
HAL Id: tel-01726290
https://theses.hal.science/tel-01726290

Submitted on 8 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3D Monolithic Integration : performance, Power and
Area Evaluation for 14nm and beyond

Alexandre Ayres de Sousa

To cite this version:
Alexandre Ayres de Sousa. 3D Monolithic Integration : performance, Power and Area Evaluation for
14nm and beyond. Micro and nanotechnologies/Microelectronics. Université Grenoble Alpes, 2017.
English. �NNT : 2017GREAT065�. �tel-01726290�

https://theses.hal.science/tel-01726290
https://hal.archives-ouvertes.fr


THÈSE 

Pour obtenir le grade de 

DOCTEUR DE LA COMMUNAUTE UNIVERSITE 
GRENOBLE ALPES 

Spécialité : Nano Electronique et Nano Technologies 

Arrêté ministériel : 25 mai 2016 

Présentée par 

Alexandre AYRES DE SOUSA 
Thèse dirigée par Laurent FESQUET et  
co-encadrée par Olivier ROZEAU et Bertrand BOROT 

préparée au sein du Laboratoire Techniques de l'Informatique et de la 
Microélectronique pour l'Architecture des systèmes intégrés (TIMA) et du 
Laboratoire d'électronique des technologies de l'information (CEA-LETI) 
au sein de l'École Doctorale électronique, électrotechnique, automatique et 
traitement du signal (EEATS) 

Intégration monolithique en 3D: étude du 
potentiel en termes de consommation, 
performance et surface pour le nœud 
technologique 14nm et au-delà 

Thèse soutenue publiquement le 16 Octobre 2017, 
devant le jury composé de :  

Pr. Francis CALMON 
Professeur des Universités, INSA de Lyon, Lyon (Président) 

Pr. Lionel TORRES 
Professeur des Universités, université de Montpellier, Montpellier 
(Rapporteur) 

Dr. Olivier ROSSETTO 
Maître de conférences, université Grenoble Alpes, Grenoble (Membre) 

Dr. Laurent FESQUET 
Maître de conférences, Grenoble INP, Grenoble, (Directeur de thèse) 

Dr. Olivier ROZEAU 
Ingénieur de recherche au CEA-Leti, Grenoble (Membre Invité) 

Mr. Bertrand BOROT 
Ingénieur de recherche à STMicroelectronics, Crolles (Membre Invité) 



2



3

"Every great advance in science has issued from a new audacity of imagination." 

--John Dewey 



Acknowledgments 

 

 4 

ACKNOWLEDGMENTS 

My doctoral thesis took place between 2014 and 2017 in Grenoble, France. It was performed in 

collaboration among STMicroelectronics in Crolles, the research institute of the French Alternatives 

Energies and Atomic Energy Commission (CEA-LETI) in Grenoble and the TIMA laboratory from Grenoble-

Institute of Technology (Grenoble INP). This environment including enterprise, research institute and 

academia allowed me to be in the center of the Grenoble semiconductor development “war machine”. 

The level of excellence and competence in the Grenoble ecosystem inspired me. 

I would like to thank all people who gave me this fantastic and unique opportunity, and welcomed a 

Brazilian that had just left the electrical engineering school. In a great surprise I have met nice, intelligent 

and welcoming people 9000 km away from home. The adventure of coming to France without even 

knowing the basics in the French language, quickly turned in a pleasant life, in a lovely country. As a CIFRE 

thesis program, I could experience the importance of academia close to the industry. 

The TIMA laboratory and its team amused me by their competence in semiconductor design. I would like 

to thank the whole team which I had the opportunity to discuss my work several times and receive 

constructive feedback. A warmhearted thanks to all Brazilian friends working at TIMA to whom I wish the 

best. I specially thank Rodrigo BASTOS. I had the luck to work with Laurent FESQUET, who gave me an 

incredible guidance, quickly solved my problems with tight deadlines, always with clear insights and gently.  

At STMicroelectronics, my gratitude to Bertrand BOROT, his competence, readiness, technical knowledge 

and management will be inspiration for the rest of my days. I greatly appreciate the Crolles fast pace, the 

industrial environment and support for new ideas. 

I spent most of my PhD at the LICL laboratory from CEA-LETI. I have gained a lot of advanced process 

technical knowledge at LETI, even working with design. My gratitude to Louis HUTIN, Perrine BATUDE, 

François ANDRIEU, Laurent BRUNET and Claire FENOUILLET who were always prompt to discuss and 

explain ideas. Also, a big thanks to Olivier ROZEAU. I could write a book of the adventures of being advised 

by Olivier. His excellence, attention to the details, competence and rigor always pushed me to move 

forward. I am really honored to have worked with him. I also particularly thank Mathilde, Julien, Luca, Lina, 

José, Julien, Jessy, Remy, Fabien, Vincent and Giulia for the great times spent during my thesis. Really nice 

people, to whose I wish the best. I can speak French now because the insistence of Julien, Mathilde and 

Lina who always taught me. 

Finally, my deepest gratitude to my family who have supported me unconditionally. Despite of the distance 

and seeing them only few days per year, I always felt their support which kept me strong in the difficult 

times. A genuine thanks to my parents Alexandre and Adriene.  

 

 

Sincerely, 

 

Alexandre Ayres de Sousa



Table of Contents 
 

 

 5 

TABLE OF CONTENTS 

TABLE OF CONTENTS .......................................................................................................................... 5 

GLOSSARY .......................................................................................................................................... 8 

1 CHAPTER ONE – INTRODUCTION TO 3DVLSI ................................................................................. 12 

1.1 INTRODUCTION TO 3DVLSI ............................................................................................................ 13 

1.1.1 CMOS SCALING .................................................................................................................................. 13 

1.1.2 MOSFET DEVICE OVERVIEW AND TYPICAL FIGURES OF MERIT ................................................................... 16 

1.1.3 DENNARD’S SCALING ............................................................................................................................ 19 

1.1.4 2000’S TECHNICAL ADVANCES ON SCALING ............................................................................................. 21 

1.1.5 RISE OF NEW MOSFET ARCHITECTURES .................................................................................................. 23 

1.2 3D INTEGRATION AS MORE THAN MOORE’S ALTERNATIVE ..................................................................... 28 

1.2.1 MOTIVATION AND CONCEPT .................................................................................................................. 28 

1.2.2 TSV – PARALLEL INTEGRATION ............................................................................................................... 30 

1.2.3 MONOLITHIC 3D SEQUENTIAL INTEGRATION – STATE OF THE ART ............................................................... 33 

1.3 THESIS OBJECTIVES ....................................................................................................................... 40 

1.4 CHAPTER CONCLUSION .................................................................................................................. 41 

PART ONE: DESIGN ........................................................................................................................... 46 

2 CHAPTER TWO – TRANSISTOR LEVEL 3D DESIGN .......................................................................... 48 

2.1 VLSI DIGITAL DESIGN FLOW ........................................................................................................... 49 

2.1.1 OVERVIEW IN PLANAR DESIGN FLOW ...................................................................................................... 49 

2.1.2 3D DESIGN FLOW ................................................................................................................................ 50 

2.1.3 DESIGN FLOW WITH EDA ...................................................................................................................... 51 

2.1.4 CONCLUSION AND POSITIONING ............................................................................................................. 53 

2.2 BOTTOM-UP APPROACH FOR THE DIGITAL DESIGN FLOW ....................................................................... 54 

2.2.1 FULL CUSTOM STANDARD CELL .............................................................................................................. 54 

2.3 3D DESIGN ENVIRONMENT ............................................................................................................. 60 

2.3.1 MOSFET PERFORMANCE AND SPICE MODELS ........................................................................................ 60 

2.3.2 SIMULATION RESULTS ........................................................................................................................... 60 

2.3.3 PARASITIC ELEMENTS EXTRACTIONS ........................................................................................................ 61 

2.3.4 CONCLUSION ....................................................................................................................................... 61 

2.4 ELECTRICAL DESIGN CHARACTERIZATION ............................................................................................ 62 

2.4.1 FULL CUSTOM ..................................................................................................................................... 62 

2.4.2 CONCLUSION ....................................................................................................................................... 72 

2.5 CHAPTER CONCLUSION .................................................................................................................. 73 



Table of Contents 

6

3 CHAPTER THREE – BEOL PROCESS INFLUENCE ON 3D DESIGN ....................................................... 77 

3.1 GUIDELINES ON 3DVLSI BEOL PROCESS DEVELOPMENT ........................................................................ 78 

3.1.1 IBEOL LIMITATIONS ............................................................................................................................. 78 

3.1.2 IBEOL FLAVORS AND RING OSCILLATORS ................................................................................................. 79 

3.2 BEOL LIMITATIONS IN ADVANCED NODES .......................................................................................... 85 

3.2.1 SCALING EXPECTATIONS ........................................................................................................................ 85 

3.2.2 WIRELENGTH DELAY IN ADVANCED NODES ............................................................................................... 86 

3.3 CHAPTER CONCLUSION .................................................................................................................. 90 

PART TWO: VARIABILITY ................................................................................................................... 92 

4 CHAPTER FOUR – VARIABILITY IN VLSI ......................................................................................... 94 

4.1 VARIABILITY IN VLSI CIRCUITS ......................................................................................................... 95 

4.1.1 SOURCES OF PROCESS VARIABILITY ......................................................................................................... 95 

4.1.2 PELGROM’S VARIABILITY – LOCAL VARIATIONS ......................................................................................... 95 

4.1.3 GLOBAL VARIABILITY ............................................................................................................................ 98 

4.1.4 ACV .................................................................................................................................................. 99 

4.1.5 MONTE CARLO ANALYSIS .................................................................................................................... 101 

4.1.6 PROCESS CORNERS MANAGEMENT ....................................................................................................... 102 

4.2 SPICE MODEL STATISTICAL EVALUATION ......................................................................................... 103 

4.2.1 STATISTICAL INPUTS ........................................................................................................................... 103 

4.2.2 PARAMETER SENSITIVITY ..................................................................................................................... 106 

4.3 CHAPTER CONCLUSION ................................................................................................................ 108 

5 CHAPTER FIVE – VARIABILITY EFFECTS IN 3DVLSI DESIGN ........................................................... 113 

5.1 GLOBAL AND LOCAL EFFECTS IN RING OSCILLATORS AND SRAMS .......................................................... 114 

5.1.1 PLANAR BEHAVIOR ............................................................................................................................. 114 

5.1.2 3D PARTITIONING EFFECTS .................................................................................................................. 117 

5.2 STATISTICAL UNIFIED MODEL ........................................................................................................ 123 

5.2.1 MODEL DEFINITIONS .......................................................................................................................... 123 

5.2.2 RING OSCILLATORS SENSIBILITY TO DIFFERENT SOURCES .......................................................................... 126 

5.2.3 3D PARTITIONED SRAM VARIABILITY ................................................................................................... 128 

5.2.4 SRAM STATIC NOISE MARGIN ............................................................................................................. 130 

5.2.5 SRAM STATIC POWER ........................................................................................................................ 133 

5.3 CHAPTER CONCLUSION ................................................................................................................ 134 

6 CHAPTER SIX – CONCLUSION ..................................................................................................... 136 

6.1 MOORE’S SCALING PERSPECTIVES .................................................................................................. 137 

6.1.1 LIMIT OF MOORE’S LAW ..................................................................................................................... 137 



Table of Contents 
 

 

 7 

6.1.2 THE 3D OPPORTUNITY ........................................................................................................................ 137 

6.1.3 ADVANTAGES OF 3D DESIGN FOR VARIABILITY ........................................................................................ 138 

6.2 GENERAL CONCLUSION ................................................................................................................ 140 

6.3 PROSPECTS ............................................................................................................................... 141 

6.3.1 CMOS LOGIC INTEGRATION AND MEMORIES – SEVERAL TIERS SCALING ...................................................... 141 

6.3.2 MORE THAN LOGIC – FUNCTIONALITY INTEGRATED SEQUENTIALLY ............................................................ 141 

A. APPENDIX A ............................................................................................................................ 143 

A.1 THESIS TOOLS CONTEXT ................................................................................................................. 144 

A.1.1 A.1.1 3D DESIGN ENVIRONMENT ........................................................................................................ 144 

A.1.2 FULL CUSTOM VS STANDARD CELL INTEGRATION .................................................................................... 145 

B. APPENDIX B ............................................................................................................................. 147 

B.1 SRAM SIGNAL NOISE MARGIN (SNM) SIMULATIONS ........................................................................ 148 

B.1.1 SRAM SPICE NETLIST ....................................................................................................................... 148 

B.1.3 CORRELATION TREATMENT IN THE NETLIST ............................................................................................ 152 

TITLE: 3D MONOLITHIC INTEGRATION: PERFORMANCE, POWER AND AREA EVALUATION FOR 14NM AND 

BEYOND ......................................................................................................................................... 156 

TITRE: INTEGRATION MONOLITHIQUE EN 3D: ETUDE DU POTENTIEL EN TERMES DE CONSOMMATION, 

PERFORMANCE ET SURFACE POUR LE NŒUD TECHNOLOGIQUE 14NM ET AU-DELA ......................... 156 

 

 

 



Glossary 

 

 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

Glossary 
 

 

  



Glossary 
 

 

 9 
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INTRODUCTION TO CHAPTER ONE 

“There's a basic principle about consumer electronics: it gets more powerful all the time and it gets cheaper 

all the time.” --Trip Hawkins 

The integrated circuit evolution over the years has changed the world. From massive data centers to 

mobile devices, the electronic is in our life.  

Chapter one discusses how the above quote is possible. The historical perspective of making smaller 

devices, namely the transistor scaling is reviewed by discussing the Moore’s Law. Over the last 50 years 

the scaling trend has been achieved, decreasing the costs per transistor. 

The MOSFET transistor operation and its figure of merits are briefly discussed. The MOS is the fundamental 

brick in the digital nanoelectronics, and increasing its performance translate in a better circuit efficiency. 

Quantifying transistor characteristics for digital operation is necessary to determine the best circuit 

behavior. 

Dennard’s Law is an insight into the transistor performance boost by the miniaturization. By scaling 

parameters such as widths, lengths, thickness the transistor performance is enhanced. Coupled to Moore’s 

Law, the outcome is the cited quote. 

The 3D integration concept and state of the art is shown in this chapter. As the scaling is approaching to 

the atomic level size, the process complexity is escalating. The 3D integration, or stacking transistor in 

several tiers is presented as an alternative to the traditional scaling. The parallel 3D integration is briefly 

discussed, and then the state of the art of 3D sequential is reviewed. 
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1.1 Introduction to 3DVLSI 

1.1.1 CMOS Scaling 
In the 1960’s electronic circuits suffered a major transformation, the circuitries were in a transition from 

discrete elements to fully integration on a single die. Gordon Moore noted that the number of transistor 

was increasing year by year, and possibly the trend could continue through the following years, as no 

fundamental physical barrier was in sight. The trend was first proposed for the next ten years, or until 1975 

as illustrated in Figure 1.1.1.1a.  

 

 

Figure 1.1.1.1 “Cramming more components onto integrated circuits”. On the left, (a) Moore’s transistor 
count projection through the years. On the right, (b) the optimum number of components to decrease 
the cost. During the years the optimum cost is reduced and the optimum transistor count is higher. 
[Moore 1998]. 

In the same publication, Moore argues that the cost of the circuit is inversely proportional to the number 

of components. This holds true until a certain point, where the huge number of components increment 

the circuit complexity and reduces the process yield, thus increases the cost. The outcome is an optimum 

number of components for the minimum cost. Moore’s then predicts the cost failing over the years, 

especially for the optimum number of components in an integrated circuit as illustrated in Figure 1.1.1.1b. 

Miniaturization and technology evolution are cited as the main reason to reducing costs. The main 

messages of the paper are the beginning of a new era using integrated circuit, instead of the previous 

discrete circuits; the benefits of using integrated circuits, such as reliability, increased circuit complexity 

and utility, and most importantly the cost reduction proportioned by the miniaturization. Those arguments 

form the base of the well-known Moore’s law: over the years the cost per transistor is reduced, because 

the advancements in the technology and miniaturization.  The original paper cites the miniaturization pace 

of doubling the transistor count every two years, thus the transistor count in Figure 1.1.1.1a is in the 

logarithm scale. Another interesting discussion in the publication is the process yield, which is said to 

improve as high as economically possible, only needing engineering efforts. This confirms the central key 

message of the paper: the cost of integrated circuits. 
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Moore had only data from the previous six years, and made the prediction of transistor count for the next 

ten years, or until 1975. It turns out, that the proposed miniaturization pace proposed by Moore held true 

for at least 52 years. The scaling of transistors is occurring for five decades, and the transistor count should 

increase in the next years, continuing the Moore’s scaling trend. After many years of success, the Moore`s 

prediction became more than a classic paper, it turned into a law. Indeed, the transistor count doubling 

each eighteen or twenty-four months is the big roadmap followed by the industry, especially for the 

advanced logic integration. The transistor dimension scaling has been scaled as shown in Figure 1.1.1.2, 

often depicted as the Moore’s Law. Despite of transistor count being the imminent result of the scaling, 

the reason that Moore’s Law is alive after so many years is the transistor cost, as proposed in the original 

paper. The cost per transistor is decreasing for each node, as pictured in Intel data in Figure 1.1.1.3. As 

suggested by Moore, this figure shows that more transistors can be crammed for a given area, and despite 

the cost increasing in each node due to process complexity, the final price per transistor is decreasing. 

This trend is expected to continue at the 7nm node by Intel. A major caveat in the data is about the yield 

and process maturity. Those factors are not transparent, so the analysis may consider a very good process 

yield and the cost per transistor after a long time of mass production, where the process maturity is good 

enough to deliver high yields, and optimized performance. 

 

 

Figure 1.1.1.2 Transistor count in logarithm over the years for several Intel processors.  
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Figure 1.1.1.3 Intel data for the relative transistor cost from the 130nm to 7nm node. The cost per 
transistor is decreasing in a logarithm scale.  
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1.1.2 MOSFET Device Overview and Typical Figures of Merit  
The Metal-Oxide-Semiconductor Field Effect Transistor abbreviated by MOSFET is the structure created 

using the three elements (MOS) as the name suggests, in order to create a layer of free carriers by applying 

of electrical field in the semiconductor. The transistor has four terminals, the gate which controls the 

semiconductor channel, the source and drain, and finally a body terminal connecting the semiconductor 

mass. As consequence, the field is able to control the current density of these free carriers, either 

electrons or holes, effectively changing the semiconductor conductivity between the drain and the 

source. The semiconductor can be classified as N-type or P-type depending on the majority of electric 

carriers. The source and drain are doped regions accordingly to the MOSFET type (NMOS or PMOS) and 

opposite to the channel type, forming a NPN or PNP structure respectively. The typical bulk structure is 

illustrated in Figure 1.1.2.1a as well the contacts in Figure 1.1.2.1b FD-SOI MOSFET transistor. In schematic 

abstraction level, the NMOS is represented as Figure 1.1.2.1c. 

 

 

Figure 1.1.2.1 (a) Typical Bulk MOSFET; (b) FD-SOI MOSFET with 4 terminals; (c) Schematic 
representation of NMOS. 

The gate field effect can modulate the charge concentration in the channel region, this effect is possible 

due to the MOS capacitance structure. For a NMOS, when gate voltage bias is applied, after a certain level 

(called threshold voltage) it can create an inversion layer in the P-substrate, meaning that substrate-gate 

oxide interface is populated with electrons, and then an electrical current can flow from drain to source. 

In an ideal condition, no current flows when the gate bias is under the threshold voltage. In real devices, 

a small current can flow even if the gate is turned off, and this effect is called leakage current. The 

leakage arises from the junction’s carrier recombination as well as the tunneling effects, such as gate-oxide 

leakage [J. Chen 1987]. The bulk terminal can modulate the voltage across the semiconductor substrate, 

modifying the channel charges concentration, thus providing a VT shift in order to decrease the leakage or 

increase the performance. The typical MOSFET top-view for design layout is shown in Figure 1.1.2.2. The 

active region, or the complete transistor bulk is seen in green. The gate stack is simplified as strip shown 

in red. The source and drain contacts are in white and blue. This is a typical representation for planar 

transistor, either bulk or FDSOI. With FinFETs the design layout may differ, as the Fins are shown in the 

layout, and the bulk region may not be represented. The gate length LG was the smallest feature size in 

the transistor, and historically was used to name the transistor node, despite of this not holding true 

anymore.  
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Figure 1.1.2.2 Simplified top view of transistor layout for (a) Bulk and FDSOI; (b) FinFET 

The operation of MOSFET transistor depends on the combination of voltages applied in its four terminals 

and the analysis is done regarding the current between the drain to source, referenced as ID. In a general 

manner, the MOSFET can operate in analog, radio-frequency (RF) and digital domains. The following 

figures of merit will focus on the digital operation, which the main goal is to switch between the logic 

states. 

 

 

Figure 1.1.2.3 (a) Transistor ID current versus gate voltage for 14nm FDSOI; (b) 10nm FinFET for SRAM 
figures of merit for ID in logarithm scale [S. Y. Wu 2016]. 

The classic benchmarking parameters are illustrated in Figure 1.1.2.3b by plotting the logarithm ID versus 

the gate voltage, in this case for PMOS and NMOS. The parameters are the IOFF, ID SAT, ID LIN, Subthreshold 

Swing (SS), and the Drain-Induced Barrier Lowering (DIBL). The DIBL is given by (1.1) considering the 
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difference of the threshold voltage for a given delta in VDD. The inverse of the slope of the ID curve is called 

SS, and it is given by (1.2). 

𝐷𝐼𝐵𝐿 =
𝛥𝑉𝑇

𝛥𝑉𝐷𝐷
 (1.1) 

𝑆𝑆 =
𝜕𝑉𝐺𝑆

𝜕𝑙𝑜𝑔𝐼𝐷
 

(1.2) 

The SS has a minimum value of 60mV/dec for a conventional silicon device, using T=300K and COX >>CDEP, 

where COX is the gate-oxide capacitance and CDEP is the depletion layer capacitance. The DIBL is due to the 

short channel effect, where the S/D (source and drain) junctions create a superposed depletion laterally 

under the channel, thus reducing the gate electrostatic control and lowering the transistor VT. By applying 

a bias in the drain, this effect is enhanced, thus there is an ID curve difference between the linear and 

saturation modes. The DIBL is calculated by the difference of VTSAT and VTLIN. Besides the MOSFET figures of 

merit, the final circuit is often evaluated using the Performance, Power and Area (PPA) metric. The first 

two are directly linked to costumer usability, in the sense of speed, mobility for battery powered devices, 

emitted heat and power consumption cost. The area is inherently tied to the device cost.  
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1.1.3 Dennard’s Scaling 
Moore’s scaling became a de facto standard in the industry over the years, and it was marketed as the 

node number metric, representing the transistor minimum feature size, or the gate length. This trend is 

shown in Figure 1.1.3.1. Starting at 0.25 µm node, the transistor gate length does not represent anymore 

the real gate size, but due to marketing reasons, the expected node scaling x0.7 trend was kept in the node 

name.  

