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Summary

Dung’s theory of abstract argumentation is a widely used formalism in the
field of artificial intelligence. It is used to model various types of reasoning,
by representing conflicting or defeasible information using an argumentation
framework, i.e., a set of arguments and an attack relation. Different so-called
semantics have been proposed in the literature to determine, given an argu-
mentation framework, the justifiable points of view on the acceptability of the
arguments. The research in this thesis is motivated by the idea that argumen-
tation is not a static process, and that a better understanding of the behaviour
and applicability of the theory of abstract argumentation requires a dynamic
perspective. We address this issue from three points of view.

First, we identify and investigate two types of change in argumentation. We
call them intervention and observation, due to their similarity to the similarly
named types of change in the theory of causal Bayesian networks. While inter-
vention amounts to change due to actions (i.e., bringing new arguments/attacks
into play), observation amounts to revision due to new information from the
environment. We model these two types of change as two types of inference
relations. This allows us to contrast and characterize the behaviour of the two
types of change, under a number of different semantics, in terms of properties
satisfied by the respective inference relations.

Second, we investigate the relation between abduction in logic programming
and change in argumentation. We show that, on the abstract level, changes to
an argumentation framework may act as hypotheses to explain an observation.
The relation with abduction in logic programming lies in the fact that this
abstract model can be instantiated on the basis of an abductive logic program,
just like an abstract argumentation framework can be instantiated on the basis
of a logic program. We furthermore present dialogical proof theories for the
main reasoning problem, i.e., finding hypotheses that explain an observation.

Third, we look at change in preference-based argumentation. Preferences have
been introduced in argumentation to encode, for example, relative strength of
arguments. An underexposed aspect in these models is change of preferences.
We present a dynamic model of preferences in argumentation, based on what
we call property-based argumentation frameworks. It is based on Dietrich and
List’s model of property-based preference and provides an account of how and
why preferences in argumentation may change. The idea is that preferences
over arguments are derived from preferences over properties of arguments and
change as the result of moving to different motivational states. We also provide
a dialogical proof theory that establishes whether there exists some motivational
state in which an argument is accepted.
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Chapter 1

Introduction

1.1 Background

1.1.1 Argumentation in Artificial Intelligence

Argumentation is an activity that lies at the heart of how humans persuade
and inform each other, how they make decisions and form beliefs, and how
they justify and explain these decisions and beliefs. It is for this reason that
argumentation is a central discipline within the field of artificial intelligence.
The research in this thesis deals with theoretical applications of argumentation,
namely as a model to capture in a general way the notion of defeasible reasoning.

Defeasible reasoning is reasoning based on rules of inference that are not nec-
essarily deductively valid. In defeasible reasoning, premises provide support
for conclusions, but do not guarantee their truth (it may be the case that the
premises are true while the conclusion is false). This means that conclusions
arrived at using defeasible reasoning may have to be retracted when additional
information is acquired. This is a violation of the monotony property, which
states that previously drawn conclusions are never retracted when additional in-
formation comes into play. In this sense, defeasible reasoning is non-monotonic.

Classical monotonic reasoning is suitable for formal or mathematical reasoning.
Once we establish the truth of a theorem in mathematics, we do not worry about
the truth of this theorem when we acquire new information. For example,
Euclid proved more than two centuries ago that the set of prime numbers is
infinite, and it is impossible that a new discovery will invalidate this truth. Non-
monotonicity is, however, a natural phenomenon in common-sense reasoning,
because we often reason using assumptions, general rules with exceptions, rules
of thumb, etcetera. This has led to the insight that classical monotonic logics
are unsuitable for common-sense reasoning and, starting in the early eighties,
much research in the field of Artificial Intelligence has focussed on defeasible,
non-monotonic reasoning.

By the early nineties, the number of different defeasible reasoning formalisms
was enormous. Some examples are Reiter’s default logic [78], Pollock’s defea-
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sible logic [74], and many variations of logic programming [53, 77, 52]. Some
approaches to defeasible reasoning already employed argumentation-theoretic
ideas (see Prakken and Vreeswijk [76] for an overview). In 1995, Phan Min
Dung showed, however, that many formalisms are based on the same underly-
ing principle, which can be modelled using a simple and elegant theory called
abstract argumentation [42]. Since 1995, this theory has led to many new in-
sights about the nature of defeasible reasoning and it has been applied in many
areas beyond defeasible reasoning, which includes negotiation, decision making
and agent communication.

While argumentation is an inherently dynamic activity, the theory of abstract
argumentation neglects the notion of change, and takes a static perspective.
The research in this thesis is motivated by the idea that a better understanding
of the behaviour and applicability of the theory requires a dynamic perspective.
This perspective leads to various questions related to change in the theory of
abstract argumentation.

The title of this thesis is Argumentation in Flux, which is a reference to the
book called Knowledge in Flux by Peter Gärdenfors’s. This book, published
in 1988, dealt with the dynamics of epistemic states, and set the stage for the
successful and important field of research called belief change, which is active to
this day. The goal of this thesis is to combine the perspectives taken by Dung
in 1995 and by Gärdenfors in 1988.

Before precisely stating the problem that we address, we explain the basics of
abstract argumentation, instantiated argumentation (i.e., argumentation as an
abstract model of a defeasible reasoning formalism) and a number of extensions
of the theory that will be relevant in what follows.

1.1.2 Abstract Argumentation

The starting point in Dung’s theory of abstract argumentation is the idea that
a debate can be represented using a set of arguments and an attack relation
between arguments [42]. Consider, for example, the following exchange of argu-
ments.

• a: Mary will pass her mathematics exam.

• b: No she won’t, because the exam is too difficult.

• c: Yes, but Mary is very smart.

A central idea is that we can reason about the acceptance of arguments even
if we abstract away from their content. Thus, we only need to identify the
arguments a, b and c, and the attacks among them: c attacks b and b attacks a.
Formally, a debate can then be represented by what is called an argumentation
framework. This is a pair F = (A,!) where A is a set of abstract arguments and
!⊆ A × A is an attack relation between arguments. Thus, an argumentation
framework is essentially a directed graph, in which nodes represent arguments
and arrows represent attack between arguments. The debate discussed here can
be represented by the argumentation framework shown in figure 1.1.

2



a b c

Figure 1.1: An argumentation framework.

Given an argumentation framework, the main reasoning task is to answer the
question: which arguments can be accepted? For the argumentation framework
shown in figure 1.1, we can reason as follows: The argument c is left unchallenged
and is therefore accepted. The argument b is challenged by c which, as we just
established, is accepted. This implies that b must be rejected. Finally, the
argument a is challenged by b, but since b is rejected, we can accept a.

There is, however, not in general a single answer to the question of which argu-
ments can be accepted. This is due to the fact that argumentation frameworks
that contain cycles (such as mutually attacking arguments) may lead to more
than one way in which we can choose which arguments to accept. Consider,
for example, the following exchange of arguments, which is represented by the
argumentation framework shown in figure 1.2.

• a: Germany will win the finals.

• b: No, Argentina is better.

• c: No, Germany is better.

• b: No, Argentina is better.

a b c

Figure 1.2: An argumentation framework with a cycle.

A method to evaluate an argumentation framework, or to determine the points
of view on which arguments to accept, is called an argumentation semantics.
We will consider in this thesis a number of different semantics, namely the
complete, grounded, preferred and stable semantics [42] as well as the semi-
stable semantics [89, 27]. Each of these semantics yields, according to some
set of criteria, a set of extensions (i.e., sets of acceptable arguments) of a given
argumentation framework. These extensions represent the points of view on
which arguments are acceptable. An alternative representation for such a point
of view is a labelling, which assigns to each argument an acceptance status in
(meaning accepted), out (meaning rejected) or undecided (neither accepted nor
rejected) [26]. A basic condition for a labelling to make sense (and a condition
satisfied by all the argumentation semantics we consider) is expressed by the
following two rules:

1. An argument is labelled in if and only if all attackers are labelled out.

2. An argument is labelled out if and only if some attacker is labelled in.

3



a b c

(a)

a b c

(b)

a b c

(c)

Figure 1.3: Three labellings of the argumentation framework shown in figure 1.2.

We can conveniently represent a labelling by colouring the nodes of the graph.
We use the following convention: white nodes are in, black nodes are out, and
gray nodes are undecided. The labellings satisfying the rules discussed above
for the argumentation framework shown in figure 1.2 are shown in figure 1.3.
In figure 1.3a, b is in and a and c are out; in figure 1.3b, a and c are in and b is
out; and in figure 1.3c, all arguments are undecided.

To summarize, argumentation frameworks are abstract representations of a de-
bate, in which we identify only the arguments (without specifying their content)
and attacks between arguments. The evaluation of an argumentation framework
under a given argumentation semantics leads to a set of extensions or labellings,
each representing a possible point of view on which arguments to accept. We
will formalize these concepts and explain the difference between the different
argumentation semantics in chapter 2.

Several extensions of the notion of an argumentation framework have been de-
veloped. An extension that we look at in this thesis are preference-based argu-
mentation frameworks [2, 86]. Preferences over arguments may be derived from
the relative strength of arguments. These preferences suggest that, in some
cases, the attack of one argument on another succeeds only on the condition
that the latter is not preferred over the former. The notion of a value-based ar-
gumentation framework extends this idea [14]. The idea here is that arguments
promote certain values and that different audiences have different preferences
over values, from which the preferences over arguments are derived. Thus, a
value-based argumentation framework may be evaluated in a different way by
different audiences.

1.1.3 Instantiated Argumentation

As we demonstrated, Dung’s theory of argumentation is abstract, in the sense
that the content of arguments is left unspecified. However, many defeasible
reasoning formalisms can be seen as specific forms of instantiated argumentation,
where arguments are not anymore abstract, but are instantiated on the basis of
a knowledge base.

Instantiated argumentation is based on a three-step process, shown in figure 1.4
(this figure also appears in Baroni et al. [4]). In the first step, an argumentation
framework is constructed on the basis of a given knowledge base. The arguments

4



Knowledge Base

Argumentation Framework

Extensions of Arguments

Extensions of Conclusions

Step 1: Construction of ar-
gumentation framework

Step 2: Determining exten-
sions (under given semantics)

Step 3: Extracting con-
clusions from extensions

Figure 1.4: The Three-Step Instantiation Process.

in this argumentation framework correspond to defeasible proofs, and attacks
are determined by how the different proofs defeat each other. In the second
step, an argumentation semantics is applied, resulting in sets of extensions of
arguments. In the third step the set of conclusions of the arguments is extracted.
The result of this step represents the conclusions of the knowledge base.

Although many non-monotonic reasoning formalisms have been shown to be
forms of instantiated argumentation (including Reiter’s default logic and Pol-
lock’s inductive defeasible logic [42] as well as Nute’s defeasible logic [54]), we
restrict our attention here to logic programming. When modelling logic pro-
gramming as argumentation, the knowledge bases that we work with are logic
programs. Furthermore, arguments are constructed by constructing proof trees
consisting of the rules of the logic program, and the defeasibility of these argu-
ments is due to the use of negation as failure. The outcome of the three-step
procedure depends on the argumentation semantics that is applied in step two.
Various choices that can be made in this regard have been shown to correspond
to various semantics for logic programming. For example, using the stable se-
mantics in step two results in an outcome corresponding to the stable model
semantics for LP [42], using the grounded semantics results in an outcome cor-
responding to the well-founded semantics for LP [42], the complete semantics
corresponds in this way to the three-valued stable semantics for LP [91], and
the preferred semantics corresponds to the regular model semantics for LP [31].

In addition to defeasible reasoning, it has been shown that the stable marriage
problem can be seen as a form of instantiated argumentation [42].

5



1.2 Change in Argumentation

We now turn to the problem addressed in this thesis. As we pointed out,
abstract argumentation theory neglects aspects of change. The theory is agnos-
tic towards change of an argumentation framework, in the sense that it only
provides methods to compute a fixed and unchanging evaluation of a given ar-
gumentation framework. In real life, however, argumentation is an activity, in
which the evaluation of arguments evolves as new arguments and attacks come
into play. Thus, the evaluation of an argumentation framework may change due
to actions. Furthermore, there is the general problem of belief revision, namely
that intelligent agents have to account for changes in their environment and
for situations in which beliefs are discovered to be incorrect. This applies to
argumentation too: we may arrive, using argumentation, at the conclusion that
an argument is accepted, but we have to revise this conclusion if we discover
that this is incorrect. Thus, we can distinguish two types of change in argumen-
tation. We will now clarify this distinction by giving some examples of these
two types of change, and identifying the issues that arise when attempting to
model them. We also briefly survey the literature in which aspects of these two
types of change have been considered.

1.2.1 Two Types of Change

Change due to Actions

While the notion of an argumentation framework is essentially static, in the
sense that the set of arguments and attacks are fixed, argumentation is an
inherently dynamic activity. This is because a debate usually evolves due to
new arguments and attacks coming into play. These are essentially actions
performed in a debate. Consider the discussion we used earlier:

• a: Mary will pass her mathematics exam.

• b: No she won’t, because the exam is too difficult.

• c: Yes, but Mary is very smart.

This discussion may continue as follows:

• d: Mary did not pay her tuition fees, so she is barred from taking exams.

The new argument d attacks the argument a and leads to a new evaluation of the
argumentation framework. While a was initially in, because its sole attacker b
was labelled out, a now becomes out, because d is itself unattacked and therefore
in. This is shown in figure 1.5: in the initial situation (figure 1.5a), a and c are
in and b is out. When we add the argument d, a becomes out (figure 1.5b).

From a formal point of view, this type of change is easy to deal with, because we
can simply add arguments and attacks to an existing argumentation framework
and recompute its evaluation. However, it does put some aspects that are

6



a b c

(a) Initial situation.

a b c

d

(b) Change due to a new argument.

Figure 1.5: Change due to a new argument.

usually studied from a static perspective in a different light. For example,
several authors have studied properties that represent natural principles that
one may expect an argumentation semantics to satisfy. Many of these properties
assume a static setting (examples are in-maximialty, (strong) admissibility and
(weak) reinstatement [6]). One of our goals is to study properties that apply to
the dynamic setting.

Another issue is that of computation. The computational complexity of com-
puting the evaluation of an argumentation framework under various semantics
has been studied, e.g., by Dunne [44], while a number of algorithms have been
proposed by Modgil and Caminada [68]. In the dynamic setting, however, the
question arises whether recomputing the evaluation of an argumentation frame-
work after it is modified can somehow benefit from reusing the evaluation of
the initial argumentation framework. Liao et al. [65] investigated the role of
directionality in this respect. Directionality (a principle first studied by Baroni
and Giacomin [6]) ensures, if satisfied by an argumentation semantics, that an
argument x has an effect on the status of an argument y only if there is a di-
rected path from x to y. This means that, when an argumentation framework
is modified, we can divide the argumentation framework into an affected part
and an unaffected part, and only the evaluation of the affected part needs to be
recomputed.

Revision of Evaluation

The second type of change is concerned with the revision of the evaluation of
an argumentation framework due to new information. The relevance of this
type lies in the general problem of belief revision: agents have to account for
changes in their environment, or for situations in which their beliefs turn out
to be incorrect. This applies to argumentation too. We may, through argumen-
tation, arrive at some conclusion, but we have to revise this conclusion if new
information to the contrary becomes known.

We demonstrate the general idea using a simple example. Consider again the
argumentation framework shown in figure 1.1, in which we accept a and c and
reject b. Suppose we simply learn that Mary did not pass her exam. This
means that we must reject a. But how are we supposed to revise the overall
evaluation of the argumentation framework? This depends on how we account
for this information. We may, for example, give up our belief that Mary is very
smart. The new information is then accounted for by adding an attacker to c
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a b c

(a) Attacking c.

a b c

(b) Attacking a.

Figure 1.6: Two ways to account for rejection of a.

(figure 1.6a). On the other hand, perhaps we are certain that Mary is very smart,
and believe that her failing the exam must have had another reason (perhaps
Mary did not pay her tuition fees!). In this situation, the new information
can be accounted for by adding an attacker to a (figure 1.6b). This example
clearly demonstrates the difference between the two type of change: the action
of rejecting a by introducing a new attacker simply leads to rejection of a (but
not of c) while the information that a is rejected may, depending on how we
account for this information, also lead to rejection of c.

From a technical point of view, this type of change can be seen as a kind of
goal-oriented change of the argumentation framework. Goal-oriented change in
argumentation is usually studied from a multi-agent strategic perspective. From
the multi-agent strategic perspective, the revision of the status of an argument
is due not to information from the environment, but represents the goal of an
agent in a debate. For example, Kontarinis et al. [61] put this problem as
follows: “When several agents are engaged in an argumentation process, they
are faced with the problem of deciding how to contribute to the current state of
the debate in order to satisfy their own goal, i.e., to make an argument under
a given semantics accepted or not.” Similar motivations are found in Baumann
and Brewka’s work on what they call the enforcement problem [11, 12] as well
as other work in this direction [17, 20]. Work that takes a multi-agent strategic
perspective deals mainly with procedural and economical aspects (e.g., how to
determine which arguments to attack to satisfy a given goal? And what are the
minimal contributions to a debate that achieve this?).

In this thesis, however, we take a single-agent revision perspective, which has
been relatively neglected in the literature. That is, the argumentation frame-
work represents the reasoning of a single agent, and the revision of its evaluation
is due to new information that the agent receives from the environment. This
leads to different questions than those that are relevant when taking a multi-user
strategic perspective. For example, to model revision, we need some mechanism
by which a rational agent decides how to change his argumentation framework,
in order to revise its evaluation due to an observation. We can also approach
this from another angle, and focus on properties that characterize a rational
way to revise the evaluation of an argumentation framework.

Outside the area of argumentation theory, this is a very common way of looking
at revision. The most notable example is the notion of a revision operator,
which is widely studied in the area of belief revision [55]. Given some initial
knowledge setK, a revision operator ⊛ takes as input a piece of new information
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φ and returns a new knowledge set K ⊛ φ that represents a rational way of
revising K by φ. This approach permits both constructive characterizations
(i.e., the definition of mechanisms that define well-behaved revision operators)
as well as postulate-based characterizations (i.e., the definition of properties
that characterize a well-behaved revision operator).

In the single-agent revision perspective, the goal-oriented change of the argu-
mentation framework can be seen as a form of abduction. That is, the agent
needs to find some change to the argumentation framework that explains the
new information.

1.2.2 Intervention and Observation

We identified two types of change in argumentation, namely change due to
actions in a debate, and revision of the evaluation due to new information. This
distinction resembles the distinction between intervention and observation in
causal Bayesian networks. For this reason, we call the two types of change
intervention in argumentation and observation in argumentation. We give a
short explanation of intervention and observation in causal Bayesian networks,
and then discuss the similarities with the two types of change in argumentation.

Intervention and Observation in Causal Bayesian Nets

Causal Bayesian networks are structures used to represent probabilistic causal
relationships between random variables. A causal Bayesian net is a directed
acyclic graph, in which nodes represent random variables and edges represent
relations of causal influence. Informally speaking, a causal Bayesian net (like
a Bayesian net) carries conditional independence relations between different
variables of a given probability distribution. That is, once the values of all
parent nodes (i.e., all direct causes) of a given node X are known, the value
of X is probabilistically independent of all the other ancestor nodes (i.e., all
indirect causes). This is called the Markov assumption. In addition—and this
is what distinguishes causal Bayesian nets from regular Bayesian nets—it is
assumed that edges actually represent a directed causal relation, which is not
guaranteed by the Markov assumption alone. We suffice with this informal
description, and refer the reader to Pearl [72] for details.

Figure 1.7 (left side) shows an example of a causal Bayesian net (taken from
Pearl [72]). It represents the causal relationships between the season (X1 ∈
{wet, dry}), the state of the sprinkler (X2 ∈ {on, off}), the rain (X3 ∈ {yes,no}),
wetness of the pavement (X4 ∈ {yes,no}), and slipperiness of the pavement
(X5 ∈ {yes,no}). The causal relationship between the season and the state of
the sprinkler is because the sprinkler is set in advance according to the season.
Furthermore, the season influences the probability of rain and the state of the
sprinkler, which both influence wetness of the pavement. In turn, wetness of
the pavement influences slipperiness of the pavement.

A causal Bayesian network makes it possible to draw inferences on the basis of
two types of events. These are interventions and observations, which leads to
the notion of intervention-based inference and observation-based inference.
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Figure 1.7: A causal Bayesian net (left) and the intervention X2 = On (right).

First of all, if we observe an event then, a causal Bayesian network informs
us about both the possible causal explanations for this event as well as other
events caused by it. For example, if we observe that the sprinkler is on, we
may infer, as a causal explanation, that the season is dry. This, in turn, may
decreases the probability of rain. Other events that may be caused by the sprin-
kler being on are a wet pavement and, indirectly, a slippery pavement. Thus,
observation-based inference involves both backwards abductive reasoning about
causes, as well as forward reasoning about effects. Formally, observations in
causal Bayesian nets are modelled like in regular Bayesian nets. That is, ob-
serving an event amounts to setting the value of the corresponding variable and
recomputing the probabilities of the other events conditional on the observed
event, using the conditional independence relations encoded by the graph.

Interventions, however, represent actions where something in the environment is
changed. Interventions are modelled by modifying the causal Bayesian network
to take the corresponding change in the environment into account. We may,
for example, turn on the sprinkler. In the causal Bayesian network, we thus fix
the value of X3 to on. Because the influence of the season on the state of the
sprinkler is no longer in effect, we furthermore remove the arrow from X1 to
X3. This is the general idea of how an intervention is interpreted: the original
causal Bayesian net is modified by fixing the value of a variable and removing
its dependence on its typical causes. The modification corresponding to the
intervention of turning on the sprinkler is shown in figure 1.7 on the right.

An important difference between observation and intervention is the way in
which they propagate through the causal Bayesian network. An observation
propagates to variables that play a role in the causal explanation of the ob-
served event, as well as variables that represent direct and indirect effects of
the observed event. An intervention, on the other hand, propagates only to the
direct and indirect effects of the variable whose value is fixed. In other words:
causal explanation plays no role in determining how an intervention affects other
variables.
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Intervention and Observation in Argumentation

The distinction between the two types of change in argumentation that we iden-
tified resembles the distinction between intervention and observation in causal
Bayesian networks. For this reason we refer to the two types of change as
intervention in argumentation and observation in argumentation:

• Given an argumentation framework, an intervention represents a (hypo-
thetical) action in a debate. The action leads to change in the evaluation
of the argumentation framework that reflects the effects of the action.

• Given an argumentation framework, an observation represents a new piece
of information about the status of one or more arguments. An observa-
tion leads to a revised evaluation of the argumentation framework, which
accounts both for the explanation of the observation, as well as its effects.

The two types of change in argumentation lead to two types of entailment we
can perform on the basis of a given argumentation framework. Intervention-
based entailment is concerned with the consequences of (hypothetical) actions
performed in an argumentation framework, and observation-based entailment
is concerned with the consequences of new information from the environment
about the evaluation of an argumentation framework. This perspective allows
us to model the two types of change in a uniform way, and to compare the
two in terms of their behaviour, such has how interventions and observations
propagate through an argumentation framework.

1.3 Research Questions

Our main goal in chapter 3 and 4 is to formally develop a model to study change
due to intervention and observation in argumentation, and to study and compare
the behaviour of these two types of change. We start in chapter 3 by looking
at intervention. We model change due to intervention as a form of entailment
between interventions and consequences of interventions. This allows us to study
the behaviour of an argumentation framework from a dynamic perspective, by
focussing on properties satisfied by these entailment relations. The questions
we address are the following.

• How can we model intervention-based entailment in argumentation?

• How does intervention-based entailment behave with respect to some gen-
eral principles of well-behaved inference?

• What is the role of directionality and noninterference in the behaviour of
intervention-based entailment?

In chapter 4 we look at obervation. Like we do for intervention, we model
change due to observation as a form of entailment between observations and
consequences of observations. The first question we address is the following.
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• What is a rational way for an agent to revise the evaluation of an argu-
mentation framework to account for an observation?

This question breaks down into the following two sub-questions.

• By what mechanism does a rational agent decide how to change his argu-
mentation framework in order to revise its evaluation due to an observa-
tion?

• What are the conditions that characterize a rational way to revise the
evaluation of an argumentation framework due to an observation?

Having modelled the two types of change as two forms of entailment, we are in
a position to compare the two.

• What are the main differences between intervention and observation in
terms of how interventions and observations propagate through an argu-
mentation framework?

In chapter 5 we focus on abduction in argumentation. The problem of abduc-
tion has, in the field of artificial intelligence, been extensively studied in the
context of logic programming (see, for example, Denecker and Kakas [39] for an
overview). Furthermore, it has been shown that logic programming can be seen
as a form of instantiated argumentation. This raises the following question.

• Is there a model of abduction in abstract argumentation that can be seen
as an abstraction of abduction in logic programming, in the same way
that abstract argumentation has been shown to be an abstraction of logic
programming?

Proof theories in argumentation answer the question whether or not an argument
is accepted under a given semantics. These proof theories are often presented
as two-person dialogue games played according to particular sets of rules. As
such, they relate different semantics to stereotypical patterns found in real world
dialogue. For example, the grounded semantics has been shown to relate to a
kind of persuasion dialogue, while the preferred semantics relate to Socratic-style
dialogue [30, 32]. Having defined a model for abduction in argumentation, one
may wonder whether there are stereotypical dialogue patterns that correspond to
the main reasoning tasks associated with this model, namely to find explanations
for a given observation. This leads to the following research question.

• Having defined a model of abduction in abstract argumentation, is it pos-
sible to define dialogical proof procedures for the problem of finding ex-
planations for a given observation?

In chapter 6 we focus on change in preference-based argumentation frameworks.
Preferences are usually assumed to be fixed and no account is provided of how
or why they may change. This leads to the final research question.

• How can change in preference-based argumentation be modelled?
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1.4 Thesis Overview

• Chapter 2: Preliminaries

We first present the necessary basics of argumentation theory: argumen-
tation frameworks and extension-based semantics [42] and labelling-based
semantics [26, 33]. Based on these concepts we define a logical labelling
language, which provides us with the flexibility we need to reason about
interventions and observations in abstract argumentation.

We then present the necessary basics of the KLM approach to non-mono-
tonic inference due to Kraus, Lehmann and Magidor [62]. This includes
both syntactical characterisations (the so called KLM properties for well-
behaved non-monotonic inference), semantical characterisations, and the
results connecting these characterizations.

• Chapter 3: Intervention-Based Entailment in Argumentation

We model change due to intervention (i.e., actions in a debate correspond-
ing to new arguments and attacks being added) as a form of entailment
between interventions and consequences of interventions. This allows us
to study the behaviour of an argumentation framework from a dynamic
perspective, by focussing on properties satisfied by these entailment rela-
tions.

This puts us in a position to study a number of properties of different
argumentation semantics, by investigating how these entailment relations
behave with respect to some general principles of well-behaved inference.
These principles are based on the KLM properties for well-behaved non-
monotonic inference.

We then investigate the role of directionality and noninterference in the
behaviour of intervention-based entailment. These properties ensure that
the effect of an intervention propagates throughout the argumentation
framework in a well-behaved manner.

• Chapter 4: Observation-Based Entailment in Argumentation

We model change due to observation, i.e., new information leading to a
revised evaluation of an argumentation framework. Like we do for inter-
vention, we model it as a form of entailment between observations and
consequences of observations.

Having modelled the two types of change as two forms of entailment, we
are in a position to compare the two. Specifically, we study the differences
between intervention and observation in terms of how interventions and
observations propagate through an argumentation framework.

• Chapter 5: Abduction in Argumentation and Logic Program-
ming

We develop a model of abduction in abstract argumentation, based on the
idea that changes to an argumentation framework act as hypotheses to ex-
plain the support of an observation. We present dialogical proof theories
for the main reasoning tasks (i.e., finding hypotheses that explain skepti-
cal/credulous support) and we show that our model can be instantiated
on the basis of abductive logic programs.
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• Chapter 6: Change in Preference-Based Argumentation

We develop a dynamic model of preference-based argumentation, centring
on what we call property-based argumentation frameworks. It is based on
Dietrich and List’s model of property-based preference and it provides an
account of how and why preferences in argumentation may change. The
idea is that preferences over arguments are derived from preferences over
properties of arguments, and change as the result of moving to different
motivational states. We also provide a dialogical proof theory for the
task of checking whether there exists some motivational state in which an
argument is accepted.

The work presented in chapter 3 and 4 is based in part on joint work with
Richard Booth, Souhila Kaci and Leendert van der Torre [25, 23, 24] but contain
a number of new ideas and results. The work in chapter 5 is based on joint work
with Richard Booth, Dov Gabbay, Souhila Kaci and Leendert van der Torre [21].
The work in chapter 5 is based on joint work with Richard Booth and Souhila
Kaci [22].
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Chapter 2

Preliminaries

2.1 Abstract Argumentation

The central notion in abstract argumentation theory is that of an argumenta-
tion framework, which is a directed graph represented by a set A of arguments
and a binary relation ! over A called the attack relation. [42] To simplify our
discussion we assume that A is finite, and that it is a subset of an infinite set U
called the universe of arguments.

Definition 2.1.1. Let U be a set whose elements are called arguments. An
argumentation framework is a pair F = (A,!) where A is a finite subset of U
and !⊆ A×A is a relation called the attack relation. We denote by F the set
of all argumentation frameworks.

Given an argumentation framework (A,!) we say that an argument a ∈ A

attacks an argument b ∈ A if and only if (a, b) ∈!. We will mostly use infix
notation and write a ! b instead of (a, b) ∈!. We extend this notation as
follows. Given a set B ⊆ A, we say that x attacks B (written x ! B) whenever
x ! y for some y ∈ B and, conversely, that B attacks x (written B ! y)
whenever x ! y for some x ∈ B. Given two sets B,B′ ⊆ A we say that B

attacks B (written B ! B′) whenever x ! y for some x ∈ B and y ∈ B′. In
addition, we write x $! y whenever it is not the case that x ! y, and similarly
for x $! B, B $! x and B $! B′. Given an argumentation framework F we
furthermore denote by x− (resp. B−) the set of arguments attacking x (resp.
some x ∈ B) and by x+ (resp. B+) the set of arguments attacked by x (resp.
some x ∈ B).

An important idea in abstract argumentation is that we can reason about the
acceptability of arguments without specifying their content. In chapter 5 we
work with argumentation frameworks whose arguments have content that is
generated on the basis of a logic program. In this section, however, we do not
assign any meaning to abstract arguments.

Figures 2.1a, 2.1b and 2.1c depict examples of argumentation frameworks. We
will refer back to these argumentation frameworks throughout this chapter.
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Figure 2.1: Argumentation frameworks used as running examples.

Given an argumentation framework, the main reasoning problem is to determine
the positions that a rational agent should take with respect to the acceptability
of the arguments. Solutions to this problem can be represented by extensions,
which are sets of simultaneously acceptable arguments. They can also be repre-
sented by labellings, which are functions that associate with every argument a
label that indicates the argument’s acceptance status. We use the labelling-based
approach in chapters 3 and 4 and the extension-based approach in chapters 5
and 6. The necessary basics of the two approaches are presented in the following
two subsections.

2.1.1 Extension-Based Semantics

An extension-based semantics is defined by specifying the conditions that an
extension (a set of arguments) must satisfy in order to represent a rational
point of view.1 We represent a semantics by a function Eσ(F ) that returns all
extensions of F under the semantics σ.

Two basic properties for an extension to represent a rational point of view are
conflict-freeness and admissibility. An extension E is conflict-free if is not self-
attacking (i.e., no member of E attacks another member of E). Furthermore, E
is admissible if it defends all its members, where defence by E of an argument
x is defined as follows.

Definition 2.1.2. [42] Let F = (A,!) be a framework. An extension E ⊆ A

defends an argument y ∈ A if and only if for all x ∈ A such that x ! y it holds
that E ! x. We let DF (E) denote the set of all arguments y ∈ A such that E
defends y.2

Definition 2.1.3. [42] Let F = (A,!) be an argumentation framework. An
extension E ⊆ A is

1The usage of the term semantics in argumentation has its roots in Logic Programming and
is somewhat different from its use outside of the area of logic programming and argumentation,
such as the preferential model semantics and Kripke semantics.

2Defence of x by E was called acceptability of x w.r.t. E by Dung [42]. The usage of the
term defence is more common in recent literature.
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Co Gr Pr SS St
{a, c} ✓ ✓ ✓ ✓

{a, d} ✓ ✓ ✓ ✓

∅ ✓ ✓

Table 2.1: Extensions in figure 2.1b.

• conflict-free (E ∈ ECf(F )) iff E $! E.

• admissible (E ∈ EAd(F )) iff E is conflict-free and E ⊆ DF (E).

Using these properties we can define the most widely used semantics, namely
the complete, grounded, preferred, semi-stable and stable semantics.

Definition 2.1.4. Let F = (A,!) be an argumentation framework. An exten-
sion E ⊆ A is

• complete (E ∈ ECo(F )) iff E ∈ EAd(F ) and E = DF (E). [42]

• grounded (E ∈ EGr(F )) iff E ∈ ECo(F ) and there is no E′ ∈ ECo(F ) such
that E′ ⊂ E. [42]

• preferred (E ∈ EPr(F )) iff E ∈ EAd(F ) and there is no E′ ∈ EAd(F ) such
that E ⊂ E′. [42]

• semi-stable (E ∈ ESS(F )) iff E ∈ EAd(F ) and there is no E′ ∈ EAd(F )
such that A \ (E′ ∪ E′+) ⊂ A \ (E ∪ E+). [27]

• stable (E ∈ ESt(F )) iff E is conflict-free and for all x ∈ A \ E, it holds
that E ! x. [42]

Table 2.1 shows the extensions under each of these semantics for the argumen-
tation frameworks shown in figure 2.1b. What are the intuitions behind these
semantics? First of all, a complete extension represents a point of view that is
admissible (i.e., it is conflict-free and defends all its members) and additionally
includes all arguments it defends. Note that every argumentation framework
has at least one complete (and hence admissible) extension [42]. The grounded
extension is a complete extension that is minimal with respect to set-inclusion.
It represents the most sceptical point of view and it is always unique. The
grounded extension is also characterized by a fix point theory.

Proposition 2.1.1. [42, Theorem 25] Given an argumentation framework F ,
the grounded extension of F coincides with the least fixed point of DF .

A preferred extension represents one of the maximally credulous positions that
one can take. It is an admissible extension that is maximal with respect to
set inclusion. Note that every argumentation framework has at least one pre-
ferred extension. Table 2.1 demonstrates that not every complete extension is
preferred: the extension ∅, which is complete, is not preferred. The converse,
however, does hold.

Proposition 2.1.2. [42, Theorem 25] For all F ∈ F , EPr(F ) ⊆ ECo(F ).
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Figure 2.2: Not all preferred extensions are stable.

Co Gr Pr SS St
{a} ✓ ✓

{b, d} ✓ ✓ ✓ ✓

∅ ✓ ✓

Table 2.2: Extensions in figure 2.2.

A stable extension is a conflict-free extension that makes a decision on all argu-
ments. This means that every argument is either a member of the extension or
it is attacked by the extension. Note that stable extensions are also preferred.

Proposition 2.1.3. [42, Theorem 25] For all F ∈ F , ESt(F ) ⊆ EPr(F ).

Not every preferred extension is, however, stable. Moreover, a stable extension
is not guaranteed to exist. Both facts are demonstrated by the argumenta-
tion framework shown in figure 2.1c, which has one extension that is complete,
grounded and preferred, namely the empty set, but has no stable extension.

The semi-stable semantics was introduced by Caminada [27], although it is the
same as what Verheij called the admissible stage semantics [89]. A semi-stable
extension is an admissible extension E whose range, which is the set E ∪E+, is
maximal with respect to set inclusion. The range of E is intuitively the set of
arguments about which the extension makes a decision, i.e., those accepted and
those rejected. Note that every stable extension is also semi-stable and every
semi-stable extension also preferred.

Proposition 2.1.4. [27, Theorem 1 and 2] For all F ∈ F , ESt(F ) ⊆ ESS(F ) ⊆
EPr(F ).

An attractive feature of the semi-stable semantics is that it coincides with the
stable semantics if a stable extension exists but, unlike a stable extension, the
existence of a semi-stable extension is guaranteed. This is not true under the
preferred semantics, because not every preferred extension is always stable. This
is demonstrated by the argumentation framework shown in figure 2.2, of which
the extensions are shown in table 2.2 (this example is due to Caminada [27]).
Here, the extension {a} is preferred but not semi-stable.
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Sceptical and Credulous Acceptance

An argument is said to be sceptically accepted under a semantics σ if the argu-
ment is a member of all σ extensions, and credulously accepted if it is a member
of some σ extension. Intuitively, a credulously accepted argument is an argu-
ment that may survive the conflict, depending on the position taken, whereas a
sceptically accepted argument survives the conflict no matter what position is
taken.

Definition 2.1.5. Let F = (A,!) be an argumentation framework and σ a
semantics. An argument x ∈ A is sceptically accepted under the σ semantics
if and only if x ∈ E for every E ∈ Eσ(F ). An argument x ∈ A is credulously
accepted under the σ semantics if and only if x ∈ E for some E ∈ Eσ(F ).

Note that the set of arguments sceptically accepted under the complete se-
mantics always coincides with the grounded extension. Furthermore, since the
grounded extension is unique, sceptical and credulous acceptance under the
grounded semantics coincide.

Figure 2.1b demonstrates that the grounded semantics can be too sceptical in
some scenarios. Here, neither c nor d is a member of the grounded extension.
As a result, the argument a is also not a member of the grounded extension.
But we may still conclude that a is accepted, even if we do not know whether
to accept c or d. The preferred semantics correctly captures this, because a is
indeed sceptically accepted under the preferred semantics, while b and c are not.

Inclusion Relations Between the Different Semantics

Figure 2.3 gives an overview of the inclusion relations between the extension-
based semantics discussed here. It combines proposition 2.1.4, 2.1.2 and defini-
tion 2.1.4. This figure also appears in the work of Caminada [26].

2.1.2 Labelling-Based Semantics

An alternative way to represent a position on which arguments to accept is
by using labellings. The labelling-based semantics that we present here are the
same as the extension-based semantics presented earlier, but their formalization
is different. While an extension only captures the arguments that are accepted in
a given position, a labelling assigns to each argument an acceptance status. This
general approach can be traced back to Pollock [75], Jakobovits and Vermeir [59]
and Verheij [89].

Three-Valued Labellings

We follow Caminada [26], who defined the semantics described in the previous
section using three-valued labellings. The benefit of three-valued labellings over
extensions is that these labellings not only distinguish arguments that are ac-
cepted and not accepted, but also those that are explicitly rejected and those
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Figure 2.3: Inclusion relations between different semantics.

that are undecided. This means that each argument is assigned one of the
following three labels:

• in meaning that the argument is accepted,

• out meaning that the argument is rejected, and

• und (for undecided) meaning that the argument is neither rejected nor
accepted.

Formally, a labelling of an argumentation framework F = (A,!) is a function
from A to {in,out,und}.

Definition 2.1.6. A labelling of an argumentation framework (A,!) is a func-
tion L : A → {in,out,und}. Given a label l ∈ {in,out,und} we define L−1(l)
as {x ∈ A | L(x) = l}. Given an argumentation framework F , we let L(F )
denote the set of all labellings of F .

Given an argumentation framework F = ({x1, . . . xn},!) we will also denote a
labelling L ∈ L(F ) by the set of pairs {(x1, L(x1)), . . . , (xn, L(xn))}.

Properties of Labellings

We now define a number of properties that form the basis of the labelling-based
semantics that we consider. First of all, an argument is said to be legally in if
all its attackers are labelled out, legally out if some attacker is labelled in, and
legally und if no attacker is labelled in and some attacker is labelled und. [33]
Intuitively, an argument is legally labelled if its label is justified on the basis of
the labels of the attackers.
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Definition 2.1.7. [33] Let F = (A,!) be an argumentation framework and
let L ∈ L(F ). An argument x ∈ A is said to be:

1. Legally in in L with respect to F iff L(x) = in and for all y ∈ x−,
L(y) = out.

2. Legally out in L with respect to F iff L(x) = out and for some y ∈ x−,
L(y) = in.

3. Legally und in L with respect to F iff L(x) = und and for all y ∈ x−,
L(y) $= in and for some y ∈ x−, L(y) = und.

We say that a labelling L satisfies in-legality, out-legality or und-legality if
every argument labelled in, out or und is also legally in, out or und.

Definition 2.1.8. Let F = (A,!) be an argumentation framework and let
L ∈ L(F ).

• L satisfies in-legality iff for all x ∈ A s.t. L(x) = in, x is legally in in L.

• L satisfies out-legality iff for all x ∈ A s.t. L(x) = out, x is legally out
in L.

• L satisfies und-legality iff for all x ∈ A s.t. L(x) = und, x is legally und
in L.

We furthermore use the properties called reinstatement and rejection [4]. A
labelling satisfies reinstatement if every argument whose attackers are all la-
belled out is labelled in, and satisfies rejection if every argument of which some
attacker is labelled in is labelled out.

Definition 2.1.9. [4] Let F = (A,!) be an argumentation framework and let
L ∈ L(F ).

• L satisfies reinstatement iff for all x ∈ A s.t. for all y ∈ x−, L(y) = out,
we have L(x) = in.

