entailment. In section 4.3 we show that credulous (resp. sceptical) observation-based entailment relations are characterized by a strengthening of the class of preferential (in the credulous case) and loop-cumulative (in the sceptical case) entailment relations. In section 4.4 and 4.5 we investigate the role of directionality and noninterference in the behaviour of observation-based entailment and the difference between intervention and observation in terms of how the effects of interventions and observations propagate through an argumentation framework. We discuss related work in section 4.6 and we conclude and discuss some directions for future work in section 4.7.

Observation-Based Entailment

In this section we present a model of how an agent revises the evaluation of an argumentation framework due to observations. Intuitively, the idea is to regard an observation as something that can be explained within the agent's abductive model. The basic definitions concerning abductive models will be presented in section 4.2.1. An abductive model determines an entailment relation by letting ψ be a consequence of φ if all most preferred explanations for φ also entail ψ. Thus, intuitively, the most preferred explanations for φ are used to predict the effect of observing φ on the overall evaluation of the argumentation framework. We present the definitions for this scheme in section 4.2.2 for the credulous case and in section 4.2.3 for the sceptical case.

Abductive Models

Let us first describe abductive models informally. Given an argumentation framework F and semantics σ, an abductive model consists essentially of a set of hypotheses (each of which maps to some intervention for F ) and a preference relation over hypotheses. This relation represents the relative plausibility that the agent attributes to the different hypotheses. For example, given two arguments a and b, the agent may deem it more plausible that a is defeated than that b is defeated. To keep things simple, we focus from here on only on semantics under which the existence of labellings is guaranteed. This means that we restrict our attention to the complete, grounded, preferred and semi-stable semantics, and leave the stable semantics out of consideration. where:

• H is a finite set containing elements called hypotheses,

• < is a strict partial order over H,

• m : H → Int(F ) is a function mapping hypotheses to interventions,

• σ ∈ {Co, Gr, Pr, SS}.

A relation < represents the agent's preference among hypotheses. To be consistent with the KLM framework, we associate preference with minimality. Thus, h < h ′ holds whenever h is preferred over h ′ .

Note that it suffices in most practical cases to identify hypotheses directly with interventions, meaning that H is a subset of Int(F ) and m is the identity function. The more general setting is, however, necessary to prove the characterization result in section 4.3.

We consider two properties that, as we show later, result in good behaviour. 

∈ H, if m(h) |= m(h ′ ) and m(h ′ ) |= m(h) then m(h ′ ) < m(h).
Let us illustrate these definitions with an example. This abductive model is shown in figure 4.3. All hypotheses are depicted and an arrow from a hypothesis h to a hypothesis h ′ means that h ′ < h (transitive arrows are omitted). Thus, the non-vacuous hypotheses considered here are the defeat of a, c and e. The vacuous intervention is the most preferred one. Defeat of c is preferred over defeat of a and defeat of a is preferred over defeat of e.

This abductive model is closed under weakening because every subset of every intervention is also an intervention. It also satisfies the minimality assumption:

∅ is logically weaker than all other interventions and is also the most preferred, while all the other interventions are incomparable with respect to logical strength.

In the next two sections we define the notion of a credulous and a sceptical observation-based entailment relation. Each abductive model determines a credulous observation-based entailment relation and a sceptical observation-based entailment relation. This means that, unlike in the setting of intervention-based entailment, there is no unique definition of a credulous or sceptical observationbased entailment relation for a given argumentation framework and semantics. Instead, we work with classes of credulous and sceptical observation-based entailment relations, each defined by some abductive model for a given argumentation framework. This set-up is similar to that of most theories of belief revision, where a revision operator is determined by an epistemic state, which is a representation of the beliefs and revision strategy of an agent.

Credulous Observation-Based Entailment

We focus first on explanations for observations that must become credulous consequences: if M is based on F under the semantics σ then a hypothesis h is a credulous explanation for φ if φ is a credulous consequence of the intervention m(h) under semantics σ. We furthermore say that h is a most preferred credulous explanation if there is no h ′ that is a credulous explanation for φ and h ′ < h. Definition 4.2.4. Let F = (A, ) be an argumentation framework and let M = (F, H, m, <, σ): Given a formula φ ∈ lang(F ) we say that a hypothesis h ∈ H is a credulous explanation for φ if and only if m(h) ||= F σ ¬φ. We say that h is a most preferred credulous explanation for φ if and only if h is a credulous explanation for φ and there is no credulous explanation h ′ for φ such that h ′ < h.

Finding explanations for an observation is not the main goal. Instead, the goal is to use the explanations for an observation to predict how the observation affects the overall evaluation of the argumentation framework. In the credulous case this amounts to the following: If, given an abductive model M, we want to know whether ψ is a consequence of the observation φ, we first determine the most preferred credulous explanations for φ. We then check, for every most preferred credulous explanation h of φ, whether m(h) ||= F σ φ → ψ holds (that is, whether the intervention m(h) entails ψ, presupposing the truth of the observation φ). If it does, then ψ is a consequence of the observation φ. Using this scheme, every abductive model determines a credulous observation-based entailment relation: Cr and is defined by: φ |∼ M Cr ψ iff for every most preferred credulous explanation h for φ we have m(h) ||= F σ φ → ψ.

Note that credulous observation-based entailment puts a relatively weak burden on what constitutes an explanation, because what is observed only needs to be credulously true given the explanation.

We now illustrate the definition of credulous observation-based entailment with an example. The following example involves an argumentation framework with (potentially) multiple labellings. 

Sceptical Observation-Based Entailment

Apart from determining the credulous explanations for an observation, an abductive model allows us to determine sceptical explanations. Analogous to the notion of (most preferred) credulous explanation we define here the notion of (most preferred) sceptical explanation.

Definition 4.2.6. Let F = (A, ) be an argumentation framework and let M = (F, H, m, <, σ): Given a formula φ ∈ lang(F ) we say that a hypothesis h ∈ H is a sceptical explanation for φ if and only if m(h) ||= F σ φ. We say that h is a most preferred sceptical explanation for φ if and only if h is a sceptical explanation for φ and there is no sceptical explanation h ′ for φ such that h ′ < h.

Every abductive model M determines a sceptical observation-based entailment relation |∼ M

Sk by setting φ |∼ M Sk ψ iff the most preferred sceptical explanations for φ sceptically entail ψ. In the general case, credulous and sceptical observation-based entailment is different because in the sceptical case a higher burden is placed on what constitutes an explanation than in the credulous case. This is demonstrated by the following example. In the following section we prove a result that allows us to make a more precise statement about the difference between credulous and sceptical observationbased entailment.

A Syntactic Characterization

In the previous section we presented a semantic or constructive definition of credulous and sceptical observation-based entailment. It turns out that, by strengthening the classes of preferential (in the credulous case) and loop-cumulative (in the sceptical case) entailment relations (defined in section 2.2) we obtain a syntactic characterization. More precisely, given an argumentation framework F , the class of credulous (resp. sceptical) observation-based entailment relations based on F is characterized by a restricted class of preferential (resp. loop-cumulative) entailment relations. This characterization is complete in the credulous case, but not in the sceptical case. The details are presented in the following two subsections.

The Credulous Case

Given an argumentation framework F , the class of credulous observation-based entailment relations based on F coincides with a restriction of the class of preferential entailment relations (i.e., the class of entailment relations satisfying Reflexivity, Left Logical Equivalence, Right Weakening, Cut, Cautious Monotony, Loop and Or) over lang(F ) that furthermore satisfy what we call the property of conflict-freeness with respect to F . The property of conflict-freeness with respect to F is defined by requiring that, for every formula that is not conflictfree with respect to F , the negation of this formula is a consequence of every premise.

Definition 4.3.1. Let F be an argumentation framework and |∼⊆ lang(F ) × lang(F ). We say that |∼ is conflict-free w.r.t. F iff for all φ, ψ ∈ lang(F ), if ψ is not conflict-free w.r.t. F then φ |∼ ¬ψ.

The following lemma establishes the correspondence between preferential entailment relations over lang(F ) that are conflict-free with respect to F and preferential models defined over conflict-free labellings of F . Proof. Let F be an argumentation framework and let |∼⊆ lang(F ) × lang(F ).

(1 implies 2): Suppose |∼ is preferential and conflict-free w.r.t. F . Theorem 2.2.1 implies that there is a preferential model W = (S, ≺, l) over L(F ) such that |∼=|∼ W . We prove that W is defined over L Cf (F ) (i.e. for all s ∈ S, l(s) ∈ L Cf (F )). Suppose the contrary: there is an s ∈ S, and l(s) ∈ L Cf (F ). Then F orm(l(s)) is not conflict-free w.r. Cr =|∼ W . Note that, for the sake of readability, we have moved some of the longer proofs, including the proof for the following lemma, to section 4.8. 

|∼=|∼ M

Cr for an abductive model M based on F .

Proof. See section 4.8. • |∼ is preferential and conflict-free with respect to F .

• |∼=|∼ M

Cr for an abductive model M based on F .

Proof. Follows directly from lemma 4.3.1 and lemma 4.3.2.

Note that this result implies that preferential models over conflict-free labellings of an argumentation framework can be considered as an alternative but equivalent semantics for credulous observation-based entailment. Preferential models and preferential entailment relations for the evaluation of an argumentation framework were considered before by Booth et al. [START_REF] Booth | Monotonic and nonmonotonic inference for abstract argumentation[END_REF] while ranked models appear in [START_REF] Booth | A logical theory about dynamics in abstract argumentation[END_REF]. Preferential models over extensions of an argumentation framework have furthermore been considered by Roos [START_REF] Roos | Preferential model and argumentation semantics[END_REF].

The Sceptical Case

We now show that, given an argumentation framework We now obtain the following result. Proof. Follows directly from lemma 4.3.1 and lemma 4.3.4.

The following proposition shows that, unlike in the credulous case, the characterization in the sceptical case is not complete. This result is due to the fact that, given an abductive model M based on F under semantics σ, |∼ W =|∼ M Sk holds only if every state in W satisfies the condition that it maps to a set of conflict-free labellings that is realizable, in the sense that it coincides with the set L σ (F, Φ) for some intervention Φ. The problem is, however, that not every set of conflict-free labellings is realizable. The notion of realizability and its limits has been studied, for extension-based semantics, by Dunne et al. [START_REF] Dunne | Characteristics of multiple viewpoints in abstract argumentation[END_REF]. Sceptical observation-based entailment relations do not in general satisfy Or, and hence they are not in general preferential. On the semantic side, this is due to the fact that, in the credulous case, we have that a most preferred credulous explanation for an observation φ∨ψ is also a most preferred credulous explanation for the observations φ and for ψ, but this does not hold in the sceptical case. The following example demonstrates the failure of Or in the sceptical case. 

Summary and Discussion of Results

The results obtained in this section show that observation-based entailment relations are preferential entailment relations (in the credulous case) and loopcumulative entailment relations (in the sceptical case). This means that they satisfy the properties Reflexivity, Left Logical Equivalence, Right Weakening, Cut, Cautious Monotony, Loop and (in the credulous case) Or. In the credulous case, we have furthermore obtained a complete characterization: given an argumentation framework F , the class of credulous observation-based entailment relations defined by some abductive model based on F coincides with the class of preferential entailment relations over lang(F ) that are, in addition, conflict-free with respect to F .

We have shown in the previous chapter that intervention-based entailment relations fail a number of analogues of the KLM properties. For example, Cautious Monotony fails under the preferred, semi-stable and stable semantics, Cut fails under the semi-stable semantics, and Loop fails under all semantics. But note that, unlike in the intervention-based case, the question of whether an observation-based entailment relation satisfies these properties does not depend on the argumentation semantics that is used. The satisfaction of these properties is due purely to the correspondence between abductive models and preferential/cumulative-ordered models that we established in lemma 4.3.2 and 4.3.4. Thus, unlike in the intervention-based case, the results obtained in this section do not say anything about the behaviour of the complete, grounded, preferred or semi-stable semantics. The results only say something about the mechanism that we used to define observation-based entailment, i.e., using abductive models.

Directionality in Observation-Based Entailment

In this section we investigate the role of directionality in the behaviour of observation-based entailment. In the setting of intervention-based entailment, we proved that there is a relation between the directionality principle and the property of Conditional Directionality, which expresses that an intervention only affects the status of an argument if the intervention is structurally relevant to this argument. We proved that the directionality property, if satisfied by a semantics σ, ensures that for all F ∈ F, the relation ||= F σ satisfies Conditional Directionality.

However, the idea behind the property of Conditional Directionality does not apply to observation-based entailment, because observations involve abductive reasoning, which may result in the change of the status of an argument, even if the observation is not structurally relevant to this argument. This means that the analogue of Conditional Directionality, which we reformulate for observationbased entailment as follows, is generally not satisfied, even if the semantics we use satisfies directionality. This analogue states that two observations φ and φ ∧ ψ are the same as far as consequences to which ψ is not structurally relevant are concerned. Note that, compared to Conditional Directionality for intervention-based entailment, we introduce the additional consistency constraint ψ |∼ ⊥ to rule out cases where the the consequences of φ and φ ∧ ψ differ due to inconsistency. • H = 2 {out(a),out(b),out(c),out(d),out(e),out(f )} .

• m is the identity function.

• <=⊂.

• σ ∈ {Co, Gr, Pr, SS}.

Note that this abductive model is closed under weakening and satisfies the minimality assumption.

We have out(e) |∼ M Sk ⊥ and out(e) * in(a). Thus, Conditional Directionality would imply that we have out(e) |∼ M Sk in(a) iff ⊤ |∼ M Sk in(a). However, we have:

• out(e) |∼ M
Sk in(a), because among the most preferred sceptical explanations for out(e) we have the intervention {out(a)}, which does not entail acceptance of a: {out(a)} ||= F σ in(a).

• ⊤ |∼ M Sk in(a), because the unique most preferred sceptical explanation for ⊤ is the vacuous intervention, which entails acceptance of a: 

∅ ||= F σ in(a).

This is a violation of Conditional

If all σ labellings of F satisfy Reinstatement then ||= F

σ satisfies Conditional Reinstatement.

Proof. Let F = (A, ) and let σ be a labelling-based semantics.

(1): Suppose for all L ∈ L σ (F ), L satisfies out-legality. Let Φ ∈ Int(F ), let κ be an F -mapping and let L ′ ∈ L σ (F ⊕ κ Φ). We prove that, for all x ∈ A s.t. Φ |= out(x), L ′ |= out(x) → ∨ y∈x -in(y) (from here on x -refers to the attackers of x in F ). Let x ∈ A and suppose Φ |= out(x). If L ′ |= out(x) we are done. In the remainder we assume L ′ |= out(x). Because L ′ satisfies out-legality there is an y such that L ′ (y) = in and y attacks x in F ⊕ Φ.

Because Φ |= out(x), definition 3.2.5 implies that if y ∈ A then y is selfattacking in F ⊕ κ Φ, which is impossible. Hence y ∈ A and thus y ∈ x -. Thus

L ′ |= out(x) → ∨ y∈x -in(y). It follows that Φ ||= F σ out(x) → ∨ y∈x -in(y). Hence ||= F
σ satisfies Conditional out-legality. (2): Suppose for all L ∈ L σ (F ), L satisfies reinstatement. Let Φ ∈ Int(F ), let κ be an F -mapping and let L ′ ∈ L σ (F ⊕ κ Φ). We prove that, for all x ∈ A s.t. Φ |= ¬in(x), L ′ |= (∧ y∈x -out(y)) → in(x) (from here on x -refers to the attackers of x in F ). Let x ∈ A and suppose Φ |= ¬in(x). If L ′ |= (∧ y∈x -out(y)) we are done. In the remainder we assume L ′ |= (∧ y∈x -out(y)). Because Φ |= ¬in(x), definition 3.2.5 implies that every attacker of

x in F ⊕ κ Φ is a member of x -. Because L ′ satisfies reinstatement it then follows that L ′ (x) = in. Hence L ′ |= (∧ y∈x -out(y)) → in(x). It follows that Φ ||= F σ (∧ y∈x -out(y)) → in(x). Hence ||= F σ satisfies Conditional Reinstatement.

Directional out-legality and Reinstatement

The idea behind the properties of Conditional out-legality and Conditional Reinstatement does not apply to observation-based entailment. The reason is similar to the reason why Conditional Directionality does not apply: observations involve abductive reasoning, which may result in (provisional) defeat of an argument that is not itself observed to be rejected or not accepted. Keeping the directionality principle in mind, however, it stands to reason that, if we observe φ, we (provisionally) defeat an argument x only if x is also structurally relevant to φ. Intuitively, this is because an argument that is not structurally relevant to an observation should play no role in explaining it. This is expressed by the following two properties, which we call Directional out-legality and Directional Reinstatement For the proof we use the following lemma. Proof. Let F = (A, ), σ be a labelling-based semantics and let M = (F , H, m, <, σ) be an abductive model that is closed under weakening and satisfies the minimality assumption. Suppose ||= F σ satisfies Conditional Directionality. We prove the credulous case (the sceptical case is similar): Let h ∈ H be a most preferred credulous explanation for φ. We then have m(h) ||= F σ ¬φ and there is no h ′ ∈ H such that h ′ < h and m(h ′ ) ||= F σ ¬φ. Now suppose the contrary: x ∈ Args(m(h)) and x * φ. We then have {out

(x)} ∈ m(h) or {¬in(x)} ∈ m(h). Assume (w.l.o.g.) that {out(x)} ∈ m(h). Because ||= F σ satisfies Conditional Directionality and {out(x)} * φ it follows that m(h) ||= F σ φ iff m(h) \ {out(x)} ||= F σ φ and hence we have m(h) \ {out(x)} ||= F σ ¬φ. But because M is closed under weakening, there is some h ′ ∈ H such that m(h ′ ) = m(h) \ {out(x)}.
The minimality assumption furthermore implies that h ′ < h. But this is a contradiction, because it means that h is not a most preferred credulous explanation for φ. Thus it must hold that x ∈ Args(m(h)) and x * φ.

We now prove theorem 4.4.2.

Proof of theorem 4.4.2. Let F = (A, ) be an argumentation framework and let σ be a labelling-based semantics. Let M be an abductive model based on F under semantics σ that is closed under weakening and satisfies the minimality assumption.

(1): Suppose ||= F σ satisfies Conditional Directionality and Conditional out-legality. We prove that |∼ M Cr satisfies Directional out-legality (the proof for |∼ M Sk is similar): Let x ∈ A and suppose x * φ. Let h ∈ H be a most preferred credulous explanation for φ. We must prove that m(h) ||= F σ out(x) → ∨ y∈x -in(y). Via lemma 4.4.3 it follows that for all z ∈ A, z ∈ Args(m(h)) implies z * φ.

Thus we have x ∈ Args(m(h)). Because ||= F

σ satisfies Conditional out-legality it then follows that m(h) ||= F σ out(x) → ∨ y∈x -in(y). Hence |∼ M Cr satisfies Directional out-legality.

(2): The proof is similar to (1), except that here we have to show that if h ∈ H is a most preferred credulous explanation for φ then m(h) ||= F σ (∧ y∈x -out(y)) → in(x), which follows via lemma 4. Because for all F ∈ F, ||= F Co , ||= F Gr and ||= F Pr all satisfy Conditional Directionality, Conditional out-legality and Conditional Reinstatement, this result implies that for all abductive models that are based on F under the complete, grounded and preferred semantics, and are closed under weakening and satisfy the minimality assumption, the relations |∼ M

Cr and |∼ M Sk satisfy Directional out-legality and Directional Reinstatement.

In the following example we show that the failure of Directional out-legality and Directional Reinstatement leads to unintuitive behaviour. This failure occurs in some abductive models under the semi-stable semantics, which does not satisfy directionality. Let M = (F, H, m, <, SS) be the abductive model based on F under the semistable semantics, defined by:

• H = 2 {out(a),out(b),out(c)} . • <=⊂.
• m is the identity function.

Note that this abductive model is closed under weakening and satisfies the minimality assumption.

Normally it follows that a is rejected: ⊤ |∼ M Cr out(a). We furthermore have that c is not structurally relevant to the argument a and hence that c * in(a). Intuitively, c should play no role in explaining the observation in(a). Thus, Directional out-legality implies that observing in(a) does not lead to the unjustified rejection of c: in(a) |∼ M Cr out(c) → (in(b) ∨ in(c)). Furthermore, Directional Reinstatement implies that observing in(a) leads to acceptance of c whenever its attackers are rejected: in(a) |∼ M Cr (out(b) ∧ out(c)) → in(c). However, neither of these hold. This is due to the fact that, among the most preferred credulous explanations for in(a) under the semi-stable semantics, we have the intervention

{out(c)}, which entails neither out(c) → (in(b)∨in(c)) nor (out(b)∧out(c)) → in(c). Thus, we have in(a) |∼ M Cr out(c) → (in(b) ∨ in(c))
, which is a failure of Directional out-legality, and in(a

) |∼ M Cr (out(b) ∧ out(c)) → in(c)
which is a failure of Directional Reinstatement. Thus, we have demonstrated that, if we use the semi-stable semantics (which does not satisfy directionality) then arguments that are not structurally relevant to an observation may play a role in explaining it, and may be unjustifiably rejected.