 

 

Figure 1.1.3.1 Transistor gate length feature size over the years. On the left, (a) Intel data and transistor 
cost [Thompson 2004]; (b) Applied Materials data extrapolation to 2020. 

Besides the gate length scaling, the transistor parameters were also being scaled. This overall scaling trend 

was noted by Robert H. Dennard in 1974 as follows in Figure 1.1.3.2 [Dennard 1974], proposing a 

performance increase due to scaling. The parameters are scaled by a factor κ.  

 

 

Figure 1.1.3.2 Dennard’s Scaling parameters to increase circuit performance. [Dennard 1999] 

Dennard’s law supposes a constant power density for a given area, thus the voltage and current are scaled 

by a factor κ-1 while area of a given device is reduced by a factor κ 2. The area reduction for a given element, 

such as metal interconnection, is also κ 2 while the dielectric insulating distance decreases by a factor κ, 

hence resulting in parasitic capacitance reduction by a factor κ-1. Circuit performance wise, the Moore’s 

Scaling is highly beneficial. As noted by Dennard, the several scaling parameters increase the device 

performance as illustrated in Figure 1.1.3.3 for scaling the spacing between adjacent gates (also defined 

as Contact Poly Pitch: CPP). By scaling the devices, it reduced the overall costs, but it also increased the 
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circuit performance. In other words, doing more powerful devices made them cheaper. This is 

sometimes referred as the “scaling free lunch” or “golden age of scaling”. The outcome is strongly 

opposed to conventional product engineering: usually to make something better, it becomes more 

expensive. 

 

 

Figure 1.1.3.3 Performance increase over the years (reducing gate delay). At the same time, the 
switching power was reduced. [Gargini 2017] 
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1.1.4 2000’s Technical Advances on Scaling 
The scaling met some difficulties to deliver the expected circuit performance in the years 2000’s. New 

device solutions were proposed and implemented, increasing the process complexity rather than a simple 

parameter scaling as in the previous years. A brief of major technical solutions is presented in this section. 

 

 

Figure 1.1.4.1 In the 90nm node, the channel mechanical strain was introduced to increase the transistor 
performance. [Thompson 2004, 90-]. 

In the 90nm node, circa 2004, for the first time the devices featured the mechanical strain engineering. 

The strained silicon is achieved in PMOS by using SiGe in S/D, hence the mismatch between the SiGe and 

the Si in the channel creates a compressive stress in the P channel improving the hole mobility. In the 

NMOS channel the tension stress is necessary, thus in Intel process it was achieved by using a high stress 

nitride-capping layer as in Figure 1.1.4.1. The tensile stress in N channel increases the electron mobility. 

 

 

Figure 1.1.4.2 In the 45nm node, the gate-oxide was changed from the typical SiO2 to HfO2 High-K 
isolation. [Mistry 2007] 

Continuing the scaling, at the 45nm node another important feature has been introduced: the high-k 

materials for the gate-oxide as pictured in Figure 1.1.4.2. Following the Dennard’s scaling, the gate oxide 
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thickness was reduced over the years in order to increase the Cox, and consequently the transistor 

performance. However, the thickness required in the 45nm would be lower than 2nm following the scaling 

trend, and consequently the device would become too leaky, because of the carrier tunneling through the 

very thin gate oxide. The solution was to use a higher permittivity material than SiO2 (ɛ=3.9). The HfO2 was 

chosen, with ɛ>10, allowing a higher Cox, while being thicker than the equivalent SiO2 film, hence reducing 

the gate leakage by 25x [Mistry 2007]. After this technology, the Equivalent Oxide Thickness (EOT) 

definition was widely adopted. It straightforwardly compares a given high-k to SiO2 theoretical thickness 

to achieve the same capacitance. The EOT definition is described in 1.3. 

Along with gate-oxide change in the 45nm node, some processes started using a gate-last integration in 

the 22nm node. In this process flow the gate high-k is deposited after the removal of dummy gates and 

before the metal gate electrodes. This integration avoids the thermal stress in the gate oxide during the 

S/D annealing. Another solution used in the 2000’s is the raised source and drain (RSD) starting from the 

90nm node. This solution reduces the source and drain contact resistance by increasing the contact height, 

decreasing the S/D sheet resistance, which is in series with the channel resistance, thus increasing the 

transistor performance. Several process solutions can achieve the raised S/D, for example the selective 

epitaxial growth [H.-J. Huang 2001]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐸𝑂𝑇 = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝐻𝑖𝑔ℎ𝐾

ɛ𝑆𝑖𝑂2

ɛ𝐻𝑖𝑔ℎ𝐾
 (1.3) 
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1.1.5 Rise of new MOSFET architectures 
 After the 28nm node, the standard bulk transistor was difficult to scale even using the improved process 

developed in the 2000’s. Emergent transistor architectures were employed, and are currently in research. 

Those architectures are focused on improving the gate electrostatic control over the channel. The 

industry has been biased over three major architectures illustrated in Figure 1.1.5.1, namely the FD-SOI, 

FinFETs and Nanowires. 

FD-SOI stands for Fully Depleted Silicon On Insulator, and was a technological substrate process evolution 

from PD-SOI (Partially Depleted version). The Buried Oxide (BOX) limits the bulk leakage, and the S/D 

extends to BOX, minimizing junction area, leakages as well as the capacitances [Cristoloveanu 1999]. The 

PD-SOI silicon film thickness (TSI) over the BOX forming the channel is not thin enough to create a depletion 

charge fully controlled by the gate as illustrated in Figure 1.1.5.2a. In fact, a quasi-neutral zone is present 

under the formed channel, and if the body connection is floating some undesirable effects may occur, such 

as the kink effect (causing hysteresis in ID-VG curves, and potentially latching-up the transistor). Employing 

a thin TSI can suppress those undesirable effects because the channel becomes fully depleted 1.3as shown 

in Figure 1.1.5.2b. The channel can be controlled by the usual gate, but also from the potential under the 

BOX, namely the back-gate. The FD-SOI advantages over BULK and PD-SOI are the lower leakage, no latch-

up risk, and the lower variability due to lower doping in the channel, as well the increased electrostatic 

control. 

 

 

Figure 1.1.5.1 Conceptual transistor archichetures in burried oxide for: (a) FD-SOI; (b) FinFET; (c) 
Nanowires. 



Chapter One 

 

 24 

 

 

Figure 1.1.5.2  (a) PD-SOI concept; (b) FD-SOI concept; (c) FD-SOI TEM cross section image [Weber 2010]. 

A TSI of 6nm is shown in Figure 1.1.5.2c for a 28nm FD-SOI transistor for the 28nm node. An ultra-thin SOI 

wafer process was developed to achieve low variability The SmartCutTM process is described in Figure 

1.1.5.3. The core of this process is to use a handling wafer bonded to another wafer on which an oxidation 

layer is done (and later will become the BOX). Then, hydrogen atoms are implanted to a certain depth, and 

a splitting is done at this level, followed by chemical-mechanical planarization (CMP) to flatten uniformly 

the silicon thickness. 

 

Figure 1.1.5.3 Ultra-thin SOI wafer process for mass production, SmartCutTM. [Schwarzenbach 2011]  

Besides the FD-SOI, another transistor architecture was developed and committed to mass production: 

FinFETs. In this architecture, the transistor channel is no longer planar. During the process, the silicon is 

etched to create the “fins”, or the 3D channel. Then the gate stack is fabricated around the channel. This 

effectively increases the gate electrostatic control for a normalized planar area. Indeed, the effective 

gate width is calculated as two times the fin height plus the fin width. This technology is also called tri-

gate, as the gate controls the channel by three different faces. The excellent electrostatic control as shown 

in Figure 1.1.5.4 increases the transistor performance per area, compared to the planar devices.  
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Figure 1.1.5.4 Channel electrostatic control for FinFET and FDSOI. The higher WEFF for FinFET results in a 
better electrostatic control, especially for short gates [Rozeau 2015]. 

After the introduction of the first FinFET family in the 22nm, the following nodes are scaling by reducing 

dimensions, and more importantly by increasing the gate WEFF, which translates in an increase of the fin 

height as illustrated in Figure 1.1.5.5. 

Figure 1.1.5.5 FinFET scaling over the nodes. Each node the fin height is increasing to increase the 
channel WEFF (data from Intel). 

As the time of this publication (2017), the 10nm is the current node. The 7nm probably will be the last 

node employing the FinFET architecture due to the difficulty to scale any longer the fin height, limited by 

the aspect ratio. The Gate-All-Around (GAA) architecture is proposed and fully researched as a natural 

advancement from fins. In those transistors, the fin is transformed in a square, and then the gate encloses 

its four faces. The higher WEFF  per area allows an even better channel electrostatic control as illustrated 

in Figure 1.1.5.6, reducing the DIBL (higher gate control for a given VDS polarization) and the SS (faster 

transition among off state to saturation). 
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Figure 1.1.5.6 Transistor DIBL and SS compared for different architectures [Rozeau 2015]. 

Due to the channel format, those transistors are also called nanowires or nanosheets. The first nanowires 

were proposed as omega gates for less complex process integration, as pictured in Figure 1.1.5.7b. The 

GAA can be stacked to increase even further the performance per area as illustrated in Figure 1.1.5.7b. 

The nanowires using a cross section of a rectangle, are named nanosheets. Those architectures should be 

delivered in the 4nm as illustrated in  Figure 1.1.5.8. Hence, the scaling trend should continue, at least for 

six years more. The downside is the process complexity, as for the example the introduction of EUV 

(extreme ultraviolet) lithography, which increases the lithography resolution by employing a shorter 

wavelength (13.5nm).  

Figure 1.1.5.7 (a)Nanowire TEM image.(b) The omega gate encloses the channel [Barraud 2012]. On the 
right, (c) The GAA; granting exceptional channel electrostatic control [Ernst 2008].  
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 Figure 1.1.5.8 Foundries roadmap. In the top, (a) TSMC expected technology development. In the 
bottom, (b) Samsung Roadmap, displaying nanosheets introduction at 4nm node. (Data from TSMC and 
Samsung). 
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1.2 3D Integration as More than Moore’s Alternative 

1.2.1 Motivation and Concept 
The standard integration presented in the previous sections, is also known as monolithic. The transistors 

are done and interconnected in a sequential process. The transistor steps are done, in what is called the 

front-end of the line process (FEOL). The interconnections are done above the FEOL level, by stacking metal 

levels separated by dielectric isolation material, forming the back-end of the line (BEOL). Both FEOL and 

BEOL are done using the same mask alignment marks. Despite of 3D transistor architecture being 

employed such as FinFETs, the overall process rests in a planar fashion, since all transistors are done side 

by side. The scaling reduces the BEOL metal dimensions and the contacted poly pitch (distance between 

adjacent gates) as shown in Figure 1.2.1.1. 

 

Figure 1.2.1.1 CPP and Metal pitch scaling for the first metal level over the transistors in planar devices. 
Each node decreases even further the dimensions [Rozeau 2015]. 

The scaling increases the BEOL parasitic capacitance and resistance as illustrated in Figure 1.2.1.2. Those 

effects will be discussed in detail on Chapter Two, however it demonstrates a limit for scaling. The circuits 

will achieve one point, where the BEOL parasitic elements will become a physical barrier, and 3D 

integration is an excellent alternative. 

 

Figure 1.2.1.2 Metal resistance increase due to reduced dimensions. The resistivity also increases due to 
reduced mean free path for electrons. [Huynh-Bao 2017] 
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Given the increasing difficulty to continue the Moore’s Law, as transistor dimensions are achieving atomic 

scales, stacking devices in several tiers can be a solution to do more than scaling. Indeed, several solutions 

are already used for mass production, especially for memory and imaging devices [Fujii 2012; 

Knickerbocker 2012]. The Moore’s Law as discussed previously is about reducing the cost per transistor. 

In this area, the 3D integration is also effective. The scaling can bring up the total cost, because of the 

difficulty to reduce dimensions even more, the cost of high precision machines, and the non-recurring 

costs of process and design development. By employing the 3D integration, the machines and the process 

from planar nodes can be reused, thus the investment is lower. The total count of transistor per area 

increases with the number of stacked tiers. Therefore, in each tier the area is lower compared to the 

similar planar circuit, translating in lower interconnections length and increased circuit performance. A 

planar process performance can effectively boost up by using the 3D scheme. The foundry doing this 

transition potentially has a lower cost, as the development and non-recurring costs are lower than 

researching scaling of a new node from the scratch. The 3D integration also allows the function 

integration in the same chip, for example, using a process optimized for logic in one tier, while another 

tier is optimized to analog or sensing functions. 

The 3D circuits are divided into three categories: 

• 2.5D Integration: Circuit dies are fabricated separately and bonded or soldered to an interposer. 

The interposer is generally a silicon part with no active devices (without transistors), and its main 

function is to provide the interconnection for its attached dies. It can be though as a backplane 

connecting the bus of several dies. 

• Parallel TSV Integration:  The circuit is done in different wafers, and then the wafers are bonded 

together. The circuit in different tiers are connected using Through-Silicon Vias (TSVs). This 

approach limits the via size, because the bonding phase has a certain alignment precision, limiting 

the via pitch, and via surface area has to be big enough to deliver an acceptable aspect ratio. 

• Sequential Integration: The whole circuit is processed in a continuous manner. After the first 

circuit tier process, the following top process will use the previous alignment marks. The top 

process has to be special in order to not affect the already built tier, meaning that the top thermal 

budget has to be limited. The main advantage of this integration over the parallel integration is 

the via density connecting the two tiers, as the alignment is secured by the process. 3D sequential 

stacked transistors are shown in Figure 1.2.1.3. 

 

Figure 1.2.1.3 3D Sequential Integration in two tiers.  [Batude 2011] 
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1.2.2 TSV – Parallel Integration 
Using distinct process for different circuit functions can be cost effectively, as the process can be focused 

for a determined design, and the circuit can be processed in parallel; giving the chance to test the circuits 

before bonding in the final package and reducing the production time. The 2.5D integration uses dummy 

backplanes to provide connections between its soldered dies. An interesting example of 2.5D interposer 

and TSVs is illustrated in Figure 1.2.2.1, effectively forming a 3-tier package. 

A parallel integration using TSVs can be done in two main flavors: face-to-face, where the wafers are 

bonded with one in reverse position, meaning the both back-end are together; another way is to do the 

face-to-back, where one wafer is bonded on the back of the active region of another wafer as shown in 

Figure 1.2.2.2a. The face-to-back has at least three main process approaches: via-first (TSV processed 

before the FEOL), via-middle (TSV are done after the FEOL and before the BEOL) and the via-last (TSVs 

manufactured after the FEOL and BEOL) [Hsieh 2012]. The TSV bonding step can be done at wafer metal 

level, dielectric level or both, forming a hybrid bonding [K. N. Chen 2011] as illustrated in Figure 1.2.2.2b. 

The bonding at metal levels is done by parallel contact pressure and heat, usually using cooper (hence the 

name Cu-Cu bonding). If the wafers are bonded at dielectric level, the oxide-to-oxide gluing is done by 

fusion bonding of hydrophilic surface, thus the oxide surface should be ultra-clean. 

 

Figure 1.2.2.2 On the left, (a) TSV packaging schematic for face-to-back [Hsieh 2012]. On the right, (b) 
Wafer bonding process schemes for TSV manufacture [K. N. Chen 2011]. 

 

Figure 1.2.2.1 Integration using 2.5D interposer and TSVs. [P. T. Huang 2014] 
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Finally, the wafers can be bonded by using polymers which are compliant to silicon oxide, reducing the 

requirements of surface cleanness. As the alignment is the key factor during the process, the TSV pad size 

has to be set accordingly to the alignment limitations; in other words, the TSV pad size has to be large 

enough to compensate the misalignment. The TSV aspect ratio, the proportion between the contact area 

and its height has to follow a determined constant in order to be compliant to the process, avoiding defects 

due to deep etching and metal filling. 

Figure 1.2.2.3 3D parallel integration using TSV Cu-Cu bonding with dimensions. [Plas 2011] 

The TSV process featuring Cu-Cu bonding is illustrated in Figure 1.2.2.3 as well the TSV dimensions and 
pitch. The TSV size benchmarking is shown in Figure 1.2.2.4. The x-axis represents the TSV size while the 
y-axis shows the aspect ratio, both in log-scale. The ideal TSV has a small diameter size, and a small
aspect ratio, because it decreases the via overhead, and the via length reducing the parasitic
capacitances. As seen in Figure 1.2.2.4, the TSV diameter size still higher than 1µm, limiting the
maximum via density between tiers. Moreover, the TSV technology can suffer from defects, such as
internal voids, structural damage or misalignments as shown in Figure 1.2.2.5a. The high via size makes
it area costly to employ double vias in order to increase the circuit reliability, in case of one via fails
during the process. In Figure 1.2.2.5b a study shows the percentage of chips without failures, depending
on the TSV via count and the number of tiers. As expected, by increasing the number of tiers and the
number of TSV contacts, the yield gets worse.
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Figure 1.2.2.4 TSV contact size for given aspect ratio. [Plas 2011] 

Figure 1.2.2.5 On the left, (a)TSV sources of defects [Lin 2013] (b)On the right, the circuit realibity 
considering the TSV count [Hsieh 2012]. 

As result of limited TSV density, the design workaround usually takes benefits from memory blocks close 

to the processing unit, or even stacking memory tiers, as memory I/O can be reduced to a bus and address 

lines, being capable to overcome the TSV limitation [Lee 2014]. 
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1.2.3 Monolithic 3D Sequential Integration – State of the Art 
To overcome the limitations of the TSV process, the 3D sequential processing was proposed as illustrated 

in Figure 1.2.3.1. As its tiers are aligned over the process, the vias connections through the tiers (3DCO) 

can have a higher density, as well sizes and pitch comparable to Metal 1 vias, allowing a very flexible 

placement during the design phase. 

Figure 1.2.3.1 CEA-LETI 3D sequential integration process CoolCubeTM. The bottom tier has routing 
metals called intermediate back-end (iBEOL). 

The ultra-high density of 3DCO gives more flexibility to 3D sequential designs, as the circuit can have more 

interconnections among tiers, and the area penalty is minimal allowing the placement of double vias to 

increase the reliability. A comparison between layouts using 3D parallel and sequential is shown in Figure 

1.2.3.2. 

Figure 1.2.3.2 Layout view comparing TSV to 3D sequential via placement [Liu 2012]. The MIV stands for 
Monolithic Integrated Vias, which in this thesis is often referenced as 3DCO. 
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The density of 3CDCO is tremendously superior compared to the TSV density as illustrated in Figure 1.2.3.3, 

mainly due to alignment precision. The alignment also allows a small 3DCO size, reducing the via height to 

keep a certain aspect ratio. Hence, the 3DCO parasitic elements are decreased such as capacitance, 

because the small size reduces the lateral area decreasing the parasitic capacitances. 

 

Figure 1.2.3.3 TSV to 3DCO comparison for different processes. [Brunet 2016] 

In a design perspective, the contact density among the tiers defines the maximum granularity, or in other 

words, in which design level the circuit can be partitioned between tiers. In Figure 1.2.3.4 the design 

granularity level is shown as four main flavors. The parallel integration is suitable for low-density contacts, 

enabling entire core or logic blocks 3D integration. On the other hand, the sequential process enables all 

the granularity scale, including logic gates (CMOS over CMOS) and transistor over transistor integrations. 

 

Figure 1.2.3.4 Nanowire TEM image. The gate encloses all the channel; granting exceptional channel 
electrostatic control. [Batude 2014] 
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Figure 1.2.3.5 Comparison of 3D sequential process manufacturing strategies. [Batude 2011]. 

The monolithic process has several approaches in order to manufacture the top tier as categorized by 

[Batude 2011] seen in Figure 1.2.3.5.  The main goal of the process is to achieve a good silicon lattice 

quality, and protect the already built tier by controlling the thermal budget. The seed window method 

creates a path for silicon seed from bottom wafer in order to recrystallize the top wafer. A second 

approach creates the transistor without the monocrystalline silicon in the top. The epitaxy-like silicon is 

done by a laser annealing; however the silicon layer is polycrystalline. Although the polycrystalline limits 

the transistor performance, the process is potentially low-cost. The process integration using laser 

annealing is shown in Figure 1.2.3.6 from [Shen 2013; T. T. Wu 2015]. 

 

Figure 1.2.3.6 Process flow for 3D sequential integration using Poly-Si laser recrystallization [Shen 2013; 
T. T. Wu 2015]. 
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Finally, the process can be done by wafer bonding over an already processed tier. In this approach, the 

top wafer has already high-quality silicon. Thanks to its high alignment precision the process can reach 

ultra-fine pitch connection between tiers. As a result, ultra-high 3D contact densities (108 via/mm2 for a 

14nm node stacking) is achieved [Batude 2011]. 2-tier integration with intermediate back-end (iBEOL) and 

3D contacts (3DCO) is shown in Figure 1.2.3.7. 

The challenge of such integration is to obtain a top level with similar bottom level performances; but with 

a limited thermal budget process. Depending on the considered technology and node, the maximal 

sustainable thermal budget by the bottom layer will differ. The bottom wafer is a standard process with 

routed metal layers (iBEOL). The bottom devices have to resist to the top highest process temperatures. 

For example, [Deprat 2016], [Fenouillet-Beranger 2014] show how a conventional 950°C annealing 

degrades the bottom tier performance. This restricts the thermal budget for the top tier, where all the 

front-end processes are limited to 500ºC during 2 hours for the 14nm FD-SOI technology, or more 

specifically a time-temperature window [Batude 2015]; hence in literature, this is referred as low 

temperature (LT). The bottom silicide is enhanced to become stable for this range of temperatures [Deprat 

2016]. Tungsten is used as iBEOL metal due to the contamination risks in case of wafer breaking during 

the top processes in front-end machines. The LT monolithic process currently achieves the high 

performance in 14nm thanks to Solid Phase Epitaxy Regrowth (SPER)[Batude 2015] while keeping low 

variability [Pasini 2016]. The 3DCO are done sequentially after the top LT process using standard tungsten 

plug in oxide, connecting iBEOL to the final BEOL, which is a standard Cu/Low-k back-end. This process 

integration has been demonstrated on 300 mm wafers with one metal line of Tungsten in iBEOL [Brunet 

2016] and its process flow is illustrated in Figure 1.2.3.8. 

 

Figure 1.2.3.7 3D stack with sequential integration featuring homogenous process technologies, and 
intermediate back-end. 



Introduction to 3DVLSI 
 

 

 37 

 

 

Figure 1.2.3.8 3D sequential design flow for CoolCubeTM process using wafer bonding and maximum 
temperature for critical steps [Brunet 2016]. 