• L satisfies rejection iff for all x ∈ A s.t. for some y ∈ x−, L(y) = in, we
have L(x) = out.

Note that every labelling satisfying out-legality and und-legality also satisfies
reinstatement, and every labelling satisfying in-legality and und-legality also
satisfies rejection.

Conflict-Free, Admissible and Complete Labellings

We say that a labelling is conflict-free if it satisfies in-legality and rejection. This
amounts to the condition that every neighbour of every in-labelled argument is
labelled out.3

3This condition is stronger than the condition of conflict-freeness as it appears, e.g., in [33].
We do this for technical convenience, and it has no consequences for the definitions that follow.
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Definition 2.1.10. Let F = (A,!) be an argumentation framework. A la-
belling L ∈ L(F ) is conflict-free (L ∈ LCf(F )) if and only if L satisfies in-legality
and rejection.

An admissible labelling is a labelling satisfying in-legality and out-legality. For
a labelling to be complete, it must furthermore satisfy und-legality.

Definition 2.1.11. [33] Let F = (A,!). A labelling L ∈ L(F ) is admissible
(L ∈ LAd(F )) if and only if L satisfies in-legality and out-legality. A labelling
L ∈ L(F ) is complete (L ∈ LCo(F )) if and only if L satisfies in-legality, out-
legality and und-legality.

The set of arguments labelled in in an admissible labelling of an argumentation
framework F is an admissible set of F . Moreover, for every admissible set E

of F , there is an admissible labelling such that the set of in-labelled arguments
is exactly E. This admissible labelling is, however, not in general unique, and
hence the mapping between admissible labellings and extensions is not one-to-
one.

Proposition 2.1.5. Let F be an argumentation framework.

• For all L ∈ LAd(F ), L−1(in) ∈ EAd(F ).

• For all E ∈ EAd(F ), there is an L ∈ LAd(F ) such that E = L−1(in).

Proof. This follows from [33, Theorem 4].

Unlike the mapping between admissible labellings and extensions, the mapping
between complete labellings and extensions is one-to-one.

Proposition 2.1.6. Let F be an argumentation framework.

• For all L ∈ LCo(F ), L−1(in) ∈ ECo(F ).

• For all E ∈ ECo(F ), there is a unique L ∈ LCo(F ) such that E = L−1(in).

Proof. This follows from [33, Theorem 4].

Grounded, Preferred, Semi-Stable and Stable Labellings

Grounded, preferred, semi-stable and stable labelling are defined by putting
additional restrictions on a complete labelling.

Definition 2.1.12. [33] Let F = (A,!) be an argumentation framework. A
labelling L is

• grounded (L ∈ LGr(F )) iff L ∈ LCo(F ) and there is no L′ ∈ LCo(F ) such
that L′−1(in) ⊂ L−1(in).

• preferred (L ∈ LPr(F )) iff L ∈ LCo(F ) and there is no L′ ∈ LCo(F ) such
that L−1(in) ⊂ L′−1(in).
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Labelling Co Gr Pr SS St
{(a, in), (b,out), (c, in), (d,out)} ✓ ✓ ✓ ✓

{(a, in), (b,out), (c,out), (d, in)} ✓ ✓ ✓ ✓

{(a,und), (b,und), (c,und), (d,und)} ✓ ✓

Table 2.3: Labellings in figure 2.1b.

• semi-stable (L ∈ LSS(F )) iff L ∈ LCo(F ) and there is no L′ ∈ LCo(F )
such that L′−1(und) ⊂ L−1(und).

• stable (L ∈ LSt(F )) iff L ∈ LCo(F ) and L′(und) = ∅.

Thus, grounded and preferred labellings are defined by minimizing or maxi-
mizing the set of in-labelled arguments. Semi-stable extensions are defined by
minimizing the set of arguments that is labelled und. Finally, a stable labelling
is a complete labelling in which no argument is labelled und. These definitions
correspond to the respective extension-based definitions of these semantics in
the following way.

Proposition 2.1.7. Let F be an argumentation framework and let σ ∈ {Gr,
Pr, SS, St}. For all L ∈ LCo(F ),

L ∈ Lσ(F ) if and only if L−1(in) ∈ Eσ(F ).

Proof. This follows from proposition 2.1.6 together with definition 2.1.12.

The benefit of using labellings over extensions is that we can distinguish argu-
ments that are explicitly rejected (labelled out) and undecided (labelled und).
By contrast, an extension only identifies the accepted arguments, and does not
explicitly allow a distinction between arguments that are rejected or undecided.
Table 2.3 shows the complete labellings of the argumentation framework shown
in figure 2.1b. Comparing this with table 2.1, we see that each extension cor-
responds to a labelling where all accepted arguments are labelled in and the
non-accepted arguments either out or und.

For ease of presentation we also represent labellings of argumentation frame-
works by colourings of the nodes. We adopt the convention to colour arguments
labelled in white, arguments labelled out black, and arguments labelled und
gray. Figure 2.4 shows the colourings for three labellings listed in table 2.3.

Properties

The correspondence between labellings and extensions established in proposi-
tion 2.1.6 and 2.1.7 means that a number of results carry over from the extension-
based setting to the labelling based setting. We state these results here so that
we can refer back to them in what follows. First of all, the inclusion relations be-
tween the labelling semantics are the same as those between the extension-based
semantics.

Proposition 2.1.8. Let F be an argumentation framework.
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Figure 2.4: Three labellings as colourings of nodes.

1. LGr(F ) ⊆ LCo(F ).

2. LSt(F ) ⊆ LSS(F ) ⊆ LPr(F ) ⊆ LCo(F ).

Proof. See preceding discussion.

Like the grounded extension, the grounded labelling is unique.

Proposition 2.1.9. For all F ∈ F , | LF (Gr) |= 1.

Proof. Follows from proposition 2.1.7 together with the fact that the grounded
extension is unique.

Like under the extension-based semantics, existence of complete, grounded, pre-
ferred and semi-stable labellings is guaranteed, but not of stable labellings.

Proposition 2.1.10. For all F ∈ F , σ ∈ {Co,Gr,Pr,SS}, LF (σ) $= ∅. For
some F ∈ F , LF (St) = ∅.

Proof. Follows from proposition 2.1.7 together with the fact that the existence
of complete, grounded, preferred and semi-stable extensions is guaranteed, but
the existence of stable extensions is not.

Finally, we will later refer later to the property of language independence. [4]
This property states, if satisfied by a semantics, that isomorphic argumentation
frameworks give rise to equivalent (modulo isomorphism) sets of labellings. It
is an expression of the idea that arguments are indeed abstract, in the sense
that the assigned labels depend only on the topology of the argumentation
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framework. To define language independence, we need the following notion of
isomorphism.

Definition 2.1.13. Let F1 = (A1,!1) and F2 = (A2,!2) be two argumenta-
tion frameworks. We write F1 =m F2 if and only if m is a bijection from A1 to
A2 such that x !1 y if and only if m(x) !2 m(y). We say that F1 and F2 are
isomorphic if and only if F1 =m F2 for some m.

Definition 2.1.14. A labelling-based semantics σ satisfies the language in-
dependence principle iff for every F1, F2 ∈ F such that F1 =m F2 it holds
that Lσ(F1) = {Lm | L ∈ Lσ(F2)}, where Lm is a labelling of F1 defined by
Lm(x) = L(m(x)).

The language independence property is satisfied by all the semantics that we
consider.

Proposition 2.1.11. For all σ ∈ {Co,Gr,Pr,SS,St}, σ satisfies the language
independence principle.

2.1.3 Labelling-Based Entailment

Instead of identifying the evaluation of an argumentation framework with a set
of labellings, we use a more flexible method based on the notion of labelling-
based entailment. This method allows us to model dynamic modes of evaluation
(the subject of chapter 3 and 4) in a more convenient way. The idea is to use a
symbolic representation in terms of a logical labelling language. The reasoning
about argument acceptance under a given semantics can then be captured by
an entailment relation between argumentation frameworks and consequences
expressed in this language. This language was used before by Booth et al. [23,
24].

Syntax

Given a set A of arguments we denote by lang(A) the language it determines.
The atoms of this language are of the form in(x), out(x) and und(x) for some
argument x ∈ A. The meaning of these atoms is that the argument x is labelled
in, out or und. The language furthermore consists of ⊤ and ⊥ (representing
truth and falsity) and is closed under the usual logical connectives.

Definition 2.1.15. Let A ⊆ U be a set of arguments

• An atom is a symbol of the form in(x), out(x) or und(x), where x ∈ A.

• ⊤,⊥ and every atom is a formula.

• If φ, ψ are formulas then so is (φ ∨ ψ).

• If φ is a formula then so is ¬φ.

• Nothing else is a formula.

25



We denote the set of formulas by lang(A). Given an argumentation framework
F = (A,!) we also write lang(F ) instead lang(A).

Other connectives we use are ∧, → and ↔, defined as usual in terms of ¬
and ∨ (i.e., (φ ∧ ψ) = ¬(¬φ ∨ ¬ψ), (φ → ψ) = (¬φ ∨ ψ) and (φ ↔ ψ) =
(φ → ψ) ∧ (ψ → φ)). We omit parentheses if this does not lead to confusion.
We shall furthermore denote literals by α,β or γ and, by slight abuse of notation,
denote by ¬α the literal that is the negation of the literal α.

Semantics

We define the relation |=, along with a number of related notions, as follows.

Definition 2.1.16. Given an argumentation framework F = (A,!), the rela-
tion |=⊆ L(F )× lang(F ) is defined by:

• L |= ⊤ and L $|= ⊥,

• L |= in(x) iff L(x) = in,

• L |= out(x) iff L(x) = out,

• L |= und(x) iff L(x) = und,

• L |= ¬φ iff L $|= φ,

• L |= (φ ∨ ψ) iff L |= φ or L |= ψ.

We say that L satisfies φ whenever L |= φ, and that φ classically entails ψ

(written as φ |= ψ) if every labelling that satisfies φ also satisfies ψ.

Labelling-Based Entailment Relations

Posing a query about an argumentation framework F can be interpreted as
asking whether some formula φ ∈ lang(F ) is a consequence of F under the
semantics σ. This can be seen as a process of entailment between argumenta-
tion frameworks and formulas. Accordingly, each semantics determines such an
entailment relation, which we call the σ-entailment relation and denote by |=σ.

Definition 2.1.17. Given a semantics σ we define the σ entailment relation
|=σ by:

for all F ∈ F ,φ ∈ lang(F ) : F |=σ φ iff ∀L ∈ Lσ(F ), L |= φ.

This representation covers not only sceptical acceptance (i.e., x is sceptically
accepted iff F |=σ in(x)) but also credulous acceptance (i.e. x is credulously
accepted iff F $|=σ ¬in(x)). It also covers more general queries that are not
covered by the simple notions of sceptical or credulous acceptance. Examples
are queries involving conjunctions, disjunctions, and arguments being labelled
out and und.
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Example 2.1.1. Let F be the argumentation framework shown in figure 2.1b.
We have, for example, F |=Pr in(c) ∨ in(d), F |=Pr in(a), F $|=Co in(c) ∨ in(d)
and F |=Co (in(c) ∨ in(d)) → in(a).

2.2 KLM Logics

In this section we present the basics of the influential KLM approach to non-
monotonic reasoning. It is due to Kraus, Lehmann and Magidor [62] (hence the
name KLM) and was extended by Lehmann [63]. The approach contains ele-
ments of work on non-monotonic logics by Gabbay [48] and Shoham [85] and can
be traced back to philosophical work on conditional statements by Adams [1].
The starting point in the KLM approach is the notion of a non-monotonic en-
tailment relation. This is a relation |∼ between formulas of a propositional
language where φ |∼ ψ intuitively means that ψ plausibly or defeasibly follows
from φ. Non-monotonicity means that, unlike classical monotonic entailment
relations, these relations generally do not satisfy the property of Monotony:

(Monotony) If φ |∼ ψ then φ ∧ χ |∼ ψ.

A typical example against monotony is the following: suppose we learn that
Tweety is a bird and that it plausibly follows that Tweety flies: bird |∼ flies. If
we subsequently learn that Tweety is a penguin, then it no longer follows that
Tweety flies. However, monotony implies that it still follows that Tweety flies:
bird ∧ penguin |∼ flies. This demonstrates the undesirability of monotony from
a common sense reasoning perspective.

One may ask: how should an entailment relation behave in the absence of
monotony? This is the question addressed by Kraus, Lehmann and Magidor.
They introduced four sets of properties (often called the KLM properties) and
corresponding semantic models with the aim of characterizing classes of well-
behaved non-monotonic entailment relations. These are, from the strongest to
the weakest, the class of rational, preferential, loop-cumulative and cumulative
entailment relations.

In the following two chapters we look at entailment relations for entailment in
abstract argumentation on the basis of interventions and observations. These
relations are also non-monotonic, and hence we can evaluate and try to char-
acterize their behaviour in terms of the KLM properties. In this section we
introduce the definitions and results concerning KLM logics that are relevant
to this objective.

2.2.1 Syntactic Characterizations

Syntactically, the classes of cumulative, loop-cumulative, preferential and ra-
tional inference relations are characterized by sets of properties they satisfy.
For the definition we work with an inference relation |∼ over a propositional
language lang that is closed under the usual connectives. The symbols φ, ψ
and χ used in specifying the properties in the following definition range over
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all formulas in lang. A relation |∼ is said to satisfy a property if it satisfies all
instances.

Definition 2.2.1. Let |∼ be a relation over a propositional language lang. The
properties Reflexivity, Left Logical Equivalence, Right Weakening, Cut, Cautious
Monotony, Loop, Or and Rational Monotony are defined as follows.

(Reflexivity) φ |∼ φ.

(Left Logical Equivalence) If φ ≡ ψ and φ |∼ χ then ψ |∼ χ.

(Right Weakening) If φ |∼ ψ and ψ |= χ then φ |∼ χ.

(Cut) If φ |∼ ψ and φ ∧ ψ |∼ χ then φ |∼ χ.

(Cautious Monotony) If φ |∼ ψ and φ |∼ χ then φ ∧ ψ |∼ χ.

(Loop) If φ0 |∼ φ1, φ1 |∼ φ2, . . . , φk−1 |∼ φk, φk |∼ φ0 then φ0 |∼ φk.

(Or) If φ |∼ χ and ψ |∼ χ then φ ∨ ψ |∼ χ.

(Rational Monotony) If φ $|∼ ¬ψ and φ |∼ χ then φ ∧ ψ |∼ χ.

The relation relation |∼ is said to be:

• cumulative iff it satisfies Reflexivity, Right Weakening, Left Logical Equiv-
alence, Cut and Cautious Monotony [62].

• loop-cumulative iff it is cumulative and satisfies Loop [62].

• preferential iff it is loop-cumulative and satisfies Or [62].

• rational iff it is preferential and satisfies Rational Monotony [63].

We briefly explain the intuition behind these properties.

Reflexivity is a basic principle of inference, which states that any premise φ has,
among its consequences, φ itself.

Left Logical Equivalence states that the consequences of a premise do not depend
on the syntactical representation of the premise. That is, premises that are
logically equivalent have the same consequences.

Right Weakening states that if φ non-monotonically entails ψ and ψ classically
entails χ, then φ also non-monotonically entails χ.

Cautious Monotony is a weakening of Monotony. It states that strengthening a
premise with something that is already a consequence of this premise does not
lead to the retraction of consequences.

Cut is the dual of Cautious Monotony. It states that strengthening a premise
with something that is already a consequence of this premise does not lead to
new consequences. Note that Cautious Monotony and Cut together imply that
if φ |∼ ψ then the consequences of φ and φ ∧ ψ coincide.
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The Or property states that if χ is a consequence of φ as well as ψ then it is
also a consequence of φ ∨ ψ.

Loop states that “if propositions may be arranged in a loop, in a way each one is
a plausible consequence of the previous one, then each one of them is a plausible
consequence of any one of them” [62].

Rational Monotony is, like Cautious Monotony, a weakening of monotony. It
states that strengthening a premise with something the negation of which is
not a consequence does not lead to the retraction of consequences. Intuitively,
Rational Monotony states that only information that is completely surprising, in
the sense that it is believed to be false, leads to the retraction of a consequence.

Note that it is only the Or property that distinguishes the class of preferential
and loop-cumulative entailment relations, because the Loop property is satisfied
not only by every loop-cumulative entailment relation but also by every pref-
erential entailment relation (i.e., it is derivable from Reflexivity, Left Logical
Equivalence, Right Weakening, Cut, Cautious Monotony and Or).

We mention two properties that can be derived using these properties. The first
is Equivalence. It states that two propositions that are consequences of each
other have are equivalent in the sense that they have the same consequences.
Equivalence follows from Cautious Monotony, Left Logical Equivalence and Cut
and is therefore satisfied by every cumulative entailment relation [62].

(Equivalence) If φ |∼ ψ, ψ |∼ φ and φ |∼ χ then ψ |∼ χ.

The second property is And. It states that the conjunction of two consequences
is also a consequence. This property follows from Cautious Monotony and Cut
and is therefore satisfied by every cumulative entailment relation [62].

(And) If φ |∼ ψ and φ |∼ χ then φ |∼ ψ ∧ χ.

Finally, we mention two properties that do not follow from the properties dis-
cussed above.

(Transitivity) If φ |∼ ψ and ψ |∼ χ then φ |∼ χ.

(Contraposition) If φ |∼ ψ then ¬ψ |∼ ¬φ.

Even though these properties look reasonable at first sight it, turns out that,
in the presence of the properties of a cumulative entailment relation, they each
imply Monotony [62].

2.2.2 Semantic Characterizations

The semantic characterization of the classes of cumulative, loop-cumulative,
preferential and rational inference relations is based on models consisting of a
preference relation over states and a mapping from states to valuations. These
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models define an inference relation by letting ψ be a consequence of φ if ψ is
true in the most preferred states in which φ is true. The four classes of inference
relations are characterized by placing increasingly strong restrictions on these
models.

The weakest class of models are the cumulative models. The definition presup-
poses a set V of valuations associated with a propositional language lang and
a satisfaction relation |=⊆ V × lang.

Definition 2.2.2. [62] A cumulative model over V is a triple W = (S,≺, l),
where

• S is a set containing elements called states,

• ≺ is a binary relation over S,

• l is a function mapping every state s ∈ S to a non-empty set l(s) ⊆ V ,

• (S,≺, l) satisfies the smoothness condition (defined below).

For every formula φ ∈ lang we define φ̂ by φ̂ = {s ∈ S | ∀v ∈ l(s), v |= φ}. A
state s is said to be ≺-minimal in a set X ⊆ S iff s ∈ X and there is no s′ ∈ X

such that s′ ≺ s. Furthermore, W is called finite iff S is finite.

Preferences over states are associated with minimality, meaning that a state s

is preferred over a state s′ whenever s ≺ s′. The association of preference with
minimality rather than maximality is mainly due to historical reasons, namely
that preference was associated with minimizing exceptions.

The smoothness condition is rather technical but not of great importance in the
current setting. It ensures that, for every formula φ, it is possible to determine
the preferred states in φ̂. In the rest of this chapter we only deal with finite
models, in which the smoothness condition is trivially satisfied.

Definition 2.2.3. [62] A triple (S,≺, l) satisfies the smoothness condition iff

for all φ ∈ lang and s ∈ φ̂, either s is ≺-minimal in φ̂, or there is some s′ ∈ φ̂

such that s′ is ≺-minimal in φ̂ and s′ ≺ s.

In a cumulative ordered model the preference relation is a strict partial order.4

Definition 2.2.4. [62] A cumulative ordered model over V is a triple (S,≺, l)
defined like a cumulative model over V except that ≺ is a strict partial order.

A preferential model is a cumulative model in which every state maps to a single
valuation.

Definition 2.2.5. [62] A preferential model over V is a triple (S,≺, l) defined
like a cumulative-ordered model over V except that for all s ∈ S, l(s) is a
singleton. In this case we also denote by l(s) the member of the set instead of
the set.

4A binary relation ≺ is a strict partial order if it is irreflexive (s "≺ s) and transitive (s ≺ s
′

and s
′ ≺ s

′′ imply s ≺ s
′′).
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Finally, a ranked model is a preferential model in which states can be ordered
according to a numerical ranking.

Definition 2.2.6. [63] A ranked model over V is a triple (S,≺, l) defined like
a preferential model over V except that there exists some mapping R : S → N

such that s ≺ s′ iff R(s) < R(s′).

A triple (S,≺, l) determines an entailment relation as follows.

Definition 2.2.7. [62] A tripleW = (S,≺, l) determines a consequence relation
(denoted by |∼W) by the following rule:

φ |∼W ψ iff for all s ≺-minimal in φ̂ we have ∀v ∈ l(s), v |= ψ.

The following theorem establishes the characterization of the four classes of
entailment relations and cumulative models.

Theorem 2.2.1. Let |∼⊆ lang × lang. It holds that |∼ is cumulative (resp.
loop-cumulative, preferential, rational) iff |∼ is defined by a cumulative (resp.
cumulative-ordered, preferential, ranked) model. Furthermore, if lang is logi-
cally finite (i.e., contains a finite number of atoms) and |∼ is cumulative (resp.
loop-cumulative, preferential, rational) then |∼ is defined by a finite cumulative
(resp. cumulative-ordered, preferential, ranked) model.

The proof of this theorem can be found (for the cumulative, loop-cumulative
and preferential case) in [62] and (for the rational case) in [63].
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Chapter 3

Intervention-Based

Entailment in

Argumentation

3.1 Introduction

In the introduction we identified two types of change in argumentation. One
(called intervention) is change due to actions performed in a debate. These ac-
tions correspond to new arguments and attacks that are added to an argumen-
tation framework, which causes the evaluation of the argumentation framework
to change. The other (called observation) is the change in argumentation due
to observations (information coming from the environment) that requires the
revision of the status of one or more arguments. In this section we focus on
change in argumentation due intervention in argumentation.

Let us look at an example. Consider the argumentation framework F shown
in figure 3.1. The nodes are coloured according to the unique complete (and
grounded, preferred, semi-stable and stable) labelling of this argumentation
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g

f

Figure 3.1: An Argumentation Framework.
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Figure 3.2: Three examples of change to the argumentation framework F in
figure 3.1.

framework. There are numerous ways in which this argumentation framework
can be extended. Figure 3.2 shows three out of many possibilities. In figure 3.2a,
a new argument attacking a is added, which causes a to be out, b to be in, e
to be out and f to be in, while the labels of c, d and g are not affected. In
figure 3.2b and 3.2c, new arguments are added that attack, respectively, c and
e. Each of these changes can be thought of as an intervention, or an action in
a debate, and each intervention leads to some changes of the evaluation of the
argumentation framework with respect to the initial situation.

Our motivation for investigating this type of change is that it allows us to
investigate how the evaluation of an argumentation framework under a given
semantics changes when new arguments and attacks come into play. Unlike the
behaviour of argumentation semantics in a static context (that has been studied
using properties like in-maximialty, (strong) admissibility and reinstatement [6])
this type of behaviour has been relatively neglected.

We model intervention as a form of entailment. This permits us to study this
type of change by looking at the properties satisfied by a precisely defined en-
tailment relation. The properties that we focus on are based on the KLM prop-
erties, which we discussed in chapter 2. These properties (Cautious Monotony,
Cut, Rational Monotony and Loop) represent general principles of well-behaved
inference. In the current setting, these properties express principles of how the
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evaluation of an argumentation framework changes when new arguments and
attacks come into play. For example, Cautious Monotony and Cut together im-
ply that the evaluation of an argumentation framework does not change when a
new argument is added that attacks an argument that is already rejected. We
present a complete picture of which of these properties are satisfied under the
different argumentation semantics that we consider (the complete, grounded,
preferred, semi-stable and stable semantics). We furthermore present a num-
ber of results concerning argumentation frameworks that are free of odd-length
and/or even-length directed cycles.

We also investigate the role of the directionality [6] and noninterference [4] prin-
ciples in the behaviour of intervention-based entailment. We show that these
principles, if satisfied by the argumentation semantics that is used, ensure that
the effects of actions propagate through the argumentation framework in a well-
behaved manner. On the other hand, using an argumentation semantics not
satisfying directionality (the stable and semi-stable semantics) or noninterfer-
ence (the stable semantics) leads to unintuitive behaviour.

Finally, the results we obtain in this chapter serve as a basis to compare the
two types of change we identified. In the next chapter we focus on observation
in argumentation. Like we do in this chapter, we investigate the behaviour of
change due to observation by modelling it as a form of entailment (observation-
based entailment). This approach allows us to compare the behaviour of the
two types of change by contrasting them in terms of the properties that satisfy.

We proceed as follows. In section 3.2 we present the basic definitions of inter-
vention-based entailment as well as a number of basic results that will be useful
in what follows. In section 3.3 we evaluate the notion of intervention-based en-
tailment using the KLM properties discussed in section 2.2. We then investigate
in section 3.4 the role of the directionality and noninterference principles in the
behaviour of intervention-based entailment. We discuss in section 3.5 related
work and we conclude in section 3.6.

3.2 Intervention-Based Entailment

3.2.1 Defeat and Provisional Defeat

As we explained, an intervention represents an action in a debate that cor-
responds to the addition of new arguments and attacks to an argumentation
framework. Such an action leads to change of the evaluation of the argumen-
tation framework, and this is the type of change that we aim to model. We
simplify our model by abstracting away from the actual arguments and attacks
that can be added to an argumentation framework. Instead, we focus only on
how the addition of a new argument that attacks an existing argument affects
the status of the existing argument.

There are two ways in which the status of a new argument y that attacks an
existing argument x may affect the status of x. The first is when y is labelled
in, which causes x to be labelled out. The second is when y is labelled und,
which causes x not to be labelled in but still leaves open the possibility for x
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to be labelled und. Note that the third possibility, namely that y labelled out,
does not involve any effect on the status of x.

The two effects sketched here are implicit in the definition of a complete la-
belling. More precisely, the fact that y being labelled in causes x to be la-
belled out follows from the rejection property of a complete labelling (see defi-
nition 2.1.9) and the fact that y being labelled und causes x not to be labelled in
follows from the in-legality property of a complete labelling (see definition 2.1.8).

Thus, as far as the effect on the label of an argument is concerned, there are two
types of actions that can be performed in a debate on a given argument x. We
call these two actions defeat of x (causing x to be labelled out) and provisional
defeat of x (causing x not to be labelled in but still leaving open the possibility
for x to be labelled und). The distinction between these two types of defeat
originates from the work of Pollock [75] and appears in the context of abstract
argumentation in the work of Baroni, Giacomin and colleagues (see, e.g., [7, 8]).

Note that other types of change of the label of an argument x, like making
x in, not out, und or not und, cannot be achieved in a direct way through
(provisional) defeat. Nevertheless, such types of change can still be achieved in
an indirect way. For example, given the argumentation framework a ! b, the
argument b can be made in by defeating a.1 More generally, we show that any
formula that is conflict-free can be made true using only the actions of defeat
and provisional defeat on sets of arguments. In this sense, these two actions are
functionally complete. This will be proven after we have presented the main
definitions.

Formally, we represent an action on an argument x by a literal out(x) (defeat
of x) or ¬in(x) (provisional defeat of x). An intervention for F is a set Φ of
actions such that no two members of Φ refer to the same argument.

Definition 3.2.1. Let F = (A,!) be an argumentation framework. An action
for F is a literal of the form out(x) or ¬in(x) for some x ∈ A. We use α, β and
γ to denote actions and we denote by Arg(α) the argument occurring in α. We
denote the set of all actions for F by Act(F ).

Definition 3.2.2. Let F = (A,!) be an argumentation framework. An inter-
vention for F is a set Φ ⊆ Act(F ) such that for all α,β ∈ Φ, Arg(α) = Arg(β)
implies α = β. We denote by Int(F ) the set of interventions for F .

The empty intervention ∅ will also be called the vacuous intervention. In what
follows we will see that provisional defeat sometimes leads to undesirable be-
haviour that does not occur if we focus only on defeat. For this reason we
also use the notion of a stable intervention, which is an intervention that only
consists of defeat.

Definition 3.2.3. Let F = (A,!) be an argumentation framework. An inter-
vention Φ ∈ Int(F ) is stable if it consists only of literals of the form out(x), for
some x ∈ A. We denote by StInt(F ) the set of stable interventions for F .

1Alternatively, one may consider actions in a debate corresponding to the removal of el-
ements from an argumentation framework, including attacks between existing arguments.
Given an argumentation framework a ! b, the change of b to in can then be achieved by
removing the attack from a to b. We have chosen not to pursue this possibility, the reason
being that the addition of elements to an argumentation framework reflects a more natural
way of how a debate evolves than the removal of elements.
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3.2.2 Intervention-Based Entailment

The (provisional) defeat of an argument x can be achieved adding a new ar-
gument to the argumentation framework that attacks x. To achieve defeat of
x, we let this attacker itself be unattacked, so that it is labelled in in every
complete labelling, with the effect that x is labelled out. To achieve provisional
defeat of x, we let this attacker be self-attacking, so that it is labelled und in
every complete labelling, with the effect that x is not labelled in. To formalize
this we need a number of definitions. Given an argumentation framework F ,
an F -mapping is an injective function κ that maps every argument in F to a
unique new argument not occurring in F .

Definition 3.2.4. Let F = (A,!) be an argumentation framework. An F -
mapping is an injective function κ : A → U \A.

Given an intervention Φ, we denote by F ⊕κ
Φ the argumentation framework

that represents the effect of Φ on F by the addition of new attacking arguments
according to κ.

Definition 3.2.5. Let F = (A,!) be an argumentation framework and κ an
F -mapping. Given an intervention Φ ⊆ Int(F ), we define F ⊕κ

Φ by F ⊕κ
Φ =

(A′,!′), where

• A′ = A ∪ {κ(x) | out(x) ∈ Φ ∨ (¬in(x)) ∈ Φ},

• !
′=! ∪{(κ(x), x) | out(x) ∈ Φ ∨ (¬in(x)) ∈ Φ}∪

{(κ(x),κ(x)) | (¬in(x)) ∈ Φ},

Example 3.2.1. Let F be the argumentation framework shown in figure 3.1.
The argumentation frameworks F⊕κ{out(a)}, F⊕κ{out(c)} and F⊕κ{out(e)}
are shown in figure 3.2 (a), (b) and (c), respectively. The argumentation frame-
works F ⊕κ {¬in(a)}, F ⊕κ {¬in(c)} and F ⊕κ {¬in(e)} are shown in figure 3.3
(a), (b) and (c), respectively.

We denote by Lσ(F,Φ,κ) the σ labellings of F ⊕κ
Φ restricted to the arguments

of F .

Definition 3.2.6. Let F = (A,!) be an argumentation framework, κ an F -
mapping and σ a semantics. We define Lσ(F,Φ,κ) by

Lσ(F,Φ,κ) = Lσ(F ⊕κ

Φ) ↓ A.

We can simplify the notation introduced so far because, for any semantics σ

satisfying the language-independence principle, and every argumentation frame-
work F and intervention Φ ∈ Int(F ), the set of labellings Lσ(F,Φ,κ) is invariant
under different choices of κ.

Proposition 3.2.1. Let σ be a labelling-based semantics and F an argumen-
tation framework. If σ satisfies the language independence principle then for
every two F -mappings κ and κ′ and every intervention Φ ∈ Int(F ) it holds that
Lσ(F,Φ,κ) = Lσ(F,Φ,κ

′).
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Figure 3.3: Three modifications of the argumentation framework F in figure 3.1.

Proof. Let σ be a labelling-based semantics and F = (A,!) an argumentation
framework. Suppose σ satisfies the language independence principle. Let κ

and κ′ be two F -mappings. We then have that F ⊕κ
Φ =m F ⊕κ

′

Φ, where
m is defined by m(x) = x, if x ∈ A; and m(x) = κ′(κ−1(x)), if x $∈ A. From
definition 2.1.14 it then follows that Lσ(F ⊕κ

Φ) = {Lm | L ∈ Lσ(F ⊕κ
′

Φ)},
where Lm is a labelling of F ⊕κ

Φ defined by Lm(x) = L(m(x)). From this it
follows that Lσ(F ⊕κ

Φ) ↓ A = Lσ(F ⊕κ
′

Φ) ↓ A. Via definition 3.2.6 it finally
follows that Lσ(F,Φ,κ) = Lσ(F,Φ,κ

′).

Due to this invariance (which holds under all semantics that we consider) we
can omit the κ argument and simply denote by Lσ(F,Φ) the set Lσ(F,Φ,κ) for
an arbitrary choice of κ.

Definition 3.2.7. Let F = (A,!) be an argumentation framework and σ a
labelling-based semantics satisfying the language-independence principle. We
define Lσ(F,Φ) by

Lσ(F,Φ) = Lσ(F,Φ,κ), for an arbitrary choice of κ.

Each argumentation framework F and semantics σ determines a relation ||=F
σ

between interventions and formulas of F . We call this an σ intervention-based
entailment relation.
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Figure 3.4: An argumentation framework.

Definition 3.2.8. Let F = (A,!) be an argumentation framework and σ a
semantics. The relation ||=F

σ
⊆ Int(F ) × lang(F ) is defined by the following

rule.

For all Φ ∈ Int(F ),φ ∈ lang(F ) : Φ ||=F
σ
φ iff ∀L ∈ Lσ(F,Φ), L |= φ.

Some terminology: Given an argumentation framework F and semantics σ, we
say that an intervention Φ ∈ Int(F ) skeptically (resp. credulously) entails φ

if we have Φ ||=F
σ

φ (resp. Φ $||=F
σ

¬φ). If we speak of entailment without
specifying whether it is skeptical or credulous, we refer to skeptical entailment.

Example 3.2.2. Let F be the argumentation framework shown in figure 3.1.
We have the following entailments.

• ∅ ||=F
Co in(a) ∧ out(g) (see fig. 3.1)

• {out(a)} ||=F
Co out(e) ∧ out(g) (see fig. 3.2a)

• {¬in(a)} ||=F
Co und(e) ∧ out(g) (see fig. 3.3a)

• {out(c)} ||=F
Co out(e) ∧ in(g) (see fig. 3.2b)

• {¬in(c)} ||=F
Co und(e) ∧ und(g) (see fig. 3.3b)

• {out(e)} ||=F
Co out(e) ∧ out(g) (see fig. 3.2c)

• {¬in(e)} ||=F
Co und(e) ∧ out(g) (see fig. 3.3c)

The following example involves an argumentation framework with multiple la-
bellings.

Example 3.2.3. Let F be the argumentation framework shown in figure 3.4.

• Under the grounded semantics we have that normally, a is undecided:
∅ ||=F

Gr und(a). However, defeat c or defeat of d implies acceptance of
a: {out(c)} ||=F

Gr in(a) and {out(d)} ||=F
Gr in(a).

• Under the complete semantics we have that normally, a is accepted only
if c or d is accepted: ∅ ||=F

Co in(a) → (in(c) ∨ in(d)). If we defeat b, this
no longer holds: {out(b)} $||=F

Co in(a) → (in(c) ∨ in(d)).
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• Under the preferred semantics we have, for example, that a is accepted:
∅ ||=F

Pr in(a). If we provisionally defeat c and b, this no longer holds:
{¬in(c),¬in(d)} $||=F

Pr in(a).

Definition 3.2.8 forms the basis for the further investigations in this chapter.
This is because, for each semantics σ and argumentation framework F , we can
investigate the behaviour of σ by checking the properties of ||=F

σ
.

Finally, note that the definition of a Φ-modified argumentation framework is
very similar to that of a standard argumentation framework with respect to an
argumentation framework with input, which appears in the work of Baroni et
al. [3] on decomposability-related properties of argumentation semantics. Sim-
ilarly, the notion of intervention-based entailment is related to what they call
canonical local functions. The difference is mainly technical. While their ap-
proach is based on a function that takes an argumentation framework with
input, and returns a set of labellings, in our approach an argumentation frame-
work and semantics determines a relation between input (interventions) and
consequences of this input.

3.2.3 Basic Properties

Before continuing we prove some basic properties of intervention-based entail-
ment under the semantics that we consider. Some of the properties are rather
obvious, but it useful to state them here so that we can refer back to them later
on.

Reflexivity

In a Φ-modified argumentation framework, the intended effect of the interven-
tion Φ is achieved only if the semantics that we use satisfies certain conditions.
A sufficient condition is that every σ labelling of an argumentation framework is
also a complete labelling. In terms of intervention-based entailment this means
that the relation ||=F

σ
satisfies Reflexivity whenever this condition is satisfied.

Definition 3.2.9. Let F ∈ F . A relation ||=F⊆ Int(F ) × lang(F ) satisfies
Reflexivity iff for all Φ ∈ Int(F ),

Φ ||=F α for all α ∈ Φ.

Proposition 3.2.2. Let σ be a labelling-based semantics. If for all F ∈ F ,
Lσ(F ) ⊆ LCo(F ), then for all F ∈ F , ||=F

σ
satisfies Reflexivity.

Proof. Let σ be a semantics and suppose that for F ∈ F , Lσ(F ) ⊆ LCo(F ). Let
F = (A,!) be an argumentation framework and Φ ∈ Int(F ) be an intervention.
We prove that ||=F

σ
satisfies Reflexivity by showing that, for all α ∈ Φ, Φ ||=F

σ
α.

Let κ be an F -mapping and let F ′ = (A′,!′) = F ⊕κ
Φ. Let L be a σ-labelling

of F ′. Our assumption implies that L is a complete labelling of F ′. We use
the fact that L satisfies out-legality, in-legality, reinstatement and rejection
(definition 2.1.8 and 2.1.9).
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• Let x ∈ A be an argument such that out(x) ∈ Φ. Definition 3.2.5 then
implies that κ(x) ∈ A′, κ(x) is unattacked in F ′ and κ(x) !

′ x. Re-
instatement implies that L(κ(x)) = in and hence rejection implies that
L(x) = out.

• Let x ∈ A be an argument such that (¬in(x)) ∈ Φ. Definition 3.2.5 then
implies that κ(x) ∈ A′, κ(x) !′ κ(x) and κ(x) !′ x. Then in-legality and
out-legality imply that L(κ(x)) = und. Finally, in-legality implies that
L(x) $= in.

This implies that for all α ∈ Φ, L |= α. Via definition 3.2.8 it follows that for
all α ∈ Φ, Φ ||=F

σ
α.

We now obtain the following.

Proposition 3.2.3. For all F ∈ F , ||=F
Co, ||=

F
Gr, ||=

F
Pr, ||=

F
St and ||=F

SS satisfy
Reflexivity.

Proof. Follows from proposition 3.2.2 and definition 2.1.11 and 2.1.12.

Note that some labelling-based semantics considered in the literature do not
satisfy the property that every labelling is complete. Examples are the stage
semantics and CF2 semantics [4]. We leave the treatment of intervention under
these semantics for future work.

Vacuous Interventions

A vacuous intervention Φ does not lead to any change of an argumentation
framework. This means that the consequences generated by a relation ||=F

σ

given the vacuous intervention coincide with the consequences generated given
F by the relation |=σ.

Proposition 3.2.4. For all F ∈ F , F |=σ φ iff ∅ ||=F
σ
φ.

Proof. Follows directly from definition 3.2.5 and 3.2.8.

Relative Strength

The following proposition concerns the relative strength of the different interven-
tion-based entailment relations. This is due to the inclusion relations between
the corresponding semantics.

Proposition 3.2.5. For all F ∈ F ,

1. ||=F
Co⊆||=F

Gr,

2. ||=F
Co⊆||=F

Pr⊆||=F
SS⊆||=F

St.

Proof. Follows from definition 3.2.8 and proposition 2.1.8.
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Consistency of Interventions

Because every argumentation framework has at least one complete, grounded,
preferred and semi-stable labelling, every intervention yields consistent conse-
quences under the complete, grounded, preferred and semi-stable semantics.

Proposition 3.2.6. For all F ∈ F , σ ∈ {Co,Gr,Pr,SS} and Φ ∈ Int(F ),
Φ $||=F

σ
⊥.

Proof. Follows from definition 3.2.8 and proposition 2.1.10.

Provisional defeat leads to the addition of a self-attacking argument. This means
that the resulting argumentation framework has no stable labellings. Thus, un-
der the stable semantics, only stable interventions generate consistent conclu-
sions.

Proposition 3.2.7. For all F ∈ F and Φ ∈ Int(F ), if Φ is not stable then
Φ ||=F

St ⊥.

Proof. See preceding discussion.

Enforceability Of Formulas

We already mentioned that any constraint on the labels of arguments that is
conflict-free can be made true using only the actions of defeat and provisional
defeat. We now make this formal. First a definition: a formula is conflict-free
with respect to an argumentation framework if it is satisfied by at least one
conflict-free labelling of this argumentation framework.

Definition 3.2.10. Let F ∈ F . A formula φ ∈ lang(F ) is conflict-free with
respect to F if and only if there is some L ∈ LCf(F ) such that L |= φ.

The following theorem states that, given an argumentation framework F , every
formula that is conflict-free with respect to F is a consequence of some interven-
tion. Conversely, every consequence of every intervention is conflict-free with
respect to F . This holds under the complete, grounded, preferred and semi-
stable semantics, but not under the stable semantics. Note that, for the sake
of readability, we have moved some of the longer proofs, including the proof for
the following two theorems, to section 3.7.

Theorem 3.2.8. Let F be an argumentation framework and σ ∈ {Co,Gr, Pr,
SS}. The following are equivalent.

