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Frédéric Desprez, Céline Labrude, Laurence Antunes, Delphine Maucherat, Dr. Patrice
Brault, Prof. Michel Kieffer, Dr. Benjamin Larrousse, Dr. Mircea Dumitru, Camille Chap-
delaine, Amine Hadjyoucef, Alina Meresescu, Dr. Fangchen Feng, Guillaume Revillon, Dr.
Faton Maliqi, Dr. Zicheng Liu, Yanqiao Hou, Chen Kang, Dr. Wenjie Li, Shanshan Wang,
Jian Song, Xiaojun Xi, Xuewen Qian, Xiaoxia Zhang, Dr. Chi Jin, Weichao Liang, Zhenyu
Liao, Peipei Ran, Paulo Prezotti, Sara Berri, Dr. Zheng Chen, Dr. Chao He.

I also deeply thank all my dearest Chinese friends, who have been together with me
for already ten years : Dr. Kai Wan, Dr. Yunsong Wang, Dr. Siqi Wang, Yao Liu, Dr. Xin
Wang, Nan Guan, Dr. Xiang Liu, Dr. Jie Wei, Mengsu Guo, . No matter where we are in
the world I will always remember them forever and always.

Last, but not the least important, I devote this thesis to my family for their patience
and understanding. My parents, Changhua Zhang and Hua Tan, I’m very grateful for
their endless support, trust and love ! I would like to thank with love to my wife, Dr. Li
Wang. Her support and encouragement is the key point to make this dissertation possible.

With regards to numerous questions about my future academic endeavors from friends
and family, I shall answer in the words of Sir Winston Churchill : ”Now this is not the



end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning.”



Table des matières

Table des figures VII

Liste des tableaux 1
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1
Synthèse en francais

Une grande partie des résultats rapportés dans cette thèse est basée sur une observa-
tion qui n’a jamais été faite pour les communications sans fil et le contrôle de puissance
en particulier : les niveaux de puissance d’émission et plus généralement les matrices de
covariance peuvent être exploitées pour intégrer des informations de coordination. Les
échantillons de rétroaction dépendants des interférences peuvent être exploités comme ca-
nal de communication. Premièrement, nous montrons que le fameux algorithme itératif de
remplissage d’eau n’exploite pas suffisamment l’information disponible en termes d’utilité-
somme. En effet, nous montrons que l’information globale d’état de canal peut être acquise
à partir de la seule connaissance d’une rétroaction de type SINR. Une question naturelle
se pose alors. Est-il possible de concevoir un algorithme de contrôle de puissance distribué
qui exploite au mieux les informations disponibles ? Pour répondre à cette question, nous
dérivons la caractérisation de la région d’utilité pour le problème considéré et montrons
comment exploiter cette caractérisation non seulement pour mesurer globalement l’effica-
cité, mais aussi pour obtenir des fonctions de contrôle de puissance one-shot globalement
efficaces. Motivés par le succès de notre approche sur les réseaux d’interférences mono
bande et multibande, nous nous sommes demandé si elle pourrait être exploitée pour
les réseaux MIMO. Nous avons identifié au moins un scénario très pertinent. En effet,
nous montrons que l’alignement d’interférence opportuniste peut être implémenté en sup-
posant seulement une rétroaction de covariance d’interférence plus bruit à l’émetteur
secondaire. Puis, dans le dernier chapitre, nous généralisons le problème de la quanti-
fication, la motivation étant donnée par certaines observations faites dans les chapitres
précédents. Premièrement, nous supposons que le quantificateur et le déquantificateur
sont conçus pour maximiser une fonction d’utilité générale au lieu de la fonction de distor-
sion classique. Deuxièmement, nous supposons que le quantificateur et le déquantificateur
peuvent avoir des fonctions d’utilité différentes. Cela soulève des problèmes techniques
non triviaux, notre revendication est de faire un premier pas dans la résolution d’eux.

Dans le Chapitre 2, une nouvelle technique d’estimation est proposée qui permet à
chaque émetteur d’acquérir des informations d’état de canal global (CSI) à partir de la

3



CHAPITRE 1. SYNTHÈSE EN FRANCAIS

seule connaissance des mesures individuelles de puissance du signal reçu ; ceci rend in-
utiles les retours d’informations dédiés ou les canaux de signalisation inter-transmetteurs
et permet une coordination dans les réglages typiques de contrôle de puissance distribuée.
Pour ce faire, nous avons recours à une technique complètement nouvelle dont l’idée clé
est d’exploiter les niveaux de puissance d’émission comme des symboles pour intégrer
l’information et l’interférence observée comme canal de communication que les émetteurs
peuvent exploiter pour échanger des informations de coordination. Selon que le niveau de
puissance d’émission est supposé être discrete ou continuous, deux schémas de modu-
lation de puissance différents sont proposés. Bien que les techniques utilisées permettent à
tout type d’information à faible débit d’être échangées entre les émetteurs, l’accent
est ici mis sur l’échange de CSI local. La technique proposée comprend également une
phase qui permet d’estimer le CSI local. Une fois qu’une estimation du CSI global est
acquise par les émetteurs, elle peut être utilisée pour optimiser toute fonction d’utilité qui
en dépend. Alors que les algorithmes qui utilisent le même type de mesures comme l’algo-
rithme de remplissage d’eau itératif (IWFA) implémentent la dynamique séquentielle de
meilleure réponse (BRD) appliquée aux utilitaires individuels, ici, grâce à la disponibilité
du CSI global, la BRD peut être , appliqué à l’utilitaire de somme. Lorsque l’on compare
la technique proposée à l’IWFA, on constate que des gains significatifs peuvent être ob-
tenus. Par exemple, la somme totale du réseau peut être améliorée de 20-30 % pour les
scénarios typiques. Lorsqu’on compare la modulation de puissance discrète et continue (en
supposant que les émetteurs peuvent fonctionner dans les deux modes de transmission), il
semble que la première, bien que très simple, offre de meilleures performances à condition
que le niveau de bruit de retour ne soit pas trop élevé. Il est intéressant de noter que, d’un
point de vue technique, la technique d’estimation CSI globale proposée est même adaptée
aux scénarios où seule une rétroaction ACK / NACK est disponible. En effet, il peut être
vu comme le cas particulier où la puissance du signal reçu ou SINR est quantifiée avec un
seul bit.

Le but du Chapitre 3 est de contribuer à la recherche de stratégies de contrôle du pou-
voir qui exploitent au mieux les informations disponibles sur l’état global du canal ; les
informations disponibles considérées ici pour les scénarios considérés sont principalement
locales et peuvent être bruyantes. Différent de la technique proposée dans la dernière
section, qui permet d’acquérir des informations d’état de canal globales en utilisant la
modulation de puissance, un cadre de contrôle de puissance basé sur des informations
locales est proposé ici. Comme une façon appropriée de mesurer l’efficacité globale d’un
schéma de contrôle de puissance est d’utiliser la région d’utilité moyenne, nous abordons
d’abord le problème de la caractérisation de la région d’utilité réalisable. Nous fournis-
sons la caractérisation de la région d’utilité moyenne pour tout problème de contrôle
de puissance pour lequel l’état du canal est i.i.d. et la structure d’observation est sans
mémoire. Deuxièmement, le théorème correspondant est exploité pour obtenir un algo-
rithme itératif qui fournit des stratégies de contrôle de puissance sans mémoire et sta-
tionnaires (les stratégies se résument donc à des fonctions de décision one-shot). Bien
que l’algorithme proposé ne soit pas optimal en termes d’utilité-somme pondérée, de
nombreuses simulations montrent qu’il fonctionne très bien pour des fonctions d’utilité
classiques (par exemple, l’énergie-efficacité totale, la somme-débit, la somme-bénéfice).
En plus des politiques de team power control, nous proposons également un système
de contrôle de puissance égöıste. En effet nous étudions un réseau d’interférences multi-
bandes en présence de multiples fonctions utilitaires. L’une des idées clés que nous avons
trouvées est que restreindre les choix en termes de vecteurs d’allocation de puissance au-
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torisés pour les émetteurs peut être bénéfique pour la performance individuelle et celle du
réseau, ce qui prouve un paradoxe de Braess. Ce résultat justifie a posteriori que l’utilisa-
tion d’espaces d’action discrets au lieu d’espaces d’action continue peut être un meilleur
choix pour la performance. Cela justifie également en partie pourquoi l’algorithme itératif
que nous proposons pour calculer les fonctions de décision en une seule fois suppose des
ensembles d’actions discrètes. Cet argument vient s’ajouter à d’autres arguments donnés
dans des travaux précédents tels que le contrôle de puissance binaire qui montre que l’uti-
lisation de petits alphabets pourrait induire une perte d’optimalité nulle ou faible par
rapport aux alphabets continus.

Au chapitre 4, nous montrons comment les mesures du domaine de puissance peuvent
être exploitées pour deux techniques bien connues de traitement de domaine de signal, à sa-
voir l’alignement d’interférence opportuniste et l’estimation de canal de domaine de signal
basé sur la formation. En ce qui concerne l’alignement des interférences, nous considérons
la version opportuniste proposée dans [9]. Dans [9], les auteurs supposent que l’émetteur
primaire choisit sa matrice de précodage pour maximiser son débit de transmission in-
dividuel tandis que l’émetteur secondaire exploite les opportunités spatiales disponibles.
Pour cela, l’émetteur secondaire aligne son signal pour garantir une interférence nulle au
niveau du récepteur primaire et a besoin d’informations d’état de canal global (CSI). Un
problème de problème crucial avec cette technique est que les auteurs n’ont fourni aucune
technique pour acquérir les informations requises sur les différents canaux, sachant que
les auteurs recommandent que les CSI globaux soient disponibles. Dans ce chapitre, nous
montrons que le CSI global n’est pas requis pour implémenter l’alignement d’interférence
opportuniste de [9]. En effet, nous prouvons que la seule connaissance de la rétroaction
de la matrice de covariance interférence-bruit à l’émetteur secondaire est suffisante pour
mettre en œuvre la technique considérée ; cette hypothèse a été faite, par exemple, pour
dériver la version MIMO de l’algorithme itératif de remplissage d’eau [15]. En ce qui
concerne l’estimation des canaux basés sur la formation, nous montrons que les mesures
de puissance reçues peuvent être utilisées comme priors pour améliorer significativement le
niveau de précision de l’estimation des canaux. Plus précisément, nous proposons de nou-
veaux estimateurs MMSE et MAP qui intègrent ces connaissances antérieures. L’erreur
quadratique moyenne d’estimation peut être diminuée d’environ 50 % dans des scénarios
typiques en termes de SNR et même en supposant un nombre relativement petit de me-
sures de puissance reçues.

Dans la première partie du chapitre 5, nous revenons sur le problème de la quanti-
fication en considérant un choix arbitraire pour la fonction d’utilité au lieu du critère
de performance classique, à savoir la distorsion ou l’erreur quadratique moyenne. Cette
manière nouvelle et générale d’aborder le problème de quantification est pertinente, par
exemple, pour des scénarios où le récepteur doit quantifier des informations d’état de canal
(CSI) et signaler cette version imparfaite du canal à l’émetteur qui doit maximiser une cer-
taine fonction utilitaire. L’opération de maximisation correspondante est nécessairement
sous-optimale car la connaissance parfaite du canal n’est pas disponible à l’émetteur, d’où
notre motivation à rendre la perte d’optimalité correspondante aussi faible que possible.
Implicitement, nous supposons que le quantificateur et le déquantificateur ont le même
objectif, c’est-à-dire maximiser la fonction d’utilité considérée. Les simulations montrent
que l’utilisation du quantificateur orienté utilitaires permet de réduire la perte d’opti-
malité globale de 5% au lieu de 40% en utilisant l’algorithme classique de Lloyd-Max.
Dans la deuxième partie du chapitre 5, nous supposons que l’émetteur et le récepteur
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CHAPITRE 1. SYNTHÈSE EN FRANCAIS

ont des fonctions d’utilité non alignées, c’est-à-dire que leur intérêt peut être divergent.
Dans les simulations, nous montrons l’influence du biais en termes d’utilités sur la per-
formance d’équilibre de l’émetteur et du récepteur. Nous avons identifié un scénario de
communication qui apparâıt dans le domaine des réseaux intelligents pour lequel ce cadre
est pleinement pertinent. Lorsqu’un consommateur doit révéler des informations sur ses
besoins en termes d’énergie, son intérêt peut être différent de celui de l’agrégateur, du
fournisseur d’énergie ou de l’opérateur. Par exemple, le consommateur peut vouloir satis-
faire complètement son besoin énergétique alors que l’opérateur peut aussi vouloir gérer
le réseau électrique ou prendre en compte certaines contraintes liées au niveau de produc-
tion d’énergie. Cela engendre un biais en termes de fonctions d’utilité et constitue donc
un scénario de communication en présence d’intérêts divergents. Pour de tels scénarios,
nous fournissons quelques résultats préliminaires pour comprendre l’impact du biais sur la
communication. Certes, beaucoup d’efforts doivent être faits pour comprendre ce scénario
de communication délicat mais nos résultats constituent un premier pas vers cet objectif
difficile.
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2
Introduction

In this thesis, we mainly investigate resource allocation problems in distributed inter-
ference networks in which the transmitting-receiving pair can communicate over several
orthogonal channels. Apart from that, we study quantizations scheme with the objective
of maximizing a common utility function, or diverging utility functions.

2.1 Context of the thesis

Wireless networks in which transmitters have to take decisions on how to use radio
resources in an autonomous manner is of increasing interest to the communications com-
munity. We will refer to this type of wireless networks as distributed or decentralized
wireless networks. An example of such a network is given by small cell networks (SCNs)
[1]. Indeed, one way of boosting data rates in cellular networks is to deploy a large number
of small base stations that cannot be controlled by a single central entity, and therefore
have to be nearly autonomous in terms of managing radio resources. Another important
example of such networks is WiFi networks in which each access point has to select the
operating channel, or band without the assistance of a central entity. In this manuscript,
we consider wireless interference networks that are distributed both decision-wise and
information-wise. More specifically, each transmitter has to perform a power control or
resource allocation task by itself, having only access to partial information of the network
state.

When inspecting the literature on distributed power control (see e.g., [2][3]), one can
conclude that while the derived power control scheme is effectively distributed decision-
wise and information-wise, it is not globally efficient. A natural and important question
arises : are such schemes inefficient because the considered power control schemes are not
good enough, or does it stem from intrinsic limitations such as information availability ?
To the best of our knowledge, this question has not been addressed formally. In this
manuscript, we will propose two different novel approaches to tackle this issue.
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The first way is to exploit the available feedback signal to implement coordination.
In most of the literature on coordination among autonomous decision-makers, like team
decision problems (see e.g., [4]), the typical assumption is that decision-makers have ac-
cess to dedicated channels to coordinate their actions. These dedicated channels allow the
decision-makers to signal or communicate with each other without affecting the objective
or utility function [5]. Typically, in an interference network, when there is no direct line
of communication between the transmitters ; the transmitters use a distributed or selfish
strategy, e.g. the iterative water-filling algorithm (IWFA)[6][7], and work at a sub-optimal
level of performance. One important message of the work is to show that IWFA-like distri-
buted algorithms do not exploit the available feedback signal efficiently. In the exploration
phase, instead of using several time-slots (and their associated signal to interference plus
noise ratio (SINR) realizations) to allow the transmitters to converge to a Nash point,
the feedback signal realizations can be used to acquire global channel state information
(CSI). The merit of the proposed technique is the potential to cope with the global ineffi-
ciency issue. The key ideas of the first approach is that information feedback, such as an
SINR feedback or received signal strength indicator (RSSI) feedback, can be used both to
estimate local CSI and to exchange it through an appropriate power modulation scheme.

However, in some wireless networks, reconstructing the global CSI can be prohibitive
due to a lack of a suitable feedback channel. This motivates us to develop our second
approach in which, we provide a framework that allows one to derive the limiting perfor-
mance of power control with partial information, and therefore allowing us to measure the
efficiency of a given power control scheme. One of the key ideas of the second approach
is to exploit the recent theorem derived in [8] to find power control functions which may
exploit the available knowledge optimally. We exploit these results to characterize the
limiting performance in terms of long-term utility region. When it is difficult to exchange
local CSI, it is shown in Chapter 3 that the statistics of the global CSI can still be useful
in order to bring improvements to the network performance.

Aside from the power control strategy in interference networks, we also investigate the
connections between the power domain feedback and signal domain operations, e.g., the
interference alignment and channel estimation. We study the way to exploit the power
domain feedback in Cognitive multiple-input and multiple-output (MIMO) networks and
interference networks. Cognitive networks are initiated by the apparent lack of spectrum
under the current spectrum management policies, which aims at allocating the spectrum
in a dynamic manner. To avoid the secondary users inducing any significant degradation
of the quality of service (QoS), interference alignment (IA) has been recently developed.
The technique of IA for cognitive networks was extended for the case of MIMO in [9]. Ho-
wever, limited by the information availability, the opportunistic IA scheme is difficult to
be realized. In this work, it is shown that even with partial information, the IA scheme can
be reconstructed by exploiting the power domain feedback, namely, the covariance matrix
of the received signal. Moreover, it can be also verified that the power domain feedback in
a single antenna system, namely received signal strength indicator (RSSI), can improve
the estimation accuracy level in interference networks. In the context of interference net-
works, a precise estimation of the channel can be acquired by sending pilot symbols and
estimating the channel with the minimum mean square error (MMSE) estimator [10][11].
Interestingly, with the additional information RSSI feedback, the estimation accuracy
level can be still enhanced without any degradation of the network performance.

Finally, a part of the manuscript focuses on quantization schemes. There are a variety
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Contributions

of existing quantizers, e.g., the uniform quantizer or the well-known quantizer based on
the Lloyd-Max algorithm (LMA) [12][13] to minimize the distortion, i.e., the mean square
error between the source and its reconstructed version. However, note that these designs
consider the quantized variable (such as channel gains) itself instead of considering the use
of the quantized variable (such as energy efficiency which depends on the channel gains). It
turns out that the quantizer design might be improved when measured in terms of the final
use of utility function. In Chapter 5, we investigate the utility-oriented quantization in two
different scenarios : the utility functions are aligned and its application to power control
in wireless communications and, the utility functions are non-aligned and its application
to smart grid.

2.2 Contributions

The contribution of this manuscript can be summarized based on five main aspects :
1) global CSI acquisition by exploiting power domain feedback without interrupting the
regular communication ; 2) provide a framework to derive the expected utility region of
power control with partial information and therefore to be able to measure the efficiency
of a given power control scheme ; 3) reconstruct the interference alignment scheme with
partial information by exploiting the power domain feedback, namely covariance matrix of
the received signal ; 4) propose a novel MMSE and maximum a posteriori (MAP) estimate
in interference networks when RSSI feedbacks are available at transmitters ; 5) design a
novel quantization scheme aiming at minimizing the optimality loss in terms of the utility
functions.

We propose a novel technique to estimate local CSI and exchange local CSI in Chapter
2. The main contributions of Chapter 2 are as follows :
I We introduce the important and novel idea of communication in the power domain,
i.e., encoding the message on the transmit power instead of the signal, and decoding by
observing the received signal strength or SINR. We study scenarios with both continuous
power levels and discrete power levels. Two different approaches are proposed in this
chapter. Both can be used in general to exchange any kind of low-rate information
and not only CSI.
I This allows interfering transmitters to exchange information without requiring the
presence of dedicated signaling channels (like direct inter-transmitter communica-
tion), which may be unavailable in real systems (e.g., in conventional Wifi systems or
heterogeneous networks).
I Normal (say high-rate) communication can be done even during the proposed learning
phase with a sub-optimal power control, i.e., communication during the learning time in
the proposed scheme is similar to communication in the convergence time for algorithms
like IWFA.
IWe propose a way to both learn and exchange the local CSI. Global CSI is acquired at
every transmitter by observing the RSSI feedback.
I The proposed technique accounts for the presence of various noise sources which are
non-standard and affect the RSSI measurements (the corresponding modeling is provided
in Sec. II). In contrast, apart from a very small fraction of works (such as [7][22][23]),
IWFA-like algorithms assume noiseless measurements.
I We conduct a detailed performance analysis to assess the benefits of the proposed
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approach for the exploitation phase, which aims at optimizing the sum-rate or sum-
energy-efficiency. As (imperfect) global CSI is available, globally efficient solutions become
attainable.

In Chapter 3, we provide a framework to find power control strategy by exploiting all
the available information (e.g. local CSI realization and global CSI statistic). The main
contributions of Chapter 3 are as follows :
IWe propose a framework to derive the limiting performance of power control with par-
tial information.
IWe exploit the results obtained in [8] to characterize the limiting performance in terms
of long-term utility region.
I The auxiliary variable is presented to define the Pareto frontier of the long-term utility
region and can be helpful to enlarge the utility region when there exist some constraints.
The cardinality of the auxiliary variable can be upper bounded.
I When considering the selfish spectrally efficient power allocation, we provide some
conditions, under which allowing individual rate-maximizing transmitters to spread their
power over the entire spectrum, as opposed to using a single band, may result in sum-rate
performance losses.

In chapter 4, we further explore how power domain feedback can be exploited to
enhance signal domain operations. We have discovered two relevant situations and tech-
niques that achieve this, which are summarized as follows :
I In MIMO cognitive networks, it is shown that the interference alignment scheme pro-
posed by [9] can be reconstructed without knowing the global CSI by exploiting the
covariance matrix of the received signal.
I By exploiting the RSSI, a novel MMSE estimate is proposed and is proved to outper-
form the classical MMSE in terms of the distortion.
I By exploiting the RSSI, a novel MAP estimate is proposed. In contrast with classical
MAP, it can be shown by simulations that the novel MAP reduces the distortion when
the SNR is not low.

We propose different quantization schemes when the two agents have aligned utility
functions or non-aligned utility functions in Chapter 5. The main contributions of Chapter
5 are as follows :
I Instead of considering the distortion or minimum mean square error to design the
quantizer, the final use (utility) of the quantized parameters is considered.
I The benefit from implementing the proposed utility-oriented quantization approach
is illustrated with the problem of energy-efficient and spectrally efficient power control
problem.
I In smart grid networks, when the consumer and the aggregator have non-aligned utility
functions, we propose an algorithm to obtain the novel quantization scheme and provide
several sufficient conditions for the convergence of the algorithm.
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3
Interference Coordination via Power Domain

Channel Estimation

In this chapter, a novel estimation technique is proposed which enables each trans-
mitter to acquire global channel state information (CSI) from the sole knowledge of in-
dividual received signal power measurements ; this makes dedicated feedback or inter-
transmitter signaling channels unnecessary and enables coordination in typical distributed
power control settings. To make this possible, we resort to a completely new technique
whose key idea is to exploit the transmit power levels as symbols to embed information
and the observed interference as a communication channel the transmitters can exploit
to exchange coordination information. Depending on whether the transmit power level
is assumed to be discrete or continuous, two different power modulation schemes are
proposed. Although the used techniques allow any kind of low-rate information to
be exchanged among the transmitters, the focus here is to exchange local CSI. The pro-
posed technique also comprises a phase which allows local CSI to be estimated. Once an
estimate of global CSI is acquired by the transmitters, it can be used to optimize any
utility function which depends on it. While algorithms which use the same type of mea-
surements such as the iterative water-filling algorithm (IWFA) implement the sequential
best-response dynamics (BRD) applied to individual utilities, here, thanks to the availa-
bility of global CSI, the BRD can be e.g., applied to the sum-utility. When comparing
the proposed technique to IWFA, it is seen that significant gains can be obtained. For
instance, the network sum-rate can be improved by 20-30% for typical scenarios. When
comparing discrete and continuous power modulation (by assuming that the transmit-
ters can operate in both transmission modes), it appears that the former, although very
simple, provides better performance provided that the feedback noise level is not too high.
Interestingly, from the technical aspect, the proposed global CSI estimation technique is
even suitable to scenarios where only an ACK/NACK feedback is available. Indeed, it can
be seen as the special case where the received signal power or SINR is quantized with a
single bit.
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CHAPITRE 3. INTERFERENCE COORDINATION VIA POWER DOMAIN
CHANNEL ESTIMATION

Acronym Meaning Definition
ALMA advanced Lloyd-Max algorithm (3.20),(3.21)
CPM continuous power modulation
CSI channel state information
DPM discrete power modulation
EE energy-efficiency
ESNR estimation signal-to-noise ratio (3.35)
ISD inter site distance
IWFA iterative water-filling algorithm [6]
LMA conventional Lloyd-Max algo-

rithm
[12][13]

LSPD least squares estimator (3.5)
in power domain

MEQ maximum entropy quantizer (4.55),(4.56)
MMSEPD minimum mean square error (3.12)

estimator in power domain
MS mobile station
SBS small base station
Team BRD team best response dynamics (3.34),(3.37)

Table 3.1 – Acronyms used in Chapter 3

3.1 Motivation and state of the art

Interference networks are wireless networks which are largely distributed decision-wise
or information-wise. In the case of distributed power allocation over interference networks
with multiple bands, the iterative water-filling algorithm (IWFA) is considered to be one
of the well-known state-of-the art distributed techniques [6][7][15]. IWFA-like distributed
algorithms have at least two attractive features : they only rely on local knowledge e.g.,
the individual signal-to-interference plus noise ratio (SINR), making them distributed
information-wise ; the involved computational complexity is typically low. On the other
hand, one drawback of IWFA and many other distributed iterative and learning algorithms
(see e.g., [16][17]) is that convergence is not always ensured [7] and, when converging, it
leads to a Nash point which is globally inefficient.

One of the key messages of the chapter is to show that it is possible to exploit the
available feedback signal more efficiently than IWFA-like distributed algorithms do. In the
exploration phase 1, instead of using local observations (namely, the individual feedback)
to allow the transmitters to converge to a Nash point, one can use them to acquire
global channel state information (CSI). This allows coordination to be implemented, and

1. IWFA operates over a period which is less than the channel coherence time and it does so in two
steps : an exploration phase during which the transmitters update in a round robin manner their power
allocation vector ; an exploitation phase during which the transmitters keep their power vector constant
at the values obtained at the end of the exploration phase. As for IWFA, unless mentioned otherwise,
we will assume the number of time-slots of the exploitation phase to be much larger than that of the
exploration phase, making the impact of the exploration phase on the average performance negligible.
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Problem statement and proposed technique general description

more precisely global performance criteria or network utility to be optimized during the
exploitation phase. As for complexity, it has to be managed by a proper choice of the
network utility function which has to be maximized.

To obtain global CSI, one of the key ideas of this work is to exploit the transmit
power levels as information symbols and to exploit the interference observed to decode
these information symbols. In the literature of power control and resource allocation,
there exist papers where the observation of interference is exploited to optimize a given
performance criterion. In this respect, an excellent monograph on power control is [2].
Very relevant references include [18] and [19]. In [18], optimal power control for a reversed
network (receivers can transmit) is designed, in which the receiver uses the interference
to estimate the cross channel, assuming perfect exchange of information between the
transmitters. In [19], the authors estimate local CSI from the received signal but in the
signal domain and in a centralized setting. To the best of the authors’ knowledge, there
is no paper where the interference measurement is exploited as a communication channel
the transmitters can utilize to exchange information or local CSI (namely, the channel
gains of the links which arrive to a given receiver), as is the case under investigation. In
fact, we provide a complete estimation procedure which relies on the sole knowledge of the
individual received signal strength indicator (RSSI). The proposed approach is somewhat
related to the Shannon-theoretic work on coordination available in [20][21], which concerns
two-user interference channels when one master transmitter knows the future realizations
of the global channel state.

It is essential to insist on the fact that the purpose of the proposed estimation scheme is
not to compete with conventional estimation schemes such as [11] (which are performed in
the signal-domain), but rather, to evaluate the performance of an estimation scheme that
solely relies on information available in the power-domain. Indeed, one of the key results
of the chapter is to prove that global CSI (without phase information) can be acquired
from the sole knowledge of a given feedback which is the SINR or RSSI feedback. The
purpose of such a feedback is generally to adjust the power control vector or matrix but,
to our knowledge, it has not been shown that it also allows global CSI to be recovered,
and additionally, at every transmitter. This sharply contrasts with conventional channel
estimation techniques which operate in the signal domain and use a dedicated channel
for estimation.

3.2 Problem statement and proposed technique general
description

Channel and communication model : The system under consideration comprises
K ≥ 2 pairs of interfering transmitters and receivers ; each transmitter-receiver pair will
be referred to as a user. Our technique directly applies to the multi-band case, and this
has been done in the numerical section. In particular, we assess the performance gain
which can be obtained with respect to the IWFA. However, for the sake of clarity and
ease of exposition, we focus on the single-band case, and explain in the end of Sec. IV, the
modifications required to treat the multi-band case. From this point on, we will therefore
assume the single-band case unless otherwise stated.

In the setup under study, the quantities of interest for a transmitter to control its
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CHANNEL ESTIMATION

Main notations
Symbol Meaning
gji Channel gain from Transmitter j to Receiver i
g̃ji Estimate of gji available at Transmitter i
g̃kji Estimate of gji available at Transmitter k 6= i

g
i

= (g1i, ..., gKi)
T Local CSI for Receiver i

g̃i
j

= (g̃i1j, ..., g̃
i
Kj)

T Estimate of the local CSI of Receiver j available
at Transmitter i

G Global channel matrix

G̃
k

Estimate of G available at Transmitter k
ωi(t) The received signal power at Receiver i on time-

slot t
ω̃i(t) The observed received signal power at Transmit-

ter i on time-slot t

ω̃ji (t) The observed received signal power at Transmit-
ter i on time-slot t when Transmitter j is active

Table 3.2 – Main notations of Chapter 2

power are given by the channel gains. The channel gain of the link between Transmitter
i ∈ {1, ..., K} and Receiver j ∈ {1, ..., K} is denoted by gij = |hij|2 (See Table I), where
hij may typically be the realization of a complex Gaussian random variable, if Rayleigh
fading is considered. In several places in this chapter we will use the K×K channel matrix
G whose entries are given by the channel gains gij, i and j respectively representing the
row and column indices of G. Each channel gain is assumed to obey a classical block-
fading variation law. More precisely, channel gains are assumed to be constant over each
transmitted data frame. A frame comprises TI+TII+TIII consecutive time-slots where Tm ∈
N, m ∈ {I, II, III}, corresponds to the number of time-slots of Phase m of the proposed
procedure ; these phases are described further. Transmitter i, i ∈ {1, ..., K}, can update
its power from time-slot to time-slot. The corresponding power level is denoted by pi and
is assumed to be subject to power limitation as : 0 ≤ pi ≤ Pmax. The K−dimensional
column vector formed by the transmit power levels will be denoted by p = (p1, ..., pK)T,
T standing for the transpose operator.
Feedback signal model : We assume the existence of a feedback mechanism which
provides each transmitter, an image or noisy version of the power received at its intended
receiver for each time-slot. The power at Receiver i on time-slot t is expressed as

ωi(t) = giipi(t) + σ2 +
∑
j 6=i

gjipj(t). (3.1)

where σ2 is the receive noise variance and pi(t) the power of Transmitter i on time-slot
t. We assume that the following procedure is followed by the transmitter-receiver pair.
Receiver i : measures the received signal (RS) power ωi(t) at each time slot and quantizes
it with N bits (the RS power quantizer is denoted by QRS) ; sends the quantized RS power
ω̂i(t) as feedback to Transmitter i through a noisy feedback channel. After quantization,
we assume that for all i ∈ {1, ..., K}, ω̂i(t) ∈ W , where W = {w1,w2, . . . ,wM} such that
0 ≤ w1 < w2 < · · · < wM and M = 2N . Transmission over the feedback channel and the
dequantization operation are represented by a discrete memoryless channel (DMC) whose
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conditional probability is denoted by Γ. The distorted and noisy version 2 of ωi(t), which
is available at Transmitter i, is denoted by ω̃i(t) ∈ W ; the quantity ω̃i(t) will be referred
to as the received signal strength indicator (RSSI). With these notations, the probability
that Transmitter i decodes the symbol w` given that Receiver i sent the quantized RS
power wk equals Γ(w`|wk).

In contrast with the vast majority of works on power control and especially those
related to the IWFA, we assume the feedback channel to be noisy. Note also that these
papers typically assume SINR feedback whereas the RSSI is considered here. The reasons
for this is fourfold : 1) if Transmitter i knows pi(t), gii(t), and has SINR feedback, this

amounts to knowing its RS power since ωi(t) = giipi(t)

(
1 +

1

SINRi(t)

)
where

SINRi(t) =
giipi(t)

σ2 +
∑
j 6=i

gjipj(t)
; (3.2)

2) Assuming an RS power feedback is very relevant in practice since some existing wireless
systems exploit the RSSI feedback signal (see e.g., [24]) ; 3) The SINR is subject to higher
fluctuations than the RS power, which makes SINR feedback less robust to distortion and
noise effects and overall less reliable ; 4) As a crucial technical point, it can be checked that
using the SINR as the transmitter observation leads to complex estimators [25], while the
case of RS power observations leads to a simple and very efficient estimation procedure,
as shown further in this chapter.

Note that, here, it is assumed that the RS power is quantized and then transmitted
through a DMC, which is a reasonable and common model for wireless communications.
Another possible model for the feedback might consist in assuming that the receiver sends
directly received signal power over an AWGN channel ; depending on how the feedback
channel gain fluctuations may be accounted for, the latter model might be more relevant
and would deserve to be explored as well (?).