The laser annealing can help the low temperature process as well, even for the wafer bonding integration. 

As the laser can concentrate high power in a small area, the heat is enough to do the dopant activation 

instead of SPER process, but the heat diffusion in a very short time is not sufficient to degrade the tier 

already built. This is an active topic in research for low temperature process as seen in Figure 1.2.3.9. For 

certain laser energy; the light can activate the junction. However, as the top tier is done over the already 

processed circuit, the bottom circuit may also contain back-end metals for interconnections routing, which 

is called intermediate back-end (iBEOL). The iBEOL metals can reflect some of the laser energy, influencing 

the heating process, as the power density per area is critical. Hence, the iBEOL metal pattern can change 

the outcome of the laser annealing [Fenouillet-Beranger 2016]. 

The 3D CoolCubeTM sequential integration is illustrated in Figure 1.2.3.10, in this case without iBEOL. The 

3DCO vias between tiers shows excellent alignment precision.  

 

Figure 1.2.3.9 Laser annealing for junction activation for low temperature 3D process. [Fenouillet-
Beranger 2016]. 
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Figure 1.2.3.10 3D sequential integration using bonded SOI wafer. The 3DCO processed after the bonding 
yields a high alignment precision [Brunet 2016]. 

The ultimate research goal is to produce low temperature stacked transistors with the same performance 

of standard planar process without degrading the bottom transistors, as illustrated in ION vs IOFF figures of 

merit in Figure 1.2.3.11; showing the bottom MOSFET thermal stability and the possibility of high 

performance transistor using low temperature process. 

 

Figure 1.2.3.11 Typical ION vs IOFF. On the left, (a) The bottom performance before the top process in black 
and after a thermal budget in red (Batude et al., 2014). On the right, low temperature process with 
different implant doses for the S/D compared to reference planar process in red [Pasini 2016]. 

The 3D process described uses the FDSOI as transistor architecture. Other processes have already been 

demonstrated to achieve 3D sequential integration featuring heterogeneous technologies [Shulaker 

2014],[Irisawa 2014]. Indeed, the 3D monolithic process can feature different technologies in each tier 

in order to use the best potential of a given technology for a determined application, as illustrated in 

Figure 1.2.3.12. Such integration, can use FinFETs for high performance logic, and FDSOI on the top tier for 
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RF communications. This solution is infeasible and cost prohibitive in a planar monolithic integration, 

otherwise different processes have to be managed in the same masks. 

 

 

  

 

Figure 1.2.3.12 Homogenous 3D integration featuring different transistor architectures in each tier 
[Batude 2014]. 
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1.3 Thesis Objectives 
 

As the Moore’s Scaling is approaching to materials physical limits, new solutions have been proposed: 

either continuing miniaturization and exploring new materials or doing more than scaling and adding more 

features to the circuit, such as integrating logic and sensors in the same monolithic circuit. 

Evaluating a technology proposal among the crowd is the main goal of this thesis. Specifically, the 3D 

Sequential Integration (3DVLSI) is assessed in several design aspects, such as Performance/Power/Area 

(PPA) and Variability for digital circuits.   

Most of the state of the art presented in Chapter One for 3D sequential circuits is based on advanced 

process. The automated design tools for 3DVLSI are under development. In this context, this thesis also 

provides guidelines for EDA development and process performance. The analyses are based on SPICE 

simulations. 

In a succinct way, the work done consists in: 

• 3D environment evaluation using SPICE and Full-Custom layouts 

• 3D Contacts operation assessment in final circuit performance 

• Area overhead and solutions for 3DVLSI 

• Guidelines for EDA tools development and process performance guidance 

• Assessment of variability – Global and Local variation impact in circuit figures of merit 

• Across-Chip Variations (ACV) modeling and its effects in 3D sequential circuits 

The thesis has been divided into two distinct parts, the first one is focused on circuit design while the 

second part scrutinize the process variability impact on design. 
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1.4 Chapter Conclusion 
 

The miniaturization of circuits has been presented as the main engine of the semiconductor industry 

research and development. The scaling trend that effectively took place over the last 50 years is discussed 

as the Moore’s Law and illustrated also as the roadmap of the industry. 

The scaling reduced the transistor cost per node as suggest by Moore’s paper. Coupled to miniaturization, 

the better transistor performance due to reduce dimensions was noted by Dennard in 1975. Over the 

years, the circuits became cheaper and more powerful.  

The traditional scaling, reducing dimensions and thicknesses finished in the 2000’s. Due to the current 

leakage and the need to increase device performance, new technical solutions were employed. Finally, in 

the 2010’s the transistor architecture was complete revamped to continue the trend. As the scaling is 

approaching to atomic scales and becoming more difficult, new solutions like 3D integration were 

proposed. Stacking tiers can bring benefits to circuits considering the PPA and augment the function 

capabilities (such logic integration with sensors).  

Semiconductor 3D integration can be classified as parallel and sequential integration. Both state of the art 

for the process has been illustrated in Chapter One. The parallel integration has the advantage to use a 

standard planar process like, having the wafers bonded after, with minor modifications to create the 

through silicon vias (TSV) to contact tiers. Due to the bonding step, the misalignment between wafers is a 

limiting factor and this issue is mitigated by a large TSV size in order to grant the contact. This creates a 

huge area overhead, limiting the connection density between the tiers. The problem can be completely 

avoided by stacking the tiers aligned, in a 3D sequential process. This enables an ultra-high 3D contact 

density among the tiers. The main disadvantage of such an approach is the top processes with a limited 

thermal budget, in order not to damage the already processed tier. The state of the art of low temperature 

process for 3D integration has been discussed in Chapter One. With ultra-high density 3DCO and high 

transistor performance for both tiers, the sequential 3DVSLI is shown as a perfect candidate for digital 

logic circuits to continue the scaling in a more than Moore’s flavor. 
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INTRODUCTION TO CHAPTER TWO 

3D sequential integration, or 3DVLSI is the proposed alternative to the Moore’s Law scaling. The stacking 

of transistors in several tiers can increase the circuit density for a given area, and optimizations in back-

end interconnections can improve the circuit performance and reduce the power usage. This chapter 

explores the 3D design environment focusing ultra-dense logic circuits, and benchmark several aspects of 

the 3D monolithic circuits. 

At the present time (2017); logic circuits such as Graphic Processor Units (GPUs) have more than 15 billion 

transistors. In order to achieve an architecture with so many elements, a well-established design 

methodology is used in planar circuits. In this chapter, those techniques are synthetized in a brief 

introduction. The 3DVLSI design tools are under development; but are mainly based in planar as an 

inheritance. The work has been done using a 3D Process Design Kit (PDK), constantly having upgrades as 

the technology is under evolution. The technology hypotheses and their implications in the design are 

discussed completing the chapter introduction. 

Design-wisely, the high density of 3D Contacts (3DCO) through the tiers allows several integration 

implementations. Solutions such as CMOS over CMOS and Transistor over Transistors are discussed and 

compared. This work is largely based on the design of full custom circuits, as placement and routing design 

tools are not commercially available.  
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2 Chapter Two – Transistor Level 3D Design 
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2.1 VLSI Digital Design Flow 

2.1.1 Overview in Planar Design Flow 
The automated design flow in Very-Large Scale Integration (VLSI) is composed by various stages. As a 

natural evolution during the years, the abstraction level has increased in order to manage complex circuits 

having billions of transistors.  

 

 

Figure 2.1.1.1 Usual digital design flow methodology in advanced planar nodes.  

The big picture of the digital design flow, divided into five macroscopic steps, is shown in Figure 2.1.1.1. 

The circuit design is done by coding at high abstraction level, such as Register-Transfer Level (RTL) using 

VHDL or Verilog languages. The combinational and sequential logic are described by the code and later are 

synthetized, entering in the second design step: the logic synthesis. The synthesis tool transforms the RTL 

circuit description into a gate-level netlist. This tool optimizes the logic implementation and the timing 
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analysis tool checks the fulfillment of the signal timing assumptions (at least for synchronous circuits). The 

standard cells are made of several views including symbols, HDL code, electrical schematics and physical 

drawings of the logic gates (this is not an exhaustive list), and are extracted from a library to be associated 

to the netlist cells. The third step is defined by the physical design; the tools firstly allow the definition of 

a floorplan, then place and optimize the gate position of the netlist. Once the gates are placed, the clock 

tree synthesis can start. The clock tree synthesis tool is able to modify the gate placement in order to 

guaranty the clock design constraints in the circuit, ensuring an appropriate drive for the flip-flops and a 

minimal skew. The unused space between standard cells is completed by filler cells in order to guaranty 

performance and reliability. The physical design step is finalized by the routing tool, which connects 

together the standard cells with back-end metal rails and vias forming the interconnection network. 

Usually, the routing algorithm targets the shortest possible wirelength. Final verifications are done to 

check the possible design errors (Design rules for manufacturing) and if the circuit design works as 

expected. Then the process masks can be fabricated for the silicon production. 

 

2.1.2 3D Design Flow 
Today, 3D Design Flows based on the classical planar flow, with some modifications able to accommodate 

the multi-tier physical design. 

 

 

Figure 2.1.2.1 Modified digital design flow methodology for 3DVLSI integration.  
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An additional design step of partitioning is introduced as shown in Figure 2.1.2.1. The 2D netlist is divided 

into tier using a given separation strategy. Each tier has its own floorplan, and then the 3DCO placement 

is an additional step compared to the standard planar physical design. A variation in the 3D flow, could be 

the introduction of a parameter to explicit the circuit tier in the RTL description or in the gate-level netlist. 

2.1.3 Design Flow with EDA 
The state of the art of 3DVLSI electronic design automation tools (EDA) is presented in this section. As 3D 

sequential integration focuses very large digital circuits, with billions of transistors, the automated design 

tools are a necessity and the interest is quickly increasing in this topic as the number of publications. The 

prominent works focus in the netlist partitioning in order to create a full 3DVLSI EDA environment.  

2.1.3.1 Netlist Partitioning  

 

Figure 2.1.3.1 Wirelength evaluation after a 2D placement. Long wires are chosen for partitioning after 
a set threshold. [Sarhan 2015]  

Partitioning is peculiarity of 3D design, which means that the netlist has to be separated into tiers. Several 

techniques to partition netlist and, later, floor-planning have been published [Panth 2015; Sarhan 2015; 

Sawicki 2009]. For example, one of those methods proposes to evaluate the wirelength after a 2D gate 

placement, and then interconnects above a certain threshold are chosen to be cut, meaning that the gates 
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will be placed into different tiers as illustrated in Figure 2.1.3.2. The length cutoff threshold can be defined 

by evaluating the maximum number of 3DCO needed. On the other hand, some interconnections can be 

chosen to stay in only one tier, for pure optimization purposes or in order to balance the tier filling ratio. 

Notably the partitioning is able to increase circuit performance by lowering WL and consequently 

reducing the interconnection parasitic elements. In a design focused on power, it can reduce the number 

of buffers and repeaters because of the reduction of critical paths. 

 

2.1.3.2 3D IP Blocks 

The area ratio between tiers does not necessary needs to be equal, for example, in a two-tier integration 

the top tier can have 60% of the gates while the bottom tier only have 40% as first proposed by [Sarhan 

2015].  

 

Figure 2.1.3.2 Layout prototype implementation snapshots of 3D LDPC block in two cases. On the left 50-
50 partitioning ratio, and on the right, 75-25 partitioning ratio.[Sarhan 2015] 

The wirelength optimization can be even further improved by using different partitioning ratios, the, 

potentially increasing the gains in performance and power. Depending on the design directives, the 

benefits can outstand the area loss due to unbalanced partitioning. In a complete design, the blank area 

of the tier with less circuit may be used by secondary elements, such as decoupling capacitors; another 

possibility is to employ a planar block to fill the gap. The unbalanced partitioning study shows performance 

and power gains in several circuits as illustrated in Figure 2.1.3.3. The unbalanced placement and routing 

is compared to the 2D planar case, and another partitioning tool that splits the circuit in a 50-50 balanced 

area ratio. For some circuit blocks, such as FFT and openMSP, the unbalanced partitioning can increase 

the performance even further than a balanced one. In such circuits, the long interconnections can be 

optimized, as well the short interconnections which stay on the same tier. In these initial proposed 

methods, the routing is based on the 2D routing, and the gains shown for 3DVLSI have to be considered as 

a first step. Indeed, with further works in the 3D EDA, a true 3D commercial tool will improve partitioning, 

floor-planning, placement, PDN and routing. This could unleash the total potential of 3DVLSI for very dense 

and complex logic circuits. Also, the cost of a 3DCO interconnection was thought to be penalizing, thus 

several proposed methods have a feature to limit the 3D vias. In this thesis, we do not need to limit the 

3D vias number because the proposed 3DCO is optimized enough to preserve the signal integrity for analog 

effects such STR Charlie effect [Fesquet 2014], and high speed digital logic, and this is discussed in the 

section 2.4. 
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2.1.4 Conclusion and positioning 
Advances in the EDA tools are illustrated in this section. The software developments have an inclination 

to reuse most of the planar design flow in first stance. While this approach may not bring the optimal 

results, it can deliver circuit PPA gains without major tool development. However, many questions were 

open during the EDA development, for the example the number of 3DCO in the overall design, as well as 

the performance impact brought by them. Also, the floorplanning strategy, the 3DCO placement and 3D 

Power Delivery Network are not enough mature points today. Following those open questions, the next 

section is organized in a bottom-up approach and discussed the design at transistor level, in order to 

provide guidelines to EDA tools. 

  

 

Figure 2.1.3.3 Several blocks PPA comparison using the unbalanced 3D partition for two tiers. Due to 
reduced wirelength and number of gates, the 3DVLSI can gain in performance of power. [Sarhan 2015]. 
OpenMSP is a 16-bit microcontroller, FFT is a Fast-Fourier Transform block, LDPC stands for Low-density 
parity-check code, and DES-3 is a Data Encryption Standard block. 
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2.2 Bottom-Up Approach for the digital design flow 

2.2.1 Full Custom Standard Cell 

2.2.1.1 Introduction to CoolCubeTM 

Stacking transistors can have different process definitions. In this thesis, the CEA-LETI 3D sequential 

process called CoolCubeTM is used as reference process. The technical details of this process are depicted 

in Chapter One. The CoolCubeTM has been developed with 3D VLSI logic circuits in mind. A presence of an 

intermediate back-end level (iBEOL) is necessary to increase the routability for dense circuits. The great 

advantage of this process is the high-alignment between tiers enabling 3D contact vias between tiers 

(3DCO) with a small size and pitch, as illustrated in Figure 2.2.1.1 for 14nm BEOL rules. The design 

environment PDK for 3DVLSI CoolCubeTM is described in Appendix A. 

 

Figure 2.2.1.1 3DVLSI design rules for 14nm integration. On the left, top view from M1 showing the 3DCO 
dimensions. On the right, concept view of a 3DCO connecting bottom BEOL to the top BEOL. 

2.2.1.2 3D Tier and iBEOL 

A 3D integration can have many layers of stacked transistor as the designer needs, as the process should 

be able to build low temperature (LT) transistors over LT transistors. Each layer of transistors is called tier. 

In the studied 3D integration, each tier has an intermediate back-end. The number of iBEOL layers in each 

tier is an input from designer, and mainly represents the tradeoff between routability and the cost. An 

example is shown in Figure 2.2.1.2, displaying an integration with two tiers, one metal layer routing for 

each tier and a 3DCO connecting the tiers. 

 

Figure 2.2.1.2 3DVLSI displaying two tiers, iBEOL and a 3DCO. [Ayres 2016] 
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2.2.1.3 Transistor over Transistor Integration 

The transistor over transistor integration targets the use of unipolar transistors in the same tier. This 

means that one tier only has PMOS transistors, while other tier has the NMOS transistors. This opens up a 

window of possibilities in the process development. In advanced technologies, the PMOS process may 

differ from the NMOS process, such as in 14nm FDSOI use of SiGe only in the PMOS channel in order to 

increase the mobility due the increased mechanical stress [Weber 2014]. Thus, one tier can have an 

optimal wafer substrate in order to explore the strain for unipolar transistors.  

In a design perspective, high density local connections grants fine granularity as well as the possibility of 

stacking transistors over transistors. However due to density penalty caused by the excess of 

interconnections [Panth 2014], this work is focused on a CMOS over CMOS approach. 

 

 

Figure 2.2.1.4 3DVLSI Ring Oscillator partitioned into two tiers using the transistor over transistor 
integration. Each inverter gate requires one 3D contact, illustrated in green.  

 

 

Figure 2.2.1.3 Transistor over Transistor integration. The tier is unipolar (only one type of MOSFET) and 
the 3D contact is used to form the CMOS logic gate. [Ayres 2015]  
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A ring oscillator layout was developed using the transistor over transistor configuration in the 3D 

sequential design environment as illustrated in Figure 2.2.1.4. The top tier has only PMOS transistors and 

bottom tier only NMOS transistors. Each inverter uses one 3DCO to create the CMOS integration. Due to 

the minimum clearance of the 3DCO from the active region, the 3DCOs (green squares) are positioned 

away from the gate active region, confirming the density penalty in this type of integration for logic 

circuits. Another problem that this integration may face is the congestion caused by the contacts from the 

bottom transistor to the top transistor. The Figure 2.2.1.5 shows the via wall created by the excess of 3D 

contacts in one direction, possibly causing congestion problems during the interconnection routing. 

 

2.2.1.4 CMOS over CMOS Integration 

The CMOS over CMOS integration, also known as 3D gate-level integration, uses both PMOS and NMOS 

transistors in the tiers. This integration uses less 3DCO compared to transistor over transistor, because the 

CMOS gates can be formed directly into a given tier, similar to the planar integration. Two inverter gates 

connect through a 3DCO is illustrated in Figure 2.2.1.6. A huge advantage of this integration style, is that 

planar standard cell can be imported straightforwardly to the 3D environment, with minor modifications. 

The reuse of 2D cells is a cost-effective approach for industrials. 

 

 

Figure 2.2.1.5 Routing obstruction caused by excess of 3DCO vias in yellow. A connection from the 
bottom transistor up to M2 in top tier needs vias in all layers between M2 and bottom transistor contact.  
[Billoint 2015] 

 

 

Figure 2.2.1.6 CMOS over CMOS integration. An example of two inverter gates in different tiers 
connected by a 3DCO.  
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Another full custom ring oscillator was done, at this time using the CMOS over CMOS integration as 

illustrated in Figure 2.2.1.7. The inverters are positioned as in planar circuits for the same tier. The bottom 

inverters are not seen in this figure, because they are placed under the top inverters (bottom tier). The 

ring oscillator is partitioned into two tiers, and only two 3DCOs are needed to transpose the ring signal 

between the tiers, in order to reduce the 3DCO overhead.   

 

 

Figure 2.2.1.7 3DVLSI Ring Oscillator layout partitioned into two tiers. The layout uses the CMOS over 
CMOS style. Only two 3DCO are required to connect the ring structure signal path. 

This full custom layout gives a clear view of the positioning of the 3DCOs. The placement of 3DCOs between 

two inverters, inside the P and N active zone is possible with very aggressive layout design rules. This 

translates in a tight spacing between 3DCO and poly-gates or active regions. Moreover, only one 3DCO 

may be placed in this region due to limited area, being not able to meet double vias standard for reliable 

designs. Another problem due the rule aggressiveness is the occurrence of short circuits. In order to take 

into account these problems, the proposed optimal 3DCO placement is advised in Figure 2.2.1.8. The 

3DCOs are grouped in the size of a standard cell and placed next to the active regions. In this case, the 

continuous active region is kept, and the strain optimization remains unchanged. This guideline also 

enables a specific and better control of the 3DCO standard cell, allowing high-density DRC rules, as 

usually done for SRAM cells. For other technologies such as FinFET or Nanowires transistors, this guideline 

may be the only possible solution. In the context of back-end EDA tools, it is easy to take advantage of 

such an approach because the 3DCO placement directives are similar to those of the filler cells. The 3DCO 

standard cells have just to be placed before the filler cells. The number of 3D monolithic vias inside a 

standard cell is defined by the 3DCO pitch. In the presented example, for 14nm design rules at least eight 

3DCO can be placed inside the minimal size standard cell, evidencing the high 3D contact density enabled 

by the sequential integration. The analysis of the suggested integration area gain is done in Figure 2.2.1.9. 

The worst case 3DCO placement is considered, where only one inter-via per standard filler cell. The area 

gain is calculated considering FO1 and FO4 inverter standard cell area. Considering the worst-case 

scenario, the 3DVLSI can double the circuit density (50% area gain) for approximately 100 FO1 gates per 

3DCO via, or 25 FO4 gates per 3DCO vias.  
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Figure 2.2.1.8 Guidelines on 3DCO placement for 3DVLSI circuits. The 3DCO cannot go through the active 
region (green). The proposed method treats the 3D interconnections as standard cells. 

This illustrates how easily the 3DVLSI CMOS over CMOS can gain in density, even considering the additional 

overhead due to inter-tie vias. 
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Figure 2.2.1.9 Theoretical area gain using CMOS over CMOS integration regarding the number of gates 
per 3DCO. 

A Self-Timed Ring layout have been done with 64 C-elements gates for a planar integration and 3DVLSI, in 

which 32 gates are in top and bottom tier. The final layout including the isolation gates has about 1200 

transistors. The area comparison between planar and 3D STR is illustrated in Figure 2.2.1.10. For bigger 

circuits the 3D area overhead becomes negligible, and the x0.5 area scaling is possible using 3DVLSI. 

 

 

Figure 2.2.1.10 STR64 area comparison between planar and 3D sequential integration. 

 

2.2.1.5 Conclusion 

In this section, the CoolCubeTM bottom-up approach layout was developed to assess the integration 

granularity opportunities as well the area gain proportioned by 3DVLSI. The transistor over transistor 

integration is shown as a possibility, however due to high 3D area overhead the CMOS over CMOS 

integration is favored, enabling flawlessly 0.5x area increase for circuits using 25 gates per 3DCO in 14nm 

design rules. 
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2.3 3D Design Environment 

2.3.1 MOSFET Performance and SPICE Models 
The SPICE model used in the simulation is LETI-UTSOI2 model [Poiroux 2013, 2015a, 2015b]. All model-

cards included in our PDK are based on the performance of the 14nm FDSOI CMOS technology from  

STMicroelectronics [Weber 2014]. As consequence, the 3DVLSI sequential transistor SPICE models are 

equivalent on the planar ones. The parity hypothesis has been taken, meaning that the bottom tier 

transistor matches the top tier transistor performance; and both are similar to the planar model. The 

state of the art process confirms that this hypothesis is valid, and the low temperature process matches 

the standard planar process [Batude 2015].  