1. For some Φ ∈ Int(F ), Φ ||=F
σ
φ.

2. φ is conflict-free with respect to F .

Proof. See section 3.7
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Under the stable semantics we have the following. Given an argumentation
framework F , every formula that is stable conflict-free with respect to F is a
consequence of some intervention Φ that is consistent (i.e., for which we do not
have Φ ||=F

St ⊥). Conversely, every consequence of every intervention that is
consistent is stable conflict-free with respect to F .

Definition 3.2.11. A formula φ ∈ lang(F ) is stable conflict-free with respect
to F if and only if there is some L ∈ LCf(F ) such that L−1(und) = ∅ and
L |= φ.

Theorem 3.2.9. Let F be an argumentation framework. The following are
equivalent.

1. For some Φ ∈ Int(F ) we have Φ ||=F
St φ and Φ $||=F

St ⊥.

2. φ is a stable conflict-free with respect to F .

Proof. See section 3.7

These results show that, given an argumentation framework F and a semantics
σ, any constraint φ, as long as it is (stable) conflict-free, can be translated into
an intervention Φ that makes φ true. As the following example demonstrates,
however, there may be more than one intervention that makes a given constraint
true.

Example 3.2.4. Let F be the argumentation framework shown in figure 3.1

• Let σ ∈ {Co,Gr,Pr,SS,St}. The formula in(f) is (stable) conflict-free
with respect to F . We have {out(a)} ||=F

σ
in(f), {out(c)} ||=F

σ
in(f) and

{out(e)} ||=F
σ

in(f) (see figure 3.2). That is: {out(a)}, {out(c)} and
{out(e)} all make in(f) true.

• Let σ ∈ {Co,Gr,Pr,SS}. The formula und(f) is conflict-free with re-
spect to F . We have {¬in(a)} ||=F

σ
und(f), {¬in(c)} ||=F

σ
und(f) and

{¬in(e)} ||=F
σ

und(f) (see figure 3.3). That is: {¬in(a)}, {¬in(c)} and
{¬in(e)} all make f undecided.

This result shows that the actions of defeat and provisional defeat are sufficient
to make an argumentation framework satisfy any constraint on the status of
the arguments, as long as this constraint is (stable) conflict-free. In the next
chapter we look at observation-based entailment, and the selection of (minimal)
interventions that make a constraint (now taken to be an observation) true
will play a central role. In that setting, these interventions play the role of
explanations for the observation, and their selection can be seen as a process of
abduction.

Note that Baumann and Brewka have proven a result for extension-based se-
mantics that is related to what we prove in theorem 3.2.8 and 3.2.9, namely
that every conflict-free set of an argumentation framework can be turned into
a (unique) complete extension by adding a new argument attacking existing
arguments [12].
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Figure 3.5: Failure of Transitivity and Contraposition.

3.3 KLM Properties

Intervention-based entailment allows us to evaluate the different semantics in
terms of their behaviour in a dynamic context, where we not only focus on the
evaluation of an argumentation framework in isolation, but instead focus on the
evaluation of an argumentation framework given the possible interventions. We
characterize the behaviour of a semantics σ in terms of the properties satisfied
by a relation ||=F

σ
for every possible argumentation framework F , as well as

for a number of special classes (argumentation frameworks that are even-cycle-
free, odd-cycle-free or completely cycle-free). A property that is not satisfied
in general is monotony, which we define for intervention-based entailment as
follows.

Definition 3.3.1. Let F ∈ F . A relation ||=F⊆ Int(F ) × lang(F ) satisfies
Monotony iff for all Φ,Ψ ∈ Int(F ) and φ ∈ lang(F ),

if Φ ||=F φ then Φ ∪Ψ ||=F φ.

An example of the failure of Monotony is easy to come up with. For ex-
ample, let F be the argumentation framework shown in figure 3.1 and let
σ ∈ {Co,Gr,Pr,SS,St}. The rejection of b given the vacuous intervention
(∅ ||=F

σ
out(b)) no longer follows if we defeat a ({out(a)} $||=F

σ
out(b)), which is

a violation of Monotony. The Transitivity and Contraposition properties, which
can be defined for intervention-based entailment as follows, also fail.

Definition 3.3.2. Let F ∈ F . A relation ||=F⊆ Int(F ) × lang(F ) satisfies
Transitivity iff for all α,β, γ ∈ Act(F ),

if {α} ||=F β and {β} ||=F γ then {α} ||=F γ

Definition 3.3.3. Let F ∈ F . A relation ||=F⊆ Int(F ) × lang(F ) satisfies
Contraposition iff for all α,β ∈ Act(F ),

{α} ||=F β then {¬β} ||=F ¬α.

The following two examples demonstrate their failure.

Example 3.3.1. Let F be the argumentation framework shown in figure 3.5.

• We have {out(a)} ||=F
Pr out(c) and {out(c)} ||=F

Pr in(d). Transitivity
would imply that we have {out(a)} ||=F

Pr in(d) but this is not the case.
The reason is that defeat of c justifies acceptance of d as long as b is not
accepted. Defeating a not only justifies rejection of c, but also acceptance
of b, and hence acceptance of d is not justified if we defeat a.
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• We have {out(b)} ||=F
Pr in(c). According to contraposition it then follows

that {¬in(c)} ||=F
Pr ¬out(b), but this is not the case. The reason is that,

while defeating b indeed justifies acceptance of c, provisionally defeating c

does not justify non-rejection of b.

These examples can be adapted to apply to the other semantics.

The KLM properties that we discussed in section 2.2.1 are desirable properties
for well-behaved non-monotonic inference. Thus, we can ask: how well-behaved
are the different argumentation semantics with respect to these properties? This
is the question we address in this section.

We already proved that Reflexivity is satisfied under all semantics that we con-
sider. It is furthermore clear from definition 3.2.8 that every relation ||=F

σ
sat-

isfies Right Weakening (if φ |= ψ and Φ ||=F
σ

φ then Φ ||=F
σ

ψ), and that it
trivially satisfies a form of Left Logical Equivalence, because logical equivalence
of two interventions implies syntactical equivalence (Φ |= Ψ and Ψ |= Φ implies
Φ = Ψ). In the rest of this section we consider variations of the remaining KLM
properties, namely Cautious Monotony, Cut, Rational Monotony and Loop. For
each property, we formulate an analogue that is appropriate for intervention-
based entailment. We then determine the conditions under which each property
is satisfied, and we demonstrate the failure if they are not satisfied. We omit
discussion of the Or property, as it involves disjunction in the premise, which
cannot be expressed by an intervention.

3.3.1 Cautious Monotony

Cautious Monotony states that we do not lose consequences if we strengthen a
premise, if what we add is already a consequence of this premise. We express
this for intervention-based entailment as follows.

Definition 3.3.4. Let F ∈ F . A relation ||=F⊆ Int(F ) × lang(F ) satisfies
Cautious Monotony iff for all Φ ∈ Int(F ), α ∈ Act(F ) and φ ∈ lang(F ),

if Φ ||=F α and Φ ||=F φ then Φ ∪ {α} ||=F φ.

In the setting of intervention-based entailment, Cautious Monotony states that
if an argument x is already rejected (resp. not accepted) then defeating (resp.
provisionally defeating) x does not lead to loss of consequences. We believe that
this is an intuitive property for intervention-based entailment. It corresponds to
a natural principle: if a new argument comes into play that defeats an argument
that we already reject, we do not change our mind about the status of any of
the other arguments.

In what follows we will see that some semantics behave better when we focus only
on stable interventions. For this reason we also define the following weakening of
Cautious Monotony, which we call Stable Cautious Monotony. While Cautious
Monotony applies to arbitrary interventions, Stable Cautious Monotony applies
only to stable interventions. It is easy to see that Cautious Monotony implies
Stable Cautious Monotony, but that the converse does not hold.
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Figure 3.6: Failure of Cautious Monotony under the preferred, semi-stable and
stable semantics.

Definition 3.3.5. Let F = (A,!) be an argumentation framework. A relation
||=F⊆ StInt(F ) × lang(F ) satisfies Stable Cautious Monotony iff for all Φ ∈
StInt(F ), φ ∈ lang(F ) and x ∈ A,

if Φ ||=F out(x) and Φ ||=F φ then Φ ∪ {out(x)} ||=F φ.

Our first result is that Cautious Monotony is satisfied under the complete and
grounded semantics.

Theorem 3.3.1. For all F ∈ F , ||=F
Gr satisfies Cautious Monotony.

Proof. See section 3.7

Theorem 3.3.2. For all F ∈ F , ||=F
Co satisfies Cautious Monotony.

Proof. See section 3.7

However, (Stable) Cautious Monotony may fail under the preferred, semi-stable
and stable semantics. This is demonstrated by the following example.

Example 3.3.2. Let F be the argumentation framework shown in figure 3.6.
Note that acceptance is maximized only if b is accepted. This implies, under
the preferred semantics, rejection of c. However, if we defeat c, acceptance is
maximized not only if we accept b but also if we accept c. This causes failure
of Cautious Monotony. We have ∅ ||=F

Pr out(c) and ∅ ||=F
Pr in(b). (Stable)

Cautious Monotony implies that we have {out(c)} ||=F
Pr in(b) but this is not the

case. This example of the failure of Cautious Monotony also applies to ||=F
SS

and ||=F
St.

Note that the counterexample above does not rely on the fact that c is self-
attacking. Cautious Monotony fails in a similar way if we let c be part of any
odd-length directed cycle.

In section 3.3.6 we show that the absence of odd-length cycles is a sufficient
condition for the satisfaction of Stable Cautious Monotony (but not of Cautious
Monotony) under the preferred, semi-stable semantics and stable semantics.
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3.3.2 Cut

The Cut property can be seen as the converse of Cautious Monotony. It states
that we do not gain consequences if we strengthen a premise, if what we add is
already a consequence of this premise. We express this for intervention-based
entailment as follows.

Definition 3.3.6. Let F ∈ F . A relation ||=F⊆ Int(F )×lang(F ) satisfies Cut
iff for all Φ ∈ Int(F ), α ∈ Act(F ) and φ ∈ lang(F ),

if Φ ||=F α and Φ ∪ {α} ||=F φ then Φ ||=F φ.

We believe that this is an intuitive property for intervention-based entailment.
The motivation is the same as for Cautious Monotony: if a new argument comes
into play that defeats an argument that we already reject, we do not change
our mind about the status of any of the other arguments. Together, Cautious
Monotony and Cut state that if Φ ||=F α then the consequences given the
interventions Φ ∪ {α} and Φ coincide.

Like we did for Cautious Monotony, we also consider a weakening of Cut, which
we call Stable Cut. While Cut applies to arbitrary interventions, Stable Cut
applies only to stable interventions. It is easy to see that Cut implies Stable
Cut, but that the converse does not hold.

Definition 3.3.7. Let F = (A,!) be an argumentation framework. A relation
||=F⊆ StInt(F ) × lang(F ) satisfies Stable Cut iff for all Φ ∈ StInt(F ), φ ∈
lang(F ) and x ∈ A,

if Φ ||=F out(x) and Φ ∪ {out(x)} ||=F φ then Φ ||=F φ.

Cut is, like Cautious Monotony, satisfied under the complete and grounded se-
mantics. But unlike Cautious Monotony, Cut is also satisfied under the preferred
semantics.

Theorem 3.3.3. For all F ∈ F , ||=F
Gr satisfies Cut.

Proof. See section 3.7

Theorem 3.3.4. For all F ∈ F , ||=F
Co satisfies Cut.

Proof. See section 3.7

Theorem 3.3.5. For all F ∈ F , ||=F
Pr satisfies Cut.

Proof. See section 3.7

Cut fails under the stable semantics due to the fact that non-stable interventions
cause inconsistency. This is demonstrated by the following example.

Example 3.3.3. Let F be the argumentation framework shown in figure 3.5.
We have ∅ ||=F

St ¬in(c) and {¬in(c)} ||=F
St ⊥. Cut implies that we have ∅ ||=F

St ⊥,
but this is not the case.
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Figure 3.7: Failure of Cut under the semi-stable semantics.

Nevertheless, Stable Cut is satisfied under the stable semantics.

Theorem 3.3.6. For all F ∈ F , ||=F
St satisfies Stable Cut.

Proof. See section 3.7

Cut, as well as Stable Cut, may fail under the semi-stable semantics. This is
demonstrated by the following example.

Example 3.3.4. Let F be the argumentation framework shown in figure 3.7.
Note that acceptance of b is necessary to minimize undecidedness. This implies
rejection of a. If we defeat a, however, then it is not the acceptance of b but
instead the acceptance of c that minimizes undecidedness. This causes failure
of Cut: We have ∅ ||=F

SS out(a) and {out(a)} ||=F
SS in(c). Cut implies that we

have ∅ ||=F
SS in(c), but this is not the case.

Note that, like the counterexample for the failure of Cautious Monotony under
the preferred, semi-stable and stable semantics, the counterexample above does
not rely on the fact that a and e are self-attacking. Cut fails under the semi-
stable semantics in a similar way if we let a or e be part of any odd-length
directed cycle. In section 3.3.6 we show that the absence of odd-length cycles
is a sufficient condition for the satisfaction of Stable Cut under the semi-stable
semantics.

It is worth noting that, in the KLM framework, Cautious Monotony and Cut
imply Equivalence, which expresses that two propositions that are each other’s
consequence are equivalent in terms of the consequences they generate [62]. For
intervention-based entailment we express this as follows.

Definition 3.3.8. Let F ∈ F . A relation ||=F⊆ Int(F ) × lang(F ) satisfies
Equivalence iff for all α,β ∈ Act(F ) and φ ∈ lang(F ),

if {α} ||=F β, {β} ||=F α and {α} ||=F φ then {β} ||=F φ.

In the current setting Cautious Monotony and Cut also imply Equivalence.

Proposition 3.3.7. Let F ∈ F and ||=F⊆ Int(F )× lang(F ). If ||=F satisfies
Cautious Monotony and Cut then it satisfies Equivalence.
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Figure 3.8: Failure of Rational Monotony under all but the grounded semantics.

Proof. Let F ∈ F and ||=F⊆ Int(F )×lang(F ). Suppose ||=F satisfies Cautious
Monotony and Cut. Assume we have (1) {α} ||=F β, (2) {β} ||=F α and (3)
{α} ||=F φ. Cautious Monotony, (1) and (3) imply {α,β} ||=F φ. This implies,
together with Cut and (2), {β} ||=F φ.

Under the complete and grounded semantics, both Cautious Monotony and Cut
are satisfied and thus Equivalence as well. It can be verified that Equivalence
is not generally satisfied under the preferred, semi-stable and stable semantics.

3.3.3 Rational Monotony

Rational Monotony is, like Cautious Monotony, a weakening of Monotony. It
states that strengthening a premise with something the negation of which is
not a consequence does not lead to the retraction of consequences. In the
intervention-based setting, this means that strengthening an intervention by
adding something that is already a credulous consequence (as opposed to a
skeptical consequence, as in Cautious Monotony) does not lead to the retraction
of consequences. For intervention-based entailment we express this as follows.

Definition 3.3.9. Let F = (A,!) be an argumentation framework. A relation
||=F⊆ Int(F ) × lang(F ) satisfies Rational Monotony iff for all Φ ∈ Int(F ),
α ∈ Act(F ) and φ ∈ lang(F ),

if Φ $||=F ¬α and Φ ||=F φ then Φ ∪ {α} ||=F φ.

Rational Monotony has been argued for as an attractive property for non-
monotonic inference because it expresses the principle that only information
that is completely surprising, in the sense that it believed to be false, should
force one to withdraw conclusions [62]. Others have argued, however, that this
principle is too strong (see, for example, [87]).

Rational Monotony may fail under the complete, preferred, semi-stable and
stable semantics. This is demonstrated by the following example.

Example 3.3.5. Let F be the argumentation framework shown in figure 3.8.
Normally, d is accepted in a complete labelling only if b is accepted. Hence
we have ∅ ||=F

Co in(d) → in(b). Furthermore, there is a complete labelling in
which c is rejected, thus we have ∅ $||=F

Co ¬out(c). But defeating c leads to a
new complete labelling, in which d is accepted but b is not. This causes failure
of Rational Monotony. We have ∅ ||=F

Co in(d) → in(b) and ∅ $||=F
Co ¬out(c).

Rational Monotony would imply that we have {out(c)} ||=F
Co in(d) → in(b), but

this is not the case. Note that this counterexample also applies to the preferred,
semi-stable and stable semantics.
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Figure 3.9: Failure of Loop under all semantics.

Speaking in loose terms, the failure of Rational Monotony is due to the fact that
an intervention may ‘override’ the relationship between the status of different
arguments, which is accompanied by loss of consequences. In the example above,
it is the defeat of c that overrides the relation that exists between the status of
d and b expressed by in(d) → in(b). Indeed, we have ∅ ||=F

Co in(d) → in(b) but
not {out(c)} ||=F

Co in(d) → in(b).

The only semantics under which intervention-based entailment satisfies Ratio-
nal Monotony is the grounded semantics. This follows from the fact that the
grounded labelling is unique, which implies the following.

Proposition 3.3.8. For all F ∈ F , Φ ∈ Int(F ) and φ ∈ lang(F ), either
Φ ||=F

Gr φ or Φ ||=F
Gr ¬φ.

Proof. Follows from definition 3.2.8 and proposition 2.1.9.

This means that for all F , Φ ∈ Int(F ) and α ∈ Act(F ) we have Φ $||=F
Gr ¬α if

and only if Φ ||=F
Gr α. This makes Cautious Monotony and Rational Monotony

equivalent. Because ||=F
Gr satisfies Cautious Monotony, it also satisfies Rational

Monotony.

Proposition 3.3.9. For all F ∈ F , ||=F
Gr satisfies Rational Monotony.

Proof. See preceding discussion.

3.3.4 Loop

Loop states that “if propositions may be arranged in a loop, in a way each
one is a plausible consequence of the previous one, then each one of them is a
plausible consequence of any one of them” [62]. According to Kraus, Lehmann
and Magidor, this is a desirable property for non-monotonic inference. In the
current setting we express it as follows.

Definition 3.3.10. Let F = (A,!) be an argumentation framework. A rela-
tion ||=F⊆ Int(F )× lang(F ) satisfies Loop iff for all α1, . . . ,αk ∈ Act(F ),

if {α0} ||=
F α1,{α1} ||=

F α2,. . . ,{αk−1} ||=F αk,{αk} ||=
F α0 then {α0} ||=

F αk.

The following example demonstrates the failure of Loop under all semantics.

Example 3.3.6. Let F be the argumentation framework shown in figure 3.9.
Defeating a (resp. b, c) results in acceptance of b (resp. c, a), which in
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turn results in rejection of c (resp. a, b). Thus we have {out(a)} ||=F
Co

out(c), {out(c)} ||=F
Co out(b) and {out(b)} ||=F

Co out(a). Loop would im-
ply that we have {out(a)} ||=F

Co out(b) but this is not the case. Instead, we
have {out(a)} ||=F

Co in(b). This counterexample also applies to the preferred,
grounded, semi-stable and stable semantics.

It is easy to check that the construction of this counterexamples applies to every
unattacked odd-length directed cycle (i.e., not attacked by arguments outside
the cycle) of length more than one, and hence that the existence of such a cycle is
a sufficient condition for the failure of Loop. It is an open question whether the
absence of odd-length directed cycles is a sufficient condition for the satisfaction
of Loop. In section 3.3.8 we do show, however, that the absence of any directed
cycle (both odd and even) ensures satisfaction of Loop.

3.3.5 Summary

Let us summarize the results obtained so far. Table 3.1 shows whether the
KLM property referred to in each row is satisfied by the relation ||=F

σ
for ev-

ery argumentation framework F . A check mark indicates that the property
is satisfied for all F ∈ F , and a cross mark indicates that the property fails
for some F ∈ F . This table summarizes the positive results obtained in the-
orem 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.5, 3.3.6 and 3.3.9 and the negative results
demonstrated in example 3.3.2, 3.3.4, 3.3.5 and 3.3.6.

Co Gr Pr SS St
(Stable) Cautious Monotony ✓ ✓ ✗ ✗ ✗

(Stable) Cut ✓ ✓ ✓ ✗ ✓

Rational Monotony ✗ ✓ ✗ ✗ ✗

Loop ✗ ✗ ✗ ✗ ✗

Table 3.1: Properties satisfied by ||=F
σ
for all F ∈ F .

3.3.6 Odd-Cycle-Free Argumentation Frameworks

It has been argued (e.g. by Bench-Capon [13]) that odd-length directed cycles
in argumentation frameworks have the nature of a paradox, in the sense that
nothing can be accepted. This suggests that argumentation frameworks that
contain no odd-length directed cycles may exhibit better behaviour than those
that do, as these argumentation frameworks can be thought of as being free
of paradoxes. In this section we determine whether the properties discussed in
the preceding sections that fail under some of the semantics we consider, nev-
ertheless hold if the argumentation framework contains no odd-length directed
cycles. We call these argumentation frameworks odd-cycle-free.

Definition 3.3.11. Let F = (A,!) be an argumentation framework. A se-
quence x0, . . . , xn of arguments is called an odd cycle if and only if n is odd;
x0 = xn; and xi ! xi+1 for all 0 ≤ i < n. We say that F is odd-cycle-free if it
contains no odd cycles.
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Figure 3.10: Failure of Cut and Cautious Monotony in the odd-cycle-free case.

Dung has shown that odd-cycle-freeness implies coherence, which is the condi-
tion that the set of preferred and stable extensions coincide [42].2 Because the
existence of at least one stable extension implies that the stable and semi-stable
extensions coincide, this result implies that odd-cycle-freeness implies that the
preferred and stable extensions also coincide with the semi-stable extensions.
We state this result for labelling-based semantics.

Proposition 3.3.10. If F is odd-cycle-free then LPr(F ) = LSS(F ) = LSt(F ).

We have shown that Cautious Monotony may fail under the preferred, semi-
stable and stable semantics, and that Cut may fail under the semi-stable seman-
tics. Odd-cycle-freeness is, however, a sufficient condition for the satisfaction of
Stable Cautious Monotony and Stable Cut under the preferred, semi-stable and
stable semantics.

Theorem 3.3.11. For all F ∈ F , if F is odd-cycle-free then ||=F
Pr, ||=

F
SS and

||=F
St satisfy Stable Cautious Monotony.

Proof. See section 3.7.

Theorem 3.3.12. For all F ∈ F , if F is odd-cycle-free then ||=F
SS satisfies

Stable Cut.

Proof. See section 3.7

Why are the non-stable versions of Cautious Monotony and Cut not satisfied?
This is because provisional defeat of an argument is interpreted by adding a
self-attacking attacker to this argument. This means that provisional defeat
introduces odd cycles. Under the semi-stable semantics, this causes failure of
Cautious Monotony and Cut. This is demonstrated by the following example.

Example 3.3.7. Let F be the argumentation framework shown in figure 3.10.
Note that F is odd-cycle-free. We have {¬in(a),¬in(f)} ||=F

SS out(b). The fail-
ure of Cautious Monotony is due to the fact that we have {¬in(a),¬in(f)} ||=F

SS

in(c) but not {¬in(a),¬in(f),out(b)} ||=F
SS out(b). The failure of Cut is

2Dung actually proved something stronger, namely that every limited controversial argu-
mentation framework is coherent. However, in the finite case, limited controversiality is the
same as odd-cycle-freeness.
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due to the fact that we have {¬in(a),¬in(f),out(b)} ||=F
SS out(c) but not

{¬in(a),¬in(f)} ||=F
SS out(c).

The results obtained in this section show that, indeed, odd-cycle-free argumen-
tation frameworks behave better in the sense that they ensure satisfaction of
Stable Cautious Monotony and Stable Cut under semantics that do not satisfy
these properties in general.

Odd-cycle-freeness does not ensure satisfaction of Rational Monotony. To see
why, consider again example 3.3.5, which demonstrates the failure of Rational
Monotony. This example relies on an argumentation framework that is odd-
cycle-free.

Table 3.2 summarizes the results obtained concerning odd-cycle-free argumen-
tation frameworks. Note that the question of whether Loop is satisfied remains
open.

Co Gr Pr SS St
(Stable) Cautious Monotony ✓ ✓ ✓ ✓ ✓

(Stable) Cut ✓ ✓ ✓ ✓ ✓

Rational Monotony ✗ ✓ ✗ ✗ ✗

Loop ? ? ? ? ?

Table 3.2: Properties satisfied by ||=F
σ
for every odd-cycle-free F ∈ F .

3.3.7 Even-Cycle-Free Argumentation Frameworks

The next class of argumentation frameworks are those containing no even-length
directed cycles. Whereas odd-length directed cycles have the nature of a para-
dox, even-length directed cycles have the nature of a dilemma, in the sense that
they force one to select one of two possibilities. In this section we look at the
behaviour of argumentation frameworks that contain no odd-length directed
cycles. We call these argumentation frameworks even-cycle-free.

Definition 3.3.12. Let F = (A,!) be an argumentation framework. A se-
quence x0, . . . , xn of arguments is called an even cycle if and only if n is even;
x0 = xn; xi ! xi+1 for all 0 ≤ i < n; and for all 0 ≤ i, j < n s.t. i $= j,
xi $= xj .

3 We say that F is even-cycle-free if it contains no even cycles.

It was proven by Dvorak [47] (strengthening a result obtained by Dunne and
Bench-Capon [14]) that these argumentation frameworks have a unique com-
plete extension, and hence a unique complete labelling.

Proposition 3.3.13. If F is even-cycle-free then |LCo(F )| = 1.

Proof. (Adapted from [47]) We prove it by contraposition. Let F = (A,!) be
an argumentation framework. Suppose |LCo(F )| $= 1. Because |LCo(F )| > 1 it
follows that there are two labellings L,L′ ∈ LCo(F ) such that L $= L′. Suppose
furthermore that L is the grounded labelling of F . Then there is some x0 ∈ A

3This condition ensures that odd cycles do not ‘double count’ as even cycles.
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such that L′(x0) = in and L(x0) $= in. Because L(x0) $= in, there is a x1 ∈ A

such that x1 ! x0 and L(x1) $= out. Furthermore, we have L′(x0) = in and
thus L′(x1) = out and hence there is a x2 ∈ A such that x2 ! x1 and L′(x2) =
in. Because L(x1) $= out, we furthermore have L(x2) $= in. Inductively, we
obtain a sequence x0, x1, x2, . . . such that x0 !x1 !x2 . . .; for each i that is
even, L′(i) = in; and for each i that is odd, L′(i) = out. Now let n be the
smallest integer such that x0 = xn (finiteness of A ensures existence of n). We
then have that n is even, and that, for all 0 ≤ i, j < n s.t. i $= j, xi $= xj . It then
follows that x0, . . . , xn is an even cycle and hence F is not even-cycle-free.

We now state two immediate consequences of this fact. The first is that even-
cycle-freeness ensures that intervention-based entailment under the grounded,
complete, preferred and semi-stable semantics coincides. The second is that
intervention-based entailment under the grounded and stable semantics coincide
as far as interventions are concerned that do not yield inconsistent conclusions
under the stable semantics.

Proposition 3.3.14. If F is even-cycle-free then ||=F
Gr=||=F

Co=||=F
Pr=||=F

SS .

Proposition 3.3.15. If F is even-cycle-free then for all Φ ∈ Int(F ), if Φ $||=F
St

⊥ then for all φ ∈ lang(F ), Φ ||=F
St φ iff Φ ||=F

Gr φ.

Let us start with the complete semantics. We have seen that Rational Monotony
fails under the complete semantics. But because rational monotony is sat-
isfied under the grounded semantics, proposition 3.3.14 implies that rational
monotony is satisfied in the even-cycle-free case under the complete semantics.

Theorem 3.3.16. For all F ∈ F , if F is even-cycle-free then ||=F
Co satisfies

Rational Monotony.

What about the preferred and semi-stable semantics? Recall that, in the gen-
eral case, Cautious Monotony fails under the preferred and semi-stable seman-
tics; Cut is satisfied under the preferred semantics but not under the semi-
stable semantics; and the preferred and semi-stable semantics both fail Rational
Monotony. Proposition 3.3.14 implies that, in the even-cycle-free case, the pre-
ferred and semi-stable semantics satisfy Cautious Monotony, Cut and Rational
Monotony.

Theorem 3.3.17. For all F ∈ F , if F is even-cycle-free then ||=F
Pr and ||=F

SS

satisfy Cautious Monotony, Cut and Rational Monotony.

Proof. This follows immediately from proposition 3.3.14 together with the fact
that for all F ∈ F , ||=F

Gr satisfies Cautious Monotony, Cut and Rational Mono-
tony (theorem 3.3.1 and 3.3.3 and proposition 3.3.9).

Under the stable semantics, even-cycle-freeness does not ensure satisfaction of
(Stable) Cautious Monotony. Here, (Stable) Cautious Monotony still fails if an
initial premise entails inconsistency while a strengthening of this premise does
not. This is demonstrated by the following example.
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Figure 3.11: Failure of Cautious Monotony due to inconsistency under the stable
semantics.

Example 3.3.8. Let F be the argumentation framework shown in figure 3.11.
Note that F is even-cycle-free. Because F has no stable labelling we have ∅ ||=F

St

⊥ and hence, trivially, ∅ ||=F
St out(a). Cautious Monotony implies that we have

{out(a)} ||=F
St ⊥ but this is not the case, because F ⊕κ {out(a)} does have a

stable labelling, and hence {out(a)} $||=F
St ⊥.

Finally, proposition 3.3.15 implies that even-cycle-freeness ensures satisfaction of
Rational Monotony under the stable semantics. Note that the stable semantics
fails Rational Monotony in the general case (see example 3.3.5).

Theorem 3.3.18. For all F ∈ F , if F is even-cycle-free then ||=F
St satisfies

Rational Monotony.

Proof. Let F ∈ F and assume that F is even-cycle-free. Suppose Φ ||=F
St φ and

Φ $||=F
St ¬α. Then Φ $||=F

St ⊥ and hence proposition 3.3.15 implies Φ ||=F
Gr φ and

Φ $||=F
Gr ¬α. Because ||=

F
Gr satisfies Rational Monotony (theorem 3.3.9) it follows

that Φ∪ {α} ||=F
Gr φ. If Φ∪ {α} ||=F

St ⊥, it trivially follows that Φ∪ {α} ||=F
St φ,

and we are done. If we have Φ ∪ {α} $||=F
St ⊥ then the fact that Φ ∪ {α} ||=F

Gr φ

implies, via proposition 3.3.15, that Φ ∪ {α} ||=F
St φ.

Even-cycle-freeness does not ensure satisfaction of Loop under any of the se-
mantics that we consider, as the counterexample that we used to demonstrate
the failure of Loop relies on an argumentation framework that is even-cycle-free.

Table 3.3 summarizes the results obtained here concerning even-cycle-free argu-
mentation frameworks (i.e., theorem 3.3.16, 3.3.17 and 3.3.18).

Co Gr Pr SS St
(Stable) Cautious Monotony ✓ ✓ ✓ ✓ ✗

(Stable) Cut ✓ ✓ ✓ ✓ ✓

Rational Monotony ✓ ✓ ✓ ✓ ✓

Loop ✗ ✗ ✗ ✗ ✗

Table 3.3: Properties satisfied by ||=F
σ
for every even-cycle-free F ∈ F .

3.3.8 Acyclic Argumentation Frameworks

We now consider the acyclic case. Acyclic argumentation frameworks were called
well-founded by Dung [42].

Definition 3.3.13. Let F = (A,!) be an argumentation framework. We
say that F is acyclic if there is no sequence x0, . . . , xn of arguments such that
x0 = xn and xi ! xi+1 for all 0 ≤ i < n.
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Obviously, an acyclic argumentation framework is also odd-cycle-free and even-
cycle-free. Hence, all the properties that are satisfied in the odd-cycle-free and
even-cycle-free case are satisfied in the acyclic case.

Proposition 3.3.19. For all F ∈ F , if F is acyclic then ||=F
Co, ||=F

Pr, ||=F
SS

and ||=F
St all satisfy (Stable) Cautious Monotony, (Stable) Cut and Rational

Monotony.

Proof. Satisfaction of Cautious Monotony, Cut and Rational Monotony under
the complete, preferred and semi-stable semantics follows from the even-cycle-
free case (theorem 3.3.17). Satisfaction of Stable Cautious Monotony under the
stable semantics follows from the odd-cycle-free case (theorem 3.3.11). Satis-
faction of Stable Cut under the stable semantics follows from the general case
(theorem 3.3.6). Satisfaction of Rational Monotony under the stable semantics
follows from the even-cycle-free case (theorem 3.3.18).

While this result is easily obtained, the following theorem is non-trivial. It
states that, in the acyclic case, Loop is satisfied under the complete, grounded,
preferred and semi-stable semantics.

Theorem 3.3.20. For all F ∈ F , if F is acyclic then ||=F
Co, ||=

F
Gr, ||=

F
Pr and

||=F
SS satisfy Loop.

Proof. Let F = (A,!) be an acyclic argumentation framework. We first show
that ||=F

Gr satisfies Loop. Assume that {α0} ||=F
Gr α1, {α1} ||=F

Gr α2, . . . ,
{αk−1} ||=F

Gr αk, {αk} ||=F
Gr α0. We prove that, for some i ∈ {0, . . . k}, it

holds that ∅ ||=F
Gr αi. Suppose the contrary: for all i ∈ {0, . . . k} we have ∅ $||=F

Gr

αi. Because ||=F
Gr satisfies conditional directionality (see definition 3.4.7 and

theorem 3.4.3) we then have α0 !
∗ α1, α1 !

∗ α2, . . . , αk−1 !
∗ αk, αk !

∗ α0.
This is a contradiction because F is acyclic. Hence for some i ∈ {0, . . . k} we
have ∅ ||=F

Gr αi. But we also have αi ||=
F
Gr αi+1 (addition is understood modulo

k + 1). Via Cut we then get ∅ ||=F
Gr αi+1. By repeatedly applying Cut like

this we get ∅ ||=F
Gr α0 and ∅ ||=F

Gr αk. Via Cautious Monotony we then get
{α0} ||=F

Gr αk. Hence ||=F
Gr satisfies Loop. Via proposition 3.3.14 we get that

||=F
σ
satisfies Loop, for all σ ∈ {Co,Gr,Pr,SS}.

Under the stable semantics, the following weakening of Loop is satisfied in the
acyclic case. This weakening is similar in nature to the weakening of Cautious
Monotony and Cut that we called Stable Cautious Monotony and Stable Cut.
We call it Stable Loop.

Definition 3.3.14. Let F = (A,!) be an argumentation framework. A rela-
tion ||=F⊆ Int(F )× lang(F ) satisfies Stable Loop iff for all x1, . . . , xk ∈ A,

if {out(x0)} ||=
F out(x1),{out(x1)} ||=

F out(x2),. . . ,{out(xk−1)} ||=
F out(xk),

{out(xk)} ||=F out(x0) then {out(x0)} ||=F out(xk).

Theorem 3.3.21. If F is acyclic then ||=F
St satisfies Stable Loop.
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Proof. Let F = (A,!) be an acyclic argumentation framework. Theorem 3.3.20
implies that ||=F

Gr satisfies Loop and thus also Stable Loop. Because F is odd-
cycle-free, we have for all x ∈ A, {out(x)} $||=F

St ⊥. Because F is even-cycle-free,
proposition 3.3.15 then implies that for all x, y ∈ A, {out(x)} ||=F

St out(y) iff
{out(x)} ||=F

Gr out(y). From this it follows that ||=F
St satisfies Stable Loop.

Table 3.4 summarizes the results obtained concerning acyclic argumentation
frameworks (i.e., proposition 3.3.19 and theorem 3.3.20 and 3.3.21).

Co Gr Pr SS St
(Stable) Cautious Monotony ✓ ✓ ✓ ✓ ✓

(Stable) Cut ✓ ✓ ✓ ✓ ✓

Rational Monotony ✓ ✓ ✓ ✓ ✓

(Stable) Loop ✓ ✓ ✓ ✓ ✓

Table 3.4: Properties satisfied by ||=F
σ
for every acyclic F ∈ F .

3.4 Directionality and Noninterference

In this section we study the role of directionality and noninterference in the
behaviour of intervention-based entailment. The notion of directionality was in-
troduced by Baroni and Giacomin [6] for extension-based semantics and adapted
by Baroni et al. [4] for labelling-based semantics. Intuitively, directionality ex-
presses the idea that the notion of attack is directional: an argument x has an
effect on the label of an argument y only if there is a directed path from x to
y. Noninterference was introduced by Caminada [27] and adapted by Baroni et
al. [4] for labelling-based semantics. It is a weakening of directionality: it states
that an argument x has an effect on the label of an argument y only if there is
an undirected path between x and y.

Formally, these properties are defined by the condition that certain sets of ar-
guments of an argumentation framework can be evaluated independently of the
arguments outside this set. In the case of directionality, these are the unattacked
sets of an argumentation framework, which are sets of arguments not attacked
by an argument outside this set. In the case of noninterference, these are the
isolated sets, which are sets of arguments not attacked by arguments outside
this set and not attacking arguments outside this set.

In this section we show that, in the dynamic setting of intervention-based entail-
ment, directionality and noninterference imply that the effect of an intervention
propagates through an argumentation framework in a well-behaved manner.
That is, if we use a semantics satisfying directionality, then an intervention in-
volving the argument x only affects consequences about arguments attacked by
x, attacked by arguments attacked by x, and so forth. We call this Conditional
Directionality. Similarly, noninterference implies that an intervention involving
the argument x only affects consequences about arguments connected to x, in
either direction, by attacks. We call this Conditional Noninterference.
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3.4.1 Directionality

The Directionality Principle

The directionality principle is due to Baroni and Giacomin [6] and was later
adapted for labelling-based semantics by Baroni et al. [4]. Intuitively, it ex-
presses idea that the notion of attack is directional: an argument x has an effect
on an argument y only if x attacks y. This is formalized by the condition that
the unattacked sets of an argumentation framework (sets of arguments not at-
tacked by an argument outside this set) can be evaluated independently of the
rest of the argumentation framework. First some definitions.

Definition 3.4.1. [4] Given an argumentation framework F = (A,!) a la-
belling L ∈ L(F ) and a set B ⊆ A we denote by L ↓ B the restriction of L by
B, which is defined to be the labelling (L ↓ B) : B → {in,out,und} such that
(L ↓ B)(x) = L(x), for all x ∈ B. Given a set M ⊆ L(F ), we denote by M ↓ B

the set {L ↓ B | L ∈ M}.

Definition 3.4.2. [6] Given an argumentation framework F = (A,!) and a
set B ⊆ A we denote by F ↓ B the restriction of F by B, which is defined to
be the argumentation framework (B,! ∩(B ×B)).

Definition 3.4.3. [6] Let F = (A,!) be an argumentation framework and let
B ⊆ A. We say that B is unattacked iff there is no x ∈ B and y ∈ A \ B such
that y ! x. We let U(F ) denote the set of unattacked sets of F .

Formally, the condition that unattacked sets can be evaluated independently of
the rest of the argumentation framework means that, given an argumentation
framework F and unattacked set B ∈ U(F ), the labellings of the restriction of
F by B coincide with the labellings of F , restricted by B.

Definition 3.4.4. [4] A labelling-based semantics σ satisfies the directionality
principle iff for all F ∈ F and B ∈ U(F ),

Lσ(F ) ↓ B = Lσ(F ↓ B).

We can characterize the directionality principle in terms of a labelling-based
entailment relation as follows.

Proposition 3.4.1. A labelling-based semantics σ satisfies the directionality
principle if and only if

∀B ∈ U(F ),φ ∈ lang(B), (F ↓ B) |=σ φ iff F |=σ φ.

Proof. This follows from definition 2.1.17.

Not all semantics satisfy directionality. While the complete, grounded and pre-
ferred semantics do, the semi-stable and stable semantics do not. This was
shown by Baroni et al. [6].

Proposition 3.4.2. [6] The Co, Gr and Pr semantics satisfy the directionality
principle but the SS and St semantics do not.
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a b c

Figure 3.12: Failure of directionality.

The failure of the directionality principle under the semi-stable and stable se-
mantics is demonstrated by the following example.

Example 3.4.1. Let F be the argumentation framework shown in figure 3.12.
Let σ ∈ {St,SS}. We have

(Lσ(F ) ↓ {a, b}) = {{(a,out), (b, in)}}.

But we also have {a, b} ∈ U(F ) and

Lσ(F ↓ {a, b}) = {{(a, in), (b,out)}, {(a,out), (b, in)}}.

In terms of labelling-based entailment, this means that we have, for example,
F |=σ in(b) but not F ↓ {a, b} |=σ in(b). This is a violation of directionality.

The Conditional Directionality Property

We now introduce the Conditional Directionality property for intervention-based
entailment. Informally speaking, Conditional Directionality states that an in-
tervention that applies to an argument x only changes the label of an argument
y if there is a directed path from x to y. We make this formal using the relation
of structural relevance4.

Definition 3.4.5. Let F = (A,!) be an argumentation framework. We say
that x is structurally relevant to y (written x !

∗ y) if x = y or if there is a
directed path in F from x to y. We similarly say that B ⊆ A is structurally
relevant to B′ ⊆ A (written B !

∗ B′) iff for some x ∈ B and y ∈ B′ it holds
that x !

∗ y.