Note that theorem 4.4.2 not only establishes the role of directionality but also the role of closure under weakening and the assumption of minimality. Roughly speaking, these properties ensure that an argument is (provisionally) defeated when making an observation only if this (provisional) defeat contributes to explaining the observation. The failure of Directional out-legality and Directional Reinstatement due to the violation of closure under weakening or the assumption of minimality is demonstrated by the following example. • ∅ < {out(a), out(b)}.

• m is the identity function.

This abductive model is shown in figure 4.9a. Note that this abductive model satisfies the minimality assumption but is not closed under weakening: we have {out(a), out(b)} ∈ H but not {out(a)} ∈ H and {out(b)} ∈ H.

2. Let M 2 = (F, H, m, <, Gr) be the abductive model based on F under the grounded semantics, defined by: . Directional Reinstatement fails in a similar way. The reason for this failure is the fact that in both M 1 and M 2 , the intervention {out(a), out(b)} is the most preferred explanation for the observation out(a), leading to the defeat of b, even though this is not necessary to explain out(a).

• H = {∅, {out(a), out(b)}, {out(a)}, {out(b)}}. • ∅ < {out(a), out(b)}, {out(a), out(b)} < {out(a)}, {out (a) 

Noninterference in Observation-Based Entailment

In the previous section we explained that the idea behind the property of Conditional Directionality does not apply to observation-based entailment. However, the idea behind the Conditional Noninterference property looks at first sight reasonable in the setting of observation-based. That is, an observation φ should not change the status of an argument if the argument is not structurally connected to φ. This can be considered reasonable because an argument x that is not structurally connected to an observation φ is not structurally relevant to φ, and should therefore play no role in explaining φ and, conversely, φ is not structurally relevant to x, and hence the status of x should not change as a result of observing φ.

Let us define the analogue of Conditional Noninterference for observation-based entailment. This property states that two observations φ and φ∧ψ are the same as far as consequences that are not structurally connected to ψ are concerned. Note that, compared to Conditional Noninterference for intervention-based entailment, we introduce the additional consistency constraint ψ |∼ ⊥ to rule out cases where the the consequences of φ and φ ∧ ψ differ due to inconsistency.

Definition 4.5.1. Let (A, ) ∈ F. A relation |∼⊆ lang(F ) × lang(F ) satisfies Conditional Noninterference iff for all φ, ψ ∈ lang(F ), if ψ * χ and ψ |∼ ⊥ then φ ∧ ψ |∼ χ iff φ |∼ χ.
It turns out that this property is generally not satisfied. The reason is that, if φ involves arguments of two distinct isolated sets then it effectively makes the labels of the arguments in these two sets dependent. We may, for example, observe in(x) → out(y), where x and y are members of distinct isolated sets. This amounts to an "observed attack", which makes the status of the arguments in the two isolated sets dependent, causing a violation of Conditional Noninterference if the observation is strengthened. This is demonstrated by the following example. Let M = (F, H, m, <, σ) be the abductive model defined by:

• H = 2 {out(a),out(b),out(c),out(d)} .

• <=⊂.

• m is the identity function.

• σ ∈ {Co, Gr, Pr, SS}.

Note that this abductive model is closed under weakening and satisfies the minimality assumption. Now, we have that out(a) |∼ M Cr ⊥ and out(a) * out(d). Conditional Noninterference would imply that we have, for all φ ∈ lang(F ),

φ ∧ out(a) |∼ M Cr out(d) iff φ |∼ M Cr out(d).
Let us see whether this holds if we set φ to in(b) → out(c). Note that this observation involves both isolated sets in F .

• This is a violation of Conditional Noninterference. This counterexample also applies to |∼ M Sk .

The following weaker variant of Conditional Noninterference is still desirable. We call it Weak Conditional Noninterference. It states that what we believe after observing φ coincides with what we initially believe (i.e., given the observation ⊤) as far as all consequences that are not structurally connected to φ are concerned. For the proof we use the following lemma.

As we explained in the previous section, closure under weakening and the minimality assumption imply, roughly speaking, that an argument is (provisionally) defeated only if this contributes to explaining the observation. For this reason, the violation of closure under weakening or the minimality assumption may lead to failure of Weak Conditional Noninterference. For a demonstration we can consider again the argumentation framework and abductive model used in example 4.3.1. This abductive model is not closed under weakening. As a result, the sceptical observation in(a) leads to rejection of c, even though a and c are members of two distinct isolated sets.

Related Work

In describing the problem of revising the evaluation of an argumentation framework we made a distinction between the single-agent revision perspective and the multi-agent strategic perspective. While we have taken the single-agent revision perspective, the multi-agent strategic perspective has received most attention in the literature. This includes the work of Baumann and Brewka, who call this the enforcing problem [START_REF] Baumann | Expanding argumentation frameworks: Enforcing and monotonicity results[END_REF]. The precise question they address is: can some set of arguments be enforced (i.e., made credulously accepted) by modifying the argumentation framework? They distinguish different types of modifications, one type being a normal expansion, where new arguments/attacks are added but no attacks between existing arguments. For each type they determine the conditions under which a set of arguments is enforceable under a given semantics. Baumann also looked at the problem of minimal change, that is: if some set of arguments is enforceable, then how many modifications (i.e., how many added or removed attacks) are necessary to do so? [START_REF] Baumann | What does it take to enforce an argument? minimal change in abstract argumentation[END_REF] Kontarinis et al. [START_REF] Kontarinis | Rewriting rules for the computation of goal-oriented changes in an argumentation system[END_REF] also take the multi-agent strategic perspective. Their approach is based on the notion of a game board, which is an argumentation framework together with a specification of the set of possible changes (considering only the addition/removal of attacks between existing arguments). They then study the problem of changing the argumentation framework with the goal of making an argument accepted or not accepted under a given semantics. They propose a method of computation, based on term rewriting logic, where the initial goal is rewritten into sub-goals which, if successful, leads to a so called target set, or a minimal set of attacks that must be added/removed to satisfy the goal.

Boella et al. [START_REF] Boella | Conditional labelling for abstract argumentation[END_REF] study goal-oriented change under the grounded semantics. Their approach centres on the concept of a conditional labelling, which associates each argument with three formulas. These formulas describe which arguments must be attacked to make the argument labelled in, out or und.

Bisquert et al. [START_REF] Bisquert | Enforcement in argumentation is a kind of update[END_REF] takes a slightly different perspective. They look at change of the evaluation of an argumentation framework as a process that is part of persuasion. That is, an agent wants to revise an audience's evaluation of a debate, and the revision operator tells the agent how to do this. They introduce a language to describe sets of argumentation frameworks as well as a language to describe goals concerning the acceptance of arguments. Generalized enforcement is then a process that takes as input two formulas, one representing a set of initial argumentation frameworks and one describing a set of arguments to accept.

The result is a revised set of argumentation frameworks in which the desired arguments are accepted. They prove a representation theorem that relates a particular class of generalized enforcement operators with distance measures defined over argumentation frameworks.

A clear single-agent revision perspective is taken by Coste-Marquis et al. [START_REF] Coste-Marquis | On the revision of argumentation systems: Minimal change of arguments statuses[END_REF]. They focus on revising the evaluation of an argumentation framework by adding and removing attacks between existing arguments. The motivating example they use is that an agent has to revise the evaluation of its argumentation framework when confronted with trustworthy information (for practical purposes, this can be considered to be the same as what we call observation). They focus on revision operators that take as input an argumentation framework and a revision formula, and return a set of revised argumentation frameworks. Specifically, they focus on revision operators that are characterized by a set of AGM-style postulates for revision with minimal change. That is, the set of extensions of the revised argumentation frameworks taken together should differ minimally from the set of extensions of the initial argumentation framework. They then look at a number of distance measures over extensions and argumentation frameworks, that can be used to define concrete revision operators.

Rotstein et al. [START_REF] Nicolás | Argument theory change: Revision upon warrant[END_REF][START_REF] Nicolás | A dynamic argumentation framework[END_REF] and Moguillansky et al. [START_REF] Martín | Argument theory change through defeater activation[END_REF] study revision in a more structured setting. They assume that there is, apart from a set of arguments (and a distinct set of active arguments), a subargument relation among arguments. This is called a dynamic argumentation framework. This additional structure allows the study of operators that add an argument and afterwards make the necessary additional change to ensure that the added argument is accepted.

It is well known that non monotonic inference relations can be used to define belief revision operators and vice versa. This means that our theory of observation-based entailment can alternatively be seen as a theory about belief revision operators. We could formalize this as follows: an an observation-based entailment relation |∼ M defined by an abductive model M based on F defines a revision operator * for F defined by ψ ∈ (F * φ) iff φ |∼ M ψ. Results due to Gardenfors and Makinson [START_REF] Gärdenfors | Nonmonotonic inference based on expectations[END_REF] imply that, if |∼ M is rational, this operator behaves much like a belief revision operator that satisfies the AGM postulates. A weaker set of postulates for belief revision, that applies in the case where |∼ M is not rational but still preferential, has been studied by Benferhat et al. [START_REF] Benferhat | Revision of partially ordered information: Axiomatization, semantics and iteration[END_REF].

We made a distinction between credulous and sceptical observation-based entailment, which differs in how explanations are selected. That is, credulous (resp. sceptical) entailment is based on selecting the most preferred explanations that make an observation credulously (resp. sceptically) true. Bochman investigated credulous and sceptical non-monotonic inference based on a different distinction [START_REF] Bochman | Credulous nonmonotonic inference[END_REF]. Roughly speaking, sceptical entailment in Bochman's investigation is based on the rule that φ |∼ ψ holds if all preferred states consistent with φ satisfy φ → ψ, while credulous entailment is based on the rule that φ |∼ ψ holds if some preferred state consistent with φ satisfies φ → ψ. Whereas in our setting, the distinction applies to how the premise is interpreted, it is, in Bochman's setting, applied to how the conclusion is interpreted.

Observation-based entailment relations are closely related to abductive conse-quence relations, as studied by Pino Pérez and Uzcátegui [START_REF] Pino | Jumping to explanations versus jumping to conclusions[END_REF]. These are consequence relations that are defined via an underlying principle of abduction. The idea is very close to the one that we applied: Given a background theory Σ they associate with each explanatory relation ⊲ between formulas (where φ ⊲ ψ means that ψ is a preferred explanation of φ) a consequence relation |∼ ab by setting φ |∼ ab ψ iff Σ ∪ {χ} ⊢ ψ for every χ such that φ ⊲ χ.

They then isolate postulates for explanatory relations based on the interplay between ⊲ and |∼ ab . In particular, they isolate postulates for ⊲ when |∼ ab is assumed to be an entailment relation that satisfies the properties studied by Kraus et al. [START_REF] Kraus | Nonmonotonic reasoning, preferential models and cumulative logics[END_REF]. Lobo and Uzcátegui [START_REF] Lobo | Abductive consequence relations[END_REF] studied abductive consequence relations defined by cumulative ordered models that capture preferences among explanations. This is similar to our notion of sceptical observation-based entailment which, as we saw in section 4.3, is also closely related to cumulative ordered models. They observe that the resulting notion of consequence does not satisfy the Or-rule. We proved that the situation is the same in the sceptical case, but not in the credulous case.

Finally, Roos [START_REF] Roos | Preferential model and argumentation semantics[END_REF] studied the relationship between the preferential model and argumentation semantics. He first defines a preferential model as as consisting of a preference relation over states, where each state maps to a conflict-free extension of a given argumentation framework. He considers preferential models in which a sufficient (but not necessary) condition for one extension E to be preferred over another extension E ′ is when E is a superset of E ′ . He then considers various preference relations where the most preferred states of these preferential models coincide with the complete, grounded, preferred and stable extensions.

Conclusion and Future Work

We identified two types of change: intervention (representing actions in a debate) and observation (information from the environment that requires the revision of the status of one or more arguments). In this chapter we addressed the question of how a rational agent should revise the evaluation of an argumentation framework to account for an observation. We proposed a model, based on an abductive principle, that determines an observation-based entailment relation. This entailment relation captures how an argumentation framework is evaluated given an observation.

We proved that the class of observation-based entailment relations for a given argumentation framework F (i.e., the observation-based entailment relations determined by some abductive model for F ) is characterized by a strengthening of the class of preferential (in the credulous case) and loop-cumulative (in the sceptical case) entailment relations. This characterization is complete in the credulous case, but not in the sceptical case. This result gives a handle on how credulous and sceptical observation-based entailment differ, namely that the former satisfies the Or-rule, but the latter generally does not.

Finally, we investigated the difference between interventions and observations, in terms of how their effect propagate through an argumentation framework.

We also investigated the role of the principles of directionality and noninterference in the behaviour of an observation-based entailment relation. Namely, these principles ensure (if we make some reasonable further assumptions) that the effect of an observation propagates through the argumentation framework in a well-behaved manner. If we use a semantics that satisfies the directionality, the difference between intervention and observation is that the effect of an intervention only propagates to arguments that are directly or indirectly attacked by an argument that is (provisionally) defeated, whereas the effect of an observation also propagates to arguments that play a role in explaining the observation (i.e., arguments that directly or indirectly attack arguments of which the status is observed).

We simplified our model by abstracting away from the actual changes that can be made to an argumentation framework in order to account for an observation, and instead we focussed on change represented by interventions. This is a limitation in the sense that not every change that can be made to an argumentation framework is represented by some intervention. This includes changes where attacks between existing arguments are removed, and changes where multiple arguments and attacks are added at once. Considering more general forms of change will lead to more general forms of revision. For example, the observation that two arguments a and b where a attacks b are both accepted, can be explained by removing the attack from a to b. In the current setting, observations that are not conflict-free cannot be consistently dealt with. These considerations suggest more general forms of revision in argumentation, which is a subject for future research.

Finally, we have been working in the setting of abstract argumentation, without taking into account possible instantiations of abstract argumentation frameworks. This raises the question: can observation-based entailment be applied if we use instantiated forms of argumentation? We partially address this question in the following chapter, where we present a model of abduction in abstract argumentation that is an abstraction of abduction in logic programming. However, we focus in the following chapter on finding explanations for a given observation, and we do not, like we did in this chapter, look at the specific problem of revision due to observation. Cr by W M Cr = (S, ≺, l), where Definition 4.8.3. Let F be an argumentation framework and let W = (S, ≺, l) be a finite preferential model over L Cf (F ). Let σ ∈ {Co, Gr, Pr, SS}. We define M σ W by M σ W = (F, H, m, <, σ), where

Proofs

• H = S.
• m is defined by m(s) = Enf (l(s)) (See definition 4.8.2).

• <=≺.

Lemma 4.8.4. Let F = (A, ) be an argumentation framework and let W = (S, ≺, l) be a finite preferential model over

L Cf (F ). Let σ ∈ {Co, Gr, Pr, SS}. Let (F, H, m, <, σ) = M σ W .
For all s ∈ S it holds that s is a credulous explanation for φ iff s ∈ φ.

Proof. Let s ∈ S. Definition 4.2.4 implies that s is a credulous explanation for φ iff m(s) ||= F σ ¬φ. Because m(s) = Enf (l(s)), lemma 4.8.3 implies that {l(s)} = L σ (F, m(s)) ↓ A and hence that m(s) ||= F σ ¬φ iff l(s) |= φ.
Hence s is a credulous explanation for φ iff s ∈ φ. W is an abductive model based on F .

Proof. From the fact that ≺ is a strict partial order it follows that < is a strict partial order. Finiteness of S implies finiteness of H. Lemma 4.8.3 implies that for no h ∈ H, m(h) ||= F σ ⊥. Hence M σ W is an abductive model based on F .

We are now ready to prove lemma 4.3.2.

Proof of lemma 4.3.2. We first prove that (1) implies ( 2): Let M be an abductive model based on F . Lemma 4.8.2 implies that W M Cr = (S, ≺, l) is a finite preferential model over L Cf (F ). The following equivalences prove that

|∼ M Cr =|∼ W M Cr : 1. φ |∼ W M Cr ψ 2. For every (h, L) ∈ S that is ≺-minimal in φ we have l((h, L)) |= ψ.
3. For every most preferred credulous explanation h for φ and every

L ∈ L σ (F, m(h)) s.t. L |= φ we have L |= ψ.
4. For every most preferred credulous explanation h for φ we have m(h) ||= F σ φ → ψ. Abduction in Argumentation and Logic Programming

φ |∼ M

Introduction

In the context of abstract argumentation, abduction can be seen as the problem of finding changes to an argumentation framework with the goal of explaining observations about the evaluation of the argumentation framework. This was the mechanism by which we defined the notion of observation-based entailment in chapter 4. In this chapter we look at two further aspects of combining argumentation and abduction.

Firstly, proof theories in argumentation are often formulated as dialogical proof theories, which aim at relating the problem they address with stereotypical patterns found in real world dialogue. For example, proof theories for sceptical/credulous acceptance have been modelled as dialogues in which a proponent persuades an opponent to accept the necessity/possibility of an argument [START_REF] Modgil | Proof theories and algorithms for abstract argumentation frameworks[END_REF], while credulous acceptance has also been related to Socratic style dialogue [START_REF] Martin | Preferred semantics as socratic discussion[END_REF]. This raises the question of whether proof procedures for abduction in argumentation can similarly be modelled as dialogues. Secondly, abstract argumentation can be seen as an abstraction of logic programming. That is, an instantiated argumentation framework can be generated on the basis of a logic program, and the consequences of the logic program be computed by looking at the extensions of the instantiated argumentation framework [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF]. In the context of abduction, one may ask whether a model of abduction in argumentation can similarly be seen as an abstraction of abductive logic programming. These are the two questions we address in this chapter.

We first present a model of abduction in abstract argumentation, based on the notion of an abductive argumentation framework that encodes different possible changes to an argumentation framework, each of which may act as a hypothesis to explain an observation that can be justified by making an argument accepted.

We then do two things:

1. We present sound and complete dialogical proof procedures for the main reasoning tasks, i.e., finding hypotheses that explain sceptical/credulous acceptance of arguments in support of an observation. These proof procedures show that the problem of abduction is related to an extended form of persuasion, where the proponent uses hypothetical moves to persuade the opponent.

2. We show that abductive argumentation frameworks can be instantiated by ALPs (abductive logic programs) in such a way that the hypotheses generated for an observation by the ALP can be computed by translating the ALP into an abductive argumentation framework. The type of ALPs we focus on are based on Sakama and Inoue's model of extended abduction [START_REF] Inoue | Abductive framework for nonmonotonic theory change[END_REF][START_REF] Inoue | Computing extended abduction through transaction programs[END_REF], in which hypotheses have a positive as well as a negative element (i.e., facts added to the logic program as well as facts removed from it).

In sum, our contribution is a model of abduction in argumentation which can be seen as an abstraction of abduction in logic programming, and we present dialogical proof procedures for determining what the explanations for a given observation are.

The overview of this chapter is as follows. After introducing the necessary preliminaries we present in section 5.2 a model of abduction in abstract argumentation. In section 5.3 we present dialogical proof procedures for two of the main problems (explaining sceptical/credulous acceptance). In section 5.4 we show that our model of abduction can be used to instantiate abduction in logic programming. We conclude by discussing related work in section 5.5 we conclude in section 5.6.

This chapter is based on joint work with Richard Booth, Dov Gabbay, Souhila Kaci and Leendert van der Torre [START_REF] Booth | Abduction and dialogical proof in argumentation and logic programming[END_REF].

Abductive Argumentation Frameworks

To simplify our definitions, we work in this chapter with extension-based semantics instead of labelling-based semantics. We assume that an observation translates into a set B ⊆ A. Intuitively, B is a set of arguments that each individually support the observation. If at least one argument x ∈ B is sceptically (resp. credulously) accepted w.r.t. the complete semantics, we say that the observation B is sceptically (resp. credulously) supported.

Definition 5.2.1. Given an argumentation framework F = (A, ), an observation B ⊆ A is sceptically (resp. credulously) supported iff for all (resp. some) E ∈ E Co (F ) it holds that x ∈ E for some x ∈ B.