Proposed technique general description : The general power control problem of
interest consists in finding, for each realization of the channel gain matrix G, a power
vector which maximizes a network utility of the form u(p; G). For this purpose, each
transmitter is assumed to have access to the realizations of its RSSI over a frame. One of
the key ideas of this work is to exploit the transmit power levels as information symbols
and exploit the observed interference (which is observed through the RSSI or SINR feed-
back) for inter-transmitter communication. The corresponding implicit communication
channel is exploited to acquire global CSI knowledge namely, the matrix G and there-
fore to perform operations such as the maximization of u(p; G). The process of achieving
the desired power control vector is divided into three phases (see Fig. 3.1). In Phase I,
a sequence of power levels which is known to all the transmitters is transmitted (simi-
lar to a training sequence in classical channel estimation but in the power domain), and
Transmitter i estimates its own channel gains (i.e., g1i, g2i, ..., gKi) by exploiting the noisy
RSSI feedback ; we refer to the corresponding channel gains as local CSI. In Phase II, each
transmitter informs the other transmitters about its local CSI by using power modulation.

2. Note that, for the sake of clarity, it is assumed here that the RS power quantizer and DMC are
independent of the user index, but the proposed approach holds in the general case.
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TI time-slots TI I time-slots TI I I time-slots
time

Transmission
of known
power levels

RSSI mea-
surements
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according to
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Local CSI is
quantized and
power modu-
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RSSI mea-
surements

Power lev-
els decoding
according to
RSSI

Demodulation

Global CSI

Network utility
maximization

Power control
vector

Phase I : Phase II : Phase III :

Local CSI estimation Local CSI exchange Exploitation

Figure 3.1 – The flowchart of the proposed scheme
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By decoding the modulated power, each transmitter can estimate the channel gains of
the other users and thus, at the end of Phase II each transmitter has its own estimate of
the global CSI G ; the situation where transmitters have a non-homogeneous or different
knowledge of global CSI is referred to as a distributed CSI scenario in [31]. In Phase III,
each transmitter can then exploit global CSI to maximize (possibly in a sub-optimal man-
ner) the network utility of interest. In the numerical part, we make specific and classical
choices for the network utility namely, we consider the network sum-rate and network
sum-energy-efficiency.

3.3 Local CSI estimation with power domain feedback

Phase I comprises TI time-slots. The aim of Phase I is to allow Transmitter i, i ∈
{1, ..., K}, to acquire local CSI from the TI observations ω̃i(1), ..., ω̃i(TI) which are available
thanks to the feedback channel between Receiver i and Transmitter i. Obviously, if local
CSI is already available e.g., because another estimation mechanism is available, Phase
I can be skipped and one can directly proceed with the local CSI exchange among the
transmitters namely, performing Phase II.

For every time-slot of Phase I, each transmitter transmits at a prescribed power level
which is assumed to be known to all the transmitters. One of the key observations we
make in this chapter is that, when the channel gains are constant over several time-slots,
it is possible to recover local CSI from the RSSI or SINR ; this means that, as far as
power control is concerned, there is no need for additional signaling from the receiver for
local CSI acquisition by the transmitter. Thus, the sequences of power levels in Phase
I can be seen as training sequences. Technically, a difference between classical training-
based estimation and Phase I is that estimation is performed in the power domain and
over several time-slots and not in the symbol domain (symbol duration is typically much
smaller than the duration of a time-slot) within a single time-slot. Also note that working
in the symbol domain would allow one to have access to hij but the phase information
on the channel coefficients is irrelevant for the purpose of maximizing a utility function
of the form u(p; G). Another technical difference stems from the fact that the feedback
noise is not standard, which is commented more a little further.

By denoting (pi(1), ..., pi(TI)), i ∈ {1, ..., K}, the sequence of training power levels used
by Transmitter i, the following training matrix can be defined :

PI =

 p1(1) . . . pK(1)
...

...
...

p1(TI) . . . pK(TI)

 . (3.3)

With the above notations, the noiseless RS power vector ωi = (ωi(1), ..., ωi(TI))
T can be

expressed as :

ωi = PIgi + σ21. (3.4)

where g
i

= (g1i, .., gKi)
T and 1 = (1, 1, ..., 1)T.

To estimate the local CSI g
i

from the sole knowledge of the noisy RS power vector or
RSSI ω̃i we propose to use the least-squares (LS) estimator in the power domain (PD),
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abbreviated as LSPD, to estimate the local CSI as :

g̃LSPD
i

=
(
PT

I PI

)−1
PT

I

(
ω̃i − σ21

)
. (3.5)

where σ2 is assumed to be known from the transmitters since it can always be estimated
through conventional estimation procedures (see e.g., [26]). Using the LSPD estimate for
local CSI therefore assumes that the training matrix PI is chosen to be pseudo-invertible.
A necessary condition for this is that the number of time-slots used for Phase I verifies :
TI ≥ K. Using a diagonal training matrix allows this condition to be met and to simplify
the estimation procedure.

It is known that the LSPD estimate may coincide with the maximum likelihood (ML)
estimate. This holds for instance when the observation model of the form ω̃i = ωi + z
where z is an independent and additive white Gaussian noise. In the setup under inves-
tigation, z represents both the effects of quantization and transmission errors over the
feedback channels and does not meet neither the independence nor the Gaussian assump-
tion. However, we have identified a simple and sufficient condition under which the LSPD
estimate maximizes the likelihood P (ω̃i|gi). This is the purpose of the next proposition.

Proposition 3.3.1. Denote by GML
i the set of ML estimates of g

i
, then we have

(i) GML
i = arg max

g
i

TI∏
t=1

Γ
(
ω̃i (t)

∣∣∣QRS

(
eTt PIgi + σ2

))
;

(ii) g̃LSPD
i

∈ GML
i when for all `, arg max

k
Γ(w`|wk) = `;

where et is a column vector whose entries are zeros except for the tth entry which equals
1.

Proof : From Sec. 2.2, we have ω̂i ∈ W and ω̃i ∈ W , where Ω is a discrete set.

Therefore, we can rewrite the likelihood probability Pr
(
ω̃i|gi

)
as follows

Pr
(
ω̃i|gi

)
(a)
=

MTI∑
m=1

Pr (ω̃i|ω̂i = wm) Pr
(
ω̂i = wm|gi

)
(b)
=

MTI∑
m=1

Pr
(
ω̂i = wm|gi

) TI∏
t=1

Γ (ω̃i (t) |ω̂i (t))

(c)
=

TI∏
t=1

Γ
(
ω̃i (t) |QRS

(
eTt PIgi + σ2

)) (3.6)

where et is a column vector whose entries are zeros except for the tth. In (3.6), (a) holds
as the estimation and feedback process g

i
to ω̂i to ω̃i (represented in Fig. 1) is Markovian,

(b) holds because the DMC is separable and (c) holds because Pr
(
ω̂i|gi

)
is a discrete

delta function that is zero everywhere except when QRS

(
PIgi

)
= ω̂i.

From (3.6), the set of the ML estimators can now be written as

GML
i =

{
arg max

g
i

T1∏
t=1

Γ
(
ω̃i (t) |QRS

(
eTt PIgi + σ2

))}
(3.7)
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which is the first claim of our proposition. Now, we look at the LS estimator, which is
know from (3.5) to be

PIg
LSPD

i
+ σ21 = ω̃i (3.8)

or equivalently :
eTt PIg

LSPD

i
+ σ2 = ω̃i (t) (3.9)

If for all `, arg max
k

Γ(w`|wk) = `, then the ML set can be evaluated based on (3.7) as

GML
i =

{
g
i
|∀t, QRS

(
eTt PIgi + σ2

)
= ω̃i (t)

}
(3.10)

Therefore, we observe that if GML
i is given as in (3.10), then from (3.9), we have gLSPD

i
∈

GML
i , our second claim. �

The sufficient condition corresponding to (ii) is clearly met in classical practical sce-
narios. Indeed, as soon as the probability of correctly decoding the sent quantized RS
power symbol (which is sent by the receiver) at the transmitter exceeds 50%, the above
condition is verified. It has to be noted that GML

i is not a singleton set in general, which in-
dicates that even if the LSPD estimate maximizes the likelihood, the set GML

i will typically
comprise a solution which can perform better e.g., in terms of mean square error.

If some statistical knowledge on the channel gains is available, it is possible to further
improve the performance of the channel estimate. Indeed, when the probability of g

i
is

known it becomes possible (up to possible complexity limitations) to minimize the mean
square error E‖ĝ

i
−g

i
‖2. The following proposition provides the expression of the minimum

mean square error (MMSE) estimate in the power domain (PD) .

Proposition 3.3.2. Assume that ∀i ∈ {1, ..., K}, ω̂i and ω̃i belong to the set
Ω = {w1, ...,wMTI}, where w1 = (w1,w1, ...,w1)

T, w2 = (w1,w1, ...,w2)
T,..., wMTI =

(wM ,wM , ...,wM)T (namely, vectors are ordered according to the lexicographic order and
have TI elements each). Define Gm as

Gm :=
{
x ∈ RK+ : QRS

(
PIx+ σ21

)
= wm

}
. (3.11)

Then the MMSE estimator in the power domain expresses as :

g̃MMSEPD

i
=

MTI∑
m=1

TI∏
t=1

Γ (ω̃i(t)|wm(t))

∫
Gm

φi

(
g
i

)
g
i
dg1i...dgKi

MTI∑
m=1

TI∏
t=1

Γ (ω̃i(t)|wm(t))

∫
Gm

φi

(
g
i

)
dg1i...dgKi

, (3.12)

where φi represents the probability density function (p.d.f.) of g
i

and wm(t) is the t-th
element of wm.

Proof : After the RSSI quantization, the MTI different levels of ω̂i or ω̃i are
w1,w2, ..,wMTI forming the set Ω.

Define by h : Ω → G which maps the observed RSSI feedback to a channel estimate,
where G := {g

1
, g

2
, ..., g

MTI
}, such that h(wm) = g

m
. That is, when transmitter i observes

the RSSI feedback ω̃i to be wm, local channel estimate g̃
i

is g
m

.
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Based on the above definitions, we have that

E
[
|g̃
i
− g

i
|2
]

=
MTI∑
n=1

∫
x∈RK≥0

Pr
(
g̃
i

= g
n
|g
i

= x
)
φi (x) |g

n
− x|2dx (3.13)

The term Pr
(
g̃
i

= g
n
|g
i

= x
)

can be further expanded as

Pr
(
g̃
i

= g
n
|g
i

= x
)

=
∑MTI

`=1

∑MTI

m=1 Pr
(
g̃
i

= g
n
, ω̃i = w`, ω̂i = wm|gi = x

)
=
∑MTI

`=1

∑MTI

m=1 Pr
(
g̃
i

= g
n
|ω̃i = w`

)
Pr (ω̃i = w`|ω̂i = wm) Pr

(
ω̂i = wm|gi = x

)
(3.14)

Now we know that the mapping h() is deterministic and results in h(wm) = g
m

.

Therefore, Pr
(
g̃
i

= g
n
|ω̃i = w`

)
= δn,`, where δn,` is the Kronecker delta function such

that δn,` = 0 when n 6= ` and δn,` = 1 when n = `. Additionally, we also know that

Pr (ω̃i = w`|ω̂i = wm) =
∏TI

t=1 Γ (w`(t)|wm(t)) by definition (where wm(t) is the t-th com-
ponent of wm) . This results in (3.14) being simplified to

Pr
(
g̃
i

= g
n
|g
i

)
=

MTI∑
m=1

TI∏
t=1

Γ (wn(t)|wm(t)) Pr
(
ω̂i = wm|gi = x

)
(3.15)

Recall that ω̂i = QRS

(
PIgi

)
by definition of the quantizer. Define by

Gm :=
{
x ∈ RK≥0 : QRS

(
PIx+ σ21

)
= wm

}
(3.16)

resulting in

Pr
(
ω̂i = wm|gi = x

)
=

{
1 if x ∈ Gm
0 if x /∈ Gm

(3.17)

Now, we can simplify (3.13) using (3.17) and (3.15) into

E
[
|g̃
i
− g

i
|2
]

=

MTI∑
n=1

MTI∑
m=1

T1∏
t=1

Γ (wn(t)|wm(t))

∫
Gm

φi (x) |g
n
− x|2dx

(3.18)

For a fixed DMC, we can find the gMMSE
i

which will minimize the distortion by taking
the derivative of the distortion over g

n
:

∂E
[
|g̃
i
− g

i
|2
]

∂g
n

= 2

MTI∑
m=1

T1∏
t=1

Γ (wn(t)|wm(t))

∫
Gm

φi (x)
(

g
n
− x
)

dx (3.19)

To minimize distortion, this derivative should be equal to zero. The g
n

minimizing the
distortion is by definition, the MMSE of the channel given ω̃i = wn. Therefore by rear-
ranging (3.19), we can find the expression for the MMSE given in the proposition III.2.
�

In Sec. 2.6, we will compare the LSPD and MMSEPD performance in terms of es-
timation SNR, sum-rate, and sum-energy-efficiency. While the MMSEPD estimate may
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g
i

Phase I−−−−−→ g̃
i

Quantizer−−−−−−→ QII
i (g̃

i
)

Modulator−−−−−−−→ pII
i

↓ Eq.(1)

g̃j
i

Dequantizer&

Demodulator
←−−−−−−−− p̃II

i

Decoder ]j, j 6=i←−−−−−−−−−−−−−−−−−− ω̃II
j

Figure 3.2 – The figure summarizes the overall processing chain for the CSI

provide a quite significant gain in terms of MSE over the LSPD estimate, it also has a
much higher computational cost. Simulations reported in Sec. V will exhibit conditions
under which choosing the LSPD solution may involve a marginal loss w.r.t. the MMSEPD
solution e.g., when the performance is measured in terms of sum-rate. Therefore the choice
of the estimator can be made based on the computation capability, the choice of utility for
the system under consideration, or the required number of time-slots (MMSEPD allows
for a number of time-slots which is less than K, whereas this is not possible for LSPD).
Note that some refinements might be brought to the proposed estimator e.g., by using a
low-rank approximation of the channel vector (see e.g., [28]), which is particularly relevant
if the channel appears to possess some sparseness.

3.4 Local CSI exchange with discrete power levels (Dis-
crete Power Modulation)

Phase II comprises TII time-slots. The aim of Phase II is to allow Transmitter i,
i ∈ {1, ..., K}, to exchange its knowledge about local CSI with the other transmitters ;
the corresponding estimate will be merely denoted by g̃

i
= (g̃1i, ..., g̃Ki)

T, knowing that it
can refer either to the LSPD or MMSEPD estimate. The proposed procedure is as follows
and is also summarized in Fig. 3. Transmitter i quantizes the information g̃

i
through a

channel gain quantizer called QII
i and maps the obtained bits (through a modulator) into

the sequence of power levels pII
i

= (pi(TI+1), ..., pi(TI+TII))
T. From the RSSI observations

ω̃II
j = (ω̃j(TI+1), ..., ω̃j(TI+TII))

T, Transmitter j (j 6= i) can estimate (through a decoder)
the power levels used by Transmitter i. To facilitate the corresponding operations, we as-
sume that the used power levels in Phase II have to lie in the reduced set P = {P1, ..., PL}
with ∀` ∈ {1, ..., L}, P` ∈ [0, Pmax]. The estimate Transmitter j has about the channel

vector g
i

will be denoted by g̃j
i

=
(
g̃j1i, ..., g̃

j
Ki

)T
. The corresponding channel matrix esti-

mate is denoted by G̃j. In what follows, we describe the proposed schemes for the three
operations required to exchange local CSI namely, quantization, power modulation, and
decoding. The situation where transmitters have different estimates of the same channel
is referred to as a distributed CSI scenario in [31]. Assessing analytically the impact of
distributed CSI on the sum-rate or sum-energy-efficiency is beyond the scope of this chap-
ter but constitutes a very relevant extension of it (?) ; only simulations accounting for the
distributed CSI effect will be provided here.

It might be noticed that the communication scenario in Phase II is similar to the X-
channel scenario in the sense that each transmitter wants to inform the other transmitters
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(which play the role of receivers) about its local CSI, and this is done simultaneously.
All the available results on the X-channel exploit the channel structure (e.g., the phase
information) to improve performance (e.g., by interference alignment [27] or filter design).
Therefore, knowing how to exploit the X-channel scenario in the setup under consideration
(which is in part characterized by the power domain operation) in this chapter, appears
to a relevant extension (?).

Channel gain quantization operation QII
i : The first step in Phase II is for each

of the transmitters to quantize the K−dimensional vector g̃
i
. For simplicity, we assume

that each element of the real K−dimensional vector g̃
i

is quantized by a scalar quantizer
into a label of NII bits. This assumption is motivated by low complexity but also by the
fact that the components of g̃

i
are independent in the most relevant scenarios of interest.

For instance, if local CSI is very well estimated, the estimated channel gains are close
to the actual channel gains, which are typically independent in practice. Now, in the
general case of arbitrary estimation noise level, the components of g̃

i
will be independent

when the training matrix PI is chosen to be diagonal, which is a case of high interest
and is motivated further in Sec. V. Under the channel gain (quasi-) independency, vector
quantization would bring (almost) no performance improvement. The scalar quantizer
used by Transmitter i to quantize g̃ji is denoted by QII

ji. Finding the best quantizer in
terms of ultimate network utility (e.g., in terms of sum-rate or sum-energy-efficiency)
does not appear to be straightforward (?). We present two possible quantization schemes
in this section.

A possible, but generally sub-optimal approach, is to determine a quantizer which
minimizes distortion. The advantage of such approach is that it is possible to express
the quantizer and it leads to a scheme which is independent of the network utility ; this
may be an advantage when the utility is unknown or changing. A possible choice for
the quantizer QII

i is to use the conventional version of the Lloyd-Max algorithm (LMA)
[12]. However, this algorithm assumes perfect knowledge of the information source to be
quantized (here this would amount to assuming the channel estimate to be noiseless) and
no noise between the quantizer and the dequantizer (here this would amount to assuming
perfect knowledge of the RS power). The authors of [76] proposed a generalized version
of the Lloyd-Max algorithm for which noise can be present both at the source and the
transmission but the various noise sources are assumed to verify standard assumptions
(such as independence of the noise and the source), which are not verified in the setting
under investigation ; in particular, the noise in Phase I is the estimation noise, which
is correlated with the transmitted signal. Deriving the corresponding generalized Lloyd-
Max algorithm can be checked to be a challenging task, which is left as an extension of
the technical solutions proposed here (?). Rather, we will provide here a special case of
the generalized Lloyd-Max algorithm, which is very practical in terms of computational
complexity and required knowledge.

The version of the Lloyd-Max algorithm we propose will be referred to as ALMA
(advanced Lloyd-Max algorithm). ALMA corresponds to the special case (of the most
generalized version mentioned previously) in which the algorithm assumes noise on the
transmission but not at the source (although the source can be effectively noisy). This
setting is very well suited to scenarios where the estimation noise due to Phase I is
negligible or when local CSI can be acquired reliably by some other mechanism. In the
numerical part, we can observe the improvements of the proposed ALMA with respect
to the conventional LMA. Just like the conventional LMA, ALMA aims at minimizing
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distortion by iteratively determining the best set of representatives and the best set of
cells (which are intervals here) when one of the two is fixed. The calculations for obtaining
the optimal representatives and partitions are given in Appendix A for both the special
case of no source noise as well as for the general case. Solving the general case can be seen
from Appendix A to be computationally challenging.

To comment on the proposed algorithm which is given by the pseudo-code of Algorithm
1, a few notations are in order. We denote by q ∈ {1, ..., Q} the iteration index (where Q is
the upper bound on the number of iterations) and define R = 2NII . For each channel gain

estimate g̃ji to be quantized, we denote by vji =
{
v
(q)
ji,1, ..., v

(q)
ji,R

}
the set of representatives

and by
{
u
(q)
ji,1, ..., u

(q)
ji,R+1

}
(with u

(q)
ji,1 = 0 and u

(q)
ji,R+1 = ∞) the set of interval bounds

which defines how the set g̃ji lies in (namely [0,+∞)) is partitioned. At each iteration,
the choice of the set of representatives or intervals aims at minimizing the end-to-end
distortion E|g̃ji − gji|2. This minimization operation requires some statistical knowledge.

Indeed, the probability that the dequantizer decodes the representative v
(q)
ji,r given that

v
(q)
ji,n has been transmitted needs to be known ; this probability is denoted by πji(r|n) and

constitutes one of the inputs of Algorithm 1. The second input of Algorithm 1 is the
p.d.f. of gji which is denoted by φji. The third input is given by the initial choice for the

quantization intervals that is, the set
{
u
(0)
ji,1, ..., u

(0)
ji,R+1

}
. Convergence of ALMA to a global

minimum point is not guaranteed and finding sufficient condition for global convergence is
known to be non-trivial. However, local convergence is guaranteed ; an elegant and general
argument for this can be found in [30]. Conducting a theoretical analysis in which global
convergence is tackled would constitute a significant development of the present analysis
(?), which is here based on typical and realistic simulation scenarios.

At this point two comments are in order. First, through (3.20)-(3.21), it is seen that
ALMA relies on some statistical knowledge which might not always be available in prac-
tice. This is especially the case for πji and γji since the knowledge of channel distribution
information (CDI, i.e., φji) is typically easier to be obtained. The CDI may be obtained
by storing the estimates obtained during past transmissions and forming empirical means
(possibly with a sliding window). If the CDI is time-varying, a procedure indicating to the
terminals when to update the statistics might be required. Second, if we regard Phase II
as a classical communication process, then the amount of information sent by the source
is maximized when the source signal is uniformly distributed. It turns out minimizing
the (end-to-end) distortion over Phase II does not involve this. Motivated by these two
observations we provide here a second quantization scheme, which is simple but will be
seen to perform quite well in the numerical part. We will refer to this quantization scheme
as maximum entropy quantizer (MEQ). For MEQ, the quantization interval bounds are
fixed once and for all according to :

∀r ∈ {1, ..., R},∀(j, i) ∈ {1, ..., K}2,
∫ uji,r+1

uji,r

φji(gji)dgji =
1

R
. (3.22)

The representative of the interval [uji,r, uji,r+1] is denoted by vji,r and is chosen to be its
centroid :

vji,r =

∫ uji,r+1

uji,r

gjiφji(gji)dgji∫ uji,r+1

uji,r

φji(gji)dgji

. (3.23)
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Inputs : πji, φji (gji),
{
u
(0)
ji,1, ..., u

(0)
ji,R+1

}
Outputs :

{
u?ji,1, ..., u

?
ji,R+1

}
,
{
v?ji,1, ..., v

?
ji,R+1

}
Initialization : Set q = 0. Initialize the quantization intervals according to{
u
(0)
ji,1, ..., u

(0)
ji,R+1

}
. Set u

(−1)
ji,r = 0 for all r ∈ {1, ..., R}.

while max
r
||u(q)ji,r − u

(q−1)
ji,r || > δ and q < Q do

Update the iteration index : q ← q + 1.
For all r ∈ {1, 2, .., R} set

v
(q)
ji,r ←

R∑
n=1

πji (r|n)

∫ u
(q−1)
ji,n+1

u
(q−1)
ji,n

gjiφji(gji)dgji

R∑
n=1

πji (r|n)

∫ u
(q−1)
ji,n+1

u
(q−1)
ji,n

φji(gji)dgji

. (3.20)

For all r ∈ {2, 3, .., R} set

u
(q)
ji,r ←

R∑
n=1

[πji (n|r)− πji (n|r − 1)]
(
v
(q)
ji,n

)2
2

R∑
n=1

[πji (n|r)− πji (n|r − 1)] v
(q)
ji,n

. (3.21)

end

∀r ∈ {2, ..., R}, u?ji,r = u
(q)
ji,r, u

?
ji,1 = 0 and u?ji,R+1 =∞

∀r ∈ {1, ..., R}, v?ji,r = v
(q)
ji,r

Algorithm 1: Advanced Lloyd-Max algorithm (ALMA)

We see that each representative has the same probability to occur, which maximizes the
entropy of the quantizer output, hence the proposed name. To implement MEQ, only the
knowledge of φji is required. Additionally, the complexity involved is very low.

Power modulation : To inform the other transmitters about its knowledge of local
CSI, Transmitter i maps the K labels of NII bits produced by the quantizer QII

i to a
sequence of power levels (pi(TI + 1), pi(TI + 2), . . . , pi(TI + TII)). Any one-to-one mapping
might be used a priori. Although the new problem of finding the best mapping for a given
network utility arises here and constitutes a relevant direction to explore (?), we will
not only develop this here. Rather, our main objective here is to introduce this problem
and illustrate it clearly for a special case which is treated in the numerical part. To this
end, assume Phase II comprises TII = 2 time-slots, K = 2 users, and that the users only
exploit L = 2 power levels during Phase II say P = {Pmin, Pmax}. Further assume 1−bit
quantizers, which means that the quantizers QII

ji produce binary labels. For simplicity,
we assume the same quantizer Q is used for all the four channel gains g11, g12, g21, and
g22 : if gij ∈ [0, µ] then the quantizer output is denoted by gmin ; if gij ∈ (µ,+∞) then the
quantizer output is denoted by gmax. Therefore a simple mapping scheme for Transmitter 1
(whose objective is to inform Transmitter 2 about (g11, g21)) is to choose p1(TI +1) = Pmin

if Q(g11) = gmin and p1(TI+1) = Pmax otherwise ; and p1(TI+2) = Pmin if Q(g21) = gmin and
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p1(TI + 2) = Pmax otherwise. Therefore, depending on the p.d.f. of gij, the value of µ, the
performance criterion under consideration, a proper mapping can chosen. For example,
to minimize the energy consumed at the transmitter, using the minimum transmit power
level Pmin as much as possible is preferable ; thus if Pr(Q(g11) = gmin) ≥ Pr(Q(g11) = gmax),
the power level Pmin will be associated with the minimum quantized channel gain that is
Q(g11) = gmin.

Power level decoding : For every time-slot t ∈ {TI + 1, ..., TI +TII} the power levels
are estimated by Transmitter i as follows

p̃−i(t) ∈ arg min
p−i∈P

K−1

∣∣∣∣∣∑
j 6=i

pj g̃ji − (ω̃i(t)− pi(t)g̃ii − σ2)

∣∣∣∣∣, (3.24)

where p−i = (p1, .., pi−1, pi+1, .., pK). As for every j, g̃ji is known at Transmitter i, the
above minimization operation can be performed. It is seen that exhaustive search can be
performed as long as the number of tests, which is LK−1, is reasonable. For this purpose,
one possible approach is to impose the number of power levels which are exploited over
Phase II to be small. In this respect, using binary power over Phase II is not only relevant
regarding complexity issues but also in terms of robustness against the various possible
sources of noise. As for the number of interfering users using the same channel
(meaning operating on the same frequency band, at the same period of time, in the
same geographical area), it will typically be small and does not exceed 3 or 4
in real wireless systems. More generally, this shows that the proposed technique can
accommodate more than 4 users in total ; For example, if we have 12 bands, having
48 = 12 × 4 users would be manageable by applying the proposed technique for each
band. As our numerical results indicate, using (3.24) as a decoding rule to find the power
levels of the other transmitters generally works very well for K = 2. When the number
of users is higher, each transmitter needs to estimate K − 1 power levels with only one
observation equation, which typically induces a non-negligible degradation in terms of
symbol error rate. In this situation, Phase II can be performed by scheduling the activity
of all the users, such that only 2 users are active at any given time-slot in Phase II.
Once all pairs of users have exchanged information on their channel states, Phase II is
concluded.

Remark 1 (required number of time-slots). The proposed technique typically requires
K + K = 2K time-slots for the whole exploration phase (Phases I and II). It therefore
roughly require the same amount of resources as IWFA, which indeed needs about 2K
or 3K SINR samples to converge to Nash equilibrium. While channel acquisition may
seem to take some time, please note that regular communication is uninterrupted and
occurs in parallel. As already mentioned, the context in which the proposed technique
and IWFA are the most suited is a context where the channel is constant over a large
number of time-slots, which means that the influence of the exploration phase on the
average performance is typically negligible. Nonetheless, some simulations will be provided
to assess the optimality loss induced by using power levels to convey information.

Remark 2 (extension to the multi-band scenario). As explained in the beginning of this
chapter, Phases I and II are described for the single-band case, mainly for clarity reasons.
Here, we briefly explain how to adapt the algorithm when there are multiple bands. In
Phase I, the only difference exists in choosing the training matrix. With say S bands to
transmit, for each band s ∈ {1, ..., S}, the training matrix Ps

I has to fulfill the constraint
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s=1 p
s
i (t) ≤ Pmax where psi is the power Transmitter i allocates to band s. In Phase II,

each band performs in parallel like the single-band case. Since there are power constraints
for each transmitter, the modulated power should satisfy

∑S
s=1 p

s
i (t) ≤ Pmax.

Remark 3 (extension to the multi-antenna case). To perform operation such as beam-
forming, the phase information is generally required. The proposed local CSI estimation
techniques (namely, for Phase I) do not allow the phase information or the direction
information to be recovered ; Therefore, another type of feedback should be considered
for this. However, if another estimation scheme is available or used for local CSI acquisition
and that scheme provides the information phase, then the techniques proposed for local
CSI exchange (namely, for Phase II) can be extended. An extension which is more in line
with the spirit of the manuscript is given by a MIMO interference channel for which each
transmitter knows the interference-plus-noise covariance matrix and its own channel. This
is the setup assumed by Scutari et al in their work on MIMO iterative water-filling [15].

Remark 4 (type of information exchanged). One of the strengths of the proposed ex-
change procedure is that any kind of information can be exchanged. However, since SINR
or RSSI is used as the communication channel, this has to be at a low-rate which is given
by the frequency at which the power control levels are updated and the feedback samples
sent.

3.5 Local CSI exchange with continuous power levels
(Continuous Power Modulation)

In this section, we discuss a solution to exploit continuous power levels whenever
they are allowed under certain conditions : local CSI is well estimated and the RSSI
quality is good. Then we can devise a much simpler solution by using continuous power
modulation (CPM). The technique proposed here differs from the preceding section since
here quantizing local CSI is not necessary and decoding scheme can thus be simpler and
more efficient in the continuous case. Apart from the notations in Sec 2.2, here the channel
gain gij is assumed to lie in the interval [gmin

ij , gmax
ij ]. The key feature of the proposed

technique is to adjust the power level of Transmitter i on time-slot t ∈ {1, ..., T} as the
linear combination of the channel gains to be exchanged :

pi(t) =
K∑
j=1

aji(t)g̃ji (3.25)

where

aji(t) = aji(t)
Pmax

gmax
ji

, aji(t) ≥ 0,
K∑
j=1

aji(t) = 1. (3.26)

Therefore, the power levels used during the exploration phase conveys information about
local CSI. It turns out that local CSI information can be recovered, provided the interfe-
rence is observed either through RSSI or SINR feedback. Here we consider RSSI feedback,
which has the advantage of directly leading to linear estimators. As defined in Sec 2.2,
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the RS power at Receiver i on time-slot t writes as follows :

ωi(t) =
K∑
j=1

gjipj(t) + σ2 (3.27)

where σ2 is the receive noise variance. But in a real wireless system the RS power is
quantized and transmitted through a noisy feedback channel (the corresponding quantizer
and channel will be specified in Sec. 2.6). Thus Transmitter i has only access to an
observed or a noisy version of ωi(t), which is denoted by ω̃i(t). To facilitate and make more
accurate the local CSI exchange procedure, the used power levels during the exploration
phase are imposed to follow a time-sharing rule. This means that during the exploration
phase the power level of Transmitter i, is chosen either to follow (3.25) or to be zero.
Assuming time-sharing for the exploration phase, Transmitter j is only active when t ∈
{tj + 1, tj + 2, . . . , tj +K} with tj := j(K − 1) . The observed RS power at Transmitter i
when Transmitter j is active expresses as :

ω̃ji (t) = ωji (t) + zji,1(t)

= gjipj(t) + σ2 + zji,1(t)

= g̃jipj(t) + σ2 + zji,1(t) + zji,2(t)

= g̃jipj(t) + σ2 + zji (t)

(3.28)

where zji,1(t) = ω̃ji (t)− ω
j
i (t) and zji,2(t) = (gji − g̃ji) pj(t). By substituting pj(t) in (3.28)

by its expanded version (3.25), it follows that the sequence of RS powers observed by
Transmitter i when Transmitter j is active, expresses as :

ω̃ji = Pj g̃
j
g̃ji + zji + σ21 (3.29)

where ω̃ji = (ω̃ji (tj+1), ..., ω̃ji (tj+K))T, g̃
j

= (g̃1j, ..., g̃Kj)
T, zji = (zji (tj+1), ..., zji (tj+K))T,

1 = (1, 1, ..., 1)T, and

Pj = Pmax


a1j(tj+1)

gmax
1j

. . .
aKj(tj+1)

gmax
Kj

...
...

...
a1j(tj+K)

gmax
1j

. . .
aKj(tj+K)

gmax
Kj

 . (3.30)

This means that when j is broadcasting from time tj+1 to tj+K, the sequence of transmit
powers it uses (as a column vector), over the K time slots, is given by Pj g̃

j
. Finally, the

local CSI estimate g̃j is estimated at Transmitter i as :

g̃i
j

=
Pj−1

g̃ji

(
ω̃ji − σ21

)
. (3.31)

where g̃ikj denotes the estimate of the channel gkj by transmitter i. Of course, writing
the above implicitly assumes that the coefficients aji are chosen properly. Note that more
advanced estimators such as the minimum mean square error (MMSE) or maximum li-
kelihood (ML) estimators might be used but here, low complexity is prioritized. Normal
requirements in terms of local CSI and RSSI qualities are the targeted operating condi-
tions for the proposed technique. Once a global CSI estimate is available, it becomes
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possible for Transmitter i, i ∈ {1, ..., K}, to maximize a common network performance
criterion under the form

u(p1, ..., pK ; G̃
i
), (3.32)

G̃
i

=
[
g̃i
1
· · · g̃i

K

]
being the global channel matrix estimate (this setup has been coined for

distributed CSI and studied in [31]).