Note that this definition implies that every argument is structurally relevant to
itself. We also apply the relation of structural relevance to interventions and
formulas. For example, an intervention Φ is structurally relevant to a formula
φ whenever the set of arguments occurring in Φ is structurally relevant to the
set of arguments occurring in φ.

Definition 3.4.6. Let F = (A,!) be an argumentation framework. We de-
note by Args(Φ) (resp. Args(φ)) the set of all arguments occurring in Φ (resp.
φ). We slightly abuse notation and write φ !

∗ ψ, φ !
∗
Ψ and Φ !

∗ ψ

to mean Args(φ) !
∗ Args(ψ), Args(φ) !

∗ Args(Ψ) and Args(Φ) !
∗ Args(ψ),

respectively.

4Not to be confused with the relation of relevance used by Caminada in [27], which is what
we call structural connectedness in definition 3.4.10.
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The Conditional Directionality property states that an intervention only changes
the consequences to which the intervention is structurally relevant. In other
words, whether or not a formula is a consequence is independent of any inter-
vention not structurally relevant to this formula. Formally, we express this by
saying that the consequences of two interventions Φ∪Ψ and Φ are the same as
far as consequences to which Ψ is not structurally relevant are concerned.

Definition 3.4.7. Let F ∈ F . A relation ||=F⊆ Int(F ) × lang(F ) satisfies
Conditional Directionality iff for all Φ,Ψ ∈ Int(F ) and φ ∈ lang(F ),

if Ψ $!∗ φ then Φ ∪Ψ ||=F φ iff Φ ||=F φ.

The principle of directionality, if satisfied by a labelling-based semantics σ,
ensures that ||=F

σ
satisfies Conditional Directionality.

Theorem 3.4.3. If σ satisfies the directionality principle then for all F ∈ F ,
||=F

σ
satisfies Conditional Directionality.

Proof. See section 3.7.

The complete, grounded and preferred semantics all satisfy the directionality
principle and hence for all F ∈ F , the relations ||=F

Co, ||=
F
Gr and ||=F

Pr satisfy
Conditional Directionality. This does not hold for the semi-stable and stable se-
mantics, which do not satisfy the directionality principle. The following example
demonstrates unintuitive behaviour as a result of this.

Example 3.4.2. Let F be the argumentation framework shown in figure 3.12.
Note that acceptance of b is necessary to minimize undecidedness. Hence we
have ∅ ||=F

SS in(b). Furthermore we have {out(c)} $!∗ in(b), and hence the
intervention {out(c)} should not affect whether or not in(b) is a consequence.
However, if we defeat c then acceptance of b is no longer necessary to mini-
mize undecidedness. Thus we have {out(c)} $||=F

SS in(b), which is a violation
of Conditional Directionality. This example shows that under the semi-stable
semantics an intervention might affect the labels of arguments to which the in-
tervention is not structurally relevant. This example also applies to the stable
semantics.

3.4.2 Noninterference

The Noninterference Principle

Noninterference is a weakening of directionality: it states that an argument x

has an effect on an argument y only if x and y are connected (in either direction)
by an attack. Noninterference was introduced by Caminada [27] and adapted
by Baroni et al. [4] for labelling-based semantics. Formally, noninterference is
defined by the condition that the isolated sets (sets of arguments not attacked
by arguments outside this set and not receiving attacks from outside this set)
can be evaluated independently of the rest of the argumentation framework.

Definition 3.4.8. [4] Let F = (A,!) be an argumentation framework and let
B ⊆ A. We say that B is isolated iff there is no x ∈ B and y ∈ A \B such that
x ! y or y ! x. We let I(F ) denote the set of isolated sets of F .
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Figure 3.13: A counterexample for noninterference under the stable semantics.

Formally, the condition that isolated sets can be evaluated independently of
the rest of the argumentation framework means that, given an argumentation
framework F and isolated set B ∈ I(F ), the labellings of the restriction of F
by B coincide with the labellings of F , restricted by B. Note that, since an
isolated set is also an unattacked set, the directionality principle implies the
noninterference principle.

Definition 3.4.9. [4] A labelling-based semantics σ satisfies the noninterfer-
ence principle if and only if for all F ∈ F and B ∈ I(F ), Lσ(F ) ↓ B = Lσ(F ↓
B).

The noninterference principle is characterized in terms of a labelling-based en-
tailment relation as follows.

Proposition 3.4.4. A labelling-based semantics σ satisfies noninterference if
and only if

∀B ∈ I(F ),φ ∈ lang(B), (F ↓ B) |=σ φ iff F |=σ φ.

Proof. This follows from definition 2.1.17.

The complete, grounded and preferred semantics satisfy the directionality prin-
ciple and therefore they also satisfy the noninterference principle. Caminada has
shown that the semi-stable semantics also satisfies noninterference, but that the
stable semantics does not [27].

Proposition 3.4.5. The Co, Gr, Pr and SS semantics satisfy the noninterfer-
ence principle but the St semantics does not.

The failure of the noninterference principle under the stable semantics is demon-
strated by the following example.

Example 3.4.3. Let F be the argumentation framework shown in figure 3.13.
Note that {a, b} ∈ I(F ). We have LSt(F ) = ∅ and hence

(LSt(F ) ↓ {a, b}) = ∅.

But we also have

LSt(F ↓ {a, b}) = {{(a, in), (b,out)}}.

In terms of labelling-based entailment, this means that we have, for example,
F |=St ⊥ but not F ↓ {a, b} |=St ⊥. This is a violation of noninterference.
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The Conditional Noninterference Property

The Conditional Noninterference property for intervention-based entailment is
related to the noninterference property of a semantics. Informally speaking,
Conditional Noninterference states that an intervention that applies to an ar-
gument x only changes the label of an argument y if there is an undirected path
from x to y. We make this formal using the relation of structural connectedness.
We say that an argument x is structurally connected to an argument y if there
is an undirected path between x and y.

Definition 3.4.10. Let F = (A,!) be an argumentation framework. We say
that x is structurally connected to y (written x !

∗ y) if x = y or if there is an
undirected path in F from x to y. We similarly say that B ⊆ A is structurally
connected to B′ ⊆ A (written B #

∗ B′) iff for some x ∈ B and y ∈ B′ it holds
that x #

∗ y.

It is easy to check that the structural connectedness relation is an equivalence
relation, whose classes are exactly the isolated sets of the argumentation frame-
work. Like we did for the relation of structural relevance, we extend the relation
of structural connectedness to apply to interventions and formulas. If, e.g., it
holds that Args(Φ) #∗ Args(φ) then we also write Φ #

∗ φ.

Conditional Noninterference states that an intervention only changes conse-
quences to which the intervention is structurally connected. In other words,
whether or not a formula is a consequence is independent of any intervention
not structurally connected to this formula.

Definition 3.4.11. Let F ∈ F . A relation ||=F⊆ Int(F ) × lang(F ) satisfies
Conditional Noninterference iff for all Φ,Ψ ∈ Int(F ) and φ ∈ lang(F ),

if Ψ $#∗ φ then Φ ∪Ψ ||=F φ iff Φ ||=F φ.

It is easy to see that structural relevance implies structural connectedness, and
hence that we have the following.

Proposition 3.4.6. If ||=F satisfies Conditional Directionality then ||=F satis-
fies Conditional Noninterference.

Proof. Suppose ||=F satisfies Conditional Directionality and assume Ψ $#∗ φ. It
then follows that Ψ $!∗ φ and hence, by Conditional Directionality, Φ∪Ψ ||=F φ

iff Φ ||=F φ.

Furthermore, if a labelling-based semantics σ satisfies the noninterference prin-
ciple then for every argumentation framework F , the relation ||=F

σ
satisfies Con-

ditional Noninterference.

Theorem 3.4.7. For any labelling-based semantics σ that satisfies the non-
interference principle it holds that for all F ∈ F , ||=F

σ
satisfies Conditional

Noninterference.

Proof. See section 3.7.
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The complete, grounded, preferred and semi-stable semantics all satisfy the
noninterference principle and hence for all F ∈ F , the relations ||=F

Co, ||=
F
Gr,

||=F
Pr and ||=F

SS satisfy Conditional Noninterference. This does not hold for
the stable semantics, which does not satisfy the noninterference principle. The
following example demonstrates unintuitive behaviour as a result of this.

Example 3.4.4. Let F be the argumentation framework shown in figure 3.13.
We have {out(c)} $||=F

St in(b) and {out(c)} $#∗ in(b). Conditional Noninter-
ference would imply that we have ∅ $||=F

St in(b) but this is not the case. We have
instead ∅ ||=F

St ⊥ and hence ∅ ||=F
St in(b).

3.4.3 Summary and Discussion of Results

We have shown that, whenever a semantics σ satisfies the directionality and
noninterference principle, it holds that for all F ∈ F , the relation ||=F

σ
satisfies

Conditional Directionality and Conditional Noninterference, respectively. The
results with respect to the semantics that we consider are shown in table 3.5.

||=F
Co ||=F

Gr ||=F
Pr ||=F

SS ||=F
St

Conditional Directionality ✓ ✓ ✓ ✗ ✗

Conditional Noninterference ✓ ✓ ✓ ✓ ✗

Table 3.5: Properties satisfied by the relation ||=F
σ
, for all F ∈ F .

It is interesting to contrast the properties of Conditional Directionality and
Conditional Noninterference on the one hand, and Cautious Monotony and Cut
on the other. While Cautious Monotony and Cut together state that two in-
terventions Φ and Φ ∪ {α} are equivalent in terms of their consequences if α is
already a consequence of Φ, Conditional Directionality and Conditional Nonin-
terference implies that Φ and Φ ∪ {α} are the same as far as the consequences
to which α is not structurally relevant or connected are concerned. The rela-
tion between these properties is that they all express conditions under which a
consequence (resp. non-consequence) of an intervention is still a consequence
(resp. non-consequence) if we change the intervention.

Although the technical differences between the theories of abstract argumenta-
tion and causal Bayesian networks complicates their comparison, the property
of Conditional Directionality expresses a principle that also applies to interven-
tion in causal Bayesian networks. This is the principle that in a causal Bayesian
network, the effect of an intervened variable propagates only to the direct and
indirect effects of this variable. This is because an intervened variable in a causal
Bayesian network is made independent of its typical causes.

3.5 Related Work

We have developed the notion of intervention-based entailment as a formal tool
to study the idea that an argumentation framework is a system whose evalua-
tion changes as new arguments and attacks are added. A similar perspective is
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taken by Baroni et al. [3], who study the so called input/output behaviour of ar-
gumentation frameworks. Roughly speaking, the idea is that an argumentation
framework is seen as a sort of black box, with both input and output, formed by
interactions with arguments outside the argumentation framework. They study
two types of properties. The first type of properties concern the decomposability
of a semantics, or the question of whether putting together the labellings of
different subframeworks under a given semantics (while taking into account the
interactions between the subframeworks) results in a set of labellings that coin-
cides with the labellings of the whole argumentation framework under the same
semantics. The first type of properties concern the replacement properties: the
question of whether different argumentation frameworks that behave the same
with respect to a given set of input and output arguments are interchange-
able in the context of a larger argumentation framework, without affecting the
labellings of this larger argumentation framework.

A specific type of decomposability, called SCC-recusiveness, was studied earlier
by Baroni et al. [8]. The SCC-recursive scheme exploits the property that an
argumentation framework can be decomposed into a set of strongly connected
components (SCCs) and that the graph obtained considering SCCs as single
nodes is acyclic. This means that this decomposition yields a partial order over
SCCs. This partial order can be used for the incremental computation of the
extensions of an argumentation framework, by first computing the extensions of
the initial SCCs (i.e., those not attacked by other SCCs), and using these results
to recursively compute the extensions of the whole argumentation framework.
A semantics is called SCC-recursive if its extensions can be computed using this
recursive scheme.

We did not, like the work mentioned here, focus on properties related to de-
composability or replacement. Nevertheless, the results that we have obtained
contribute, like these properties, to a deeper understanding of the behaviour of
an argumentation framework when external input is considered.

Liao et al. [65] addressed the question of whether, after modifying an argumen-
tation framework, it is possible to partially reuse extensions computed before
the modification, when computing the extensions of the modified argumentation
framework. They show that, roughly speaking, directionality ensures the eval-
uation of the set of arguments not reachable from some argument affected by
the modification remains the same. They call this set of unreachable arguments
the unaffected part. This is very similar to what the Conditional Directional-
ity property states (that is, consequences referring to arguments not reachable
from an argument affected by an intervention remain the same). In a follow-up
work, Baroni et al. [9] show that the SCC-recursiveness property enables one
to reuse the (unchanged) evaluation of the unaffected part when computing the
evaluation of the modified argumentation framework.

Sakama [84] studied properties of counterfactual conditionals about the sta-
tus of arguments in an argumentation framework. He defines a semantics for
counterfactual conditionals in abstract argumentation of the form α ✷→ β or
α ✸→ β, where α and β are single literals of the form in(x) or out(x). The
intended meaning of α ✷→ β (resp. α ✸→ β) is that “if it were the case that α,
then it would (resp. might) be the case that β.” The interpretation is similar
to ours, i.e., the premise is translated into a modification of the argumentation
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framework within which the consequent is evaluated. In particular, acceptance
in the premise is translated by removing all attackers pointing towards the ac-
cepted argument. A number of properties of these conditionals are studied,
and some of them are similar to the properties we considered. These include
Reflexivity and a restricted form of Cautious Monotony, as well as properties
such as Transitivity and Contraposition. We have extended these results by,
for example, demonstrating the failure of Cautious Monotony under the pre-
ferred, semi-stable and stable semantics, and proving results with respect to
argumentation frameworks containing no (odd-length or even-length) directed
cycles.

Cayrol et al. [34] study the impact of modifying an argumentation framework
by adding a single new argument that interacts with old arguments. They de-
fine a number of properties that describe the impact of such a modification on
the extensions of the argumentation framework, such as restrictiveness, con-
servativeness and questioning (i.e., modifications that result, respectively, in a
smaller, equivalent, and larger set of extensions). They then define necessary
and sufficient conditions under which a modification satisfies these properties.
While the properties that we studied in this chapter are, like those studied by
Cayrol et al., also about the impact of modifying an argumentation framework,
the nature of the type of properties used to describe this impact are of a differ-
ent nature. For example, all properties used by Cayrol et al. refer to extensions
instead of labellings, and hence no distinction is made between out and und
labelled arguments. Furthermore, the majority of these properties refer explic-
itly to the number of extensions before and after the modification, while this
number does not appear in the definition of the properties that we consider.

3.6 Conclusion and Future Work

We modelled change due to actions performed in a debate by introducing the
notion of intervention-based entailment. We simplified our model by abstracting
away from the actual new arguments and attacks that may be introduced in a
debate, and instead we focussed on two actions: defeat of an argument and
provisional defeat of an argument, which are modelled by the addition of a
(self-attacking) attacker. We have shown that this is sufficient to obtain a
number of fundamental results concerning the behaviour of this type of change.
Nevertheless, there are several directions in which our model can be generalized,
which is a subject for future research. For example, we may look at changes
to an argumentation framework where elements are removed, or where more
complex additions (e.g. addition of arguments that are in turn attacked by
existing arguments) are performed.

We investigated how intervention-based entailment behaves with respect to the
KLM properties, and obtained a number of surprising results, like the failure of
Cautious Monotony and Cut under a number of semantics, except in cases where
the argumentation framework contains no odd-length or even-length directed
cycles.

Finally, we investigated the role of directionality and noninterference in the
behaviour of intervention-based entailment. We showed that these properties
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ensure that the effect of an action propagates in a well-behaved manner. In
particular, directionality of a semantics σ ensures that the for all F ∈ F , the
relation ||=F

σ
satisfies Conditional Directionality, which expresses a principle

that also applies to intervention in causal Bayesian networks, namely that the
effect of an intervened variable propagates only to the direct and indirect effects
of this variable. This raises the question whether notions such as the Markov
assumption and the d-separation criterion [72] have analogues in the theory of
abstract argumentation. This is a question we plan to address in future work.

A question that we have not addressed is: what is the meaning of intervention in
instantiated argumentation? The main obstacle is that the instantiated setting
imposes certain restrictions on how an argumentation framework can be modi-
fied. If these restrictions are not respected, the labellings of the argumentation
framework do not any more correspond to consistent sets of conclusions on the
instantiated level. If, for example, an argument x contains no defeasible rules,
then it is impossible to construct an instantiated argument that attacks x and
hence the rejection of x cannot be enforced. In the instantiated setting, it may
furthermore be more appropriate to look at interventions that are expressed in
the object language of the instantiation itself.

Another direction for future work is to relate the notion of intervention-based
entailment with the relation of strong equivalence of argumentation frame-
works [71]. Strong equivalence between argumentation frameworks means that
they generate equivalent sets of extensions, and that this equivalence is robust
with respect to the addition of new arguments and attacks. The main issue
addressed is the characterization of strong equivalence in terms of syntactical
(i.e., topology related) conditions. In the setting of intervention-based entail-
ment we can address the question: given two argumentation frameworks F1 and
F2, what are the conditions under which it holds that ||=F1

σ
=||=F2

σ
?

3.7 Proofs

Theorem 3.2.8. Let F be an argumentation framework and σ ∈ {Co,Gr, Pr,
SS}. The following are equivalent.

1. For some Φ ∈ Int(F ), Φ ||=F
σ
φ.

2. φ is conflict-free with respect to F .

Proof. Let F = (A,!) be an argumentation framework and σ ∈ {Co,Gr, Pr,
SS}. (1) to (2): Let Φ ∈ Int(F ) and φ ∈ lang(F ) be a formula such that
Φ ||=F

σ
φ. Suppose, toward a contradiction, that φ is not conflict-free w.r.t.

F . Because we have Lσ(F,Φ) $= ∅, this implies, via definition 3.2.10, that
there is some L ∈ Lσ(F,Φ) such that L $∈ LCf(F ). But this implies that
there is an L ∈ Lσ(F ⊕κ

Φ) for some F -mapping κ, and L $∈ LCf(F ⊕κ
Φ).

This is a contradiction. Hence φ is conflict-free w.r.t. F . (2) to (1): Let
φ ∈ lang(F ) be a conflict-free formula w.r.t. F . Let L ∈ LCf(F ) be a labelling
such that L |= φ (definition 3.2.10 ensures existence of L). We define Φ by
Φ = {out(x) | L(x) = out} ∪ {¬in(x) | L(x) = und}. Let κ be an F -mapping,
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let (A′,!′) = F ⊕κ
Φ and let L′ ∈ Lσ((A

′,!′)). We prove that L = L′ ↓ A.
Let x ∈ A. Three cases:

1. L(x) = out. Then out(x) ∈ Φ. From definition 3.2.5 it follows that there
is an y ∈ A′ such that y !

′ x and y is unattacked in F ′. Condition 2 and
4 in definition 2.1.11 imply that L′(x) = out.

2. L(x) = in. Conflict-freeness of L then implies that for all y ∈ A s.t. y ! x,
L(y) = out and hence out(y) ∈ Φ. From (1) and the fact that out(x) $∈ Φ

and ¬in(x) $∈ Φ it then follows that for all y ∈ A′ s.t. y ! x, L′(y) = out.
Condition 4 in definition 2.1.11 finally implies that L′(x) = in.

3. L(x) = und. Then (¬in(x)) ∈ Φ. Conflict-freeness of L then implies that
for all y ∈ A s.t. y ! x, L(y) $= in. From (1) and (2) it follows that for
all y ∈ A s.t. y ! x, L′(y) $= in. Furthermore we have one more attacker
y ∈ A′ \ y such that y !

′ x, and L′(y) = und. Condition 1 and 2 in
definition 2.1.11 imply that L′(x) = und.

Hence L = L′ ↓ A. Definition 3.2.8 now implies that Φ ||=F
Co φ.

Theorem 3.2.9. Let F be an argumentation framework. The following are
equivalent.

1. For some Φ ∈ Int(F ) we have Φ ||=F
St φ and Φ $||=F

St ⊥.

2. φ is a stable conflict-free with respect to F .

Proof. Let F = (A,!) be an argumentation framework. (1) to (2): Let Φ ∈
Int(F ) and φ ∈ lang(F ) a formula such that Φ ||=F

St φ and Φ $||=F
St ⊥. Suppose,

toward a contradiction, that φ is not stable conflict-free w.r.t. F . Because we
have Φ $||=F

St ⊥, we have LSt(F,Φ) $= ∅. This implies, via definition 3.2.11,
that there is some L ∈ LSt(F,Φ) such that L $∈ LCf(F ) or L−1(und) $= ∅.
But this implies that there is an L ∈ LSt(F ⊕κ

Φ) for some F -mapping κ, and
L $∈ LCf(F ⊕κ

Φ) or L−1(und) $= ∅. This is a contradiction. Hence φ is conflict-
free w.r.t. F . (2) to (1): Let φ ∈ lang(F ) be stable conflict-free w.r.t. F . We let
L ∈ LCf(F ) be a labelling such that L−1(und) = ∅ and L |= φ (definition 3.2.11
ensures existence of L) and define Φ by Φ = {out(x) | L(x) = out}. Now let
κ be an F -mapping and define L′ ∈ L(F ⊕κ

Φ) by L′(x) = L(x), if x ∈ A and
L′(x) = in, otherwise. It then follows that every out-labelled argument in L′

is attacked by an argument that is labelled in and every in labelled argument
is attacked only by arguments that are labelled out and hence L′ is a stable
labelling of F⊕κ

Φ. Furthermore it is the only stable labelling of F⊕κ
Φ, because

every out-labelled argument is attacked by an argument that is labelled in in
every stable labelling of F ⊕κ

Φ. Via definition 3.2.8 it follows that Φ ||=F
St φ

and Φ $||=F
St ⊥.

For the proof of theorem 3.3.1 and 3.3.3 we use the following lemmas.

Lemma 3.7.1. Let F = (A,!) be an argumentation framework and let a ∈ A.
Let {E} = EGr(F ) and {E′} = EGr(F ⊕κ {out(a)}) for some F -mapping κ. If
E ! a then E = E′ ∩A.
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Proof. Let F = (A,!) be an argumentation framework, let a ∈ A and let
F ′ = (A′,!′) = F ⊕κ {out(a)} for some F -mapping κ. Let {E} = EGr(F ) and
{E′} = EGr(F

′}). Note that we have κ(a) !
′ a. Assume E ! a. We prove

E = E′ ∩A. We prove the two inclusions separately.

1. E ⊆ E′∩A: We prove this by showing that, for all n ∈ Z, Dn
F (∅) ⊆ Dn

F ′(∅)
(where Dn

F (∅) is defined by D1
F (∅) = DF (∅) and for all i > 1, Di

F (∅) =
DF (D

i−1
F (∅))). Assume towards contradiction that for some n ∈ Z, there

is an x ∈ A such that x ∈ Dn
F (∅) and x $∈ Dn

F ′(∅). Let y ∈ A′ be the
argument such that y !

′ x while for all z ∈ A′ such that z !
′ y, we

have z $∈ Dn−1
F ′ (∅) (definition 2.1.2 guarantees existence of y). We then

also have y ∈ A (if not, then y = κ(a) and hence x = a, which is a
contradiction, because we have E ! a and thus a $∈ E, and therefore
a $∈ Dn

F (∅)). Because we have x ∈ Dn
F (∅), there is some z ∈ A such that

z ! y and z ∈ Dn−1
F (∅), while z $∈ Dn−1

F ′ (∅). By continuing this argument
we arrive at DF (∅) $⊆ DF ′(∅), which is false. Hence Dn

F (∅) ⊆ Dn
F ′(∅) and,

by proposition 2.1.1, E ⊆ E′ ∩A.

2. E′ ∩ A ⊆ E: We prove this by showing that, for all n ∈ Z, Dn
F ′(∅) ∩ A ⊆

D∞
F (∅). Assume towards contradiction that for some n ∈ Z, there is an

x ∈ A such that x ∈ Dn
F ′(∅) ∩ A and x $∈ D∞

F (∅). Let y ∈ A be the
argument such that y ! x while for all z ∈ A such that z ! y, we have
z $∈ D∞

F (∅) (definition 2.1.2 guarantees existence of y). Let z ∈ A′ be the
argument such that z !

′ y and z ∈ Dn−1
F ′ (∅) (definition 2.1.2, together

with the fact that y ∈ A′ and y !
′ x, guarantees existence of z). We

then also have z ∈ A (if not, then z = κ(a) and hence y = a, which is
a contradiction, because we then have E ! y, contradicting that for all
z ∈ A s.t. z ! y, z $∈ D∞

F (∅)). Thus we have z ∈ Dn−1
F ′ (∅) ∩ A and z $∈

Dn−1
F (∅). By continuing this argument we arrive at DF ′(∅) ∩ A $⊆ DF (∅),

which is false. Hence Dn
F ′(∅) ∩ A ⊆ D∞

F (∅) and, by proposition 2.1.1,
E′ ∩A ⊆ E.

Lemma 3.7.2. Let F = (A,!) be an argumentation framework and let a ∈ A.
Let {E} = EGr(F ) and {E′} = EGr(F ⊕κ {¬in(a)}) for some F -mapping κ. If
a $∈ E then E = E′ ∩A.

Proof. Let F = (A,!) be an argumentation framework, let a ∈ A and let
F ′ = (A′,!′) = F ⊕κ {¬in(a)} for some F -mapping κ. Let {E} = EGr(F ) and
{E′} = EGr(F

′}). Note that we have κ(a) !
′ a and κ(a) !

′ κ(a). Assume
a $∈ E. We prove E = E′ ∩A. We prove the two inclusions separately.

1. E ⊆ E′ ∩ A: We prove this by showing that, for all n ∈ Z, Dn
F (∅) ⊆

Dn
F ′(∅) (where Dn

F (∅) is defined by D1
F (∅) = DF (∅) and for all i > 1,

Di
F (∅) = DF (D

i−1
F (∅))). Assume towards contradiction that for some

n ∈ Z, there is an x ∈ A such that x ∈ Dn
F (∅) and x $∈ Dn

F ′(∅). Let
y ∈ A′ be the argument such that y !

′ x while for all z ∈ A′ such that
z !

′ y, we have z $∈ Dn−1
F ′ (∅) (definition 2.1.2 guarantees existence of

y). We then also have y ∈ A (if not, then y = κ(a) and hence x = a,
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which is a contradiction, because we have a $∈ E and hence a $∈ Dn
F (∅)).

Because we have x ∈ Dn
F (∅), there is some z ∈ A such that z ! y

and z ∈ Dn−1
F (∅), while z $∈ Dn−1

F ′ (∅). By continuing this argument we
arrive at DF (∅) $⊆ DF ′(∅), which is false. Hence Dn

F (∅) ⊆ Dn
F ′(∅) and, by

proposition 2.1.1, E ⊆ E′ ∩A.

2. E′ ∩ A ⊆ E: We prove this by showing that, for all n ∈ Z, Dn
F ′(∅) ∩ A ⊆

D∞
F (∅). Assume towards contradiction that for some n ∈ Z, there is an

x ∈ A such that x ∈ Dn
F ′(∅) ∩ A and x $∈ D∞

F (∅). Let y ∈ A be the
argument such that y ! x while for all z ∈ A such that z ! y, we have
z $∈ D∞

F (∅) (definition 2.1.2 guarantees existence of y). Let z ∈ A′ be the
argument such that z !

′ y and z ∈ Dn−1
F ′ (∅) (definition 2.1.2, together

with the fact that y ∈ A′ and y !
′ x, guarantees existence of z). We

then also have z ∈ A (if not, then z = κ(a), which is a contradiction,
because we then have z !

′ z, contradicting z ∈ Dn−1
F ′ (∅)). Thus we have

z ∈ Dn−1
F ′ (∅)∩A and z $∈ Dn−1

F (∅). By continuing this argument we arrive
at DF ′(∅) ∩ A $⊆ DF (∅), which is false. Hence Dn

F ′(∅) ∩ A ⊆ D∞
F (∅) and,

by proposition 2.1.1, E′ ∩A ⊆ E.

Lemma 3.7.3. Let F = (A,!) be an argumentation framework and let x ∈ A.
Let {L} = LGr(F ) and {L′} = LGr(F ⊕κ {out(x)}) for some F -mapping κ. If
L |= out(x) then L = L′ ↓ A.

Proof. Let F = (A,!) be an argumentation framework, let x ∈ A and let
F ′ = (A′,!′) = F ⊕κ out(x) for some F -mapping κ. Let {L} = LGr(F ) and
{L′} = LGr(F

′) and assume L |= out(x). We then have E ! x, where {E} =
EGr(F ). Lemma 3.7.1 implies that E = E′∩A, where {E′} = EGr(F

′). We now
prove that L = L′ ↓ A. Proposition 2.1.7 implies that L−1(in) = L′−1(in) ∩ A.
We split the remainder of the proof in two parts.

• L−1(out) ⊆ L′−1(out)∩A. Suppose y ∈ L−1(out). We immediately have
that y ∈ A. Completeness of L implies that ∃z ∈ A s.t. z ! y, L(z) = in
and hence z ∈ E. Because E ⊆ E′, it follows that z ∈ E′ and hence
L′(z) = in. Completeness of L′ implies that y ∈ L′−1(out).

• L′−1(out) ∩ A ⊆ L−1(out). Suppose y ∈ L′−1(out) ∩ A. If x = y then
we immediately have y ∈ L−1(out). In the remainder we assume x $= y.
Because L′ is complete there is a z ∈ A′ s.t. z !

′ y and L′(z) = in and,
since x $= y, we have z ∈ A and z ! y. Thus, there is a z ∈ A s.t. z ! y,
z ∈ E and hence L(z) = in. Completeness of L implies that L(y) = out.

Thus we have L−1(in) = L′−1(in) ∩ A, L−1(out) = L′−1(out) ∩ A and conse-
quently L−1(und) = L′−1(und) ∩A. It follows that L = L′ ↓ A.

Lemma 3.7.4. Let F = (A,!) be an argumentation framework and let x ∈ A.
Let {L} = LGr(F ) and {L′} = LGr(F ⊕κ {¬in(x)}) for some F -mapping κ. If
L |= ¬in(x) then L = L′ ↓ A.
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Proof. Let F = (A,!) be an argumentation framework, let x ∈ A and let
F ′ = (A′,!′) = F ⊕κ ¬in(x) for some F -mapping κ. Let {L} = LGr(F ) and
{L′} = LGr(F

′) and assume L |= ¬in(x). We then have x $∈ E, where {E} =
EGr(F ). Lemma 3.7.2 implies that E = E′∩A, where {E′} = EGr(F

′). We now
prove that L = L′ ↓ A. Proposition 2.1.7 implies that L−1(in) = L′−1(in) ∩ A.
We split the remainder of the proof in two parts.

• L−1(out) ⊆ L′−1(out)∩A. Suppose y ∈ L−1(out). We immediately have
that y ∈ A. Completeness of L implies that ∃z ∈ A s.t. z ! y, L(z) = in
and hence z ∈ E. Because E ⊆ E′, it follows that z ∈ E′ and hence
L′(z) = in. Completeness of L′ implies that y ∈ L′−1(out).

• L′−1(out) ∩ A ⊆ L−1(out). Suppose y ∈ L′−1(out) ∩ A. Completeness
of L′ implies that there is a z ∈ A′ s.t. z !

′ y and L′(z) = in. Because
z $∈ A implies z !

′ z, which contradicts L′(z) = in, we have that z ∈ A.
Hence there is a z ∈ A s.t. z ! y and z ∈ E′. It then follows that z ∈ E

and hence L(z) = in. Completeness of L implies that L(y) = out.

Thus we have L−1(in) = L′−1(in) ∩ A, L−1(out) = L′−1(out) ∩ A and conse-
quently L−1(und) = L′−1(und) ∩A. It follows that L = L′ ↓ A.

We are now ready to prove theorem 3.3.1 and 3.3.3.

Theorem 3.3.1. For all F ∈ F , ||=F
Gr satisfies Cautious Monotony.

Proof. Let F ∈ F , Φ ∈ Int(F ) and let κ be an F -mapping. Suppose Φ ||=F
Gr α.

Lemma 3.7.16 implies that ∅ ||=F⊕κ

Φ

Gr α. Lemma 3.7.3 and 3.7.4 together imply,

via definition 3.2.8, that ∅ ||=F⊕κ

Φ

Gr φ iff {α} ||=F⊕κ

Φ

Gr φ. Lemma 3.7.16 implies
that Φ ||=F

Gr φ iff Φ∪{α} ||=F
Gr φ. The only-if direction implies that ||=F

Gr satisfies
Cautious Monotony. (The if direction implies that ||=F

Gr satisfies Cut.)

Theorem 3.3.3. For all F ∈ F , ||=F
Gr satisfies Cut.

Proof. See proof of theorem 3.3.1.

For the proof of theorem 3.3.2 and 3.3.4 we use the following lemmas.

Lemma 3.7.5. Let F = (A,!) be an argumentation framework and let x ∈ A.
If for all L ∈ LCo(F ), L(x) = out then LCo(F, {out(x)}) ↓ A = LCo(F ).

Proof. Let F = (A,!) be an argumentation framework and let x ∈ A. Assume
that for all L ∈ LCo(F ), L(x) = out. We prove that LCo(F, {out(x)}) ↓
A = LCo(F ). The ⊇ direction is trivial. We prove the ⊆ direction. Suppose
L ∈ LCo(F, {out(x)}) ↓ A. We immediately have that every y ∈ A \ {x} is
legally labelled in L w.r.t. F . We prove that x, too, is legally labelled in L w.r.t.
F . Let {L′} = LGr(F ) and {L′′} = LGr(F, {out(x)}). Because L′ ∈ LCo(F )
we have L′ |= out(x). Lemma 3.7.3 then implies that L′′ ↓ A = L′. Thus, for
some y ∈ A s.t. y ! x, we have L′′(y) = in and hence L(y) = in. This implies
that x is legally out in L w.r.t. F , and hence that L ∈ LCo(F ).

To prove lemma 3.7.7 below we use the following definition and proposition.
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Definition 3.7.1. [29] Let F = (A,!) be an argumentation framework. The
comittedness relation ⊑⊆ L(F ) × L(F ) is defined by by L ⊑ L′ iff L−1(in) ⊆
L′−1(in) and L−1(out) ⊆ L′−1(out).

Proposition 3.7.6. [29, Theorem 11] Let F = (A,!) be an argumentation
framework and let L ∈ L(F ) be an admissible labelling of F . There exists a
labelling L′ ∈ LF (Co) such that L ⊑ L′.

Lemma 3.7.7. Let F = (A,!) be an argumentation framework and let x ∈ A.
If for all L ∈ LCo(F ), L(x) $= in then LCo(F, {¬in(x)}) ↓ A = LCo(F ).

Proof. Let F = (A,!) be an argumentation framework and let x ∈ A. Assume
that for all L ∈ LCo(F ), L(x) $= in. We prove that LCo(F, {¬in(x)}) ↓ A =
LCo(F ). The ⊇ direction is trivial. We prove the ⊆ direction. Suppose L ∈
LCo(F, {¬in(x)}) ↓ A. Assume towards a contradiction that L $∈ LCo(F ). It
then holds that x is illegally und in L w.r.t. F , because all other arguments
are legally labelled in L w.r.t. F . More precisely we have L(y) = out for all
y ∈ A s.t. y ! x. But then we still have that L is an admissible labelling
of F . Proposition 3.7.6 then implies that there is an L′ ∈ LF (Co) such that
L ⊑ L′. But we then have L′(x) = in, which contradicts our assumption. Hence
L ∈ LCo(F ).

We are now ready to prove theorem 3.3.2 and 3.3.4.

Theorem 3.3.2. For all F ∈ F , ||=F
Co satisfies Cautious Monotony.

Proof. The proof is similar to the proof of theorem 3.3.1 (using lemma 3.7.5
and 3.7.7).

Theorem 3.3.4. For all F ∈ F , ||=F
Co satisfies Cut.

Proof. The proof is similar to the proof of theorem 3.3.1 (using lemma 3.7.5
and 3.7.7).

For the proof of theorem 3.3.5 we use the following lemmas.

Lemma 3.7.8. Let F = (A,!) and x ∈ A. If for all L ∈ LPr(F ), L(x) = out
then LPr(F ) ⊆ LPr(F, {out(x)}) ↓ A.

Proof. Let F = (A,!) be an argumentation framework and let x ∈ A. Assume
that for all L ∈ LPr(F ), L(x) = out. We prove LPr(F ) ⊆ LPr(F, {out(x)}) ↓
A. Suppose that L ∈ LPr(F ) and assume towards a contradiction that L $∈
LPr(F, {out(x)}) ↓ A. Because L ∈ LCo(F ) and L |= out(x) it follows that
L ∈ LCo(F, {out(x)}) ↓ A. Thus there must be an L′ ∈ LPr(F, {out(x)}) ↓ A

such that L−1(in) ⊂ L′−1(in). From this it follows that there is some y ∈ A

such that y ! x and L′(y) = in. This means that all members of A are
legally labelled in L′ w.r.t. F , and hence that L′ ∈ LCo(F ). But then we have
L $∈ LPr(F ), which is a contradiction. Hence L ∈ LPr(F, {out(x)}) ↓ A.

Lemma 3.7.9. Let F = (A,!) and x ∈ A. If for all L ∈ LPr(F ), L(x) $= in
then LPr(F ) ⊆ LPr(F, {¬in(x)}) ↓ A.

71



Proof. Let F = (A,!) be an argumentation framework and let x ∈ A. Assume
that for all L ∈ LPr(F ), L(x) $= in. We prove that LPr(F ) ⊆ LPr(F, {¬in(x)}) ↓
A. Suppose L ∈ LPr(F ). If L(x) = out it follows by argument similar to the
one used in the proof of lemma 3.7.8 that L ∈ LPr(F, {¬in(x)}) ↓ A. In
the remainder we assume L(x) = und. Assume towards a contradiction that
L $∈ LPr(F, {¬in(x)}) ↓ A. Because L ∈ LCo(F ) and L |= und(x) it follows that
L ∈ LCo(F, {¬in(x)}) ↓ A. Thus there must be an L′ ∈ LPr(F, {¬in(x)}) ↓ A

such that L−1(in) ⊂ L′−1(in). We know that L′(x) $= in, Thus, there are two
cases left:

1. L′(x) = out. Because we have L−1(in) ⊂ L′−1(in), there is an y ∈ A

such that y ! x and L′(y) = in. This means that all members of A are
legally labelled in L′ w.r.t. F , and hence that L′ ∈ LCo(F ). But then we
have L $∈ LPr(F ), which is a contradiction. Thus, this case is impossible.

2. L′(x) = und. Two sub-cases:

(a) x is legally und in L′ w.r.t. F . It then follows that L′ ∈ LCo(F ).
But then we have L $∈ LPr(F ), which is a contradiction. Thus, this
case is impossible.

(b) x is illegally und in L′ w.r.t. F . It then holds that L′ ∈ LAd(F ).
Proposition 3.7.6 then implies that there is an L′ ∈ LF (Co) such
that L′ ⊑ L′′. But we then have L′′(x) = in, and hence there
is an L′′′ ∈ LF (Pr) such that L′′′(x) = in, which contradicts our
assumption. Thus, this case is impossible.

Thus we have that L ∈ LPr(F, {¬in(x)}) ↓ A.

Theorem 3.3.5. For all F ∈ F , ||=F
Pr satisfies Cut.

Proof. The proof is similar to the proof of theorem 3.3.1 (using lemma 3.7.8
and 3.7.9).

For the proof of theorem 3.3.6 we use the following lemma.

Lemma 3.7.10. Let F = (A,!) and x ∈ A. If for all L ∈ LSt(F ), L(x) = out
then LSt(F ) ⊆ LSt(F, {out(x)}) ↓ A.

Proof. Follows easily.

Theorem 3.3.6. For all F ∈ F , ||=F
St satisfies Stable Cut.

Proof. Similar to the proof of theorem 3.3.1 (using lemma 3.7.10).

For the proof of theorem 3.3.11 we use the following lemmas.

Lemma 3.7.11. Let F = (A,!) and x ∈ A. Assume that F contains no odd
cycles. If for all L ∈ LPr(F ), L(x) = out then LPr(F, {out(x)}) ↓ A ⊆ LPr(F ).
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Proof. Let F = (A,!) be an argumentation framework and let x ∈ A. Assume
that F contains no odd cycles. Assume that for all L ∈ LPr(F ), L(x) = out.
We prove that LPr(F, {out(x)}) ↓ A ⊆ LPr(F ). Let κ be an F -mapping and let
L ∈ LPr(F ⊕κ {out(x)}). Assume towards contradiction that L ↓ A $∈ LPr(F ).

We show that this implies that there is an L′ ∈ LPr(F ) such that L′(x) = in.
We start by constructing an admissible set E of F . Let κ be an F -mapping and
let F ′ = (A′,!′) = F ⊕κ {out(x)}. We now define E by

E = {y ∈ A | L(y) = in and there is no odd path in F ′ from x to y}.

We first prove that E is an admissible set of F . It is easy to see that E is
conflict-free with respect to F . What remains is to show that E ⊆ DF (E). Let
y ∈ E and z ∈ A be an argument such that z ! y. Then L(y) = in and z !

′ y

and hence admissibility of L w.r.t. F ′ implies that there is a z′ ∈ L−1(in) s.t.
z′ !′ z. We prove that (1) z′ ! z and (2) z′ ∈ E.