2.3.2 Simulation Results 
Figure 2.3.2.1a illustrates the model calibration for PMOS and NMOS transistors. A SPICE simulation for 

NMOS and PMOS IDSAT is illustrated in Figure 2.3.2.1b, showing that the SPICE model is calibrate according 

the 14nm FDSOI data. The nominal supply voltage for this technology is 0.8 volts.  

 

 

Figure 2.3.2.1 On top, (a) Silicon data for 14nm planar technology [Weber 2015]. On bottom, (b) SPICE 
model simulations for 14nm using 0.7V and 0.8V as supply voltage.  
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2.3.3 Parasitic Elements Extractions 
 

 

Figure 2.3.3.1 On the left, (a) Back-end cross section, showing capacitances between metal lines. [Huynh-
Bao 2017]. On the right, (b) DRM showing upper level tier, with MI4 iBEOL level, top tier FEOL and BEOL. 

The layout parasitic extraction (PEX) is the calculation of parasitic effects from device interconnection, 

such as the resistance, capacitance as illustrated in Figure 2.3.3.1a. Those elements affect the circuit 

timing performance, signal integrity and power consumption. In this chapter the interconnections are 

assumed to be formed from Cu and low-k dielectrics for BEOL and iBEOL. The 3DCO vias are made of 

tungsten due to the high aspect ratio. The PEX configuration is based in the technology description, as 

show in Figure 2.3.3.1b. In Chapter Three, the PEX will be modified assuming different iBEOL 

characteristics. 

2.3.4 Conclusion 
 

The simulation results obtained in this thesis are done using a PDK of a 14nm FDSOI technology including 

process assumptions for CoolCubeTM integration. Indeed, as the 3D sequential process has not achieved a 

production maturity, the SPICE models are based on planar 14nm FDSOI CMOS technology. Some 

publications already demonstrate the top LT process matching the standard planar performance. If a 

different BEOL process solution is used, this will impact the circuit performance and will be discussed in 

the section 2.5.  In Chapter Three, advanced nodes preliminary compact models were used, such as FinFETs 

and Nanowires transistor architectures. 
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2.4 Electrical Design Characterization 

2.4.1 Full Custom 
Full custom circuits were done in the 3D sequential PDK, complying with DRM. The benchmarked circuits 

are Ring Oscillators, Self-Timed Rings and Full Adders. Those circuits are simple enough to be drawn 

without EDA synthesis tools, nevertheless they are a representative benchmark for digital design. 

2.4.1.1 Ring Oscillators 

The inverter gate is the basic brick of the ring oscillator. The inverter is composed by two transistors, a 

NMOS and a PMOS connected in series as illustrated in Figure 2.4.1.1a. 

 

 

Figure 2.4.1.1 On the left, (a) an inverter gate using a NMOS and PMOS with the bulk terminal connected. 
On the right, (b) the inverter gate represented with some parasitic capacitances, and the current flow 
for different input voltages.  

The intended operation of this gate is as its name suggests: to invert the input signal, operating in a digital 

form. In other words, the expected input is always between the supply voltage range, with the lowest 

voltage, usually the ground or zero volt representing the logical state 0, while the highest voltage, usually 

the circuit nominal voltage VDD representing the logical state 1. The inverter gate operation is represented 

in Figure 2.4.1.1b. The input signal drives the NMOS and PMOS gates which are connected in parallel. 

This means that one transistor is opened and while the other one is conducting. For example, if the inverter 

input voltage VIN is set at the logical state 1, the PMOS will not be conducting. The NMOS will be in 

saturation regime, effectively connecting the output to the ground as shown in the blue current path. 

Thus, the output will be at the logical state 0, the inverted state of the logical input (at 1). On the other 

hand, if the input voltage is at the logical state 0, the PMOS will conduct, as illustrated by the red current 

path, and the NMOS will be opened. This provides the output connection to the supply voltage, granting 

the logical state 1 at the output. The transition speed between the logical states depends on the MOSFET 

subthreshold swing, the effective current drive ID, and the parasitic elements. For example, the 

capacitances will limit the maximal voltage variation over the time for a given current, and the resistances 

will limit the effective current, both slowing down the gate. 
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Figure 2.4.1.2 Typical Ring Oscillator schematic, in which triangles represents inverters. 

The ring oscillator is a circuit composed by an odd number of inverters connected in series forming a ring 

chain as illustrated in the schematic of Figure 2.4.1.2. This circuit is in constant oscillation because the odd 

number of inverters. The inverter at a given position will start with a logic state 0. After this pulse 

propagation through the chain, it will arrive at the same node inverted, because of the odd number of 

inverters. The oscillation frequency depends on the number of inverters in the chain, as each inverter 

increases the ring delay. This circuit is very useful to evaluate technology processes, because it is simple 

to design and check the logic functionality and performance. The RO can be further adjusted to a given 

fan-out configuration as illustrated in Figure 2.4.1.3. The fan-out is a measure to indicate the gate number 

able to be connected to the output of a given gate. For example, a fan-out three inverter, has to drive 

three inverters connected to its output. The RO are usually done in FO3 or FO4 configuration to become 

closer to real circuit implementations, where the fan-out optimization is a well-known problem [Singh 

1990]. 

 

 

Figure 2.4.1.3 Ring Oscillator schematic piece representing a fan-out four configuration. On the right, a 
layout for a RO with increased fan-out. The main gates are in the center, while additional dummy gates 
are in the extremities.   
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The planar ring oscillator was simulated to assess its properties and as a form of design environment sanity 

check. Several RO were simulated in different conditions, such as the FO1 or FO3 and different number of 

inverters in the chain as illustrated in Figure 2.4.1.4. The output frequency formula is shown as the function 

of the inverter delay, which is composed by the raising and failing delay. The FO3 additional parasitic 

capacitances slow down the RO, i.e. it increases the delay. In Chapter Three, the different back-end 

solutions for the 3D sequential integration will be discussed (other than Cu Metals and Low-k dielectrics), 

and their contribution to the RO performances will be evaluated. 

 

 

Figure 2.4.1.4 Ring Oscillator output frequency for different number of inverters in a chain. Blue curve 
represents the FO1 and green curve represents FO3. [Ayres 2016] 
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Figure 2.4.1.5 Ring Oscillator output frequency versus the total power comparing two different 
integration approaches: CMOS over CMOS and Transistor over Transistor. 

The ring oscillators are very useful to do a first order technology benchmark, as it has a simple layout 

and operate the inverter gates at a high switching frequency. For example, a figure of merit regarding 

the output frequency versus the power consumed by the circuit can be used to determine the best design 

approach. The power exponentially increases with the frequency, because the transistor current drivability 

exponentially grows with the gate voltage, raising the power losses in the parasitic impedances. The energy 

stored in parasitic capacitances also increase due to higher supply voltage. Higher frequency also impacts 

the power due to the increased number of cycles for a given period. Therefore, this leads to an exponential 

power dependency over the circuit frequency. The circuit total power is the sum of the leakage power 

(power consumed during no switching) plus the dynamic power (power under switching operation), and 

are described respectively by (2.1) and (2.2). 

𝑃𝑆𝑇𝐴𝑇𝐼𝐶 = 𝑉𝐷𝐷𝐼𝐿𝐸𝐴𝐾  (2.1) 

𝑃𝐷𝑌𝑁𝐴𝑀𝐼𝐶 =
1

𝑇
∫ 𝑖𝑆𝑈𝑃𝑃𝐿𝑌(𝑡) 𝑉𝑆𝑈𝑃𝑃𝐿𝑌(𝑡) 𝑑𝑡

𝑇

0

 

(2.2) 

In Figure 2.4.1.5 the Transistor over Transistor is compared to CMOS over CMOS integration for ring 

oscillators using the same number of stages and the same transistor characteristics. Interestingly, despite 

of a huge layout difference, the two integrations achieve the same result with a marginal difference of 3% 

in higher frequencies (which are achieved by increasing the VSUPPLY). The result proves the quality of 3DCOs, 

even using one 3DCO for each inverter gate in the transistor over transistor case. The small parasitic 

elements from such vias are enough to match the CMOS over CMOS integration.  
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Figure 2.4.1.6 Ring Oscillator benchmark comparing 14nm planar to 14nm 3DVLSI CMOS over CMOS, for 
the dynamic power versus the ring oscillator output frequency.  

The planar RO was also compared to a 3DVLSI CMOS over CMOS ring, using only two 3DCO in order to 

reduce the area overhead, as depicted on the top of Figure 2.4.1.6. Both RO are simulated after a layout 

parasitic elements extraction. The 3DVLSI matches the planar performance. From the frequency versus 

dynamic power figure of merit, two important insights are observed. The 3DCO does not degrade the 

signal performance, or does not add a significant RC delay in the circuit. The second insight is about the 

3D environment: as the layout was designed with CMOS gates aligned in top and bottom, the capacitance 

between tiers, and the coupling among then is negligible. This outcome holds true for top transistors 

using back-gate (providing shielding from bottom top metals), and assumes iBEOL with similar 

characteristics of planar circuits. 

2.4.1.2 STR 

 

Besides the ring oscillators, another circuit based in the ring topology has been used to benchmark the 

3DVLSI environment. The Self Timed Rings (STR) are circuits that the output frequency does not only 

depend on the number of stages composing the ring, opposed to the conventional inverter ROs. Indeed, 

the output frequency of STR can also be controlled by the initial state, making it programmable. Moreover, 

if each stage is used as an output, the STR can be exploited as a multi-phase oscillator, making it useful for 

system clock generators. The STR is a ring composed by Muller C-elements, which have been implemented 
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in CMOS using the Van-Berkel topology as in Figure 2.4.1.7. With this implementation, the PMOS and 

NMOS can have the same size, except the transistors N6 and P6, which can have larger width to increase 

the element drivability. In this topology, the gate is composed by 14 transistors, including an inverter for 

one input. The diagram of the STR for L stages is shown in Figure 2.4.1.8. The STR oscillations can have 

different modes, including an evenly spaced mode. This mode is due the propagation delay of the Muller 

C-element, which behaves as follow: the smaller separation time of the two inputs causes a higher delay 

[Fesquet 2014]. This is known as the Charlie effect (this has been discovered by Charles Molnar in the 70’s), 

and it is plotted in Figure 2.4.1.9. Decreasing the separation between the input signals of the C-element, 

increases the effective delay (DEFF). 

 

 

Figure 2.4.1.7 C-Element using Van-Berkel Topology [Shams 1996] 

The evenly spaced oscillation in the STR, confirms that the Charlie Effect is operating in the circuit. This 

fact can be used to benchmark the quality of the interconnections, as the interconnections parasitic 

elements can degrade the signal, perturbing this analog effect. 
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Figure 2.4.1.8 Self Timed Ring composed by Muller C-element and its truth table. [Fesquet 2014]. 

To verify the behavior of the STR in the 3D environment, the circuit has been partitioned into two tiers as 

in Figure 2.4.1.10. All the C-elements have the same footprint, only changing the specific layers for bottom 

or top tier description. The circuit has four 3D contacts, and the top gates are positioned aligned with the 

bottom gates. This circuit has a total of 256 transistors, including the isolation gates. 

 

 

Figure 2.4.1.9 Charlie diagram representing the Charlie Effect. The x axis represents the separation time 
between two inputs of the C-element. Deff represents the C-element delay. [Fesquet 2014] 

The SPICE simulations were done using the extracted parasitic elements layout. This extraction takes into 

account all front-end and back-end parasitic elements, including the 3DCOs and the capacitance between 

the top tier and bottom tier. The initial conditions are set in the netlist, in order to an evenly-spaced 

oscillation mode in the STR. 
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Figure 2.4.1.10 3DVLSI STR schematic. A total of four 3D contacts are used to make connection between 
the tiers. 

The 3D partitioned STR oscillation frequency is illustrated in Figure 2.4.1.11. The output frequency is 

measured at three different nodes: C16, C13 and C5 defined in Figure 2.4.1.10. The first node is the 3DCO 

connection between top and bottom tier, and the other two nodes are in the middle of top and bottom 

chain respectively. The oscillation takes several periods to stabilize, as illustrated in the first frequency 

measurement. After some periods, the oscillations are measured again, and all the nodes are stabilized at 

the same frequency. The wave in all nodes exhibits the evenly-spaced mode, or in other words, the 

waveforms have a duty cycle of 50% and the phase distances between the outputs are equally-spaced. It 

is important to notice that the evenly spaced-mode is not obtained, if there is a performance mismatch 

between the connected C-elements on the same tier and the connected ones through a 3DCO. This leads 

to a burst oscillation mode. In this case, the duty cycle is no longer 50% and the transitions on the outputs 

are no more evenly-spaced! This result confirms the capability of the 3D environment and 3DCO to operate 

at high frequency, above 10GHz, and more importantly to preserve the Charlie effect. This gives us a really 

good indication that 3DCO connections do not strongly affect the performances. Indeed, the Charlie effect 

is sensitive to a degradation of the routing quality.  
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Figure 2.4.1.11 3DVLSI STR output frequency according the C-Element position in the chain.  

2.4.1.3 Full Adders 

A full adder was designed as a full custom circuit in order to check the potential gains in the 3DVLSI 

environment. The full adder can sum up two one-bit inputs and consider carry in and carry out signals. 

One typical implementation of a full adder schematic using combinational logic was used as illustrated in 

Figure 2.4.1.12. The circuit uses five standard logic gates, such as: ANDs, excusive ORs (XOR), and OR ports. 

 

 

Figure 2.4.1.12 Full adder using combinational logic with five standard gates. The truth table with the 3 
inputs and 2 outputs is presented on the left.  
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The layout was implemented in the virtuoso environment following the 14nm design rules, and considering 

the isolation gates, this circuit has about 76 transistors. The 2D layout was done focusing the best 

performance and shortest wirelength possible. The final 2D placement is shown in Figure 2.4.1.13a. In this 

planar implementation, the longest wirelength connects the gates #3 and #5 measuring 1.7µm 

(approximately 19 times the CPP). The carry out signal delay is directly impacted by the parasitic elements 

of this connection. To reduce this wirelength, a 3DVLSI implementation is proposed as in Figure 2.4.1.13b. 

The OR gate #5 is changed to the top tier, and the previous 1.7µm interconnection becomes a 3DCO. The 

total area is unbalanced between tiers, but this can provide the best performance, as the short connections 

stay on the same tier. 

 

 

Figure 2.4.1.13 On the left, (a) The planar full custom implementation of the full adder. The maximum 
wirelength is this setup is 1.7µm. On the right, (b) a 3DVLSI implementation using two-tier. The limiting 
wirelength of previous case is eliminated, by placing the OR gate in the top level (#5 as dashed line). 

A test case was designed to evaluate the outcome of the shorter interconnections. Note that the optimized 

wirelength only affects the carry out signal, as the rest of the circuit stays routed like the planar case. The 

test setup is shown in Figure 2.4.1.14a; the inputs B and CIN are changed to high, causing the carry out 

transition from low to high. The carry out transition time is measured, along the full adder average power 

during the period. The results for planar and 3DVLSI are illustrated in Figure 2.4.1.14b. The reduced 

interconnection makes the carry out signal transition low to high 2% faster than the planar circuit. The 

circuit power consumption is also reduced by 2% compared to the planar case, due to lower parasitic 

elements. In this fashion, the optimization of very small blocks had been emphasized, as in circuits like two 

input full adder. The 3D sequential integration partitioning and reduction of wirelength can bring marginal 

gains to very small logic blocks, considering this design close to the transistor level. 
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Figure 2.4.1.14  On the left, (a) The transition of the B and CIN inputs on the Full Adder; this test setup 
was done in planar and 3DVLSI layouts. On the right, (b) The comparison between planar and 3DVLSI 
considering the carry out propagation time and the average power consumed by the Full Adder. 

 

2.4.2 Conclusion 
In this section, the bottom-up design was analyzed to provide insights and guidelines for EDA 

development. The bottom-up means the strategy to start designing the layout with transistor basic blocks, 

and assess the performance by doing full custom-layouts. The Ring Oscillators (RO) provides an excellent 

first order analysis, as the fan-out capacitances plays with the dynamic switching operation. Using ROs full 

custom layouts in 3D environment the performance is assessed comparing transistor over transistor 

approach to CMOS over CMOS. The result shows a marginal advantage for CMOS over CMOS. This is the 

first indication that the 3DCO does not degrade the performances, as the transistor over transistor 

integration uses one 3DCO per inverter gate. Besides the integration flavor, a planar RO was also compared 

to a 3DVLSI CMOS over CMOS “folded” RO. The 3DVLSI matches the planar performance, proving that the 

3D environment does not degrade the circuit performance, even considering coupling between top and 

bottom tier. The result was strengthened by benchmarking 3DVLSI STRs, which showed a good 

environment performance by operating in the evenly-spaced mode, meaning that the analog Charlie effect 

was retained in the environment. Finally, a Full Adder optimization in 3DVLSI was done, by cutting the 

longest wire present in a full custom planar implementation. By doing so, a marginal performance and 

power gains were observed. This outcome shows that optimizations close to the standard cell 

implementation are limited, and large circuits with long critical paths should be the target of 3DVLSI in 

order to extract more performance, and reduce power and area; effectively increasing the PPA. The 

implementation suggests an optimal 3DCO count per number of gates to grant x0.5 area increase, and a 

3DCO placement following standard cells directives.  
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2.5 Chapter Conclusion 
In this chapter, the 3DVLSI environment design was explored in order to provide guidelines to process 

development and the construction of specific EDA tools for 3D sequential integration, such as partitioning. 

The work has been done using SPICE simulations and layouts inside a 3D monolithic PDK based on the 

14nm technology node. Therefore, the circuits are done in a full custom fashion, limited to simple circuits 

but expressively useful for benchmarking. 

The 3D layout drawing guidelines are: 

• 3D Contacts: The vias connecting different tiers. They are built in the sequential process and are 

aligned to previous layers, allowing the via size and pitch compared to Metal 1 vias, in other words, 

enabling very high density via placement. Although a principal limitation imposed by the Design 

Rules Manual (DRM) is the impossibility to pass through active regions. This work suggests a 

creation of standard cell like structure for 3DCO placement, which can easily be manageable by an 

automatic EDA tool. 

• Integration Granularity: The 3DCO high density allows a small integration granularity such as 

transistor over transistor. Despite of potential process gains by doing only unipolar transistors in 

a tier (either N or P), the issues in the design level firmly opposes such integration. Density loss 

and routing blockage caused by the high 3DCO via count are demonstrated. The solution used in 

the layouts of this work, is the CMOS over CMOS integration. A huge advantage of this scheme is 

the possibility to reuse the planar standard cells, scripts, parametric cells, etc. 

• 3D Design Overhead: Some partitioning tools can define and limit the number of 3DCO in the 

physical layout. By using a standard cell approach in CMOS over CMOS integration the number of 

gates per 3DCO has to be above one hundred in order to achieve 50% area gain with 2 tiers. The 

worst-case scenario is when only 3DCOs are placed inside a standard cell. 

Full custom layouts have been presented for Ring Oscillators, Self-Timed Rings and Full Adders. Those 

circuits are representative for benchmarking the logical circuits, especially the analog signal behavior in 

the 3D environment. The ROs shows an ability to work at high speed through 3DCOs without degradation, 

and no coupling between tiers. Further, the STR can oscillate in an evenly-spaced mode using the 3D 

sequential integration, proving the good quality of 3DCO connections; as the analog Charlie effect is 

preserved. Finally, the full adder modification to a full custom 3D layout shows that only marginal gains 

are possible by cutting the length of back-end interconnections in such a small scale. 
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INTRODUCTION TO CHAPTER THREE 

Previous chapter considers the back-end process identical for each tier back-end. The interconnections are 

assumed to be made of Copper and Low-k dielectric isolation. In this chapter, an evaluation of different 

process for intermediate back-end is done, in the case where standard planar BEOL is not feasible for 3D 

integration. 

The 3D circuits are benchmarked as function of the process assumptions, especially for the back-end 

process flavor. For example, if 3DVLSI wafer breaks in front-end machines, the tiers already built can 

contaminate the tools with BEOL metals, thus a different process approach is needed in order to reduce 

contamination severity. 

Finally, a comparison of 3DVLSI integration to planar scaling trend is done using advanced nodes compact 

models, such FDSOI, FinFETs and Nanowires, up to the 5nm node. As the BEOL scales, the interconnections 

have its parasitic elements increased per normalized length, decreasing the circuit performance. This 

illustrates the possible insertion of 3D sequential integration in the scaling roadmap.  
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3 Chapter Three – BEOL Process Influence on 
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3.1 Guidelines on 3DVLSI BEOL process development 

3.1.1 IBEOL Limitations 
The process for a monolithic 3D integration has a limited temperature to preserve the FET already built 

[Fenouillet-Beranger 2014]. This leads to difficulties of using standard ultra low-k (ULK) dielectrics on the 

intermediate BEOL; in a worst-case scenario SiO2 with a permittivity of 3.9 could be used as an 

intermediate dielectric. Also, due to wafer break risk, the use of copper can be an issue for contamination 

reasons. A solution can be the use of tungsten for the filling lines as it has already been integrated in the 

FEOL of several products. 

3.1.1.1 W and Cu as metal 

Figure 3.1.1.1 shows one line capacitance versus resistance measured on a specific multi-

fingers/serpentine test structure for Tungsten (W) interconnections before and after annealing with the 

Ti/TiN barrier in Ultra Low-K dielectric (ULK). This figure confirms a factor 6 times higher resistance value 

for the W as compared to the copper one and the W/ULK stability up to 550°C during 5 hours.  In addition, 

dies are functional at 600°C during 2 hours but the measurements dispersion increases as the temperature 

increases beyond 550°C [Fenouillet-Beranger 2017].  

3.1.1.2 Dielectric Stability 

The ultra low-k materials are currently under research for a low temperature process. Also from 

(Fenouillet-Beranger et al. 2017), the ULK material is shown as stable for a thermal budget of 500ºC up to 

two hours, and no defects were found. However, the evaluation of extrapolated lifetime is still necessary 

to determine the dielectric endurance over the years. 

 

Figure 3.1.1.1 Lateral capacitance versus resistance for line 1 W/ULK interconnection with Ti/TiN barrier 
before and after annealing (line width and space=45nm). No anneal Cu line is plotted as reference. 
[Fenouillet-Beranger 2017] 
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3.1.2 IBEOL flavors and Ring Oscillators 
 

3.1.2.1 Parasitic Elements Extractions 

 

 

Figure 3.1.2.1 3D sequential stack with 2 IBEOL metals, which is the process setup for 3DVLSI parasitic 
extraction. [Ayres 2015]. 