Compared to the local CSI exchange technique with discrete power levels, the CPM
has two distinguishing technical features. First, the transmit power during the explora-
tion phase is continuous. Thus, the proposed technique can be seen as a complementary
technique for scenarios in which discrete power levels are not allowed. Additionally, the
continuous power is chosen in a very specific manner, namely to be the linear combination
of the channel gains. Second, only one transmitter is active at a time during the local CSI
exchange phase, which makes the estimation procedure simple, but it is observed to be
very efficient via simulations. To understand the underlying problem let us consider a spe-
cial case K = 3 and Transmitter 1. When three users are active at a time and g31 >> g21
it becomes difficult to recover p2 from ω1(t) = g11p1(t) + g21p2(t) + g31p3(t) + σ2. One
drawback for only activating one transmitter at a time appears if only SINR feedback is
available instead of RSSI feedback. In the presence of SINR feedback, at least two users
have to be active at a time to allow information exchange in the power domain.

If one assumes that the number of required observations has to be equal to the number
of unknowns to estimate, the local CSI exchange technique of [14] requires K(K−1) time-
slots. During this CSI exchange phase, regular communication occurs in parallel, but with
potentially high interference. Under the same assumption, the technique proposed here
requires T = K2 time-slots for the exchange phase since each transmitter has K channel
gains to be exchanged and only one user is active at a time (regular communication is
effectively time-division multiple access). For K being respectively equal to 2, 3, and 4, this
corresponds to an additional cost in terms of time-slots of 100%, 50%, and 33%. Indeed,
the number of effectively interfering users using the same channel (meaning operating on
the same frequency band, at the same period of time, in the same geographical area) will
typically be small in practice and not exceed 3 or 4, which makes the number of time-slots
of the exploration phase reasonable.

3.6 Numerical Performance Analysis

In this section, as a first step (Sec. 3.6.1), we start with providing simulations which
result from the combined effects of Phases I and II. To make a coherent comparison with
IWFA, the network utility will be evaluated without taking into account a cost possibly
associated with the exploration or training phases (i.e., Phases I and II for the proposed
scheme or the convergence time for IWFA). The results are provided for a reasonable
scenario of small cell networks which is similar to those already studied in other works (see
e.g., [32] for a recent work). As a second step (Sec. 3.6.2 and 3.6.3), we study special cases
to better understand the influence of each estimation phase and the different parameters
which impact the system performance.
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3.6.1 Global performance analysis : a simple small cell network
scenario

SBS1 SBS2 SBS3

SBS4 SBS5 SBS6

SBS7 SBS8 SBS9

MS1

MS2 MS3

MS4 MS5

MS6

MS7

MS8

MS9

Cell size : d× d

Inter-site distance : d

d

Interference

Figure 3.3 – Small cell network configuration assumed in Sec. 3.6.1

As shown in Fig. 2.3, the considered scenario assumes K = 9 small cell base stations
with maximal transmit power Pmax = 30 dBm. One or two bands are assumed, depen-
ding on the scenario considered. In this subsection, discrete power modulation is used
to exchange local CSI and only two users are active at any given time-slot in Phase II.
One user per cell is assumed, which corresponds to a possible scenario in practice (see
e.g., [32][33][34]). We also use this setup to be able to compare the proposed scheme with
IWFA whose performance is generally assessed for the most conventional form of the
interference channel, namely, K transmitter-receiver pairs. The normalized receive noise
power is σ2 = 0 dBm. This corresponds to SNR(dB) = 30 where the signal-to-noise ratio
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is defined by

SNR(dB) = 10 log10

(
Pmax

σ2

)
. (3.33)

Here and in all the simulation section, we set the SNR to 30 dB by default. RS power
measurements are quantized uniformly in a dB scale with N = 8 bits and the quantizer
input dynamics or range in dB is [SNR(dB)−20, SNR(dB)+10]. The DMC Γ is constructed
with error probability ε to the two nearest neighbors, i.e., for the symbols w1 < w2 <
· · · < wM (with M = 2N), Γ (wi|wj) = ε if |i− j| = 1 and Γ (wi|wj) = 0 if |i− j| > 1.
In this subsection ε = 1% ; the quantity ε will be referred to as the feedback channel
symbol error rate (FCSER). For all (i, j) and s (s always being the band index) the
channel gain gsij on band s is assumed to be exponentially distributed namely, its p.d.f.

writes as φsij(g
s
ij) = 1

E[gsij ]
exp

(
− gsij

E[gsij ]

)
; this corresponds to the well-known Rayleigh fading

assumption. Here, E(gsij) models the path loss effects for the link ij and depends of the

distance as follows : E(gsij) =
(
d0
dij

)2
where dij is the distance between Transmitter i and

Receiver j and d0 = 5 m is a normalization factor. The normalized coordinates of the
mobile stations MS1, ...,MS9 are respectively given by : (3.8, 3.2), (7.9, 1.4), (10.2, 0.7),
(2.3, 5.9), (6.6, 5.9), (14.1, 9.3), (1.8, 10.6), (7.1, 14.6), (12.5, 10.7) ; the real coordinates
are obtained by multiplying the former by the ratio ISD

d0
, ISD being the inter site distance.

In this subsection, the system performance is assessed in terms of sum-rate, the sum-rate
being given by :

usum-rate(p
1
, ..., p

K
; G) =

K∑
i=1

S∑
s=1

log(1 + SINRs
i (p1, ..., pK ; G)). (3.34)

where p
i

= (p1i , ..., p
S
i ) represents the power allocation vector of Transmitter i, SINRs

i is

the SINR at Receiver i in band s and expresses as SINRs
i =

gsiip
s
i

σ2 +
∑
j 6=i

gsjip
s
j

.

Fig. 3.4a, represents the average sum-rate against the ISD. The sum-rate is averaged
over 104 realizations of the channel gain matrix G and the inter site distance is the
distance between two neighboring small base stations. Three curves are represented. The
top curve corresponds to the performance of the sequential best-response dynamics applied
to the sum-rate (referred to as Team BRD) in the presence of perfect global CSI. The
curve in the middle corresponds to Team BRD which uses the estimate obtained by using
the most simple association proposed in this chapter namely, LSPD for Phase I and the
2−bit MEQ for Phase II. The LSPD estimator uses K time-slots and the K−dimensional
identity matrix PI = PmaxIK for the training matrix. The 2−bit MEQ uses binary power
control (L = 2) and 2K time-slots to send the information, i.e., g

i
) ; this corresponds

to the typical number of time-slots IWFA needs to converge. At last, the bottom curve
corresponds to IWFA using local CSI estimates provided by Phase I. It is seen that about
50% of the gap between IWFA and Team BRD with perfect CSI can be bridged by using
the proposed estimation procedure. When the interference level is higher, the gap becomes
larger. Fig. 3.4b depicts exactly the same scenario as Fig. 3.4a except that only one band
is available to the small cells i.e., S = 1. Here the gap can be bridged at about 65% when
using Team BRD with the proposed estimation procedure.

In this subsection, some choices have been made : a diagonal training matrix and the
LSPD estimator has been chosen for Phase I and the MEQ has been chosen for Phase II.
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The purpose of the next subsections is to explain these choices, and to better identify the
strengths and weaknesses of the proposed estimation procedures.

3.6.2 Comparison of estimation techniques for Phase I

In Phase I, there are two main issues to be addressed : the choice of the estimator and
the choice of the training matrix PI. To compare the LSPD and MMSEPD estimators, we
first consider the estimation SNR (ESNR) as the performance criterion to compare them.
The estimation SNR of Transmitter i is defined here for the case S = 1 and is given by :

ESNRi =
E[‖G‖2]

E[‖G− G̃i‖2]
. (3.35)

where ‖.‖2 stands for the Frobenius norm and G̃i is the global channel estimate which is
available to Transmitter i after Phases I and II. In this subsection, we always assume a
perfect exchange in Phase II to conduct the different comparisons. This choice is made to
isolate the impact of Phase I estimation techniques on the estimation SNR and the utility
functions which are considered for the exploitation phase. After extensive simulations, we
have observed that the gain in terms of ESIR by using the best training matrix (computed
by an exhaustive search over all the matrix elements) is found to be either negligible
or quite small when compared to the best diagonal training matrix (computed by an
exhaustive search over the diagonal elements) ; see e.g., Fig. 3.5 for such a simulation.
Therefore, for the rest of this chapter, we will restrict our attention to diagonal training
matrices for reducing the computational complexity without any significant performance
loss. To conclude about the choice of the training matrix, we assess the impact of using
power levels to learn local CSI instead of using them to optimize the performance of Phase
I. For this, we compare in Fig. 3.6 the scenario in which a diagonal training matrix is used
to learn local CSI, with the scenario in which the best training matrix in the sense of the
expected sum-rate (over Phase I). Global channel distribution information is assumed to
be available in the latter scenario. The corresponding choice is feasible computationally
speaking for small systems.

Fig. 3.7 represents for K = 2, S = 1, and SNR(dB) = 30, the estimation SNR (in dB)
against the signal-to-interference ratio (SIR) in dB SIR(dB) which is defined here as

SIR(dB) = 10 log10

(
E(g11)

E(g21)

)
= 10 log10

(
E(g22)

E(g12)

)
. (3.36)

The three curves in red solid lines represent the MMSEPD estimator performance while
the three curves in blue dashed line represent the LSPD estimator performance. The
performance gap between MMSEPD and LSPD depends on the quality of the RSSI at
the transmitters. When RS power measurements are quantized with N = 8 bits and the
feedback channel symbol error rate is ε = 1%, the gap in dB is very close to 0. Using
MMSEPD instead of LSPD becomes much more relevant in terms of ESNR when the
quality of feedback is degraded. Indeed, for N = 2 bits and ε = 10%, the gap is about
5 dB. Note that having a very small number of RSSI quantization bits and therefore si-
gnificant feedback quality degradation may also occur in classical wireless systems where
the feedback would be binary such as an ACK/NACK feedback. Indeed, an ACK/NACK
feedback can be seen as the result of a 1−bit quantization of the RSSI or SINR. The
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proposed technique might be used to coordinate the transmitters just based on this par-
ticular and rough feedback. Even though the noise on the RSSI is correlated with the
signal and is not Gaussian, we observe that MMSEPD and LSPD (which can be seen as
a zero-forcing solution) perform similarly when the noise becomes negligible. At last note
that the ESNR is seen to be independent of the SIR ; this can be explained by the used
training matrix, which is diagonal.

The above comparison is conducted in terms of ESNR but not in terms of final utility.
To assess the impact of Phase I on the exploration phase, two common utility functions
are considered namely, the sum-rate and the sum-energy-efficiency (sum-EE) which is
defined as :

usum-EE(p
1
, ..., p

K
; G) =

K∑
i=1

S∑
s=1

f(SINRs
i (p1, ..., pK ; G))

S∑
s=1

psi

. (3.37)

where the same notations as in (3.34) are used ; f is an efficiency function which represents
the packet success rate or the probability of having no outage. Indeed, the utility function
usum-EE corresponds to the ratio of the packet success rate to the consumed transmit
power and has been used in many papers (see e.g., [3][35][36][37][38]). Here we choose the
efficiency function of [35] : f(x) = exp

(
− c
x

)
with c = 2r − 1 = 1, r being the spectral

efficiency. Fig. 3.8 depicts for K = 2, S = 1, N = 2, ε = 10% the average relative utility
loss ∆u in % against the SIR in dB. The average relative utility loss in % is defined by

∆u(%) = 100E

[
u(p?

1
, ..., p?

K
; G)− u(p̃?

1
, ..., p̃?

K
; G)

u(p?
1
, ..., p?

K
; G)

]
. (3.38)

where u(p?
1
, ..., p?

K
; G) is the best sum-utility which can be attained when every rea-

lization of G is known perfectly. The latter is obtained by performing exhaustive search
over 100 values equally spaced in [0, Pmax] and this for each draw of G ; the average is
obtained from 104 independent draws of G. The utility u(p̃?

1
, ..., p̃?

K
; G) is also obtained

with exhaustive search but by using either the LSPD or MMSEPD estimator and assu-
ming Phase II to be perfect. Fig. 3.8 shows that even under severe conditions in terms
observing the RS power at the transmitter, the MMSEPD and LSPD estimators have
the same performance in terms of sum-rate. This holds even though the gap in terms
of ESNR is 5 dB (see Fig. 3.7). Note that the relative utility loss is about 3% showing
that the sum-rate performance criterion is very robust against channel estimation errors.
When one considers the sum-EE, the relative utility loss becomes higher and is the range
15%− 20% and the gap between MMSEPD and LSPD becomes more apparent this time
and equals about 5%. The observations made for the special setting considered here have
been checked to be quite general and apply for more users, more bands, and other pro-
pagation scenarios : unless the RSSI is very noisy or when only an ACK/NACK-type
feedback is available, the MMSEPD and LSPD estimators perform quite similarly. Since
the MMSEPD estimator requires more knowledge and more computational complexity
to be implemented, the LSPD estimator seems to be the best choice when the quality of
RSSI is good as it is in current cellular and Wifi systems.

To conclude this subsection, we provide the counterpart of Fig. 3.6 for phase II in
Fig. 3.9. The scenario in which a diagonal training matrix is used to exchange local CSI,
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with the scenario in which power control is to maximize the expected sum-rate (over
Phase II). But here, the expectation is not taken over local CSI since it is assumed to be
known. The corresponding choice is feasible computationally speaking for small systems.

3.6.3 Comparison of quantization techniques for discrete power
modulation

In this subsection, we assume Phase I to be perfect. Again, this choice is made to
isolate the impact of Phase II estimation techniques on the estimation SNR and the utility
functions which are considered for the exploitation phase. When L = 2 and we quantize
with 1-bit, we map the smallest representative of the quantizer to the lowest power and
the largest to the highest power level in P and the other element. If L > 2, the power
levels belong to the set

{
0, 1

L−1Pmax,
2

L−1Pmax, ..., Pmax

}
are picked and the representatives

are mapped in the order corresponding to their value. In Phase II, the most relevant
techniques to be determined is the quantization of the channel gains estimated through
Phase I.

For K = 2 users, S = 1 band, L = 2 power levels, and SNR(dB) = 30, Fig. 3.10
provides ESNR(dB) versus SIR(dB) for the three channel gain quantizers mentioned in
this chapter : ALMA, LMA, and MEQ. The three quantizers are assumed to quantize
the channel gains with only 1 bit. Since only two power levels are exploited over Phase
II, this means that the local CSI exchange phase (Phase II) comprises K time-slots. The
three top curves of Fig. 3.10 correspond to N = 8 RS power quantization bits and ε = 1%
while the three bottom curves correspond to N = 2 bits and ε = 10%. First of all, it is
seen that the obtained values for ESNR are much lower than for Phase I. Even in the
case where N = 8 and ε = 1%, the ESNR is around 10 dB whereas it was about 40 dB
for Phase I. This shows that the limiting factor for the global estimation accuracy will
come from Phase II ; additional comments on this point are provided at the end of this
subsection. Secondly, Fig. 3.10 shows the advantages offered by the proposed ALMA over
the conventional LMA.

Fig. 3.11 depicts for K = 2, S = 1, N = 8, ε = 1% the average relative utility
loss ∆u in % against the SIR in dB for ALMA and MEQ. The two bottom (resp. top)
curves correspond to the sum-rate (resp. sum-EE). The relative utility loss is seen to be
comparable to the one obtained for Phase I. Interestingly, MEQ is seen to induce less
performance losses than ALMA, showing that the ENSR or distortion does not perfectly
reflect the need in terms optimality for the exploration phase. This observation partly
explains why we have chosen MEQ in Sec. 3.6.1 for the global performance evaluation ;
many other simulations (which involve various values for K, N , S, ε, etc) not provided
here confirm this observation.

An important comment made previously is that Phase II constitutes the bottleneck in
terms of estimation accuracy for the final global CSI estimate available for the exploitation
phase. Here, we provide more details about this limitation. Indeed, even when the quality
of the RSSI is good, the ESNR only reaches 10 dB and even increasing the quantization
bits by increasing the power modulation levels or time slots used does not improve the
ESNR as demonstrated by the following figures.

For N = 8 RS power quantization bits and ε = 1%, SNR(dB) = 30, Fig. 3.12a shows
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the ESNR versus the number of channel quantization bits used by MEQ. It is seen that
the ESNR reaches a maximum whether a high interference scenario (SIR(dB) = 0) or a
low interference scenario (SIR(dB) = 10) is considered. In Fig. 3.10, the ESNR was about
9 dB when the 1−bit MEQ is used and the SIR equals 0 dB. Here we retrieve this value
and see that the ESNR can reach 13 dB when the 4−bit MEQ is implemented, meaning
that 16 power levels are used in Phase II. Now, when the SIR is higher, using the 2−bit
MEQ is almost optimal. If the RSSI quality degrades, then using only 1 or 2 bits for MEQ
is always the best configuration.

Another approach would be to increase the number of channel gain quantization bits
and still only use two power levels over Phase II by increasing the number of time-slots
used in Phase II. Fig. 3.12b assumes exactly the same setup as Fig. 3.12a but here it
represents the ESNR as a function of the number of time-slots used in Phase II. Here
again, an optimal number of time-slots appears for the same reason as for Fig. 3.12a.
Both for Fig. 3.12a and Fig. 3.12b, one might wonder why the ESNR is better when the
interference is high. This is due to the fact that when the interference is very low, the
decoding operation of the power levels of the others becomes less reliable. The existence
of maximum points in Fig. 3.12a and Fig. 3.12b precisely translates the tradeoff between
the channel gain quantization noise and power level decoding errors.

3.6.4 Comparison between Continuous power modulation and
Discrete power modulation

In this subsection, we chose the parameters gmin
ij = 0.01E(gij), g

max
ij = 5E(gij) (when

i 6= j) and E(gii) = 1, with E(gij) determined by the SIR indicated. The channel gain

dynamics
gmax
ij

gmin
ij

is thus equal to 27 dB, which is a quite typical value in real systems.

The ESNR is obtained by averaging over 104 realizations for the channel matrix, the
channel gains being chosen independently and according to an exponential law φij(gij) =

1
E(gij)

exp
(
− gij

E(gij)

)
(that is, Rayleigh fading is assumed). The local CSI estimates are

assumed to be perfectly known.

Influence of the choice of the parameters aij(t). First, we study the impact of
the choice of the matrix Pj on the ESNR. Denote by Aj the matrix whose entries are the
coefficients aij(t) for all t ∈ {tj + 1, . . . , tj +K}, i.e.,

Aj =

 a1j(tj + 1) . . . aKj(tj + 1)
...

...
...

a1j(tj +K) . . . aKj(tj +K)

 . (3.39)

Interestingly, for typical scenarios, the particular choice Aj = I only induces a quite
small performance loss with respect to the optimal choice e.g., measured in terms of ESNR.
In this respect, we perform simulations to compare the ENSR obtained by choosing the
best possible Aj over that of choosing Aj = I, for all j. For S = 1, K = 2, N = 8,
ε = 1%, SNR(dB) = 30, and SIR(dB) = 10 our comparison has shown that choosing the
best matrix only provides marginal improvements. Indeed, for typical values for the SIR
(say above 5 dB), estimating the cross-channel gains reliably lead to matrices which are
quite similar to the identity matrix ; otherwise, the influence of the cross-channel gains
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in the sum (1) or in the RS power might be dominated by that of the direct channel.
Therefore, for the rest of this section, we will choose Aj = I for all j, as this choice results
in a very low complexity technique and guarantees the invertibility of the power matrix
in (7).

Continuous power modulation Versus Discrete power modulation We com-
pare the performance in terms of sum-rate between the continuous power modulation and
the discrete power modulation in Fig. 3.13. We consider the parameters K = 4 (number
of users), S = 2 bands, perfect local CSI estimate and SIR(dB) = 10. The RSSI feedback
is assumed to be with N = 8 bits and ε = 0.01. We compare the performance measured
by the sum-rate using CSI exchange using our proposed scheme, of CPM, with that of : 1)
perfect global CSI (ideal case) ; 2)local CSI exchange using a discrete power modulation
based on Lloyd-Max quantization (as in [14]) with 2 or 16 quantization levels ; 3) the
iterative water-filling algorithm (IWFA). When global CSI is available (perfect or other-
wise), we implement a team best response dynamics (BRD) 3 to select the power control,
where each transmitter uses the CSI available for the BRD. In the case of IWFA, no ex-
change of local CSI is required (no phase II), but there is a time taken for the algorithm to
converge. This figure demonstrates the performance improvement offered by our proposed
modulation technique in terms of sum-rate, and we can observe that the team-BRD with
CPM achieves a sum-rate that is very close to that with perfect global CSI (which is the
ideal case).

Fig. 3.14 represents the ESNR in dB against the SIR in dB and assumes a similar
setting to Fig. 3.13 except that here, SNR(dB) = 30, K = 2 users and S = 1 bands.
Three scenarios are considered : (N, ε) = (8, 1%), (N, ε) = (4, 5%), and (N, ε) = (1, 5%).
The first scenario corresponds to typical conditions in terms of quality for the RSSI, while
the two others correspond to quite severe conditions. The scenario with only one RS
power quantization bit can be seen as a scenario with an ACK/NACK feedback. For each
scenario, two schemes are compared : the scheme with continuous power levels and the
one with discrete power modulation which relies on channel gain quantization (here with
1 or 4 bits), discrete power modulation with L levels and lattice decoding. In Fig. 3.14 we
compare with the case of L = 2.

Fig. 3.14 clearly shows that the CPM provides a performance in terms of ESNR,
which is independent of the SIR level ; this is one of the effects of using time-sharing in
the exploration phase. When the quality of the RSSI is good, it is seen that the proposed
technique provides a very significant gain in terms of ESNR ; the gain ranges from 10 dB
to 25 dB, depending on the SIR level. It is only when the RSSI quality is severely degraded
(namely, when (N, ε) = (1, 5%)) that the proposed technique does not perform well when
compared to the discrete power modulation when using L = 2 (as seen in Fig. 3.14).

3. Team BRD for sum-rate with power control implies that each transmitter iteratively updates its
best transmit power given the other transmit powers until all the powers converge. Since global CSI is
available, each transmitter can do this offline by assuming an arbitrary initial power vector and with
perfect global CSI, all transmitters will converge to the same equilibrium.

37



3.6.4 - Comparison between Continuous power modulation and Discrete power
modulation

3.7 Conclusion

First, we would like to remind a few comments about the scope and originality of
this chapter. One of the purposes of this chapter is to show that the sole knowledge of
the received power or SINR feedback is sufficient to recover global CSI. The proposed
technique comprises two phases. Phase I allows each transmitter to estimate local CSI.
Obviously, if there already exists a dedicated feedback or signalling channel which allows
the transmitter to estimate local CSI, Phase I may be skipped. But even in the latter
situation, the problem remains to know how to exchange local CSI among the transmitters.
Phase II proposes a completely new solution for exchanging local CSI, namely using power
modulation (discrete or continuous). Discrete power modulation is based in particular on
a robust quantization scheme of the local channel gains. Therefore it is robust against
perturbations on the received power measurements ; it might even be used for 1−bit RSSI
which would correspond to an ACK/NACK-type feedback, showing that even a rough
feedback channel may help the transmitters to coordinate. When the RSSI quality is
good and local CSI is well estimated, continuous power modulation performs very well.
Note that the proposed technique is general and can be used to exchange and kind of
information and not only local CSI.

Second, we summarize here a few observations of practical interest. For Phase I, two
estimators have been proposed for Phase I : the LSPD and the MMSEPD estimators.
Simulations show that using the MMSEPD requires some statistical knowledge and is more
complex, but is well motivated when the RS power is quantized roughly or the feedback
channel is very noisy. Otherwise, the use of the LSPD estimator is shown to be sufficient.
During Phase II, transmitters exchange local CSI by encoding it onto their power level
and using interference as a communication channel. For discrete power modulation, three
estimation schemes are provided which are in part based on one of the two quantizers
ALMA and MEQ ; the quantizers are computed offline but are exploited online. MEQ
seems to offer a good trade-off between complexity and performance in terms of sum-rate
or sum-energy-efficiency. In contrast with Phase I in which the estimation SNR typically
reaches 40 dB for good RS power measurements, the estimation SNR with discrete power
modulation is typically around 10 dB. To improve the quality of local CSI exchange, the
continuous power modulation scheme is proposed and it is shown to perform very well
under normal conditions in terms of RSSI quality. In Phase III, having global CSI, each
transmitter can apply the BRD to the sum-utility instead of applying it to an individual
utility as IWFA does, resulting in a significant performance improvement as seen from
our numerical results.
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Figure 3.4 – The above curves are obtained in the scenario of Fig. 4 in which K = 9
transmitter-receiver pairs, SNR(dB) = 30, the FCSER is given by ε = 0.01, N = 8 quantization
bits for the RSSI, and L = 2 power levels. Using the most simple estimation schemes proposed
in this chapter namely LSPD and MEQ can bridge the gap between the IWFA and the team

BRD with perfect CSI, about 50% when S = 2 and about 65% when S = 1.

39



3.6.4 - Comparison between Continuous power modulation and Discrete power
modulation

0 5 10 15
0

1

2

3

4

5

6

7

8

SIR (dB)

E
s
ti

m
a
ti

o
n

 S
N

R
 (

d
B

)

 

 

MMSEPD with best training matrix

MMSEPD with best diagonal matrix

LSPD with best training matrix

LSPD with best diagonal matrix
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terms of ESNR even in worst-case scenarios.
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Figure 3.6 – Optimality loss induced in Phase I when using power levels to learn local
CSI instead of maximizing the expected sum-rate. This loss may be influential on the
average performance when the number of time-slots of the exploitation phase is not

large enough.
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Figure 3.7 – Using MMSEPD instead of LSPD in Phase I becomes useful in terms of
ESNR when the RSSI quality becomes too rough (bottom curves).
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Figure 3.9 – Optimality loss induced in Phase II when using power levels to exchange local
CSI instead of maximizing the expected sum-rate. This loss may be influential on the average

performance when the number of time-slots of the exploitation phase is not large enough.
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Figure 3.10 – Performance measured by ESNR considering good (three top curves) and
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Figure 3.12 – The power level decoding scheme proposed in this chapter is simple and has
the advantage of being usable for the SINR feedback instead of RSSI feedback. However, the
proposed scheme exhibits a limitation in terms of coordination ability when the inference is

very low. The consequence of this is the existence of a maximum ESNR for Phase II. Here we
observe that despite increasing the number of quantization bits or time slots used, the ESNR is

bounded.
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Figure 3.13 – Comparison of average sum-rate between CPM with DPM. We observe that
CPM results in an average sum-rate that is very close to the ideal case of perfect global CSI.
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Figure 3.14 – ESNR against SIR. Using continuous power modulation to exchange local CSI
appears to be a relevant choice when the RSSI quality is good or even medium. Under severe

conditions (e.g., when only an ACK/NACK-type feedback is available for estimating the
channel), quantizing the channel gains and power modulating the corresponding labels with

discrete power levels is more appropriate.
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4
Efficient distributed power control in

interference networks

The goal of this chapter is to contribute to finding power control strategies which
exploit as well as possible the available information about the global channel state ; the
available information considered here for the considered scenarios is mainly local and
may be noisy. Differing from the technique proposed in the last section, which can acquire
global channel state information by using power modulation, a framework on power control
based on local information is proposed here. As a suited way of measuring the global
efficiency of a power control scheme is to use the average utility region, we first tackle the
problem of characterizing the feasible utility region. We provide the average utility region
characterization for any power control problem for which the channel state is i.i.d. and
the observation structure is memoryless. Second, the corresponding theorem is exploited
to obtain an iterative algorithm which provides memoryless and stationary power control
strategies (strategies therefore boil down to one-shot decision functions). Although the
proposed algorithm is not proved to be optimal in terms of weighted sum-utility, many
simulations show that it performs very well for classical utility functions (e.g., the sum
energy-efficiency, the sum-rate, the sum-goodput). Aside from team power control
policies, we also propose a selfish power control scheme. Indeed we study a multi-band
interference network in the presence of multiple utility functions. One of the key insights
we have found is that restricting the choices in terms of allowed power allocation vectors
for the transmitters may be beneficial for both the individual and network performance,
proving a Braess paradox. This result justifies a posteriori that using discrete action spaces
instead of continuous action spaces may be a better choice for the performance. This also
partly justifies why the iterative algorithm we propose to compute the one-shot decision
functions has been assuming discrete action sets. This argument comes in addition to
other arguments given in previous works such as [41] (binary power control) which shows
that using small alphabets might induce zero or small optimality loss when compared to
continuous alphabets.
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4.1 Motivation and state of the art

Many modern wireless networks tend to become distributed. This is already the case of
Wifi networks which are distributed decision-wise ; for example, each access point performs
channel or band selection without the assistance of a central or coordinating node. As
another example, small cells networks, which are envisioned to constitute one of the key
components to implement the ambitious roadmap set for 5G networks [1][42][43], will
need to be largely distributed ; distributedness is one way of dealing with complexity and
signalling issues induced by the large number of small base stations and mobile stations. In
this chapter, we consider wireless interference networks that are distributed both decision-
wise and information-wise. More specifically, each transmitter has to perform a power
control or resource allocation task by itself and by having only access to partial information
of the network state.

When inspecting the literature on distributed power control (see e.g.,[2]), one can
conclude that while the derived power control scheme is effectively distributed decision-
wise and information-wise, it is not globally efficient. A natural and important question
arises : is it because the considered power control scheme is not good enough or does it stem
from intrinsic limitations such as information availability ? To the authors’ knowledge, this
question has not been addressed formally. One of the goals of the this chapter is precisely
to provide a framework that allows one to derive the limiting performance of power control
with partial information and therefore to be able to measure the efficiency of a given power
control scheme. To reach this goal we resort to recent results that bridges the gap between
decision theory and information theory [8]. We exploit these results to characterize the
limiting performance in terms of long-term utility region, each transmitter being assumed
to have its own utility function. The performance characterization is then exploited in a
constructive manner to determine power control strategies and more specifically one-shot
decision functions that is, functions that allow the transmitter to choose its power based
on a single observation about the global channel state. To be concrete, if Transmitter i
knows an estimate ĝii of the channel gain of the link between Transmitter i and Receiver
i, the decision function writes under the form fi(ĝii). For example, in the famous work
on energy-efficient power control [44], the obtained distributed decision function is of the
form fi(x) = 1

x
. Remarkably, our approach allows one to obtain decision functions which

perform much better globally e.g., when measured in terms of sum energy-efficiency.

The developed approach mainly relies on two key assumptions : the global channel
state is assumed to be i.i.d., which is a quite common assumption. The transmit power
and channel state are assumed to be discrete. The latter assumption is less common
and is supported by several strong arguments. First, assuming the transmit power to
be discrete is of practical interest since there exist wireless communication standards
in which the power can only be decreased or increased by step and in which quantized
wireless channel state information (CSI) is used (see e.g., [31][45]) ; additionally, if the
transmitter task is to perform band or channel selection, which is a special instance
of power control, the transmitter action set is again intrisically discrete. Second, the
argument is mathematical ; it is well known from the coding theorem literature [46] that
the performance characterization for the continuous case follows as a special case of the
discrete case. Third, quite remarkably, imposing the transmitters to use a reduced action
space may be beneficial both for the network and individual performance ; simulations
provided in this chapter shows that the very interesting result obtained in [41] is in fact
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more general ; in [41], the authors show that binary power control may be optimal or
generate a very small performance loss compared to the continuous case. In this respect,
the authors have shown in [47] that using one-shot decision functions which are step
functions may be optimal when the utility function is chosen to be the Shannon sum-rate.
One of the important contributions of the present work can be seen as a generalization of
such a result to arbitrary utility functions.

Apart from the system performance, we also consider a distributed network where
transmitters perform individual or local maximization operations. However, it is not clear
whether allowing them to use more channels will lead to a better global performance.
Providing elements of response to this question is precisely the purpose of the Sec. 3.6.
To address the raised issue, we exploit one of the classical models of interference networks
which is the parallel interference channel (PIC). This model represents a communication
scenario in which several transmitter-receiver pairs communicate through a common set
of orthogonal channels. While the problem of distributed power allocation in PICs has
attracted a lot of attention from the communications community (the corresponding line
of works was to a large extent pioneered by [48]), the problem of distributed channel
selection in PICs has only been treated analytically in a relatively very small number of
papers. The closest works to this chapter are [49][50]. In [49], the authors focus on the
Nash equilibrium existence and uniqueness problems of the following power allocation and
channel selection 1 games : the considered PIC is assumed to comprise two transmitter-
receiver pairs and two channels ; for each channel realization, each transmitter chooses its
power allocation vector or selects its channel in order to ”maximize” its individual data
rate. The problem of comparing the global performance of the two scenarios in terms of
power allocation policies is not tackled. In [50], the equilibrium analysis is treated in detail
in the case of the parallel multiple access channel, which is a special case of the PIC. The
problem of comparing the global performance in terms of sum-rate of distributed power
allocation with the one of channel selection is introduced but not developed. Motivated
by the practical importance of this comparison, the aim of the present work is to provide
more general analytical and simulation results in PIC. Our interesting results provide a
better understanding on how to use the spectrum in interference networks.