1. Because there is no odd path in F ′ from x to y and because z !
′ y it

follows that z $= x and hence z′ ∈ A. This implies z′ ! z.

2. Because y ∈ E, there is no odd path in F ′ from x to y and hence no odd
path in F ′ from x to z′. Furthermore we have z′ ∈ A (see (1)) and hence
z′ ∈ E.

Hence E ⊆ DF (E), meaning that E is an admissible set of F .

We now prove that for all y ∈ A such that y ! x, there is a z ∈ E s.t. z ! y.
Suppose y ∈ A and y ! x. Because F and F ′ contain no odd cycles we have
LPr(F ) = LSt(F ) and LPr(F

′) = LSt(F
′) (proposition 3.3.10). Hence we have

L ∈ LSt(F
′) and L ↓ A $∈ LSt(F ). This implies that x is illegally out in L ↓ A

w.r.t. F . Hence L(y) = out, and hence there is a z ∈ E′ s.t. z !
′ y. We prove

that (1) z ∈ A and (2) there is no odd path in F ′ from x to z.

1. If z $∈ A then x = y, but we then have x ! x, which is a contradiction
because F contains no odd cycles. hence z ∈ A.

2. If there is an odd path in F ′ from x to z then there is an odd path in F ′

from x to x, because z !
′ y !

′ x. But F ′ contains no odd cycles, and
hence there is no odd path in F ′ from x to z.

From this it follows that z ∈ E. Hence for all y ∈ A such that y ! x, there is a
z ∈ E s.t. z ! y. This in turn implies that there is a preferred extension E′ of F
such that E ⊆ E′ and x ∈ E′. Hence there is a preferred labelling L′ ∈ LPr(F )
such that L′(x) = in. This is a contradiction. Hence L ↓ A ∈ LPr(F ).

Lemma 3.7.12. Let F = (A,!) and x ∈ A. Assume that F contains no odd
cycles. If for all L ∈ LSS(F ), L(x) = out then LSS(F, {out(x)}) ↓ A ⊆ LSS(F ).

Proof. Let F = (A,!) be an argumentation framework and let x ∈ A. Assume
that F contains no odd cycles. Assume that for all L ∈ LSS(F ), L(x) = out.
We prove that LSS(F, {out(x)}) ↓ A ⊆ LSS(F ). Let L ∈ LSS(F, {out(x)}) ↓
A. Because every semistable labelling is also preferred, it follows that L ∈
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LPr(F, {out(x)}) ↓ A. Because F contains no odd cycles, proposition 3.3.10 im-
plies LSS(F ) = LPr(F ). Hence for all L′ ∈ LPr(F ), L′(x) = out. Lemma 3.7.11
then implies that L ∈ LPr(F ). Applying proposition 3.3.10 again yields L ∈
LSS(F ).

Lemma 3.7.13. Let F = (A,!) and x ∈ A. Assume that F contains no odd
cycles. If for all L ∈ LSt(F ), L(x) = out then LSt(F, {out(x)}) ↓ A ⊆ LSt(F ).

Proof. Let F = (A,!) be an argumentation framework and let x ∈ A. Assume
that F contains no odd cycles. Assume that for all L ∈ LSt(F ), L(x) = out.
Because F contains no odd cycles, proposition 3.3.10 implies LSt(F ) = LPr(F ).
Hence for all L ∈ LPr(F ), L(x) = out. Lemma 3.7.11 then implies that
LPr(F, {out(x)}) ↓ A ⊆ LPr(F ). Furthermore, F ⊕κ out(x) contains no odd
cycles, thus proposition 3.3.10 implies LSt(F, {out(x)}) = LPr(F, {out(x)}). It
follows that LSt(F, {out(x)}) ↓ A ⊆ LSt(F ).

We are now ready to prove theorem 3.3.11.

Theorem 3.3.11. For all F ∈ F , if F is odd-cycle-free then ||=F
Pr, ||=

F
SS and

||=F
St satisfy Stable Cautious Monotony.

Proof. We prove the preferred case. Let F ∈ F , Φ ∈ StInt(F ) and let κ be
an F -mapping. Assume that F is odd-cycle-free. Suppose Φ ||=F

Pr out(x).

Lemma 3.7.16 implies that ∅ ||=F⊕κ

Φ

Pr out(x). Because Φ is stable, F ⊕κ
Φ is

also odd-cycle-free, and hence lemma 3.7.11 implies that if ∅ ||=F⊕κ

Φ

Pr φ then

{out(x)} ||=F⊕κ

Φ

Pr φ. By applying lemma 3.7.16 again we get that if Φ ||=F
Pr φ

then Φ ∪ {out(x)} ||=F
Pr φ. Hence ||=F

Pr satisfies Stable Cautious Monotony.
The semi-stable and stable case follow similarly, using lemma 3.7.12 for the
semi-stable case and lemma 3.7.13 for the stable case.

For the proof of theorem 3.3.12 we use the following lemma.

Lemma 3.7.14. Let F = (A,!) and x ∈ A. Assume that F is odd-cycle-free.
If for all L ∈ LSS(F ), L(x) = out then LSS(F ) ⊆ LSS(F, {out(x)}) ↓ A.

Proof. Let F = (A,!) be an argumentation framework and let x ∈ A. As-
sume that F is odd-cycle-free. Assume that for all L ∈ LSS(F ), L(x) = out.
We prove that LSS(F ) ⊆ LSS(F, {out(x)}) ↓ A. Let L ∈ LSS(F ). Be-
cause L(x) = out we immediately have that L ∈ LCo(F, {out(x)}) ↓ A. We
now show that L ∈ LSS(F, {out(x)}) ↓ A. Because F contains no odd cy-
cles, proposition 3.3.10 implies LSS(F ) = LSt(F ) and hence for all y ∈ A,
L(y) $= und. This implies that L ∈ LSt(F, {out(x)}) ↓ A and, because
LSt(F, {out(x)}) ⊆ LSS(F, {out(x)}), L ∈ LSS(F, {out(x)}) ↓ A.

We are now ready to prove theorem 3.3.12.

Theorem 3.3.12. For all F ∈ F , if F is odd-cycle-free then ||=F
SS satisfies

Stable Cut.

Proof. Similar to the proof of theorem 3.3.11 (using lemma 3.7.14).
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For the proof of theorem 3.4.3 we use lemma 3.7.15 and 3.7.16.

Lemma 3.7.15. Let F = (A,!) be an argumentation framework. If σ satisfies
the directionality principle then Φ $!∗ φ implies (Φ ||=F

σ
φ iff ∅ ||=F

σ
φ).

Proof. Suppose σ satisfies the directionality principle. Proposition 3.4.1 implies
that for all F ∈ F ,

∀B ∈ U(F ),φ ∈ lang(B), (F ↓ B) |=σ φ iff F |=σ φ. (3.1)

Let F = (A,!) be an argumentation framework, Φ ∈ Int(F ) be an interven-
tion, and φ ∈ lang(F ) a formula such that Φ $!∗ φ. Let κ be an F -mapping.
Define B by B = {x ∈ A | x !

∗ φ}. We then have φ ∈ lang(B) and B ∈ U(F )
and hence B ∈ U(F ⊕κ

Φ). We now prove that ∅ ||=F
σ

φ iff Φ ||=F
σ

φ: From
proposition 3.2.4 it follows that ∅ ||=F

σ
φ iff F |=σ φ. From 3.1, together

with the fact that B ∈ U(F ) and φ ∈ lang(B), it follows that F |=σ φ iff
(F ↓ B) |=σ φ. Because (F ↓ B) = ((F ⊕κ

Φ) ↓ B) it follows that (F ↓ B) |=σ φ

iff ((F ⊕κ
Φ) ↓ B) |=σ φ. From 3.1 together with the fact that B ∈ U(F ⊕κ

Φ)
and φ ∈ lang(B), it follows that ((F ⊕κ

Φ) ↓ B) |=σ φ iff (F ⊕κ
Φ) |=σ φ. From

proposition 3.2.4 it finally follows that (F ⊕κ
Φ) |=σ φ iff Φ ||=F

σ
φ. Hence we

have ∅ ||=F
σ
φ iff Φ ||=F

σ
φ.

Lemma 3.7.16. Let σ ∈ {Gr,Co,Pr,SS,St}, F ∈ F , Φ,Ψ ∈ Int(F ) and let κ

be an F -mapping. It holds that Φ ∪Ψ ||=F
σ
φ iff Φ ||=

(F⊕κ

Ψ)
σ φ.

Proof. Let σ ∈ {Gr,Co,Pr,SS,St}, F = (A,!) an argumentation framework,
Φ,Ψ ∈ Int(F ) and let κ be an F -mapping. Because F ⊕κ (Φ ∪ Ψ) and
(F ⊕κ

Φ) ⊕κ
′

Ψ) are isomorphic and σ statisfies language independence, we
have Lσ(F ⊕κ (Φ ∪Ψ)) ↓ A = Lσ((F ⊕κ

Φ)⊕κ
′

Ψ)) ↓ A. Via definition 3.2.8 it

follows that Φ ∪Ψ ||=F
σ
φ iff Φ ||=

(F⊕κ

Ψ)
σ φ.

We are now ready to prove theorem 3.4.3.

Theorem 3.4.3. If σ satisfies the directionality principle then for all F ∈ F ,
||=F

σ
satisfies Conditional Directionality.

Proof of theorem 3.4.3. Suppose σ satisfies the directionality principle. Let F =
(A,!) be an argumentation framework. Let Φ,Ψ ∈ Int(F ) and φ ∈ lang(F ).
Suppose Ψ $!∗ φ. We need to prove that Φ ∪ Ψ ||=F

σ
φ iff Φ ||=F ′

σ
φ. Let κ be

an F -mapping and let F ′ = (A′,!′) = F ⊕κ
Φ. It then follows that Ψ $!∗ ′φ

and hence (via lemma 3.7.15) Ψ ||=F ′

σ
φ iff ∅ ||=F ′

σ
φ. Lemma 3.7.16 then implies

that Φ ∪Ψ ||=F
σ
φ iff Φ ||=F ′

σ
φ.

Theorem 3.4.7. If σ satisfies the noninterference principle then for all F ∈
F , ||=F

σ
satisfies Conditional Noninterference.

Proof. The proof is exactly the same as the proof of theorem 3.4.3, except that
every occurrence of U(F ) (i.e., the unattacked sets of F ) is replaced with I(F )
(i.e., the isolated sets of F ).
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Chapter 4

Observation-Based

Entailment in

Argumentation

4.1 Introduction

In this section we focus on change in argumentation due to observations. What
we mean by an observation is some piece of information from the environment
that requires the revision of the status of one or more arguments. The question
we address is: what is a rational way for an agent to revise the evaluation of an
argumentation framework to account for an observation?

Let us look at an example. Let F be the argumentation framework shown
in figure 4.1. The nodes are coloured according to the unique complete (and
grounded, preferred, semi-stable and stable) labelling of this argumentation
framework. Even though e is accepted, an agent may, through observation,
want to revise the status of e to rejected. The rejection of e can be achieved in
various ways by changing F . Three of them are shown in figure 4.2: adding an

e

b

d

a

c

g

f

Figure 4.1: An Argumentation Framework.
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Figure 4.2: Three ways to account for the rejection of e.

attacker to a, c and e all account for the rejection of e. This example clearly
demonstrates the difference between intervention and observation: while the
action of defeating e only affects the label of e and f , the observed rejection of
e may (depending on how it is accounted for) also affect the labels of the other
arguments.

This example shows that what we are dealing with is a kind of goal-oriented
change of the argumentation framework. That is, the goal is to revise the eval-
uation of the argumentation framework to satisfy a constraint (e.g., rejection
of e) and this goal can be achieved by changing the argumentation framework
(e.g., by attacking a, c or e). Goal-oriented change in argumentation is usually
studied from a multi-agent strategic perspective. From the multi-agent strategic
perspective, the revision of the status of an argument is due not to information
from the environment, but represents the goal of an agent in a debate. For ex-
ample, Kontarinis et al. [61] put this problem as follows: “When several agents
are engaged in an argumentation process, they are faced with the problem of
deciding how to contribute to the current state of the debate in order to satisfy
their own goal, i.e., to make an argument under a given semantics accepted
or not.” Similar motivations are found in Baumann and Brewka’s work on
what they call the enforcement problem [11, 12] as well as other work in this
direction [17, 20]. Considerations that dominate in the multi-agent strategic
perspective are mostly of procedural and economical nature. These works fo-
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cus, for example, on how to determine which arguments to attack to satisfy a
given goal, or what the minimal contributions to a debate are to achieve this. By
contrast, we take a single-agent revision perspective: the argumentation frame-
work represents the reasoning of a single agent, and the revision of its evaluation
is due to new information that the agent receives from the environment. This
leads to the following two questions:

1. By what mechanism does a rational agent decide how to change his argu-
mentation framework, in order to revise its evaluation due to an observa-
tion?

2. What are the conditions that characterize a rational way to revise the
evaluation of an argumentation framework due to an observation?

We address the first question by proposing a model for how a rational agent per-
forms revision, based on an abductive principle. Different hypotheses (which are
changes to an argumentation framework) are considered. A hypothesis is an ex-
planation for an observation if it accounts for its truth. An agent accommodates
an observation by finding the most plausible explanations for the observation.
We simplify this model by abstracting away from the changes that can be made
to an argumentation framework, and instead we focus on change represented
by interventions. Thus, roughly speaking, an abductive model for a given argu-
mentation framework consists of a set of interventions along with a preference
relation encoding their relative plausibility.

Analogous to the notion of intervention-based entailment, we introduce the no-
tion of observation-based entailment. An observation-based entailment for a
given argumentation framework F is a relation between observations about the
status of the arguments in F and consequences of observations. An observation-
based entailment relation is determined by an abductive model by letting some-
thing be a consequence of an observation whenever it is a consequence of the
most preferred explanations for the observation. This scheme can be applied
credulously (i.e., by focusing on explanations for credulous truth of the obser-
vation) and sceptically (i.e., by focusing on explanations for sceptical truth of
the observation).

We address the second question by showing that the class of observation-based
entailment relations for a given argumentation framework F (i.e., the observa-
tion-based entailment relations determined by some abductive model for F ) is
characterized by a strengthening of the class of preferential (in the credulous
case) and loop-cumulative (in the sceptical case) entailment relations. This
characterization is complete in the credulous case, but not in the sceptical case.
This result gives a handle on how credulous and sceptical observation-based
entailment differ: while credulous entailment satisfies the Or rule, sceptical
entailment generally does not.

Having introduced the notion of observation-based entailment, we are in a posi-
tion to compare it with intervention-based entailment. We investigate the main
difference between these two types of entailment, which is related to how the
effects of interventions and observations propagate through an argumentation
framework. The results we obtain also demonstrate the role of the principles
of directionality and noninterference in observation-based entailment. Namely,
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these principles ensure (if we make some reasonable further assumptions) that
the effect of an observation propagates through the argumentation framework
in a well-behaved manner.

The overview of this chapter is as follows. In section 4.2 we present the basic
definitions of the notion of an abductive model, which represents a mechanism
by which a rational agent decides how to change his argumentation framework,
in order to revise its evaluation due to an observation. This leads to the no-
tion of credulous and sceptical observation-based entailment. In section 4.3 we
show that credulous (resp. sceptical) observation-based entailment relations are
characterized by a strengthening of the class of preferential (in the credulous
case) and loop-cumulative (in the sceptical case) entailment relations. In sec-
tion 4.4 and 4.5 we investigate the role of directionality and noninterference
in the behaviour of observation-based entailment and the difference between
intervention and observation in terms of how the effects of interventions and
observations propagate through an argumentation framework. We discuss re-
lated work in section 4.6 and we conclude and discuss some directions for future
work in section 4.7.

4.2 Observation-Based Entailment

In this section we present a model of how an agent revises the evaluation of an
argumentation framework due to observations. Intuitively, the idea is to regard
an observation as something that can be explained within the agent’s abductive
model. The basic definitions concerning abductive models will be presented in
section 4.2.1. An abductive model determines an entailment relation by letting
ψ be a consequence of φ if all most preferred explanations for φ also entail ψ.
Thus, intuitively, the most preferred explanations for φ are used to predict the
effect of observing φ on the overall evaluation of the argumentation framework.
We present the definitions for this scheme in section 4.2.2 for the credulous case
and in section 4.2.3 for the sceptical case.

4.2.1 Abductive Models

Let us first describe abductive models informally. Given an argumentation
framework F and semantics σ, an abductive model consists essentially of a set
of hypotheses (each of which maps to some intervention for F ) and a preference
relation over hypotheses. This relation represents the relative plausibility that
the agent attributes to the different hypotheses. For example, given two argu-
ments a and b, the agent may deem it more plausible that a is defeated than
that b is defeated. To keep things simple, we focus from here on only on se-
mantics under which the existence of labellings is guaranteed. This means that
we restrict our attention to the complete, grounded, preferred and semi-stable
semantics, and leave the stable semantics out of consideration.

Definition 4.2.1. Let F = (A,!) be an argumentation framework. An ab-
ductive model based on F under semantics σ is a tuple M = (F,H,m,<,σ)
where:
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• H is a finite set containing elements called hypotheses,

• < is a strict partial order over H,

• m : H → Int(F ) is a function mapping hypotheses to interventions,

• σ ∈ {Co,Gr,Pr,SS}.

A relation < represents the agent’s preference among hypotheses. To be consis-
tent with the KLM framework, we associate preference with minimality. Thus,
h < h′ holds whenever h is preferred over h′.

Note that it suffices in most practical cases to identify hypotheses directly with
interventions, meaning that H is a subset of Int(F ) and m is the identity
function. The more general setting is, however, necessary to prove the charac-
terization result in section 4.3.

We consider two properties that, as we show later, result in good behaviour.
The first is closure under weakening. It states that, if an intervention Φ is
considered possible then every subset of Φ is also considered possible. Intuitively,
it represents a kind of independence between different arguments. It means that,
for example, if the agent considers the intervention {out(x),out(y)} possible,
then he also considers {out(x)} and {out(y)} individually possible, as well as
the vacuous intervention ∅.

Definition 4.2.2. An abductive model M = (F,H,m,<,σ) is closed under
weakening if and only if

for all h ∈ H and Φ ⊆ m(h), there is a h′ ∈ H such that m(h′) = Φ.

The second property is the minimality assumption. It states that interventions
that are strictly logically weaker are always preferred by the agent. Intuitively,
it reflects an assumption of minimal explanation: logically weaker hypotheses
are always more plausible.

Definition 4.2.3. An abductive model M = (F,H,m,<,σ) satisfies the mini-
mality assumption if and only if

for all h, h′ ∈ H, if m(h) |= m(h′) and m(h′) $|= m(h) then m(h′) < m(h).

Let us illustrate these definitions with an example.

Example 4.2.1. Let F be the argumentation framework shown in figure 4.1.
Let M = (F,H,m,<,Pr) be the abductive model based on F under the preferred
semantics, defined by:

• H = {∅, {out(c)}, {out(a)}, {out(e)}}.

• ∅ < {out(c)} < {out(a)} < {out(e)}.

• m is the identity function.
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∅

{out(c)}

{out(a)}

{out(e)}

Figure 4.3: An example of an abductive model for the AF shown in figure 4.1.

This abductive model is shown in figure 4.3. All hypotheses are depicted and
an arrow from a hypothesis h to a hypothesis h′ means that h′ < h (transitive
arrows are omitted). Thus, the non-vacuous hypotheses considered here are the
defeat of a, c and e. The vacuous intervention is the most preferred one. Defeat
of c is preferred over defeat of a and defeat of a is preferred over defeat of e.
This abductive model is closed under weakening because every subset of every
intervention is also an intervention. It also satisfies the minimality assumption:
∅ is logically weaker than all other interventions and is also the most preferred,
while all the other interventions are incomparable with respect to logical strength.

In the next two sections we define the notion of a credulous and a sceptical
observation-based entailment relation. Each abductive model determines a cred-
ulous observation-based entailment relation and a sceptical observation-based
entailment relation. This means that, unlike in the setting of intervention-based
entailment, there is no unique definition of a credulous or sceptical observation-
based entailment relation for a given argumentation framework and semantics.
Instead, we work with classes of credulous and sceptical observation-based en-
tailment relations, each defined by some abductive model for a given argu-
mentation framework. This set-up is similar to that of most theories of belief
revision, where a revision operator is determined by an epistemic state, which
is a representation of the beliefs and revision strategy of an agent.

4.2.2 Credulous Observation-Based Entailment

We focus first on explanations for observations that must become credulous con-
sequences: if M is based on F under the semantics σ then a hypothesis h is a
credulous explanation for φ if φ is a credulous consequence of the intervention
m(h) under semantics σ. We furthermore say that h is a most preferred cred-
ulous explanation if there is no h′ that is a credulous explanation for φ and
h′ < h.

Definition 4.2.4. Let F = (A,!) be an argumentation framework and let
M = (F,H,m,<,σ): Given a formula φ ∈ lang(F ) we say that a hypothesis
h ∈ H is a credulous explanation for φ if and only if m(h) $||=F

σ
¬φ. We say that
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h is a most preferred credulous explanation for φ if and only if h is a credulous
explanation for φ and there is no credulous explanation h′ for φ such that h′ < h.

Finding explanations for an observation is not the main goal. Instead, the goal is
to use the explanations for an observation to predict how the observation affects
the overall evaluation of the argumentation framework. In the credulous case
this amounts to the following: If, given an abductive model M, we want to know
whether ψ is a consequence of the observation φ, we first determine the most
preferred credulous explanations for φ. We then check, for every most preferred
credulous explanation h of φ, whether m(h) ||=F

σ
φ → ψ holds (that is, whether

the intervention m(h) entails ψ, presupposing the truth of the observation φ). If
it does, then ψ is a consequence of the observation φ. Using this scheme, every
abductive model determines a credulous observation-based entailment relation:

Definition 4.2.5. Given an abductive model M = (F,H,m,<,σ) the credulous
observation-based entailment relation defined by M will be denoted by |∼M

Cr and
is defined by: φ |∼M

Cr ψ iff for every most preferred credulous explanation h for
φ we have m(h) ||=F

σ
φ → ψ.

Note that credulous observation-based entailment puts a relatively weak burden
on what constitutes an explanation, because what is observed only needs to be
credulously true given the explanation.

We now illustrate the definition of credulous observation-based entailment with
an example.

Example 4.2.2. Let M be the abductive model that we considered in exam-
ple 4.2.1.

• Consider the observation in(f). The unique most preferred credulous ex-
planation is {out(c)}, because we have {out(c)} $||=F

Pr ¬in(f). Thus, we
also have acceptance of g, because we have {out(c)} ||=F

Pr in(f) → in(g).
On the other hand, we have rejection of b ({out(c)} ||=F

Pr in(f) → out(b)).
Thus we have

in(f) |∼M
Cr in(g) and in(f) |∼M

Cr out(b).

• Consider the observation in(b). The unique most preferred credulous ex-
planation is {out(a)}, because we have {out(a)} $||=F

Pr ¬in(b). This im-
plies, e.g., rejection of e, because we have {out(a)} ||=F

Pr in(b) → out(e).
It also implies rejection of g, because we have {out(a)} ||=F

Pr in(b) →
out(g). Then

in(b) |∼M
Cr out(e) and in(b) |∼M

Cr out(g).

The following example involves an argumentation framework with (potentially)
multiple labellings.

Example 4.2.3. Let F be the argumentation framework shown in figure 4.4.
Let M = (F,H,m,<,Pr) be the abductive model based on F under the preferred
semantics, defined by:

83



cba d e

Figure 4.4: An Argumentation Framework.

∅

{out(a)} {out(e)}

{out(a),out(e)}

Figure 4.5: An example of an abductive model for the AF shown in figure 4.4.

• H = {∅, {out(a)}, {out(e)}, {out(a),out(e)}}.

• ∅ < {out(a)}, ∅ < {out(e)}, {out(a)} < {out(a),out(e)} and {out(e)}
< {out(a),out(e)}.

• m is the identity function.

This abductive model is shown in figure 4.5. Note that this abductive model
is both closed under weakening and satisfies the minimality assumption. We
have that defeat of a is enough to make b credulously accepted under the pre-
ferred semantics, because we have {out(a)} $||=F

Pr ¬in(b). We do not, however,
have {out(e)} $||=F

Pr ¬in(b). Hence {out(a)} is the unique preferred credulous
explanation for the observation in(b). Thus we have in(b) |∼M

Cr out(a) and
in(b) |∼M

Cr in(e).

4.2.3 Sceptical Observation-Based Entailment

Apart from determining the credulous explanations for an observation, an ab-
ductive model allows us to determine sceptical explanations. Analogous to the
notion of (most preferred) credulous explanation we define here the notion of
(most preferred) sceptical explanation.

Definition 4.2.6. Let F = (A,!) be an argumentation framework and let
M = (F,H,m,<,σ): Given a formula φ ∈ lang(F ) we say that a hypothesis
h ∈ H is a sceptical explanation for φ if and only if m(h) ||=F

σ
φ. We say that

h is a most preferred sceptical explanation for φ if and only if h is a sceptical
explanation for φ and there is no sceptical explanation h′ for φ such that h′ < h.

Every abductive model M determines a sceptical observation-based entailment
relation |∼M

Sk by setting φ |∼M
Sk ψ iff the most preferred sceptical explanations

for φ sceptically entail ψ.
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Definition 4.2.7. Given an abductive model M = (F,H,m,<,σ) the sceptical
observation-based entailment relation defined by M will be denoted by |∼M

Sk and
is defined by φ |∼M

Sk ψ iff for every most preferred sceptical explanation h for φ
we have m(h) ||=F

σ
ψ.

Thus, an abductive model determines two observation-based entailment rela-
tions, one credulous and one sceptical. Because there is generally no relation
between sets of most preferred sceptical and most preferred credulous expla-
nations for a given observation, these two entailment relations usually behave
differently. The grounded case forms an exception:

Proposition 4.2.1. For every abductive model M based on an argumentation
framework F under the grounded semantics it holds that |∼M

Cr=|∼M
Sk.

In the general case, credulous and sceptical observation-based entailment is dif-
ferent because in the sceptical case a higher burden is placed on what constitutes
an explanation than in the credulous case. This is demonstrated by the following
example.

Example 4.2.4. Let F be the argumentation framework shown in figure 4.4. Let
M = (F,H,m,<,Pr) be the abductive model based on F used in example 4.2.3
(shown in figure 4.5). While defeat of a is enough to make b credulously ac-
cepted under the preferred semantics it is not enough to make b sceptically
accepted under the preferred semantics. That is, we have {out(a)} $||=F

Pr ¬in(b)
but not {out(a)} ||=F

Pr in(b). To make b sceptically accepted we must use
the intervention {out(a),out(e)}, because we have {out(a),out(e)} ||=F

Pr in(b)
but not {out(a)} ||=F

Pr in(b) or {out(e)} ||=F
Pr in(b). Hence {out(a),out(e)}

is the preferred sceptical explanation for the observation in(b). This demon-
strates the difference between credulous and sceptical observation-based entail-
ment: while on the one hand we have in(b) |∼M

Cr in(e), we have on the other
hand in(b) |∼M

Sk out(e).

In the following section we prove a result that allows us to make a more precise
statement about the difference between credulous and sceptical observation-
based entailment.

4.3 A Syntactic Characterization

In the previous section we presented a semantic or constructive definition of cred-
ulous and sceptical observation-based entailment. It turns out that, by strength-
ening the classes of preferential (in the credulous case) and loop-cumulative (in
the sceptical case) entailment relations (defined in section 2.2) we obtain a
syntactic characterization. More precisely, given an argumentation framework
F , the class of credulous (resp. sceptical) observation-based entailment rela-
tions based on F is characterized by a restricted class of preferential (resp.
loop-cumulative) entailment relations. This characterization is complete in the
credulous case, but not in the sceptical case. The details are presented in the
following two subsections.
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4.3.1 The Credulous Case

Given an argumentation framework F , the class of credulous observation-based
entailment relations based on F coincides with a restriction of the class of pref-
erential entailment relations (i.e., the class of entailment relations satisfying Re-
flexivity, Left Logical Equivalence, Right Weakening, Cut, Cautious Monotony,
Loop and Or) over lang(F ) that furthermore satisfy what we call the property
of conflict-freeness with respect to F . The property of conflict-freeness with
respect to F is defined by requiring that, for every formula that is not conflict-
free with respect to F , the negation of this formula is a consequence of every
premise.

Definition 4.3.1. Let F be an argumentation framework and |∼⊆ lang(F )×
lang(F ). We say that |∼ is conflict-free w.r.t. F iff for all φ,ψ ∈ lang(F ),

if ψ is not conflict-free w.r.t. F then φ |∼ ¬ψ.

The following lemma establishes the correspondence between preferential en-
tailment relations over lang(F ) that are conflict-free with respect to F and
preferential models defined over conflict-free labellings of F .

Lemma 4.3.1. Let F be an argumentation framework and let |∼⊆ lang(F ) ×
lang(F ). The following are equivalent:

1. |∼ is preferential and conflict-free w.r.t. F .

2. |∼=|∼W for a preferential model W over LCf(F ).

Proof. Let F be an argumentation framework and let |∼⊆ lang(F )× lang(F ).

(1 implies 2): Suppose |∼ is preferential and conflict-free w.r.t. F . Theo-
rem 2.2.1 implies that there is a preferential model W = (S,≺, l) over L(F )
such that |∼=|∼W. We prove that W is defined over LCf(F ) (i.e. for all
s ∈ S, l(s) ∈ LCf(F )). Suppose the contrary: there is an s ∈ S, and l(s) $∈
LCf(F ). Then Form(l(s)) is not conflict-free w.r.t. F but we do not have have
Form(l(s)) |∼W ¬Form(l(s)). This means that |∼ is not conflict-free w.r.t. F ,
which is a contradiction.

(2 implies 1): Let W = (S,≺, l) be a preferential model over LCf(F ). Theo-
rem 2.2.1 implies that |∼W is preferential. We prove that |∼W is conflict-free
w.r.t. F . Let φ,ψ ∈ lang(F ) and assume that ψ is not conflict-free w.r.t. F .
If there is no s ∈ S such that l(s) |= φ, it follows trivially that φ |∼W ¬ψ and
we are done. Now let s ∈ S be a state such that l(s) |= φ. Then l(s) ∈ LCf(F ),
while there is no L ∈ LCf(F ) such that L |= ψ. Hence l(s) $|= ψ. This implies
φ |∼W ¬ψ. Hence |∼W is preferential and conflict-free w.r.t. F .

The following lemma states that, for every abductive model M based on F ,
we can construct a preferential model W over LCf(F ) such that |∼W=|∼M

Cr.
Conversely, for every preferential model W over LCf(F ), we can construct an
abductive model M based on F such that |∼M

Cr=|∼W.

Note that, for the sake of readability, we have moved some of the longer proofs,
including the proof for the following lemma, to section 4.8.
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Lemma 4.3.2. Let F be an argumentation framework and let |∼⊆ lang(F ) ×
lang(F ). The following are equivalent:

1. |∼=|∼W for a preferential model W over LCf(F ).

2. |∼=|∼M
Cr for an abductive model M based on F .

Proof. See section 4.8.

Lemma 4.3.1 and 4.3.2 lead to the following characterization result.

Theorem 4.3.3. Let F be an argumentation framework and let |∼⊆ lang(F )×
lang(F ). The following are equivalent:

• |∼ is preferential and conflict-free with respect to F .

• |∼=|∼M
Cr for an abductive model M based on F .

Proof. Follows directly from lemma 4.3.1 and lemma 4.3.2.

Note that this result implies that preferential models over conflict-free labellings
of an argumentation framework can be considered as an alternative but equiva-
lent semantics for credulous observation-based entailment. Preferential models
and preferential entailment relations for the evaluation of an argumentation
framework were considered before by Booth et al. [24] while ranked models ap-
pear in [23]. Preferential models over extensions of an argumentation framework
have furthermore been considered by Roos [80].

4.3.2 The Sceptical Case

We now show that, given an argumentation framework F , every sceptical ob-
servation-based entailment relation based on F is a loop-cumulative entailment
relation that is conflict-free w.r.t. F . That is, it satisfies the properties of Re-
flexivity, Left Logical Equivalence, Right Weakening, Cut, Cautious Monotony
and Loop, as described in section 2.2. We prove this by showing that, for every
abductive model M based on F , we can construct a cumulative-ordered model
W over LCf(F ) such that |∼W=|∼M

Sk.

Lemma 4.3.4. Let F be an argumentation framework and let |∼⊆ lang(F ) ×
lang(F ). It holds that if |∼=|∼M

Sk for an abductive model M based on F then
|∼=|∼W for a cumulative-ordered model W over LCf(F ).

Proof. See section 4.8.

We now obtain the following result.

Theorem 4.3.5. Let F be an argumentation framework. For every abductive
model M based on F it holds that |∼M

Sk is loop-cumulative and conflict-free w.r.t.
F .
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a b c

(a) The Argumentation Framework.

∅

{out(a),out(c)} {out(b),out(c)}

(b) The Abductive Model.

Figure 4.6: Sceptical entailment fails Or (example 4.3.1).

Proof. Follows directly from lemma 4.3.1 and lemma 4.3.4.

The following proposition shows that, unlike in the credulous case, the charac-
terization in the sceptical case is not complete. This result is due to the fact
that, given an abductive model M based on F under semantics σ, |∼W=|∼M

Sk

holds only if every state in W satisfies the condition that it maps to a set of
conflict-free labellings that is realizable, in the sense that it coincides with the
set Lσ(F,Φ) for some intervention Φ. The problem is, however, that not every
set of conflict-free labellings is realizable. The notion of realizability and its
limits has been studied, for extension-based semantics, by Dunne et al. [45].

Proposition 4.3.6. It is not the case that for every argumentation framework
F and every entailment relation |∼⊆ lang(F )×lang(F ) that is loop-cumulative
and conflict-free w.r.t. F , there is an abductive model M based on F such that
|∼=|∼M

Sk.

Proof of proposition 4.3.6. Let F = ({a}, ∅). Let W = ({s}, ∅, l) be the cumu-
lative-ordered model over LCf(F ) where l(s) = {{(a, in)}, {(a,out)}}. It holds
that |∼W is a loop-cumulative entailment relation that is conflict-free w.r.t. F .
Now assume that |∼W=|∼M

Sk for the abductive modelM = (F,H,m,<,σ). It can
be verified that we have out(a)∨in(a) $|∼M

Sk ⊥, out(a) |∼M
Sk ⊥ and in(a) |∼M

Sk ⊥.
This implies that there is some h ∈ H s.t. m(h) ||=F

σ
out(a) ∨ in(a), m(h) $||=F

σ

out(a) and m(h) $||=F
σ

in(a) and hence (Lσ(F,m(h)) ↓ {a}) = l(s). But then
we have {(a,out)} ∈ (Lσ(F,m(h)) ↓ {a}), which implies out(a) ∈ m(h) and
hence {(a, in)} $∈ (Lσ(F,m(h)) ↓ {a}). This is a contradiction. Hence there is
no abductive model M such that |∼W=|∼M

Sk.

Sceptical observation-based entailment relations do not in general satisfy Or,
and hence they are not in general preferential. On the semantic side, this is
due to the fact that, in the credulous case, we have that a most preferred
credulous explanation for an observation φ∨ψ is also a most preferred credulous
explanation for the observations φ and for ψ, but this does not hold in the
sceptical case. The following example demonstrates the failure of Or in the
sceptical case.

Example 4.3.1. Let F be the argumentation framework shown in figure 4.6a.
Let M = (F,H,m,<,Pr) be the abductive model based on F under the preferred
semantics, defined by:

• H = {∅, {out(a),out(c)}, {out(b),out(c)}}.
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• ∅ < {out(a),out(c)} and ∅ < {out(a),out(c)}.

• m is the identity function.

This abductive model is shown in figure 4.6b. Note that this abductive model
satisfies the minimality assumption but is not closed under weakening, because
it contains the interventions {out(a),out(c)} and {out(b),out(c)} but not the
interventions {out(a)}, {out(c)} and {out(b)}.

We have in(a) |∼M
Sk out(c) and in(b) |∼M

Sk out(c) but not in(a) ∨ in(b) |∼M
Sk

out(c). This is a violation of the Or rule.

4.3.3 Summary and Discussion of Results

The results obtained in this section show that observation-based entailment
relations are preferential entailment relations (in the credulous case) and loop-
cumulative entailment relations (in the sceptical case). This means that they
satisfy the properties Reflexivity, Left Logical Equivalence, Right Weakening,
Cut, Cautious Monotony, Loop and (in the credulous case) Or. In the credulous
case, we have furthermore obtained a complete characterization: given an ar-
gumentation framework F , the class of credulous observation-based entailment
relations defined by some abductive model based on F coincides with the class of
preferential entailment relations over lang(F ) that are, in addition, conflict-free
with respect to F .

We have shown in the previous chapter that intervention-based entailment rela-
tions fail a number of analogues of the KLM properties. For example, Cau-
tious Monotony fails under the preferred, semi-stable and stable semantics,
Cut fails under the semi-stable semantics, and Loop fails under all seman-
tics. But note that, unlike in the intervention-based case, the question of
whether an observation-based entailment relation satisfies these properties does
not depend on the argumentation semantics that is used. The satisfaction of
these properties is due purely to the correspondence between abductive models
and preferential/cumulative-ordered models that we established in lemma 4.3.2
and 4.3.4. Thus, unlike in the intervention-based case, the results obtained in
this section do not say anything about the behaviour of the complete, grounded,
preferred or semi-stable semantics. The results only say something about the
mechanism that we used to define observation-based entailment, i.e., using ab-
ductive models.

4.4 Directionality in Observation-Based Entail-

ment

In this section we investigate the role of directionality in the behaviour of
observation-based entailment. In the setting of intervention-based entailment,
we proved that there is a relation between the directionality principle and the
property of Conditional Directionality, which expresses that an intervention only
affects the status of an argument if the intervention is structurally relevant to
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this argument. We proved that the directionality property, if satisfied by a se-
mantics σ, ensures that for all F ∈ F , the relation ||=F

σ
satisfies Conditional

Directionality.

However, the idea behind the property of Conditional Directionality does not ap-
ply to observation-based entailment, because observations involve abductive rea-
soning, which may result in the change of the status of an argument, even if the
observation is not structurally relevant to this argument. This means that the
analogue of Conditional Directionality, which we reformulate for observation-
based entailment as follows, is generally not satisfied, even if the semantics we
use satisfies directionality. This analogue states that two observations φ and
φ ∧ ψ are the same as far as consequences to which ψ is not structurally rel-
evant are concerned. Note that, compared to Conditional Directionality for
intervention-based entailment, we introduce the additional consistency con-
straint ψ $|∼ ⊥ to rule out cases where the the consequences of φ and φ ∧ ψ

differ due to inconsistency.

Definition 4.4.1. Let (A,!) ∈ F . A relation |∼⊆ lang(F )×lang(F ) satisfies
Conditional Directionality iff for all φ,ψ,χ ∈ lang(F ),

if ψ $!∗ χ and ψ $|∼ ⊥ then φ ∧ ψ |∼ χ iff φ |∼ χ.

The following example demonstrates the failure of Conditional Directionality in
the setting of observation-based entailment.

Example 4.4.1. Let F be the argumentation framework shown in figure 4.1.
Let M = (F,H,m,<,σ) be the abductive model based on F defined by:

• H = 2{out(a),out(b),out(c),out(d),out(e),out(f)}.

• m is the identity function.

• <=⊂.

• σ ∈ {Co,Gr,Pr,SS}.

Note that this abductive model is closed under weakening and satisfies the min-
imality assumption.

We have out(e) $|∼M
Sk ⊥ and out(e) $!∗ in(a). Thus, Conditional Directionality

would imply that we have out(e) |∼M
Sk in(a) iff ⊤ |∼M

Sk in(a). However, we have:

• out(e) $|∼M
Sk in(a), because among the most preferred sceptical explana-

tions for out(e) we have the intervention {out(a)}, which does not entail
acceptance of a: {out(a)} $||=F

σ
in(a).

• ⊤ |∼M
Sk in(a), because the unique most preferred sceptical explanation for

⊤ is the vacuous intervention, which entails acceptance of a: ∅ ||=F
σ
in(a).

This is a violation of Conditional Directionality. This counterexample also ap-
plies to |∼M

Cr.
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If Conditional Directionality does not apply, then what is the role of directional-
ity in the setting of observation-based entailment? We address this question by
looking at two properties that demonstrate this role: Directional out-legality
and Directional Reinstatement. Before we turn to their definition, we must
look at two properties of intervention-based entailment, namely Conditional
out-legality and Conditional Reinstatement.

4.4.1 Conditional out-legality and Reinstatement

Before we can introduce the properties of Directional out-legality and Direc-
tional Reinstatement, we must introduce two properties that we call Condi-
tional out-legality and Conditional Reinstatement. They are properties for
intervention-based entailment. Intuitively, they reflect the assumption that,
given an intervention, we only unjustifiably reject an argument x if x is de-
feated by the intervention, and we only unjustifiably refrain from accepting an
argument x if x is provisionally defeated by the intervention.

Definition 4.4.2. Let F = (A,!) be an argumentation framework. A relation
||=F⊆ Int(F )× lang(F ) satisfies Conditional out-legality iff for all x ∈ A,

if Φ $|= out(x) then Φ ||=F out(x) → ∨y∈x− in(y).