Ring oscillators in FO1 and FO4 configuration are simulated after the PEX, using the 3D process stack as in 

Figure 2.3.3.1. The evaluation methodology consists in changing the characteristics of intermediate BEOL 

from copper metals and low-k dielectric to tungsten and SiO2 with 3.9 permittivity as illustrated in Figure 

3.1.2.2, then the performance impact due to limited thermal budget process is accounted. The simulation 

focuses in the RO frequency output, which is directly affected by the interconnections. Higher resistance 

or capacitances in the interconnections will degrade the signal timing for the same drive current. The signal 

transition tPHL or tPLH have a higher delay R.C product, thus a lower frequency is expected in the ring 

 

Figure 3.1.1.2 Summary of the different interconnections stability behavior versus thermal budgets 
regarding R, C and reliability performances. 
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oscillator. In this section, the goal is to provide guidelines to process development, by evaluating the 

outcome of different BEOL processes in the final circuit performance. Finally, those guidelines can be used 

by the integration development team to evaluate the tradeoff between the performance impact and the 

process manufacturing constraints. 

 

 

Figure 3.1.2.2 Back-end flavors setup for parasitic extractions. The metals can have their resistivity 
changed as well the dielectric have several permittivity.  

 

3.1.2.2 Sources of performance impact 

Employing iBEOL cases W/SiO2 or Cu/ULK depict the worst/best case scenario. By measuring the 3D CMOS 

gate-level ring oscillator FO4 output frequency, the worst case has a 2% degradation compared to the best 

case for FO1 and 4% for FO4. Another strategy was employed in order to evaluate the sources of this 

degradation. In further simulations, only a specific iBEOL element was modified from the best case, for 

instance some simulations have only intermediate vias in tungsten, while some simulations only employ 

SiO2 dielectric. The sum of the performance impact from each element reaches the total impact, 

reinforcing the accuracy of the evaluation. Those simulations show that the main constraining factor is the 

dielectric permittivity, due to the aggressive metal spacing. The via contact resistance has also a minor 

influence in the delay as shown in Figure 3.1.2.3. Finally, no influence of the metal line resistivity is 

observed, because in the RO layout the length of intermetal lines is short (<2μm).  
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Figure 3.1.2.3 Performance impact contributing factors when using SiO2 and Tungsten. The SiO2 
dielectric is the main limiting factor in intermediate BEOL. No impact from tungsten in intermediary 
metal lines with this setup. [Ayres 2015] 

 

 

Figure 3.1.2.4 Total resistance from the highest top metal to the bottom transistor contact. The 
resistance increases with the total number of metal layers. The iBEOL is assumed as tungsten and top 
BEOL is made of copper.   

The 3DCO can have a huge role in the circuit performance, especially for the power delivery network 

(PDN). A study was performed using the 14nm design rules, and considering tungsten as metal for iBEOL 

and copper for top BEOL. Increasing the number of metal layers in the back-end augments the resistance 

from the highest top metal to the bottom transistor contact, mainly due to additional vias between the 

metals. In Figure 3.1.2.4 the total resistance is plotted as a function of the number of top and bottom back-

end layers; from one layer at minimum up to four layers in each tier. The number above the resistance is 



Chapter Three 

 

 82 

in the format T/B, where T is the number of top metal layers while B is the number of bottom metal layers. 

The resistance increases by 20Ω per additional copper metal in top tier, and the additional bottom metal 

layer increases the resistance by 68Ω. In this study, the vias were considered at minimum size possible, 

thus the resistance is quite high. Also, in upper layers above Metal 4, the density is usually lower than 

previous layers, and the resistance penalty is lower. The main message and guideline from this study, is 

that by increasing the iBEOL number of layers it degrades the vertical path for device biasing. A practical 

example is illustrated in Figure 3.1.2.5, showing the supply voltage close to the transistor in a ring oscillator 

under operation. As the current flows into the circuit, the parasitic resistances cause a voltage drop seen 

by the transistor. This effect decreases the circuit performance, as the gates operate lower than the 

nominal voltage. In Figure 3.1.2.5a, the supply voltage is measured close to the bottom transistor contact. 

In this case, the minimal via size is used, including the 3DCO with tungsten metal. This results in a maximal 

voltage drop of 10mV, or 1% considering the supply voltage at 1V. Another layout setup was done, 

improving the PDN vias resistance by enlarging their size. The result is shown in Figure 3.1.2.5b, where the 

maximum voltage drop is in the order of 1mV or 0.1%, thus the ring oscillator can operate at the nominal 

voltage.  

 

 

Figure 3.1.2.5 Ring oscillator supply voltage measured in two different points (yellow and blue) close to 
the transistor contact. In the top, (a) a layout using minimum size tungsten vias for PDN. In the bottom, 
(b) the same circuit using relaxed density PDN vias. A voltage drop of 10mV is seen in the first case, while 
less than 1mV is observed in the second case.  
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3.1.2.3 Wirelength Study 

The vast contribution in performance increases from 3D integration comes from the shorter wirelength 

paths [Billoint 2015] and, in this fashion, 3D integration permits to reduce critical path length. The wire 

length in 2D circuits is studied employing a planar ring oscillator FO4 split into two parts with extended 

wire length as in Figure 3.1.2.6. 

 

 

Figure 3.1.2.6  Planar ring oscillator using increased wire length. Two connections have longer 
interconnections, then the total additional wirelength is the sum from those wires.  

The planar layout setup was incremented with several metal lines in parallel to the signal path to simulate 

a real circuit capacitance. The impact of tungsten interconnections is compared to copper in Figure 3.1.2.7. 

The RO frequency at 14nm design rules have been measured and reveals no major change of propagation 

delay with respect to the two types of interconnections for wirelength lower than 5µm. Increasing the 

wirelength, the copper back-end performs better, due to reduced parasitic resistance compared to 

tungsten. However, for a 39 µm interconnection, the output frequency is degraded by 20% for copper, 

while tungsten loses the same amount of performance for 35µm interconnections. Therefore, another test 

case with ROs was crafted to show the potential 3DVLSI gain, by cutting long interconnections.   

 

 

Figure 3.1.2.7 Output frequency for RO using different back-end metals for increased interconnection 
length.  
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The 3D ring oscillator FO4 was made in the CMOS gate-level integration due to better routability compared 

to transistor over transistor. The 3DVLSI RO is finally compared to the planar equivalent as in Figure 3.1.2.8. 

The 3D circuit is evaluated at fixed wirelength, while the planar wirelength is changing. This approximation 

can be done because for each planar wire cut the routing tool has to minimize the 3D path, especially if it 

is taken into consideration that the bottom tier should be used for local routing only. The critical planar 

wirelength WLIBEOL (purple vertical dashed line) is defined as the length upon which a gain in performance 

is obtained by cutting the planar wire and stacking in a 3D configuration. For an intermediate BEOL using 

a standard process, with low-k and copper, the critical wirelength named WLIBEOLstd (green vertical dashed 

line) is zero, meaning that 3D performance matches planar, and it allows the maximum number of planar 

tracks to be cut. At this point, the frequency is increased for each track cut. In fact, the circuit can be 

folded in any part without any loss, which is especially interesting for memory applications. In the worst-

case scenario, the critical wirelength WLIBEOLworstcase increases. i.e. This scenario represents a technological 

solution not found in order to obtain a lower k dielectric than 3.9 and no other metal with resistivity lower 

than W reducing the contamination risks. In order to match the planar performance in this configuration, 

3D connection should replace a 5μm planar track. This means that shorter metals tracks should stay in 

planar integration if the designer is only looking for performance, although it is possible to pay a small 

penalty in frequency to gain density. On the other hand, when the critical WLBEOL is achieved, the 3D 

integration gains in both density and performance. The frequency performance enhancement depends on 

the length of the cut wires. For a 40μm planar track, the frequency gain is 21%. Thus, the opportunity for 

performance gain with 3DVLSI will be higher for complex circuits containing long wire length distribution. 

 

 

Figure 3.1.2.8  Planar ring oscillator FO4 increased WL compared to 3D ring oscillator with fixed length. 
The horizontal dotted line represents a worst-case process in 3D intermediate BEOL. The process 
influences on planar WL to 3D tradeoff is shown in the vertical dashed line. [Ayres 2015] 
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3.2 BEOL Limitations in Advanced Nodes 
The 3DVLSI can increase the circuit performance by optimizing the BEOL interconnections RC parasitic 

elements using the vertical direction. In this section, the planar BEOL scaling is discussed in order to 

provide insights about physical limits, and consequently a good opportunity window to 3D sequential 

integration for digital circuits.   

3.2.1 Scaling Expectations 
Moore’s scaling is roughly reducing transistor dimension by two each eighteen month. To keep the trend 

alive, new transistors architectures were introduced in the 28nm/22nm nodes; such as FD-SOI and FinFET 

[Jan 2012],[Boeuf 2008]. Those new transistors were designed to overcome limitations of the traditional 

bulk devices, which suffers, for example, of leakage when the gate length is scaled too aggressively. The 

FD-SOI and FinFET have excellent performance characteristics, allowing a reduction in the supply voltage, 

decreasing the power consumption and were adopted by the industry as solution for scaling [Skotnicki 

2008]. In 5nm node, the stacked gate all around is expected to be introduced, increasing further the 

electrostatic control by the gate. The back-end of the line (BEOL) has to follow the transistor shrink, or in 

other words, the interconnections have to be scaled in the same ratio of the transistor. The BEOL scaling 

tendency is shown in Table 3-I as minimum metal pitch. The metal pitch is composed by the metal line 

width plus the dielectric width separating two conductors. In this chapter, we simulate the BEOL for future 

nodes using a common setup layout, and then by parasitic extractions, we evaluate the BEOL impact in 

performance via SPICE simulations. 

TABLE 3-I 
SCALING IN ADVANCED NODES 

Node CPP [nm] Metal 

Pitch [nm] 

Supply 

Voltage 

[V] 

14 90 64 0.8 

10 64 48 0.7 

7 46 36 0.64 

5 32 24 0.6 
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3.2.2 Wirelength Delay in Advanced nodes 
The BEOL shrinking augments the connection resistance and capacitance for a given length, considering 

the same BEOL integration for different nodes. This problem has a limited impact in the circuit 

performance, as the scaling reduces the CPP. This translates in a short interconnection length; thus 

compensating, or even increasing the interconnection performance despite the increased normalized 

parasitic elements per length. A layout has been designed in a PDK as follows in Figure 3.2.2.1, in order to 

simulate interconnection parasitic elements. The back-end connects an inverter logic gate in a FO3 

configuration. Metal 0 is placed under the interconnection connected to supply source, as well M2 above 

connected to ground. Parallel to M1 signal, two lines are connected to supply and ground respectively. 

The connection length is normalized to node, as hundred times the CPP for typical interconnections and 

ten thousand the CPP for hypothetical critical cases. In real circuits, the 10KCPP connections would be 

done in less dense metal and have buffers to not degrade the delay timing. This condition is used to 

illustrate a case where the BEOL delay is dominant, and does not depend on the transistor capabilities. 

The metal width and spacing follows the Table I for each node, along with the metal thickness adjusted 

x0.7 of previous node. After the layout parasitic extraction, the circuit was simulated for several nodes and 

the back-end delay evaluated as in Figure 3.2.2.2. 

 

 

Figure 3.2.2.2 Back-end delay for at fixed current for node given voltage. On the left, (a) evaluation for 
a connection of 100 CPP in length.  On the right, (b) same illustration for ten thousand CPP in length. 

 

 

Figure 3.2.2.1 Layout for delay benchmarking. M2 in green, M1 in dark blue and M0 in cyan. The 
connection under evaluation is highlighted in reddish. 
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In this simulation, all cases use the same fixed current for the node given voltage, hence only the BEOL 

performance is evaluated. With the same BEOL composition (Cu/ULK), a trend reversal is observed in the 

5nm node. Due to BEOL geometries, the interconnection length reduction is not anymore enough to 

compensate the parasitic elements. In Figure 3.2.2.2 the same netlist with the parasitic extraction is used, 

and simulated using SPICE compact models for FD-SOI, FinFET and GAA. The total delay illustrated being 

composed by transistor delay and BEOL delay. For 100CPP the BEOL delay represents approximately 60% 

of the total delay. In Figure 3.2.2.3, the delay reduction still occurs for the transition from 7nm to 5nm 

node. This outcome is explained by the 5nm transistor better current drive, compensating the degraded 

BEOL delay described in Figure 3.2.2.2a. However, for very long wires, in the range of 10K CPP, the BEOL 

delay is dominant as seen in Figure 3.2.2.5; and for 5nm, the performance is extremely impacted, 

confirming the results from Figure 3.2.2.2b. As the BEOL performance does not scale from 7nm to 5nm, 

some solutions process solutions can be employed. An additional case for 5nm BEOL was extracted; 

employing air-gaps in the M1/M2, which are already implemented in upper metal levels of devices in mass 

production [Natarajan 2014] as illustrated in Figure 3.2.2.4. The air-gaps are implemented in the PEX files, 

simulating a relative permittivity (ɛr=2.2) for M1/M2 dielectrics. For 100CPP, the benefits are minimal, 

nonetheless a major improvement is seen for very long connections in 5nm, placing the node back in the 

general trend of Figure 3.2.2.5. 

 

 

Figure 3.2.2.3 Total delay considering previous layout setup and using SPICE compact model for each 
node. Evaluation for a connection of 100 CPP in length while.  
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Figure 3.2.2.5 Total delay considering previous layout setup and using SPICE compact model for each 
node. Evaluation for a connection of 10 thousand CPP in length while. 

The simulations consider the metal resistivity (ρ) of 4µΩ.cm for all nodes. Nonetheless, copper wire 
resistivity for minimum width increases in each node due to electron surface scattering and grain-
boundary scattering. As the dimensions scale down, the metal widths are in the order of electron mean-
free path, augmenting those effects and increasing the resistivity [Chen 1998]. The setup was redone, 
at this time, considering the resistivity increase for advanced nodes. The cooper resistivity is extracted 
from the evaluations of [Huynh-Bao 2017]. For example, the minimum metal width in 7nm node has a 
resistivity of 5.5µΩ.cm, while in the 5nm node 8µΩ.cm. The simulations are illustrated in Figure 3.2.2.6. 
 
 
 
 

 

 

Figure 3.2.2.4 Back-end showing air-gaps in the dielectric material to reduce the relative permittivity. 
[Natarajan 2014] 
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Figure 3.2.2.6 Total delay considering previous layout setup and using SPICE compact model for each 
node and adjusted metal resistivity. (a) Evaluation for a connection of 100 CPP in length while (b) for 
ten thousand CPP in length. 

 

Another possible way of BEOL scaling, is the use of 3D sequential integration. In this integration, the circuits 

are positioned in different levels, namely tiers. A 3D contact connects the bottom and top tier. In Figure 

3.2.2.7 a simulation compares the delay of 1K and 100 CPP in 5nm BEOL with air-gap to the delay of ten 

3D contacts. Here, it is shown that if technological solutions are not found to reduce the BEOL resistivity 

induced by the scaling in advanced nodes, the 3D sequential integration can be a suitable candidate, as 

expanding to the vertical direction can further reduce the BEOL delay. 

 

 

Figure 3.2.2.7   Comparison of BEOL delay in 5nm node with Air-gap to 3DCO delay. The 3D sequential 
integration 3D via (3DCO) is shown as an alternative to 2D BEOL scaling. 

 

  



Chapter Three 

 

 90 

3.3 Chapter Conclusion 
Due to some process thermal budget and to the risk management, the intermediate back-end (iBEOL), 

namely the back-end between two tiers can be done in tungsten and SiO2 rather than with the usual copper 

and low-k dielectrics. A study using ring oscillators shows the higher permittivity is crucial for the RO 

performance. Despite of tungsten being six times more resistive than copper, no impact due to metal 

routing was observed, mainly because ring oscillator interconnections are very short. However, when using 

tungsten vias, the designer should be aware of the voltage drop in bottom tier, as the higher resistivity 

requires a larger via. The supply voltage drop is very important in the PDN design, otherwise the bottom 

transistors will have a different operating point than the top transistors. 

3D integration can increase the performance by transforming long wires of planar circuits (critical paths) 

into 3DCOs reducing the net parasitic elements. A planar RO was modified in order to create such long 

wires and compare to 3D ROs. The results show a performance increase of 16% for a 30µm planar wire cut 

into 3D using 14nm design rules. This reconfirms that the performance increase opportunity comes from 

large scale digital circuits were a complexity is needed in order to present gains; otherwise for small 

wirelength cut, the possible gains will be lower and less attractive. 

Finally, a benchmark was done using advanced nodes from 14nm up to 5nm. The back-end scaling will 

become a significant problem limiting the performance, if no process change is done. The scaling reduces 

the metal and dielectrics width and thickness, increasing the parasitic resistance and capacitance. Until 

the 7nm this effect is compensated by the lower wirelength, because the gates scaling makes shorter the 

distances. However, in 5nm, a trend reversal appears because the back-end performance can limit the 

circuit performance. The 3D integration is shown as a strong contender for Moore’s planar scaling, 

especially because of these back-end limitations. 
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INTRODUCTION TO CHAPTER 4  

In this chapter, the typical variability sources for planar circuits are introduced. A discussion of the usual 

way to analyze those variations is done, such as the Monte Carlo method and the clever solution of using 

process corners. Those tools will be later reused for 3DVLSI circuits in Chapter Five. 

The main goal of this chapter is to discuss the notions of planar variability; and to illustrate how it is treated 

and managed. As the circuit performance is shifted depending on process characteristics, the intrinsic 

process variability causes a performance distribution among produced chips. In this chapter, the Monte 

Carlo method is depicted as the main tool to evaluate the circuit performance, and then the process 

corners are described as a powerful solution to design phase, granting a statistical perspective of circuit 

performance and yield. 
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4.1 Variability in VLSI Circuits 

4.1.1   Sources of Process Variability 
Process variability arises during the fabrication process of the transistor. Some transistors attributes differ 

from the desired nominal value by a certain amount of variation. For example, thickness, length, width 

and roughness are parameters that may have a deviation during the fabrication process. Process variations 

happen in all technologies as the machines and processes have a certain amount of uncertainty due to 

intrinsic stochastic behavior. These variations between transistors, which are supposed to be identical, 

are called mismatch. Beyond random variations, another source of variations is the systematic variation, 

caused by the circuit layout implementation. Effects like mechanical stress, orientation in the silicon 

crystalline structure and layout induced lithography proximity can occur due to layout design. A 

classification of sources of variability based on their root causes is illustrated in Figure 4.1.1.1. 

 
 

Figure 4.1.1.1 Transistor variability sources divided in two classes: layout dependent and process random 
variations.[Saxena 2008]  

This thesis is focused on the random variations branch. The systematic variations are highly dependent 

on the circuit layout and schematic and are usually managed during the LVS step. In order to treat the 

general case in 3DVLSI, the circuits were simulated at a schematic level, considering some pre-layout 

effects, meaning that parasitic elements of source and drain contacts, as well the M0 (Metal 0) 

interconnections are taken into account. The random variations are separated into intra-die (variations in 

the same wafer) and inter-die (variation across all produced wafers). Further, the intra-die variations can 

be classified as local variations (or Pelgrom’s variation) and across-chip variations (distance dependent 

variations). 

4.1.2   Pelgrom’s Variability – Local Variations 
Local variations affect transistors individually. The transistors on the same chip can have different 

performance compared to each other. Physically, the process variations in one dimension or in two 

dimensions are for example results from edge roughness, thickness variations, channel doping, etc. This 
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introduces the notion of fluctuation dependency on the device length (L) and width (W), or precisely area 

[Drennan 2003]. The dependency between the variance of a parameter P and the device size can be 

described as in (4.1). 

𝜎𝑃 ∝  
1

𝑊𝐿
 (4.1) 

Intuitively the variations depend on the scale of dimensions, as device size increases, the “averaging” of 

variations is reached; in the other sense, for smaller devices, the variation becomes a significant part 

compared to the desired nominal value. The effect is represented in Figure 4.1.2.1. 

 

 

Figure 4.1.2.1 Local variability dependence on size illustrated as gate length. For longer widths, the final 
length is “averaged”. [Drennan 2003] 

The relation between the device size and local variations was deduced by [Pelgrom 1989] highlighting the 

mismatch variance ΔP for a parameter pair P depending on the device size (4.2). The original work deduces 

the formula from spatial frequencies of fluctuations and by using Fourier transform on two rectangular 

devices with the same size. 

𝜎𝛥𝑃
2 =  

𝐴𝑃
2

𝑊𝐿
+ 𝐷𝑒𝑣𝑖𝑐𝑒 𝑆𝑝𝑎𝑐𝑖𝑛𝑔 (4.2) 

The parameter AP is an area proportionality constant for a given process. The second term in the original 

equation refers to the device separation, thus the work addresses the total intra-wafer variability. 

However, for accuracy reasons, the variability originating from the device spacing is treated in this thesis 

as across-chip variations. The mismatch becomes a linear function with angular coefficient AP when 

evaluating the variance only considering the first term in 4.2. Plotting the standard deviation versus the 
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inverse of the area square root: 1/√𝑊𝐿 ; the linear relation becomes evident, and this function plot is 

usually referenced as Pelgrom’s plot. Increasing the X axis direction means that the device area is lowering. 

Interestingly, the observation made by Pelgrom circa 1989 holds true for some parameters in advanced 

nodes, as for example in the standard VT deviation in 14nm node depending on the transistor size. The 

extracted AVT (the area proportionality constant for the VT) can be used as benchmark parameter to 

directly compare the process variation.  

 

 
Figure 4.1.2.3 Pelgrom Plot for 14nm nodes. (a) SOI-FinFET sigma VT. [Paul 2013] (b) Low-Temperature 
process for 3D monolithic 14nm FD-SOI. [Pasini 2016] 

 
Figure 4.1.2.2 Pelgrom’s work showing the linear relation between the sigma VT and the inverse of the 
device size. [Pelgrom 1989]  
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The local variations mismatch can be measured directly for the parameter or the ΔP difference in the 

parameter for close devices and later evaluating the standard deviation for the different σΔP [Kuhn 2011]. 

The relation between the σΔP and σP measurements is √2 as shown in (4.3) and (4.4) for the VT. 

𝜎𝑟𝑎𝑛𝑑𝑜𝑚−𝑜𝑛𝑒−𝑑𝑒𝑣𝑖𝑐𝑒 =  
𝜎(𝑉𝑇𝐴 − 𝑉𝑇𝐵)

√2
=

𝜎(𝛥𝑉𝑇)

√2
 (4.3) 

 

𝜎𝑟𝑎𝑛𝑑𝑜𝑚−𝑝𝑎𝑖𝑟 = 𝜎(𝑉𝑇𝐴 − 𝑉𝑇𝐵) = 𝜎(𝛥𝑉𝑇) (4.4) 

 

4.1.3   Global Variability 
This variability equally affects all transistors in a chip or a wafer. Therefore, the statistical model used in 

simulation is the same for all the devices. Considering a Gaussian model, each parameter is defined as a 

distribution N~(μGLOBAL,σGLOBAL) which is shared by all the devices in the chip. The notion of global variation 

is extended further than a single chip, all the devices that belong to a population can have its global 

variation extracted. The global variation arises from small alterations in the environment or in the 

machines during wafers production over months or years. Despite the rigid control of a clean room 

environment standard, wafers produced in different dates can have a variation. For example, if a 

machine has a component repaired, it may not have the exact same characteristics as before [Castaneda 

2012]. In addition, the global variability is often referenced as worst or best-case scenario for some circuits 

due to the immunity to the local variations. This property will be discussed in ring oscillator variance 

analysis. An important remark is that the global variation is not correlated with the local variability, e.g. 

a parameter has independent statistical models for local and global variations. 