4.2 Problem statement

The wireless system under consideration comprises K ≥ 2 pairs of interfering trans-
mitters and receivers which can operate over B ≥ 1 non-overlapping bands. The power
Transmitter i ∈ {1, ..., K} allocates to band b ∈ {1, ..., B} is denoted by pbi , p

b
i being

subject to classical power limitations : pbi ≤ Pmax and
∑B

b=1 p
b
i ≤ P , with Pmax ≤ P . In

the setup under study, the quantities of interest for Transmitter i to control its power
vector

pi = (p1i , ..., p
B
i ) (4.1)

are given by the channel gains of the different links between the transmitters and re-
ceivers. The channel gain of the link between Transmitter i ∈ {1, ..., K} and Receiver
j ∈ {1, ..., K} for band b ∈ {1, ..., B} is denoted by gbij = |hbij|2, where hbij may typically
be the realization of a complex Gaussian random variable, if Rayleigh fading is conside-

1. Note that selecting a channel corresponds to allocating all the available power to a single channel.
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red. Each channel gain is assumed to obey a classical block-fading variation law whose

probability density function is given by : fnk`(x) = 1
γnk`

exp
(
− x
γnk`

)
and channel realizations

are assumed to be i.i.d. from block to block . Transmitter i, i ∈ {1, ..., K}, can update its
power vector pi from block to block. To update its power, each transmitter has a certain
knowledge of the global channel state, which is defined as follows. The global channel state
is given by the following K2−dimensional vector which comprises all channel gains :

a0 = (g111, ..., g
B
11, g

1
12, ..., g

B
12, ..., g

1
KK , ..., g

B
KK). (4.2)

In full generality, Transmitter i is assumed to have partial CSI. The knowledge available
at Transmitter i is represented by the signal si. In this chapter, the power vectors pi, the
global channel state a0, and the signals or available partial information si are assumed to
lie in discrete sets : ∀i ∈ {1, ..., K},pi ∈ Ai and si ∈ Si where |Ai| <∞ and |Si| <∞. More
specifically, the signal si is assumed to be the output of a discrete memoryless channel
P(Si = si|A0 = a0) = Γi(si|a0) [46], where A0 and Si and respectively represent the
random variables used to model the channel state variations and the partial information
available to Transmitter i 2. The full or perfect global CSI at Transmitter i corresponds to
si = a0. The case where only perfect individual CSI is available is given by si = (g1ii, ..., g

B
ii ).

The signal si may also be a noisy estimate of (g1ii, ..., g
B
ii ) : si = (ĝ1ii, ..., ĝ

B
ii ).

By denoting t the block index, the purpose of Transmitter i is therefore to tune the
power vector pi(t) for block t by exploiting its knowledge about the channel state that is,
the signal si(t). More precisely, we assume that Transmitter knows si at time t but also
the past realizations of it namely, si(1), ..., si(t − 1), the transmission being assumed to
start at block t = 1 and to stop at block t = T . In its general form, the power control
strategy of Transmitter i is a sequence of functions which is denoted by fi = (fi,t)1≤t≤T
and defined by :

fi,t : Sti −→ Ai

(si(1), si(2), ..., si(t)) 7−→ pi(t).
(4.3)

The three main issues addressed in this chapter are as follows. First, we characte-
rize the achievable performance in terms of long-term utility region when the block or
instantaneous utility is a function of the form ui(a0, p1, ..., pK). The long-term utility of
Transmitter i is defined by :

Ui(f1, ..., fK) = lim
T→+∞

1

T

T∑
t=1

E
[
ui(a0(t), p1(t), ..., pK(t))

]
(4.4)

whenever the above limit exists. The presence of the expectation operator is required in
general (it can be omitted when a law of large numbers is available) since the channel is
random and every power vector is a function of it. In general the channel is a random
process A0(1), ..., A0(T ) but since we assume the channel gains to be i.i.d., the notation
can be simplified by only using a single random variable A0. The corresponding probability
distribution is the global channel state distribution and is denoted by ρ0 in the sequel. The
second issue we want to address in this chapter is to determine power control strategies
which only use the available local information while performing as well as possible in terms
of a global utility e.g., in terms of sum-utility

∑K
i=1 Ui. The last issue to be addressed is

2. To avoid any ambiguity where there is any, we use capital letters to refer to random processes or
variables. In particular, Ai is used to represent the random process of pi.
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the selfish power control to maximize the individual bit-rate of each transmitter in a
distributed way, which can be seen as the performance comparison at equilibrium with
different action profiles.

4.3 Limiting performance characterization of power
control with partial information

While many power control schemes using partial CSI are available in the literature,
very often it is not possible to know whether the available information is exploited op-
timally by the considered power control scheme. While the problem of optimality is in
general a very important and challenging problem, it turns out to be solvable in important
scenarios such as the scenario under investigation in this chapter. Indeed, an important
message of the present work is that, under the made assumptions, information theory
tools can be used to fully characterize the limiting theoretical performance of the power
control strategies. The two key assumptions which are made for this are as follows : (i)
The channel state a0(t) is i.i.d. ; (ii) The observation structure which defines the partial
observation si is memoryless. Assuming (i) and (ii), the following theorem provides the
utility region characterization for any power control problem under the form specified
by [8]. For the sake of clarity we will use the following notations : a = (a0, p1, ..., pK)
and s = (s1, ..., sK) ; Γ stands for the conditional probability PS|A0 , S being the random
variable used to model the vector of individual signals available to the transmitters ; V
is an auxiliary variable as used in coding theorems [46] and its role will be commen-
ted a little further ; the notation ∆K will refer to the unit simplex of dimension K :

∆K =

{
(x1, ..., xK) ∈ RK : ∀i ∈ {1, ..., K}, xi ≥ 0;

K∑
i=1

xi = 1

}
.

Theorem 4.3.1. Assume the system has M constraints, which are related to the func-
tions of the form u(m)(a0, p1, . . . , pK) where m ∈ {1, . . . ,M}. Let λ = (λ1, ..., λK) ∈

∆K and wλ =
K∑
i=1

λiui. Define the (K + 1)−uplet of probability distributions(
Qλ
A1|S1,V

, ..., Qλ
AK |SK ,V , Q

λ
V

)
as the solution of the following optimization problem

max
PA1|S1,V ,...,PAK |SK,V ,PV

Wλ

(
PA1|S1,V , ..., PAK |SK ,V , PV

)
(4.5)

s.t. ∀m ∈ {1, . . . ,M}, U (m)
(
PA1|S1,V , ..., PAK |SK ,V , PV

)
≥ Cm (4.6)

where
Wλ

(
PA1|S1,V , ..., PAK |SK ,V , PV

)
=∑

a,s,v ρ0(a0)Γ(s|a0)PV (v)
K∏
i=1

PAi|Si,V (pi|si, v)wλ(a0, p1, ..., pK)
(4.7)

U (m)
(
PA1|S1,V , ..., PAK |SK ,V , PV

)
=∑

a,s,v ρ0(a0)Γ(s|a0)PV (v)
K∏
i=1

PAi|Si,V (pi|si, v)u(m)(a0, p1, ..., pK)
(4.8)
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PV being the distribution of some auxiliary variable V ∈ V verifying the Markov chain
V − (A0, A1, ..., AK) − (S1, ..., SK). Then, when T → +∞, the Pareto frontier U of the
long-term utility region associated with the constraints is given by :

U =

{
(U1, ..., UK) ∈ RK : Ui =

∑
a,s,v

Qλ(a, s, v)ui(a0, p1, ..., pK), λ ∈ ∆K

}
(4.9)

with Qλ(a, s, v) = ρ0(a0)Γ(s|a0)Qλ
V (v)

K∏
i=1

Qλ
Ai|Si,V (pi|si, v).

Proof : First of all, we show that the power control strategies of the different users
f1, ..., fK intervene in the long-term utility only through the joint probability over A0 ×
...AK . Therefore, characterizing the long-term utility region is equivalent to characterizing
the set of achievable or implementable joint probability distribution. We have that :

Ui(f1, ..., fK) (4.10)

= lim
T→+∞

1

T

T∑
t=1

E [ui(A0(t), A1(t), ..., AK(t))] (4.11)

= lim
T→+∞

1

T

T∑
t=1

∑
a0,...,pK

Pt(a0, ..., pK)ui(a0, ...pK) (4.12)

=
∑

a0,...,pK

ui(a0, ..., pK) lim
T→+∞

1

T

T∑
t=1

Pt(a0, ..., pK) (4.13)

where Pt(a0, ..., pK) is the joint probability induced by the power control strategy profile
f1, ..., fK at time t and we use here again capital letters for the random processes to clearly
distinguish between the random process Ai(t) and its realization pi. Therefore, a utility
µi is achievable if and only if it writes as

µi =
∑

a0,p1,...,pK

Q(a0, p1, ..., pK)ui(p1, ..., pK) (4.14)

and there exists a power control strategy profile (f1, ..., fK) such that

lim
T→∞

1

T

T∑
t=1

Pt(a0, ..., pK) = Q(a0, ..., pK). (4.15)

Second, we show that the long-term utility region is necessarily convex, whatever the
instantaneous utility functions under consideration. As a consequence, as indicated by
4.9 the Pareto frontier can be obtained by maximizing the long-term weighted utility
Wλ. Assume that there exists a power control strategy profile (f1, ..., fK) which allows to
reach a point (µ1, ..., µK) of the long-term utility region. Then, there exists a joint distri-
bution Q which is implementable. Similarly, we consider another power control strategy
profile (f ′1, ..., f

′
K) which insures that (µ′1, ..., µ

′
K) can be reached and that there exists

an implementable Q′. By using 100α % of the time the strategy profile (f1, ..., fK) and
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100α′ = 100(1−α) % of the time the strategy profile (f ′1, ..., f
′
K) it follows that the convex

combination Q′′ = αQ+α′Q′, α+α′ = 1, α ≥ 0, α′ ≥ 0, is also implementable. Therefore
the point (µ1”, ..., µK”), µi” = αµi + αµ′i can be attained.

As the last step of the proof, we exploit the coding theorem of [8] which states that a
joint probability distribution Q(a0, p1, ..., pK) is implementable if and only if it writes as :

Q(a) = ρ0(a0)
∑
s,v

Γ(s|a0)PV (v)
K∏
i=1

PAi|Si,V (pi|si, v) (4.16)

where V is any random variable which verifies the Markov chain V − (A0, A1, ..., AK) −
(S1, ..., SK).�

To better understand Theorem 3.3.1 and its proof, let us comment on it in detail.

The first comment which can be made is that the long-term utility region Pareto fron-
tier characterization relies on the use of an auxiliary random variable V . The presence of
such variables is very common in coding theorems. For example, the capacity region of
degraded broadcast channels is parameterized by auxiliary variables ; for one transmitter
and two receivers, only one auxiliary variable suffices. In the latter case, the auxiliary
variable can be interpreted for instance as a degree of freedom the transmitter has for
allocating the available resource between the two transmitters [46]. In general, auxiliary
random variables have to be considered as parameters which allow one to describe a set of
points and therefore constitute before all a purely mathematical tool. Their operational
meaning is generally given by the achievability part of the coding theorem. As far as Theo-
rem 3.3.1 is concerned, the achievability part mainly corresponds to the general coding
theorem given in [8]. In a power control setting, V may be seen as a coordination random
variable or a lottery which allows one to generate a coordination key. To be more concrete,
consider a single-band interference channel with two transmitters and two receivers. The
idea is to exchange a coordination key offline which consists of a sequence of realizations
v(1), ..., v(T ) of a (Bernouilli) binary random variable : V ∼ B(τ), τ ∈ [0, 1]. Then, on-
line, a possible rule for the transmitters might be as follows : if v(t) = 1, Transmitter 1
transmits and if v(t) = 0, Transmitter 1 transmits. We see that in this simple example,
V would act as a time-sharing variable which would allow to manage interference even
if the transmitters have no knowledge at all about the channel (i.e., si = const.). Then,
by optimizing the Bernoulli probability τ , one can obtain better performance than trans-
mitting at full (or constant) power. Note that the full power operation point would be
obtained by applying the iterative water-filling algorithm (IWFA) to a single-band inter-
ference network where Transmitter i wants to maximize the utility ui = log(1 + SINRi),
SINRi being the signal-to interference-plus-noise ratio.

The second comment we would like to make on Theorem 3.3.1 is that the achievable
utility region can be described only by its Pareto frontier. This result follows from the fact
that the long-term utility region is convex, as shown throughout the proof. This explains
the presence of the vector λ. The vector allows one to move along the Pareto frontier U.

The third comment we will make here is that the power control strategy only intervenes
in the long-term utility through its behavior in terms of conditional probability PAi|Si,U
that is, the (conditional) frequency at which a given power vector pi is used.

The fourth comment concerns the alphabet V lies in, namely V. Indeed, it is possible
to cover all the feasible utility region by choosing the size of V according to the next
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theorem. In particular, Theorem 3.3.1 is of particular interest when it comes to solving
the optimization problem, which in turn allows to determine the feasible points. We show
that there is an upper bound for the alphabet size V, beyond which one can always attain
the feasible regions .

Theorem 4.3.2. (Range for the cardinality of V) Any implementable distribution Q
(Defined by [8]) can be achieved by selecting the auxiliary random variable V satisfying
|V| ≤ |A| · |S| − 1, where |A| =

∏K
i=0 |Ai| and |S| =

∏K
i=1 |Si|.

Proof : See Appendix B.

According to this theorem, the auxiliary random variable is upper bounded by |A|·|S|−
1. Hence, it is not necessary to choose the auxiliary variable V ′ with |V ′| ≥ |A| · |S| − 1
since the additional cardinality can not bring any improvements to the implementable
distribution Q, and consequently no improvements to the system performance.

The last comment is about the necessity of the auxiliary variable. As described before,
the auxiliary variable can be the coordination key among the users. However, the auxi-
liary variable is not always useful to the system performance. According to the following
theorem, it can be checked that the auxiliary variable will not change the Pareto frontier
U under certain conditions.

Theorem 4.3.3. (Sufficient condition for omiting V ) Define Ŵλ

(
PA1|S1 , ..., PAK |SK

)
, a

special case of Wλ

(
PA1|S1,V , ..., PAK |SK ,V , PV

)
and Û

(m)
c

(
PA1|S1 , ..., PAK |SK

)
, a special case

of U
(m)
c

(
PA1|S1,V , ..., PAK |SK ,V , PV

)
, which corresponds to auxiliary variable V assumed

constant, as follows

Ŵλ

(
PA1|S1 , ..., PAK |SK

)
=∑

a,s ρ0(a0)Γ(s|a0)
K∏
i=1

PAi|Si(pi|si)wλ(a0, p1, ..., pK)
(4.17)

Û (m)
(
PA1|S1 , ..., PAK |SK

)
=∑

a,s,v ρ0(a0)Γ(s|a0)
K∏
i=1

PAi|Si(pi|si)u(m)(a0, p1, ..., pK)
(4.18)

Suppose
(
P λ
A1|S1

, ..., P λ
AK |SK

)
= arg max

(PA1|S1 ,...,PAK |SK )
Ŵλ

(
PA1|S1 , ..., PAK |SK

)
. Then for every V ,

the sufficient condition for
(
Qλ
A1|S1,V

, ..., Qλ
AK |SK ,V

)
=
(
P λ
A1|S1

, ..., P λ
AK |SK

)
is

∀m ∈ {1, . . . ,M}, Û (m)
(
P λ
A1|S1

, ..., P λ
AK |SK

)
≥ Cm (4.19)

Proof : Firstly, Wλ

(
PA1|S1,V , ..., PAK |SK ,V , PV

)
can be rewritten as :

Wλ

(
PA1|S1,V , ..., PAK |SK ,V , PV

)
=
∑

v PV (v)
∑

a,s ρ0(a0)Γ(s|a0)
K∏
i=1

PAi|Si,V (pi|si, v)wλ(a0, p1, ..., pK)

≤
∑

v PV (v)Ŵλ

(
P λ
A1|S1

, ..., P λ
AK |SK

)
= Ŵλ

(
P λ
A1|S1

, ..., P λ
AK |SK

)
(4.20)
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with the equality if
(
PA1|S1,V , ..., PAK |SK ,V

)
=
(
P λ
A1|S1

, ..., P λ
AK |SK

)
.

Secondly,knowing Û
(m)
c

(
P λ
A1|S1

, ..., P λ
AK |SK

)
≥ Cm, if

(
PA1|S1,V , ..., PAK |SK ,V

)
=(

P λ
A1|S1

, ..., P λ
AK |SK

)
, it can be checked that

U (m)
c

(
PA1|S1,V , ..., PAK |SK ,V , PV

)
≥ Cm (4.21)

According to the equality condition and (4.21), it can be concluded that(
Qλ
A1|S1,V

, ..., Qλ
AK |SK ,V

)
=
(
P λ
A1|S1

, ..., P λ
AK |SK

)
. �

Additionally, from this theorem, it can be found that the auxiliary variable will not
bring any improvements to the Pareto frontier U when there is no constraints since the
sufficient conditions can be always fulfilled.

4.4 Proposed power control strategies

Even though the coding theorem establishes the capacity region of a network, de-
signing practical coding schemes which attain the limiting performance is not evident.
There is no general recipe to find a power control scheme which allows one to operate
arbitrarily close to a point of the utility region established through Theorem 3.3.1. To be
able to provide practical power control schemes, we propose to focus on a special class
of power control schemes. We will restrict our attention to memoryless and stationary
power control strategies, which amounts to finding good one-shot decision functions. A
strategy is memoryless in the sense that it does not exploit the past realizations of the
signal si ; it is therefore a sequence of functions which writes as fi,t(si(t)). Additionally, we
assume it is stationary which means that the function fi,t does not depend on time, which
ultimately means that a power control strategy boils down to a single function fi(si(t)) ;
the latter function will be referred to as a decision function. In fact, considering that the
power level, vector, or matrix of a transmitter only depends on the current realization of
the channel, and this in a stationary manner, is a very common and practical scenario in
the wireless literature. As advocated by recent works (see e.g., [53] for the MIMO case),
the problem of finding one-shot decision functions with partial information and which
perform well in terms of global performance is still a challenging problem. Remarkably,
one of our observations is that Theorem 3.3.1 can be exploited in a constructive way that
is, it can be exploited to find good decision functions. This is precisely the purpose of this
section.

The key observation we make is as follows. The functional Wλ is a multilinear function
of its arguments which are conditional probability distributions PA1|S1,V , ..., PAK |SK ,V , PV
(see [8]). Since Wλ is multilinear, its maximum points are on the vertices of the unit
simplex [54]. The important consequence of this is that optimal condition probabilities
boil down to functions f1(s1, v), ..., fK(sK , v). The key idea is to solve the corresponding
optimization problem to determine these functions and use them as candidates for power
control decision functions. But finding a low-complexity numerical technique to determine
the optimal functions is left as a challenging extension of the present work. Instead, we
propose a suboptimal optimization technique which has a lower complexity and relies on
the use of the sequential best-response dynamics (see e.g., [55][17])
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To apply the sequential best-response dynamics to Wλ we rewrite it by isolating the
sum w.r.t. si i.e., the observation of Transmitter i :

Wλ =
∑
a0,s,v

ρ0(a0)Γ(s|a0)wλ(a0, f1(s1, v), ..., fK(sK , v)) (4.22)

=
∑
a0,si,v

Γi(si|a0)
∑
s−i

Γ−i(s−i|a0)wλ(a0, f1(s1, v), ..., fK(sK , v)) (4.23)

where : s−i = (s1, ..., si−1, si+1, ..., sK) represents the vector comprising all observations of
the transmitters other than agent i ; the condition probability Γ−i is given by

Γ−i(s−i|a0) =
∑
si

Γ(s|a0). (4.24)

To describe the proposed iterative algorithm, it is convenient to introduce the following
auxiliary quantity :

ω(si, pi, v) =
∑
a0,v

ρ0(a0)Γ(si|a0)
∑
s−i

Γ−i(s−i|a0)×

wλ(a0, f1(s1, v), ..., fi−1(si−1, v), pi, fi+1(si+1, v), ..., fK(sK , v)))] .

(4.25)

The sequential best-response dynamics procedure consists in updating one variable at a
time, the variables being the decision functions here. Denoting an algorithm iteration as
iter, the auxiliary quantity ω at iteration iter writes as :

ωiter(si, pi, v) =
∑
a0,v

ρ0(a0)Γ(si|a0)
∑
s−i

Γ−i(s−i|a0)

wλ(a0, f
iter
1 (s1, v), .., f iter

i−1(si−1, v), pi, f
iter−1
i+1 (si+1, v), .., f iter−1

K (sK , v))).
(4.26)

By assuming the knowledge of the utility function wλ, the alphabets A0,A1, ...,AK ,
S1, ..., SK , the probability distribution of the channel ρ0, the observed signals Γ, and an
initial choice for the decision functions f init

1 , ..., f init
K Algorithm 1 can be implemented.

The proposed algorithm should be implemented offline, whereas the obtained decision
functions are designed to be exploited online. Therefore, even though the decision function
determination operation requires the knowledge of the different alphabets, the channel
statistics, the observation signal statistics, and the initial decision functions, Transmitter
i only needs si and v to tune (online) its power vector. Typically, the former operation
might be performed offline by a base station while the online operations would be executed
by the transmitters.

The classical issue is whether this iterative algorithm converges. For clarity, we state
the following convergence result under the form of a proposition.

Proposition 4.4.1. Algorithm 1 always converges.

Proof : The result can be proved by induction or by calling for an exact potential
game property [56]. Indeed, since the underlying game is a strategic-form game with a
common utility Wλ, it is trivially an exact potential game, which ensures convergence.�
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inputs : ∀i ∈ {0, ..., K}, Ai; ∀i ∈ {1, ..., K}, Si
wλ, ρ0, Γ
∀i ∈ {1, ..., K}, f init

i

outputs: ∀i ∈ {1, ..., K}, f ?i

Initialization : f 0
i = f init

i , iter = 0

while ∃i : f iter−1
i − f iter

i ≥ ε AND iter ≤ itermax OR iter = 0 do

iter = iter + 1;

foreach i ∈ {1, . . . , K} do
foreach si ∈ Si do

f iter
i (si, v) = arg maxpi ω

iter
i (si, pi, v) using (4.26);

end

end

end
Final update : ∀i ∈ {1, ..., K}, f ?i = f iter

i
Algorithm 2: Proposed decentralized algorithm for finding decision functions for the
transmitters

Obviously, there is no guarantee for global optimality and only local maximum points
for Wλ are reached in general by implementing Algorithm 1. Quantifying the optimality
gap is known to be a non-trivial issue related to the problem of determining a tight bound
of the price of anarchy [57][17]. Two comments can be made. First, if the algorithm is
initialized by the best state-of-the art decision functions, then it will lead to new decision
functions which perform at least as well as the initial functions. Second, many simulations
performed for a large variety of scenarios have shown that the optimality gap seems to be
relatively small for classical utility functions used in the power control literature.

4.5 Energy-efficient team power control

In this section we shall analyze the problem for a particular utility function ; namely
energy-efficient team power control. For this analysis, we shall assume that there is no
constraint about quality of service to simplify the discussion. In this case, according
to Theorem 3.3.3, the auxiliary variable is not useful to determine the Pareto frontier.
Therefore we shall omit it in this section. The energy efficiency utility function in single
band scenario (B = 1) is defined as

wλ (a0, p1, ..., pK) =
K∑
i=1

exp
(
−σ2+

∑
j 6=i gjipj

giipi

)
pi

(4.27)

For illustration purposes, we assume the case where the power limitation is always met,
i.e. Pmax is sufficient large.

As the setup, consider each transmitter knows the local CSI perfectly from the obser-
vations, namely si = gii. Consequently the conditional probability Γi becomes a determi-
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nistic function (discrete Dirac function). Hence, (4.23) can be rewritten as

Wλ =
∑
a0

ρ0(a0)wλ(a0, f1(g11), ..., fK(gKK)) (4.28)

Additionally, define the signal-to-interference ratio (SIR) as follows :

SIRmax = max
i,j,j 6=i

(
E(gii)

E(gji)

)
(4.29)

SIRmin = min
i,j,j 6=i

(
E(gii)

E(gji)

)
(4.30)

We assume the expectation for direct channels E(gii) to be fixed and we study the function
fi(gii) for the asymptotic cases : SIRmax → 0 and SIRmin →∞.

Proposition 4.5.1. When SIRmax → 0, the optimal function fi(gii) to maximize Wλ can
be expressed as :

fi(gii) =


0 if gii < λi

σ2

gii
if gii ≥ λi

(4.31)

where λi is the positive threshold.

Proof : This claim can be proved in 2 steps. As a first step, we will prove that only
2 power control strategies can be chosen for optimal performance.
It is important to note that if there exists interference for user i, its own utility, i.e.

exp

(
−
σ2+

∑
j 6=i gjipj
giipi

)
pi

will be zero for every pi. Moreover, if there is no interference for user

i, pi will be selected to maximize its own utility, i.e. pi = σ2

gii
. To find the optimal fi(gii),

assume ρ0(a0) = ρi(gii)ρ−i(a0,−i|gii) where a0,−i = (g11, g12, ..., gi,i−1, gi,i+1, ..., gKK), then
(4.28) can be rewritten as :

Wλ =
∑
a0

ρ0(a0)wλ(a0, f1(g11), ..., fK(gKK))

=
∑
gii

ρi(gii)
∑
a0,−i

ρ−i(a0,−i|gii)wλ(a0, f1(g11), ..., fK(gKK))

=
∑
gii

ρi(gii)θi (gii, fi(gii))

(4.32)

where θi (gii, fi(gii)) =
∑

a0,−i
ρ−i(a0,−i|gii)wλ(a0, f1(g11), ..., fK(gKK)). Denote as the in-

terference of user i
Ii =

∑
j 6=i

gjipj (4.33)

Knowing that gji follows the exponential distribution, it can be checked that

lim
E(gji)→∞

Pr(gji <∞) = 0 (4.34)

If Ii 6= 0, cross channel gain gji →∞ almost surely, it can be checked that

wλ(a0, ..., fi(gii) > 0, ...)→ 0 a.s. (4.35)
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Otherwise, when Ii = 0

wλ(a0, ..., fi(gii) > 0, ...) =
exp

(
− σ2

giipi

)
pi

(4.36)

Hence, we can conclude that

θi

(
gii, fi(gii) =

σ2

gii

)
≥ θi (gii, fi(gii) > 0) a.s. (4.37)

Therefore, fi(gii) = σ2

gii
dominates other positive actions almost surely. The optimal action

for user i thus belongs to the set {0, σ2

gii
}.

In the second step, we prove that there exists an unique threshold between the two actions.
Define the difference between the utility of 2 actions as :

∆(gii) = θi (gii, fi(gii) = 0)− θi
(
gii, fi(gii) =

σ2

gii

)
(4.38)

Then three following conditions can be easily checked :

∂∆(gii)

gii
< 0 ∀gii > 0 (4.39)

lim
gii→0

∆(gii) > 0 (4.40)

lim
gii→∞

∆(gii) < 0 (4.41)

Hence, we can conclude that there exists one unique threshold λi such that ∆(gii = λi) =
0, ∆(gii) > 0 if gii < λi and ∆(gii) < 0 if gii > λi. �

Proposition 4.5.2. When SIRmin →∞, the optimal function fi(gii) to maximize the Wλ

is fi(gii) = σ2

gii
.

Proof : Since the interference is negligible here, each user i will choose the action
which maximizes its own utility, leading to the optimal solution fi(gii) = σ2

gii
. �

When the SIR is moderate, the threshold policy of the form (4.31) can not be proved
to be optimal. However, it will be shown through simulations that it still achieve good
performance with low computational complexity. When the complexity of the algorithm
is prohibitive, the threshold policy can be an alternative solution.

4.6 Selfish spectrally efficient power allocation

In this section, we shall consider the case where transmitter receiver pair i tries to
maximize its own utility ui based on local information only. Compare to Sec. 3.5, the
scenarios considered in this section has three distinguishing features : 1) We are not
considering a team framework anymore but a scenario with possibly non-aligned utility
functions ; 2) We consider instantaneous utility functions instead of considering expected
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utility functions. This can be seen as a special case of the problem discussed in Sec. 3.2
by assuming λk = 1 for Transmitter k and sk = gk (local CSI of Transmitter k) without
considering the auxiliary variable ; 3) The several utility functions aim at maximizing
spectral efficiency but not energy efficiency.

This choice can be motivated by many arguments but we will just mention a few of
them. Note that even if there were a central node that could control the whole vector
p = (p11, ..., p

B
1 , ..., p

1
K , ..., p

B
K) and would have global channel state information (CSI) g =

(g1, ..., gK) with gk = (g11k, ..., g
1
Kk, ..., g

B
1k, ..., g

B
Kk), it wouldn’t be able to perform the

direct maximization of the sum-utility w.r.t. p. Indeed, the corresponding problem is
very difficult from an optimization point of view, but also from a computational point of
view if exhaustive search over partitioned spaces is performed, which can be seen from
the algorithm proposed in last section. Therefore, there is a high interest in considering
individual utilities with partial or local control of the variables.

For a classical optimization problem which involves a single function and full control
of its variables, the notion of optimality is clear. However, in the presence of multiple
decision makers that have partial control of these variables, the very meaning of optimality
is unclear. Indeed, the optimal decision for transmitter k depends on the decisions made
by the other transmitters. This is one of the reasons why other solution concepts than
optimality need to be considered in such a setting. A fundamental solution concept is the
notion of Nash point or equilibrium. As very well illustrated by the iterative water-filling
algorithm (IWFA) [48], which converges to a Nash equilibrium (NE), one of the major
assets of the NE is that it may be implemented with local knowledge only and reached
through low complexity iterative or learning procedures (see e.g., [17]). This is why we
consider, in this section, the performance of the network at equilibrium. The procedures
or algorithms to reach NE are not addressed here. Before introducing an NE, we first
define explicitly the strategic-form games.

The strategic-form game of interest consists of a triplet : the set of decision makers
corresponding to K here ; their strategy sets that contain all their possible choices and
are the power allocation sets ; and their utility functions that depend on their own choices
but also on the others’ choices and are defined here below. We consider three different
scenarios with respect to the set of power allocation vectors allowed to each transmitter.
The considered utility functions are given by

uk(p; gk) =
B∑
b=1

log2

1 +
gbkkp

b
k

σ2 +
∑
`6=k

gb`kp
b
`

 (4.42)

However, to clearly indicate that the power allocation sets and, thus, the domains of
uk are different, we will denote the corresponding utility functions by vsk(p; gk) where
s ∈ {MC,MT, SC} and MC, MT, and SC respectively stands for multi-channel, multi-
transmitter, and single-channel scenarios. The single-channel or channel selection sce-
nario corresponds to a network in which every transmitter can use only one channel
among N possible ones. Denoting by Pmax the maximal transmit power and introducing
pk = (p1k, ..., p

N
k ), the sets of power allocation vectors are defined as follows :

• PMC
k =

{
pk ∈ RB : pbk ≥ 0,

B∑
b=1

pbk ≤ Pmax

}
;
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• PMT
k =

{
pk ∈ RB : pbk ≥ 0, pbk ≤ Pmax

}
;

• PSC
k = {Pmaxe1, ..., PmaxeN} where (e1, ..., eN) represents the canonical basis of RB (i.e.,

e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0), etc). An important comment is now in order. The MC
and SC scenarios assume a total budget Pmax while the MT scenario assumes an B times
higher total power budged. In spite of this fact, the latter scenario is of practical impor-
tance as well. In WiFi networks, the startup Codeon promotes a software solution which
allows channel bundling to be implemented by using available USB ports on the access
point and user terminals. In such a case, there can be one radio frequency transmitter per
channel and there is no additional power constraint on the sum.

Now, let us define an NE for the games under consideration. With a slight abuse of
notation, the power vector p is denoted by p = (p1, ..., pK) = (pk, p−k).

Definition 4.6.1 (Pure Nash Equilibrium). Let s ∈ {MC,MT, SC}. The power vector
p = (pk, p−k) is an NE of the strategic form game (K, (Ps

k)k∈K, (v
s
k)k∈K), if for all k ∈ K

and for all p′k ∈ Ps
k

vsk (pk, p−k; gk) ≥ vsk (p′k, p−k; gk) . (4.43)

At this point, we can define the different quantities proposed to compare the global
performance of an interference network in which transmitters can use several bands si-
multaneously (i.e., either all transmitters use PMC

k or they all use PMT
k ) and another one

where using only one band is allowed (i.e., all the transmitters use PSC
k ). We will denote

by ws(p; g) the sum-utility function for scenario s ∈ {MC,MT, SC} .