Definition 4.4.3. Let F = (A,!) be an argumentation framework. A relation
||=F⊆ Int(F )× lang(F ) satisfies Conditional Reinstatement iff for all x ∈ A,

if Φ $|= ¬in(x) then Φ ||=F (∧y∈x−out(y)) → in(x).

The out-legality (definition 2.1.8) and reinstatement (definition 2.1.9) prop-
erties, if satisfied by all labellings under a semantics σ, ensure that for all
F ∈ F , the relation ||=F

σ
satisfies Conditional out-legality and Conditional

Reinstatement, respectively. Because under the complete, grounded, preferred
and semi-stable semantics, all labellings satisfy out-legality and reinstatement,
this implies that the relations ||=F

Co, ||=
F
Gr, ||=

F
Pr and ||=F

SS satisfy Conditional
out-legality and Conditional Reinstatement.

Proposition 4.4.1. Let F ∈ F and let σ be a labelling-based semantics.

1. If all σ labellings of F satisfy out-legality then ||=F
σ

satisfies Conditional
out-legality.

2. If all σ labellings of F satisfy Reinstatement then ||=F
σ
satisfies Conditional

Reinstatement.

Proof. Let F = (A,!) and let σ be a labelling-based semantics.

(1): Suppose for all L ∈ Lσ(F ), L satisfies out-legality. Let Φ ∈ Int(F ), let
κ be an F -mapping and let L′ ∈ Lσ(F ⊕κ

Φ). We prove that, for all x ∈ A

s.t. Φ $|= out(x), L′ |= out(x) → ∨y∈x− in(y) (from here on x− refers to the
attackers of x in F ). Let x ∈ A and suppose Φ $|= out(x). If L′ $|= out(x)
we are done. In the remainder we assume L′ |= out(x). Because L′ satisfies
out-legality there is an y such that L′(y) = in and y attacks x in F ⊕ Φ.
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Because Φ $|= out(x), definition 3.2.5 implies that if y $∈ A then y is self-
attacking in F ⊕κ

Φ, which is impossible. Hence y ∈ A and thus y ∈ x−. Thus
L′ |= out(x) → ∨y∈x− in(y). It follows that Φ ||=F

σ
out(x) → ∨y∈x− in(y).

Hence ||=F
σ
satisfies Conditional out-legality.

(2): Suppose for all L ∈ Lσ(F ), L satisfies reinstatement. Let Φ ∈ Int(F ), let
κ be an F -mapping and let L′ ∈ Lσ(F ⊕κ

Φ). We prove that, for all x ∈ A

s.t. Φ $|= ¬in(x), L′ |= (∧y∈x−out(y)) → in(x) (from here on x− refers to the
attackers of x in F ). Let x ∈ A and suppose Φ $|= ¬in(x). If L′ $|= (∧y∈x−out(y))
we are done. In the remainder we assume L′ |= (∧y∈x−out(y)). Because Φ $|=
¬in(x), definition 3.2.5 implies that every attacker of x in F ⊕κ

Φ is a member
of x−. Because L′ satisfies reinstatement it then follows that L′(x) = in. Hence
L′ |= (∧y∈x−out(y)) → in(x). It follows that Φ ||=F

σ
(∧y∈x−out(y)) → in(x).

Hence ||=F
σ
satisfies Conditional Reinstatement.

4.4.2 Directional out-legality and Reinstatement

The idea behind the properties of Conditional out-legality and Conditional
Reinstatement does not apply to observation-based entailment. The reason is
similar to the reason why Conditional Directionality does not apply: observa-
tions involve abductive reasoning, which may result in (provisional) defeat of an
argument that is not itself observed to be rejected or not accepted. Keeping the
directionality principle in mind, however, it stands to reason that, if we observe
φ, we (provisionally) defeat an argument x only if x is also structurally relevant
to φ. Intuitively, this is because an argument that is not structurally relevant
to an observation should play no role in explaining it. This is expressed by the
following two properties, which we call Directional out-legality and Directional
Reinstatement

Definition 4.4.4. Let F = (A,!). A relation |∼⊆ lang(F )×lang(F ) satisfies
Directional out-legality iff for all φ ∈ lang(F ) and x ∈ A,

if x $!∗ φ then φ |∼ out(x) → ∨y∈x− in(y).

Definition 4.4.5. Let F = (A,!). A relation |∼⊆ lang(F )×lang(F ) satisfies
Directional Reinstatement iff for all φ ∈ lang(F ) and x ∈ A,

if x $!∗ φ then φ |∼ (∧y∈x−out(y)) → in(x).

These two properties demonstrate the role of directionality in the setting of
observation-based. More precisely, given an abductive model M based on F

under the semantics σ that is both closed under weakening and satisfies the
minimality assumption, the relations |∼M

Cr and |∼M
Sk satisfy Directional out-

legality (resp. Directional Reinstatment) whenever the corresponding relation
||=F

σ
satisfies Conditional out-legality (resp. Conditional Reinstatement) as well

as Conditional Directionality.

Theorem 4.4.2. Let F ∈ F and let σ be a labelling-based semantics. Let
M = (F,H,m,<,σ) be an abductive model that is closed under weakening and
satisfies the minimality assumption.
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1. If ||=F
σ

satisfies Conditional Directionality and Conditional out-legality
then both |∼M

Cr and |∼M
Sk satisfy Directional out-legality.

2. If ||=F
σ
satisfies Conditional Directionality and Conditional Reinstatement

then both |∼M
Cr and |∼M

Sk satisfy Directional Reinstatement.

For the proof we use the following lemma.

Lemma 4.4.3. Let F = (A,!) and let σ be a labelling-based semantics. Let
M = (F , H, m, <, σ) be an abductive model that is closed under weakening and
satisfies the minimality assumption. Suppose ||=F

σ
satisfies Conditional Direc-

tionality. If h ∈ H is a most preferred sceptical or credulous explanation for φ

then x ∈ Args(m(h)) implies x !
∗ φ.

Proof. Let F = (A,!), σ be a labelling-based semantics and let M = (F , H,
m, <, σ) be an abductive model that is closed under weakening and satisfies
the minimality assumption. Suppose ||=F

σ
satisfies Conditional Directionality.

We prove the credulous case (the sceptical case is similar): Let h ∈ H be
a most preferred credulous explanation for φ. We then have m(h) $||=F

σ
¬φ

and there is no h′ ∈ H such that h′ < h and m(h′) $||=F
σ

¬φ. Now suppose
the contrary: x ∈ Args(m(h)) and x $!∗ φ. We then have {out(x)} ∈ m(h)
or {¬in(x)} ∈ m(h). Assume (w.l.o.g.) that {out(x)} ∈ m(h). Because ||=F

σ

satisfies Conditional Directionality and {out(x)} $!∗ φ it follows that m(h) ||=F
σ

φ iff m(h) \ {out(x)} ||=F
σ

φ and hence we have m(h) \ {out(x)} $||=F
σ

¬φ.
But because M is closed under weakening, there is some h′ ∈ H such that
m(h′) = m(h)\{out(x)}. The minimality assumption furthermore implies that
h′ < h. But this is a contradiction, because it means that h is not a most
preferred credulous explanation for φ. Thus it must hold that x ∈ Args(m(h))
and x !

∗ φ.

We now prove theorem 4.4.2.

Proof of theorem 4.4.2. Let F = (A,!) be an argumentation framework and
let σ be a labelling-based semantics. Let M be an abductive model based on F

under semantics σ that is closed under weakening and satisfies the minimality
assumption.

(1): Suppose ||=F
σ
satisfies Conditional Directionality and Conditional out-lega-

lity. We prove that |∼M
Cr satisfies Directional out-legality (the proof for |∼M

Sk is
similar): Let x ∈ A and suppose x $!∗ φ. Let h ∈ H be a most preferred cred-
ulous explanation for φ. We must prove that m(h) ||=F

σ
out(x) → ∨y∈x− in(y).

Via lemma 4.4.3 it follows that for all z ∈ A, z ∈ Args(m(h)) implies z !
∗ φ.

Thus we have x $∈ Args(m(h)). Because ||=F
σ

satisfies Conditional out-legality
it then follows that m(h) ||=F

σ
out(x) → ∨y∈x− in(y). Hence |∼M

Cr satisfies
Directional out-legality.

(2): The proof is similar to (1), except that here we have to show that if h ∈ H is
a most preferred credulous explanation for φ then m(h) ||=F

σ
(∧y∈x−out(y)) →

in(x), which follows via lemma 4.4.3 from the fact that ||=F
σ
satisfies Conditional

Reinstatement.

93



a b c

Figure 4.7: Failure of Directional out-legality and Reinstatement (example
4.4.2).

Because for all F ∈ F , ||=F
Co, ||=

F
Gr and ||=F

Pr all satisfy Conditional Directional-
ity, Conditional out-legality and Conditional Reinstatement, this result implies
that for all abductive models that are based on F under the complete, grounded
and preferred semantics, and are closed under weakening and satisfy the mini-
mality assumption, the relations |∼M

Cr and |∼M
Sk satisfy Directional out-legality

and Directional Reinstatement.

In the following example we show that the failure of Directional out-legality and
Directional Reinstatement leads to unintuitive behaviour. This failure occurs in
some abductive models under the semi-stable semantics, which does not satisfy
directionality.

Example 4.4.2. Let F be the argumentation framework shown in figure 4.7.
Let M = (F,H,m,<,SS) be the abductive model based on F under the semi-
stable semantics, defined by:

• H = 2{out(a),out(b),out(c)}.

• <=⊂.

• m is the identity function.

Note that this abductive model is closed under weakening and satisfies the min-
imality assumption.

Normally it follows that a is rejected: ⊤ |∼M
Cr out(a). We furthermore have

that c is not structurally relevant to the argument a and hence that c $!∗ in(a).
Intuitively, c should play no role in explaining the observation in(a). Thus, Di-
rectional out-legality implies that observing in(a) does not lead to the unjustified
rejection of c: in(a) |∼M

Cr out(c) → (in(b) ∨ in(c)). Furthermore, Directional
Reinstatement implies that observing in(a) leads to acceptance of c whenever its
attackers are rejected: in(a) |∼M

Cr (out(b) ∧ out(c)) → in(c). However, neither
of these hold. This is due to the fact that, among the most preferred credulous
explanations for in(a) under the semi-stable semantics, we have the intervention
{out(c)}, which entails neither out(c) → (in(b)∨in(c)) nor (out(b)∧out(c)) →
in(c). Thus, we have in(a) $|∼M

Cr out(c) → (in(b) ∨ in(c)), which is a failure
of Directional out-legality, and in(a) $|∼M

Cr (out(b) ∧ out(c)) → in(c) which is
a failure of Directional Reinstatement. Thus, we have demonstrated that, if we
use the semi-stable semantics (which does not satisfy directionality) then argu-
ments that are not structurally relevant to an observation may play a role in
explaining it, and may be unjustifiably rejected.

Note that theorem 4.4.2 not only establishes the role of directionality but also
the role of closure under weakening and the assumption of minimality. Roughly
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a b c

Figure 4.8: The argumentation framework for example 4.4.3.

∅

{out(a),out(b)}

{out(b)} {out(a)}

(a) No closure under weakening.

∅

{out(a),out(b)}

{out(b)} {out(a)}

(b) No minimality assumption.

Figure 4.9: Two abductive models (example 4.4.3).

speaking, these properties ensure that an argument is (provisionally) defeated
when making an observation only if this (provisional) defeat contributes to ex-
plaining the observation. The failure of Directional out-legality and Directional
Reinstatement due to the violation of closure under weakening or the assump-
tion of minimality is demonstrated by the following example.

Example 4.4.3. Let F be the argumentation framework shown in figure 4.8.

1. Let M1 = (F,H,m,<,Gr) be the abductive model based on F under the
grounded semantics, defined by:

• H = {∅, {out(a),out(b)}}.

• ∅ < {out(a),out(b)}.

• m is the identity function.

This abductive model is shown in figure 4.9a. Note that this abductive
model satisfies the minimality assumption but is not closed under weaken-
ing: we have {out(a),out(b)} ∈ H but not {out(a)} ∈ H and {out(b)} ∈
H.

2. Let M2 = (F,H,m,<,Gr) be the abductive model based on F under the
grounded semantics, defined by:

• H = {∅, {out(a),out(b)}, {out(a)}, {out(b)}}.

• ∅ < {out(a),out(b)}, {out(a),out(b)} < {out(a)},
{out(a),out(b)} < {out(b)}.

• m is the identity function.

This abductive model is shown in figure 4.9b. Note that we now have clo-
sure under weakening, but the minimality assumption is violated: we have,
e.g., {out(a),out(b)} |= {out(a)} and {out(a)} $|= {out(a),out(b)} but
not {out(a)} < {out(a),out(b)}.
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a b c d

Figure 4.10: Violation of Conditional Noninterference (example 4.5.1).

While ||=F
Gr satisfies Conditional Directionality and Conditional out-legality,

neither |∼M1

Sk nor |∼M1

Sk satisfies Directional out-legality: we have b $!∗ {out(a)}

but out(a) $|∼M1

Sk out(b) → in(a) and out(a) $|∼M2

Sk out(b) → in(a). Directional
Reinstatement fails in a similar way. The reason for this failure is the fact that
in both M1 and M2, the intervention {out(a),out(b)} is the most preferred
explanation for the observation out(a), leading to the defeat of b, even though
this is not necessary to explain out(a).

4.5 Noninterference in Observation-Based En-

tailment

In the previous section we explained that the idea behind the property of Condi-
tional Directionality does not apply to observation-based entailment. However,
the idea behind the Conditional Noninterference property looks at first sight
reasonable in the setting of observation-based. That is, an observation φ should
not change the status of an argument if the argument is not structurally con-
nected to φ. This can be considered reasonable because an argument x that is
not structurally connected to an observation φ is not structurally relevant to
φ, and should therefore play no role in explaining φ and, conversely, φ is not
structurally relevant to x, and hence the status of x should not change as a
result of observing φ.

Let us define the analogue of Conditional Noninterference for observation-based
entailment. This property states that two observations φ and φ∧ψ are the same
as far as consequences that are not structurally connected to ψ are concerned.
Note that, compared to Conditional Noninterference for intervention-based en-
tailment, we introduce the additional consistency constraint ψ $|∼ ⊥ to rule out
cases where the the consequences of φ and φ ∧ ψ differ due to inconsistency.

Definition 4.5.1. Let (A,!) ∈ F . A relation |∼⊆ lang(F )×lang(F ) satisfies
Conditional Noninterference iff for all φ,ψ ∈ lang(F ),

if ψ $#∗ χ and ψ $|∼ ⊥ then φ ∧ ψ |∼ χ iff φ |∼ χ.

It turns out that this property is generally not satisfied. The reason is that, if
φ involves arguments of two distinct isolated sets then it effectively makes the
labels of the arguments in these two sets dependent. We may, for example, ob-
serve in(x) → out(y), where x and y are members of distinct isolated sets. This
amounts to an “observed attack”, which makes the status of the arguments in
the two isolated sets dependent, causing a violation of Conditional Noninterfer-
ence if the observation is strengthened. This is demonstrated by the following
example.

Example 4.5.1. Let F be the argumentation framework shown in figure 4.10.
Let M = (F,H,m,<,σ) be the abductive model defined by:
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• H = 2{out(a),out(b),out(c),out(d)}.

• <=⊂.

• m is the identity function.

• σ ∈ {Co,Gr,Pr,SS}.

Note that this abductive model is closed under weakening and satisfies the min-
imality assumption.

Now, we have that out(a) $|∼M
Cr ⊥ and out(a) $#∗ out(d). Conditional Nonin-

terference would imply that we have, for all φ ∈ lang(F ),

φ ∧ out(a) |∼M
Cr out(d) iff φ |∼M

Cr out(d).

Let us see whether this holds if we set φ to in(b) → out(c). Note that this
observation involves both isolated sets in F .

• On the one hand we have in(b) → out(c) |∼M
Cr out(d). This is because

the unique most preferred credulous explanation for in(b) → out(c) is the
vacuous intervention, which entails rejection of d: ∅ ||=F

σ
out(d).

• On the other hand we have (in(b) → out(c)) ∧ out(a) $|∼M
Cr out(d). This

is because among the most preferred credulous explanations for (in(b) →
out(c)) ∧ out(a) we have the intervention {out(a),out(c)}, which does
not entail rejection of d: {out(a),out(c)} $||=F

σ
out(d).

This is a violation of Conditional Noninterference. This counterexample also
applies to |∼M

Sk.

The following weaker variant of Conditional Noninterference is still desirable.
We call it Weak Conditional Noninterference. It states that what we believe
after observing φ coincides with what we initially believe (i.e., given the obser-
vation ⊤) as far as all consequences that are not structurally connected to φ are
concerned.

Definition 4.5.2. Let (A,!) ∈ F . A relation |∼⊆ lang(F )×lang(F ) satisfies
Weak Conditional Noninterference iff for all φ,ψ ∈ lang(F ),

if φ $#∗ ψ and φ $|∼ ⊥ then ⊤ |∼ ψ iff φ |∼ ψ.

We have that, given an abductive model M based on F under the semantics σ
that is both closed under weakening and satisfies the minimality assumption,
the relations |∼M

Cr and |∼M
Sk satisfy Weak Conditional Noninterference whenever

the relation ||=F
σ
satisfies Conditional Noninterference.

Theorem 4.5.1. Let F ∈ F and let σ be a labelling-based semantics. Let M =
(F,H,m,<,σ) be an abductive model that is closed under weakening and satisfies
the minimality assumption. If ||=F

σ
satisfies Conditional Noninterference then

both |∼M
Cr and |∼M

Sk satisfy Weak Conditional Noninterference.

For the proof we use the following lemma.
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Lemma 4.5.2. Let F = (A,!) and let σ be a labelling-based semantics. Let
M = (F,H,m,<,σ) be an abductive model that is closed under weakening and
satisfies the minimality assumption. Suppose ||=F

σ
satisfies Conditional Nonin-

terference. If h ∈ H is a most preferred sceptical or credulous explanation for
φ then x ∈ Args(m(h)) implies x #

∗ φ.

Proof. Let F = (A,!), σ be a labelling-based semantics and let M = (F , H,
m, <, σ) be an abductive model that is closed under weakening and satisfies the
minimality assumption. Suppose ||=F

σ
satisfies Conditional Directionality. We

prove the credulous case (the sceptical case is similar): Let h ∈ H be a most
preferred credulous explanation for φ. We then have m(h) $||=F

σ
¬φ and there is

no h′ ∈ H such that h′ < h and m(h′) $||=F
σ
¬φ. Now suppose the contrary: x ∈

Args(m(h)) and x $#∗ φ. We then have {out(x)} ∈ m(h) or {¬in(x)} ∈ m(h).
Assume (w.l.o.g.) that {out(x)} ∈ m(h). Because ||=F

σ
satisfies Conditional

Noninterference and {out(x)} $#∗ φ it follows that m(h) ||=F
σ

φ iff m(h) \
{out(x)} ||=F

σ
φ and hence we have m(h) \ {out(x)} $||=F

σ
¬φ. But because

M is closed under weakening, there is some h′ ∈ H such that m(h′) = m(h) \
{out(x)}. The minimality assumption furthermore implies that h′ < h. But
this is a contradiction, because it means that h is not a most preferred credulous
explanation for φ. Thus it must hold that x ∈ Args(m(h)) and x #

∗ φ.

We now prove theorem 4.5.1.

Proof of theorem 4.5.1. Let F ∈ F and let σ be a labelling-based semantics. Let
M = (F,H,m,<,σ) be an abductive model that is closed under weakening and
satisfies the minimality assumption. Assume ||=F

σ
satisfies Conditional Nonin-

terference. We prove that |∼M
Cr satisfies Weak Conditional Noninterference (the

proof that |∼M
Sk satisfies Weak Conditional Noninterference follows similarly.)

Suppose φ $#∗ ψ and assume φ $|∼M
Cr ⊥.

(Only if:) Suppose ⊤ |∼M
Cr ψ. We denote by h ∈ H a hypothesis such that

m(h) = ∅ (existence of h is guaranteed because M is closed under weakening).
Because M satisfies the minimality assumption, h is a most preferred credu-
lous explanation for ⊤. Thus we have ∅ ||=F

σ
ψ. Now let h′ ∈ H be a most

preferred credulous explanation for φ (existence of h′ is guaranteed because we
have φ $|∼M

Cr ⊥). Lemma 4.5.2 implies that if x ∈ Args(m(h′)) then x #
∗ φ.

Because φ $#∗ ψ it follows that m(h′) $#∗ ψ. Because ||=F
σ
satisfies Conditional

Noninterference it follows that m(h′) ||=F
σ
ψ. Hence φ |∼M

Cr ψ.

(If:) Suppose φ |∼M
Cr ψ. Let h ∈ H be a most preferred credulous explanation

for φ (existence of h′ is guaranteed because we have φ $|∼M
Cr ⊥). We then have

m(h) ||=F
σ

ψ. Lemma 4.5.2 implies that if x ∈ Args(m(h)) then x #
∗ φ.

Because φ $#∗ ψ it follows that m(h) $#∗ ψ. Because ||=F
σ
satisfies Conditional

Noninterference it follows that ∅ ||=F
σ
ψ. Hence ⊤ |∼M

Cr ψ.

Because, for all σ ∈ {Co,Gr,Pr,SS}, σ satisfies the noninterference principle,
we have that for all F ∈ F , ||=F

σ
satisfies Conditional Noninterference. This

implies that, given any abductive model M based on F under the complete,
grounded, preferred or semi-stable semantics that is closed under weakening
and satisfies the minimality assumption, the relations |∼M

Cr and |∼M
Sk satisfy

Weak Conditional Noninterference.
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As we explained in the previous section, closure under weakening and the mini-
mality assumption imply, roughly speaking, that an argument is (provisionally)
defeated only if this contributes to explaining the observation. For this reason,
the violation of closure under weakening or the minimality assumption may
lead to failure of Weak Conditional Noninterference. For a demonstration we
can consider again the argumentation framework and abductive model used in
example 4.3.1. This abductive model is not closed under weakening. As a result,
the sceptical observation in(a) leads to rejection of c, even though a and c are
members of two distinct isolated sets.

4.6 Related Work

In describing the problem of revising the evaluation of an argumentation frame-
work we made a distinction between the single-agent revision perspective and the
multi-agent strategic perspective. While we have taken the single-agent revision
perspective, the multi-agent strategic perspective has received most attention
in the literature. This includes the work of Baumann and Brewka, who call this
the enforcing problem [12]. The precise question they address is: can some set
of arguments be enforced (i.e., made credulously accepted) by modifying the
argumentation framework? They distinguish different types of modifications,
one type being a normal expansion, where new arguments/attacks are added
but no attacks between existing arguments. For each type they determine the
conditions under which a set of arguments is enforceable under a given seman-
tics. Baumann also looked at the problem of minimal change, that is: if some
set of arguments is enforceable, then how many modifications (i.e., how many
added or removed attacks) are necessary to do so? [11]

Kontarinis et al. [61] also take the multi-agent strategic perspective. Their
approach is based on the notion of a game board, which is an argumentation
framework together with a specification of the set of possible changes (consid-
ering only the addition/removal of attacks between existing arguments). They
then study the problem of changing the argumentation framework with the goal
of making an argument accepted or not accepted under a given semantics. They
propose a method of computation, based on term rewriting logic, where the ini-
tial goal is rewritten into sub-goals which, if successful, leads to a so called target
set, or a minimal set of attacks that must be added/removed to satisfy the goal.

Boella et al.[20] study goal-oriented change under the grounded semantics. Their
approach centres on the concept of a conditional labelling, which associates each
argument with three formulas. These formulas describe which arguments must
be attacked to make the argument labelled in, out or und.

Bisquert et al. [17] takes a slightly different perspective. They look at change
of the evaluation of an argumentation framework as a process that is part of
persuasion. That is, an agent wants to revise an audience’s evaluation of a
debate, and the revision operator tells the agent how to do this. They introduce
a language to describe sets of argumentation frameworks as well as a language to
describe goals concerning the acceptance of arguments. Generalized enforcement
is then a process that takes as input two formulas, one representing a set of initial
argumentation frameworks and one describing a set of arguments to accept.
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The result is a revised set of argumentation frameworks in which the desired
arguments are accepted. They prove a representation theorem that relates a
particular class of generalized enforcement operators with distance measures
defined over argumentation frameworks.

A clear single-agent revision perspective is taken by Coste-Marquis et al. [37].
They focus on revising the evaluation of an argumentation framework by adding
and removing attacks between existing arguments. The motivating example
they use is that an agent has to revise the evaluation of its argumentation frame-
work when confronted with trustworthy information (for practical purposes, this
can be considered to be the same as what we call observation). They focus on re-
vision operators that take as input an argumentation framework and a revision
formula, and return a set of revised argumentation frameworks. Specifically,
they focus on revision operators that are characterized by a set of AGM-style
postulates for revision with minimal change. That is, the set of extensions of the
revised argumentation frameworks taken together should differ minimally from
the set of extensions of the initial argumentation framework. They then look at
a number of distance measures over extensions and argumentation frameworks,
that can be used to define concrete revision operators.

Rotstein et al. [81, 82] and Moguillansky et al. [69] study revision in a more
structured setting. They assume that there is, apart from a set of arguments
(and a distinct set of active arguments), a subargument relation among argu-
ments. This is called a dynamic argumentation framework. This additional
structure allows the study of operators that add an argument and afterwards
make the necessary additional change to ensure that the added argument is
accepted.

It is well known that non monotonic inference relations can be used to define
belief revision operators and vice versa. This means that our theory of ob-
servation-based entailment can alternatively be seen as a theory about belief
revision operators. We could formalize this as follows: an an observation-based
entailment relation |∼M defined by an abductive model M based on F defines
a revision operator ∗ for F defined by ψ ∈ (F ∗ φ) iff φ |∼M ψ. Results due
to Gardenfors and Makinson [51] imply that, if |∼M is rational, this operator
behaves much like a belief revision operator that satisfies the AGM postulates.
A weaker set of postulates for belief revision, that applies in the case where |∼M

is not rational but still preferential, has been studied by Benferhat et al. [16].

We made a distinction between credulous and sceptical observation-based entail-
ment, which differs in how explanations are selected. That is, credulous (resp.
sceptical) entailment is based on selecting the most preferred explanations that
make an observation credulously (resp. sceptically) true. Bochman investigated
credulous and sceptical non-monotonic inference based on a different distinc-
tion [18]. Roughly speaking, sceptical entailment in Bochman’s investigation
is based on the rule that φ |∼ ψ holds if all preferred states consistent with
φ satisfy φ → ψ, while credulous entailment is based on the rule that φ |∼ ψ

holds if some preferred state consistent with φ satisfies φ → ψ. Whereas in
our setting, the distinction applies to how the premise is interpreted, it is, in
Bochman’s setting, applied to how the conclusion is interpreted.

Observation-based entailment relations are closely related to abductive conse-
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quence relations, as studied by Pino Pérez and Uzcátegui [73]. These are conse-
quence relations that are defined via an underlying principle of abduction. The
idea is very close to the one that we applied: Given a background theory Σ they
associate with each explanatory relation ⊲ between formulas (where φ⊲ψ means
that ψ is a preferred explanation of φ) a consequence relation |∼ab by setting

φ |∼ab ψ iff Σ ∪ {χ} ⊢ ψ for every χ such that φ ⊲ χ.

They then isolate postulates for explanatory relations based on the interplay
between ⊲ and |∼ab. In particular, they isolate postulates for ⊲ when |∼ab is
assumed to be an entailment relation that satisfies the properties studied by
Kraus et al. [62]. Lobo and Uzcátegui [66] studied abductive consequence re-
lations defined by cumulative ordered models that capture preferences among
explanations. This is similar to our notion of sceptical observation-based en-
tailment which, as we saw in section 4.3, is also closely related to cumulative
ordered models. They observe that the resulting notion of consequence does not
satisfy the Or-rule. We proved that the situation is the same in the sceptical
case, but not in the credulous case.

Finally, Roos [80] studied the relationship between the preferential model and
argumentation semantics. He first defines a preferential model as as consisting
of a preference relation over states, where each state maps to a conflict-free
extension of a given argumentation framework. He considers preferential models
in which a sufficient (but not necessary) condition for one extension E to be
preferred over another extension E′ is when E is a superset of E′. He then
considers various preference relations where the most preferred states of these
preferential models coincide with the complete, grounded, preferred and stable
extensions.

4.7 Conclusion and Future Work

We identified two types of change: intervention (representing actions in a de-
bate) and observation (information from the environment that requires the re-
vision of the status of one or more arguments). In this chapter we addressed the
question of how a rational agent should revise the evaluation of an argumen-
tation framework to account for an observation. We proposed a model, based
on an abductive principle, that determines an observation-based entailment re-
lation. This entailment relation captures how an argumentation framework is
evaluated given an observation.

We proved that the class of observation-based entailment relations for a given
argumentation framework F (i.e., the observation-based entailment relations
determined by some abductive model for F ) is characterized by a strengthening
of the class of preferential (in the credulous case) and loop-cumulative (in the
sceptical case) entailment relations. This characterization is complete in the
credulous case, but not in the sceptical case. This result gives a handle on
how credulous and sceptical observation-based entailment differ, namely that
the former satisfies the Or-rule, but the latter generally does not.

Finally, we investigated the difference between interventions and observations,
in terms of how their effect propagate through an argumentation framework.
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We also investigated the role of the principles of directionality and noninter-
ference in the behaviour of an observation-based entailment relation. Namely,
these principles ensure (if we make some reasonable further assumptions) that
the effect of an observation propagates through the argumentation framework
in a well-behaved manner. If we use a semantics that satisfies the directionality,
the difference between intervention and observation is that the effect of an inter-
vention only propagates to arguments that are directly or indirectly attacked by
an argument that is (provisionally) defeated, whereas the effect of an observa-
tion also propagates to arguments that play a role in explaining the observation
(i.e., arguments that directly or indirectly attack arguments of which the status
is observed).

We simplified our model by abstracting away from the actual changes that can
be made to an argumentation framework in order to account for an observation,
and instead we focussed on change represented by interventions. This is a limita-
tion in the sense that not every change that can be made to an argumentation
framework is represented by some intervention. This includes changes where
attacks between existing arguments are removed, and changes where multiple
arguments and attacks are added at once. Considering more general forms of
change will lead to more general forms of revision. For example, the obser-
vation that two arguments a and b where a attacks b are both accepted, can
be explained by removing the attack from a to b. In the current setting, ob-
servations that are not conflict-free cannot be consistently dealt with. These
considerations suggest more general forms of revision in argumentation, which
is a subject for future research.

Finally, we have been working in the setting of abstract argumentation, without
taking into account possible instantiations of abstract argumentation frame-
works. This raises the question: can observation-based entailment be applied if
we use instantiated forms of argumentation? We partially address this question
in the following chapter, where we present a model of abduction in abstract argu-
mentation that is an abstraction of abduction in logic programming. However,
we focus in the following chapter on finding explanations for a given observa-
tion, and we do not, like we did in this chapter, look at the specific problem of
revision due to observation.

4.8 Proofs

Lemma 4.3.2. Let F be an argumentation framework and let |∼⊆ lang(F )×
lang(F ). The following are equivalent:

1. |∼=|∼M
Cr for an abductive model M based on F .

2. |∼=|∼W for a preferential model W over LCf(F ).

For the (1) to (2) direction of lemma 4.3.2 we use definition 4.8.1 and lemma 4.8.1
and 4.8.2.

Definition 4.8.1. Let F = (A,!) be an argumentation framework and let
M = (F,H,m,<,σ) be an abductive model. We define WM

Cr by WM
Cr = (S,≺, l),

where
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• S = {(h, L) | h ∈ H,L ∈ Lσ(F,m(h)) ↓ A},

• (h, L) ≺ (h′, L′) iff h < h′,

• l((h, L)) = L.

Lemma 4.8.1. Let F be an argumentation framework, M = (F,H,m,<,σ) an
abductive model and let WM

Cr = (S,≺, l). For all (h, L) ∈ S it holds that (h, L) is

≺-minimal in φ̂ iff h is a most preferred credulous explanation for φ and L |= φ.

Proof. Let F be an argumentation framework, M = (F,H,m,<,σ) a abductive
model and let WM

Cr = (S,≺, l). Let (h, L) ∈ S.

(Only if) Suppose (h, L) is ≺-minimal in φ̂. It follows immediately that L |= φ.
We prove by contradiction that h is a most preferred credulous explanation for
φ. Suppose the contrary. Then there is a h′ that is a credulous explanation for φ
and h′ < h. But then there is an L′ ∈ Lσ(F,m(h′)) ↓ A and L′ |= φ, and hence

a state (h′, L′) ∈ φ̂ such that (h′, L′) ≺ (h, L) (i.e., (h, L) is not ≺-minimal in

φ̂). This is a contradiction. Hence h is a most preferred credulous explanation
for φ.

(If) Suppose h is a most preferred credulous explanation for φ and L |= φ. It

immediately follows that (h, L) ∈ φ̂. Suppose (h, L) is not ≺-minimal in φ̂.

Then there is a state (h′, L′) ∈ φ̂ and (h′, L′) ≺ (h, L). But then h is not a most
preferred credulous explanation for φ. This is a contradiction. Hence (h, L) is

≺-minimal in φ̂.

Lemma 4.8.2. Let F be an argumentation framework and let M = (F,H,m,<

,σ) an abductive model. It holds that WM
Cr is a preferential model over LCf(F ).

Proof. Let F be an argumentation framework and let M = (F,H,m,<,σ) an
abductive model. Let WM

Cr = (S,≺, l). From definition 4.8.1 together with the
fact that < is a strict partial order it follows that ≺ is a strict partial order.
Furthermore finiteness of H implies finiteness of S and hence the smoothness
condition is satisfied. Theorem 3.2.8 furthermore implies that for all s ∈ S,
l(s) ⊆ LCf(F ), while proposition 2.1.10 implies that for all s ∈ S, l(s) is non-
empty. By definition 2.2.5 it follows that WM

Cr is a preferential model over
LCf(F ).

For the (2) to (1) direction of lemma 4.3.2 we use definitions 4.8.3 and 4.8.2 and
lemmas 4.8.3, 4.8.4 and 4.8.5.

Definition 4.8.2. Let F be an argumentation framework and let L ∈ LCf(F ).
We define the enforcing intervention Enf(L) of L by

Enf(L) = {out(x) | L(x) = out} ∪ {¬in(x) | L(x) = und}.

Lemma 4.8.3. Let F = (A,!) be an argumentation framework. Let σ ∈
{Co,Gr,Pr,SS}. For all L ∈ LCf(F ) it holds that Lσ(F,Enf(L)) ↓ A = {L}.

Proof. The case σ = Co follows from the principles of conflict-freeness, admis-
sibility and reinstatement. The other cases follow directly.
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Definition 4.8.3. Let F be an argumentation framework and let W = (S,≺, l)
be a finite preferential model over LCf(F ). Let σ ∈ {Co,Gr,Pr,SS}. We define
Mσ

W by Mσ

W = (F,H,m,<,σ), where

• H = S.

• m is defined by m(s) = Enf(l(s)) (See definition 4.8.2).

• <=≺.

Lemma 4.8.4. Let F = (A,!) be an argumentation framework and let W =
(S,≺, l) be a finite preferential model over LCf(F ). Let σ ∈ {Co,Gr,Pr,SS}. Let
(F,H,m,<,σ) = Mσ

W. For all s ∈ S it holds that s is a credulous explanation

for φ iff s ∈ φ̂.

Proof. Let s ∈ S. Definition 4.2.4 implies that s is a credulous explanation
for φ iff m(s) $||=F

σ
¬φ. Because m(s) = Enf(l(s)), lemma 4.8.3 implies that

{l(s)} = Lσ(F,m(s)) ↓ A and hence that m(s) $||=F
σ
¬φ iff l(s) |= φ. Hence s is

a credulous explanation for φ iff s ∈ φ̂.

Lemma 4.8.5. Let F be an argumentation framework. Let W = (S,≺, l) be a
finite preferential model over LCf(F ). Let σ ∈ {Co,Gr,Pr,SS}. It holds that
Mσ

W is an abductive model based on F .

Proof. From the fact that ≺ is a strict partial order it follows that < is a strict
partial order. Finiteness of S implies finiteness of H. Lemma 4.8.3 implies that
for no h ∈ H, m(h) ||=F

σ
⊥. Hence Mσ

W is an abductive model based on F .

We are now ready to prove lemma 4.3.2.

Proof of lemma 4.3.2. We first prove that (1) implies (2): Let M be an ab-
ductive model based on F . Lemma 4.8.2 implies that WM

Cr = (S,≺, l) is a
finite preferential model over LCf(F ). The following equivalences prove that

|∼M
Cr=|∼WM

Cr :

1. φ |∼WM
Cr ψ

2. For every (h, L) ∈ S that is ≺-minimal in φ̂ we have l((h, L)) |= ψ.

3. For every most preferred credulous explanation h for φ and every
L ∈ Lσ(F,m(h)) s.t. L |= φ we have L |= ψ.

4. For every most preferred credulous explanation h for φ we have m(h) ||=F
σ

φ → ψ.

5. φ |∼M
Cr ψ

Equivalence of 1/2 follows from definition 2.2.7. Equivalence of 2/3 follows from
lemma 4.8.1. Equivalence of 3/4 follows from definitions 2.1.16 and 2.1.17.
Equivalence of 4/5 follows from definition 4.2.5. Hence |∼=|∼M

Cr=|∼W for a
finite preferential model W over LCf(F ).
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We now prove that (2) implies (1): Let W be a finite preferential model over
LCf(F ). Let σ ∈ {Co,Gr,Pr,SS}. Lemma 4.8.5 implies that Mσ

W = (F,H,m,<

,σ) is an abductive model based on F . The following equivalences prove that

|∼W=|∼
Mσ

W

Cr :

1. φ |∼W ψ.

2. For every s ∈ S that is ≺-minimal in φ̂ we have l(s) |= ψ.

3. For every h ∈ H that is a most preferred credulous explanation for φ we
have m(h) ||=F

σ
φ → ψ.

4. φ |∼
Mσ

W

Cr ψ.

Equivalence of 1/2 follows from definition 2.2.7. Equivalence of 2/3 follows
from lemma 4.8.4. Equivalence of 3/4 follows from definition 4.2.5. Hence
|∼=|∼W=|∼M

Cr for an abductive model based on F .

Lemma 4.3.4. Let F be an argumentation framework and let |∼⊆ lang(F )×
lang(F ). It holds that if |∼=|∼M

Sk for an abductive model M based on F then
|∼=|∼W for a cumulative-ordered model W over LCf(F ).

To prove lemma 4.3.4 we use definition 4.8.4 and lemma 4.8.6 and 4.8.7.

Definition 4.8.4. Let F = (A,!) and let M = (F,H,m,<,σ) be an abductive
model. We define WM

Sk by WM
Sk = (S,≺, l), where

• S = H.

• <=≺.

• l(s) = Lσ(F,m(s)) ↓ A.

Lemma 4.8.6. Let F = (A,!) be an argumentation framework, M = (F , H,
m, <, σ) an abductive model and WM

Sk = (S,≺, l). For all s ∈ S it holds that s

is a sceptical explanation for φ iff s ∈ φ̂.

Proof. Follows directly from definitions 4.2.6, 3.2.8, 2.1.17, 4.8.4 and 2.2.7.

Lemma 4.8.7. Let F be an argumentation framework and M = (F,H,m,<,σ)
an abductive model based on F . It holds that WM

Sk is a finite cumulative ordered
model over LCf(F ).

Proof. Let M = (F,H,m,<,σ) an abductive model based on F . Let WM
Sk =

(S,≺, l). The fact that < is a strict partial order implies that ≺ is too. Theo-
rem 3.2.8 furthermore implies that for all s ∈ S, l(s) ⊆ LCf(F ), while proposi-
tion 2.1.10 implies that for all s ∈ S, l(s) is non-empty. Because H = S it holds
that S is finite. By definition 2.2.4 it follows that WM

Sk is a cumulative ordered
model over LCf(F ).

We are now ready to prove lemma 4.3.4.
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Proof of lemma 4.3.4. Suppose |∼=|∼M
Sk for an abductive model M = (F , H, m,

<, σ). Lemma 4.8.7 implies that WM
Sk = (S,≺, l) is a finite cumulative ordered

model over LCf(F ). We show that |∼W=|∼
WM

Sk

Sk . This follows from the following
equivalences:

1. φ |∼W ψ.

2. For all s ≺-minimal in φ̂ we have ∀v ∈ l(s), v |= ψ.

3. For every most preferred sceptical explanation h for φ we have m(h) ||=F
σ

ψ.

4. φ |∼
WM

Sk

Sk ψ.

Equivalence of 1/2 follows from definition 2.2.7. Equivalence of 2/3 follows
from lemma 4.8.6. Equivalence of 3/4 follows from definition 4.2.7. Hence
|∼=|∼W=|∼W

Sk for some cumulative ordered model W over LCf(F ).
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Chapter 5

Abduction in

Argumentation and Logic

Programming

5.1 Introduction

In the context of abstract argumentation, abduction can be seen as the problem
of finding changes to an argumentation framework with the goal of explain-
ing observations about the evaluation of the argumentation framework. This
was the mechanism by which we defined the notion of observation-based entail-
ment in chapter 4. In this chapter we look at two further aspects of combining
argumentation and abduction.