The following proposition implies that checking whether an observation B is sceptically supported can be done by checking whether an individual argument x ∈ B is in the grounded extension. It may be that an argumentation framework F does not sceptically or credulously support an observation B. Abduction then amounts to finding a change to F so that B is supported. We use the following definition of an abductive argumentation framework to capture the changes with respect to F (each change represented by an argumentation framework G called an abducible argumentation framework) that an agent considers. We assume that F itself is also an abducible argumentation framework, namely one that captures the case where no change is necessary. Other abducible argumentation frameworks may be formed by addition of arguments and attacks to F , removal of arguments and attacks from F , or a combination of both. One can focus on explanations satisfying additional criteria, such as minimality w.r.t. the added or removed arguments/attacks. We leave the formal treatment of such criteria for future work. 

Explanation Dialogues

In this section we present methods to determine, given an abductive argumentation framework M = (F, I) (for F = (A, )) whether an abducible argumentation framework G ∈ I explains credulous or sceptical support for an observation B ⊆ A. We build on ideas behind the grounded and preferred games, which are dialogical procedures that determine sceptical or credulous acceptance of an argument [START_REF] Modgil | Proof theories and algorithms for abstract argumentation frameworks[END_REF]. To sketch the idea behind these games (for a detailed discussion cf. [START_REF] Modgil | Proof theories and algorithms for abstract argumentation frameworks[END_REF]): two imaginary players (PRO and OPP) take alternating turns in putting forward arguments according to a set of rules, PRO either as an initial claim or in defence against OPP's attacks, while OPP initiates different disputes by attacking the arguments put forward by PRO. Sceptical or credulous acceptance is proven if PRO can win the game by ending every dispute in its favour according to a "last-word" principle.

Our method adapts this idea so that the moves made by PRO are essentially hypothetical moves. That is, to defend the initial claim (i.e., to explain an observation) PRO can put forward, by way of hypothesis, any attack x y present in some G ∈ I. This marks a choice of PRO to focus only on those abducible argumentation frameworks in which the attack x y is present. Similarly, PRO can reply to an attack x y, put forward by OPP, with the claim that this attack is invalid, marking the choice of PRO to focus only on the abducible argumentation frameworks in which the attack x y is not present. Thus, each move by PRO narrows down the set of abducible argumentation frameworks in which all of PRO's moves are valid. The objective is to end the dialogue with a non-empty set of abducible argumentation frameworks. Such a dialogue represents a proof that these abducible argumentation frameworks explain sceptical or credulous support for the observation.

Alternatively, such dialogues can be seen as games that determine sceptical or credulous support of an observation by an argumentation framework that are played simultaneously over all abducible argumentation frameworks in the abductive argumentation framework. In this view, the objective is to end the dialogue in such a way that it represents a proof for at least one abducible argumentation framework. Indeed, in the case where M = (F, {F }), our method reduces simply to a proof theory for sceptical or credulous support of an observation by F .

Before we move on we need to introduce some notation. Definition 5.3.1. Given a set I of argumentation frameworks we define:

• A I = ∪{A | (A, ) ∈ I}, • I = ∪{ | (A, ) ∈ I}, • I x y = {(A, ) ∈ I | x, y ∈ A, x y}, • I B = {(A, ) ∈ I | B ⊆ A}.
We model dialogues as sequences of moves, each move being of a certain type, and made either by PRO or OPP.

Definition 5.3.2. Let M = (F, I) be an abductive argumentation framework.

A dialogue based on M is a sequence S = (m 1 , . . . , m n ), where each m i is either:

• an OPP attack "OPP: x y", where x I y,

• a hypothetical PRO defence "PRO: y + x", where y I x,

• a hypothetical PRO negation "PRO: y -x", where y I x,

• a conceding move "OPP: ok",

• a success claim move "PRO: win".

We denote by S • S ′ the concatenation of S and S ′ .

Intuitively, a move OPP: y

x represents an attack by OPP on the argument x by putting forward the attacker y. A hypothetical PRO defence PRO: y + x represents a defence by PRO who puts forward y to attack the argument x put forward by OPP. A hypothetical PRO negation PRO: y -x, on the other hand, represents a claim by PRO that the attack y

x is not a valid attack. The conceding move OPP: ok is made whenever OPP runs out of possibilities to attack a given argument, while the move PRO: win is made when PRO is able to claim success.

In the following sections we specify how dialogues are structured. Before doing so, we introduce some notation that we use to keep track of the abducible argumentation frameworks on which PRO chooses to focus in a dialogue D. We call this set the information state of D after a given move. While it initially contains all abducible argumentation frameworks in M, it is restricted when PRO makes a move PRO: x + y or PRO: x -y. Definition 5.3.3. Let M = (F, I) be an abductive argumentation framework. Let D = (m 1 , . . . , m n ) be a dialogue based on M. We denote the information state in D after move i by J(D, i), which is defined recursively by:

J(D, i) =          I if i = 0, J(D, i -1) ∩ I x y if m i = PRO: x + y, J(D, i -1) \ I x y if m i = PRO: x -y, J(D, i -1)
otherwise.

We denote by J(D) the information state J(D, n).

Sceptical Explanation Dialogues

We define the rules of a dialogue using a set of production rules that recursively define the set of sequences constituting dialogues. In a sceptical explanation dialogue for an observation B, an initial argument x ∈ B is challenged by the opponent, who puts forward all possible attacks OPP: y x present in any of the abducible argumentation frameworks, followed by OPP: ok. We call this a sceptical OPP reply to x. For each move OPP: y

x, PRO responds with a sceptical PRO reply to y x, which is either a hypothetical defence PRO: z + y (in turn followed by a sceptical OPP reply to z) or a hypothetical negation PRO: y -x. Formally: Definition 5.3.4 (Sceptical explanation dialogue). Let F = (A, ), M = (F, I) and x ∈ A.

• A sceptical OPP reply to x is a finite sequence (OPP: y 1

x) x.

• A sceptical PRO reply to y x is either: (1) A sequence (PRO: z + y) • S where z I y and where S is a sceptical OPP reply to z, or (2) The sequence (PRO: y -x).

Given an observation B ⊆ A we say that M generates the sceptical explanation dialogue D for B iff D = S • (PRO: win), where S is a sceptical OPP reply to some x ∈ B.

The following theorem establishes soundness and completeness. The proof requires the following definitions and results. We define the degree of an argument x that is a member of the grounded extension to be the number of times that the characteristic function must be applied in order to obtain x. Definition 5.3.5. Given an argumentation framework F = (A, ) we define the degree Deg F (x) of an argument x that is a member of the grounded extension of F to be the smallest positive integer n s.t. x ∈ D n F (∅).

The following lemma establishes an important relationship between the degree of an argument and the degrees of its defenders.

Lemma 5.3.2. Let F = (A, ) be an argumentation framework and x ∈ A an argument that is a member of the grounded extension of F . For every y ∈ A s.t. y x there is a z ∈ A that is a member of the grounded extension of F such that z y and Deg F (z) < Deg F (x).

Proof of lemma 5. Only if: Assume that G explains sceptical support for B. Proposition 5.2.1 implies that there is an x ∈ B such that x is a member of the grounded extension of G. We prove that M generates a sceptical OPP reply D to x such that G ∈ J(D). We prove this by strong induction on Deg G (x).

Let the induction hypothesis H(i) stand for: If x is a member of the grounded extension of G and Deg G (x) = i then there is a sceptical OPP reply D to x s.t. G ∈ J(D).

Base case (H(0)): this follows immediately, because this means that x has no attackers, and hence (OPP: ok) is a sceptical OPP reply to x.

Induction step: Assume H(i) holds for all 0 < i < k. We prove H(k). Assume x is a member of the grounded extension of G and Deg G (x) = k. We construct an OPP reply D to x such that G ∈ J(D). Given an argument y ∈ A G s.t. y G x we define Z(y) by 

Z(y) = {z | z G y, z is a member of the grounded extension of G}. i m i J(D, i) 1 OPP: c b {F, G 1 , G 2 , G 3 } 2 PRO: e + c {G 1 , G 3 } 3 OPP: ok {G 1 , G 3 } 4 OPP: a b {G 1 , G 3 } 5 PRO: e + a
′ 1 x) • (PRO: z 1 + y ′ 1 ) • D z1 • . . . • (OPP: y ′ m x) • (PRO: z m + y ′ m ) • D zm where {y ′ 1 , . . . , y ′ m } = {y ∈ A I | y G x},
for each j ∈ {1, . . . , m}, z j ∈ Z(y j ) and D zj is a sceptical OPP reply to z j (because Deg G (z j ) < k and H(i) holds for all 0 < i < k, this sceptical OPP reply exists). It holds that D is a sceptical OPP reply to x. Furthermore it holds that G ∈ J(D 1 ) and G ∈ J(D 2 ) and hence G ∈ J(D).

By the principle of strong induction it follows that there exists a sceptical OPP reply D to x such that G ∈ J(D). Hence M generates a sceptical explanation dialogue D • (PRO: win) for B such that G ∈ J(D • (PRO: win)).

If: We prove that if D is a sceptical OPP reply to some x ∈ B such that G ∈ J(D) then x is a member of the grounded extension of G. We prove this by induction on the structure of D.

Assume that for every proper subsequence D ′ of D that is a sceptical OPP reply to an argument z it holds that z is a member of the grounded extension of G and G ∈ J(D). (The base case is the special case where no proper subsequence of D is a sceptical OPP reply.) We prove that x is a member of the grounded extension of G. We write D as (OPP:

y 1 x) • D 1 • . . . • (OPP: y n x) • D n • (OPP: ok).
Then every D i (for 1 ≤ i ≤ n) is either of the form PRO: y i -x or of the form PRO: z + y i • D ′ , where D ′ is a proper subsequence of D that is a sceptical OPP reply to some argument z and G ∈ J(D ′ ). Thus, for every y ∈ A I s.t. y I x it holds that either y G x, or y is attacked by some z that is a member of the grounded extension of G. It follows that x is a member of the grounded extension of G.

By the principle of induction it follows that if D is a sceptical OPP reply to some x ∈ B such that G ∈ J(D) then x is a member of the grounded extension of G. Thus, if M generates a sceptical explanation dialogue D • (PRO: win) for B such that G ∈ J(D • (PRO: win)) then D is a sceptical OPP reply to some x ∈ B and therefore it holds that x is a member of the grounded extension of G and finally that G explains sceptical support for B. Another dialogue is shown in table 5.2. Here, PRO defends b from c by using the argument e, but defends b from a by claiming that the attack a b is invalid. This leads to the focus first on the abducible argumentation frameworks G 1 , G 3 (in which the attack e c exists) and then on G 3 (in which the attack a b does not exist). This dialogue proves that G 3 explains sceptical support for {b}.

i m i J(D, i) 1 OPP: c b {F, G 1 , G 2 , G 3 } 2 PRO: e + c {G 1 , G 3 } 3 OPP: ok {G 1 , G 3 } 4 OPP: a b {G 1 , G 3 } 5 PRO: a -b

Credulous Explanation Dialogues

The definition of a credulous explanation dialogue is similar to that of a sceptical one. The difference lies in what constitutes an acceptable defence. To show that an argument x is sceptically accepted, x must be defended from its attackers by arguments other than x itself. For credulous acceptance, however, it suffices to show that x is a member of an admissible set, and hence x may be defended from its attackers by any argument, including x itself. To achieve this we need to keep track of the arguments that are, according to the moves made by PRO, accepted. Once an argument x is accepted, PRO does not need to defend x again, if this argument is put forward a second time.

Formally a credulous OPP reply to (x, Z) (for some x ∈ A I and set Z ⊆ A I used to keep track of accepted arguments) consists of all possible attacks OPP: y x on x, followed by OPP: ok when all attacks have been put forward. For each move OPP: y

x, PRO responds either by putting forward a hypothetical defence PRO: z + y which (this time only if z ∈ Z) is followed by a credulous OPP reply to (z, Z ∪ {z}), or by putting forward a hypothetical negation PRO: y -x. We call this response a credulous PRO reply to (y x, Z). A credulous explanation dialogue for a set B consists of a credulous OPP reply to (x, {x}) for some x ∈ B, followed by a success claim PRO: win.

In addition, arguments put forward by PRO in defence of the observation may not conflict. Such a conflict occurs when OPP puts forward OPP: x y and OPP: y z (indicating that both y and z are accepted) while PRO does not put forward PRO: y -z. If this situation does not occur we say that the dialogue is conflict-free. Definition 5.3.6 (Credulous explanation dialogue). Let F = (A, ), M = (F, I), x ∈ A and Z ⊆ A.

• A credulous OPP reply to (x, Z) is a finite sequence (OPP: y 1

x) x, Z).

• A credulous PRO reply to (y x, Z) is either:

1. a sequence (PRO: z + y) • S such that z I y, z ∈ Z and S is a credulous OPP reply to (z, Z ∪ {z}),

2. a sequence (PRO: z + y) such that z I y and z ∈ Z, or 3. the sequence (PRO: y -x).

Given a set B ⊆ A we say that M generates the credulous explanation dialogue D for B iff D = S • (PRO: win), where S is a credulous OPP reply to (x, {x}) for some x ∈ B. We say that D is conflict-free iff for all x, y, z ∈ A I it holds that if D contains the moves OPP: x y and OPP: y z then it contains the move PRO: y -z.

The following theorem establishes soundness and completeness. -Case 1.2: z ∈ Z: Then S i = PRO: z + y i .

• Case 2: y i G x: Then S i = PRO: y i -x.

Let D = (m 1 , . . . , m n ) = D(a, {a}) • (PRO: win). It can be checked that D is a credulous explanation dialogue for {a}. We need to prove that:

• G ∈ J(D). This follows from the fact that for all i ∈ {1, . . . , n}, m i = PRO: x -y only if x G y and m i = PRO: x + y only if x G y.

• D is finite. This follows from the fact that for every credulous OPP reply D(x, Z) that is a subsequence of a credulous OPP reply D(y, Z ′ ) it holds that Z is a strict superset of Z ′ , together with the fact that Z ⊆ A I and A I is finite.

• D is conflict-free. We prove this by contradiction. Thus we assume that for some x, y, z there are moves OPP: x y and OPP: y z and no move PRO: y -z. By the construction of D it follows that y, z ∈ E. Furthermore if y G z then by the construction of D, the move OPP: y z is followed by PRO: y -z, which is a contradiction. Hence y G z. Thus E is not a conflict-free set of G, contradicting our assumption that E is an admissible set of G. Hence D is conflict-free.

Hence there is a conflict-free credulous explanation dialogue D for B such that G ∈ J(D).

If: Let D be a conflict-free credulous explanation dialogue for an observation B such that G ∈ J(D). We prove that there is an admissible set E of G s.t. a ∈ E for some a ∈ B. We define E by E = {a} ∪ {x | PRO: x + z ∈ D}. To prove that E is an admissible set of G we show that (1) for every x ∈ E and every y ∈ A such that y G x, there is a z ∈ E such that y G z and ( 2) that E is a conflict-free set of G.

1. Let x ∈ E. Then either x = a or there is a move m i = PRO: x + y in D. It follows either that m i+1 is a credulous OPP reply to (x, Z) or not, in which case there is a move m j (for j < i) that is a credulous OPP reply to (x, Z). Hence for some Z ⊆ A I there is an OPP reply to (x, Z) in D.

For m i+1 there are two cases:

• m i+1 = PRO: z + y. Then z ∈ E and, because G ∈ J(D), z G y.

• m i+1 = PRO: y -x. But y G x, hence G ∈ J(D), which is a contradiction. Thus, this case is not possible.

Thus for every x ∈ E and every y ∈ A s.t. y G x, there is a z ∈ E such that z G y.

2. Assume the contrary, i.e., E is not conflict-free. Then for some y, z ∈ E it holds that y G z. From (1) it follows that there is also an x ∈ E such that x G y. By the construction of E it follows that either y = a or for some x ′ there is a move PRO: y + x ′ in D, and similarly either z = a or for some x ′ there is a move PRO: z + x ′ in D. Hence there are moves OPP: x y and OPP: y z in D. From the fact that G ∈ J(D) and y G z it follows that there is no move PRO: y -z in D. Hence D is not conflict-free, which is a contradiction. It follows that E is a conflict-free set of G. b by negating it. This restricts the focus on the abducible argumentation frameworks G 2 and G 3 . The dialogue proves that these two abducible argumentation frameworks explain credulous support for the observation {b}. Finally, the sceptical explanation dialogues from example 5.3.1 are also credulous explanation dialogues.

i m i J(D, i) 1 OPP: c b {F, G 1 , G 2 , G 3 } 2 PRO: b + c {F, G 1 , G 2 , G 3 } 3 OPP: a b {F, G 1 , G 2 , G 3 } 4 PRO: a -b {G 2 , G 3 } 5 OPP: ok {G 2 , G 3 } 6 PRO: win {G 2 , G 3 }

Abduction in Logic Programming

In this section we show that abductive argumentation frameworks can be instantiated with abductive logic programs, in the same way that regular argumentation frameworks can be instantiated with regular logic programs. In sections 5.4.1 and 5.4.2 we recall the necessary basics of logic programming and the relevant results regarding logic programming as instantiated argumentation. In section 5.4.3 we present a model of abductive logic programming based on Sakama and Inoue's model of extended abduction [START_REF] Inoue | Abductive framework for nonmonotonic theory change[END_REF][START_REF] Inoue | Computing extended abduction through transaction programs[END_REF], and in section 5.4.2 we show how this model can be instantiated using abductive argumentation frameworks.

The Partial Stable Semantics of Logic Programs

A logic program P is a finite set of rules, each rule being of the form C ← A 1 , . . . , A n , ∼B 1 , . . . , ∼B m where C, A 1 , . . . , A n , B 1 , . . . , B m are atoms. If m = 0 then the rule is called definite. If both n = 0 and m = 0 then the rule is called a fact and we identify it with the atom C. We assume that logic programs are ground. Alternatively, P can be regarded as the set of ground instances of a set of non-ground rules. We denote by At P the set of all (ground) atoms occurring in P . The logic programming semantics we focus on can be defined using 3-valued interpretations [START_REF] Przymusinski | The well-founded semantics coincides with the three-valued stable semantics[END_REF]: 

∩ F = ∅. An atom A ∈ At(P ) is true (resp. false, undecided ) in I iff A ∈ T (resp. A ∈ F , A ∈ At P \ (T ∪ F )).
The following definition of a partial stable model is due to Przymusinski [START_REF] Przymusinski | The well-founded semantics coincides with the three-valued stable semantics[END_REF]. Given a logic program P and 3-valued interpretation I of P , the GL-transformation P I is a logic program obtained by replacing in every rule in P every premise ∼B such that B is true (resp. undecided, false) in I by the atoms 0 (resp. 1 2 , 1), where 0 (resp. 1 2 , 1) are defined to be false (resp. undecided, true) in every interpretation. It holds that for all 3-valued interpretations I of P , P I is definite (i.e., consists only of definite rules). This means that P I has a unique least 3valued interpretation (T, F ) with minimal T and maximal F that satisfies all rules. That is, for all rules C ← A 1 , . . . , A n , in P I , C is true (resp. not false) in (T, F ) if for all i ∈ {1, . . . , n}, A i is true (resp. not false) in (T, F ). Given a 3-valued interpretation I, the least 3-valued interpretation of P I is denoted by Γ(I). This leads to the following definition of a partial stable model of a logic program, along with the associated notions of consequence. Definition 5.4.2. [START_REF] Przymusinski | The well-founded semantics coincides with the three-valued stable semantics[END_REF] Let P be a logic program. A 3-valued interpretation I is a partial stable model of P iff I = Γ(I). We say that an atom C is a sceptical (resp. credulous) consequence of P iff C is true in all (resp. some) partial stable models of P .

It has been shown that the above defined notion of sceptical consequence coincides with the well-founded semantics [START_REF] Przymusinski | The well-founded semantics coincides with the three-valued stable semantics[END_REF].

Logic Programming as Argumentation

Wu et al. [START_REF] Wu | Complete extensions in argumentation coincide with 3-valued stable models in logic programming[END_REF] have shown that a logic program P can be transformed into an argumentation framework F in such a way that the consequences of P under the partial stable semantics can be computed by looking at the complete extensions of F . The idea is that an argument consists of a conclusion C ∈ At P , a set of rules R ⊆ P used to derive C and a set N ⊆ At P of atoms that must be underivable in order for the argument to be acceptable. The argument is attacked by another argument with a conclusion C ′ iff C ′ ∈ N . The following definition, apart from notation, is due to Wu et al. [START_REF] Wu | Complete extensions in argumentation coincide with 3-valued stable models in logic programming[END_REF].