  



Variability in VLSI  

 

 99 

4.1.4   ACV 
Across-Chip Variations, namely ACV, are variations dependent on distance separation between two 

devices. Beyond the mismatch, the concept of correlation and device variance needs to be described to 

provide the full variability figure. Usually the ACV correlations can be visualized in wafer contour plots for 

a certain parameter. The color changes with the amplitude of the parameter measured as represented in 

Figure 4.1.4.1 for SOI thickness.  

 

 

Figure 4.1.4.1 300mm SOI wafer scale Across-Chip Variation for silicon thickness. The contour plot 
evidence the correlations between close regions, as they remain in the same color. [Schwarzenbach 
2011] 

 

 
Figure 4.1.4.2  Across-Chip Variation analysis for Ring Oscillators inside a die of commercial chip. 
Comparing the reference RO #1 with others, the correlation dependence on the separation distance 
becomes noticeable. [Gattiker 2006] 

The measured variability along this 300mm wafer, is at the maximum range of ±5Å [Schwarzenbach 2011]. 

This translates in a different device performance depending on the position. Another important aspect, 

the correlations, can be seen as the colors gradient. If two devices have almost identical value for a given 

parameter, the colors will be similar. In the illustration, it is possible to observe that for a given point in 

the wafer the colors in the neighborhood tend to stay the same. This represents the correlation between 
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close devices. The length, for which the devices remains correlated, is called the correlation length. A 

clever way to evaluate the correlation lengths in actual wafer under production is reported by [Gattiker 

2006]. ROs were added to a real die circuit in different positions as shown in the right of Figure 4.1.4.2 

By measuring the RO frequency in one position and comparing it to the other RO frequencies at different 

locations allows to calculate the correlation between them as a function of distance. In the left side of the 

illustration, ROs in position #1 are compared to ROs in position #2 by plotting each position output 

frequency in an axis. The plot has a certain dispersion in both X and Y direction, and the Pearson 

correlation can be evaluated as illustrated in Figure 4.1.4.3a. In the big picture comparing all positions to 

the reference #1, it is possible to see the correlation decreasing as the distance increase, as illustrated in 

Figure 4.1.4.3b. 

  

 
Figure 4.1.4.3 (a) XY plot to illustrate correlations [Eikyu 2006] (b) Across-Chip Variation analysis for Ring 
Oscillators inside a die of commercial chip. Evaluation of correlation depending on distance and the 
correlation length. [Lu 2014] 
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4.1.5   Monte Carlo Analysis 

 
Figure 4.1.5.1 (a) Pulse variability simulation with Monte Carlo SPICE simulation. In the right, (b) Clock 
skew simulation for between two branches. [Pelgrom 1998] 

The Monte Carlo method (MC) is a powerful tool that uses random inputs limited by a specific distribution, 

giving multiple results in order to solve problems that are difficult to answer when using a deterministic 

approach. In semiconductor simulations, the method is mainly utilized to analyze a probability distribution 

figure of merit. As the transistor performance depends on many parameters, computing each parameter 

contribution to the final performance, and the cross-parameter interactions for a circuit with more than 

one device can be extremely computationally costly. The simulations of intra-die and inter-die variations 

taking into account correlations are possible thanks to the Monte Carlo method. In digital design, the 

variations affect the circuit timing, and should be precisely accounted in synchronous circuits, as the 

functionality depends on the clock signal synchronization. The MC simulations can provide for example 

the pulse width, rise and fall time as illustrated in Figure 4.1.5.1a. The method also provides the probability 

function of the desired figure of merit, as the Clock skew in Figure 4.1.5.1b. This brings a powerful guidance 

for circuit designers, as the circuit architecture needs to cover not only the expected nominal attributed 

value, but also its variation. 
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4.1.6   Process Corners Management 
In VLSI, the transistor count can surpass the 109 mark. Even though the MC method is suitable for a large 

number of input variables, the simulation time increases with the number of devices to analyze, 

becoming impractical to evaluate a circuit with billions of transistors. To overcome this limitation some 

technics can be employed, as simulation partitioning and process corners. As the multiple MC simulations 

have to be avoided, a definition of extremes from MC simulations can be used and then replicated across 

the entire circuit. For an example, an inverter logic gate can be simulated using the MC and have its best 

and worst delay extracted. Then for each inverter in the circuit, the results of the worst and best case can 

be utilized. As the corners cover almost or all possibilities between them, the method grants the robust 

circuit operation independently of the variability. The process corner can be applied for all MC simulations 

figure of merit, e.g. ION vs IOFF, INMOS vs IPMOS, frequency vs static power, etc. Several methodologies can be 

applied to define the corners, as for example the method in Figure 4.1.6.1. In this case, the MC simulation 

consists in two distributions giving dispersion from the mean; they are plotted for inverter delay versus 

the average energy in the switching. The corners are defined as one sigma from the VT mean value and, in 

this case, this definition is enough to englobe 95% of the points. In some scenarios, the corner fitting may 

require larger corner definition, as two or three sigma corners. The importance of fitting many points as 

possible is due the final process yield; a robust design has the ability to handle all possible variations. 

 

  

  

Figure 4.1.6.1 Statistical simulations for an inverter assuming two different process dispersions. In both 
cases, the one sigma corner edges from the mean value are enough to cover 95% of the points. [Asenov 
2010] 
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4.2 SPICE Model Statistical Evaluation 

4.2.1   Statistical Inputs 
The SPICE model has statistical parameters that are used during a MC simulation. In simulations, where 

the MC analysis is not used, the simulator uses the nominal value for those parameters. The ELDO 

simulator from Mentor Graphics used for the simulations in this thesis, support several statistical 

distributions for a given parameter e.g. normal, uniform, truncated normal, weighted, and user defined 

distributions. A normal distribution is defined by its mean value µ and by its standard deviation σ as in 

(4.5), hence it can be represented as N~(µ,σ). The probability density function of a normal distribution has 

a bell curve shape, and the standard deviation can be understood as the percentage of values within the 

sigma bands as illustrated in Figure 4.2.1.1a. The one sigma band or ±σ represents 68.27% of the total 

distribution, ±2σ and ±3σ represents 95.45% and 99.73% respectively. 

𝑓(𝑥 | µ, 𝜎) =  
1

√2𝜋𝜎22 𝑒
− 

(𝑥−µ)2

2𝜎2  (4.5) 

The parameter variations can usually be approximated by a normal distribution as illustrated in Figure 

4.2.1.1b for the measurements of the silicon thickness in a wafer. The 3σ value is around 5 Angstroms, 

meaning that 99.73% of the points measured are inside this tolerance value. 

The LETI-UTSOI2 SPICE model [Poiroux 2013] used in the simulations has the statistical parameters 

illustrated in Figure 4.2.1.2. Uncorrelated normal distributions N~(µLOCAL,σLOCAL) are applied for the local 

variations, meaning that each transistor has a different value for a given parameter. The Table 4-I show 

the variations used for the flat band voltage and channel low field mobility. The variations are expressed 

in term of the Pelgrom variability, or AP² area constant proportionality constant considering a fixed area of 

1µm². 

 

Figure 4.2.1.1 (a) Normal distribution with the sigma bands. (b) Silicon thickness distribution in a SOI 
wafer with a normal Gaussian fitted in green. [Schwarzenbach 2011] 
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Global variations are applied to the statistical parameters using normal distributions for each parameter 

N~(µGLOBAL,σGLOBAL). For the global variations, all the transistors have the same value for a given parameter 

during the same MC simulation run. The global variation values are shown in Table 4-II. The local and 

global variations are not correlated, for example the VFB parameter has a statistical part due to the global 

variations and another part caused by the local variations. Changing the value of one part should not affect 

the other one, as they are independent. During a simulation, the statistical input can be chosen as only 

global, only local or both. This important feature allows to determine the circuit sensibility to different 

variation sources. The circuit simulator usually employs global and local variations in the simulations. The 

Chapter Five discusses the effects of local and global variations in circuits, and later the need to also 

consider the across-chip variations. 

 

TABLE 4-I 

SPICE PARAMETERS FOR LOCAL VARIATIONS IN LETI-UTSOI2 MODEL 

Symbol Parameter α2  Constant 

VFB Flat Band Voltage 1.2 V/µm² 

µ0 Channel Low Field Mobility 57  %/µm² 
 

 

Figure 4.2.1.2  Monte Carlo simulation parameters that have a statistical model based on process 
analysis. Some parameters as VFB and µ0 are evaluated for local and global variations. [Ayres 2016] 
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TABLE 4-II 

SPICE PARAMETERS FOR GLOBAL VARIATIONS IN LETI-UTSOI2 MODEL 

Symbol Parameter Variation 

TSI Silicon Thickness 1,7  1010 m 

TBOX Buried Oxide 

Thickness 

3,3  1010 m 

Lg Gate Length 7,0  1010 m 

Wg Gate Width 1,0  109 m 

VFB Flat Band Voltage 5,0  103 V 

TOX Gate Oxide 

Thickness 

3,0  1011 m 

µ0 Channel Low Field 

Mobility 

1,8 % 

 



Chapter Four 
 

 

 106 

4.2.2   Parameter Sensitivity 
The circuit sensitivity to certain parameters can be evaluated to check the model trends, the accuracy, 

and check how the statistical inputs affect a determined figure of merit. A sensitivity test is done for a ring 

oscillator with 3 inverters. In Table 4-III the output frequency is checked versus the nominal frequency, 

where the parameter under sensitivity test has it value changed to µ±3σ. In this way, the RO output 

frequency represents the worst and best case with a 99.73% confidence. The result shows the flat band 

voltage higher impact in the output frequency.  

The static power figure of merit is also evaluated in the same simulation setup as shown in Table 4-IV. For 

this given analysis, the flat band voltage is shown as critical, as the worst circuit can consume 50% more 

power. The 3σ for the silicon thickness affects the static power by 13%, evidencing the need of rigorous 

management of SOI thickness during the wafer production [Schwarzenbach 2011]. Another interesting 
TABLE 4-IV 

RING OSCILLATOR STATIC POWER SENSITIVITY TO PARAMETER VARIATIONS  

Symbol Parameter 

Static power  

sensitivity to 

parameter -3σ [%]  

Static power  

sensitivity to 

parameter +3σ [%] 

TSI Silicon Thickness 86.34 112.96 

TBOX Buried Oxide 

Thickness 

94.00 105.98 

TOX Gate Oxide 

Thickness 

105.67 95.27 

VFB Flat Band Voltage 148.05 69.06 

 

TABLE 4-III 

           RING OSCILLATOR FREQUENCY SENSITIVITY TO PARAMETER VARIATIONS 

Symbol Parameter 

Frequency 

sensitivity to 

parameter -3σ [%] 

Frequency  

sensitivity to 

parameter +3σ [%] 

TSI Silicon Thickness 96.92 102.94 

TBOX Buried Oxide 

Thickness 

98.51 101.39 

TOX Gate Oxide 

Thickness 

104.73 95.42 

VFB Flat Band Voltage 105.66 94.42 
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factor from the sensitivity analysis, is the possibility to check the figure of merit non-linearity to a given 

parameter. Comparing the symmetry of the -3σ to +3σ result, one can easily determine the linearity and 

quickly inspect the model. For instance, the absolute static power changes are 48% with -3σ for VFB, but 

only 31% with 3σ. This represents the IOFF exponential dependency on VFB, and permits to conclude that 

the model tendency works as expected. A limitation of this technique is the need of simulation for each 

circuit, since different designs can have distinct parameter sensitivity.  
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4.3 Chapter Conclusion 
In this chapter, an introduction to variability handling in nanoelectronics is done, and the planar variability 

analysis tools are described. The goal of this chapter is to introduce the planar variability, whose concepts 

will be used for 3DVLSI variability analysis in the next chapter. 

The sources of variability in planar and 3DVLSI circuits were discussed, which can be divided in systematic 

and random variations. In this work, in order to consider a general case, the focus was on the random 

variations, which depends on the process parameters and not on the physical layout. 

The random variations sources can be divided in three parts:  

• Global: The variations that equally affects all devices in the die. 

• Local: The local variations independently affect the transistors and the amount of variability is tied 

to the device size. 

• Across-Chip Variations: This component depends on the device spatial separation. It also 

introduces the notion of correlation distance, where close devices are correlated, and devices 

outside the correlation range are not anymore correlated. 

In SPICE level simulations, the Monte Carlo (MC) method can be employed to verify the circuit behavior 

due to variations and provide a sensitivity analysis, to determine which process parameters are critical for 

the circuit design. Although Monte Carlo is a very powerful tool, the computational cost of the analysis is 

not feasible for VLSI, because of the large number of transistors. Therefore, the process corners are usually 

utilized in the industry. 
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INTRODUCTION TO CHAPTER 5 

The variability of transistors, the sources of variability and the methodology to handle this issue is well 

understood in planar circuits, however it must be explored in 3DVLSI.  

This chapter was developed by using circuit simulations, thus the consistency of the transistor statistical 

models is briefly checked, along the analysis of parameter sensitivity for ring oscillators.  

The main goal is to show the variability behavior in 3D partitioned circuits. The analysis of partitioned RO 

and SRAMs was done, and the outcome is not similar to planar circuits. This work discusses how, and why 

the variance for determined figures of merit are different in the 3DVLSI case.  

Later, the importance of treating correlation between devices is pictured. A unified statistical model was 

created to handle all sources of variations in a 3DVLSI environment, directly treating the correlations in 

the SPICE model. 

In such a way, by understanding how variability affects the circuit, the 3D partitioning is shown as a feature 

in order to reduce the circuit variance for a given figure of merit.  
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5.1 Global and Local Effects in Ring Oscillators and SRAMs 
This section simulates RO and SRAMs, in order to verify the statistical circuit behavior and sanity check of 

design environment. Then the planar circuit partitioning effects are discussed. The classical approach, 

using global and local variations is used. The ACV component is embedded inside the local statistical 

variance, however the correlation effects due distances is not evaluated, and will be later discussed in 

section 5.2. The circuit simulations are based on the 14nm FD-SOI, and the variability model-cards are the 

same as discussed in Chapter Four.  

5.1.1   Planar Behavior 
A ring oscillator with 33 inverters has been designed to evaluate the static power by output frequency 

figure of merit; as an usual way to evaluate process variation [Kuhn 2011]. In Figure 5.1.1.1, the simulation 

results are shown for planar RO using only local variations for the statistical parameters. The distribution 

has a low dispersion, both for frequency and static power. All the points are concentrated near the mean 

value. The local variability causes some gates to be faster than the others. However, the particular 

situation of gates connected in series results in an overall averaging, in the sense that slower gates are 

compensated by the fast ones, converging to the process average. 

 
Figure 5.1.1.1   Monte Carlo simulations for planar RO with 33 inverters: Frequency vs Static Power 
distribution for local variations [Ayres 2016] 

Using the same circuit setup, the global variations are added to the simulation, and now, the total 

dispersion in both static power and frequency becomes visible in Figure 5.1.1.2. The global fluctuations 

cause a parameter change that is shared by all the devices. In the circuits, where gates are connected in 

series, this means that all the gate characteristics are shifting in the same direction on a given MC run. 

Therefore, the whole performance will be impacted in the same sense, increasing the circuit sensitivity to 

those process variations. Another standard circuit used to benchmark the processes is the SRAM 
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Figure 5.1.1.2   Monte Carlo simulations for planar RO with 33 inverters: Frequency vs Static Power 
distribution for global plus local variations [Ayres 2016] 

memory, where density and speed are classical tradeoffs. A 6-transistor SRAM cell (6T-SRAM) illustrated 

in Figure 5.1.1.3, based on [Weber 2014] has been simulated. In addition, the variability is also an 

important aspect in SRAM cells, because it affects the timing and power performances, the stability and 

can lead to defective cells. The usual way to evaluate the SRAM robustness through the variability is the 

design metrics described in detail by [Guo 2009]. For example, the Read Static Noise Margin (RSNM) is a 

figure of merit that exhibits the cell capacity to hold information during a read operation. The bitcell 

inverter Voltage Transfer Characteristics (VTC) are plotted along each other in a way that the both inverters 

flipping points can be seen. This plot is also known as the butterfly curves. The RSNM is characterized by 

the side of the largest square confined inside the VTC of the same bitcell. Appendix B shows the Python 

code and SPICE netlist to extract the RSNM. The RSNM of an array or several MC runs can be defined by 

the lowest value, representing the worst-case scenario. Opposite to ROs, the SRAM bitcells do not have 

an averaging effect, and for a given process their characteristics are mainly defined by the transistors 

sizing (length and width). In this fashion, the local variability plays a huge role compared to the global 

variations because the random local variations individually affect each transistor forming the bitcell. 

Moreover, the small transistor size also contributes to make predominant the local variations. The global 

variations affect all transistors in the bitcell, keeping the important design ratios for RSNM almost 

unchanged. For example, the pull-down to pass transistor width ratio will remain the same, as all NMOS 

have the same value for global variations. Figure 5.1.1.4 shows the RSNM calculated for the same cell using 

a SPICE model with global and local parameter variations using one hundred MC simulations for each VTC. 

Two main consequences are observed for local variations during a bitcell simulation. It is required to 

simultaneously simulate both inverters from the bitcell and the correlation between them has to be taken 

into account. Otherwise, the VTC curves symmetry towards each other will not be accounted, and this 

important effect is discussed in section 5.2. The final consideration about the RSNM is the high sensitivity 

to the parameter variance, especially VT as reported in [Kurude 2016]. 
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The first order variability evaluation of planar ROs and SRAMs are done in this section. The next section 

will reassess the variability for those circuits partitioned using two-tiers 3DVLSI. 

 
Figure 5.1.1.3    SRAM bitcell with 6 Transistors. The VTC curves are extracted from VIVRIGHT and VIVLEFT 
nodes. Write-line is referenced as WL, Bit-line as BL and Complementary Bit-line as BLC. 

 
Figure 5.1.1.4    Monte Carlo SNM simulations for the same planar SRAM bitcell. On the left only using 
global variations. On the right, a simulation for local variations 
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5.1.2   3D Partitioning Effects 
Partitioning is peculiarity of 3D design, which means that the netlist has to be separated into tiers. The 

area ratio between tiers does not necessary needs to be equal, for example, in a two-tier integration the 

top tier can have 60% of the gates while the bottom tier only has 40%. Several RO have been created with 

different partitioning ratios. For each tier, a parameter P has a Gaussian N~(μ,σ) distribution model for 

global and local variations and considering no correlation from the top to the bottom tier (ρt,b =0). The 

simulations have been performed using the partitioning ratio given by the number of inverters on the top 

tier over the number of inverters on the bottom tier. Notice that, in this particular case of ROs, the area 

partitioning ratio between the top and bottom tiers is the same of the delay partitioning ratio because 

inverters have identical performance on top and bottom tiers [Batude 2015] and the same area. Hence in 

(5.1), the final average is not affected by partitioning. The output frequency average and standard 

deviation (σF) are observed on each partitioning ratio as seen in Figure 5.1.2.1 (each point is a MC run for 

a different partitioning ratio). 

 

Adopting pt as the weight ratio of delays in the top tier and pb = 1-pt as the delay ratio in the bottom tier 

as defined in (5.2) for two-tier integration. The total σF3D dispersion is reduced when the circuit delay is 

equally partitioned between the two tiers. An analytical model has been proposed in [Ayres 2016] which 

describes the frequency variability as a weighted sum of normal variables as in (5.1), with the total variance 

described as in (5.3). The particular example of frequency was shown; however, the general formula works 

for all global parameters variations, which are used in a partitioning in a 3D partitioned circuit. 

µ =  ∑ 𝑝𝑖  µ𝑖  
(5.1) 
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The physical interpretation of this effect is that each global tier variation is tangled to another one, 

reducing the probability of the worst/best case at the same time as illustrated in Figure 5.1.2.2. By 

contrast a planar circuit is always tied to the same global variations. The effect is maximized for 

uncorrelated processes for which one-tier statistical variance is not related to another tier. Otherwise the 

correlation ρt,b has to be taken into account in the third term in (5.3). Such data can be a guideline for 

3DVLSI process development, as the tiers process variations should stay uncorrelated. A further simulation 

was done in the same setup, however using the hypothetical case of coupled statistical models for the 

tiers. This case means that the processes are correlated and the process dispersion in top tier is exactly 

the same as in bottom tier as illustrated in Figure 5.1.2.3. The frequency distribution remains unaltered 

whatever the partitioning ratio as shown in Figure 5.1.2.4. This outcome expresses the need of 

uncorrelated processes variations in order to deliver unconnected statistical parameters.  The probability 

to obtain uncorrelated processes in the same path is harder to achieve in planar circuits, even impossible 

in advanced nodes due the nanoscales, hence a unique opportunity to exploit this effect in 3DVLSI. The 

frequency dispersion reduction can be viewed as a reduction of the design corners as shown in Figure 

5.1.2.5. 

 
Figure 5.1.2.1 Partitioning effect on RO’s output frequency. The dashed line is the mean and stay 
constant for all partitioning ratios. The variance is at minimum for 50/50 partitioning. 

∑ 𝑝𝑖 = 1 
(5.2) 

𝜎3𝐷
2 =  𝑝𝑡𝑜𝑝

2 𝜎𝑡𝑜𝑝
2 +  𝑝𝑏𝑜𝑡

2 𝜎𝑏𝑜𝑡
2 + 2𝜌𝑡𝑜𝑝,𝑏𝑜𝑡𝑝𝑡𝑜𝑝𝑝𝑏𝑜𝑡𝜎𝑡𝑜𝑝𝜎𝑏𝑜𝑡  (5.3) 
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Figure 5.1.2.2  Planar circuit parameter variation depending on the MC run. If the tiers are uncorrelated, 
the global variation hardly will cause one parameter be at the worst/best situation at the same time. 
Thus, there is an averaging effect. 

 
Figure 5.1.2.3 Planar circuit parameter variation depending on the MC run. If the both tiers are totally 
correlated, there is no averaging effect. 
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Figure 5.1.2.4   A fully correlated process compared to an uncorrelated process in a Monte Carlo Spice 
simulation. The frequency dispersion mitigation can only be achieved if the σF TOP and σF BOT are not 
correlated.[Ayres 2016] 

 
Figure 5.1.2.5   Monte Carlo simulation plot for uncorrelated case in blue and fully correlated process in 
orange. Confidence ellipses are plotted to fit 95% of the points. Lower dispersion decreases the ellipse 
area and consequently the corners, enhancing the circuit design. [Ayres 2016] 
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Expanding the analytic model (5.3) to a general form for N-tiers is given as (5.4). For an example, a 3-tier 

circuit, which has parameter correlations between tiers, has a non-null covariance term in (5.4). 