Firstly, proof theories in argumentation are often formulated as dialogical proof
theories, which aim at relating the problem they address with stereotypical
patterns found in real world dialogue. For example, proof theories for scepti-
cal/credulous acceptance have been modelled as dialogues in which a proponent
persuades an opponent to accept the necessity/possibility of an argument [68],
while credulous acceptance has also been related to Socratic style dialogue [32].
This raises the question of whether proof procedures for abduction in argumen-
tation can similarly be modelled as dialogues. Secondly, abstract argumentation
can be seen as an abstraction of logic programming. That is, an instantiated
argumentation framework can be generated on the basis of a logic program,
and the consequences of the logic program be computed by looking at the ex-
tensions of the instantiated argumentation framework [42]. In the context of
abduction, one may ask whether a model of abduction in argumentation can
similarly be seen as an abstraction of abductive logic programming. These are
the two questions we address in this chapter.

We first present a model of abduction in abstract argumentation, based on the
notion of an abductive argumentation framework that encodes different possible
changes to an argumentation framework, each of which may act as a hypothesis
to explain an observation that can be justified by making an argument accepted.
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We then do two things:

1. We present sound and complete dialogical proof procedures for the main
reasoning tasks, i.e., finding hypotheses that explain sceptical/credulous
acceptance of arguments in support of an observation. These proof proce-
dures show that the problem of abduction is related to an extended form
of persuasion, where the proponent uses hypothetical moves to persuade
the opponent.

2. We show that abductive argumentation frameworks can be instantiated
by ALPs (abductive logic programs) in such a way that the hypotheses
generated for an observation by the ALP can be computed by translating
the ALP into an abductive argumentation framework. The type of ALPs
we focus on are based on Sakama and Inoue’s model of extended abduc-
tion [57, 58], in which hypotheses have a positive as well as a negative
element (i.e., facts added to the logic program as well as facts removed
from it).

In sum, our contribution is a model of abduction in argumentation which can
be seen as an abstraction of abduction in logic programming, and we present
dialogical proof procedures for determining what the explanations for a given
observation are.

The overview of this chapter is as follows. After introducing the necessary
preliminaries we present in section 5.2 a model of abduction in abstract ar-
gumentation. In section 5.3 we present dialogical proof procedures for two of
the main problems (explaining sceptical/credulous acceptance). In section 5.4
we show that our model of abduction can be used to instantiate abduction in
logic programming. We conclude by discussing related work in section 5.5 we
conclude in section 5.6.

This chapter is based on joint work with Richard Booth, Dov Gabbay, Souhila
Kaci and Leendert van der Torre [21].

5.2 Abductive Argumentation Frameworks

To simplify our definitions, we work in this chapter with extension-based se-
mantics instead of labelling-based semantics. We assume that an observation
translates into a set B ⊆ A. Intuitively, B is a set of arguments that each indi-
vidually support the observation. If at least one argument x ∈ B is sceptically
(resp. credulously) accepted w.r.t. the complete semantics, we say that the
observation B is sceptically (resp. credulously) supported.

Definition 5.2.1. Given an argumentation framework F = (A,!), an obser-
vation B ⊆ A is sceptically (resp. credulously) supported iff for all (resp. some)
E ∈ ECo(F ) it holds that x ∈ E for some x ∈ B.

The following proposition implies that checking whether an observation B is
sceptically supported can be done by checking whether an individual argument
x ∈ B is in the grounded extension.
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Proposition 5.2.1. Let F = (A,!), B ⊆ A. It holds that F sceptically
supports B iff some x ∈ B is a member of the grounded extension of F .

It may be that an argumentation framework F does not sceptically or credu-
lously support an observation B. Abduction then amounts to finding a change
to F so that B is supported. We use the following definition of an abductive ar-
gumentation framework to capture the changes with respect to F (each change
represented by an argumentation framework G called an abducible argumenta-
tion framework) that an agent considers. We assume that F itself is also an
abducible argumentation framework, namely one that captures the case where
no change is necessary. Other abducible argumentation frameworks may be
formed by addition of arguments and attacks to F , removal of arguments and
attacks from F , or a combination of both.

Definition 5.2.2. An abductive argumentation framework is a pair M = (F, I)
where F is an argumentation framework and I ⊆ F a set of argumentation
frameworks called abducible such that F ∈ I.

Given an abductive argumentation framework (F, I) and observation B, scep-
tical/credulous support for B can be explained by the change from F to some
G ∈ I that sceptically/credulously supports B. In this case we say that G ex-
plains sceptical/credulous support for B. The arguments/attacks added to and
absent from G can be seen as the actual explanation.

Definition 5.2.3. Let M = (F, I) be an abductive argumentation framework.
An abducible argumentation framework G ∈ I explains sceptical (resp. credu-
lous) support for an observation B iff G sceptically (resp. credulously) supports
B.

One can focus on explanations satisfying additional criteria, such as minimality
w.r.t. the added or removed arguments/attacks. We leave the formal treatment
of such criteria for future work.

Example 5.2.1. Let M = (F, {F,G1, G2, G3}), where F,G1, G2 and G3 are
defined as shown in figure 5.1. Let B = {b} be an observation. It holds that G1

and G3 both explain sceptical support for B, while G2 only explains credulous
support for B.

5.3 Explanation Dialogues

In this section we present methods to determine, given an abductive argumenta-
tion framework M = (F, I) (for F = (A,!)) whether an abducible argumenta-
tion framework G ∈ I explains credulous or sceptical support for an observation
B ⊆ A. We build on ideas behind the grounded and preferred games, which
are dialogical procedures that determine sceptical or credulous acceptance of an
argument [68]. To sketch the idea behind these games (for a detailed discus-
sion cf. [68]): two imaginary players (PRO and OPP) take alternating turns in
putting forward arguments according to a set of rules, PRO either as an initial
claim or in defence against OPP’s attacks, while OPP initiates different dis-
putes by attacking the arguments put forward by PRO. Sceptical or credulous
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Figure 5.1: The argumentation frameworks of the abductive argumentation
framework (F, {F,G1, G2, G3}).

110



acceptance is proven if PRO can win the game by ending every dispute in its
favour according to a “last-word” principle.

Our method adapts this idea so that the moves made by PRO are essentially
hypothetical moves. That is, to defend the initial claim (i.e., to explain an
observation) PRO can put forward, by way of hypothesis, any attack x ! y

present in some G ∈ I. This marks a choice of PRO to focus only on those
abducible argumentation frameworks in which the attack x ! y is present.
Similarly, PRO can reply to an attack x ! y, put forward by OPP, with the
claim that this attack is invalid, marking the choice of PRO to focus only on the
abducible argumentation frameworks in which the attack x ! y is not present.
Thus, each move by PRO narrows down the set of abducible argumentation
frameworks in which all of PRO’s moves are valid. The objective is to end the
dialogue with a non-empty set of abducible argumentation frameworks. Such
a dialogue represents a proof that these abducible argumentation frameworks
explain sceptical or credulous support for the observation.

Alternatively, such dialogues can be seen as games that determine sceptical or
credulous support of an observation by an argumentation framework that are
played simultaneously over all abducible argumentation frameworks in the ab-
ductive argumentation framework. In this view, the objective is to end the
dialogue in such a way that it represents a proof for at least one abducible ar-
gumentation framework. Indeed, in the case where M = (F, {F}), our method
reduces simply to a proof theory for sceptical or credulous support of an obser-
vation by F .

Before we move on we need to introduce some notation.

Definition 5.3.1. Given a set I of argumentation frameworks we define:

• AI = ∪{A | (A,!) ∈ I},

• !I= ∪{!| (A,!) ∈ I},

• Ix!y = {(A,!) ∈ I | x, y ∈ A, x ! y},

• IB = {(A,!) ∈ I | B ⊆ A}.

We model dialogues as sequences of moves, each move being of a certain type,
and made either by PRO or OPP.

Definition 5.3.2. Let M = (F, I) be an abductive argumentation framework.
A dialogue based on M is a sequence S = (m1, . . . ,mn), where each mi is either:

• an OPP attack “OPP: x ! y”, where x !I y,

• a hypothetical PRO defence “PRO: y !
+ x”, where y !I x,

• a hypothetical PRO negation “PRO: y !
− x”, where y !I x,

• a conceding move “OPP: ok”,

• a success claim move “PRO: win”.

We denote by S · S′ the concatenation of S and S′.
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Intuitively, a moveOPP: y ! x represents an attack by OPP on the argument x
by putting forward the attacker y. A hypothetical PRO defence PRO: y !

+ x

represents a defence by PRO who puts forward y to attack the argument x put
forward by OPP. A hypothetical PRO negation PRO: y !

− x, on the other
hand, represents a claim by PRO that the attack y ! x is not a valid attack.
The conceding move OPP: ok is made whenever OPP runs out of possibilities
to attack a given argument, while the move PRO: win is made when PRO is
able to claim success.

In the following sections we specify how dialogues are structured. Before doing
so, we introduce some notation that we use to keep track of the abducible
argumentation frameworks on which PRO chooses to focus in a dialogue D. We
call this set the information state of D after a given move. While it initially
contains all abducible argumentation frameworks in M, it is restricted when
PRO makes a move PRO: x !

+ y or PRO: x !
− y.

Definition 5.3.3. Let M = (F, I) be an abductive argumentation framework.
Let D = (m1, . . . ,mn) be a dialogue based on M. We denote the information
state in D after move i by J(D, i), which is defined recursively by:

J(D, i) =





I if i = 0,

J(D, i− 1) ∩ Ix!y if mi = PRO: x !
+ y,

J(D, i− 1) \ Ix!y if mi = PRO: x !
− y,

J(D, i− 1) otherwise.

We denote by J(D) the information state J(D,n).

5.3.1 Sceptical Explanation Dialogues

We define the rules of a dialogue using a set of production rules that recursively
define the set of sequences constituting dialogues. In a sceptical explanation
dialogue for an observation B, an initial argument x ∈ B is challenged by the
opponent, who puts forward all possible attacks OPP: y ! x present in any
of the abducible argumentation frameworks, followed by OPP: ok. We call
this a sceptical OPP reply to x. For each move OPP: y ! x, PRO responds
with a sceptical PRO reply to y ! x, which is either a hypothetical defence
PRO: z !

+ y (in turn followed by a sceptical OPP reply to z) or a hypothetical
negation PRO: y !

− x. Formally:

Definition 5.3.4 (Sceptical explanation dialogue). Let F = (A,!), M = (F, I)
and x ∈ A.

• A sceptical OPP reply to x is a finite sequence (OPP: y1 ! x) · S1 · . . . ·
(OPP: yn ! x) · Sn · (OPP: ok) where {y1, . . . , yn} = {y | y !I x} and
each Si is a sceptical PRO reply to yi ! x.

• A sceptical PRO reply to y ! x is either: (1) A sequence (PRO: z !
+

y) ·S where z !I y and where S is a sceptical OPP reply to z, or (2) The
sequence (PRO: y !

− x).

Given an observation B ⊆ A we say that M generates the sceptical explanation
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dialogue D for B iff D = S · (PRO: win), where S is a sceptical OPP reply to
some x ∈ B.

The following theorem establishes soundness and completeness.

Theorem 5.3.1. Let M = (F, I) be an abductive argumentation framework
where F = (A,!). Let B ⊆ A and G ∈ I. It holds that G explains sceptical
support for B iff M generates a sceptical explanation dialogue D for B such that
G ∈ J(D).

The proof requires the following definitions and results. We define the degree of
an argument x that is a member of the grounded extension to be the number
of times that the characteristic function must be applied in order to obtain x.

Definition 5.3.5. Given an argumentation framework F = (A,!) we define
the degree DegF (x) of an argument x that is a member of the grounded extension
of F to be the smallest positive integer n s.t. x ∈ Dn

F (∅).

The following lemma establishes an important relationship between the degree
of an argument and the degrees of its defenders.

Lemma 5.3.2. Let F = (A,!) be an argumentation framework and x ∈ A an
argument that is a member of the grounded extension of F . For every y ∈ A s.t.
y ! x there is a z ∈ A that is a member of the grounded extension of F such
that z ! y and DegF (z) < DegF (x).

Proof of lemma 5.3.2. Let F = (A,!), x ∈ A a member of the grounded ex-
tension of F and y ∈ A an argument s.t. y ! x. Definition 2.1.4 implies that
there is a z ∈ A that is a member of the grounded extension of F s.t. z ! y.
Definition 2.1.2 furthermore implies that for every B ⊆ A, if x ∈ DF (B) then
z ∈ B. Definition 5.3.5 now implies that DegF (x) > DegF (z).

Proof of theorem 5.3.1. Let M = (F, I) be an abductive argumentation frame-
work where F = (A,!). Let B ⊆ A and G ∈ I.

Only if: Assume that G explains sceptical support for B. Proposition 5.2.1
implies that there is an x ∈ B such that x is a member of the grounded extension
of G. We prove that M generates a sceptical OPP reply D to x such that
G ∈ J(D). We prove this by strong induction on DegG(x).

Let the induction hypothesis H(i) stand for: If x is a member of the grounded
extension of G and DegG(x) = i then there is a sceptical OPP reply D to x s.t.
G ∈ J(D).

Base case (H(0)): this follows immediately, because this means that x has no
attackers, and hence (OPP: ok) is a sceptical OPP reply to x.

Induction step: Assume H(i) holds for all 0 < i < k. We prove H(k). Assume
x is a member of the grounded extension of G and DegG(x) = k. We construct
an OPP reply D to x such that G ∈ J(D). Given an argument y ∈ AG s.t.
y !G x we define Z(y) by

Z(y) = {z | z !G y, z is a member of the grounded extension of G}.
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i mi J(D, i)
1 OPP: c ! b {F,G1, G2, G3}
2 PRO: e !+ c {G1, G3}
3 OPP: ok {G1, G3}
4 OPP: a ! b {G1, G3}
5 PRO: e !+ a {G1}
6 OPP: ok {G1}
7 OPP: ok {G1}
8 PRO: win {G1}

Table 5.1: A sceptical explanation dialogue for the observation {b}.

Definition 2.1.4 implies that for every y ∈ AG s.t. y ! x, Z(y) $= ∅. Furthermore
lemma 5.3.2 implies that for every y ∈ AG s.t. y ! x and for every z ∈
Z(y) it holds that DegG(z) < k. We can now define D by D = D1 · D2 ·
(OPP: ok) where: D1 = (OPP: y1 ! x) · (PRO: y1 !

− x) · . . . · (OPP: yn !

x) · (PRO: yn !
− x) where {y1, . . . , yn} = {y ∈ AI | y !I x, y $!G x},

and D2 = (OPP: y′1 ! x) · (PRO: z1 !
+ y′1) · Dz1 · . . . · (OPP: y′m ! x) ·

(PRO: zm !
+ y′m) · Dzm where {y′1, . . . , y

′
m} = {y ∈ AI | y !G x}, for each

j ∈ {1, . . . ,m}, zj ∈ Z(yj) and Dzj is a sceptical OPP reply to zj (because
DegG(zj) < k and H(i) holds for all 0 < i < k, this sceptical OPP reply
exists). It holds that D is a sceptical OPP reply to x. Furthermore it holds
that G ∈ J(D1) and G ∈ J(D2) and hence G ∈ J(D).

By the principle of strong induction it follows that there exists a sceptical OPP
reply D to x such that G ∈ J(D). Hence M generates a sceptical explanation
dialogue D · (PRO: win) for B such that G ∈ J(D · (PRO: win)).

If: We prove that if D is a sceptical OPP reply to some x ∈ B such that
G ∈ J(D) then x is a member of the grounded extension of G. We prove this
by induction on the structure of D.

Assume that for every proper subsequence D′ of D that is a sceptical OPP reply
to an argument z it holds that z is a member of the grounded extension of G
and G ∈ J(D). (The base case is the special case where no proper subsequence
of D is a sceptical OPP reply.) We prove that x is a member of the grounded
extension of G. We write D as (OPP: y1 ! x) ·D1 · . . . · (OPP: yn ! x) ·Dn ·
(OPP: ok). Then every Di (for 1 ≤ i ≤ n) is either of the form PRO: yi !

− x

or of the form PRO: z !
+ yi ·D

′, where D′ is a proper subsequence of D that
is a sceptical OPP reply to some argument z and G ∈ J(D′). Thus, for every
y ∈ AI s.t. y !I x it holds that either y $!G x, or y is attacked by some z that
is a member of the grounded extension of G. It follows that x is a member of
the grounded extension of G.

By the principle of induction it follows that if D is a sceptical OPP reply to
some x ∈ B such that G ∈ J(D) then x is a member of the grounded extension
of G. Thus, if M generates a sceptical explanation dialogue D · (PRO: win) for
B such that G ∈ J(D · (PRO: win)) then D is a sceptical OPP reply to some
x ∈ B and therefore it holds that x is a member of the grounded extension of
G and finally that G explains sceptical support for B.
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i mi J(D, i)
1 OPP: c ! b {F,G1, G2, G3}
2 PRO: e !+ c {G1, G3}
3 OPP: ok {G1, G3}
4 OPP: a ! b {G1, G3}
5 PRO: a !

− b {G3}
6 OPP: ok {G3}
7 PRO: win {G3}

Table 5.2: A sceptical explanation dialogue for the observation {b}.

Example 5.3.1. Table 5.1 shows an example of a sceptical explanation dialogue
D = {m1, . . . ,m8} for the observation {b} that is generated by the abductive
argumentation framework defined in example 5.2.1. The sequence (m1, . . . ,m7)
is a sceptical OPP reply to b, in which OPP puts forward the two attacks c ! b

and a ! b. PRO defends b from both c and a by putting forward the attacker
e (move 2 and 5). This leads to the focus first on the abducible argumentation
frameworks G1, G3 (in which the attack e ! c exists) and then on G1 (in which
the attack e ! a exists). This proves that G1 explains sceptical support for the
observation {b}.

Another dialogue is shown in table 5.2. Here, PRO defends b from c by using the
argument e, but defends b from a by claiming that the attack a ! b is invalid.
This leads to the focus first on the abducible argumentation frameworks G1, G3

(in which the attack e ! c exists) and then on G3 (in which the attack a ! b

does not exist). This dialogue proves that G3 explains sceptical support for {b}.

5.3.2 Credulous Explanation Dialogues

The definition of a credulous explanation dialogue is similar to that of a sceptical
one. The difference lies in what constitutes an acceptable defence. To show that
an argument x is sceptically accepted, x must be defended from its attackers
by arguments other than x itself. For credulous acceptance, however, it suffices
to show that x is a member of an admissible set, and hence x may be defended
from its attackers by any argument, including x itself. To achieve this we need
to keep track of the arguments that are, according to the moves made by PRO,
accepted. Once an argument x is accepted, PRO does not need to defend x

again, if this argument is put forward a second time.

Formally a credulous OPP reply to (x, Z) (for some x ∈ AI and set Z ⊆ AI used
to keep track of accepted arguments) consists of all possible attacksOPP: y ! x

on x, followed by OPP: ok when all attacks have been put forward. For each
move OPP: y ! x, PRO responds either by putting forward a hypothetical
defence PRO: z !

+ y which (this time only if z $∈ Z) is followed by a credu-
lous OPP reply to (z, Z ∪ {z}), or by putting forward a hypothetical negation
PRO: y !

− x. We call this response a credulous PRO reply to (y ! x, Z). A
credulous explanation dialogue for a set B consists of a credulous OPP reply to
(x, {x}) for some x ∈ B, followed by a success claim PRO: win.

In addition, arguments put forward by PRO in defence of the observation may
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not conflict. Such a conflict occurs when OPP puts forward OPP: x ! y and
OPP: y ! z (indicating that both y and z are accepted) while PRO does not
put forward PRO: y !

− z. If this situation does not occur we say that the
dialogue is conflict-free.

Definition 5.3.6 (Credulous explanation dialogue). Let F = (A,!), M =
(F, I), x ∈ A and Z ⊆ A.

• A credulous OPP reply to (x, Z) is a finite sequence (OPP: y1 ! x) · S1 ·
. . . · (OPP: yn ! x) · Sn · (OPP: ok) where {y1, . . . , yn} = {y | y !I x}
and each Si is a credulous PRO reply to (yi ! x, Z).

• A credulous PRO reply to (y ! x, Z) is either:

1. a sequence (PRO: z !
+ y) · S such that z !I y, z $∈ Z and S is a

credulous OPP reply to (z, Z ∪ {z}),

2. a sequence (PRO: z !
+ y) such that z !I y and z ∈ Z, or

3. the sequence (PRO: y !
− x).

Given a set B ⊆ A we say that M generates the credulous explanation dialogue
D for B iff D = S · (PRO: win), where S is a credulous OPP reply to (x, {x})
for some x ∈ B. We say that D is conflict-free iff for all x, y, z ∈ AI it holds
that if D contains the moves OPP: x ! y and OPP: y ! z then it contains
the move PRO: y !

− z.

The following theorem establishes soundness and completeness.

Theorem 5.3.3. Let M = (F, I) be an abductive argumentation framework
where F = (A,!). Let B ⊆ A and G ∈ I. It holds that G explains credulous
support for B iff M generates a conflict-free credulous explanation dialogue D

for B such that G ∈ J(D).

Proof of theorem 5.3.3. Let M = (F, I) be an abductive argumentation frame-
work where F = (A,!). Let B ⊆ A and G ∈ I.

Only if: Assume that G explains credulous support for B. Then there is an
admissible set E of G such that a ∈ E for some a ∈ B. Based on E and a

we construct a conflict-free credulous explanation dialogue D for B such that
G ∈ J(D). Given an argument x ∈ E we define the credulous OPP replyD(x, Z)
recursively byD(x, Z) = (OPP: y1 ! x)·S1·. . .·(OPP: yn ! x)·Sn·(OPP: ok)

where {y1, . . . , yn} = {y | y !I x} and each Si is a credulous PRO reply defined
by the following cases:

• Case 1: yi !G x. Let z be an argument such that z ∈ E and z !G yi.
(Admissibility of E guarantees the existence of z.)

– Case 1.1: z $∈ Z: Then Si = PRO: z !
+ yi ·D(z, Z ∪ {z}).

– Case 1.2: z ∈ Z: Then Si = PRO: z !
+ yi.

• Case 2: yi $!G x: Then Si = PRO: yi !
− x.
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Let D = (m1, . . . ,mn) = D(a, {a}) · (PRO: win). It can be checked that D is
a credulous explanation dialogue for {a}. We need to prove that:

• G ∈ J(D). This follows from the fact that for all i ∈ {1, . . . , n}, mi =
PRO: x !

− y only if x $!G y and mi = PRO: x !
+ y only if x !G y.

• D is finite. This follows from the fact that for every credulous OPP reply
D(x, Z) that is a subsequence of a credulous OPP reply D(y, Z ′) it holds
that Z is a strict superset of Z ′, together with the fact that Z ⊆ AI and
AI is finite.

• D is conflict-free. We prove this by contradiction. Thus we assume that
for some x, y, z there are moves OPP: x ! y and OPP: y ! z and no
move PRO: y !

− z. By the construction of D it follows that y, z ∈ E.
Furthermore if y $!G z then by the construction ofD, the moveOPP: y !

z is followed by PRO: y !
− z, which is a contradiction. Hence y !G z.

Thus E is not a conflict-free set of G, contradicting our assumption that
E is an admissible set of G. Hence D is conflict-free.

Hence there is a conflict-free credulous explanation dialogue D for B such that
G ∈ J(D).

If: Let D be a conflict-free credulous explanation dialogue for an observation
B such that G ∈ J(D). We prove that there is an admissible set E of G s.t.
a ∈ E for some a ∈ B. We define E by E = {a} ∪ {x | PRO: x !

+ z ∈ D}.
To prove that E is an admissible set of G we show that (1) for every x ∈ E and
every y ∈ A such that y !G x, there is a z ∈ E such that y !G z and (2) that
E is a conflict-free set of G.

1. Let x ∈ E. Then either x = a or there is a move mi = PRO: x !
+ y in

D. It follows either that mi+1 is a credulous OPP reply to (x, Z) or not,
in which case there is a move mj (for j < i) that is a credulous OPP reply
to (x, Z). Hence for some Z ⊆ AI there is an OPP reply to (x, Z) in D.
For mi+1 there are two cases:

• mi+1 = PRO: z !
+ y. Then z ∈ E and, because G ∈ J(D),

z !G y.

• mi+1 = PRO: y !
− x. But y !G x, hence G $∈ J(D), which is a

contradiction. Thus, this case is not possible.

Thus for every x ∈ E and every y ∈ A s.t. y !G x, there is a z ∈ E such
that z !G y.

2. Assume the contrary, i.e., E is not conflict-free. Then for some y, z ∈ E

it holds that y !G z. From (1) it follows that there is also an x ∈ E

such that x !G y. By the construction of E it follows that either y = a

or for some x′ there is a move PRO: y !
+ x′ in D, and similarly either

z = a or for some x′ there is a move PRO: z !
+ x′ in D. Hence there are

moves OPP: x ! y and OPP: y ! z in D. From the fact that G ∈ J(D)
and y !G z it follows that there is no move PRO: y !

− z in D. Hence
D is not conflict-free, which is a contradiction. It follows that E is a
conflict-free set of G.
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i mi J(D, i)
1 OPP: c ! b {F,G1, G2, G3}
2 PRO: b !+ c {F,G1, G2, G3}
3 OPP: a ! b {F,G1, G2, G3}
4 PRO: a !

− b {G2, G3}
5 OPP: ok {G2, G3}
6 PRO: win {G2, G3}

Table 5.3: A credulous explanation dialogue for the observation {b}.

It finally follows that E is an admissible set of G and a ∈ E and hence G

explains credulous support for B.

Example 5.3.2. Table 5.3 shows a conflict-free credulous explanation dialogue
D = (m1, . . . ,m6) for the observation {b} generated by the abductive argumen-
tation framework defined in example 5.2.1. Here, the sequence (m1, . . . ,m5) is
a credulous OPP reply to (b, {b}). PRO defends b from OPP’s attack c ! b by
putting forward the attack b ! c. Since b was already assumed to be accepted,
this suffices. At move m4, PRO defends itself from the attack a ! b by negating
it. This restricts the focus on the abducible argumentation frameworks G2 and
G3. The dialogue proves that these two abducible argumentation frameworks
explain credulous support for the observation {b}. Finally, the sceptical expla-
nation dialogues from example 5.3.1 are also credulous explanation dialogues.

5.4 Abduction in Logic Programming

In this section we show that abductive argumentation frameworks can be in-
stantiated with abductive logic programs, in the same way that regular ar-
gumentation frameworks can be instantiated with regular logic programs. In
sections 5.4.1 and 5.4.2 we recall the necessary basics of logic programming and
the relevant results regarding logic programming as instantiated argumentation.
In section 5.4.3 we present a model of abductive logic programming based on
Sakama and Inoue’s model of extended abduction [57, 58], and in section 5.4.2
we show how this model can be instantiated using abductive argumentation
frameworks.

5.4.1 The Partial Stable Semantics of Logic Programs

A logic program P is a finite set of rules, each rule being of the form C ←
A1, . . . , An,∼B1, . . . ,∼Bm where C,A1, . . . , An, B1, . . . , Bm are atoms. If m =
0 then the rule is called definite. If both n = 0 and m = 0 then the rule is called
a fact and we identify it with the atom C. We assume that logic programs
are ground. Alternatively, P can be regarded as the set of ground instances
of a set of non-ground rules. We denote by AtP the set of all (ground) atoms
occurring in P . The logic programming semantics we focus on can be defined
using 3-valued interpretations [77]:
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Definition 5.4.1. A 3-valued interpretation I of a logic program P is a pair
I = (T, F ) where T, F ⊆ AtP and T ∩F = ∅. An atom A ∈ At(P ) is true (resp.
false, undecided) in I iff A ∈ T (resp. A ∈ F , A ∈ AtP \ (T ∪ F )).

The following definition of a partial stable model is due to Przymusinski [77].
Given a logic program P and 3-valued interpretation I of P , the GL-transforma-
tion P

I
is a logic program obtained by replacing in every rule in P every premise

∼B such that B is true (resp. undecided, false) in I by the atoms 0 (resp. 1
2 ,

1), where 0 (resp. 1
2 , 1) are defined to be false (resp. undecided, true) in every

interpretation. It holds that for all 3-valued interpretations I of P , P
I
is definite

(i.e., consists only of definite rules). This means that P
I

has a unique least 3-
valued interpretation (T, F ) with minimal T and maximal F that satisfies all
rules. That is, for all rules C ← A1, . . . , An, in

P
I
, C is true (resp. not false)

in (T, F ) if for all i ∈ {1, . . . , n}, Ai is true (resp. not false) in (T, F ). Given a
3-valued interpretation I, the least 3-valued interpretation of P

I
is denoted by

Γ(I). This leads to the following definition of a partial stable model of a logic
program, along with the associated notions of consequence.

Definition 5.4.2. [77] Let P be a logic program. A 3-valued interpretation I

is a partial stable model of P iff I = Γ(I). We say that an atom C is a sceptical
(resp. credulous) consequence of P iff C is true in all (resp. some) partial stable
models of P .

It has been shown that the above defined notion of sceptical consequence coin-
cides with the well-founded semantics [77].

5.4.2 Logic Programming as Argumentation

Wu et al. [91] have shown that a logic program P can be transformed into an
argumentation framework F in such a way that the consequences of P under the
partial stable semantics can be computed by looking at the complete extensions
of F . The idea is that an argument consists of a conclusion C ∈ AtP , a set
of rules R ⊆ P used to derive C and a set N ⊆ AtP of atoms that must
be underivable in order for the argument to be acceptable. The argument is
attacked by another argument with a conclusion C ′ iff C ′ ∈ N . The following
definition, apart from notation, is due to Wu et al. [91].

Definition 5.4.3. Let P be a logic program. An instantiated argument is a
triple (C,R,N), where C ∈ AtP , R ⊆ P and N ⊆ AtP . We say that P generates
(C,R,N) iff either:

• r = C ← ∼B1, . . . ,∼Bm is a rule in P , R = {r} and N = {B1, . . . , Bm}.

• (1) r = C ← A1, . . . , An,∼B1, . . . ,∼Bm is a rule in P , (2) P generates,
for each i ∈ {1, . . . , n} an argument (Ai, Ri, Ni) such that r $∈ Ri, and (3)
R = {r} ∪R1 ∪ . . . ∪Rn and N = {B1, . . . , Bm} ∪N1 ∪ . . . ∪Nn.

We denote the set of arguments generated by P by AP . Furthermore, the attack
relation generated by P is denoted by !P and is defined by (C,R,N) !P

(C ′, R′, N ′) iff C ∈ N ′.
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The following theorem states that sceptical (resp. credulous) acceptance in
(AP ,!P ) corresponds with sceptical (resp. credulous) consequences in P as
defined in definition 5.4.2. It follows from theorems 15 and 16 due to Wu et
al. [91].

Theorem 5.4.1. Let P be a logic program. An atom C ∈ AtP is a sceptical
(resp. credulous) consequence of P iff some (C,R,N) ∈ AP is sceptically (resp.
credulously) accepted in (AP ,!P ).

5.4.3 Abduction in Logic Programming

The model of abduction in logic programming that we use is based on the model
of extended abduction studied by Inoue and Sakama [57, 58]. They define an
abductive logic program (ALP) to consist of a logic program and a set of atoms
called abducibles.

Definition 5.4.4. An abductive logic program is a pair (P,U) where P is a
logic program and U ⊆ AtP a set of facts called abducibles.

Note that, as before, the set U consists of ground facts of the form C ← (iden-
tified with the atom C) and can alternatively be regarded as the set of ground
instances of a set of non-ground facts. A hypothesis, according to Inoue and
Sakama’s model, consists of both a positive element (i.e., abducibles added to
P ) and a negative element (i.e., abducibles removed from P ).

Definition 5.4.5. Let ALP = (P,U) be an abductive logic program. A hy-
pothesis is a pair (∆+,∆−) such that ∆

+,∆− ⊆ U and ∆
+ ∩ ∆

− = ∅. A
hypothesis (∆+,∆−) sceptically (resp. credulously) explains a query Q ∈ AtP
if and only if Q is a sceptical (resp. credulous) consequence of (P ∪∆

+) \∆−.

Note that Sakama and Inoue focus on computation of explanations under the
stable model semantics of P , and require P to be acyclic to ensure that a stable
model of P exists and is unique [58]. We, however, define explanation in terms
of the consequences according to the partial stable models of P , which always
exist even if P is not acyclic [77], so that we do not need this requirement.

The following example demonstrates the previous two definitions.

Example 5.4.1. Let ALP = (P,U) where P = {(p ← ∼s, r), (p ← ∼s,∼q),
(q ← ∼p), r} and U = {r, s}. The hypothesis ({s}, ∅) sceptically explains q,
witnessed by the unique model I = ({r, s, q}, {p}) satisfying I = Γ(I). Similarly,
({s}, {r})) sceptically explains q and (∅, {r})) credulously explains q.

5.4.4 Instantiated Abduction in Argumentation

In this section we show that an abductive argumentation framework (F, I) can
be instantiated on the basis of an abductive logic program (P,U). The idea is
that every possible hypothesis (∆+,∆−) maps to an abducible argumentation
framework generated by the logic program (P ∪∆

+) \∆−. The hypotheses for
a query Q then correspond to the abducible argumentation frameworks that
explain the observation B consisting of all arguments with conclusion Q. The
construction of (F, I) on the basis of (P,U) is defined as follows.
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Definition 5.4.6. Let ALP = (P,U) be an abductive logic program. Given
a hypothesis (∆+,∆−), we denote by F(∆+,∆−) the argumentation framework
(A(P∪∆+)\∆− ,!(P∪∆+)\∆−). The abductive argumentation framework gener-
ated by ALP is denoted by MALP and defined by MALP = (FP , IALP), where
IALP = {F(∆+,∆−) | ∆

+,∆− ⊆ U,∆+ ∩∆
− = ∅}.

The following theorem states the correspondence between the explanations of a
query Q in an abductive logic program ALP and the explanations of an obser-
vation B in the abductive argumentation framework MALP.

Theorem 5.4.2. Let ALP = (P,U) be an abductive logic program, Q ∈ AtP a
query and (∆+,∆−) a hypothesis. Let MALP = (FALP, IALP). We denote by
XQ the set {(C,R,N) ∈ AP | C = Q}. It holds that (∆+,∆−) sceptically (resp.
credulously) explains Q iff F(∆+,∆−) sceptically (resp. credulously) explains XQ.

Proof of theorem 5.4.2. Follows directly from theorem 5.4.1 and definitions 5.4.5
and 5.4.6.

This theorem shows that our model of abduction in argumentation can indeed
be seen as an abstraction of abductive logic programming.

Example 5.4.2. Let ALP = (P,U) be the ALP as defined in example 5.4.1.
All arguments generated by ALP are:

a = (p, {(p ← ∼s, r), r}, {s}) d = (r, {r}, ∅)
b = (q, {(q ← ∼p)}, {p}) e = (s, {s}, ∅)
c = (p, {(p ← ∼s,∼q)}, {s, q})

Given these definitions, the abductive argumentation framework in example 5.2.1
is equivalent to MALP. In example 5.4.1 we saw that the query q is sceptically ex-
plained by the hypotheses ({s}, ∅) and ({s}, {r}), while (∅, {r}) only credulously
explains it. Indeed, looking again at example 5.2.1, we see that G1 = F({s},∅)

and G3 = F({s},{r}) explain sceptical support for the observation {b} = Xq,
while G2 = F(∅,{r}) only explains credulous support.

This method of instantiation shows that, on the abstract level, hypotheses can-
not be represented by independently selectable abducible arguments. The run-
ning example shows e.g. that a and d cannot be added or removed indepen-
dently.

5.5 Related Work

Some of the ideas we applied also appear in the model of Sakama [83]. In
his model of abduction in argumentation, both additions and removals of ar-
guments from an abstract argumentation framework act as explanations for
the observation that an argument is accepted or rejected. The main difference
between Sakama’s model of abduction in abstract argumentation and the one
presented here, is that he takes an explanation to be a set of independently
selectable abducible arguments, while we take it to be a change to the argumen-
tation framework that is applied as a whole. We have demonstrated, however,
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that this is necessary when applying the abstract model in an instantiated set-
ting. Furthermore, Sakama did address computation in his framework, but his
method was based on translating abstract argumentation frameworks into logic
programs. Sakama did not explore the instantiation of his model.

Some of the ideas we applied also appear in work by Wakaki et al. [90]. In their
model, an ALP generates an instantiated argumentation framework and each
hypothesis yields a different division into active/inactive arguments. Unlike
our model, as well as Sakama’s [83], Wakaki et al. do not consider removal of
arguments as explanation.

Kontarinis et al. [61] use term rewriting logic to compute changes to an abstract
argumentation framework with the goal of changing the status of an argument.
There are two similarities between their approach and ours. Firstly, we use
production rules to generate dialogues and these rules can be seen as a kind of
term rewriting rules. Secondly, their approach amounts to rewriting goals into
statements to the effect that certain attacks in the argumentation framework are
enabled or disabled. These statements resemble the moves PRO: x !

+ y and
PRO: x !

− y in our system. However, they treat attacks as entities that can
be enabled or disabled independently. As discussed, different arguments (or in
this case attacks associated with arguments) cannot be regarded as independent
entities, if the abstract model is instantiated.

Other work dealing with the change of an argumentation framework with the
goal of changing the status of arguments include Baumann [10], Baumann and
Brewka [12], Bisquert et al. [17] and Perotti et al. [20]. Furthermore, Booth et
al. [23] and Coste-Marquis et al. [37] frame it as a problem of belief revision.
None of these works, however, make a connection between change of abstract
argumentation and abduction.

5.6 Conclusion and Future Work

We developed a model of abduction in abstract argumentation, in which changes
to an argumentation framework act as explanations for sceptical/credulous sup-
port for observations. We presented sound and complete dialogical proof proce-
dures for the main reasoning tasks, i.e., finding explanations for sceptical/cre-
dulous support. In addition, we showed that our model of abduction in abstract
argumentation can be seen as an abstract form of abduction in logic program-
ming.

As a possible direction for future work, we consider the incorporation of addi-
tional criteria for the selection of good explanations, such as minimality with
respect to the added and removed arguments/attacks, as well as the use of
preferences over different abducible argumentation frameworks. An interesting
question is whether the proof theory can be adapted so as to yield only the
preferred explanations.
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Chapter 6

Change in Preference-Based

Argumentation

6.1 Introduction

Many works have recognized the importance of preferences in argumentation.
Preferences over arguments may be derived, e.g., from their relative specificity
or from the relative strength of the beliefs with which they are built. On the
abstract level preferences can be represented by preference-based argumentation
frameworks, which instantiate argumentation frameworks with a preference re-
lation over the set of arguments [2, 86]. An attack of an argument x on y then
succeeds only if y is not strictly preferred over x. Value-based argumentation
frameworks provide yet another account of how preferences are derived [14].
The idea here is that arguments promote certain values and that different au-
diences have different preferences over values, from which the preferences over
arguments are derived.

An underexposed aspect in these models is change of preferences. Preferences
are usually assumed to be fixed and no account is provided of how or why they
may change. We address this aspect by applying Dietrich and List’s recently in-
troduced model of property-based preference [41, 40]. In this model, preferences
over alternatives are derived from preferences over sets of properties satisfied by
the alternatives. Furthermore, agents are assumed to have a motivational state,
consisting of the properties on which the agent focuses in a given situation,
when forming preferences over alternatives. The authors present an axiomatic
characterization of their model, in terms of a number of reasonable constraints
on the relationship between motivational states and preferences.

Our contribution is a new, dynamic model of preferences in argumentation, cen-
tering on what we call property-based argumentation frameworks. It is based on
the model of Dietrich and List and provides an account of how and why pref-
erences in argumentation may change. Our model generalizes preference-based
argumentation frameworks as well as value-based argumentation frameworks, if
properties are used to represent values. We look at two types of acceptance,
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Figure 6.1: Two argumentation frameworks.

called weak and strong acceptance (i.e., acceptance in some or all motivational
states). We also provide a dialogical proof theory that establishes whether an
argument is weakly accepted. It is based on the grounded game [68] and extends
it with dialogue moves consisting of properties.

The outline of this chapter is as follows. In section 6.2 we first give a brief outline
of preference-based and value-based abstract argumentation. Then we give in
section 6.3 an overview of the relevant parts of Dietrich and List’s model of
property-based preferences. We move on to our own work in section 6.4, where
we present our model of property-based argumentation frameworks, followed
by a dialogical proof procedure for weak acceptance in section 6.5. We discuss
some related work in section 6.6 and we conclude in section 6.7.

The results presented in this chapter are based on joint work with Richard
Booth and Souhila Kaci [22].

6.2 Preferences and Values in Argumentation

The idea of Preference-based argumentation frameworks [2] is to extend the no-
tion of an argumentation framework with a preference relation over arguments,
which is used to represent the relative strength of arguments. The idea is that
an attack of an argument x on y succeeds only if y is not strictly preferred over
(i.e., not stronger than) x. A preference-based argumentation framework repre-
sents a unique argumentation framework (A,!), where the attack relation !

consists only of the attacks that succeed [60]. The extensions of a preference-
based argumentation framework are those of the argumentation framework that
it represents. Formally:

Definition 6.2.1. A preference-based argumentation framework (abbreviated
as PAF) is a triple PAF = (A, →, =) where A is a finite set of arguments, → an
attack relation and = a partial pre-order (i.e., a reflexive and transitive relation)
or a total pre-order (i.e., a reflexive, transitive and complete relation) over A.
A PAF (A,→,=) represents the argumentation framework (A,!) where ! is
defined by ∀x, y ∈ A, x ! y iff x → y and not (x ≺ y).