Definition 5.4.3. Let P be a logic program. An instantiated argument is a triple (C, R, N ), where C ∈ At P , R ⊆ P and N ⊆ At P . We say that P generates (C, R, N ) iff either:

• r = C ← ∼B 1 , . . . , ∼B m is a rule in P , R = {r} and N = {B 1 , . . . , B m }. • (1) r = C ← A 1 , . . . , A n , ∼B 1 , . . . , ∼B m is a rule in P , (2) P generates, for each i ∈ {1, . . . , n} an argument (A i , R i , N i ) such that r ∈ R i , and (3 
) R = {r} ∪ R 1 ∪ . . . ∪ R n and N = {B 1 , . . . , B m } ∪ N 1 ∪ . . . ∪ N n .
We denote the set of arguments generated by P by A P . Furthermore, the attack relation generated by P is denoted by P and is defined by (C, R, N )

P (C ′ , R ′ , N ′ ) iff C ∈ N ′ .
Definition 5.4.6. Let ALP = (P, U ) be an abductive logic program. Given a hypothesis (∆ + , ∆ -), we denote by F (∆ + ,∆ -) the argumentation framework (A (P ∪∆ + )\∆ -, (P ∪∆ + )\∆ -). The abductive argumentation framework generated by ALP is denoted by M ALP and defined by M ALP = (F P , I ALP ), where

I ALP = {F (∆ + ,∆ -) | ∆ + , ∆ -⊆ U, ∆ + ∩ ∆ -= ∅}.
The following theorem states the correspondence between the explanations of a query Q in an abductive logic program ALP and the explanations of an observation B in the abductive argumentation framework M ALP .

Theorem 5.4.2. Let ALP = (P, U ) be an abductive logic program, Q ∈ At P a query and (∆ + , ∆ -) a hypothesis. Let M ALP = (F ALP , I ALP ). We denote by

X Q the set {(C, R, N ) ∈ A P | C = Q}. It holds that (∆ + , ∆ -) sceptically (resp. credulously) explains Q iff F (∆ + ,∆ -) sceptically (resp. credulously) explains X Q .
Proof of theorem 5.4.2. Follows directly from theorem 5.4.1 and definitions 5.4.5 and 5.4.6.

This theorem shows that our model of abduction in argumentation can indeed be seen as an abstraction of abductive logic programming. Given these definitions, the abductive argumentation framework in example 5.2.1 is equivalent to M ALP . In example 5.4.1 we saw that the query q is sceptically explained by the hypotheses ({s}, ∅) and ({s}, {r}), while (∅, {r}) only credulously explains it. Indeed, looking again at example 5.2.1, we see that G 1 = F ({s},∅) and G 3 = F ({s},{r}) explain sceptical support for the observation {b} = X q , while G 2 = F (∅,{r}) only explains credulous support. This method of instantiation shows that, on the abstract level, hypotheses cannot be represented by independently selectable abducible arguments. The running example shows e.g. that a and d cannot be added or removed independently.

Related Work

Some of the ideas we applied also appear in the model of Sakama [START_REF] Sakama | Abduction in argumentation frameworks and its use in debate games[END_REF]. In his model of abduction in argumentation, both additions and removals of arguments from an abstract argumentation framework act as explanations for the observation that an argument is accepted or rejected. The main difference between Sakama's model of abduction in abstract argumentation and the one presented here, is that he takes an explanation to be a set of independently selectable abducible arguments, while we take it to be a change to the argumentation framework that is applied as a whole. We have demonstrated, however, that this is necessary when applying the abstract model in an instantiated setting. Furthermore, Sakama did address computation in his framework, but his method was based on translating abstract argumentation frameworks into logic programs. Sakama did not explore the instantiation of his model. Some of the ideas we applied also appear in work by Wakaki et al. [START_REF] Wakaki | Computing abductive argumentation in answer set programming[END_REF]. In their model, an ALP generates an instantiated argumentation framework and each hypothesis yields a different division into active/inactive arguments. Unlike our model, as well as Sakama's [START_REF] Sakama | Abduction in argumentation frameworks and its use in debate games[END_REF], Wakaki et al. do not consider removal of arguments as explanation.

Kontarinis et al. [START_REF] Kontarinis | Rewriting rules for the computation of goal-oriented changes in an argumentation system[END_REF] use term rewriting logic to compute changes to an abstract argumentation framework with the goal of changing the status of an argument. There are two similarities between their approach and ours. Firstly, we use production rules to generate dialogues and these rules can be seen as a kind of term rewriting rules. Secondly, their approach amounts to rewriting goals into statements to the effect that certain attacks in the argumentation framework are enabled or disabled. These statements resemble the moves PRO: x + y and PRO: x -y in our system. However, they treat attacks as entities that can be enabled or disabled independently. As discussed, different arguments (or in this case attacks associated with arguments) cannot be regarded as independent entities, if the abstract model is instantiated.

Other work dealing with the change of an argumentation framework with the goal of changing the status of arguments include Baumann [START_REF] Baumann | Normal and strong expansion equivalence for argumentation frameworks[END_REF], Baumann and Brewka [START_REF] Baumann | Expanding argumentation frameworks: Enforcing and monotonicity results[END_REF], Bisquert et al. [START_REF] Bisquert | Enforcement in argumentation is a kind of update[END_REF] and Perotti et al. [START_REF] Boella | Conditional labelling for abstract argumentation[END_REF]. Furthermore, Booth et al. [START_REF] Booth | A logical theory about dynamics in abstract argumentation[END_REF] and Coste-Marquis et al. [START_REF] Coste-Marquis | On the revision of argumentation systems: Minimal change of arguments statuses[END_REF] frame it as a problem of belief revision. None of these works, however, make a connection between change of abstract argumentation and abduction.

Conclusion and Future Work

We developed a model of abduction in abstract argumentation, in which changes to an argumentation framework act as explanations for sceptical/credulous support for observations. We presented sound and complete dialogical proof procedures for the main reasoning tasks, i.e., finding explanations for sceptical/credulous support. In addition, we showed that our model of abduction in abstract argumentation can be seen as an abstract form of abduction in logic programming.

As a possible direction for future work, we consider the incorporation of additional criteria for the selection of good explanations, such as minimality with respect to the added and removed arguments/attacks, as well as the use of preferences over different abducible argumentation frameworks. An interesting question is whether the proof theory can be adapted so as to yield only the preferred explanations.

Chapter 6

Change in Preference-Based Argumentation

Introduction

Many works have recognized the importance of preferences in argumentation. Preferences over arguments may be derived, e.g., from their relative specificity or from the relative strength of the beliefs with which they are built. On the abstract level preferences can be represented by preference-based argumentation frameworks, which instantiate argumentation frameworks with a preference relation over the set of arguments [START_REF] Amgoud | A reasoning model based on the production of acceptable arguments[END_REF][START_REF] Simari | A mathematical treatment of defeasible reasoning and its implementation[END_REF]. An attack of an argument x on y then succeeds only if y is not strictly preferred over x. Value-based argumentation frameworks provide yet another account of how preferences are derived [START_REF] Trevor | Persuasion in practical argument using valuebased argumentation frameworks[END_REF]. The idea here is that arguments promote certain values and that different audiences have different preferences over values, from which the preferences over arguments are derived.

An underexposed aspect in these models is change of preferences. Preferences are usually assumed to be fixed and no account is provided of how or why they may change. We address this aspect by applying Dietrich and List's recently introduced model of property-based preference [START_REF] Dietrich | Where do preferences come from? International[END_REF][START_REF] Dietrich | A reason-based theory of rational choice[END_REF]. In this model, preferences over alternatives are derived from preferences over sets of properties satisfied by the alternatives. Furthermore, agents are assumed to have a motivational state, consisting of the properties on which the agent focuses in a given situation, when forming preferences over alternatives. The authors present an axiomatic characterization of their model, in terms of a number of reasonable constraints on the relationship between motivational states and preferences. called weak and strong acceptance (i.e., acceptance in some or all motivational states). We also provide a dialogical proof theory that establishes whether an argument is weakly accepted. It is based on the grounded game [START_REF] Modgil | Proof theories and algorithms for abstract argumentation frameworks[END_REF] and extends it with dialogue moves consisting of properties.

The outline of this chapter is as follows. In section 6.2 we first give a brief outline of preference-based and value-based abstract argumentation. Then we give in section 6.3 an overview of the relevant parts of Dietrich and List's model of property-based preferences. We move on to our own work in section 6.4, where we present our model of property-based argumentation frameworks, followed by a dialogical proof procedure for weak acceptance in section 6.5. We discuss some related work in section 6.6 and we conclude in section 6.7.

The results presented in this chapter are based on joint work with Richard Booth and Souhila Kaci [START_REF] Booth | Property-based preferences in abstract argumentation[END_REF].

Preferences and Values in Argumentation

The idea of Preference-based argumentation frameworks [START_REF] Amgoud | A reasoning model based on the production of acceptable arguments[END_REF] is to extend the notion of an argumentation framework with a preference relation over arguments, which is used to represent the relative strength of arguments. The idea is that an attack of an argument x on y succeeds only if y is not strictly preferred over (i.e., not stronger than) x. A preference-based argumentation framework represents a unique argumentation framework (A, ), where the attack relation consists only of the attacks that succeed [START_REF] Kaci | Preference-based argumentation: Arguments supporting multiple values[END_REF]. The extensions of a preferencebased argumentation framework are those of the argumentation framework that it represents. Formally: Definition 6.2.1. A preference-based argumentation framework (abbreviated as PAF) is a triple PAF = (A, →, ) where A is a finite set of arguments, → an attack relation and a partial pre-order (i.e., a reflexive and transitive relation) or a total pre-order (i.e., a reflexive, transitive and complete relation) over A. A PAF (A, →, ) represents the argumentation framework (A, ) where is defined by ∀x, y ∈ A, x y iff x → y and not (x ≺ y).

Example 6.2.1. Consider the PAF (A, →, ) where A and → are as in F 1 in figure 6.1 and is a total pre-order defined by x y iff x ∈ {b, c} or y ∈ {a, d}.

We have that (A, →, ) represents F 2 , shown in figure 6 

Dietrich and List's Property-Based Preference Model

Dietrich and List's model of property-based preference [START_REF] Dietrich | Where do preferences come from? International[END_REF][START_REF] Dietrich | A reason-based theory of rational choice[END_REF] aims at giving an account of rational choice that explains how preferences are formed and how they may change. This is opposed to traditional models that assume an agent's preferences over alternatives to be given and fixed. In this model, every alternative x ∈ X is associated with a set P (x) of properties satisfied by x, each P (x) being a subset of a set P of possible properties. Furthermore, a set M ⊆ 2 P of motivational states encodes sets of properties on which an agent may focus in a given situation. That is, if M ∈ M is the agent's state then only the properties in M matter to the agent when forming preferences over X. Change of preferences can then be understood as being caused by moving from one motivational state to another. Note that M may coincide with 2 P but in general this need not be the case, as certain combinations of properties may be deemed inconsistent.

Every state M ∈ M gives rise to a preference order (i.e., a total pre-order) M over X representing the agent's preferences in the state M . There is thus a family ( M ) M ∈M of preference orders over X. Strict and indifference relations ≺ M and ∼ M are defined as usual.

According to the model of property-based preference, preferences over X are formed using an underlying weighing relation ≤ over combinations of properties. The authors present an axiomatic characterization of their model, in terms of two constraints on the relationship between motivational states and preferences.

Theorem 6.3.1. [An axiomatic characterization [START_REF] Dietrich | Where do preferences come from? International[END_REF]] Let ( M ) M ∈M be a family of preference orders. Consider the following axioms:

Axiom 1 ∀x, y ∈ X, ∀M ∈ M, if P (x) ∩ M = P (y) ∩ M , then x ∼ M y. Axiom 2 ∀x, y ∈ X, ∀M, M ′ ∈ M s.t. M ⊆ M ′ , if P (x) ∩ (M ′ \ M ) = P (y) ∩ (M ′ \ M ) = ∅ then x M y ↔ x M ′ y. It holds that if M is intersection-closed (i.e. M, M ′ ∈ M implies M ∩M ′ ∈ M)
then a family of preference orders ( M ) M ∈M satisfies axioms 1 and 2 iff it is property-based.

Axiom 1 says that the preference relation is indifferent on pairs of alternatives that have the same properties that are at the same time motivational, while axiom 2 says that preferences on pairs of alternatives change only if additional properties become motivational that are satisfied by at least one of the alternatives. A third axiom, strengthening the second and concerned with the class of separable weighing relations may be considered as well. The reader is referred to Dietrich and List [START_REF] Dietrich | Where do preferences come from? International[END_REF] for details.

Property-Based Argumentation Frameworks

The • M represents the PAF M = (A, →, ), where is defined by ∀x, y ∈ A, x y iff P (x) ∩ M ≤ P (y) ∩ M.

• M represents the argumentation framework F M = (A, M ), which is the argumentation framework represented by PAF M .

Given an attack x → y and state M ∈ M, we say that x → y is enabled (otherwise disabled ) in M iff x M y.

Let us illustrate the definitions with an example. We have, e.g., that in PAF {G} the argument e is strictly preferred over f , so that the attack from f to e is disabled F {G} . On the other hand, in PAF ∅ and PAF {B,G} the argument e is not preferred over f . Here, the attack from f to e succeeds and is therefore enabled in F ∅ and F {B,G} .

Arguments in the argumentation frameworks in figure 6.3 that are a member of the grounded extension of the respective argumentation frameworks are coloured white. We can see, e.g., that a is accepted only in the motivational state {R, G}.

We should remark that in many systems of argumentation, arguments have (in)formal 'logical content'. As a result, conflicts between arguments cannot generally be disregarded, on pain of inconsistency of the argumentation framework's outcome. This can be taken into account by requiring, for example, the relation → to be symmetric, representing a conflict relation over two arguments, i.e. both arguments cannot be accepted together. In this way one attack between a pair of arguments always remains enabled.

Apart from looking at acceptance of arguments in a given motivational state, we can look at acceptance of arguments in some or all possible states. We will say that an argument is weakly (resp. strongly) accepted iff it is a member of the grounded extension given some (resp. all) motivational states. Weak acceptance thus means that the agent may accept an argument, namely when she moves to the right motivational state, whereas strong acceptance means that an agent accepts an argument regardless of her motivational state. Definition 6.4.3. Let (A, →, P, P, M, ≤) be a property-based argumentation framework and x ∈ A an argument. We say that x is weakly accepted (resp. strongly accepted ) iff x is a member of the grounded extension of F M for some (resp. all) M ∈ M. 

Property 2 ∀x, y

∈ A, ∀M, M ′ ∈ M s.t. M ⊆ M ′ , if P (x) ∩ (M ′ \ M ) = P (y) ∩ (M ′ \ M ) = ∅ then x M y iff x M ′ y.
Property 1 states that an attack x → y is enabled in a motivational state M if x and y have the same set of properties that are also motivational in M , while property 2 states that an attack between x and y changes only if additional properties become motivational that are satisfied either by x or by y.

A Dialogical Proof Theory for Weak Acceptance

In this section we present a proof procedure to establish weak acceptance of an argument in a property-based argumentation framework. It is a dialogical proof procedure because it is based on generating dialogues where two players (PRO and OPP) take alternating turns in putting forward attacks according to a certain set of rules. This is similar in spirit to the grounded game, a dialogical proof procedure that establishes an argument's membership of the grounded extension [START_REF] Modgil | Proof theories and algorithms for abstract argumentation frameworks[END_REF]. In the grounded game, PRO repeatedly puts forward arguments (either as an initial claim or in defence against OPP's attacks) and OPP can initiate different disputes by putting forward possible attacks on the arguments put forward by PRO. PRO wins iff it can end every dispute in its favor according to a "last-word" principle.

By contrast, the proof procedure we present simply generates dialogues won by PRO. Such dialogues represent proofs that the initial argument is weakly accepted, and are structured as single sequences of moves where PRO and OPP put forward attacks and, in addition, PRO puts forward properties. If the procedure generates no dialogues then the argument is not weakly accepted.

The procedure is based essentially on production rules, and is in this sense similar to the dialogical proof procedures that we presented in chapter 5.

Dialogical proof procedures make it possible to relate a semantics to a stereotypic pattern of dialogue. It has been shown, e.g., that the grounded and preferred credulous semantics can be related to persuasion and Socratic style dialogue [START_REF] Caminada | Grounded semantics as persuasion dialogue[END_REF][START_REF] Martin | Preferred semantics as socratic discussion[END_REF]. Dialogues generated by our procedure can also be thought of as persuasion dialogues, where PRO has the additional freedom to change the motivational state of the players by putting forward properties. Intuitively, this may benefit PRO in two ways: PRO can enable attacks necessary to put up a successful line of defence, and disable attacks put forward by the opponent from which PRO cannot defend its own arguments. PRO thus persuades OPP to accept an argument, where PRO decides which properties become motivational. Dialogues are structured as follows.

Definition 6.5.1. Let (A, →, P, P, M, ≤) be a property-based argumentation framework. A dialogue is a sequence S = (m 1 , . . . , m n ), where each m i is either:

• an attack move "OPP: x y", where x, y ∈ A and x → y,

• a defence move "PRO: x y", where x, y ∈ A and x → y,

• an enabling property move "PRO: P +", where P ⊆ P,

• a disabling property move "PRO: P -", where P ⊆ P,

• a conceding move "OPP: ok",

• a success claim move "PRO: win".

We denote by S • S ′ the concatenation of S and S ′ and we say that S is a subsequence of S ′ iff S ′ = S ′′ • S • S ′′′ for some S ′′ , S ′′′ , and that S is a proper subsequence of S ′ iff S ′ = S ′′ • S • S ′′′ for nonempty S ′′ or S ′′′ . Definition 6.5.2. Let S = (m 1 , . . . , m n ) be a dialogue. We denote the motivational state in S at index i by M S i , defined recursively by:

M S i =      ∅ if i = 0, M S
i-1 ∪ P if m i = PRO: P + or m i = PRO: P -, M S i-1 otherwise.

We now define a set of production rules that generate weak x-acceptance dialogues. Note that argumentation frameworks containing cycles may generate infinite sequences of moves. We prevent this by requiring dialogues to be finite. where {y 1 , . . . , y n } = {y | y → x} and each S i is a y i -defence sequence.

• An x-defence sequence is either:

a regular x-defence sequence

(PRO: y x) • S 1
for some y ∈ A s.t. y → x, where S 1 is a y-attack sequence, -an enabling property defence sequence

(PRO: P +) • S 1
for some P ⊆ P, where S 1 is a regular x-defence sequence, -a disabling property defence sequence (PRO: P -)

for some P ⊆ P.

Intuitively, a disabling property move can be interpreted as saying "the preceding move is invalid considering the properties P ." An enabling property move, on the other hand, says "the following move is valid considering the properties P ." Not every weak x-acceptance dialogue, generated by the production rules in definition 6.5.3, will follow this interpretation. We need to impose a number of additional constraints to ensure that property moves make sense. Definition 6.5.4 (Property-consistency). Let (A, →, P, P, M, ≤) be a property-based argumentation framework and S = (m 1 , . . . , m n ) a sequence. We say that S is property-consistent iff for all i ∈ [1, . . . , n], we have: The existence of a property-consistent weak x-acceptance dialogue implies weak acceptance of x, i.e., it is a sound proof procedure: Lemma 6.5.1 (Soundness). Let (A, →, P, P, M, ≤) be a property-based argumentation framework and x ∈ A. If there exists a property-consistent weak x-acceptance dialogue S = (m 1 , . . . , m n ) then x is a member of the grounded extension of the argumentation framework represented by M S n . Hence x is weakly accepted.

Proof. Let (A, →, P, P, M, ≤) be a property based argumentation framework, x ∈ A and S a property-consistent weak x-acceptance dialogue. A subsequence S ′ of S that is a y-attack sequence (for some y ∈ A) will be called a y-attack subsequence. We denote the depth of an attack subsequence S ′ by D(S ′ ) and define it by D(S ′ ) = 0, if S ′ = (OPP: ok) and 1 + k otherwise, where k = max({D(S ′′ ) | S ′′ ∈ T }), where T is the set of attack sequences that are proper subsequences of S ′ . Furthermore from hereon we denote the grounded extension of (A, M S n ) by G. We show that for every y-attack subsequence S ′ it holds that y ∈ G. We prove this by strong induction on the depth of S ′ . Let the induction hypothesis H(k) stand for "if S ′ is a y-attack subsequence with depth k then y ∈ G."

• Base case (H(0)): Here S ′ = (OPP: ok), thus y has no attackers in (A, →), hence no attackers in (A, M S n ). It follows that y ∈ G. • Induction step: Assume H(0), . . . , H(k-1) holds. We need to prove H(k).