Definition 4.6.2 (Global performance comparison measures). Let SNR , Pmax

σ2 .
The four measures under consideration are as follows :

• Prg

[
R̃s (SNR;K;B; g) < 1

]
with

R̃s (SNR;K;B; g) =
ws(p̂s(g); g)

wSC(p̃SC(g); g)

where p̃SC(g) is the worst NE in terms of sum-utility of the SC game and p̂s(g) is the best
NE of the power allocation game s ∈ {MC,MT} ;
• Prg

[
Rs (SNR;K;B; g) < 1

]
with

Rs (SNR;K;B; g) =
ws(pUPA:s; g)

wSC(pCS(g); g)

where pCS corresponds to the power vector obtained when each transmitter selects its
best channel regardless of the other transmitters’ decisions and pUPA:s is the power vec-
tor obtained when each transmitter allocates the available power uniformly in scenario
s ∈ {MC,MT}. Note that the corresponding power vectors do not always correspond to
equilibria ;
•

Γ̃s (SNR;K;B) =
Eg[ws(p̂s(g); g)]

Eg[wSC(p̃SC(g); g)]

with the same notations as above ;
•

Γs (SNR;K;B) =
Eg[ws(pUPA:s; g)]

Eg[wSC(pCS(g); g)]

with the same notations as above.
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The above quantities rely on the equilibrium analysis of the power allocation games
under consideration. The corresponding analyses have been conducted in [48][49][50] and
will not be detailed here. The main points to be mentioned are as follows. The power
allocation game for the scenario MC possesses in general several equilibria [49]. The same
observation holds for the channel selection game for scenario SC [50]. This is the reason

why the best and worst equilibria are considered. In fact, the metric R̃s is deliberately in
favor of the power allocation game MC. If the best equilibrium of the game in scenario SC
is considered, the global performance degradation phenomenon under consideration occurs
more frequently ; some numerical results will be provided to illustrate this point. Now, in
the power allocation game of scenario MT, there exists a unique Nash equilibrium which
corresponds to using full power on each band. Therefore, the equilibrium power allocation
policies can be seen as uniform power allocation policies with a power budget of NPmax.

To exploit the above measures to prove the existence of scenarios where allowing every
transmitter to use several bands instead of one leads to a global performance degradation,
without loss of generality, it is assumed that the noise level is the same at all the receivers.
The common SNR parameter SNR = Pmax

σ2 plays a major role in determining whether using
multiple bands instead of one is beneficial in terms of global performance. When the SNR
is small, equilibrium power allocation policies in scenarios SC and MC can be proved to
coincide.

Proposition 4.6.3 (Low SNR regime, K, B arbitrary). For all K ≥ 2, B ≥ 2, and
s ∈ {MC,MT} we have that

lim
SNR→0

Prg

[
R̃s (SNR;K;B; g) < 1

]
= 0. (4.44)

Proposition 4.6.3 translates that the interference is negligible compared to the noise
when σ2 → ∞. The transmitters’ decisions are no longer interdependent and the power
allocation games MC, MT, and SC become classical optimization problems : only the
direct channel gains gnkk matter to transmitter k. Since total transmit power is limited to
Pmax for MC, the rate is maximized by selecting the best band. The SC game also becomes
a mere channel selection problem, which means that the distributed power allocation
policies of MC and SC coincide at low SNR. On the other hand, for the game MT, the
point p = (Pmax, ..., Pmax) ∈ RKB remains the unique Nash equilibrium and its structure
does not change with the operating SNR. This equilibrium can be checked to be more sum-
rate-efficient than the equilibrium of the SC game, explaining that the above probability
vanishes with the SNR.

A natural question is to know what happens when the SNR is high. Do we reach the
same conclusion as in the low SNR regime ? Providing the general answer for an arbitrary
pair (K,B) seems to be a non-trivial problem, which is left as an extension of this chapter.
Rather, we treat here some special cases of interest B ≥ K and K = B = 2 that provide
some useful insight into the general case.

Proposition 4.6.4 (High SNR regime, K ≤ B). Consider a symmetric interference
channel where ∀b, γb11 = γb22 = λ, γb12 = γb21 = µ, and λ

µ
<∞. Assuming K ≤ B, we have

that

lim
SNR→∞

Prg

[
R̃MC (SNR; 2; 2; g) < 1

]
= ω

(
λ

µ

)
, (4.45)
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with ω(x) ,
(

1− 1
(1+x)2

)2
;

lim
SNR→∞

Prg

[
R̃MT (SNR;K;B; g) < 1

]
= 1. (4.46)

For the scenario MC, it is seen that (in the high SNR regime) allowing the transmitters
to water-fill over the B available bands instead of restricting the spectrum use to a single
band leads to a global performance degradation with a probability which is not vanishing.
The probability of having a performance degradation is seen to be an increasing function of
λ
µ
. It equals to 9

16
= 56.25% when the channels gains are i.i.d. (namely, λ = µ) and equals

about 98% when (λ, µ) = (1, 0.1) ; note that this result holds for high SNR. Simulations
will show that, for medium SNRs, the considered probability is in fact decreasing from
a certain SNR value, confirming the intuition that under low interference levels water-
filling is optimal. The result concerning the potential performance degradation questions
the use of algorithms such as the IWFA ; rather, an iterative algorithm which operates
with discrete sets may lead to a better global performance. At high SNR, the scenario MT,
in which equilibrium consists in using all bands at full power, always performs less than
the worst equilibrium of the scenario SC. This is due to the fact the global performance is
interference limited in this regime and the MT equilibrium creates more interference than
the MC equilibrium, which is already less efficient than the SC equilibrium with a typically
high probability. Of course, the fact that the degradation event is likely in scenario MC
does not necessarily mean that the average rate is severely degraded, which explains why
the expected rate is also considered. This is the purpose of the next proposition.

Proposition 4.6.5 (Extreme SNR regimes, expected rates). Assume that ∀b, γb11 =
γb22 = λ, γb12 = γb21 = µ, and λ

µ
<∞. We have that

lim
SNR→0

Γ̃MC (SNR;K;B) = 1, for arbitrary Kand B; (4.47)

lim
SNR→0

Γ̃MT (SNR;K;B) =
B
B∑
b=1

1

b

, for arbitrary Kand B; (4.48)

1− ω
(
λ

µ

)
< lim

SNR→∞
Γ̃MC (SNR; 2; 2) < 1− 1

2
ω

(
λ

µ

)
(4.49)

where ω(x) is defined in Proposition 4.6.4 ;

lim
SNR→∞

Γ̃MT (SNR;KB) = 0, for any K ≤ B. (4.50)

The first result translates that the equilibrium power allocation policies of the MC and
SC scenario coincide in terms of expected rate at low SNR. The second result allows one
to quantify to what extent MT equilibrium policies performs better than SC ones. This
gain is seen to be independent of λ and µ, which is due to the fact that noise dominates
the interference and useful or direct channels are identically distributed. The third result
shows that equilibrium MC policies necessarily induce a performance degradation and
the corresponding loss can be bounded. In a typical case in which the interference power
is smaller than the useful signal by 10 dB (e.g., when (λ, µ) = (1, 0.1)), we have that
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0.02 < Γ̃s (SNR; 2; 2) < 0.51. This means that using a multi-channel power allocation
scheme instead of a single-channel one leads to dividing the total sum-rate by at least
1

0.51
' 2. The fourth result readily follows from the result of Proposition 4.6.4 concerning

the MT scenario.

So far, almost all the provided results concern finite interference networks regarding
the number of transmitter-receiver pairs and the number of bands. An important question
is whether the exhibited performance degradation phenomenon can be observed in larger
networks. Finding the worst and best equilibria in games with large number of players does
not seem to be trivial and is left as a significant extension of the present work. Instead,
we compare interesting power allocation policies which do not correspond to equilibria in
general :
• For the MC scenario : ∀k ∈ K, pk =

(
Pmax

B
, ..., Pmax

B

)
.

• For the SC scenario : ∀k ∈ K, pk = Pmaxeb?k where b?k = arg max
b
gbkk.

• For the MT scenario : ∀k ∈ K, pk = (Pmax, ..., Pmax). The uniform power allocation
policy happens to be the unique equilibrium of the game MT as well.
Assuming these policies and a large interference network, the following result can be
proved.

Proposition 4.6.6 (K large, B finite). Assume K → ∞, B < ∞ with i.i.d. infor-
mation channel gains gbkk and i.i.d interference channel gains gbk`(k 6= `). Then for all
s ∈ {MC,MT} we have that

lim
K→∞

Rs (SNR;K;B; g) = `B =
1
B∑
b=1

1
b

(4.51)

If K →∞, B →∞ and B
K
→ 0, we have that `B ∼ 1

logB
.

This result allows one to compare the scaling laws of two interference networks which
allow only uniform power allocation and channel selection respectively. For B = 10, the
corresponding ratio equals about 3, showing a significant degradation involved by allowing
the transmittenewr to exploit all the available bands. Of course, this result is pessimistic
in the sense that interference channels are assumed to have the same average gain as the
direct channels. Otherwise, the interference scenario will be less severe. The generalization
of Proposition 4.6.6 to the non i.i.d. channel gains may be obtained by using tools from
large random matrix theory [58] [59]. It might be argued that the number of transmitter-
receiver pairs is taken to be large while not expanding the available spectrum resources.
To address this issue another type of asymptotic regimes has to be considered that will
not be be tackled here.

4.7 Numerical performance analysis

4.7.1 Team power control

In this subsection, we first illustrate the influence of auxiliary variable through simu-
lations. More specifically, we demonstrate the theoretical results that under certain condi-
tions, auxiliary variable brings performance improvement. We then analyze the algorithm
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proposed in Sec 3.4 in greater detail showing its salient features in wireless applications
as well as its limitations. To this effect, we shall mainly concentrate on energy efficiency
as the utility function, proposing a novel continuous and scalable power control policy.
However our framework is general and can be applied to different problems in wireless
communications with distributed resource allocation.

Simulation setup

Firstly, we shall define the various utilities that we consider in our simulations. Denote
as G the global channel matrix with the entries gij, where i and j being respectively the
row and column indices, the utilities sum-energy-efficiency, sum-goodput and sum-rate
can be defined respectively as :

uEE(p1, . . . , pK ; G) =
K∑
k=1

exp(−c/γk)
pk

(4.52)

uGP(p1, . . . , pK ; G) =
K∑
k=1

exp(−c/γk) (4.53)

uSR(p1, . . . , pK ; G) =
K∑
k=1

log2(1 + γk) (4.54)

where γk = pkgkk
σ2+

∑
j 6=k pjgjj

, σ2 is the received noise variance and c = 2r − 1 with r being

the spectral efficiency. In this chapter, we set c = 1 for all simulations.

Algorithm 2 requires the channel realization feedback to be quantized. To this effect,
we chose to use maximum entropy quantizer (MEQ). This is to ensure that even in the
case of skewed channel statistics, the quantization intervals have uniform probability, thus
maximizing the entropy and encoding the most information. More formally, assume R as
the size of the quantizer and φii(gii) as the p.d.f. of gii, for MEQ, the quantization interval
bounds uii,r are fixed once and for all according to :

∀r ∈ {1, ..., R},∀i ∈ {1, ..., K},
∫ uii,r+1

uii,r

φii(gii)dgii =
1

R
. (4.55)

The representative of the interval [uii,r, uii,r+1] is denoted by vii,r and is chosen to be its
centroid :

vii,r =

∫ uii,r+1

uii,r

giiφii(gii)dgii∫ uii,r+1

uii,r

φii(gii)dgii

. (4.56)

To implement MEQ, only the knowledge of channel statistics φii is required. Additio-
nally, the complexity involved is very low. In all the simulations, MEQ is implemented to
quantize the channel gain unless otherwise stated.

The channel gains are chosen independently and according to an exponential law

φij(gij) = 1
E(gij)

exp
(
− gij

E(gij)

)
(that is, Rayleigh fading is assumed). We also assume, for
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ease of exposition, that the channel gain statistics (path losses) are symmetric over all
the users and E(gii) = 1.

Unless otherwise stated, we consider the following parameters in our simulations ;
number of Tx-Rx pairs K = 2, the noise variance σ2 = 1, Pmax = 2, SIR = 5.2dB, and
card(G) = 15.

Effects of the auxiliary variables

In Theorem 3.3.1 we show that the auxiliary variable can be useful in coordination pro-
blems when constraints are present. In the problem of power control, a natural constraint
to consider would be the quality of service constraint. In our illustration, we consider
the utility sum-rate in multi access channel (MAC) scenario, which is a special case of
interference channel scenario. The channel between the ith transmitter and the receiver
is denoted as gi and the sum-rate can be similarly defined as

uSRMAC(p1, . . . , pK ; g1, . . . , gK) =
K∑
k=1

ui (4.57)

where

ui(p1, . . . , pK ; g1, . . . , gK) =
K∑
k=1

log2(1 +
gkpk

σ2 +
∑

j 6=k gjpj
) (4.58)

All the alphabets are considered to be binary with Pi ∈ {0, Pmax}, gi ∈ {0.3, 1} and
V ∈ {V1, V2}. The probability for each channel realization is half, namely, for i ∈ {1, 2},
Pr(gi = 0.3) = Pr(gi = 1) = 50%. For the constraints, we considered the asymmetric case

where u1 ≥ 0.45×
K∑
k=1

log2(1+SNR) and u2 ≥ 0.15×
K∑
k=1

log2(1+SNR) with SNR = Pmax

σ2 .

For maximizing the utility sum-rate for K = 2 transmitters, we show in Fig. 4.1 that
having a coordination key can significantly improve the performance, especially at high
SNR where coordination becomes important. We plot 2 curves with the auxiliary variable
with different probability distributions for the binary alphabet. We chose the probabilities
for the benchmark curve with auxiliary variable to be Pr(V = V1) = Pr(V = V2) = 50%.
Additionally, it can be observed that the performance can be improved when optimizing
the distribution of the auxiliary variable. With the optimal V ?, the higher sum-energy-
efficiency can be achieved when comparing with the performance with the equiprobability
auxiliary variable V .
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Figure 4.1 – Considering the sum-rate utility for K = 2 with quality of service
constraints, we see a significant performance gain at high SNR. This figure demonstrates

the usefulness of the auxiliary variable in improving the coordination performance.

Analysis of the algorithm

We compare the performance of our distributed algorithm with two references which
serve as an upper and a lower bound. For the upper bound, we consider the centralized
social optimum given the global CSI. Even though our algorithm uses much less informa-
tion than the upper bound, we show that we can achieve comparable performances with
a distributed algorithm with much lesser complexity.

For the lower bound, we consider Nash Equilibrium. At first glance, this comparison
might seem unfair given the fact that Nash equilibrium is arrived at by each transmitter
maximizing it’s individual utility not the sum-utility. However, given that our algorithm
uses only local CSI and is distributed, this is the best state of the art algorithm for
comparison.
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Figure 4.2 – Considering the sum-energy for K=2, our technique outperforms the Nash
equilibrium at low SIR.
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Figure 4.3 – Same scenario as Fig. 4.2 but for K=4. We notice similar trends. However
the performance gain w.r.t. Nash equilibrium is unsurprisingly higher.
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Figure 4.4 – Considering the sum-goodput utility, we notice that eventhough our
algorithm outperforms Nash equilibrium, the performance gain is not much .
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Figure 4.5 – Considering the sum-rate utility, we see similar gains as in the case of
sum-goodput.

In Figs. 4.2, 4.4 and 4.5, we plot the performance of these three techniques for dif-
ferent utilities, namely sum-energy-efficiency , sum-goodput (Pmax = 1000) and sum-rate
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(Pmax = 10) respectively. The performance of three techniques is evaluated via Monte
Carlo simulations. We plot the performance as a function of signal to interference ratio
(SIR). As an example, the signal-to interference ratio (SIR) for the case with K = 2
transmitters :

SIR(dB) = 10 log10

(
E(g11)

E(g21)

)
= 10 log10

(
E(g22)

E(g12)

)
. (4.59)

assuming symmetric channel statistics. For intuition, the higher the SIR, the lesser the
influence of cross channels.

Figs 4.2 and 4.3 serve as comparison for the same utility (sum-energy) but for different
number of transmitters K = 2 and K = 4. Greater number of transmitters only improves
the performance gain w.r.t. the Nash equilibrium.

As expected, we notice that at low SIR, one can obtain significant performance gains
with our algorithm as compared to the Nash equilibrium. This is because at low SIR
levels, coordination is important to mitigate the strong interference. More importantly,
and surprisingly however, our algorithm performs close to the social optimum with much
less information available to it. In As a sanity check, we see that for all the three figures,
at high SIR, the performance of all the three techniques coincide, since the interference is
negligible.

Our algorithm takes into account the feedback noise. To illustrate the effect of noise
on the utility region, in Fig. 4.6, we plot the regions for different levels of noise. To
parametrize different levels of noise, we define the estimation signal-to-noise ratio (ESNR)
for the feedback (prior information) as follows :

ESNRi =
E[Q2(gii)]

E[(Q(gii)− Q(g̃ii))2]
. (4.60)

where gii is the channel gain from transmitter i to receiver i, g̃ii is the estimated channel
gain in the receiver side and Q is the quantization function.

We also plot the social optimum for reference. Unsurprisingly, we see that the more
noisy the feedback, the smaller the utility region becomes. Our algorithm performs only
10 % worse than the centralized social optimum, and even at high noise levels (ESNR=3
dB), the performance gap is less than 20%.
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Figure 4.6 – The loss induced by our algorithm is less than 10% when the receiver has
perfect channel estimate. The loss increases when we have noisy observation but is still

less than 20% even at a high noise level.
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From Fig 4.7, we can gain intuition on the influence of noise on the decision functions
found by our algorithm. It can be observed that the power control functions become
more uniform at higher noise levels, as the information received is less reliable, and thus
transmitters emit at a power level which maximizes the utility after averaging over the
uncertainty in observation due to the noise.

The principal drawback of the algorithm for applications in wireless applications is its
complexity. Even for the simple problem of power control in an interference channel, if
there are K transmitter receiver pairs, the cardinality of the alphabet of global channel
states |A0| = |Gij|K

2
. Since we do an exhaustive search for power control policies for each

configuration of the global channel states, our algorithm scales badly w.r.t. number of
Tx-Rx pairs.
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Figure 4.8 – The complexity of the algorithm depends highly on the cardinality of G.
From this figure, we see that card(G) as less as 10 suffices to achieve good enough

performance.
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Figure 4.9 – While Card(P) is a less important factor in the complexity of the
algorithm, we show that one does not require many power levels to get good decision

functions.

However, it is not all doom and gloom. The complexity also depends on the cardinality
of the power levels, |P|, available for the transmitters. From Figs. 4.9 and 4.8, we see that
the required cardinality of P and G to achieve good performances is relatively small.
This helps the optimization problem tractable at least for problems with small number of
transmitter receiver pairs.

The intuition gained from the small test cases can be used to reduce the search space
for optimal power control functions. We illustrate the methodology by treating the case
of sum-energy. From Fig 4.7 we see that the decision function in case of no noise has
a simple structure. Transmitters either transmit at zero, if the channel is below certain
threshold and cσ2

Q(gii)
otherwise. This continuous power control scheme requires only the

threshold to be found for each transmitter instead of finding the decision function for
each transmitter. This reduces the search space for the optimization many-fold. We can
use the same procedure as our algorithm for finding the thresholds for all transmitters in
a distributed fashion.
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Figure 4.10 – In this figure, we compare the performance of the four proposed methods
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the threshold policy.
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To be sure that this reduction of complexity does not entail any performance loss, in
Fig. 4.10 we compare the threshold policy with our algorithm for upto 4 transmitters.
While this is not a proof that there is no performance loss, it does instill some confidence
in our simplification. Moreover since it is a continuous power control scheme, it slightly
outperforms the algorithm since there is no loss induced by discretization of P. In Fig. 4.11,
we see that while the performance of Nash equilibrium deteriorates with more number of
transmitters, the thresholding policy scales very well. This is not surprising as coordination
becomes more important when there are many transmitters.

Unfortunately, this step requires intuition which cannot be easily automatized and is
not a general procedure. Nonetheless, given the tremendous gains achieved due to this
step in reducing the complexity, it is well worth the effort.

4.7.2 Selfish power control

In this subsection, we provide simulations for the case where all agents maximize their
own utility in a selfish way. We consider three different scenarios corresponding to different
action profiles described in Sec. 3.6, namely MC (multi channel), MT (multi transmitter)
and SC (single channel). We compare their performances at equilibria. For the analysis, we
distinguish different scenarios in terms of the network size ; Finite systems corresponding
to upto 4 users - 4 bands and Large systems corresponding to the case when there are
more (in orders of magnitude) users and 10 bands.

Finite systems : Multi-Channel scenario equilibria vs. Single-Channel scenario
equilibria

We consider here that (K,B) = (2, 2) and (K,B) = (4, 4). The direct channels are
assumed stronger than the interfering ones : (λ, µ) = (1, 0.1). Our objective is to evaluate
the sum-rate performance gap between the MC and SC at equilibrium. Fig. 4.12 and 4.13

respectively represent Prg

[
R̃MC (SNR;K;B; g) < 1

]
and Γ̃MC (SNR;K;B) as functions

of SNR(dB) = 10 log10 SNR. As our analytical results forecast, the probability that the
MC equilibrium power allocation policies perform less than the SC ones tends to zero
at low SNR and tends to one at high SNR. Fig. 4.12 also shows that this probability
increases with SNR. These results are obtained using the IWFA algorithm under the
equilibrium uniqueness condition of [48]. Interestingly, the figure allows one to delineate
the two regimes in which the multi-channel solution performs better or worse than the
SC one : the SNR threshold is about 25 dB. Above this threshold, restricting the choices
of the transmitters in terms of using the spectrum is beneficial. For example, as shown in
Fig. 4.13, when SNR(dB) = 45 dB (which is a typical value in WiFi systems) the equi-
librium MC sum-rate is only 60% of the sum-rate achieved by allowing the transmitters
to use a single band only. Since these observations hold for a typical but specific choice
(λ, µ) = (1, 0.1), we also study the influence of the ratio λ

µ
which represents the relative

strength of the useful link compared to interference links. For SNR(dB) = 70 dB and

λ = 1, Fig. 4.14 precisely represents Prg

[
R̃MC (SNR;K;B; g) < 1

]
as function of λ

µ
in dB,

for (K,B) = (2, 2) and (K,B) = (4, 4). As proved in (4.45) for (K,B) = (2, 2), it can
be seen that the probability that MC induces global performance degradation increases
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with the latter ratio. In other words, if the interference is relatively weak, the probabi-
lity of performance degradation will be high. This is also confirmed by simulations for
(K,B) = (4, 4). But this holds for very high SNRs. By considering SNR(dB) = 50 dB,
Fig. 4.15 shows that the performance degradation vanishes as the interference level de-
creases. The intuition is that, when the interference is low, the network behaves like a set
of independent single-user communications i.e., water-filling over all the available bands is
optimal. However, this is not observed for SNR(dB) = 70 dB and higher values for SNR :
when σ2 → 0, the interference is not negligible compared to the noise. Other simulations,
which are not reported here for obvious space limitations confirm the general tendencies
the three commented figures indicate for different (K,B).

Finite systems : Multi-Transmitter scenario equilibria vs. Single-Channel sce-
nario equilibria

Here, exactly the same approach as the preceding subsection is conducted
by considering the MT scenario instead of MC. The observations concerning

Prg

[
R̃MT (SNR;K;B; g) < 1

]
are similar to those made for Prg

[
R̃MC (SNR;K;B; g) < 1

]
and will therefore not be reported here. For Γ̃MT (SNR;K;B) the behavior is also quite

similar to Γ̃MC (SNR;K;B), as advocated by Fig. 4.16. For (K,B) = (4, 4), it can be
seen that : at low SNR, using the multi-transmitter solution allows the sum-rate to be
multiplied by about 2 w.r.t. the single-channel solution ; at high SNR, the MT solution
sum-rate is divided by about 2 ; for intermediate SNR, the sum-rate performance of the
MT and SC are close. At low SNR, the values forecasted by (4.48) are validated. Similarly,
when the SNR goes beyond 70 dB, predictions from (4.50) are also observed.

Large systems : MC/MT Uniform Power Allocation policy vs. Best Channel
Selection policy

We focus here on the expected sum-rate comparison between the UPA (MC setting),
the full power Pmax in every channel policy (MT setting) and the best channel selection
policy (CS setting). Fig. 4.17 represents the expected sum-rates against the number of
transmitter-receiver pairs K, for the scenario : B = 10, SNR = 10 dB, (λ, µ) = (1, 0.1).
This figure allows one to have an idea about the network scaling laws under different
power allocation policies. Roughly, when the system is not loaded, say for a load which is
less than K

B
= 30

10
for the considered simulation setting, using several bands is beneficial

for the network sum-rate. Above this threshold, using a single band allows to achieve a
significantly better sum-rate performance.

4.8 Conclusion

From the analytical point of view, this chapter provides three important contributions.
Firstly, it offers a possible framework to fully characterize the performance of distributed
power control under (arbitrary) partial information. The limiting performance analysis is
conducted in terms of long-term utility region and while we assume the global channel
state to be i.i.d. and the observation structure to be memoryless ; one relevant extension
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is to relax these assumptions e.g., by considering Gauss-Markov processes for the channel
variations. Additionally, the analysis is conducted by assuming discrete the various quan-
tities at use such as the transmit power. We have provided several strong motivations for
this but the proposed framework might be easily developed to continuous quantities. Now,
one of the drawbacks for considering discrete quantities is the computational complexity
involved by the determination of good power control strategies. Here also, our work might
be improved.

Secondly, considering the numerical performance analysis, the obtained results of the
proposed team power control scheme are convincing in the sense that the state of the art
power control schemes are outperformed. In particular, our work allows one to determine
the shape of good decision functions in a systematic manner, whereas it has been done so
far in an empirical manner. And, this, for any utility function. As clearly explained, we
have shown how to find good stationary memoryless power control strategies, but when it
comes to other channel processes such as Gauss-Markov processes, good strategies might
have to be with memory. This conjecture would need to be explored, constituting another
technical challenge to be face with.

Finally, in distributed interference networks, it can be seen that allowing individual
rate-maximizing transmitters to spread their power over the entire spectrum, as opposed
to using a single band, may result in sum-rate performance losses.
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5
New connections between power domain

feedback and signal domain operations

In this chapter, we show how power domain measurements can be exploited for two
well-known signal domain processing techniques, namely opportunistic interference ali-
gnment and training-based signal domain channel estimation. As far as interference ali-
gnment is concerned, we consider the opportunistic version which was proposed in [9].
In [9], the authors assume that the primary transmitter chooses its precoding matrix to
maximize its individual transmission rate while the secondary transmitter exploits the
available spatial opportunities. For this, the secondary transmitter aligns its signal to
guarantee zero interference at the primary receiver and needs global channel state infor-
mation (CSI). A crucial problem problem with this technique is that the authors did not
provide any technique to acquire the required information about the different channels,
knowing that the authors recommend that global CSI be available. In this chapter, we
show that global CSI is not required to implement the opportunistic interference alignment
of [9]. Indeed we prove that the sole knowledge of the interference-plus-noise covariance
matrix feedback at the secondary transmitter is sufficient to implement the technique
under consideration ; this assumption has been made e.g., to derive the MIMO version of
iterative water-filling algorithm [15]. Now concerning training-based channel estimation,
we show that the received power measurements can be used as priors to improve the
channel estimation accuracy level significantly. Specifically, we propose a new MMSE and
MAP estimators which integrate this prior knowledge. Mean square estimation error can
be decreased by about 50% in typical scenarios in terms of SNR and even by assuming a
quite small number of available received power measurements.
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5.1.2 - System Model

5.1 Implementing opportunistic interference alignment in
MIMO cognitive radio networks

5.1.1 Motivation and state of the art

To respond to the ever increasing demand for spectrum, recently, cognitive networks
have been proposed. Under the cognitive network paradigm, unlicensed wireless users
(secondary users) may dynamically access the licensed bands from legacy spectrum holders
(primary users), either through negotiations or on an opportunistic basis [60]. In the
case of opportunistic access however, it is important that secondary users do not induce
any significant degradation of quality of service (QoS). The opportunity for exploitation
arises when either the transmissions by the primary users are sporadic, thus allowing
the secondary users to exploit the spectrum in between or simply because the primary
network has no infrastructure in a particular area, in which case the secondary networks
can exploit it at all times.

In the case of dense networks however, the unused spectrums, also referred to as white
spaces, might be a rare and ephemeral occurence. Cognitive radio, as originally presented
in [61], relies crucially on the availability of such white spaces, failing which the secondary
systems generate additional interference while transmitting. One way to mitigate this issue
is by using a recently developed solution of interference alignment (IA). In essence, the
technique of IA involves constructing signals such that the corresponding interference
signal lie in an orthogonal subspace to the signal of interest at receiver. This technique
was introduced independently through several articles [62][63]. It has recently become an
important tool to study the degrees of freedom of interference channels [63]. IA has been
analyzed for feasibility and implementation issues, especially the required channel state
information, in [64]. In [9], the technique of IA for cognitive networks was extended for
the case of MIMO.

In this section, we present an alternative to the solution given in [9] to re-use the
transmit opportunities. The latter solution aims at maximizing the transmission rate of
the secondary link without generating interference to the primary link. However, as shown
in [9], it is assumed that the secondary user knows the global channel state information
(CSI) perfectly, which is not practical in many real wireless systems. Without dedicated
feedback or inter-transmitter signaling channels, only the local CSI can be acquired easily
by sending pilot symbols [11]. Technically, the approach proposed here distinguishes from
[9] by the fact that it relies solely on local CSI and uses power domain feedback, namely
covariance matrix [65]. Here we show how to reconstruct the IA scheme as [9] with less
information about the channel available at the transmitters.

5.1.2 System Model

We consider two unidirectional links simultaneously operating in the same frequency
band and producing mutual interference. The first transmitter-receiver pair (Tx1,Rx1)
is the primary link. The pair (Tx2,Rx2) is an opportunistic link subject to the strict
constraint that the primary link must transmit at a rate equivalent to its single-user
capacity. Denote by Ni and Mi, with i = 1 (resp. i = 2), the number of antennas at the
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primary (resp. secondary) receiver and transmitter, respectively. Each transmitter sends
independent messages only to its respective receiver and no cooperation between them is
allowed, i.e., there is no message exchange between transmitters. This scenario is known
as the MIMO interference channel (IC) [66][67] with private messages. A private message
is a message from a given source to a given destination : only one destination node is able
to decode it. Indeed, we do not consider the case of common messages which would be
generated by a given source in order to be decoded by several destination nodes.

In this section, we assume the channel transfer matrices between different nodes to be fixed
over the whole duration of the transmission. The channel transfer matrix from transmitter
j ∈ {1, 2} to receiver i ∈ {1, 2} is an Ni ×Mj matrix denoted by Hji which corresponds
to the realization of a random matrix with independent and identically distributed (i.i.d.)
complex Gaussian circularly symmetric entries with zero mean and variance 1, which
implies

∀(i, j) ∈ {1, 2}2, Trace
(
E
[
Hji H

H
ji

])
= MjNi. (5.1)

The Li symbols transmitter i is able to simultaneously transmit, denoted by xi,1, . . . , xi,Li ,

are represented by the vector xi = (xi,1, . . . , xi,Li)
T . We assume that ∀i ∈ {1, 2} symbols

xi,1, . . . , xi,Li are i.i.d. zero-mean circularly-symmetric complex Gaussian variables. In our
model, transmitter i processes its symbols using a matrix Vi to construct its transmitted
signal Vixi. Therefore, the matrix Vi is called pre-processing matrix. Following a matrix
notation, the primary and secondary received signals, represented by the Ni × 1 column-
vectors si, with i ∈ {1, 2}, can be written as(

s1
s2

)
=

(
H11 H21

H12 H22

)(
V1x1

V2x2

)
+

(
n1

n2

)
, (5.2)

where ni is an Ni-dimensional vector representing noise effects at receiver i with entries
modeled by an additive white Gaussian noise (AWGN) process with zero mean and va-
riance σ2

i , i.e.,∀i ∈ {1, 2}, E
[
nin

H
i

]
= σ2

i INi . At transmitter i ∈ {1, 2}, the Li ×Li power
allocation matrix Pi is defined by the input covariance matrix Pi = E

[
xix

H
i

]
. Note that

symbols xi,1 . . . , xi,Li , ∀i ∈ {1, 2} are mutually independent and zero-mean, thus, the PA
matrices can be written as diagonal matrices, i.e., Pi = diag (pi,1, . . . , pi,Li). Choosing Pi

therefore means selecting a given PA policy. The power constraints on the transmitted
signals Vixi can be written as

∀i ∈ {1, 2} , Trace
(
ViPiV

H
i

)
6Mi pi,max. (5.3)

At receiver i ∈ {1, 2}, the signal si is processed using an Ni × Ni matrix Di to
form the Ni-dimensional vector yi = Disi. All along this section, we refer to Di as
the post-processing matrix at receiver i. In [9], it is assumed that the primary terminals
(transmitter and receiver) have perfect knowledge of the matrix H11 while the secondary
terminals have perfect knowledge of all channel transfer matrices Hij, ∀(i, j) ∈ {1, 2}2.
However, this setup is highly demanding in terms of information assumptions. Without
inter-transmitter signaling channels, for each transmitter, it is difficult to recover the
channel information of other transmitters in MIMO systems. Hence, in our model, we
make a more practical assumption here : the primary terminals (transmitter and receiver)
have perfect knowledge of the matrix H11 and the matrix H21 while the secondary terminals
have perfect knowledge of the matrix H12 and the matrix H22, i.e., each user knows its local
CSI perfectly. In fact, there are several technical arguments making this setup relatively
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realistic : (a) in some contexts channel reciprocity can be exploited to acquire CSI at the
transmitters ; (b) by sending pilot symbols and use feedback channels, the local CSI can
be reconstructed (see [11]).