Considering the weights (pa, pb, pc) and a parameter random variable (e.g. tsi thickness) for each tier as X, 

Y and Z, the second term in (5.4) can be written as shown in (5.5). 

 

 

The partitioning effect can produce an additional boost predicted by the model. Indeed, increasing the 

number of uncorrelated process tiers and designing the delay path allocated equally in N-tier as shown in 

Figure 5.1.2.6 would reduce the frequency dispersion. 

Circuits based on RO were tested to verify the impact of the delay ratio partioning between tiers as shown 

in Figure 5.1.2.7. In those circuits, the area ratio between the top and bottom tiers are different as well as 

the number of transistors; however, by characterizing the gates, it is possible to determine the delays, and 

then design a balanced delay circuit equally splitting the delays between tiers. The first circuit uses a XOR 

gate in series with inverters. As the XOR delay is equivalent to eight inverter delay, thus the circuit delay 

partitioning is balanced. Comparing the frequency output dispersion of the planar case to the 3D balanced 

delay one, a 30% reduction in the frequency dispersion is observed. Another circuit example which 

𝜎𝐼
2 =  ∑ 𝑝𝑖

2𝜎𝑖
2 + 2 ∑ 𝑝𝑖𝑖,𝑗∶ 𝑖<𝑗 𝑝𝑗𝜎(𝑋, 𝑌)  (5.4) 

𝜎𝐼
2 =  2𝑝𝑎

2𝜎𝑏
2𝐶𝑂𝑉(𝑋, 𝑌) + 2𝑝𝑏

2𝜎𝑐
2𝐶𝑂𝑉(𝑌, 𝑍) + 2𝑝𝑐

2𝜎𝑎
2𝐶𝑂𝑉(𝑍, 𝑋)  (5.5) 

 
Figure 5.1.2.6   The analytical model for 3D uncorrelated processes considering N tiers can reduce further 
the relative frequency dispersion compared to a planar circuit. Maximum theoretical gains are shown 
[Ayres 2016] 
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benefits from similar reduction in dispersion are the D Flip-Flops (FF) connected in series with a clock 

generated by a two-tier ring oscillator. Contrarily to the RO presented before, the inverter chain with the 

XOR gate does not reduce the static power variance by 30% because the area and the number of transistors 

is not balanced between tiers. 

The 3DVLSI partitioned ROs have their variability accessed in this section, mainly considering the global 

variations, which is the main source of impact for this case. The local variability affects both tiers, and can’t 

be reduced by employing partitioning. This section considers global and local variations (with ACV 

dispersion included, but no correlation evaluation). However, the ACV source of variation has to be 

properly accounted for circuits which global variations are not the main factor in variability, and then the 

device correlation due distances has to be accessed for an accurate evaluation. The next section will 

discuss a unified model considering all sources of variation with ACV correlations and will evaluate ROs 

and SRAMs variability. 

  

 
Figure 5.1.2.7  Circuits with different area partitioning and delay partitioning. The main factor to reduce 
the frequency dispersion is the delay partitioning. 
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5.2 Statistical Unified Model 

5.2.1   Model Definitions 
As shown in the last section the 3D partitioning can reduce a parameter dispersion, however for circuits 

where local variability is the main component on the final performance, the correlations integrating 

distances in their formulae should be evaluated. Therefore a 3D unified statistical model has been 

developed, where global, local and ACV sources can be accounted as in (5.6). In this section, the 

simulations are done explicitly separating the local component from ACV, and considering the ACV 

correlations. For the same tier, the ACV behaves like a planar circuit. However, considering a 3D circuit, 

the top tier is not correlated anymore to the bottom tier. In this chapter, the ACV modeling is based on 

[Lu 2014], which defines six properties for an accurate mismatch model:  

1) Mismatch cannot be approximated by a series of step functions (excluding grid approaches, as 

the non-continuity brings errors in small scales);  

2) The mean value of a given transistor parameter is constant;  

3) The standard deviation of a parameter is constant (the parameter µ and σ are always the same, 

independent of the wafer position);  

4) Pelgrom’s variability still holds true for every device and device pair;  

5) For distant devices, when the pair distance increases, the rate of mismatch increase should be 

reduced (even for very large distances, the amount of mismatch is finite);  

6) The solution has to be compact to be implemented in SPICE models. 

The dependence of the ACV correlation and the distance is derived by [Lu 2014] which is compliant with a 

Monte Carlo implementation in SPICE modeling. The 2D random spatial frequency models for a parameter 

P mismatch is given in (5.7) and (5.8). 

 

Where G0, gi, and gn,1, gn,2 , gn,3, gn,4 are independent normalized random variables and ans are normalized 

weights. M is the total number of independent random variables used. The model is powerful because it 

describes the correlations using a sum of normalized Gaussian contributions from different spatial 

frequencies, which are implemented in a circuit simulation environment. This model is also translational 

invariant, meaning it does not depend on the absolute value of the device position zi=(xi,yi) and more 

𝜎2 ≡  𝜎𝐺𝐿𝑂𝐵𝐴𝐿
2 + 

1

2
𝜎𝐿𝑂𝐶𝐴𝐿

2 + 𝜎𝐴𝐶𝑉
2  

(5.6) 

  𝑃𝑖 = µ + 𝐺0𝜎𝐺𝐿𝑂𝐵𝐴𝐿 + 
𝑔𝑖

√2
𝜎𝐿𝑂𝐶𝐴𝐿 +  

𝜎𝐴𝐶𝑉 ∑ 𝑎𝑛[𝑔𝑛,1𝑐𝑜𝑠𝜑(𝑧𝑖) + 𝑔𝑛,2𝑠𝑖𝑛𝜑(𝑧𝑖)]

𝑀

𝑛=1

 

(5.7) 

𝜑(𝑧𝑖) =
𝑥𝑖𝑔𝑛,3 

𝑑𝑛
+

𝑦𝑖𝑔𝑛,4

𝑠𝑛
 , 𝑖 = 1,2, … 𝑁 

(5.8) 
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importantly, it is a continuous model. The model has been developed further by [Poiroux 2015], creating 

a unified statistical model compatible with SPICE modeling for planar circuits. The unified model has been 

expanded for 3D environment, describing the device correlations in (5.9), which contains two statements: 

• If the devices g and h are on the same tier, then the pair correlation deduced for planar is 

used.  

• Else, if the devices are in different tiers the correlation is zero. 










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(5.9) 

In the formula above, P is the pair distance, D is the device size and Λ is the physical correlation length. As 

previously discussed in (4.6) the model keeps independent the local variance from the correlation. The 

Poiroux’s model is used for devices in the same tier, describing all variations sources and capable to 

generate Pelgrom’s plot; accurately modeling the local variations. The model uses a FD-SOI technology, 

but this unified model is easily extendable to other technologies. Extracted from [Poiroux 2015], a 

correlation length component of 2.8 µm is used. The correlation between devices is evaluated in the 

circuit netlist using (5.9). For the devices on the same tier, the correlation varying with the distance is 

shown in Figure 5.2.1.1. The correlation range is treated as isotropic, meaning that the correlation range 

in the x direction is the same as in the y position for devices situated in the same tier. This plot confirms 

the veracity of the model, as the curve shape describes the ACV variation in planar circuits as discussed in 

Chapter Four Figure 4.1.4.2. Notice that the pair correlation tends to be zero as the distance increases. 

The correlation for the pair is used as input for the transistor model and is handled directly in the circuit 

simulator as described in Figure 5.2.1.2.  

 
Figure 5.2.1.1  Device pair correlation varying with the distance for a fixed transistor size and isotropic 
correlation length. 
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Figure 5.2.1.2  Circuit simulation flowchart treating ACV correlations. The handling is entirely done inside 
the circuit netlist and SPICE model. The correlation is created using a corrected distribution, and finally 
keeping the original parameter variance. 

 

A procedure to create a correlation between two parameters Nx and Ny directly in the simulator is used:  

the initial parameter distribution is created, and then another Gaussian distribution is created using a 

corrected variance. Finally, the initial and corrected distributions are joined to form the Gaussian 

distribution with the original sigma and desired correlation. The code for python and SPICE netlist is 

illustrated in Appendix B. For optimization purposes, if the devices are in different tiers, the parameter 

distribution can skip this procedure and be declared as independent from each other directly in the netlist. 

In this manner, the model handles all component variations in (5.6) in the SPICE unified model, including 

the 3D partitioned circuits. The entire process does not require intensive computing, can be scaled up, and 

avoid the classical way to implement correlations using matrix as described in [Conti 1999], which is hard 

to implement directly into circuit simulations. 
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5.2.2   Ring Oscillators Sensibility to Different Sources 
Each component in (5.6) can be separated from each other, allowing a component analysis with SPICE 

simulations. To illustrate this property and the circuit sensitivity to each component, planar Ring Oscillators 

with 17 inverters have been simulated. Three cases were considered: 1) Only Local variations 2) Local and 

across-chip variations, accounting the correlations and 3) All considered sources using the SPICE unified 

model. All the inverters are not correlated, this hypothesis means that all the inverters in the chain are 

far from each other, or at least 7µm distant. The output frequency variance is shown in Figure 5.2.2.1. 

Monte Carlo simulations were done using 200 random draws. Global parameter variations are the main 

contributor to the RO frequency variations. The frequency histogram results in a Gaussian distribution as 

in [Pelgrom 1998]. 

Another simulation using the same setup was done with ACV correlations plus local variations for the RO. 

In one case, all the inverters are not correlated as before, while in the second case the inverters are all 

ACV correlated, depicting a more realistic case, where inverter are close to each other in a RO. The results 

are illustrated in Figure 5.2.2.2. The inverter lack of across-chip correlation makes the output frequency 

less dispersed than the RO with all the inverters correlated. As discussed before, the RO has an “averaging” 

property. When all inverters are correlated, this averaging effect will no longer work, as the inverter 

variations are in the same direction. This outcome is analog to the partitioning effect on the ring oscillator 

described in Figure 5.1.2.1. With no correlation between inverters, the averaging effect is fully exploited 

and the output frequency distribution has a lower standard deviation. In planar, the distance required to 

 
Figure 5.2.2.1 Output frequency normalized distribution for planar RO with 17 inverters. Enabling 
different variations sources, the global variability is the most sensitive component for ring oscillators. 
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have uncorrelated gates are almost unfeasible. However, this can be achieved in a 3DVLSI integration using 

different tiers. In this case, the output frequency has a lower dispersion from ACV component. 

 

  

 
Figure 5.2.2.2 Output frequency normalized distribution for planar RO with 17 inverters. Comparison of 
correlation effects using ACV statistical parameters. 
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5.2.3   3D Partitioned SRAM Variability 
Considering the FD-SOI technology, we made the assumption that the flat band voltages (VFB) of NFET and 

PFET from the same tier are also uncorrelated, because the gate stack in this technology can be separately 

built for the transistors. The unified model can also accept the correlation between parameters as 

described in [Mazurier 2011] and [Eikyu 2006] where the drain current in different regimes is correlated 

to transistor VT and RON fluctuations. In Figure 5.2.3.1 , we compared a planar SRAM simulation to a 3DVLSI 

SRAM simulation using the unified model. The SRAM layout and the transistor distances have been 

extracted from [Weber 2014]. The SRAM layout is shown in Figure 5.2.3.2. On the left upper side, we 

illustrate a typical planar 6T-SRAM. The VFB parameter is plotted representing the third term in (5.6), 

namely the ACV. Then each NFET transistor is plotted against another NFET showing the pair correlation. 

In the planar SRAM, the NFETs pairs M3/M7 and M6/M1 stay correlated with the highest value (r=1) to 

each other because of the very small distances, while the pairs  

 

Figure 5.2.3.1  ACV correlations for VFB parameter of NFETs in an SRAM. On the left (9.a) a planar SRAM 
with all transistors in the same tier. On the right (9.b) the SRAM is partitioned into two tiers. 

 M3/M1 and M6/M7 presents a lower correlation because of the distance separation, obtained from 

Figure 5.2.1.1. The PFETs were not shown but also stay correlated (r=1) to each other. Additionally, an 
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SRAM partitioned into two tiers is simulated. The partitioning is symmetrically splitting the SRAM in equal 

area and functionality, as one pull-up, pull-down and pass-gate transistors remains in one tier as shown in 

the right upper side of Figure 5.2.3.1. Again, the VFB parameter is plotted in the same way of planar circuits 

for the 3D case. The NFETs in the same tier stay correlated to each other as before. By comparing the VFB 

parameter of NFETs in different tier, the total lack of correlation (r=0) is seen as defined in (5.9). Also, 

due this partitioning the PFET parameters are no longer correlated. This outcome has a tremendous impact 

in the design of the SRAM, meaning that the inverters with the pass-gate transistor are no longer 

correlated, and the VTC curves are not anymore symmetrical (although the local mismatch between 

NFETs and PFETs is still present in both cases). Further, the ACV physical uncorrelation caused by the tier 

alteration can be seen as the global uncorrelation presented in ring oscillators. We observe this 

reproducible effect in a planar circuit by placing the SRAM transistors away from each other, as explained 

in [Lu 2014], but the required distances shown in Figure 5.2.1.1 to reduce the correlation to zero, will cause 

a density loss and a degradation in performances due to higher WL routing for a bitcell, hence impractical 

on real circuits. 

 

Figure 5.2.3.2  Planar SRAM layout. The NMOS transistors pair are close, thus the Pearson correlation is 
one. Due to correlation range of 2.8µm, the Pearson correlation between M7/M3 to M1/M6 is 0.97. 
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5.2.4  SRAM Static Noise Margin 

 
Figure 5.2.4.1   SRAM SNM simulated using the unified model. The SNM increases if the voltage nodes 
VIVLEFT and VIVRIGHT have lower correlation. The planar case considering correlations has better SNM than 
a hypothetical planar full correlated case. 

The results of the RSNM versus the supply voltage using the unified model considering global, local and 

ACV variations are shown in Figure 5.2.4.1. Those simulations were done using one thousand MC runs. 

Three test cases have been simulated, two for a planar SRAM, where one considers the ACV distance, and 

the other just implements a hypothetical case using fully correlated parameters (r=1). The final case 

considers the 3D SRAM partitioned and considers the ACV correlations caused by the distance as shown 

in Figure 5.2.3.2. The planar case considering the ACV correlations have 8% better RSNM than the fully 

correlated planar case. This result shows the need to simulate the ACV correlations for SRAM planar 

circuits, especially for correlation lengths in the same order of the bitcell size. The need to implement ACV 

correlations for other planar circuits has already been demonstrated in [Poiroux 2015], for example in 

digital-to-analog converters. Partitioning increases the RSNM by 32% for the 3D case compared to the 

planar case with correlations. As the uncorrelation between the two SRAM parts decreases, the chances 

of the VTC being the worst at the same time are reduced. In other words, partitioning lowers the 

probability to simultaneously have the both worst flipping points. During the read operation, the voltage 

node VIVLEFT (defined by Figure 5.2.3.1) is determined by the voltage divider formed between M7 and M3 

as explained in [Guo 2009]. The other side voltage node VIVRIGHT (defined by Figure 5.2.3.1) is determined 

by the transistors M1 and M6 forming the voltage divider as illustrated in Figure 5.2.4.2. As the pair M7/M3 

is not correlated to the pair M1/M6 pair, the voltages VIVLEFT and VIVRIGHT are no longer correlated, granting 

higher lobules in the butterfly curves. The 3DVLSI becomes very attractive for a SRAM design requiring low 

voltage operation and using technologies with high variability as it can increase further the SNM. 
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Figure 5.2.4.2  ACV correlations of NFETs in an SRAM during a read operation. On the left, a planar SRAM 
with all transistors in the same tier. On the right, the SRAM is partitioned into two tiers. 

Besides the read static noise margin, another usual figure of merit of SRAMs is the Write Noise Margin 

(WNM). As commented by [Guo 2009], the WNM indicates the ability to write a SRAM cell. If this figure of 

merit drops below zero, it becomes impossible to write a bit into the bitcell. The WNM is quantified by 

the side of the smallest square inside the read and write VTC at the same bitcell. The write VTC can be 

simulated in SPICE by sweeping the voltage in VIVLEFT with BL and WL tied to VDD while BLC is connected to 

ground. The WNM square should be evaluated at the lower part of the curves, below the half of supply 

voltage. At the event of a writing, the pass-gate and the pull-up transistor forms a resistive voltage divider. 

If this voltage divider pulls the storage node (VIVRIGHT or VIVLEFT) below the inverter trip point, the bit is 

successfully written in the SRAM. The SRAM simulations have taken an initial hypothesis that the NMOS is 

not correlated to the PMOS in the planar case, neither in the 3DVLSI case. In FD-SOI technology this 

outcome may be possible because the P and N gate stacks may differ. Even though, there is a correlation 

between two PMOS (pull-ups) for the planar case, while in the partitioned case the PMOS are not 

correlated anymore. The correlation is picture in Figure 5.2.4.3. This situation is important for the WNM 

figure of merit, because it depends on the transistors N/P ratio, as cited before, in order to trip the inverter 

point making a writing successful. A planar SRAM was compared to the 3DVLSI partitioned case for RSNM 

simulations. The results for WNM using the unified statistical model are illustrated in Figure 5.2.4.4. The 

write margins are similar in both cases. This can be attributed to the fact that in both circuit configurations 

the PMOS is not correlated to the NMOS, and the design ratio of the pull-up/pass-gate is uncorrelated in 

both cases. The overall conclusion for the SRAM bitcell, is that it can safely benefit from the 3D sequential 

integration, without degrading important figures of merit, such as RSNM and WNM. Indeed, the potential 

lack of correlation between tiers can be a feature, avoiding the worst/best case scenarios and improving 

the circuit noise margin, even if those circuits are highly dependent on local variation sources.  
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Figure 5.2.4.3  Monte Carlo SRAM simulation for WNM. Due to an initial hypothesis, the NMOS and 
PMOS are not correlated even in planar case. In 3DVLSI SRAM, they still uncorrelated. 

 

 
 

Figure 5.2.4.4  Monte Carlo Write Noise Margin simulations using the unified statistical model. On the 
left, a planar SRAM; on the right, a 3DVLSI partitioned SRAM.  
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5.2.5 SRAM Static Power 

Extending the bitcell analysis, the static power was extracted in both configurations as seen in histograms 

of Figure 5.2.5.1. The simulation uses the unified model with all the variation sources enabled. The static 

power is exponentially dependent on the transistor VT [Gu 1996], thus the MC simulations for SRAM are 

plotted in a logarithmic scale, and histogram has a lognormal distribution. Comparing the planar full 

correlated case to the 3DVLSI partitioned case, the median of the lognormal distribution is the same for 

both cases. This result is expected because the VT mean and variance are the same for both tiers. Analyzing 

the static power dispersion, the 3DVLSI case has a slightly lower sigma compared to the planar one. The 

averaging effect takes place because one part can have a low VT consuming more static power, while the 

other part can have a high VT consuming less. Despite the static power variance being similar to both cases, 

the results show no degradation in the static power due to the partitioning. 

  

 
Figure 5.2.5.1  ACV Monte Carlo static power histogram for the same SRAM bitcell. The median and 
sigma of the fitted lognormal distribution are shown above the plot. On the left (a) a planar correlated 
SRAM. On the right (b) a 3D partitioned SRAM. 



Chapter Five 
 

 

 134 

5.3 Chapter Conclusion 
In this chapter, the study of variability in 3D circuits was done transposing concepts of the planar 

integration, and adapting for a monolithic integration environment. After an instruction to the variability 

handling in nanoelectronics, the planar variability is analyzed. Then the partitioning of circuits in 3DVLSI is 

discussed. 

The planar circuit analysis has been done with ROs and SRAMs, illustrating how the different variability 

sources affects these circuits. ROs are mostly influenced by global variations, while SRAMs behavior are 

dominated by local variations, and if a parameter is outside the correlation range for different transistors, 

the analysis also requires the ACV evaluation. 

Partitioning has been described as highly influential element in the circuit variability. In the ROs, applying 

the partitioning of 50/50, it reduces the output frequency and static power dispersion up to 30% if the 

process tiers are not correlated. The simulations show that in the worst case, where bottom and top tier 

are correlated, the final dispersion of the partitioned circuit becomes similar to the planar circuits. 

The SRAMs were also evaluated after a partitioning, although in this case it requires the 3D statistical 

unified model to evaluate the ACV correlation. The model was developed based on previous statistical 

unified models and integrated directly in SPICE simulations. The partitioned SRAM, while considering a 

correlation length one order higher than the transistor size, shows a better RSNM compared to the planar 

SRAM. The lack of correlation between SRAM nodes is described as critical element, as the RSNM is a 

worst/best case figure of merit, thus directly influenced by VTC curves correlation. 

The main message of this chapter is: 3DVLSI has a unique feature, namely the partitioning, to reduce 

variance in determined figures of merit.  
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6.1 Moore’s Scaling Perspectives 

6.1.1   Limit of Moore’s Law 
Moore’s law has been active during the last five decades. The device miniaturization is reducing the 

cost per transistor. Along with the scaling, the circuit performance (speed) increases at each new node, if 

benchmarked for a constant power. The quote opening Chapter One: “There's a basic principle about 

consumer electronics: it gets more powerful all the time and it gets cheaper all the time”; it will no longer 

be true if the scaling cannot continue. Thus, a huge impact in all science fields, economics and human life 

style will occur as our society is extremely dependent on nanoelectronics.  

The scaling of transistor is now reaching atomic dimensions, for example the 10nm Intel FinFETs have 

only 7nm fin width at half height. Continuing the miniaturization trend is getting harder from a physical 

point of view. For transistor scaling, the limits are the quantum effects degrading the transistor 

performances. At the interconnection level, the back-end scaling is increasing the parasitic elements as 

dielectric isolation and metal routing layers are getting thinner and smaller, increasing resistances and 

capacitances. 

In this context, the future of CMOS logic scaling is uncertainty at long-term. As 2017, the industry and 

academia researches are focused on: 

• Short Term (5 years): The miniaturization will continue by employing new transistor 

architectures and novel process technologies, such as Extreme Ultra-Violet (EUV) lithography. 

We can notice that nanowires or nanosheets transistors are already in the foundry roadmap. 

• Medium Term (5-20 years): In this perspective, the research will address both more than Moore 

approach and alternatives to scaling. The work of this thesis is part of this last category as an 

option to the ultimate scaling integration. Moreover, the research on new materials to increase 

the device performance without decreasing dimensions will remain very active. 