It can be checked that for every z s.t. z → y, either:

-There is a z ′ -attack sequence S ′′ that is a proper subsequence of S ′ . Thus D(S ′′ ) < k and z ′ → z. From H(D(S ′′ )) and the fact that S is property-consistent it follows that z is attacked by G.

-S ′ contains a disabling property move. Hence z M S n y. This means that for every z such that z M S n y, G attacks z, hence y ∈ G.

By the principle of strong induction it follows that if there is a y-attack subsequence then y ∈ G. Thus we have x ∈ G, hence x is weakly accepted.

Conversely, if x is weakly accepted then a property-consistent weak x-acceptance dialogue exists: Lemma 6.5.2 (Completeness). Let (A, →, P, P, M, ≤) be a property-based argumentation framework and x ∈ A be weakly accepted. There exists a weak x-acceptance dialogue S that is property-consistent.

Proof. Let (A, →, P, P, M, ≤) be a property-based argumentation framework and x ∈ A be weakly accepted. Let F = (A, M ). Then there is some M ∈ M s.t. x is a member of the grounded extension of F . From hereon we use M to refer to any such motivational state and G to refer to the grounded extension of F .

We now prove, by strong induction over the degree of an argument y ∈ G that there exists a property consistent weak y-acceptance dialogue. Let H(k) stand for "If y ∈ G and Deg F (y) = k then there exists a property consistent weak y-acceptance dialogue."

• Base case (H(0)): If y ∈ G and Deg F (y) = 0 then there is no z ∈ A s.t. z M y and we can define S by (OPP: z 1 y) • S ′ • . . . • (OPP: z n y) • S ′ • (OPP: ok) • (PRO: win), where {z 1 , . . . , z n } = {z ′ | z ′ → y} and S ′ = (PRO: M -). It can be checked that S is a property consistent weak y-acceptance dialogue.

• Induction step: Assume H(0), . . . , H(k -1) holds. Thus if y ′ ∈ G and Deg F (y ′ ) < k then there exists a property consistent weak y ′ -acceptance dialogue. We denote this dialogue by S(y ′ ). We need to prove H(k).

Assume that y ∈ G and Deg F (y) = k. It follows that for every z ∈ A s.t. z M y, there exists an argument which we denote by def (z, y) such that def (z, y) ∈ G and def (z, y) M z. Furthermore from the fixpoint construction it follows that Deg F (def (z, y)) < k, so that S(def (z, y)) is well defined. By the principle of strong induction it follows that for every y ∈ G, there exists a property consistent weak y-acceptance dialogue. Hence, there exists a property consistent weak x-acceptance dialogue.

Notice that in the fourth move of in the second dialogue in example 6.5.1, PRO puts forward both R and G in a disabling property move. However, it suffices to put forward just R, as in the first dialogue, because G is not relevant with respect to disabling the attack b → c. We call a dialogue in which property moves are relevant a property-relevant dialogue. Property moves in a propertyrelevant dialogue consist only of properties satisfied by one of the arguments involved in the attack that is enabled or disabled. Definition 6.5.5 (Property-relevance). Let (A, →, P, P, M, ≤) be a propertybased argumentation framework and S = (m 1 , . . . , m n ) a weak acceptance dialogue. We say that S is property-relevant iff for all i, j ∈ [1, . . . , n] s.t. j = i + 1, we have:

1. If m i = OPP: x y and m j = PRO: Pthen P ⊆ P (x) ∪ P (y).

2. If m i = PRO: P + and m j = PRO: x y then P ⊆ P (x) ∪ P (y).

Note that in example 6.5.1 the first dialogue is property-relevant, whereas the second one is not. Focusing on property-relevant dialogues can be used to optimize the algorithm. Furthermore, it makes sense intuitively: when persuading an opponent to accept an argument, one does not refer to properties not relevant to this objective.

As a final result we show that weak acceptance of an argument implies the existence of a property-consistent weak x-acceptance dialogue that is, in addition, property relevant. However, this requires that M is sufficiently rich to ensure that PRO is not forced to put forward irrelevant properties. This can be achieved by assuming that M = 2 P , but note that there are cases where a weaker assumption is sufficient.

Lemma 6.5.3 (Property-relevant completeness). Let (A, →, P, P, M, ≤) be a property-based argumentation framework where M = 2 P , and let x ∈ A be weakly accepted. There exists a weak x-acceptance dialogue S that is propertyconsistent and property-relevant.

Proof. Let (A, →, P, P, M, ≤) be a property-based argumentation framework and x ∈ A be weakly accepted. Let S = (m 1 , . . . , m n ) be the property-consistent weak x-acceptance dialogue (for x a member of the grounded extension of (A, M )) as constructed in the proof of lemma 6.5. is also a property-consistent weak x-acceptance dialogue, that is in addition property-relevant.

Summarizing, we have the following result.

Theorem 6.5.4. Let (A, →, P, P, M, ≤) be a property-based argumentation framework.

• An argument x ∈ A is weakly accepted iff there exists a weak x-acceptance dialogue that is property-consistent.

• If M = 2 P then an argument x ∈ A is weakly accepted iff there exists a weak x-acceptance dialogue that is property-consistent and propertyrelevant.

Proof. Follows from lemmas 6.5.1, 6.5.2 and 6.5.3.

Related Work

We already mentioned the relation of our model with that of preference and value-based argumentation frameworks [START_REF] Amgoud | A reasoning model based on the production of acceptable arguments[END_REF][START_REF] Trevor | Persuasion in practical argument using valuebased argumentation frameworks[END_REF]. Also related is a study of valuebased argumentation frameworks where arguments promote multiple values [START_REF] Kaci | Preference-based argumentation: Arguments supporting multiple values[END_REF], concerned mainly with the problem of deriving a unique preference order over arguments from a preference relation over individual values. Note that in our approach, a property-based argumentation framework together with a motivational state already defines a unique preference order over arguments.

Furthermore, Bench-Capon et al. have considered dialogues in which a proponent can make moves consisting of value preferences [START_REF] Trevor | Audiences in argumentation frameworks[END_REF]. In this approach, the outcome of a winning dialogue corresponds to the specification of an audience (i.e., a preference order over values) such that some initial set of arguments is accepted in the corresponding aVAF.

Also related is Modgil's model of extended argumentation frameworks, in which arguments attack and disable attacks between other arguments [START_REF] Modgil | Reasoning about preferences in argumentation frameworks[END_REF]. Such arguments can be seen as meta-level arguments expressing preferences over object level arguments. Whereas we take the agent's state (which determines whether individual attacks are enabled) to be external to the argumentation framework, here it is part of argumentation framework itself. That is, whether an attack is enabled depends on the status of a metalevel argument.

Our work shares methodological similarities with work of Kontarinis et al. [START_REF] Kontarinis | Rewriting rules for the computation of goal-oriented changes in an argumentation system[END_REF], who present a goal-oriented procedure to determine which attacks to disable or enable in order to make an argument accepted under a given semantics.

While the procedure that they present is designed to be implemented as a term rewriting system, our procedure is defined simply by a set of production rules, amenable to implementation using e.g. PROLOG.

Conclusion and Future Work

We presented a dynamic model of preferences in argumentation, based on Dietrich and List's model of property-based preference. This model provides an account of how and why preferences in argumentation may change and generalizes both preference-based argumentation frameworks and value-based argumentation frameworks, if properties are taken to be values. We consider a number of directions for future work. First, we plan to complete the proof-theoretic picture by looking at the problem of deciding whether an argument is strongly accepted. In addition, we will consider other semantics in addition to grounded. Second, we plan to investigate the possibility of axiomatizing property-based argumentation frameworks, in the spirit of Dietrich and List's axiomatization as presented in section 6.3. Finally, we intend to look at connections between property-based argumentation frameworks and Modgil's model of extended argumentation frameworks.

based entailment relation can be expected to satisfy-but the preferred, semistable and stable semantics do not.

In chapter 4 we developed a formal model for observation-based entailment. We first addressed the question of how a rational agent should revise the evaluation of an argumentation framework to account for an observation. We proposed a model, based on an abductive principle, in which observations are accounted for by the most preferred interventions that make the observation true. Such a model determines an observation-based entailment relation that captures how an argumentation framework is evaluated given an observation. We proved a representation result which links the notion of observation-based entailment to preferential entailment. We also studied the role of the directionality principle in the behaviour of observation-based entailment.

In sum, we have shown in chapters 3 and 4 that there are two distinct ways in which change in abstract argumentation can be modelled. While different aspects of these two types of change have been investigated in the literature, we modelled them in a uniform way and proved a number of novel results concerning change in argumentation.

In chapter 5 we developed a model of abduction in abstract argumentation.

In this model, changes to an argumentation framework act as explanations for sceptical/credulous support for observations. We presented sound and complete dialogical proof procedures for the main reasoning tasks, i.e., finding explanations for sceptical/credulous support. In addition, we showed that our model of abduction in abstract argumentation can be seen as an abstract form of abduction in logic programming.

In chapter 6 we developed a dynamic model of preference-based argumentation, based on what we call property-based argumentation frameworks. Here, the idea is that preferences over arguments are derived from preferences over properties of arguments and change as the result of moving to different motivational states. This model is based on Dietrich and List's model of property-based preference and it provides an account of how and why preferences in argumentation may change. Our model generalizes both preference-based argumentation frameworks and value-based argumentation frameworks. We presented sound and complete dialogical proof procedures, similar to the procedures presented in chapter 5, for the task of checking whether an argument is accepted given some or all motivational states of a given property-based argumentation framework.

Future Work

At the end of each chapter in this thesis we have discussed a number of open issues for future research. Here we discuss a number of further directions for future work.

Application to Extensions of Dung's Formalism

First of all, we have studied various aspects of change in argumentation using Dung's original formalism. However, many extensions of Dung's formalism have been proposed that aim at going beyond the simple notion of an argumentation framework as consisting of a set of arguments and a binary attack relation.

Examples are bipolar argumentation frameworks, which model attack relations as well as support relations between arguments [START_REF] Cayrol | On the acceptability of arguments in bipolar argumentation frameworks[END_REF]; extended argumentation frameworks, which allow higher-order attacks [START_REF] Gabbay | Semantics for higher level attacks in extended argumentation frames part 1: Overview[END_REF][START_REF] Baroni | ¡ i¿ afra¡/i¿: Argumentation framework with recursive attacks[END_REF]; and argumentation frameworks with attack relations over sets of arguments [START_REF] Holbech | A generalization of dung's abstract framework for argumentation: Arguing with sets of attacking arguments[END_REF]. In all these extensions, the form of the evaluation process is similar to that of Dung's original formalism. That is, the input is an argumentation framework (bipolar, extended, set-based, etc.) and the output is a set of extensions or labellings, which are computed according to a semantics that is tailored to the respective extension of Dung's formalism. This means that many of the ideas that we discussed can be applied to these formalisms as well. For example, the notion of intervention and observation, being particular generalizations of how an argumentation framework is evaluated, can also be studied in the context of these extensions.

Extend Results to Other Semantics

In this thesis we focussed on the main admissibility-based semantics, namely the complete, grounded, preferred, stable and semi-stable semantics. There are a number of semantics that we have left out of consideration, such as the stage semantics [START_REF] Verheij | Two approaches to dialectical argumentation: admissible sets and argumentation stages[END_REF], the ideal semantics [START_REF] Phan | A dialectic procedure for sceptical, assumption-based argumentation[END_REF], the prudent semantics [START_REF] Coste-Marquis | Prudent semantics for argumentation frameworks[END_REF], the eager semantics [START_REF] Caminada | Comparing two unique extension semantics for formal argumentation: ideal and eager[END_REF] and the CF2 semantics [START_REF] Baroni | Sccrecursiveness: a general schema for argumentation semantics[END_REF]. We plan to address the analysis of the behaviour of these semantics in terms of intervention and observation in future work.

Furthermore, several semantics have been proposed that generalize the strict distinction between acceptance, rejection and undecidedness. This includes quantitative approaches, where arguments are associated with numbers rather than discrete labels. These numbers may indicate probability [START_REF] Hunter | A probabilistic approach to modelling uncertain logical arguments[END_REF][START_REF] Li | Probabilistic argumentation frameworks[END_REF][START_REF] Rienstra | Towards a probabilistic dung-style argumentation system[END_REF][START_REF] Thimm | A probabilistic semantics for abstract argumentation[END_REF] as well as some type of strength [START_REF] Paul E Dunne | Weighted argument systems: Basic definitions, algorithms, and complexity results[END_REF][START_REF] Gabbay | Introducing equational semantics for argumentation networks[END_REF]. Applying the ideas discussed in this thesis to these approaches is another possibility for future research.

Synthesis of New Semantics

In chapter 3 we proposed a number of properties for intervention-based entailment. We checked the semantics under which these properties are satisfied and we also considered a number of conditions with respect to the topology of the argumentation framework. The results we obtained say something about the behaviour of the semantics that we considered. Alternatively, desirable properties, such as Cautious Monotony and Cut, can be used to define new semantics for argumentation. This is the approach taken, for example, by Baroni et al. [START_REF] Baroni | Sccrecursiveness: a general schema for argumentation semantics[END_REF], who defined a number of new semantics (the most interesting one being the CF2 semantics) by taking the property of SCC-recursiveness as a starting point. Similarly, one may ask: are there semantics (possibly admissibility-based) that satisfy the intuitive properties of Cautious Monotony and Cut, other than the complete and grounded semantics?

Iterated Revision

Dynamics in argumentation arises from the fact that argumentation goes hand in hand with dialogue. In terms of abstract argumentation, a dialogue can be seen as a sequence of changes to an argumentation framework. The notion of intervention-based entailment, however, captures change due to one intervention, rather than a sequence of changes. Bridging this gap gives rise to a number of questions. First of all, dealing with sequences of changes means that we deal with a form of iterated revision. In the area of belief revision, one of the challenges in modelling iterated revision was to come up with an operator that revises an initial belief state so as to obtain a revised belief state (rather than a revised belief set, as was done in the AGM approach). This problem does not arise in argumentation, because the state is captured by the argumentation framework, and the (iteratively) revised state is simply the (iteratively) revised argumentation framework. However, another question addressed in the area of belief revision is: which postulates should a well-behaved iterated revision operator satisfy? [START_REF] Darwiche | On the logic of iterated belief revision[END_REF] Similarly, we can ask: which postulates for iterated change of an argumentation framework can a semantics be expected to satisfy? In this context, there is a seeming connection between the property of reinstatement in argumentation and recovery in iterated revision. This has been noted by Boella et al. [START_REF] Boella | Dung argumentation and agm belief revision[END_REF] 
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Example 3 . 2 . 1 .

 321 Let F be the argumentation framework shown in figure 3.1. The argumentation frameworks F ⊕ κ {out(a)}, F ⊕ κ {out(c)} and F ⊕ κ {out(e)} are shown in figure 3.2 (a), (b) and (c), respectively. The argumentation frameworks F ⊕ κ {¬in(a)}, F ⊕ κ {¬in(c)} and F ⊕ κ {¬in(e)} are shown in figure 3.3 (a), (b) and (c), respectively.

  F ⊕ κ {¬in(e)}.

Figure 3 . 3 :

 33 Figure 3.3: Three modifications of the argumentation framework F in figure 3.1.

  for an arbitrary choice of κ. Each argumentation framework F and semantics σ determines a relation ||= F σ between interventions and formulas of F . We call this an σ intervention-based entailment relation.

Figure 3 . 4 :

 34 Figure 3.4: An argumentation framework.

  However, defeat c or defeat of d implies acceptance of a: {out(c)} ||= F Gr in(a) and {out(d)} ||= F Gr in(a).
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 3241 Let F be the argumentation framework shown in figure 3.Let σ ∈ {Co, Gr, Pr, SS, St}. The formula in(f ) is (stable) conflict-free with respect to F . We have {out(a)} ||= F σ in(f ), {out(c)} ||= F σ in(f ) and {out(e)} ||= F σ in(f ) (see figure 3.2). That is: {out(a)}, {out(c)} and {out(e)} all make in(f ) true. • Let σ ∈ {Co, Gr, Pr, SS}. The formula und(f ) is conflict-free with respect to F . We have {¬in(a)} ||= F σ und(f ), {¬in(c)} ||= F σ und(f ) and {¬in(e)} ||= F σ und(f ) (see figure 3.3). That is: {¬in(a)}, {¬in(c)} and {¬in(e)} all make f undecided.
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 35 Figure 3.5: Failure of Transitivity and Contraposition.

  .1 and let σ ∈ {Co, Gr, Pr, SS, St}. The rejection of b given the vacuous intervention (∅ ||= F σ out(b)) no longer follows if we defeat a ({out(a)} ||= F σ out(b)), which is a violation of Monotony. The Transitivity and Contraposition properties, which can be defined for intervention-based entailment as follows, also fail.

Example 3 . 3 . 1 .

 331 Let F be the argumentation framework shown in figure 3.5. • We have {out(a)} ||= F Pr out(c) and {out(c)} ||= F Pr in(d). Transitivity would imply that we have {out(a)} ||= F

Figure 3 . 6 :

 36 Figure 3.6: Failure of Cautious Monotony under the preferred, semi-stable and stable semantics.
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 33373347335333 For all F ∈ F, ||= F Gr satisfies Cut. Proof. See section 3.For all F ∈ F, ||= F Co satisfies Cut. Proof. See section 3.For all F ∈ F, ||= F Pr satisfies Cut. Proof. See section 3.7 Cut fails under the stable semantics due to the fact that non-stable interventions cause inconsistency. This is demonstrated by the following example. Let F be the argumentation framework shown in figure 3.5. We have ∅ ||= F St ¬in(c) and {¬in(c)} ||= F St ⊥. Cut implies that we have ∅ ||= F St ⊥, but this is not the case.

Figure 3 . 7 :

 37 Figure 3.7: Failure of Cut under the semi-stable semantics.
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 334 Let F be the argumentation framework shown in figure 3.7. Note that acceptance of b is necessary to minimize undecidedness. This implies rejection of a. If we defeat a, however, then it is not the acceptance of b but instead the acceptance of c that minimizes undecidedness. This causes failure of Cut: We have ∅ ||= F SS out(a) and {out(a)} ||= F SS in(c). Cut implies that we have ∅ ||= F
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 33738 Figure 3.8: Failure of Rational Monotony under all but the grounded semantics.

Figure 3 . 9 :

 39 Figure 3.9: Failure of Loop under all semantics.
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 336 Let F be the argumentation framework shown in figure 3.9. Defeating a (resp. b, c) results in acceptance of b (resp. c, a), which in turn results in rejection of c (resp. a, b). Thus we have {out(a)} ||= F Co out(c), {out(c)} ||= F Co out(b) and {out(b)} ||= F Co out(a). Loop would imply that we have {out(a)} ||= F Co out(b) but this is not the case. Instead, we have {out(a)} ||= F Co in(b)

Figure 3 . 10 :

 310 Figure 3.10: Failure of Cut and Cautious Monotony in the odd-cycle-free case.
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 337 Let F be the argumentation framework shown in figure 3.10. Note that F is odd-cycle-free. We have {¬in(a), ¬in(f )} ||= F SS out(b). The failure of Cautious Monotony is due to the fact that we have {¬in(a), ¬in(f )} ||= F SS in(c) but not {¬in(a), ¬in(f ), out(b)} ||= F SS out(b). The failure of Cut is due to the fact that we have {¬in(a), ¬in(f ), out(b)} ||= F SS out(c) but not {¬in(a), ¬in(f )} ||= F SS out(c).
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 341 [START_REF] Baroni | An introduction to argumentation semantics[END_REF] Given an argumentation framework F = (A, ) a labelling L ∈ L(F ) and a set B ⊆ A we denote by L ↓ B the restriction of L by B, which is defined to be the labelling (L ↓ B) :B → {in, out, und} such that (L ↓ B)(x) = L(x), for all x ∈ B. Given a set M ⊆ L(F ), we denote by M ↓ B the set {L ↓ B | L ∈ M }.Definition 3.4.2. [6] Given an argumentation framework F = (A, ) and a set B ⊆ A we denote by F ↓ B the restriction of F by B, which is defined to be the argumentation framework (B, ∩(B × B)). Definition 3.4.3. [6] Let F = (A, ) be an argumentation framework and let B ⊆ A. We say that B is unattacked iff there is no x ∈ B and y ∈ A \ B such that y x. We let U (F ) denote the set of unattacked sets of F . Formally, the condition that unattacked sets can be evaluated independently of the rest of the argumentation framework means that, given an argumentation framework F and unattacked set B ∈ U (F ), the labellings of the restriction of F by B coincide with the labellings of F , restricted by B. Definition 3.4.4. [4] A labelling-based semantics σ satisfies the directionality principle iff for all F ∈ F and B ∈ U (F ),
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 341 A labelling-based semantics σ satisfies the directionality principle if and only if

Proposition 3 . 4 . 2 .Figure 3 . 12 :

 342312 Figure 3.12: Failure of directionality.

  The principle of directionality, if satisfied by a labelling-based semantics σ, ensures that ||= F σ satisfies Conditional Directionality. Theorem 3.4.3. If σ satisfies the directionality principle then for all F ∈ F, ||= F σ satisfies Conditional Directionality.
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 342 Let F be the argumentation framework shown in figure 3.12. Note that acceptance of b is necessary to minimize undecidedness. Hence we have ∅ ||= F SS in(b). Furthermore we have {out(c)} * in(b), and hence the intervention {out(c)} should not affect whether or not in(b) is a consequence. However, if we defeat c then acceptance of b is no longer necessary to minimize undecidedness. Thus we have {out(c)} ||= F

Definition 3 . 4 . 8 .Figure 3 .