In addition, we propose to use the feedback channel for the secondary user to achieve
similar performance as [9] with only local CSI available. Indeed, the feedback, which is
the covariance matrix of the received signal for secondary user, can be written as :

R2 = σ2
2IN2 + D2H22V2P2V

H
2 HH

22D
H
2 + D2H12V1P1V

H
1 HH

12D
H
2 (5.4)

5.1.3 Opportunistic Interference Alignment

Before presenting the proposed technique, firstly we describe how the primary link
operate at its highest transmission rate and the secondary link simultaneously operate
at its highest transmission rate without generating interference to the primary link. This
problem has been well investigated in [9], in this subsection we list all the obtained results
in [9] such that we can better explain our technique in the following subsection.

Primary Link Performance

According to the demand of the proposed system model, the primary link must ope-
rate at its highest transmission rate in the absence of interference. Hence, following the
results in [68] and using our own notation, the optimal pre-processing and post-processing
schemes for the primary link are given by the following theorem.

Theorem 5.1.1. Let H11 = UH11ΛH11V
H
H11

be a singular value decomposition (SVD)
of the N1 ×M1 channel transfer matrix H11, with UH11 and VH11 , two unitary matrices
with dimension N1 × N1 and M1 ×M1, respectively, and ΛH11 an N1 ×M1 matrix with
main diagonal

(
λH11,1, . . . , λH11,min(N1,M1)

)
and zeros on its off-diagonal. The primary link

achieves capacity by choosing V1 = VH11 , D1 = UH
H11

, P ?
1 = diag

(
p?1,1, . . . , p

?
1,M1

)
, where

∀n ∈ {1, . . . ,M1} , p?1,n =

(
β − σ2

1

λHH
11H11,n

)+

, (5.5)

with, ΛHH
11H11

= ΛH
H11

ΛH11 = diag
(
λHH

11H11,1, . . . , λHH
11H11,M1

)
and the constant β (water-

level) is set to saturate the power constraint (5.3).

According to Theorem 4.1.1, it is important to note that some of the transmit dimensions
can be left unused. Let m1 ∈ {1, . . . ,M1} denote the number of transmit dimensions used
by the primary user :

m1 ,
M1∑
n=1

1]0,M1p1,max](p
?
1,n)

=

M1∑
n=1

1]σ21
β
,+∞

[(λHH
11H11,n).

(5.6)
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Furthermore, it can be checked that

1 ≤ m1 ≤ rank(HH
11H11) (5.7)

Hence, there are M1 −m1 left transmit dimensions, which can be used by the secondary
user without generating interference to the primary user. In [9], it has been shown how
those unused dimensions of the primary system can be seen by the secondary system as
opportunities to transmit.

Pre-processing Matrix of Secondary Link

The objective is first to find a pre-processing matrix V ?
2 that satisfies the interference

alignment (IA) condition, which is defined as follows :

Definition 5.1.2 (IA condition). Let H11 = UH11ΛH11V
H
H11

be an SVD of H11 and

R = σ2
1IN1 + UH

H11
H21V2P2V

H
2 HH

21UH11 , (5.8)

be the covariance matrix of the co-channel interference (CCI) plus noise signal in the
primary link. The opportunistic link is said to satisfy the IA condition if its opportunistic
transmission is such that the primary link achieves the transmission rate of the equivalent
single-user system, which translates mathematically as

log2

∣∣∣IN1 + 1
σ2
1
ΛH11P1Λ

H
H11

∣∣∣ =

log2

∣∣IN1 + R−1ΛH11P1Λ
H
H11

∣∣ . (5.9)

According to [9], to fulfill the IA condition, the pre-processing matrix V ?
2 can be selected

as follows :

Lemma 1 (Pre-processing matrix V ?
2 ). Let H11 = UH11ΛH11V

H
H11

be an ordered SVD of
H11, with UH11 and VH11 , two unitary matrices of size N1×N1 and M1×M1, respectively,
and ΛH11 an N1 ×M1 matrix with main diagonal

(
λH11,1, . . . , λH11,min(N1,M1)

)
and zeros

on its off-diagonal, such that λ2H11,1
> λ2H11,2

> . . . > λ2H11,min(N1,M1)
. Let also the N1×M2

matrix H̃
4
= UH

H11
H21 have a block structure,

H̃ =

M2←→
m1

xy
N1 −m1

xy
(

H̃1

H̃2

)
. (5.10)

The IA condition (Def. 5.1.2) is satisfied independently of the PA matrix P2, when the
pre-processing matrix V ?

2 satisfies the condition :

H̃1V
?
2 = 0m1×L2 , (5.11)

where L2 is the dimension of the null space of matrix H̃1.
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Post-processing Matrix

Once the pre-processing matrix V2 has been adapted to perform IA, no harmful interfe-
rence impairs the primary link. However, the secondary receiver undergoes the co-channel
interference (CCI) from the primary transmitter. According to [9], the post-processing
D?

2 maximizing the transmission rate of the secondary link can be written as

D?
2 =

(
H12VH11P1V

H
H11

HH
12 + σ2

2IN2

)− 1
2 (5.12)

5.1.4 Coordination scheme to obtain the optimal pre-processing
and post-processing matrix for secondary user

In last subsection, we briefly introduced the results obtained in [9]. However, they
assume the global CSI, i.e., {H11,H12,H21,H22}, are known perfectly to the secondary
user, which is not practical in real systems. Hence, as described in Section 4.1.2, we make
less restrictive assumptions that only the local CSI is known perfectly to the primary
user and the secondary user. Based on these new assumptions, we propose a novel scheme
to acquire the optimal pre-processing and post-processing matrix for the secondary user
when the global channel state information is known only partially to the secondary user.
Furthermore, it is assumed that each element in the channel matrix is independent, and
thus the channel matrix is fully ranked with probability one. For ease of exposition, we
also suppose M1 = M2 = Mc and N1 = N2 = Nc. In this subsection, it will be shown
how it is possible to acquire the same pre-processing and post-processing matrix as [9] by
exploiting the covariance matrix feedback.

Acquisition of post-processing matrix for SU

According to (5.12), the optimal post-processing matrix can be written as :

D?
2 =

(
H12VH11P1V

H
H11

HH
12 + σ2

2INc
)− 1

2 (5.13)

Hence, if we can recover the matrix Q =
(
H12VH11P1V

H
H11

HH
12 + σ2

2INc
)

from the feedback,
the optimal post-processing matrix can be acquired easily. Set P2 = 0 and choose an
invertible post-processing matrix D2, when the PU transmit with optimal pre-processing
matrix VH11 and optimal PA matrix P ?

1 , the feedback can be rewritten as :

R2 = σ2
2INc + D2H12VH11P

?
1V

H
H11

HH
12D

H
2 (5.14)

Then the matrix D?
2 can be obtained by

D?
2 = (DH

2

−1
R2D

−1
2 −DH

2

−1
D−12 + σ2

2INc)
− 1

2 (5.15)

Acquisition of pre-processing matrix for SU in the scenario Mc ≤ Nc (more
receiving antennas)

According to the (5.11), the pre-processing matrix V ?
2 satisfies the condition :

H̃1V
?
2 = 0m1×L2 , (5.16)
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Therefore, the goal here is to find the null space of H̃1. Interestingly, as demonstrated by
the following proposition, it is not necessary to know H̃1 to acquire the null space of H̃1.

Proposition 5.1.3. Assume H is a full row rank matrix and P is a full rank square
matrix, then the null space of HHPH coincides with the null space of H.

Proof : Suppose V is the null space of H , i.e. HV = 0. It can be easily checked that

HHPHV = 0 (5.17)

Hence, V is the subset of V ′, which is the null space of HHPH . If we can show that the
dimension of V is the same as the dimension of V ′, then our claim will be proved.

Note that rank(AB) = rank(B) when A is a full column rank matrix and
rank(BC) = rank(B) when C is a full row rank matrix. Knowing that H is a full
row rank matrix and P is a full rank matrix, it can be obtained that :

rank(HHPH) = rank(H) (5.18)

Suppose the column number of H is M , it can be checked that

dim Ker(H) = M − rank(H)

= M − rank(HHPH)

= dim Ker(HHPH)

(5.19)

Hence, we can conclude that V and V ′ coincide. �

According to Proposition 4.1.3, by reconstructing the null space of H̃H
1 PH̃1, we can

obtain V ?
2 as both the null spaces coincide. To exchange the information between PU and

SU, H̃1 is embedded in the pre-processing matrix of PU. Assume that Mc ×Mc matrix
V1 has a block structure,

V1 =

m1←→ Mc−m1←−−−→
Mc

xy (
H̃H

1 X1

) . (5.20)

where the X1 can be any arbitrary matrix.

Note that we can obtain the following inequality with the transmit power defined by
(4)

p?1,1 ≥ p?1,2 ≥ · · · ≥ p?1,Mc
(5.21)

by choosing the appropriate SVD such that

λHH
11H11,1 ≥ λHH

11H11,2 ≥ · · · ≥ λHH
11H11,Mc

(5.22)

Hence, the transmit power matrix of PU has the following block structure :

P1 = P ?
1 =

m1←→ Mc−m1←−−−→
m1

xy
Mc −m1

xy
(

P1,11 0
0 0

)
. (5.23)
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where P1,11 = diag(p?1,1, . . . , p
?
1,m1

). Knowing (5.20) and (5.23), it can be easily checked
that :

V1P1V
H
1 = H̃H

1 P1,11H̃1 (5.24)

According to Prop. 4.1.3, when P1,11 has full rank, knowing H̃H
1 P1,11H̃1 is sufficient to

reconstruct the null space of H̃1. Plugging (5.20) and (5.23) into (5.4), and by selecting
P2 = 0, the feedback can be rewritten as :

R2 = σ2
2INc + D2H12H̃

H
1 P1,11H̃1H

H
12D

H
2 (5.25)

Thus, H̃H
1 P1,11H̃1 can be calculated by :

H̃H
1 P1,11H̃1 = (HH

12H12)
−1HH

12D
−1
2 (R2 − σ2

2INc)D
H
2

−1
H12(H

H
12H12)

−1 (5.26)

Since H12 and D2 are known to the SU, H̃H
1 P1,11H̃1 can be reconstructed by knowing

the feedback R2. Consequently the optimal pre-processing matrix V ?
2 (null space of H̃1)

can be obtained.

Acquisition of pre-processing matrix for SU in the scenario Mc > Nc (more
transmit antennas)

In this case, it is impossible to reconstruct the null space by (5.26) since HH
12H12 is

not invertible when Mc ≥ Nc. More generally, when we have more transmit antennas, it is
impossible to completely reconstruct the Nc×Mc channel matrix if we have the feedback
(covariance matrix of the received signal) just once . However, by using feedbacks from
several time-slots, the reconstruction of the null space is feasible. In each time-slot, a part
of information of the channel matrix will be exchanged and can be combined by receiving
all the information exchanged through the feedback. Therefore, in each time-slot we can
reconstruct a part of the channel matrix. Note that H̃1 can be written as :

H̃1 = (h̃1,1, . . . , h̃1,Mc) (5.27)

where h̃1,i is the ith column vector of H̃1. Assume T = Nc − m1 > 0, in time-slot
i ∈ {1, . . . ,

⌈
Mc−Nc

T

⌉
}, the matrix H̃1,i is embedded into the pre-processing matrix of PU

in the following way :

V1(i) =

m1←→ Mc−m1←−−−→
Nc

xy
Mc −Nc

xy
(

H̃H
1,i Yi

0 0

)
. (5.28)

where H̃1,i = (h̃1,1+(i−1)T , . . . , h̃1,1+(i−1)T+Nc) with dimension m1 ×Nc and Yi can be any
arbitrary matrix with dimensions Nc × (Mc −m1). Knowing (5.28) and (5.23), it can be
easily checked that :

V1(i)P1V
H
1 (i) =

Nc←→ Mc−Nc←−−−→
Nc

xy
Mc −Nc

xy
(

H̃H
1,iP1,11H̃1,i 0

0 0

)
. (5.29)
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Let the matrix H12 have a block structure

H12 =

Nc←→ Mc−Nc←−−−→
Nc

xy (
H12,1 H12,2

) . (5.30)

Plugging (5.28), (5.23) and (5.30) into (5.4), and selecting P2 = 0, the feedback in
time-slot i can be rewritten as :

R2(i) = σ2
2INc + D2H12,1H̃

H
1,iP1,11H̃1,iH

H
12,1D

H
2 (5.31)

Thus, H̃H
1,iP1,11H̃1,i can be calculated by :

H̃H
1,iP1,11H̃1,i = H−1

12,1D
−1
2 (R2(i)− σ2

2INc)D
H
2

−1
HH

12,1

−1
(5.32)

According to proposition 4, the null space of H̃1,i, i.e. V2,i, can be obtained by solving
H̃1,iV2,i = 0. It is important to note that, h̃1,1, . . . , h̃1,m1 are m1 independent vectors with
dimension m1. Therefore, the rest of the vectors in H̃1, h̃1,m1+1, . . . , h̃1,Mc , can be written
as the combination of the m1 basis vectors, i.e. h̃1,1, . . . , h̃1,m1 . By solving H̃1,iV2,i = 0
for every i ∈ {1, . . . ,

⌈
Mc−Nc

T

⌉
}, i.e.

[h̃1,1+(i−1)T . . . h̃1,1+(i−1)T+Nc ]V2,i = 0 (5.33)

Thus, for every j ∈ {m1 + 1, . . . ,Mc}, h̃1,j can be rewritten as the sum of the basis
vectors :

h̃1,j = a
(j)
1 h̃1,1 + · · ·+ a(j)m1

h̃1,m1 (5.34)

Expressing the above Mc−m1 equalities more succinctly through matrix multiplication :

H̃1


a
(m1+1)
1 . . . a

(Mc)
1

...
...

...

a
(m1+1)
m1 . . . a

(Mc)
m1

−I(Mc−m1)×(Mc−m1)

 = 0 (5.35)

Thus, the null space of H̃1 is :

V ?
2 =


a
(m1+1)
1 . . . a

(Mc)
1

...
...

...

a
(m1+1)
m1 . . . a

(Mc)
m1

−I(Mc−m1)×(Mc−m1)

 (5.36)

5.1.5 Numerical performance analysis

As mentioned before, the channel matrix Hji is assumed to be a matrix with inde-
pendent and identically distributed (i.i.d.) complex Gaussian circularly symmetric entries
with zero mean and variance 1. For ease of exposition, we assume each transmitter has
the same power constraint and same noise variance, i.e. p1,max = p2,max and σ1 = σ2. The
signal-to-noise ratio (SNR) is defined as

SNR =
M1p1,max

σ2
1

(5.37)
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In the simulations, we consider the case with 4 transmit antennas and 4 receive antennas,
i.e. M1 = M2 = 4 and N1 = N2 = 4.

Firstly, we compare the sum-rate in the following three scenarios :1) The local CSI and
the power domain feedback are available ; 2) Only the local CSI is available ; 3) The preco-
ding matrix V1 is used to exchange information with the secondary user (training phase).
For the first case, as proved before, the opportunistic interference alignment scheme can
be recovered perfectly. Both transmitters can achieve their maximum transmission rate.
When we have only the local CSI, the primary user can still transmit at its maximum rate
while the secondary user should keep silent to avoid interference with the primary user.
As for the training phase, the objective is not to maximize the transmission rate but to
exchange information. Fig. 5.1 clearly shows that the sum-rate can be increased by exploi-
ting the feedback. However, as SNR increases, the improvement becomes less significant.
This can be explained by the fact that the transmit opportunities for the secondary user
will decrease as the power limitation for the primary user is relaxed. Furthermore, it can
be seen that during the training phases, exchanging information induces a degradation
in sum-rate. Hence, for the proposed scheme, the sum-rate decreases initally during the
training phase. This loss can however be recovered since the exchanged information can
help exploit the opportunistic interference alignment scheme.

As proved in the analytical part, the training phase for the considered model only
lasts for one time-slot. Therefore, it can be predicted that when the coherence time of
channel (the duration of a coherence block in which the channel is assumed to be a
constant) is long, the average sum-rate over the coherence time will be highly enhanced
since the degradation appears only in the first time-slot. Fig. 5.2 illustrates that the
improvements in terms of average sum-rate becomes more significant when the coherence
time increases. Unsurprisingly, the improvements are mitigated at high SNR since the
secondary transmitter has less opportunities to transmit without inducing interference to
the primary transmitter.
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Figure 5.1 – Comparison of the performance in terms of sum-rate. In the training
phase, the local CSI is embedded into the precoding matrix to exchange information,
which induces the sum-rate loss. However, by exploiting the feedback in the training

phase, the opportunistic interference alignment scheme can be reconstructed and thus
the sum-rate is increased in the following time-slots.
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Figure 5.2 – Average sum-rate as a function of channel coherence times. When the
coherence time is longer, more improvements can be obtained. Furthermore, this gain

becomes more significant in low SNR regime.
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5.2 Improving channel estimation accuracy via power do-
main feedback in interference networks

5.2.1 Motivation and state of the art

The channel information is essential to determine the capacity of system performance
in many wireless networks such as orthogonal frequency-division multiplexing (OFDM)
and multiple input multiple output (MIMO) (see e.g., [69]). However, the channel informa-
tion is not perfectly known in practical systems and need to be estimated by sending pilot
sequences [11] or using blind channel estimation [70]. Thus the system performance relies
on the accuracy level of channel estimation. Improving the quality of channel estimation
is a well studied problem for both academic researchers as well as engineers in the com-
munication industry. In the context of interference networks, a precise estimation of the
channel between a transmitter and its intended receiver requires coordination between all
the interfering transmitters during training phase. Recently in [11][10], it has been shown
that the channel state information (CSI) can be acquired by sending pilot symbols and
estimating the channel with the minimum mean square error (MMSE) estimator. It turns
out that this estimation scheme can be enhanced with power domain feedback, which is
the purpose of this section.

In this work, we propose a novel method to improve the channel estimate by exploiting
the average received signal strength indicator (RSSI). As the RSSI measurements are an
additional source of information on the channel state, they can be used to improve a noisy
estimate. For ease of exposition, we focus this section on presenting an improvement on
two specific estimators, minimum mean square error (MMSE) estimator and maximum a
posteriori (MAP) estimator. We provide a new MMSE estimator which uses RSSI measu-
rements, and show that this results in a better estimate than the classical estimator from
[10]. Moreover, a new MAP estimator is proposed to improve the estimation accuracy
under the help of RSSI measurements. Finally, we present numerical simulations which
indicate distortion improvements of up to 30% using MMSE estimate and up to 50% with
a MAP estimate, validating our proposed approach.

5.2.2 System Model

We consider an interference network with K single antenna transmitter-receiver pairs.
We use K := {1, 2, . . . , K} to represent the set of transmitters or receivers. The channel
state for the duration of a coherence block is assumed to be a constant and is given by
h ∈ CK2

, which is a K by K matrix with element hij ∈ C denoting the channel from
transmitter i to receiver j. As a result, the signal received at j is given by

yj =
K∑
i=1

hijxi + zj (5.38)

where xi ∈ C is the signal sent by the i-th transmitter and zj ∈ C is the ambient noise at
the receiver j.

The objective of our scheme is to estimate local channel information, i.e., receiver j
must estimate hij for all i ∈ K. Let us use hj := (h1j, h2j, . . . , hKj)

T to denote the vector
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of local channels at receiver j. Classically, this estimate ĥj is obtained using pilot signals
and training over the signal domain. Assuming that the pilot signals are orthogonal and
all use a common maximum power level P , and that β symbols are used for training per
channel, the observation for the receiver used to estimate hj is given by

sj =
√
βPhj + zj (5.39)

where the noise zj ∼ CN(0, N0IK). We are interested in estimators (MMSE) of the form

ĥMMSE
j = Ajsj (5.40)

that minimize the expected distortion defined as E[|ĥj−hj|2]. Additionally, we also consi-
der the maximum a posteriori probability (MAP) estimate which is normally obtained by
maximizing the a posteriori distribution function, i.e.,

ĥMAP
ij = arg max

hij
fij(hij|sj) (5.41)

where fij(.) is the probability distribution function of hij.

In addition to the classical technique which relies solely on sj obtained from the
training phase to estimate hj, we also exploit information obtained from the average
received signal strength indicator (RSSI). The average signal power received at j for a
time slot t can be written as

Rj,t =
K∑
i=1

gijPi(t) +N0 (5.42)

where gij = |hij|2 and Pi(t) = E(|xi(t)|2).

5.2.3 Novel estimation technique

For the sake of clarity, we explain our technique in single band scenario. The proposed
method can be easily extended to a multi-carrier case as the estimation over each car-
rier can be done independently. We also assume that the channel stays a constant for a
duration of m time slots for which the RSSI is available. In addition to classical channel
estimation schemes, we also exploit this RSSI measurements to improve the estimate. Wi-
thout any loss of generality, we study the channel estimation by a receiver j and assume
hj ∼ CN(0, IK). We first present the improved MMSE estimator.

MMSE estimator

If the MMSE estimator is of the form (5.40), minimizing the MMSE can be formulated
as the following optimization problem

min
Aj

Ehj ,zj [|Ajsj − hj|2] (5.43)
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By taking the derivative of Ehj ,zj [|Ajsj − hj|2] w.r.t. Aj, the MMSE estimator can be
obtained in the following manner :

∂Ehj ,zj [|Ajsj − hj|2]
∂Aj

=
∂Ehj ,zj [s

H
j AH

j Ajsj − sHj AH
j hj − hH

j Ajsj]

∂Aj

=
∂Ehj ,zj{Tr[sHj AH

j Ajsj − sHj AH
j hj − hH

j Ajsj]}
∂Aj

=A∗jEhj ,zj [s
∗
js

T
j ]− 2Ehj ,zj [h

∗
js

T
j ]

(5.44)

where (.)∗ is the conjugate operator, (.)T is the transpose operator and (.)H is the conjugate
transpose operator.

The optimum AOPT:0
j can be obtained by setting the derivative to zero, i.e.

AOPT:0
j = Ehj ,zj [hjs

H
j ]Ehj ,zj [sjs

H
j ]−1 (5.45)

In the absence of any additional information such as the RSSI, we can simply write

Ehj ,zj [hjs
H
j ]Ehj ,zj [sjs

H
j ]−1 =

√
βP

βP +N0

IK (5.46)

This result is well known and has been provided in [11] and [10]. However, if the
RSSI is known, then the expectation in (5.45) must be conditioned with respect to this
information. The RSSI at time t and receiver j is a random variable Rj,t as provided in

(5.42). This random variable is observed and takes a realization rj,t. Denote by R
(m)
j =

(Rj,1, . . . , Rj,m) the vector of random RSSI observed at j over m time slots and by r
(m)
j =

(rj,1, . . . , rj,m) a vector of RSSI realizations. Then, the optimal MMSE estimator knowing

r
(m)
j is simply given by

AOPT:m
j = E

hj ,zj |R
(m)
j =r

(m)
j

[hjs
H
j ]E

hj ,zj |R
(m)
j =r

(m)
j

[sjs
H
j ]−1 (5.47)

Note that

rj,i =
∑
k

gkjPk(i) +N0

=
∑
k

|hkj|2Pk(i) +N0

=hH
j P(i)hj +N0

(5.48)

where P(i) = diag(P1(i), . . . , PK(i)). This results in

AOPT:m
j =

√
βPE|R(m)

j =r
(m)
j

[hjh
H
j ]

√
βPE|R(m)

j =r
(m)
j

[hjhH
j ] +N0IK

(5.49)

Knowing the optimal estimator, we can calculate the conditional distortion (condi-

tioned to R
(m)
j = r

(m)
j ) as a result of using the MMSE given by (5.49). This conditional
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distortion is denoted by Dj(r
(m)
j ) when m RSSI observations are available, and can be

evaluated as
Dj(r

(m)
j ) = E|R(m)

j =r
(m)
j

[|Ajsj − hj|2] (5.50)

Finally, the real distortion of the estimator with m RSSI measurements can be expres-
sed as :

∆j;m = E
r
(m)
j

[Dj(r
(m)
j )] (5.51)

We use D∗j and ∆∗j;m to denote the conditonal and real distortions when the estimator
used is that given in (5.49), which yields

D∗j(r
(m)
j ) =

K∑
k=1

N0E|R(m)
j =r

(m)
j

[|hkj|2]

βPE|R(m)
j =r

(m)
j

[|hkj|2] +N0

(5.52)

∆∗j;m =E∗
r
(m)
j

[D∗j(r
(m)
j )] (5.53)

The E|R(m)
j =r

(m)
j

[hjh
H
j ] term in (5.49) is not always easy to evaluate, therefore, we

provide details on how such an estimator can be designed in practice. First, it can be
easily verified that the non-diagonal elements of E|R(m)

j =r
(m)
j

[hjh
H
j ] equal to zero, i.e.

E|R(m)
j =r

(m)
j

[hijh
∗
kj] = 0 (k 6= i) (5.54)

Additionally, note that the chain gain gkj = |hkj|2 follows the exponential distribution
with expectation 1. Hence, the diagonal elements can be expressed as :

E|R(m)
j =r

(m)
j

[hkjh
∗
kj]

=

∫
Cm

gkj exp(−gk1 − · · · − gkK)dgk1 . . . dgkK
(5.55)

where Cm = {gj|∀ 1 ≤ i ≤ m, gjP(i)1K + N0 = rj,i} with gj = (g1j, . . . , gKj) and
1K = (1, . . . , 1)T of dimension K × 1.

The diagonal elements can be easily evaluated if

1. gkj is known for all k, or

2. gkj is known for some k ∈ S, S ⊆ K and no information other than the statistics in
available on gij with i = K \ S.

The second case can be satisfied if the k transmitters for k ∈ S are the only active
transmitters while obtaining the RSSI, and they are active in a time-division multiple
access (TDMA) manner, i.e., no two transmitters are active simultaneously. This will
allow any receiver j to obtain the measurement Pgkj + N0 for k ∈ S, thereby evaluating
gkj easily.

The first case can also be satisfied if all K devices operate in TDMA. However, we
might also use techniques like that mentioned in [71], so that each receiver j obtains
gkj for all k where all transmitters will use a pre-designed power level that is known to
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all receivers in order to obtain gkj from a set of K RSSI measurements (resulting in K
equations and K unknowns).

Next, we prove that the performance in terms of the real distortion given in (5.53),
for the proposed estimator in (5.49) is at least as good as the classical estimator. We also
provide upper and lower bounds for the real distortion. We formalize this result with the
following proposition.

Proposition 5.2.1. The distortion resulting from the proposed estimator in (5.49) is
a decreasing function of the number of RSSI feedbacks available at any receiver j, i.e.,
∆∗j;m ≥ ∆∗j;m+1. Additionally, the distortion is lower bounded by a constant

∆∗j;m ≥
K∑
k=1

Ehkj

[
N0|hkj|2

βP |hkj|2 +N0

]
(5.56)

Proof : See Appendix C.

MAP estimator

Apart from the MMSE estimate, the maximum a posteriori (MAP) estimate is often
used to estimate the signal with prior information as well. Here we present the impro-
ved MAP knowing the feedback information. With m RSSI measurements given by r

(m)
j

available at the j-th receiver, the MAP estimate will be now given by

ĥMAP
ij = arg max

hij
fij(hij|sj, r(m)

j ) (5.57)

when m = 0, i.e., no RSSI measurements are available, this becomes the classical MAP,
which in the case of training as described in our system model, and fij(.) according to
hij ∼ CN(0, 1), becomes

ĥMAP
ij =

√
βP

N0 + βP
sij (5.58)

which coincides with the MMSE when m = 0. However, when the RSSI estimates are
known, the optimization must be done under the condition that Rj,1 = rj,1, . . . , Rj,m =
rj,m, i.e.

min
hj

(sj −
√
βPhj)

H(sj −
√
βPhj)

N0

+ hHj hj

s.t. hH
j P(k)hj +N0 = rj,k, ∀ k ∈ {1, 2, . . . ,m}

(5.59)

This problem can be solved by using Lagrange method. The optimal solution ĥMAP
j can

be written as

ĥMAP
j =

√
βP [(1 + βP

N0
)IK +

∑m
n=1 λnP(k)]−1

N0

sj (5.60)

where λk can be obtained from the constraint

λk(h̃j
H

P(k)h̃j − rj,k +N0) = 0 (5.61)
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for all k ∈ {1, 2, . . . ,m}. However, there are several solutions for the above set of equations
and the complexity is too high to get relevant solutions. Hence, for the sake of simpli-
city, we assume that by combining the feedbacks (or with channel selection transmission
policy), |hnj|2 or gnj can be perfectly known for n ∈ S where S ⊆ K and |S| ≤ m, as
explained in the previous subsection. This results in a simpler optimization problem given
by

min
hj

(sj −
√
βPhj)

H(sj −
√
βPhj)

N0

+ hHj hj

s.t. |hnj| = gnj, ∀ n ∈ S
(5.62)

The solution of the simplified problem can be written as :

ĥMAP
j =

√
βP [(1 + βP

N0
)IK + Qλ]

−1

N0

sj (5.63)

βP |snj|2

[(N0 + βP ) +N0λn]2
= gnj (5.64)

where Qλ = diag(q1, . . . , qK) with qk = λk when k ∈ S and qk = 0 otherwise. With (5.64),
for n ∈ S, we have :

λn =

±

√
βP |snj|2
gnj

− (N0 + βP )

N0

(5.65)

To determine the sign of λn which minimizes the cost function in (5.63), the optimal λn
can be expressed as :

λn =

√
βP |snj|2
gnj

− (N0 + βP )

N0

(5.66)

for all n ∈ S. Therefore, the MAP estimator can be simplified and rewritten as :

ĥMAP
nj = gnj

snj
|snj|

(5.67)

for all n ∈ S and ĥMAP
ij given by (5.58) when i ∈ K \ S. We use ∆MAP∗

j;m to denote the
resulting expected distortion from using the MAP estimator with m RSSI measurements.

5.2.4 Numerical performance analysis

As mentioned before, the channel gains statistics are symmetric, i.e. hij ∼ CN(0, 1).
The signal-to-noise ratio (SNR) in the training phase is defined as

SNR =
βP

N0

(5.68)

In the simulations, we fix N0 = 1, β = 1, K = 4 and change the transmit power P
to observe the performance at different SNR. Since the classical MMSE coincides with
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the classical MAP in our model as seen from (5.46) and (5.57), to compare the distortion
with m feedbacks and the distortion without feedback (classical), the reduced distortion
is defined as

∆∗j;0 −∆MMSE∗
j;m

∆∗j;0
× 100%. (5.69)

for comparing the new MMSE or

∆∗j;0 −∆MAP∗
j;m

∆∗j;0
× 100%. (5.70)

for comparing the new MAP estimate. For ease of exposition, we assume that from each
feedback, we can perfectly reconstruct one channel gain, i.e., with m feedbacks, the trans-
mitter j can acquire g1j, . . . , gmj.

First,, we see the influence of the prior information on the MMSE estimator. We
compare the reduced distortion in terms of number of feedbacks with different SNR in
Fig. 5.3 . Fig. 5.3 clearly shows that the distortion can be mitigated by using the RSSI
measurements and the distortion decreases with more measurements. Interestingly, the
reduced distortion is not a monotonic function with respect to SNR. In the low SNR
regime, the MMSE estimator doesn’t work well since we multiply a constant matrix Aj

to the observation sj, which is dominated by the noise when SNR is low. Hence, even
if we can improve the selection of the Aj by knowing the RSSI, the distortion can not
be reduced much due to the dominant noise level. On the other hand, in the high SNR
regime, the classical MMSE estimator is very close to the real channel coefficient, resulting
in the classical MMSE performing very close to the best and this results in limited gains.
Our technique can bring more improvements (around 20%) in the mid-SNR range close
to 0dB.

As a second step, we see the influence of the prior information to the MAP estimator.
We compare the reduced distortion in terms of number of feedbacks with different SNR in
Fig. 5.4 and also compare the resulting reduced distortion against the new MMSE. Fig. 5.4
clearly shows that the distortion might increase with more RSSI measurements for the
MAP estimate as the MAP estimate is not designed to minimize distortion. However, when
SNR increases, the RSSI measurements can lead to a significant reduced distortion and it
can even outperform the new MMSE. Hence, in terms of the distortion, it is recommended
to use the proposed MMSE in the low SNR regime and the proposed MAP in the high
SNR regime.

5.3 Conclusion

In this chapter, two novel connections between power domain feedback and signal
domain operations have been proposed. Firstly, in MIMO cognitive network, depending
solely on the local CSI, the opportunistic interference alignment scheme proposed in [9]
can be reconstructed by exploiting the interference plus noise covariance matrix feedback.
Instead of only allowing the primary user to transmit, the secondary user can transmit and
guarantee zero interference to the primary link. Compared to the scheme where only the
primary user can transmit at its maximum rate, our proposed technique brings significant
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Figure 5.3 – More feedbacks we have, more distortion will be mitigated by the proposed
MMSE estimator. Our scheme brings more improvements in moderate SNR regime.

improvements in terms of network utility, especially when SNR is not high and the channel
coherence time is long.