Example 6.2.1. Consider the PAF (A,→,=) where A and → are as in F1 in
figure 6.1 and = is a total pre-order defined by x = y iff x ∈ {b, c} or y ∈ {a, d}.
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We have that (A,→,=) represents F2, shown in figure 6.1. This argumentation
framework has one complete, grounded, stable and preferred extension, namely
{d, b}.

Preference-based argumentation frameworks give—at least at the abstract level—
no account of where preferences over arguments come from, or how they are
formed. Bench-Capon’s [14] model of value-based argumentation frameworks
does. In a value-based argumentation framework, the idea is that arguments
may promote certain values and that different audiences have different prefer-
ences over values, from which the preferences over arguments are derived. An
audience specific value-based argumentation framework encodes a single audi-
ence’s preferences over values.

Definition 6.2.2. A value-based argumentation framework (VAF for short) is
a 5-tuple (A,→, V, val, U), where A is a set of arguments, → an attack relation,
V a set of values, val : A → V a mapping from arguments to values and U a set
of audiences. An audience specific value-based argumentation framework (aVAF
for short) is a 5-tuple (A,→, V, val, <a) where a ∈ U is an audience and <a a
partial order (i.e. an irreflexive and transitive relation) over V .

An aVAF represents a unique PAF [60]:

Definition 6.2.3. An aVAF (A,→, V, val, <a) represents the PAF (A,→,=),
where = is defined by ∀x, y ∈ A, x = y iff val(x) <a val(y) or val(x) = val(y).

Since a PAF represents a unique argumentation framework, an aVAF also rep-
resents a unique argumentation framework. The extensions of an aVAF are the
extensions of this argumentation framework.

Example 6.2.2. Consider the aVAF (A,→, V, val, <a) where A and → are as
shown in figure 6.1, V = {blue, red}, val(a) = val(d) = blue, val(b) = val(c) =
red and <a is defined by x <a y iff x = red and y = blue. It can be checked that
this aVAF represents the PAF from example 6.2.1 and thus the argumentation
framework F2 shown in figure 6.1.

6.3 Dietrich and List’s Property-Based Prefer-

ence Model

Dietrich and List’s model of property-based preference [41, 40] aims at giving
an account of rational choice that explains how preferences are formed and
how they may change. This is opposed to traditional models that assume an
agent’s preferences over alternatives to be given and fixed. In this model, every
alternative x ∈ X is associated with a set P (x) of properties satisfied by x,
each P (x) being a subset of a set P of possible properties. Furthermore, a set
M ⊆ 2P of motivational states encodes sets of properties on which an agent
may focus in a given situation. That is, if M ∈ M is the agent’s state then
only the properties in M matter to the agent when forming preferences over X.
Change of preferences can then be understood as being caused by moving from
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one motivational state to another. Note that M may coincide with 2P but in
general this need not be the case, as certain combinations of properties may be
deemed inconsistent.

Every state M ∈ M gives rise to a preference order (i.e., a total pre-order) =M

over X representing the agent’s preferences in the state M . There is thus a
family (=M )M∈M of preference orders over X. Strict and indifference relations
≺M and ∼M are defined as usual.

According to the model of property-based preference, preferences over X are
formed using an underlying weighing relation ≤ over combinations of properties.
This relation can be thought of as a ‘betterness’ relation, i.e., if S ≤ S′ then
the set of properties S′ is at least as good as the set of properties S.

Definition 6.3.1. A family (=M )M∈M of preference orders is called property-
based if there is a weighing relation ≤⊆ 2P × 2P such that, for every M ∈ M
and x, y ∈ X, x =M y iff P (x) ∩M ≤ P (y) ∩M.

The authors present an axiomatic characterization of their model, in terms of
two constraints on the relationship between motivational states and preferences.

Theorem 6.3.1. [An axiomatic characterization [41]] Let (=M )M∈M be a
family of preference orders. Consider the following axioms:

Axiom 1 ∀x, y ∈ X, ∀M ∈ M, if P (x) ∩M = P (y) ∩M , then x ∼M y.

Axiom 2 ∀x, y ∈ X, ∀M,M ′ ∈ M s.t. M ⊆ M ′, if P (x) ∩ (M ′ \ M) =
P (y) ∩ (M ′ \M) = ∅ then x =M y ↔ x =M ′ y.

It holds that if M is intersection-closed (i.e. M,M ′ ∈ M implies M ∩M ′ ∈ M)
then a family of preference orders (=M )M∈M satisfies axioms 1 and 2 iff it is
property-based.

Axiom 1 says that the preference relation is indifferent on pairs of alternatives
that have the same properties that are at the same time motivational, while
axiom 2 says that preferences on pairs of alternatives change only if additional
properties become motivational that are satisfied by at least one of the alterna-
tives. A third axiom, strengthening the second and concerned with the class of
separable weighing relations may be considered as well. The reader is referred
to Dietrich and List [41] for details.

6.4 Property-Based Argumentation Frameworks

The value-based argumentation framework model gives an account of where
an agent’s (or audience’s) preferences over arguments come from, namely the
relative importance of the values they promote. However, it gives no account of
how or why they may change. This motivates us to apply the model of property-
based preference in argumentation, giving rise to what we call property-based
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Figure 6.2: An argumentation framework with properties of arguments.

argumentation frameworks. In a property-based argumentation framework, each
argument is associated with a set of properties that it satisfies. Among the types
of properties we may consider are values promoted by the argument.

Furthermore, a property-based argumentation framework consists of a set of
motivational states M and a weighing relation ≤ over sets of properties. The
idea is as before: ≤ encodes the agent’s preferences over sets of properties but
only properties in the agent’s state M ∈ M matter when forming preferences
over arguments.

Definition 6.4.1. A property-based argumentation framework is a 6-tuple (A,
→, P, P , M,≤) where A is a set of arguments, → an attack relation, P is a
set of properties, P : A → 2P a mapping of arguments to sets of properties,
M ⊆ 2P is an intersection-closed set of motivational states and ≤⊆ 2P × 2P a
reflexive, transitive and complete weighing relation.

Note that there are cases where ≤ does not need to be transitive and complete
over all sets of properties. For simplicity, however, we assume that it is. The
reader is referred to Dietrich and List [41, Remark 1] for details.

If we focus on values as properties then the weighing relation can be understood
as encoding the relative importance that an agent associates with different com-
binations of values, and the motivational state as consisting of the values of
which an agent is aware in a given situation.

Given a property-based argumentation framework, each motivational state M ∈
M represents a unique PAF which we denote by PAFM . Preferences in PAFM

are formed by comparing sets of properties satisfied by the arguments, that
are at the same time motivational. The argumentation framework according to
which the agent determines the extensions in the motivational state M , denoted
by FM , is the argumentation framework represented by PAFM .

Definition 6.4.2. Given a property-based argumentation framework (A,→
,P, P,M,≤) and a motivational state M ∈ M we say that:

• M represents the PAFM = (A,→,=), where = is defined by ∀x, y ∈ A, x =
y iff P (x) ∩M ≤ P (y) ∩M.

• M represents the argumentation framework FM = (A,!M ), which is the
argumentation framework represented by PAFM .
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Given an attack x → y and state M ∈ M, we say that x → y is enabled
(otherwise disabled) in M iff x !M y.

Let us illustrate the definitions with an example.

Example 6.4.1. Consider the property-based argumentation framework (A,→
,P, P,M,≤) where A and → and the properties assigned by P to the arguments
are as shown in figure 6.2. Furthermore, P = {R,G,B}, M = 2P and ≤ is
defined via a weight function w : P → Z with w(R) = w(G) = 1 and w(B) = −2
as follows: X ≤ X ′ iff

∑
x∈X w(x) ≤

∑
x∈X′ w(x). This gives rise to the

weighing relation {B} < {R,B} = {G,B} < {R,G,B} = ∅ < {R} = {G} <

{R,G}, where < is the strict counterpart of ≤.

Figure 6.3 shows the argumentation frameworks represented by all possible mo-
tivational states. We have, e.g., that in PAF{G} the argument e is strictly
preferred over f , so that the attack from f to e is disabled F{G}. On the other
hand, in PAF∅ and PAF{B,G} the argument e is not preferred over f . Here, the
attack from f to e succeeds and is therefore enabled in F∅ and F{B,G}.

Arguments in the argumentation frameworks in figure 6.3 that are a member of
the grounded extension of the respective argumentation frameworks are coloured
white. We can see, e.g., that a is accepted only in the motivational state {R,G}.

We should remark that in many systems of argumentation, arguments have
(in)formal ‘logical content’. As a result, conflicts between arguments cannot
generally be disregarded, on pain of inconsistency of the argumentation frame-
work’s outcome. This can be taken into account by requiring, for example,
the relation → to be symmetric, representing a conflict relation over two argu-
ments, i.e. both arguments cannot be accepted together. In this way one attack
between a pair of arguments always remains enabled.

Apart from looking at acceptance of arguments in a given motivational state, we
can look at acceptance of arguments in some or all possible states. We will say
that an argument is weakly (resp. strongly) accepted iff it is a member of the
grounded extension given some (resp. all) motivational states. Weak acceptance
thus means that the agent may accept an argument, namely when she moves
to the right motivational state, whereas strong acceptance means that an agent
accepts an argument regardless of her motivational state.

Definition 6.4.3. Let (A,→,P, P,M,≤) be a property-based argumentation
framework and x ∈ A an argument. We say that x is weakly accepted (resp.
strongly accepted) iff x is a member of the grounded extension of FM for some
(resp. all) M ∈ M.

Example 6.4.2 (Continued from example 6.4.1). All arguments except b are
weakly accepted. Only f is strongly accepted.

The following properties follow directly from theorem 6.3.1.

Proposition 6.4.1. Let (A,→,P, P,M,≤) be a property-based argumentation
framework. We have:

Property 1 ∀x, y ∈ A s.t. x → y, ∀M ∈ M s.t. P (x)∩M = P (y)∩M,x !M y.
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Figure 6.3: Different motivational states (example 6.4.1).
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Property 2 ∀x, y ∈ A, ∀M,M ′ ∈ M s.t. M ⊆ M ′, if P (x) ∩ (M ′ \ M) =
P (y) ∩ (M ′ \M) = ∅ then x !M y iff x !M ′ y.

Property 1 states that an attack x → y is enabled in a motivational state M if
x and y have the same set of properties that are also motivational in M , while
property 2 states that an attack between x and y changes only if additional
properties become motivational that are satisfied either by x or by y.

6.5 A Dialogical Proof Theory for Weak Accep-

tance

In this section we present a proof procedure to establish weak acceptance of
an argument in a property-based argumentation framework. It is a dialogical
proof procedure because it is based on generating dialogues where two players
(PRO and OPP) take alternating turns in putting forward attacks according to
a certain set of rules. This is similar in spirit to the grounded game, a dialogical
proof procedure that establishes an argument’s membership of the grounded
extension [68]. In the grounded game, PRO repeatedly puts forward arguments
(either as an initial claim or in defence against OPP’s attacks) and OPP can
initiate different disputes by putting forward possible attacks on the arguments
put forward by PRO. PRO wins iff it can end every dispute in its favor according
to a “last-word” principle.

By contrast, the proof procedure we present simply generates dialogues won
by PRO. Such dialogues represent proofs that the initial argument is weakly
accepted, and are structured as single sequences of moves where PRO and OPP
put forward attacks and, in addition, PRO puts forward properties. If the
procedure generates no dialogues then the argument is not weakly accepted.
The procedure is based essentially on production rules, and is in this sense
similar to the dialogical proof procedures that we presented in chapter 5.

Dialogical proof procedures make it possible to relate a semantics to a stereo-
typic pattern of dialogue. It has been shown, e.g., that the grounded and pre-
ferred credulous semantics can be related to persuasion and Socratic style di-
alogue [30, 32]. Dialogues generated by our procedure can also be thought of
as persuasion dialogues, where PRO has the additional freedom to change the
motivational state of the players by putting forward properties. Intuitively, this
may benefit PRO in two ways: PRO can enable attacks necessary to put up a
successful line of defence, and disable attacks put forward by the opponent from
which PRO cannot defend its own arguments. PRO thus persuades OPP to ac-
cept an argument, where PRO decides which properties become motivational.
Dialogues are structured as follows.

Definition 6.5.1. Let (A,→,P, P,M,≤) be a property-based argumentation
framework. A dialogue is a sequence S = (m1, . . . ,mn), where each mi is either:

• an attack move “OPP: x ! y”, where x, y ∈ A and x → y,

• a defence move “PRO: x ! y”, where x, y ∈ A and x → y,
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• an enabling property move “PRO: P+”, where P ⊆ P,

• a disabling property move “PRO: P−”, where P ⊆ P,

• a conceding move “OPP: ok”,

• a success claim move “PRO: win”.

We denote by S · S′ the concatenation of S and S′ and we say that S is a
subsequence of S′ iff S′ = S′′ · S · S′′′ for some S′′, S′′′, and that S is a proper
subsequence of S′ iff S′ = S′′ · S · S′′′ for nonempty S′′ or S′′′.

Definition 6.5.2. Let S = (m1, . . . ,mn) be a dialogue. We denote the moti-
vational state in S at index i by MS

i , defined recursively by:

MS
i =





∅ if i = 0,

MS
i−1 ∪ P if mi = PRO: P + or mi = PRO: P−,

MS
i−1 otherwise.

We now define a set of production rules that generate weak x-acceptance di-
alogues. Note that argumentation frameworks containing cycles may generate
infinite sequences of moves. We prevent this by requiring dialogues to be finite.

Definition 6.5.3 (Weak acceptance dialogue). Let (A,→,P, P,M,≤) be a
property-based argumentation framework and let x ∈ A.

• A weak x-acceptance dialogue is a finite sequence

S1 · (PRO: win)

where S1 is an x-attack sequence.

• An x-attack sequence is a sequence

(OPP: y1 ! x) · S1 · . . . · (OPP: yn ! x) · Sn · (OPP: ok)

where {y1, . . . , yn} = {y | y → x} and each Si is a yi-defence sequence.

• An x-defence sequence is either:

– a regular x-defence sequence

(PRO: y ! x) · S1

for some y ∈ A s.t. y → x, where S1 is a y-attack sequence,

– an enabling property defence sequence

(PRO: P+) · S1

for some P ⊆ P, where S1 is a regular x-defence sequence,

– a disabling property defence sequence

(PRO: P−)

for some P ⊆ P.
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Intuitively, a disabling property move can be interpreted as saying “the preced-
ing move is invalid considering the properties P .” An enabling property move,
on the other hand, says “the following move is valid considering the properties
P .” Not every weak x-acceptance dialogue, generated by the production rules
in definition 6.5.3, will follow this interpretation. We need to impose a number
of additional constraints to ensure that property moves make sense.

Definition 6.5.4 (Property-consistency). Let (A,→,P, P,M,≤) be a proper-
ty-based argumentation framework and S = (m1, . . . , mn) a sequence. We say
that S is property-consistent iff for all i ∈ [1, . . . , n], we have:

1. MS
i ∈ M

2. If mi = PRO: x ! y then for all j ∈ [i, . . . , n], x !MS
j
y,

3. If mi = PRO: P− and mi−1 = OPP: x ! y then for all j ∈ [i, . . . , n],
x $!MS

j
y.

Condition 1 ensures that property moves are valid in the sense that they actually
lead to a new motivational state M ∈ M. Conditions 2 and 3 ensure that a
property move does not undermine preceding property moves. That is, condition
2 ensures that attacks put forward by PRO remain enabled in subsequent states
and condition 3 ensures that disabled attacks remain disabled.

Example 6.5.1 (Continued from example 6.4.1). Consider the following two
property-consistent weak acceptance dialogues for the argument a shown in ta-
ble 6.1 and 6.2.

Index Move State
1 OPP: b ! a ∅
2 PRO: c ! b ∅
3 OPP: b ! c ∅
4 PRO: {R}− {R}
5 OPP: ok {R}
6 OPP: d ! a {R}
7 PRO: {G}+ {R,G}
8 PRO: e ! d {R,G}
9 OPP: f ! e {R,G}
10 PRO: ∅− {R,G}
11 OPP: ok {R,G}
12 OPP: ok {R,G}
13 PRO: win {R,G}

Table 6.1: A weak acceptance dialogue for the argument a.
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Index Move State
1 OPP: b ! a ∅
2 PRO: c ! b ∅
3 OPP: b ! c ∅
4 PRO: {R,G}− {R,G}
5 OPP: ok {R,G}
6 OPP: d ! a {R,G}
7 PRO: e ! d {R,G}
8 OPP: f ! e {R,G}
9 PRO: ∅− {R,G}
10 OPP: ok {R,G}
11 OPP: ok {R,G}
12 PRO: win {R,G}

Table 6.2: A weak acceptance dialogue for the argument a.

Explanation: In the dialogue shown on figure 6.1, the initial exchange of attacks
consists of b → a, c → b and b → c. PRO must end this line of argument by mak-
ing a disabling property to disable the attack b → c. PRO moves PRO: {R}−
and as a result, the motivational state of the dialogue becomes {R}. OPP’s next
attack is d → a. PRO cannot move e → d because this attack is disabled in
the current motivational state. PRO moves PRO: {G}+, changing the moti-
vational state of the dialogue to {R,G}, so that e → d is enabled. To OPP’s
attack f → e PRO responds with an empty disabling move, as f → e is already
disabled in the current motivational state. The dialogue shown in figure 6.2 is
similar with the exception that PRO immediately moves both R and G when
making a disabling property move on line 4. As a result, no enabling property
move is needed on line 7 because the attack d → e is already enabled.

The existence of a property-consistent weak x-acceptance dialogue implies weak
acceptance of x, i.e., it is a sound proof procedure:

Lemma 6.5.1 (Soundness). Let (A,→,P, P, M, ≤) be a property-based ar-
gumentation framework and x ∈ A. If there exists a property-consistent weak
x-acceptance dialogue S = (m1, . . . ,mn) then x is a member of the grounded ex-
tension of the argumentation framework represented by MS

n . Hence x is weakly
accepted.

Proof. Let (A,→,P, P,M,≤) be a property based argumentation framework,
x ∈ A and S a property-consistent weak x-acceptance dialogue. A subsequence
S′ of S that is a y-attack sequence (for some y ∈ A) will be called a y-attack
subsequence. We denote the depth of an attack subsequence S′ by D(S′) and
define it by D(S′) = 0, if S′ = (OPP: ok) and 1 + k otherwise, where k =
max({D(S′′) | S′′ ∈ T}), where T is the set of attack sequences that are proper
subsequences of S′. Furthermore from hereon we denote the grounded extension
of (A,!MS

n
) by G. We show that for every y-attack subsequence S′ it holds

that y ∈ G. We prove this by strong induction on the depth of S′. Let the
induction hypothesis H(k) stand for “if S′ is a y-attack subsequence with depth
k then y ∈ G.”
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• Base case (H(0)): Here S′ = (OPP: ok), thus y has no attackers in
(A,→), hence no attackers in (A,!MS

n
). It follows that y ∈ G.

• Induction step: Assume H(0), . . . , H(k−1) holds. We need to prove H(k).
It can be checked that for every z s.t. z → y, either:

– There is a z′-attack sequence S′′ that is a proper subsequence of S′.
Thus D(S′′) < k and z′ → z. From H(D(S′′)) and the fact that S is
property-consistent it follows that z is attacked by G.

– S′ contains a disabling property move. Hence z $!MS
n
y.

This means that for every z such that z !MS
n
y, G attacks z, hence y ∈ G.

By the principle of strong induction it follows that if there is a y-attack subse-
quence then y ∈ G. Thus we have x ∈ G, hence x is weakly accepted.

Conversely, if x is weakly accepted then a property-consistent weak x-acceptance
dialogue exists:

Lemma 6.5.2 (Completeness). Let (A,→,P, P, M,≤) be a property-based ar-
gumentation framework and x ∈ A be weakly accepted. There exists a weak
x-acceptance dialogue S that is property-consistent.

Proof. Let (A,→,P, P, M,≤) be a property-based argumentation framework
and x ∈ A be weakly accepted. Let F = (A,!M ). Then there is some M ∈ M
s.t. x is a member of the grounded extension of F . From hereon we use M to
refer to any such motivational state and G to refer to the grounded extension
of F .

We now prove, by strong induction over the degree of an argument y ∈ G that
there exists a property consistent weak y-acceptance dialogue. Let H(k) stand
for “If y ∈ G and DegF (y) = k then there exists a property consistent weak
y-acceptance dialogue.”

• Base case (H(0)): If y ∈ G and DegF (y) = 0 then there is no z ∈ A s.t.
z !M y and we can define S by (OPP: z1 ! y) · S′ · . . . · (OPP: zn !

y) · S′ · (OPP: ok) · (PRO: win), where {z1, . . . , zn} = {z′ | z′ → y} and
S′ = (PRO:M−). It can be checked that S is a property consistent weak
y-acceptance dialogue.

• Induction step: Assume H(0), . . . , H(k − 1) holds. Thus if y′ ∈ G and
DegF (y

′) < k then there exists a property consistent weak y′-acceptance
dialogue. We denote this dialogue by S(y′). We need to prove H(k).

Assume that y ∈ G and DegF (y) = k. It follows that for every z ∈ A

s.t. z !M y, there exists an argument which we denote by def(z, y) such
that def(z, y) ∈ G and def(z, y) !M z. Furthermore from the fixpoint
construction it follows that DegF (def(z, y)) < k, so that S(def(z, y)) is
well defined.

Now, for every z ∈ A s.t. z → y we define Ty(z) by (1) Ty(z) = (OPP: z !

y) ·(PRO:M−), if z $!M y and (2) Ty(z) = (OPP: z ! y) ·(PRO:M+) ·
S′, if z !M y—where S′ is defined by S(def(z, y)) = S′ · (PRO: win). It
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can be checked that Ty(z1) · . . . · Ty(zi) · (OPP: ok) · (PRO: win) (where
{z1, . . . , zi} = {z′ | z′ → y}) is a property consistent weak y-acceptance
dialogue.

By the principle of strong induction it follows that for every y ∈ G, there exists a
property consistent weak y-acceptance dialogue. Hence, there exists a property
consistent weak x-acceptance dialogue.

Notice that in the fourth move of in the second dialogue in example 6.5.1, PRO
puts forward both R and G in a disabling property move. However, it suffices
to put forward just R, as in the first dialogue, because G is not relevant with
respect to disabling the attack b → c. We call a dialogue in which property
moves are relevant a property-relevant dialogue. Property moves in a property-
relevant dialogue consist only of properties satisfied by one of the arguments
involved in the attack that is enabled or disabled.

Definition 6.5.5 (Property-relevance). Let (A,→,P, P,M,≤) be a property-
based argumentation framework and S = (m1, . . . , mn) a weak acceptance
dialogue. We say that S is property-relevant iff for all i, j ∈ [1, . . . , n] s.t.
j = i+ 1, we have:

1. If mi = OPP: x ! y and mj = PRO: P− then P ⊆ P (x) ∪ P (y).

2. If mi = PRO: P+ and mj = PRO: x ! y then P ⊆ P (x) ∪ P (y).

Note that in example 6.5.1 the first dialogue is property-relevant, whereas the
second one is not. Focusing on property-relevant dialogues can be used to opti-
mize the algorithm. Furthermore, it makes sense intuitively: when persuading
an opponent to accept an argument, one does not refer to properties not relevant
to this objective.

As a final result we show that weak acceptance of an argument implies the
existence of a property-consistent weak x-acceptance dialogue that is, in addi-
tion, property relevant. However, this requires that M is sufficiently rich to
ensure that PRO is not forced to put forward irrelevant properties. This can
be achieved by assuming that M = 2P , but note that there are cases where a
weaker assumption is sufficient.

Lemma 6.5.3 (Property-relevant completeness). Let (A,→,P, P, M,≤) be a
property-based argumentation framework where M = 2P , and let x ∈ A be
weakly accepted. There exists a weak x-acceptance dialogue S that is property-
consistent and property-relevant.

Proof. Let (A,→,P, P, M,≤) be a property-based argumentation framework
and x ∈ A be weakly accepted. Let S = (m1, . . . ,mn) be the property-consistent
weak x-acceptance dialogue (for x a member of the grounded extension of
(A,!M )) as constructed in the proof of lemma 6.5.2. That is, every property
move in S is either of the form PRO:M+ or PRO:M−. Using property 6.4.1
(2) it can be checked that the dialogue S′ formed by

• replacing every move mi = PRO:M+ in S by PRO:M ′+, where M ′ =
M ∩ P (x) ∪ P (y) where x, y are defined by mi+1 = PRO: x ! y, and
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• replacing every move mi = PRO:M− in S by PRO:M ′−, where M ′ =
M ∩ P (x) ∪ P (y) where x, y are defined by mi−1 = OPP: x ! y,

is also a property-consistent weak x-acceptance dialogue, that is in addition
property-relevant.

Summarizing, we have the following result.

Theorem 6.5.4. Let (A,→,P, P, M,≤) be a property-based argumentation
framework.

• An argument x ∈ A is weakly accepted iff there exists a weak x-acceptance
dialogue that is property-consistent.

• If M = 2P then an argument x ∈ A is weakly accepted iff there ex-
ists a weak x-acceptance dialogue that is property-consistent and property-
relevant.

Proof. Follows from lemmas 6.5.1, 6.5.2 and 6.5.3.

6.6 Related Work

We already mentioned the relation of our model with that of preference and
value-based argumentation frameworks [2, 14]. Also related is a study of value-
based argumentation frameworks where arguments promote multiple values [60],
concerned mainly with the problem of deriving a unique preference order over
arguments from a preference relation over individual values. Note that in our
approach, a property-based argumentation framework together with a motiva-
tional state already defines a unique preference order over arguments.

Furthermore, Bench-Capon et al. have considered dialogues in which a propo-
nent can make moves consisting of value preferences [15]. In this approach, the
outcome of a winning dialogue corresponds to the specification of an audience
(i.e., a preference order over values) such that some initial set of arguments is
accepted in the corresponding aVAF.

Also related is Modgil’s model of extended argumentation frameworks, in which
arguments attack and disable attacks between other arguments [67]. Such ar-
guments can be seen as meta-level arguments expressing preferences over object
level arguments. Whereas we take the agent’s state (which determines whether
individual attacks are enabled) to be external to the argumentation framework,
here it is part of argumentation framework itself. That is, whether an attack is
enabled depends on the status of a metalevel argument.

Our work shares methodological similarities with work of Kontarinis et al. [61],
who present a goal-oriented procedure to determine which attacks to disable
or enable in order to make an argument accepted under a given semantics.
While the procedure that they present is designed to be implemented as a term
rewriting system, our procedure is defined simply by a set of production rules,
amenable to implementation using e.g. PROLOG.

136



6.7 Conclusion and Future Work

We presented a dynamic model of preferences in argumentation, based on Diet-
rich and List’s model of property-based preference. This model provides an ac-
count of how and why preferences in argumentation may change and generalizes
both preference-based argumentation frameworks and value-based argumenta-
tion frameworks, if properties are taken to be values. We consider a number
of directions for future work. First, we plan to complete the proof-theoretic
picture by looking at the problem of deciding whether an argument is strongly
accepted. In addition, we will consider other semantics in addition to grounded.
Second, we plan to investigate the possibility of axiomatizing property-based
argumentation frameworks, in the spirit of Dietrich and List’s axiomatization
as presented in section 6.3. Finally, we intend to look at connections between
property-based argumentation frameworks and Modgil’s model of extended ar-
gumentation frameworks.
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Chapter 7

Conclusions and Future

Work

7.1 Conclusions

The overall aim of this work was to model and study the notion of change in the
context of abstract argumentation. Our motivation was that, while the abstract
argumentation formalism is essentially static, argumentation is a dynamic ac-
tivity. The dynamic perspective we have taken improved our understanding of
the behaviour and applicability of the abstract argumentation formalism.

In chapter 1 we identified two types of change in abstract argumentation, which
we call intervention and observation. We explained that they are conceptually
similar to the similarly named types of change in the theory of causal Bayesian
networks. Intervention represents action, which amounts to the manipulation
of the argumentation framework, leading to a ‘bottom-up’ revised evaluation of
the argumentation framework. Observations, on the other hand, are pieces of
information from the environment, that require a ‘top-down’ revision of the eval-
uation of the argumentation framework. We regard the two types of change as
two forms of entailment: intervention-based entailment and observation-based
entailment.

In chapter 3 we proposed a formal model of intervention-based entailment. We
focussed on two types of actions: defeat (addition of an attacker) and provisional
defeat (addition of a self-attacking attacker). The resulting notion of entailment
allowed us to study the behaviour of semantics for argumentation under change.
We studied this behaviour by proposing a number of properties for well-behaved
intervention-based entailment, and by systematically checking the conditions
under which these properties are satisfied. The properties we proposed were
direct translations of a number of properties that have been considered in the
context of non-monotonic inference (the so called KLM properties). The results
we obtained provide insight into the behaviour of semantics for argumentation
under change. For example, the complete and grounded semantics satisfy both
Cautious Monotony and Cut—two intuitive properties that an intervention-
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based entailment relation can be expected to satisfy—but the preferred, semi-
stable and stable semantics do not.

In chapter 4 we developed a formal model for observation-based entailment. We
first addressed the question of how a rational agent should revise the evaluation
of an argumentation framework to account for an observation. We proposed a
model, based on an abductive principle, in which observations are accounted
for by the most preferred interventions that make the observation true. Such a
model determines an observation-based entailment relation that captures how
an argumentation framework is evaluated given an observation. We proved a
representation result which links the notion of observation-based entailment to
preferential entailment. We also studied the role of the directionality principle
in the behaviour of observation-based entailment.

In sum, we have shown in chapters 3 and 4 that there are two distinct ways
in which change in abstract argumentation can be modelled. While different
aspects of these two types of change have been investigated in the literature, we
modelled them in a uniform way and proved a number of novel results concerning
change in argumentation.

In chapter 5 we developed a model of abduction in abstract argumentation.
In this model, changes to an argumentation framework act as explanations for
sceptical/credulous support for observations. We presented sound and complete
dialogical proof procedures for the main reasoning tasks, i.e., finding explana-
tions for sceptical/credulous support. In addition, we showed that our model of
abduction in abstract argumentation can be seen as an abstract form of abduc-
tion in logic programming.

In chapter 6 we developed a dynamic model of preference-based argumentation,
based on what we call property-based argumentation frameworks. Here, the
idea is that preferences over arguments are derived from preferences over prop-
erties of arguments and change as the result of moving to different motivational
states. This model is based on Dietrich and List’s model of property-based
preference and it provides an account of how and why preferences in argumen-
tation may change. Our model generalizes both preference-based argumentation
frameworks and value-based argumentation frameworks. We presented sound
and complete dialogical proof procedures, similar to the procedures presented in
chapter 5, for the task of checking whether an argument is accepted given some
or all motivational states of a given property-based argumentation framework.

7.2 Future Work

At the end of each chapter in this thesis we have discussed a number of open
issues for future research. Here we discuss a number of further directions for
future work.

7.2.1 Application to Extensions of Dung’s Formalism

First of all, we have studied various aspects of change in argumentation using
Dung’s original formalism. However, many extensions of Dung’s formalism have
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been proposed that aim at going beyond the simple notion of an argumenta-
tion framework as consisting of a set of arguments and a binary attack relation.
Examples are bipolar argumentation frameworks, which model attack relations
as well as support relations between arguments [35]; extended argumentation
frameworks, which allow higher-order attacks [49, 5]; and argumentation frame-
works with attack relations over sets of arguments [70]. In all these extensions,
the form of the evaluation process is similar to that of Dung’s original formalism.
That is, the input is an argumentation framework (bipolar, extended, set-based,
etc.) and the output is a set of extensions or labellings, which are computed
according to a semantics that is tailored to the respective extension of Dung’s
formalism. This means that many of the ideas that we discussed can be applied
to these formalisms as well. For example, the notion of intervention and obser-
vation, being particular generalizations of how an argumentation framework is
evaluated, can also be studied in the context of these extensions.

7.2.2 Extend Results to Other Semantics

In this thesis we focussed on the main admissibility-based semantics, namely
the complete, grounded, preferred, stable and semi-stable semantics. There are
a number of semantics that we have left out of consideration, such as the stage
semantics [89], the ideal semantics [43], the prudent semantics [36], the eager
semantics [28] and the CF2 semantics [8]. We plan to address the analysis of the
behaviour of these semantics in terms of intervention and observation in future
work.

Furthermore, several semantics have been proposed that generalize the strict dis-
tinction between acceptance, rejection and undecidedness. This includes quan-
titative approaches, where arguments are associated with numbers rather than
discrete labels. These numbers may indicate probability [56, 64, 79, 88] as well
as some type of strength [46, 50]. Applying the ideas discussed in this thesis to
these approaches is another possibility for future research.

7.2.3 Synthesis of New Semantics

In chapter 3 we proposed a number of properties for intervention-based entail-
ment. We checked the semantics under which these properties are satisfied and
we also considered a number of conditions with respect to the topology of the
argumentation framework. The results we obtained say something about the be-
haviour of the semantics that we considered. Alternatively, desirable properties,
such as Cautious Monotony and Cut, can be used to define new semantics for
argumentation. This is the approach taken, for example, by Baroni et al. [8],
who defined a number of new semantics (the most interesting one being the
CF2 semantics) by taking the property of SCC-recursiveness as a starting point.
Similarly, one may ask: are there semantics (possibly admissibility-based) that
satisfy the intuitive properties of Cautious Monotony and Cut, other than the
complete and grounded semantics?
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7.2.4 Iterated Revision

Dynamics in argumentation arises from the fact that argumentation goes hand
in hand with dialogue. In terms of abstract argumentation, a dialogue can
be seen as a sequence of changes to an argumentation framework. The notion
of intervention-based entailment, however, captures change due to one inter-
vention, rather than a sequence of changes. Bridging this gap gives rise to a
number of questions. First of all, dealing with sequences of changes means that
we deal with a form of iterated revision. In the area of belief revision, one of the
challenges in modelling iterated revision was to come up with an operator that
revises an initial belief state so as to obtain a revised belief state (rather than
a revised belief set, as was done in the AGM approach). This problem does
not arise in argumentation, because the state is captured by the argumentation
framework, and the (iteratively) revised state is simply the (iteratively) revised
argumentation framework. However, another question addressed in the area of
belief revision is: which postulates should a well-behaved iterated revision op-
erator satisfy? [38] Similarly, we can ask: which postulates for iterated change
of an argumentation framework can a semantics be expected to satisfy? In this
context, there is a seeming connection between the property of reinstatement in
argumentation and recovery in iterated revision. This has been noted by Boella
et al. [19]. Making this connection formal, as well as addressing the question of
what other postulates are relevant in this context, are issues for future research.
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3-valued interpretation, 119

abductive logic program, 120
abductive model, 80
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credulous, 19
sceptical, 19
strong, 128
weak, 128

action, 36
argumentation framework, 15

abducible, 109
abductive, 109
acyclic, 55
even-cycle-free, 53
isomporhism, 25
odd-cycle-free, 51
value-based, 125

argumentation-framework
preference-based, 124
property-based, 127

attack move, 130

cautious monotony
for |∼, 28
for ||=, 45

closure under weakening, 81
committedness, 71
conceding move, 111, 130
conditional out-legality, 91
conditional directionality, 60

for observation-based entailment,
90

conditional noninterference, 62
for observation-based entailment,

96
conditional reinstatement, 91
conflict-free formula, 42
contraposition

for |∼, 29
for ||=, 44

credulous explanation, 82
credulous explanation dialogue, 116
cumulative entailment, 28
cumulative model, 30
cumulative ordered model, 30
cut

for |∼, 28
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defence, 16
defence move, 130
degree, 113
directional out-legality, 92
directional reinstatement, 92
directionality, 58
disabling property move, 130

enabling property move, 130
enforcing intervention, 103
equivalence

for |∼, 29
for ||=, 48

extension, 16
admissible, 16
complete, 17
conflict-free, 16
grounded, 17
preferred, 17
semi-stable, 17
stable, 17

F -mapping, 37
formula, 25

hypothesis, 120
hypothetical PRO defence, 111
hypothetical PRO negation, 111
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in-legality, 21
information state, 112
instantiated argument, 119
intervention, 36

stable, 36
intervention-based entailment, 39
isolated set, 60

labelling, 20
admissible, 22
complete, 22
conflict-free, 22
grounded, 22
preferred, 22
semi-stable, 22
stable, 22

language independence, 25
left logical equivalence, 28
logic program, 118
loop

for |∼, 28
for ||=, 50

loop-cumulative entailment, 28

minimality assumption, 81
monotony

for |∼, 27
for ||=, 44

motivational state, 127, 131

noninterference, 61

observation, 108
credulously supported, 108
sceptically supported, 108

observation-based entailment
conflict-free, 86
credulous, 83
sceptical, 85

OPP attack, 111
or, 28
out-legality, 21

partial stable model, 119
preferential entailment, 28
preferential model, 30
property-based preferences, 126
property-consistency, 132
property-relevance, 135

ranked model, 31

rational entailment, 28
rational monotony

for |∼, 28
for ||=, 49

reflexivity
for |∼, 28
for ||=, 40

reinstatement, 21
rejection, 21
restriction

of a labelling, 58
of argumentation framework, 58

right-weakening, 28

sceptical explanation, 84
sceptical explanation dialogue, 112
σ-entailment, 26
semantics

extension-based, 16
labelling-based, 19

smoothness, 30
stable cautious monotony, 46
stable conflict-free formula, 43
stable cut, 47
stable loop, 56
structural connectedness, 62
structural relevance, 59
success claim move, 111, 130

transitivity
for |∼, 29
for ||=, 44

unattacked set, 58
und-legality, 21

weak acceptance dialogue, 131
weak conditional noninterference, 97
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Noûs, 47(1):104–134, 2013.

[41] Franz Dietrich and Christian List. Where do preferences come from? In-
ternational Journal of Game Theory, 42(3):613–637, 2013.

[42] Phan Minh Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artificial Intelligence, 77(2):321–358, 1995.

[43] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. A dialectic pro-
cedure for sceptical, assumption-based argumentation. In Paul E. Dunne
and Trevor J. M. Bench-Capon, editors, Computational Models of Argu-
ment: Proceedings of COMMA 2006, September 11-12, 2006, Liverpool,
UK, volume 144 of Frontiers in Artificial Intelligence and Applications,
pages 145–156. IOS Press, 2006.

[44] Paul E. Dunne. Computational properties of argument systems satisfy-
ing graph-theoretic constraints. Artificial intelligence, 171(10-15):701–729,
2007.

[45] Paul E. Dunne, Wolfgang Dvorák, Thomas Linsbichler, and Stefan
Woltran. Characteristics of multiple viewpoints in abstract argumenta-
tion. In Chitta Baral, Giuseppe De Giacomo, and Thomas Eiter, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the
Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-
24, 2014. AAAI Press, 2014.

[46] Paul E Dunne, Anthony Hunter, Peter McBurney, Simon Parsons, and
Michael Wooldridge. Weighted argument systems: Basic definitions, al-
gorithms, and complexity results. Artificial Intelligence, 175(2):457–486,
2011.
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[66] Jorge Lobo and Carlos Uzcátegui. Abductive consequence relations. Arti-
ficial Intelligence, 89(1-2):149–171, 1997.

[67] Sanjay Modgil. Reasoning about preferences in argumentation frameworks.
Artificial Intelligence, 173(9-10):901–934, 2009.

[68] Sanjay Modgil and Martin W.A. Caminada. Proof theories and algorithms
for abstract argumentation frameworks. In I. Rahwan and G. Simari, ed-
itors, Argumentation in Artificial Intelligence, pages 105–129. Springer,
2009.

[69] Mart́ın O. Moguillansky, Nicolás D. Rotstein, Marcelo A. Falappa, Ale-
jandro Javier Garćıa, and Guillermo Ricardo Simari. Argument theory
change through defeater activation. In Pietro Baroni, Federico Cerutti,
Massimiliano Giacomin, and Guillermo Ricardo Simari, editors, Computa-
tional Models of Argument: Proceedings of COMMA 2010, Desenzano del
Garda, Italy, September 8-10, 2010, volume 216 of Frontiers in Artificial
Intelligence and Applications, pages 359–366. IOS Press, 2010.

[70] Søren Holbech Nielsen and Simon Parsons. A generalization of dung’s
abstract framework for argumentation: Arguing with sets of attacking
arguments. In Nicolas Maudet, Simon Parsons, and Iyad Rahwan, edi-
tors, Argumentation in Multi-Agent Systems, Third International Work-
shop, ArgMAS 2006, Hakodate, Japan, May 8, 2006, Revised Selected and
Invited Papers, volume 4766 of Lecture Notes in Computer Science, pages
54–73. Springer, 2006.

[71] Emilia Oikarinen and Stefan Woltran. Characterizing strong equivalence for
argumentation frameworks. Artificial Intelligence, 175(14-15):1985–2009,
2011.

[72] Judea Pearl. Causality: models, reasoning and inference, volume 29. Cam-
bridge University Press, 2000.
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