 3483 Figure 3.13: A counterexample for noninterference under the stable semantics.
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 344 A labelling-based semantics σ satisfies noninterference if and only if
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 3411 Let F ∈ F. A relation ||= F ⊆ Int(F ) × lang(F ) satisfies Conditional Noninterference iff for all Φ, Ψ ∈ Int(F ) and φ ∈ lang(F ), if Ψ

Proposition 3 . 4 . 6 .

 346 If ||= F satisfies Conditional Directionality then ||= F satisfies Conditional Noninterference. Proof. Suppose ||= F satisfies Conditional Directionality and assume Ψ * φ. It then follows that Ψ * φ and hence, by Conditional Directionality, Φ ∪ Ψ ||= F φ iff Φ ||= F φ. Furthermore, if a labelling-based semantics σ satisfies the noninterference principle then for every argumentation framework F , the relation ||= F σ satisfies Conditional Noninterference. Theorem 3.4.7. For any labelling-based semantics σ that satisfies the noninterference principle it holds that for all F ∈ F, ||= F σ satisfies Conditional Noninterference. Proof. See section 3.7.
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 344 Let F be the argumentation framework shown in figure 3.13. We have {out(c)} ||= F St in(b) and {out(c)} * in(b). Conditional Noninterference would imply that we have ∅ ||= F St in(b) but this is not the case. We have instead ∅ ||= F St ⊥ and hence ∅ ||= F St in(b).

1 F

 1 t. z y, z ∈ D ∞ F (∅)). Thus we have z ∈ D n-1 F ′ (∅) ∩ A and z ∈ D n-(∅). By continuing this argument we arrive at D F ′ (∅) ∩ A ⊆ D F (∅), which is false. Hence D n F ′ (∅) ∩ A ⊆ D ∞ F (∅) and, by proposition 2.1.1, E ′ ∩ A ⊆ E. Lemma 3.7.2. Let F = (A, ) be an argumentation framework and let a ∈ A.

Lemma 3 . 7 . 4 .

 374 Let F = (A, ) be an argumentation framework and let x ∈ A.Let {L} = L Gr (F ) and {L ′ } = L Gr (F ⊕ κ {¬in(x)}) for some F -mapping κ. If L |= ¬in(x) then L = L ′ ↓ A.Definition 3.7.1. [29] Let F = (A, ) be an argumentation framework. The comittedness relation ⊑⊆ L(F ) × L(F ) is defined by by
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 376 [START_REF] Caminada | On judgment aggregation in abstract argumentation[END_REF] Theorem 11] Let F = (A, ) be an argumentation framework and let L ∈ L(F ) be an admissible labelling of F . There exists a labelling L ′ ∈ L F (Co) such that L ⊑ L ′ . Lemma 3.7.7. Let F = (A, ) be an argumentation framework and let x ∈ A.

Lemma 3 . 7 . 8 .

 378 Let F = (A, ) and x ∈ A. If for all L ∈ L Pr (F ), L(x) = out then L Pr (F ) ⊆ L Pr (F, {out(x)}) ↓ A.

Lemma 3 . 7 . 11 .

 3711 Let F = (A, ) and x ∈ A. Assume that F contains no odd cycles. If for all L ∈ L Pr (F ), L(x) = out then L Pr (F, {out(x)}) ↓ A ⊆ L Pr (F ).

Lemma 3 . 7 . 13 .

 3713 Let F = (A, ) and x ∈ A. Assume that F contains no odd cycles. If for all L ∈ L St (F ), L(x) = out then L St (F, {out(x)}) ↓ A ⊆ L St (F ).

Theorem 3 . 4 . 3 .

 343 If σ satisfies the directionality principle then for all F ∈ F, ||= F σ satisfies Conditional Directionality. Proof of theorem 3.4.3. Suppose σ satisfies the directionality principle. Let F = (A, ) be an argumentation framework. Let Φ, Ψ ∈ Int(F ) and φ ∈ lang(F ).
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 41 Figure 4.1: An Argumentation Framework.
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 42 Figure 4.2: Three ways to account for the rejection of e.

Definition 4 . 2 . 1 .

 421 Let F = (A, ) be an argumentation framework. An abductive model based on F under semantics σ is a tuple M = (F, H, m, <, σ)

Example 4 . 2 . 1 .Figure 4 . 3 :

 42143 Figure 4.3: An example of an abductive model for the AF shown in figure 4.1.

Definition 4 . 2 . 5 .

 425 Given an abductive model M = (F, H, m, <, σ) the credulous observation-based entailment relation defined by M will be denoted by |∼ M

Example 4 . 2 . 2 .•

 422 Let M be the abductive model that we considered in example 4.2.1. Consider the observation in(f ). The unique most preferred credulous explanation is {out(c)}, because we have {out(c)} ||= F Pr ¬in(f ). Thus, we also have acceptance of g, because we have {out(c)} ||= F Pr in(f ) → in(g). On the other hand, we have rejection of b ({out(c)} ||= F Pr in(f ) → out(b)). Thus we have in(f ) |∼ M Cr in(g) and in(f ) |∼ M Cr out(b). • Consider the observation in(b). The unique most preferred credulous explanation is {out(a)}, because we have {out(a)} ||= F Pr ¬in(b). This implies, e.g., rejection of e, because we have {out(a)} ||= F Pr in(b) → out(e). It also implies rejection of g, because we have {out(a)} ||= F Pr in(b) → out(g). Then in(b) |∼ M Cr out(e) and in(b) |∼ M Cr out(g).
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 4234445 Figure 4.4: An Argumentation Framework.

Definition 4 . 2 . 7 .Proposition 4 . 2 . 1 .

 427421 Given an abductive model M = (F, H, m, <, σ) the sceptical observation-based entailment relation defined by M will be denoted by |∼ M Sk and is defined by φ |∼ M Sk ψ iff for every most preferred sceptical explanation h for φ we have m(h) ||= F σ ψ.Thus, an abductive model determines two observation-based entailment relations, one credulous and one sceptical. Because there is generally no relation between sets of most preferred sceptical and most preferred credulous explanations for a given observation, these two entailment relations usually behave differently. The grounded case forms an exception: For every abductive model M based on an argumentation framework F under the grounded semantics it holds that |∼ M Cr =|∼ M Sk .
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 424 Let F be the argumentation framework shown in figure 4.4. Let M = (F, H, m, <, Pr) be the abductive model based on F used in example 4.2.3 (shown in figure 4.5). While defeat of a is enough to make b credulously accepted under the preferred semantics it is not enough to make b sceptically accepted under the preferred semantics. That is, we have {out(a)} ||= F Pr ¬in(b) but not {out(a)} ||= F Pr in(b). To make b sceptically accepted we must use the intervention {out(a), out(e)}, because we have {out(a), out(e)} ||= F Pr in(b) but not {out(a)} ||= F Pr in(b) or {out(e)} ||= F Pr in(b). Hence {out(a), out(e)} is the preferred sceptical explanation for the observation in(b). This demonstrates the difference between credulous and sceptical observation-based entailment: while on the one hand we have in(b) |∼ M Cr in(e), we have on the other hand in(b) |∼ M Sk out(e).

Lemma 4 . 3 . 1 . 1 .

 4311 Let F be an argumentation framework and let |∼⊆ lang(F ) × lang(F ). The following are equivalent: |∼ is preferential and conflict-free w.r.t. F . 2. |∼=|∼ W for a preferential model W over L Cf (F ).

Lemma 4 . 3 . 2 .

 432 Let F be an argumentation framework and let |∼⊆ lang(F ) × lang(F ). The following are equivalent:1. |∼=|∼ W for a preferential model W over L Cf (F ).

Lemma 4 . 3 .Theorem 4 . 3 . 3 .

 43433 1 and 4.3.2 lead to the following characterization result. Let F be an argumentation framework and let |∼⊆ lang(F ) × lang(F ). The following are equivalent:

Theorem 4 . 3 . 5 .

 435 Let F be an argumentation framework. For every abductive model M based on F it holds that |∼ M Sk is loop-cumulative and conflict-free w.r.t. F . ), out(c)} {out(b), out(c)} (b) The Abductive Model.

Figure 4 . 6 :

 46 Figure 4.6: Sceptical entailment fails Or (example 4.3.1).
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 436 It is not the case that for every argumentation frameworkF and every entailment relation |∼⊆ lang(F ) × lang(F ) that is loop-cumulative and conflict-free w.r.t. F , there is an abductive model M based on F such that |∼=|∼ M Sk . Proof of proposition 4.3.6. Let F = ({a}, ∅). Let W = ({s}, ∅, l) be the cumulative-ordered model over L Cf (F ) where l(s) = {{(a, in)}, {(a, out)}}. It holds that |∼ W is a loop-cumulative entailment relation that is conflict-free w.r.t. F . Now assume that |∼ W =|∼ M Sk for the abductive model M = (F, H, m, <, σ). It can be verified that we have out(a)∨in(a) |∼ M Sk ⊥, out(a) |∼ M Sk ⊥ and in(a) |∼ M Sk ⊥. This implies that there is some h ∈ H s.t. m(h) ||= F σ out(a) ∨ in(a), m(h) ||= F σ out(a) and m(h) ||= F σ in(a) and hence (L σ (F, m(h)) ↓ {a}) = l(s). But then we have {(a, out)} ∈ (L σ (F, m(h)) ↓ {a}), which implies out(a) ∈ m(h) and hence {(a, in)} ∈ (L σ (F, m(h)) ↓ {a}). This is a contradiction. Hence there is no abductive model M such that |∼ W =|∼ M Sk .
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 431 Let F be the argumentation framework shown in figure 4.6a. Let M = (F, H, m, <, Pr) be the abductive model based on F under the preferred semantics, defined by: • H = {∅, {out(a), out(c)}, {out(b), out(c)}}. • ∅ < {out(a), out(c)} and ∅ < {out(a), out(c)}. • m is the identity function. This abductive model is shown in figure 4.6b. Note that this abductive model satisfies the minimality assumption but is not closed under weakening, because it contains the interventions {out(a), out(c)} and {out(b), out(c)} but not the interventions {out(a)}, {out(c)} and {out(b)}. We have in(a) |∼ M Sk out(c) and in(b) |∼ M Sk out(c) but not in(a) ∨ in(b) |∼ M Sk out(c). This is a violation of the Or rule.
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 441 Let (A, ) ∈ F. A relation |∼⊆ lang(F ) × lang(F ) satisfies Conditional Directionality iff for all φ, ψ, χ ∈ lang(F ), if ψ * χ and ψ |∼ ⊥ then φ ∧ ψ |∼ χ iff φ |∼ χ.The following example demonstrates the failure of Conditional Directionality in the setting of observation-based entailment.

Example 4 . 4 . 1 .

 441 Let F be the argumentation framework shown in figure 4.1. Let M = (F, H, m, <, σ) be the abductive model based on F defined by:

Proposition 4 . 4 . 1 .

 441 Let F ∈ F and let σ be a labelling-based semantics.1. If all σ labellings of F satisfy out-legality then ||= F σ satisfies Conditional out-legality.

Definition 4 . 4 . 4 .

 444 Let F = (A, ). A relation |∼⊆ lang(F ) × lang(F ) satisfies Directional out-legality iff for all φ ∈ lang(F ) and x ∈ A,if x * φ then φ |∼ out(x) → ∨ y∈x -in(y). Definition 4.4.5. Let F = (A, ). A relation |∼⊆ lang(F ) × lang(F ) satisfies Directional Reinstatement iff for all φ ∈ lang(F ) and x ∈ A, if x * φ then φ |∼ (∧ y∈x -out(y)) → in(x).These two properties demonstrate the role of directionality in the setting of observation-based. More precisely, given an abductive model M based on F under the semantics σ that is both closed under weakening and satisfies the minimality assumption, the relations |∼ M Cr and |∼ M Sk satisfy Directional outlegality (resp. Directional Reinstatment) whenever the corresponding relation ||= F σ satisfies Conditional out-legality (resp. Conditional Reinstatement) as well as Conditional Directionality.

Theorem 4 . 4 . 2 .

 442 Let F ∈ F and let σ be a labelling-based semantics. Let M = (F, H, m, <, σ) be an abductive model that is closed under weakening and satisfies the minimality assumption.
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 443 Let F = (A, ) and let σ be a labelling-based semantics. Let M = (F , H, m, <, σ) be an abductive model that is closed under weakening and satisfies the minimality assumption. Suppose ||= F σ satisfies Conditional Directionality. If h ∈ H is a most preferred sceptical or credulous explanation for φ then x ∈ Args(m(h)) implies x * φ.

Figure 4 . 7 :

 47 Figure 4.7: Failure of Directional out-legality and Reinstatement (example 4.4.2).
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 442 Let F be the argumentation framework shown in figure4.7. 

Figure 4 . 8 :

 48 Figure 4.8: The argumentation framework for example 4.4.3.

Figure 4 . 9 :

 49 Figure 4.9: Two abductive models (example 4.4.3).
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 443 Let F be the argumentation framework shown in figure 4.8. 1. Let M 1 = (F, H, m, <, Gr) be the abductive model based on F under the grounded semantics, defined by: • H = {∅, {out(a), out(b)}}.

Figure 4 . 10 :

 410 Figure 4.10: Violation of Conditional Noninterference (example 4.5.1).
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 451 Let F be the argumentation framework shown in figure 4.10.

  On the one hand we have in(b) → out(c) |∼ M Cr out(d). This is because the unique most preferred credulous explanation for in(b) → out(c) is the vacuous intervention, which entails rejection of d: ∅ ||= F σ out(d). • On the other hand we have (in(b) → out(c)) ∧ out(a) |∼ M Cr out(d). This is because among the most preferred credulous explanations for (in(b) → out(c)) ∧ out(a) we have the intervention {out(a), out(c)}, which does not entail rejection of d: {out(a), out(c)} ||= F σ out(d).
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 452 Let (A, ) ∈ F. A relation |∼⊆ lang(F ) × lang(F ) satisfies Weak Conditional Noninterference iff for all φ, ψ ∈ lang(F ), if φ * ψ and φ |∼ ⊥ then ⊤ |∼ ψ iff φ |∼ ψ. We have that, given an abductive model M based on F under the semantics σ that is both closed under weakening and satisfies the minimality assumption, the relations |∼ M Cr and |∼ M Sk satisfy Weak Conditional Noninterference whenever the relation ||= F σ satisfies Conditional Noninterference. Theorem 4.5.1. Let F ∈ F and let σ be a labelling-based semantics. Let M = (F, H, m, <, σ) be an abductive model that is closed under weakening and satisfies the minimality assumption. If ||= F σ satisfies Conditional Noninterference then both |∼ M Cr and |∼ M Sk satisfy Weak Conditional Noninterference.
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 432 Let F be an argumentation framework and let |∼⊆ lang(F ) × lang(F ). The following are equivalent:1. |∼=|∼ MCr for an abductive model M based on F . 2. |∼=|∼ W for a preferential model W over L Cf (F ).

For the ( 1 )

 1 to (2) direction of lemma 4.3.2 we use definition 4.8.1 and lemma 4.8.1 and 4.8.2. Definition 4.8.1. Let F = (A, ) be an argumentation framework and let M = (F, H, m, <, σ) be an abductive model. We define W M

Lemma 4 . 8 . 5 .

 485 Let F be an argumentation framework. Let W = (S, ≺, l) be a finite preferential model over L Cf (F ). Let σ ∈ {Co, Gr, Pr, SS}. It holds that M σ
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 521 Let F = (A, ), B ⊆ A. It holds that F sceptically supports B iff some x ∈ B is a member of the grounded extension of F .
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 522523 An abductive argumentation framework is a pair M = (F, I) where F is an argumentation framework and I ⊆ F a set of argumentation frameworks called abducible such that F ∈ I.Given an abductive argumentation framework (F, I) and observation B, sceptical/credulous support for B can be explained by the change from F to some G ∈ I that sceptically/credulously supports B. In this case we say that G explains sceptical/credulous support for B. The arguments/attacks added to and absent from G can be seen as the actual explanation. Let M = (F, I) be an abductive argumentation framework. An abducible argumentation framework G ∈ I explains sceptical (resp. credulous) support for an observation B iff G sceptically (resp. credulously) supports B.
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 521 Let M = (F, {F, G 1 , G 2 , G 3 }), where F, G 1 , G 2 and G 3 are defined as shown in figure 5.1. Let B = {b} be an observation. It holds that G 1 and G 3 both explain sceptical support for B, while G 2 only explains credulous support for B.

Figure 5 . 1 :

 51 Figure 5.1: The argumentation frameworks of the abductive argumentation framework (F, {F, G 1 , G 2 , G 3 }).

Theorem 5 . 3 . 1 .

 531 Let M = (F, I) be an abductive argumentation framework where F = (A, ). Let B ⊆ A and G ∈ I. It holds that G explains sceptical support for B iff M generates a sceptical explanation dialogue D for B such that G ∈ J(D).

3 . 2 .

 32 Let F = (A, ), x ∈ A a member of the grounded extension of F and y ∈ A an argument s.t. yx. Definition 2.1.4 implies that there is a z ∈ A that is a member of the grounded extension of F s.t. z y. Definition 2.1.2 furthermore implies that for every B ⊆ A, if x ∈ D F (B) then z ∈ B. Definition 5.3.5 now implies that Deg F (x) > Deg F (z).Proof of theorem 5.3.1. Let M = (F, I) be an abductive argumentation framework where F = (A, ). Let B ⊆ A and G ∈ I.

Theorem 5 . 3 . 3 .-

 533 Let M = (F, I) be an abductive argumentation framework where F = (A, ). Let B ⊆ A and G ∈ I. It holds that G explains credulous support for B iff M generates a conflict-free credulous explanation dialogue D for B such that G ∈ J(D). Proof of theorem 5.3.3. Let M = (F, I) be an abductive argumentation framework where F = (A, ). Let B ⊆ A and G ∈ I.Only if: Assume that G explains credulous support for B. Then there is an admissible set E of G such that a ∈ E for some a ∈ B. Based on E and a we construct a conflict-free credulous explanation dialogue D for B such that G ∈ J(D). Given an argument x ∈ E we define the credulous OPP reply D(x, Z) recursively by D(x, Z) = (OPP:y 1 x)•S 1 •. . .•(OPP: y n x)•S n •(OPP: ok)where {y 1 , . . . , y n } = {y | y I x} and each S i is a credulous PRO reply defined by the following cases:• Case 1: y i G x. Let z be an argument such that z ∈ E and z G y i .(Admissibility of E guarantees the existence of z.) Case 1.1: z ∈ Z: Then S i = PRO: z + y i • D(z, Z ∪ {z}).
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 541 A 3-valued interpretation I of a logic program P is a pair I = (T, F ) where T, F ⊆ At P and T

Example 5 . 4 . 2 .

 542 Let ALP = (P, U ) be the ALP as defined in example 5.4.1. All arguments generated by ALP are: a = (p, {(p ← ∼s, r), r}, {s}) d = (r, {r}, ∅) b = (q, {(q ← ∼p)}, {p}) e = (s, {s}, ∅) c = (p, {(p ← ∼s, ∼q)}, {s, q})

F2Figure 6 . 1 :

 61 Figure 6.1: Two argumentation frameworks.

Example 6 . 2 . 2 .

 622 Since a PAF represents a unique argumentation framework, an aVAF also represents a unique argumentation framework. The extensions of an aVAF are the extensions of this argumentation framework. Consider the aVAF (A, →, V, val, < a ) where A and → are as shown in figure 6.1, V = {blue, red}, val(a) = val(d) = blue, val(b) = val(c) = red and < a is defined by x < a y iff x = red and y = blue. It can be checked that this aVAF represents the PAF from example 6.2.1 and thus the argumentation framework F 2 shown in figure 6.1.

Example 6 . 4 . 1 .