Secondly, we have provided novel MMSE and MAP estimators for channel estimation
in the framework of an interference channel. While classical estimators rely solely on the
pilot sequence and training, we also exploit the relevant RSSI measurements available in
order to further tune the estimate. Although this information might be hard to exploit
in general, we have specified some scenarios where the information available can be easily
used in order to improve the quality of estimations. We provide numerical results that
validate our approach which show the percentage of reduced distortion when compared
to the distortion resulting from the classical estimate.
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Figure 5.4 – In high SNR regime, the proposed MAP can have less distortion than the
classical MAP and the proposed MMSE.
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6
About the interplay between quantization

and utility

In the first part of the chapter, we revisit the problem of quantization by considering
an arbitrary choice for the utility function instead of the classical performance criterion
namely, the distortion or mean square error. This new and general way of tackling the
quantization problem is relevant e.g., for scenarios where the receiver has to quantize
channel state information (CSI) and report this imperfect version of the channel to the
transmitter which has to maximize a certain utility function. The corresponding maximi-
zation operation is necessarily suboptimal since the perfect knowledge of the channel is
not available at the transmitter, hence our motivation in making the corresponding opti-
mality loss as small as possible. Implicitly, we assume that the quantizer and dequantizer
have the same objective, that is, to maximize the utility function under consideration. Si-
mulations show that using the proposed utility-oriented quantizer allows one to reduce the
global optimality loss by 5% instead of 40% when using the classical Lloyd-Max algorithm.
In the second part of the chapter, we assume that the transmitter and the receiver have
non-aligned utility functions, that is, their interest might be divergent. In the simulations,
we exhibit the influence of the bias in terms of utilities on the equilibrium performance of
the transmitter and receiver. We have identified a communication scenario which appears
in the smart grid area for which this framework is fully relevant. When a consumer has to
reveal some information about its need in terms in energy, its interest might be different
from the aggregator, energy provider, or operator. For instance, the consumer may want
to completely fulfill its energy need whereas, the operator may also want to manage the
electricity network or take into account some constraints related to the energy production
level. This gives rise to a bias in terms of utility functions and therefore constitutes a
communication scenario in presence of diverging interests. For such scenarios, we provide
some preliminary results to understand the impact of the bias on the communication. Ad-
mittedly, a lot of efforts should be made to understand this tricky communication scenario
but our results constitute a first step towards this challenging objective.
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6.1 Utility-oriented quantization with aligned utility func-
tion and application to power control in wireless net-
works

6.1.1 Motivation and state of the art

The primary motivation for formulating the technical problem under consideration
in this section comes from resource allocation problems in wireless communications. For
this type of problems, quite often, one has to deal with the following situation. A payoff,
reward or utility function f(x; g) has to be maximized with respect to the vector x but its
parameters (which are represented by the vector g) are not perfectly known. In this section,
we restrict our attention to the case where what is available to maximize f is a quantized
version of the function parameters. Although it has not been addressed from the technical
perspective proposed in this section, this scenario is well motivated by numerous papers
in the literature of wireless communications (see e.g., [11][72][14]). For instance, it is fully
relevant when a transmitter has to perform power allocation by exploiting a quantized
version of the channel which is sent by the receiver (through a feedback mechanism) ; in
this example, the receiver needs to quantize the channel gains or matrix to meet some
constraints e.g., linked to the feedback channel capacity.

The problem we introduce in this section is the design of the quantizer which produces
the distorted vector of parameters which is effectively available to maximize the utility
function f ; in the power allocation problem which has been mentioned previously, the
receiver has to quantize the downlink channel and send it to the transmitter whose role
is to perform power allocation based on the quantized channel sent by the receiver. More
precisely, we want to minimize the impact of quantization noise on the optimality loss
which occurs when using the quantized version of g to maximize the utility function
f . Of course, this design is performed under a resource constraint which is the number
of quantization bits. The design of a quantizer consists in finding a partition and the
corresponding representatives. Indeed, the space in which the vector of parameters lies
has to be partitioned into cells or regions. For any input g which belongs to a given
cell, the quantizer produces the same output ĝ, which is called the representative of the
considered cell.The maximum number of cells the quantizer can use is given by the total
number of bits available for quantizing.

To determine the best quantizer in the sense of minimizing the optimality loss induced
by using ĝ instead of g, we generalize the well-known Lloyd-Max algorithm (LMA) [12][13].
Indeed, the LMA-based quantizer aims at minimizing the distortion i.e., the mean square
error between the source and its reconstructed version. But, note that this design is
independent of the use of the quantized quantity. It turns out that the quantizer design
might be improved when measured in terms of the final utility of payoff. The original
version of the LMA has been generalized in many diverse ways. For instance, it has
been generalized to scenarios where the source to be quantized has to be sent through
a noisy channel (see e.g., [74][75]) and the source is itself noisy[76]. However, almost
always, the performance criterion is the distortion. There exist some other works where a
different performance criterion is considered such as [77] where the Lp− norm is considered
(instead of the Euclidean norm) or some specific performance criterion such as in [78]

102



Utility-oriented quantization with aligned utility function and application to power
control in wireless networks

where the goal is to obtain a quantized beamforming vector. More generally, in [79],
the author considers the problem of minimizing an arbitrary function of the difference
between the actual vector of parameters and its quantized version but, again, this problem
does not correspond to the framework of utility-oriented quantization we propose here.
Recently, several works like [80] adrress the issue of quantization noise as a primary
concern in resource allocation problems. As a result, some new studies like [81], optimize
the allocation of quantization bits specifically for sum-rate maximization. However, in
these works the goal is not to design the complete quantization scheme for their payoff
(i.e., the allocation of bits, partitions and representatives). Finally, some papers study
situations where specific control-theoretic performance criteria are optimized (see e.g.,
[82]) but the quantization problem is not stated in general and not solved by using a
generalized version of the LMA. To the best knowledge of the authors, the quantization
problem has not been formulated as in the present work.

6.1.2 Problem statement

We consider a function f(x; g) : X × G → R, referred to as the utility function. Both
x ∈ X and g ∈ G may be vectors in general with X ⊂ RN and G ⊂ RK . The ultimate goal
is to maximize f with respect to x while only knowing a quantized version of g, which
is denoted by Q(g). Here, the objective is to find a good quantizer namely a quantizer
which allows to minimize the impact of quantization on the optimality loss induced by
using Q(g) in the final optimization problem.

A quantizer Q is given by a partition of G into cells and their representatives. We
denote by M the maximum number of cells. The cells are denoted by {C1, ...,CM} and
satisfy Cm ⊂ G such that C1 ∪ C2 ∪ · · · ∪ CM = G and Cm ∩ Cn = ∅ for any m 6= n. The
quantization rule is assumed to be as follows : Q(g) = rm if g ∈ Cm where m = 1, 2, ...,M .
The conventional approach consists in determining Q so that the distortion is minimized
i.e., to minimize

D =

∫
φ(g)‖Q(g)− g‖2dg (6.1)

where φ is the probability density function (p.d.f.) of g. The advantage of such an approach
is that it may be possible to obtain the quantizer explicitly (namely the representatives
and cells) and this leads to a scheme which is independent of the payoff. However, if the
payoff is known, it is generally possible to further improve the performance when it is
measured in terms of final payoff. Indeed, if one denotes by F the actual maximum of f

F (g) = max
x

f (x; g) (6.2)

and by F̂
F̂ (Q (g)) = max

x
f (x;Q (g)) (6.3)

the level which is effectively attained by only knowing Q(g) and not g, it is relevant to
determine Q through the following relation :

Q? ∈ arg min
Q

Eg‖F (g)− F̂ (Q (g)) ‖2. (6.4)

The purpose of the next section is precisely to provide results in order to minimize the
quantity defined in (6.4). Just as in the LMA, in general there is no guarantee for global
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optimality. This classical issue is left as an extension of the present work, the goal here
being to focus on what is really novel.

6.1.3 General quantization scheme

When g is a K−dimensional vector (K > 1), finding the cells and the representatives
jointly which minimize (6.4) is a highly non-trivial problem. This is the main reason why
we take inspiration from classical quantization schemes such as the LMA, in order to
search for a scheme that can find the most suitable representatives {r1, ..., rM} (locally
optimal) for a given set of cells {C1, ...,CM}, and to find locally optimal cells for a given
set of representatives. Once these can be found, we can iteratively solve for {r1, ..., rM}
and {C1, ...,CM}, to find a locally optimal solution (not necessarily globally optimal).

Finding the optimal cells for a given set of representatives {r1, ..., rM}, can be done in
a manner similar to the classical LMA, and by constructing the partitions that are similar
to Voronoi partitions :

Cm =
{
g ∈ RK : [F (g)− F (rm)]2 ≤ [F (g)− F (rn)]2

}
(6.5)

where n 6= m. Clearly, the motivation for this choice is that instead of the Euclidean
distance or distortion of g as taken in the classical Voronoi partition, here we look for the
set with the minimum distortion in terms of F (g). On the other hand, finding the optimal
representative rm for a given cell Cm, might not be as straightforward. Indeed, when g is
a scalar and F is invertible, and if Cm is defined by an interval of the form [tm, tm+1], then
the best representative r?m is given by

F (r?m) =

∫ tm+1

tm

φ(g)F (g)dg∫ tm+1

tm

φ(g)dg

. (6.6)

The above result can be shown to be true by differentiating Eg(‖F (ĝ)− F (g)‖2) w.r.t rm
in a given cell Cm = [tm, tm+1]. Since F is invertible, its derivative never vanishes and thus
(6.6) can be obtained. Although F is typically an invertible function when g is scalar, this
property is generally lost when g becomes a vector and the K elements of rm can not be
recovered from only one equation (1 equation for K unknowns). For this reason, when g is
the vector of the form g = (g1, g2, . . . , gK)T , some assumptions have to be added to make
the identification procedure possible. The next result is precisely based on one reasonable
assumption which allows identifiability to be possible.

Assumption 6.1.1 (Decomposability assumption). The function F can be written as
F =

∑K
k=1 uk with uk : G → R and it is such that then the vector function V (g) :=

(u1(g), ..., uK(g))T is invertible in Cm.

This assumption is well suited for several applications where the total payoff is the
sum of several components, for example, when the payoff is the sum of the rates over
each band. Indeed, the function V may not be globally invertible, but our results can be
applied to partitions Cm such that this assumption holds as we will illustrate in Sec. 4.
For wireless systems, this sufficient condition is often met due to the monotonicity of most
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utility functions ; indeed, many utility functions in wireless communications are typically
monotonically increasing w.r.t. the signal-to-interference plus noise ratio (SINR).

Proposition 6.1.2 (Optimal representatives). If Assumption 6.1.1 holds for a par-
tition Cm, with the decomposed invertible function being V (g) = (u1(g), ..., uK(g))T,
then the optimal representative r∗m which minimize Eg(‖V (ĝ) − V (g)‖2) also minimize
Eg(‖F (ĝ)− F (g)‖2) where ĝ = Q(g), and can be obtained by solving the following system
of K equations

uk(r
∗
m) =

∫
Cm

φ(g)uk(g)dg∫
Cm

φ(g)dg
(6.7)

Proof : See Appendix D.

The scalar case (6.4) can be obtained by simply setting K to 1. Now, we exploit
Proposition 6.1.2 to derive a suitable algorithm to find a utility-oriented quantizer knowing
F .

Inputs : φ(g) : RK → R≥0, F =
∑

k uk satisfying assumption 6.1.1, {r(0)1 , ..., r
(0)
M }

Outputs : {r?1, ..., r?M}, {C?
1 , ..., C

?
M}

Initialization : Set iteration index q = 0. Initialize the quantization
representatives according to {r(0)1 , ..., r

(0)
M }. Set r

(−1)
m = 0 for all m ∈ {1, ...,M}.

while
M∑
m=1

(r(q)m − r(q−1)m )2 > δ and q < Q do

Update the iteration index : q ← q + 1.
For all m ∈ {1, 2, ..,M}, update Cq

m from rq−1m using (6.5).
For all m ∈ {1, 2, ..,M}, update
rqm for each partition Cq

m using (6.7).
end

∀m ∈ {1, ...,M}, r?m = r
(q)
m , t?m = t

(q)
m , t?M+1 = +∞

Algorithm 3: Algorithm to obtain the utility-oriented quantizer

The new quantizer can be summarized by the Algorithm 1. It is also important to
note that the LMA can be treated as the first order Taylor approximation of the proposed
algorithm, or just a special case in which F is a linear function. Note that Assumption
6.1.1 may not hold over the entire set G, in this case, G can be partitioned into several
sub-regions where each region can be quantized specifically. For example, as seen in the
next section, when energy maximization is pursued, solutions are such that only the best
channel is picked, in which case just the best channel needs to be quantized and then the
minimum number of bits can be allocated to the other channels.

6.1.4 Application to typical wireless utility functions

Energy-efficiency maximization

In this subsection, we consider a particular utility function, the energy efficiency func-
tion, for a multi-band scenario. The quantizers of interest for the transmitter to allocate its
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power are given by the channel gains. The channel gain in band k is denoted by gk = |hk|2
where hk may typically be the realization of a complex Gaussian random variable if Ray-
leigh fading is considered. The power emitted in band k is denoted by pk and is assumed
to be subject to power limitation as : pk ≥ 0 and

∑K
k=1 pk ≤ Pmax. The K-dimensional

column vector formed by the transmit power levels and channel gains will be denoted by
p = (p1, ..., pK)T and g = (g1, ..., gK)T, respectively. Here we choose the efficiency function
of [83], which is defined as

f(p, g) =

K∑
k=1

e

(
− cσ2

gkpk

)

K∑
k=1

pk

(6.8)

where σ2 is the receive noise variance and c = 2r − 1 with r being the spectral efficiency.
To find F in the case of energy-efficiency maximization, we first derive the optimal power
control policy. This is the purpose of the next proposition.

Proposition 6.1.3. In multi-band scenario, to maximize the system energy-efficiency,
the optimal power allocation scheme is

p?k(gk) =


0 k 6= arg max

i
gi

min
(
cσ2

gk
, Pmax

)
k = arg max

i
gi

(6.9)

Démonstration. The proof is omitted because of the lack of space.

According to Proposition 6.1.3, to maximize energy-efficiency, the transmitter will
only transmit through the best channel. To better estimate the utility at the transmitter
side, we can use the vector quantization method proposed in the previous subsection.
However, this will entail a high complexity if the number of bands is very large. Since
only one band is active in each time-slot, this property can be used to design a special
quantization scheme. Firstly, we divide the whole region into K sub-regions Ĉ1, ..., ĈK ,
where Ĉk = {g ∈ RK : gk = max

i
gi}. The region Ĉk corresponds to the region in which

gk is the best channel. Without loss of generality, we consider the quantization scheme
for region Ĉk. If the channel realization belongs to Ĉk, then only band k will be active. It
implies that only selection of band k and the value of gk are useful to improve the energy
efficiency. Suppose Q(g) = (ĝ1, ..., ĝK)T, the first issue can be easily solved by setting the

largest element of the representatives in Ĉk as ĝk, i.e. maxQ(g ∈ Ĉk) = ĝk. Note that the

optimal energy efficiency function in Ĉk can be simplified as

F (g ∈ Ĉk) = max
p

f(p, g ∈ Ĉk) =
e

(
− cσ2

gkp
?
k

)
p?k(gk)

. (6.10)

Hence, the second issue, to find the optimal quantized value of ĝk, can be solved by
minimizing d(ĝk) defined as

d(ĝk) = Egk|gk≥g1,...,gk≥gK [F (gk)− F (ĝk)]
2 . (6.11)
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Proposition 6.1.4. Define the M-level scalar quantizer of gk transition levels set as
{tk,1, ..., tk,M+1} and its corresponding representatives set as {lk,1, ..., lk,M}. Suppose each
channel gk is i.i.d. with p.d.f. φ(gk) = γe−γgk . Assume Pmax is sufficiently large, for fixed
representatives {lk,m}, the intervals (cells) which minimize d(ĝk) can be obtained by

tk,m =
lk,m−1 + lk,m

2
(6.12)

with fixed transition levels {tk,m}, the optimum representatives to minimize d(ĝk) can be
obtained by

lk,m =

∫ tk,m+1

tk,m

g(1− e−γg)K−1γe−γgdg∫ tk,m+1

tk,m

(1− e−γg)K−1γe−γgdg
.

(6.13)

Démonstration. The proof is omitted because of the lack of space.

Obtaining this scalar quantizer, d(ĝk) can be minimized knowing gk is the best channel.

Without loss of generality, we assume that each region Ĉk will be divided to M different
quantization cells {Ck,1, ...,Ck,M}. The corresponding representative of the quantization
region Ck,m is defined as a K-dimensional vector rk,m = (r1k,m, ..., r

K
k,m)T. Based on the

results in the previous section, the vector quantization region Ck,m can be expressed as

Ck,m = {g ∈ RK : tk,m < gk ≤ tk,m+1} ∩ Ĉk. (6.14)

The corresponding representative rk,m can be chosen as :

rkk,m = lk,m (6.15)

rk
′

k,m = const < rkk,m(k′ 6= k). (6.16)

For the vector quantization of g, the quantization region set C = {C1,1,C1,2, ...,CK,M} and
the representatives set r = {r1,1, r1,2, ..., rK,M} can be found using (6.14)(6.15)(6.16). With
this new approach, the complexity of the computation has been considerably reduced.

Spectral efficiency maximization

Using the same notations as in the previous section, here we consider the following
well-known sum-rate function

usum−rate(p, g) =
K∑
k=1

log (1 + SINRk(p, g)) (6.17)

where SINRk(p, g) = gkpk
σ2 . The optimum power allocation policy is given by the water-

filling solution, i.e.,

p?k =

[
µ− σ2

gk

]+
(6.18)
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where the water level µ can be obtained by solving
∑K

k=1 pk = Pmax and the function
[x]+ = max(x, 0). However, due to the incertitude of the function [x]+, it is difficult to
obtain the explicit expression for the function F (g). To express F (g) explicitly, we can
firstly divide the whole region to specific partitions for each case corresponding to if p∗k = 0
or not. In each of these partitions, a different quantization scheme must be ideally used for
optimal results, as we cannot find uk satisfying Assumption 6.1.1 for the general channel
space. So, we focus on a practically relevant case of high signal-to-noise ratio (SNR) for
the purpose of this work. Studying the general case is left as an extension which can be
solved by treating each partition (corresponding to p∗k = 0 or not) separately.

In the high SNR case, i.e., when Pmax

σ2 →∞ we have p∗k > 0 for all k. Further, it can be
observed that the sum-rate can be decomposed to individual payoff. Substituting (6.18)
into (6.17), the individual payoff can be expressed as follows :

usum−ratek = log(1 + SINRk)

= log

(
1 + gkSNR +

∑
j 6=k

gk
gj

)
− log(2)

(6.19)

with SNR := Pmax

σ2 . This V = (u1, u2, . . . , uK)T is clearly invertible w.r.t g satisfying
Assumption 6.1.1, and we can therefore directly apply Proposition 6.1.2 and Algorithm 3
to obtain the utility oriented quantizer.

6.1.5 Numerical performance analysis

In this section, we present simulation results to illustrate the performance of the pro-
posed quantizer for a single user multi-band scenario. For comparison with the classical
LMA, we look at the optimality loss induced by quantization defined as

∆F (%) = Eg

[∣∣∣∣∣F (g)− F̂ (Q (g))

F (g)

∣∣∣∣∣
]
× 100 (6.20)

which we term the relative optimality loss, where expectation is calculated by Monte-Carlo
simulations for the channel gain g. For all k, the channel gain gk in band k is assumed to
be exponentially distributed, namely, its p.d.f. writes φ(gk) = exp(−gk) ; this corresponds
to the well known standard Rayleigh fading assumption. The considered scenario for all
simulations is such that the transmit power Pmax = 20 dBm and a normalized receive
noise power σ2 = 0 dBm, resulting in SNR= 20 dB.

In Fig. 6.1, the energy-efficiency utility function defined in (6.8) is considered as the
utility function f and the relative optimality loss is plotted against the number of quan-
tization bits when the number of bands K = 16. Our quantizer is obtained by using the
Proposition 6.1.3 we have provided.

In Fig. 6.2 we look at the sum-rate utility function as defined in (6.17). There are
two bands available for communication, i.e. K = 2. We plot the relative optimality loss
induced by quantization w.r.t the number of quantization bits used.

As expected, when the number of bits increases, the relative optimality loss of both
quantizers decreases. The proposed quantizer in Sec. 6.1.4 outperforms the classical LM
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Figure 6.1 – Comparison of the performance in terms of final payoff between the
conventional paradigm-based quantizer (which aims at minimizing distortion) and the

proposed utility-oriented quantizer. The figure represents the relative optimality
energy-efficiency loss against number of quantization bits. The proposed quantizer

results in a relative optimality loss (w.r.t. the case where the channel is known perfectly
to the transmitter) of just 5% with 5 quantization bits compared to over 40% when

using the classical.

vector quantizer. It is also important to note that the relative optimality loss of our quan-
tizer is very close to 0 when we have more than 7 quantization bits, but the relative
optimality loss of LM quantizer still remains significant even with 9 quantization bits.
Meanwhile, it can be predicted the novel quantizer will have the same performance as
LM quantizer when the number of quantization bits tends to infinity since the relative
optimality loss tends to 0 for both quantizer.

Finally, we study the relative optimality loss as a function of the number of bands
with a fixed number of quantization bits. The number of quantization bits is set to five
for this simulation. Fig. 6.3 illustrates the relative optimality loss against different number
of bands. In single band scenario, the proposed quantizer coincides with the LM quantizer
as minimizing the relative optimality loss is identical to minimization of distortion. In the
multi-band case however, our quantizer achieve a better performance in terms of relative
optimality loss and the difference becomes more significant as number of bands increases.
Since the number of quantization bits is fixed, the accuracy of each component ĝk will
degrade as the number of bands increases for the LMA.

109



6.1.5 - Numerical performance analysis

2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

Number of quantization bits

R
e

la
ti
v
e

 o
p

ti
m

a
lit

y
 l
o

s
s
 (

%
)

 

 

LMA Quantizer	
Proposed quantizer

Figure 6.2 – Relative optimality spectral efficiency loss (sum-rate) based utility
against number of quantization bits. The proposed quantizer achieves a better
performance and the loss is less than 5% with more than 5 quantization bits.
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Figure 6.3 – Relative optimality energy-efficiency loss against number of bands. The
proposed quantizer improves the performance in multi-band scenario and the

improvement becomes more significant as the number of bands increases.
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6.2 Utility-oriented quantization with non-aligned utility
function and application to smart grid

6.2.1 Motivation and state of the art

Today’s electrical infrastructure has been constructed for about a hundred years. While
the components of the hierarchical grid are near to the end of their lives, the demand for
electricity has gradually increased. To fulfill the increasing demand induced by growing
population, a new concept of electric power system, the smart grid, has been proposed in
recent years. Smart grid is a term referring to the next generation power grid in which
the electricity distribution and management is upgraded by incorporating advanced two-
way communications and pervasive computing capabilities for improved control, efficiency,
reliability and safety [84][85]. The existing grid is lack of communication capabilities, while
a smart power grid infrastructure is full of enhanced sensing and advanced communication
and computing abilities [86][87][88][89]. However, in the smart grid it will be more common
that the consumer will have to adapt its consumption to production e.g., when an erasure
mechanism is implemented or when the energy source is a solar/wind farm. Obviously, the
consumer and aggregator (i.e., the entity which takes the decision to which extent to meet
the demand) will have diverging objectives in general. As a consequence, it might happen
that the consumer reports a demand which is higher than the actual need to be effectively
satisfied. Therefore, it is essential to design a point-to-point communication system where
the transmitter (or coder) and receiver (or decoder) have diverging objectives. In fact, the
classical paradigm in communication systems such as quantization scheme, assumes that
the coder and the decoder have a common objective (e.g., to minimize the distortion or
symbol error rate). When the consumer and the aggregator have non-aligned goals, the
problem of coding needs to be revisited. In this section, we will only make a step into the
direction of answering the aforementioned fundamental question.

Specifically, we consider an aggregator whose objective is to satisfy the consumer but
also to minimize the operating cost induced by the distribution network. On the other
hand, the consumer’s ultimate objective is to obtain an amount of power (or energy) as
close as possible to its actual need. Based on signal/message received from the consumer
about its need in terms of power, the aggregator eventually decides the amount of power
effectively allocated to the consumer. One of the purposes of this work is to construct
a signaling scheme from the consumer to the aggregator which would allow them to
each a consensus or equilibrium about how to communicate in practice (based on a suited
communication standard). It turns out that, by considering a simple but realistic model for
the aggregator and consumer costs, the problem to be solved is a game whose formulation
is related to the problem of strategic information transmission in economics [90] and the
one of quantization. Indeed, the problem of strategic information transmission has been
introduced in [90] and developed in economics (see e.g., [91] for a recent survey) but not
penetrated engineering yet up to a few exceptions [92], which do not consider neither the
smart grid application nor the connections with coding/quantization.
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6.2.2 Problem formulation

Fig. 1 provides several key aspects of the considered problem. We consider a consumer
whose objective is to obtain an allocated power which is as close as possible to a desired
level denoted by s ≥ 0. For this purpose, the consumer sends a message m ∈ {1, 2, ...,M}
(M < +∞) to the aggregator through a perfect communication channel. Based on the
received message, the aggregator effectively provides an amount of power which is denoted
by a ≥ 0. Without loss of generality, it is assumed that (a, s) ∈ [0, 1]2. The power need
s is assumed to follow a distribution p(s) where p(s) is positive and continuous for every
s ∈ [0, 1]. One way of mathematically formulating the objective of the consumer, is to
consider that he aims at maximizing the following utility function

uC(s, a) = −(s− a)2 (6.21)

With such a model, the consumer both aims at meeting its need in terms of power but also
at not exceeding the desired power level, which might for instance induce some unnecessary
monetary expenses. This model can also be very well justified when s is interpreted as a
desired quantity of energy e.g., for recharging a battery (see, e.g., [93]). Note that here,
for the sake of simplicity, we implicitly assume that the energy need corresponds to a need
in terms of load or power, which is very realistic when the consumer obtains a constant
power transfer rate ; relaxing this assumption can be considered as a possible extension
of this work. On the other hand, the aggregator’s utility function is assumed to be the
weighted sum of the consumer’s utility and a utility function related to an operating cost
induced by the grid :

uA(s, a) = uC(s, a) + ugrid(a+ ε)
= −(s− a)2 − bc(a+ ε)

(6.22)

where b ≥ 0 represents a weight which translates the importance of the component as-
sociated with the grid, ε represents the electric power related to the cost function of
aggregator (e.g. circuit power) and c represents the operating cost function which is in-
creasing and convex. More precisely, the grid component can represent a good model of
the ageing acceleration factor of a (residential) transformer (see e.g., [94] which justifies
why the ageing is accelerated exponentially when operating above its nominal load) as
follows :

c(a+ ε) = ea+ε (6.23)

or represent the Joule losses as follows :

c(a+ ε) = (a+ ε)2 (6.24)

Moreover, in the context of strategic information transmission in economics [90], the
parameter b is interpreted as a bias which quantifies the divergence of interests between
the decision-makers which are the consumer and aggregator here.

One of the contributions of this work is precisely to inspire from the original framework
of [90] to design a good/consensus/equilibrium signaling scheme between the consumer
and aggregator namely, to determine a good signaling scheme in presence of diverging
interests between the coder and decoder. First, the consumer should map its knowledge
about its actual power need s into the message sent to the aggregator m, which amounts
to determining a coding function f defined by :
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f :

∣∣∣∣ [0, 1] → {1, 2, ...,M}
s 7→ m

. (6.25)

Second, the aggregator has to perform the decoding operation by implementing :

g :

∣∣∣∣ {1, 2, ...,M} → [0, 1]
m 7→ a

. (6.26)

As a first comment note that f and g are deterministic mappings instead of conditional
probabilities q(m|s) and r(a|m) ; this choice does not induce any loss in terms of expected
utility because uA and uC are concave. If b = 0 and the power need s is seen as the
realization of a random variable whose distribution p(s) is effectively known to the coder
and decoder (this corresponds to a particular scenario in terms of beliefs), the problem of
determining f and g can be seen as an instance of a scalar quantization problem which
is itself a special case of lossy source coding [46]. But, in general b > 0 and, even if the
distribution p(s) is known to both the coder and decoder, the consequence of this simple
difference is that the coder, knowing that the decoder has a different objective, will not
maximize its expected utility by revealing its actual need in terms of power. Rather, it
will reveal only a degraded version of it and, this, even if M is infinite. As explained in
the following section, in general, equilibrium signaling schemes only exploit a fraction of
the number of available messages (or bits).

6.2.3 Proposed quantization scheme with non-aligned utility
functions

In the presence of decision-makers having different utility functions and which can
only control some variables of the latter, the very meaning of optimality is unclear and
the problem needs to be defined before being solved (see e.g., [17]). In this context, one
important solution concept is the Nash Equilibrium (NE), which is a vector of strategies
from which no decision-maker or player has anything to gain by changing his own strategy
unilaterally. Here, we are in the presence of two players namely, the aggregator and consu-
mer. The strategy of the consumer consists in choosing f , which corresponds to choosing
a partition of the space of possible power needs i.e., [0, 1]. With each interval is associated
a message m ∈ {1, ...,M} intended for the aggregator. The strategy of the aggregator
consists in choosing g to generate the action am, which can be interpreted as choosing
a representative of the interval associated with the received message m ; these intervals
are denoted by Im = [sm, sm+1]. Here, the connection with the quantization problem can
be established. Typically, the quantization problem consists in minimizing the distortion
E [(s− ŝ)2] (ŝ = a in our setting), with respect to f and g. If f and g are optimized
separately, the problem can be interpreted as a game where one player chooses f and
the other chooses g. Since the cost functions are common and the number of message M
is fixed, this defines a potential game [56]. In this type of games, it is known that the
iterative procedure consisting in optimizing the cost/utility function w.r.t. f for a fixed
g, then to optimize it w.r.t. g for the updated f , and so on, converges to an NE. This
procedure is called the sequential best-response (BR) dynamics in game theory, the BR of
a player being the set-valued function which provides the set of strategies which maximize
the utility of this player for a given strategy for the other. The Lloyd-Max algorithm pre-
cisely implements this procedure and converges to an NE. Indeed, the intersection points
between the players’ BRs are precisely the NE of the game. In the following paragraphs,
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we determine the BRs in the considered setting in which players have different utility
functions.

Best responses for aggregator and consumer

When the aggregator receives a message m, it knows that the actual consumer’s power
need s is in the interval Im but not its exact value. Therefore, in general, given the
knowledge of the message, the aggregator has a certain belief about the power need. With
fixed interval Im, the aggregator best-responds to the message by maximizing the expected
utility that is,

UA(a, s) =
M∑
m=1

∫ sm+1

sm

uA(am, s)p(s)ds. (6.27)

The following proposition provides the expression of the aggregator BR i.e., the best
representative of the interval Im.

Proposition 6.2.1. Given a partition scheme f (or m(s)), the aggregator’s best-response
am to a message m is :

am =

([
h−1

(
2

∫ sm+1

sm
sp(s)ds∫ sm+1

sm
p(s)ds

)]+)
m∈{1,...,M}

, (6.28)

where
h : [0, 1] −→ [bc′(ε),+∞[

a 7−→ 2a+ bc′(a+ ε)
(6.29)

and [x]+ = max(x, 0).

The above result shows that it is possible to express the aggregator’s best action (for
a given message) in a simple way. The integral term of the optimal action corresponds to
what is called the centroid in quantization. The presence of the function h−1 is precisely
due to the fact that the coder and decoder have diverging interests. In the extreme case
where b → 0 and ε → 0, the optimal action for the aggregator therefore corresponds to
the centroid whereas the optimal action is simply 0 when b→∞ or ε→ 0.

The consumer’s strategy is to choose a partition of the power need space [0, 1] into
intervals I1, I2, ..., IM with Im = [sm, sm+1]. With fixed representatives am, the optimal
partitions can be obtained by maximizing the expected utility that is,

UC(a, s) =
M∑
m=1

∫ sm+1

sm

uC(am, s)p(s)ds. (6.30)

The following proposition provides the expression of the aggregator BR i.e., the best
representative of the interval Im.

Proposition 6.2.2. Given a aggregator’s scheme g (or representatives) , the optimal
partition chosen by consumer is :

sm =
am−1 + am

2
(6.31)

114



Utility-oriented quantization with non-aligned utility function and application to
smart grid

Interestingly, according to (6.28), it is possible to have am = 0 especially when b or ε
are large. From (6.31), it can be predicted that some intervals will be degenerated, i.e.,
sm = sm+1 = 0. Therefore, in contrast with a classical quantization problem, the number
of messages (or bits) to be used to form the partition are not fixed and can be optimized
by the consumer in order to maximize its expected utility function for a given action.
This feature constitutes an important technical difference.

These two propositions above completely define the quantization scheme for the pro-
blem under investigation (non-aligned utility functions). Indeed, when the consumer
chooses a partition of the power need space according to Prop. 5.2.2 and the aggrega-
tor chooses the representatives according to Prop. 5.1.1 , we obtain a NE. Inspired from
the iterative nature Lloyd-Max algorithm, the sequential best-response (BR) dynamics
will be proposed here. The iterative algorithm is given as :

Initialize the iteration index as n = 0.
Initialize the partitions as S(0) = (s

(0)
1 , . . . , s

(0)
M+1) and the representatives as

A(0) = (a
(0)
1 , . . . , a

(0)
M ).

while
∥∥A(n) −A(n−1)

∥∥ > δ and n ≤ N do

Iterate on the iteration index : n = n+ 1.

Best-Response of the consumer :

s(n)m =
a
(n−1)
m−1 + a

(n−1)
m

2
(6.32)

Best-Response of the aggregator :

a(n)m =


h−1

2

∫ s(n)m+1

s
(n)
m

sp(s)ds∫ s(n)m+1

s
(n)
m

p(s)ds




+ (6.33)

end
Algorithm 4: The proposed procedure to calculate a stable strategic communication
system.