• Long Term (20-50 years): This is more speculative but quantum computing and exotic materials 

such as carbon nanotubes for mass fabrication seems to have a chance. Even if quantum 

processing shows a good potential, a hybrid between quantum and traditional CMOS processors 

is more likely. 

The goal of this thesis consists in the evaluation of features, opportunities and issues of 3D sequential 

integration for logic circuits, which are potential technological solution to extend the Moore’s scaling. 

6.1.2  The 3D opportunity 
3D monolithic, also referenced as sequential integration, is the idea to stack several tiers of transistors, 

opposed to traditional planar integration, where transistors are built side by side. The great opportunity 

of this technology is for dense and complex logic circuits, where it can deliver small pitch and size 3D 

contacts (3DCO) through the tiers. Considering the Performance /Power/Area (PPA) figure of merit, the 

3D design must follow the guidelines: 

• Performance: CoolCubeTM integration features back-end in each tier, enabling an optimized 3D 

circuit routing. By routing in the third dimension with 3DCO, the designer has one more degree 

of freedom. In order to reduce the interconnections and the parasitic elements, which slow the 

circuits, the gates should ideally be closer to each other. However, in planar circuits, due to the 

high density of logic circuits, this ideal case is not always achieved, forming long critical paths 
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that limit the circuit performance. 3DVLSI design creates the opportunity to eliminate such 

bottlenecks by placing the gates in different tiers, close to each other. Hence, the circuit will 

benefit from reduced interconnection wirelength, increasing the overall performance. In this 

thesis, we show those gains by analyzing Full Adders and Ring Oscillators. At worst case, if no 

wirelength is cut in 3D integration, it will match the planar performance. 

• Power: As the interconnections are smaller in 3DVLSI case, the total number of gates in the 

circuit should be lower compared to the similar circuit in planar, because some signal buffers 

and repeaters can be avoided. This effect reduces both the circuit static and dynamic power. 

Another aspect evaluated by this work, is the power delivery network (PDN). The 3DVLSI circuit 

will be connected to the exterior by the top tier, and then all the power nets will arrive to 

bottom tiers through the 3DCO. The contacts should be carefully designed to avoid voltage drop 

in lowermost tiers, otherwise the performance will be degraded in those transistors operating 

at lower supply voltage. 

• Area: Stacking wafers increases the total area straightforwardly. The designer job is to avoid 

area wasting with 3D overhead, for example, with a disproportional number of 3DCO per 

number of gates. This thesis proses to use the 3DCO placement as standard cells, and evaluates 

the ideal number of 3DCO per gate in order to achieve an area doubling using two-tier 

integration. The transistor over transistor integration flavor is discouraged in favor of CMOS 

over CMOS integration because of the high number of 3DCO, causing a large 3D area overhead 

and sometimes creating routing congestions. 

 

6.1.3  Advantages of 3D design for variability  
Besides the PPA metric, the variability is an important topic in circuit design as it directly impacts the 

fabrication yield and circuit performance. As the processes are subject to variability, the circuit 

architecture has to take it into account, otherwise some devices will operate outside their specifications 

or will not work, decreasing the yield. This is managed by designing the circuits in a way that it can tolerate 

process variations. However, they will cause some chips to be faster than others, potentially affecting the 

final user perception of performance. In this context, the variability in 3D sequential circuits has to be 

measured, furthermore considering a circuit distributed across the tiers, as 3DVLSI granularity can be fine-

tuned. 

In order to evaluate all the sources of process variations, this thesis proposes a 3D unified model 

considering global, local and across-chip variations for circuits implemented in more than one tier. The 

study presented some insights on 3D variability, and how 3D design can use the netlist partitioning as a 

feature to reduce a determined figure of merit variability. 

 The variability in 3DVLSI can be reduced if the design follows the directives based on circuit sensitivity to 

variation sources: 

• Global variations dependent circuits: In this thesis, the first order evaluation is done using Ring 

Oscillators.  The results show a partitioning influence on the variability. As the processes for each 

tier are usually not correlated, the final variability is described as a weighted sum. Thus, for the 

designers, partitioning is a way to reduce global variability. The main physical reason of this 

outcome is the avoidance of worst/best case happening on both tiers at the same time, or in 



Conclusion 

 

 139 

other words, a less performant device can be compensated by the device on another tier, hence 

reducing variability. 

• Local and Across-Chip variations: Local variations are intrinsically related to technology and 

individually affects the transistors. This source of variation cannot be mitigated in 3DVLSI design 

and should be managed as in planar integration. The across-chip variation is the source of 

variations dependent on the distance between transistors, and introduces a notion of 

correlation as function of distances, namely the correlation range. In 3D sequential design, 

where the netlist can be partitioned with a fine granularity among the tiers, the ACV behavior 

can be engineered in order to increase a determined circuit figure of merit. As the transistors in 

different tiers are not correlated due to ACV, the design can exploit this feature. In this thesis, a 

SRAM partitioned into two-tiers, illustrates this point by showing a better figure of merit than in 

planar integration. The SRAMs are circuits with a high sensitivity to local and ACV variations. 

Thus, the designers should carefully partition their SRAMs to make dependent parts 

uncorrelated. In this fashion, the circuit can avoid the worst/best limiting the ACV correlation 

impact. 
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6.2 General Conclusion 
3DVLSI integration, also known as monolithic or sequential integration is presented and evaluated in this 

thesis as a potential contender to continue the scaling for CMOS logic circuits. The main advantages of this 

technology compared to already existing 3D parallel integration is the high alignment among tiers, 

enabling small size and pitch 3DCO. This feature is a must for logic over logic integration, because the 

circuit needs a refined netlist granularity to optimize performance, while the area overhead caused by 

those connections remains negligible. Another great 3DVLSI feature is the improved placement and 

routing compared to planar circuits. Indeed, the interconnections are shorter as the design has an 

additional degree of freedom in the Z direction. Hence long wires in planar circuits can become 3DCO 

contacts, lowering the interconnection parasitic elements and speeding up the circuit as well as reducing 

the power usage. 

This thesis was partitioned into two parts: the first one analyses and compares the 3DVLSI physical design 

implementation to the classical planar integration. The fundaments of scaling, and the reasons pushing 

3DVLSI to become the mainstream integration for logic advanced nodes is discussed in Chapter One. 

Chapter Two details the planar and the expected automated design flow for 3D digital circuits. The tools 

are in a development stage; thus, the bottom-up design methodology is proposed. In this approach, the 

design is done close to the transistor, in order to answer to open questions during the EDA development. 

PPA performance is evaluated using simple circuits such as ROs. Small circuits, with few standard cells are 

depicted as hard to increase performance and reduce power, as the wirelength reduction is not enough 

to observe remarkable gains. On the other hand, if a planar circuit is stacked into 3D using CMOS over 

CMOS style, both circuits will match the performances, with no penalties due to the 3D integration. In 

Chapter Three, some guidelines are proposed in design and process, like the iBEOL composition to reduce 

contamination risks in front-end machines. An analysis of BEOL scaling in planar nodes depicts a physical 

barrier that will impact the circuit performance, and 3DVLSI is proposed as a solution for BEOL scaling 

issue. 

A brief introduction to variability in planar circuits is done in Chapter Four. Planar process variations and 

its management are used as a starting point of 3DVLSI figures of merit variance analysis. The global, local 

and across-chip variations are discussed in Chapter Five, and evaluated using a 3D SPICE unified statistical 

model developed in this work. The main conclusion is that the designer can exploit the partitioning as a 

feature in order to reduce the variance of determined figures of merit. 

Finally, this work concludes that 3D integration is a viable option to virtually continue the scaling. The 

industry roadmap is focused on scaling for short-term, however miniaturization will face a major physical 

barrier in future, which may turn Moore’s Law uneconomical as happened to 2D NAND memories. A great 

opportunity to introduce the 3DVLSI lies ahead.  
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6.3 Prospects  

6.3.1  CMOS logic integration and memories – Several Tiers Scaling 
3DVLSI is suitable for logic over logic integration, focusing high-performance computing. As described 

in this work, the circuit PPA can be enhanced by employing this integration. Memories are already stacked 

in sequential processes [Jung 2006; Park 2014], increasing the storage density per area. Logic circuits are 

still integrated in planar fashion, however as the scaling is becoming more difficult, the 3DVLSI chips 

integrating logic circuits and memories are the easiest solution to extend Moore’s Law. Besides the 

physical limits, the cost of scaling planar technologies can become uneconomical, and then the 3DVLSI is 

an excellent candidate. This scenario already happened with memories, as scaling of 2D NAND memories 

has been too costly. Transition to 3D NAND was the path taken by the industry to reduce the costs. 

The future of 3DVLSI also depends on the Z direction scalability. This thesis mainly worked on an initial 

case only using two-tiers. However, the possibility of stacking N tiers is needed to guarantee scalability 

over the years after the introduction of 3DVLSI. An interesting prospect, if 3DVLSI becomes the 

mainstream, is a Moore’s Law like trend for the number of tiers, or in other words, the tier count should 

double each eighteen months. The present technology is thought to be N-tier scalable, as the low 

temperature process should not degrade another low temperature process. However, a silicon 

demonstrator need to be done yet, along with more research on 3D design flow for several tiers. Also, 

with 3DVLSI prototypes, the thermal validation and several studies have to be done, in a way that EDA 

tools can handle the power dissipation in stacked digital circuits. 

6.3.2  More than Logic – Functionality Integrated Sequentially  
3D parallel integration, or TSV already enables chips packaged with complementary functions, such as 

sensors, imaging, NEMS, specialized circuitry coupled to logic elements. The main goal is to provide 

miniaturization and functionality in a single package. However, as discussed in Chapter One, the TSV 

integration has very limited contact density between tiers, restraining the maximum data flow among 

tiers. The great opportunity of 3DVLSI is to aggregate a list of functions in a single monolithic chip, and 

further extending the capabilities of chips already integrated in parallel 3D. 

With new segments driving the nanoelectronics industry, the applications require intensive real-time 

computing, such as machine learning, self-driving cars, smart grids and connected objects. The self-driving 

cars requires a huge processing of external world, as the software needs to understand what is happening 

around the car [Lee 2013]. This typical application requires an extensive data flow from the sensors 

(imaging, laser, radar and lidar) to the processing unit. An ideal system would have those capabilities 

integrated in a single monolithic device, in order to reduce costs and increase the system performance. 

The 3D sequential integration is one of the few candidates able to deliver the needed technical solution, 

by integrating dense high-performance logic to fine grain complementary functions, such as sensor 

matrix, imaging, and analog circuitry. 
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A.1 Thesis Tools Context 

A.1.1 A.1.1 3D Design Environment 
The 3D sequential design environment has been developed based in the planar environment logic 

synthesis macroscopic step. The process design kit (PDK) consists of four design elements based in the 

Figure A.1.1.1 which are based on technology parameters. The 3DVLSI integration is currently developed 

in the FDSOI technology, however in future it can be implemented for any transistor architecture. The 

simulations are done using the ELDO simulator from Mentor Graphics, using the proper transistor model. 

The circuit functionality is tested using the schematic drawings and then electrically simulated using 

Virtuoso environment from Cadence. Although the focus is digital circuits, the SPICE simulations are 

analog/mixed-signal simulations which capture all interactions of the transistor compact model. The range 

of capabilities of the schematic is analyzed through the voltage and current in the circuit nodes, also 

allowing timing analysis. The layouts are done using the Cadence Virtuoso in a full custom environment. 

After the layout drawing, the Design Rule Check (DRC) tool is used to verify if the layout complies with the 

Design Rules Manual (DRM). Those rules are imposed by the process limitations and are enforced to 

guarantee the process yield and reliability. For example, avoiding short circuits due to a specific layout 

routing. After the layout is checked to comply the DRM, it is also checked against the schematic in a tool 

called LVS (Layout Versus Schematic). This tool confirms that the drawn layout corresponds to the 

schematic. The LVS is essential, as complex layouts may have a minor mistake that is hard to identify, such 

as missing via connection. After the DRC and LVS verification steps, the layout parasitic elements can be 

extracted (PEX). The used tool for PEX includes a complete definition of all layers in the design: including 

spacing, thickness, dielectric permittivity, metal resistivity, contact resistance, etc. With this information, 

the tool can calculate parasitic elements from the interconnections, such as resistance and capacitance. 

The DRC, LVS and PEX are inside the tools suite Mentor Calibre from Mentor Graphics. The design flow is 

then continued by adding the parasitic elements in the original schematic netlist. Then the full schematic 

with realistic parasitic elements can be simulated, in order to verify if the layout design accomplish the 

design goals, and finally circuit the PPA. If some layout or schematic modification is necessary, then the 

design flow should restart at the DRC level. This is the full custom environment proportioned by the 3D 

sequential PDK. In future, the expectation is that commercial tools will implement a planar like flow, with 

standard cells integration and fully automated tools. 
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A.1.2 Full Custom vs Standard Cell Integration 
The full custom integration refers to the highly optimized designs, requiring a great amount of man hours. 

The transistors size, placement and routing are carefully crafted in order to extract the maximum 

performance. The area also is reduced as the optimization can look for short interconnections and avoid 

blank spaces in the layout. The semi-custom approach refers to layouts which certain circuits can be 

repeated several times, copying and pasting full-customized blocks. Despite of the existence of automation 

tools to help the Full-Custom development, it differs from the circuit layout implemented using a full 

automated flow with Electronic Design Automation (EDA). In this approach, the circuit netlist in the form 

of gate-level description is used, and each gate correspondent is chosen in a library containing gate layouts. 

Those gate layouts are named standard cells. The standard cell is a layout of a certain gate, and is drawn 

to achieve a certain design directive. For example, the standard cell for a given gate can be drawn for best 

timing performance, or lowest area for high density, lowest power, or high current drive. It is common 

that libraries contain more than one flavor of standard cell layout for the same gate. The usual standard 

cell metrics are shown in Figure A.1.2.1. The standard cell has to comply with the technology design rules, 

and its size is usually defined by the number of metal tracks that fits inside the cell, and the number of 

poly in the horizontal axis times the minimum contacted poly pitch (CPP). The cells are done using the 

CMOS integration and sometimes using predefined spaces for supply rails, such as VDD and GND, in order 

to facilitate the automated gate placement into the layout. Another common practice is to use grids in the 

layout, to position the input and output pins, easing the further connection. In this work, the layouts were 

developed using the full-custom approach. The automated partitioning, floor-planning, placement and 

routing for 3DVLSI are under development and target of numerous publications. The small circuits used to 

benchmark the PPA are representative for a first order evaluation, such as ring oscillators. 

 

 

Figure A.1.1.1 3DVLSI Predictive Design Kit (PDK) used on this work. 
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Figure A.1.2.1 Typical standard cell definitions. The cell height is predefined as the number of metal 
tracks that can fit inside. The width is defined as the number of poly (PC) in the horizontal axis; the CPP 
(Contacted Poly Pitch) is the minimum distance between two parallel PC (represented in orange). 
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B.1 SRAM Signal Noise Margin (SNM) Simulations 

B.1.1  SRAM SPICE Netlist 
The 6 transistors SRAM has been simulated in ELDO SPICE, using the LETI-UTSOI2 model. The netlist is 

illustrated in Figure B.1.1.1. Each transistor is defined with their respective parameters, such as gate 

length, transistor width, number of fingers and active region continuous length. For this work, the Pearson 

correlation is also passed to the parameter. Then, the transistors connections to form the SRAM are 

declared as well the node voltage and capacitances. To extract the Voltage Transfer Characteristics (VTC) 

the SRAM inverter output node is swept. A total of a hundred of operation points are evaluated. Finally, 

the SPICE alter command does the same procedure to the other side of the SRAM, and then the Monte 

Carlo method is applied, repeating the simulation one thousand times. Each time, the transistors 

parameters have different values, inside a boundary specified in parameter statistical distribution. The 

output has a total of 100 sweeps x 1000 MC x 2 VTCs = two hundred thousand points. 

 

 

Figure B.1.1.1SPICE netlist for 6T SRAM. 

In order to evaluate such amount of data, a python script was done to extract the RSNM. As defined on 

Chapter Four, the SNM is the size of the biggest square inside the VTC curves. The python script 

interpolates the data from sweep to increase the precision. Then, it looks for the longest diagonal between 

the two curves, taking advantage from the fact that the RSNM square is parallel to X-axis. The python script 

was divided into two parts, to evaluate upper and lower lobules. The diagonal is found by sweeping in X 

and Y direction at the same time, until it arrives to other VTC curve as illustrated in Figure B.1.1.2. After 

many steps, the script stops if the diagonal value start decreasing, and the biggest values is returned. The 

algorithm for upper side search is illustrated in Figure B.1.1.3. 
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Figure B.1.1.2 SRAM SNM evaluation. On the right, the steps of python code in order to find the longest 
diagonal. 

 

A better solution can be implemented for diagonal size evaluation by using binary search to find the other 

VTC curve limit. However, the presented solution was enough to handle the two hundred thousand points 

for 1mV resolution. 

 

 

 

Figure B.1.1.3 Python code for SRAM SNM upper lobule evaluation.  

The script can be divided in multicore-processing in order to speed-up the processing as shown in Figure 

B.1.1.4. As the interpolation takes place, the SNM can have higher resolution, but slowing the total search 

time. Then the multicore processing is a requirement. 
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Figure B.1.1.4 SRAM SNM evaluation. Main script invoking the upper and lower function to evaluate each 
SNM lobule. 

 

 

B.1.2  Mathematical considerations – Correlations 
 The model presented in section 5.2 is can handle the correlations for N device pairs, as long the correlations 
for a given parameter are coherent, or in the other words the correlation matrix NxN for a parameter P is 
positive-definite [Conti 1999]. In Figure B.1.2.1 three devices are illustrated with a certain distance to each 
other. In order to describe all the correlations simultaneously; the Pearson correlation between pairs (a, b, 
c) can be treated analog to the cosine angle (B.1). The cosine of z is the correlation a. In addition, the angle 
z is at the most the sum of the angles x and y. This places a bound limit for the correlation a when b and c 
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are already defined. By using the cosine addition identity formula, the bound correlation limit is defined by 
(B.2) 

 

Figure B.1.2.1 Correlation for 3 devices depending on distance. In order to all correlations become 
coherent, it need follow angle coherence, or in general case, the correlation matrix needs to be positive-
definite. 

 

𝜌𝑋,𝑌 =
𝐸((𝑋 − µ𝑋)(𝑌 − µ𝑌))

√𝐸((𝑋 − µ𝑋)2)𝐸((𝑌 − µ𝑌)2)
 

 

=  
〈𝑋 − µ𝑋, 𝑌 − µ𝑌〉

‖𝑋 − µ𝑋‖‖𝑌 − µ𝑌‖
= 𝑐𝑜𝑠𝜃𝑋,𝑌  

(B.1) 

 

𝑎 ≥ 𝑏𝑐 − √1 − 𝑏√1 − 𝑐 
(B.2) 

Another method is to analyze the correlation matrix (B.3), as it needs to be positive-definite, the determinant 
is non-negative, as in (B.4). This equation can be rewritten, and matches the equation (B.2). 
 

C = [
1 𝑎 𝑏

𝑎 1 𝑐

𝑏 𝑐 1

] 

(B.3) 

 

1 + 2𝑎𝑏𝑐 − 𝑎2 − 𝑏2 − 𝑐2 ≥ 0 (B.4) 
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This analysis can be done using the exponential elements of the correlations described by the unified 
statistical model (5.9). The matrix (B.5) becomes positive-definite for the equation (B.6). 
 

C = [
1 𝑒−𝛼 𝑒−𝛽

𝑒−𝛼 1 𝑒−𝛾

𝑒−𝛽 𝑒−𝛾 1

] 

(B.5) 

 

1 + 2𝑒−𝛼𝛽𝛾 − 𝑒𝛼2
− 𝑒𝛽2

− 𝑒𝛾2
≥ 0 

(B.6) 

Where α, β and γ are the terms dependent on the device size, distance and correlation range. If the input 
values do not satisfy the equation, then the Cauchy–Schwarz inequality is not respected. The outcome is 
at least one pair correlation will not be coherent, or depending on the correlation code implementation, the 
standard deviation for a given parameter P won’t be constant for all devices. The proposed 3D unified 
statistical model, have a discontinuity when devices are not in the same tier, thus the triangle inequality is 
not respected in this situation; however, for devices in the same tier, the inequality (B.6) should be satisfied. 
 

B.1.3  Correlation Treatment in the Netlist 
As discussed, the correlations are usually treated as correlations matrix. However, this approach is very 

hard to implement in SPICE due to the lack of matrix processing. A method to overcome the limitation has 

been presented, and the raw python and circuit netlist are illustrated in Figure . The Pearson correlation 

is used as input, and for each device the distribution is calculated from a previous normal distribution, 

inserting an uncorrelated Gaussian part. Then, the desired distribution mean and standard deviation is 

done by sum and multiplication of the calculated correlated distribution. 
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Figure B.1.3.1 Correlations treatment. In this approach, the correlation is built for each device from the 
previous one. The distribution mean standard evaluation is done by sum and multiplication after the 
correlation step. 
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Titre: Intégration monolithique en 3D: étude du potentiel en termes de 

consommation, performance et surface pour le nœud technologique 14nm 

et au-delà 

Résumé 

L'intégration 3DVLSI, également connue sous le nom d'intégration monolithique ou séquentielle, est 

présentée et évaluée dans cette thèse comme une alternative à la réduction du nœud technologique  des 

circuits logiques CMOS. L’avantage principal de cette technologie par rapport à l'intégration parallèle 3D, 

déjà existante, est l'alignement précis entre les niveaux, ce qui permet des contacts 3D réduits et plus 

proches. Un autre avantage, extrêmement favorable à l’approche 3DVLSI, est l’amélioration du placement 

et du routage par rapport aux circuits planaires, notamment parce qu’elle permet des interconnexions 

plus courtes et qu’elle offre a un degré de liberté supplémentaire dans la direction Z pour la conception. 

Par exemple, les fils les plus longs dans les circuits planaires peuvent ainsi être réduits grâce aux contacts 

3DCO, en diminuant les éléments parasites d'interconnexion. Il est ainsi possible d’augmenter la vitesse 

du circuit et de réduire la puissance électrique. Dans ce contexte, la thèse a été divisée en deux parties. La 

première partie traite de l’évaluation de la Consommation, des Performances et de la Surface (CPS) et 

donne des recommandations pour la conception des circuits 3D. La deuxième partie traite la variabilité 

des circuits 3D en utilisant un modèle statistique unifié, et en proposant une approche pour la variabilité 

des circuits multi-niveaux.  

Keywords: Intégration monolithique en 3D, CPS, Variabilité du circuit 3D, Modèle 

Statistique Unifié pour la 3D, Recommandations pour le Design 3D, Simulations 3D 

avec SPICE.  
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