 641 Consider the property-based argumentation framework (A, → , P, P, M, ≤) where A and → and the properties assigned by P to the arguments are as shown in figure 6.2. Furthermore, P = {R, G, B}, M = 2 P and ≤ is defined via a weight function w : P → Z with w(R) = w(G) = 1 and w(B) = -2 as follows: X ≤ X ′ iff x∈X w(x) ≤ x∈X ′ w(x). This gives rise to the weighing relation {B} < {R, B} = {G, B} < {R, G, B} = ∅ < {R} = {G} < {R, G}, where < is the strict counterpart of ≤.

Figure 6 .

 6 Figure 6.3 shows the argumentation frameworks represented by all possible motivational states. We have, e.g., that in PAF {G} the argument e is strictly preferred over f , so that the attack from f to e is disabled F {G} . On the other hand, in PAF ∅ and PAF {B,G} the argument e is not preferred over f . Here, the attack from f to e succeeds and is therefore enabled in F ∅ and F {B,G} .

Example 6 . 4 . 2 (Figure 6 . 3 :

 64263 Figure 6.3: Different motivational states (example 6.4.1).
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 653 Weak acceptance dialogue). Let (A, →, P, P, M, ≤) be a property-based argumentation framework and let x ∈ A.• A weak x-acceptance dialogue is a finite sequenceS 1 • (PRO: win)where S 1 is an x-attack sequence.• An x-attack sequence is a sequence(OPP: y 1 x) • S 1 • . . . • (OPP: y n x) • S n • (OPP: ok)

Now, for every

  z ∈ A s.t. z → y we define T y (z) by (1) T y (z) = (OPP: z y)•(PRO: M -), if z M y and (2) T y (z) = (OPP: z y)•(PRO: M +)• S ′ , if z M y-where S ′ is defined by S(def (z, y)) = S ′ • (PRO: win). It can be checked that T y (z 1 ) • . . . • T y (z i ) • (OPP: ok) • (PRO: win) (where {z 1 , . . . , z i } = {z ′ | z ′ → y}) is a property consistent weak y-acceptance dialogue.

2 .

 2 That is, every property move in S is either of the form PRO: M + or PRO: M -. Using property 6.4.1 (2) it can be checked that the dialogue S ′ formed by • replacing every move m i = PRO: M + in S by PRO: M ′ +, where M ′ = M ∩ P (x) ∪ P (y) where x, y are defined by m i+1 = PRO: x y, and • replacing every move m i = PRO: Min S by PRO: M ′ -, where M ′ = M ∩ P (x) ∪ P (y) where x, y are defined by m i-1 = OPP: x y,

•

  Chapter 6: Change in Preference-Based Argumentation We develop a dynamic model of preference-based argumentation, centring on what we call property-based argumentation frameworks. It is based on Dietrich and List's model of property-based preference and it provides an account of how and why preferences in argumentation may change.The idea is that preferences over arguments are derived from preferences over properties of arguments, and change as the result of moving to different motivational states. We also provide a dialogical proof theory for the task of checking whether there exists some motivational state in which an argument is accepted.The work presented in chapter 3 and 4 is based in part on joint work with Richard Booth, Souhila Kaci and Leendert van der Torre[START_REF] Booth | Conditional acceptance functions[END_REF][START_REF] Booth | A logical theory about dynamics in abstract argumentation[END_REF][START_REF] Booth | Monotonic and nonmonotonic inference for abstract argumentation[END_REF] but contain a number of new ideas and results. The work in chapter 5 is based on joint work with Richard Booth, Dov Gabbay, Souhila Kaci and Leendert van der Torre[START_REF] Booth | Abduction and dialogical proof in argumentation and logic programming[END_REF]. The work in chapter 5 is based on joint work with Richard Booth and Souhila Kaci[START_REF] Booth | Property-based preferences in abstract argumentation[END_REF].

Table 2

 2 

	.1 demonstrates that not every complete extension is
	preferred: the extension ∅, which is complete, is not preferred. The converse,
	however, does hold.

Proposition 2.1.2. [42,

Theorem 25] 

For all F ∈ F, E Pr (F ) ⊆ E Co (F ).

Table 2
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	.3 shows the complete labellings of the argumentation framework shown
	in figure 2.1b. Comparing this with table 2.1, we see that each extension cor-
	responds to a labelling where all accepted arguments are labelled in and the
	non-accepted arguments either out or und.

  If φ ≡ ψ and φ |∼ χ then ψ |∼ χ. (Right Weakening) If φ |∼ ψ and ψ |= χ then φ |∼ χ. (Cut) If φ |∼ ψ and φ ∧ ψ |∼ χ then φ |∼ χ.

	all formulas in lang. A relation |∼ is said to satisfy a property if it satisfies all
	instances.
	Definition 2.2.1. Let |∼ be a relation over a propositional language lang. The
	properties Reflexivity, Left Logical Equivalence, Right Weakening, Cut, Cautious
	Monotony, Loop, Or and Rational Monotony are defined as follows.
	(Reflexivity) φ |∼ φ.
	(Left Logical Equivalence)
	Syntactically, the classes of cumulative, loop-cumulative, preferential and ra-
	tional inference relations are characterized by sets of properties they satisfy.
	For the definition we work with an inference relation |∼ over a propositional
	language lang that is closed under the usual connectives. The symbols φ, ψ
	and χ used in specifying the properties in the following definition range over

(Cautious Monotony) If φ |∼ ψ and φ |∼ χ then φ ∧ ψ |∼ χ.

  Stable Cautious Monotony. While Cautious Monotony applies to arbitrary interventions, Stable Cautious Monotony applies only to stable interventions. It is easy to see that Cautious Monotony implies Stable Cautious Monotony, but that the converse does not hold.

  Furthermore, there is a complete labelling in which c is rejected, thus we have ∅ ||= F Co ¬out(c). But defeating c leads to a new complete labelling, in which d is accepted but b is not. This causes failure of Rational Monotony. We have ∅ ||= F

	Co in(d) → in(b) and ∅ ||= F Co ¬out(c). Rational Monotony would imply that we have {out(c)} ||= F Co in(d) → in(b), but
	this is not the case. Note that this counterexample also applies to the preferred,
	semi-stable and stable semantics.

Example 3.3.5. Let F be the argumentation framework shown in figure 3.8. Normally, d is accepted in a complete labelling only if b is accepted. Hence we have ∅ ||= F Co in(d) → in(b).

  Why are the non-stable versions of Cautious Monotony and Cut not satisfied? This is because provisional defeat of an argument is interpreted by adding a self-attacking attacker to this argument. This means that provisional defeat introduces odd cycles. Under the semi-stable semantics, this causes failure of Cautious Monotony and Cut. This is demonstrated by the following example.

	SS satisfies
	Stable Cut.
	Proof. See section 3.7

Theorem 3.3.11. For all F ∈ F, if F is odd-cycle-free then ||= F Pr , ||= F SS and ||= F St satisfy Stable Cautious Monotony. Proof. See section 3.7. Theorem 3.3.12. For all F ∈ F, if F is odd-cycle-free then ||= F

Table 3 .

 3 2 summarizes the results obtained concerning odd-cycle-free argumentation frameworks. Note that the question of whether Loop is satisfied remains open.

		Co Gr Pr SS St
	(Stable) Cautious Monotony ✓	✓	✓	✓	✓
	(Stable) Cut	✓	✓	✓	✓	✓
	Rational Monotony	✗	✓	✗	✗	✗
	Loop	?	?	?	?	?

Table 3 .
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2: Properties satisfied by ||= F σ for every odd-cycle-free F ∈ F.

  free then ||= F Pr and ||= F Let F be the argumentation framework shown in figure 3.11. Note that F is even-cycle-free. Because F has no stable labelling we have ∅ ||= F St ⊥ and hence, trivially, ∅ ||= F St out(a). Cautious Monotony implies that we have {out(a)} ||= F St ⊥ but this is not the case, because F ⊕ κ {out(a)} does have a stable labelling, and hence {out(a)} ||= F St ⊥.

	a	b	c
	Figure 3.11: Failure of Cautious Monotony due to inconsistency under the stable
	semantics.		
	Example 3.3.8.		
			SS
	satisfy Cautious Monotony, Cut and Rational Monotony.
	Proof. This follows immediately from proposition 3.3.14 together with the fact
	that for all F ∈ F, ||= F Gr satisfies Cautious Monotony, Cut and Rational Mono-
	tony (theorem 3.3.1 and 3.3.3 and proposition 3.3.9).
	Under the stable semantics, even-cycle-freeness does not ensure satisfaction of
	(Stable) Cautious Monotony. Here, (Stable) Cautious Monotony still fails if an
	initial premise entails inconsistency while a strengthening of this premise does
	not. This is demonstrated by the following example.

Finally, proposition 3.3.15 implies that even-cycle-freeness ensures satisfaction of Rational Monotony under the stable semantics. Note that the stable semantics fails Rational Monotony in the general case (see example 3.3.5).

Theorem 3.3.18. For all F ∈ F, if F is even-cycle-

free then ||= F St satisfies Rational Monotony. Proof. Let F ∈ F and assume that F is even-cycle-free. Suppose Φ ||= F St φ and Φ ||= F St ¬α. Then Φ ||= F St ⊥ and hence proposition 3.3.15 implies Φ ||= F Gr φ and Φ ||= F Gr ¬α. Because ||= F Gr satisfies Rational Monotony (theorem 3.3.9) it follows that Φ ∪ {α} ||= F Gr φ. If Φ ∪ {α} ||= F St ⊥, it trivially follows that Φ ∪ {α} ||= F St φ, and we are done. If we have Φ ∪ {α} ||= F St ⊥ then the fact that Φ ∪ {α} ||= F Gr φ implies, via proposition 3.3.15, that Φ ∪ {α} ||= F St φ.

  Proposition 3.3.19. For all F ∈ F, if F is acyclic then ||= F Co , ||= F Pr , ||= F Satisfaction of Cautious Monotony, Cut and Rational Monotony under the complete, preferred and semi-stable semantics follows from the even-cyclefree case (theorem 3.3.17). Satisfaction of Stable Cautious Monotony under the stable semantics follows from the odd-cycle-free case (theorem 3.3.11). Satisfaction of Stable Cut under the stable semantics follows from the general case (theorem 3.3.6). Satisfaction of Rational Monotony under the stable semantics follows from the even-cycle-free case (theorem 3.3.18). While this result is easily obtained, the following theorem is non-trivial. It states that, in the acyclic case, Loop is satisfied under the complete, grounded, preferred and semi-stable semantics.Under the stable semantics, the following weakening of Loop is satisfied in the acyclic case. This weakening is similar in nature to the weakening of Cautious Monotony and Cut that we called Stable Cautious Monotony and Stable Cut. We call it Stable Loop.

	SS St all satisfy (Stable) Cautious Monotony, (Stable) Cut and Rational and ||= F
	Monotony.
	Proof.

Theorem 3.3.20. For all F ∈ F, if F is acyclic then ||= F Co , ||= F Gr , ||= F Pr and ||= F SS satisfy Loop. Proof. Let F = (A, ) be an acyclic argumentation framework. We first show that ||= F Gr satisfies Loop. Assume that {α 0 } ||= F Gr α 1 , {α 1 } ||= F Gr α 2 , . . . , {α k-1 } ||= F Gr α k , {α k } ||= F Gr α 0 . We prove that, for some i ∈ {0, . . . k}, it holds that ∅ ||= F Gr α i . Suppose the contrary: for all i ∈ {0, . . . k} we have ∅ ||= F Gr α i . Because ||= F Gr satisfies conditional directionality (see definition 3.4.7 and theorem 3.4.3) we then have α 0 * α 1 , α 1 * α 2 , . . . , α k-1 * α k , α k * α 0 . This is a contradiction because F is acyclic. Hence for some i ∈ {0, . . . k} we have ∅ ||= F Gr α i . But we also have α i ||= F Gr α i+1 (addition is understood modulo k + 1). Via Cut we then get ∅ ||= F Gr α i+1 . By repeatedly applying Cut like this we get ∅ ||= F Gr α 0 and ∅ ||= F Gr α k . Via Cautious Monotony we then get {α 0 } ||= F Gr α k . Hence ||= F Gr satisfies Loop. Via proposition 3.3.14 we get that ||= F σ satisfies Loop, for all σ ∈ {Co, Gr, Pr, SS}. Definition 3.3.14. Let F = (A, ) be an argumentation framework. A relation ||=
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 3 Let F = (A, ) be an acyclic argumentation framework. Theorem 3.3.20 implies that ||= F Gr satisfies Loop and thus also Stable Loop. Because F is oddcycle-free, we have for all x ∈ A, {out(x)} ||= F St ⊥. Because F is even-cycle-free, proposition 3.3.15 then implies that for all x, y ∈ A, {out(x)} ||= F St out(y) iff {out(x)} ||= F Gr out(y). From this it follows that ||= F St satisfies Stable Loop. 4 summarizes the results obtained concerning acyclic argumentation frameworks (i.e., proposition 3.3.19 and theorem 3.3.20 and 3.3.21).

Theorem 3.3.21. If F is acyclic then ||= F St satisfies Stable Loop. Proof.

  Definition 3.2.8 now implies that Φ ||= F Co φ.

Theorem 3.2.9. Let F be an argumentation framework. The following are equivalent. 1. For some Φ ∈ Int(F ) we have Φ ||= F St φ and Φ ||= F St ⊥. 2. φ is a stable conflict-free with respect to F . Proof. Let F = (A, ) be an argumentation framework. (1) to (2): Let Φ ∈ Int(F ) and φ ∈ lang(F ) a formula such that Φ ||= F St φ and Φ ||= F St ⊥. Suppose, toward a contradiction, that φ is not stable conflict-free w.r.t. F . Because we have Φ ||= F St ⊥, we have L St (F, Φ) = ∅. This implies, via definition 3.2.11, that there is some L

  Theorem 3.3.11. For all F ∈ F, if F is odd-cycle-free then ||= F Because Φ is stable, F ⊕ κ Φ is also odd-cycle-free, and hence lemma 3.7.11 implies that if ∅ ||= F ⊕ κ Φ

	||= F St satisfy Stable Cautious Monotony.	Pr , ||= F SS and
	φ then φ. By applying lemma 3.7.16 again we get that if Φ ||= F Pr Pr φ then Φ ∪ {out(x)} ||= F {out(x)} ||= F ⊕ κ Φ Pr

Proof. We prove the preferred case. Let F ∈ F, Φ ∈ StInt(F ) and let κ be an F -mapping. Assume that F is odd-cycle-free. Suppose Φ ||= F Pr out(x). Lemma 3.7.16 implies that ∅ ||= F ⊕ κ Φ Pr out(x). Pr φ. Hence ||= F Pr satisfies Stable Cautious Monotony.

  This implies φ |∼ W ¬ψ. Hence |∼ W is preferential and conflict-free w.r.t. F . The following lemma states that, for every abductive model M based on F , we can construct a preferential model W over L Cf (F ) such that |∼ W =|∼ M Cr . Conversely, for every preferential model W over L Cf (F ), we can construct an abductive model M based on F such that |∼ M

t. F but we do not have have F orm(l(s)) |∼ W ¬F orm(l(s)). This means that |∼ is not conflict-free w.r.t. F , which is a contradiction.

(2 implies 1): Let W = (S, ≺, l) be a preferential model over L Cf (F ). Theorem 2.2.1 implies that |∼ W is preferential. We prove that |∼ W is conflict-free w.r.t. F . Let φ, ψ ∈ lang(F ) and assume that ψ is not conflict-free w.r.t. F . If there is no s ∈ S such that l(s) |= φ, it follows trivially that φ |∼ W ¬ψ and we are done. Now let s ∈ S be a state such that l(s) |= φ. Then l(s) ∈ L Cf (F ), while there is no L ∈ L Cf (F ) such that L |= ψ. Hence l(s) |= ψ.

  It holds that if |∼=|∼ MSk for an abductive model M based on F then |∼=|∼ W for a cumulative-ordered model W over L Cf (F ).

	Proof. See section 4.8.

F , every sceptical observation-based entailment relation based on F is a loop-cumulative entailment relation that is conflict-free w.r.t. F . That is, it satisfies the properties of Reflexivity, Left Logical Equivalence, Right Weakening, Cut, Cautious Monotony and Loop, as described in section 2.2. We prove this by showing that, for every abductive model M based on F , we can construct a cumulative-ordered model W over L Cf (F ) such that |∼ W =|∼ M Sk . Lemma 4.3.4. Let F be an argumentation framework and let |∼⊆ lang(F ) × lang(F ).

  Directionality. This counterexample also applies to |∼ M Cr . If Conditional Directionality does not apply, then what is the role of directionality in the setting of observation-based entailment? We address this question by looking at two properties that demonstrate this role: Directional out-legality and Directional Reinstatement. Before we turn to their definition, we must look at two properties of intervention-based entailment, namely Conditional out-legality and Conditional Reinstatement. 4.4.1 Conditional out-legality and Reinstatement Before we can introduce the properties of Directional out-legality and Directional Reinstatement, we must introduce two properties that we call Conditional out-legality and Conditional Reinstatement. They are properties for intervention-based entailment. Intuitively, they reflect the assumption that, given an intervention, we only unjustifiably reject an argument x if x is defeated by the intervention, and we only unjustifiably refrain from accepting an argument x if x is provisionally defeated by the intervention. Because under the complete, grounded, preferred and semi-stable semantics, all labellings satisfy out-legality and reinstatement, this implies that the relations ||= F Co , ||= F Gr , ||= F Pr and ||= F SS satisfy Conditional out-legality and Conditional Reinstatement.

Definition 4.4.2. Let F = (A, ) be an argumentation framework. A relation

||= F ⊆ Int(F ) × lang(F ) satisfies Conditional out-legality iff for all x ∈ A, if Φ |= out(x) then Φ ||= F out(x) → ∨ y∈x -in(y). Definition 4.4.3. Let F = (A, ) be an argumentation framework. A relation ||= F ⊆ Int(F ) × lang(F ) satisfies Conditional Reinstatement iff for all x ∈ A, if Φ |= ¬in(x) then Φ ||= F (∧ y∈x -out(y)) → in(x).

The out-legality (definition 2.1.8) and reinstatement (definition 2.1.9) properties, if satisfied by all labellings under a semantics σ, ensure that for all F ∈ F, the relation ||= F σ satisfies Conditional out-legality and Conditional Reinstatement, respectively.

  1. If ||= F σ satisfies Conditional Directionality and Conditional out-legality then both |∼ M Cr and |∼ M Sk satisfy Directional out-legality.

	2. If ||= F σ satisfies Conditional Directionality and Conditional Reinstatement
	then both |∼ M Cr and |∼ M Sk satisfy Directional Reinstatement.

  • S 1 • . . . • (OPP: y n x) • S n • (OPP: ok) where {y 1 , . . . , y n } = {y | y I x} and each S i is a sceptical PRO reply to y i

Table 5 .

 5 1: A sceptical explanation dialogue for the observation {b}. Definition 2.1.4 implies that for every y ∈ A G s.t. y x, Z(y) = ∅. Furthermore lemma 5.3.2 implies that for every y ∈ A G s.t. y x and for every z ∈ Z(y) it holds that Deg G (z) < k. We can now define D by D = D 1 • D 2 • (OPP: ok) where: D 1 = (OPP: y 1 x) • (PRO: y 1 -x) • . . . • (OPP: y n x) • (PRO: y n -x) where {y 1 , . . . , y n } = {y ∈ A I | y I x, y G x}, and D 2 = (OPP: y

			{G 1 }
	6	OPP: ok	{G 1 }
	7	OPP: ok	{G 1 }
	8	PRO: win	{G 1 }

Table 5 .

 5 2: A sceptical explanation dialogue for the observation {b}. Example 5.3.1.Table 5.1 shows an example of a sceptical explanation dialogue D = {m 1 , . . . , m 8 } for the observation {b} that is generated by the abductive argumentation framework defined in example 5.2.1. The sequence (m 1 , . . . , m 7 ) is a sceptical OPP reply to b, in which OPP puts forward the two attacks c b and a b. PRO defends b from both c and a by putting forward the attacker e (move 2 and 5). This leads to the focus first on the abducible argumentation frameworks G 1 , G 3 (in which the attack e c exists) and then on G 1 (in which the attack e a exists). This proves that G 1 explains sceptical support for the observation {b}.

			{G 3 }
	6	OPP: ok	{G 3 }
	7	PRO: win	{G 3 }

  • S 1 • . . . • (OPP: y n x) • S n • (OPP: ok) where {y 1 , . . . , y n } = {y | y I x} and each S i is a credulous PRO reply to (y i

Table 5 .