Comments on Algorithm 4 :

• When each agent updates its decision (in (6.32) or (6.33)), the decision of the other
is held fixed. Each agent takes the best-response to the current choice of the other.
This can be seen as a strategic extension of the Lloyd-Max procedure ;

• Since the consumer and the aggregator update their decision sequentially and not
simultaneously, 2× n updates are needed for n iterations of Algorithm 3 ;

• The order in which the consumer and the aggregator update their action does not
matter to obtain convergence (see e.g., [95]). This order has just been chosen here
to correspond to the chronology of the problem considered : the consumer sends a
message to the aggregator and then the aggregator chooses the representatives ;

• Algorithm 4 can be implemented both in an online and offline fashion. For online
communication, a possible protocol to exchange the updated actions between agents
can be implemented via an intermediate agent. Alternately, both agents can meet
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before physically (offline) and iteratively give their choice to the other (i.e., nego-
tiate) about the communication mechanism. At the end of this ”discussion”, the
obtained communication mechanism can be implemented online ;

Convergence of Algorithm 4

In contrast with the Lloyd-Max quantization scheme, the convergence of our algorithm
cannot be always guaranteed due to the non-aligned utility functions. However, in the
following propositions we show some sufficient conditions for Algorithm 4 to converge.

Proposition 6.2.3. If there exists an iteration k such that for every m ∈ {1, . . . ,M}

a(k)m ≤ a(k−1)m , (6.34)

Algorithm 4 converges.

Proof : For every m ∈ {1, . . . ,M − 1}, the transition levels can be expressed as :

s(k)m =
a
(k−1)
m−1 + a

(k−1)
m

2
(6.35)

s(k+1)
m =

a
(k)
m−1 + a

(k)
m

2
(6.36)

Knowing a
(k)
m ≤ a

(k−1)
m , it can be concluded that s

(k+1)
m ≤ s

(k)
m for every m ∈ {1, . . . ,M−1}.

Thus the representatives can be written as :

a(k)m = (h)−1

2

∫ s(k)m+1

s
(k)
m

sp(s)ds∫ r(k)m+1

s
(k)
m

p(s)ds

 (6.37)

a(k+1)
m = (h)−1

2

∫ s(k+1)
m+1

s
(k+1)
m

sp(s)ds∫ s(k+1)
m+1

s
(k+1)
m

p(s)ds

 (6.38)

Note that (h)−1 is a non-decreasing function and

∫ s(k)m+1

s
(k)
m

sp(s)ds

∫ s(k)m+1

s
(k)
m

p(s)ds

≥
∫ s(k+1)
m+1

s
(k+1)
m

sp(s)ds

∫ s(k+1)
m+1

s
(k+1)
m

p(s)ds

because

s
(k+1)
m ≤ s

(k)
m and s

(k+1)
m+1 ≤ s

(k)
m+1, so a

(k+1)
m ≤ a

(k)
m .

Using the same method, it can be obtained that for any iteration k′ > k, the repre-
sentatives and transition levels are monotonically non-increasing, i.e.

a(k
′+1)

m ≤ a(k
′)

m (6.39)

r(k
′+1)

m ≤ r(k
′)

m (6.40)

Knowing that these two parameters are monotonically non-increasing and always positive,
the Algorithm 4 converges. �
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From the proposition above, if the representatives are non-increasing in a certain
iteration k, the convergence can be assured. However, it is difficult to evaluate the value
of representatives at a later iteration. It might be tractable for the first few iterations.
Nonetheless, if one chooses the initial partitions and representatives in a clever fashion, the
convergence of the quantization algorithm can be guaranteed. The following proposition
shows that the solution obtained through Lloyd-Max algorithm guarantees convergence
for our algorithm

Proposition 6.2.4. When the solution of the classical Lloyd-Max algorithm (aims at

minimizing
∑M

m=1

∫ sm+1

sm

(s − am)p(s)ds) is chosen as the initial point, the Algorithm 4

converges.

Proof : With the classical Lloyd-Max quantizer, it is important to note that :

sLMm =
aLMm−1 + aLMm

2
(6.41)

aLMm =

∫ sLM
m+!

sLM
m

sp(s)ds∫ sLM
m+1

sLM
m

p(s)ds
(6.42)

Set a
(0)
m = aLMm . In the first iteration, the transition levels can then be calculated by

s(1)m =
aLMm−1 + aLMm

2
= sLMm (6.43)

The corresponding representatives can be obtained by :

2a(1)m + bc′(a(1)m + ε)

=2

∫ s(1)m+1

s
(1)
m

sp(s)ds∫ s(1)m+1

s
(1)
m

p(s)ds

=2

∫ sLM
m+1

sLM
m

sp(s)ds∫ sLM
m+1

sLM
m

p(s)ds

=2a(0)m

(6.44)

Note that since bc′(a
(1)
m + ε) is non-negative, it can be concluded that for every m ∈

{1, . . . ,M}
a(1)m ≤ a(0)m (6.45)

According to Prop. 5.2.3, the Algorithm 4 converges. �

6.2.4 Numerical performance analysis

In the simulations, we consider a special case of the cost function for the aggregator,
i.e. the Joule loss, as follows :

c(a+ ε) = (a+ ε)2 (6.46)
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b
ε

10−7 10−6 10−5 10−4 10−3 10−2 10−1

10−3 250 228 193 157 120 84 49
10−2 84 73 61 50 38 27 15
10−1 26 23 20 16 12 9 5
0.5 13 11 9 8 6 4 2
1 10 8 7 6 5 3 2

Table 6.1 – maximal size of a partition of equilibrium according to the aggregator’s
utility margin ε and the weight on grid cost b. The bigger the bias b between utility

functions, the smaller the number of non-degenerated cells at equilibrium and the less
communication resources (quantization bits) are used.

For the sake of simplicity, we assume the consumer’s power need is distributed uniformly
over [0, 1]. Firstly, we would like to investigate the maximum size at the equilibrium for
the partitions for different biases ε and b.

In Tab. 6.1, we note that for higher values of ε and b, i.e. when the consumer and
the aggregator have more diverging utilities, the size of the partitions are small. This is
intuitive as they have less interest in exchanging information with each other and thus
having more partitions is not required. Also, we see that b has a greater influence than ε.
This can be explained by the fact that b has a multiplicative influence to the utility, as
opposed to ε which only has an additive influence.

In Fig. 6.4, we study the utility of the consumer with respect to the bias b. We initialize
the algorithm with k cells for all cases under investigation to isolate the effect of this
parameter. We plot three curves corresponding to different ε. Unsurprisingly, the utility
of consumer decreases as the bias b increases or ε increases, since the aggregator utility is
less aligned to satisfying the consumer need.
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Figure 6.4 – More difference between utility functions of the two agents, more
degradation will be brought to the consumer’s expected utility.

6.3 Conclusion

In this chapter, the classical problem of quantization is revisited. We consider the fol-
lowing two problems : the utility functions of the coder and decoder are same or different.

In the first case, instead of designing a quantizer that minimizes distortion or minimum
mean square error (MMSE), the relevance of the quantized parameters for the exploitation
is considered. This approach is fully relevant in problems such as power control since the
transmitter, often has access only to an estimate or quantized version of the parameters
(e.g., the channel gains). To effectively determine a good utility-oriented quantizer in the
vector case, we make some sufficient but reasonable assumptions on the utility function
(such as the decomposability assumption) and resort to a suboptimal iterative algorithm.
The benefit from implementing the proposed utility-oriented quantization approach is
illustrated with the problem of energy-efficient and spectral efficient power control pro-
blem. Significant gains can be obtained in terms of payoff especially when the number of
bits decreases. Extending the proposed iterative algorithm to obtain the global optimum
solution for a given class of utility functions constitutes a challenging but very important
extension.

The second model which is exploited in the second section goes beyond the quantiza-
tion aspects and the new connections established between [90] and quantization. However,
this leads to new technical challenges which concern the general problem of source and
channel coding when the coders and decoders have different performance criteria. The si-
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mulations show that more the difference between the coder’s objective and the decoder’s
objective, more the degradation that is induced in their individual performance.
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7
Conclusions and Perspectives

7.1 Conclusions

In this manuscript, our primary objective is to investigate the power control/allocation
problems in decentralized interference networks. Two novel techniques (in Chapter 2 and
Chapter 3 respectively) are proposed to tackle this issue. One is to exploit the RSSI/SINR
to reconstruct the global CSI and consequently seek the power control scheme with global
CSI. Another is to provide a framework that allows one to derive the limiting performance
of power control with partial information.

More precisely, in Chapter 2 it is shown that the sole knowledge of the received power
or SINR feedback is sufficient to recover global CSI. The proposed technique comprises
two phases. Phase I allows each transmitter to estimate local CSI. Obviously, if there
already exists a dedicated feedback or signaling channel which allows the transmitter
to estimate local CSI, Phase I may be skipped. But even in the latter situation, the
problem remains to know how to exchange local CSI among the transmitters. Phase
II proposes a completely new solution for exchanging local CSI, namely using power
modulation (discrete or continuous). Discrete power modulation is based in particular on
a robust quantization scheme of the local channel gains. Therefore it is robust against
perturbations on the received power measurements ; it might even be used for 1−bit
RSSI, which corresponds to an ACK/NACK-type feedback. This demonstrates that even
a rough feedback channel may help the transmitters to coordinate better. When the RSSI
quality is good and local CSI is well estimated, continuous power modulation performs
very well. Note that the proposed technique is general and can be used to exchange any
kind of information and not just local CSI. To the best of our knowledge, in all the
power control schemes available in the literature, power levels have never been exploited
to exchange information ; therefore, in our setting, interference becomes a communication
channel which allows the transmitter to manage it. One of the key novel features of
the proposed technique is that the SINR or RSSI feedback is exploited as an implicit
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channel the transmitters can use to exchange (low-rate) information. It is essential to
understand that in the literature power levels are adapted to the channel but not used to
embed information as we do in the manuscript. This is a completely novel approach to
distributed power control.

Chapter 3 offers a possible framework to fully characterize the performance of dis-
tributed power control under partial information. The limiting performance analysis is
conducted in terms of long-term utility region and while we assume the global channel
state to be i.i.d. and the observation structure to be memory-less. The proposed framework
is shown to be relevant in diverse scenarios of interference networks for finding optimal
power control functions. More specifically, the power control functions considered here
depends only on local CSI, thus having the merit of being implementable in a completely
decentralized manner. Also, the solutions obtained take channel gain estimation noise
into account. All the above features illustrate the generality of our approach in tackling
problems of power control for maximizing sum-utility functions. Apart from maximizing
sum-utility, selfish spectrally efficient power allocation is also studied in Chapter 3. From
analytic and numerical results, we provide some conditions, under which allowing selfish
transmitters to spread their power over the entire spectrum, as opposed to using a single
band, may induce sum-rate performance losses.

As shown in Chapter 2 and 3, the exploitation of feedbacks may bring large impro-
vements in interference networks. In Chapter 4, we present two more methods to utilize
power domain feedbacks for signal domain operations. First, in MIMO cognitive networks,
relying solely on the local CSI, the interference alignment scheme can be rebuilt by ex-
ploiting the power domain feedback. We investigate the case with more transmit antennas
and the case with more receiving antennas and therefore propose two different approaches
to recover the optimal pre-processing matrix for the secondary user, which guarantees the
transmission of the secondary link without generating the interference to the primary
link. The second method is studied for the problem of channel estimation in interference
networks. We have provided novel MMSE and MAP estimators for channel estimation
in the framework of an interference channel. While classical estimators rely solely on the
pilot sequence and training, we also exploit the relevant RSSI measurements available in
order to further tune the estimate. Although this information might be hard to exploit
in general, we have specified some scenarios where the information available can be easily
used in order to improve the quality of estimations. We provide numerical results that
validate our approach which show the percentage of reduced distortion when compared
to the distortion resulting from the classical estimate.

The last major issue that has been considered is in developing a quantization scheme
which takes the final use of the quantized quantity into account, namely, utility-oriented
quantization. This is presented in Chapter 5 where we study the quantization scheme
in two scenarios : the coder and decoder have aligned utility functions or non-aligned
utility function. Firstly we investigate the case with aligned utility functions. Instead of
considering the distortion or minimum mean square error to design the quantizer, the
final use of the quantized parameters is considered. This approach is fully relevant in
problems such as power control since the transmitter has often only access to an estimate
or quantized version of the parameters (e.g., the channel gains). To effectively determine a
good utility-oriented quantizer in the vector case, we make some sufficient but reasonable
sufficient conditions on the utility function (such as the decomposability assumption) and
resort to a suboptimal iterative algorithm. The benefit from implementing the proposed
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utility-oriented quantization approach is illustrated with the problem of energy-efficient
and spectral efficient power control problem. Significant gains can be obtained in terms
of payoff especially when the number of bits is small. Extending the proposed iterative
algorithm to obtain the global optimum solution for a given class of utility functions
constitutes a challenging but very important extension. Secondly, we consider the scenario
that the consumer and the aggregator have different objectives in smart grid networks. An
algorithm has been proposed to obtain a stable information exchange mechanism. Several
sufficient conditions have been given for the convergence of the algorithm. Numerically,
it is shown that the different objective between consumer and aggregator will induce
degradation to both agents. Furthermore, when the difference becomes more significant,
the degradation will be more severe.

7.2 Perspectives

• Regarding the local CSI exchange scheme proposed in Chapter 2, we recall that our
technique concerns the single antenna scenario. Thus, a natural extension would
be do the same in the case of MIMO interference networks. The first challenge is
that the proposed techniques for Phase I do not allow the phase information or the
direction information to be recovered. However, if another estimation scheme is
available or used for local CSI acquisition and that scheme provides the information
phase, then it can be exchanged by using Phase II. This means that global CSI with
phase information becomes available. Indeed, one of the strengths of the proposed
Phase II is that it allows any kind of information to be exchanged, local CSI being
the choice made in the present work. All of this means that to address the problem
of beamforming in MIMO interference channels, either a more complete feedback
should be used or the existence of a local CSI with phase information should be
assumed. In the latter case, the manuscript provides an interesting solution for
exchanging the corresponding information. Now, another extension which is still
challenging but more in line with the spirit of the manuscript is given by a MIMO
interference channel for which each transmitter knows the interference-plus-noise
covariance matrix and its own channel. This is the setup assumed by Scutari et
al in their work on MIMO iterative water-filling [15]. Last possible track for the
MIMO extension is to assume the existence of a filter (and even a pre-filter at the
transmitter) e.g., an MMSE filter. Then, the notion of SINR per flow might be
exploited to develop the framework we propose in the manuscript.

• In Chapter 3, we consider a special case, namely single-band energy efficient power
control. It can be seen analytically and numerically that the decision function is
similar to the shape of a threshold function. An interesting extension is to consider
the multi-band energy efficient power allocation problem and find the form of the
decision function.

• In Section 4.1, it is proved that the opportunistic interference alignment schemes
can be reconstructed by using the partial channel state information and exploiting
the power domain feedback. However, it can be seen that this leads to sum-rate
degradation during the training phase (the phase with predetermined precoding
matrix, which aims at exchanging information). Therefore, extending the proposed
technique to minimize the transmission rate loss while guaranteeing the informa-
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tion exchange constitutes an interesting topic. Furthermore, in a MIMO cognitive
network with relaxed interference constraints (e.g., the interference from the secon-
dary user upper bounded by a strictly positive constant), or more generally, the
MIMO interference network, designing an interference alignment scheme should be
a challenging but significant extension.

• In Section 4.2, it is shown that training based channel estimation can be enhanced
by exploiting RSSI feedback in SISO interference networks. When considering the
channel estimation in MIMO systems, extending our proposed technique to exploit
the power domain feedback, e.g. SINR or interference-plus-noise covariance matrix,
may bring more insights to the latest wireless networks.

• In Section 5.1, we proposed a quantization scheme taking into account the effect
of the quantization on the final utility. In our work, the decided action (transmit
power in our scenarios) can be explicitly expressed when the quantized quantity
is known. However, in many systems, e.g. power control in multi-user interference
networks, the connection between the quantized quantity (channel gain) and the de-
cision (transmit power) can be solely expressed implicitly. Therefore, how to exploit
the implicit connection and consequently design the utility-oriented quantization
scheme needs to be investigated further in the future. Some learning algorithms
might be useful to this extension.
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A
Calculations for ALMA

As defined in the main text, g̃kji ∈ {vji,1, ..., vji,R} and the p.d.f. of g̃ji is denoted by γji
in general. Note that when g̃ji belongs to a discrete set, we can replace the integrals and
γji with a sum and discrete probability function without any significant alteration to our
results and calculations. Denoting the p.d.f of gji by φji, the distortion between gji and
g̃kji can be written as

E[
(
gji − g̃kji

)2
] =

R∑
r=1

∫
x,x̃∈R≥0

Pr
(
g̃kji = vji,r|g̃ji = x̃

)
γji (x̃|x)φji (x) (x− vji,r)2 dxdx̃

(A.1)

which is the distortion observed by transmitter k when transmitter i communicates gji
in Phase II. As the transmitter i estimates gji as g̃ji, the quantization operation QII

i

is performed resulting in g̃ji being quantized into a certain representative vji,n, if g̃ji ∈
[uji,n, uji,n+1). Given that the transmitter i operates at a power level corresponding to
vji,n, the transmitter k will decode vji,r with a probability π(r|n) as defined in Section IV.
Now we can expand the term Pr

(
g̃kji = vji,r|g̃ji = x̃

)
in the following manner.

Pr
(
g̃kji = vji,r|g̃ji = x̃

)
=

R∑
n=1

Pr
(
g̃kji = vji,r|QII

i (g̃ji) = vji,n
)

Pr
(
QII
i (g̃ji) = vji,n|g̃ji = x̃

)
=

R∑
n=1

π(r|n) Pr
(
QII
i (g̃ji) = vji,n|g̃ji = x̃

)
(A.2)

where we know

Pr
(
QII
i (g̃ji) = vji,n|g̃ji = x̃

)
=

{
1 if x̃ ∈ [uji,n, uji,n+1)
0 if x̃ /∈ [uji,n, uji,n+1)

(A.3)

125



ANNEXE A. CALCULATIONS FOR ALMA

Substituting (A.3) and (A.2) in (A.1), we get

E[
(
gji − g̃kji

)2
] =

R∑
n=1

R∑
r=1

πji (r|n)

∞∫
x=0

uji,n+1∫
x̃=uji,n

γji (x̃|x)φji (x) (x− vji,r)2 dxdx̃. (A.4)

For fixed transition levels uji,n, the optimum representatives vji,r′ are obtained by

setting the partial derivatives of the distortion E[
(
gji − g̃kji

)2
], with respect to vji,r′ , to

zero. That is

∂E[
(
gji − g̃kji

)2
]

∂vji,r′
=

R∑
n=1

πji (r
′|n)

∫ ∞
x=0

∫ uji,n+1

x̃=uji,n

2γji(x̃|x)φji(x) (x− vji,r′) dxdx̃ = 0

which results in

vji,r′ =

R∑
n=1

πji (r
′|n)

∫ ∞
x=0

∫ uji,n+1

x̃=uji,n

xγji(x̃|x)φji(x)dx̃dx

R∑
n=1

πji (r′|n)

∫ ∞
x=0

∫ uji,n+1

x̃=uji,n

γji(x̃|x)φji(x)dx̃dx

. (A.5)

For fixed representatives vji,r, the optimum transition levels uji,n′ are obtained by setting

the partial derivatives of the distortion E[
(
gji − g̃kji

)2
] with respect to uji,n′ , to zero. We

use the second fundamental theorem of calculus, i.e., d
dx

∫ x
a
f(t)dt = f(x) to obtain uji,n′

for all n′ ∈ {2, .., R} as

∂E[
(
gji − g̃kji

)2
]

∂uji,n′
=

R∑
r=1

(πji (r|n′ − 1)− πji (r|n′))
∫ ∞
0

γji(uji,n′|x)φji(x) (vji,r − x)2 dx = 0

(A.6)

with uji,1 = 0 and uji,R+1 =∞ as the boundary conditions. Solving the above conditions
is very difficult as the variable to solve is inside the integral as an argument of γ. Therefore
we consider the special case where γji(x̂|x) = δ(x− x̂) where δ is the Dirac delta function
which is 0 at all points except at 0 and whose integral around a neighborhood of 0 is 1.
This corresponds to the case where the channel is perfectly estimated after phase I. This
directly transforms (A.5) to (3.20) of the ALMA, and we can simplify (A.6) into

0 =
R∑
r=1

[πji (r|n′ − 1)− πji (r|n′)]φji(uij,n′) (vji,r − uij,n′)2 (A.7)

We have
∑R

r=1 [πji (r|n′ − 1)− πji (r|n′)] (uij,n′)
2 = 0 since

∑R
r=1πji (r|n′) = 1, resulting

in

uij,n′ =

∑R
r=1 [πji (r|n′ − 1)− πji (r|n′)] v2ji,r

2
∑R

r=1 [πji (r|n′ − 1)− πji (r|n′)] vji,r
(A.8)

which is (3.21) used in the ALMA. �
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B
Proof of Theorem 3.3.2

The proof is based on the following lemma ([51][52]).
Support Lemma. Let X be a finite set and V be an arbitrary set. Let P be a connected
compact subset of pmfs on X and p(x|v) ∈ P, indexed by v ∈ V, be a collection of
(conditional) pmfs on X. Suppose that gj(π), j = 1, ..., d, are real-valued continuous
functions of π ∈ P. Then for every V ∼ F (v) defined on V, there exists a random variable
V ′ ∼ p(v′) with |V′| ≤ d and a collection of conditional pmts p(x|v′) ∈ P, indexed by
v′ ∈ V′, such that for j = 1, ..., d,

∫
V

gj(p(x|v))dF (v) =
∑
v′∈V′

gj(p(x|v′))p(v′) (B.1)

We now show how this lemma is used to bound the cardinality of auxiliary random
variables. Suppose X = A · S, which refers to the joint action and joint state (obser-
vation) profiles. The corresponding P will be a connected compact subset of pmfs on
A · S and p(p1, ..., pK , s1, ..., sK |v) ∈ P, indexed by v ∈ V, be a collection of (conditional)

pmfs on A · S. Note that
K∏
i=1

PAi|Si,V (pi|si, v) is a special case of the general probability

PA1,...,AK |S1,...,SK ,V (p1, ..., pK |s1, ..., sK , v) (when the general probability is separable, we get
the product of individual probability) and the probability can be rewritten as :

PA1,...,AK |S1,...,SK ,V (p1, ..., pK |s1, ..., sK , v)

=
PA1,...,AK ,S1,...,SK |V (p1, ..., pK , s1, ..., sK |v)

PS1,...,SK |V (s1, ..., sK |v)

(B.2)
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Hence,
K∏
i=1

PAi|Si,V (pi|si, v) can be expressed by π ∈ P. Denoting jq as the quotient of j

over K, consider the following |A| − 1 continuous functions on P :

gj(π) =
π(j)

i=jq+K∑
i=jq+1

π(i)

j = 1, ..., |A| · |S| − 1 (B.3)

Clearly, these |A| · |S| − 1 functions are continuous. According to the support lemma, for
every V ∼ F (v) defined on V, for the distribution Q(a), there exist a V ∼ F (v) with
|V| ≤ |A| · |S| − 1 such that

Q(a) = ρ0(a0)
∑
s,v

Γ(s|a0)PV (v)
K∏
i=1

PAi|Si,V (pi|si, v)

= ρ0(a0)
∑
s,v′

Γ(s|a0)P ′V (v′)
K∏
i=1

PAi|Si,V ′(pi|si, v′)
(B.4)
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C
Proof of Proposition 4.2.1

Define the conditional p.d.f. of rj,m+1 knowing r
(m)
j as f(rj,m+1|r(m)

j ), the distortion
with m+ 1 feedbacks can be rewritten as :

∆∗j;m+1

=E
r
(m+1)
j

[D∗j(r
(m+1)
j )]

=E
r
(m)
j

[

∫
rj,m+1

f(rj,m+1|r(m)
j )D∗j(r

(m+1)
j )drj,m+1]

=
K∑
k=1

E
r
(m)
j

[

∫
rj,m+1

f(rj,m+1|r(m)
j )

βP
N0

+ 1
E
|R(m+1)
j

=r
(m+1)
j

[|hkj |2]
drj,m+1]

(C.1)

Denote the p.d.f. of R
(m+1)
j = r

(m+1)
j as fm+1(r

(m+1)
j ) and the p.d.f. of R

(m)
j = r

(m)
j as

fm(r
(m)
j ), then it can be checked that

f(rj,m+1|r(m)
j )

fm+1(r
(m+1)
j )

=
1

fm(r
(m)
j )

(C.2)
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Assume the p.d.f. of hj is φj(hj), note that for every k ∈ {1, . . . , K}, we have∫
rj,m+1

f(rj,m+1|r(m)
j )E|R(m+1)

j =r
(m+1)
j

[|hkj|2]drj,m+1

=

∫
rj,m+1

f(rj,m+1|r(m)
j )

∫
R

(m+1)
j =r

(m+1)
j

|hkj|2φj(hj)dhj

fm+1(r
(m+1)
j )

drj,m+1

=

∫
rj,m+1

∫
R

(m+1)
j =r

(m+1)
j

|hkj|2φj(hj)dhjdrj,m+1

fm(r
(m)
j )

=

∫
R

(m)
j =r

(m)
j

|hkj|2φj(hj)dhj

fm(r
(m)
j )

=E|R(m)
j =r

(m)
j

[|hkj|2]

(C.3)

Additionally, it can be checked from (5.52) that Dj(r
(m+1)
j ) is a concave function with

respect to E|R(m+1)
j =r

(m+1)
j

[|hkj|2]. According to (C.3) and the concavity, it can be obtained

that : ∫
rj,m+1

f(rj,m+1|r(m)
j )N0E|R(m+1)

j =r
(m+1)
j

[|hkj|2]

βPE|R(m+1)
j =r

(m+1)
j

[|hkj|2] +N0

drj,m+1

≤
N0E|R(m)

j =r
(m)
j

[|hkj|2]

βPE|R(m)
j =r

(m)
j

[|hkj|2] +N0

(C.4)

which yields

∆∗j;m+1

≤
K∑
k=1

E
r
(m)
j

[
N0E|R(m)

j =r
(m)
j

[|hkj|2]

βPE|R(m)
j =r

(m)
j

[|hkj|2] +N0

]

=∆∗j;m

(C.5)

∆∗m will decrease when more useful prior information is acquired. Hence, when all the
channel gains can be obtained from the feedback, the distortion will be minimized. Ac-
cording to (5.52), by knowing all the channel gain, the distortion of the MMSE estimator

can be expressed as
∑K

k=1 Ehkj
[

N0|hkj |2
βP |hkj |2+N0

]
, which is therefore the lower bound on ∆∗j;m.
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D
Proof of Proposition 5.1.2

For a given quantization region Cm, the gradient of Eg(‖V (ĝ)− V (g)‖2) with respect
to rm can be written as :

∇Eg(‖V (ĝ)− V (g)‖2)

=
∂Eg(‖V (ĝ)− V (g)‖2)

∂rm

=

∫
Cm

φ(g)
∂‖V (rm)− V (g)‖2

∂rm
dg

=

∫
Cm

φ(g)JV (rm)
∂‖V (rm)− V (g)‖2

∂V (rm)
dg

=

∫
Cm

2φ(g)JV (rm)[V (rm)− V (g)]dg

(D.1)

where JV is the Jacobian matrix of V evaluated at rm, i.e.,

JV (rm) =


∂u1
g1

(rm) . . . ∂u1
gK

(rm)
...

...
...

∂uK
g1

(rm) . . . ∂uK
gK

(rm)

 . (D.2)

At the local minimum, we must have the gradient of Eg(‖V (ĝ) − V (g)‖2), become zero.
Since, we assume that V (·) is invertible in Cm, we can use the inverse function theorem
to conclude that JV (rm) is invertible at all points in Cm. As a result, we have∫

Cm

φ(g)[V (rm)− V (g)]dg = 0. (D.3)

Hence, the optimum representatives can be obtained as

V (rm) =

∫
Cm

φ(g)V (g)dg∫
Cm

φ(g)dg
(D.4)
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which is equivalent to

uk(rm) =

∫
Cm

φ(g)uk(g)dg∫
Cm

φ(g)dg
(D.5)

which must hold for all k = 1, 2, ..., K. Taking the sum of (D.5) with respect to k, we have

K∑
k=1

uk(rm) =

∑K
k=1

∫
Cm

φ(g)uk(g)dg∫
Cm

φ(g)dg
(D.6)

Knowing F (g) =
∑K

k=1 uk(g), the optimum representatives to minimize Eg(‖V (ĝ) −
V (g)‖2) satisfy the following condition

F (rm) =

∫
Cm

φ(g)F (g)dg∫
Cm

φ(g)dg
(D.7)

which is the expression to minimize the payoff gap Eg(‖F (ĝ) − F (g)‖2). This implies
that minimizing the quantity Eg(‖V (ĝ)−V (g)‖2) implies minimizing Eg(‖F (ĝ)−F (g)‖2),
which concludes our proof.
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Titre: Caractérisation des performances limites des jeux non-coopératifs avec 
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Résumé Une grande partie des résul-
tats rapportés dans cette thèse est 
basée sur une observation qui n'a ja-
mais été faite pour les communica-
tions sans fil et le contrôle de puis-
sance en particulier: les niveaux de 
puissance d'émission et plus généra-
lement les matrices de covariance 
peuvent être exploitées pour intégrer 
des informations de coordination. Les 
échantillons de rétroaction dépen-
dants des interférences peuvent être 
exploités comme canal de communi-
cation. Premièrement, nous montrons 
que le fameux algorithme itératif de 
remplissage d'eau n'exploite pas suf-
samment l'information disponible en 
termes d'utilité-somme. En effet, nous
montrons que l'information globale 
d'état de canal peut être acquise à 
partir de la seule connaissance d'une 
rétroaction de type SINR. Une ques-
tion naturelle se pose alors. Est-il pos-
sible de concevoir un algorithme de 
contrôle de puissance distribué qui ex-
ploite au mieux les informations dis-
ponibles? Pour répondre à cette ques-
tion, nous dérivons la caractérisation 
de la région d'utilité pour le problème 
considéré et montrons comment ex-
ploiter cette caractérisation non 
seulement pour mesurer l'efcacité 
globale, mais aussi pour obtenir des 
fonctions de contrôle de puissance à 
un coup globalement efcaces. 

Motivés par le succès de notre ap-
proche sur les réseaux d'interférences
mono bande et multibande, nous nous
sommes demandé si elle pourrait être 
exploitée pour les réseaux MIMO. 
Nous avons identifié au moins un scé-
nario très pertinent. En effet, nous 
montrons que l'alignement d'interfé-
rence opportuniste peut être implé-
menté en supposant seulement une 
rétroaction de covariance d'interfé-
rence plus bruit à l'émetteur secon-
daire. Puis, dans le dernier chapitre, 
nous généralisons le problème de la 
quantification, la motivation étant 
donnée par certaines observations 
faites dans les chapitres précédents. 
Premièrement, nous supposons que le
quantificateur et le déquantificateur 
sont conçus pour maximiser une fonc-
tion d'utilité générale au lieu de la 
fonction de distorsion classique. 
Deuxièmement, nous supposons que 
le quantificateur et le déquantificateur
peuvent avoir des fonctions d'utilité 
différentes. Cela soulève des pro-
blèmes techniques non triviaux, notre 
revendication est de faire un premier 
pas dans la résolution d'eux.
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Title: Characterization of the limit performances of non cooperative games with 
imperfect observation: application to 5G

Keywords: Ressource allocation, game theory, distributed optimization, wireless
communication, estimation

Abstract : A large part of the results 
reported in this thesis is based on an 
observation which has never been 
made for wireless communications 
and power control in particular: 
transmit power levels and more 
generally transmit covariance 
matrices can be exploited to embed 
information such as coordination 
information and available 
interference-dependent feedback 
samples can be exploited as a 
communication channel. First, we 
show that the famous iterative water-
filling algorithm does not exploit the 
available information sufciently well 
in terms of sum-utility. Indeed, we 
show that global channel state 
information can be acquired from the 
sole knowledge of an SINR-type 
feedback. A natural question then 
arises. Is it possible to design a 
distributed power control algorithm 
which exploits as well as possible the 
available information? To answer this 
question, we derive the 
characterization of the utility region 
for the considered problem and show 
how to exploit this characterization 
not only to measure globally 
efciency but also to obtain globally 
efcient one-shot power control 
functions. 

Motivated  by  the  success  of  our
approach  for  single-band  and  multi-
band interference networks, we asked
ourselves  whether  it  could  be
exploited  for  MIMO  networks.  We
have  identified  at  least  one  very
relevant  scenario.  Indeed,  we  show
that  opportunistic  interference
alignment  can  be  implemented  by
only assuming interference-plus-noise
covariance feedback at the secondary
transmitter. Then, in the last chapter,
we  generalize  the  problem  of
quantization,  the  motivation  for  this
being  given  by  some  observations
made in the previous chapters. First,
we assume that the quantizer and de-
quantizer are designed to maximize a
general utility function instead of  the
conventional  distortion  function.
Second,  we  assume  that  the
quantizer and de-quantizer may have
different utility functions.  This raises
non-trivial  technical  problems,  our
claim is to make a very first step into
solving them.   
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