 5 3: A credulous explanation dialogue for the observation {b}. It finally follows that E is an admissible set of G and a ∈ E and hence G explains credulous support for B. Example 5.3.2. Table 5.3 shows a conflict-free credulous explanation dialogue D = (m 1 , . . . , m 6 ) for the observation {b} generated by the abductive argumentation framework defined in example 5.2.1. Here, the sequence (m 1 , . . . , m 5 ) is a credulous OPP reply to (b, {b}). PRO defends b from OPP's attack c b by putting forward the attack b c. Since b was already assumed to be accepted, this suffices. At move m 4 , PRO defends itself from the attack a

  .1. This argumentation framework has one complete, grounded, stable and preferred extension, namely {d, b}.Preference-based argumentation frameworks give-at least at the abstract levelno account of where preferences over arguments come from, or how they are formed. Bench-Capon's[START_REF] Trevor | Persuasion in practical argument using valuebased argumentation frameworks[END_REF] model of value-based argumentation frameworks does. In a value-based argumentation framework, the idea is that arguments may promote certain values and that different audiences have different preferences over values, from which the preferences over arguments are derived. An audience specific value-based argumentation framework encodes a single audience's preferences over values.

	Definition 6.2.2. A value-based argumentation framework (VAF for short) is
	a 5-tuple (

A, →, V, val, U ), where A is a set of arguments, → an attack relation, V a set of values, val : A → V a mapping from arguments to values and U a set of audiences. An audience specific value-based argumentation framework (aVAF for short) is a 5-tuple (A, →, V, val, < a ) where a ∈ U is an audience and < a a partial order (i.e. an irreflexive and transitive relation) over V .

An aVAF represents a unique PAF

[START_REF] Kaci | Preference-based argumentation: Arguments supporting multiple values[END_REF]

: Definition 6.2.3. An aVAF (A, →, V, val, < a ) represents the PAF (A, →, ), where is defined by ∀x, y ∈ A, x y iff val(x) < a val(y) or val(x) = val(y).

  This relation can be thought of as a 'betterness' relation, i.e., if S ≤ S ′ then the set of properties S ′ is at least as good as the set of properties S. Definition 6.3.1. A family ( M ) M ∈M of preference orders is called propertybased if there is a weighing relation ≤⊆ 2 P × 2

P such that, for every M ∈ M and x, y ∈ X, x M y iff P (x) ∩ M ≤ P (y) ∩ M.

  value-based argumentation framework model gives an account of where an agent's (or audience's) preferences over arguments come from, namely the relative importance of the values they promote. However, it gives no account of how or why they may change. This motivates us to apply the model of propertybased preference in argumentation, giving rise to what we call property-based In a property-based argumentation framework, each argument is associated with a set of properties that it satisfies. Among the types of properties we may consider are values promoted by the argument. Furthermore, a property-based argumentation framework consists of a set of motivational states M and a weighing relation ≤ over sets of properties. The idea is as before: ≤ encodes the agent's preferences over sets of properties but only properties in the agent's state M ∈ M matter when forming preferences over arguments.If we focus on values as properties then the weighing relation can be understood as encoding the relative importance that an agent associates with different combinations of values, and the motivational state as consisting of the values of which an agent is aware in a given situation. Given a property-based argumentation framework, each motivational state M ∈ M represents a unique PAF which we denote by PAF M . Preferences in PAF M are formed by comparing sets of properties satisfied by the arguments, that are at the same time motivational. The argumentation framework according to which the agent determines the extensions in the motivational state M , denoted by F M , is the argumentation framework represented by PAF M .

		{B}	{R}
	∅	b	c
	a		
		{R}	{B, G}	∅
		d	e	f
	Figure 6.2: An argumentation framework with properties of arguments.
	argumentation frameworks. Definition 6.4.2. Given a property-based argumentation framework (A, →
	, P, P, M, ≤) and a motivational state M ∈ M we say that:

Definition 6.4.1. A property-based argumentation framework is a 6-tuple (A, →, P, P , M, ≤) where A is a set of arguments, → an attack relation, P is a set of properties, P : A → 2 P a mapping of arguments to sets of properties, M ⊆ 2 P is an intersection-closed set of motivational states and ≤⊆ 2 P × 2 P a reflexive, transitive and complete weighing relation.

Note that there are cases where ≤ does not need to be transitive and complete over all sets of properties. For simplicity, however, we assume that it is. The reader is referred to Dietrich and List [41, Remark 1] for details.

Table 6 .

 6 1. M S i ∈ M 2. If m i = PRO: x y then for all j ∈ [i, . . . , n], x M S j y, 3. If m i = PRO: Pand m i-1 = OPP: x y then for all j ∈ [i, . . . , n], x M S j y. Condition 1 ensures that property moves are valid in the sense that they actually lead to a new motivational state M ∈ M. Conditions 2 and 3 ensure that a property move does not undermine preceding property moves. That is, condition 2 ensures that attacks put forward by PRO remain enabled in subsequent states and condition 3 ensures that disabled attacks remain disabled. Example 6.5.1 (Continued from example 6.4.1). Consider the following two property-consistent weak acceptance dialogues for the argument a shown in table 6.1 and 6.2. 1: A weak acceptance dialogue for the argument a.

	Index Move		State
	1	OPP: b	a	∅
	2	PRO: c	b	∅
	3	OPP: b	c	∅
	4	PRO: {R}-{R}
	5	OPP: ok	{R}
	6	OPP: d	a	{R}
	7	PRO: {G}+	{R, G}
	8	PRO: e	d	{R, G}
	9	OPP: f	e	{R, G}
	10	PRO: ∅-	{R, G}
	11	OPP: ok	{R, G}
	12	OPP: ok		{R, G}
	13	PRO: win		{R, G}

Table 6 .

 6 2: A weak acceptance dialogue for the argument a. Explanation: In the dialogue shown on figure 6.1, the initial exchange of attacks consists of b → a, c → b and b → c. PRO must end this line of argument by making a disabling property to disable the attack b → c. PRO moves PRO: {R}and as a result, the motivational state of the dialogue becomes {R}. OPP's next attack is d → a. PRO cannot move e → d because this attack is disabled in the current motivational state. PRO moves PRO: {G}+, changing the motivational state of the dialogue to {R, G}, so that e → d is enabled. To OPP's attack f → e PRO responds with an empty disabling move, as f → e is already disabled in the current motivational state. The dialogue shown in figure 6.2 is similar with the exception that PRO immediately moves both R and G when making a disabling property move on line 4. As a result, no enabling property move is needed on line 7 because the attack d → e is already enabled.

  . Making this connection formal, as well as addressing the question of what other postulates are relevant in this context, are issues for future research.
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The usage of the term semantics in argumentation has its roots in Logic Programming and is somewhat different from its use outside of the area of logic programming and argumentation, such as the preferential model semantics and Kripke semantics.

Defence of x by E was called acceptability of x w.r.t. E by Dung[START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF]. The usage of the term defence is more common in recent literature.

This condition is stronger than the condition of conflict-freeness as it appears, e.g., in[START_REF] Martin | A logical account of formal argumentation[END_REF]. We do this for technical convenience, and it has no consequences for the definitions that follow.

A binary relation ≺ is a strict partial order if it is irreflexive (s ≺ s) and transitive (s ≺ s ′ and s ′ ≺ s ′′ imply s ≺ s ′′ ).

Alternatively, one may consider actions in a debate corresponding to the removal of elements from an argumentation framework, including attacks between existing arguments. Given an argumentation framework a b, the change of b to in can then be achieved by removing the attack from a to b. We have chosen not to pursue this possibility, the reason being that the addition of elements to an argumentation framework reflects a more natural way of how a debate evolves than the removal of elements.

Dung actually proved something stronger, namely that every limited controversial argumentation framework is coherent. However, in the finite case, limited controversiality is the same as odd-cycle-freeness.

This condition ensures that odd cycles do not 'double count' as even cycles.

Not to be confused with the relation of relevance used by Caminada in[START_REF] Caminada | Semi-stable semantics[END_REF], which is what we call structural connectedness in definition 3.4.10.
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Proof. Let F = (A, ) be an argumentation framework, let x ∈ A and let F ′ = (A ′ , ′ ) = F ⊕ κ ¬in(x) for some F -mapping κ. Let {L} = L Gr (F ) and {L ′ } = L Gr (F ′ ) and assume L |= ¬in(x). We then have x ∈ E, where {E} = E Gr (F ). Lemma 3.7.2 implies that E = E ′ ∩ A, where {E ′ } = E Gr (F ′ ). We now prove that L = L ′ ↓ A. Proposition 2.1.7 implies that L -1 (in) = L ′-1 (in) ∩ A. We split the remainder of the proof in two parts.

• L -1 (out) ⊆ L ′-1 (out)∩A. Suppose y ∈ L -1 (out). We immediately have that y ∈ A. Completeness of L implies that ∃z ∈ A s.t. z y, L(z) = in and hence z ∈ E. Because E ⊆ E ′ , it follows that z ∈ E ′ and hence L ′ (z) = in. Completeness of L ′ implies that y ∈ L ′-1 (out).

• L ′-1 (out) ∩ A ⊆ L -1 (out). Suppose y ∈ L ′-1 (out) ∩ A. Completeness of L ′ implies that there is a z ∈ A ′ s.t. z ′ y and L ′ (z) = in. Because z ∈ A implies z ′ z, which contradicts L ′ (z) = in, we have that z ∈ A.

Hence there is a z ∈ A s.t. z y and z ∈ E ′ . It then follows that z ∈ E and hence L(z) = in. Completeness of L implies that L(y) = out.

Thus we have L -1 (in) = L ′-1 (in) ∩ A, L -1 (out) = L ′-1 (out) ∩ A and consequently L -1 (und) = L ′-1 (und) ∩ A. It follows that L = L ′ ↓ A.

We are now ready to prove theorem 3.3.1 and 3. For the proof of theorem 3.3.2 and 3.3.4 we use the following lemmas.

Lemma 3.7.5. Let F = (A, ) be an argumentation framework and let

Proof. Let F = (A, ) be an argumentation framework and let

We immediately have that every y ∈ A \ {x} is legally labelled in L w.r.t. F . We prove that x, too, is legally labelled in L w.r.t.

we have L ′ |= out(x). Lemma 3.7.3 then implies that L ′′ ↓ A = L ′ . Thus, for some y ∈ A s.t. y x, we have L ′′ (y) = in and hence L(y) = in. This implies that x is legally out in L w.r.t. F , and hence that L ∈ L Co (F ).

To prove lemma 3.7.7 below we use the following definition and proposition. Lemma 4.5.2. Let F = (A, ) and let σ be a labelling-based semantics. Let M = (F, H, m, <, σ) be an abductive model that is closed under weakening and satisfies the minimality assumption. Suppose ||= F σ satisfies Conditional Noninterference. If h ∈ H is a most preferred sceptical or credulous explanation for φ then x ∈ Args(m(h)) implies x * φ.

Proof. Let F = (A, ), σ be a labelling-based semantics and let M = (F , H, m, <, σ) be an abductive model that is closed under weakening and satisfies the minimality assumption. Suppose ||= F σ satisfies Conditional Directionality. We prove the credulous case (the sceptical case is similar): Let h ∈ H be a most preferred credulous explanation for φ. We then have m(h) ||= F σ ¬φ and there is no h ′ ∈ H such that h ′ < h and m(h 

The minimality assumption furthermore implies that h ′ < h. But this is a contradiction, because it means that h is not a most preferred credulous explanation for φ. Thus it must hold that x ∈ Args(m(h)) and x * φ.

We now prove theorem 4.5.1.

Proof of theorem 4. Cr ψ. We denote by h ∈ H a hypothesis such that m(h) = ∅ (existence of h is guaranteed because M is closed under weakening). Because M satisfies the minimality assumption, h is a most preferred credulous explanation for ⊤. Thus we have ∅ ||= F σ ψ. Now let h ′ ∈ H be a most preferred credulous explanation for φ (existence of h ′ is guaranteed because we

Because, for all σ ∈ {Co, Gr, Pr, SS}, σ satisfies the noninterference principle, we have that for all F ∈ F, ||= F σ satisfies Conditional Noninterference. This implies that, given any abductive model M based on F under the complete, grounded, preferred or semi-stable semantics that is closed under weakening and satisfies the minimality assumption, the relations |∼ M Cr and |∼ M Sk satisfy Weak Conditional Noninterference.

Lemma 4.8.1. Let F be an argumentation framework, M = (F, H, m, <, σ) an abductive model and let W M Cr = (S, ≺, l). For all (h, L) ∈ S it holds that (h, L) is ≺-minimal in φ iff h is a most preferred credulous explanation for φ and L |= φ.

Proof. Let F be an argumentation framework, M = (F, H, m, <, σ) a abductive model and let

We prove by contradiction that h is a most preferred credulous explanation for φ. Suppose the contrary. Then there is a h ′ that is a credulous explanation for φ and h ′ < h. But then there is an

. This is a contradiction. Hence h is a most preferred credulous explanation for φ.

(If) Suppose h is a most preferred credulous explanation for φ and

Then there is a state (h ′ , L ′ ) ∈ φ and (h ′ , L ′ ) ≺ (h, L). But then h is not a most preferred credulous explanation for φ. This is a contradiction. Hence (h, L) is ≺-minimal in φ. Cr is a preferential model over L Cf (F ).

Proof. Let F be an argumentation framework and let M = (F, H, m, <, σ) an abductive model. Let W M Cr = (S, ≺, l). From definition 4.8.1 together with the fact that < is a strict partial order it follows that ≺ is a strict partial order. Furthermore finiteness of H implies finiteness of S and hence the smoothness condition is satisfied. Theorem 3.2.8 furthermore implies that for all s ∈ S, l(s) ⊆ L Cf (F ), while proposition 2.1.10 implies that for all s ∈ S, l(s) is nonempty. By definition 2.2.5 it follows that W M

Cr is a preferential model over L Cf (F ). Proof. The case σ = Co follows from the principles of conflict-freeness, admissibility and reinstatement. The other cases follow directly.

We now prove that (2) implies (1): Let W be a finite preferential model over L Cf (F ). Let σ ∈ {Co, Gr, Pr, SS}. Lemma 4.8.5 implies that M σ W = (F, H, m, < , σ) is an abductive model based on F . The following equivalences prove that

2. For every s ∈ S that is ≺-minimal in φ we have l(s) |= ψ. • <=≺.

For every

• l(s) = L σ (F, m(s)) ↓ A.

Lemma 4.8.6. Let F = (A, ) be an argumentation framework, M = (F , H, m, <, σ) an abductive model and W M Sk = (S, ≺, l). For all s ∈ S it holds that s is a sceptical explanation for φ iff s ∈ φ.

Proof. Follows directly from definitions 4.2.6, 3.2.8, 2.1.17, 4.8.4 and 2.2.7. Proof. Let M = (F, H, m, <, σ) an abductive model based on F . Let W M Sk = (S, ≺, l). The fact that < is a strict partial order implies that ≺ is too. Theorem 3.2.8 furthermore implies that for all s ∈ S, l(s) ⊆ L Cf (F ), while proposition 2.1.10 implies that for all s ∈ S, l(s) is non-empty. Because H = S it holds that S is finite. By definition 2.2.4 it follows that W M Sk is a cumulative ordered model over L Cf (F ).

We are now ready to prove lemma 4.3.4.

Proof of lemma 4.3.4. Suppose |∼=|∼ M

Sk for an abductive model M = (F , H, m, <, σ). Lemma 4.8.7 implies that W M Sk = (S, ≺, l) is a finite cumulative ordered model over L Cf (F ). We show that |∼ W =|∼ W M

Sk

Sk . This follows from the following equivalences:

2. For all s ≺-minimal in φ we have ∀v ∈ l(s), v |= ψ.

For every most preferred sceptical explanation h for φ we have

Equivalence of 1/2 follows from definition 2.2.7. Equivalence of 2/3 follows from lemma 4.8.6. Equivalence of 3/4 follows from definition 4.2.7. Hence |∼=|∼ W =|∼ W Sk for some cumulative ordered model W over L Cf (F ).

The following theorem states that sceptical (resp. credulous) acceptance in (A P , P ) corresponds with sceptical (resp. credulous) consequences in P as defined in definition 5.4.2. It follows from theorems 15 and 16 due to Wu et al. [START_REF] Wu | Complete extensions in argumentation coincide with 3-valued stable models in logic programming[END_REF].

Theorem 5.4.1. Let P be a logic program. An atom C ∈ At P is a sceptical (resp. credulous) consequence of P iff some (C, R, N ) ∈ A P is sceptically (resp. credulously) accepted in (A P , P ).

Abduction in Logic Programming

The model of abduction in logic programming that we use is based on the model of extended abduction studied by Inoue and Sakama [START_REF] Inoue | Abductive framework for nonmonotonic theory change[END_REF][START_REF] Inoue | Computing extended abduction through transaction programs[END_REF]. They define an abductive logic program (ALP) to consist of a logic program and a set of atoms called abducibles.

Definition 5.4.4. An abductive logic program is a pair (P, U ) where P is a logic program and U ⊆ At P a set of facts called abducibles.

Note that, as before, the set U consists of ground facts of the form C ← (identified with the atom C) and can alternatively be regarded as the set of ground instances of a set of non-ground facts. A hypothesis, according to Inoue and Sakama's model, consists of both a positive element (i.e., abducibles added to P ) and a negative element (i.e., abducibles removed from P ).

Definition 5.4.5. Let ALP = (P, U ) be an abductive logic program. A hypothesis is a pair (∆ + , ∆ -) such that ∆ + , ∆ -⊆ U and ∆ + ∩ ∆ -= ∅. A hypothesis (∆ + , ∆ -) sceptically (resp. credulously) explains a query Q ∈ At P if and only if Q is a sceptical (resp. credulous) consequence of (P ∪ ∆ + ) \ ∆ -.

Note that Sakama and Inoue focus on computation of explanations under the stable model semantics of P , and require P to be acyclic to ensure that a stable model of P exists and is unique [START_REF] Inoue | Computing extended abduction through transaction programs[END_REF]. We, however, define explanation in terms of the consequences according to the partial stable models of P , which always exist even if P is not acyclic [START_REF] Przymusinski | The well-founded semantics coincides with the three-valued stable semantics[END_REF], so that we do not need this requirement.

The following example demonstrates the previous two definitions.

Example 5.4.1. Let ALP = (P, U ) where P = {(p ← ∼s, r), (p ← ∼s, ∼q), (q ← ∼p), r} and U = {r, s}. The hypothesis ({s}, ∅) sceptically explains q, witnessed by the unique model I = ({r, s, q}, {p}) satisfying I = Γ(I). Similarly, ({s}, {r})) sceptically explains q and (∅, {r})) credulously explains q.

Instantiated Abduction in Argumentation

In this section we show that an abductive argumentation framework (F, I) can be instantiated on the basis of an abductive logic program (P, U ). The idea is that every possible hypothesis (∆ + , ∆ -) maps to an abducible argumentation framework generated by the logic program (P ∪ ∆ + ) \ ∆ -. The hypotheses for a query Q then correspond to the abducible argumentation frameworks that explain the observation B consisting of all arguments with conclusion Q. The construction of (F, I) on the basis of (P, U ) is defined as follows.

Chapter 7

Conclusions and Future Work

Conclusions

The overall aim of this work was to model and study the notion of change in the context of abstract argumentation. Our motivation was that, while the abstract argumentation formalism is essentially static, argumentation is a dynamic activity. The dynamic perspective we have taken improved our understanding of the behaviour and applicability of the abstract argumentation formalism.

In chapter 1 we identified two types of change in abstract argumentation, which we call intervention and observation. We explained that they are conceptually similar to the similarly named types of change in the theory of causal Bayesian networks. Intervention represents action, which amounts to the manipulation of the argumentation framework, leading to a 'bottom-up' revised evaluation of the argumentation framework. Observations, on the other hand, are pieces of information from the environment, that require a 'top-down' revision of the evaluation of the argumentation framework. We regard the two types of change as two forms of entailment: intervention-based entailment and observation-based entailment.

In chapter 3 we proposed a formal model of intervention-based entailment. We focussed on two types of actions: defeat (addition of an attacker) and provisional defeat (addition of a self-attacking attacker). The resulting notion of entailment allowed us to study the behaviour of semantics for argumentation under change.

We studied this behaviour by proposing a number of properties for well-behaved intervention-based entailment, and by systematically checking the conditions under which these properties are satisfied. The properties we proposed were direct translations of a number of properties that have been considered in the context of non-monotonic inference (the so called KLM properties). The results we obtained provide insight into the behaviour of semantics for argumentation under change. For example, the complete and grounded semantics satisfy both Cautious Monotony and Cut-two intuitive properties that an intervention-